
Intelligent Systems Reference Library 74

Aboul Ella Hassanien
Ahmad Taher Azar    Editors

Brain-Computer 
Interfaces
Current Trends and Applications



Intelligent Systems Reference Library

Volume 74

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

Lakhmi C. Jain, University of Canberra, Canberra, Australia
e-mail: Lakhmi.Jain@unisa.edu.au



About this Series

The aim of this series is to publish a Reference Library, including novel advances and
developments in all aspects of Intelligent Systems in an easily accessible and well
structured form. The series includes reference works, handbooks, compendia, text-
books, well-structured monographs, dictionaries, and encyclopedias. It contains well
integrated knowledge and current information in the field of Intelligent Systems. The
series covers the theory, applications, and design methods of Intelligent Systems.
Virtually all disciplines such as engineering, computer science, avionics, business,
e-commerce, environment, healthcare, physics and life science are included.

More information about this series at http://www.springer.com/series/8578



Aboul Ella Hassanien • Ahmad Taher Azar
Editors

Brain-Computer Interfaces
Current Trends and Applications

123



Editors
Aboul Ella Hassanien
Department of Information Technology
Cairo University
Giza
Egypt

Ahmad Taher Azar
Faculty of Computers and Information
Benha University
Benha
Egypt

ISSN 1868-4394 ISSN 1868-4408 (electronic)
ISBN 978-3-319-10977-0 ISBN 978-3-319-10978-7 (eBook)
DOI 10.1007/978-3-319-10978-7

Library of Congress Control Number: 2014952782

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be
obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

Interest in Brain-Computer Interfacing (BCI) is growing. This can be concluded
from the number of BCI papers appearing in neuro-engineering and neuroscience
journals and that are being presented at BCI conferences and workshops. More
importantly, it can also be concluded from the growing number of BCI publications
that appear in journals and in conference and workshop proceedings that consider
brain activity as one of the many modalities that provide a system or a device with
knowledge of its human interaction partners, including the situation where a human
interaction partner directly addresses the system or device, using BCI. That is,
currently, we are seeing brain computer interaction becoming integrated with other
interaction possibilities and other interaction devices. This is an extremely impor-
tant development. Integration means that information coming from other modalities
such as speech, eye gaze, gestures, facial expressions, body postures, and various
physiological modalities (heart rate, blood pressure, and skin conductivity) can be
fused with detected brain signals to make it more easily possible to give a context-
aware and context-dependent interpretation of these signals. It means that BCI
technology needs to be integrated with, for example, wearable sensors, speech
processing and computer vision technology. However, it also means new challenges
for (computational) neuroscience researchers and that brain signals need to be
processed in non-clinical situations.

Presently we see a lot of application-oriented research that aims at providing
users, not only disabled users, with the capability to control devices or sensors and
actuators in their environment, where these environments and devices can range
from wheelchairs and artificially controlled hands for grasping, to entertainment
applications including artful visualization and musification, digital painting, game
control, interaction with social robots or virtual humans, and domestic applications.
With these applications for the general audience we cannot be surprised to see the
appearance of companies focusing on commercial BCI devices and applications.
A possible mass market for BCI technology will help to forward BCI research in
general and it will certainly help to increase awareness of BCI technology and its
possibilities. No wonder that in recent years science policy makers and funding
agencies have decided that it is time to have new and original views on possible
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short-term and long-term developments in this research field and possible ways to
steer these developments. Hence, there has been a veritable avalanche of state-of-
the-art reports of BCI research, assessments of BCI research and roadmaps for BCI
research. Apart from many scientific challenges, one of the (European Union)
roadmaps mentioned the following four challenges: (1) the growing need for
standards is still unmet, (2) there is inadequate interaction within the BCI com-
munity, (3) there is inadequate dissemination outside of the BCI community, and
(4) there is little agreement on the most promising future directions.

Of course, such issues have become prominent now that different research
groups, user groups, companies, and decision makers without the traditional clinical
BCI background have entered the field. It has also led to discussions about the
‘definition’ of a BCI, maybe comparable with a less than fruitful discussion about a
definition of ‘artificial intelligence’ in the 1950s of the previous century. In the
traditional definitions intentional control of a device by modulating brain signals
and explicit feedback to the user was emphasized. Now we see descriptions that
include multiple users, multiple BCI paradigms used in parallel or sequentially,
fusion of features or decisions that involve both BCI information and information
obtained from other modalities and, exploiting brain signals in interaction situations
where they are not necessarily intentionally modulated by the user and where no
immediate explicit feedback is given. BCI research is supposed to lead to tech-
nology in which brain signals are used to support people in their interaction
activities.

It has been a long road from the early BCI investigations to the current day’s
investigations and applications. There can be applications that do not require or aim
at using perfect detection or perfect interpretation of brain signals in order to be
successful. But, of course, possible improvements that can be obtained from fun-
damental research in BCI and underlying research areas are necessary to improve
and to extend the current limited range of real-world BCI applications. In this book
Prof. Aboul Ella Hassanien and Dr. Ahmad Taher Azar have collected and edited
contributions of well-known researchers in the BCI field in order to provide a
representative view, also from the observations presented above, of current trends
and applications in BCI research. Their efforts have been successful. Therefore, it
has been a pleasure to write a Foreword for this book.

Anton Nijholt
Professor, Human-Computer Interaction

Human Media Research group
University of Twente, Enschede

The Netherlands

vi Foreword



Preface

Brain Computer Interface (BCI) is a challenging application of signal processing
and neuroscience. A BCI system uses mental activity, voluntarily produced by the
patient, to control a computer or an embedded system via electroencephalogram
(EEG) signals which allow communication or interaction with the surrounding
environment. Like any communication or control system, a BCI has input (e.g.,
electrophysiological activity from the user), output (i.e., device commands), com-
ponents that translate input into output, and a protocol that determines the onset,
offset, and timing of operation. The success of a BCI system depends as much on
the system it self as on the user’s ability to produce distinctive EEG activity. BCI
systems can be divided into two groups according to the placement of the electrodes
used to detect and measure neurons firing in the brain. These groups are: invasive
systems, electrodes are inserted directly into the cortex are used for single cell or
multi unit recording, and electrocorticography (EcoG), electrodes are placed on the
surface of the cortex (or dura); noninvasive systems, they are placed on the scalp
and use electroencephalography (EEG) or magnetoencephalography (MEG) to
detect neuron activity.

The book is divided into three parts. Part I of the book from Chaps. 1–4 covers
overviews of Brain Computer Interface. Part II of the book from Chaps. 5–9
describes new theoretical developments of BCI systems. Part III of the book from
Chaps. 10–14 covers views on real applications of BCI systems.

It is hoped that the book will be a very good compendium for almost all readers—
from students of undergraduate to postgraduate levels and also for researchers,
professionals, etc.—who wish to enrich their knowledge on BCI systems’ principles
and applications with a single book in the best manner. As the editors, we hope that
the chapters in this book will stimulate further research in BCI systems and utilize
them in real-world applications. We hope that this book, covering so many different
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aspects, will be of value to all readers. We would like to thank also the reviewers for
their diligence in reviewing the chapters. Special thanks go to our publisher, Springer,
especially for the tireless work of the series editor of Intelligent Systems Reference
Library, Dr. Thomas Ditzinger.

Aboul Ella Hassanien
Ahmad Taher Azar
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Chapter 1
Brain Computer Interface: A Review

Mohamed Mostafa Fouad, Khalid Mohamed Amin,
Nashwa El-Bendary and Aboul Ella Hassanien

Quiet people have the loudest minds.
Stephen Hawking

Abstract A brain-computer interface (BCI) systems permit encephalic activity to
solely control computers or external devices. Accordingly, people suffering from
neuromuscular diseases can highly benefit from these technologies, since a com-
puter could allow them to perform multiple tasks, such as accessing computer-based
entertainment (videos, games, books, music, movies, etc.), communication (Inter-
net, VoIP, e-mails, text processors, speech synthesis, etc.) and means of research
(computational capacity, programming languages, simulation applications, etc.).
Moreover, nowadays a computer can control various electronic devices, from TVs,
DVD and CD players to electric wheel chairs, elevators, doors and lights. The
purpose of this chapter is to discuss the concept of brain computer interface (BCI)
along with presenting its definition, description, and classification of BCI systems.
Also, provides insights on the Neuroimaging modalities for BCI systems such as
Electroencephalography (EEG), Electrocorticography (ECoG), and Magnetoen-
cephalography (MEG) approaches. Moreover, this chapter addresses EEG signal
processing for BCI from the different perspectives of preprocessing techniques that
deal with EOG/EMG artifacts, feature extraction approaches for BCI designs,
classification methods and Post-processing. Furthermore, the chapter gives a brief
survey of classifiers used in BCI research along with classification performance
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metrics utilized for BCI systems. Finally, the chapter concludes with outlining
ongoing research directions for Brain–computer interface (BCI) systems.

Keywords Brain computer interface (BCI) � Neuroimaging � Electroencephalog-
raphy (EEG) � Electrocorticography (ECoG) � Magnetoencephalography (MEG) �
Near infrared spectroscopy (NIRS) � Intracortical neuron recording � Functional
magnetic resonance imaging (fMRI) � Feature extraction

1.1 Introduction

The interaction way between humans and computers has greatly evolved since the
appearance of when the first commercial computer, the UNIVAC, in the year of
1951. The only way to control that complicated piece of machinery was a modified
IBM electric typewriter, and feedback to the user was given trough a Tektronix
oscilloscope. Modern computers are completely mobile and even though they are
mainly controlled by a mouse and a keyboard, several alternative human-computer
interfaces have been developed during the last two decades using haptics, voice and
gaze [1].

Brain computer interface (BCI), also known as brain machine interface (BMI), is
a system that enables humans to interact with their surroundings via employing
control signals generated from electroencephalographic (EEG) activity, without the
intervention of peripheral nerves and muscles. BCI presents a muscular-free
channel for conveying individuals’ purposes of certain actions to external devices
such as computers, speech synthesizers, assistive appliances, and neural prostheses.
BCI systems are of particular attraction for individuals with severe motor disabil-
ities as such systems would improve their quality of life and would, at the same
time, reduce the cost of intensive care.

A brain computer interface (BCI) systems permit encephalic activity to solely
control computers or external devices. Hence, the basic goal of BCI systems is to
provide communications capabilities to severely disabled people who are totally
paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyo-
trophic lateral sclerosis, brain stem stroke, or spinal cord injury [2].

Typically, a BCI is an artificial intelligence based system that can recognize a
certain set of patterns in brain EEG signals via a number of consecutive phases;
namely, signal acquisition for brain signals capturing, preprocessing or signal
enhancement for preparing the signals in a suitable form for further processing,
feature extraction for identifying discriminative information in the brain signals that
have been recorded, classification for classifying the signals based on the extracted
feature vectors, and finally the control interface phases for translating the classified
signals into meaningful commands for any connected device, such as a wheelchair
or a computer [3].

4 M.M. Fouad et al.



This chapter discusses the concept of Brain computer interface (BCI) along with
presenting its structure and classification. Also, it provides insights on the Neuro-
imaging modalities for BCI systems such as Electroencephalography (EEG),
Electrocorticography (ECoG), Magnetoencephalography (MEG), Intracortical
Neuron Recording, and Functional magnetic resonance imaging, (fMRI)
approaches.

Moreover, this chapter addresses EEG signal processing for BCI from the dif-
ferent perspectives of preprocessing techniques that deal with EOG/EMG artifacts,
feature extraction approaches for BCI designs, classification methods and Post-
processing. Furthermore, the chapter gives a brief survey of classifiers used in BCI
research along with classification performance metrics utilized for BCI systems.
Finally, the chapter concludes with outlining ongoing research directions for Brain
computer interface (BCI) systems.

1.2 Neuroimaging-Based Approaches in the BCI

Neuroimaging is a new paradigm in medicine that studies the physiological
response in the brain. In other words it could be considered as a window to brain.
However neuroimaging of a brain is useful to detect damages in brain tissue, the
skull fractures, injuries, today it used to diagnose behavioral problems, metabolic
diseases and lesions on a finer scale.

The neuroimaging are categorized into two main categories:

Structural neuroimaging: It applied to capture the brain structure including skull
bone structure, tissues, blood vessel, or the existence of a tumor.
Functional neuroimaging: It used to detect the electrical impulses, flowing rate of
blood within vessel, and changes of metabolic activity happened as a response for
specific task.

1.2.1 The Neuroimaging Modalities

The following subsections will review the state of art in neuroimaging based
approaches

1.2.1.1 Electroencephalography

Brain neurons communicate with each other by producing tiny electrical sig-
nals, called impulses. These impulses can be measured using the EEG test. Elec-
trodes, or sensors, are placed on the patient’s scalp to capture brain electrical signals
in a form of polygraph.

1 Brain Computer Interface: A Review 5



Although EEG signals are used to diagnose brain diseases, such as Alzheimer’s
disease, epilepsy disease, they also suitable tests for evaluating sleeping, learning,
and attentional disorders, moreover monitor the brain responses during brain sur-
gery. Quantitative Electroencephalography (qEEG) processing technique uses
mathematical techniques such as Fourier and wavelet analysis to analysis record-
ings captured from multi- EEG electrodes [4]. This analysis views the dynamic
changes taking place throughout the brain during cognitive processing tasks, as
illustrated in Fig. 1.1.

Currently, EEG technologies are used to study cognitive development of infants
[6] to record interactive trials in which infants activated a novel object using their
own hands or feet in a form of somatotopic patterns. Reference [7] hypothesized
that these somatotopic patterns index an inter-corporeal mapping of corresponding
body parts between self and other.

Emotion recognition has emerged as a promising research topic since it provides
a window on the user’s internal mental state. Researchers are looking forward to
surpass the existing emotions recognition based on facial expressions, and body
language to EEG technology [8]. The work of [9] presented a study and evaluation
criteria to discriminate between positive and negative affective states based on
EEG-derived profiles. The classification model was built on collecting EEG data
from 167 healthy participants (not including people with sleep disorders, eating
disorder, diabetes, or pregnant women). Participants were watching two conflicting
types of videos; a video that reflect a negative affective state, and the other to
encourage positive affect state. The accuracy of their model as a discriminator
between the negative and positive affective states was promising that it reached over
90 %.

Fig. 1.1 A wearable EEG a
cap equipped with electrodes
[5]
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1.2.1.2 Electrocorticography

Although, the EEG readings are recorded from the scalp and signal neuron captured
from the cortex, they may not be sufficient to explore all brain activities and
reactions. Therefore there are a number of neuroscience researches still focuses on
using Electrocorticography (ECoG) to record directly from the surface of the brain.
Compared with the EEG, the ECoG has higher spatial resolution, broader band-
width, higher amplitude, and less sensitivity to artifacts such as electromyographic
(EMG) signals [10, 11]. ECoG signals are captured through placing a number of
electrodes under the skull (either above the epidural or below subdural) as illus-
trated within Figs. 1.2, and 1.3.

Fig. 1.2 Signals for BCI and their locations relative to the brain layers [12]

Fig. 1.3 Examples of electrode placement and ECoG signals. a Intra-operative placement of a 64-
electrode subdural array. Inter-electrode spacing was 1 cm and electrode diameter was 2 mm.
b Post-operative lateral skull radiograph showing grid placement [13]

1 Brain Computer Interface: A Review 7



Leuthardt et al. [13] identified ECoG signals that associated with different types
of motor and speech imagery in order to master closed-loop control system. They
achieved success rates of 74–100 % in controlling the move of one-dimensional
computer cursor rapidly and accurately. Other movement primitives can be decoded
offline from ECoG signals, such as 7 degrees of freedom of arm movements [14],
individual finger movements [15] and natural grasps [16].

1.2.1.3 Magnetoencephalography

Magnetoencephalography (MEG) is a technique used to investigate human brain
activities through measuring the magnetic fields generated by charged ions exited
within neuron cells [2]. The use of MEG has a number of advantages. First, MEG is
high temporal resolution technique; that it can resolve small time scaled events
(milliseconds) [17]. Therefore MEG signals are more reliable and they speed up
BCI communication than EEG signals [18]. Moreover it does not require the
injection of isotopes or exposure to X-rays or magnetic fields (non-invasive tech-
nique). It is known as a patient-friendly diagnosis system as it is suitable for
studding children and infants as it is shown in Fig. 1.4.

Superconducting Quantum Interference Device (SQUID) is the device that used
to scan the magnetic waves produced by neural cells [20]. Zimmerman invented the
base for Superconducting Quantum Interference Device [21]. David Cohen, at the
MIT, significantly improved his MEG device and published the first modern MEG
recordings in 1972 [20]. This quantum device should be used in a magnetically
shielded room in order to reduce the magnetic field of the earth (noise) [22].

Today, the focus goes toward the use of Magnetoencephalography (MEG) for
diagnosis modern neuronal diseases. For example it is now used as a tool in
Alzheimer’s Disease (AD) and pre-AD research [23]. The future role of MEG as a
biomarker not only as a clinical diagnosis but also as a new mode for AD stage
discovery [24]. There is a mounting consensus that such disease modifying

Fig. 1.4 The MEG system
[19]
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compounds and/or interventions are more likely to be effectively administered as
early as possible.

1.2.1.4 Intracortical Neuron Recording

Gray matter or grey matter is a type of neural tissue which is found in the brain
and spinal cord. It composed primarily of cell bodies, along with their dendrites.
Since most of researches associate gray matter with intelligence and intellect, it is
important to measures electrical activity inside them. Intracortical neuron recording
is used neuroimaging technique to this type of measurement. The technique records
gray matter signals through a microelectrode arrays implemented inside the brain
cortex as it is illustrated in Fig. 1.5.

The various components of this electrode system have been developed over
years; all develop components are varying in shape (cylindrical, planar), size (15,
50 and 75 mm), and tethering (electrode connections to connector with (tethered)
and without tethering cable (untethered)) using histological, transcriptomic, and
electrophysiological analyses over acute (3 day) and chronic (12 week) timepoints
[26]. Although the focus is going to implant small electrode size [27] and neuro
integrative and anti-inflammatory bioactive coatings [28, 29], there are ongoing
studies to addressing the effects of electrode design on tissue response such as the
study in [26] that concluded that the extent of brain tissue inflammatory response is
significantly influenced by electrode design factors. Moreover it shows that there is
a direct correlation between the chronic upregulation of neuro toxic cytokine
encoding transcripts and chronic intracortical electrode recording failure.

Although, the intracortical neuron recordings were firstly tested on animals [30],
there are Ongoing researches focused to use the intracortical neuron recordings for
people with limb loss (or experience some form of paralysis) to build technological

Fig. 1.5 Intracortical neuron
recording [25]
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bridges between the motor cortex and external devices in order to restore motor
function [31]. Figure 1.6 shows a successful experiment neuronal control of robotic
arm to reach and grasp a thermos of coffee by a person with tetraplegia.

1.2.1.5 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging, or fMRI, is a relatively new procedure that
uses magnetic resonance imaging (MRI) to establishing an activation map as
indication for brain activity. It measures the changes in blood oxygenation and flow
that occur in response to neural activity. The idea is simple that when parts of the
brain were involved in a particular mental process they consume more oxygen and
to meet this increased demand blood flow increases to these parts. Figure 1.7 shows
the result of a fMRI scan.

As it is appear in Fig. 1.8 there is a change in specific brain areas. This change
happens according to the increasing demand for oxygen to regions of increased
neural activity. Therefore, the MRI signal depends on the degree of oxygenation
(blood oxygenation level dependent (BOLD) imaging). That blood oxygenation
varies according to the levels of neural activity these differences can be used to
detect brain activity as it shown in Fig. 1.7 [33].

Not only fMRI is used to record brain activities when doing different mental
tasks, but also there is a trend to use this technology to diagnosis psychological
diseases, such as dyslexia, which is a learning disability, makes it difficult for
children to break words down into phonemes [34]. fMRI is used to study autism in

Fig. 1.6 A successful experiment neuronal control of robotic arm to reach and grasp a thermos of
coffee by a person with tetraplegia [32]
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Fig. 1.7 Results of a kind of fMRI experiment [33]

Fig. 1.8 Blood flow degree changes according to brain activities
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order to found various regions related to reactions of people with autism [35]; for
example, the study done by Koshino et al. [36] to define reaction of them towards
memory for faces, also the work of Welchew et al. [37] that used to define
responses of autism people towards different emotions.

1.2.1.6 Near Infrared Spectroscopy

William Herschel had discovered the radiation beyond the visible red light in 1,800
[38]. However, Near Infrared (NIR) region was not considered useful for spec-
troscopy. Recently NIRS turned into a measurement tool that used in a wide range
of applications including chemistry, agriculture, environmental analysis, etc.

Infrared is used through penetrating the skull either in the frontal cortex or
occipital cortex in order to assess the hemodynamic alterations accompanying brain
activation (oxygenated hemoglobin and deoxygenated hemoglobin levels) [39]. It
may appear similar to fMRI but it had a number of advantages over the fMRI that it
is cheap, high portable, and it has an acceptable temporal resolution. The key
limitation of the NIRS is its attachment to the nature of the hemodynamic response,
since the vascular changes occur a certain number of seconds after its associated
neural activity [2, 40].

1.3 Control Signals in BCI Systems

1.3.1 EEG Signal Processing for BCI

Electroencephalography (EEG) is one of the key tools for observing brain activity.
With respect to other data acquisition techniques (see Fig. 1.9 for comparison), its
main advantages are low costs, relative ease of use and excellent time resolution
(millisecond scale temporal resolution) [41]. However, it has poor spatial resolution
[42]. EEG is considered the only practical non-invasive brain imaging modality for
repeated real-time brain behavioral analysis [43]. For this reason, we will focus on
EEG as the input brain imaging modality for BCI design.

EEG signal changes according to the brain activity states. Depending on these
states, we can distinguish several rhythms (waves) [44]: “Delta” waves lie within the
range of 0.5–4 Hz, “Theta” waves lie within the range of 4–7 Hz, with an amplitude
usually greater than 20 μ V. “Alpha” with a rate of change lies between 8 and 13 Hz,
with 30–50 μV amplitude, “Beta”, the rate of change lies between 13 and 30 Hz, and
usually has a low voltage between 5 and 30 μV. Beta is the brain wave usually
associated with active thinking, active attention, and focus on the outside world or
solving concrete problems. Finally, the “Gamma” waves which lie within the range
of 35 Hz and up. It is thought that this band reflects the mechanism of consciousness.

Figure 1.10 illustrates a typical block diagram that illustrates different stages of
EEG signal processing for BCI. Subjects will generate brain activity through an
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experimental paradigm that would depend on the particular BCI approach. The
protocol to be followed by the subjects could be thinking about making imaginary
movements, focusing on flashing characters on a screen, and so forth [45].

In the following subsections, different EEG signal processing stages will be
studied with highlights of recent advances.

1.3.1.1 Data Collection Through Electrodes

Brain activity is picked by one of different types of electrodes. In their most simple
method, they are placed on the scalp using gel as a conducting material. The
placement of electrodes commonly follows the 10–20 system (as illustrated in
Fig. 1.11) or extensions of this system (32, 64, 128, or 256 electrodes) [45]. During
the last 3 years, many research works had been done on such electrodes to maximize
their performance. In a recent work of [46], they demonstrated that dry and water-
based electrodes can replace gel ones in BCI applications where lower communi-
cation speed is acceptable. In [47], they presented a wireless EEGmonitoring system.
The system is capable of processing brain signals on-board recorded from non-
contact sensors. It provides an excellent option for developing a compact BCI with a
direct connection to the external device e.g. robot or prosthesis without employing a
personal computer. The problem of interference pick-up by electrodes was addressed
by the recent work of [48]. They hypothesized that interference pick-up could be
effectively reduced by an optimized silver or graphite shielded construction.

Fig. 1.9 Scale of spatio-temporal resolution of various brain imaging techniques
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Fig. 1.10 Typical block diagram to illustrate different stages of EEG signal processing for BCI
applications

Fig. 1.11 Electrode placement over scalp according to the international 10/20 system. a As seen
from left side. b As seen from top
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1.3.1.2 Pre-processing Methods in BCI Designs

Preprocessing is carried out to remove any unwanted components embedded within
the EEG signal. Good preprocessing leads to increase in signal quality which in turn
resulting in better feature separability and classification performance.

1.3.1.3 Sources of Noise in EEG Signal

One of the biggest challenges in using EEG is the very small signal-to-noise ratio
(SNR) of the brain signals that we are trying to observe, coupled by the wide variety
of noise sources as illustrated in Fig. 1.12. Any signal other than that of interest
could be termed as an interference, artifact, or simply noise. EEG signal suffers
mainly from two types of noise. The first type, which is considered the easiest
source of noise to deal with, includes external, environmental sources of noise, such
as AC power lines, lighting and a large array of electronic equipments (from
computers, displays and TVs to wireless routers, notebooks and mobile phones).
The most basic steps in dealing with environmental noise are removing any
unnecessary sources of electro-magnetic (EM) noise from the recording room and
its immediate vicinity, and, where possible, replacing equipment using alternate
current with equipment using direct current (such as direct current lighting). A more

(a)

(c)

(e) (f)

(d)

(b)

Fig. 1.12 Several types of artifacts in EEG signal. a Clean EEG. b Eye blink. c Eye movement.
d 50 Hz. e Muscle activity. f Puse
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advanced and costly measure is to insulate the recording room from EM noise by
use of a Faraday cage [41, 44]. The second type of noise sources is the physio-
logical artifacts which arise from a variety of body activities that are either due to
movements, other bioelectrical potentials or skin resistance fluctuations. The pre-
dominant physiological artifacts include electrooculargraphic activity (EOG, eye),
scalp recorded electromyographic activity (EMG, muscle), electrocardiographic
activity (ECG, heart), ballistocardiographic activity (heart-related pulsatile motion)
and respiration. These artifacts are always present to some extent and are typically
much more prominent on the scalp than the macroscopic cerebral potentials. This
results in an undesirable negative signal-to-noise ratio in the EEG. Physiological
artifacts are often involuntary and hence cannot be controlled or ‘turned off’ during
acquisition. Traditionally non-cerebral recordings such as EOG, ECG or EMG are
also performed to aid in the discrimination and potentially the removal of the
relevant artifacts from the EEG signals as will be discussed later [43].

In addition to the previous noise sources, anatomical factors such as the inter-
vening tissue and the skull act as a signal attenuators further muddying the spatial
resolution of the oscillations. The techniques used in the signal preprocessing stage
are also dependent on the eventual type of feature classification one wishes to do, as
certain classification algorithms work better with data preprocessed in specific ways.

1.3.2 Preprocessing Techniques that Deal with EOG/EMG
Artifacts

Electrooculography (EOG) and electromyography (EMG) artifacts are considered
among the most important sources of physiological artifacts in BCI systems. In this
section, we briefly address methods of handling such artifacts. The first step in
handling artifacts is to avoid their occurrence by issuing proper instructions to
users. For example, users are instructed to avoid blinking or moving their body
during the experiments [49, 50].

Artifact rejection is the second choice, where it refers to the process of rejecting
the trials affected by artifacts. The rejection process can be done manually or
automatically. An advantage of the automatic rejection approach over that of
manual rejection is that it is less labor intensive. However, automatic rejection still
suffers from sampling bias and loss of valuable data [51]; Moreover, in the case of
EOG artifacts, the automatic rejection approach does not allow the rejection of
contaminated trials when EOG amplitude is small [52].

Artifact removal is the last choice and the most challenge one. Artifact removal
is the process of identifying and removing artifacts from brain signals. An artifact-
removal method should be able to remove the artifacts as well as keeping the related
neurological phenomenon intact [50].

Common methods for removing artifacts in EEG signals are a very topical
research area and may be divided into two different approaches: Filtering and
Higher-Order statistical separation [43].
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Filtering involves the development of a filter model to emulate the artifact
activity and use it to remove the artifact from the EEG recorded signals. The filter
coefficients can be established from empirical processing of the non-cerebral bio-
electrical artifact recordings such as EMG and EOG. This may result in a con-
ventional low-pass, high-pass, band-pass and notch filter or a more complex filter
model. Typically continuous adaptive regressive filtering is used in this approach
[53]. Regressive filtering methods in the time or frequency domain can, despite
their computational efficiency, overcompensate for the artifact contribution result-
ing in the loss of EEG information or the introduction of new artifacts [43].

Due to the large number of unknown sources of neuronal and non-neuronal
origins contributing to the recorded signal, it becomes a blind source separation
(BSS) challenge to identify and remove artifacts on a single trial basis. The BSS
method exploits the higher-order statistical differences between the contributory
signals to discriminate possible artifact and cerebral components. This is a very
difficult problem if one is uncertain of the properties of the artifacts one wishes to
separate from the EEG. Artifacts such as EOG and EMG activity can be monitored
and used as inputs in such algorithms to identify the isolated components and
subsequently filter out their contributions to the EEG recordings without smearing
the underlying EEG activity. The work of [54] successfully employ Independent
Component Analysis (ICA), a BSS method, to remove blink (EOG), EMG and also
line interference artifacts and highlight its superiority over PCA and regressive
methods. Although this approach is computationally intensive, many recent
research works are directed to such direction [55–57].

1.3.3 Feature Extraction for BCI Designs

Different thinking activities result in different patterns of brain signals. BCI is seen
as a pattern recognition system that classifies each pattern into a class according to
its features. The performance of a pattern recognition system depends on both the
features and the classification algorithm employed. Features constitute a new form
of expressing the data, and can be binary, categorical or continuous. They represent
attributes or direct measurements of the signal.

1.3.3.1 EEG Features

A great variety of features have been used in the literature such as; amplitude values
of EEG signals, Band Powers (BP), Power Spectral Density (PSD) values, Auto-
Regressive (AR) and Adaptive AutoRegressive (AAR) parameters, Time-frequency
features and inverse model-based features [58].

Concerning the design of a BCI system, some critical properties of these features
must be taken into consideration [58]. The first property of BCI features that they
are noisy or contain outliers because EEG signals have a poor signal-to-noise ratio.
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Second, always in BCI systems, feature vectors are often of high dimensionality.
Indeed, several features are generally extracted from several channels and from
several time segments before being concatenated into a single feature vector. The
third property; BCI features should contain time information as brain activity
patterns are generally related to specific time variations of EEG. Finally, BCI
features are non-stationary since EEG signals may rapidly vary over time and more
especially over sessions.

1.3.3.2 Feature Dimension Reduction Techniques

As stated above, dimension of the feature space that contains features extracted
from raw EEG signals is often very large (102–103 features) [59]. High dimen-
sionality increases the time and space requirements for processing the data.
Moreover, in the presence of many irrelevant and/or redundant features, learning
methods tend to over-fit and become less interpretable. A common way to resolve
this problem is dimensionality reduction, which has attracted much attention in
machine learning community in the past decades. Generally speaking, dimension-
ality reduction can be achieved by either feature selection or subspace learning (a.k.
a. feature transformation). The philosophy behind feature selection is that not all the
features are useful for learning. Hence it aims to select a subset of most informative
or discriminative features from the original feature set. Given a feature set of size
M, the feature selection problem is to find a feature subset of size n (n << M) that
maximizes the system’s ability to classify object instances. The basic idea of
subspace learning is that the combination of the original features may be more
helpful for learning. As a result, it aims at transforming the original features to a
new feature space with lower dimensionality [60, 61]. In the following paragraphs,
some well-known feature selection methods are briefly discussed.

Fisher criterion [60] plays an important role in dimensionality reduction. It aims
at finding a feature representation by which the within-class distance is minimized
and the between-class distance is maximized. Based on Fisher criterion, two rep-
resentative methods have been proposed. One is Fisher Score [62], which is a
feature selection method. The other is linear discriminant analysis (LDA) [60],
which is a subspace learning method. In a very recent work of [63], a modified
version of fisher score was used and gave advanced classification accuracy. In [61],
LDA method was used for features reduction. Their experiments illustrated that it is
possible to classify successfully the “mental tasks” with the use of only 8 elec-
trodes. They proved that linear discriminant analysis is a good tool for feature
reduction. Only two components of LDA were used.

Principal components analysis (PCA) and independent component analysis
(ICA) are also well-known feature selection methods [64]. Principal Component
Analysis (PCA) is a classical technique in statistical data analysis, feature extraction
and data reduction. Given a set of multivariate measurements, the purpose is to find
a smaller set of variables with less redundancy, which would give as good repre-
sentation as possible. The redundancy is measured by correlations between data
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elements. Since PCA utilizes the first and second moments of the measured data, it
relies heavily on Gaussian features. Independent Component Analysis (ICA) is a
technique of data analysis accounting for higher order statistics. ICA is a gener-
alization of PCA. Moreover, PCA can be used as preprocessing step in some ICA
algorithm. In [65] both ICA and PCA were used for comparison. They illustrated
that when using ICA method, only eight independent sources are probably sufficient
to recover most of the EEG signals instead of the correlated signals from 28
electrodes. Moreover, they found that only two of these eight sources are required
to analyze the P300 curve. These two components summarize the information in the
parietal and frontal areas and enable the analysis of two phenomena (P3a and P3b)
mixed in the original signals. With PCA, they found only one independent com-
ponent needed to analyse the P300 peak. They conclude finally that ICA is very
promising to analyse multidimensional biomedical signals and much more efficient
than PCA in the EEG analysis context [66].

Finally, The genetic algorithm (GA) is a frequently used approach in BCI
applications [59, 67, 68]. Its main advantage is that during the exploration of the
space of possible solutions, it does not evaluate solutions one by one, but evaluates
a set of solutions simultaneously. Moreover, it is not prone to get stuck at local
minima and it does not require assumptions about the interactions between features
[59]. In [67], GA was used and gave results that indicate its effectiveness for many
BCI problems.

1.3.4 Classification Methods and Post-processing

In order to control a BCI, the user must produce different brain activity patterns that
will be identified by the system and translated into commands. In most existing
BCI, this identification relies on a classification algorithm, i.e., an algorithm that
aims at automatically estimating the class of data as represented by a feature vector.
Due to the rapidly growing interest for EEG-based BCI, a considerable number of
published results is related to the investigation and evaluation of classification
algorithms. In order to choose the most appropriate classifier for a given set of
features, the properties of the available classifiers must be known.

1.3.4.1 Properties of Classifiers

Some definitions, commonly used to describe the different kinds of available
Classifiers, are reviewed briefly here [58]:

• Generative/discriminative: generative (also known as informative) classifiers,
e.g., Bayes quadratic, learn the class models. To classify a feature vector,
generative classifiers compute the likelihood of each class and choose the most
likely. Discriminative ones, e.g., Support Vector Machines, only learn the way
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of discriminating the classes or the class membership in order to classify a
feature vector directly.

• Static/dynamic: static classifiers, e.g., multilayer perceptrons, cannot take into
account temporal information during classification as they classify a single
feature vector. On the contrary, dynamic classifiers, e.g., hidden Markov model,
can classify a sequence of feature vectors and thus, catch temporal dynamics.

• Stable/unstable: stable classifiers, e.g., Linear discriminant analysis, have a low
complexity (or capacity). They are said stable as small variations in the training
set does not affect considerably their performance. On the contrary, unstable
classifiers, e.g., multilayer perceptron, have a high complexity. As for them,
small variations of the training set may lead to important changes in
performances.

• Regularized: Regularization consists in carefully controlling the complexity of
a classifier in order to prevent overtraining. A regularized classifier has good
generalization performances and is more robust with respect to outliers.

A summary of several classifiers used previously in BCI research and their
properties is shown in Table 1.1 [58].

1.3.4.2 Brief Survey of Classifiers Used in BCI Research

The classification algorithms used to design BCI systems are divided into five
different categories: linear classifiers, neural networks, nonlinear bayesian classi-
fiers, nearest neighbor classifiers and combinations of classifiers. The most popular
are briefly described and their most important properties for BCI applications are
highlighted [58].

1.3.4.3 Linear Classifiers

Linear classifiers are discriminant algorithms that use linear functions to distinguish
classes. They are probably the most popular algorithms for BCI applications. Two
main kinds of linear classifier have been used for BCI design, namely, Linear
Discriminant Analysis (LDA) and Support Vector Machine (SVM).

The aim of LDA (also known as Fisher’s LDA as discussed above) is to use
hyperplanes to separate the data representing the different classes. This technique
has a very low computational requirement which makes it suitable for online BCI
system. Moreover this classifier is simple to use and generally provides good
results. Consequently, LDA has been used with success in a great number of BCI
systems such as motor imagery based BCI [69], P300 speller [62], multiclass [70]
or asynchronous [71] BCI. The main drawback of LDA is its linearity that can
provide poor results on complex nonlinear EEG data [72].

The SVM also uses a discriminant hyperplane to identify classes. However,
concerning SVM, the selected hyperplane is the one that maximizes the margins,
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i.e., the distance from the nearest training points. Maximizing the margins is known
to increase the generalization capabilities. SVM classifier uses a regularization
parameter C that enables accommodation to outliers and allows errors on the
training set. This classifier has been applied, always with success, to a relatively
large number of synchronous BCI problems [70, 73]. However, it is possible to
create nonlinear decision boundaries, with only a low increase of the classifier’s
complexity, by using the “kernel trick”. It consists in implicitly mapping the data to
another space, generally of much higher dimensionality, using a kernel function K
(x; y).

The kernel generally used in BCI research is the Gaussian or Radial Basis
Function (RBF) kernel. The corresponding SVM is known as Gaussian SVM or
RBF SVM [74]. RBF SVM has also given very good results for BCI applications
[70]. As LDA, SVM has been applied to multiclass BCI problems using the OVR
strategy [75]. SVM have several advantages. Actually, thanks to the margin max-
imization and the regularization term, SVM are known to have good generalization
properties [76], to be insensitive to overtraining [77] and to the curse-of-dimen-
sionality [74, 76].

Finally, SVM have a few hyper-parameters that need to be defined by hand,
namely, the regularization parameter C and the RBF width—if using kernel. These
advantages are gained at the expense of a low speed of execution.

1.3.4.4 Neural Networks

Neural Networks (NN) are, together with linear classifiers, the category of classi-
fiers mostly used in BCI research (see, e.g., [78] ). The most widely used NN for
BCI, is the Multi-Layer Perceptron (MLP) which have been applied to almost all
BCI problems [58, 79, 80]. However, the fact that MLP are universal approximators
makes these classifiers sensitive to overtraining, especially with such noisy and
non-stationary data as EEG, e.g., [81]. Therefore, careful architecture selection and
regularization is required [77]. The Gaussian classifier [82, 83] is another type of
NN classifiers. Each unit of this NN is a Gaussian discriminant function repre-
senting a class prototype. This NN outperforms MLP on BCI data and can perform
efficient rejection of uncertain samples [82]. As a consequence, this classifier has
been applied with success to motor imagery [84] and mental task classification,
particularly during asynchronous experiments [82].

1.3.4.5 Nonlinear Bayesian Classifiers

This section introduces two Bayesian classifiers used for BCI: Bayes quadratic and
Hidden Markov Model (HMM). These classifiers produce nonlinear decision
boundaries. Furthermore, they are generative, which enables them to perform more
efficient rejection of uncertain samples than discriminative classifiers. However,
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these classifiers are not as widespread as linear classifiers or Neural Networks in
BCI applications.

Bayesian classification aims at assigning to a feature vector the class it belongs
to with the highest probability. The Bayes rule is used to compute the so-called a
posteriori probability that a feature vector has of belonging to a given class. Using
the Maximum-A Posteriori (MAP) rule and these probabilities, the class of this
feature vector can be estimated. Even though this classifier is not widely used for
BCI, it has been applied with success to motor imagery and mental task classifi-
cation [80, 84].

Hidden Markov Models (HMM) are popular dynamic classifiers in the field of
speech recognition. An HMM is a kind of probabilistic automaton that can provide
the probability of observing a given sequence of feature vectors. Each state of the
automaton can modelize the probability of observing a given feature vector. For
BCI, these probabilities usually are Gaussian Mixture Models (GMM), e.g., [85].
HMM are perfectly suitable algorithms for the classification of time series [86]. As
EEG components used to drive BCI have specific time courses, HMM have been
applied to the classification of temporal sequences of BCI features [85] and even to
the classification of raw EEG [87]. HMM are not much widespread within the BCI
community but these studies revealed that they were promising classifiers for BCI
systems. Another type of HMM which has been used to design BCI is the Input-
Output HMM (IOHMM) [79]. IOHMM is not a generative classifier but a dis-
criminative one. The main advantage of this classifier is that one IOHMM can
discriminate several classes, whereas one HMM per class is needed to achieve the
same operation.

1.3.4.6 Nearest Neighbor Classifiers

The classifiers presented in this section are relatively simple. They consist in
assigning a feature vector to a class according to its nearest neighbor(s). This
neighbor can be a feature vector from the training set as in the case of k-Nearest
Neighbors (kNN), or a class prototype as in Mahalanobis distance. They are dis-
criminative nonlinear classifiers. In the case of k- Nearest Neighbors, the aim of this
technique is to assign to an unseen point the dominant class among its k nearest
neighbors within the training set [88]. For BCI, these nearest neighbors are usually
obtained using a metric distance, e.g., [89]. With a sufficiently high value of k and
enough training samples, KNN can approximate any function which enables it to
produce nonlinear decision boundaries. KNN algorithms are not very popular in the
BCI community, probably because they are known to be very sensitive to the curse-
of-dimensionality [90], which made them fail in several BCI experiments [89].
However, when used in BCI systems with low-dimensional feature vectors, KNN
may prove to be efficient [91].

The Mahalanobis distance based classifiers is a simple yet robust classifier,
which even proved to be suitable for multiclass [89] or asynchronous BCI systems
[92]. Despite its good performances, it is still scarcely used in the BCI literature.
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1.3.4.7 Combinations of Classifiers

In most papers related to BCI, the classification is achieved using a single classifier.
A recent trend, however, is to use several classifiers, aggregated in different ways.
The classifier combination strategies used in BCI applications are the following:

• Boosting:

Boosting consists in using several classifiers in cascade, each classifier focusing
on the errors committed by the previous ones. It can build up a powerful classifier
out of several weak ones, and it is unlikely to over-train. Unfortunately, it is
sensible to mislabels. Boosting had been experimented with MLP and Ordinary
Least Square [93, 94].

• Voting:

While using Voting, several classifiers are being used, each of them assigning
the input feature vector to a class. The final class will be that of the majority. Voting
is the most popular way of combining classifiers in BCI research, probably because
it is simple and efficient. For instance, Voting with LVQ NN [95], MLP [96] or
SVM [97] have been attempted.

• Stacking:

Stacking consists in using several classifiers, each of them classifying the input
feature vector. These classifier are called level-0 classifiers. The output of each of
these classifiers is then given as input to a so-called meta-classifier (or level-1
classifier) which makes the final decision. Stacking has been used in BCI research
using HMM as level-0 classifiers, and an SVM as meta-classifier [98]. The main
advantage of such techniques is that a combination of similar classifiers is very
likely to outperform one of the classifiers on its own. Actually, combining classi-
fiers is known to reduce the variance and thus the classification error.

1.3.5 Classification Performance Metrics

In the literature, Classifiers performance is usually evaluated using the classifiers’
accuracy [58]. Comparison of classifiers from different aspects can be done using
different metrics such as sensitivity, specifity, Youden’s Index, discriminant power
and computation time [99]. Classifiers performance can be improved using a post-
processing stage. Some parameters of the classifier can be optimized, according to
some measurements in the post-processing block, to reduce the number of false
detections [100].
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1.4 Conclusion

Recent advances in the field of neural prosthetics have led to a renewed interest in
the use of brain-computer interfaces (BCIs). One of the most exciting areas of BCI
research is the development of devices that can be controlled only through brain
signals. These researches aim to use this technological breakthrough to help
severely disabled people to function independently. Ranges of non-invasive method
were defined in these researches such as electroencephalogram (EEG) and elec-
trocorticographic (ECoG) electrode arrays. Sometimes scientists implanted elec-
trodes directly into the gray matter of the brain itself or on the surface of the brain,
beneath the skull in order to have high-resolution signals such as Intracortical
neuron recording technique. The chapter provides information about the state of art
in neuroimaging based approaches and their related applications. Also the chapter
evaluates different classification methodology applied to the brain’s captured sig-
nals. The BCI related researches will continue to use its modalities to diagnose and
suggest treatments for mental diseases. Moreover BCI is directed to robotics
industry as the best solution to come up with a robot that senses and acts like
human. Also currently scientists study the ways a human user can get a feedback on
what the robot hand is experiencing; for example catching a ball or touching hot
objects.
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Chapter 2
Basics of Brain Computer Interface

Rabie A. Ramadan, S. Refat, Marwa A. Elshahed and Rasha A. Ali

Abstract Brain-Computer Interface (BCI) is a fast-growing emergent technology
in which researchers aim to build a direct channel between the human brain and the
computer. It is a collaboration in which a brain accepts and controls a mechanical
device as a natural part of its representation of the body. The BCI can lead to many
applications especially for disabled persons. Most of these applications are related
to disable persons in which they can help them in living as normal people.
Wheelchair control is one of the famous applications in this field. In addition, the
BCI research aims to emulate the human brain. This would be beneficial in many
fields including the Artificial Intelligence and Computational Intelligence.
Throughout this chapter, an introduction to the main concepts behind the BCI is
given, the concepts of the brain anatomy is explained, and the BCI different signals
are stated. In addition, the used hardware and software for the BCI are elaborated.

Keywords Brain computer interface � Systems of BCI � BCI monitoring hard ware
and software � BCI trends

R.A. Ramadan (&)
Computer Engineering Department, Cairo University, Cairo, Egypt
e-mail: rabie@rabieramadan.org

S. Refat � M.A. Elshahed � R.A. Ali
Physics Department, Faculty of Women for Arts, Sciences and Education,
Ain Shams University, Cairo, Egypt
e-mail: Samah_refat2006@hotmail.com

M.A. Elshahed
e-mail: m_3li4@yahoo.com

R.A. Ali
e-mail: rasha_abd_elnaby@yahoo.com

© Springer International Publishing Switzerland 2015
A.E. Hassanien and A.T. Azar (eds.), Brain-Computer Interfaces,
Intelligent Systems Reference Library 74, DOI 10.1007/978-3-319-10978-7_2

31



2.1 Introduction

Brain Computer Interface (BCI) is a direct connection between computer(s) and
human brain. It is the most recent development of Human Computer Interface
(HCI). Unlike the traditional input devices (keyboard, mouse, pen… etc.), the BCI
reads the waves produced from the brain at different locations in the human head,
translates these signals into actions, and commands that can control the computer
(s). The BCI can lead to many applications especially for disabled persons such as
[1]: (1) new ways for gamers to play games using their heads, (2) social interac-
tions; enabling social applications to capture feelings and emotions, (3) helping—
partially or fully-disabled people to interact with different computational devices,
and (4) helping understanding more about brain activities and human neural net-
works. These applications depend on the basic understanding of how the brain
works. BCI applications utilize the brain and its nervous system functions where the
human’s central nervous system consists of the spinal cord and the brain. One of its
tasks is to process and integrate incoming sensory stimuli received via peripheral
nerves and to give impulses back to actuators, e.g. to muscles or glands which cause
automatic or voluntary action. Furthermore the central nervous system, particularly
the brain, is responsible for higher integrative abilities such as thinking, learning,
production, and understanding of speech, memory, emotion etc. Finally vegetative
functions such as respiration and the cardio-vascular system are controlled by the
central nervous system.

The brain computer interface was not studied only for human but also for
animals. A Monkey in 2008 [2] was able to move a screen cursor as well as
controlling a robot arm. The benefit of such study is to know how animals can think
and discover their brains as well. In addition, BCI is used with different human
patients capturing their brain signals. The BCI science goes beyond a communi-
cation tool for people are not able to communicate. It is gaining more attention from
healthy people for other purposes such as rehabilitation or hands-free gaming.
However, BCI tools still limited and need expert to deal with them which is one of
the BCI research challenges.

However, there are many challenges that faces the BCI when used in real world
tasks as follows:

(1) Low BCI signal strength: it has been noticed that extracting signals from the
brain is not an easy task since the signal strength in most of the cases are low.
In most of the cases, signal amplification is required. Many of the used toolkits
include such amplifiers where some others do not include good amplifiers.

(2) Data transfer rate (bandwidth): the best data transfer rate from a subject was 3
characters. Certainly, this is very low data transfer that makes the BCI
applications suffer from fast response as well as accurate control.

(3) High error rate: it is obvious that due to the low data transfer rate and the low
signal strength, the error percentage became high. In addition, the brain signal
is very high variability. Therefore, the expected error rate is high.
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(4) Inaccurate signal classification: brain have some centers that signals can be
captured from them using electrodes. Classifying the captured signals suffer
from high interference and inaccurate classification. There are many signal
classification techniques are utilized including the computational intelligence
techniques that are recently proposed by authors in [3].

The goal of this chapter is to provide the reader with basic concepts of the BCI as
a science and from it came from. The anatomy of the brain is elaborated for better
understanding to the brain signals. The chapter goes on by providing the different
signals that were able to be captured recently. These signals are classified and their
characteristics are explained. Finally, the chapter explains the current hardware and
software components of the BCI including the commercial devices and their
properties.

2.2 Brain Anatomy

Amazingly, nothing in the world can be compared with the human brain. The three-
pound organ controls all body functions including receiving and interpreting
information from the outside world, and expressing the essence of the mind and
soul. Intelligence, creativity, emotion, and memories are a few of the many things
governed by the brain. The brain receives information through different sensors
such as sight, smell, touch, taste, and hearing. The brain constructs the received data
from the different sensors and form a meaningful message. The brain controls our
body movement of the arms and legs, thoughts, memory and speech. It also
determines how a human respond to different situations such as stress by regulating
our heart and breathing rate.

As it is known, the nervous system is another essential system in the human
body. The nervous system divided into central and peripheral systems. The central
nervous system is composed of two main parts which are the brain and spinal cord.
The peripheral nervous system is composed of spinal nerves that branch from the
spinal cord and cranial nerves that branch from the brain. The peripheral nervous
system includes the autonomic nervous system, which controls vital functions such
as breathing, digestion, heart rate, and secretion of hormones.

The brain skull represents the shield of the brain from injury. It is formed from 8
bones. These bones include the frontal, two parietal, two temporal, sphenoid,
occipital and ethmoid. The face is formed from 14 paired bones including the maxilla,
zygoma, nasal, palatine, lacrimal, inferior nasal conchae, mandible, and vomer [4].

Anatomically five basic parts of the brain can be distinguished including
Cerebrum, Diencephalon, Cerebellum, Mesencephalon, and Medulla oblongata as
shown in Fig. 2.1. The cerebrum, located directly under the skull surface, is the
largest part of the brain. Its main functions are: (1) the initiation of complex
movement, (2) speech and language understanding and production, (3) memory,
and (4) reasoning. Brain monitoring techniques which make use of sensors placed
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on the scalp mainly record activities from the outermost part of the cerebrum; the
cortex. More inside the cerebrum the basal ganglions can be found which consists
of a number of nuclei controlling the direction of slow movements [5]. Also the
thalamus is located here which directs sensory information to appropriate parts of
the cortex. The second part of the brain is the Diencephalon. One important
function of the diencephalon is the forwarding of sensory information to other brain
areas. Besides that, it contains the hypothalamus which controls the body tem-
perature, the water balance and the ingestion to assure the state of homeostasis for
the body, i.e. “good working conditions” for all body cells. The coordination of all
kinds of movements is done in the third part which is the cerebellum. Therefore, it
cooperates closely with structures from the cerebrum (e.g. the basal ganglions).
Cerebellum and Cerebrum are connected via the Pons. However, the largest part of
the reticular system is located in the Mesencephalon where it controls vigilance and
the sleep-wake rhythm.

The Medulla Oblongata connects the brain with the spinal cord. Respiration and
the cardiovascular system are controlled by that part of the central nervous system.
Furthermore, a huge number of peripheral nerves pass through the medulla
oblongata. Compared to the brains of other mammals, the human brain has the
largest and best developed cortex. Neural processes related to abilities like complex
reasoning, speech and language etc. which distinguish humans from other mammals
take place in that part of the brain [6, 7].

Moreover, the cortex consists of two hemispheres which are connected via a
beam called corpus callosum. Each hemisphere is dominant for specific abilities.
For right handed persons, the right hemisphere is activated more during the rec-
ognition of geometric patterns, spatial orientation, the use nonverbal memory and
the recognition of non-verbal noises [8]. More activity in the left hemisphere can be
observed during the recognition of letters and words, the use verbal memory and
auditory perception of words and language. Each hemisphere is partitioned into five
anatomically well-defined regions, the so called lobes as given in Fig. 2.2.

Fig. 2.1 Brain anatomy [8]
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2.3 Brain Computer Interface Types

Brain computer interface can be classified into three main groups as shown in
Fig. 2.3. Classification depends on the way that the electrical signal is obtained
from neuron cells in the human brain.

2.3.1 Invasive BCI Acquisition Techniques

In invasive BCI techniques, special devices have to be used to capture the brain
signals. Such devices are called Invasive BCI devices; devices that are based on
detecting from single area of brain cells is called single unit while the detection
from multiple areas is called multi-units [9]. Invasive BCI devices are inserted
directly into the human brain by a critical surgery as can be seen in Fig. 2.4. The
electro-corticogram (ECoG) are the obtained signals from these inserted electrodes
[10]. These devices have the highest quality of human brain signals but have the
risk of forming scar tissue.

Fig. 2.2 Hemisphere
partitions [8]

Fig. 2.3 Brain computer interface types
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2.3.2 Partially Invasive BCI Acquisition Techniques

Other devices that can capture the signal from the brain are the partially invasive
BCI devices. Devices are inserted in the skull on the top of human brain as depicted
in Fig. 2.5. These devices have bit weaker quality of human brain signals than
invasive BCIs and have less risk of forming scar tissue [11, 12].

2.3.3 Non Invasive BCI Acquisition Techniques

Non Invasive BCI devices are considered the safest type and low cost type of
devices. However, these devices have weaker human brain signals than other BCI
devices due to the skull. The detection of signals is done by some electrodes placed
on the scalp as given in Fig. 2.6. At the same time, placing such electrodes is easy
as well as portable. Most noninvasive techniques are constructed by recording
ElectroEncephaloGraphs (EEG) from the scalp. Recent EEG Non Invasive BCI

Fig. 2.4 Invasive BCI
electrodes [10]

Fig. 2.5 Partially invasive
BCI electrodes
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devices have better temporal resolution due to use up to 256 electrodes on the
whole area of the human scalp. While others, Non Invasive BCI devices, use
functional Magneto-Resonance Imaging (fMRI), Positron Electron Tomography
(PET), MagnetoEncephaloGraphy (MEG) and Single Photon Emission Computed
Tomography (SPECT) [13, 14].

2.4 Types of BCI Signals

The brain generates an amount of neural activity. There are a plethora of signals,
which can be used for BCI. These signals are divide into two classes: spikes and
field potentials [11]. Spikes reflect the action potentials of individual neurons and
acquired through microelectrodes implanted by invasive techniques. Field poten-
tials are measure of combined synaptic, neuronal, and axonal activity of groups of
neurons and can be measured by EEG or implanted electrodes. The following is the
classification of EEG signals based on their frequencies/bands [15, 10].

• Delta Signal. It is captured within the frequency range of 0.5–3.5 Hz. It tends to
be the highest in amplitude and the slowest waves. It is seen normally in adults
in slow wave sleep as well as in babies. A sample from the Delta signals is
shown in Fig. 2.7.

• Theta. The frequency of this signals ranges from 3.5 to 7.5 Hz. Theta is linked to
inefficiency and daydreaming. In fact, the very lowest waves of theta represent
the fine line between being awake or in a sleep. However, as shown in Fig. 2.8,
high levels of theta are considered abnormal in adults.

Fig. 2.6 A wireless non-
invasive signal capturing
device

Fig. 2.7 Delta wave sample
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• Alpha. As shown in Fig. 2.9, this signal frequency ranges from 7.5 to 12 Hz.
Hans Berger [12] named the first rhythmic EEG activity he saw, the “alpha
wave”. Range seen in the posterior regions of the head on both sides, being
higher in amplitude on the dominant side. It is brought out by closing the eyes
and by relaxation. Several studies have found a rise in alpha power after
smoking marijuana.

• Beta. Beta is another brain signal in which its frequency ranges from 12 Hz to
about 30 Hz. It is seen usually on both sides in a symmetrical distribution and it
is most evident frontally. Beta waves are often divided into β1 and β2 to get
more specific range. The waves are small and fast when resisting or suppressing
movement, or solving a math task. It has been noticed in these cases that there is
an increase of beta activity. The shape of such signal is shown in Fig. 2.10.

• Gamma. It is a signal with frequency range of 31 Hz and up. It reflects the
mechanism of consciousness. Figure 2.11 shows the shape of the Gamma signal.

2.5 Components of Interest

Components of particular interest to BCI can be divided into four categories which
are oscillatory EEG activity, event-related potentials (ERP), slow cortical potentials
(SCP), and neuronal potentials.

Fig. 2.8 Theta wave sample

Fig. 2.9 Alpha wave sample

Fig. 2.10 Beta wave

Fig. 2.11 Gamma wave
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2.5.1 Oscillatory EEG Activity

Oscillatory EEG activity is caused by complex network of neurons that create
feedback loops. The synchronized firing of the neurons in these feedback loops
generates observable oscillations. There are two distinct oscillations of interest
which are: (1) the Rolandic mu-rhythm, in the range 10–12 Hz, and (2) the central
beta rhythm, in the range 14–18 Hz. This activity represents “idling” or rest state
[10].

2.5.2 Event-Related Potentials

Event-Related Potentials (ERPs) are time-locked responses by the brain that occur
at a fixed time after a particular external or internal event. These potentials occur
when subjected to sensory, mental event, or the omission of a constantly occurring
stimulus. Exogenous ERP components occur due to processing of the external event
but independent of the role of the stimuli in the processing of information. On the
other hand, Endogenous ERP components occur when an internal event is pro-
cessed. It dependents on the role of the stimulus in the task and the relationship
between the stimulus and the context in which it occurred [10]. The ERP events can
be classified as follows:

• Event-Related Synchronization/(De) synchronization

A particular type of ERP is characterized by the occurrence of an event-related
desynchronization (ERD) and an event-related synchronization (ERS). A decrease
in the synchronization of neurons causes decrease of power in specific frequency
bands. This phenomenon is defined as an ERD and can be identified by a decrease
in signal amplitude. ERS is characterized by an increase of power in specific
frequency bands that is generated by an increase in the synchronization of neurons
and/or in signal amplitude.

• Visual-Evoked Potentials

Another type of ERF commonly used in BCI is the visual-evoked potential
(VEP), an EEG component that occurs in response to a visual stimulus. VEPs are
dependent on the user’s control of their gaze and thus require coherent muscular
control [16]. P300 is ERP component elicited in the process of decision making.
The P300 is thought to reflect processes involved in stimulus evaluation or cate-
gorization. It is usually elicited using the oddball paradigm, in which low-proba-
bility target items are mixed with high-probability non-target item [17]. The user is
presented with a task that cannot be accomplished without categorization into both
categories. When an event from the rare category is displayed, it elicits a P300
component, which is a large positive wave that occurs approximately 300 ms after
event onset [10].
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• Slow Cortical Potential

It is the slow cortical potential, which is caused by shifts in the depolarization
levels of certain dendrites. Negative SCP indicates the sum of synchronized
potentials, but positive SCP indicates the reduction of synchronized potentials from
the dendrites.

• Neuronal Potential

Neuronal potential is a voltage spike from individual neurons. This potential can
be measured for a particular neuron or a group of neurons. The signal is a measure
of the average rate, correlation, and temporal pattern of the neuronal firing.
Learning can be measured through changes in the average firing rate of neurons
located in the cortical areas associated with the task [8].

2.6 Monitoring Brain Activity Using EEG

Several techniques have been used to monitor brain activities such as (1) Electro-
encephalography (EEG), (2) Magnetoencephalography (MEG), (3) Functional
Magnetic Resonance Imaging (fMRI), (4) Functional Near-Infrared Spectroscopy
(fNIRS), (5) Single Photon Emission Tomography (SPECT), and (6) Proton
Emission Tomography (PET). Each method has its own characteristics as well as
pros and cons. However, for several reasons the potential differences which can be
measured between two points of the scalp are very different from those could be
measured when electrodes were implanted directly in the brain. For instance, the
activity of the potential generators could be measured directly by:

1. A superposition of potentials generated in different areas of the cortex is mea-
sured using scalp electrodes since brain tissue and the liquor are conductive.

2. The amplitude of the originally generated potential differences is attenuated
because of the resistive properties of the tissue between the potential generators
and the electrode (e.g. liquor, skin, bone of the skull).

3. Capacities caused by cell membranes and other inhomogeneities (e.g. liquor-
skull, skull-skin) between potential generators and electrodes influence the
amplitude of the EEG signals as a function of their frequency.

Therefore, the positions for EEG electrodes should be chosen in a way, which all
cortex regions are covered. For most applications, this is usually the whole cortex.
An internationally accepted standard for electrode placements is the 10–20 system
(electrodes are placed at distances of 10 or 20 % of the length of several connec-
tions between some reference points) introduced in 1957 by the International EEG
Federation [18]. Electrodes were placed according to the 10–20 system. Three
anatomical reference points must be determined before the 10–20 system electrode
positions which are:
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1. Nasion: the onset of the nose on the skull, below the forehead.
2. Inion: the bony protuberance which marks the transition between skull and

neck.
3. Pre-auricular reference point: located before the cartilaginous protrusion of the

acoustic meatus (the auditory canal).

Figure 2.12 shows the electrode positions of the 10–20 system in their projection
on the cortex. The name for a particular electrode position reflects the anatomical
region of the cortex above which it is located. Fp stands for frontopolar, F stands for
frontal, T stands for temporal, C stands for central, P stands for parietal, O stands
for occipital and A stands for auricular while G denotes the ground electrode. Even
numbers denote the right part of the head, odd numbers refer the left part.

Generally, there are two categories of artifacts can be distinguished in EEG
measurements which are biological and technical. The biological artifacts are
caused by the recorded subject and technical artifacts are caused by the EEG
recording device. The sources of many biological artifacts are dipoles originating
for example from muscular activities which are much stronger than the EEG related

Fig. 2.12 Electrode position. a Brain electrods. b top view of the brain and electrods
positions [12]
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dipoles. A superposition of both types of dipoles causes artifacts in the signal which
are often characterized by large peaks or fluctuations of a particular morphology.
Sometimes, however, they can hardly be distinguished from the actual EEG. Other
biological artifacts influence the contact between skin and electrode or the electrical
properties of the medium between potential generators and electrodes.

2.7 BCI System

Forming a BCI system requires following three main steps as shown in Fig. 2.13:
Step 1 is the signal acquistion, Step 2 is the signal processing, and Step 3 is the

data manipulation.
Step 3: Using these obtained signals to control in external devices or computer

depending on the application.
Step 1: Signal Acquisition
Signal acquisition process is required to capture the brain electric signals. The

electric signals could be recorded from the scalp, the surface of the brain, or from
the neural activity. Since the capture signals strength are usually low, they need to
be amplified. Then, to be used by computer applications, they need to be digitized.

Step 2: Signal Processing
In this step, obtained signals in step 1 are analyze to get the control signals.

Signal processing could be done through some other sub operations as follows:

• Preprocessing

The first part of signal processing is preparing the recording electric signal for
processing like enhancement to make the features clear for detection. Some filtering
techniques could be used in the preprocessing operation.

• Feature extraction

Simply, feature extraction means extracting specific signal features. EEG
recordings not only contain electrical signals from the brain, but also several

Fig. 2.13 BCI signal processing
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unwanted signals. Those unwanted signals may bias the analysis of the EEG and
may lead to wrong conclusions. Therefore, the digitized signals are subjected to
feature extraction procedures.

• Signal Classification: translation algorithm

The next stage, the translation algorithm, in which it translates the extracted
signal features into device commands orders that carry out the user’s intent. The
signals are classified on both frequency and on their shape; the classification
algorithm might use linear methods or nonlinear methods.

Step 3: Data Manipulation
Once the signals are classified, the output is manipulated to suite the output

devices (e.g. computer screen).

2.8 BCI Monitoring Hardware and Software

BCI signals are very week signals that need special treatments to be handled
correctly. The strength of the measured signals is usually between 1 µV and
100 mV along with the scalp impedance and other noises. In order to receive such
signals and display them on digital formats, suitable amplifiers should be used.
Therefore, the BCI hardware can be divided into three classes; the first class is the
electrodes while the second class is the signal amplifiers. The third class is the real
time signal handling. Throughout this section, a brief description to each class is
provided.

The EEG measurement electors are usually made of gold or Ag/AgCl. The gold
electrodes are effective in measuring EEG, EMG or ECG signals as well. However,
the Ag/AgCl electrodes proved to be more effective when the EEG frequencies
below 0.1 Hz. In addition, there are two types of electrodes which are active and
passive electrodes. The active electrodes contain an amplifier with gain 1–10 inside
it in which it reduces the noise and cable interferences. On the other hand, passive
electrodes do not include any amplifiers in electrodes service. Such electrodes are
usually distributed on the scalp from 10 to 20 electrodes in most of the cases
(Fig. 2.14).

Fig. 2.14 Gold electrodes
[13]
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The other part of the BCI hardware is the biological signal amplifier. It is one of
the important parts of physiological recording and analysis in which the brain
signals are very weak and it is used to amplify them. Figure 2.15 [19] is a sample of
BCI amplifier. As can be seen in the Figure, signals captured by electrodes are
amplified through handling by the input stage component to remove the possible
noise produced from electrode-skin interfaces. In fact, it is a pre-amplified circuit
that could be simply based on simple op-amp OPA2277 devices as shown in
Fig. 2.16. The signal is also passed through two filters which are Low-pass filter
and Notch filter. After all, the signal is post amplified.

Real time signal recording and analysis is managed on different Operating
Systems including windows and Linux as well as Mac OS. C++ is one of the most
used language for analysis over C++ LabVIEW (National Instruments Corp.,
Austin, TX, USA) and MATLAB (The MathWorks Inc., Natick, USA) are mostly
used as programming languages. Different signals are utilized to control many
applications. There is some commercial software and hardware kits are already used
in some of the BCI applications. One of the software kits is the neurobci [8] in
which it allows users to develop their own Brain Computer Interface (BCI), bio- or
neurofeedback application, as created in Html/Jscript, C++, or Matlab. FieldTrip

Fig. 2.15 Electrode’s signal filters

Fig. 2.16 Electrode’s
amplifier
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[20] is a MATLAB toolbox that is used for analysis. It utilizes TCP connections for
multiple clients as at the same time.

DataSuite [21] is another software tool for data acquisition. The DataSuite
consists of two parts including the DataRiver and MatRiver. DataRiver is a data
management and synchronization real time engine while MatRiver is a MATLAB
client toolbox for DataRiver. The following Figure shows the data flow of Da-
taSuite. For more details about other BCI tools, the reader is encouraged to read the
survey by Arnaud et al. [22] Fig. 2.17: DataSuite data flow. Two computers each
running an instance of DataRiver are represented. One acquires data (left); the other
(right) uses MatRiver to perform data classification and feedback visualization.
Dashed lines indicate control signals.

Emotiv EEG neuroheadset [23] is a wireless BCI set; this set is a neuro-signal
acquisition and processing wireless neuroheadset. The set can be wirelessly con-
nected to a computer. One advantage of the set is it has 14 saline sensors offer
optimal positioning for accurate spatial resolution.

ModularEEG [24] is another EEG hardware created by the OpenEEG hardware
developers. The modularEEG has two or more EEG amplifiers, and a 6-channel
signal capture board that connects to a PC via a standard serial cable. The modu-
larEEG has two types of electrodes which are active and passive electrodes. Some
skin preparation is required while there is no preparation is required when active
electrodes are used. Figure 2.18 shows the modularEEG board and the active
electrodes.

2.9 Brain Computer Interface Applications

BCI is interesting area to researchers because it can solve many problems which
seem to be impossible. The essential target of BCI applications is to convert the
user’s intent or thoughts to an action in external device or computer and control to

Fig. 2.17 Emotive headset
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these devices. Many applications of BCI concerned on patients suffer from disor-
ders of consciousness (DOC).These patients unable to make communication with
their around world [25].

By using BCI, these patients can control some devices to perform basic and
important jobs they need without helping like moving with wheelchair, getting
something for eating or drinking by using robotic legs or arms controlled by brain.
BCI technologies are used to restore the vision to blinds by connecting an external
camera with brain [26]. Applications on device control not include patients only,
but also healthy users like whose needs to perform many jobs at the same time like
divers, astronauts and drivers where they keep their hands on swimming, operate
equipment and the steering wheel [27].

Rabie et al. [28] developed a BCI based system that can help disabled persons to
use the web through their brains only. The authors developed a technique that
captures the eye signals through the brain to select the appropriate letters as well as
words to be written on the web browser. Another application that has been
developed is the wheelchair simulator that is controlled also by the BCI signals.

BCI used also on User-state monitoring which make alert to sleepy drivers or
students. Also, it extended physically to measure the heart beats for users. Many
applications focused in entertainment and playing games especially after using 3D
monitors, certain glasses and an EEG headset where the control on the game by
thoughts. EEG combined sometimes with eye movement on some applications for
security and safety where the system can monitor suspicious objects, deviant
behavior or arousal state. A common BCI application is neurofeedback training to

Fig. 2.18 ModularEEG
device
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improve working, attention, executive functions and memory. Neuroergonomics is
an evaluation application used to estimate how well human abilities match a
technology. BCI used also in education and training techniques [25]. By sing BCI
based on EEG, patient can control or move the cursor by mental thoughts where the
patient can select words or letters [26].

2.10 BCI Trends

The BCI technology has achieved many goals in different working areas of medical
and nonmedical during the last ten decades. Researchers in this filed are looking in
the future for more development in trends and applications. Since the current trends
are focused on utilizing of motor system which is related to: (1) the electroen-
cephalogram (EEG) signals for neurorehabilitation, (2) controlling of robot and
exoskeleton based on EEG signal, (3) implementation of BCI component on field
programmable and reconfigurable computing system, and (4) solving the interop-
erability and standardization issues of BCI software platforms. Researchers looking
for developing a common file format for BCI data exchange and introducing an
accurate and robust pre-processing and feature extraction techniques of BCI signals.

One of the most future trends is introducing a new kind of sensory modality that
is more accurate and safe [29]. The revolution in nanotechnology will contribute in
the progress of BCI by producing a smaller and far superior chips that can implant
safely in the brain to yield high quality signals. The target is to increase the BCI
reliability and accuracy to be clinically useful. Moreover, a wireless brain implant is
an important technology today that lets people with mobility problems control a
computer or wheelchair with their thoughts. The wireless brain sensor can record
the activity of dozens of neurons in freely moving subjects [30]. Even though
wireless BCI systems may provide a number of advantages. There are still many
issues that need to be resolved including improving signal quality, more compact
and stylish system designs, and implementation of useful applications [31].

BCIs driven by auditory stimuli are a relatively new phenomenon. With some
key publications over the last 5 years, the auditory BCI approach has gained and
continues to gain momentum. It is underpinned by the BCI community’s efforts to
find alternatives to the traditional BCI paradigms to meet the needs of end users
who require a non-visual communication system. The trends now are seeking to
study the effect of BCI auditory not only in communication field but also in
attention monitoring and neurofeedback training to improve performance. In
addition, how BCI auditory can contribute in diagnosis and treatment of disorders
that have an auditory component is another issue to be handled.

Another trend now is Tactile and Bone-Conduction based BCI Paradigms. It has
been proposed to offer alternative ways to deliver sensory stimulation inputs which
could be crucial for patients suffering from weak or lost eye-sight or hearing.
Already several preliminary techniques have been developed to connect the BCI to
a traditional haptic interface or to utilize those interfaces as stimulation sources.
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Vibrotactile stimulation brings also a possibility to create bone-conduction sensory
effect in case of the head area exciters application. This point is still very pre-
liminary yet relative to the existing applications. It brings a very interesting pos-
sibility to deliver multimodal stimuli (somatosensory and auditory combined) to
TLS/ALS subjects with a very fast information transfer rate.

Currently, the field of BCI requires deeper insights on how to capture the right
signals and then process them suitably. Efforts are beingmade to recognize the objects
as they are seen by the brain. These efforts will bring in newer dimensions in the
understanding of brain functioning, damage and repair. It is possible to recognize the
thoughts of the human brain by capturing the right signals from the brain in future [8].

The P300 is an event related potential, a measurable electrical charge that is
directly related with impulse. Therefore, by capturing the P300, a BCI can directly
translate a person’s intent into electrical commands that control artificial devices.
A P300 speller is based on this principle, where the detection of P300 waves allows
the user to write characters [26]. The trend now is solving the P300 speller clas-
sification problems such as, the detection of the presence of a P300 in the elec-
troencephalogram (EEG) and the combination of different P300 responses for
determining the right character to spell.

Over the past 20 years, Brain-Computer Interfaces (BCI) have been shown to be
very promising for numerous applications, such as rehabilitation or entertainment,
among many others. Despite this potential, most BCI applications remain proto-
types that are not used in practice, outside laboratories. The main reason is the
widely acknowledged low reliability of current BCI systems that are based on the
translation of the spontaneous non-invasive electroencephalogram (EEG); mental
tasks performed by the user are being too often incorrectly recognized by the BCI.
Poor recognition performances are due in part to “imperfect” signal processing
algorithms used to analyze EEG signals. However, another component in the BCI
loop may also be deficient such as the signal generator, i.e., the user him/herself
who may not be able to reliably produce EEG patterns. Indeed, it is widely
acknowledged that BCI use is a skill, which means the user must be properly
trained to achieve successful BCI control. So the main trend now is improving
reliability of BCI by teaching and training the users to the BCI skills.

2.11 Conclusion

The BCI reads the waves produced from the brain at different locations in the
human head, translates these signals into actions, and commands that can control
the computer(s). Brain computer interface can be classified into three main groups
which depend on the way that the electrical signal is obtained from neuron cells in
the human brain. The brain generates an amount of neural activity. There are a
plethora of signals, which can be used for BCI. These signals divide into two
classes: spikes and field potentials, Components of particular interest to BCI can be
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divided into four categories which are oscillatory EEG activity, event-related
potentials (ERP), slow cortical potentials (SCP), and neuronal potentials. Several
techniques have been used to monitor brain activities; each technique has its own
characteristics as well as pros and cons. BCI is interesting area to researchers
because it can solve many problems which seem to be impossible, Many appli-
cations focused in entertainment and playing games especially after using 3D
monitors, certain glasses and an EEG headset where the control on the game by
thoughts. Researchers in this filed are looking in the future for more development in
trends and applications. Since the current trends are focused on utilizing of motor
system.
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Chapter 3
Noninvasive Electromagnetic Methods
for Brain Monitoring: A Technical Review

Tushar Kanti Bera

Abstract Human brain is a large, complex and most important organ in its nervous
system. The brain works as a central processing unit (CPU) of the human body and
performs, coordinate, control and regulate an incredible number of tasks to keep the
human body healthy and alive. Though the brain is highly protected inside the rigid
skull, meninges and cerebral spinal fluid (CSF), the human brain is still sometimes
gets injured, damaged and gets several number of diseases. Therefore the study of
brain is important and very essential for diagnose and treatment of the diseases like
stroke, brain tumors, traumatic brain injury, encephalitis, meningitis, Parkinson’s
disease, intracerebral hemorrhage, brain aneurysm, multiple sclerosis, hydroceph-
alus etc. As the electromagnetic brain imaging methods have drawn a lot of
attentions of the medical doctors, clinicians and biomedical researchers for their
unique advantages. This chapter will present the review of the studies on the
noninvasive electromagnetic methods for brain monitoring, diagnosis and treat-
ment. The chapter will try to present the detail technical aspects of different elec-
tromagnetic brain monitoring modalities (EBMM), their applications and
challenges. The chapter will start by introducing to the human brain and its diseases
followed by a discussion on the history and the developments of the brain moni-
toring techniques. It will discuss about the present scenario of the conventional
brain monitoring methods with their merits and demerits. The chapter will explain
the electromagnetic brain monitoring techniques in detail such as Electroencepha-
lography (EEG), Magnetoencephalography (MEG), Electrocorticography (ECoG),
electroneurogram (ENG), electrical impedance tomography (EIT), Quantitative
susceptibility mapping (QSM) and other advanced brain monitoring modalities. The
chapter will discuss about their working principles, applications, advantages, dis-
advantages, present scenario. The chapter will summarize the studies on the elec-
tromagnetic methods for brain monitoring and it will conclude with a discussion on
the present challenges and future trends.
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3.1 Introduction

Human brain [41, 52, 79, 161] is one of the most important organs of the human
anatomy [65] which controls all other organ performing a number of tasks to keep
the human body healthy and alive. Brain is developed with more than 100 billion
nerves [52], that communicate in trillions of connections called synapses. It is not
only the main organ in the nervous system [12, 152], but also it is one of the largest
and most complex organs in the human body. The human brain is suspended in
cerebrospinal fluid (CSF) [41, 52, 79, 161] covered by the brain membrane called
meninges which is surrounded, supported and protected by skull [41, 52, 79, 161].

Brain is developed with a large number of nerve cells called neurons. Neurons,
or nerve cells, which generate the brain potentials and act as the communication
units to perform all of the communication and processing within the brain to keep
the human body healthy and well functioning. The human brain can be segmented
by three main components: the cerebrum, the cerebellum, and the brainstem each of
which has its own important and distinct functions [96]. The cerebrum which is the
largest and most developmentally advanced part of the human brain [96] which is
responsible for several higher functions, including higher intellectual function,
speech, emotion, integration of sensory stimuli of all types, initiation of the final
common pathways for movement, and fine control of movement. Being the second
largest area of the brain, the cerebellum maintains the body balance and further
control of movement and coordination [96]. The brain stem which acts as the final
pathway between cerebral structures and the spinal cord controls a variety of
automatic functions, respiratory control, heart rate control, and blood pressure
control, wakefulness, arousal and attention [96].

The human is a living central processing unit in our body which receives input
from the sensory organs and sends output to the muscles and other organs or body
parts. Being the CPU of the human body the brain receives the information from the
rest of the body, process and interpreting that information, respond to send the
signal to the organs or the body parts to act accordingly. It gives us awareness by
processing a constant stream data received by the sensing parts of the body and
controls the movements of the body parts by contracting or relaxing the muscles,
functioning of the organs including the control of the vital operations like breathing,
maintaining body temperature and blood pressure, and releasing hormones. Brain
also controls heart rhythms, body movement and balancing, hearing, eyesight,
swallowing, speech, emotion and sleep. Though there are different ways of dividing
the brain anatomically into regions, but generally, based on embryonic develop-
ment, the brain is divided into three main regions: the forebrain, midbrain and
hindbrain. The forebrain or prosencephalon is made up the cerebrum, thalamus,
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hypothalamus and pineal gland among other features where as the midbrain or
mesencephalon is developed with the portion of the brainstem. The hindbrain or
rhombencephalon is developed with the remaining brainstem and the cerebellum
and pons.

The brain is protected from damage by several layers of solid or liquid enve-
lopes. The human brain is suspended in a fluid called cerebrospinal fluid (CSF)
which is covered by a thin membrane called meninges. The meninges is covered by
the outermost solid and rigid bones which developed a solid and protective envelop
called skull. Though the brain is highly protected inside the rigid skull, meninges,
CSF and isolated from the bloodstream by the blood–brain barrier (BBB), the
human brain is still prone to injury, damage and several number of disease [65]
such as stroke, brain tumors, traumatic brain injury, encephalitis, meningitis, Par-
kinson’s disease, intracerebral hemorrhage, brain aneurysm, multiple sclerosis,
hydrocephalus etc. Therefore the study of brain is important and very essential for
diagnose and treatment of the diseases.

Noninvasive diagnoses have always been found with number of advantages in
most of the medical diagnoses and clinical investigations. Though X-Ray computed
tomography [4, 56, 75, 85] and magnetic resonance imaging (MRI) [75, 121, 184,
207] provides a lot of information about the human brain anatomy and physiology,
still, the electromagnetic methods have their own advantages and potentials in brain
monitoring. Being the fast, radiation free and noninvasive techniques, the electro-
magnetic brain monitoring and investigations [8, 10, 23, 24, 97, 98, 153, 157, 181]
are being researched by a number of research groups over the world.

In this direction the present chapter will present a detail discussion and review on
the noninvasive electromagnetic methods for brain monitoring, diagnosis and
treatment. The chapter will try to present the detail technical aspects of different
electromagnetic brain monitoring modalities (EBMM), their applications and
challenges. The chapter will start with an introduction to the human brain and its
diseases along with a discussion on the history, developments of the brain moni-
toring techniques. It will then present the present scenario of the conventional brain
monitoring methods with their merits and demerits. The chapter will next present
the introduction to the electromagnetic brain monitoring techniques such as Elec-
troencephalography (EEG) [7, 10, 98, 137], Magnetoencephalography (MEG) [10,
98, 157], Electrocorticography (ECoG) [153], electroneurogram (ENG) [181],
electrical impedance tomography (EIT) [23, 24], Quantitative susceptibility map-
ping (QSM) [135, 136] and other advanced brain monitoring modalities. The
chapter will discuss about their working principles and other technical aspects along
with their advantages, disadvantages and challenges. The chapter will also discuss
the historical development of the electromagnetic technologies for brain monitoring
along with their present scenario. After that a detail discussion will be presented on
the different applications of the electromagnetic methods for brain monitoring,
mapping and imaging. It will summarize the chapter presented on the electro-
magnetic methods for brain imaging and it will conclude with a discussion on
present challenges and future trends.
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3.2 Human Brain Anatomy

Human brain, which is developed with more than 100 billion nerves, is one of the
most important organs of the human body which controls all other organ per-
forming a number of essentials tasks to keep the human body healthy and alive. It is
not only the main organ in the nervous system, but also it is one of the largest and
most complex organs in the human body. In the human body, the brain is suspended
in cerebrospinal fluid (CSF) covered by the brain membrane, called meninges,
which is surrounded, supported and protected by skull. Being the main controlling
unit of the body, the brain controls the entire nervous system [12, 152] and all the
other systems in human body including cardiovascular system [1], respiratory
system [208], gastrointestinal system [124], renal system [163], endocrine system
[80] etc. It continuously observe, supervise and controls the performance of all the
other organs by sending physiological signals through the nervous system [12, 152]
connecting the brain to the other parts of the body [65, 161].

Thus the brain works as a central processing unit (CPU) of the human body and
performs, coordinate, control and regulate an incredible number of tasks [161]
including the controlling the heart function, breathing activity, blood pressure, body
temperature, activities of body receptors and sensors and so on. The human brain
gives us the power to move, walk, speak, listen, understand, memorize, think,
imagine, dream, reason, and solve a number of problems and experiences emotions.
As per the positions and functions, the brain can be divided in different parts such as
cerebrum, cerebellum, and brainstem [161] which have their own particular func-
tions. The cerebrum, which is divided into four lobes (Fig. 3.1): frontal, parietal,
temporal, and occipital, is the largest part of the brain and it performs the most
sophisticated functions such as interpreting touch, vision and hearing, speaking,
reasoning, emotions, learning, and fine control of movements. On the other hand,
the cerebellum, located under the cerebrum, controls the muscle movements and
maintains posture, balance and main movements. The brainstem is developed with

Fig. 3.1 Anatomy of the
human brain
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the midbrain, pons, and medulla; and performs as a relay center connecting the
cerebrum and cerebellum to the spinal cord of the human body and conducts and
controls a number of automatic functions such as breathing, heart rate, body tem-
perature, wake and sleep cycles, digestion, sneezing, coughing, vomiting, and
swallowing.

Thus the brain is made up of the following specialized regions:

• The cortex it is the outermost layer of brain cells which controls the thinking and
voluntary movements.

• The brain stem it is between the spinal cord and the rest of the brain which
controls the basic functions like breathing and sleep.

• The basal ganglia they are a cluster of structures in the center of the brain which
coordinate messages between other brain areas.

• The cerebellum it is at the base and the back of the brain which controls the
coordination and balance.

The brain is also divided into several lobes:

• The frontal lobes they are responsible for problem solving and judgment and
motor function.

• The parietal lobes they manage sensation, handwriting, and body position.
• The temporal lobes they are involved with memory and hearing.
• The occipital lobes they contain the brain’s visual processing system.

3.3 Brain Diseases

The brain controls the functioning of all the organs inside the human body. It
controls thoughts, memory, speech, movement, emotions etc. When the brain is
healthy and functioning properly all the organs are in control and perform their own
work in a regular and routine manner but as soon as the brain gets any disease it
starts malfunctioning. The malfunctioning of the brain affect the functioning of the
other organs in the body sometimes creates some life threatening situations.

The physiological change such as inflammation, loss of brain cells, tumors etc.
in the brain create a number of problems. As for example, the inflammation in the
brain can produce vision loss, weakness and paralysis where as the thinking
capability is affected by the loss of brain cells produced by stroke. Brain tumors can
lead to a lot of problem including the abnormal pressure on nerve cells which
severely affect the normal brain function. Brain disease may occur due to the
physiological changes in the brain, accidents or sometime it may be genetic even
the sources of some brain diseases are still required to be explored such as Alz-
heimer’s disease [99]. In the brain diseases the physiological changes or the damage
in the brain is permanent whereas in some other cases, proper diagnosis, analysis
and treatments such as surgery, medicines, or physical therapy can correct the
source of the problem or improve symptoms [99].
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The malfunctioning of normal brain due to the anatomical and/or physiological
changes in the brain itself or in the other body parts is called the brain disorder or
brain disease. There are a number of diseases which can be diagnosed, studied and
analyzed by EEG such as: Headache [81], Brain aneurysm [166], Parkinson’s
disease [129], Meningitis [170], Epilepsy [31], Encephalitis [134], Brain tumor
[71], Stroke (brain infarction) [147], Subdural hematoma [182], Epidural hematoma
[77], Autism [216], Cerebral edema [158], Schizophrenia [123, 192], Traumatic
brain injury [179, 201], Intracerebral hemorrhage [201], Alzheimer’s Disease [54],
Dyslexia [180], Attention Deficit Hyperactivity Disorder (ADHD) [142, 143], Brain
abscess [202], etc.

3.4 Noninvasive Brain Monitoring

The study of brain is essential for diagnose, study and analyze and treatment of the
diseases. Noninvasive disease diagnosing procedures have always been found with
number of advantages in medical science and as the brain is very important and
complex part of the life controlling all the other body parts, the noninvasive brain
disease diagnoses are always preferred.

X-Ray Computed Tomography (CT) [65], or Computed Axial Tomography
(CAT) is a computer based tomographic imaging procedure which produces the
cross sectional view (image) of the spatial distribution of a X-Ray attenuation
coefficient of an object under test from the attenuated X-Ray data generated by a
rotating X-Ray beam passing through the object (Fig. 3.2). I X-Ray CT scanner, the
object is placed inside an aperture or hole in the scanner called gantry containing

Fig. 3.2 Positron emission
tomography schematic
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the rotating X-Ray source and an array of X-Ray detectors placed at the periphery
of the gantry. The X-Ray beam is passed through the object and the attenuated X-
Ray data are collected on the X-Ray receivers and the spatial distribution of the X-
Ray attenuation co-efficient of the object is reconstructed and displayed as an
tomographic image using one mathematical algorithm called the image recon-
struction algorithm [42, 204].

Single Photon Emission Computed Tomography (SPECT or SPET) [35, 44, 59,
95, 150, 169]. is also a computed tomographic technique which is used reconstruct
the image of the distribution of the radiopharmaceuticals applied to the patient body
by collecting and processing the gamma-rays (produced by the radioisotope) at
different projection angles around the patient using a gamma camera rotating
around the patient. During the SPECT procedure, a radiopharmaceuticals, which is
a radioactive pharmaceutical called radioisotope and is used in the field of nuclear
medicine as the tracers in the diagnosis and treatment of many diseases, is injected
or inhaled, or ingested inside the patient body and the gamma rays produced by the
radioisotope is collected at different angle by rotating the a gamma ray receiving
instrument called gamma camera and the cross sectional anatomy of the object.

Positron emission tomography (PET) [64, 69, 100, 169] works with the similar
principle of the transverse SPECT [150] except the type of the radiation detected at
the receiving points. In PET, the tracer applied to the patient’s body emits positrons
that annihilate with electrons up to a few millimeters away, causing two gamma
photons to be emitted in opposite directions (Fig. 3.3), on the contrary, the tracer
used in SPECT, emits gamma radiation that is measured directly. Actually, in PET
procedure, the directionality of the annihilation photons (two 511-keV annihilation
photons emitted in opposite directions), which are produced by the radiation caused
by the annihilation of positrons with electrons, provides a mechanism for localizing
the origin of the photons [100]. Thus, when two diametrically opposite detectors in
the detector array (surrounding the patient) of a PET system register annihilation
photons simultaneously, the positron decay process that created the photons is
assumed to have occurred along a line between the detectors [100].

Fig. 3.3 Positron emission tomography schematic
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3.4.1 Advantages of PET

PEt method has the following advantages [70]:

1. PET can provide the absolute measures of regional cerebral blood flow (rCBF),
which are very difficult to obtain with other modalities.

2. PET provides the possibility of mapping the particular receptor in the brain by
using appropriate radioisotope.

3.4.2 Disadvantages of PET

PET method has the following disadvantages [70]:

1. PET is invasive,
2. Radioactive materials are injected to the body during the PET procedures.
3. PET is very expensive (partly because the radioactive tracers need to be man-

ufactured on the spot).
4. PET has relatively poor temporal resolution (it requires at least 40s to obtain an

image).

3.5 Electromagnetic Brain Monitoring Methods

The CT uses the X-Rays which is an ionizing radiation and PET and SPECT both
procedures inject an radioactive materials inside the patient’s body. Though the
brain monitoring techniques with X-Ray computed tomography [92], PET, SPECT
[61, 190] provides a lot of information about the human brain anatomy and
physiology, still, the electromagnetic methods have their own advantages and
potentials in brain monitoring. Electromagnetic brain monitoring methods are safe,
radiation free, noninvasive, and hence, the electromagnetic brain monitoring
methods are being studied by a number of research groups for studying the brain
function and diagnosing, analyzing and evaluation a number of brain diseases. The
electromagnetic brain monitoring methods can be broadly classified as signal
acquisition or signal processing methods and imaging methods. Among the signal
acquisition method the major electromagnetic methods are electroencephalography
(EEG), Magnetoencephalography (MEG), Electrocorticography (ECoG), electro-
neurogram (ENG). On the other hand, the magnetic resonance imaging (MRI) [40,
73, 101, 133, 168, 205], Functional MR Imaging (fMRI) [37, 39, 68, 132, 146, 172]
and electrical impedance tomography (EIT) [23, 24] are the brain imaging
modalities.
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The CT, SPECT and PET, are relatively older methods of brain imaging. CT
images the brain anatomy in terms of the X-Ray attenuation coefficient of the brain
tissue by applying X-Rays whereas the SPECT and PET reconstructs the local
changes in blood flow by injecting the radioactive tracers into the bloodstream. The
MRI and fMRI are comparatively newer methods and are found as provide con-
siderably better spatial resolution and involves no radioactivity [37].

3.5.1 Brain Metabolism and Brain Imaging

Although the human brain represents only 2 % of the body weight, the brain
consumes up to twenty percent of the energy used by the human body, more than
any other organ [38]. Brain consume mainly the bloodglucose as an energy source
by receiving 15 % of the cardiac output, 20 % of total body oxygen consumption,
and 25 % of total body glucose utilization [46]. Due to the lack of glucose, which is
happened in case of hypoglycemia [53], the brain activity is affected and it can
result in loss of consciousness [102]. Though the energy consumed by the brain
does not vary greatly over time, but active regions of the cortex consume com-
paratively more energy than the inactive regions: this fact forms the basis for the
functional brain imaging methods such as PET and fMRI [102, 173].

3.5.2 Electroencephalography (EEG)

Electroencephalography (EEG) is the neurophysiologic measurement technique
(Fig. 3.4) which measures and record the electrical activity of the brain of the

Fig. 3.4 Schematic of the
electroencephalography
(EEG)
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electrical activity of the brain using surface electrodes placed on the scalp. The
method is known as the electroencephalography where as the recorded signal which
is the recorded oscillations of brain electric potentials is called electroencephalo-
gram. Measuring and studying the EEG doctors and clinicians can get the infor-
mation about the brain activities which help them not only to study the normal brain
activity but also to diagnose a number of brain diseases and neurological disorders.
In 1924, the German psychiatrist Hans Berger first recorded the human EEG.

3.5.2.1 History

The history and evolution of Electroencephalography (EEG) [49] can be related to
the works conducted on Electrophysiology by Luigi Galvani, in the 18th century
what discovered the electrical potential of living tissue [50] when he observed that
the muscles of dead frog legs contracted when struck by a spark in 1771 [112].
After that, with the theories developed and experimentations conducted by Ohm
and Faraday on the electric potential, electric conductors and electric insulators and
the magnetic fields, when Johan Poggendorff developed the mirror galvanometer in
1826, the era of the EEG was just about to come [112]. After that, Richard Caton
first recorded electrical activity from exposed brains of rabbits and monkeys as the
first electroencephalography by using high-quality electrodes to reduce the effects
of artifacts and noise [112] and he studied the EEG variation due to the sleep,
wakefulness, anesthesia, death and responses to food on 40 animals. In 1924, Hans
Berger first recorded the human EEG signals of a 17-year-old boy during his head
surgery for tumor using non-polarizable clay cylinder electrodes and Edelmann’s
small string galvanometer [113].

3.5.2.2 EEG Potentials

EEG signal can be classified as two types depending on the generation of the bran
signals such as Event related potentials (ERPs) [144] and Spontaneous or free-
running EEG [118].

1. Event related potentials (ERPs) or Evoked Potentials: It is the measured
brain potential signal which is directly generated as a stereotyped electrophys-
iological response to a stimulus such as a specific sensory, cognitive, or motor
event. The evoked potentials are generated and recorded by the patient’s brain
by applying a stimulus, such as a flash light or loud click to the sensory system
of the patient.

2. Spontaneous or free-running EEG: It is the found naturally produced and
rhythmic brainwaves which are generated by outside activity.
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3.5.2.3 Source of Brain Potentials

The neurophysics of EEG is governed by the electric fields of the brain [162]. The
potentials are generated by the brain’s electrical charges which are maintained by
billions of brain cells called neurons inside the brain. The membrane transport
proteins pump the ions across their membranes of the brain cell and hence the brain
cells or neurons are electrically charged or “polarized”. To maintain some physi-
ological state or phenomena essential for normal brain functioning such as resting
potential and to propagate action potentials, the neurons are constantly exchanging
ions with the extracellular milieu inside the brain. The ions pushed by some neurons
when comes to the other ions with similar polarity generated or pushed by the other
neurons repel each other. When many ions are pushed out of many neurons at the
same time, these ions push their neighbouring ions that again push their neigh-
bouring ions and so on and a wave of ions is generated which is actually an ionic
conduction inside the brain. The ionic conduction inside the brain is converted to
the electron conduction inside the EEG recording cables (outside the brain) by the
surface electrodes attached to the scalp. Using amplifier and measuring devices the
electric voltage signals are measured and recorded as EEG. Thus the EEG measures
voltage fluctuations resulting from ionic current flows within the neurons of the
brain [159]. The brain voltage signals are collected by the surface electrodes from
the pairs of electrodes and hence the EEG signals represent the voltage difference
between two scalp electrodes. As the individual brain potentials appearing on each
electrode is fluctuating over time, the EEG signals measured across two electrodes
are also found as the fluctuating voltage signal over time [198]. EEG activity is
always reflects the summation of the synchronous activity of a huge number of
neurons that have similar spatial orientation inside the brain because the electric
potential generated by an individual neuron is very small to be recorded by an EEG
instrument [103]. If the cells do not have similar spatial orientation, their ions do
not line up and create waves to be detected. Pyramidal neurons of the cortex are
thought to produce the most EEG signal because they are well-aligned and fire
together. Because voltage fields fall off with the square of distance, activity from
deep sources is more difficult to detect than currents near the skull [130].

3.5.2.4 The EEG Interpretation

The EEG waves obtained from the scalp electrodes shows oscillations at a variety
of frequencies and each wave having characteristic frequency ranges, spatial dis-
tributions and are associated with different states of brain functioning such as
waking and the various sleep stages etc. [103]. Among the different EEG oscilla-
tions representing the synchronized activities over different network of neurons
called neuronal networks, some oscillations are well understood, while many others
are not [103].
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3.5.2.5 Brain Waves and EEG Diagnosis

The level of consciousness and brain activity and functions can be evaluated from
the EEG signal (Fig. 3.5) because the brain potentials are closely related to the
person’s brain activities [130]. As for example, when the eyes are closed, the alpha
waves begin to dominate the EEG. It is observed that, as the brain activity
increases, the EEG signals shift to higher dominating frequency and the signal
amplitude decreases whereas, the dominant EEG frequency decreases when the
activity reduces or during the sleep [130]. The EEG waves also help us to detect the
different phase of sleeps (Fig. 3.5) such as rapid eye movement (REM sleep) and
non-rapid eye movement (NREM or non-REM sleep) [130]. In REM sleep the
person dreams and has active movements of the eyes which is reflected in the
characteristic EEG signal. The EEG signal of a person in deep sleep has the brain
waves with large and slow deflections [130]. No brain signal is generated for a
patient with complete cerebral death and hence, no cerebral activity can be detected
from the EEG signal measured.

The human brain is made up of billions of brain cells called neurons, which all
generates some electricity to communicate with each other and hence the electric
potential signal generated by a large number of neurons produces an enormous
amount of electrical activity in the brain, called brain wave, which can be detected
by EEG. The different types of brain waves are explained below (Fig. 3.6):

The delta wave [76] which is the slowest band of brain waves, is a high
amplitude brain wave with a frequency of oscillation between 0–4 Hz. Delta waves,

Fig. 3.5 Brain waves in different sleeping conditions (Photo courtesy: Ref. [148] http://www.
bem.fi/book/13/13.htm)
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are usually associated with the deep sleep, dreamless sleep, deep stage 3 of NREM
sleep, also known as slow-wave sleep (SWS). Delta waves, are used to characterize
the depth of sleep. Thus, the dominant brainwave of a person is delta, the body is
assumed to be healing itself and “resetting” its internal clocks with no dreams
almost with unconsciousness [34].

The theta wave [82], which is associated with the Light sleep or extreme
relaxation, is an oscillatory pattern in electroencephalography (EEG) signals which
is found to be recorded with a frequency range of the 4–7 Hz range.

Alpha waves [114], found with the frequency range of 7.5–12.5 Hz, associated
with the awake state but relaxed with the brain not processing much information
such as the state after getting up in the morning as well as just before going to sleep.
Actually, when a person closes his eyes his brain automatically starts producing
more alpha waves [104].

Mu waves [66], found with the frequency range of 7.5–12.5 Hz, are found as the
synchronized patterns of electrical activity involved in the large numbers of neu-
rons, probably of the pyramidal type, in the part of the brain that controls voluntary
movement [66].

The sensorimotor rhythm (SMR) [6], which is an oscillatory idle rhythm of
synchronized electromagnetic brain activity, appears in spindles in recordings of
EEG, MEG, and ECoG with the frequency range of 13–15 Hz [6, 103].

Fig. 3.6 Some examples of EEG waves (Photo courtesy: Ref. [148] http://www.bem.fi/book/13/
13.htm)
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Beta wave [174], or beta rhythm is associated with wide awake condition or
normal waking consciousness and found between 12.5 and 30 Hz frequency range.
The people with insufficient beta activity may suffer from mental or emotional
disorders such as depression and ADD [62, 84] and insomnia [104].

A gamma wave is associated with the formation of ideas, language and memory
processing, and various types of learning [36, 51, 104, 154] a frequency between 25
and 100 Hz, [93] though 40 Hz is typical [94]. Gamma waves have been shown to
disappear during deep sleep induced by anesthesia, but return with the transition
back to a wakeful state [1, 104, 119, 156].

3.5.2.6 Why EEG

The brain electrical activity reflects the brain function aswell as the health status of the
brain. The EEG of a normal and healthy brain will differ from a brain with disease or
functioning abnormally or in different health status. Thus, as the EEG provides the
brain electrical activity, theEEG can be used to study and analyze the peoplewho have
problems associated with brain functions such as coma, memory disorder, tumors,
brain death or even malfunctioning of certain body parts. A number of the brain
diseases are possible to diagnose, study and analyze by the EEG. The diseases which
can be evaluated by EEG procedures are Headache, Brain aneurysm, Parkinson’s
disease, Meningitis, Epilepsy, Encephalitis, Brain tumor, Stroke (brain infarction),
Subdural hematoma, Epidural hematoma, Autism, Cerebral edema, Schizophrenia,
Traumatic brain injury, Alzheimer’s Disease, Dyslexia, Attention Deficit Hyperac-
tivity Disorder (ADHD), Intracerebral hemorrhage, Brain abscess, etc.

3.5.2.7 How It Works

The EEG system is generally composed of amplifiers, filters, and paper chart or
computer monitor. The cells in the brain communicate themselves by producing
tiny electrical potentials in the form of impulses. In an EEG, the surface electrodes
are placed on the scalp of the head and the patterns of brain electrical activities are
detected and recorded. The recorded signals are transmitted to the EEG instru-
mentation (Fig. 3.7) where it is amplified filtered and displayed or printed as per the
requirements or instrument facilities.

3.5.2.8 EEG Instrumentation

1. An EEG system will have the following components:
2. EEG electrodes,
3. Electrode connecting wires or lead wires
4. EEG electrode cap
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5. EEG electronic instrumentation or EEG measuring circuit (contains instru-
mentation amplifiers (IA), filters and signal processors)

6. EEG output or display such as PC monitor or printer

EEG electrode may be attached individually on the scalp or they may be housed
on a electrode caps or electrode helmets. EEG system should have 21 electrodes for
a standard 10–20 measurement system though there are several electrode caps
containing different numbers of electrodes (19, 32, 64, up to 256 electrodes) which
are available in several sizes for the patients of different age groups like adults and
children. EEG electrodes are placed on the scalp of the head and the brain signals
are collected by the electrodes. The EEG waves as the voltage signals available on
the scalp electrodes are sent to the EEG electronic instrumentation through the lead
wires and the instrumentation amplifies filters and processes the signal and sends to
the display unit.

In wireless EEG system [60] there are, no wire connection between the recording
instrumentation and the display unit. In wireless EEG system, the portable mea-
suring instrument is fixed on the patient’s body either on head [60] or on any other
part of the body as per the comfort of the patient.

3.5.2.9 Preparation for an EEG Test

1. Patient should wash and clean his/her hair to make the hair free from any oily or
greasy products or dusts.

2. Hair of the patient must be dry
3. Patient should eat regular meals without any foods or drinks that contain caf-

feine, alcohol or any other stimulant for at least 4 h before the test.
4. Patient should sleep in the day before the test as per the doctor’s prescription
5. Patient should continue to take his/her regular medications, unless the doctor

prescribes to do so.
6. Patient should lie on a table or sit in a chair.
7. 20–256 electrodes are attached to the human scalp with some washable glue or

conducting gels.
8. The technician will remove the electrodes and you should wash the glue out of

your hair.

Fig. 3.7 Schematic of an EEG scanner instrumentation
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9. Most of the time during the test, the patient is asked to lie still with the eyes
closed but, sometimes, the technician or clinician may ask you to perform few
small physical activities such as to open and close your eyes or look at a flashing
light, to take deep breath and/or rapidly breath.

The EEG may be of different types depending upon the procedure of performing
the test such as Regular or Standard EEG, Sleep-deprived EEG, Long Term EEG,
Ambulatory EEG or sometimes Video EEG.

3.5.2.10 Regular or Standard EEG

Regular or Standard EEG procedure is performed for about 60–90 min. The
Regular EEG is normally performed in normal clinical circumstances and normal
patient conditions. Though sometimes the procedure can be completed within
30 min when very short measurements are performed.

3.5.2.11 Sleep-Deprived EEG

Sleep-deprived EEG procedure is performed for 2–3 h on a patient who have been
asked to sleep only 4 h in the night before the test to record the abnormal brain
waves which may appear when the body is stressed or fatigued.

3.5.2.12 Long Term EEG

When a short term or routine EEG is found insufficient to provide the required
information to the doctors and clinicians the long term EEG is performed. In the
cases of Long term EEG, the patient is asked to stay in the clinic or hospital for
several days and the EEG is constantly being recorded for long time span.

3.5.2.13 Ambulatory EEG

Ambulatory EEG is one kind of long term EEG but it is not performed on the
patient admitted to the clinic or hospital rather it is performed on the patient
involved in his/her daily activities in his/her house. Ambulatory EEG is the per-
formed on a patient with a portable EEG recorder attached to his/her waist just to
record the long term EEG just like the ambulatory ECG procedure. The EEG
electrodes are attached to the patient’s head and the cables are connected to the
portable EEG recorder fixed with a belt wore by the patient for several days. Similar
to the ambulatory ECG procedure, the patient under Ambulatory EEG recording is
given a diary you note his/her daily activities and drug dosages over time to provide
the information to the doctors and clinicians to help them to relate the brain
activities and functions with the EEG signals recorded at the same time.
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3.5.2.14 Advantages of EEG

EEG method has the following advantages [70]:

1. Provides a lot of information about the brain activity
2. EEG is very suitable and efficient for diagnosing some brain diseases like

epilepsy
3. It is very effective and efficient to detect sleep disorders, coma, encephalopa-

thies, and brain death.
4. Most inexpensive methods of neuroimaging [70]
5. EEG high temporal resolution (millisecond range)
6. No harmful side effect of this process on human health is reported.
7. EEG procedure indeed measure electrical voltages which is generated naturally

in the brain dose not inject any electrical signal.
8. No voltage goes out from the measuring device

3.5.2.15 Disadvantages

EEG method has the following disadvantages [70]:

1. EEG is less helpful than imaging techniques in determining the location of
tumor, injuries and the precise nature for some diseases like stroke etc.

2. EEG is a signal measurement technique and hence does not provide the image of
the brain cross sections.

3. EEG cannot indicate the location of the brain activity on the surface of the brain
very well.

3.5.2.16 Electrode Placement in EEG: 10–20 System (EEG)

The 10–20 system [105, 106, 115, 122, 131, 148] or International 10–20 system of
EEG measurement procedure which is developed by the International Federation of
Clinical Neurophysiology (IFCN) recognized as the internationally standardized
10–20 system is used to determine and fix the location of scalp electrodes in the
context during an EEG test or experiment. In the 10–20 system is generally used to
record the spontaneous EEG by attaching 21 electrodes located on the surface of the
scalp, as shown in Fig. 3.8a.

This 10–20 system is developed with the relationship between the location of a
scalp electrodes and the underlying area of cerebral cortex of the patient which refer
to the fact that the actual distances between adjacent electrodes are either 10 % or
20 % of the total front–back or right–left distance of the skull [106].

According to the 10–20 electrodes placement scheme (Fig. 3.8a), three distances
are measured [107]:
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1. Distance between two preauricular points,
2. Distance between the nasion (nose bridge) and inion (the occipital bone mount),
3. Distance both across vertex, and the circumference between the last two point of

the skull.

These distances are divided in proportion of 10 %-20 %-20 %-20 %-20 %-10 %
along both the orthogonal axes and the circumference of the scalp area and a net of
imaging quadrates is built [107].

The EEG signal is measured across two electrodes among which one is the
reference electrode. Reference electrode recording is an electrode, relative to which
the electric brain potentials in all other electrodes are measured and hence it should
be placed on a presumed “inactive” zone on the scalp region. In common practice
the reference electrode is placed on the left or right earlobe or both of them. For an
EEG system with a single reference electrode placed on a particular earlobe, though
the topography of EEG rhythms is rather close to true [107], but EEG amplitude is
decreased on the electrodes closer to the reference earlobe electrode. On the other
hand, if two reference electrodes are used on both the earlobes and used as the
linked reference earlobes electrodes, then though the asymmetry obtained in the
single reference electrode system is avoided but the link wire between two reference
electrodes affects the intracranial currents which produce the EEG potentials and
hence distort the EEG picture [107]. Alternatively, the EEG signals are recorded on
all the scalp electrodes making all the scalp electrode as a reference and the EEG
signals are estimated by computing the average reference as a mean of all electrodes
measurements [107].

For measuring the distances on the scalp region the nasion (the delve at the top
of the nose, level with the eyes) and inion (the bony lump at the base of the skull on
the midline at the back of the head) are taken as the references and the distances are

Fig. 3.8 Electrode placement in EEG a Location and nomenclature of the scalp electrodes in the
international 10–20 system as standardized by the International Federation of Clinical
Neurophysiology (IFCN), b Location and nomenclature of the scalp electrodes in the international
10–20 system with the intermediate 10 % electrodes as standardized by the American
Electroencephalographic Society (Photo courtesy: Ref. [148] http://www.bem.fi/book/13/13.htm)
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measured in the transverse and median planes by dividing these perimeters into 10
and 20 % intervals and the scalp electrodes placed.

In addition to the 21 scalp electrodes of the international 10–20 system, addition
intermediate 10 % electrode positions are also used (Fig. 3.8b) as per the standard
provided by the American Electroencephalographic Society [189] and hence the
four electrodes are found with different names compared to the 10–20 system; viz
T7, T8, P7, and P8. These electrodes are drawn black with white text in the fig-
ure. Besides the international 10–20 system, a number of other electrode systems
have been proposed for recording EEG signals on the scalp.

3.5.3 Magnetoencephalography (MEG)

Magnetoencephalography (MEG) [108, 171, 194] is a functional neuroimaging
technique that measures the magnetic fields generated by brain activity from the
outside of the head and it is used for identifying and analyzing brain activity. MEG
is now in routine clinical practice throughout the world [194] and it is used in the
following two primary clinical applications:

1. localizing the area or areas from which the seizures arise in epilepsy patients
2. identifying regions of normal brain function in patients undergoing surgery for

treating either epilepsy or tumor or other mass lesion.

MEG has become a recognized and vital part of the presurgical evaluation of
patients with epilepsy and patients with brain tumors. As the physical properties of
magnetic waves differ from the electrical waves, MEG provides different, com-
plementary information than the EEG. MEG also has very good temporal resolution
like EEG but with much better spatial resolution compared to EEG. The major
disadvantage of the MEG is that it can detect the neural activity relatively close to
the surface of the brain to detect its magnetic field because the magnetic fields
generated by neural activity are very small.

3.5.3.1 History

Prof. David Cohen first recorded the MEG signals in the University of Illinois in
1968 [47, 108] using a copper induction coil as the detector. Though the mea-
surements were made inside a magnetically shielded room, to reduce the back-
ground noise, but the less sensitive coil detector provide a poor and noisy MEG
measurements [108]. Using high sensitive superconducting quantum interference
devices (SQUID) [185] developed by James E. Zimmerman, a researcher at Ford
Motor Company [225], Cohen recorded significantly improved MEG signal [48] in
a better shielded room at MIT.
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3.5.3.2 Why Is an MEG Performed?

MEG is used to localize the source of epileptiform brain activity of a epilepsy
patient, which considered as the source of seizures by, generally, performed with
EEG simultaneously.

3.5.3.3 How MEG Work

The MEG procedure measures the magnetic field produced by the net effect of ionic
currents flowing in the dendrites of neurons during synaptic transmission. But the
magnetic field produced by the brain’s electrical activity is considerably smaller
than the ambient magnetic noise in an urban environment [108] and hence,
approximately 50,000 active neurons are needed to generate a detectable signal.
Therefore the weakness of the biomagnetism and MEG signal relative to the sen-
sitivity of the detectors and the environmental noise is a major challenge in MEG
technology.

As the neuromagnetic signals generated by the brain are extremely small almost
(a billionth of the strength of the earth’s magnetic field) MEG scanners require
superconducting sensors, called superconducting quantum interference device
(SQUID) sensors bathed in a cooling medium of large liquid helium of temperature
approximately −269 °C [213]. The SQUID at this extreme low temperature
becomes superconducting and show very small impedance and hence the MEG
device can detect and amplify the brain magnetic fields generated by the neurons a
few centimeters away from the SQUID.

3.5.3.4 Advantages of MEG

MEG method has the following advantages [70]:

1. MEG has an excellent temporal resolution (milliseconds).
2. MEG has better spatial resolution than EEG, because unlike electric fields,

magnetic fields are not distorted as they pass through the brain and scalp [70].
3. EEG is not good in are at indicating the brain activity in the neural structures

located deep beneath the surface [70].
4. In MEG the magnetic fields are less influenced than electrical currents in EEG

by conduction through brain tissues, cerebral spinal fluid, the skull and scalp.
5. MEG provides both the timing and spatial information of brain activity [105].
6. MEG helps in identifying the seizure focus in patients with epilepsy.
7. MEG also helps the surgeon in facilitating the planning of surgery.
8. MEG signals provide the information about the neural activity because MEG

obtain signal directly from neuronal electrical activity but the fMRI signals
show the brain activity indirectly in terms of oxygenation of blood flowing near
active neurons [105].
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3.5.3.5 Disadvantages of MEG

MEG method has the following disadvantages [70]:

1. MEG also presents disadvantages, such as the fact that it only detects magnetic
fields oriented in parallel to the surface of the skull (neurons in cerebral sulcus).

2. MEG equipment is very expensive (MEG equipment costs at least 10 times
more than the cost of EEG [70]).

3. MEG cannot indicate the location of the brain activity on the surface of the brain
very well [70].

4. EEG is not good in are at indicating the brain activity in the neural structures
located deep beneath the surface [70].

5. MEG is extremely sensitive to external noise as the brain magnetic field activity
is very weak

3.5.4 Electrocorticography (ECoG)

Electrocorticography (ECoG) [109] or intracranial EEG (iEEG) is a invasive pro-
cedure of measuring brain potentials by the electrodes placed directly on the surface
of the brain (usually on the patients with his or her skull removed during the
surgery). Thus the ECoG acquires the brain signal directly from the exposed surface
of the brain with the electrodes placed on it to record the brain electrical activity and
hence it offers better spatial resolution than electroencephalography.

In the early in 1950s, Wilder Penfield and Herbert Jasper, neurosurgeons at the
Montreal Neurological Institute ECoG performed ECoG to treat patients with
severe epilepsy [165]. From the ECoG, they used the cortical potentials to identify
and remove the epileptogenic zones (regions of the cortex that generate epileptic
seizures surgically) [109]. To explore the functional anatomy of the brain, mapping
speech areas and identifying the somatosensory and somatomotor cortex areas to be
excluded from surgical removal, Penfield and Jasper used electrical stimulation
during ECoG recordings [67].

3.5.4.1 Clinical Applications

ECoG has been used

1. to localize epileptogenic zones
2. to remove the epileptogenic zones during surgery planning,
3. to map out cortical functions
4. to explore the functional anatomy of the brain
5. to mapping speech areas
6. to identifying the somatosensory and somatomotor cortex areas
7. to predict the success of epileptic surgery.
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3.5.4.2 Advantages of ECoG

1. Direct measurement of brain signal is possible.
2. Signal quality is high.
3. In ECoG flexible placement of recording and stimulating electrodes are possible.
4. ECoG helps us to localize epileptogenic zones and to remove the epileptogenic

zones during surgery planning,
5. ECoG can be performed at any stage before, during, and after a surgery
6. Using direct electrical stimulation of the brain, ECoG helps us to identify the

critical regions of the cortex to be excluded from surgical removal.
7. Greater precision and sensitivity than an EEG scalp recording—spatial resolu-

tion is higher and signal-to-noise ratio is superior due to greater proximity to
neural activity.

3.5.4.3 Disadvantages of ECoG

1. electrode placement is limited by the exposed cortex area and time available
during surgery.

2. Recording is subject to the influence of anesthetics, narcotic analgesics, and the
surgery itself [67].

3. In ECoG recording the limited sampling time—seizures (ictal events) may not
be recorded.

3.5.5 Electroneurogram (ENG)

An electroneurogram (ENG) [110, 160, 210] record the electrical activity generated
by the neurons in the central nervous system (brain, spinal cord) or the peripheral
nervous system (nerves, ganglions) by the electrodes electrode in the neural tissue
[110]. The neuron electrical activity recorded by the electrodes in ENG system is
transmitted to a signal acquisition system and then processed and displayed as the
activity of the neuron [160]. An electroneurogram [210] can contain the activity of a
single neuron to thousands of neurons depending upon the precision of the elec-
trodes used in an ENG system [110] and hence electrode precision is set as per the
requirement of the test either the activity of a single neuron or a group of neurons
are to be recorded [110].

3.5.6 MRI

Magnetic resonance imaging (MRI), sometimes called nuclear magnetic resonance
imaging (NMRI) or magnetic resonance tomography (MRT), is a medical imaging
technique which produces the tomographic images (cross-sectional images) of the
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subject under test as a function of proton spin density and relaxation times (or
spectra of 31P and 1H in NMR spectroscopy) of the subject (patient’s body) tissue
using nuclear magnetic resonance (NMR) technology [45].

The MRI scanners use a superconductive electromagnet developed with a
conducting coil in liquid Helium (He) at −269 °C. The conducting coils at such a
low temperature become superconductor by losing their resistance to the flow of
electrons and a stable and a very strong superconductive electromagnet is devel-
oped. 1.5 Tesla (1 Tesla = 10,000 Gauss) magnets are generally used in MRI
scanners which is very strong compared to the earth’s magnetic field (earth’s
magnetic field is 0.00005 Tesla or 0.5 Gauss).

3.5.6.1 Physics of MRI Imaging

The protons of the hydrogen atoms of the human body tissue are all rotating at
random fashion (Fig. 3.9) and there is no net magnetization. An even number of
them will cancel each other’s spin and hence, a net resultant spin would be resulted
in the nucleus only when it contains an odd number of protons, an odd number of
neutron or both. In presence of an external magnetic field the protons either may
align parallel (known as spin-up position with lower energy state) or anti-parallel
(known as spin-down position with higher energy state) to the applied field. When
the MRI scanner applies its magnetic field (B0) the axes of the protons will mostly
align parallel (called parallel alignment) with the main magnetic field, though some
will align opposite the magnetic field (called anti-parallel alignment). In both the
cases, this creates a net magnetization in the direction of the magnetic field (B0)
created by the MRI machine. The protons rotating around their own axis revolve
(precess) around the direction of the magnetic field (B0) by making an angle (θ)
with B0 and hence the protons are only ‘partially polarize’.

Now, by the Larmor relationship, the frequency of precession (the frequency of
rotation) is given by:

f ¼ w
2 � p ¼ yB0

2 � p

Fig. 3.9 Magnetic dipoles
created by the spinning of the
Hydrogen atoms

3 Noninvasive Electromagnetic Methods for Brain Monitoring … 73



Where,
w = angular freq. in radians per second; 2*pi radians = 360°
y = the magnetogyric (gyromagnetic) ratio, nuclear constant characteristic of

every isotope (for proton (1H) it is 42.5 MHz/T);
B0 = static magnetic field

In MRI, a radio frequency (RF) pulse at the Larmor frequency [72] (perpen-
dicular to the magnetic field) is applied to the protons to disturb their natural
alignments (i.e. to disturb the net magnetization of the protons) and hence the
magnetic component (B1) of this electromagnetic wave temporarily knocks the
protons out of alignment (see picture). In the presence of the RF pulse the protons
are pushed out of alignment temporarily and as the pulse disappears, they ‘relax’
back to their natural ‘equilibrium’ positions emitting a rotating magnetic field
parallel with the applied magnetic field. The magnetic field emitted relaxed protons
during the absence of the RF magnetic field is recorded to construct an image of the
scanned area of the body. Due to the huge number of protons a lot of signals of
different frequencies are present in the acquired signal and hence all the signals are
plotted in ‘frequency domain’ and processed with Discrete Fourier Transform
(DFT). Depending on the material properties the nature of relaxation changes, and
that is how we get the different contrast for different materials in the MRI images.
Magnetic field gradients cause the proton nuclei to rotate at different locations with
different speeds and hence by using gradients in different directions 2D images or
3D images can be obtained. Therefore, the gradient of the magnetic field is varied
with the gradient coils in the MRI scanner to get the positional information of the
protons in space.

3.5.6.2 MRI Scanner

An MRI scanner (Fig. 3.10), generally, consists of superconducting magnet, gra-
dient coils, R.F. transmitter and receiver and the computer [45]. MRI systems
generates high-quality diagnostic images through the use of an effective, yet safe,
magnetic field generated by the main magnet. Hydrogen protons of the water
molecules within the body align with the main magnetic field. RF coil applies the
short radio frequency (RF) pulses to a specific anatomical slice of interest. The
protons in the slice absorb energy at this resonant frequency, causing them to spin
perpendicular to the main magnetic field. As the RF field is ceased, all the protons
rotating perpendicularly to the main magnetic field relax back and get aligned with
the main magnetic field exerting a signal which is received by the RF coil. The
signal absorbed by the RF coil is processed by a computer to produce the tomo-
graphic images of the slice of interest by using a computer program called image
reconstruction algorithm.
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3.5.6.3 Advantages of FMRI

fMRI method has the following advantages [70]:

1. MRI has relatively good spatial and temporal resolution, it is also widely
available (most hospitals have an MRI machine)

2. MRI is relatively inexpensive compared to PET
3. MRI procedure is very noisy;
4. the shifting of the magnetic fields cause physical movements of the magnets
5. MRI technique is very sensitive to motion.
6. fMRI is a very useful tool for learning which brain regions are involved in a

given behavior,
7. non-invasive

3.5.6.4 Disadvantages of FMRI

MRI method has the following disadvantages [70]:

1. MRI is relatively inexpensive compared to EEG
2. The hole in the MRI scanner gantry is relatively narrow but very deep which

provides some discomfort to some patients
3. temporal resolution is poor
4. gives little information about the temporal dynamics of their responses.

Fig. 3.10 Schematic of an MRI scanner instrumentation
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3.5.7 Electrical Impedance Tomography (EIT)

The Electrical Impedance Tomography (EIT) [11, 19, 22, 33, 43, 58, 78, 88, 186,
209] is computed tomographic technique which provides the 2d or 3D images of the
spatial distribution of the electrical properties of a domain under test (Ω) such as
electrical conductivity or resistivity from the set of voltage-current data (Fig. 3.11)
measured at the domain boundary (∂Ω) surrounded by an array of surface elec-
trodes [29, 140, 206]. EIT is a low cost portable, non-invasive, non-ionizing
imaging modality EIT provides few unique advantages over the conventional
medical imaging methods like planer X-Ray radiography, X-Ray CT, PET, SPECT,
MRI, ultrasound etc. Hence it is being used in clinical diagnosis, industrial process
tomography, civil engineering, geotechnology, material engineering, biotechnol-
ogy, and other fields of engineering and technologies.

An EIT system (Fig. 3.1) injects a constant amplitude, low frequency sinusoidal
current electrical current through the driving electrodes and the boundary voltages
are measured on the sensing electrodes with four electrode method [28, 209] using
an electronic instrumentation [13, 14, 20, 25, 32, 125, 164, 176]. For a current
injection through a particular current electrode pair, the boundary voltage current
data are collected from all voltage electrode pairs excluding the pairs containing one
or two current electrodes. Current injection through a particular current electrode
pair and the voltage data collection from all the voltage electrode pairs is called a
projection [19, 23, 29, 30]. The fashion in which the current injection electrodes
and voltage collections electrodes are switched is called the current pattern [19, 23,
29, 30]. The boundary data are processed in PC and the spatial distribution of the
electrical conductivity of the domain under test (DUT) is reconstructed from the
boundary voltage data sets using image reconstruction algorithm [15–18, 21, 27,
139, 193, 220, 221] which is developed with two main computer programs called
forward solver (FS) [16, 17, 22, 27, 220] and inverse solver (IS). FS solves the

Fig. 3.11 Schematic of EIT scanning with constant current injection and voltage measurement
through surface electrodes
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forward problem (FP) [16, 17, 22, 26, 27, 220] and calculates boundary potentials
for a constant current simulation in a computer simulated domain resembling the
real domain under test and the IS solves and inverse problem (IP) [16, 17, 22, 26,
27, 220] and tries to reconstruct the conductivity distribution by comparing the
computed boundary data with the boundary data measured in a real domain with
real current injection.

In EIT, a constant amplitude electrical current is injected through the driving
electrodes and the boundary voltages are measured on the sensing electrodes using
an instrumentation and the impedance images are reconstructed from the boundary
data using the reconstruction algorithm. Boundary data quality depends on the
number, geometry and the material of the surface electrodes used in the EIT system.
Electrode material is a very important parameter which influences the quality of the
boundary data collected for impedance image reconstruction. In this paper, different
electrode materials used for EIT electrodes proposed by different research groups
are studied and a technical review on the EIT electrode materials is presented.

3.5.7.1 Forward Modeling

The EIT problem has two parts: forward problem (FP) and inverse problem (IP).
The FP computes the boundary potential from a known conductivity distribution
and a known current simulation whereas the inverse problem (IP) reconstructs the
conductivity distribution from the measured boundary potential data and same
current injection in real system (Fig. 3.12).

The EIT image reconstruction algorithm is developed with two parts: forward
solver (FS) which solve the forward problem and the inverse solver (IS) which
solves the inverse problem. In forward solver the forward model is developed by
finite element method (FEM) [2, 138, 175, 177, 188, 217] formulation applied on
the governing equation, Eq. 3.1, of the domain under test (DUT). Developing the
forward model, the forward solver solves the governing equation and calculates the
boundary potential data by simulating a constant current within the modeled

Fig. 3.12 The image
reconstruction process in EIT
image reconstruction
algorithm developed with
forward solver (FS) and
inverse solver (IS)
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domain of interest in PC. The inverse solver compares the calculated potential data
(Vc) data with the measured potential data (Vm) obtained by practical current
injection in the real EIT domain and tries to reconstruct the conductivity distribution
of DUT by minimizing the difference between Vm and Vc called the voltage mis-
match vector (ΔV = Vm − Vc).

The FS derives the forward model of a DUT from its governing equation
(Eq. 3.1) by applying the FEM formulation and imposing the boundary conditions
[16, 17, 22, 27, 220] for the system under test. Assuming an initial guessed con-
ductivity distribution, say [σ0], and nodal coordinates (x, y), the FS develops the
forward model which is a system of equations represented in the form of a matrix
equation (Eq. 3.2).

Thus the forward model (Eq. 3.2), represents the relationship between the cur-
rent injection matrix [C] (matrix of the applied current signal), and the nodal
potential matrix [Φ] (matrix of the developed voltage signal) through the trans-
formation matrix [K(σe)] as given below [16, 17, 22, 27, 220]:

r � rr/ ¼ 0 ð3:1Þ

U½ � ¼ K reð Þ½ ��1 C½ � ð3:2Þ

where σe is the elemental conductivity distributions within the domain under test.

3.5.7.2 Conductivity Reconstruction

In EIT, the computed boundary potential data obtained by FS by solving the FM is
compared with the measured boundary potential data in IS and the desired ele-
mental conductivity distribution [σ] is obtained by a mathematical algorithm (MA)
developed with Gauss-Newton based minimization algorithm (GNM-MA) and
Newton Raphson Iteration Technique (NRIT). In EIT reconstruction algorithm the
FS calculates the boundary data using a known conductivity distribution and known
current injection whereas the IS calculates the conductivity distribution using the
boundary data developed for the same current injection at the boundary. Thus in the
EIT image reconstruction algorithm IS logically works just in opposite to the
process executed in FS and hence it is known as the inverse solver. In IS, the GNM-
MA first defines an objective function (s) from computationally predicted data [Vc]
and the data collected from the experimental measurements [Vm] and runs itera-
tively to minimize the function (s) to obtain an optimized elemental conductivity
values [σ]. The minimization algorithm [16, 17, 22, 27, 220] defines an objective
function (s) from with the difference between computationally predicted data [Vc]
and the experimental measurement data [Vm] called the voltage mismatch vector
[ΔV = Vm − Vc] and then tries to minimize it in an iterative way.

If the forward solver discretizes theDUTwith an FEMmeshwith e number offinite
elements and n number of nodes and calculates the boundary data matrix [Vc] for a
known conductivity distribution and known current injection [C], the Gauss-Newton
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method based minimization algorithm [1, 80, 99, 124, 135, 136, 163, 208] defines an
object function using the experimental measurement data [Vm] as [16, 17, 22,
27, 220]:

s ¼ 1
2

Vm � fk k2¼ 1
2

Vm � fð ÞT Vm � fð Þ ð3:3Þ

Where f is a function mapping an e-dimensional impedance distribution into a
set of M (M is the number of the available experimental boundary measurement
data ([Vm])) boundary potential data.

The EIT minimization algorithm [16, 17, 22, 27, 220] tries to obtain a least
square solution of the minimized object function (s) using by a Gauss-Newton
method and NRIT based iterative approximation techniques.

Now, differentiating the object function (s′) in Eq. 3.3 w.r.t. the conductivity σ,
we have:

s0 ¼ � f 0½ �T Vm � f½ � ¼ �JTDV ð3:4Þ

Where the matrix J = f′ is known as Jacobin matrix [16, 17, 22, 27, 220] and JT

represents the transpose of the matrix J. The Jacobian matrix J may be computed by
using a method as described in or by the adjoint method represented by the Eq. 3.6
[16, 17, 22, 27, 220]:

J ¼
I
X
rUs:rUddX ð3:5Þ

Where, Φs is the forward solution for a particular location say “source location”
and Φd is the forward solution for the adjoint position of the “source location” i.e.
the “adjoint location” (source at the detector location and detector at the source
location).

Now, differentiating s0 in Eq. 3.4 w.r.t. σ again, it reduces to:

s00 ¼ f 0½ �T f 0½ � � f 00½ �T Vm � f½ � ð3:6Þ

By Gauss-Newton method, if f(x) is a twice-differentiable function well
approximated by its second order Taylor expansion and the initial guess x0 is
chosen close enough to x*, the sequence (xn) defined by:

Dx ¼ x� xn ¼ � f 0 xnð Þ
f 00 xnð Þ ; ð3:7Þ

xnþ1 ¼ xn � f 0 xnð Þ
f 00 xnð Þ ; n ¼ 0; 1; 2. . . ð3:8Þ

will converge towards the root of fʹ i.e. x* for which fʹ(x*) = 0.
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Thus, in EIT using the Gauss-Newton method, the conductivity update vector
[Δσ] is given by,

Dr ¼ � s0

s00
¼ JTDV

f 0½ �T f 0½ � � f 00½ �TDV
ð3:9Þ

Therefore, the conductivity update vector [Δσ] can be simplified as:

Dr ¼ f 0½ �T f 0½ � � H½ �TDV
h i�1

JTDV ð3:10Þ

Where, the higher order term H ¼ f 00½ � is known as the Hessian matrix [16, 17,
22, 27, 220] which is generally neglected. Thus, in Eq. 3.10 neglecting H, the Δσ
vector reduces to:

Dr ¼ f 0½ �T f 0½ �
h i�1

JT DV½ � ð3:11Þ

In general, using NRIT method, for kth iteration (where, k is a positive integer),
the conductivity update vector obtained in Eq. 3.11 can be can be represented as:

Drk ¼ Jk½ �T Jk½ �
h i�1

Jk½ �T DVk½ � ð3:12Þ

Where [ΔVk] and [Jk] are the voltage mismatch vector and Jacobian matrix
respectively both calculated at the kth iteration.

In Eq. 3.11, the matrix f 0½ �T is always ill-conditioned, and hence a small error in
measured data will produce a large error in the solution of Eq. 3.12. In order to
make the EIT problem wellposed, generally, the regularization techniques [16, 17,
22, 27, 117, 195, 220] are incorporated into the EIT reconstruction algorithm by
including a regularizing term in the object function. The object function, therefore,
is redefined with regularization parameters as [16, 17, 22, 27, 220]:

sr ¼ 1
2

Vm � fk k2þ 1
2
k Grk k2 ð3:13Þ

Where, G is the regularization operator and λ (positive scalar) is called the
regularization coefficient.

The object function (sr) thus represents the constrained least-square error of the
regularized reconstructions which is developed by the boundary voltage mismatch
vector and controlled by the regularizing term as:

sr ¼ 1
2

Vm � fð ÞT Vm � fð Þ þ 1
2
k Grð ÞT Grð Þ ð3:14Þ
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Now, by differentiating the object function in Eq. 3.14 with respect to the
elemental conductivity (σ) the Eq. 3.14 yields [16, 17, 22, 27, 220]:

s0r ¼ � f 0ð ÞT Vm � fð Þ þ k Gð ÞT Grð Þ ð3:15Þ

Again differentiating the Eq. 3.15 with respect to the elemental conductivity (σ)
the Eq. 3.15 yields:

s00r ¼ f 0ð ÞT f 0ð Þ � f 00ð ÞT Vm � fð Þ þ kGTG ð3:16Þ

Now, from Eq. 3.15 and Eq. 3.16, the conductivity update vector [Δσ] is cal-
culated using the Gauss Newton (GN) method based minimization technique as [16,
17, 22, 27, 220]:

Dr ¼ s0r
s00r

¼ f 0ð ÞT Vm � fð Þ � k Gð ÞT Grð Þ
f 0ð ÞT f 0ð Þ � f 00ð ÞT Vm � fð Þ þ kGTG

ð3:17Þ

Neglecting the higher order matrix f 00½ �T called the Hessian matrix [163] in
Eq. 3.17, the conductivity update vector [Δσ] reduces to:

Dr ¼ s0r
s00r

¼ f 0ð ÞT Vm � fð Þ � k Gð ÞT Grð Þ
f 0ð ÞT f 0ð Þ þ kGTG

ð3:18Þ

The matrix f 0½ � is called the Jacobian matrix of the system and hence it is
replaced by the symbol [J] and hence Eq. 3.18 reduces to:

Dr ¼ JT Vm � fð Þ � kIr
JTJþ kI

ð3:19Þ

Where the matrix J = f′ is the Jacobin and I represents the identity matrix GTG.
Thus the update in the conductivity distribution of the domain under test in EIT

image reconstruction process which is called the conductivity update vector ([Δσ])
is found as:

Dr ¼ JTJþ kI
� ��1

JT Vm � fð Þ � kIr
� � ð3:20Þ

In some cases, the reconstruction process is also conducted by neglecting the last
term (λIσ) and the conductivity update vector [Δσ] is calculated as [16, 17, 22, 27,
220]:

Dr ¼ JTJþ kI
� ��1

JT Vm � fð Þ ð3:21Þ
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Therefore, in general, the EIT image reconstruction algorithm calculates the
updated solution of the conductivity distribution of the DUT at the kth iteration of
the algorithm as [16, 17, 22, 27, 220]:

rkþ1 ¼ rk þ JTJþ kI
� ��1

JT Vm � fð Þ � kIr
� �� �

k
ð3:22Þ

3.5.7.3 EIT for Brain Imaging

EIT has been studied for imaging of brain [5, 9, 55, 63, 74, 86, 87, 89, 90, 111, 149,
178, 191, 197, 199, 200, 203, 218, 219, Holder et al. 2006] for past few years in
two dimension or three dimension. In brain EIT, a constant is injected to the head
by scalp electrodes and the surface potential data are collected. Boundary voltage
data are processed and used for reconstructing the spatial distribution of the brain
impedance. The brain EIT has been applied for a number of application such as:
imaging brain function [86, 87, 111], imaging brain tumours [178], imaging arte-
riovenous malformations [178], imaging stroke [149, 178], detection of cerebral
ischaemia [86, 87], physiological brain activity [199], fast neural activity [74],
imaging of physiologically evoked responses [90], identifying and studying the
regional conductivity changes in human brain during epileptic seizures [63],
imaging brain function in ambulant human subjects (Holder et al. 2006) and so on.

3.5.8 Present Scenario and the Future Trends

Though the EEG and other brain signal monitoring procedures providing the
information in through the neural potential waveforms are very powerful and
essential in diagnosis, analysis and treatment of several brain diseases an studying
the brain functions, but visualizing the brain anatomy and physiology in 2D or 3D
tomographic images have a number of advantages in medical analysis and clinical
studies. Therefore, a lot of studies have been conducted and is being conducted in
tomographic imaging techniques human brain monitoring. X-Ray CT, MRI, fMRI,
PET, SPECT all have been well established methods in brain imaging filed. X-Ray
CT applies radiation; PET and SPECT are invasive and inject the radioactive
chemical inside the body. Hence CT, PET, SPECT procedures have some disad-
vantages. Recently, EIT, magnetic resonance electrical impedance tomography
(MREIT) [116, 126, 127, 151, 167, 183, 214], magnetic resonance electrical
property tomography (MREPT) [222, 223, 224], Quantitative Susceptibility Map-
ping (QSM) [141, 145, 211, 212] have been studied for brain imaging.

MREIT is a new tomographic imaging modality which provides the image the
electrical properties of human body tissue using MRI phase information along with
an external current injection [151]. MREIT is based on the Magnetic Resonance
Current Density Imaging (MRCDI) [120] technique which requires current injec-
tion into the body within an MRI scanner [223]. Recent in vivo MREIT studies
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conducted on animal and human have demonstrated that the different physiological
and pathological conditions of tissues or organs can be visualized with some unique
conductivity contrasts [151].

MREPT is a new imaging modality which produces the cross-sectional images
of the distribution of admittivity (γ = σ + iωϵ, where σ and ϵ denote electrical
conductivity and permittivity, respectively) inside the human body at the Larmor
frequency in an MRI scanner [187] using B1 mapping technique which was
developed to measure the rotating RF field components [3, 187, 223].

MREIT and MREP are conducted in different frequency ranges to visualize the
electrical permittivity and conductivity distributions of the body tissue [128].
MREIT provides images of the tissue conductivity at the low frequency range
below 10 kHz by post-processing phase images subject to externally injected
currents [128]. MREPT works in the frequency range of 10–200 MHz and provides
the images of the admittivity (complex permittivity) of the body tissue by post-
processing B1 maps obtained by using a standard RF coil of an MR system [128].

QSM [1, 196, 211, 212, 215] a novel procedure which enables us to investigate
of tissue magnetic susceptibility in a quantitative and specific manner [155] using
magnetic resonance imaging (MRI). QSM is different from the traditional Sus-
ceptibility Weighted Imaging [57, 83] which helps in identifying and quantifying
the specific biomarkers including iron, calcium, gadolinium, and super paramag-
netic iron oxide (SPIO) nano-particles. Due to its specificity, QSM is more sensitive
to nuance differences in susceptibility that may be otherwise overriden by relaxation
effect. The quantitative nature faciliates longitudinal investigations or multi-center
comparison studies.

Though these recent imaging modalities have some advantages over the con-
ventional imaging procedures, but all of these methods have a number of challenges
to be overcome and hence a lot of scopes are there in these research fields. A number
of researchers are continuously working on these methods to solve the problems and
overcome the challenges. A lot of studies are steel required to make these modalities
more efficient and effective and to explore more in the field of brain signal analysis,
brain imaging and other electromagnetic brain monitoring techniques.

3.5.9 Conclusions

Human brain, which is developed with billions of nerve cells, is very complex and
one of the most important organs in the human body which controls all other organ
performing a number of tasks to keep the human body healthy and alive. The brain
monitoring is not only essential to study the brain anatomy and physiology of a
normal and healthy subject but also it is essential for diagnosing, analyzing and
treating a number of brain disease and brain malfunction. Before going to the
operation theatre, all the surgeons always prefer to plan the surgery by visualizing
the brain anatomy, physiology or the brain function profiles so that the affected
regions and the non affected regions are clearly identified. With the necessity of
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visualizing the brain function, the EEG, and other brain signal monitoring tech-
niques are invented. The urge and necessary of visualizing the brain and its func-
tioning in cross section images, inspired the researchers and scientist to invent a
number of brain imaging modalities such as X-Ray CT, PET and SPECT. With the
limitations of the imaging methods and the urge of getting more information about
the brain anatomy, physiology and pathology, the electromagnetic brain imaging
methods such as MRI, fMRI, EIT, MREIT, MREPT are introduced and studied.
The chapters reviewed the electromagnetic brain monitoring modalities discussing
their working principle, advantages, limitations and applications. The chapter dis-
cusses about the present scenario, challenges of the field of electromagnetic brain
monitoring along with the future scopes. After reviewing the several electromag-
netic brain monitoring technologies, the chapter summarize all the modalities along
with focuses on the recent advances and future trends. The recent advances and
future trends in the electromagnetic brain monitoring field show that, though these
recent brain imaging modalities are found with some advantages over the con-
ventional imaging procedures, but all of these methods still have a number of
challenges to be overcome and hence a lot of scopes are found in these research
fields. As a result, to solve the problems and overcome the challenges, a number of
researchers are dedicatedly working on these methodologies. A lot of studies are
steel required to make these modalities more efficient and effective. The field of the
electromagnetic brain monitoring is thus found as a emerging field which is
required to be explored more to make the existing technologies more efficient and
effective as well as to develop a number of new electromagnetic brain monitoring
techniques.
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Chapter 4
Translational Algorithms: The Heart
of a Brain Computer Interface

Harsimrat Singh and Ian Daly

Abstract Brain computer Interface (BCI) development encapsulates three basic
processes: data acquisition, data processing, and device control. Since the start of
the millennium the BCI development cycle has undergone a metamorphosis. This is
mainly due to the increased popularity of BCI applications in both commercial and
research circles. One of the focuses of BCI research is to bridge the gap between
laboratory research and commercial applications using this technology. A vast
variety of new approaches are being employed for BCI development ranging from
novel paradigms, such as simultaneous acquisitions, through to asynchronous BCI
control. The strategic usage of computational techniques, comprising the heart of
the BCI system, underwrites this vast range of approaches. This chapter discusses
these computational strategies and translational techniques including dimensional-
ity reduction, feature extraction, feature selection, and classification techniques.

Keywords Event related (de)/synchronisation � Principal component analysis �
Feature extraction � Feature selection � BCI classification

4.1 Introduction

Brain-computer interfacing (BCI) is a highly challenging multidisciplinary area of
research. Since the start of the millennium, research groups exploring this area have
made increasingly impressive progress. The core BCI research has opened up
hundreds of avenues for its applications. There have been interesting revelations in
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the field of rehabilitation [1, 5], gaming [51], composing music [44], and other
biophysics applications based on BCI. However, there are still a lot of unanswered
questions facing the BCI community, which impedes the launch of mainstream
commercial BCI applications. The first five international meetings of BCI com-
munity [27, 78, 79, 77, 81] have evolved sufficient consensus on the BCI termi-
nology, signals used and the computational techniques used but questions relating
to user variability, session variability and optimal training remain a major research
issues. The inherent complexity and enormity of the neural data from measurement
techniques such as electroencephalogram (EEG), Electrocorticogram (ECoG),
functional near infra-red spectroscopy (fNIRS), and functional Magnetic resonance
Imaging (fMRI) warrants sophistication in computational strategies for meaningful
interpretation.

Research areas of BCI evolved from the work of Hans Berger, a German Psy-
chiatrist who first recorded EEG in 1929. Since then EEG has served as a standard
Clinical diagnostic tool for a range of neurological complexities [76]. Among
several definitions, an EEG is expressed as sustained fluctuations of electric
potential, recorded from the human scalp which can be used to decipher corre-
sponding variations in the cortex of the brain. Our ability to feel, think and act can
be attributed to these variations of electrical activity. Farwell and Donchin [15] first
demonstrated that the ability of EEG response to change to an externally accen-
tuated event can be developed as a non-muscular communication channel for
sending messages and commands to the outside world for control purposes; this is
popularly known as the brain-computer interface. Subsequently, clinical BCI
applications such as a speller have underlined the popularity of the event related
potential (ERP) as one of the basis of EEG based BCIs [65].

The principles underlying this opening up of a communication channel between
the brain and the computer are based on the classification of the changes in the EEG
which relate to, for example, the imagination of movements [55]. The heart of the
BCI is the translational algorithm which converts the electrophysiological mea-
surements from the user into output that controls external devices [82]. We use the
term EEG here to typify the signal which is used as the vehicle for development of
the BCI; EEG being the most popular and easy to record—other brain-related
signals include electrocorticogram (ECoG), magnetoencephalogram (MEG), and
functional magnetic resonance (fMRI) images. These will be discussed in the
section—‘Sources of Information for a BCI’. Ideally an interface may suggest a two
way communication channel but the present state of the art in BCI purposes a one
way communication i.e. from the brain to the computer. Information from the brain
in the form of signals or images has been sufficient to realise a plethora of appli-
cations [5, 22, 53] for medical rehabilitation and for gaming by companies like
Emotiv (Emotiv, Australia) and Neurosky (Neurosky, USA).

This chapter proceeds as follows. Section 4.2 gives an overview of sources of
information for BCI. Section 4.3 considers the BCI development process. Sec-
tion 4.4 is concerned with the types of BCI. Section 4.5 discusses nomenclature for
feature extraction and classification. Sections 4.6 and 4.7 cater to evaluation criteria,
conclusions and future work.
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4.2 Sources of Information for a BCI

A brain computer interface is developed on the basis of the knowledge that can be
extracted from various sources of information from the brain, mapped to our abilities
to feel, think, and act. These sources are in the form of signals or images. Scalp EEG
has been one of the most popular signals used in BCI research [28]. Over the years,
the efforts of neuroscientists to investigate EEG [13, 25] has proved to be a real benefit
to the BCI development process as it has provided more avenues to implement the
mapping of our cognitive processes to the characteristics of the EEG Signal.

4.2.1 Electroencephalogram

EEG is clinically defined as the mean electrical activity of the brain recorded as the
summed action potentials of thousands of neurons firing together [50]. It is com-
posed of electrical rhythms and transient discharges which are distinguished by
location, frequency, amplitude, form, periodicity, and functional properties [64].
EEG activity has been classified on the basis of these attributes. The most widely
accepted basis of classification of EEG activity is done using frequency segregation
into prototypical bands, referred to as delta, theta, alpha, beta, gamma, and mu
rhythms. Table 4.1 lists the various EEG rhythms, their frequency and amplitude
range, the brain regions in which they are most prominent, and the events most
often related to each of them.

4.2.1.1 Slow Cortical Potentials

Slow cortical potentials (SCPs) are related to the emergence of a BCI application
known as a thought translational device (TTD) [4]. SCPs are understood to be the
result of shifts in the depolarization level of the upper cortical dendrites, caused by
the intracortical and thalamocortical afferent inflow to neocortical layers I and II.
The TTD has been designed for completely paralyzed patients and has been tested
on patients with ALS (Amyotrophic Lateral Sclerosis) [5]. However, the use of
SCPs has recently declined in EEG based BCI research in favour of other features
such as ERPs or sensorimotor rhythm activations [28].

4.2.1.2 Event Related Potentials

The event-related potential (ERP) is a common title for the potential changes in the
EEG that occur in response to a particular “event” or a stimulus [39]. These changes
occur at very small amplitudes. Therefore, in order to reveal them, EEG samples
have to be averaged over many repetitions. This removes the “random” fluctuations
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of the EEG, which are not stimulus-locked. ERPs can be divided into exogenous
and endogenous. Exogenous ERPs occur up to about 100 ms after the stimulus
onset. They depend on the properties of the physical stimulus (intensity, loudness
etc.). The potentials from 100 ms post-stimulus onward are called endogenous [14].
They depend largely on psychological and behavioural processes related to the
event. The most commonly studied ERP is the P300.

A popular example of a BCI based upon ERPs is the P300 speller, which is
underwritten by the neuroscientific concept that a slow, large neural response is
elicited after 300 ms of a rarely occurring stimulus in a train of consecutive,
continuously occurring stimuli [52]. A P300 BCI speller operates by presenting
users with a matrix of alphanumeric letters. Each row and column of the matrix
flashes and a higher amplitude peak in the EEG (a P300 ERP) may be observed to
occur 300 ms after the target letter flash is presented. Interestingly it has been found
that the greater the number of letters the higher number of flashes in the matrix and,
subsequently, the better is the P300 response [47].

4.2.1.3 Sensorimotor Rhythm Activations

Sensorimotor rhythm activations are changes in activation levels that may be
observed over the sensorimotor cortex during a range of cognitive events [55].
Sensorimotor rhythm changes are referred to as event related desynchronisation
(ERD) in the event of a decrease in cortical activity and event-related synchroni-
sation (ERS) in the event of an increase in motor cortical activity. They are most
often associated with movement planning and execution [55], but may also be
observed during tasks such as mental arithmetic [17], and mental rotation [6].

Unlike the ERP, the ERD/S is not phase locked to a stimulus presentation and,
therefore, may not be identified via averaging of EEG amplitudes. Instead band-
power is measured in frequency bands of interest (typically the alpha and beta
bands) relative to a pre-stimulus baseline period. Significant decreases or increases
in band power indicate the presence of an ERD/S and the cortical region at which it
is observed identifies the corresponding cognitive process. For example, ERD over
the left primary motor cortex hand representation area may indicate movement or
planning of movement in the right hand.

Finally, ERD/S may also be observed during motor imagery. Thus, BCI users
may attempt to control a BCI by imagining the feeling of moving their body
(kinasthetic motor imagery) to control a BCI without actually performing overt
movement [48].

4.2.1.4 Case Study: ERD/S Detection

An example of the ERD/S phenomena is described using a classical 8 s BCI
paradigm for left and right hand motor imagery [56]. The paradigm consisted of a
random repetition of cue-based trials. The subject was seated in a relaxing chair
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with armrests and was instructed to perform imagery movements prompted by a
visual cue. Each trial started with an empty black screen; at time point t = 2 s a short
beep was presented and a cross ‘+’ appeared on the screen to arouse the subject’s
attention. Then at second 3 (t = 3 s) an arrow appears pointing either to the left or
right. Each position indicated by this arrow prompts the subject to imagine either a
left hand or a right hand movement. The respective movement imagination should
be performed until the cross disappears at t = 8 s. The next trial started after a very
short resting period, during which the EEG was continuously recorded.

The time frequency approach was used to display the significant power increase
or decrease in a predefined frequency band, thereby representing clear and easy
visualisation of the movement-related behaviour of the induced activity averaged
over several trials. In a pedagogical sense, increases or decreases of the power of
the EEG related to a particular event is represented by the increase or decrease in
the synchrony of the neuronal populations. Averaging over trials has been
employed to deal with evoked potentials in order to improve the signal to noise
ratio. This deals with any on-going base EEG activity, which may be considered to
be noise as opposed to the actual potential instigated by the event or the task. The
ratio of power calculated after averaging over all the trials to the power within a
reference interval expressed in terms of percentage is the ERD/S strength.

ERD/S is not phase locked but time locked and specific to a frequency range. It
is therefore conceivable that nearly identical ERD/S activity can be observed at
different spatial locations. This will be indicative from some of the Fig. 4.1a, b.

The timeline for each trial is shown in Fig. 4.1. The vertical black line shows the
presentation of the cue at time = 3 s. It is clearly observed that the activity in all the
channels before the presentation of the cue is statistically significantly (bootstrap
test) [21] less when compared to the activity after the cue (p < 0.05). So the activity
before the cue acts as a kind of reference to ascertain the fact that there is a clear
increase or decrease in the ‘indicative power levels’ for a particular frequency band
after the presentation of the cue. This is also seen in Fig. 4.1b for right hand motor
imagery. Visual inspection of Fig. 4.1a, b provides clear demarcation in the level of
power activity in particular frequency bands: 8–13 Hz (alpha) and 20–30 Hz (upper
beta), for the two respective tasks. This information is used for the manual selection
of the frequency bands to be used for feature extraction. These bands can be
employed for computing band power features.

4.2.2 Functional Magnetic Resonance Imaging and Magneto
Encephalography

The relative suitability of each of the brain sources for BCI purposes may depend
on the specific application(s) being considered i.e. the relative suitability of each
source is relative to the anticipated outcome of the interfacing process. The meta-
bolic consequences of neural activity is observed as the changes in blood flow and
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Fig. 4.1 ERD/S maps for a Left hand motor imagery and b Right hand motor imagery. Three
maps are presented for three channels C3, C4, and Cz. The vertical black line indicates the start of
the motor imagery period at t = 3 s and the maps were computed with a baseline period of
0.5–1.5 s
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metabolism. Imaging techniques like functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET) help us to visualise these changes
in the form of images and may be used in BCI applications, for example [71].

Associated magnetic fields produced by the neuronal activity can be detected as
the magnetoencephalogram (MEG). MEG is more susceptible to noise and is not
portable compared to EEG but has a far better spatial resolution (<1 cm) and depth
sensitivity (*4 cm), while also having a similar time resolution. MEG has been
used for BCI control. For example, in [36, 42] a MEG based BCI is proposed and
discussed.

4.2.3 Intracranial Recordings ECoG (Electrocorticogram)

The Electrocorticogram (ECoG) is recorded by placing invasive electrodes under
the skull on the surface of the cortex. A surgical procedure is required to place these
intra cranial electrodes. Experience suggests that the quality of the signal is better
for ECoG than the scalp EEG and is less contaminated with artifacts, but that the
ease of recording of the scalp EEG is superior to ECoG for BCI purposes [60]. It
has also been observed in some studies that the performance of the classifier is
dependent on the user population [26].

4.2.4 Functional Near Infra-red Spectroscopy

Diffuse Optical imaging (DOI) is another method to measure distributions and
concentrations of Oxy(HbO) and deoxy (HbR) haemoglobin in the brain. This
technique is based on near-infrared (NIR) light and provides continuous measures
of changes in oxygenated haemoglobin (HbO), deoxygenated haemoglobin (HbR)
and total haemoglobin (HbT) concentrations [19, 29, 80].

A recent review of current state of the art in the brain computer interface
technology at the fourth international meeting of the BCI community has stressed
the need to develop robust and wearable brain acquisition methods for domesti-
cating BCIs [79, 49]. Near infrared spectroscopy (NIRS) has been identified to
provide a better, easier asynchronous control of BCI applications for people unable
to control EEG based BCIs [46, 58, 73]. But there are limitations of transfer rates
for a BCI developed using only NIRS [8, 70]. Interestingly, a BCI developed using
simultaneous NIRS and EEG acquisitions has been reported to enhance the BCI
performance by at least 5 % [16]. It is envisaged that, if combined, EEG and NIRS
can provide robust BCI control by providing an accessible, portable, wearable
solution not only on the bedside but also for home-use. There are several advan-
tages of combining a NIRS-EEG for BCI development. Specifically, NIRS is rel-
atively robust to movement, has better spatial sensitivity, and allows non-invasive
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measurement of localized cognitive activity, thereby, empowering the BCI with
minimal training while EEG provides optimized, precise sensor placement and
quick transfer rates.

4.3 BCI Development Process

The building blocks of a BCI are depicted in Fig. 4.2. The signals from the brain are
acquired by scalp electrodes, or intracranial electrodes and are processed to extract
features such as the amplitudes of evoked potentials, sensorimotor cortex rhythms,
or firing rates of cortical neurons that reflect the user’s intent. These features are
then translated into commands that operate devices such as a simple word pro-
cessing program [35], a wheelchair [37], or a neuroprosthesis [61].

A more standardized model of a BCI was presented by Mason and Birch [41],
who presented a taxonomy of the terms more often used in development of the BCI
[41]. This model lists the main components which would define the basic BCI
arrangement, namely the user (the person/the subject), electrodes (sensors to con-
vert the user’s brain state to electrical signals), amplifier, feature extractor (trans-
forms the amplified electrical signals that correspond to related neurological states
into feature values), feature translator (converts the feature values into logical and
‘feed-able’ control signals), the control interface (maps the control signals to the
specific device to be controlled), the device controller (translates semantic control
signals from the control interface into physical signals that can be used within a
device) and the device itself. This was regarded as a standard model and stream-
lined the BCI terminology but still required some clarifications. For example, the
feature translator may be renamed the feature classifier or simply the classifier for
discrete control signals.

This model, shown in Fig. 4.3, was designed using EEG signals as the ‘source of
information’; a similar analogy can be inferred for imaging sources such as fMRI

Fig. 4.2 The basic
framework of a BCI (adopted
from [61])
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and positron emission tomography (PET). To explain the analogy, the subject
would remain the same, while the counterpart of the electrodes, would be replaced
by the imaging equipment. The other terminology for the model in terms of its
applicability to the imaging techniques explicitly remain identical but have sig-
nificant implicit changes for feature extraction and translational algorithms. It is
pertinent to state here that for BCI development, the imaging techniques works in
tandem with signals as sources to extract relevant information from the brain and its
underlying processes while the task is being performed by the subject. The imaging
techniques, so far, have not been justified as sources of information which could
sustain BCI development on their own.

4.4 Types of BCI

BCIs are categorised on the basis of their method of working and their function-
ality. Some of the key classifications and terminology associated with present day
BCIs are considered as follows.

4.4.1 Invasive and Non-invasive BCIs

Non-invasive BCIs are based on signals recorded without the need for surgery, for
example, EEG measured with the scalp electrodes. In invasive BCIs, the signals are
recorded from inside the head (e.g. from the cerebral cortex) via, for example,

Fig. 4.3 The BCI block diagram (adopted from [41])
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intracranial electrodes or microelectrodes. These BCIs can be based on, for
example, ECoG recordings [60, 62]. Microelectrodes can also be used to record
activity of a single neuron which gives rise to ‘spikes’ as sources of brain infor-
mation from which BCIs can be developed [31].

4.4.2 Synchronous and Asynchronous BCIs

Many BCIs work in a synchronous mode, i.e. in an externally paced mode. This
requires the user to produce specific mental states in a predefined time window. For
synchronous BCI, the control is system-initiated. In an asynchronous mode, the
brain activity is analyzed continuously and the user can freely initiate the specific
mental task(s) used as the control signal(s); the control is not system-initiated but
user-initiated. This requires the BCI to detect when the EEG correlates of intended
control occur. For example, Mason and Birch have tried to implement an asyn-
chronous BCI with a switch [41].

4.5 Computational Techniques

The heart of the BCI development process concerns the techniques employed for
feature extraction and classification of the data. Apart from the application, the con-
struction and detailed implementation aspects of the central translational algorithm i.e.
the methods used for feature extraction and classification also determine the selection
of the different brain signals, the recording technique and the equipment. All these are
interrelated and the selection of these regulates the aspects of the efficiency and
reliability of the BCI module developed. In this section we try to establish benchmark
criteria for selection of the various techniques being used by BCI researchers. The
international meetings on brain computer interface technology [27, 77–79, 81] have
been instrumental in providing a forum for research and clinical experts. The dis-
cussions at such meetings have been documented and have helped in identifying the
desirable characteristics of these techniques. Some of the key characteristics are
precision, responsiveness (speed), interpretability and ease of setting up.

To get more information from the brain, medical instrumentation companies
have come up with computer based monitoring systems which can record a large
number of channels from the brain giving rise to multichannel data (for example,
128 channel recordings). The challenge lies in the processing of this data and for
example cleaning it of artefacts and then modifying it in order to extract relevant
information/knowledge about the underlying neurological processes going on in the
brain at the time it is recorded. In the case of online BCIs, where the data is
processed in real time, it is necessary to use appropriate techniques for processing.
These might be different from the techniques used for offline processing of the BCI
data or to investigate novel paradigms.

4 Translational Algorithms: The Heart of a Brain Computer Interface 107



4.5.1 Dimensionality Reduction

BCIs base their control upon the characterisation and classification of biophysio-
logical datasets such as EEG [50] or ECoG [43]. However, biophysiolgical datasets
may often be multi-dimensional. For example, EEG data may be recorded from a
large number of electrodes positioned across the scalp. The data is often broad
frequency and spread across a range of time periods, resulting in potentially very
high dimensional data for use in BCI control.

However, for many cognitive tasks, changes in neurological activity may only be
observed in a subset of the data, for example within specific time periods, particular
frequency bands, and/or over certain channels. Additionally, effects such as volume
conduction (the spread of electrophysiological activity across the scalp resulting in
similar activity being recorded at several EEG electrodes) and high levels of
redundancy in the data may mean similar information is available across multiple
dimensions in the data.

Dimensionality reduction techniques aim to identify an optimal sub-set of
dimensions from a highly dimensional dataset. For example, they may be used to
extract a subset of EEG channels that contain the most relevant information per-
taining to a particular cognitive process [67, 69, 84].

A number of computational techniques are available for dimensionality reduc-
tion. These include principal component analysis (PCA), single value decomposi-
tion (SVD), and canonical correlation analysis (CCA) etc. These three examples of
dimensionality reduction methods are each discussed below.

4.5.1.1 Principal Component Analysis

Principal component analysis (PCA) attempts to identify an orthogonal transfor-
mation that translates a set of potentially correlated variables into a set of linearly
uncorrelated variables. These new variables are referred to as the principal com-
ponents (PCs) [72].

PCA operates by first subtracting the mean from the data to centre it. Thus, for a
feature set X a new, zero mean, feature set �X is derived by subtracting the mean
from X. The covariance matrix of the zero mean feature set �X is then used to
measure the strength of the relationships between all rows of �X. This is defined as
the matrix C where each element Ci;j denotes the covariance between rows i and j in
the feature set �X.

Ci;j ¼
Pn

k¼1ðXi;k � �Xi;:ÞðXj;k � �Xj;:Þ
ðn� 1Þ ð5:1Þ

where Xi;k and Xj;k denote the kth features from different examples of the data i and
j, of the data and �Xi;: denotes the mean over a feature vector for an individual
example of the data i.
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The covariance matrix is then decomposed into a matrix of eigenvectors and a
vector of eigenvalues. This may be defined as

Cu ¼ ku,

where u denotes an eigenvector of the covariance matrix C, and k denotes the
corresponding eigenvalue.

The eigenvalues identified for C may be ranked in decreasing value. The cor-
responding eigenvectors then contain projections of the feature set onto the prin-
cipal components and are ordered by decreasing variance. Thus, the eigenvector
corresponding to the largest eigenvalue contains a projection of the feature set X
which has the greatest variance.

PCA is used in a large number of BCIs where dimensionality reduction is
required. For example, in [34]. PCA is used to identify a subset of electrodes for
classifying 5 different mental tasks (resting, letter association, math, visual count-
ing, and geometric figure rotation) via an artificial neural network (ANN). Accu-
racies of up to 100 % are achieved when PCA is used, which is reported to be
significantly higher than accuracies achieved without PCA. PCA is also very
helpful in initial data exploration and to estimate the interrelationships between BCI
classes/tasks in the data [69]. It can also indicate the minimum number of channels
that can be used for classification of novel BCI tasks [2, 68].

4.5.1.2 Singular Value Decomposition

Singular value decomposition (SVD) attempts to identify a factorization of a matrix
of dimensions m� n. SVD is closely related to eigen decomposition, but may be
applied to matrices of any values of m and n, whereas eigen decomposition may
only be applied to square matrices.

For a matrix A of dimensions m� n the SVD is given by

A ¼ USVT ;

where U and V denote orthogonal matrices of dimensions m� n and n� m
respectively, and S denotes an m� n rectangular diagonal matrix. The columns of
U are denoted ui and contain the left singular vectors, while the columns of V are
denoted vi and contain the right singular vectors. The diagonal elements of S are
denoted σi and contain the singular values. Singular values are sorted in descending
order and used to identify the first n left or right singular vectors. These singular
vectors may then be taken to represent a reduced subset of the data.

Singular value decomposition may be used directly with EEG data to reduce
dimensionality. For example, in [12] three approaches to artefact removal are com-
pared, including an approach, originally proposed in [75], for using singular value
decomposition as a dimensionality reduction step in an artefact removal method.
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The SVD-based artefact removal method is observed to remove significant
proportions of ocular artefacts and is comparable in performance to a number of
other state-of-the-art artefact removal methods.

4.5.1.3 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a method for identifying pairs of vectors
from two matrices with maximum correlations. For example, for two matrices X and
Y of dimmensions x� n and y� n respectively CCA will attempt to find a subset of
elements of X and Y which are maximally correlated.

CCA may be defined as a maximisation problem, which can be solved by
maximising the following term

max
wx:wy

qðu; vÞ ¼ wT
x Cxywyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðwT
x CxxwxÞðwT

y CyywyÞ
q

where Cxx and Cyy denote the autocovariance matrices of X and Y respectively and
Cxy denotes the cross covariance matrix of X and Y.

CCA may be used to identify a subset of dimensions of an EEG dataset which
maximally correlate with some interesting properties of the data. For example, in
[7] CCA is used to identify muscle artefacts in the EEG via their relatively low
auto-correlation with one another when compared to the EEG.

CCA is also commonly used as the basis for classifying steady state visual
evoked potentials (SSVEPs). For example, in [9] CCA is used in an online brain-
computer interface (BCI) to identify frequency bands in the EEG which maximally
correlate with SSVEP stimulation frequencies, and hence identify which stimuli a
user is attending to and, therefore, their intended control action.

4.5.2 Feature Extraction

Biophysiological data may be described via a number of different feature types.
When considering neurological data measured by, for example, the EEG or ECoG
there are three broad groups of features that may be extracted. These are features
based upon the amplitude of the data, features based upon the frequency content of
the data, and features based upon the phase content of the data [38, 28]. It’s also
possible to consider feature types in which two or more types of feature are com-
bined. For example, time-frequency features may be used to describe changes in
amplitude of the data across different frequency bands.

Features based upon the amplitude of the data include measures of the peaks in
the data. For example, the event-related potential (ERP) is a change in amplitude of
the EEG in response to certain stimuli or cognitive processes and may be identified
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via the size and/or latency of the peak amplitude. Amplitude based features may
also include measures of distributions of the data, measures of relationships
between different amplitudes (e.g. correlation), and statistical measures of ampli-
tude differences in the data.

Frequency based features may be used to describe how the frequency content of
the signals change over time or in relation to certain events or stimuli. For example,
BCI control may be based upon SSVEPs, an increase in frequency content in a
narrow frequency band, in response to entrainment by an external stimuli, of par-
ticular neural oscillators in the visual cortex [45]. Relationships between different
measures of frequency content (e.g. coherence) may also be used to measure how
frequency content changes across particular regions of the brain.

Phase based features are traditionally used much less in BCI control than other
feature types [28]. However, they have been shown, in some cases, to exhibit
significant improvements in performance compared to some traditional features
such as the event-related (de)synchronisation (a combined amplitude-frequency
feature) [11].

Features based upon a combination of different feature types are becoming
increasingly popular in BCI research [28]. It’s likely that the recent development
and exploration of hybrid BCIs (BCIs that combine two or more control mecha-
nisms or physiological measures [57]) are driving an increased interest in combined
feature types [28].

4.5.3 Feature Selection

Feature selection refers to techniques which search a set of possible features and
identify a subset of those features which are optimal for some purpose. For
example, consider EEG recorded during an ERP oddball task from 19 channels
positioned over the scalp. The oddball task is designed to produce a P300 ERP by
presenting a selection of stimuli with a small probability of an out of sequence
stimuli (i.e. different in some property from the majority of the other stimuli). The
resulting P300 ERP is usually most apparent over the occipital and parietal cortices.
Hence, EEG channels positioned over these regions are more likely to see increased
EEG amplitude. A feature selection approach may be used to identify which
channels exhibit this increase in amplitude in response to the unexpected (target)
stimuli.

Feature selection may be described as manual, automated, or semi-automated.
Manual feature selection refers to the process of selecting feature sets based upon
prior knowledge of the dataset and expected features of interest. Automated feature
selection refers to computer driven selection of features and may often be performed
via a machine learning (ML) technique. Semi-automated techniques attempt to
combine these two methods to take advantage of the benefits of both. For example,
a region of interest may be manually selected and an automated method then used
to select the best feature set from within this region.
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Automated feature selection may be performed by either supervised or unsu-
pervised methods. Supervised methods include meta data about the training data in
the selection processes, while unsupervised methods do not. Typically, unsuper-
vised methods amount to dimensionality reduction methods as discussed in
Sect. 4.5.4.

Supervised methods may be described as filter based methods; wrapper based
methods, or embedded methods.

Filter based methods attempt to select features independently of the classification
step [74]. Relationships between different features may be used to identify the most
relevant features i.e. those which give the most information about the cognitive
phenomena of interest. As such filter methods may be either supervised or
unsupervised.

The main advantage of filter methods often lies in their computational efficiency.
There is no need to optimize an objective function by repeated re-evaluations with a
filter method as one would when applying a wrapper [32]. As such they can be
considered independent of the classification method chosen. This makes filter
methods very scalable and potentially able to offer similar levels of performance on
both large and small data-sets.

Typical examples of filter techniques include clustering techniques for dimen-
sionality reduction [18] and measures of feature similarity such as correlation [24].
When applying a similarity measure features that are very similar to another can be
thought to be redundant and hence removed. When a supervised filter is applied the
amount of information each feature gives about the class labels, for example the
correlation between features and the class labels, can give an indication of how
suitable a particular feature is for classifying the dataset correctly [24].

A wrapper method attempts to optimize an objective function by repeated re-
evaluation with different candidate feature sets [32]. The objective function is the
chosen classifier for the BCI hence the choice of classifier becomes an integral part
of the feature selection process. Subsequently the classifier cannot be evaluated
without the class labels and all wrapper methods are, therefore, supervised.

Many wrapper methods are based upon the idea of meta-heuristics. A meta-
heuristic search attempts to traverse a search space in such a way as to avoid getting
stuck in local optima solutions [23]. They do this by either using multiple popu-
lation members with randomization, by allowing backtracking of some variety, or a
combination of the two. They are often based upon biologically inspired search
metaphors [32].

Examples of meta-heuristic wrapper techniques that are popular in BCI research
include Genetic Algorithms (GAs), which are inspired by natural evolution [32,
85]. A population of candidate feature sets is created. Each member of this pop-
ulation is then evaluated against some objective function (the classifier) and the
members that give the highest classification accuracies are taken to be the ‘fittest’.
These members are ‘bred’ with other fit members to create new ‘fitter’ child
members [85]. Over enough generations the overall fitness of the population
increases and in ideal circumstances arrives at an optimal feature set which allows
highly accurate classification of the data. Random mutation is applied to each
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generation to attempt to avoid the solution getting stuck in local maxima in the way
a simple gradient ascent algorithm would [20].

An example of a type of genetic algorithm being used in feature selection for
BCIs is provided in [10]. In this example differential evolution (a variant of a
genetic algorithm) is used to identify optimal channels and frequency bands for
ERD detection during a motor imagery task.

An embedded method attempts to combine feature selection and classification
into one step [23]. An example of this is an Artificial Neural Network (ANN). In the
training routine for ANNs the weights of the network are adjusted such that optimal
classification accuracy may be achieved with the best feature set. Therefore the
neural network incorporates both a feature selection step and a classification step
[61]. Embedded techniques are often quicker than wrapper techniques as there is
often less need for multiple re-evaluations of candidate feature sets against an
objective function in the training process [23].

Several BCI systems incorporate embedded methods for feature selection.
However, it is not always clear that this is what is happening as the feature sets may
be selected based, in part, upon a priori knowledge of the paradigm. Thus, systems
such as [59] select a set of features that are known a priori to be effective at
differentiating classes related to the paradigm. This feature set is then passed to a
classifier with a further embedded feature selection step which sub-selects optimal
features from this candidate feature set.

4.5.4 Classification Techniques

Classification techniques attempt to identify which class a previously unseen dataset
belongs to by applying a classification rule to the data. The classification rule is
typically trained on previously seen examples of the data from each of the available
classes before being applied to new data.

Formally, for a two class problem a function is estimated as f : RN ! f�1;þ1g,
where a new, previously unseen, dataset is labelled either as −1 or +1 depending
upon which side of a decision boundary it falls. The process of identifying an
optimal function f from training data effectively amounts to learning the class
membership and learning the inter-class decision boundary.

Classifier training may often be split into several stages to attempt to minimise
the bias-variance trade-off problem. This typically involves using a training set to
first estimate the classifier’s decision boundary, followed by a validation set, which
may be used to test and further refine the boundary. The final data the classifier is to
be applied to is referred to as the testing set.

Classifier techniques are used in the majority of BCI applications [28]. For
example, in [30] a Bayesian linear discriminant analysis (BLDA) classifier is used
to identify trials which contain P300 event-related potentials (ERPs) for the control
of an ERP based online BCI. BLDA operates by attempting to identify a linear
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combination of features which optimally separate them into the correct classes via a
decision boundary. Mean online classification accuracies of 94.5 ± 5.1 % are
obtained.

Other types of classification technique that are popular for use in BCIs include
support vector machines (SVMs), hidden markov models (HMMs), artificial neural
networks (ANNs) etc. [28]. To discuss an example of one more of these classifier
types hidden markov models (HMMs) are considered.

HMMs attempt to characterise the temporal dynamics of a time series of bio-
signals as a markov process. Specifically, the observed datasets are assumed to be
generated by an underlying markov process, with each state in that markov process
generating the observed features according to some probability distribution. Esti-
mation of these distributions and state transition probabilities for a markov process
may be performed as part of the classifier training process. A HMM is typically
trained for each class and then used to classify new data by identifying which HMM
has the greatest probability of having generated the new data.

HMMs have been successfully applied to classify EEG data in a BCI context in
[11]. In this example EEG data recorded during a motor imagery task is first
characterised via phase based features before HMMs are trained to differentiate left
versus right index finger motor imagery. Highly significant classification accuracies
are achieved using this approach.

Another algorithm used for classification purposes is the Linear Discriminant
Analysis (LDA) classifier. LDA is a simple technique widely used in BCI appli-
cations because it is computationally efficient and robust. This method maximizes
the ratio of ‘between-class’ variance to the ‘within-class’ variance in any particular
dataset thereby guaranteeing maximal separability [54]. It can also handle the cases
in which the ‘within-class’ frequencies are unequal. Evolving from the same
principles as of PCA, it holds the advantage over PCA in that the shape and location
of the original datasets changes when transformed to a different space whereas LDA
does not change the location but only tries to provide more class separability and
identifies a decision boundary between the given classes.

The future of the BCI techniques lies in the standardisation of the computational
methods. This will not only help to launch a BCI based product in the market but
will also broaden the spectrum of BCI applications.

4.6 BCI Evaluation

BCI research has reached a level where there are large varieties of combinations of
feature extraction and classification techniques being used by research groups all
over the world [28]. It is important to have benchmark criteria which not only
provides a quick and easy means of identifying the relative success of the technique
but also acts as a standard to compare the relative performance of all the techniques.
Possible criteria are discussed in [3] and include classification accuracy, Cohen’s
Kappa coefficient, mutual information of discrete, and continuous output.
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Two measures of classification accuracy may be considered, overall accuracy
and individual accuracy. Overall accuracy is calculated as the ratio of the sum of the
diagonal elements of the classifier generated confusion matrix and the total number
of samples. The specific accuracy for each class is the ratio of the diagonal element
(hits) for that particular class and the total number of sample points for that class
(sum of the row elements of the confusion matrix for that particular class).

The output of the validation procedure is devised in the form of specific
parameters using BCI terminology. Transfer rates may be calculated to measure the
speed with which users may operate a BCI. Cohen’s kappa coefficient, which is
reported to be a better representation of the accuracy as it takes into account the
occurrence of a chance [63], may also be used. Kappa coefficient is 1 in case of a
perfect classification and is 0 if the predicted class has no correlation with the actual
class. Specific accuracy for each of the two classes gives an idea of the performance
of the classification algorithm for each of the classes. Correlation and signal to noise
ratio may also be used.

4.7 Conclusion

Brain computer interfaces (BCIs) are a rapidly growing field [28], with a large and
growing number of researchers attempting to tackle the multiple challenges pre-
sented by this highly interdisciplinary area of research.

BCIs may be described by multiple component stages. These have been outlined
and described in this chapter and include components for data acquisition, pre-
processing, dimensionality reduction, feature extraction/selection, classification,
and application. Each of these component parts is researched with the aim of
developing novel and improved components and applications to allow BCIs to meet
the needs of new user groups and improve the performance of BCI systems pro-
vided to existing user groups.

One such example is the hybrid BCI, in which two or more different data
acquisition methods or BCI paradigms may be combined [57]. For example,
simultaneous electroencephalogram (EEG) and near infrared spectroscopy (NIRS)
may be combined with the aim of using the combination of electrophysiological and
haemodynamic responses to provide more accurate control to BCI user groups [16].

Another example is the use of BCIs in neuro-rehabilitation for stroke [1]. This
represents a novel application of BCI technology, in which closed loop BCI control
of an application is utilised to induce changes in levels of neuroplasticity in the
user. The aim is to promote beneficial neuroplastic changes which allow com-
pensatory neural areas to “take over” from lesioned cortical regions [66].

In each of these new developments in BCI technology the heart of the BCI
remains the translational algorithms. Indeed, translational algorithms retain an
essential role in all types of BCI, that of converting raw, noisy, non-stationary
neural data into stable and realisable control commands for a computer, robotic
device, or other application.
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We categorise translational algorithms into four different types: dimensionality
reduction, feature extraction, feature selection, and classification. Not every BCI
type requires every one of these types of translational algorithm, but all BCI types
require some combination of some of these translational algorithms.

Dimensionality reduction algorithms are typically used as a pre-processing step
in the processing pipeline at the heart of a BCI. They aim to take a high dimensional
dataset (for example, one composed of multiple channels, sample points, frequency
bands, etc.) and reduce it to just the most relevant dimensions of interest. Typical
examples of dimensionality reduction methods were discussed in this chapter and
include methods such as principal component analysis and singular value
decomposition.

Feature extraction refers to the method(s) by which raw brain signals are
translated into features describing some relevant property of the brain state. Raw
signals are the signals recorded from the brain at the data acquisition stage and can
include EEG amplitudes, electrocorticogram (ECoG) amplitudes, blood oxygena-
tion levels (fNIRS, fMRI) etc. The process of converting these raw signals to
features of interest may vary considerably depending on the type of raw data, the
cognitive task(s) the user is attempting in order to control the BCI, and the pro-
cessing limitations of the available computers. Examples can include measures of
signal magnitude (e.g. EEG amplitude), measures of frequency content of the data,
and more complex measures such as connectivity measures between different
regions of interest within the brain.

Feature selection refers to the automated or semi-automated selection of a rel-
evant subset of the features extracted from the raw brain signals. Automated feature
selection may be used in cases where there is not a clear set of well known “good
features” for the particular cognitive paradigm. It may also be used to provide some
compensation for the problem of inter-subject variability in neural data [50]. The
neurological data recorded from two individuals is not completely alike and
automated feature selection may be used to find the best set of features for a
particular individual during a particular BCI control task. Feature selection is most
commonly performed using methods from machine learning and may include
methods such as genetic algorithms, random forest searches etc.

Finally, classification refers to the identification of corresponding discrete class
labels for a selected feature set. This may also be performed using tools taken from
the machine learning toolbox, for example, support vector machines (SVMs) or
linear discriminant analysis (LDA) classifiers, and may be combined with the
feature selection method or performed independently.

New algorithms and methods are in a constant state of development by the BCI
community and are opening up increasing possibilities for applications, data
acquisition types, and target user groups. Many of these new possibilities require
advancements in translational algorithms. Thus, research and development of
translational algorithms, both by the BCI community and others, may be seen as the
engine of BCI research and development and forms a vital part of the field of
multidisciplinary BCI research.
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Regarding the future directions of BCI research it is possible to make a few
statements about the role of translational algorithms. First, every existing method of
data acquisition from the central nervous system produces data which is non-
stationary and noisy. Thus, there is likely to be a need for a number of the trans-
lational algorithms described in this chapter for the foreseeable future in BCI for
tasks such as de-noising the data, extracting and selecting features of interest, and
identifying the relevant class labels corresponding to the data. Second, while there
will be a need for these algorithms they will not all be required in every application.
For example, features may be mapped directly to a control action, removing the
need for a classifier to identify corresponding class labels, or the need for feature
selection may be mitigated if a priori knowledge of suitable features is available.

Finally, advances in computational technology and machine learning research
mean that new and more advanced translational algorithms are constantly been
developed. This development is not just confined to the BCI research community
and often machine learning algorithms developed for other purposes are co-opted
into the community (for example LDA classifiers [83]), while algorithms developed
within the community may also find other uses elsewhere (for example common
spatial patterns [33]). This process is likely to continue and accelerate over the
coming years as advancements in computing technology allow the deployment of
ever increasingly advanced algorithms. An example of this may be seen in the use
of machine learning algorithms for feature selection. More advanced machine
learning algorithms may be employed as computing technology allows them to be
run in sufficiently short times to allow their use during online BCI applications.
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Chapter 5
Source Localization for Brain-Computer
Interfaces

Aleksandr Zaitcev, Greg Cook, Wei Liu, Martyn Paley
and Elizabeth Milne

Abstract Brain-computer interfaces provide a way to operate software without the
requirement for physical movement. Electroencephalography (EEG) can be utilized
to detect electrical activity in the brain during the execution of certain mental tasks,
which can be used as a control signal for an interface. Automatic interpretation of
BCI control signals from multichannel EEG data is generally done by application of
a classification algorithm from a particular machine learning paradigm. Classifi-
cation accuracy and overall BCI performance depends on a feature extraction
method, which is used to represent the EEG data according to the characteristic
features of a chosen BCI control signal. Certain types of control signals used in BCI
can be characterized by their spatial properties. Source localization methods can be
used to localize electrically active areas of the user’s brain and, hence, represent the
EEG signal by its spatial features. This chapter is dedicated to the essential theory
related to electromagnetic source localization problem with a particular focus on the
family of sparse localization approaches. First we discuss general electromagnetic
head modelling methods used to solve the EEG forward problem. Approaches to
inverse problem solving, anatomical regularization and application of source
localization to BCI are described later in the chapter. Finally we will discuss sparse
source localization methods and present relevant simulation results.
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5.1 Introduction to the Source Localization Problem

Electromagnetic brain imaging has been used extensively in the area of neuro-
physiological and psychology-related research for the past two decades. While
originally being a useful tool for biomedical data analysis and visualization, brain
imaging techniques have recently gained additional attention, due to their appli-
cations in the area of brain-computer interfacing.

There are various ways to detect neural activity. Electroencephalography (EEG)
is a non-invasive way to record electrical potentials on the head surface. Although
the EEG signal is prone to artifacts and suffers from low signal-to-noise ratio
(SNR), it has become a common technology for BCI signal acquisition, due to its
mobility, low price and excellent temporal resolution [24]. The current chapter is
particularly focused on EEG source reconstruction due to its significance for BCI
research. However, many of the imaging methods and approaches described here
are also applicable to MEG data.

Generally, BCI can be described as a machine learning system, which recognizes
a certain set of patterns in control signal acquired directly from the user’s brain.
Although there are many feasible approaches to BCI design, there is a common
resemblance, which allows us to sort out a general architecture, as shown in
Fig. 5.1. Prior to classification the preprocessed EEG data has to be represented as a
feature vector in such a way that the most characteristic features of the corre-
sponding data class are emphasized. Ideally feature extraction maximizes the dif-
ference between feature vectors for different classes, which leads to maximization
of classification accuracy and as a result the overall system performance. Hence, the
desire for more reliable BCIs creates motivation for development of efficient feature
extraction methods.

EEG-based BCIs are generally operated by non-muscular control signals evoked
by the user in voluntary manner (motor imagery, slow cortical potentials) or

Fig. 5.1 Functional architecture of a typical BCI
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semi-voluntarily triggered by a particular stimulation paradigm (P300, steady state
visually evoked potentials). Motor imagery (MI), or imagination of movement, was
repeatedly proven to be a suitable neurophysiological basis for BCIs [21]. It is
characterized by mu-band event-related desynchronization/synchronization (ERD/
ERS) localized in the motor cortex area corresponding to the muscles involved in
the motor imagery task being performed [28]. Therefore, various source localization
methods can be used to estimate the cortical power distribution topography and
form feature vectors to be interpreted by a particular choice of a classifier. Since
feature extraction based on source reconstruction was proven to be particularly
effective for MI classification, the current chapter will contain examples primarily
for this type of EEG data.

The fundamental idea of EEG source localization is mapping of multichannel
EEG recording onto the source space of higher dimensionality. The source space is
comprised by a large number of sources, which are individually modelled as current
dipoles or multipoles. Given that the number of EEG electrodes is normally on the
order of 10 and number of sources is on the order of 1,000, the problem is severely
underdetermined. This means that in order to obtain a realistic source localization
solution, which fits into the nature of EEG, it is required to utilize the prior
knowledge about the EEG physics, human anatomy and neurophysiology.

The majority of brain imaging approaches relies on the model described by the
following equation:

M ¼ LDþ e; ð5:1Þ

where M is the measurement matrix of size m-by-k, with m being the number of
EEG channels, and k is the number of time samples in the recording. It holds
multichannel values of recorded potentials over time. L is commonly referred to as
lead field matrix (or gain matrix) of size m-by-n, where n is the number of elements
in source model. It relates each source activation to the voltage on EEG sensors.
Matrix D of size n-by-k holds the solution to the problem, magnitudes of source
activations over time. Finally ε is the noise perturbation matrix.

Lead field matrix L is comprised by the individual forward problem solutions for
each dipole in the chosen source model. In the area of brain imaging the forward
problem stands for linking of the source unit activations to the EEG electrode
potentials. The information about how each individual dipole influences the EEG
recording allows us to obtain the inverse problem solution, which is source local-
ization itself. This chapter is dedicated to the essential theory related to electro-
magnetic source localization problem with a particular focus on the family of sparse
localization approaches. Besides the forward problem solution, which incorporates
the anatomical priors and EEG physics properties, sparse brain imaging methods
also rely on the fundamental assumption that within a given short time interval there
are very few electrically active regions in the whole brain volume. This assumption
can also be interpreted as the main constraint to the solution, which substantially
alleviates the ill-posed nature of the problem [5].
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The following section “Head and source models” is dedicated to the various
aspects of forward problem solving, such as numerical approaches to brain elec-
trical field modelling, realistic head and source models. Section 5.3 “Source
localization” defines the inverse problem and discusses common methods of
solving it. Besides that, in Sect. 5.3 we explain anatomically validated consider-
ations for source localization, as well as applications of brain imaging methods in
BCIs. In the Sect. 5.4 “Sparse brain imaging” we describe and contrast various
sparse source localization methods, and also present and discuss relevant simulation
results. The summary of this chapter is given in the Sect. 5.5 “Conclusions”.

5.2 Head and Source Models

EEG brain imaging methods rely on a mathematical model comprising of many
aspects of EEG physics, human neurophysiology and anatomy. This model is used
to solve both the forward and inverse problems. The following section is dedicated
to the forward problem solution. We will discuss the origins of EEG signal,
approaches to head and source modelling required to solve the forward problem.

5.2.1 Physics of EEG

Before introducing the mathematical model utilized in the source localization
process, it is important to give a brief overview of the neurophysiological basis of
the EEG signal.

Neurons generate electrical current by pumping charged ions across neuron
membranes through axons in the direction defined by the potential on the cell
membrane, as shown in Fig. 5.2. Under certain circumstances neural cells are

Fig. 5.2 Structure of a nerve cell
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capable of firing the so called Action Potentials (AP), which are considered to be the
main carriers for different types of information transmitted through the CNS [31].

The EEG sensors, which detect surface potentials are large and remote, when
compared to individual neurons. Electrical activity of a single neuron cannot be
picked up by the surface sensors, since it is so overwhelmed by the activity of
adjacent cells [25]. Relatively low electrode sensitivity substantially limits the EEG
to detection of summarized electrical activity of many simultaneously active cells.
The APs may have large amplitude (up to 110 mV), but they have very short
duration (about 0.3 ms). Hence, superposition of such electrical events is highly
unlikely. On the other hand, postsynaptic potentials, which can trigger the AP
generation, have smaller amplitude (0.1–10 mV), but significantly longer time
course (10–20 ms). Postsynaptic potentials are more likely to create a field
superposition, noticeable by the EEG, and therefore, they are considered to be the
primary EEG generators [2, 12].

Besides the requirement for synchronization, neurons must have a certain spatial
alignment in order to create an observable surface potential. Neighboring neurons
have to be arranged in a way to amplify the reciprocal electrical fields. Populations
of pyramidal cells located in gray matter of the human brain usually have such
spatial properties. Their apical dendrites are arranged parallel to each other and
orthogonal to the cortical surface. Therefore, these neurons are considered to be the
main contributors to EEG signal generation [12].

However, not all types of neurons have such alignment properties. Cells with
arbitrarily aligned dendrites may have their extracellular potential fields cancelled
by adjacent electrical activity. In this case the contribution to EEG signal is highly
unpredictable. Hence, it can be stated that EEG predominantly reflects postsynaptic
electrical activity of a certain subgroup of neurons with specific spatial properties.

5.2.2 Source Models

As was discussed in the previous section, the EEG signal is mainly composed of
synchronous electrical activities of a certain subgroup of pyramidal cells. The
following section introduces a mathematical approach to EEG source modelling.

5.2.2.1 Modelling the Sources of EEG Signal

Since EEG signal frequency generally lies within the 0.1–100 Hz band, the
mathematical analysis of electrical fields can be performed under quasi-static
conditions. This means that despite the fact that neural activity changes over time,
these changes occur substantially slower than the propagation effects of electro-
magnetic fields [2].

As was stated previously, electrical activity of a single neuron does not produce
sufficient potential field observable on the surface of the scalp. Due to the identical
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alignment of pyramidal cells in the gray matter, the superposition of individual
electrical activities leads to the amplification of the resulting potential fields. Hence,
a large group of synchronously active neurons located on a small area of the cortex
is commonly represented as a single current dipole in the EEG source model.

A current dipole model can also be used to represent a single neuron on the
microscopic level. Within a dipole model the current sink at position r1 represents
the removal of positively charged ions from the apical dendrite of a neuron.
Consequently, the current source at location r2 stands for the injection of positive
ions into the cell. For such a dipole it is possible to estimate the current density J at
position r:

r � J ¼ Idðr � r2Þ � Idðr � r1Þ; ð5:2Þ

where δ represents the delta function and I is the current density within the dipole. It
is possible then to relate the current density J to the electric field E through the
Ohm’s law:

J ¼ rE; ð5:3Þ

where σ is the location dependent tissue conductivity. Generally for the source
localization problem it is assumed that tissue conductivity is isotropic for a given
tissue type. Although this assumption substantially reduces the calculation com-
plexity, it might also result in localization errors, since some tissues can have
direction dependent conductivity. For example, skull consists of two hard layers
with a spongiform layer between them. As a result, the tissue conductivity in a
direction tangential to the skull surface is about 10 times larger than the conduc-
tivity in the direction normal to the surface. When the tissue conductivity is
direction dependent, it is called anisotropic conductivity [12].

Taking into account the quasi-static conditions, it is possible to link the potential
field V with electric field E through the Poisson’s equation:

E ¼ �rV : ð5:4Þ

The orientation of vector rV points to the direction, where the magnitude of
scalar V increases most rapidly. The combination of Eqs. (5.2), (5.3) and (5.4)
yields the following relationship between the dipole current density and potential
field at r:

r � ðrrðVÞÞ ¼ �Idðr � r2Þ þ Idðr � r1Þ: ð5:5Þ

When explicitly extended onto Cartesian coordinate system, this relationship
takes the following form:
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As mentioned previously, there are tissues with direction dependent conduc-
tivity. However, Eq. (5.6) describes the relationship between potential field V and
dipole current density I for homogenous isotropic conductivity, meaning that the
tissue conductivity is assumed to be coordinate and direction independent.

5.2.2.2 Boundary Conditions

Since the potential field generated by neural electrical activity propagates through
different types of tissue, it is necessary to consider the boundary conditions, when
the field passes from volume with conductivity σ1 to volume with conductivity σ2,
as shown in Fig. 5.3.

It is assumed that no charge can be accumulated at the boundary between
different compartments, which means that all current leaving the volume with
conductivity σ1 will enter the volume with conductivity σ2:

J1en1 ¼ J2en2
ðr1rV1Þen1 ¼ ðr2rV2Þen2

ð5:7Þ

At the boundary between the head surface and air it is assumed that no current
can be injected outside the human body, due to the low air conductivity:

J1en1 ¼ 0

ðr1rV1Þen1 ¼ 0:
ð5:8Þ

Another condition applies only to boundaries not connected to air. This condi-
tion yields that potential cannot be accumulated at the compartment interface,
hence:

Fig. 5.3 Boundary between two types of tissue with conductivity parameters σ1 and σ2 with en
representing the surface normal vector
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V1 ¼ V2: ð5:9Þ

Conditions (5.7) and (5.9) are often referred to as Neumann boundary condition
and Dirichlet boundary conditions respectively.

5.2.2.3 Dipole Moment

As was explained earlier in this section, the current dipole can be used to represent
an active pyramidal cell on a microscopic level or a large group of active cells on a
macroscopic level. Within such a dipole the current source and sink input and
remove equal amount of current density I, respectively. The magnitude of source
activation is generally modelled by the dipole moment d:

d ¼ Iped; ð5:10Þ

where p is the distance between the current source and the current sink, ed is the
unit vector holding the dipole orientation (direction from the sink to source). Hence,
the scalar magnitude of the dipole can be defined as:

d ¼ dk k ¼ Ip: ð5:11Þ

It is a common practice to decompose such a current dipole into its components
in a Cartesian coordinate system. Therefore, an arbitrarily oriented dipole is rep-
resented by three dipoles directed along the Cartesian axes:

d ¼ dxex þ dyey þ dzez: ð5:12Þ

The location parameter of a dipole rdip is generally chosen to be in the middle
between two monopoles. Hence, a single active EEG source can be represented by
6 parameters: three coordinates defining the source location and three Cartesian
dipole components dx, dy and dz.

In much the same way the surface potential V at location r can be decomposed
into its Cartesian components:

Vðr; rdip; dÞ ¼ dxVðr; rdip; exÞ þ dyVðr; rdip; eyÞ þ dzVðr; rdip; ezÞ: ð5:13Þ

5.2.2.4 General Forward Problem Formulation

Previously we have introduced the mathematical approach to EEG source model-
ling. Hence, it is possible to formulate the forward problem set for a single current
dipole d at position rdip and a single surface electrode at position r. In such settings,
the forward problem solution is the surface potential lðr; rdip; dÞ, which can be
estimated by solving Poisson’s Eq. (5.6). In case of multiple dipoles constituting the
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chosen source model, the surface electrode potential is obtained as a linear
superposition of potentials induced by multiple sources:

VðrÞ ¼
X
i

lðr; rdip; diÞ ¼
X
i

lðr; rdip; eiÞdi: ð5:14Þ

In practice, multiple EEG electrodes are used for signal recording. For m EEG
electrodes and n dipoles in the source model, the forward problem can be refor-
mulated as follows:

V ¼
Vðr1Þ
..
.

VðrmÞ

2
64

3
75 ¼

lðr1; rdip1 ; e1Þ � � � lðr1; rdipn ; enÞ
..
. . .

. ..
.

lðrm; rdip1 ; e1Þ � � � lðrm; rdipn ; enÞ

2
64

3
75

d1
..
.

dn

2
64

3
75 ¼ L

d1
..
.

dn

2
64

3
75:

ð5:15Þ

Matrix L is often called the lead field matrix, gain matrix or signal dictionary. It
holds the forward problem solution for all the dipoles in the source model. When
the EEG signal is analyzed over a given time course of k discrete sample points,
Eq. (5.15) takes the following form:

V ¼
Vðr1; 1Þ � � � Vðr1; kÞ
..
. . .

. ..
.

Vðrm; 1Þ � � � Vðrm; kÞ

2
64

3
75 ¼ L

d1;1 � � � d1;k
..
. . .

. ..
.

dn;1 � � � dn;k

2
64

3
75 ¼ LD: ð5:16Þ

Equation (5.16) relate the source activations to surface potentials at multiple
positions for a given experimental configuration. One can notice that it is very
similar to the general inverse problem formulation (5.1). The difference is that in
practice the EEG recording M reflects the voltage between the given electrode and
the reference electrode, while V holds the surface potentials at the same electrode
positions. Hence, prior to source localization it is required to re-reference the
multichannel EEG signal and obtain surface potential approximations instead of
voltages.

5.2.3 Head Models

In the previous section we have introduced the mathematical formulation of the
forward problem and discussed how currents within the brain tissue can be related
to the surface potentials. However, in order to solve the forward problem for all
dipoles in the source model, it is necessary to take into account the anatomical
properties of a subject. These properties are commonly embedded into a chosen
head model, which largely defines the forward problem solution.
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There are various known approaches to head model generation. In its simplest
form the head model can be represented by a single shell sphere with isotropic
homogenous conductivity within its volume. In this case the variation of conduc-
tivity in different tissues is not taken into account, which substantially reduces the
calculation complexity, but obviously results in localization errors.

The consistent extension of a single sphere model is a multishell spherical head
model, generally comprised of three or four concentric spheres, which represent
different types of tissue, as shown in Fig. 5.4. The four-shell spherical model
includes brain volume, a layer of cerebro-spinal fluid (CSF), skull and scalp.

There were many attempts to empirically estimate the conductivity of different
tissue types by means of electrical impedance tomography (EIT), which is carried
out by injecting a relatively small current of 1–10 µA between pairs of EEG
electrodes. However, the results obtained vary vastly: 0.22–0.749 S/m at the scalp,
0.0081–0.015 S/m at the skull, and 0.22–0.33 S/m in brain tissue. The CSF con-
ductivity was quite accurately estimated to be 1.79 S/m. These conductivity values
were obtained in vitro from postmortem tissue, where the conductivity properties
can be significantly different compared to in vivo measurements [2].

Since the CSF conductivity is relatively large, the CSF layer is often omitted
from the anatomy, which results in a simplified three-shell model. The typical radii

Fig. 5.4 Visualization of a three-shell concentric sphere model
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of surface boundaries used in such model are 8.0, 8.5 and 9.2 cm for brain tissue,
skull and scalp respectively.

While spherical head models are widely used in research and clinical applica-
tions, it is obvious that such models do not reflect realistic geometry properties of
the human head. In reality, the human head is inhomogeneous, anisotropic and has
a more complex shape.

A more accurate approach to head model generation is extraction of spatial
anatomical properties from high-resolution volumetric MRI images. Realistic head
geometry is obtained as a set of complex shaped surfaces with certain conductivity
properties, representing the interfaces between different tissue types. These tissue
boundaries can be extracted from MR scans by many automated or semiautomated
methods.

The approaches to head model generation are tightly interconnected with the
chosen forward problem solution method. The relevant assumptions and conditions
utilized in the solving process often must be embedded in the head model. Amongst
the variety of approaches to forward problem solution for realistic model geometry,
the most common techniques are boundary element method (BEM), finite element
method (FEM) and finite difference method (FDM). The following section briefly
contrasts these methods and the corresponding head models.

5.2.4 The Forward Problem

As pointed out already, the source localization processes rely on prior knowledge
about the nature of the EEG signal and human anatomy, which is partially
embedded in the forward problem solution L in (5.16).

The general approach to lead field matrix estimation is individually solving the
forward problem for all sources in the chosen source model. The potential field at
point r created by a single current dipole d at position rdip in infinite homogenous
isotropic space with conductivity σ is given by:

Vðr; rdip; dÞ ¼ dðr � rdipÞ
4pr r � rdip

�� ��3 : ð5:17Þ

If the current dipole is set to be in the origin of the Cartesian coordinate system
and aligned along the z-axis, then (5.17) can be reformulated as:

Vðr; 0; dÞ ¼ d cos h
4prr2

; ð5:18Þ

where θ is the angle between r and the z-axis. In order to obtain a similar solution
for dipoles oriented along the x-axis and the y-axis, the coordinate system can be
rotated accordingly.
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The multishell concentric sphere model assumes homogeneity and isotropy of
compartments encapsulated by the spheres. A semi-analytical method of solving the
forward problem for this geometry is described in [30]. The computational sim-
plicity of this method allows it to be used in practical real-time applications, such as
BCIs. Besides that, this technique can be extended to anisotropic conductors, where
the conductivity in the tangential direction can be set to be different from the
conductivity in the orthogonal direction [6, 36].

The boundary element method (BEM), which originates from the field of
electrocardiography, is a further step to realistic electromagnetic head modelling. It
still assumes volume homogeneity and isotropy, but can use a more complex head
geometry to deal with the varying thickness and curvature of the skull. As the
method’s name implies, it provides a solution to the forward problem by estimating
the values of potentials at the boundaries between head volumes. The BEM head
model is generally comprised by three surfaces, each tessellated by multiple flat
triangular elements, as shown in Fig. 5.5. Assuming the general convexity of the
human head, in such a model there will be only three triangular elements on the line
between the current dipole and any point at the scalp surface. A numerical approach
to the BEM forward problem solution was first presented in [15].

More recently, the finite element method (FEM) and the finite difference method
(FDM) were applied to the forward problem, providing means to deal with con-
ductor anisotropy and tissue inhomogeneity. In both FEM and FDM, the whole 3D
volume of the brain is segmented into small volumetric elements. Thus each
individual volumetric component borders several adjacent ones. It is possible to
define the conductivity values at every interface between these elements and within
their volume, and hence, deal with conductor anisotropy and inhomogeneity. The
head model for FDM and FEM is defined by the sparse system matrix, containing
relative directional conductivity properties of every volumetric constituent. Unlike
BEM, FDM and FEM approaches rely on iterative minimization of a predefined
cost function. This process is computationally highly intensive. However, in
practical applications, it is required to be performed only once for every subject.
Detailed description of the forward problem solution with FEM can be found in [16,
35]. Numerical approaches related to FDM can be found in [17].

Fig. 5.5 Visualization of a realistic BEM head geometry
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5.3 Source Localization

In the previous section we have discussed the general mathematical model, which
allows the estimation of surface potentials for a defined current dipole located
within the brain volume. After the forward problem is solved for a given anatomical
model, EEG equipment configuration and source model, it is possible then to
perform the source localization by solving the inverse problem for a given segment
of EEG recording. The following section addresses the general aspects of source
localization, characterizes the main anatomical constraints to inverse problem
solution and describes how source localization can be utilized in a BCI system.

5.3.1 The Inverse Problem

Equation (5.1) presents the general model for the inverse problem. The aim of the
inverse problem is estimation of n × k dipole moments, located within a certain
head geometry over n positions, for a given m-channel EEG recording of length k,
forward solution L and noise perturbation matrix e:

M ¼ LDþ e

Mðr1; 1Þ � � � Mðr1; kÞ
..
. . .

. ..
.

Mðrm; 1Þ � � � Mðrm; kÞ

2
664

3
775 ¼

lðr1; rdip1 ; e1Þ � � � lðr1; rdipn ; enÞ
..
. . .

. ..
.

lðrm; rdip1 ; e1Þ � � � lðrm; rdipn ; enÞ

2
664

3
775

d1;1 � � � d1;k

..

. . .
. ..

.

dn;1 � � � dn;k

2
664

3
775þ e

ð5:19Þ

EEG-based tomography aims to estimate the electrical brain activity over a large
number of cortical points to provide a higher localization resolution. Due to the fact
that n�m in most of the imaging applications, the EEG inverse problem can be
characterized as an ill-posed one. Besides that, EEG inverse solutions are unstable,
which means that a small deviation of a noisy EEG signal can substantially alter the
localization results.

As was explained in the previous section, dipoles within the chosen source
model represent large populations of electrically active pyramidal cells. Each source
is defined by 6 parameters: three values to set the source location rdip in Cartesian
coordinates and three values for dipole moment projections onto the x-, y- and z-
axes. Alternatively, dipoles can be represented by three values for rdip, two values
for dipole orientation (angles h and /) and source magnitude d.

According to which parameters in (5.19) are set to be fixed and which are being
estimated, it is possible to separate the inverse problem approaches into two cat-
egories: non-parametric and parametric methods. Non-parametric techniques are
also often called distributed inverse solutions (DIS) or imaging methods. This class
of methods relies on a distributed source model covering the whole brain volume or
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its particular compartments. Each source in this model has a constant pre-defined
position rdip and possibly fixed orientation. Since the source parameters are cal-
culated beforehand and n�m, the non-parametric EEG inverse problem is an
example of a linear underdetermined problem. The latter means that the solution is
non-unique and multiple mathematically feasible solutions exist for this problem.
Amongst a great variety of non-parametric inverse problem solvers, it is possible to
list the most commonly used and influential approaches: Low Resolution Electro-
magnetic Tomography (LORETA) [27] and its derivations LORETA-FOCUSS
(Focal underdetermined system solution) [11], Standartized Shrinking LORETA-
FOCUSS (SSLOFO) [19], Linearly Constrained Minimum Variance (LCMV)
beamformer [33], Minimum Norm Estimates (MNE), and Weighted Minimum
Norm Estimates (WMNE) [11].

Parametric source localization approaches do not assume fixed positions and
orientations of dipoles within the brain. These methods are also referred to as
Concentrated Source Models, Equivalent Current Dipole methods or Dipole Fit
methods. In contrast to non-parametric techniques, the source model is not calcu-
lated beforehand for this class of localization methods. Parametric approaches aim
to represent the given segment of EEG recording by fitting multiple dipoles with
flexible parameters into the chosen electromagnetic brain model. Hence, it is
required to estimate parameters d, e, rdip for every dipole for a given M and forward
solution L. If the number of dipoles is not set in advance, the problem is non-linear.
Most common examples of parametric methods are the non-linear least squares
solver [8, 34], Multiple Signal Classification [23, 32], and parametric adaptations of
beam forming techniques [2]. Due to the computational intensity and undetermined
source model, parametric methods are more applicable to the area of neurophysi-
ological research rather than brain-computer interfacing. In the following sections
we will discuss various general aspects of imaging localization techniques. More
information about non-parametric inverse problem solvers can be found in [2, 11].

5.3.2 Anatomical Constraints for Source Localization

Solving the EEG inverse problem with non-parametric approaches generally puts
high requirements for method regularization. Due to the model formulation (5.19),
the inverse problem can be interpreted as solving a system of m linear equations with
n unknowns. Due to n�m, the problem is underdetermined with multiple mathe-
matically feasible solutions. While fitting perfectly into (5.19), these solutions do not
necessarily fit into the nature of EEG and human neurophysiology. Hence, it is
required to limit the subspace of allowable solutions by putting additional con-
straints, which utilize more information about the human anatomy and EEG physics.

Multiple anatomically justified assumptions are already embedded into the for-
ward problem solution. As it was shown earlier, information about the tissue con-
ductivity, head geometry, properties and locations of EEG sources and recording
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equipment is used to solve the forward problem. Nevertheless, in order to produce
feasible results and/or improve localization accuracy, it is often required to consider
more aspects of EEG data.

5.3.2.1 Locations of Sources

Dipoles within the source model represent currents originating from synchronous
electrical activity of multiple neurons. Currents, generated by a single cell do not
produce sufficient potential field to be detected on the head surface. However, if
multiple cells have similar alignment, postsynaptic potentials are mutually ampli-
fied to create a potential field of the magnitude detectable by modern EEG
equipment. Pyramidal cells, located within a cortical layer of gray matter possess
such orientation properties. Hence, the EEG recording mainly reflects electrical
activity of this particular subgroup of cells. Therefore, it is a common practice to
represent the given segment of data M only by current dipoles within a 1–2 cm thin
cortical area of gray matter. It can be done at the forward problem solving stage by
restricting the fixed locations of sources to that cortical area. In this case the
computational intensity of the localization process can be substantially reduced,
since the number of dipoles n is smaller.

Alternatively it is possible to apply a pre-defined spatial filter to the estimated
inverse problem solution. Let S be the spatial filter, which limits the solution. S is a
diagonal matrix of size n-by-n with spatial weight values on the main diagonal. The
localization solution D can then be represented as:

D̂ ¼ SD; ð5:20Þ

where D̂ is the spatially filtered localization result. The problem formulation then
becomes:

M ¼ LD̂þ e: ð5:21Þ

The weight values on the main diagonal of S can be defined in various ways.
One of the most powerful approaches is based on statistical analysis of individual
subject’s MR images. Spatial weights can be given values in range from 0 to 1,
corresponding to the probability of a dipole being located in the gray matter layer or
otherwise. In contrast to manual and semi-automated weight assignment methods,
utilization of anatomical priors from MR scans allows for more flexible control of
localization spatial properties. However, it is more computationally complex, since
the number of sources n is not reduced.

As can be seen from (5.21), the EEG recording M is being explained through the
activations of sources, located within a pre-defined cortical area. However, besides
the signal of interest, M is comprised of random neural activity from areas other
than a thin layer of gray matter. Since the source model is restricted to a certain
area, the background noise and muscular artifacts will also be introduced into the
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inverse problem solution for that area, which can severely impair the localization
accuracy and limit the resolution. However, it is possible to alleviate these effects at
the signal preprocessing stage by applying algorithms like Independent Component
Analysis (ICA) to extract the relevant signal components and improve SNR [1].

5.3.2.2 Orientations of Sources

Distributed imaging methods assume multiple fixed dipole locations within the
chosen source model. As described earlier, sources are oriented normally to the
cortical surface, due to the alignment properties of neurons which they represent.
The orientation of sources is generally defined in a forward problem solving pro-
cess, since it is required to relate the dipole currents to the surface potentials.
However, such assumptions about neuron alignment are often overly generalized,
which can impair the localization accuracy of a method. In a real human head there
is a certain level of cell organization irregularity, which is very difficult to predict.
In order to deal with this effect, it is possible to give a certain degree of freedom for
source orientation parameters at the inverse problem solving stage.

In general, because the orientation e is set beforehand for every dipole d,
imaging methods are used to find only dipole moments d, which are positive values,
and hence D 2 R

n�1
þ . If dipole orientation values are not set to be constant, it is

required then to estimate D 2 R
n�3, where columns of D hold dx; dy and dz

components of sources. In order to control the deviation of estimated dipole ori-
entation e0 from the original orientation e, it is required to set a new boundary. The
angle u between e and e0 is given by:

u ¼ arccos
ðe � e0Þ
ej j e0j j ; ð5:22Þ

where e � e0 denotes the dot product of twovectors.Bykeeping thevalueuwithin small
pre-defined boundaries, it is possible to get more realistic localization results. How-
ever, such regularization makes the problem much more computationally complex.

5.3.2.3 Spatio-Temporal Smoothness

A straight-forward approach to localization accuracy improvement is utilization of a
larger number of densely located dipoles in a source model. Many EEG imaging
methods tend to produce spiky solutions, when a large portion of solution energy is
concentrated over a few dipoles, while adjacent sources are electrically idle. These
solutions do not fit into expectations about the nature of EEG. When the inter-node
distance between sources is small, it is required to take into account the local
current propagation effects. Hence, it is necessary to apply additional constraints to
the spatial smoothness of the inverse problem solution.
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Similar principle applies to the temporal smoothness. If the measurement matrix
M contains EEG recording over multiple sampling points and when the source
magnitudes vary slowly with respect to the sampling frequency, it is required to set
a certain penalty for large changes between the sampling points.

A general formulation of how these constraints can be applied in practice was
proposed by [4]. This method involves application of spatial and temporal bases in
order to limit the solution subspace. Within this approach the problem formulation
(5.1) is extended to the following form:

M ¼ LSHT þ e; ð5:23Þ

where S and T are the pre-defined spatial and temporal bases respectively, and
matrix H holds the new optimization variables to be estimated.

Matrix S is composed of concatenated column vectors, each corresponding to a
spatial filter for a certain cortical patch. These filters set particular weights for dipoles
within the patch and set zero values to weights of dipoles which lay outside it. In this
manner the spatial smoothness property can be implemented. Examples of approa-
ches to spatial bases generation can be found in [4, 18]. The choice of spatial bases
significantly influences the method’s performance and accuracy. It is possible to
implement other various spatial constraints to the localization method through the
selection of S. For example, assumptions about spatial smoothness, region of interest
and spatial priors from an fMRI study can be embedded into the spatial bases.

In much the same way, matrix T implements the temporal smoothness property.
It contains row-wise temporal bases, which force the estimated dipole activations to
continue over the pre-defined temporal profiles. And again various prior knowledge
about EEG temporal properties can be utilized through the selection of appropriate
temporal bases. For example, wavelets or other common time-frequency bases can
be used to isolate a particular frequency band or contrast other time-frequency
characteristics.

Matrix H contains new optimization variables. Element Hij holds the magnitude
of an event in a cortical patch set by the i th column of S over the temporal profile
set by the j th row of T. Hence the resulting solution D is composed of a linear
superposition of individual event contributions. The number of cortical patches p is
generally lower than the number of dipoles in a source model n, and the number of
temporal bases t is lower than the number of samples k. Therefore, such repre-
sentation of a solution can noticeably reduce the inverse problem complexity.

5.3.3 Source Localization for BCI

In general, BCIs provide a way to interact with software without physical move-
ments. A limited number of software commands can be cast by interpreting the BCI
user’s brain activity. The majority of modern EEG-based BCI implementations rely
on a particular machine learning algorithm, which is utilized to make this decision.
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Within this paradigm the EEG signal is represented according to its characteristic
traits on the feature extraction stage. Feature vectors, extracted from the data, are
passed to a particular classification algorithm, which identifies the mental task being
performed and makes a final interpretation decision. Examples of classifiers com-
monly used in BCI design are Linear Discriminant Analysis (LDA), Support Vector
Machines (SVD), Artificial Neural Networks (ANN), and Hidden Markov Model
(HMM) [20, 24].

As explained earlier in the chapter, source localization represents the EEG signal
in terms of active sources located within the a volume of the brain, hence, con-
trasting spatial features of the given data segment. The values of dipole moments
from D can be used directly to form the feature vectors as shown in Fig. 5.6. This
approach to feature extraction is applicable, when the spatial representation of the
EEG signal provides sufficient information about the particular mental task being
performed. Certain types of neurophysiological effects used in BCI design, such as
SSVEP or P300, cannot be identified solely by locations of electrical activity.

Physiological studies show, that the execution of motor activity, or physical
motion creates recognizable patterns in the mu-band (8–13 Hz) and sometimes
beta-band (15–30 Hz) of EEG signals (as shown in Figs. 5.7 and 5.8) [28]. Apart
from the motor activity itself, imagination of motion or Motor Imagery (MI) also
creates similar detectable responses but of lower intensity. Since MI can be per-
formed without actual movement, it can be used as a control signal for a BCI
system [29]. A functional MRI study described in [22] shows that neural activations
accompanying motion and motor imagery originate in the areas of motor cortex
corresponding to the muscles involved. There is a large inter-subject variability of
cortical locations representing the same types of movement, as well as significant
level of overlapping between these areas. But the main conclusion of that research
is that localization of activity during MI execution is highly informative for MI task
detection. This validates the usage of source reconstruction methods for feature
extraction in MI-based BCIs.

Fig. 5.6 Schematic illustration of spatial feature extraction for BCI. Power topography used
directly to form the feature vector
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The EEG data used to obtain Figs. 5.7 and 5.8 is taken from BCI competition IV,
dataset 2a. It contains 22-channel EEG recordings of 4 MI tasks performed by
multiple subjects. Open-source FieldTrip framework for MEG/EEG data analysis
was used in order to obtain and visualize these time-frequency maps.

Dimensionality of the feature vector is tightly connected with the size of the
available training set. In order to create an accurate decision boundary the size of
the training set has to be 5–10 times the size of the feature vector. This effect is
often referred to as the curse of dimensionality [3]. Due to this constraint, in
applications where training data is difficult to acquire, the size of the feature vector
has to be significantly limited.

As shown earlier, brain imaging methods must rely on a certain head model,
which can be generated analytically or from anatomical MR images. Such indi-
vidual MR scans can often be unavailable, however, it is possible to use standard
MR models, such as ICBM 152 atlas provided by Montreal Neurological Institute.
This atlas is represented in a form of MR image, non-linearly averaged over 152
subjects. Although individual MR scans can provide more accurate information
about the subject’s head anatomy, and hence improve source localization precision,
it is often impossible to use it in practical BCI implementations, since BCI would
have to be configured individually for each subject. On the other hand standard MR
atlases are publicly available and can be easily converted into head models to be
used in BCIs feature extraction, hence they can be used as a compromise between
localization accuracy and BCI complexity.

Fig. 5.7 Time-frequency map of C3-channel of EEG recording during the execution of right-hand
MI task. Magnitudes of average band power are represented by color with respect to baseline,
estimated during idle period (−1 to 0 s). Time point 0 corresponds to the beginning of MI
execution, after which ERD in the upper μ-band can be observed
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5.4 Sparse Brain Imaging

5.4.1 Introduction to Sparse Brain Imaging

Earlier we have characterized the distributed inverse problem as underdetermined,
having multiple numerically feasible solutions for given input data. Various implicit
or explicit constraints should be applied to a solution space in order to regularize the
localization method and obtain a unique solution, which can be used to form the
feature vectors. Besides fore-mentioned anatomical constraints, sparse brain
imaging methods rely on the fundamental assumption that, within a short period of
time, very few cortical areas are electrically active. This assumption was repeatedly
validated by various fMRI studies, e.g., in [22]. Therefore, sparse imaging methods

Fig. 5.8 Time-frequency maps similar to Fig. 5.7 plotted for all electrodes for the given EEG
sensor configuration during right-hand MI task. Contralateral ERD can be observed in the area
around the C3 sensor, which fits into the expectations from [28]
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search for a solution with minimal energy localized over few dipoles with non-zero
magnitude values.

Sparse source localization approaches generally minimize the cost function C
(D), which fits into the general formulation of Tikhonov regularization. It can be
formally stated as:

CðDÞ ¼ M � LDk k þ k � f ðDÞ: ð5:24Þ

In Eq. (5.24) the term M � LDk k stands for the requirement of error minimi-
zation, whereas f ðDÞ is the regularization term and k is the regularization parameter
set beforehand. A single unique solution can be obtained by minimization of C(D),
if the cost function has a global minimum.

One of the advantages of sparse localization methods is that instead of directly
minimizing the cost function defined (5.24), the inverse problem can be solved by
means of Linear Programming (LP). The nature of LP solutions guarantees the
uniqueness of the estimated matrix D, corresponding to the global optimum of the
LP problem. Alternatively, if it is required to handle non-linear inequality/equality
constraints, the inverse problem can be solved by Second Order Cone Programming
(SOCP). Common examples of open-source software tools used to solve LP and
SOCP problems are SeDuMi and SDPT3, which are available in CVX package for
Matlab [9, 10].

5.4.2 Approaches to Sparse Source Localization

The earliest adopted approach to brain imaging based on energy minimization is
Minimum Norm Estimate (MNE) [13], which explains the given EEG measurement
by minimizing the Euclidian norm (l2-norm) of a solution. The norm of matrix
D represents the global magnitude of a solution. Hence, the method’s cost function
takes the following form:

CðDÞ ¼ M � LDk k2þk � Dk k2: ð5:25Þ

In terms of convex optimization, the problem can be formulated as follows:

minimize
D

Dk k2
subject to M � LDk k2 � b;

ð5:26Þ

where b is the pre-defined allowable degree of error. This problem formulation is
valid for a Single Measurement Vector (SMV) case, where M contains a single
column vector of measurements and D is a single solution vector. Application of l2-
norm in the regularization term represents the Gaussian spatial prior of current field
[7]. Due to the nature of the l2-norm operator, MNE produces blurry solutions with
low localization accuracy for both spherical and realistic head models [26]. Since
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the sources are defined to be equal, MNE localization methods tend to favor weak
and surface dipoles in the solution. In order to deal with this effect it is possible to
use a weight matrix W to rebalance the source model. This approach is often
referred to as the Weighted Minimum Norm Estimate (WMNE) and the problem
(5.26) can be refined as follows:

minimize
D

WDk k2
subject to M � LDk k2 � b:

ð5:27Þ

The spatial weight matrixW can be interpreted as a spatial filter, thus the WMNE
problem fits into the general model for spatio-temporal regularization in (5.23).
Spatial weights can be generated from the lead field matrix, for example, by finding
column-wise l2-norms of L. Other popular strategies for spatial weight selection and
their comparison can be found in [11].

In order to obtain a more concentrated sparse inverse solution, it is required to
minimize the sum of absolute source magnitude values, i.e. by minimizing the l1-
norm of D. In this case the optimization problem takes the following form:

minimize
D

Dk k1
subject to M � LDk k2 � b:

ð5:28Þ

Minimization of the l1-norm of D applies the sparsity constraint with exponential
current fields, which results in solutions with energy concentrated over a few
sources. However, in high-resolution source models with a large number of dipoles
it is often necessary to take into account the local propagation effects and constrain
the local smoothness, as shown in Sect. 3.2. Sparse source localization methods
originating from MNE are often called lp Generalized Minimum Norm Estimates
(GMNE), according to the type of regularization applied to method, such as the l1-
norm GMNE.

Examples of GMNE methods described earlier are generally applied to source
models with constant orientation parameter e for each dipole. The Sparse Source
Imaging (SSI) method, presented in [7] performs a two-step GMNE procedure to
find the inverse solution, by first estimating source orientations and then finding
optimal magnitude values for these sources.

If M holds EEG data recorded over multiple time samples, it is required to solve
a Multiple Measurement Vector (MMV) problem by analyzing the whole given
block of data. GMNE imaging methods applied separately to individual columns of
M often lead to the unrealistic solutions with source sparsity profile varying rapidly
over time samples. It is necessary to avoid such solutions, if the neural activity is
expected to vary slowly with respect to the sampling frequency.

Following the recommendations from [5, 14] it is possible to solve the MMV
inverse problem by minimizing the sum of row-wise l2-norms of D, e.g., for l1-
norm GMNE:
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minimize
D

Dh ij j1
subject to M � LDk k2 � b;

ð5:29Þ

where Dh ij j1¼ l̂2ðDÞ
�� ��

1 and l̂2ð�Þ denotes the operator returning a column vector of
row-wise l2-norms.

Minimization of the solution’s energy has been proven to be a powerful
approach to inverse problem solving, since the sparsity constraint is validated by
the nature of EEG. In practice, imaging methods have various disadvantages, such
as susceptibility to noise or low resolution, which often limits their application to a
particular experimental paradigm or type of neural activity being observed on EEG.
Hence, it is necessary to choose a certain localization method according to the
application and experimental settings. Besides that, many disadvantages of locali-
zation methods can be alleviated by applying appropriate signal preprocessing
techniques, such as application of region of interest, frequency filtering or ICA.

5.4.3 Examples of Sparse Source Localization

Performance of sparse localization methods can be demonstrated on a basic sim-
ulated example. Let us assume a single dipole d with fixed location and orientation
along the z-axis. For the current example, the head geometry was generated from
the symmetric ICBM 152 head atlas by applying the BEM head model generation
method, provided in FieldTrip framework. A relatively simple 22-channel EEG
electrode layout was used, which corresponds to practical and mobile EEG systems
used in BCI design. The source model is comprised of 1,443 dipoles located in a
regular grid within a 1.5 cm thin cortical layer. The number of sources used in the
current simulation is relatively small, which is typical for BCI applications with
strict computational complexity limitations. The BEM head model as well as spatial
properties of the given dipole and EEG configuration are shown in Fig. 5.9. After
all the required parameters have been set, it is possible to solve the forward problem
for the current configuration and thus obtain a lead field matrix L.

Let us assume that the given dipole represents a localized 12 Hz oscillatory
activity, which corresponds to the upper μ-band of EEG signal. The matrix D thus
contains zero values for all dipole moments except for z-component of dipole d,
which is given by dzðtÞ ¼ 0:5sinð2pfdtÞ þ 0:5, where the dipole oscillation rate
fd ¼ 12 Hz and t corresponds to a 250 Hz sampling frequency.

Having the dipole moments D and forward problem solution L set, it is possible
then to obtain a measurement matrix M, which simulates a block of 22-channel
EEG data recorded over 750 sampling points, corresponding to 3 s for a chosen
sampling frequency. It can be done in a straight-forward manner by inserting D and
L into Eq. (5.19). A noise matrix e was then added to the measurement matrix, in
order to simulate a more realistic noisy EEG signal.
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Localization results for different levels of noise were obtained as shown in
Fig. 5.10 by applying the standard l2-norm GMNE method to individual columns of
M, corresponding to different sampling points.

After performing source localization, the newly obtained matrix D̂ contains
dipole magnitude progressions over time. It is possible then to highlight certain
temporal and frequency properties of the signal of interest in source space instead of
EEG electrode space. For example, one can apply a band-pass filter to the signal
from each dipole and obtain average band power for all locations in the source
model, as shown in Fig. 5.11.

Since only a single dipole is simulated to be active over the observation time, it
is expected that source reconstruction would produce much more focused results
rather than the images presented in Fig. 5.11. However, localization results for all
noise conditions are obtained with the same value of regularization parameter k (see

Fig. 5.9 BEM head model, EEG sensor configuration and dipole location used in simulation. Left
to right: X–Y view, X–Z view, Y–Z view. EEG electrode locations are represented by black dots
on the skin surface

Fig. 5.10 l2 GMNE localization results of a single time sample of the simulated EEG signal with
various levels of noise. The used time sample of M corresponds to the maximum magnitude of
d. Figures contain power topographies for three noise conditions estimated for the same

regularization parameter k and plotted on the same scale. aNoiseless case. b ek k2
Mk k2 ¼ 0:3. c ek k2

Mk k2 ¼ 0:7

148 A. Zaitcev et al.



Eq. (5.25)). When setting the value of k, it is necessary to take into account the
trade-off between the solution sparsity and performance in the presence of noise.
The lower value of k sets a lower penalty for blurry solutions, where energy is
spread over larger areas. However, such unfocused solutions can partially com-
pensate for noise and produce more anatomically feasible images. Interpreting the
results in Fig. 5.10, it is possible to say that source localization algorithms always
produce a certain degree of error, which needs to be alleviated either on the for-
ward/inverse problem stages by setting particular constraints to the solution, or by
applying appropriate post-processing methods to extract the location of signal of
interest from the estimated topographies. One straight-forward way to improve the
localization accuracy is to increase a number of dipoles in the source model.
However, increase of the spatial resolution increases the dimensionality of opti-
mization variable D̂ and thus makes the inverse problem more computationally
complex.

Source localization methods based on minimization of l1-norm are capable of
producing more sparse and focused solutions to the inverse problem when com-
pared to l2 GMNEs. However, they behave quite differently in the presence of
noise. Let us apply l1 GMNE with problem formulation described in (5.28) to the
same simulated example as shown above. Localization results for the three different
levels of noise are illustrated on the Fig. 5.12. In the noiseless case (Fig. 5.12a) l1
GMNE produces accurate sparse solution with a cluster of active dipoles at the

Fig. 5.11 Topoghraphy of average 11–13 Hz band power of a noisy simulated EEG signal

( ek k2
Mk k2 ¼ 0:7). Each row of D̂ can be treated as a separate channel containing dipole moment

progressions over time. It is then possible to perform FFT over rows of D̂ and obtain the average of
11–13 Hz components for each source over 3 s of observation. Hence, this figure contains single
scalar values of average band power obtained for every dipole visualized over the simulated brain
surface
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expected location, which is more preferable than l2-norm minimization results from
the Fig. 5.10a. However, in the presence of noise l1 GMNE tends to produce
solutions with several disconnected active sources, as shown on Fig. 5.12b, c,
which can lead to the ambiguity in results interpretation. This negative effect can be
alleviated by introduction of additional constraints to the solution space validated
by the parameters of neurological event to be localized.

5.5 Chapter Summary

The overall BCI performance is primarily defined by the accuracy of a chosen
classifier. Linear classifiers such as LDA or SVM have been shown to be efficient in
modern BCI implementations [20]. An interpretation decision is made by the
classification algorithm with respect to a decision boundary, obtained from the
available training data. This decision boundary separates trials corresponding to
different types of mental tasks used as BCI control signals. In order to obtain a clear
boundary and thus maximize the classification accuracy, both training data and BCI
control signals have to be represented as feature vectors in a way to contrast
characteristic features of a given type of EEG data. In the context of BCI design,
such a signal representation is referred to as feature extraction.

In practical BCI implementations, a particular type of feature extraction can be
defined according to the neurophysiological event being used as a control signal. If
the control signal for different classes of data originates from different cortical
locations, it is appropriate then to represent EEG data according to its spatial
features. For example, this approach can be used in MI-based BCIs, where the BCI

Fig. 5.12 l1 GMNE localization results of a single time sample of the simulated EEG signal with
various levels of noise. The used time sample of M corresponds to the maximum magnitude of d.
Figure contain power topographies for three noise conditions estimated for the same regularization

parameter k and plotted on the same scale. a Noiseless case. b ek k2
Mk k2 ¼ 0:3: c ek k2

Mk k2 ¼ 0:7
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command is defined by the type of imaginary movement being performed by the
user. Imagination of movement is accompanied by ERD/ERS localized in the area
of motor cortex corresponding to the muscles involved. Execution of different types
of MI tasks results in different cortical power topographies, which can be contrasted
and separated by the classifier.

EEG signal can be characterized by excellent temporal resolution and poor
spatial resolution, due to low SNR, volume conduction effects and large correlation
between EEG electrodes. Because of these effects, straight-forward extraction of
spatial features from data in EEG space is impractical and cannot result in sufficient
classification accuracy. However, it is possible to use prior knowledge about human
neurophysiology, anatomy and EEG physics to extrapolate the given EEG data onto
a source space of higher dimensionality. Various source localization methods can
be utilized to perform such EEG data representation and form feature vectors from
the estimated new data set with an improved spatial resolution.

Source localization methods rely on multiple assumptions and conditions used in
both the forward and inverse problem solving process. At first, a certain type of
head geometry, source model and EEG sensor configuration must be used relating
the activation of each individual source to the skin surface potential and thus solve
the forward problem. The lead field matrix or gain matrix, which is obtained as a
solution of the forward problem, can then be used to relate the surface potentials in
the given EEG recording to source magnitudes and hence solve the inverse
problem.

The EEG inverse problem is an example of an ill-posed problem. Since the
number of sources is usually significantly larger than the number of EEG elec-
trodes, it is necessary to use multiple assumptions and signal properties in order to
limit the solution space and obtain a unique solution. Various numerical approaches
originating from different disciplines and scientific areas have been applied to the
inverse problem, resulting in source localization methods varying in localization
accuracy and complexity.

Solution sparsity is used as a fundamental constraint in a family of sparse source
localization methods. Minimization of a solution’s energy results in images with
densely localized active cortical areas. However, localization accuracy of sparse
imaging methods is significantly impaired for EEG signals with low SNR. In order
to deal with the negative effects of noise, it is necessary to apply appropriate signal
preprocessing techniques to EEG data before source reconstruction. In addition to
its low computational complexity, the advantage of sparse source localization
methods is that the inverse problem can usually be expressed in terms of a linear
optimization problem. This gives the flexibility to set multiple anatomically vali-
dated constraints to the problem and hence produce more realistic images. Further
improvement of sparse imaging approaches is possible through more accurate
utilization of EEG signal properties and anatomical priors in both forward and
inverse problem solving stage. This prior knowledge represented in a combination
of solution constraints can provide better localization precision leading to improved
classification accuracy and as a result better BCI reliability and performance.
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Chapter 6
Hippocampal Theta-Based Brain
Computer Interface

L.C. Hoffmann, J.J. Cicchese and S.D. Berry

Abstract Theta rhythm is a 3–12 Hz oscillatory potential observed in the hippo-
campus during cognitive processes ranging from spatial navigation to learning. The
3–7 Hz range occurs during immobility and depends upon the integrity of cho-
linergic forebrain systems. The amount of pre-training theta in the rabbit strongly
predicts the acquisition rate of classical eyeblink conditioning and impairment of
this system substantially slows the rate of learning. Recent experiments utilized a
brain-computer interface that makes eyeblink training trials contingent upon the
explicit presence or absence of hippocampal theta. Power spectral ratios based on
continuous sampling of hippocampal local field potentials were used to ensure that
each trial was triggered during the appropriate theta state. One group received
training during high theta and the other during very low theta. The results have been
consistent and substantial—theta-contingent training produces a two- to four-fold
increase in learning speed, accompanied by striking differences in hippocampal,
prefrontal and cerebellar electrophysiological patterns. Unlike many interfaces that
serve as sensory or motor prostheses, our system appears to engage cognitive
resources that accelerate the rate of associative learning. One mechanism for this
improvement might be better coordination of the phase relationships in the essential
circuitry that includes cerebellum, hippocampus and medial prefrontal cortex, as
well as brainstem nuclei necessary for the sensory and motor events during each
trial. This chapter reviews such findings and proposes experiments that use this
cognitive BCI to clarify the essential roles and coordination of structures in the
distributed system that underlies eyeblink conditioning.
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Keywords Hippocampus � Theta � Power spectra � Eyelid classical conditioning �
Rabbit

List of Abbreviations

BCI Brain-computer interface
CR Conditioned response
CS Conditioned stimulus
HVI Hemispheric lobule VI
I/E Inhibitory/excitatory
IPN Interpositus nucleus
ISI Inter-stimulus interval
ITI Inter-trial interval
LFP Local field potential
LTD Long-term depression
LTP Long-term potentiation
T+ Theta-triggered
T− Non-theta-triggered
UR Unconditioned response
US Unconditioned stimulus

6.1 Introduction

The findings of a unique line of experiments using a custom-designed brain–-
computer interface (BCI) have established that hippocampal theta reflects a brain
state conducive to rapid acquisition of the stimulus contingency underlying eye-
blink conditioning, requiring significantly fewer trials to reach asymptotic criteria of
behavioral performance. These behavioral enhancements are consistently accom-
panied by significantly larger local field potential (LFP) and unit responses in
hippocampus, qualitative differences in prefrontal cortex firing patterns, and sig-
nificant rhythmicity in cerebellar LFPs. As suggested in several theoretical models
[17, 19, 47, 49], theta oscillations may provide a basis for wide-ranging coordi-
nation of distributed brain systems, with cellular responses (including plasticity)
that resonate to inputs related to theta phase. Our data and methods suggest that
such theta-based temporal coordination throughout the eyeblink system can be a
powerful tool in controlling and analyzing neural mechanisms that underlie the
behavioral benefits. Here we review our BCI technology, model system and
empirical findings along with the important implications of each to the study of
oscillations in neurological systems and to the neurobiological foundations of
learning and memory.

LFPs are the low frequency components of the recorded neural activity, which
biologically range from delta to high gamma frequency (0.01–200 Hz). It is thought
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that LFPs mostly reflect the sum of large numbers of postsynaptic discharges. The
overall recorded signal thus represents the potential caused by the sum of all local
currents on the surface of the electrode. LFPs are, therefore, thought to represent
synaptic input as well as local processing. The LFP can be independent of the
individual spiking outputs measured at a particular location [75]. However, there is
a well-established systematic relationship between LFPs and units, in that most
units in the brain have a preferential phase at which they are most likely to fire. A
number of studies have demonstrated the phase coding of activity via LFPs. One of
the most well-established examples of this temporal coding is, the firing of hip-
pocampal place cells, which collectively represent a cognitive map of an animal’s
environment. Place cells show a systematic phase relationship to theta in the LFP
[90]. These authors reported that hippocampal place cells encode an animal’s
location within the place field of a cell through the relation of its firing to the phase
of theta frequency LFPs in the area. They report on the phenomenon of phase
precession in which the place cell unit activity is modulated at a higher frequency
than the frequency of the theta LFP—this results in a phase shift in the unit activity
(relative to the LFP) from late to progressively earlier phases as the animal moves
through the place field. This phenomenon provides a phase code for location, that is
independent of the unit activity rate code (which also codes for location), and can
be modulated by other external factors.

Hasselmo [47, 49] has also reported extensively on a unit-phase relation phe-
nomenon in the context of encoding and retrieval processes in the hippocampus. In
this case, theta is able to provide itself as a mechanism for temporal control over
long-term potentiation (LTP) induction and by inference then, also, the storage and
retrieval of info from hippocampus based on the phase relationship of incoming unit
activity. Specifically, the peak of CA1 theta (or trough of fissure theta) corresponds
to the period during which encoding of new information in the form of unit activity
entering the hippocampus from entorhinal cortex takes place. The trough of CA1
theta (or peak of fissure theta) corresponds to the period during which retrieval of
information from the hippocampus to entorhinal cortex occurs (corresponds with
higher pyramidal cell firing activity). These phases allow for their corresponding
function (encoding or retrieval) to occur based largely on the fact that the each is
related to a shift on the continuum of stability and malleability of the network. Such
empirically supported models have proved LFPs to be important to normal pro-
cessing functions as opposed to the once held prejudice of LFPs as epiphenomena.

The definitive function of neurobiological oscillations is not completely estab-
lished and continues to develop. As a whole these oscillatory rhythms are thought to
act as timing signals in the brain. The cycle length of a given oscillatory frequency
represents a repetitive temporal window in which information encoding and
information transfer can take place. Furthermore, organizing and synchronizing
activity within and among different brain regions is an important function served by
oscillations that allows for very dynamic and transient forms of functional con-
nectivity in the brain. By synchronizing and desynchronizing their activity in
relation to each other, brain structures are able to functionally select which inputs
arrive and are sent during a time window of maximal effect, and thereby cause a
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change in the desired direction in the activity of the receiving group of neurons
[40]. This can occur regardless of direct physical connections between regions of
interest.

Motor coordination, perception through feature binding, memory and other
cognitive functions, and even consciousness are thought to involve neurobiological
oscillations and synchronization of neural networks [6, 19, 48, 107, 128]. Dis-
ruptions to these normal oscillatory patterns can consequently have devastating
effects on these processes [104, 124]. Understanding the roles of oscillations, such
as theta, and the processes by which they operate may inform our understanding of
cognitive dysfunctions and provide innovative treatment options. Our interface
allows us to examine not only normative or optimal function, but also the behavior
of neural systems under uncoordinated or dysfunctional conditions. Here we present
our systematic approach to the study of oscillatory potentials and their role in
learning. Coverage begins with an introduction to the history, advantages and
relevant circuitry of our model system, rabbit eyeblink classical conditioning. The
development of this cognitive-enhancement BCI with its array of applications
within this model system then follows. Such work includes our findings hippo-
campal theta modulation of prefrontal cortex and cerebellar electrophysiological
responses as well as unique age-related learning enhancements. The chapter con-
cludes with discussion of our theta-contingent BCI in the context of relevant
research and progress in the field. Our innovative and unique approach has been
highly productive over the last few years and takes our research in promising future
directions for the neurobiology of cognitive proceses.

6.2 Related Work

6.2.1 Model System: Rabbit Eyeblink Conditioning

Eyeblink classical conditioning has had a long history as a model paradigm for
assessing the functions of systems involved in learning and memory, simplified by a
highly controlled environment. Evolving from the pioneering ideas of learning
theorists such as Pavlov and Estes, the fundamentals of this task involve repeatedly
pairing a relatively neutral conditioned stimulus (CS), commonly a tone or light,
with a reinforcing unconditioned stimulus (US), such as a corneal airpuff or mild
periorbital shock that produces a reflexive, or unconditioned, response (UR). Such
repeated CS–US parings over a number of training trials eventually promotes
acquisition of adaptively timed conditioned responses (CRs) that are indicative of
learning. The adaptive nature of this behavioral CR is such that the eyelid closes in
response to the tone CS and is precisely timed to peak prior to US onset in order to
avoid the mildly aversive airpuff or shock stimulus [78, 92, 100]. The discrete and
controlled nature of the conditioned and unconditioned stimuli and easily measured
behavioral responses underlie the success of eyeblink conditioning as a tractable
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model for studying neural mechanisms of learning. This paradigm has also proved
well-suited for neurobiological analyses because the use of appropriate unpaired
(CS alone) control procedures aid in distinguishing between areas of the brain that
are responding to the sensory stimuli or the motor response and those that are
selectively activated under conditions of CS–US paired learning.

Dating back to 1899, the first published report by Zwaardemaker and Lans used
eyeblink conditioning as a means for studying simple forms of learning in humans.
In the early 1960s, Gormezano and colleagues adapted eyeblink conditioning to
rabbits, leading to its extensive use for over five decades to study associative
learning and sensory-motor processes (for review, see [44]. Rabbits provided an
ideal animal to use in conditioning studies because they allow for precise measures
of neural processes and invasive treatments to analyze functional mechanisms.
Also, rabbits are known to adapt quickly to restraint allowing for accurate measures
of behavioral and neural responses with little or no inter-trial movement.

A number of variations of this task have been developed since its inception
including delay, trace, discrimination/reversal and backward conditioning among
others. Delay and trace eyeblink conditioning (Fig. 6.1) represent the most common
forms and are importantly distinguished both by the duration of the inter-stimulus
interval (ISI) between CS onset and US onset as well as the neural substrates
required in each case [109]. In the simplest form of the task, delay eyeblink con-
ditioning, the consistently preceding CS overlaps and co-terminates with the US
leading to ISIs that range between 200 and 700 m in rabbits and a learning
framework based on contiguity of stimuli. In contrast, trace eyeblink conditioning

Fig. 6.1 Delay and trace eyeblink conditioning stimuli with commonly used temporal parameters.
Time = 0 ms indicates trial onset. Behavioral learning is measured by the number of CRs emitted
by the subject. Adaptive eyeblink closures begin prior to US onset and extend into the US period
in order to avoid the aversive stimulus
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involves a CS that ends prior to delivery of the US. ISIs generally range from
600–1,000 ms and require a higher form of contingency learning by the subjects.
This imposes additional demands on the subject as the CS and US do not co-occur
and information about the CS must therefore be retained or “remembered” by the
involved neural circuitry over a period of time between the two stimuli.

Due largely to Richard F. Thompson’s systems mapping approach, a conver-
gence of lesion, pharmacological inactivation and neural recording studies has
demonstrated that acquisition and retention of all forms of eyeblink conditioning
rely on a highly localized brainstem-cerebellar circuit (for review, see [25, 117].
Specifically, it has been shown that lesions of the cerebellum that include the
interpositus nucleus (IPN) ipsilateral to the trained eye prevent learning the CR
[81]. Furthermore, lesions of this region after training abolish the already acquired
CR [28]. The cerebellum has been suggested as the location of long-term storage of
the memory trace since lesions and inactivations of the IPN carried out as late as
30 days after learning still abolish the CR [25]. Along with the deep nuclear region,
cerebellar cortical areas (including anterior lobe) and dorsal accessory region of
inferior olive are also among the essential structures for even the simplest forms of
eyeblink conditioning [15, 42, 82, 91, 92, 134, 135]. As learning occurs, cells of the
interpositus nucleus are known to increasingly inhibit the inferior olive. Due to its
temporal properties, this inhibition serves as an important feedback signal back to
cerebellar cortical Purkinje cells indicating prediction error and controlling learning
[121]. It is suggested that cerebellar cortex Purkinje cell activity during the CS
serves to disinhibit IPN cells, making it possible to elicit a behavioral response and
to signal the induction of a long-term potentiation (LTP)-like phenomenon at CS-
activated synapses in the IPN [77, 107].

Related to the behavioral CR, an increase in multiple unit activity, representing
the number of action potentials of a large group of neurons, is seen in the cere-
bellum [24, 83]. Depending on the formation of this cerebellar neural model of the
CR [28, 103], similar neural models of the CR emerge also in other brain structures,
for example in the hippocampus [7]. Thus, both the behavioral and neural CRs
seem to depend on an intact cerebellum. The hippocampus and prefrontal cortex are
considered non-essential for delay eyeblink conditioning as learning is not pre-
vented by forebrain lesions [68, 79, 85, 93, 99, 114, 120]. However, these regions
are thought to play modulatory roles in that they can accelerate or delay behavioral
acquisition [10, 97, 112].

Trace eyeblink conditioning appears to require the same brainstem–cerebellar
circuit for acquisition and retention as delay eyeblink conditioning [119, 131] but,
when the stimulus-free trace period is long enough (500-ms for rabbits) the hip-
pocampus [87, 114, 127] and other forebrain areas such as the medial prefrontal
cortex are required as well [68].

Lesion studies in human populations are consistent with what is known about the
involved eyeblink circuitry and its basic organization in the rabbit brain [117].
Several studies have found that individuals with cerebellar damage show impaired
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eyeblink conditioning largely in the absence of motor deficits that would been
expected to interfere with performance of the unconditioned eyeblink responses
[35, 113, 122, 132]. Research has also demonstrated in medial temporal lobectomy
patients that subjects are able to learn simple delay eyeblink but are impaired with
conditioning paradigms that are more complex, such as trace eyeblink [29, 33, 34,
41, 84]. Prefrontal roles observed in animals models have also been generally
extended to humans [13, 101].

As a result of extensive research mapping the critical neural substrates, this
paradigm is perhaps the most well-understood and extensively used neurobiological
model for mammalian associative sensorimotor learning. Such work in animal
models of conditioning have demonstrated close behavioral parallels with human
eyeblink conditioning, lending support to the hypothesis that the learning shares
common neurobiological substrates in humans and other mammals. These factors
place rabbit eyeblink conditioning in an ideal position for use as a model system to
study the roles of less understood phenomena (such as neurobiological oscillations)
with a high level of validity and applicability to human populations.

6.2.2 Theta-Triggering Interface Development and Initial
Applications

Neurobiological oscillations are widely known to act as timing signals in the brain,
biasing input selection, facilitating synaptic plasticity, and coordinating activity
within and across different regions [17, 21, 47, 73, 74, 107, 128]. Hippocampal
cholinergic theta oscillations, which are low frequency, sinusoidal waves ranging
from 3 to 7 Hz, serve as an index of hippocampal functional state and are within the
bandwidth of oscillations that have been proposed to synchronize large areas or
across long distances [17, 21, 45]. The natural ebb and flow of theta is a common
feature across species, presumably allowing for its well-documented role in tran-
sient and state-specific timing functions [18, 45, 67, 72]. Normally, rabbits show
episodes of theta that last for Normally, rabbits show episodes of theta that last for a
few seconds, interspersed with irregular activity composed of several frequencies
above and below the theta bandwidth. Delta (0.5–2.5 Hz), alpha (8–12 Hz), gamma
(40–150 Hz) and ripple (150–200 Hz) have also been reported to occur in the awake
animal. Cholinergic theta in the hippocampus relies on the integrity of inputs from
medial septal nucleus and the lateral limb of the diagonal band of Broca, as lesions
or pharmacological disruptions with anti-cholingergic drugs have been shown to
significantly reduce the amount of theta or severely disrupt the regularity and
amplitude of these waves [5, 10, 111, 118]; for review see [12].

In 1978, Berry and Thompson [9] unexpectedly discovered that amount of
spontaneous hippocampal theta present prior to delay eyeblink conditioning was
correlated with a faster learning rate in rabbits. Using 2-min pre-training LFP
recordings from hippocampal CA1 region of rabbits prior to delay eyeblink
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conditioning, Berry and Thompson applied a zero-crossing analysis to the wave-
forms and found that the amount of time characterized by a high proportion of
2–8 Hz compared to 8–22 Hz activity correlated negatively with the number of
trials required to reach behavioral learning criterion. Thus, more theta yields faster
learning (fewer trials). In addition to the correlation between the pre-training theta
levels and learning rate, this study also demonstrated a significant correlation
between the change in the amount of hippocampal theta activity across training and
learning rate, fast learners moving towards a less synchronized state and slow
learners towards a more synchronized theta state [11] resulting in more similar
amounts of theta activity in all subjects after conditioning. These findings stressed
the value of using extracellular LFPs as an index of neural processes, specifically
hippocampal state, conducive to synaptic modification for learning. More recently,
these original results have been replicated [88] and extended to human preparations
[22, 23].

It has since been well documented that treatments disrupting hippocamal theta
impair the acquisition of eyeblink conditioning [10, 38, 63, 97, 111, 114, 115]. A
number of studies have also demonstrated the benefit of theta to learning and
memory by artificially eliciting or enhancing theta to accelerate behavioral learning
[36, 53, 65, 71, 123, 129]. One drawback to such lesion and drug studies is that they
produce unnatural brain states, due to their permanent modification of the systems
involved in theta and their inability to specifically coordinate theta with individual
conditioning trials [112]. In a conditioning session, rabbit hippocampal theta typ-
ically occurs in epochs varying from two cycles to several seconds in duration,
interrupted by periods of non-theta (either large irregular activity or sharp waves).
This natural ebb and flow may be an important aspect of theta in cognitive pro-
cesses [17]. Long-lasting or permanent treatments such as drugs or lesions prevent
this natural fluctuation and may induce LFPs that look like theta but interact dif-
ferently with the endogenous neural substrates. For example, electrical stimulation
of medial septum (producing theta field potentials in hippocampus) has been shown
to produce aberrant, “non-physiological” activity patterns in theta-related cells in
the hippocampus [98]. One solution to this important problem of maximizing theta
would be to let natural variation occur but restrict trials to make sure they coincide
with endogenous hippocampal theta, as pursued in studies from our lab.

In our attempt to discern the significance of naturally occurring theta within
conditioning sessions, we developed a BCI to limit eyeblink training to two nat-
urally occurring extremes of hippocampal theta such that each of two groups can be
trained in either the explicit presence (T+) or absence (T−) of on-going theta [102].
Our unique methods included chronic implantation of monopolar stainless steel
electrodes with a frontal skull screw as a reference/ground. Electrodes were located
in specific cell layers of hippocampus by recording of electrophysiological patterns
during the lowering of electrodes in animals under general anesthesia. Custom
bioamplifiers provide a gain of 3,500–8,000 for bandwidths of 0–25 Hz for LFPs
and 500–5,000 for unit action potentials. During training, commercial software
(LabView) samples LFP data at 100 Hz in the 0–25 Hz bandwidth. Fast Fourier-
based power spectral analyses calculate a ratio of theta (3.5–8.5 Hz) to nontheta
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(0.5–3.5 Hz plus 8.5–12 Hz) during a 640 ms sample of spontaneous LFP data. This
ratio was updated every 160 m with a partially overlapping sample (deleting the
first 160 m of the prior sample and adding the most recent 160 m). If the ratio was
1.0 or greater for 3 successive samples (total of 960 ms), a training trial was
initiated in the theta positive group (T+). If the ratio was below 0.3 for 3 successive
samples, then a trial was initiated for the theta negative (T−) group. Thus, the
behavioral training groups had trials under opposite extremes of theta in the
spontaneous, pre-trial theta LFP (Fig. 6.2).

Unlike the pre-session baseline assessed in the 1978 study by Berry and
Thompson [9], these methods created an on-line amplitude measure to restrict trial
presentation dependent on frequency components of the hippocampus extracellular
potential. Furthermore, it permitted assessment with trial-by-trial ‘resolution’ of
how neurobiological oscillations (theta) influence learning rate. This technology
served to hold hippocampal theta constant during training trials in the manner of a
brain state “clamp” (analogous to the voltage clamp in basic neurophysiology) that
can either maximize or minimize the impact of naturally occurring theta states.
Rather than forcefully holding this parameter constant, our approach allows natural

Fig. 6.2 Examples of hippocampal slow-wave activity that triggered trials in the T+ and T−
groups. Notice that slow-wave activity during T+ trials (top left) showed a predominance of
activity in the theta band. Conversely, hippocampal activity during T− trials (top right) showed a
mixture of frequencies higher and lower than the theta band. Below are representative
spectrograms illustrating distributions of frequencies within a 0–22 Hz bandwidth that may
trigger a trial in T+ (bottom left) or T− (bottom right). Note that T+ spectrograms have high theta
and low delta and alpha, while T−, in this case is characterized by low theta and high delta
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fluctuations while ensuring that training trials and neural recordings are clearly in
one theta state for each treatment group.

Using this technology, the initial study by Seager et al. found that delay eyeblink
trial presentations during naturally occurring theta led to significant increases in
learning rate relative non-theta conditions. Specifically, those animals receiving
trials in the explicit presence of theta (T+) reduced the number of trials required to
reach asymptotic criterion (8 consecutive CRs out of 9 trials) by nearly half of what
was required by animals receiving trials in the explicit absence (T−) of theta
(Fig. 6.3). These results were further interpreted in the context of yoked control
groups, in which the inter-trial intervals (ITIs) were matched to T+ or T− subjects
but theta was not specifically controlled. This was important because the number of
trials per session and the inter-trial interval are known to affect learning rate [14, 64,
94, 96, 116]. These groups also allowed for some inferences to be made regarding
the direction of the behavioral effect, namely that T− animals performed signifi-
cantly worse than animals in which theta was unregulated, while T+ animals were
not significantly different than either group of yoked controls. This study (and the
original theta-learning findings in 1978) related hippocampal function to the rate of
delay conditioning, and led to the important conclusion that appropriate activity in
the hippocampus, while not being essential for learning, still modulates the neural
processes important to conditioning. This is in line with the conclusions of afore-
mentioned pharmacological manipulations supporting the idea that a dysfunctional
hippocampus is more detrimental to learning than complete hippocampal removal
[1, 4, 10, 97, 111, 118]. Since the hippocampus becomes part of the essential

Fig. 6.3 a Average trials to reach asymptotic responding (8/9 CRs) during delay and trace
conditioning. b Average difference from yoked controls in number of trials to reach asymptote.
Hippocampal non-theta contingent trial presentation leads to significant delays in trials to
asymptotic responding in delay eyeblink. In contrast, theta-contingent trial presentation
significantly accelerates learning in trace eyeblink conditioning. Yoked controls indicate that
behavioral effects of theta triggering during delay conditioning are due to detriments in the T−
condition, while effects during trace conditioning are due to T+ enhancements. Asterisks indicate
significance at α = 0.05
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eyeblink circuitry only when the paradigm is altered so that there is no overlap
between CS and US (trace conditioning), subsequent studies used the trace para-
digm to examine the role of theta in hippocampus-dependent behavioral learning.

The first study to employ theta-contingent conditioning during trace eyeblink
confirmed the originally observed behavioral benefit of pretrial theta-triggering in
that T+ animals required significantly fewer trials to reach behavioral criterion than
T− animals (Fig. 6.3) [46]. In addition, yoked behavioral controls revealed that the T
+ animals learned significantly faster than their uncontrolled-theta counterparts. T−
animals learned only marginally slower than their yoked controls. That is, theta-
contingent trial presentation not only had a behaviorally beneficial impact, but also
had a detrimental impact when theta was low or absent in the hippocampus.
Importantly, the effect of theta on hippocampal unit conditioned responses during
the tone and trace interval revealed major differences. On day 1, the unit responses in
T+ and T− groups were the same, but on days 2 and 3, qualitative differences
emerged. Specifically, in both CS and trace intervals the excitatory response
increased in T+ , whereas units in the T− group were actively inhibited below
baseline (pre-CS) activity levels. It is well known that the cell populations in hip-
pocampal area CA1 are dominated by pyramidal (output) neurons that outnumber
interneurons by 10:1. This strongly suggests that the output of the hippocampus had
failed to display increased excitability to conditioning stimuli when theta was not
present and may explain the slower development of CRs in animals lacking theta.
This is functionally important from a neurobiological standpoint because our finding
requires active inhibitory processes, rather than simply a failure to increase firing
rates. Additionally, persistent firing through the trace might be important for the
documented role of forebrain structures in bridging the temporal gap between CS
and US in early phases of trace eyeblink learning [60, 61, 62, 106, 114, 120, 126].

The modulation of electrophysiological responses in hippocampus during theta-
contingent trace conditioning was further demonstrated in subsequent studies
showing that hippocampal LFPs and multiple unit excitatory responses displayed
much more rhythmicity in the theta band in the T+ group compared to T− [31, 50].
Among such findings, it was discovered that the phase of hippocampal theta rhythm
‘resets’ following evoked potentials to the conditioning stimuli [31], similar to what
has been found during working memory tasks in rats [43, 80]. This reset correlates
with optimal conditions in LFPs for a learning-related phenomenon known as long-
term potentiation and may provide a mechanism for optimally timed neural
responses within the hippocampus and extra-hippocampal structures. Darling et al.
also examined hippocampal multiple unit responding during the trace period.
Similar to Griffin et al. [46], unit responses in the T+ condition showed significantly
enhanced excitation during the second half of the trace period (Fig. 6.4); however,
unlike the Griffin et al. study, this enhancement was seen on day 1 of training,
before consistent CR performance had emerged. This enhancement was present
through the early (day of 5th CR occurrence) and late (day of 8/9 CRs) learning
phases. Additionally, autocorrelations revealed that T+ units fired at *6.25 Hz
rhythm on the day of 5th CR, but T− units fired at no noticeable periodicity.
The enhanced excitation and rhythmic firing at theta frequency in T+ animals over
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T− supports the notion of increased hippocampal plasticity early in training due to
pre-trial theta state.

6.2.3 Extra-Hippocampal Modulation Using Our BCI

Recent theories and models of hippocampus have added increased emphasis to the
possible coordinating role of oscillatory field potentials, such as theta, during
learning and other cognitive processes. Because modulatory structures, such as the
hippocampus, become necessary during trace eyeblink conditioning, it is important
to explore the learning-related electrophysiology of extra-hippocampal structures
that are also necessary for the task. Following this simplified logic, our laboratory
has recently extended our studies of hippocampal theta-triggering to structures
outside the hippocampus, specifically two areas known to play key roles in trace
eyeblink conditioning: the cerebellum and the prefrontal cortex/caudal region of
anterior cingulate cortex.

In the first of these experiments, we assessed the role of hippocampal pretrial
theta state on neural response patterns in the prefrontal cortex/caudal anterior cin-
gulate cortex. Using the theta-triggering paradigm during trace eyeblink condi-
tioning, recordings revealed a hippocampal-dependent enhancement of multiple
unit firing in prefrontal cortex [31]. In a previous study by Weible et al. [125], cell
populations in the prefrontal cortex/caudal anterior cingulate had been found to
display an inhibitory/excitatory (I/E) sequence following tone onset followed by
neural excitation continuing through the trace and US periods. A different popu-
lation of cells lacked the I/E sequence, gave little to no response during the trace
interval and responded significantly less to the US. The authors interpreted the I/E

Fig. 6.4 Hippocampal multiple unit responses during T+ and T− triggered trace eyeblink
conditioning show significant differences in average sum of unit standard scores during the second
half of the trace interval. Beginning on day 1 of training, standard scores are significantly higher in
T+ than in T− responses (p < 0.05). This significant difference continues from early learning (day
1, day 2 and day of 5th CR) through late learning criteria (day of 8/9 CRs and 70 % CRs)
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sequence as a signal-to-noise enhancement that increased the salience of the tone.
The trace/US excitation was greatest in cells with large I/E sequences and the US
excitation was greatest in cells that also exhibited larger CS excitation. Darling et al.
[31] not only replicated the findings of two distinct populations of cells based on I/E
responses but demonstrated that these response profiles were specific to hippo-
campal theta state. Specifically, our study discovered that the I/E sequence in
prefrontal cortex was exclusive to the T+ condition and that there was greater trace/
US excitation in animals with hippocampal theta (Fig. 6.5). Interestingly, the other
Weible et al. mPFC response profile was seen in our T− group, thus likely
occurring during hippocampal non-theta.

A possible interpretation of this finding was that the two response profiles or cell
populations reported for prefrontal cortex were modulated by the presence or
absence of theta in the hippocampus. An interesting finding, within which the
interpretation of these results may be contextualized, was that prefrontal LFPs did
not oscillate at theta frequency while hippocampal LFPs did. Given this detail, the
unit response findings suggested that differences in pretrial theta state might be
encoded or otherwise reflected in the response patterns of hippocampal output

Fig. 6.5 Average standard
scores for medial prefrontal
cortex multiple unit responses
during hippocampal theta-
contingent trace eyeblink
conditioning. As illustrated in
the gray highlighted bar
following CS onset, T
+ animals (top) had a
significantly higher CS-
evoked I/E difference scores
compared to T− animals
(bottom; p < 0.05). T
+ prefrontal units also showed
significantly greater excitation
during the trace (p < 0.05) and
US periods (p < 0.05) relative
to the T− units
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neurons that project to target structures during a hippocampus-dependent task. Thus,
even if the theta LFP itself may remain effectively within the hippocampus, infor-
mation about theta state and phase could be transmitted to target structures such as
lateral septum, prefrontal cortex, entorhinal cortex, brainstem, and cerebellum.

The findings of the prefrontal response modulation study suggested that hip-
pocampal theta may enhance neural firing in distant areas that can facilitate the
development and maintenance of CRs. If true of prefrontal cortex, it is likely that
such enhancements would be found in other extra-hippocampal structures more
intimately involved in eyeblink conditioning, such as the circuit closest to the motor
output in cerebellum. To examine whether and how hippocampal theta oscillations
modulated extra-hippocampal activity in the cerebellum, Hoffmann and Berry [50]
recorded LFPs in hippocampal CA1, cerebellar interpositus nucleus (IPN) and
cerebellar cortical lobule HVI in rabbits during hippocampal theta-contingent trace
eyeblink conditioning. The resulting data demonstrated that hippocampal theta state
could be used to synchronize hippocampal and cerebellar LFPs into a rhythmic
theta oscillation that accompanies a striking cognitive benefit over non-theta con-
ditioning. This effect reached four-fold increases for T+ relative to T− conditioning
groups in early learning phases when animals were just beginning to emit CRs. The
substantial increase in acquisition rate in the T+ condition was accompanied by a
number of functionally relevant electrophysiological response profiles including:
(1) Amplitude modulation of cerebellar evoked responses to conditioning stimuli;
(2) Cerebellar theta oscillations that were time-locked to the sensory stimuli, i.e.
strong rhythmic theta occurred immediately after CS onset in both cerebellar
regions, continuing throughout the trace and US periods; (3) Precise (180 degree)
phase synchronization of hippocampus and cerebellar IPN and HVI LFPs at 6–7 Hz
theta frequency; (4) Precise (0 degree) phase synchronization at theta frequency
between cerebellar nuclear (IPN) and cortical (HVI) LFPs. These findings were
exclusive to the T+ triggered condition (Fig. 6.6).

Prior to this experiment, inactivation studies had suggested that the hippocampus
and cerebellum interact in important ways during the task but it was unclear how this
was accomplished since no direct pathways exist between the two structures. Our
theta-contingent training technology allowed hippocampal theta to be used as a
quasi-independent variable to further address this question. The resultant findings of
T+ rhythmic coordination of hippocampal and cerebellar LFPs suggested hippo-
campal theta as ameans for establishing aflexible long-distance functional connection
between these two structures and as ameans for regulating the functional properties of
the anatomically distributed system for trace eyeblink conditioning. The precise phase
locking over the substantial distance between hippocampus and cerebellum would be
surprising if one region were directly driving the other and, instead, suggests a
common pacemaker for both structures. If so, it is likely not a unitary pacemaker, as
we have observed theta presence in either hippocampus or cerebellum while it is not
present in the other. Regardless of the source(s) of this hippocampal–cerebellar
synchrony, it can be concluded that a brain state indexed by hippocampal theta (and
here exploited by our brain–computer interface) is reliable in predicting rhythmic
versus non-rhythmic modes of information processing in the cerebellum.
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Taken as a whole, our extra-hippocampal findings suggest that theta may serve
to enhance learning through organizing the precise timing needed for learning both
within and between structures essential to trace eyeblink conditioning.

6.2.4 Amelioration of Age-Related Learning Deficits

Asaka et al. [4] replicated the beneficial behavioral effects of theta-contingent
training and extended this interface-mediated enhancement to include trace eye-
blink conditioning in aging rabbits. Young (*5 months) and older (*28 months)
rabbits were trained during theta (T+) or as yoked controls with identical ITIs
irrespective of hippocampal theta state. Both young and old animals’ early learning
rates (end of learning phase 1, which is commonly represented by the number of
trials to reach 10th CRs) were facilitated by theta. Interestingly, the benefit of theta
persisted in older rabbits throughout training, while asymptotic performance was
not enhanced by theta in young animals (Fig. 6.7). This suggests that the aging

Fig. 6.6 Average LFPs across the first four days of theta-contingent trace eyeblink conditioning.
T+ LFPs display consistent short latency onset of robust and rhythmic theta oscillations that are
precisely time-locked to the CS and US occurrences. T− LFPs are notably less organized at theta
frequency across trials and days for hippocampus and cerebellum
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deficit in eyeblink conditioning may include theta-related performance impairments
as well as a delay in acquiring the initial association between CS and US. In
addition, we compared traditional early and asymptotic learning criteria to learning
trajectories characterized by a state-of-the-art state-space learning model developed
by Emery Brown’s lab at MIT [110]. Using a Bernoulli probability model to
describe our observed binary-valued behavioral responses (CR or UR) and a
Gaussian state equation (random walk model) that served to describe the unob-
servable learning state process, this state-space model defines learning curves for
individual animals as the probability of a correct response as a function of the
learning state process. Briefly, a 5 % baseline criterion, which estimated the end of
learning phase 1, and a 0.05 plateau criterion estimating the onset of asymptotic
responding were identified for each animal. The baseline criterion was defined as
the training trial on which the ideal observer was 95 % certain that the animal would
emit CRs at a rate above chance (5 %) for the rest of the experiment. The 0.05
plateau criterion was defined as the point, after passing the 5 % criterion, at which
the change in the probability of a correct response was less than 5 % for 10
consecutive trials. Using these criteria, the model was able to identify for each
animal the precise “learning trial”—the first trial on which CR performance will be,
with reasonable certainty, better than chance for the rest of training. Their indices
replicated the substantial behavioral effects of theta-contingent training and pro-
vided theoretical and mathematical support for the use of such traditional learning
criteria as trial of 10th CR, trials to 8/9 CRs, or 80 % CRs.

Fig. 6.7 Average number of training trials required by each group to attain classic behavioral
learning criteria and those criteria defined by the state-space model. Older T+ animals reached all
learning criteria significantly faster than their yoked controls, while young T+ animals were not
significantly different from their yoked counterparts on any criteria except 8/9 CRs. When
behavioral criteria were clustered according to early and later learning phases (5 % and 10th CR
versus 8/9 CRs, 0.05 plateau and 80 %), there was a highly significant interaction of age,
treatment, and phase, p < 0.05. Post hoc comparisons substantiated a significant benefit of theta
triggering in the early phase for both young and older groups (p < 0.05 for each). In contrast, the
later learning phase showed no theta-triggering benefit in young animals (p > 0.05), but a
continuing benefit in the older group (p < 0.05)
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It should be emphasized that older animals given trials when exhibiting theta
learned as rapidly as young yoked controls, thus ameliorating age-related learning
impairment without pharmacological intervention to, for example, enhance cholin-
ergic function. While theta depends on cholinergic activity, this study suggests that
even an aging, cholingerically-impaired brain may exhibit useful indices (e.g. theta)
of relatively normal system function during which learning may be unimpaired.

6.2.5 Current Directions

Darling [32] implemented the use of tetrode technology into our BCI studies in
order to extend our theta-modulated electrophysiological findings to hippocampal
responses at the single unit level. The procedure utilized specially manufactured
micro-drive assemblies consisting of six micro-drives. Each micro-drive, containing
one tetrode, could be independently lowered. Specialized signal processing soft-
ware compared the extracted data streams from each wire of the tetrode to separate
the waveforms into single neuron responses [57]. The sorted neurons were then
classified as pyramidal cells or interneurons based on their firing properties,
including waveform duration and spike rate [39]. Excitatory pyramidal cell
responses were mostly related to associative training, being most prevalent in
T+ paired animals; pyramidal cells in the T− groups demonstrated suppression below
baseline during trials. The response of interneurons to the conditioning stimuli were
generally most dependent on hippocampal state, showing excitatory responses in
T+ groups and suppression in T− for both trained and unpaired groups. As a whole,
the population of interneurons showed a double dissociation in that those that had
excitatory responses to the conditioning stimuli were more prevalent in T+ animals
while those that showed suppression were more common in T− animals.

This work has recently been extended to characterize the response profiles of
individual sub-classes of interneurons recorded within hippocampal region CA1
[26]. Using a classification system developed by Klausberger and Somogyi [66]
that defines interneuron classes based on systematic firing probabilities relative to
on-going theta and non-theta (*100–200 Hz ripple) activity, this study identified
responses of interneuron sub-types under theta and non-theta contingent trace
eyeblink conditioning. Our findings are consistent with a model [30] in which the
patterns of interneuron firing that are consistent with rapid acquisition tend to occur
during theta, whereas firing patterns favorable to memory retrieval appear to disrupt
early stages of learning in our T− group. We are now characterizing the response
profiles of several classes of GABA interneurons under theta and non-theta con-
ditions to assess the predictions of this model for hippocampal information pro-
cessing during eyeblink conditioning.

In an important extension of our research, a recent study by Hoffmann and Berry
[51, 52] has also investigated the role of cerebellar theta during trace eyeblink
conditioning, using our interface to trigger training trials based on pretrial theta
versus non-theta within the cerebellum. Chronic LFP recordings in hippocampal
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CA1, cerebellar interpositus nucleus and cortical lobule HVI were used to assess the
neural and behavioral impact of theta-based oscillatory dynamics in hippocampus
and cerebellum during cerebellar theta-contingent trace eyeblink conditioning. We
also directly compared them to those previously reported for hippocampal theta-
contingent trace conditioning. Training trials were administered by our BCI either
in the explicit presence or absence of pretrial cerebellar theta or hippocampal theta.
This study showed that there were clear distinctions, depending on the stage of
learning, between hippocampal and cerebellar theta triggering, which strongly
suggests different processing functions of these two essential structures, Cerebellar
non-theta induced slow learning may be relevant to our understanding of cognitive
disorders and learning disabilities, often thought to result from impaired coordi-
nation of distributed brain systems.

6.3 Discussion

As discussed above, a major strength of this interface is that it allows the natural
ebb and flow of theta in the awake, behaving rabbit. Studies that use drugs or
lesions to control theta typically report unrelieved bouts of either theta or non-theta,
rarely modeling the natural ebb and flow in the intact animal. Thus, our interface
technology comes much closer to the natural brain state that accompanies hippo-
campal theta. By waiting for the naturally occurring theta activity, we created a
trial-by-trial control of theta to produce a “brain state-clamp” that showed sub-
stantial state-dependent variations of learning rates during delay and trace eyeblink
conditioning (for review, see [8]).

As detailed below, we are pursuing a basic understanding of how theta can
optimize plasticity in the hippocampus and cerebellum, how it can select or enable
qualitatively different processing patterns in prefrontal cortex and how beneficial
coordination of the entire eyeblink conditioning distributed system can occur under
theta conditions. One additional perspective that we have not emphasized is the use
of non-theta conditions as models for brain dysfunction. While the specific details
of neurological disorders differ markedly from syndrome to syndrome, our interface
allows us to examine cognitive and behavioral processes under suboptimal condi-
tions or outright dysfunction. Again, this can be produced in the absence of drugs or
brain lesions that produce chronic and irreversible conditions and undesirable side
effects. This can be especially useful in modeling neurological disorders that
alternate with periods of remission or relatively normal function. One especially
clear example of this would be the fact that, during delay eyeblink, the T− condition
produces the major behavioral impact relative to yoked controls. On the other hand,
in trace conditioning, the major behavioral benefit appears to occur in the T+ group,
with T− being similar to the yoked controls. Since these tasks differ in their
dependence upon hippocampal integrity (trace eyeblink requires the hippocampus
and prefrontal cortex), our interface can be used to explore both improvement and
impairment of cognitive processes in an undamaged and undrugged brain.
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In the following sections, we discuss our findings as they fit into the larger
perspective of neural plasticity mechanisms and into the mapping of essential and
modulatory circuitry for the eyeblink learning model.

6.3.1 Models of Learning: Theta and Plasticity

The working hypothesis for our theta-triggering experiments is that this “state
clamp” technique engages theta to coordinate trials with the timing of neural net-
works between the hippocampus and related structures that are important for
acquiring the association between conditioning stimuli. This notion is very similar
to parts of the model proposed by Hasselmo et al. [49], in which cue-related signals
arriving in hippocampus (especially CA3) from association cortex, that occur in
precise temporal relationship to peaks and troughs of theta, are thereby selected for
strengthening or weakening (plasticity) or readout from memory (stability),
respectively. This general idea of the role of theta is becoming more widely
accepted as new data and models are generated [17, 20, 56, 73, 130]. In one
empirical demonstration supporting this prominent model, Hyman et al. [54] found
LTP induction was greatest during hippocampal theta peaks in contrast with long-
term depression (LTD) induction being greatest during theta troughs. Furthermore,
Hasselmo and colleagues have shown decreased stimulus-evoked potentials when
stimuli are delivered at the peak of hippocampal fissure theta. They have interpreted
such results as ideal phases of hippocampal theta for encoding and retrieval,
respectively [133]. It is necessary to point out that hippocampal theta’s phase is
dependent upon electrode placement since the potential recorded at the soma/basal
dendrites of dorsal hippocampal CA1 pyramidal neurons is antiphasic with more
ventral apical dendrite sites toward the hippocampal fissure [17]. The large majority
of theta research in rats targets fissure theta due to the abundance of spatial sensory
afferents from entorhinal cortex.

The encoding and retrieval phases are conducive to their separate functions due
to differences in input strengths to CA1 from the entorhinal cortex and CA3. In the
encoding phase, CA3 provides weak input to the general population of CA1
pyramidal cells, while entorhinal cortex provides strong input to select CA1 py-
ramidals. Cells receiving entorhinal input show LTP at the CA3 to CA1 synapse.
This strengthening is important for the retrieval phase where entorhinal cortex input
is weak, but CA3 input is strong, allowing for CA1 cells that were previously
strengthened to fire [49]. This model has been extended to incorporate functional
roles for multiple sub-classes of hippocampal interneurons [30, 69].

Within this framework we can identify a potential mechanism for the behavioral
benefits seen with theta-contingent training. As previously discussed, a phase reset
in the hippocampal theta rhythm is seen following presentation of the CS [31]. The
reset is more coherent in the T+ condition, allowing for the US to arrive consis-
tently at the peak of pyramidal cell layer hippocampal theta (corresponding to a
trough of fissure theta in Cutsuridis’ model). In terms of the model, the US is
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arriving when the hippocampus is in the encoding phase of theta, allowing the
CS–US association to develop. Similarly, because the phase reset ensures that the
encoding phase of theta is present when the US arrives, it facilitates the retrieval
phase *200 m preceding the airpuff when adaptive CRs should occur. Our hip-
pocampal multiple-unit findings also fit into this context, in that the enhanced
excitation seen late in the trace period likely reflects firing of pyramidal cells [31,
46]. This would indicate that there is increased output from CA1 to the entorhinal
cortex during the retrieval phase of theta, as would be expected by the model.
Importantly, in addition to using the theta model of plasticity to interpret our
findings, theta-contingent training can be used to provide behavioral support for the
model. Darling’s (2011) findings have shown that behaviorally relevant phenomena
coincide with the model’s proposed phases of encoding (US arrival) and retrieval
(time of adaptive CRs) during T+ , but not T−, conditioning. This demonstration,
along with the learning benefits seen in T+ animals, provides support for a possible
behavioral role of these trial phases in an established model of associative learning.

6.3.2 Theta-Modulated Interactions in the Eyeblink Circuitry

Much attention has focused on the coordination of neural activity between the
medial prefrontal cortex and the hippocampus during learning and memory tasks
[37, 47, 126] for review). Although there are no direct projections between the
medial prefrontal cortex and the hippocampus in the rabbit, there are numerous
ipsilateral and contralateral connections between sub-regions and reciprocal tha-
lamic projections [3, 16]. Some studies evidence the modulatory influence of
prefrontal regions on hippocampal activity. For instance, Kyd and Bilkey [70]
showed that lesions modified the response properties of rat hippocampal place cells
during spatial navigation. Furthermore, hippocampal learning-related unit activity
and hippocampal theta oscillations are known to modulate prefrontal activity [31,
55, 58, 86, 105]. Hyman et al. [47] have demonstrated that single unit activity in
medial prefrontal cortex entrains to hippocampal theta during foraging and may
reflect goal directed behavior. Siapas et al. [105] have found that the firing of
medial prefrontal cortex single unit activity displayed phase locking to hippocampal
theta, with prefrontal neurons firing at a preferred phase of hippocampal theta even
in the absence of local cortical theta oscillations. This latter finding suggested that
the timing of prefrontal unit activity with respect to hippocampal theta oscillations
might be important for coordinating the plastic changes that underlie learning and
memory formation within the hippocampus and the prefrontal cortex. This coor-
dination between the prefrontal and the hippocampus, along with other cortical and
subcortical structures, could facilitate conditioning by affecting levels of excitation
and unit activation in the essential circuitry during eyeblink conditioning. One such
scenario involves the role of prefrontal transmission of learning-related activity to
the cerebellar eyeblink circuitry. Persistent prefrontal CS-related input is trans-
mitted to cerebellum via pontine nucleus mossy and parallel fibers during trace
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eyeblink learning so that CS information can overlap with temporally-separated US
information. This prefrontal/pontine-mediated CS–US convergence is critical for
trace eyeblink [60, 61, 62, 106]. Our 2011 report of differences in medial prefrontal
I/E sequence during CS-elicited excitation supports the role of the prefrontal cortex
in increasing the salience of the tone by increasing the signal-to-noise ratio [125]
based on hippocampal theta-triggering condition. Because the T+ animals had a
significantly higher I/E difference score, it is strongly suggested that hippocampal
theta state provides a mechanism by which medial prefrontal neurons might
enhance this phenomenon. This amplified CS input to cerebellum may underlie or
facilitate the learning benefits of theta triggering by strengthening the subsequent
CS–US association within the essential motor circuitry. The negative I/E difference
score for T− animals late in training indicates an opposite effect, and suggests an
inverse or reduction of the signal-to-noise ratio seen in T+ animals. This could
hinder the T− group’s ability to develop a strong CS–US association and delay the
development of optimally timed behavioral responses.

In addition to this possible pathway by which our hippocampal theta-contingent
training enhancements may exert their effects on eyeblink circuitry, transient
functional connections between forebrain and cerebellum appear to be modulated
by theta-triggering. An important indicator of the coordination among structures in
the eyeblink system is the zero-lag cross-correlations observed between hippo-
campus and cerebellum at *6–7 Hz. If one structure were driving the other’s
activity, we would predict a temporal lag between their responses that should
correspond to the conduction velocity of the interconnecting pathways. The fact
that there is no such lag suggests a common influence to both structures that is
paced at theta frequency. The origins and pacemakers of theta within the hippo-
campus are well documented, however, ambiguity is introduced when theta coor-
dination between hippocampus and cerebellum becomes essential because it is not
well established which extra-cerebellar inputs and internal mechanisms might
mediate such a relationship. It is clear that theta is a strong organizing principle in
the cerebellum itself. Golgi and granule cells of the cerebellar cortex have been
widely reported to have intrinsic resonant properties at theta frequency. However,
currently there are still a number of input structures that could serve as candidates
for any potential pacing or entrainment function during hippocampo-cerebellar
synchronization, specifically. Some of the most likely candidates, based on ana-
tomical connectivity and relevance to theta pacing include pontine nuclei as a
component of the reticular activating system and the supramammillary and medial
mammillary nuclei of the hypothalamus. Though the inferior olive is likely
involved as a theta-supporting input structure for cerebellum [76], the lack of a clear
pathway from inferior olive to the telencephalon makes it a less than likely can-
didate for bidirectional forebrain-cerebellum synchronization.

To further investigate hippocampal-cerebellar coordination, we have recently
started collecting single-unit data in IPN during hippocampal theta-triggered con-
ditioning. Since IPN cell firing is essential to performance of the conditioned
behavioral response, it is important to understand how our theta-triggering affects
these cells. Preliminary analyses have shown important differences between theta
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conditions and across days of training. Specifically, IPN cells in the T+ condition
show greater responses in the trace period on early trials with no CR than T−
animals. This suggests that hippocampal theta enhances IPN unit responses before
learning is established—perhaps accounting for more rapid cerebellar plasticity.
Additionally, T− cells on the fourth day of training have greater excitation in the
trace period than on the first day. Since the behavior of the T− group is improving
by this day of training, it is not surprising that the T− suppression of IPN
responding is beginning to disappear.

6.3.3 Future Directions and Applications

Our interface has revealed many theta-related effects in LFPs, multiple-units, and
single-units in area CA1 of the hippocampus. However, there are other important
subfields of the hippocampus that must be studied at the single-unit level to fully
understand the role of theta in learning. Areas CA1, CA3, and the Dentate Gyrus
form the trisynaptic loop of the hippocampus. Although the anatomical connectivity
of these different subfields has been thoroughly documented, the learning-related
functional differences between these subfields are not yet clear. Current work in our
lab has begun recording from CA3 during eyeblink training contingent on theta-
triggering in CA1. While data collection is ongoing, preliminary data have shown
differences in pyramidal cell firing between areas CA1 and CA3, with CA3 cells
showing increased firing rates in the T− condition compared to the T+ condition
[27]. This is the opposite pattern shown by Darling [32] in CA1 pyramidal cells and
could be related to differences in connectivity between the two areas. CA3 pyra-
midal cells have a higher number of recurrent collaterals than are seen in CA1.
These collaterals would allow for excitation to spread through CA3, and in turn lead
to imprecise signals being sent to CA1.

A group in Finland has supported a number of our findings using retrospective
correlation analyses showing hippocampal theta related to rapid eyeblink condi-
tioning both before and during training. They also reported enhanced hippocampus-
cerebellum coordination under conditions of strong hippocampal theta. More
recently, Nokia et al. [89] showed effects of hippocampal sharp wave ripple-con-
tingent trace eyeblink during acquisition and extinction. These researchers reported
that triggering on naturally-occurring ripple activity significantly increased acqui-
sition rates but impaired extinction rates. However, the effects of triggering on
hippocampal ripple may in fact be an indirect confirmation of our theta findings.
This alternative interpretation centers around the fact that their methods produced a
200 m time lag between the pretrial ripple event that triggered a given training trial
and initiation of the actual trial itself (conditioned stimulus onset). Given the very
brief nature of ripple events (approximately 50 m; [2, 108], it is unclear what exact
brain state was present at trial (CS) onset and whether it was consistent across all
training trials. Fluctuation between theta and sharp wave ripple states characterizes
the LFPs during awake immobility in the rabbit eyeblink preparation.
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The increasing probability of theta epochs in rabbit hippocampal LFPs when a
ripple event has ended raises the possibility that their trials could have been
associated with sufficiently high values of hippocampal theta to benefit learning in
one of the groups. In fact, Fig. 6.4c in their paper shows rapidly rising (>99th
percentile) theta phase locking values just before CS onset in the fast learning ripple
group. Thus, the period immediately before their trials replicated a major feature of
our theta-triggering conditions and the within-trial stimulus evoked LFP events also
matched our findings of increased theta after CS onset, during the trace interval and
after the unconditioned stimulus. Unfortunately, the authors did not test for pre-CS
group differences in the theta measures, despite a well-established literature that
would suggest it as an important alternative to be ruled out before reaching strong
conclusions about the role of hippocampal ripple oscillations. For comparison of
the two studies, it is important to note that, given that our criterion theta sample
lasts for 960 m, our trials would not have had ripple events 200 m before the CS
onset as theirs did. Thus, even such brief periods of pretrial theta as theirs may be
sufficient for rapid learning.

Generalizing across species, studies have shown theta oscillations to be impli-
cated in human cognitive processing, with beneficial effects in acquisition, retrieval,
verbal working memory tasks and spatial navigation [22, 23, 59, 72, 95] . If tasks
could be acquired and performed during periods of maximal theta, cognitive pro-
cesses might be enhanced. This raises the possibility that our methods might be
used to ameliorate human cognitive deficits, such as age-related memory impair-
ment, which we have already demonstrated using eyeblink conditioning in animals
[4]. Our interface provides a useful means of observing and manipulating clearly
different functional brain states, without lesions or drugs, that could be adapted in
the future to other species, brain structures, or oscillatory frequencies. It will be
necessary for human research to find noninvasive measures that reliably indicate the
presence or absence of theta activity deep in the medial temporal lobe. Many of the
findings in humans are from neurology patient populations with underlying
pathology that justifies juxtadural or depth recordings. If we can develop reliable
markers in the noninvasive scalp-recorded EEG signal, then studies in healthy
volunteers would greatly accelerate our understanding. There are studies of human
and animal cortical theta, but in the mouse, rat and rabbit, cortical theta does not
accompany hippocampal theta or is, quite likely, volume conducted from the hip-
pocampus into the closely overlying cortex. Basic studies must be performed to
resolve these technical issues before advancing our understanding of theta in
humans and as a remedy for neurological disorders.

6.4 Conclusion

In this chapter, we have summarized our recent findings of a substantial behavioral
improvement of eyeblink conditioning contingent upon the presence of theta
oscillations in hippocampus and cerebellum. A brain computer interface based on
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continuous power spectral analysis of theta and non-theta frequency oscillatory
potentials was used to ensure the occurrence of theta at the beginning of each trial,
while allowing the natural fluctuations to occur in the inter-trial interval. We have
argued that this is a more typical brain state for the rabbit than would occur after
drugs or lesions that completely prevent or produce theta for long periods of time.
Our results have demonstrated that theta is related to distinct patterns of unit and
LFP response in the hippocampus, prefrontal cortex and cerebellum, thus charac-
terizing relatively optimal or suboptimal information processing in a number of
brain structures thought to be essential for eyeblink conditioning in mammals,
including humans. Future studies are planned in which the optimal conditions can
be evaluated in additional structures and non-optimal conditions can be used to
model impairments of learning and memory that might occur in a variety of psy-
chiatric or developmental disorders.

References

1. Allen, M.T., Padilla, Y., Gluck, M.A.: Ibotenic acid lesions of the medial septum retard delay
eyeblink conditioning in rabbits (Oryctolagus cuniculus). Behav. Neurosci. 116(4), 733–738
(2002)

2. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J.: The Hippocampus Book. Oxford
University Press, New York (2007)

3. Arikuni, T., Ban, T.: Subcortical afferents to the prefrontal cortex in rabbits. Exp. Brain Res.
32(1), 69–75 (1978)

4. Asaka, Y., Mauldin, K.N., Griffin, A.L., Seager, M.A., Shurell, E., Berry, S.D.:
Nonpharmacological amelioration of age-related learning deficits: the impact of
hippocampal theta-triggered training. Proc. Natl. Acad. Sci. USA 102(37), 13284–13288
(2005)

5. Asaka, Y., Griffin, A.L., Berry, S.D.: Reversible septal inactivation disrupts hippocampal
slow-wave and unit activity and impairs trace conditioning in rabbits (Oryctolagus
cuniculus). Behav. Neurosci. 116, 434–442 (2002)

6. Azar, A.T., Balas, V.E., Olariu, T.: Classification Of EEG-based brain-computer interfaces,
advanced intelligent computational technologies and decision support systems. Stud Comput
Intell 486, 97–106 (2014)

7. Berger, T.W., Alger, B., Thompson, R.F.: Neuronal substrate of classical conditioning in the
hippocampus. Science 192(4238), 483–485 (1976)

8. Berry, S.D., Hoffmann, L.C.: Hippocampal theta-dependent eyeblink classical conditioning:
coordination of a distributed learning system. Neurobiol Learn Mem 95(2), 185–189 (2011)

9. Berry, S.D., Thompson, R.F.: Prediction of learning rate from the hippocampal
electroencephalogram. Science 200(4347), 1298–1300 (1978)

10. Berry, S.D., Thompson, R.F.: Medial septal lesions retard classical conditioning of the
nictitating membrane response in rabbits. Science 205(4402), 209–211 (1979)

11. Berry, S.D.: Septo-hippocampal activity and learning rate. In: Woody, C.D. (ed.)
Conditioning: Representation of Involved Neural Function, pp. 417–431. Plenum Press,
New York (1982)

12. Bland, B., Oddie, S.D.: Theta band oscillation and synchrony in the hippocampal formation
and associated structures: the case for its role in sensorimotor integration. Behav. Brain Res.
127(1–2), 119–136 (2001)

178 L.C. Hoffmann et al.



13. Blaxton, T.A., Zeffiro, T.A., Gabrieli, J.D.E., Bookheimer, S.Y., Carrillo, M.C., Theodore, W.
H., Disterhoft, J.F.: Functional mapping of human learning: A positron emission tomography
activation study of eyeblink conditioning. J. Neurosci. 16(12), 4032–4040 (1996)

14. Brelsford, J., Theios, J.: Single session conditioning of the nictitating membrane in the rabbit:
effect of intertrial interval. Psychon Sci 2, 81–82 (1965)

15. Brodal, A.: Neurological Anatomy. Oxford University Press, New York (1981)
16. Buchanan, S.L., Thompson, R.H., Maxwell, B.L., Powell, D.A.: Efferent connections of the

medial prefrontal cortex in the rabbit. Exp. Brain Res. 100(3), 469–483 (1994)
17. Buzsáki, G.: Theta oscillations in the hippocampus. Neuron 33(3), 325–340 (2002)
18. Buzsáki, G.: Neuroscience. Similar is different in hippocampal networks. Science 309(5734),

568–569 (2005)
19. Buzsáki, G.: Rhythms of the Brain. Oxford University Press Inc, New York (2006)
20. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679),

1926–1929 (2004)
21. Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Knight,

R.T.: High gamma power is phase-locked to theta oscillations in human neocortex. Science
313(5793), 1626–1628 (2006)

22. Caplan, J.B., Madsen, J.R., Raghavachari, S., Kahana, M.J.: Distinct patterns of brain
oscillations underlie two basic parameters of human maze learning. J. Neurophysiol. 86(1),
368–380 (2001)

23. Caplan, J.B., Madsen, J.R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E.
L., Kahana, M.J.: Human theta oscillations related to sensorimotor integration and spatial
learning. J. Neurosci. 23(11), 4726–4736 (2003)

24. Choi, J.S., Moore, J.W.: Cerebellar neuronal activity expresses the complex topography of
conditioned eyeblink responses. Behav. Neurosci. 117(6), 1211–1219 (2003)

25. Christian, K.M., Thompson, R.F.: Neural substrates of eyeblink conditioning: Acquisition
and retention. Learn. Mem. 10(6), 427–455 (2003)

26. Cicchese, J. J. (2013). Identified interneurons of dorsal hippocampal area CA1 show different
theta-contingent response profiles during classical eyeblink conditioning. Master’s thesis.
http://rave.ohiolink.edu/etdc/view?acc_num=miami1367583089

27. Cicchese, J.J., Berry, S.D.: Comparison of identified neural response profiles in CA1 and
CA3 during theta-contingent eyeblink conditioning. Unpublished poster presentation at: The
Annual Meeting of the Society for Neuroscience, 13–17 Oct 2012, New Orleans, LA (2012)

28. Clark, R.E., McCormick, D.A., Lavond, D.G., Thompson, R.F.: Effects of lesions of
cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res.
291(1), 125–136 (1984)

29. Clark, R.E., Squire, L.R.: Classical conditioning and brain systems: The role of awareness.
Science 280(5360), 77–81 (1998)

30. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and retrieval in a model of the
hippocampal CA1 microcircuit. Hippocampus 20(3), 423–446 (2010)

31. Darling, R.D., Takatsuki, K., Griffin, A.L., Berry, S.D.: Eyeblink conditioning contingent on
hippocampal theta enhances hippocampal and medial prefrontal responses. J. Neurophysiol.
105(5), 2213–2224 (2011)

32. Darling, R.D.: Single cell analysis of hippocampal neural ensembles during theta-triggered
eyeblink classical conditioning in the rabbit. Unpublished doctoral dissertation. http://rave.
ohiolink.edu/etdc/view?acc_num=miami1225460517 (2008)

33. Daum, I., Channon, S., Canavan, A.G.: Classical conditioning in patients with severe
memory problems. J. Neurol. Neurosurg. Psychiatry 52(1), 47–51 (1989)

34. Daum, I., Channon, S., Polkey, C.E., Gray, J.A.: Classical conditioning after temporal lobe
lesions in man: Impairment in conditional discrimination. Behav. Neurosci. 105(3), 396–408
(1991)

35. Daum, I., Schugens, M.M., Ackermann, H., Lutzenberger, W., Dichgans, J., Birbaumer, N.:
Classical conditioning after cerebellar lesions in humans. Behav. Neurosci. 107(5), 748–756
(1993)

6 Hippocampal Theta-Based Brain Computer Interface 179

http://rave.ohiolink.edu/etdc/view?acc_num=miami1367583089
http://rave.ohiolink.edu/etdc/view?acc_num=miami1225460517
http://rave.ohiolink.edu/etdc/view?acc_num=miami1225460517


36. Deupree, D., Coppock, W., Willer, H.: Pretraining septal driving of hippocampal rhythmic
slow activity facilitates acquisition of visual discrimination. J. Comp. Physiol. Psychol.
96(4), 557–562 (1982)

37. Eichenbaum, H.: Hippocampus: mapping or memory? Curr. Biol. 10(21), 785–797 (2000)
38. Fontan-Lozano, A., Troncoso, J., Munera, A., Carrion, A., Delgado-Garcia, J.: Cholinergic

septo-hippocampal innervation is required for trace eyeblink classical conditioning. Learn.
Mem. 12(6), 557–563 (2005)

39. Fox, S., Ranck, J.: Electrophysiological characteristics of hippocampal complex-spike cells
and theta cells. Exp. Brain Res. 41(3–4), 399–410 (1981)

40. Fries, P.: A mechanism for cognitive dynamics: Neuronal communication through neuronal
coherence. Trends Cogn. Sci. 9(10), 474–480 (2005)

41. Gabrieli, J., McGlinchey-Berroth, R., Carrillo, M., Gluck, M., Cermak, L., Disterhoft, J.F.:
Intact delay-eyeblink classical conditioning in amnesia. Behav. Neurosci. 109(5), 819–827
(1995)

42. Garcia, K.S., Steele, P.M., Mauk, M.D.: Cerebellar cortex lesions prevent acquisition of
conditioned eyelid responses. J. Neurosci. 19(24), 10940–10947 (1996)

43. Givens, B.: Stimulus-evoked resetting of the dentate theta rhythm: relation to working
memory. NeuroReport 8(1), 159–163 (1996)

44. Gormezano, I.: Investigations of defense and reward conditioning in the rabbit. In: Black, A.
H., Prokasy, W.F. (eds.) Classical Conditioning II: Current Research and Theory,
pp. 151–181. Appleton Century Crofts, NY (1972)

45. Green, J.D., Arduini, A.A.: Hippocampal electrical activity in arousal. J. Neurophysiol.
17(6), 533–557 (1954)

46. Griffin, A.L., Asaka, Y., Darling, R.D., Berry, S.D.: Theta-contingent trial presentation
accelerates learning rate and enhances hippocampal plasticity during trace eyeblink
conditioning. Behav. Neurosci. 118(2), 403–411 (2004)

47. Hasselmo, M.E.: What is the function of hippocampal theta rhythm? Linking behavioral data
to phasic properties of field potential and unit recording data. Hippocampus 15(7), 936–949
(2005)

48. Hasselmo, M.E.: Neuronal rebound spiking, resonance frequency and theta cycle skipping
may contribute to grid cell firing in medial entorhinal cortex. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 369(1635), 20120523 (2014)

49. Hasselmo, M.E., Bodeldon, C., Wyble, B.P.: A proposed function for hippocampal theta
rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural
Comput. 14(4), 793–817 (2002)

50. Hoffmann, L.C., Berry, S.D.: Cerebellar theta oscillations are synchronized by hippocampal
theta-contingent trace conditioning. Proc. Natl. Acad. Sci. USA 106(50), 21371–21376
(2009)

51. Hoffmann, L.C.: Interactions between hippocampal and cerebellar theta oscillations during
cerebellar theta-contingent trace eyeblink classical conditioning acquisition and extinction in
the rabbit. Unpublished doctoral dissertation, Miami University (2013)

52. Hoffmann, L.C., Berry, S.D.: Differential role of network oscillations during acquisiton and
extinction of cerebellar theta-contingent trace eyeblink classical conditioning. Unpublished
poster presentation at: The Annual Meeting of the Society for Neuroscience, 9–13 Nov 2013,
San Diego, CA (2013)

53. Huerta, P.T., Lisman, J.E.: Heightened synaptic plasticity of hippocampal CA1 neurons
during a cholinergically induced rhythmic state. Nature 364(6439), 723–725 (1993)

54. Hyman, J.M., Wyble, B.P., Goyal, V., Rossi, C.A., Hasselmo, M.E.: Stimulation in
hippocampal region CA1 in behaving rats yield long-term potentiation when delivered to the
peak of theta and long-term depression when delivered to the through. J. Neurosci. 23(37),
11725–11731 (2003)

55. Hyman, J.M., Zilli, E.A., Paley, A.M., Hasselmo, M.E.: Medial prefrontal cortex cells show
dynamic modulation with the hippocampal theta rhythm dependent on behavior.
Hippocampus 15(6), 739–749 (2005)

180 L.C. Hoffmann et al.



56. Jensen, O.: Information transfer between rhythmically coupled networks: Reading the
hippocampal phase code. Neural Comput. 13(12), 2743–2761 (2001)

57. Jog, M.S., Connolly, C.I., Kubota, Y., Iyengar, D.R., Garrido, L., Harlan, R., Graybiel, A.M.:
Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis
techniques. J. Neurosci. Methods 117,141–152 (2002)

58. Jones, M.W., Wilson, M.A.: Phase precession of medial prefrontal cortical activity relative to
the hippocampal theta rhythm. Hippocampus 15(7), 867–873 (2005)

59. Kahana, M.J., Sekuler, R., Caplan, J.B., Kirschen, M., Madsen, J.R.: Human theta
oscillations exhibit task dependence during virtual maze navigation. Nature 399(6738),
781–784 (1999)

60. Kalmbach, B.E., Davis, T., Ohyama, T., Riusech, F., Nores, W.L., Mauk, M.D.: Cerebellar
cortex contributions to the expression and timing of conditioned eyelid responses.
J. Neurophysiol. 103(4), 2039–2049 (2010)

61. Kalmbach, B.E., Ohyama, T., Kredier, J.C., Riusech, F., Mauk, M.D.: Interactions between
prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Mem. 16(1),
86–95 (2009)

62. Kalmbach, B.E., Voicu, H., Ohyama, T., Mauk, M.D.: A subtraction mechanism of temporal
coding in cerebellar cortex. J. Neurosci. 31(6), 2025–2034 (2011)

63. Kaneko, T., Thompson, R.F.: Disruption of trace conditioning of the nictitating membrane
response in rabbits by central cholinergic blockade. Psychopharmacol. 131(2), 161–166
(1997)

64. Kehoe, E., Gormezano, I.: Effects of trials per session on conditioning of the rabbit’s
nictitating membrane response. Bull. Psychon. Soc. 2, 434–436 (1974)

65. Kirov, R., Weiss, C., Siebner, H., Born, J., Marshall, L.: Slow oscillation electrical brain
stimulation during waking promotes EEG theta activity and memory encoding. Proc. Natl.
Acad. Sci. USA 106(36), 15460–15465 (2009)

66. Klausberger, T., Somogyi, P.: Neuronal diversity and temporal dynamics: The unity of
hippocampal circuit operations. Science 321(5885), 53–57 (2008)

67. Kramis. R., Vanderwolf, C.H., Bland, B.H.: Two types of hippocampal rhythmical slow
activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl
ether, urethane, and pentobarbital. Exp. Neurol. 49, 58–85 (1975)

68. Kronforst-Collins, M.A., Disterhoft, J.F.: Lesions of the caudal area of rabbit medial
prefrontal cortex impair trace eyeblink conditioning. Neurobiol. Learn. Mem. 69(2), 147–162
(1998)

69. Kunec, S., Hasselmo, M.E., Kopell, N.: Encoding and retrieval in the CA3 region of the
hippocampus: A model of theta-phase separation. J. Neurophys. 94(1), 70–82 (2005)

70. Kyd, R., Bilkey, D.: Prefrontal cortex lesions modify the spatial properties of hippocampal
place cells. Cereb. Cortex 13(5), 444–451 (2003)

71. Landfield, P., Lynch, G.: Impaired monosynaptic potentiation in in vitro hippocampal slices
from aged, memory-deficient rats. J. Gerontol. 32(5), 523–533 (1977)

72. Lega, B., Jacobs, J., Kahana, M.: Human hippocampal theta oscillations and the formation of
episodic memories. Hippocampus 22(4), 748–761 (2012)

73. Lisman, J.: The theta/gamma discrete phase code occurring during the hippocampal phase
precession may be a more general brain coding scheme. Hippocampus 15(7), 913–922
(2005)

74. Llinas, R.: Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as
the basis for motor error correction. Neuroscience 162(3), 797–804 (2009)

75. Logothetis, N.: The underpinnings of the BOLD functional magnetic resonance imaging
signal. J. Neurosci. 23(10), 3963–3971 (2003)

76. Marshall, S., Lang, E.: Inferior olive oscillations gate transmission of motor cortical activity
to the cerebellum. J. Neurosci. 24(50), 11356–11367 (2004)

77. Mauk, M.D., Garcia, K.S., Medina, J.F., Steele, P.M.: Does cerebellar LTD mediate motor
learning? Toward a resolution without a smoking gun. Neuron 20(3), 359–362 (1998)

6 Hippocampal Theta-Based Brain Computer Interface 181



78. Mauk, M.D., Ruiz, B.P.: Learning-dependent timing of Pavlovian eyelid responses:
Differential conditioning using multiple interstimulus intervals. Behav. Neurosci. 106(4),
666–681 (1992)

79. Mauk, M.D., Thompson, R.F.: Retention of classically conditioned eyelid responses
following acute decerebration. Brain Res. 403(1), 89–95 (1987)

80. McCartney, H., Johnson, A.D., Weil, Z.M., Givens, B.: Theta reset produces optimal
conditions for long-term potentiation. Hippocampus 14(6), 684–687 (2004)

81. McCormick, D.A., Clark, G.A., Lavond, D.G., Thompson, R.F.: Initial localization of the
memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA 79(8), 2731–2735
(1982)

82. McCormick, D.A., Steinmetz, J.E., Thompson, R.F.: Lesions of the inferior olivary complex
cause extinction of the classically conditioned eyeblink response. Brain Res. 359(1–2),
120–130 (1985)

83. McCormick, D.A., Thompson, R.F.: Cerebellum: essential involvement in the classically
conditioned eyelid response. Science 223(4633), 296–299 (1984)

84. McGlinchey-Berroth, R., Carrillo, M.C., Gabrieli, J.D., Brawn, C.M., Disterhoft, J.F.:
Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behav.
Neurosci. 111(5), 873–882 (1997)

85. McLaughlin, J., Skaggs, H., Churchwell, J., Powell, D.A.: Medial prefrontal cortex and
Pavlovian conditioning: trace versus delay conditioning. Behav. Neurosci. 116, 37–47
(2002). doi:10.1037/0735-7044.116.1.37

86. Mehta, M., Lee, A., Wilson, M.: Role of experience and oscillations in transforming a rate
code into a temporal code. Nature 417(6890), 741–746 (2002)

87. Moyer, J., Deyo, R., Disterhoft, J.F.: Hippocampectomy disrupts trace eye-blink
conditioning in rabbits. Behav. Neurosci. 104(2), 243–252 (1990)

88. Nokia, M., Penttonen, M., Korhonen, T., Wikgren, J.: Hippocampal theta (3–8 Hz) activity
during classical eyeblink conditioning in rabbits. Neurobiol. Learn. Mem. 90(1), 62–70
(2008)

89. Nokia, M., Penttonen, M., Wikgren, J.: Hippocampal ripple-contingent training accelerates
trace eyeblink conditioning and retards extinction in rabbits. J. Neurosci. 30(34),
11486–11492 (2010)

90. O’Keefe, J., Recce, M.: Phase relationship between hippocampal place units and the EEG
theta rhythm. Hippocampus 3(3), 317–330 (1993)

91. Perrett, S.P., Mauk, M.D.: Extinction of conditioned eyelid responses requires the anterior
lobe of cerebellar cortex. J. Neurosci. 15(3), 2074–2080 (1995)

92. Perrett, S.P., Ruiz, B.P., Mauk, M.D.: Cerebellar cortex lesions disrupt learning-dependent
timing of conditioned eyelid responses. J. Neurosci. 13(4), 1708–1718 (1993)

93. Powell, D.A., Skaggs, H., Churchwell, J., McLaughlin, J.: Posttraining lesions of the medial
prefrontal cortex impair performance of Pavlovian eyeblink conditioning but have no effect
on concomitant heart rate changes in rabbits (Oryctolagus cuniculus). Behav. Neurosci. 115,
1029–1038 (2001)

94. Prokasy, W.F., Grant, D.A., Myers, N.A.: Eyelid conditioning as a function of unconditioned
stimulus intensity and intertrial interval. J. Exp. Psychol. 55(3), 242–246 (1958)

95. Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B.,
Madsen, J.R., Lisman, J.E.: Gating of human theta oscillations by a working memory task.
J. Neurosci. 21, 3175–3183 (2001)

96. Salafia, W., Mis, F., Terry, W., Bartosiak, R., Daston, A.: Conditioning of the nictitating
membrane response of the rabbit (Oryctolagus cuniculus) as a function of length and degree
of variation of intertrial interval. Anim. Learn. Behav. 1, 109–115 (1973)

97. Salvatierra, A.T., Berry, S.D.: Scopolamine disruption of septo-hippocampal activity and
classical conditioning. Behav. Neurosci. 103(4), 715–721 (1989)

98. Scarlett, D., Dypvik, A., Bland, B.: Comparison of spontaneous and septally driven
hippocampal theta field and theta-related cellular activity. Hippocampus 14(1), 99–106
(2004)

182 L.C. Hoffmann et al.

http://dx.doi.org/10.1037/0735-7044.116.1.37


99. Schmaltz, L.W., Theios, J.: Acquisition and extinction of a classically conditioned response
in hippocampectomized rabbits (Oryctolagus cuniculus). J. compar. physiol. psychol. 79(2),
328–333 (1972)

100. Schneiderman, N., Gormezano, I.: Conditioning of the nictitating membrane of the rabbit as a
function of CS–US interval. J. Compar. Physiol. Psych. 57, 1881–1895 (1964)

101. Schreurs, B., McIntosh, A., Bahro, M., Herscovitch, P., Sunderland, T., Molchan, S.:
Lateralization and behavioral correlation of changes in regional cerebral blood flow with
classical conditioning of the human eyeblink response. J. Neurophysiol. 77(4), 2153–2163
(1997)

102. Seager, M.A., Johnson, L.D., Chabot, E.S., Asaka, Y., Berry, S.D.: Oscillatory brain states
and learning: impact of hippocampal theta-contingent training. Proc. Natl. Acad. Sci. USA
99(3), 1616–1620 (2002)

103. Sears, L.L., Steinmetz, J.E.: Acquisition of classically conditioned-related activity in the
hippocampus is affected by lesions of the cerebellar interpositus nucleus. Behav. Neurosci.
104(5), 681–692 (1990)

104. Shusterman, V., Troy, W.: From baseline to epileptiform activity: a path to synchronized
rhythmicity in large-scale neural networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys.
77(6), 061911

105. Siapas, A., Lubenov, E., Wilson, M.A.: Prefrontal phase locking to hippocampal theta
oscillations. Neuron 46(1), 141–151 (2005)

106. Siegel, J.J., Kalmbach, B., Chitwood, R.A., Mauk, M.D.: Persistent activity in a cortical-to-
subcortical circuit: Bridging the temporal gap in trace eyelid conditioning. J. Neurophysiol.
107(1), 50–64 (2012)

107. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron
24(1), 49–65 (1999)

108. Skaggs, W.E., McNaughton, B.L., Permenter, M., Archibeque, M., Vogt, J., Amaral, D.G.,
Barnes, C.A.: EEG sharp waves and sparse ensemble unit activity in the macaque
hippocampus. J. Neurophysiol. 98(2), 898–910 (2007)

109. Smith, M., Coleman, S., Gormezano, I.: Classical conditioning of the rabbit’s nictitating
membrane response at backward, simultaneous, and forward CS–US intervals. J. Comp.
Physiol. Psychol. 69(2), 226–231 (1969)

110. Smith, A., Frank, L., Wirth, S., Yanike, M., Hu, D., Kubota, Y., Brown, E.: Dynamic
analysis of learning in behavioral experiments. J. Neurosci. 24(2), 447–461 (2004)

111. Solomon, P.R., Gottfried, K.E.: The septohippocampal cholinergic system and classical
conditioning of the rabbit’s nictitating membrane response. J. Comp. Physiol. Psychol. 95(2),
322–330 (1981)

112. Solomon, P.R., Solomon, S.D., Vander Schaaf, E., Perry, H.E.: Altered activity in the
hippocampus is more detrimental to classical conditioning than removing the structure.
Science 220(4594), 329–331 (1983)

113. Solomon, P.R., Stowe, G.T., Pendlebury, W.W.: Disrupted eyelid conditioning in a patient
with damage to cerebellar afferents. Behav. Neurosci. 103(4), 898–902 (1989)

114. Solomon, P.R., Vander Schaaf, E.R., Thompson, R.F., Weisz, D.J.: Hippocampus and trace
conditioning of the rabbit’s classically conditioned nictitating membrane response. Behav.
Neurosci. 100(5), 729–744 (1986)

115. Solomon, P.R., Groccia-Ellison, M.E., Flynn, D., Mirak, J., Edwards, K.R., Dunehew, A.,
Stanton, M.E.: Disruption of human eyeblink conditioning after central cholinergic blockade
with scopolamine. Behav. Neurosci. 107, 271–279 (1993)

116. Spence, K.W., Norris, E.B.: Eyelid conditioning as a function of the inter-trial interval.
J. Exp. Psychol. 40(6), 716–720 (1950)

117. Steinmetz, J.E., Woodruff-Pak, D.S. (eds.): Eyeblink Classical Conditioning, vol. 2. Animal
Models, Kluwer, Boston (2000)

118. Stewart, M., Fox, S.: Do septal neurons pace the hippocampal theta rhythm? Trends in
Neurosci. 13(5), 163–168 (1990)

6 Hippocampal Theta-Based Brain Computer Interface 183



119. Takehara, K., Kawahara, S., Kirino, Y.: Time-dependent reorganization of the brain
components underlying memory retention in trace eyeblink conditioning. J. Neurosci. 23(30),
9897–9905 (2003)

120. Takehara-Nishiuchi, K., McNaughton, B.L.: Spontaneous changes of neocortical code for
associative memory during consolidation. Science 322(5903), 960–963 (2008)

121. Thompson, R.F., Gluck, M.A.: Brain substrates of basic associative learning and memory. In:
Lister, R.G., Weingartner, H.J. (eds.) Perspectives on Cognitive Neuroscience, pp. 25–45.
Oxford University Press, New York (1991)

122. Topka, H., Valls Sole, J., Massaquoi, S., Hallett, M.: Deficit in classical conditioning in
patients with cerebellar degeneration. Brain 116(4), 961–969 (1993)

123. Tsanov, M., Manahan-Vaughan, D. (2009). Long-term plasticity is proportional to theta-
activty. PLoS One 4(6). doi:10.1371/journal.pone.0005850

124. Ulhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat.
Rev. Neurosci. 11(2), 100–113 (2010)

125. Weible, A.P., Weiss, C., Disterhoft, J.F.: Activity of single neurons in caudal anterior
cingulate cortex during trace eyeblink conditioning in the rabbit. J. Neurophysiol. 90(2),
599–612 (2003)

126. Weiss, C., Disterhoft, J.F.: Exploring prefrontal cortical memory mechanisms with eyeblink
conditioning. Behav. Neurosci. 125(3), 318–326 (2011)

127. Weiss, C., Knuttinen, M., Power, J., Patel, R., O’Connor, M., Disterhoft, J.F.: Trace eyeblink
conditioning in the freely moving rat: Optimizing the conditioning parameters. Behav.
Neurosci. 113(5), 1100–1105 (1999)

128. Welsh, J.P., Lang, E.J., Suglahara, I., Llinas, R.R.: Dynamic organization of motor control
within the olivocerebellar system. Nature 374(65241), 453–457 (1995)

129. Wetzel, W., Ott, T., Matthies, H.: Hippocampal rhythmic slow activity (“theta”) and behavior
elicited by medial septal stimulation in rats. Behav. Biol. 19(4), 534–542 (1977)

130. Williams, J.M., Givens, B.: Stimulation-induced reset of hippocampal theta in the freely
performing rat. Hippocampus 13(1), 109–116 (2003)

131. Woodruff-Pak, D.S., Lavond, D.G., Thompson, R.F.: Trace conditioning: Abolished by
cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 348(2),
249–260 (1985)

132. Woodruff-Pak, D.S., Papka, M., Ivry, R.B.: Cerebellar involvement in eyeblink classical
conditioning in humans. Neuropsychol. 10(4), 443–458 (1996)

133. Wyble, B.P., Linster, C., Hasselmo, M.E.: Size of CA1-evoked synaptic potentials is related
to theta rhythm phase in rat hippocampus. J. Neurophys. 83(4), 2138–2144 (2000)

134. Yeo, C.H., Hardiman, M.J., Glickstein, M.: Discrete lesions of the cerebellar cortex abolish
the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res.
13(3), 261–266 (1984)

135. Yeo, C.H., Hardiman, M.J., Glickstein, M.: Classical conditioning of the nictitating
membrane response of the rabbit. Lesions of the cerebellar nuclei. Exp. Brain Res. 60(1),
87–98 (1985)

184 L.C. Hoffmann et al.

http://dx.doi.org/10.1371/journal.pone.0005850


Chapter 7
Advanced fMRI and the Brain Computer
Interface

Martyn Paley, Shwan Kaka, Heather Hilliard, Aleksandr Zaytsev,
Adriana Bucur, Steven Reynolds, Wei Liu, Elizabeth Milne
and Greg Cook

Abstract Electrical signals generated by the brain which give rise to the EEG signal
on the scalp create a magnetic field at the neuronal source of around 1 nano-Tesla
(nT). Several authors have shown that changes in magnetic field of this order can be
directly detected electromagnetically through MR signal modulation by high sen-
sitivity MRI systems. An interesting fact is that this direct electromagnetic effect is
independent of the strength of the magnetic field which is used for detection. Instead
it is the stability of the system which controls the ability to detect such weak
electromagnetic fields. This opens up the possibility of using low cost, open, low
field strength MRI systems for dfMRI brain computer interfaces. Some authors have
proposed the use of SQUID detection of fMRI at ultra-low field. Instead, we propose
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use of an intermediate, low cost, open MRI system used in conjunction with advance
sensitivity enhancement methods such as cryogenic radiofrequency array coils
together with polarization enhancement through the nuclear Overhauser effect
(producing enhancements of *10x) and dynamic nuclear polarization (producing
enhancements of*10,000x). Whilst this development is still in its infancy, much of
the underlying technology required has already been proven and our future challenge
is to integrate these sub-systems into a functional dfMRI based BCI device.

Keywords fMRI � dfMRI � BOLD � BCI � Dedicated MRI systems � GRACE �
DNP � Overhauser enhanced MRI

7.1 Introduction

A Brain Computer Interface (BCI) needs to be fast, non-invasive and provide
highly localized information on the source of function within the brain to allow
rapid identification and selection of imagined responses. Until recently functional
MRI could provide both non-invasive and highly localized source information on
function within the brain but has been relatively slow compared to other methods
such as EEG [3] and MEG (Hamalainen et al. [20] due to its reliance on convo-
lution of the fast neuronal signals with the blood’s slow hemodynamic response
function (HRF * 6–10 s). If it was possible to retain the advantages of fMRI and
increase the temporal resolution, in a low cost, compact, open access MRI system
then it may in fact be possible to consider MRI to be a competing technology for
development of a BCI. This chapter aims to introduce and discuss a number of
advanced MR methods and new technologies which may be useful for developing
novel brain computer interfaces in future. Although functional MRI is traditionally
performed at high magnetic field strength, new functional methods are being
developed which are independent of field strength and which rely much more on the
temporal stability of the system opening up the possibility of low cost, low field
devices for use with a BCI.

The Blood Oxygenation Level Dependent (BOLD) response increases approx-
imately linearly with magnetic field strength (Ogawa et al. [37]) and whole body
magnets of 3, 7, 9.4 T and even 10.5 T are now being used for functional MRI
research and in some cases for clinical practice. However, the slow HRF means that
the real time response of the BOLD effect limits its use in a BCI which ideally
require multiple updates each second to provide a smooth response. If functional
MRI was capable of picking up the effects of neuronal and axonal firing directly
then the temporal resolution could be increased to be similar to EEG and MEG,
limited only by the data acquisition window and sequence repeat time. In principle,
the direct effect is also more highly localized than the BOLD effect as it is not
dependent on blood flow within the arteries, capillaries and veins which supply the
firing axons with oxygen but measures the group of active neurons firing directly.
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There are many opportunities for radical MRI designs at lower field strength,
where the high magnet coil hoop stresses and requirement for cryogenic cooling
required by high field superconducting magnets are relaxed. Resistive or permanent
magnets can be used which have much lower power requirements and are much
easier to construct and maintain as well as having much lower capital and running
costs, potentially opening up the field of fMRI BCI. New methods are being
developed to increase the sensitivity of low field MRI systems such as cryogeni-
cally-cooled radiofrequency coils which use simple liquid Nitrogen based cryostats
and enhanced polarization methods such as Overhauser MRI or dissolution
dynamic nuclear polarization enhancement which provide dramatic increases in
sensitivity for low field MRI, making field strength a much less relevant factor.
Rapid new MR acquisition strategies such as phase encode under-sampling and
advanced image processing algorithms are opening up the ability of fMRI to
automatically provide real time functional responses.

The chapter begins with a comparison of the established but slow BOLD fMRI
method with the emerging direct, fast electromagnetic detection technique, dfMRI,
in terms of spatial and temporal resolution in Sects. 7.2.1 and 7.2.2 respectively.
Section 7.2.3 compares functional data acquired with both slow and fast methods
using visual functional stimulation in human volunteers as an illustration of the
potential of the fast method. Section 7.2.4 describes a novel method of measuring
weak currents with MRI known as GRACE which has a very high frequency
bandwidth for detecting fluctuating magnetic fields which could provide MRI with
very high resolution, artifact free images but with the same frequency response as
EEG or MEG. Section 7.2.5 illustrates functional MRI results obtained using a
transcutaneous electrical nerve stimulation (TENS) device to stimulate the median
nerve showing weak responses from the nerve at the stimulation frequency.

Section 7.3 moves on to look at new MRI technology which could be used for
brain computer interfaces as well as methods to improve the inherent sensitivity for
low field functional studies. Section 7.3.1 describes a dedicated, niche MRI system
which has already been used extensively to image adult extremities and the whole
body of neonates and which also has some limited access to image the cortex of the
adult human brain. Developments of such systems with slightly larger magnet
apertures may well prove useful in developing functional MRI for a BCI in future.
Section 7.3.2 describes the development of cryogenic coils which can improve the
sensitivity of such systems by factors of three to four. Section 7.3.3 discusses the
emerging method of in vivo Overhauser MRI (OMRI) which can increase the
sensitivity of MRI in real time by around 10 times and Sect. 7.3.4 describes another
low cost, low field MRI system based on a resistive magnet. In Sect. 7.3.5 the
revolutionary method of in vivo dissolution DNP is described which can increase
sensitivity for 13C nuclei by over 10,000 times, albeit for a limited acquisition
window of a few 100 s which could provide the additional sensitivity required to
make dfMRI much more reliable. 13C nuclei have wide spectral dispersion and thus
there is potential to make spectroscopic measurements even with a relatively low
field MRI scanner.
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Section 7.4.1 describes a proposal for a low cost MRI system for use in a BCI
system based on integrating the technologies described in previous sections. Sec-
tion 7.4.2 suggests how such a low cost, but high technology MRI system could be
integrated with a practical BCI system in future. The chapter finishes with Sect. 7.5
which provides a Discussion and Conclusion reviewing progress towards produc-
tion of an MRI based Brain Computer Interface.

7.2 BOLD Versus Direct Electromagnetic Detection FMRI

Blood oxygenation level dependent (BOLD) functional magnetic resonance
imaging (fMRI) has revolutionized our ability to evaluate how the brain works in
response to external stimuli and to resting states in almost real time. However, there
are fundamental limits to both the spatial and temporal resolution of BOLD due to
its reliance on the slow hemodynamic response function (6–12 s) and on a spatially
distributed network of veins, arteries and capillaries which make it non-ideal for a
Brain Computer Interface [21, 32, 37, 42]. Magnetoencephalography (MEG) has
shown that it is possible to directly detect very weak magnetic fields associated with
neuronal firing in real time [20] although accurate source localization remains a
difficult problem for MEG. Electroencephalography (EEG) and optical imaging
have also been used to measure neuronal firing with high temporal but poor spatial
resolution [3, 5, 18, 31].

Applied Potential Tomography was developed in Sheffield in the early 1980s
and used externally applied voltages to spatially measure current flow inside the
human body [4]. Externally applied currents were also later used with magnetic
resonance imaging for measurements within the human body. However, these
measurements required rotation of the sample relative to B0 which complicated the
process considerably [22, 45]. Rotating frame excitation was later proposed to
avoid actual physical rotation of the sample [46]. In addition to these externally
applied current methods, there has been increasing interest in detecting intrinsic
weak magnetic field changes within the body in an attempt to use MRI for directly
mapping neuronal activity. These studies have focused on investigating temporal
modulation of the magnetic field by weak fluctuating current sources such as those
generated by neurons and axons. Phantom studies have shown that such very weak
magnetic fields (*10−10 T) can actually be detected by MRI using either magni-
tude or phase reconstructed MR images [7, 8, 16, 24, 26, 48, 52].

In vivo studies of direct neuronal detection have investigated a range of stimulation
paradigms and different cerebral sub-systems. However, the research field is still very
much in an experimental phase and detection remains at the limit of sensitivity of
current MRI systems. If this effect could be detected reliably it would be an excellent
candidate for use in a Brain Computer Interface. Our recent work has focused on
study of this alternative method of direct intrinsic electromagnetic detection
fMRI (dfMRI) in vivo in assemblies of human neurons and axons [10–13, 39].
This method has an instantaneous response to neuronal firing events limited
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temporally only by the data acquisition process itself and potentially has very high
spatial resolution limited only by MR system sensitivity to the weak electromagnetic
emissions of the nervous system.

7.2.1 Spatial Resolution of BOLD Versus dfMRI

MEG measures weak magnetic signals produced by neuronal populations using
Superconducting Quantum Interference Devices (SQUIDs). EEG in comparison
measures electric potentials on the scalp with electrodes connected to a sensitive
voltmeter. Both techniques have high temporal resolution in the millisecond range
but can only provide low resolution images through a complex inverse solution
method. Spontaneous and evoked magnetic fields measured on the scalp, 2–4 cm
from the current source are of the order of 10−12–10−13 T as measured by MEG
(Hamalainen et al. [20]). Modelling these fields as a current dipole and using the
inverse square law implies magnetic fields of the order of 10−9 T for spontaneous
activity (e.g. alpha waves) and 10−10 T for evoked activity (e.g. response to a strobe
flash) at the location of a 2 mm sized current source within the brain. MRI is
sensitive to the magnetic field changes directly located at the current source and so
in principle should experience direct signal modulation from these much larger
internal fields. This opens up the real possibility that MRI, given sufficient sensi-
tivity to these weak magnetic field changes, can have both the high temporal
resolution associated with MEG and EEG but also retain its own inherently high
spatial resolution. In theory, this effect must work. However, the challenge is
making an MRI system sensitive and stable enough to measure this weak modu-
lation effect. This chapter outlines our progress towards achieving this exciting
goal.

Although the image acquisition sequence (usually Echo Planar Imaging—EPI)
specifies the nominal voxel resolution of a functional MR image, the spatial res-
olution of the BOLD effect is actually determined by the extent of the underlying
vasculature including arteries, capillaries and draining veins which supply oxy-
genated blood to the brain. The supply of blood and oxygenation in these vessels
change during task activation as oxyhaemoglobin is converted to deoxyhaemo-
globin. Thus the resolution of the BOLD effect within the brain may be variable. To
improve localization of the effect, steps are often taken to try and remove signal
arising from the larger draining veins. Higher static magnetic field strengths help
reduce signal from the draining veins due to a shorter blood relaxation rate R2* but
it is also possible to use a spin echo sequence at lower field strengths which helps
localize the signal to the capillary bed close to where the active neurons are firing.

The direct electromagnetic effect dfMRI on the other hand does not rely at all on
the brain vasculature (except to keep the neurons oxygenated) but is defined solely
by the number and location of the actively firing neurons and axons. Thus the
spatial resolution of the dfMRI experiment is in principle much higher than for
BOLD.
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7.2.2 Temporal Resolution of BOLD Versus dfMRI

In terms of temporal resolution, the hemodynamic response lags behind the actual
neuronal firing with a delay to maximum response of 6–12 s causing a consequent
delay in the fMRI BOLD response as shown in Fig. 7.1. This hemodynamic
response function (HRF) filter effectively defines the ultimate temporal resolution of
BOLD fMRI and although a number of sophisticated paradigms have been used in
an attempt to overcome this issue it remains a major problem.

The direct electromagnetic effect is limited by the temporal resolution of the MR
image acquisition sequence rather than the individual neuronal firing events. All the
field modulating events which occur after RF excitation integrated until the end of
MR data acquisition will contribute to the phase modulation of the signal. However,
it is possible to arrange for this temporal resolution to be in the millisecond range
given sufficient detection sensitivity, thus improving dramatically on what can be
achieved using BOLD.

7.2.3 Fast EPI fMRI Acquisition Method for dfMRI

The EPI sequence samples all the phase encoding required to produce an image
within a single Free Induction Decay (FID) signal acquisition. EPI is usually
acquired with a long repeat time 1–2 s for BOLD experiments but can be used with
a much shorter repeat time (<100 ms) to look for higher frequency modulations,
albeit with reduced signal to noise ratio. After initial experiments using test objects
modulated by small coils with calibrated currents established that very weak
magnetic fields (<1 nT) could be measured using fast echo planar imaging, it was
decided to investigate whether the effect could be detected in adult human volun-
teers. The human optic nerve contains over a million nerve fibres which can be
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Fig. 7.1 A schematic diagram of typical changes in the fMRI BOLD signal due to the adult
human Hemodynamic Response Function (HRF) after a single event task activation. Neuronal
activity is convolved with this function
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induced to fire synchronously through a variety of stimulation paradigms. The optic
nerve is also conveniently perpendicular to the main magnetic field meaning that
the neuronal fields generated are in the correct direction to modulate the B0 field
when the optic nerve fires.

In vivo experiments were performed at 1.5 T on healthy adult human subjects
using single frequency stimulation either by a set of LED goggles or by a strobe. A
single acquisition slice was planned through the optic nerves and visual cortex as
shown in Fig. 7.2. Visual stimulation was applied asynchronously with the dfMRI
acquisition as shown in Fig. 7.3.

An 8 channel head array coil was used for acquisition. Fat saturation was applied
to remove signal from retro-orbital fat. A foam head mould and Velcro strap were
used to minimize any head motion during imaging. Subjects were asked not to
move their eyes or blink during the relatively short time course of imaging (79 s).
Subjects were dark adapted for 15 min before the visual stimulus experiments
started. All studies were performed in accordance with the local ethical guidelines
for MR and with informed written consent. Figures 7.4 and 7.5 show typical
experimental results.

Figure 7.5 shows a comparison of the BOLD response with dfMRI. Such direct
responses, due to the direct electromagnetic effect, may be useful for developing a
BCI in future [13, 38, 39].

Fig. 7.2 Location of the
single oblique slice used for
rapid dfMRI of the human
visual system passing through
the optic nerves at the front
and the visual cortex in the
occipital lobe at the rear of the
brain
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7.2.4 GRACE Method for High Spatial and Temporal
Resolution dfMRI

The frequency response of a functional MRI scan is limited by the repeat time
between successive image acquisitions. Typical BOLD fMRI scans which use Echo
Planar Imaging use long repeat times of a second or more, thus limiting the
stimulation frequency bandwidth which can be measured without aliasing to less
than 0.5 Hz. A novel method has been developed which allows a very short repeat
times to be used in the range of a few milliseconds enabling the bandwidth for MRI
functional studies to be increased to a few hundred Hertz while retaining good
geometric fidelity, unlike the conventionally used Echo Planar Imaging.

The Ghost Reconstructed Alternating Current Estimation (GRACE) [52] esti-
mates alternating currents using ghost images created when the magnetic field from
a fluctuating current periodically modulates the phase of the MR signal between
successive phase encode views in a conventional 2D Fourier encoded sequence.
GRACE has been tested on phantoms using both sinusoidal and square wave
current waveforms and has been shown to detect fluctuating magnetic fields as low
as 10−10 T using sequential averaging.

Given a repetitive stimulus at frequency f, weak electrical signals in the optic
nerve should modulate the local magnetic field and produce a weak displaced ghost
image corresponding to the harmonics of the phase modulated MR signal spectrum,
separated from the actual optic nerve by the distance

Fig. 7.3 Schematic diagram showing typical relationship of breathing (a), cardiac pulsation (b),
an action potential burst excited by the external stimulus (c) and data acquisition of the dfMRI
acquisition time series (d)
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DSn ¼ n� f � TR� FOV � NEX ð7:1Þ

where n is the order of the ghost, TR is the acquisition repeat time, FOV is the Field
of View and NEX is the number of excitations (averages).

A direct modulation response from the axons in the optic nerve should produce
weak ghost image harmonics displaced to the left or right of the optic nerves in the
noise around the head. The intensity of the ghosts depends critically on the PM
modulation index generated by the axons and hence the resulting magnetic field.
Figure 7.6 shows the results of a phantom experiment to demonstrate the generation
of the GRACE ghost harmonics [52].

The GRACE method has been used in human volunteers to assess whether
modulation of the axonal field from the optic nerve can be detected. In the example
shown in Fig. 7.7, some motion of the eyeball can be seen but there is no obvious

Fig. 7.4 dfMRI spectral responses from visual LED stimulation were obtained from the ROI
illustrated (left—green pixels) in the optic nerve by taking the Fourier transform of a time series of
500 EPI images acquired at 1.5 T with a very short TR = 88 ms. The spectral response of the optic
nerve is shown without (middle) and with (right) visual stimulation by a sinusoidally modulated
red light emitting diode at 3 Hz. A weak response of approximately 0.2 % signal modulation at the
LED frequency of 3 Hz is seen in the magnitude spectrum but not the phase spectrum
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ghost from the optic nerve with strobe illumination at 4.5 Hz despite a measured
signal to noise ratio of over 400:1. Experiments with strobe flash illumination in ten
volunteers using a 3 T scanner showed possible weak ghost responses in only two
cases [39]. This type of experiment may be easier to perform at lower magnetic field
strength where there are fewer artifacts due to motion and physiological noise and
where there are lower susceptibility artifacts.

Fig. 7.5 Comparison at 3 T of a BOLD and dfMRI analysis from a series of EPI images acquired
using a flashing checkerboard stimulus presented to the visual field using an MR compatible
display mounted on the head coil at 1.75 Hz with 5 blocks (OFF-ON-OFF-ON-OFF) of 30 s each.
Analysis was performed using Statistical Mapping (GLM) with a Z-score of > 2.5 showing
correlations either at the block frequency (0.033 Hz) for BOLD (left—yellow pixels) or at the
direct stimulus frequency (1.75 Hz) for the direct effect (right—red pixels) in the visual cortex and
in the retina. The direct effect response appears to be more spatially localized than BOLD [13]

Fig. 7.6 Experimental image of an oil capsule (centre of image) simulating an axial section of an
optic nerve located adjacent to a straight wire driven with square wave modulation at
frequency = 0.9 Hz and current I = 4.6 mA and using a GRACE spin echo acquisition with
TR = 100 ms, TE = 15 ms, FOV = 35 cm and NEX = 1. The ghost images are displaced from the
actual object and the displacement distance allows the frequency of the modulation to be
calculated, whilst the intensities of the different harmonic ghosts allows the amplitude and shape of
the modulating waveform to be recreated

194 M. Paley et al.



7.2.5 TENS Stimulation of the Median Nerve for dfMRI

Another method which can be used to try and detect direct neuronal firing using
MRI is to induce peripheral nerve firing using applied electrical stimulation.
Transcutaneous electrical nerve stimulation (TENS) uses pulsed voltages up to
40 V and currents up to 80 mA to induce nerve firing at a desired frequency
(typically in the range 2.5–5 Hz for these experiments). Different pulse widths can
also be used (typically 260 μs for these experiments).

To stimulate the median nerve in the arm, the TENS device electrodes are
positioned on the palm of the hand approximately 3 cm apart as shown in Fig. 7.8.
The electrodes are connected to the TENS via a twisted pair cable to avoid the
possibility of induced eddy currents from the MRI gradients and to locate the TENS
device a suitable distance from the magnet to prevent the device being pulled into
the magnet. The stimulus amplitude is adjusted until the subject reports feeling a
mild shock but without any muscle twitch. fMRI is very sensitive to any subject
movement which is minimized by firmly packing the wrist inside the closely fitting
eight channel wrist array coil used for the median nerve experiments.

A series of 500 dynamic Echo Planar images are acquired with the TENS device
firing simultaneously with a very short repeat time of 88 ms [23]. In addition image
series are acquired without stimulation as a control. The much higher repeat time
used for dfMRI, while producing lower SNR due to T1 saturation, allowed fre-
quencies up to 6 Hz to be measured without aliasing compared to just 0.25 Hz in
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Fig. 7.7 A 25 frame
sequentially averaged
GRACE experiment using a
surface coil and T2 weighted
gradient echo sequence
providing strong positive
signal from the optic nerve in
the axial plane. The horizontal
scale is also calibrated in
terms of where a GRACE
ghost of a specific frequency
would occur. The expected
location of the ghost is at
4.5 Hz
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conventional BOLD experiments. Images are analyzed by taking the Fourier
transform of the time series from regions of interest located on the median nerve
and in normal tissue for comparison. Spectral peaks at the stimulation frequency
with a SNR > 3:1 are accepted as responses if there are no equivalent responses in
normal tissue or in the median nerve in control time series (Fig. 7.9).

Figure 7.10 shows the location of the axial slice and a high resolution image
used to locate the position of the median nerve. Figure 7.11 (left) shows the location
of two regions of interest (ROIs) on one frame of the acquired time series during
TENS stimulation. Results similar to those shown in Fig. 7.11 (right) were observed
in 18 out of 20 experiments using a stimulation frequency of 2.5 Hz and 17 of 20
experiments using a stimulation frequency of 3.5 Hz in a study performed on six

Fig. 7.8 Diagram showing
location of the electrodes on
the palm and positioning of
the TENS device outside the
magnet

Fig. 7.9 Stimulation paradigm for 2.5 Hz and 3.5 Hz TENS. The TENS stimulation was applied
asynchronously with the dfMRI acquisition
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healthy volunteers suggesting that it may be feasible to directly detect TENS
stimulated firing of the median nerve using dfMRI. However, the signal to noise
ratio for detected responses in these experiments is very poor at *3:1 so the
reliability may be insufficient for use in a control interface application without
further advances in sensitivity. In addition, although the overall acquisition times
are relatively short in duration (*45 s), the Fourier responses are effectively
averaged over many electrical pulses (typically 100–150 pulses depending on
frequency) [23].

Fig. 7.10 Localizer image showing a slice through the wrist selected for dfMRI acquisition (left).
High resolution slice from a full 3D acquisition showing the location of the median nerve within
carpal tunnel (right)

Median nerve

Normal tissue

Fig. 7.11 Echo Planar dfMRI image of the wrist: one image from a time series of 500 acquired
during TENS stimulation at 2.8 Hz (left). Frequency response from median nerve (blue trace) and
‘normal tissue’ (red trace), showing a possible response from the median nerve at the applied
TENS frequency of 2.8 Hz but no response from the normal tissue. Also, no response was seen
from the median nerve in control experiments without stimulation applied
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7.3 Novel Low Field MRI Technology for dfMRI

This section looks at the potential of novel compact MRI system technology for use
in Brain Computer Interfaces including cryogenic radiofrequency coils and the
potential of hyperpolarization to revolutionise the sensitivity of dfMRI using low
field MRI scanners. Direct electromagnetic effect functional MRI is fundamentally
limited by the MRI system sensitivity for detection of weak magnetic fields from
axons and neurons. Typically MR samples are only polarised to a few parts per
million using a magnetic field. It is possible to externally boost this polarisation by
a number of advanced techniques so that it approaches almost 100 % yielding a
massive increase in the available signal. The MR polarization effects described here
actually operate very effectively when imaging at low magnetic field strengths and
could possibly be used to improve the sensitivity for dfMRI. Biologically com-
patible free radicals boost MRI sensitivity through a number of mechanisms.
Overhauser MRI produces MR signal enhancement in real time through microwave
irradiation of free radicals in the sample of interest which transfer their high po-
larisation to surrounding nuclei of interest. Dissolution DNP, on the other hand,
produces a highly polarized sample using an external polarizer at very low tem-
peratures with microwave irradiation of a free radical over a duration of many
seconds (typically 1 h). Following rapid dissolution using a high pressure and
temperature solvent, the enhanced polarisation solution is injected into a subject and
acts as a metabolizing contrast agent. To enhance dfMRI the agents would need to
enter or be in close proximity to the active axons or neurons which represents a
developmental challenge to be overcome.

7.3.1 Compact Low Field MRI Systems for dfMRI Research

Most MRI systems involved in fMRI research have typically operated at magnetic
field strengths of 1.5 T or higher and have a traditional cylindrical enclosed bore.
This is because the BOLD effect relies on the susceptibility difference between
oxygenated and non-oxygenated blood which produces a larger effect on the R2*
relaxation rate at higher field strength. In comparison, the direct electromagnetic
effect is a fixed size modulation, independent of field strength and so can potentially
be investigated using much lower magnet field strengths and hence cheaper MR
systems.

The advantages of using lower fields for dfMRI research are:

• Physiological artifacts on the MRI signal from e.g. cardiac pulsation and res-
piration are much lower at lower field strength. This is primarily because the
radiofrequency coils interact more weakly with the body at lower frequencies
due to less inductive coupling.

• Acoustic noise is much lower if auditory stimulation paradigms are required
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• Specific absorption rate, a measure of the biological heating effect of applied
radiofrequency fields, is much lower, even at the electron spin resonance fre-
quency, so enhancement methods such as Overhauser MRI (OMRI) can
potentially be used where high electron spin polarization is transferred to the
nuclear spins.

• System spectrometer stability is easier to control at lower frequency.
• Missile projectile effects are minimized and support equipment containing fer-

romagnetic materials can be brought closer to the magnet.
• It is possible to design more compact, open magnets at lower field strengths due

to the lower stresses on components and no necessary requirement for use of a
bulky cryostat.

A number of dedicated MRI systems aimed at scanning a specific part of rather
than the whole body have begun to gain popularity. In the rest of this chapter, the
design aspects of low cost MRI systems which could be useful for dfMRI research
towards a brain computer interface are described.

Figure 7.13 illustrates the capability of the compact MRI system, shown in
Fig. 7.12, to visualize the adult human brain for dfMRI research at low field. Some
geometrical distortion of the image is observed at the top and bottom of the head as
the uniform field of view of the system is a 160 mm sphere whereas the adult head
is typically 220 mm (back to front) × 160 mm (side to side).

Only the top of the brain can be visualized with the current system due to the
shoulders blocking further entry to the centre of the magnet. However, it can be
used to scan the whole brains and bodies of neonates or small children [51]. The
brain structures including gyral folds can be clearly observed and this type of image
could also be used for attempting to detect dfMRI at low field using the GRACE
method discussed above [52], together with a suitable brain stimulation paradigm
e.g. TENS electrical stimulation of the median nerve to excite the motor-sensory
strip. A new magnet design with a slightly increased gap and improved uniform
field fitting inside the existing covers is currently under development and will allow
the entire adult brain to be investigated in future.

7.3.2 Cryogenic Coils for Improved Sensitivity of Low Field
MRI

The performance of an MRI system depends critically on the sensitivity of its
radiofrequency receiver coils. In turn, the performance of a radiofrequency coil
depends on its Q factor where:

Q ¼ x=dx ð7:2Þ

ω is the Larmor (operating) frequency of the coil and δω is the 3 db bandwidth of
the coil.

7 Advanced fMRI and the Brain Computer Interface 199



Fig. 7.12 Low cost, compact 0.2 T Niche MRI system using a Neodymium Boron Iron magnet
designed for imaging neonates and extremities. However, the system can also be used for imaging
the top section of the adult cerebral cortex for dfMRI research at low field as shown in Fig. 7.13.
The MR images above show an elbow, a wrist, an ankle and a knee in various acquisition planes
demonstrating good spatial resolution (< 1 mm in plane) and high tissue contrast. The dimensions
of the system are 530 (W) × 530 (D) × 1,100 (H) mm and the system only weighs 500 kg. The
imaging volume is a 160 mm sphere and the magnet aperture measure 750 × 200 mm
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The Q factor is determined largely by the resistance of the coil so by manu-
facturing the coil using a high temperature superconducting material, which is
superconducting at liquid Nitrogen temperatures, the Q can be increased dramati-
cally providing significantly higher image signal to noise ratio.

Use of the superconducting surface receiver coil as seen in Fig. 7.14 was shown
to improve the signal to noise ratio by a factor of up to four in direct comparison
with an equivalent room temperature copper coil [9]. A typical image through the
hand is shown in Fig. 7.15 illustrating very high signal to noise ratio. This is
equivalent to increasing the field strength of the 0.2 T Niche MRI system as shown

Fig. 7.13 Adult brain T1
weighted image in the axial
plane (TR = 300 ms,
TE = 20 ms, FOV = 256 mm,
SLT = 5 mm, NEX = 2)
acquired on the low field
0.2 T Niche dedicated MRI
system

Fig. 7.14 Cryogenic superconducting radiofrequency coil designed to operate at 7.2 MHz and
77 K for use on the low field Niche MRI system. The outer diameter of the spiral coil is 100 mm
and there are ten turns of superconducting material deposited on a sapphire base
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in Fig. 7.12 up to 0.8 T in terms of MRI sensitivity. Arrays of such cryogenic coils
could dramatically increase MRI sensitivity for dfMRI research of the brain at low
field in a very compact unit which could be useful in future as a brain computer
interface.

7.3.3 Overhauser Enhanced MRI

Dynamic Nuclear Polarization (DNP) in liquid state is a double magnetic resonance
technique, which combines the high sensitivity of nuclear magnetic resonance
(NMR) of water protons with the high specificity of free radicals EPR [19, 27, 33].
It is also called Proton-Electron Double Magnetic Resonance Imaging (PEDRI)
[34] or Overhauser enhanced magnetic resonance imaging (OMRI) [6, 28, 41, 49],
and is based on the Overhauser effect where the electron spin resonance (ESR) of
the free radical is irradiated during the acquisition of an MR image [49]. It creates
images of the free radical distribution in an object. The transfer of polarization from
unpaired electron spins to the coupled proton spins results in the enhancement of
the NMR signal in regions of the sample containing the free radical. This leads to
the possibility of NMR imaging at very low magnetic fields [14, 15, 53, 29].

Nitroxyl radicals belong to the six-membered piperidine (TEMPO) or the five-
membered pyrrolidine (PROXYL) class [35]. They are stable organic free radicals,

Fig. 7.15 Axial spin echo T1 weighted image acquired through the hand with the cryogenic
superconducting coil above cooled to 77 K with liquid Nitrogen in a dedicated vacuum dewar on
the 0.2 T Niche MRI system. This type of image could potentially be used with the GRACE
method for detection of median nerve stimulation at low field. Note the much improved SNR and
geometrical fidelity compared with the EPI image of the wrist acquired at the much higher field
strength of 1.5 T shown in Fig. 7.12
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are less toxic and serve as in vitro and in vivo antioxidants. Their paramagnetic
nature, with a single unpaired electron, means they can be used as imaging probes
for in vivo ESR spectroscopy or imaging. Carbamoyl-PROXYL has been widely
used as a spin probe for in vivo ESR imaging and reactive oxygen species (ROS)
monitoring as well as a contrast agent for Overhauser imaging. It has also been used
to evaluate in vivo free radical reactions and the redox status in living animals. To
achieve maximum possible Overhauser enhancement, it is necessary to irradiate the
ESR transition of the nitroxyl agent for at least 3T1. Benial et al. reported an
optimum ESR irradiation time, TESR of 600 ms, a compromise between the signal
enhancement and RF heating [6]. They also found that the enhancement factor
reached a plateau for 14N and 15N-labeled carbamoyl-PROXYL at a concentration
of 2.5–3.0 mM, and then started to decline above 3 mM. Detailed theories of
PEDRI or OMRI can be found in the literature [14, 28, 53, 29] The enhancement
factor, E, of the NMR signal of the 1H nuclei (I = ½) of water molecules with
couplings to an unpaired electron spin S = ½ of a dissolved free radical, is given by:

E ¼ \Iz [ =IO ¼ 1� qfsjcs=cI ð7:3Þ

where < IZ > denotes the expectation value of the DNP, IO is its thermal equilibrium
value, ρ is the coupling parameter (−1 ≤ ρ ≤ 1/2), f is the leakage factor (0 ≤ f ≤ 1),
s is the saturation parameter (0 ≤ s ≤ 1), γS and γI are electron and proton gyro-
magnetic ratios respectively, and the absolute value of their ratio is 658. The
coupling parameter ρ depends on the nature of the interaction between the contrast
agent and the protons, the leakage factor f accounts for the faction of nuclear
relaxation caused by the presence of the paramagnetic contrast agent, the saturation
parameter s is the amount of saturation of the EPR resonance. In an ideal situation,
the maximum possible enhancement is –γS/2γI. A negative enhancement means a
phase change of 180° in the NMR signal.

7.3.4 An Ultra-low Field Overhauser Enhanced dfMRI
System

The use of DNP at very low magnetic field [35] offers some interesting advantages
including very low magnet cost and high contrast in biological tissue [40]. DNP
enhanced imaging experiments have been performed using a home-built low field
MR system which operates at 8.2 mT, as shown in Fig. 7.16a [29]. The system was
designed to produce a uniform field within a few parts per million (ppm) over a
uniform sphere of about 100 mm. The magnet was supplied with 16 Amps from a
DC power supply (Agilent 6673A, U.S.) and simply was air cooled. A split sole-
noid transmit-receive coil (30 mm diameter, 65 mm length, 11 mm gap in the
middle) was used for NMR imaging, and was tuned to 348 kHz which is the
frequency for 1H NMR at 8.2 mT. Another RF loop coil (30 mm diameter) was
placed at the centre of the split solenoid to produce the corresponding irradiation at
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the electron spin resonance frequency of 239 MHz (Fig. 7.16b). The ESR transmit
coil was driven by a 50 W Power Amplifier (LZY-1 Mini-Circuit Europe, U.K.).

3-Carbamoyl-Proxyl (3-Carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidineoxy)
(Sigma Co., St. Louis, MO, USA) was used as the spin probe. Figure 7.17 shows
the chemical structure. C-PROXYL was prepared in distilled water at a concen-
tration of 3 mM, which has been reported to give optimum DNP enhancement [49].
The phantom was a cylindrical vial (28 mm diameter, 70 mm length) filled with
*40 ml 3-Carbamoyl-Proxyl solution. All experiments were performed at room
temperature.

MR images acquired with a gradient echo sequence with an ESR pre-pulse of
600 ms as shown in Fig. 7.18.

Figure 7.19 shows images of the cylindrical phantom with and without the ESR
irradiation present. It can be seen that the signal intensity close to the ESR surface
coil dramatically increases when the electrons are excited producing dynamic
nuclear polarization of the adjacent proton spins in water. Figure 7.20 shows ver-
tical line profiles through the phantom illustrating clearly the massive signal
increase due to the Overhauser effect.

Fig. 7.16 a Low field, inexpensive 8.2 mT MRI magnet useful for dfMRI research b DNP coil
consisting of a solenoid coil for MR imaging and a loop coil (centre) for the EPR irradiation

Fig. 7.17 Chemical structure of 3-Carbamoyl-Proxyl (3-Carbamoyl-2,2,5,5-tetramethyl-1-
pyrrolidineoxy)
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The potential of Overhauser enhanced MRI is thus to improve the sensitivity for
detection of direct electromagnetic effects by factors of an order of magnitude.
Whether interactions between electrons and ions may make O-MRI even more
sensitive for detection of ionic currents is not yet known. However, O-MRI is
subject to limitation by thermal SAR deposition of the high ESR frequency within
the human body. This is why O-MRI works better at low magnetic field strengths
where the ESR frequencies are much lower. However, the initial application of
O-MRI to dfMRI is most likely to be for experiments in animals.

7.3.5 Dissolution Dynamic Nuclear Polarization Enhanced
dfMRI

Dynamic Nuclear Polarization (DNP) is ideally performed at very low tempera-
tures, *1 K The magnetic resonance signal is enhanced above the room temper-
ature thermal equilibrium value by up to four orders of magnitude by combining
microwave irradiation of free radicals within the sample with the low temperature
[1]. The free radicals are polarized to almost 100 % and then transfer this polari-
zation to 13C nuclei in their vicinity. The sample is then rapidly dissolved back into
the liquid phase using a high pressure and temperature solvent. The polarization is
retained for a period of 1–2 min and is rapidly injected into a subject. Using 13C
labelled metabolites, both the spectral and temporal resolution is dramatically
increased compared to 1H MRS [30] allowing real time observation of metabolism
in vivo [50, 54]. Hyperpolarized magnetization decays back to thermal polarization
levels with the T1 rate. The T1 relaxation times for 13C can be in the range of
seconds to minutes, depending on the local molecular environment and the signal
fully decays within a time of *5x the T1 value. Commercial polarizer systems are
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Fig. 7.18 Sequence diagram for DNP imaging with a standard Gradient Echo (GE) sequence at an
NMR frequency of preceded by ESR saturation pulse at the electron spin resonance frequency
(239 MHz) to produce Overhauser enhancement. TESR > 3T1
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Fig. 7.19 Shows images of
the uniform cylindrical
phantom before (top) and
after (bottom) the ESR
irradiation at 239 MHz is
switched on. The MR signal
in the region of the ESR coil
is enhanced by a factor of
over 10 x which suppresses
the signal from the rest of the
phantom as seen in the top
image

Fig. 7.20 Shows a profile
through the uniform
cylindrical phantom before
and after the ESR irradiation
is switched on. After the ESR
is switched on the MR signal
in the region of the ESR coil
is enhanced by a factor of
over 10x
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available such as the Hypersense (Oxford Instruments, Oxford, UK) as shown in
Fig. 7.21.

Automated injectors and sophisticated kinetic analysis help make this process
quantitative [1, 25, 43, 44]. For hyperpolarized 13C1-pyruvate, the signal lasts for a
few minutes and thus must be quickly administered to a subject and 13C spectra
rapidly acquired. The time series of acquired spectra or images are analyzed to
produce intensity versus time plots which can be fitted to an appropriate kinetic
model as shown in Fig. 7.22.

The sensitivity of the experiment is several orders of magnitude higher than
obtained from normal, thermally polarized MR. This method may also be of use for
enhancing dfMRI experiments at low field in future if suitable substrates can be
developed. The wide spectral range of 13C nuclei mean that even at relatively low
field, different compounds can be resolved spectrally. Sterile polarisers for human
use are already available and are being used in clinical trials of prostate cancer [2].

Fig. 7.21 HyperSense dissolution DNP system operates at 1 K and a microwave frequency of
93.5 GHz to polarize a solution of trityl free radical together with a biological substrate which can
be metabolized e.g. pyruvate. The DNP system enhances sensitivity for 13C nuclei by more than
10,000x. It may be possible in future to develop suitable contrast agents to enhance low field
dfMRI using this technology. DNP works equally as well for low field strength MRI as the
polarization generated does not depend on the field strength of the MR system used for imaging
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7.4 A dfMRI Brain Computer Interface Proposal

The final section proposes a possible solution for a dfMRI Brain computer Interface
and discusses the advanced MR technology which will need to be developed to
achieve this exciting goal.

7.4.1 Advanced Open dfMRI System Design

It should be possible to combine the various elements of MR technology in terms of
hardware, acquisition sequences and software described above into a cost effective
low field research system for an MR based brain computer interface.

A 0.2 T permanent magnet with a 350 × 800 mm aperture would be used with a
close fitting co-planar Gradient and Transmit-Receive RF coil array. Cryogenic
cooling of the RF coil arrays could be used to increase sensitivity. Feedback loops
would be implemented to maintain very high magnet, gradient and RF stability,
which is the real key to being able to detect dfMRI. Addition of a DNP system with
a suitable hyperpolarized substrate could potentially bring the sensitivity of dfMRI
to a practical level for use with BCI. Adoption of the GRACE ghost acquisition and
analysis method would allow very high frequencies to be measured without the
significant artifacts associated with EPI. This proposed new low field fMRI BCI
system is illustrated in Fig. 7.23.

Fig. 7.22 Shows a set of dissolution DNP experiments performed in a rat brain with and without
the use of a flow diverter (4th injection—green trace) to minimise the effects of dead space within
the injection cannula. Signal localisation was performed using a 20 mm 13C/1H surface coil
positioned over the animal head, with 8 mm slice selection in a coronal plane containing the brain.
13C spectroscopic data was acquired using a Gaussian pulse (20° flip angle, TR = 1 s) in a Bruker
7 T MRI system. Spectroscopic data containing the PA and lactate (LA) signals were processed in
Matlab using customized software. A clear increase in the signal can be seen with use of the
diverter which reduces partial volume effects for the injected metabolite. To be able to detect these
signals from 13C nuclei in an active metabolite represents an increase in MR sensitivity of
approximately 10,000x. Such an extreme increase in sensitivity may enable dfMRI experiments to
be performed in future with appropriate metabolic agents targeted at neuronal and axonal events
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7.4.2 The dfMRI BCI

This chapter has concentrated on recent technology advances which could lead to
the possibility of a cost-effective MRI based BCI system in future. A complete
dfMRI BCI system would, as well as the acquisition equipment already described,
require a sophisticated software package to rapidly analyze in real-time the acquired
MR images for ghosts or spectral components corresponding to motor, visual,
tactile, olfactory or auditory stimulation or perhaps more importantly, the associated
mental imagery and compare them with previous images or training sets. This data
would then be used to classify a brain computer response and output the appropriate
control commands to the desired hardware interface as illustrated schematically in
Fig. 7.24.

A dfMRI system could be enhanced by multi-modal operation in combination
with both EEG and optical spectroscopy. EEG is easier to combine with MRI at
lower field strengths due to less artifacts being generated by the MRI system on the
EEG traces and optical spectroscopy is inherently MR compatible [3, 17, 36]. MRI
can also be used to provide spatial boundary conditions for EEG and MEG
reconstructions providing improved source localization. New hybrid MR-PET
systems are also being discussed in terms of functional imaging which may
eventually be useful for BCI developments, albeit most likely as research options
only due to the high costs involved [47].

Fig. 7.23 Shows a schematic diagram of a possible MR based Brain computer Interface based on
a low field dfMRI design
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7.5 Discussion and Conclusions

Direct electromagnetic detection fMRI, although not yet fully established as a
reliable clinical method, has great potential. The ability to detect neuronal responses
with a temporal resolution of tens of milliseconds using MRI combined with sub
millimeter spatial resolution has already been demonstrated in experimental settings
and advances in detection sensitivity as provided by cryogenic radiofrequency coils
and polarization enhanced contrast mechanisms are predicted to increase the reli-
ability of this detection process in future.

The key to improvements in reliability of detection of the direct MRI effect is
development of ultra-high stability spectrometer systems. This places a premium on
engineering of the amplifier and coil systems which transmit, receive and spatially
encode the MR signal as well as improvements in the inherent stability of the basic
magnetic field. Low field, low cost magnets for BCI systems will require improved
feedback systems to counteract the effects of temperature and mechanical vibra-
tions; problems which are not really encountered with expensive, high field,
cryogenic magnets. Digital control systems and radiofrequency synthesizers are
already low cost but highly stable and of sufficient quality to provide the high
temporal stability required.

New MRI acquisition strategies which radically under-sample the spatial
information required to create an MR image are also increasing the ability of fMRI
to measure real time responses and when linked with high speed parallel hardware
based image processors, enable real time analysis of function in a reduced digital
format that is potentially usable for a BCI robotic control system. The major
advantage of MRI over other non-invasive methods currently is the accurate 3D
spatial localization of the functional source which is likely to be a key factor in
creating rich Brain Computer Interfaces. In fact the precise 3D capability of fMRI is
probably the major reason for focusing effort on this modality. The ability of MRI
to measure responses in peripheral nerves may also mean it could play a role in
creating robotic limb interfaces in future.

Fig. 7.24 Overview of a dfMRI based BCI system
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In addition, MRI is compatible with other low cost functional methods such as
EEG or ultrasound and combined systems which take advantage of each modality
may play an important role. For example, MRI can be used to provide well defined
boundary conditions to more accurately identify EEG dipole sources (see Chap. 4).

In conclusion, the new MR sensitivity enhancement methods discussed here
could revolutionize the ability of dfMRI to measure brain function with unprece-
dented spatial and temporal resolution using compact, low cost, low field MRI
systems. Such novel, personal MRI systems may eventually play a significant role
in enabling sophisticated Brain Computer Interfaces with both high temporal and
3D spatial resolution.
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Chapter 8
Detection of Human Emotions Using
Features Based on the Multiwavelet
Transform of EEG Signals

Varun Bajaj and Ram Bilas Pachori

Abstract Emotion classification based on electroencephalogram (EEG) signals is a
relatively new area of research in the development of brain computer interface (BCI)
system with challenging issues like induction of the emotional states and the
extraction of the features in order to obtain optimum classification of human emo-
tions. The emotion classification system based on BCI can be useful in many areas
like as entertainment, education, and health care. This chapter presents a new method
for human emotion classification using multiwavelet transform of EEG signals. The
EEG signal contains useful information related to the different emotional states,
which helps us to understand the psychology and neurology of the human brain. The
features namely, ratio of the norms based measure, Shannon entropy measure, and
normalized Renyi entropy measure are computed from the sub-signals generated by
multiwavelet decomposition of EEG signals. These features have been used as an
input to multiclass least squares support vector machine (MC-LS-SVM) together
with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet
kernel functions for classification of human emotions from EEG signals. The clas-
sification performance of the proposed method for classification of emotions using
EEG signals determined by computing the classification accuracy, ten-fold cross-
validation, and confusion matrix. The proposed method has provided classification
accuracy of 84.79 % for classification of human emotions namely happy, neutral,
sadness, and fear from EEG signals with Morlet wavelet kernel function of MC-LS-
SVM. The audio–video stimulus has been used for inducing the emotions in EEG
signals. The experimental results are presented to show the effectiveness of the
proposed method for classification of human emotions from EEG signals.
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computer interface (BCI)

8.1 Introduction

Brain computer interface (BCI) facilitates a connection between the human brain
and external device like computer. The BCI system can be used for assisting the
physically disabled and impaired people [1, 2]. The BCI system requires analysis,
monitoring, measurement, and evaluation of electrical activity of the brain which is
extracted by either a set of electrodes over the scalp or electrodes implanted inside
the brain. The BCI system can be used for analysis and classification of EEG
signals corresponding to different emotions.

Emotion is one of the main factors that affect activities of our day to day life. The
applications of emotion classification may include medical areas like as neurology
and psychology. The diagnosis of neurological disorders has been suggested based
on automatic emotion recognition system using various signals like electromyo-
gram (EMG), electrocardiogram (ECG) and facial images [3, 4]. Emotions
expressed via speech and facial expressions are commonly used techniques for
classification of human emotions [5, 6]. However, the speech and facial expressions
may lead to false emotion. Therefore, it motivates the use of physiological signals
like EEG signal for analysis and classification of human emotions. The EEG signals
can play an important role in detecting the emotional states for developing the BCI
based analysis and classification of emotions.

It should be noted that the EEG signal indicates the electrical potential differ-
ences corresponding to different emotions generated by human brain. The research
areas like psychology, neurophysiology and BCI are focusing on the important
indication of emotions using EEG signals. Different emotional states can be affected
by conditions like age, gender, background, and ethnicity. Moreover, various
people have lot of personal emotional experiences to the same stimulus. In [7, 8], it
has been provided the significant differences in emotional states which are gener-
ated for autonomic nervous system. But automated classification was not carried
out. Most of the emotions exist for very small interval of time in the range of few
micro to milli seconds [9]. Generally emotions are developed at the deeper part of
the human brain called limbic system, which initiates emotional interpretation of
the EEG signals from the autonomic nervous system. These incoming signals
propagates to hypothalamus to trigger the corresponding perceptive physiological
effects like increase in heart rate, R-to-R interval and blood volume pulse. These
processed signals travels to the amygdala, which is important part of human brain
for learning connections to stimuli by comparing them to past experiences. Some of
the results on emotion recognition research have shown that, the amygdala and
corticothalamic connections mainly participate in emotion recognition process.

216 V. Bajaj and R.B. Pachori



In addition, prefrontal cortex, cerebral cortex and occipital lobe areas also have
significant role in provoking emotions such as happy, fear, and sad [10]. Regions of
human brain which contribute for emotions are as follows: (a) sadness (left tem-
poral areas), (b) sadness, happiness and disgust (right prefrontal cortex area), (c)
anger (right frontal cortex activation) (d) fear (bilateral temporal activation), (e)
sadness and happiness (contribute most of the brain areas) and (f) all emotions also
share the areas (prefrontal cortex, cingulated gyrus, and temporal cortex).

Although most of the activation for emotions emerge in right hemisphere cor-
responding to different time-segments of EEG signals. The left hemisphere also
plays a significant role in activation of emotions. Apparently, brain might be partly
or entirely engaged to emotional processing during emotions like sadness, anger,
happiness, disgust and fear. Thus, the results support the hypothesis that there are
no exclusive emotion centers in the brain. But the results indicate that the several
brain areas are activated during emotion processing in a well-defined and specific
dynamic process. It has been noticed that left and right hemispheres of the brain
together experience different classes of emotions [11]. The left hemisphere is
responsible for approach. On the other hand, the right hemisphere is responsible for
withdrawal. In [12], it has been explained that the left frontal region is an important
center for self-regulation, motivation and planning. The damage of left frontal
region can cause to apathetic behavior in combination with a loss of interest and
pleasure in objects. The right anterior region contributes to high activation of right
frontal and anterior temporal regions during arousal emotional states like fear and
disgust. In [11], it has been noticed that there is less alpha power in right frontal
regions for disgust than that for happiness while happiness caused less alpha power
in the left frontal region than that of disgust. In addition, the analysis of EEG signals
have been carried out for brain asymmetries during reward and punishment. It has
been found that punishment has association with less alpha power in right mid and
lateral frontal regions of the brain and reward has been associated with less alpha
power in the left mid and lateral frontal regions [13]. In an experiment, it has been
shown that alpha power over the left hemisphere increases in happy conditions in
comparison to negative emotional conditions. During the study, the three emotions
fear, happiness and sadness have been induced by using visual and auditory stimuli
[10]. There are two to twenty basic or prototype emotions as defined by many
researchers. Most of the theories suggests that each emotion reflects an particular
motivational tendency and behavior. Emotions represent particular forms of action
and physiological patterns [14]. The physiological patterns have been applied for
classification of emotions into three types: (1) distress (2) interest and (3) pleasure
[15]. The basic emotions as defined in [16] are as follows: anger, fear, sadness,
disgust, surprise, curiosity, acceptance, and joy.

Most of the methods developed in the literature for neuropsychological studies
have reported the correlations between EEG signals and emotional states. These
methods have been based on time-domain analysis and frequency-domain analysis.
In the time-domain analysis, event-related potentials (ERPs) components have
reflected emotional states [17]. The ERP components of short to middle latencies
have been shown to have correlation with valence [18, 19], whereas with the ERP
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components of middle to long latencies have been shown to have correlation with
arousal [20, 21]. The computation of ERPs requires averaging EEG signals over
multiple trials, rendering ERP features inappropriate for online processing. How-
ever, recent development in single-trial ERP computation methods have resulted in
a increased possibility to use ERP features for online emotional state estimation
[22–24]. In the frequency-domain, the spectral power of different frequency bands
corresponds to different emotional states. The frequency bands have been used for
analysis of emotions (happy, sad, angry, fear) or neutral. It has been noted that
stimulus can modulate the power synchronization with in frequency bands [25, 26].
In [27], it has been proved that the frontal alpha asymmetry reflects the approach/
avoidance aspects of emotion. The gamma band power has been related to some
emotions like happiness and sadness [28, 29]. The theta power of ERS has been
related to transitions in the emotional state [30–32]. In [33], the EEG signals have
been decomposed into frequency bands and then principal component analysis
(PCA) has been employed for reduction of features. These features have been used
as input to the binary classifier for classification of emotions based in the bi-
dimensional valence-arousal approach. In [34], the EEG signals have been used for
recognition of human emotions with the help of humanoid robots. The aim of this
experiment was to provide the ability for robots to detect emotion and react to it in
the same way as occurring in a human to human interaction. The discrete wavelet
transform (DWT) based features namely, energy, recoursing energy efficiency
(REE) and root mean square (RMS) have been used for classification of four
emotions (happy, disgust, surprise and fear) with Fuzzy C-Means (FCM) clustering
[35].

In [36], the participants have been asked to remember past emotional events and
the method has been used SVM classifier to obtained the classification accuracy of
79 % using EEG signals for three classes and 76 % using EEG signals for two
classes. In another study [37], the wavelet coefficient and chaotic parameters like
fractal dimension, correlation dimension and wavelet entropy have been used to
extract features from EEG and psychophysiological signals. The selected features
combined with linear discriminate analysis (LDA) and SVM, obtained classification
accuracy 80.1 and 84.9 % for two classes of emotional stress using LDA and SVM
respectively. In [38], the combination of music and story has been used as stimuli to
introduce a user independent system. The classification accuracy as obtained with
this method was 78.4 and 61.8 % for three and four classes respectively. In [39],
film clips have been used to stimulate participants with five different emotions joy,
anger, sadness, fear, and relax. The statistical features extracted from EEG have
been used as input for SVM classifier as result 41.7 % of the patterns that have been
correctly recognized.

In [40], a BCI system for the recognition of human emotions have been used
with 64 channels EEG recording system. A Laplace filter has been applied for pre-
processing of EEG signals. The wavelets transform algorithm has been used for
features extraction from EEG signals and two different classifier namely the k
nearest neighbors and linear discriminant have been used for classification of dis-
crete emotions such as happiness, surprise, fear, disgust and neutral. The efficiency
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of the asymmetry index (ASI) based emotional filters has been justified through an
extensive classification process involving higher-order crossings and cross-corre-
lation as feature-vector extraction techniques and a support vector machine clas-
sifier for six different classification scenarios in the valence/arousal space. This
study has resulted in mean classification rates from 64.17 up to 82.91 % in a user-
independent base, revealing the potential of establishing such a filtering for reliable
EEG-based emotion recognition systems [41]. Electric potential associated with
brain activities that has been measured thought EEG signals have a potential source
for emotion detection. The power of EEG signal in the specific bandwidth or brain
wave has been used for analysis for positive or negative expression particularly the
change of power in alpha and beta wave [42]. In [43], different stimuli like sounds,
images, and combination of both have been used to distinguish between three
emotion classes (neutral, happy, unhappy). In [44], calm and excited emotions have
been evoked using images, the best classification accuracy that has been archived
72 %. In [45], authors has compared three feature extraction methods based on
fractal dimension of EEG signals including Higuchi, Minkowski Bouligand, and
Fractional Brownian motion using kNN and SVM classifiers on four classes of
emotions. The principal component analysis (PCA) has been used to correlate EEG
features with complex music appreciation which has been used as input to the SVM
classifier to classify EEG dynamics in four subjectively-reported emotional states
[46]. In [47], a system has been proposed for estimating the feelings of joy, anger,
sorrow and relaxation by using neural network, which has obtained classification
accuracy of 54.5 % for joy, 67.7 % for anger, 59 % for sorrow and 62.9 % for
relaxation. In [34], a system has been implemented based on EEG signals to enable
a robot to recognize human emotions. Emotions have been evoked by images and
classified in three different emotions, namely: pleasant, unpleasant and neutral.

The emotions have been elicited by stimulating participants with a Pong game
and anagram puzzles. The four machine learning methods K-nearest neighbor,
regression tree (RT), Bayesian network and SVM have been for emotion classifi-
cation, the best average accuracy has been obtained with SVM 85.51 % [48]. In
[49], the dynamic difficulty adjustment (DDA) mechanism has been developed for
adjustment of game difficulty in real time based on anxiety measures. This dem-
onstrates the interest of using affective computing for the purpose of game adap-
tation. In [50], the authors have proposed technique to continuously assess the
emotional state of a player using fuzzy logic. The obtained results have shown that
the emotional states have evolved according to the events of the game, but no exact
measure of performance have been reported. This tool could be used to include the
player’s experience in the design of innovative video games. In [51], three emo-
tional states namely boredom, anxiety, engagement have been detected from
peripheral signals by using SVM classifier. The emotions have been elicited by
using a Tetris game.

The features extracted form the mutual information and magnitude squared
coherence estimation of EEG signals have been used as features for k-nearest
neighbors (kNN) and SVM classifiers for classification of emotions. The perfor-
mance of the EEG-based emotion recognition system has been then evaluated using
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five-fold cross-validation [52]. In [53], features that have been extracted by inde-
pendent component analysis (ICA) and the K-means algorithm have been used to
distinguish emotions in EEG. [54] have investigated the use of the naive Bayes
classifier, SVM, and ANN to detect different emotions in EEG. The EEG signals
have been recorded from 10 participants by using the international affective picture
system (IAPS) database. The frequency band power has been measured along with
the cross-correlation between EEG band powers, the peak frequencies in the alpha
band, and the Hjorth parameters [55].

The different emotional states using EEG signals have been measured by the
Kolmogorov entropy and the principal Lyapunov exponent [56]. Non-linear
dynamic complexity has been used to measure the complexity of the EEG signals
during meditation [30]. The fractal dimension, the energy of the different fre-
quency-bands, and the Lyapunov exponent have been used as features for the
classification of human emotions [57]. The correlation dimension measures the
complexity of EEG signals, which also has been used for analysis of human
emotions [58]. The statistical and energy features obtained by using discrete
wavelet transform (DWT) of EEG signal have been used for human emotion
classification [59]. Wireless concept based detection of state of valence using EEG
signals has been proposed in [60]. The higher order spectra (HOS) together with
genetic algorithm have been used for classification of two emotional stress states
with an average accuracy of 82 % [61].

The event related potential and event related oscillation based features have been
proposed as input feature set for emotion classification [62]. The obtained classi-
fication accuracies are 79.5 and 81.3 % for Mahalanobis distance based classifier
(MD) and support vector machine (SVM) respectively. The time-frequency domain
based features have been suggested as input feature set to SVM classier for clas-
sification of three emotional states [63]. The obtained average classification accu-
racy in this work is 63 % [63]. The methodology based on surface Laplacian (SL)
filtering, wavelet transforms (WT) and linear classifier has been developed for
classification of emotions using EEG signals [64]. The classification accuracies
reported in this study are 83.04 and 79.17 % for kNN and linear discriminant
analysis (LDA) respectively. The short-time Fourier transform (STFT) based fea-
tures have been suggested as an input for SVM classifier for classification of
emotions [65, 66]. The obtained classification accuracy in this work is 82.29 % for
classification of four emotions using SVM classifier. The features obtained using
higher order crossing have been used for classification of emotions using EEG
signals [67]. The classification accuracy achieved with this methodology for six
emotions is 83.33 %. Time and frequency domain based features have been sug-
gested for classification of emotions from EEG signals [68]. The proposed meth-
odology in this work has provided classification accuracy of 66.5 % considering
four emotions [68]. The spectrogram, Zhao-Atlas-Marks and Hilbert-Huang spec-
trum based features have been used for classification of arousal and neutral with
classification accuracy of 86.52 % [69].

The classification of emotions is probabilistic. The previous research on human
emotion has dealt with classification using probability theory to estimate the human
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emotional state by checking the presence or absence of a certain emotion [70, 71].
The techniques based on probability theory are still insufficient to handle all the
facets of uncertainty in human emotion classification [72]. The fuzzy set theory can
provide a systematic approach to process uncertain information, just as humans are
able to interpret imprecise and inadequate information. In order to incorporate
human expertise, the fuzzy C-means clustering (FCM) has been used to cluster each
component to get different emotional descriptors [73]. These descriptors have been
combined together to form the fuzzy-GIST in order to generate the emotional
feature space for human emotion recognition [74]. The fuzzy sets have attracted
interest in information technology, production techniques, decision making, pattern
recognition, diagnostics, data analysis, etc. [75–77]. The neuro-fuzzy systems are
fuzzy systems, which use ANN theory in order to determine their properties like
fuzzy sets and fuzzy rules by processing data samples. Neuro-fuzzy systems
employs fuzzy logic and artificial neural networks (ANNs) by utilizing the math-
ematical properties of ANNs in tuning rule-based fuzzy systems that represent the
way humans process information. The adaptive neuro-fuzzy inference system
(ANFIS) has shown to be significant in modeling of nonlinear functions. The
ANFIS learns features in the data set and adjusts the system parameters based up on
a given error criterion [78, 79]. The application of ANFIS in biomedical engi-
neering have been reported to be significant for classification [80, 81]; Übeyli and
Güler [82, 83] and data analysis [84]. The most prominent classification methods
are support vector machine (SVM) [85], fuzzy k-means [86], and fuzzy c-means
[87]. These classifier have been resulted in moderate classification accuracy for up
to three [88], four [89], and five [39] distinct emotions. Other researchers have
made efforts to study the operator engagement, fatigue, and workload by using EEG
signals with respect to complexity of a task [90–94].

The emotion classification methods have been developed based on different
feature extraction techniques from EEG signals. Many EEG signal analysis meth-
ods have employed preprocesses for reducing the artifacts. The recorded EEG
signals in response to stimuli pass through the preprocessing step in which noise
reduction algorithms and spatio-temporal filtering methods are applied to improve
the signal-to-noise ratio (SNR). Then, the feature extraction step determines specific
band powers, ERPs, and phase coupling indices that have correlation with the
aimed emotional states. Commonly, this feature selection process is being opti-
mized in order to achieve maximum emotion classification accuracy. The classifi-
cation steps compute the most probable emotional states from the selected EEG
features. The number of classes depend on the definition of the emotional state
space like the continuous state of arousal and valence, or the discrete states.

In this chapter, we present an emotion classification system based on multi-
wavelet transform (MWT) of EEG signals. The EEG signals have been acquired
using audio–video stimulus. The MWT decomposes the EEG signals into a set of
sub-signals. The features: ratio of the norms based measure, Shannon entropy
measure, and normalized Renyi entropy measure have been computed from the sub-
signals of the EEG signals. The extracted features have been used as an input to the
multiclass least squares support vector machine (MC-LS-SVM) for emotion
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classification from EEG signals. This chapter is organized as follows: Sect. 8.2
presents the experimental setup, pre-processing, the MWT, features extraction and
MC-LS-SVM classifier. The experimental results and discussion for the emotion
classification using EEG signals based on the proposed methodology have been
provided in Sect. 8.3. Finally, Sect. 8.4 concludes the chapter.

8.2 Methodology

8.2.1 Experimental Setup

The EEG signals have been acquired from 8 healthy subjects (4 males and 4
females) during audio–video stimulus. The subjects were having age between
20–35 years. The subjects were undergraduate students or employees from Indian
Institute of Technology Indore, India. A 16-channel EEG module (BIOPAC sys-
tem, Inc.) with 10–20 electrode system was used for recording of EEG signals. The
sampling frequency of EEG signals was 1,000 Hz. The bipolar montage has been
used during recording of the EEG signals. The prefrontal cortex plays significant
role in impulse control and in many other emotions [95, 96]. Therefore, the elec-
trode positions Fp1/Fp2 and F3/F4 have been used to record the EEG signals. The
right (A2) and left (A1) earlobes have been used for ground and reference elec-
trodes respectively.

Generally, the number of basic emotions can be up to 15 [97]. The eight basic
emotions such as anger, fear, sadness, disgust, surprise, curiosity, acceptance, and
joy have been described in [16]. The emotions can be represented based on their
valence (positive and negative) and arousal (calm and excited) with two dimen-
sional scale [98]. The different ways of inducing emotions are: visual includes
images and pictures [41], recalling of past emotional events [44], audio may be
songs and sounds [99], audio–video includes film clips and video clips [100, 101].
In this work, we have studied four basic emotional states based on 2-D valence-
arousal emotion model [102], which includes happy, neutral, sadness, and fear. In
this study, the EEG signals have been obtained from eight subjects with 5 trials
each using 3 audio–video stimulus. Figure 8.1 shows EEG data recording and main

Fig. 8.1 EEG data recording and main parts of the proposed methodology for emotion
classification
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parts of the proposed methodology for emotion classification. The EEG signals for
four emotional states: happy, neutral, sad and fear have been shown in Fig. 8.2. The
subsections of the proposed method for emotion classification from EEG signals are
shown in Fig. 8.3. The subsections include pre-processing, multiwavelet transform,
feature extraction, and MC-LS-SVM classifier. The details of each subsection are
explained as follows:

8.2.2 Pre-processing

The recorded EEG signals are contaminated with noise like power line, external
interferences and other artifacts. The 8th order, band pass, Butterworth filter with a

Fig. 8.2 The EEG signals of different emotional states: a happy, b neutral, c sad, and d fear

Fig. 8.3 The block diagram
of proposed methodology for
emotion classification from
EEG signals
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bandwidth of 0.5–100 Hz has been used for removing noise. The 50 Hz notch filter
has been applied to remove the noise due to power-line interference. The MWT
requires pre-processing which includes generation of vectored input stream and pre-
filtering. There are many ways to obtain the vectored input stream [103]. In this
work, the vectored input stream has been obtained using repeated row pre-pro-
cessing scheme. The matrix-valued multiwavelet filter bank also requires multiple
streams of input as decided by multiplicity.

8.2.3 Multiwavelet Transform

The scalar wavelets which are obtained by mother wavelets by varying one scaling
function have been widely used in non-stationary signal processing. The scalar
wavelet have led to the notion of multiwavelets, which is a more recent general-
ization having more numbers of distinct scaling functions. It offers many theoretical
and experimental advantages. For example, multiwavelets have been constructed to
simultaneously possess symmetry, orthogonality, and compact support [104–108].
The multiwavelets have some unique characteristics that cannot be obtained with
scalar wavelets. Multiwavelets can simultaneously provide perfect reconstruction
while preserving length (orthogonality), good performance at the boundaries (via
linear-phase symmetry), and a high order of approximation (vanishing moments).
These features of multiwavelets cause to better performance of multiwavelets over
scalar wavelets in image processing applications. Particular applications, where
multiwavelets have been found to offer superior performance over single wavelets,
include signal/image classification [107, 108], compression [104], and denoising
[106]. The wavelet transform based features have been used for epileptic EEG
signal classification and recognition [109, 110]. The multiwavelets attracted
because of their significant characteristics, which consist of more than one scaling
and wavelet functions. Multiwavelets simultaneously possess orthogonality, short
support, symmetry, and a high order of approximation through vanishing moments,
that all of them are important for signal processing application [103]. The perfor-
mance of multiwavelet have shown superior as compare to scalars wavelets in
image classification, denoising [106] and image compression [104]. In [111], it has
been shown that the multiwavelet transform has an efficient signal processing
technique for the feature extraction from EEG signals in comparison with scalar
wavelet. It motivates us to use multiwavelet transform of EEG signals for classi-
fication of human emotions.

The standard multi-resolution analysis (MRA) for scalar wavelet uses one
scaling function /ðtÞ and one wavelet wðtÞ. The integer translates and the dilates of
the scaling function are represented as /ðt � kÞ and /ð2 jt � kÞ respectively. The
multiwavelet is the extension of scalar wavelet where multiple scaling functions and
associated multiple wavelets are used. In case of multiwavelet, a basis for the
subspace Vo is generated by translation of r scaling functions denoted by
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/1ðt � kÞ;/2ðt � kÞ; . . .;/rðt � kÞ. The multiwavelet can be considered as vector-
valued wavelets which satisfy the condition of two-scale relationship with
involvement of matrices rather than scalars. The vector-valued scaling function
Φ(t) = [ϕ1(t), ϕ2(t), … ϕr(t)]

T, where T represents the transpose and the associated r-
wavelets WðtÞ ¼ ½w1ðtÞ;w2ðtÞ; . . .;wrðtÞ�T satisfies the following matrix dilation
and matrix wavelet equations [103]:

UðtÞ ¼
X
k

G½k�Uð2t � kÞ ð8:1Þ

WðtÞ ¼
X
k

H½k�Uð2t � kÞ ð8:2Þ

where, the coefficients G½k� and H½k� are matrices. The matrices G½k� and H½k� are
low-pass filter and high-pass filters for multiwavelet filter bank respectively. The
multiplicity r is generally 2 for most of the multiwavelets [103]. The multiwavelet
can simultaneously exhibit symmetry, orthogonality, and short support, which is
not possible using scalar wavelet [103, 112]. In this study, we consider multiple
scaling functions and multiwavelets which are developed by Geronimo, Hardin and
Massopust (GHM) [113–115]. They are shown in Fig. 8.4. The GHM dilation and
translation equations for this system have following four coefficients:
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Fig. 8.4 The GHM pair of scaling functions and wavelet functions
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The GHM multiwavelet has several remarkable properties. The GHM scaling
functions have short support of [0, 1] and [0, 2]. The scaling functions are sym-
metric and the system exhibit second order of approximation. Moreover, multi-
wavelet form symmetric/antisymmetric pair. Translates of scaling functions and
wavelets satisfy orthogonality, which is not possible in case of scalar wavelet.
Figures 8.5, 8.6, 8.7 and 8.8 show the third level sub-band signals as obtained by
multiwavelet decomposition of EEG signal shown in Fig. 8.2a–d respectively.

Fig. 8.5 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to happy emotion as shown in Fig. 8.2a

Fig. 8.6 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to neutral emotion as shown in Fig. 8.2b
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8.2.4 Features Extraction

Many entropy based methods have been proposed for EEG signal analysis. Dif-
ferent approaches for computing entropy in physiological systems have been
developed in the literature. In [116], the researchers have suggested that a measure
of the entropy which is the rate of information of a chaotic system would be a useful
parameter for characterizing such a system. In [117], the authors have developed a
method to calculate the Kolmogorov-Smirnov (K-S) entropy of a time series. The
modified version of Eckmann and Ruelle (E-R) entropy in [118], has been proposed
by modifying the distance metric proposed in [119]. The authors have suggested a
modification of E-R entropy by introducing statistical entropy named approximate

Fig. 8.7 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to sad emotion as shown in Fig. 8.2c

Fig. 8.8 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to fear emotion as shown in Fig. 8.2d
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entropy (ApEn) [120]. However, it has been demonstrated that the method to
compute ApEn introduces a bias, as the ApEn algorithm counts each sequence as
matching itself [121]. In order to reduce this bias, the proposed modified version of
the ApEn algorithm known as sample entropy (SampEn). The sample entropy
measures the irregularity of the time series. In [122], the authors have compared
approximation entropy and sample entropy method for neurophysiological signals.
They have addressed issues related to the choice of the input parameters and have
shown that the sample entropy approach has produced more consistent results. They
have also shown that the sample entropy is less sensitive to the length of the data.
Recently, the sample entropy has been used as a feature for the classification of
different classes of EEG signals [123].

The features namely, the ratio of norms based measure, Shannon entropy
measure and normalized Renyi entropy measure have been measured from sub-
signals obtained from the multiwavelet decomposition of EEG signals. These
features are briefly described as follows:

Ratio of Norms Based Measure Ratio of norms based measure is defined as the
ratio of the fourth power norm and the square of second power norm [124]. It is
expressed as:

ERN ¼
PN

n¼1 jx½n�j4PN
n¼1 jx½n�j2

h i2 ð8:5Þ

where, x½n� is signal under study.
Shannon Entropy Measure The Shannon entropy is a measure of uncertainty of

the signal [125]. It can be defined as:

ESE ¼ �
XL
k¼1

pk log½pk� ð8:6Þ

Normalized Renyi Entropy Measure The Renyi entropy measure can be nor-
malized either with respect to signal energy or distribution volume [126]. In this
study, the normalized Renyi entropy ENE which is normalized with respect to signal
energy has been used. The ENE can be expressed as follows:

ENE ¼ 1
1� a

log

PL
k¼1 p

a
kPL

k¼1 jpkj

" #
ð8:7Þ

where, α is the order of Renyi entropy, which has been taken as 3 being the smallest
integer value.
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8.2.5 Multiclass Least-Squares Support Vector Machine

Multiclass support vector machine (SVM) classifiers have become popular in recent
years in the fields of classification, regression analysis, and novelty detection [127].
Multiclass least squares support vector machine (MC-LS-SVM) algorithms have
shown very promising results as EEG signal classifiers [128].

The effectiveness of the proposed features in emotion classification from EEG
signals is evaluated using a MC-LS-SVM. The least squares support vector
machines are a group of supervised learning methods that can be applied for
classification of data [129–132]. For multiclass classification problem, we have
considered the training data fxi; yki gi¼P;k¼m

i¼1;k¼1 , where yki denotes the output of the kth
output unit for pattern i. The P denotes the number of training dataset. The deri-
vation of the MC-LS-SVM is based upon the following formulation [127, 133]:

Minimize JðmÞLS ðwk; bk; ei;kÞ ¼ 1
2

Xm
k¼1

wT
k wk þ c

2

XP
i¼1

Xm
k¼1

e2i;k ð8:8Þ

with the following equality constraints:

y1i ½wT
1g1ðxiÞ þ b1� ¼ 1� ei;1; i ¼ 1; 2; . . .;P

y2i ½wT
2g2ðxiÞ þ b2� ¼ 1� ei;2; i ¼ 1; 2; . . .;P

�
�
�
ymi ½wT

mgmðxiÞ þ bm� ¼ 1� ei;m; i ¼ 1; 2; . . .;P

8>>>>>><
>>>>>>:

ð8:9Þ

where, wk and c are the weight vector of kth classification error and the regulari-
zation factor respectively. The ei;m and bk denotes the classification error and the bias
respectively. The gkð:Þ is a nonlinear function that maps the input space into a higher
dimensional space. The Lagrangian multipliers ai;k can be defined for [128] as:

LðmÞ wk; bk; ei;k; ai;k
� � ¼ JðmÞLS �

X
i;k

ai;k yðkÞi wT
k gkðxiÞ þ bk

� �� 1þ ei;k
n o

ð8:10Þ

which provides the following conditions for optimality:

oL
owk

¼ 0;! wk ¼
PP
i¼1

ai;ky
ðkÞ
i gkðxiÞ

oL
obk

¼ 0;! PP
i¼1

ai;ky
ðkÞ
i ¼ 0

oL
oei;k

¼ 0;! ai;k ¼ cei;k
oL
oai;k

¼ 0;! yðkÞi ½wT
k gkðxiÞ þ bk� ¼ 1� ei;k

8>>>>>>>><
>>>>>>>>:

ð8:11Þ
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where, i = 1, 2, …, P and k = 1, 2, …, m. Elimination of wi and ek;i provides the
linear system as:

0 YT
M

YM XM

� �
bM
aM

� �
¼ 0

�1

� �

with the following matrices:

YM ¼ blockdiag

yð1Þ1

�
�
�
yð1ÞP

2
6666664

3
7777775
; . . .;

yðmÞ1

�
�
�
yðmÞP

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

XM ¼ blockdiagfX1; . . .;Xmg Xk
i ¼ yki y

kgTk ðxÞgkðxiÞ þ c�1I

1 ¼ ½1; . . .; 1� bM ¼ ½b1; . . .; bm�
ai;k ¼ ½a1;1; . . .; aP;1; . . .; a1;m; . . .; aP;m�

where, Kkðx; xiÞ ¼ gTk ðxÞgkðxiÞ is kernel function, which satisfy Mercer condition
[127]. The decision function of multiclass least square support vector machines
(MC-LS-SVM) is defined as [134]:

f ðxÞ ¼ sign
XP
i¼1

aiky
ðkÞ
i Kkðx; xiÞ þ bk

" #
ð8:12Þ

The radial basis function (RBF) kernel for MC-LS-SVM can be defined as [45]:

Kkðx; xiÞ ¼ exp
�jjx� xijj2

2r2k

" #
ð8:13Þ

where, rk controls the width of RBF function.
The multidimensional wavelet kernel function for MC-LS-SVM can be given as

[134, 135]:

Kkðx; xiÞ ¼
Yd
l¼1

w
xl � xli
ak

	 

ð8:14Þ

The kernel function of Mexican hat wavelet for MC-LS-WSVM can be defined
as [128]:
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Kkðx; xiÞ ¼
Yd
l¼1

1� ðxl � xliÞ2
a2k

" #
exp �kxl � xlik2

2a2k

" #
ð15Þ

Similarly, the kernel function of Morlet mother wavelet for MC-LS-WSVM can
be defined as [128]:

Kkðx; xiÞ ¼
Yd
l¼1

cos x0
ðxl � xliÞ

ak

� �
exp �kxl � xlik2

2a2k

" #
ð8:16Þ

where, xli is the lth component of ith training data.

8.3 Results and Discussion

In the proposed method, the emotions measured by EEG signals more advantageous
because it is difficult to influence electrical brain activity intentionally. The EEG
signals are acquire using audio–video stimulus because it is more effective for
evoking the emotion. The EEG signals are firstly pre-processed with repeated-row
method to form an input signal vector, then the input signal vector is decomposed
into sub-signals through GHM multiwavelet with 3-level decomposition. Multi-
wavelets offer simultaneously orthogonality, symmetry, and compact support and
therefore outperform the scalar wavelets. The features namely, ratio of the norms
based measure, Shannon entropy measure, and normalized Renyi entropy measure
have been extracted from sub-signals as obtained by GHM multiwavelet decom-
position of EEG signals. To the knowledge of the authors, there is no other work in
the literature related to emotion classification using features based on multiwavelet
transform of EEG signals. Emotion classification is multiclass classification prob-
lem. Recently it has been shown that wavelet based kernel is better as compared to
RBF kernel of MC-LS-SVM classifier for multiclass classification problem.
Therefore, it motivates to use these kernels with MC-LS-SVM classifier for emo-
tion classification. These features have been used as an input to MC-LS-SVM
classifier with the RBF kernel, Mexican hat and Morlet wavelet kernel for classi-
fication of emotions from EEG signals.

The classification performance of the MC-LS-SVM classifier for emotion clas-
sification can be determined by computing the classification accuracy, ten-fold
cross-validation, and confusion matrix. The classification accuracy (Acc) can be
defined as the ratio of the number of events correctly detected to the total number of
events.

Acc ¼ number of correctly detected events
total number of events

� 100 ð8:17Þ
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In ten-fold cross-validation, a dataset Y is randomly divided into 10 disjoint
subsets Y1; Y2; . . .; Y10 of nearly uniform size of each class. Then, the method is
repeated 10 times and at every time, the test set is formed from one of the 10 subsets
and remaining 9 subsets are used to form a training set. Then the average error
across all 10 trials is computed in order to obtain the final classification accuracy. A
confusion matrix contains information about the actual and predicted classifications
performed by a classification method. Confusion matrix provides the common
misclassifications in the classification of emotions from EEG signals.

Table 8.1 shows the classification accuracy (%) for RBF kernel, Mexican hat and
Morlet wavelet kernel functions of the MC-LS-SVM classifier for emotion classi-
fication with GHM multiwavelet. The classification accuracy for happy 89.17 %,
neutral 81.67 %, sad 85.00 %, and fear 83.33 % are obtained by proposed method.
It has been observed that classification accuracy of happy class is greater compared
to other class and neutral emotion have lesser classification accuracy may be due to
influenced by the other class of emotion. The classification accuracy for classifi-
cation of emotions from EEG signals obtained by proposed method is 84.79 % with
Morlet wavelet kernel function of MC-LS-SVM classifier. Table 8.2 shows the
confusion matrix for classification of emotions from EEG signals with Morlet
wavelet kernel function. It has been observed that highest misclassification between
sad and neutral emotion. Other observation happy and fear or happy and sad have
same misclassification. Table 8.3 presents a comparison with the proposed method
and other existing methods in the literature for emotion classification. It is clear
from Table 8.3 that the proposed method has provided better classification

Table 8.1 The classification accuracy (%) with different kernels of the MC-LS-SVM classifier for
emotion classification from EEG signals using GHM multiwavelet

Multiwavelet Kernel Function
(Parameters)

Happy
(%)

Neutral
(%)

Sad
(%)

Fear
(%)

Total
Accuracy

RBF(rk ¼ 20Þ 87.50 78.33 82.50 75.00 80.83

GHM Mexican hat
ðak ¼ 20Þ

85.33 83.33 74.16 73.33 79.04

Morlet
ðx0 ¼ 0:5; ak ¼ 20Þ

89.17 81.67 85.00 83.33 84.79

Table 8.2 The confusion matrix of Morlet wavelet kernel function of the MC-LS-SVM classifier
for classification of emotion from EEG signals

Happy Neutral Sad Fear

Happy 89.17 5.83 1.67 1.67

Neutral 4.17 81.67 7.50 6.67

Sad 3.33 7.50 85.00 8.33

Fear 3.33 5.00 5.83 83.33

Accuracy (%) 89.17 81.67 85.00 83.33
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performance as compared to existing methods. It may be the effect of combination
of proposed features extracted from MWT and MC-LS-SVM.

8.4 Conclusion

This chapter explores the capability of proposed features derived from MWT for
classification of emotions from EEG signals. The EEG signals are firstly decom-
posed into several sub-signals through 3-level MWT with repeated-row prepro-
cessing. The multiwavelet transform, the repeated-row preprocessing of the scalar
input produces the oversampling of the EEG signal, which makes the extracted
features more discriminative. In addition, the multiwavelet decomposition contains
two or more scaling and wavelet functions, the low-pass and high-pass filters are
matrices instead of scalars. The features namely, ratio of the norms based measure,
Shannon entropy measure, and normalized Renyi entropy measure are extracted
from the sub-signals obtained by multiwavelet decomposition of EEG signals.
These features are then used as input for MC-LS-SVM classifier for automatic
classification of emotions. The experimental results have indicated that Morlet
wavelet kernel function of MC-LS-SVM classifier has provided classification
accuracy of 84.79 % for classification of emotions from EEG signals.

The EEG signal processing based methodology for emotion classification may
be improved further. The developed method in this chapter only captures the static
properties in the EEG signal in response to emotional stimuli. The methodologies
can be developed to include the temporal dynamics of emotional information
processing in the human cognitive system. It is expected that this way of processing
may estimate the emotional state more accurately. It would of interest to develop
new nonstationary signal decomposition based methodology and machine learning
algorithms for improving the classification accuracy in human emotion classifica-
tion from EEG signals. In this study, the selection of parameters of kernel functions
used in LS-SVM and kernel function has been done on the basis of the trial and
error. In future, the research can be done for automatic selection of kernel functions
and kernel parameters for automatic classification of human emotions from EEG
signals.

Table 8.3 A comparison of classification accuracy of the different emotion classification methods

Authors Stimulus Classes Feature extraction
methods

Classifier Accuracy
(%)

Lin et al.
[65]

Music 4 STFT kNN,
LDA

82.29

Wang
et al. [68]

Video 4 Minimum redundancy
maximum relevance

SVM 66.5

Proposed
method

Audio–video 4 Multiwavelet transform MC-LS-
SVM

84.79
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Chapter 9
A Configurable, Inexpensive, Portable,
Multi-channel, Multi-frequency,
Multi-chromatic RGB LED System
for SSVEP Stimulation

Surej Mouli, Ramaswamy Palaniappan and Ian P. Sillitoe

Abstract Steady state visual evoked potential (SSVEP) is extensively used in the
research of brain-computer interface (BCI) and require a controllable and config-
urable light source. SSVEP requires appropriate control of visual stimulus
parameters, such as flicker frequency, light intensity, multi-frequency light source
and multi-spectral compositions. Light emitting diodes (LEDs) are extensively used
as a light source as they are energy efficient, low power, multi-chromatic, have
higher contrast, and support wider frequency ranges. Here, we present the design of
a compact versatile visual stimulus which is capable of producing simultaneous
multiple frequency RGB LED flicker suitable for a wide range of SSVEP para-
digms. The hardware is based upon the open source Arduino platform and supports
on-the-fly reprogramming with easily configurable user interface via USB. The
design provides fourteen independent high output channels with customisable
output voltages. The flicker frequencies can be easily customised within the fre-
quency range of 5–50 Hz, using a look-up table. The LED flickers are generated
with single RGB LEDs which generate the required colour or frequency combi-
nations for combined multi-frequency flicker with variable duty cycle to generate
SSVEP. Electroencephalogram (EEG) signals have been successfully recorded
from five subjects using the stimulator for different frequencies, colours, duty cycle,
intensity and multiple frequency RGB source, thereby demonstrating the high
usability, adaptability and flexibility of the stimulator. Finally we discuss the
possible improvements to the stimulator which could provide real time user feed-
back to reduce visual fatigue and so increase the level of user comfort.
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9.1 Introduction

Human machine systems refer to the combination of human and machines to
accomplish certain tasks through communication between human and machines.
This can be considered as an interaction of two systems which communicate with
each other in order to fulfil a task. The means of communication include move-
ments, dialogues or by means of non-muscular actions. Human computer interac-
tion (HCI) is a process of inputting the information and getting the desired output
through external devices. Many types of HCI exist, some use direct interaction
without any detailed processing of the data, whereas other systems use complex
algorithms to extract the required output for performing the tasks. Other than data
interaction, figures, images, colours and sound are also used in HCI for performing
tasks. HCI make use of different muscular movement or signals from human body
so as to communicate with the external world using interfacing technology. This
has become an active research area in the recent years [1]. Modern HCI systems
also use more intelligent interactive systems such as learn and process where the
computer analyses the data and interprets it intelligently to avoid mistakes and
improve accuracy [2]. The data analysis methods used in HCI are closely coupled to
the purpose of the system and the computer usually analyses the data it receives in
response to an action performed by human.

One innovative and widely researched area of HCI is Brain-computer Interface
(BCI). BCI is a type of non-muscular communication system that conveys the
changes in brain wave activity directly to an external device in order to perform
some desired task [3]. Figure 9.1 shows the basic BCI interface for data acquisition
and processing. The system acquires the signal from the brain using electrode fitted
on the scalp, the extremely low potential signals are digitised and processed in a
hierarchy of stages to extract useful information for external interaction.

EEG contains detailed information on different states of brain and is useful in
understanding the physiological condition of a person and is present in different
parts of the brain. Electrodes are fitted on these specific areas to record EEG. This
helps in analysing the EEG for specific disabilities or to evaluate the functional
performance of any particular action.

Berger [4] identified that specific waves were present in EEG in the range of
8–12 Hz and named these as alpha waves. Later researchers identified many
additional sub-bands in particular, delta (0–3.65 Hz), theta (3.65–7.25 Hz), alpha
(7.25–14.5 Hz) and beta (14.5–29 Hz) [5]. The use of the sub-band structure aids
the classification and analysis of EEG signals.

BCI can be categorised into two types namely invasive BCI and non-invasive
BCI. Invasive BCI requires surgical procedures to implant electrode on the surface
of the brain to directly read the activity but produces high quality signals for
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experiments. Non-invasive BCI uses sensors which are mounted on a cap or a
headband on the scalp. Often non-invasive BCI requires pre-preparation of the skin
and/or the use of conductive gel, in order that the signal has a suitably high signal-
to-noise ratio (SNR). The strength of EEG signal is also strongly affected by the
gravity induced changes in cerebrospinal fluid (CSF) layer thickness [6]. The
attenuation of the EEG signal is proportional to the thickness of CSF layer. This
property has been used to identify certain neurodegenerative disease caused by
thickening of the CSF layer.

Active research has been done in the area of dry electrodes to overcome the pre-
preparation procedures and to make EEG data available for various automation and
control systems [3, 7]. However, currently, the SNR of dry electrode signals is
typically lower than that produced by conductive gel electrodes.

Hybrid BCI attempts to combine different modalities to improve the perfor-
mance of the BCI system and to make it easier to apply to a wider range of
applications [8–10]. Hybrid BCI systems attempt to combine one BCI with another
BCI in order to improve the quality of signals or to counteract the weaknesses
inherent in a single mode system. BCI based systems are evolving as an inde-
pendent communication tool to circumvent the issues that disabled people face in
their lives and assist in performing basic activities.

Fig. 9.1 Basic data flow
scheme in BCI
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BCI is a very complex system that requires in-depth research to develop a real
time communication and processing platform to be used in real life applications.
People with severe disabilities such as amyotrophic lateral sclerosis, spinal cord
injury, accidental limb loss or any other restrictions in movement could be sup-
ported by BCI [11–15]. Studies show that patients with access to BCI technology
recover more quickly from serious communication disabilities [16].

Research shows promising signs in using BCI to prevent and delay the onset of
dementia, Alzheimer’s and Parkinson’s diseases in elderly people [17, 18]. BCI
could also be considered as an alternative communication medium for disabled
people to operate devices such as computers, assistive chairs or to communicate with
the external world [15]. Since BCI is translating user’s volitional intents to command
an external interface, no muscular action is required by the user and this could be
used by any paralysed individual [19]. These concepts could also be used to support
handicapped people as their sensory motor and cortices remains intact even with loss
or absence of a particular physical limb. The spatiotemporal activation produced by
moving an absent limb is similar to one compared with a healthy individual [20].
Algorithms and techniques to decipher these patterns and translating them to device
control would help numerous disabled people to easily cope with life. Non-invasive
BCI has become an increasingly active research area in the recent years for practical
applications using EEG. EEG based BCI paradigms can be used as a non-muscular
control for communication since they use the electrical activity of the human brain to
interact with the external environment [14, 15, 21].

In the past 20 years, BCI research has led to many innovations encouraged by
new understandings of brain signals [21]. The majority of BCI data analysis
requires off-line data processing, where the data is recorded from the participating
subject and analysed at a later stage. Real-time data processing methods require
more sophisticated hardware and more importantly, ease of use. Prolonged real-
time use would require comfortable dry electrodes and wireless connectivity to a
portable recording system.

Different paradigms such as slow cortical potential (SCP), P300, and visual
evoked potential (VEP) are being used in EEG research [11, 13, 17]. SCP signals are
recorded from the scalp and reflect the changes of activity level of cortical tissues
[22]. SCP is correlated with cognitive and motor performance. Negative SCP shift
exhibits increased cortical excitability and positive SCP shifts reveal the cortical
inhibition. VEP based paradigms have been explored widely by researchers to
support or control external devices using visual stimulus [15, 23–30]. VEP based
BCI technology can be further divided into those based on transient and steady state
responses. A transient VEP with varying amplitudes of negative and positive peaks
is generated when visual stimulus flickers at a lower rate and it requires complex
detection procedures when compared to the steady state responses [31]. P300 is one
such transient VEP and depends on endogenous cognitive process and is one of the
most used control signals for VEP based BCI. P300 is usually a large and positive
deflection in the EEG and requires a defined number of repetitive stimulations. P300
is well known for use in the alphanumeric speller design [32]. This works in syn-
chronous mode and is based on continuous attention of user towards the stimulus.
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Steady state VEP (SSVEP), is a repetitive sinusoidal like waveform with its
frequency synchronised with the frequency of the visual stimulus and it is generated
in the visual cortex [33, 34]. SSVEP can be modulated by the attention of partic-
ipating subject towards the stimulus and it is possible to ascertain the focus of a
subject’s attention when presented with multiple target stimuli with specific flicker
rates. The SSVEP has attracted enormous attention due to its phase locked char-
acteristics and better SNR, reduced training time and ability to achieve higher
information transfer rate (ITR) in BCI systems [35]. Research studies have shown
that the amplitude of the response in the specific stimulus frequency varies with the
different subjects, colour, intensity and the type of stimulus [25, 28, 29, 36, 37].
Often SSVEP signals are corrupted with other noise such as background EEG,
artifacts and external noise such as power-line interference and specific signal
processing techniques will need to be employed to reduce these undesired effects.

Even though SSVEP responses are sufficiently high for practical purposes, it is
not always comfortable for subjects for longer periods of time especially when the
stimulus is presented using LEDs. Amplitude-frequency characteristics of SSVEP
in humans have larger amplitudes from the alpha to low beta ranges and reach its
maximum amplitude at approximately 13 Hz, flickers with frequencies higher than
31 Hz produces poor SSVEP response and weaker SNR [38]. Studies show low
frequencies give higher responses as compared to high frequency stimuli, though
the latter are more comfortable with subjects. Investigations done on overt and
covert attention shows that SSVEP is more reliable with overt attention and covert
attention amplitudes are far smaller than overt mode [39].

The remainder of the chapter is organised as follows. Section 9.2 summarises the
related work using various visual stimulator’s for generating SSVEP. Section 9.3
refers to the procedure, related hardware and software used in this experiment in
developing the visual stimulus. Following Sect. 9.4 explains the results from dif-
ferent frequencies and EEG peaks. Next Sect. 9.5 summarises the complete
experiment including the issues faced and is followed by Sect. 9.6 detailing the
future possibilities and directions.

9.2 Related Work

SSVEP was first investigated for BCI by Middendorf et al. [40] and in their
experiment, each presented target was flashed at a specific frequency. A subject’s
gaze was determined by using spectral measures of the recorded EEG signal. The
maximal amplitude in the frequency domain was at the frequency component
identical to the flicker rate of the target that had the subject’s attention. This method
has become the paradigm of choice by many subsequent BCI researchers using
SSVEP. The SSVEP properties allow target stimuli to be independently tagged by
flicker rate and make it an ideal paradigm for a BCI. Further, SSVEP based BCI has
the most important advantage of not requiring prior training, whilst offering high
information transfer rate, and has been found to be suitable for numerous BCI
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applications such as keypad entry [41], device control [42], and assistive control
[15]. The selection of frequencies in SSVEP allows artifact reduction such as blinks
and background EEG and therefore SSVEP based BCI systems are more robust
than other systems such as transient VEP (that uses P300 potentials below 8 Hz)
and imaginary movement based BCI systems (that use mu and beta rhythms).
Recent researches in signal processing techniques has opened more doors towards
developing intelligent real time algorithms for extraction and processing of EEG
data that is suitable for SSVEP [17].

As mentioned, flashing stimuli of different patterns and sources has been used in
the past to evoke brain potentials [8, 43, 44]. Recent research studies have shown that
the amplitude of the response in the specific stimulus frequency varies with the
different subject, colour, intensity and the type of stimulus [6, 29, 39]. A survey on
popular devices used for creating visual stimulus such as cathode-ray-tubes (CRT),
liquid crystal display (LCD), thin film transistor (TFT) display and light emitting
diode (LED) based sources, identifies LED based visual stimulus as having higher bit
rates when compared to other forms [45]. CRT and LCD based stimuli have com-
paratively low resolution, lower refresh rates and generate electromagnetic interfer-
ence (EMI) emissions [46], which would add additional noise to the recorded EEG.

Visual fatigue is another major issue in SSVEP based BCI and users may suffer
from visual fatigue when staring at a visual stimulus flickering for longer periods of
time. Researchers have conducted studies on the effect of visual stimulus on sub-
ject’s comfort and identified higher frequencies are more comfortable for the
subjects and thereby reduce visual fatigue [37, 47–49].

Research based on customisation of stimulation for enhancing performance in
SSVEP based BCI by Lopez et al. [28], shows SNR of the signal is significantly
dependant on the combination of frequencies in visual stimulus. The study rec-
ommends the selection of appropriate stimulus configuration to avoid degradation
in ITR. This study also highlights that it is possible to use this technique with
subjects who are unable to control their gaze.

Investigation on high speed SSVEP based BCI for various frequency pairs and
inter-source distances were performed by Resalat et al. [35], where the study
showed the response to the stimulus could be small and that the inter-source dis-
tance of 14 cm was optimal. The research used a high speed Max one classifier for
seven different frequency pairs and five different inter source distances. The study
identified the best frequency pair which gave the highest classification accuracy was
10 and 15 Hz, and that a sweep length of 0.5 s provided the highest ITR.

The form of the visual stimulus presented to the user has a direct impact on the
efficiency of SSVEP generated [36]. Most available LCD/CRT screens are based on
60–120 Hz refresh rates and can therefore only display only a limited number of
individual flickering stimuli. Multiple flickering blocks which flicker at different
frequencies may cause difficulties for the user when focusing on single stimulus,
since the target stimuli are spatially separated on the same screen and the user’s
attention is distracted. This has the effect of reducing the SSVEP response signif-
icantly in covert BCI systems [50].
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Research on dual frequency stimulation for SSVEP to increase the number of
visual stimuli has been carried out by Hwang et al. [25]. The experiment was based
on combining two different patterns of visual stimuli flickering at different fre-
quencies in one single visual stimulus. This solves the issues with user attention
shift which was confirmed with offline and online experiments.

A survey undertaken on stimulation methods [51] in SSVEP BCI compared
various methods used for visual stimulus from traditional CRT based flickers to
more controllable LED based stimulus. The study has considered user safety, bit
rate and user comfort for the entire visual stimulus. Screen based stimulus are
limited by the screen refresh rates and it is difficult to generate a precise flicker
frequency for stimulus. However, LED based stimuli are driven by relatively simple
hardware where the flicker frequency can always be confirmed with a digital
oscilloscope. The study also found that SSVEP signals are affected by colour
stimulus and signal strength varies with colour. The survey recommended the use of
phase changes in the stimuli, so as to increase the number of visual stimulus.
Overall, the study suggested LED based stimulus as compared to other conven-
tional stimulus as LED based ones gave the highest bitrates. Improvement in the
stimulus will also enhance the SSVEP SNR, and simplifies the signal processing
and enables the use of more targets.

LEDs are more common, low cost, easily portable, have low power consumption
and provide flexible means to customise a visual stimulus [52–54]. LED stimulus has
the advantage of generating the required colour using RGB LEDs in the same source
thus avoiding the issues in attention shifts [50]. The response in SSVEP amplitude for
different colour stimulus could also be studied for different subjects for optimum
performance [55]. The locations of the stimulus can be easily customised in com-
parison with the LCD based stimulus. The portability and lower power consumption
of the hardware required for LED based stimulus is also an added advantage in mobile
BCI applications. Most of the parameters in LED based stimulus, such as frequency,
colour and intensity, can be programmatically controlled and this can be used to
reduce the visual fatigue or improve the personal preference choice of the user.

LEDs are widely used in research for visual stimulation to increase the com-
fortability and reduce visual fatigue [56]. However, existing visual stimulators [52,
57, 58] based on LEDs have their limitations, as they are limited in their cus-
tomisation capabilities, are not easy to program and often not possible to control
LEDs individually. For a BCI researcher with a non-technical background,
designing an easily controllable visual stimulator is technically challenging, since it
requires an understanding of electronics and programming. In our design, we have
reduced the complexity of controlling and simplified the customisation of the visual
stimulator for the developer. The use of the open source electronics prototyping
platform Arduino [59] simplifies the design and makes it more accessible for users
with little or no prior electronics background.

The Arduino platform has been adapted by many researchers to implement either
a practical or functional requirement of different designs. A recent study on LED
stimulator to measure the murine pupillary light reflex in rodents demonstrates a
simple application in light stimuli [58].
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Arduino uses single board computing concept which is completely open source
and reduces the programming complexity. It is adapted from open source project
Wiring [60] and supports variety of sensors using built-in control ports. Arduino
uses an intuitive programming method based on an open framework Processing
[61], and is supported by an active user group which is constantly contributing for
the development and research.

Arduino has development boards with different form factors namely Arduino
Uno, Arduino Mega, Arduino Mini, Arduino Micro and so on [59]. In our design
we have used Arduino Uno as shown in Fig. 9.2 since it’s compatible with most of
the off shelf expansion boards (Shields) and requires little or no prior knowledge in
integrating electronic modules. The majority of these shields have the same printed
circuit board (PCB) footprint so that it can be mounted directly over the main
processor board. However, driving the RGB LED does require more current than
the Arduino Uno controller board can deliver. To overcome this, we have used a
constant current driving shield as shown in Fig. 9.3 which is a readily available

Fig. 9.2 Arduino Uno

Fig. 9.3 FET shield
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pre-built plug-in module which sits over the main board [44]. This board is chosen
since it fits easily on top of the Arduino Uno and also it has a wide operating
voltage range from 2 to 24 V. This shield is completely independent from Ardui-
no’s operating voltage and is also capable of driving LEDs up to 3 W in constant
current mode. The RGB LED can be connected securely with the screw connectors
and does not require any soldering on board.

9.3 Materials and Methods

9.3.1 Design of Visual Stimulator

SSVEP visual stimulus requires light source flashing at different frequencies in the
range of 6–50 Hz, in addition it is necessary to be able to precisely control the
frequency and duty cycle of the flickers and control the flashing of a number of
LEDs simultaneously. For the experimental setup, different colour classification
would be required using primary colours Red, Green, and Blue from the same
source to avoid attention shifts [50]. The platform is designed to fulfil these
requirements using a wide range of high power RGB LEDs without the need to alter
the hardware. The hardware platform is reusable, customisable and cheap to build
with off shelf components costing less than 80. Figure 9.4 shows the basic blocks
for the visual stimulus.

9.3.1.1 Hardware Platform

The hardware platform for SSVEP visual stimulator consists of the core component
Arduino Uno, adjustable power supply for driving the RGB LEDs and the high
current output driver circuit. The system is powered by a 12 V DC power supply
using rechargeable batteries, which makes it portable and avoids electromagnetic
interference from the power lines. Programming the Arduino programming is
performed using a USB interface connected to any PC with Arduino integrated
development environment (IDE) loaded.

Arduino Uno has several ports which are grouped as inputs and outputs.
Figure 9.5 shows the port layout on Arduino UNO. Arduino UNO has 14 digital

Fig. 9.4 Visual stimulus control block
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input/output (I/O) and six analogue input ports. In this prototype, we used twelve
digital outputs to control either four RGB LEDs or 12 individual LEDs. Out of the
14 I/O lines, six of them can be used for pulse width modulation (PWM). PWM can
be used to vary the intensity of individual colours or blending of different colours
from one colour to another gradually.

For initial testing of Arduino Uno, LEDs can be connected with a 330 Ω resistor
in series directly to the output ports. Each I/O pin can deliver up to 40 mA which
would be adequate if a single LED is used. Whereas high power RGB LED’s
current requirements varies from 300 to 1,500 mA depending on the brightness.
The use of the Field-Effect-Transistor (FET) shield in this design has a current
capacity of 8 A per channel and a wider operating voltage range of 2–24 V DC.
This addresses almost all the custom requirement either in power handling capacity
or different voltage requirements for making any experimental visual stimulus.

9.3.1.2 Microcontroller

The Arduino communicates with the host via the USB port. The initial setup
requires installation of the Arduino USB drivers for the corresponding operating
system in the host computer to create a virtual serial port. The Arduino commu-
nicates using serial protocol to the host using a USB to serial converter chip
installed on board.

Programming the Arduino or writing sketches is via a customised IDE based on
Processing [61]. The code written inside the user interface, which is fairly simple, is
converted to C language and compiled before uploading to the microcontroller.

Fig. 9.5 Arduino Uno basic connectivity layout
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When uploading process is completed, Arduino can be disconnected from the host
and Arduino is then functionally independent of the PC. Usually the programming
cycle of an Arduino consists of four steps; (i) interfacing Arduino to the host
computer via the USB port (ii) writing the program (sketch) for the desired task
(iii) uploading the program to the board and waiting until the board resets
(iv) disconnect and board is ready to execute the required task. The IDE is free and
can be downloaded from Arduino website [59] and is as shown in Fig. 9.6.

Power consumption of Arduino mainly depends on the operating frequency of the
microcontroller. Arduino Uno uses ATmega328 at a clock frequency of 16 MHz and
draws a current of approximately 10 mA in active mode and 2.5 mA in idle mode.
The functionalities in Arduino can be extended with shields (add on boards) that can
be plugged directly on top of the main board. There are many such boards from
official supporters as well as from the open source community. There is expansion
shield for Bluetooth capability that can be used to connect with mobile devices in
order to exchange data or control a device. Wired networking functionalities can be
achieved with Ethernet shield and can be used to connect Arduino directly to a router
to exchange data in a network. Biofeedback shield, SHIELD-EKG-EMG expands the
Arduino capabilities to capture electrocardiography and electromyography signals.
This shield opens new possibilities in monitoring heartbeat, gesture recognition and
muscular activity. Touch screen capabilities can be added with TouchShield Slide for

Fig. 9.6 Arduino IDE

9 A Configurable, Inexpensive, Portable, Multi-channel … 251



a widescreen precise viewing, tactile sensing and adding direct interaction with
Arduino. LED shields like LoL Shield White and Neo Pixel Shield could be utilised
for creating experimental visual stimulus for SSVEP applications. The data logging
shield which can be stacked over other data capturing shields previously mention can
be used as a standalone platform for continuously recording the data on removable
memory card for later analysis. The Lithium battery pack shield can be used to make
Arduino portable and avoid an external power supply. Interconnection of wireless
Arduino platforms can be developed using Zigbee shields to form a low level serial
controlled mesh network to exchange data.

9.3.1.3 RGB LED

LEDs are the light source for the coming years and are being widely accepted due
to its low power consumption, longer life and lower heat dissipation [62]. LED as
shown in Fig. 9.7 comes in various shapes and colours and with or without in built
constant current circuitry to maintain the correct luminance. These modules have
different input voltage requirements that may vary from 3 to 12 V DC. The colour
combined LED or RGB LED has red, green and blue LEDs embedded within a
single die, each of which can be controlled individually. RGB LEDs can generate a
range of colours by changing the controlling PWM signals to the individual LEDs.
This chromatic control can be achieved with Arduino without involving any
feedback sensors.

As mentioned earlier, LEDs can be classified in different groups. In this study,
LED package based on surface mount device (SMD) technology is used, since they
are available for higher power and have integral heat sinks as shown in Fig. 9.8.
SMD LEDs can be easily mounted on any surface with removable glue, and their
positions can be altered easily without the need of soldering. A RGB LED package
has six terminals, two for each colour pair comprising of an anode and a cathode.

Fig. 9.7 Various types of
LEDs available for vision
research
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Anodes or cathodes can be grouped together to form a common anode configuration
or common cathode configuration, respectively. In the prototype, we have used
common anode configuration to match the design requirements of the LED driver
FET shield.

RGB LEDs require more current than the conventional types. The current has to
be maintained throughout the experiment to get the optimum results. The prototype
used RGB LEDs with output power of 1 W for SSVEP EEG recording. A constant
current source at 3 V was provided from a battery source using DC-DC converters
with variable control, to allow customisation of output voltage for alternative RGB
LEDs. The voltage range can be adjusted from 0.8 to 32 V DC depending on the
input voltage. The controllable voltage source permits the use of a wide range of
LEDs from different manufactures to be tested and analysed with this prototype.

When LED is lit, the LED temperature rises with time until a balance state is
reached and the brightness of LED decreases with any further rise in LED tem-
perature [30]. This needs to be addressed when using the stimulator for prolonged
periods of time. In our prototype, LED used has a built-in aluminium plate on
which the LED is mounted and dissipates the heat.

9.3.1.4 Software

The software for Arduino is fully open source and is downloadable from Arduino
online. The IDE is supported for major operating systems, like Windows and Mac
OSX with 32 bit support and Linux with both 32 and 64 bit support. For our design,
we have used the Windows 7 platform for the IDE. The current stable IDE version
at the time of writing this document is version 1.0.5 and there also exist a beta
version 1.5.5 with the support for newer boards. The IDE is fully compatible with
older version of boards as well.

The installation begins when the setup package is deployed and it installs all the
required drivers and libraries for all Arduino platforms. The Arduino board can be

Fig. 9.8 RGB LED mounted
on heat dissipating plate
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plugged in via the USB cable and the operating system will automatically identify
the board and load the required drivers. The system also installs a virtual serial port
to communicate with the Arduino and this port number can be identified from the
device manager in the com port section for Windows. The Arduino board and the
port should be selected as in Fig. 9.9 to ensure the proper operation. It also displays
the available boards that are supported by the IDE.

The IDE has a clear and simple menu layout as shown in Fig. 9.10 for basic
operations. The first menu icon checks code for errors in the code which will be
highlighted for correction. The second menu icon does verify, compile and upload
in one step. This can be used to change the numeric values for the flicker frequency
and to update the code in Arduino easily. These menus are followed by control for
creating, opening and saving the programs. There is also an advanced control for
monitoring the serial communication to check the communication with Arduino and
host computer.

The use of USB connection is recommended as it protects the platform from
external power supply errors or mistakes that could damage the Arduino itself. A
sample program to flicker a single LED at 7 Hz on port three is shown in Fig. 9.11.
The initial procedure comprises of declaring the values for ports and primary data.
In the sample code, LED1 is assigned to port number three in Arduino and the
initial value is set as low for the off state. The interval time is set as 70 ms for 7 Hz.
This is calculated with basic time and frequency relation F = 1/T. Here, the fre-
quency is 7 Hz; time would be 1/7 which is 0.14285 s. For flickering requirements
the LED has to be switched off for every half cycle, this requires the time to be
divided by two (0.14285/2). The new time value would be 0.07142 s, since the
software uses milliseconds, it would be 71.4 ms. This theoretical value of 71.4 ms,
actually generates a frequency of 6.92 Hz when measured at the LED, a small
correction was required to get the precise value of 7 Hz flicker frequency at the
LED. Error correction values may need to be changed according to the length of the
cables used to connect the RGB LED module to the FET shield and in addition they
may also vary different with power sources. Initially, it is always better to confirm
the frequency of flicker using a digital frequency counter so it can be precisely
measured.

Fig. 9.9 Arduino IDE menu descriptions
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The code for single LED flicker has four declared values, LED port, LED state,
time in milliseconds and time interval. Additional LED can be added by duplicating
each part of the code and assigning the correct port numbers. The complete Arduino
code can be downloaded from http://ssvep.co.uk/files/multichannelflicker.zip.

9.3.1.5 Look-up Table

Table 9.1 can be used to assign the frequencies of flicker values. Assigning the
values as in the table to the time interval variable generates the desired flicker
frequency. This makes it possible to generate dual frequency pairs which can have
one common frequency. For example, if first RGB LED has green flashing at 7 Hz
and red flashing at 10 Hz, the second RGB LED can also flash red at 7 Hz and blue
at 15 Hz. Flashing frequency is completely independent of number of times the
values are being used to generate the required flickers. The complete range of
frequency and time interval values can be calculated with basic frequency and time
relation as mentioned before. Appropriate error correction values must be applied to
time interval to get the precise frequency for LED flickers.

Fig. 9.10 Arduino IDE menu descriptions
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9.3.1.6 Prototype and Setup

The completed prototype is as shown in Fig. 9.12. It consists of the base computing
platform Arduino Uno, FET driver shield, RGB LED’s, voltage regulator and

Fig. 9.11 Code to flicker a single LED at 7 Hz

Table 9.1 Lookup table for
time interval value to generate
the desired frequency

Frequency (Hz) Time interval (ms)

7 70

8 61

9 54

10 49

11 44

12 40

13 37

20 24

25 19

35 13
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battery. The FET board sits on the expansion pins mounted on the Arduino board
and is plugged into the Arduino board by aligning the corresponding pins. Once the
FET board has been mounted, the RGB LED wires need to be connected to the
corresponding screw headers on the FET shield, as shown in Fig. 9.13, which
shows the screw header mapping for Arduino board’s output pins.

The pin PWM 1 to PWM 6 can be used as pulse width modulator outputs which
could be used for controlling the intensity or blending of colours using three primary
colours red, green and blue. These PWM outputs can also be used as normal outputs
for controlling the flicker frequency. The signal on the lefthand connector can only
work as normal input or output mode and do not have the ability for PWM.

The anodes of all the output ports are internally tied together to be used in
common anode configuration mode of RGB LED. The power is connected to the

Fig. 9.12 Prototype of SSVEP stimulator

Fig. 9.13 FET shield pin connection for RGB LED
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terminal marked power input. The terminal has positive (+) and negative (−) signs
marked and care should be taken while connecting the leads as it will damage the
shield if the polarities are reversed.

The RGB LEDs when assembled would have four connections one of which will
be combined as the common anode and three others will be for red, green and blue.
The common anode can be connected to any of the common anode screw header on
the shield and other colours can be connected to other output terminals depending
upon the required colour, frequency or multi-chromatic flicker. The power supply
for the RGB LED based on the voltage requirement can be connected to the power
screw header on FET shield.

Once the program has been successfully uploaded, the Arduino resets itself
where upon it can be disconnected from the USB for standalone operation. The
Arduino can be powered from a normal 9 V pp3 battery, using a pp3 to barrel
adapter jack for standalone operation after programming. The LEDs connected to
the output port will flicker according to the programmed values and can be cus-
tomised using the values in the look-up table or using the frequency time con-
version relations as explained previously.

9.3.1.7 EEG Recording Test

The EEG data recording system used for this study is g.Mobilab+ from g.tec (http://
www.gtec.at). It is a portable biosignal acquisition and analysis system capable of
recording multimodal signals on a standard PC or other mobile computing devices.
This system can be used to investigate brain signals (EEG), heart signals (ECG)
muscular activity, eye movements or other body signals. It has eight channels and a
removable internal storage card where data can be stored and analysed later. The
system can communicate to host via Bluetooth or using customised serial cable in
case of Bluetooth connectivity issues. g.Mobilab+ is equipped with low noise
biosignal amplifier and a 16-bit analogue to digital converter with 256 Hz sampling.
An external switch signal can also be used to control the start and stop of signal
capture. This device is battery powered in order to avoid any external interference
from the mains.

The software for g.Mobilab+ is provided by the manufacture with extensive
documentation which covers various operating systems and details of libraries
available for further development. The setup procedure also provides support for
Bluetooth drivers which assigns a virtual serial port in the computer and commu-
nicates using serial protocol. Libraries are also provided for Matlab (Mathworks
Inc) integration and data can be directly recorded using Matlab for real-time
analysis and processing.

The main unit is interfaced via cable to an external high gain amplifier and
analogue to digital converter for recording the EEG data. The EEG sensors are
connected to this high gain amplifier which senses the EEG signal from the scalp,
which is relatively very small and in the range of microvolts. The EEG sensors are
fixed in specific locations on the EEG cap and conductive gel is applied on the
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surface to improve the signal quality. The external unit has wired connectivity to the
main unit. The experiment used minimum number of sensors and connections were
made to GND, CH1 and CH2 of the amplifier unit. This device is also battery
powered and support gel based electrodes. The initial test was run using the sample
demo program to ensure the data is being sent to computer and validated with the
test signal provided in the test program. Sample test runs at different frequencies
have been performed to ensure the correct EEG recording before final test were
executed. This also ensured the correct EEG connectivity between host computer
and EEG capture unit.

For testing the proposed visual stimulus hardware, it was programmed for
selected frequencies between 5 and 50 Hz and the output was connected to high
power RGB LED via the shield. The visual stimulus hardware is capable of pro-
ducing 14 different frequency flickers simultaneously for complex SSVEP
applications.

The stimulus is activated and the data is recorded using the gtec EEG hardware.
The subject was seated comfortably at a distance of 60 cm from the visual stimulus
which was placed at eye level. The EEG cap fitted with gtec active electrodes at
locations Oz and Fz (Fig. 9.14) and used with electrode conductive gel, producing
single channel bipolar SSVEP data. The third electrode is fitted on right ear lobe of
the subject and serves as ground connection. This setup does not require any skin
preparation.

Fig. 9.14 Electrode positions used for data collection
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For each trial, one of the RBG LED cathodes was connected to the microcon-
troller for the desired frequency and colour. The recording trials were for 30 s for
each frequency or colour and the results transferred directly to Matlab for analysis.
This process was repeated for all three colours (red, green and blue) and for fre-
quencies 7, 8, 9 and 10 Hz as in Table 9.2. Each recording sample had duration of
30 s and was repeated 5 times for each frequency and colour. The subject was given
a rest period of 1 min after each recording.

Each frequency and colour had five trials with the same subject. The perfor-
mance for all the colours from the RGB LED was good and the heat dissipation on
the LED was negligible even after prolonged usage. The SSVEP response was
accurate for all the colours and frequency ranges throughout the experiment.

Visual stimulus was tested for simultaneous outputs with different frequencies
using digital oscilloscope and had the accuracy of 0.1 Hz at all the programmed
frequency ranges. The SSVEP results exhibited the exact flicker frequency of the
stimulus. The SSVEP responses for different colours were also examined to check
the functionality of the stimulus. In the colour combination test, two colours in
RGB LED were flickered at two different frequencies and EEG was recorded, the
power spectral density results exhibited two different peaks at the same frequencies
of the flickering colours. Overall the stimulator could be used in various combi-
nations for colour, frequency and simultaneous channels.

9.4 Results

9.4.1 Frequency Test

The system was integrated as described in the prototype section. Four RGB LED
modules were connected to 12 data out connectors of the FET shield. The frequency
was measured at the LED end to ensure the precise measurement of flicker fre-
quency. EEG hardware g.Mobilab+ was connected to serial port of the computer
using USB to serial converter which assigns a virtual communication port for data
recording. The sensor cables were connected to GND, CH1 and CH2 of the EEG
unit and the other end fixed to EEG cap using gel for data recording. Individual
tests were conducted for a single frequency, dual frequency, single colour and
multiple colours using single RGB LED with terminals activated according to the
requirements.

Table 9.2 Parameters used for stimulus evaluation

Colour Frequencies (Hz) No of samples Time (s) Total time

Red 7, 8, 9, 10 4 × 5 30 600

Blue 7, 8, 9, 10 4 × 5 30 600

Green 7, 8, 9, 10 4 × 5 30 600
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9.4.2 Single Frequency

Single frequency test were conducted with RGB LED at all frequency ranges and
programmed frequency values were confirmed against the generated value with the
frequency counter in oscilloscope. The same frequency LED stimulus was used for
SSVEP generation and EEG signals were recorded. The power spectral density
values were computed and a visible peak was detected with the same frequency as
the LED stimulus. The screen capture from the oscilloscope in Fig. 9.15 shows a
flicker at 7 Hz which is the same as the programmed value in Arduino. Figure 9.16
shows the power spectral density of a SSVEP EEG with 7 Hz flicker and it clearly
shows the peak at normalised value of 0.05469 which is equivalent to 7 Hz with
sampling frequency of 250 Hz. Similarly all frequency ranges were compared with
programmed values and generated values.

The SSVEP EEG was recorded and verified for the presence of the same fre-
quency as that of the visual stimulus. For SSVEP trials, EEG was recorded for 30 s
as shown in Fig. 9.17 for each colour and frequency. Five trials were recorded,
which gave 150 segments, with each segment consisting of 1 s of SSVEP signal.
Four healthy subjects (three females, one male) in the age group 2,545 years vol-
unteered for this study and none of the subjects had any previous experience with
BCI. All subjects had perfect or corrected vision. The same subjects participated in
all tests using the same prototype hardware.

Fig. 9.15 Flicker waveform at 7 Hz
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Each 30 s of EEG recording was filtered with a forward-reverse Elliptic IIR
bandpass filter and segmented into 1 s EEG segments and analysed with Fast
Fourier Transform (FFT). Table 9.3 shows the filter parameters used. The maxi-
mum amplitudes of the FFT using the filtered SSVEP signal for all the 150 seg-
ments were computed and stored for further analysis. This process was repeated for
all the frequencies and three colours generated by the visual stimulus.

All tests confirmed the Arduino platform can generate continuous and precise
visual flickers to generate SSVEP in EEG.

Fig. 9.16 SSVEP EEG for 7 Hz stimulus

Fig. 9.17 Sample EEG
recorded to test the visual
stimulus

262 S. Mouli et al.



9.4.3 Multiple Frequency

The frequency stability of multiple visual stimuli were tested by connecting two
different frequency outputs at the same time to RGB LED and comparing the
frequency at the LED with the programmed values. The programmed values and
real flicker frequencies were exactly same and were stable throughout the test.
Figure 9.18 shows the two frequency values of 9 and 11 Hz. The same RGB
stimulus was used to generate SSVEP and EEG was recorded. The RGB LED had
both colour terminals, red and green connected to the FET shield at same time with
two different frequencies. This produces two colours flashing simultaneously with
different frequencies creating two peaks in recorded EEG which had the same

Table 9.3 Values of parameters used in data processing

Freq (Hz) Order Passbd
(Hz)

Stopbd edge
(Hz)

Max passbd
ripp (dB)

Min stopbd
attn (dB)

7 4 6–8 5,9 0.1 30

8 4 7–9 6,10 0.1 30

9 4 8–10 7,11 0.1 30

10 4 9–11 8,12 0.1 30

Fig. 9.18 Two simultaneous frequencies used in RGB LED stimulus
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frequency as the flicker. The power spectral density analysis shows the two fre-
quency peaks of 9 and 11 Hz confirming the functionality of the stimulus as shown
in Fig. 9.19. The two different flickers using different colours generated by the
stimulus also identify the possibility of using a single source with different fre-
quency flickers. The visible peaks in the EEG show both these frequencies. More
RGB LEDs can be connected to the remaining digital outputs and can be pro-
grammed for more complex SSVEP analysis.

9.5 Discussion

The SSVEP visual stimulator met all the criteria for which it was designed. The
system is easily configurable for any desired frequency with the look-up table and
can be updated through USB. The system can be easily customised for different
type of LEDs with varying operating voltages and power requirements. It can
simultaneously provide fourteen different frequency outputs without reprogram-
ming. With the availability of different shields, the base configuration can be
expanded for data recording or interactions without complex hardware design and
realised using off shelf components and ready to use libraries. The availability of
stack on power shield makes the system very compact, portable and also reduces
the induced power line noises for better quality output flickers. Multiple colours at
different frequencies using RGB LEDs demonstrate the possibilities of this platform
for EEG and vision research.

The gtec initial setup faced a few minor issues with connectivity via Bluetooth.
The Bluetooth driver provided did not work as it should though the virtual port was
created and the sample program provided by the manufacturer worked without any
issues. The connectivity with the EEG hardware and Matlab was not stable and the

Fig. 9.19 Visible peaks for two different frequencies in recorded EEG with SSVEP
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data could not be transferred. This was resolved using the default Bluetooth drivers
provided in the operating system rather than the one recommended by the
manufacturer.

The EEG experiments with the stimulus also showed that some frequencies did
not evoke any changes in the EEG for certain subjects and this should be taken into
account when investigating with such SSVEP systems. The subjects were able to
choose the colour of the stimulus that they were comfortable and this reduced visual
fatigue thereby allowing longer measurement periods.

9.6 Conclusion

The visual stimulator was tested successfully for colour, frequency, portability and
design simplicity. The prototype platform is easy to build with off shelf components
and economical for many different areas of vision research. Even though it is
focused towards SSVEP research for BCI, it can also be used for investigating the
influence of colours in EEG research. This prototype could address visual fatigue in
SSVEP to a certain extent by giving choice of colours and frequency to subjects.
Subjects participated in the study strongly preferred certain colours against others as
they felt it was easy to focus on specific colours. Most users preferred green and
blue as they felt these were less straining to the eyes. The amplitude of the detected
peaks in the EEG was prominent when green stimulus was used and this area could
be further explored. The subjects found that they could use green stimulus for
longer periods as compared to red and blue over all frequency ranges. Another
interesting finding is that the use of a simultaneous combination of two colours with
different frequencies from a single source. In such a case, the EEG results showed
two distinct peaks of these two different frequencies. Further work could be
undertaken to investigate whether such an approach can allow BCI systems with
shorter response times.

This study could be extended to investigate the effect of dry electrodes. The g.
Mobilab+ supports the use of dry electrodes with a different pre-amplifier, and can
be used for capturing EEG data for SSVEP analysis. Further work may include the
study of light intensity and colour variation influences in SSVEP by using PWM
techniques to reduce visual fatigue when using dry electrodes. Algorithms could be
developed for analysing and processing the data to extract the required features.
Different methods such as FFT, Canonical Correlation Analysis (CCA) and
Empirical Mode Decomposition (EMD) could be employed to enhance data anal-
ysis for any required task. Since with dry electrodes the performance degrades as
compared to wet electrodes, there would be a need for improving SNR and may
require complex dynamic data processing algorithms.

Since this study used the minimum number of electrodes to collect the EEG data,
it would require higher quality electrodes for reliability and good performance.
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As such, future research could also explore the possibility for developing high
quality dry electrodes that may enhance the reliability and quality of the recorded
EEG signal.

The Arduino Uno platform could be replaced using other powerful variants from
the Arduino family or other open source hardware with built-in digital signal
processing capabilities. Hardware platform worth mentioning are Intel Galileo,
Udoo and Raspberry Pi. This newer platforms are similarly supported by the open-
source community and are equipped with numerous I/O ports and processing
power. Using these platforms, further research could develop advanced signal
processing algorithm for real-time feature extraction of EEG data to control external
applications or devices accurately and efficiently with minimum number of elec-
trodes in a single device. Such systems would be able to improve the accuracy and
also minimise the computing time for data processing with reliable connectivity and
mobility to perform real-time EEG tasks.
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Chapter 10
EEG Based Brain Computer Interface
for Speech Communication: Principles
and Applications

Kusuma Mohanchandra, Snehanshu Saha and G.M. Lingaraju

Abstract EEG based brain computer interface has emerged as a hot spot in the
study of neuroscience, machine learning and rehabilitation in the recent years.
A BCI provides a platform for direct communication between a human brain and a
computer without the normal neurophysiology pathways. The electrical signals in
the brain, because of their fast response to cognitive processes are most suitable as
non-motor controlled mediation between the human and a computer. It can serve as
a communication and control channel for different applications. Though the primary
goal is to restore communication in severely paralyzed population, the BCI for
speech communication fetches recognition in a variety of non-medical fields, the
silent speech communication, cognitive biometrics and synthetic telepathy to name
a few. A survey of diverse applications and principles of the BCI technology used
for speech communication is discussed in this chapter. An ample evidence of
speech communication used by “locked-in” patients is specified. Through the aid of
assistive computer technology, they were able to pen their memoir. The current
state-of-the-art techniques and control signals used for speech communication is
described in brief. Possible future research directions are discussed. A comparison
of indirect and direct methods of BCI speech production is shown. The direct
method involves capturing the brain signals of the intended speech or speech
imagery, processes the signals to predict the speech and synthesizes the speech
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production in real-time. There is enough evidence that the direct speech prediction
from the neurological signals is a promising technology with fruitful results and
challenging issues.

Keywords Brain computer interface � Locked-in syndrome � Electroencephalog-
raphy � Silent communication � Imagined speech

10.1 Introduction

Humans use computers through interfaces such as keyboard, mouse, touch screen,
digital camera or a data glove (Fig. 10.1). These interfaces have one thing in
common: they need physical movement of the user. This physical movement may
not be possible in the physically “locked-in” [76] patients. A Brain Computer
Interface (BCI) is a device in which a person uses his brain to control the machine
to be used. The machine can be a computer, wheelchair, robot, an assistive or an
alternative communication device. BCI is a promising technology that provides a
direct communication between the brain and a computer for conveying messages to
the external world from one’s thoughts, without using any of the appendages. It
provides an individual a non-muscular [87] way to communicate and control his
surroundings. Each time we do a task or think of performing one, our brain gen-
erates distinct signals. These signals corresponding to the activity have a pattern.
Exploring and identifying this pattern are challenging and form the crux of any BCI
task. A BCI picks the signals from the brain of an user in the form of Electroen-
cephalography (EEG). Feature extraction and classification leads to these signals
being translated into meaningful commands to drive the device. Due to its tre-
mendous potential the BCI attracts huge investments and research activities from
around the world to facilitate and accelerate development. BCI has a wide range of
applications across a variety of fields, both medical and non-medical. At the outset,
we review the principles and practical applications of BCI related to speech com-
munication, including “locked-in” patients, synthetic telepathy, cognitive biomet-
rics and silent speech communication.

Fig. 10.1 Conventional human computer interfaces
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Thousands of severely disabled people are unable to communicate due to
paralysis, locked-in syndrome (LIS) or other neurological disorders. Reinstating
communication with these patients is a major challenge. The BCI is used by people
deprived of expressing through speech. LIS is a condition in which the patient is
awake and conscious, but “locked-in” an immobile body. The voluntary motor
paralysis prevents the subject from communicating by the way of words or body
movements. The subject wishes to speak or move as he is able to perceive his
environment, but is unable to communicate due to “locked-in” state. The inability to
communicate with others is distressing. The recent advances in computer based
communication technology and BCI have enabled these people to communicate and
control their surroundings and access the internet. This has improved the quality of
life of the patients and helped them live with dignity.

Several BCI techniques evolved over the past decade restoring communication
to persons with severe paralysis. These assistive devices range from a simple binary
(yes/no) communication device, the speller device, a virtual keyboard to imagined
speech communication to name a few. Birbaumer et al. [5] and Perelmouter et al.
[64] have developed a speller device for a “locked-in” person to compose letters.
Binary tree structured decision of the BCI is used, dividing the alphabet into
successive halves until the desired letter is selected. A similar kind of speller is
portrayed by Wolpaw et al. [86] where the alphabets iteratively divide into fourths
instead of halves. Donchin et al. [20] has developed a method based on the P300
component of event-related potentials. The rows and columns of a two dimensional
alphabet grid are illuminated in a sequence, and allow the user to select the desired
letter. A 2-D cursor navigation to select letters from a WiViK virtual keyboard for
“locked-in” subjects is suggested by Kennedy et al. [38].

At its most basic level, communication for “locked-in” patients involves a
simple yes-no scheme [24] based on eye movements. One eye blink means “yes”
and two blinks mean “no”; others may look up for “yes” and look down for “no”.
For more detailed communication, alphabet boards may be used. The letters on the
alphabet board may be arranged in the order frequently used, or in the form of
blocks or a grid. An assistant goes through the letters one by one until the patient
blinks to choose a letter. A laser pointer controlled by head movement can be used
for faster communication. Special infrared sensors that react to eye movement can
also be employed. The patient can move the cursor or select a letter by staring at it
and then snap on it by blinking. This technology serves as a rehabilitation measure
for patients suffering from classical and incomplete LIS as it is proven to control the
residual movements. But the indirect communication systems have few major
disadvantages. Though these systems are precise, the letter choice rate is as slow as
one word/min, thereby limiting the user’s fluency. Moreover, these indirect
methods fail to improve the patient’s behavioral abnormalities and do not address
improving their psychological condition [74]. These methods fail to improve the
constraints related to speech communication capabilities as well.

In an effort to handle the aforementioned problems and make BCI speech pro-
duction more natural and fluent, direct methods are being developed. Figure 10.2
summarizes the direct and indirect methods of speech. The direct method involves
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capturing the brain signals of the intended speech, treat the signals to predict the
speech and synthesize the speech production in real-time. The direct method of
speech communication in BCI has extensive claims both in medical and universal
applications. In this perspective, Suppes et al. [78, 79] used EEG and MEG signals
to characterize speech imagery of words and sentences. DaSalla et al. [17] has
developed a BCI for vowel speech imagery using EEG. Brumberg et al. [11, 12, 15]
and Guenther et al. [27, 28] have developed speech BCI using EEG and ECoG. The
decoded signals from the imagined speech are used to drive a speech synthesizer.
Leuthardt et al. [48–50] have shown that ECoG is associated with different overt
and imagined phoneme articulations. This enables invasive monitoring of human
patients to control one-dimensional computer cursors rapidly and accurately.
Extensive study is being borne out in this topic by numerous research groups.

10.2 Evidences of Speech Communication in Locked-in
Patients

In this chapter, we introduce a few examples of LIS affected patients and their
achievements inspite of severe impairment. Stephen Hawking, one of the most
brilliant theoretical physicists in history and the author of “A Brief history of
Time”, has a motor neuron disorder since his adult lifetime. Hawking communi-
cates by selecting words from a series of menus along the screen, by urging a switch
in his hand or operated by head or eye motion. The chosen words are stored and
staged to a speech synthesizer, thus enabling him to communicate up to 15 words a
minute [77]. He has written books and lots of scientific documents and delivered
many scientific and popular talks by using this device. A victim of LIS, Jean-
Dominique Bauby, penned a book, titled—“The Diving Bell and the Butterfly” (An
award-winning movie of the same name). Through the script he showed the world
that a deficiency does not hold back from achieving [3]. Bauby communicated by
blinking his left eyelid to choose letters from an alphabet board. He founded an

Fig. 10.2 Communication
strategies in LIS patients
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Association of Locked-In Syndrome (ALIS) with the intent to aid patients suffering
from LIS and their families. The French-based ALIS registered 367 LIS affected
patients [43] between 1997 and 2004. This database serves as the foundation for the
research performed on the patient population. Julia Tavalaro, a wheelchair-bound
quadriplegic, was in a vegetative state, and could just move her head and eyes, but
her senses were intact [44]. Tavalaro trained her residual movements to use a
computer and eventually penned her own memoirs “Look Up for Yes”. Philippe
Vigand, another victim of LIS, cultivated an infrared camera which in turn enabled
him to “speak” and “write” by blinking his eyes [25]. This magic camera helped
Philippe write his memoir, entitled “Only the Eyes Say Yes”. He has written about
the evolution of his sickness and demonstrated his willingness to face new chal-
lenges. Another poignant testimony of LIS comes from Judy Mozersky who lost the
entire bodily motion except her eyes. Through the aid of assistive computer tech-
nology, she has been able to continue her studies at Cornell. Her memoir, “Locked-
In: A Young Woman’s Battle with Stroke” [55] has been published by the National
Stroke Association.

These people with courage and hope have rebuilt their lives despite their sup-
posedly insurmountable conditions. This implies the need to key out and appreciate
the views and feelings surging behind the quiet and stillness of those who are
“locked-in”. It is documented that the inability to communicate is alarming and
more devastating than the inability to move. As an outcome, rehabilitation strate-
gies for patients with LIS have focused on finding ways to aid communication using
various means available for a finicky patient. Clinicians believe that in the majority
of cases, improved communication improves patient’s quality of life and allows
them to be more involved with family and society. Austrian researchers have cat-
egorized LIS into 3 subtypes shown in Fig. 10.3 [4]. (a) Classical LIS, in which
conscious patients are completely immobile except for eye movement and blinking.
(b) Incomplete LIS, in which minimal residual movement is preserved in parts of

Fig. 10.3 Classification of locked-in syndrome (LIS)
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the body besides the eyes. (c) Total LIS, in which patients are conscious but unable
to move any muscle. Rehabilitation can be made available for the classical LIS
patients, a few of incomplete LIS patients, but not viable for total LIS patients.

10.3 Supplementary Target BCI Applications for Speech
Communication

BCI for speech communication is prominently perceived as an alternative aug-
mentative communication (AAC) device for severely disabled people. As illustrated
in Fig. 10.4, it delivers its application in a variety of non-medical fields. Research
on synthetic telepathy is being carried out by the U S Army, with the intention to
allow its soldiers to communicate [19] just by thinking. In 2008, the U S Army
awarded a $4 million contract to a team of scientists from three American uni-
versities. They are University of California (led by Mike D’Zmura) at Irvine,
Carnegie Mellon University, and University of Maryland. The aim is to build up a
thought-helmet, a device that can read and broadcast the unspoken speech of sol-
diers. The goal was to enable silent communication among the soldiers. The
thought-helmet extracts the brain signals of the soldier who hopes to communicate
silently, interprets the signals to speech, and conveys those to a radio speaker or an
earpiece worn by other soldiers. The developers [9, 11, 22] are working towards
decoding the brain signals associated with speech. To begin with, a message is
interpreted by a synthetic voice to be delivered in the soldier’s own voice speci-
fying his position and distance from the recipient. The team, directed by Schalk, is
pursuing the invasive Electrocorticography (ECOG) approach. The second group,
headed by Mike D’Zmura, is using EEG, a noninvasive brain-scanning technique
better suited for an actual thought-helmet.

Silent speech communication is one of the most interesting future technologies
which enable speech communication without using the sounds created during the
vocalization process. The silent speech interface [18] allows people to communicate

Fig. 10.4 Applications of BCI in speech communication
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with each other by using a whispering sound or even soundless speech. Further-
more, the voice-disabled individual can use his tongue and mouth movements. The
process then allows the silent speech interface technology [14] to produce the voice
on his behalf thereby facilitating communication with others. This technology is
used by NASA astronauts who need to communicate, without the voices not being
known due to surrounding noise. In preliminary experiments, NASA scientists
found that small, button-sized sensors, fixed under the jawbone and on either side of
the throat [56] could collect the signals. The signals are then sent to the processor
and a computer program to translate them into words. These subvocal speech
systems can be made use of in space suits, in noisy environment and airport towers
to capture air-traffic controller [56] commands. The subvocal speech systems might
be used by a person who has lost his voice permanently. A person using the
subvocal speech system [21] thinks of phrases and talks to himself in silence. But
the tongue and vocal cords do receive speech signals from the brain. These bio-
logical signals are tapped and fed to the speech system for further analysis. Chuck
Jorgensen and his team [36, 37] are developing silent speech recognition at NASA’s
Ames Research Center. They developed special software trained to recognize six
words and 10 digits repeated sub-vocally. The word recognition rate was 92 %. The
speech system is trained to learn the words— “stop”, “go”, “left”, “right”, “alpha”
and “omega”, and the digits 0–9. With these sub-vocalized words, the software
performed simple searches on the internet and controlled a web browser program.

The sub-vocalized or imagined speech can be used as a new feature for bio-
metrics [72] as opposed to the traditional methods. This new class of biometrics
based on cognitive aspects of human behavior, called cognitive biometric, is a novel
approach to user authentication. The brain state of individuals used for the
authentication mechanism increases the robustness and enable cross validation
when used in combination with traditional biometric methods. The biometric
approaches based on the biological features of humans [42, 52, 62, 63, 69–71] have
distinct advantages over traditional methods. The cognitive biometric cannot be
hacked, stolen or transferred from one person to another as they are unique for each
person.

Speech communication has an extensive scope in various domains of applica-
tions. But the challenges in processing the EEG signals are significant. The EEG
signals are extremely complex and prone to internal and external interference.
Advancement in sensor technology, data acquisition techniques and robust signal
processing algorithms may lead to efficient usage of speech communication in
diverse applications and may overcome the challenges posed.

10.4 BCI Design Principles

BCI research is a comparatively young and multidisciplinary [53] field integrating
researchers from engineering, neuroscience, psychology, physiology and other
healthcare fields. BCIs use brain signals to control and communicate with the
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computer or any external device. Hence the need to assess the brain signals and
render the information into compliant electrical signals is important. There are
several cases of existing BCI, classified based on the sensory systems and control
signal systems.

10.4.1 Types of BCI

The neuroimaging techniques used in BCI can be broadly classified into invasive
and non-invasive methods. Invasive BCIs involve implanting electrodes inside the
brain and the non-invasive ones include haptic controllers and EEG scanners. The
basic purpose of these devices is to comprehend the electrical signals in the brain
and translate them as signals sensed by external devices. Invasive modalities need
to implant microelectrode arrays inside the skull within the brain, which involves
expert surgeons with high precision skills. The problem with this device is that a
scar tissue forms over the device as a reaction to the extraneous matter. This reduces
its efficacy and increases the health risk to the patient. Though, they possess the best
signal to noise ratio the need to undergo complex surgical procedure causing a
permanent hole in the skull is not worth taking the risk. Multiple degrees of freedom
can be achieved only through invasive approaches. Partially invasive BCIs are
implanted inside the skull, but over the brain. They spread out electrode arrays on
the surface of the brain. Although the signal strength is less feeble, it eliminates the
problem of scar tissue formation, e.g. ECoG or intracranial EEG (iEEG). Nonin-
vasive BCI is the most used neuroimaging methods, dealing with general brain-
waves that are dampened by passing through the skull, nonetheless receptive
enough to extract the signals with specific information. The EEG is the most widely
used non-invasive technique and most studied in recent times. Other non-invasive
methods considered for capturing brain signals include magneto encephalography
(MEG), functional magnetic resonance imaging (fMRI) and near infrared spectrum
imaging (NIRS). The invasive and non-invasive methods are summarized in
Table 10.1.

According to the nature of the input signals used, BCI systems can be classified
as exogenous or endogenous. Exogenous BCI uses external stimulus such as sound
or picture to elicit the brain activity, while the endogenous BCI is based on self-
regulation [59] of brain rhythms and potentials without external stimuli. Table 10.2
summarizes the differences between exogenous and endogenous BCIs.

BCI systems are classified based on the input data processing techniques as
synchronous or asynchronous. Synchronous BCIs [68] analyze brain signals during
a pre-defined time window. The user is expected to send commands during this
specific period and any signal outside this window is ignored. The asynchronous
BCI analyzes the brain signals continuously irrespective of user command and
therefore is more natural than synchronous BCI. Asynchronous BCIs are compu-
tationally heavier and complex. Table 10.3 summarizes the differences between the
two.
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Table 10.1 Summary of neuroimaging techniques

Neuroimaging
method

Modality Activity
measured

Advantages Limitations

Invasive ECoG Electrical Good spatial reso-
lution, higher sig-
nal-to-noise ratio
than EEG

Highly invasive,
surgical incision
into the skull
needed to implant
the electrodes

Noninvasive EEG Electrical Noninvasive, ease
of use, low cost and
high temporal
resolution

Low spatial resolu-
tion on the scalp,
poor signal-to-noise
ratio

MEG Magnetic
fields associ-
ated with
electrical
activity

Higher spatiotem-
poral resolution
than EEG

Too bulky and
expensive modality,
not practical for
real-time analysis

fMRI Hemodynamic High spatial resolu-
tion, low invasive-
ness, absence of
radiation exposure,
and relatively wide
availability

Indirect markers of
brain electrical
activity, low tem-
poral resolution of
1 or 2 s, physio-
logical delay from 3
to 6 s, highly sus-
ceptible to head
motion artifacts

NIRS Hemodynamic Low cost, high
portability, an
acceptable temporal
resolution in the
order of 100 ms,
might be a good
alternative to EEG
as conductive gel
and electrodes are
not used

The spatial resolu-
tion is low in the
order of 1 cm;
communication
speeds in NIRS-
based BCIs are
limited due to
inherent delays of
the hemodynamic
response

Table 10.2 Main differences between exogenous and endogenous BCI

Approach Brain signals Advantages Disadvantages

Exogenous
BCI

Steady state
visually evoked
potential
(SSVEP) and
P300

Training can be set up
with ease and speed. Least
EEG channel required

Maintaining attention to
external stimuli, may cause
fatigue, irritability and
tiredness to the user

Endogenous
BCI

Slow cortical
potentials
(SCP) and sen-
sorimotor
rhythms

Free of any stimulation,
can be operated at one
owns will, useful for
physically challenged
people

Elaborate training, not
every user is able to obtain
control, Multichannel EEG
recordings required for
good performance, Lower
data rate
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10.4.2 EEG Based BCI

A common method for designing a BCI [61] is to use EEG signals extracted during
mental tasks. The EEG is the most widely used neuroimaging methods, due to its
high temporal resolution, comparative low cost, portability, and few risks to the
users. The EEG records the brain’s electrical activity along the scalp produced by
the firing of neurons within the brain. However, the signals are of low resolution
[59] as the signals travel through the scalp, skull, and many other layers. So the
original signal strength in the electrodes becomes weaker, to the order of microvolts
and turns out to be very sensitive to noise. Noise is a key factor [2] in EEG signals.
It reduces the signal to noise ratio and decreases the ability to extract meaningful
information from the recorded signals. The noise may be either due to other current
fields in the brain or external noise sources. EEG signal is measured as the potential
difference over time, between the active electrode and the reference electrode. The
international 10–20 system accessed from Brain Master Technologies Inc. [10] is
shown in Fig. 10.5. The multichannel EEG sets contain up to 128 or 256 active

Table 10.3 Major differences between synchronous and asynchronous BCIs

Approach Advantages Disadvantages

Synchronous
BCI

Design and performance evaluation are simpler,
the user can blink and do other movements
when brain signals are not analyzed and thus
avoid generating artifacts

Not a natural interaction

Asynchronous
BCI

Not required to wait for external cues, offers a
more natural interaction

Design and performance
evaluation are complex

Fig. 10.5 A standard 10–20
international electrode
placement system
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electrodes. These electrodes are made of silver chloride (AgCl). A gel is used which
creates a conductive path between the skin and the electrode for the flow of current.
Electrodes that do not use gels, called ‘dry’ electrodes are made of materials such as
titanium and stainless-steel.

EEG signals consist of a set of frequency bands. These frequency bands are
identified as delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ). Relevant
characteristics of these bands are mentioned in Table 10.4.

The EEG can be modified [29] by motor imagery, successfully used by patients
with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to
aid them communicate with their environment. The need for brain signals with a
higher resolution has restricted the recovery of motor disabilities, despite the
exceptional convenience of EEG based BCI applications.

10.4.3 Control Signals Used in BCI for Speech
Communication

The physiological phenomena of the brain signals can be tapped, decoded and
modulated, to control a BCI system. These signals are regarded as control signals in
BCIs. The control signals employed in current BCI systems are classified as visual
evoked potentials (VEP), slow cortical potentials (SCP), P300 evoked potentials,
and sensorimotor rhythms (SMR). Wang et al. [83] has listed the signal controls
with their main features (refer Table 10.5).

EEG records the electrical activity arising from the neurons residing in the
cerebral cortex using the scalp electrodes. The brain electrical activity may be
spontaneous or evoked due to specific external or internal stimulus/events.
Responses to stimulus are termed as event-related potentials (ERP). Event-related
potentials are time locked to physical stimuli and help capture neural activity related

Table 10.4 Frequency bands in the brain signal

EEG
bands

Frequency
(Hz)

Distribution State of mind

Delta 0.5–4 Central cerebrum and parie-
tal lobes

Deep sleep, non-REM sleep

Theta 4–8 Frontal, parietal and tempo-
ral lobes

Drowsiness, first stage of sleep

Alpha 8–13 Most prominent at occipital
and parietal lobe

Relaxed wakefulness with eyes
closed

Mu 8–12 Central electrodes, over
motor and somatosensory
cortex

Shows rest state motor neurons

Beta 13–30 Frontal and central regions Highly alert and focused

Gamma >30 Very localized Higher mental activity, including
perception and consciousness [30]
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to sensory and cognitive processes. Event-related potentials can be elicited by a
wide variety of sensory, cognitive or motor events. The EEG activity reflects the
summed activity [65] of postsynaptic potentials. An electrical potential is produced
when neurons, to the order of thousands or millions, fire in tandem. The ERPs are
categorized as exogenous and endogenous. ERPs occurring within the first 100 ms
after the onset of stimulus [31, 80] are termed sensory or exogenous as they depend
on the physical parameters of the stimulus. Exogenous ERPs are obligatory
responses to the presentation of physical stimulus like visual, audio or intensity. In
contrast, ERPs generated with the latency in the range of 100 ms up to several
seconds are termed cognitive or endogenous. The endogenous ERPs reveal the
manner in which the subject evaluates the stimulus. They depend on behavioral and
psychological processes of the event. The ERPs are characterized by their latency
and amplitude, relative to stimulus onset. ERPs with a latency ranging from 500 ms
to around 10 s are categorized as slow cortical potentials (SCP). The EEG signals
are extremely complex and prone to noise. To separate the EEG signals from the
background noise, the signals are time locked and averaged across many trials, thus
improving the signal-to-noise ratio.

10.4.3.1 Visually Evoked Potentials

The VEP is an evoked potential and elicited when users view a flickering stimulus
of different frequencies in the range of 3.5–75 Hz. The brain generates electrical
activity of the identical frequency or multiples of the frequency of the visual
stimulus. Spectral analysis of EEG in visual areas i.e. occipital lobe shows the
frequency components that can later be mapped to the device commands. These
modulations are easy to detect since the amplitude of VEPs increases a great deal
[82] as the stimulus is moved closer to the central visual field. This control signal
needs very little training. However, the drawback of this control signal is that the
user has to keep his eyes fixed at one point bereft of any random movement.

Table 10.5 Summary of control signals [83]

Signal Physiological phenomena Number of
choices

Training Information
transfer rate
(bits/min)

VEP Brain signal modulations in the
visual cortex

High No 60–100

SCP Slow voltages shift in the brain
signals

Low (2 or
4, very
difficult)

Yes 5–12

P300 Positive peaks due to infre-
quent stimulus

High No 20–25

Sensorimotor
rhythms

Modulations in the sensorimo-
tor rhythms synchronized to
motor activities

Low (2–5) Yes 3–35

284 K. Mohanchandra et al.



Lee et al. [45–47] exposed the subjects (participants of the experiment) with a
5 × 5 matrix that contained flashing stimuli of digits, characters, and symbols
displayed on the LCD screen. The cells of the matrix flicker in a random sequence.
Participants have to gaze at the cell containing the digit or character they want to
select. The potential at the occipital cortex are measured, and the matrix cell which
elicited large signal amplitude is considered as the target cell the participant wanted
to select. Successful communication with a high information transfer rate is
achieved as a consequence. The evoked potential serves as an efficient and reliable
tool for disabled people to communicate with external environments. BCI based on
VEP entails that the user should be able to control the gaze direction precisely.

10.4.3.2 Slow Cortical Potentials

Slow cortical potentials [34] are potential shifts of the cerebral cortex, in the fre-
quency range below 1–2 Hz and may persist over several seconds. One of the first
communication devices in BCI, the Thought Translation Device (TTD) developed
by Birbaumer and his colleagues [5–7, 32, 33] uses SCPs to control the movement
of an object on a computer screen. The TTD supports completely paralyzed patients
with basic communication ability. The patients are trained to self-regulate SCPs
voluntarily to navigate a binary-tree spelling device. In each selection, the choice is
between selecting or not selecting a set of one or more letters [87] until a single
letter is chosen. A backup or erase option exists as well. Self-regulation of SCPs is
critical as the rate of information provided by SCP based BCI are sensibly low. For
instance Lutzenberger et al. [51] and Rockstroh et al. [73], trained patients to self-
regulate their SCP by providing feedback and positive reinforcement of correct
responses. Continuous practice and extensive training are required to use SCP
based BCI.

10.4.3.3 The P300 Event-Related Potential

A P300 wave is an endogenous event related potential component [35] created due
to infrequent auditory, visual, or somatosensory stimuli. The signal is characterized
by an increase in time series amplitude approximately 300 ms after the stimulus
onset. Increase in signal amplitude is more prominent at the parietal and occipital
electrodes, although observed at several other locations on the scalp. P300 was
suggested by Farwell and Donchin [20, 23, 75] for operating a letter speller BCI but
of late investigated by another research group [26, 40, 60]. It is seen in response to
the oddball paradigm, that the target stimulus with rare and irregular occurrences is
presented within a series of the standard stimulus. For example, if a subject is
viewing a random series of names, in every 3 s occasionally if one of these is the
subject’s name, a P300 wave is generated. The P300 wave is produced in response
to this rarely presented, recognized, meaningful stimulus. The P300 is larger for less
probable events [20].
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The speller device consists of a matrix of letters, numbers and symbols. The
rows and columns of the matrix are highlighted in sequence. To select a letter, the
user has to focus attention on the cell containing the target letter. When a row or
column has the chosen letter, a P300 component of the ERP is elicited. The BCI
detects the character by determining the row and column, which produced a P300
response and the corresponding character, is printed on the screen. The use of P300
based BCIs does not need user initial training. Nevertheless, the performance may
be reduced because the user gets used to the infrequent stimulus [16] and so the
P300 amplitude is decreased. A common form of P300 based spelling BCI uses a
6 × 6 matrix that has 26 letters of the alphabet and numbers 0–9. In every trial, each
row and column are illuminated once for a period of 100–175 ms, totaling 12
events, two containing the target item and ten containing non-target items char-
acterizing an oddball paradigm. The presentation sequence is repeated several times
per selection and the signals are averaged to improve the P300 signal to noise ratio
for reliable detection.

10.4.3.4 Sensorimotor Rhythms

Sensorimotor rhythms comprise µ (8–12 Hz) and β (18–25 Hz) rhythms, localized
in the primary sensory or motor cortical areas. A decrease in µ and β rhythms is
associated with movement or preparation of movement labeled as event-related
desynchronization (ERD). An increase of µ and β rhythms is associated with
relaxation labeled event-related synchronization (ERS) [39]. These rhythms also
occur with motor imagery, i.e. imagining the movement and also with cognitive
tasks.

This technique developed by Wolpaw et al. [85], is used to control one and two
dimensional cursor movements on a computer screen [41, 81, 88]. People have
learned to control µ and β amplitudes in the absence of movement or sensation,
including those with LIS. Increased µ rhythm amplitude [54] moves the cursor
towards the top target and decreased µ rhythm amplitude does so towards the
bottom target. Pfurtscheller and colleagues at the Graz University [57, 58, 66, 67]
have developed a BCI for two-state classification using the mental imagery strategy.
Different motor imagery such as, imagination of left-hand, right-hand, or foot
movement is used to elicit the brain activity in the sensorimotor areas in response to
a visual cue.

10.4.3.5 Intracranial Method—ECoG

As mentioned in earlier sections, speech communication for severely paralyzed
people can be achieved using EEG or ECoG. The ECoG method requires
implantation of microelectrodes into the outer layers of the human cortex. Kennedy
et al. [38] has described an invasive method to drive a BCI, where an “Amyotrophic
lateral sclerosis” (ALS) affected patient learned to control the cursor to produce
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synthetic speech and type. Brumberg and colleagues have developed a BCI to
control an artificial speech synthesizer by an individual with “locked-in” syndrome
during imagined speech [12, 27, 28]. The neural signal recorded from an implanted
electrode in the speech motor cortex of a human volunteer is used to drive an
artificial speech synthesizer. Leuthardt et al. [48–50] demonstrated that ECoG
activity recorded from the surface of the brain enables users to control a one-
dimensional computer cursor rapidly and accurately. The ECoG signals associated
with different types of motor and speech imagery are identified and used to control
two dimensional joystick movements.

Though, speech prosthesis for paralyzed individuals can be achieved using
cortical surface electrodes (e.g. ECoG) or intra-cortical microelectrodes, the EEG is
the most preferred technology [84] because of its excellent temporal resolution,
non-invasive characteristics, portability and reasonably low price. However, due to
volume conduction through the scalp, skull, and other layers of the brain, the spatial
resolution of EEG signals diminish and needs to be improved.

Though EEG is endowed with high temporal resolution, its poor spatial reso-
lution makes it almost essential to be trained extensively by the users. However,
ECoG has significant clinical risks limiting its usage.

10.5 Challenges and Future Research Directions for Speech
Communication BCI

Several crucial issues need to be handled to facilitate expanded use of BCI tech-
nology in speech communication… Most of the existing techniques use fMRI for
processing of languages and speech areas of the brain as it has a good spatial
resolution. But fMRI has limited temporal resolution. The high temporal resolution
of EEG and ECoG has the potential to demonstrate the functional relation between
the language and speech areas of the brain. Neuroscience research [8] has shown
that imagined speech activate the frontal cortex as well as Broca’s and Wernicke’s
areas. The change in neural activity in the language areas of the brain needs to be
understood clearly. The EEG signals are usually recorded in high-dimensional
space and the size of data makes it computationally intensive on the classifier. To
address this issue, competitive dimension reduction techniques [1] and spatial filters
are to be identified. An important attribute of spatial filtering [2] is to reduce the
number of channels on the scalp and at the same time retain all the information
needed for the classification. The electrodes that do not contribute to the activity
may be discarded thereby reducing the number of electrodes considerably.

Another key issue is whether it is practically useful to the actual target popu-
lation. The patient population in need of BCI has severe neurological diseases [13]
causing extensive changes in EEG patterns and the power spectrum. Due to their
continuous degenerative state, a decrease in spectral power is possible, which
induces classification errors.
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To achieve success rates and stability in BCI, the evoked potentials from event
related potentials are considered (e.g. P300, VEP). However, it may not be possible
to provide external stimulus in every possible situation. For the patient population,
the sensory perception is often impaired or degrades continuously, evading any
external stimulus. Therefore, the need to self-regulate the brain signals is critical.
For other applications such as silent speech communication and cognitive bio-
metrics, the usage is outside the lab environment, rendering the supply of external
stimulus infeasible. Therefore, the necessity to self-regulate the endogenous signals
(e.g. SCP) is required. However, this implies extensive training for the user, in order
to produce the same signals every time.

A combination of advances in sensor technology, data acquisition systems,
standard methods and metrics for evaluation and reliable algorithms can propel the
use of BCI for speech communication to diverse directions.

10.6 Conclusion

The research and development in BCI for speech communication have attracted
great attention and investigation from many research groups across varied realms of
interest. Though the primary goal of BCI technology is to restore communication in
severely paralyzed population, the speech communication has expanded its appli-
cation in silent speech communication, synthetic telepathy and cognitive
biometrics.

The most common BCI applications use EEG for recording the neural activity.
The EEG based speller devices are either controlled by evoked potential (VEP,
P300, SMR) or by self-regulation of SCP and motor imagery for selection of letters
from a visual display or a binary speller device. The EEG study confirms that it is
feasible to use non-invasive neurophysiology method to control the spelling device.
Though these indirect methods empower speech communication, they are not at
rates, fast enough for conversational or near conversational speech. The slow
speech production may cause the disabled users to withdraw from social interac-
tions in frustration. To overcome the drawbacks of EEG based speller devices, the
intracranial electrodes (ECoG) are used for signal acquisition. The ECoG boasts of
an improved signal to noise ratio (SNR). The risk of neurosurgery, the cost
involved and ethical issues make invasive methods impractical except for users who
are severely disabled.

In recent times, researchers are investigating the feasibility of performing direct
speech production from different neurological signals for more natural and fluent
speech production. The direct method involves capturing the brain signals of the
intended speech or speech imagery, process the signals to predict the speech and
synthesize the speech output in real-time. The direct method of speech communi-
cation in BCI has an extensive scope of medical and general applications. Extensive
work is being carried out in this field by several research groups. To promote the
feasibility of BCI for speech imagery, we must take into account the psychological
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factors and the advances in EEG pattern recognition techniques. With the
advancement in technology, faster and more accurate communication may be
achieved with EEG based BCI systems for direct speech production.
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Chapter 11
Web-Based Intelligent EEG Signal
Authentication and Tamper Detection
System for Secure Telemonitoring

Aniruddha Mukherjee, Goutami Dey, Monalisa Dey
and Nilanjan Dey

Abstract In recent times, the augmented influence of globalization in the medical
domain is quite noticeable and is very much evident from the modern medical
approaches. Exchanging medical information using communication technologies to
provide health care services for mutual availability of therapeutic case studies
amongst various geographically distant diagnostic centers or hospitals is a very
common practice now a days. However, during the exchange of medical data which
is of critical importance, unauthorized entities may interfere. These entities may
also modify the data which is unacceptable. In this chapter, we propose a novel
approach to design a robust online biomedical content authentication and tamper
detection system, where a watermark is embedded on the biomedical information to
be sent, to protect its integrity and safety. In the current work, the medical data
exchanged is an Electroencephalogram Signal (EEG signal), and the watermark that
is embedded is the logo of the hospital or Electronic Patient Record (EPR). The
proposed process is accomplished by coloring the EEG signal data in the file which
can be sent to the authorized user by sending the data file or URL. The receiver
decodes the received file and extracts the embedded watermark. The similarity
between the original and received watermark claims that the medical data has not
been tampered. And thus, this proposed intelligent web based system of binary
image watermarking into the EEG data, along with the high level of robustness,
imperceptibility and payload that it provides, proposed system can serve as an
accurate authentication and tamper detection system.
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11.1 Introduction

Watermarking is a technology of impressing any form (image or text) onto paper
which provides evidence of its authenticity. However in the recent years with the
growth of internet, digital media is replacing analog media very fast. Digital media
is basically the digital representation of audio, video, text etc. Thus digital water-
marking [3] is an extension of the traditional watermarking concept in the current
digitized world. It is a process of embedding information (watermark) into 1D or
2D signal, image, video or text as evidence of its ownership as well as to maintain
the security and concealment. Unlike the traditional printed watermarks, digital
watermarks are designed to be invisible or inaudible. As the digital watermark does
not modify the size of the carrier signal, the copy of the digital data generated after
embedding a watermark is same as the original. Thus, it not only protects the
quality of the host signal but also the integrity and security of the embedded data.
Tampering of vulnerable data (image or signal) is the intentional or unintentional
manipulation of the data or corrupting the data by executing malicious code in order
to make it irretrievable and destructing or transforming the critical information it
contains. Digital watermarking is also effective in detecting data tampering and
corruption of data (image/signal) and hence is successful in maintaining the
authenticity and safety of the image/signal.

Watermarking can be of several types depending on the type of carrier data,
viz. image watermarking, video watermarking, audio watermarking and text
watermarking.

The three main elements for the watermarking process are the watermark, the
encoder which embeds the information to be hidden then verifying the watermarked
content received using File Checksum Integrity Verifier (FCIV) and the decoder or
the extractor which extracts the hidden information. Commonly embedding is done
on digital document (text, audio, video and image) using encoder and authenti-
cating them by incorporating watermark [19] in order to track the credibility of the
digital data. After the watermarked data is received by the authorized receiver,
the received information is verified using checksum to check if the extracted
information is authenticated then the embedded watermark is extracted from
watermarked content.

The advancement of technology has influenced the health care industry expo-
nentially. Sophisticated medical technologies are constantly being developed
leading to more accurate diagnostic results. Currently sharing of medical data is
being done with the help of internet by health care professionals. The biomedical
images or signals can be readily transferred or received via computer networks.
These images and signals can then be easily transmitted, received, processed and
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used by health care centers for mutual study. The conventional diagnosis methods
are now getting replaced by the e-diagnosis system where the recipient and the
provider of health care do not have to be present in the same physical location.

In the current scenario, biomedical information (images or signals) are
exchanged between geographically dissimilar diagnostic centers for mutual study of
the biomedical data in order to provide more accurate diagnostic results and
appropriate treatments. During the transit of such vulnerable and exposed critical
data, unauthorized entities may interfere and transform these images or signals
intentionally or unintentionally. This may lead to the loss of decisive data and
inaccurate diagnosis, so high confidentiality and authenticity is required to
exchange biomedical information through an unsecured open network between
various diagnostic centers. A solution to this is watermarking a medical image or
signal [4], which will ensure authenticity and integrity of the biomedical infor-
mation. In the medical field, since the medical images are very crucial in making
critical judgments, any distortion of these data or change of quality may lead to
erroneous diagnosis results. Thus, before watermarking medical data, several
constraints should be taken care of to ensure the data is not hampered in any way.
However, little amount of distortion can be overlooked for high level copyright
protection and authentication.

The watermarking process of the biomedical images [30, 31] and signal includes
embedding and extracting the watermark given that the embedded watermark is
imperceptible, that is it should not be visible to the naked human eyes. An effective
digital watermark must possess some properties namely, robustness [29], easily
recoverable and imperceptible. And in this system, before extraction of the
embedded watermark, the checksum verification helps in tracking whether the
watermarked EEG signal is tampered or modified outside the system. For checksum
verification, File Checksum Integrity Verifier (FCIV) can be calculated using:

1. Message Digests (MD5)
2. SHA-1/SHA-256/SHA-512 cryptographic hash values.
3. The requirements for using the MD5 or SHA-1/SHA-256/SHA-512 crypto-

graphic hash values are:
4. The claimed identity of the sender can be verified by the receiver.
5. The content transmitted by the sender cannot be later repudiated by the sender.
6. The receiver has not possibly concocted the message himself.

FCIV verifies whether the tampering has occurred in the received watermarked
EEG signal and which helps the health care provider to track whether the infor-
mation retrieved is authentic. If the EEG signal is tampered then the health care
providers avoid making diagnosis based on that EEG signal and if the EEG signal is
not tampered health care providers can continue with the detection of the disease or
the diagnosis.

This current study is on medical information exchange between various different
diagnostic centers located anywhere across the world for mutual study and to
improve the diagnosis result, with high level of authentication and credibility of the
medical contents which contains crucial information. In this study the biomedical
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medical content is the EEG signal and the watermark (the hidden information) is a
binary image containing authenticity and credible information about the health care
center which ensures the receiver (physician or health care provider) that the EEG
signal information has probity. The watermark is embedded in the EEG signal and
this watermarked EEG signal is transferred from one health care organization to
other ensuring authenticity and safety of the content it is transferring.

The rest of the paper is described as follows: the study starts briefly by presenting
the review works on watermarking of biomedical data in Sect. 11.2. It is followed
by a succinct overview of the Electroencephalographic signal in Sect. 11.3.
Sections 11.4 and 11.5 provides a detailed and lucid description of the proposed
algorithm used for tamper detection and authentication of biomedical information.
Section 11.6 provides a comprehensive discussion of the results obtained. In
Sect. 11.7, we conclude the paper and discuss directions for future research.

11.2 Related Work

A fair amount of study has been done in the field of watermarking of biomedical
images and signals, in order to maintain authentication and safety. In this literature
review various biomedical images and signals watermarking schemes are reported.

Podilchuk et al. [24] presented a general framework for watermark embedding
and extraction along with a review of some of the watermarking algorithms for
different media types described in the literature. Lim et al. [19] reported a web
based image authentication using invisible fragile watermark. Coatrieux et al. [4]
reported the relevance of watermarking in medical imaging. Wakatani [30] pre-
sented digital watermarking for ROI medical images by using compressed signature
image. Tang et al. [29] proposed a digital image watermarking scheme that com-
bines image feature extraction and image normalization which survived geometric
distortion and signal processing attacks. Jiu-ming et al. [16] introduced the wavelet
transform and its technical application in digital watermarking in speech signals.
The signals of non-encrypted speech before or encrypted speech after were also
played and compared by them in their work. Engin et al. [10] proposed a wavelet
transformation based watermarking technique for ECG (Electrocardiogram).
Nambakhsh et al. [22] presented a novel blind watermarking technique with secret
key by embedding ECG signals in medical images. The embedding was using the
embedded zero-tree wavelet (EZW) algorithm. Their method was able to utilize
about 15 % of the host image for embedding the watermark. Giakoumaki et al. [12]
proposed multiple image watermarking applied to health information management.
In 2006, Kallel et al. [17] proposed a secure fragile watermarking algorithm for
medical image authentication in the DCT Domain. Raul et al. [26] presented data
hiding scheme for medical images. Wu et al. [31] reported tamper detection and
recovery for medical images using near lossless information hiding technique.
Fotopoulos et al. [11] presented medical image authentication and self-correction
through an adaptive reversible watermarking technique. Ma et al. [20] reported a
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review on the current segmentation algorithms for medical images. Kimoto [18]
proposed an advanced method for watermarking digital signals in bit-plane struc-
ture. Golpira et al. [13] presented reversible blind watermarking for medical images
based on wavelet histogram shifting. Memon et al. [21] proposed multiple water-
marking of medical images for content authentication and recovery. Oueslati et al.
[23] presented an approach for maximizing the strength of a watermark using the
concept of fuzzy logic. Saraswathi [27] discussed a method to perform speech
authentication using watermarking technique. The watermark was embedded in the
low intensity points detected in the speech signal. Rather sending the speech signal
the extracted features were sent to the receiver for authentication. The proposal was
of a blind watermarking technique in which the host signal was not required for
watermark extraction. Authentication was done by detecting the errors in the signal
based on their extracted features. Poonkuntran et al. [25] proposed a messy
watermarking technique for the authentication of any medical image. Aggarwal
et al. [1] presented role of segmentation in medical imaging with comparative
study. Chang-hui et al. [3] published their work which dealt with the digital
watermarking technology on three different processing stages for enhancing the
robustness of digital watermarking based on the argument of invisibility. The first
stage was pre-processing the watermark signal. The second stage was watermark
embedding strength degree. And the third stage was the watermark embedding and
extraction. The embedding and extraction of the watermark signal was done
through the trained neural network. Ibaida et al. [15] proposed a technique of
watermarking the ECG signals with patient biomedical information in order to
confirm patient/ECG linkage integrity. After performing several tests they found
out that a marginal amount of signal distortion will not affect the overall quality of
the ECG signal. He et al. [14] proposed a self-synchronized watermark technology
to protect the electrocardiogram (ECG) signal. Their study confirmed that the use of
wavelet-based quantization watermarking on ECG signal is adequate for patient
protection. Soliman et al. [28] proposed a secure and adaptive medical image
authentication scheme using swarm intelligence. Dey et al. [5] proposed a DWT-
DCT-SVD based blind watermarking technique of gray image in electrooculogram
signal. Dey et al. [6] proposed a Lifting Wavelet Transformation based technique of
binary watermark embedding within the Photoplethysmographic (PPG) signal as
well as the process of extracting watermark from the PPG signal. Dey et al. [5]
proposed a DWT-DCT-SVD based intravascular ultrasound video watermarking
technique. Dey et al. [7] analyzed the photoplethysmographic signals which were
modified by a reversible watermarking technique using prediction-error in wireless
telecardiology. Dey et al. [8], [9] proposed an edge based blind watermarking
technique of medical images without devalorizing diagnostic parameters. In their
work, the watermark was added in the boundaries between the Region of Interests
and the Region of Non-Interest in the medical image.
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11.3 Electroencephalographic Signal (EEG)

Our brain is composed of billions of neurons which talk (exchange information) to
each other using electrical signals. This results in the generation of a huge amount
electrical activity in the brain. EEG (electroencephalogram) is a tool which tracks
this electrical activity of the brain over a short period of time. It measures and
records the brain wave pattern and detects the brain activity involved in the various
types of cognitive functions. The term “electro” denotes the electrical signals that
are exchanged between the billions of nerve cells present in the brain, for com-
municating with each other, “encephalo” means head and “gram” is the printed
record that is obtained after performing EEG.

EEG tests are done by placing electrodes on the scalp. Electrodes are nothing but
electrical conductors and hence are used to detect electricity. The test is carried on
for about 30–40 min. During this time, no electricity is put into or taken out of the
patient. The electrical impulses along the brain are then observed while the patient
is sleeping or awake or when the patient is asked to take deep breaths etc. Next the
detected electrical impulses sent to a machine called an electroencephalograph,
which records the signals for further studies [2].

EEG records patterns of electrical activities in the brain as waveforms of varying
amplitude and frequency measured in voltage. The basic brain waves that are
recorded and used for are the among alpha, beta, theta, and delta rhythms.

• Alpha waves generally occur in the state of relaxation, when your eyes are
closed but you are aware of the surroundings. These waves emit at a frequency
of 8–12 cycles per second.

• Beta waves are emitted occur at a frequency of 13–30 cycles per second. They
occur when we are alert, agitated or anxious, and are also linked with the usage
of sedatives or tranquilizer.

• Theta waves most commonly occur during a near sleep state when the individual
is extremely drowsy. These waves are emitted at a frequency of 4–7 cycles per
second.

• Delta waves emit at a frequency of 0.1–4 cycles per second. They generally
occur in the state of deep sleep.

One of the most common diagnostic applications of EEG is to monitor epileptic
disorders. However, it may happen that a patient having a tendency of seizures may
have a normal EEG at a particular time. In such cases, EEG is either repeated more
than once, or is done for a longer period. It is also used to diagnose other medical
conditions like tumors, brain diseases, head injuries, hemorrhage etc. EEG results
are studied to detect sleep disorders like insomnia, track the brain activities of an
individual in a coma, monitor the brain during any brain surgery etc. It also forms
as a surety test for brain death.
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11.4 Proposed Method

Ideally a secured sharing of information between the health care centers requires
some basic security services like privacy, authentication, integrity and nonrepudi-
ation. In this study, basic objective is to detect tampering and ensure authentication
of the biomedical information. There might be several types of attacks which
compromise with the security of information, the attacks such as:

1. Interruption during the transfer of information, transformation.
2. Alteration attacks in which attacker can interfere and can send a altered infor-

mation which causes tampering of the information.
3. Bugging, attackers can listen to the information and use the information in their

own interest.
4. Imitating.

In the proposed study, the watermark (logo of a hospital, health care center or
patient’s historical data) is considered as a chunk and is taken as a byte array.
Values in the byte array can vary from −128 to 127 (−27 to (27 − 1)). The number is
represented as a signed binary number by reserving 8 bits for magnitude and
appending one more bit for sign representation. So total there will be 9 bits which
will represent the signed binary number. Byte is an 8 bit integer data type and here
9 bits are used to represent each signed number, so by widening casting or auto-
matic casting in Java (implementation of the proposed study is done using Java), the
byte data type is widened to int data type implicitly. Hence the conversion from
byte array to int array is done automatically.

For example, the given Fig. 11.1 is a byte array,
Conventionally, representing a signed numbers can be done using any one of the

three possible ways which include:

1. Signed magnitude representation.
2. Signed 1’s complement representation.
3. Signed 2’s complement representation

Example: representation of −9 with 8 bits

1. Using signed magnitude representation (Fig. 11.2)
2. Using signed 1’s complement representation (Fig. 11.3)
3. Using signed 2’s complement representation (Fig. 11.4)

Conventionally the most significant bit position is reserved for sign bit and
remaining bits are used to show the magnitude. And when the binary number
is positive, the sign bit is ‘0’and when the number is negative the sign bit is ‘1’.

120           50 -110 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  30 80-60

Fig. 11.1 Byte array
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The representation of signed number using signed magnitude representation and 1’s
complement representation cannot be done in this study as it takes into account +0
and −0 whereas in 2’s complement representation it includes only one type of zero
that is +0. Still in this study signed number’s representation is not done in any of
these three ways.

In this study, the signed numbers in the int array whose range varies from −128
to 127 is represented using a different technique in which all of the 8 bits are used to
represent the magnitude of the number simply by finding its binary equivalent. And
appending one more bit that is the 9th bit in the MSB place in order to represent the
sign. For negative value the MSB is 0 and for positive value the MSB is 1, so total
9 bits are required to represent the signed value.

For example, binary equivalent of 120 is shown in Fig. 11.5.
Main reason of representing the signed values in this way instead of representing

by 2’s complement is because representing the numbers in 2’s complement manner
would increase the complexity as it would include

1. First checking the MSB of the 8 bit binary representation if it is 1 or 0. If it is 1
then the value is negative otherwise if the MSB is 0 then the value is positive.

2. If the MSB is 1 then 2’s complementing the binary number to find the mag-
nitude of the binary number keeping in mind that the number is negative.

So in order to remove this complexity and ambiguity, representation is done with
9 bits. And moreover as the color model used in this study is RGB color model so
in order to divide R (red), G (green) and B (blue) in equal number of bits it was

1 000 1001

Fig. 11.2 Representation of −9 using signed magnitude

1 111 0110

Fig. 11.3 Representation of −9 using signed 1’s complement

1 111 1110

Fig. 11.4 Representation of −9 using signed 2’s complement

11 0 11 001 0

Fig. 11.5 9 bit binary equivalent of 120
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necessary to represent the values in the byte array using 9 bits, so that R, G and B
can be represented using 3 bits each.

The value (only magnitude) in each cell has to be converted into 8 bits binary
equivalent and the sign of each value is represented by the 9th bit which is
appended in the most significant bit (MSB) position. Then the 9 bits are equally
divided into 3 parts R which represents red, G which represents green and B which
represents blue i.e. 3 bits for R, 3 bits for G and 3 bits for B. 3 bit binary repre-
sentation of R, G and B is shown in Fig. 11.6.

Hiding of image (watermark) can be done in two possible ways:

1. Text color
2. Text background color

In this study we have colored the text. Amount of colors red (R), green (G) and
blue (B) depends on the values stored in the int array which in turn depends on the
watermark (binary image or logo) which is to be embedded in the EEG signal data.
By the combination of amount of three colors red (R), green (G) and blue (B), the
resultant color will be colored in each EEG signal values (Fig. 11.7). Hence this
colored EEG signal data is what is called as watermarked EEG signal.

EEG signal data are colored with different colors i.e. watermark is embedded in
the signal data. And this watermarked EEG signal is transferred from one health
care center to the other through unsecured open network which may cause tam-
pering of EEG signal due to the transformation and forgery attacks by the attackers
or corrupting the data by executing malicious code which may make the data
irretrievable and may cause the loss of decisive data. As a result there will be loss of
decisive EEG signal data. After reaching the receiver (health care center), the
watermarked EEG signal is verified using FCIV (File Checksum Integrity Verifier)
which checks whether the watermarked EEG signal is tampered or corrupted.
Depending on the verification, the embedded watermark is extracted, then the

R                     

G

B                  

0 0 1

1 11

000

Fig. 11.6 3 bits binary representation of R, G and B

Fig. 11.7 Example decimal equivalent of red (R), green (G) and blue (B)
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physicians make decisions based on the EEG signal retrieved. If the FCIV shows
the file is tampered then physician does not do the diagnosis and further treatments
based on the tampered EEG signal as it may lead to erroneous diagnosis and may
cause fatal. The entire process is shown in Fig. 11.8.

11.5 Explanation of the Proposed Method

Figure 11.9 depicts an example of transfer of EEG signals between physicians,
diagnostic centers and a hospital to improve the diagnostic results which helps in
proper and accurate treatment of the patient. Logo or the image which is to be
watermarked is taken as a byte array in which each value stored in the byte array is
converted to 9 bits binary equivalent due to which conversion from byte array to int
array takes place implicitly, and then these 9 bits in turn is divided into three colors
R, G and B.

The colour model used in this study is RGB i.e. combining red, green and blue
colour, whose amounts depends on the decimal equivalent of the 3 bits retrieved
from R array, G array and B array, the resultant of these three colours are then
coloured in each of the EEG signal value. For example, if decimal equivalent of R,
G and B is 0 for three of them then it gives black colour (shown in Fig. 11.7).

If same

Physicians avoid making diagnosis 
from tampered EEG signal

If the extracted 
and original 
watermark are not 
same                                                                                           

Attacks      
(if any)

Logo of the health 
care center /
patient’s historical 
data

Compare 
watermark

Recovered 
EEG signal

Transmission line Extractor / 
decoder

EEG signal

Embedder / 
encoder

Watermarked 
EEG signal

Fig. 11.8 The process of embedding and extracting the watermark to and from the EEG signal
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In our study if the 9 bit binary is 100110011 then R = 100, G = 110 and B = 011
and possible no. of colour codes from binary values are {111,110,100,011,
001,010,101,000} which is equal to 8. So maximum possible combination (in
RGB) = R{Colour codes } × G{Colour codes } × B{Colour codes} = 29 = 512. The
EEG signal data can be coloured by 512 different colours. And the range of R, G,
and B itself is 0–255 and the combination of Red, Green and Blue values from 0 to
255 gives a total of more than 16 million different colours (256 × 256 × 256) and
most modern monitors are capable of displaying at least 16,384 different colors.

Similarly with different combinations of red, green and blue, distinct colours will
be formed which will be then coloured in each EEG data. As a result all the data of
the EEG signal will get coloured hence the watermark is embedded in the EEG
signal data. Watermarked signal after reaching the authorized user, the watermark is
extracted from the watermarked EEG signal after checksum verification. If the
extracted watermark is similar to the original watermark then the physician will start
the diagnosis process using the recovered EEG signal acquainted of the fact that the
EEG signal is not tampered and is credible and believable. If the extracted water-
mark is different from the original watermark then the physician will avoid making
any diagnosis or further treatments based on that EEG signal data retrieved as the
file is tampered or corrupted by the attackers and the decisive information in
the signal retrieved is already lost. In this way this scheme is helping to detect the
tampering of EEG signal.

Diagnostic
center II

Internet Physician I

Physician II

EEG signal

Health care center 
and patient’s 
historical data 

Diagnostic
center I

Hospital

Fig. 11.9 Transfer of medical image between physicians, diagnostic centers and hospital for
second opinion
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11.6 Results and Discussion

In the following section, Figs. 11.10, 11.11, 11.12, 11.13, 11.14, 11.15, 11.16,
11.17, 11.18, 11.19 depicts the entire proposed approach.

The Fig. 11.10 depicts the Home Screen where the sender can input the EEG
signal data file by selecting “As a file” the sender can input the data as a file. While

Fig. 11.10 Home screen

Fig. 11.11 Input data (as an URL)

Fig. 11.12 Input binary logo as an watermark
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uploading the file, the file can be browsed from the computer and the data file can
be chosen for uploading. The file is uploaded. Sender can input the EEG signal data
by adding the URL by selecting “As an URL” directly.

Sender can input the watermark that is binary logo of the health care center or
diagnostic center by selecting “Upload Binary logo”. Then the receiver’s address is
added by selecting “Add Receiver Address”. The sender can also modify the
receiver’s address by selecting “Modify Receiver Address”. Then after inputting the

Fig. 11.13 Logo of the hospital (Watermark)

Fig. 11.14 Watermark Embedding and send into the recipient end

Fig. 11.15 Received watermarked EEG signal
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EEG signal data, watermark and the receiver’s address, the watermark will get
embedded and sent when the sender selects “Embedding and Send”. So the
watermarked EEG signal data file is sent to other health care center or diagnostic
center for improved diagnosis and mutual study of the EEG signal which in turn
will lead to better treatment.

Figure 11.11 depicts how the sender can input the URL instead of data file. This
URL constitutes a reference to the EEG signal data which is to be watermarked.

Fig. 11.16 Extracting EEG signal

Fig. 11.17 Watermark embedded EEG signal
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Figure 11.12 shows the how the sender can upload the binary logo by browsing
the files in the computer selecting “Browse…” and selecting the required file. Then
selecting “Upload”. The watermark is uploaded.

Figure 11.13 depicts how a typical watermark will look like. This watermark is
embedded in the EEG signal data and as a result of embedding, watermarked EEG
signal data will have each data coloured with different colours.

Figure 11.14 shows how the watermark is embedded in the EEG signal data.
And then the EEG signal data is sent to the recipient’s end.

Figure 11.15 depicts the received watermarked signal at recipient’s end. Then
the checksum verification of the received watermarked EEG signal is done using
FCIV to track whether the received EEG signal is tampered or corrupted.

Figure 11.16 depicts extraction of the EEG signal. Depending on the result of
FCIV which will check if the file is tampered or not. If the file is not tampered then
the EEG signal is extracted for diagnosis.

Figure 11.17 show how the watermarked EEG signal look like. Each data in the
EEG signal is coloured using RGB colour model.

Figure 11.18 shows the modified source file.

Fig. 11.18 Modified source file

Fig. 11.19 Logo of the hospital extracted
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Figure 11.19 shows the watermark extracted at the receiver’s end. This water-
mark is the binary logo of the hospital or diagnostic center or any other health care
center which ensures the receiver that the EEG signal received is reliable and can be
used for diagnosis.

In this current study, the image is taken as a chunk and is considered as a byte
array then for representing each value in each cell of the byte array, 9 bits are
required so the conversion from byte array to int array takes place implicitly in java
by implicit casting then 9 bits are divided equally into R (red), G (green) and B
(blue) each of which contains 3 bits. Depending upon the decimal equivalent of red,
green and blue colour, the resultant colour is then coloured in EEG data. Similarly
all the data in the EEG signal is coloured hence watermark is embedded in the EEG
signal data. Now after reaching the authorized user, the FCIV checks whether the
EEG signal is tampered or corrupted then depending on the verification, watermark
is then extracted. And the diagnosis is done after identifying whether there is any
tamper in the EEG signal or not and whether the EEG signal is authenticated and
credible. Thus this approach ensures authenticity, credibility of the image or signal
and confidentiality of the biomedical image or signal.

The current proposed system deals with EEG signals, in future it can be further
extended to be more generalised for other signals like Electrocardiography (ECG),
Electromyography (EMG), Magneto-encephalography (MEG), Electronystagmog-
raphy (ENG), etc. The size of the image or the logo(watermark) is a constraint as if
the size of the image is large then the size of the byte array will be large as a result
there will be more number of colours then the number of data in the EEG signal
data. So this will lead to incomplete watermarking. In this current study, testing is
done with only binary watermark (which is black and white watermark), so the
implementation can be done in future using coloured watermark.

11.7 Conclusion

Various schemes for watermarking biomedical images or signals have been already
proposed. The current proposed system is a fragile watermarking system in which
the host data (biomedical image or signal) can be modified by the attackers. It will
ensure authenticity. When the watermarked EEG signal manipulates it will lead to
the distortion which will be tracked by the File Checksum Integrity Verifier (FCIV)
which in turn will help the authorized user (which can be a health care organisation
or a physician) to detect whether the EEG signal is tampered or not. Depending on
the verification if the extracted watermark and the original watermark are different
then the EEG signals are considered to be tampered, whereas if the extracted
watermark and the original watermark are same then the EEG signal is not tampered
or corrupted and hence health care providers can continue with the diagnosis based
on the EEG signal which is recovered. So it not only serves for high level
authentication system but also for tamper detection.
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Chapter 12
Competing and Collaborating Brains:
Multi-brain Computer Interfacing

Anton Nijholt

Abstract In this chapter we survey the possibilities of brain-computer interface
applications that assume two or more users, where at least one of the users’ brain
activity is used as input to the application. Such ‘applications’ were already
explored by artists who introduced artistic EEG applications in the early ‘seventies’
of the previous century. These early explorations were not yet supported by
advanced signal process methods, simply because there was no computing support
possible, and interest in artistic applications faded until it reappeared in more recent
years. Research in neuroscience, signal processing, machine learning and applica-
tions in medical, assistive BCIs prevailed. It was supported by computer science
that provided real-time and off-line processing to analyze and store large amounts of
streaming or collected data. With the possibility to access cheap shared and dis-
tributed storage and processing power, as it became available in the last decade of
the previous century and the first decade of this century, different kinds of BCI
applications, following a general interest in digital games, interactive entertainment
and social media, became visible. These are domains where experience, fun and
emotions are more important than efficiency, robustness and control. BCI provides
user and application with a new modality that can be manipulated and interpreted,
in addition to other input modalities. This has been explored, but mostly from the
point of view of a single user interacting with an application. In this chapter we look
at BCI applications where more than one user is involved. Games are among the
possible applications and there are already simple games where gamers compete or
collaborate using brain signal information from one or more players. We consider
extensions of current applications by looking at different types of multi-user games,
including massively multi-player online role-playing games. We mention research
—distinguishing between active and passive BCI—on multi-participant BCI in
non-game contexts that provides us with information about the possibilities of
collaborative and competitive multi-brain games and that allows us to develop a
vision on such games. The results of the literature study are collected in a table

A. Nijholt (&)
Human Media Interaction, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands
e-mail: a.nijholt@utwente.nl

© Springer International Publishing Switzerland 2015
A.E. Hassanien and A.T. Azar (eds.), Brain-Computer Interfaces,
Intelligent Systems Reference Library 74, DOI 10.1007/978-3-319-10978-7_12

313



where we distinguish between the various forms of interaction between players
(participants) in collaborative and competitive games and team activities.

Keywords Brain-computer interfaces � EEG � Multi-brain games � Multi-player
games � Social games � Collaborative decision making � Videogames

12.1 Introduction

Pervasive and ubiquitous computing requires multi-user interfaces for environments
and devices that offer professional, recreational and social applications. These
interfaces are also multimodal, and mouse, keyboard or joystick are joined by more
natural input modalities including touch and gestures. Moreover, rather than pro-
viding these environments and devices with explicit input, their sensors also know
how to monitor us and support us in our activities in pro-active ways. Multi-user
applications, where sensor-equipped environments monitor users in order to support
them in their activities or to provide useful information for the owners of the
environments are being introduced. Obvious examples are home environments,
office and meeting environments, but also multitouch tables and distributed game
and entertainment environments that have multiple users. We may think of children
using tangibles playing together in a sensor-equipped room or public space, but also
of physically co-located players competing or collaborating in a videogame, or
multi-user online games with physically distributed players. Apart from traditional
input devices, there can be simultaneous input from multiple users using gestures,
facial expressions, bodily movements and various kinds of natural or user-manip-
ulated physiological input, including input provided by brain signals.

In previous years we have seen a growing interest in brain-computer interfacing
(BCI) in the human-computer interaction (HCI) community. Before that, BCI was
researched with the aim to help disabled persons and provide them, among other
things, with a hands-free ‘communication channel’ to type messages, to control
prostheses, or to navigate a wheelchair [2]. Our research, instead, has focused on
BCI for ‘healthy’ users, in particular on its use for games [26, 30]. There are good
reasons to do so. In games and entertainment applications we are not limited by
thoughts and concerns that relate to patients and disabled persons. We can use our
fantasy and can allow situations and events in non-real-life situations, happening in
virtual worlds and videogames. We can allow cooperation and competition with
multiple and distributed users and we can allow interaction modalities and effects
that are unusual but nevertheless can be believable, given the context of the game.
Gamers don’t behave as disabled people in need of support. They have different
motivations and expectations. That introduces problems and new challenges. Game
designers have to design for challenges or otherwise to make use of the existing
challenges in a meaningful manner, rather than to avoid them.
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In 2012 a roadmap for BCI research was published (eds Allison et al. [1]. The
roadmap was initiated by the FP7 research program of the European Union. The
roadmap stayed close to traditional BCI research. It hardly took into account new
research opportunities coming from embedding BCI research in HCI research, in
particular multimodal interaction [10, 27] and artificial intelligence research. The
problems (or challenges) that were identified in the roadmap (reliability, profi-
ciency, bandwidth, convenience, support, training, utility, image, standards and
infrastructure) do also rise when we look at BCI for games, entertainment and
artistic applications. However, they can be dealt with in a different way. A game is
about challenges and an interactive art installation may be provocative and sur-
prising rather than that it acts according to our expectations; it may allow teasing,
frustrating [34] and deceiving. Hence, rather than being effective in a traditional
sense, such applications are about manipulating experiences (van de Laar [17], and
satisfying psychological needs (for example, showing competence in dealing with
challenges and socializing) [11], and not necessarily about efficiency and conve-
nience. Hence, such applications require knowledge about the affective state of the
user [24]. Efforts to develop a new, more long-term, roadmap for BCI research are
reported in [4].

A bottleneck that prevents wide-spread use of BCI is the set-up encumbrance.
A standard configuration requires an EEG cap with several electrodes, it has to be
positioned on the head of the user, gel is required between scalp and electrodes to
get good signals, and only after ten or more minutes of preparation time the user is
physically connected to the BCI device. Presently so-called ‘dry’ electrodes that
don’t require conductive gel and wireless connections have been introduced,
reducing set-up time. Attractive headsets are now becoming available from BCI
game companies. A second bottleneck is reliability. People can be trained to use a
BCI, but not everybody can perform in a satisfactory way. BCI signals are subject-
dependent and even for one subject there is variability depending on mood, emo-
tions and fatigue. For certain applications repeated trials are needed in order to be
able to make a decision about a mental state or to be able to map detected brain
activity to appropriate control or communication commands. However, also for this
bottleneck there are positive research developments such as progress in signal
analysis, artifact removal methods, and machine learning. Moreover, for some
applications, as we will discuss in this chapter, rather than recognizing brain activity
of one user and deciding how to use it, we can have recognition of brain activity of
many collaborating users involved in the same task. Maybe this multi-brain com-
puter interfacing can lead to more reliable decisions and certainly it can lead to new
and interesting applications of BCI.

Both for traditional BCI and multi-brain BCI it is useful to distinguish between
active and passive BCI. Active BCI requires real-time or near real-time BCI. There
is voluntary control of brain activity, meant to control an application. In a passive
BCI situation the brain activity of a user is monitored. The user is not necessarily
aware of this monitoring and does not attempt to steer it. This information can be
used to adapt the environment, but not necessarily in real-time.
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12.1.1 Organization of this Chapter

Taking into account these observations, in this chapter we discuss and survey
current applications and ideas on multi-brain-computer interfaces, with the aim of
using these ideas in future multi-brain BCI games and other future applications. We
start in Sect. 12.2 by looking at early multi-brain applications, in particular
‘applications’ and ideas pursued by artists. They were among the first designers of
BCI real-time interaction technology and their applications required the measure-
ment of brain activity of interacting participants or the collecting of brain activity of
audience members in order to have the (multimedia) environment and audience
members react and interact. Other non-artistic applications involving EEG
recordings of several users at the same time followed for example to measure
audience appreciation of events or products or to or measure and analyze
involvement and performance in collective tasks, either for real-time or off-line
purposes. Section 12.3 is about two important characteristics of games: competition
and collaboration. We look at existing multi-brain BCI applications with these two
characteristics in mind. Section 12.4 provides an inventory of multi-brain BCI
games from the point of view of numbers of participating collaborating and com-
peting (teams) of gamers. In Sect. 12.5 we present a table in which we summarize
characteristics of existing multi-brain applications with the observations of
Sect. 12.4 (competition and collaboration) and 12.5 (users and teams) in mind.
Finally, in Sects. 12.6 and 12.7, we have a discussion, have some observations on
future applications and present some conclusions.

12.2 Brain Activity Measurements from Multiple Brains

Clearly, gamers use their brains to compete and to collaborate, hence, whenever more
than one player is involved in a game we can talk about multi-brain games. But, of
course, without explicit measuring of their brain activity it is better to speak of multi-
user or multi-party games. Before looking more closely to what we call multi-brain
games it is useful to have some remarks aboutmulti-brain BCI applications in general.
That is, applications where BCI is used in the context of information extracted from
multiple brains. In Sect. 12.2.1 we review early artistic multi-brain BCI applications.
Section 12.2.2 has some observations on useful, useful rather than playful, multi-brain
BCI applications. Both sections introduce ideas and developments that help to
introduce multi-brain BCI games in forthcoming sections of this chapter.

12.2.1 Early Multi-brain BCI Applications

Interestingly, artistic BCI applications date older than assistive BCIs. Consciously
producing alpha states and monitoring them by EEGs was first described in
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Kamiya’s influential paper in Psychology Today [15]. Five years later Jacques
Vidal, in another seminal paper, introducing the concept of ‘brain-computer
interfacing’, asked how to put brain signals to work “… in man-computer com-
munication or for the purpose of controlling such external apparatus as prosthetic
devices or spaceships …” [41]. Kamiya’s references to Zen and LSD may have
sparked interest, but even before these publications we saw composers and musi-
cians such as Alvin Lucier, Pierre Henry, Richard Teitelbaum, John Cage, and
David Rosenboom show interest, experiment, compose and perform using brain
signals. In the early seventies of the previous century Nina Sobell designed a
brainwave drawing game where participants had to synchronize their alpha activity
in a Lissajous visualization of their joint brain activity [36].

Many of these early artistic experiments are described in “Biofeedback and the
Arts” (ed Rosenboom [35]. In a 1972 TV show David Rosenboom performed with
John Lennon and Yoko Ono in a brainwave controlled interactive music perfor-
mance. Sonification, visualization and modifying otherwise produced multimedia
received attention. But there were other applications. One of them, ‘Alpha Garden’,
designed by Jacqueline Humbert in 1973, had two persons control the flow of water
through a garden hose and sprinkler system by synchronizing their alpha activity.
Another one, also designed by Humbert in 1974, was ‘Brainwave Etch-a-Sketch’.
Here, two participants had to control their alpha waves, where one participant could
move a dot on an oscilloscope along the x-axis, and the other participant could
move the dot along the y-axis. In this way they could cooperate to produce a
drawing on the screen. In another performance experiment (‘Music from Brains in
Fours’) Rosenboom had brain activity of four musicians integrated with information
about body temperature and galvanic skin response in order to provide input to a
performance.

In these applications we see audio or visual representation of brain activity and
the control of these representations. But also the voluntary or involuntary control or
modification by brain activity of multimedia not directly produced from brain
activity. And we see applications where synchrony between the brain activities of
users guides such applications. It should be noted that in these early applications of
multi-brain activity the possibility to analyze brain signals or to (machine) learn
from previous interactions was extremely poor. That changed in later years.

Employing computers for artistic BCI applications required cooperation between
artists and researchers in computer science, human-computer interaction, neuro-
science and brain-computer interfacing. In the period 1975–2000 there are few
interesting artistic applications of BCI, let alone multi-brain applications. In this
period each of these areas had its own problems and challenges and they mainly
focused on more efficient problem solving, rather than on providing users with
artistic, emotional or entertaining experiences. This has changed considerably in our
21st Century. Interest in efficient problem solving, efficient searching, efficient
access to information and access to (mediated) communication is of course still
there. But now we can conclude that this technology is already available, not only
to support our home and professional activities, but also our activities related to
sports, learning, entertainment, and arts. That is, applications that become possible
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through advanced and efficient computer processing, but where this efficiency is
used to offer the user the possibility to have fun, become entertained or relaxed,
rehabilitate, or learn.

12.2.2 Current Multi-brain BCI Research and Applications

There are various kinds of applications where it is useful to know how people
experience a certain event or product. We can have questionnaires, we can look at
facial expressions and we can measure (neuro-) physiological characteristics of the
potential users. The latter may yield information that is more reliable than that can
be obtained by asking or observing participants in an experiment. For example,
brain activity from multiple persons can be measured and analyzed for neuromar-
keting purposes. This can be done on an individual basis and there is no need to use
the results of the analysis in real-time, that is, no feedback to the user is necessary in
real-time. In neurocinematics [13] similarities in spatiotemporal responses across
movie viewers are studied. Here, future applications may require real-time pro-
cessing of such brain activity in order to have collective or individual decisions
about the continuation of a movie while watching.

But, if we remain more closely to current BCI research activity, there is certainly
more research in which multi-brain activity is investigated and where the immediate
goal is not yet real-time applications, but where real-time applications, also in the
context of games, can be foreseen or appear already in prototype applications.
However, mostly, at this moment in this research no active BCI control by users is
present. There is, for example, measuring and analyzing of brain activity of persons
engaged in the same task. It is investigated how this engagement shows in their
brain activity. But there can be an added aim to learn from this in order to support
and improve this joint activity. This can then be done off-line, taking care of better
conditions for future joint activity. And one step further, doing this analysis and
interpreting the information in real-time, that is, when the joint activity takes place,
and then using this information to support and guide the users in their activity.

Whenever there is joint activity, the assumption is that there is some activity
synchrony visible in the brain activity of the participants. Clearly, a conversation is
a joint activity and coordination and nonverbal synchrony, including mimicking, is
a well-known phenomenon. As reported in [37], there is also a spatiotemporal
coupling of the speaker’s and the listener’s brain activity. In that particular research
fMRI is used to record brain activity, hence, rather far away from the multi-brain
game applications we have in mind. Nevertheless, the results support our idea that
brain activity from different persons can be measured, analyzed and integrated in
order to be used as a source of information to guide behavior and to control or adapt
an environment in which the persons perform their activity. As is the case in other
research on speaker-listener synchrony, the tighter the coupling between activities,
the more successful is the joint task. This neural coupling between two interacting
subjects is studied at many places, both with fMRI and EEG, for example at New
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York University, in cooperation with the artist Marina Abramovic [5] and at the
German Max Planck Institute (Müller and Lindenberger [25]. As a possible
application of such research, can we off-line improve the conditions that lead to
more synchrony in an interaction? How do we model a social robot or an embodied
agent (avatar) such that its awareness of this synchrony can be used to have real-
time adaptation of behavior?

There are already many examples of artistic applications where at least one of
the cooperating participants contributes by giving the system access to his or her
brain signals. In the previous section we looked at some of these early (multi-brain)
research and artistic activities. Nowadays, more than 40 years later, we have cheap
and commercially available headsets. Moreover, we have the possibility to embed
(multi-brain) BCI in multimedia environments that offer audio, visualizations,
haptics, and animations without extreme efforts or costs. Also, there is growing
interest in computer generated entertainment, meaning the BCI and human-com-
puter interaction researchers turn to artistic and entertainment applications and
artists find it more easy to use this available technology to express their ideas.
We mention a few examples.

In [23] ‘Let me Listen to your Brain’ is introduced. It is a project on collabo-
rative music composition where EEG is used to get information about the affective
state of one of the collaborators. Musical phrase selection while composing music,
but now with possibly two users that control different aspect of a composition using
their brain signals is discussed in [6]. In [21] we have four musicians (a violinist, a
flautist, a cellist, and a ‘brainist’), where during the performance the brainist
delivers drone sounds by re-experiencing emotions (classified by EEG) that has
been associated with the sounds during a training session. In [19] the MoodMixer
system is introduced. Here we have two participants, each wearing an EEG headset
with which relaxation and sustained attention is measured. This information is used
to position each of them on a two-dimensional audiovisual musical interface, the
x-axis for relaxation, the y-axis for attention (see also Fig. 12.1). Changes in the

Fig. 12.1 MoodMixer
(Image courtesy Grace Leslie
and Tim Mullen, University
of California, San Diego)

12 Competing and Collaborating Brains … 319



cognitive states of the participants lead to changes in the audiovisual landscape.
Participants can try to learn to control these cognitive states and then define little
games and they can cooperate to achieve certain effects or composition lines. Sound
samples and visual flashes can also be triggered by eye blinks. In principle, more
participants, also wearing EEG headsets, can be added to the system.

More players that actively contribute to a music performance through their brain
control are present in the Multimodal Brain Orchestra (MBO) presented in [18].
This orchestra has four performers and a conductor. Two of the four performers can
use P300 to trigger emotionally classified discrete sound events. Two other per-
formers use SSVEP to modulate articulation and accentuation of an earlier recorded
MIDI sequence. The conductor uses a WII-mote as a baton and can decide when the
sound events have to be triggered and he can decide about tempo modulations.
Hence, evoked brain activity from different performers is directed by the conductor.
There is feedback from the music and visualization.

Using knowledge about a collective mental state of an audience may lead to
audience participation in entertainment and artistic events. As an example we
mention DECONcert, performed in 2003 at the University of Toronto, where 48
people’s EEG signals were used to affect a computationally controlled soundscape
[22]. Hence, we can think of BCI as an audience participation technology. Other
performance arts events in which multi-brain BCI was used are also reported in this
paper, including a communal bathing experience in which water waves, sound
waves and brain waves were integrated (Fig. 12.2).

Another performance arts example is [8]. Off-the-shelf BCI headsets for mobile
users are used to measure audience response to live events and performances. This
information can be used to adapt performances to changes in response. This can be

Fig. 12.2 Water waves,
sound waves, and brain waves
(Reprinted from [22]
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done autonomously, but such information can also be provided to, for example, a
DJ or VJ who then adapts his or her performance to the audience response [9].

We can focus a little more on multi-party or team activity. What kind of brain
activity can we detect and integrate when we have a team of ‘players’ (not nec-
essarily players in a game, but, more generally, persons involved in a joint activity).
Can we get information about progress (successful collaboration) and use this
information to improve conditions for such team activity? And, as a next step, based
on real-time analysis and integration, being able to support and improve the joint
activity? For example, during a meeting, can we decide and make group members
aware that there is a convergence or divergence of opinions? In a multi-user game
with participating teams, and when obtained real-time, such information can cer-
tainly help to win the game. Clearly, game, entertainment and artistic environments
can be designed in such a way that each kind of combination of one and more
persons, individual and joint voluntary control of brain activity and other, not
consciously produced brain activity, can be used to play a role during game play.

Chris Berka and her colleagues [38] have a research program that aims at
studying team cognition using BCI. They use wireless EEG headsets to measure
attention, engagement and mental workload of the members of a team that has to
play a serious game: a submarine piloting and navigation simulation. The aim is
to achieve measures of the quality of the team performance and use these measures
to adapt and rearrange tasks and responsibilities for more optimal team perfor-
mance. At this moment this adaptation and rearrangement is not done in real-time.
In a multi-user entertainment game such information can also be used to remove
team members or to rearrange tasks among team members for a next game session.
But obviously, real-time adaptation would be much more useful.

In this example (Stevens [38], teammembers do notmanipulate their brain activity.
Brain activity is monitored; hence we have a passive multi-brain BCI application.
Rather than monitoring one individual engaged in a task, a group of collaborating
persons (the team) is monitored with the aim to achieve and maintain ‘neurophysio-
logic synchrony’ (a positive team rhythm).While in this case the team effort concerns
a serious game (a simulation of a critical real-world situation), the application could as
well be a multiplayer entertainment game with competing teams and where optimal
team performance is a goal as well. Being able to improve, in real time, decision
processes bymeasuring and aggregating activity of all the brains of people involved in
the decision making, as can be the case in multi-user games that allow the forming of
teams,makes it also possible to issue commands to a game as the result of volatile team
brain activity. We will return to this in later sections of this chapter.

12.3 Competition and Collaboration Using BCI

Competition and collaboration are important characteristics of games. For that
reason we now look at research in which BCI is studied from a competition and
collaboration point of view. Other characteristics of games and how they relate to
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BCI can be found in [11]. A viewpoint in the examples that we discuss in this
section is that at least two players are involved. And that at least one of them has his
or her brain activity measured and it plays a role in the game. This can be to control
the game (active BCI) or to adapt the game (scenario, levels, and environment) to
the user. In the latter case the user does not consider these game changes as
unnatural and is not necessarily aware (and hence does not try to influence it) that
game changes are caused by his or her brain activity.

As a side note, notice that we consider these issues in the context of human-
computer interaction. Hence, one of the partners involved in a game may as well be
an artificial agent (physically or virtually embodied agent, e.g., a social robot or a
virtual receptionist) or the environment or a device that acts and is supposed to
interact in a humanlike way. As an example we can mention the study of [40] where
a humanlike robot teacher has access to the brain activity (attention/level of
engagement) of a student and adapts his behavior to this activity by raising his
voice or have more expressive gestures. In a competitive game environment
knowledge about brain activity of a human opponent may give an unfair advantage
to such an artificial agent. But that is also the case in a competitive game where a
human player has access to the (interpretation of) brain signals of a competitor
without having his own brain activity being exposed.

Obviously, when more than one person is involved in a BCI game, the social
setting will have impact. Are players co-located or distributed? Is there an audi-
ence? What does the audience see and is there interaction between audience and
players? In [29] the aim of the research was to investigate the use of BCI in a social
setting (a small group of friends or relatives) and in particular the presence and the
role of bodily actions of one of the group members playing a simple commercial
BCI game while others are watching. In this game the BCI control is obtained from
brain activity related to relaxation and concentration. Players used bodily actions
(gestures, gaze, and facial expressions) to achieve a desired mental state. But they
also used bodily actions to indicate their thoughts to the spectators in the group.

Interactions between co-located BCI gamers have been studied in [12]. We
designed a game for research purposes: Mind the Sheep! (MTS!). It can be
implemented as a single-player game, a cooperative multi-player game and,
although we didn’t experiment with that, a competitive multiplayer game. More-
over, it allows both BCI and non-BCI play for players. In our study we introduced a
two-player cooperative version of this game to study social interaction between
players. Both co-located players wear an EEG cap. The game visualization consists
of a 2D map that contains simple representations of a meadow, a sheep pen, dogs
and sheep. Players select and move dogs around to herd and eventually fence the
sheep in. A dog can be selected with BCI (SSVEP evocation). The players can
cooperate through gestures (see Fig. 12.3) and speech to develop and execute a joint
strategy. But of course, they see also at the screens what actions the other player
takes. There is no integration of brain signals. If one player stops, the other can
continue but may take more time to finish the task.

It is more usual to have two-player games where the players compete, each player
volitionally using his or her brain activity to compete. This competition point of view,
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where only BCI as input modality to a game is used, can be illustrated with two more
examples from earlier research. Consider a BCI version of the well-known Pong
game, a virtual tennis game that can be played by two gamers that control their bats
(up and down) to hit a tennis ball back to their opponent. Motor imagery (imagine
hand movements) has been used to implement a BCI version of this game [16]. That
is, individual motor imagery controls the bats, but there is no processing that looks at
—or compares—the brain activities of the individual players.

This is different in what was probably the first competitive BCI game, Brainball
(Hjelm et al. [14]. In this game we have two players competing. They are expected
to compete by relaxing and their performance is measured by EEG. The player who
is the best in relaxing wins. The game is made more interesting by visualization of
the players’ performances that control a ball moving on a table between the two
players, seated at opposite ends of the table. This visualisation has impact on their
performance and makes the game also attractive for an audience that can decide to
support or disturb relaxation of a player. Clearly we need real-time BCI measure-
ment and control of this rolling ball. Brain activity of the players is compared and
the difference determines the direction of the ball (moving into the direction of the
player who is less relaxed). Hence, this is a different kind of competition, from the
point of view of processing brain activity, than in the BrainPong example.

There are of course more examples where players manipulate their brain activity
in order to play a particular BCI game. Our interest is in games where players have
to compete or collaborate to play a certain game using brain activity. For example,
in a two-player game players have to relax to issue a command, for example, to fire
a gun at their opponent in a ‘Mexican Stand-off. But certainly, being able to look at
and experience the performance of their opponent, a gamer can try to increase his or
her performance by comparing it with the performance of the opponent. Depending
on the visualization or other information communicated to the gamers, such a stand-
off game can be compared with a relaxation-based BrainPong game.

Very interesting and certainly a nice example of a multi-brain game is
“BrainArena” [3]. It very much illustrates, in a simple setting, some of the ideas

Fig. 12.3 Two gamers
cooperating while playing
Mind the Sheep!
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mentioned above. It is a simple football game with a ball and goalposts displayed
on a screen in front of the two players. There exist two versions of the game, a
collaborative and a competitive one. The players wear EEG caps and use motor
imagery (imaging left or right hand movement) to get the ball rolling in the
direction of the goalposts. In the competitive version their actions are opposed and
the player with the best performance wins, in the collaborative version the brain
activities are merged and players steer the ball in the desired direction. Hence, in the
competitive version it can be seen as a motor imagery version of the earlier men-
tioned BrainBall game. It can also be compared with a motor imagery version of
BrainPong, but in that case each player has its own object (a bat) to control, while in
BrainArena they compete to control an object (the ball).

Less obvious is a cooperative two-player game where one player’s brain activity
is used to support the second gamer in his or her task. This second gamer does not
necessarily use BCI. In [32] the authors look at games where players have different
roles. One player is physically active while a second player uses his or her mastery
of brain activity to provide favorable conditions for the performance of the first
player. As mentioned in that paper, new games can be designed where a player’s
(traditional) game controller input can be modulated by collaborating BCI input, or
where game activity is modulated by joint authority over game control input.
Clearly, this includes a situation where brain activity of both players is measured
and used in the collaborative control of a game. But it also allows games where
there is competitive control over a game object. The authors introduce a Multi-User
Video Environment (MUVE) that has been designed with both cooperation and
competition in mind. Brain activity of one or more players can be used to disturb
the physical control input of an opponent or opponents (or the other way around)
and competition can be based on BCI input only. In Fig. 12.4 this work is illustrated
with a FPS (First Person Shooter) game, where one player is using a Wii Zapper
and brain activity of the second gamer controls the steadiness of the crosshairs.

Fig. 12.4 Brain support from
one player for the player
using the Wii Zapper in a FPS
(Image courtesy Chad
Stevens, NASA Langley
Research Center)
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Maybe even more interesting is a situation where we translate EEG recordings of
brain signals from one gamer to a brain stimulating pulse for a collaborating (or
maybe even a competing) gamer. A pilot study on this brain-to-brain communi-
cation is presented in [33]. In this study one gamer (“the Sender”) uses motor
imagery (right hand movement) when a canon has to be fired to destroy a rocket.
However, this action is delegated to a second gamer (“the Receiver”). The brain
signals of the sender are detected and when recognized as motor imagery, over the
internet transmitted and translated to a transcranial magnetic stimulation (TMS)
pulse to the left motor brain region of the Receiver. This causes an up-down
movement if the hand of the Receiver which results in pressing the “fire” key on the
keyboard. In Fig. 12.5 we have illustrated the Sender-Receiver communication.

EEG monitoring of brain activity in order to make decisions about brain stim-
ulation is of course not new. In fact, commercial hardware is entering the market
where wireless recording and stimulation are integrated in the same headset. This
offers the possibility that multiple players have access to each other’s brains, not
only to detect and interpret brain activity, but also to stimulate brain regions in order
to get certain tasks done or to prevent certain tasks to be done.

In Table 12.1 we have collected the various ways gamers can use BCI. Clearly,
brain stimulation as discussed above can be an added parameter to these possi-
bilities. In Sect. 12.5 (Table 12.2) we have more examples of BCI game and team
activity situations that are illustrated by one or more of the figures in Table 12.1.

Fig. 12.5 Brain-to-brain communication for games (Image courtesy of R. P. N. Rao and A.
Stocco, University of Washington)

12 Competing and Collaborating Brains … 325



12.4 More About Multi-brain Games

We now have seen various possibilities for BCI input to games where players
compete or collaborate. Usually this concerns two players, but suggestions that
involve generalizations to more players are sometimes given. Moreover, the social
setting of a game and associated social interactions emerged as an interesting
research issue.

Interestingly, in what appears to be the oldest BCI game (BrainBall), there is a
volitional contest by both players to control the same object in the game. In the
other examples players use their brain activity to perform their own task in a
collaborative or competitive game (MTS!, BrainPong), or they try to influence (in a
collaborative or in a competitive way) the performance of the other player (MUVE).
More subtleties in these distinctions can be introduced, e.g. by looking at dimen-
sions such as social interaction and audience involvement and the role of passive

Table 12.1 Various ways of competing and collaborating with and without BCI caps

Two (or more) players collaborating in a
cooperative game. No BCI input

Two (or more) players, collaborating in a
cooperative game. One player uses BCI

Two (or more) players, collaborating in a
cooperative game. Both players use BCI

Two (or more) players, competing in a
competitive game. No BCI input

Two (or more) players, competing in a
competitive game. One player uses BCI

Two (or more) players, competing in a
competitive game. Both players use BCI

Online collaboration using BCI Two competing teams using BCI: blue team
(left) versus red team (right)
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Table 12.2 A survey of multi-brain games and multi-brain team activities

Game or application Description Competition and cooperation

BrainBall (Hjelm et al. [14].
Two players, sitting at
opposite ends of a table. On
the table is a steel ball that
can roll along a magnetic
strip on the table

The ball rolls away from the
player who is most relaxed.
Or, the other way around, to
the player who is most
stressed. The brain activity of
the two players is also visu-
alized on a screen. Often
there is a noisy audience

In the competitive mode
players compete in relaxa-
tion. A player loses when the
ball reaches his table edge. In
the cooperative mode the
players keep the ball in the
center or keep it moving
from one edge to the other

BrainPong [16].Two players.
Pong is a virtual tennis game
where key-board keys (up/
down) are used to move a
bat. A simple 2D virtual
environment, displaying the
bats of the two players and
the ball moving between
them is required

A player has to move a bat
upwards or downwards in
order to return a ball hit by
his opponent. This has been
done using different BCI
paradigms: measurement of
stress and relaxation, motor
imagery, evoked potentials
and ERP’s

The game is competitive and
turn-taking. No fusion or
comparison of brain activity.
Players can anticipate actions
and make decisions based on
this anticipation. The game
has been played in noisy
environments

BCI Connect Four [20]. In
the traditional ‘Connect
Four’ game two players take
turns in choosing columns in
a 6 (rows) to 7 (columns)
matrix where to drop coins.
The players’ aims are to get 4
own coins connected, before
the other does

The ‘odd-ball’ paradigm
using visual flashing of the
columns is used to have
gamers choose a particular
column in the matrix. Nine
EEG sensors are used in the
centroparietal and occipital
regions

This is a competitive game.
During a turn an opponent
can also try to interfere with
the brain activity of the other
player by trying to disrupt a
choice. There is simulta-
neous use of BCI and fusion
(comparison) of brain activ-
ity to decide a winner

BrainArena [3]. Two goals
are displayed on a screen; a
ball is displayed between
them. Players have to steer
the ball to one of the goals

Motor imagery (movement
of the hands) has to be used
to steer the ball in a goal.
Eight EEG channels located
around the right and left
motor cortices. Obviously,
such a game can be played in
a solo, collaborative and
competitive mode

In the collaborative mode the
players want to score in the
same goal; their brain activ-
ity is summed. In the com-
petitive mode players have to
score in the opposite goals,
hence, the strength of their
brain activity is compared to
determine the winner

MUVE (Multi-User Virtual
Environment, introduced in
[32], allows the implementa-
tion of multi-user games
where physiological infor-
mation is used to modulate a
player’s physical activity

MUVE has been shown to
provide a gamer’s physio-
logical information (includ-
ing EEG information) to a
first person shooter game in
order to increase crosshairs
steadiness of a Wii Zapper

Relaxing or concentrating
can support a main player’s
performance (cooperative
mode) or decrease his per-
formance (competitive
mode)

Space Navigation [31]. Users
are asked to navigate a
spacecraft (in a simulator)
and pass a planet as close as
possible

Spaceship control is done
using a ring around the
spaceship. 8 Positions are
distinguished, representing
directions in which to steer.
Circles in turn flash allowing
a P300 target choice

Two players cooperate in
joint pointer control. Early
fusion (averaging of the ERP
input) and late fusion (aver-
aging the individual pointer
movement decisions) are
considered

(continued)
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BCI in these games. And, of course, we need to look at the consequences of having
more than (just) two players involved in multi-party and multi-brain games.

When looking at a possible definition of multibrain computer interfacing it now
should be clear that it is unwise to be restrictive. Clearly, two or more persons need
to be involved. Brain activities of two or more persons have to be integrated in the
application. But, not necessarily at the same time and not necessarily in a syn-
chronous way. In traditional multimodal interaction research we have one person
interacting with an application using different modalities. The modalities can
complement each other and fusion of the different modalities helps to solve

Table 12.2 (continued)

Game or application Description Competition and cooperation

MTS! [12] is a video game
that allows two co-located
players—using multi-modal
input—to command dogs to
certain positions on a virtual
meadow in order to herd
sheep inside a fence

SSVEP is used to choose one
of the dogs that has to chase
the moving sheep. There is a
trade-off between being cer-
tain that SSVEP is successful
and being able to start chas-
ing the sheep

Depending on the version
gamers can collaborate using
various combinations of
input modalities, including
BCI. There is no fusion of
their modalities, but they see
each other’s actions

Assess the quality of the
performance of a submarine
piloting and navigation team.
Rearrange team or tasks
when necessary [38]

EEG monitoring of engage-
ment, workload and alertness
using 9-channel wireless
headsets

Team members can have
different tasks. Speech inter-
action between team
members

Online collaboration in a
perceptual decision task [7]

On-line collaboration of a
group of 20 subjects to dis-
tinguish, using ERPs, car and
face images

No interaction between sub-
jects. Fusion is done at a
decision level using voting
procedures

Collaboration in a movement
planning task [42]. Decide
about movement and plan a
visually guided right-hand
reaching task

Group of 20 subjects. Three
different methods for fusing
EEG information: ERP
averaging, feature concate-
nating, and voting

No interaction between sub-
jects. In this case the voting
method (fusion on decision
level) turned out to be
optimal

Online collaborative decision
making in a visual target
decision task (Yuan et al.
[44])

Groups of 6 participants.
Decide between face images
(Go tasks) and car images
(NoGo tasks). Single-trial
EEG-based decision making
by averaging ERPs

No interaction between sub-
jects. Experiments suggest
that collaborative BCI can
accelerate reliable decision
making in real time

MultiMind [39]. Aggregate
biometric information from a
number of individuals for
joint decision making for
(potential) security-related
applications

Two subjects wearing Emo-
tiv Epoc headsets. They
watch a sequence of slides
with humorous content and
their emotional response is
fused to obtain a collected
assessment of the presented
information

No interaction between sub-
jects. Although the approach
is called multibrain signal
fusion, it seems that fuzzy
logic is used to fuse infor-
mation about the subjects’
facial expressions collected
by the headsets
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ambiguities and can lead to more robustness. Usually three levels of fusion are
distinguished, the data level, the feature level and the decision level. Fusion is
meant to make the interaction effort stronger, to make clearer what is intended by an
individual user.

We can also speak of fusion at different levels in the case of a cooperative game.
For example brain activity of two or more players can be combined to have them
make a particular decision in a game or to have them lift a spaceship in a virtual
game environment, a task that would have been much more difficult if only brain
activity of one player could be used. This is not some peculiar property of the brain
activity modality. Lifting hand and arm gestures, facial expressions, or gaze
behavior of two or more gamers could be implemented to have the same result. Or,
any combination of different modalities that are used by different persons in a joint
effort.

In the case of brain activity, comparable brain activity seems to be the most
obvious first choice for data level fusion. But that may change in the future when
we learn more about dependencies between different BCI paradigms. In a coop-
erative game situation fusion at the level of decision making can mean making a
joint decision or doing a joint activity, but it can also mean a division of labor
where players take responsibility for subtasks that help in reaching their joint goal.

Also in a competitive game where two or more persons are involved we can talk
about fusion of information coming from different modalities and coming from
different participants. Again, for the sake of discussion, let us focus on the brain
activity modality. When we have competing players, rather than ‘adding’ infor-
mation, on whatever level, we let the system (interface, game) compare (‘subtract’)
information and make decisions that benefit the ‘winner’ or ‘winners’ who have
outperformed with their joint brain activity the losers. Deciding when and how a
team of BCI gamers has outperformed another team for deciding about or doing a
particular activity can again be done at the data, feature and decision level. How-
ever, it should be mentioned that at each level different information is available to
guide decisions. As an example, at the decision level we can use common sense and
domain knowledge and we know about methods from artificial intelligence research
that help us to represent and to reason about such knowledge. At every level of
fusion, methods are available that take into account level context.

All these observations make it more difficult to get closer to a definition of
multibrain games. Or, less difficult, to a decision that we should accept that there
cannot be one definition and that multibrain games are just games in which mea-
sured brain activity of two (or more) gamers can be used to control commands or
will be used to adapt a game to its users. Fusion of modalities of one user is an
issue, but also fusion of modality information coming from different users (com-
peting or collaborating) is an issue. There is another issue, when we talk about
fusion, who is taking care of it? In traditional human-computer interaction a multi-
sensor system provides input to computing power and intelligence that makes
decisions. In games, but not only in games, human decision making can also be
used to decide about how to integrate and fuse information, including brain activity

12 Competing and Collaborating Brains … 329



information, coming from different modality sources and from different users and
made available to a human decision maker or (game) team leader. In fact, in the
Multimodal Brain Orchestra (see Sect. 12.2.2) it is the human conductor that makes
decisions about the fusion of the classification results obtained from the EEGs
(SSVEP and P300). In this example there is, if we understand it well, no ‘adding
up’ or otherwise processing of joint activity at the level of brain signals or features
extracted from brain signals.

Having now discussed the different ways brain activity from two or more
sources can be integrated (without claiming completeness), we now look at research
that has been done in the past and that supports our ideas about having multibrain
BCI games in the near future by demonstrating that brain activity of multiple
persons can be used in applications. Some examples, not really aimed at collective
decision making or performing an action through collective brain activity were
already mentioned in Sect. 12.2. We already mentioned team cognition [38] and
audience response and participation using BCI [8, 22].

Game applications of this audience response can be thought of, but even more
interesting is being able to improve, in real time, decision processes by measuring
and aggregating activity of all the brains of people involved in the decision making
process, as might be the case in multi-user games that allow the forming of teams.
Teams allow some kind of ‘collective wisdom’ to make decisions. Real-time
decision making by a team of users rather than an individual user has been
investigated in [7]. In this research twenty users had to make perceptual decisions,
that is, deciding when confronted with a series of pictures whether a particular
picture was a face or a car. Prediction of a decision based on aggregated (ERP)
brain activity turned out to be possible and, compared with an individual user, both
the decision accuracy and decision speed could be improved. Collaborative clas-
sification of visual targets, but now using visually evoked potentials (VEPs) was
also investigated in [43]. Clearly, applying such research results in a multi-player
game context can make those games more interesting to play.

Collaborative brain-computer interfaces have also been studied by Wang and
colleagues [42]. It is investigated how EEG data from twenty users can be used to
predict and decide about the planning of movements. Clearly, as they mention, this
is the kind of information that can be used in a multi-player game that allows the
forming of teams and can have team performance included in the game, rather than
just have input from individual players only.

12.5 Distinguishing Multi-brain Games

In Table 12.2 we have collected the characteristics of many of the games and
systems we discussed above. Some systems not discussed above are also included
in the table [20, 31, 39, 44].

330 A. Nijholt



12.6 Discussion

We discussed the use of BCI as an input modality in a multiparty context and the
various ways brain activity can be integrated in game contexts. We focused on
integrating brain activity from multiple persons. It is clear that many problems
related to BCI in general have to be attacked. It can also be concluded, as we did in
[26], that it nevertheless is possible to design multiparty games in which multi-brain
activity is included, and that it can be done in such a way that it introduces
interesting challenges to the gamers (and the designers), rather than assuming that
no efficient or robust use can be made of this technology. In the context of games,
entertainment and artistic applications robustness and efficiency are not the right
keywords.

We discussed multi-brain applications from the viewpoints of competition and
collaboration. There is a growing number of BCI games where indeed we have
competing and collaborating gamers. The games are simple and although they are
fun to play, until now this is only done in research environments. Moreover, in
these cases BCI is not integrated in a game context where other modalities play an
important role, except for the MTS! game, but in that case the BCIs of the gamers
are not integrated, and the Wii Zapper game, but there only BCI is used for one of
the gamers. But we certainly can expect that in future research more complex multi-
brain games will appear. And adding brain stimulation to the many situations we
already distinguished will increase the possibilities to introduce challenging multi-
brain games enormously.

Also the research and applications that tell us about the fusion of brain activity of
more than two persons, and even from tenths of persons to make group decisions or
adapt the game, a performance or an environment to group preferences or changes
in cognitive state or emotions give us a view of the future where we can have multi-
brain applications in a MMORPG (Massively Multiplayer Online Role-Playing
Game). Many of these games assume gamers to form teams that can compete or
collaborate. Team decisions or team leader’s decisions in a MMORPG can be based
on collective thoughts of a team or a sub team. Obviously, synchrony of thoughts is
a problem here. However, natural game events can trigger joint and synchronized
event related brain activity among team members. The potential role of 3rd party
team communication software such as TeamSpeak should be considered. And
again, perfectness would be unnatural. A ‘synchronized kill’ in the “Ghost Recon,
Future Soldier” game does not have to be perfect. Joint brain and synchronized
brain activity can be triggered because of various artificial stimuli that are designed
in the game. There can be natural moments to take an explicit vote on how to
continue or make an otherwise important decision. But fast decision making based
on merging of brain activities of a large team, accepting that not yet everyone in the
team is ready for it or agrees with the majority, is also natural.

However, such observations should not be confined to a video game situation
with multiple users only. For every video game situation we can find a serious game
situation where trainees have to learn to make decisions and the serious game
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environment should have models that allow predicting, anticipating and processing
different ways of EEG information coming from multiple sources. Serious game
environments train for real applications.

There are lots of context issues that we are aware of or that we are made aware of
when we participate in more traditional interfaces that allow collaborative or—less
common—competitive activities. So we should look at what it means, in a brain-
computer interface situation, what impact it has when we are aware of others’
actions and intentions, how we perceive this awareness, what kind of feedback do
we get on our contribution to a collaborative or competitive activity and what kind
of control do we feel about our possibility to contribute [45].

12.7 Conclusions

In this chapter we surveyed the state-of-the-art of research in applications where the
applications require input from multiple persons and where at least for one person
input from a BCI is obtained. One may think of applications where users compete
or collaborate, but also applications where input collected from different individuals
is processed and made visible or audible in art performances.

This view on the use of BCI raises interesting questions. It is only recently that
in BCI research interest emerged in looking at integrating or making use of different
BCI paradigms in one application for one individual user. The example individual
user used to be a disabled person not being able to communicate or control by using
his or her muscles. However, users without such disabilities can move around
freely, can gesture, can speak and have meaningful facial expressions. These dis-
play information—intended or unconsciously—that can be interpreted and that
complement information obtained from the interpretation of brain signals, or the
other way around, knowing about an interpretation of brain signals can support
other communication modalities. There needs to be a fusion of information at the
level of signals (when possible), features or decisions. Clearly, this requires quite a
different research approach than is usual in traditional BCI research that is focused
on signals coming from a particular region of the brain and that preferably should
not be disturbed by any other brain activity at all.

In this chapter we looked at the situation where the information that is obtained
in the human-computer interface and that is communicated to the application did
come from different persons. The application can have input from users looking at
one particular modality only—for example, for all users there is integration of their
brain signals—or different users provide information to the application that is
coming from different interaction modalities—for example, the physiological
information from one user is used to modulate the BCI command signals from a
second user. Clearly, giving all possible input modalities, combinations of input
modalities, and voluntarily expression and involuntarily releasing of information
through these modalities, it should be clear that more insight need to be acquired
about this fusion of information, whether it is on the signal level (source signals
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associated with different activity modalities), feature level, or decision level.
In addition, from the point of view of applications, we need to experiment with
applications where this fusion is guided by characteristics of the users, the context
and the kinds of applications.
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Chapter 13
Mood Recognition System Using EEG
Signal of Song Induced Activities

Rakesh Deore and Suresh Mehrotra

Abstract Music is referred to as language of emotions.Music induces emotion in the
brain. These emotions are subject not only types of music, but also the sensitivity of
the person subjected to music. Dissimilar cases of songs as relax, patriotism, happi-
ness, romantic or sadness will induce different types of brain activities generating
different EEG signals. EEG signal is applied tomeasure electrical activity of the brain.
These EEG signal contain precious information of the different moods of subject. In
this work, we proposed amood recognition system using EEG signal of Song Induced
activity. The main purpose is to analyze alpha rhythm of EEG signal related to the left
hemisphere, and right hemisphere regions of the brain. We have selected 10 male
subjects in the age group of 20–25. The electrodes placed on the scalp of the subject as
per the International 10–20 standard. Each test was conducted for 25 min, with eye
closed and each subject was asked to concentrate on the given tasks. In this study, we
have created EEG dataset containing data offivemental tasks of ten different subjects.
We determine the alpha rhythms in the left hemisphere aremore predominant over the
right hemisphere for emotions. Thuswe conclude that the left region of the brain gives
more response to the emotions rather than the right region. Here we reduce the EEG
database from brain region to left hemisphere. Further we reduce it to single electrode
as F7 which reside in left region. The database generated in our study may be used to
interface the brain with computer to mood recognition system. This will have wide
varieties of applications in the future. For example, the entertainment industries may
use it for composition of songs as per their effect on the brain. This study also shows
that alpha power frequency carries useful information related to mood recognition.
These features are separated using Linear Discriminate Analysis.
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13.1 Introduction

The Human Computer Interaction (HCI) is media of communication between the
individual user and the computer [39]. There is currently no agreement upon defi-
nition of range of topics which forms the area of HCI. Based on the definition given
by the ACM special Interest group on Computer Human curriculum development it
states that, Human Computer Interaction is a discipline concerned with the design
evaluation and implementation of interactive computing systems for human use in a
social context and with study of major phenomenon surrounding them [13, 40]. The
main objective of HCI is to invent new interfaces of computer and make it more
usable in daily life. For the last few years, it inspired new solutions primarily for the
benefits of user as a human being. One motivation for doing research on HCI is to
influence the design of future systems. This study can have its most significant effect
on future design. It reveals the aspects of human tasks and activities most in need and
discovers efficient ways to provide it. Such research can be vital to synthesis and
invention of computer use. HCI provides the methodology and process for creating
interface, methods for implementing interfaces. It minimizes the barrier of commu-
nication between user and Machine. It develops new interfaces and interaction
techniques. Researchers in HCI are developing new design methodologies and
experimenting with new hardware devices. Brain Computer Interfacing (BCI) is one
of the important area under HCI. It is challenging area of research in which com-
munication to computer system can be performed through thought process. In a 1875,
Richard Caton was the first person who discovers the presence of electrical currents in
the brain. He studied action potentials from the exposed brains of rabbits and mon-
keys [41]. In 1924, a German neuropsychiatric Hans Berger used his ordinary radio
equipment to amplify the brains electrical activity measured on the human scalp. This
was the first Electroencephalogram (EEG) recording of humans. He showed that
weak electric currents generated in the brain can be recorded without opening the
skull, and depicted graphically on a strip of paper [37]. The action that he observed
changes according to the functional status of the brain, such as during sleep, anes-
thesia, lack of oxygen and in particular neural diseases such as in epilepsy. He was
correct in his assertion that brain activity changes in a consistent and recognizable
way when the general situation of the subject changes, as from relaxation to alertness
[9]. Berger was the first to use the word electroencephalogram to describe the brain
electric potentials in humans [5]. He laid the foundations for many of the present
applications for EEG. He was the father of EEG. Now a day Electroencephalogram
(EEG) is the electrical activity of an alternating type. Brain structures generated EEG.
Metal electrodes and conductive media records the EEG signal [32]. EEG measured
directly from the cortical surface using electrodes is the electrocardiogram (ECOG)
while when using a depth probe is electro gram [6]. BCI technology provides a direct
interface between a brain and a computer. In the first international BCI workshop held
in June 1999 in Rensselaerville, New York involving 22 research groups, a formal
definition of the term BCI was set forward [43].
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A brain-computer interface is a communication system that does not depend on
the brains normal output pathways of peripheral nerves and muscles.

In basic terms, a BCI involves monitoring brain activity (via a brain imaging
technology) and detecting characteristic brain pattern alterations that the user
controls in order to communicate (via digital signal processing algorithms) with the
outside world [35, 43]. In a BCI, messages and commands expressed not by muscle
contractions as with conventional communication means, but rather by electro-
physiological signals generated within the brain [2, 9]. Communication through
thought process needs to understand brain functioning. It also involves through
understanding of electrical signals generated in brain due to thought process. The
brain may externally access through monitoring it via electroencephalogram (EEG)
signals. The important task is to understand the thought process through EEG
signals. If one can correlate thought process through EEG signals, it is possible to
monitor thought process through electroencephalogram (EEG) signals. Extensive
research has been carried out in the domain taking different types of controlled
thought process. Number of different researchers built the mood recognition system
using visual stimuli such as facial expression [3, 7, 11] and video clips [22, 25, 31].
Music induces emotion in mind [10]. These emotions are dependent not only types
of music, but also sensitivity of the person subjected to music. Different types of
songs like patriotism, happiness, romantic or sadness will induce different types of
brain activities generating different EEG signals. Features from these EEG signals
may be extracted to identify different types of music. Thus music is powerful
generator of emotions which activates the different brain regions. Based on this
basic principle, it is possible to design a system which offers mood recognition
system.

The remainder of the chapter is organized as follows: Sect. 13.2 describes lit-
erature survey. Section 13.3 explains the basic components of BCI system. Mate-
rials and Methods are given in Sect. 13.4. Section 13.5 describe the EEG data
analysis. In this section we process EEG data of different brain regions. Sec-
tion 13.6 discussed the conclusion of work.

13.2 Literature Survey

Number of different researchers work to associate music and EEG signals to
develop mood recognition system. Ito et al. [18] proposed the EEG analysis method
by using the Fractal Analysis (FA) and the Neural Network (NN). They were used
FA to extract the characteristics data of the EEG. These EEG data characteristics
were estimated using NN. The classification of the EEG pattern were done by
computer simulations. The EEG pattern was classified under four conditions, which
were listening to Rock music, Schmaltzy Japanese ballad music, Healing music,
and Classical music [18]. Huisheng et al. [17] processed the EEG signal and found
the location in brain when a person was enjoying different rhythm music. They
acquired the EEG signal with Phoenix Digital EEG system having 128 channels.
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These signals were compared with the ones before the subjects enjoying the music.
They found Significant differences between these signals [17]. Karthick et al. [21]
were classified the effect of two types of music on the electroencephalogram (EEG)
activity. They were examined, under Indian Carnatic classical and rock music. They
studied about 300 s of EEG data. The analyse EEG data using the detrended
fluctuation analysis (DFA) algorithm, and multiscale entropy (MSE) method. They
found that both methods showed significant difference in the electroencephalogram
of with and without music. They state that MSE method showed higher values of
entropy for both types of music, indicating that the complexity of the electroen-
cephalogram increased with the brain processes music [21]. Ito et al. [19] proposed
a method for detecting the mood using music. They analyzed EEG frequencies
containing significant and immaterial information components. These frequency
combinations were thought to express personal features of EEG activity. In the
proposed method, they calculated the spectrum of these frequency combinations
rates that did not include the noise frequency components. It was evaluated whether
the music had matched the user’s mood through a simple threshold processing.
They were used a genetic algorithm (GA) [19]. Yuan-Pin et al. [44] investigated an
approach to recognize the emotion responses during multimedia presentation using
the electroencephalogram (EEG) signals. The association between EEG signals and
music-induced emotion responses was investigated in three factors, including: (1)
the types of features, (2) the temporal resolutions of features, and (3) the compo-
nents of EEG. The results showed that the spectrum power asymmetry index of
EEG signal was a sensitive marker to reflect the brain activation related to emotion
responses, especially for the low frequency bands of delta, theta and alpha com-
ponents. Besides, the maximum classification accuracy was obtained around suc-
cess rate of 92.73 % by using support vector machine (SVM) based on 60 features
derived from all EEG components with the feature temporal resolution of one
second. As such, it was able to provide key clues to develop EEG-inspired mul-
timedia applications, in which multimedia contents could be offered interactively
[44]. Vijayalakshmi et al. [42] explained the acute central system effects of relax-
ation techniques. They conducted a study of the EEG patterns of 10 subjects who
were given an audio stimulus of Alpha music. The EEG was acquired using BI-
OPAC Student Lab with suitably placed silver/silver chloride electrodes to study
the effects of Alpha music on Alpha and Beta rhythms of the subjects. Research
showed Alpha waves were predominantly observed in healthy relaxed individuals.
Since anxiety and stress were major emotional contents of human beings, the goal
of this experiment was to assess the means of relaxation and concentration using
Alpha music, which influenced the alpha and beta rhythms significantly. For each
subject, three EEG recordings were taken. One before the alpha music stimulus, one
after 6 min of Alpha music and the last towards the end of alpha music. There was
an increase in the maximum amplitudes of Alpha waves either after 6 min or after
12 min of alpha music. However, the maximum amplitude of beta waves showed a
decline of up to 40. Yun-Pin et al. [45] performed the EEG based experiments to
study the ongoing brain activity between emotional states and brain activity. This
study was applied to machine-learning algorithms to categorize EEG dynamics
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according to subject self-reported emotional states during music listening. A
framework was proposed to optimize EEG-based emotion recognition by system-
atically (1) seeking emotion-specific EEG features and (2) exploring the efficacy of
the classifiers. Support vector machine was employed to classify four emotional
states (joy, anger, sadness, and pleasure) and obtained an averaged classification
accuracy of 82.29. As one can see from the extensive work done in classification of
the EEG signals as per mood induced by some external effect. There was no work
done earlier related to effect of Indian music in inducing different types of music.
One of the objectives in our work was to understand EEG signals induced by
different types of music in different subjects. It involves (a) designing experiments
to acquired EEG signals, (b) extracting features from these acquired signals and (c)
classifications of the features as per mood induced by songs.

13.3 Experimental Setup

For the study, 10 subjects were selected. They were explained the purpose of the
experiments. Songs selected were categorized in four groups as per their popular
classification. These songs are listed in Table 13.1. All subjects were familiar with
these songs and were agreed with classification of the songs. Brain signals mea-
sured from 19 electrodes mounted on the scalp. To exclude the possibility of
influence from non central nervous system activity, EMG recorded additionally.
Those channels used to remove noise from EEG signal.

13.3.1 EEG Equipments

The primary EEG recording system consists of electrodes with conductive media,
amplifiers with filters, an analog-to-digital (A/D) converter and a recording device to
store the data. In conjunctionwith the electrode gel electrodes sense the signal from the
scalp surface. Amplifiers bring the Micro volt and Nano volt signals in a range where
they can be digitized accurately. The A/D converter changes signals from analog to
digital form. That can be ultimately stored or viewed on a computer. An electrode is an
electrical conductor used to make contact with a nonmetallic part of a circuit [20].

In the case of EEG, electrodes provide the interface between the skin and the
recording apparatus. It transforms the ionic current on the skin to the electrical
current in the electrode. Conductive electrolyte media ensure a good electrical
contact by lowering the contact impedance at the electrode interface [36]. In the
scalp recorded EEG, the neuronal electrical activity recorded non-invasively using
small metal plate electrodes. Recordings can be made using either reference elec-
trodes or bipolar linkages. The number of the electrodes used may vary from one
study to another study. The voltages, of the order of Micro volts (V), must be
carefully recorded to avoid interference and digitized so that it can be stored and
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viewed on a computer. The amplitude of the recorded potential depends on the
intensity of the electrical source, on its distance from the recording electrodes, its
spatial orientation, and on the electrical properties of the structures between the
source and the recording electrode. The EEG acquisition system is as depicted in
Fig. 13.1. The greatest contributions to the scalp recorded signals result from
potential changes which (a) occur near the recording electrodes, (b) produced by
cortical dipole layers orientated towards the recording electrode at a 90 angle to the
scalp surface, (c) generated in a large area of tissue, and (d) rise and fall at rapid
speed [6] (Fig. 13.2).

Figure 13.3 shows the 10/20 system. This system is an internationally recognized
method for electrode placement. It describes the location of scalp electrodes. The
system based on the relationship between the locations of an electrode and the
underlying area of the cerebral cortex. The Number 10 and 20 refers to the fact that
the distances between adjacent electrodes are either 10. It allows measurement of
potential changes over time in a primary electrical circuit conducting between signal
(active) electrode and reference electrode. An extra third electrode called as the
ground electrode required for getting a differential voltage. An amplifier records this
voltage. It subtracts the active and reference channels from it. The placement of the
ground electrode plays a significant role in the measurement. Typically the forehead

Table 13.1 Mental tasks with their description

Sr. no Mental task Description

1 Relax Subject was asked to lie on bed without any activity

2 Happy Subject listen to the happy mood song such as

1. Koyal Boli Duniya Doli

Singer:-Lata Mangeshkar and Rafi

2. Meri Zindagi Mein Aaye Ho

Singer:-Sonu Nigam and Sunidi Chavvan

3 Sad Subject listen to the sad mood song such as

1. Tanhaai, tanhaai

Singer:-Sonu Nigam

2. Khone Dil Se Wo Mehndi Ratachne Lage

Singer:-Poonam Kumar

4 Romantic Subject listen to the romantic mood song such as

1. Rim Jhim Ke Geet Sawan

Singer:-Lata Mangeshkar and Rafi

2. Ajnabii Mujhko Itna Bataa

Singer:-Lata Mangeshkar

5 National Subject listen to the patriotic mood song such as

1. Mere Desh Kee Dharatee, Sonaa Ugale

Singer:-Mehendra Kapoor,

2. Yahan Yahan Saara Jahan Dekh Liya

Singer:-A.R. Rehman
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(FPz), ear lobe, wrist or leg is the preferred ground location. The EEG recordings can
be divided into two primary categories: reference recordings and scalp-to-scalp
bipolar linkages. In the reference recording, each electrode referred to either a distant
reference electrode, one common electrode on each side of the head or to the
combined activity of two or more electrodes. The reference electrode must be placed
on the parts of the body where the electrical potential remains fairly constant. The
most preferred reference linked ears as it is relative electrical inactivity, easy to use,
and symmetry. The vertex (Cz) is also predominant due to its central location.

Fig. 13.1 EEG acquisition system

Fig. 13.2 An international
10–20 system of electrode
placement
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Reference-free methods represented as a common average reference, weighted
average reference, and source derivation. These methods use the average or the
weighted average of the activity at all electrodes as the reference. This can be carried
out by means of a resistor network or digitally as part of the post - processing
method. These do not suffer the same artifact problems associated with an actual
physical reference. Bipolar recordings are differential measurements made between
successive pairs of electrodes [16, 38]. Bipolar referencing is not commonly used
due to placement issues and a lack of spatial resolution.

13.3.2 Artifacts

Artifacts are undesirable potentials of non-cerebral origin that contaminate the EEG
signals [12]. As they can misinterpret as originating from the brain, there is a need
to reduce or ideally remove them from the EEG recording to facilitate accurate
interpretation. Typical EEG artifacts originate from two sources, technical and
physiological [34].

Technical artifacts are mainly due to line interference, equipment malfunction or
result from poor electrode contact. Incorrect gain, offset or filter settings for the
amplifier will cause clipping, saturation or distortion of the recorded signals. Tech-
nical artifacts can be avoided through proper apparatus set-up, meticulous inspection
of equipment and consistent monitoring. Physiological artifacts arise from a variety of
bodily activities that are either due tomovements, other bioelectrical potentials or skin
resistance fluctuations. The predominant physiological artifacts include (1) Electro
ocular graphic activity (EOG, eye) (2)Scalp recorded electromyography activity (3)
Electrocardiographies activity (ECG, heart). These artifacts are always present to

Fig. 13.3 Sample EEG signal with artifacts
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some extent and are typicallymuchmore prominent on the scalp than themacroscopic
cerebral potentials. This results an undesirable negative signal-to-noise ratio in the
EEG. Physiological artifacts are often involuntary and hence cannot be controlled or
turned off during acquisition. They pose a much greater challenge than technical
artifacts to avoid or remove them. For the purposes of BCI system design, there exist
various EEG signal properties that discriminate brain function. The next section
focuses on one of the EEG signal category as a Rhythmic Brain activity.

13.3.3 Rhythmic Brain Activity

Frequency is one of the most significant criteria for assessing abnormality in clinical
EEG and for understanding functional behavior in cognitive research [34]. With
billions of oscillating communities of neurons as its source, the human EEG
potentials are manifested as periodic unpredictable oscillations with intermittent
bursts of oscillations having spectral peaks in certain observed bands: 0.1–3.5 Hz
(delta, d), 4–7.5 Hz (theta, h), 8–13 Hz (alpha, a), 14–30 Hz (beta, b).

Figure 13.4 illustrates examples of these EEG rhythms. The band range limits
associated with the brain rhythms, particularly beta can be subject to contradiction
and are often further sub-divided into sub-bands that can further distinguish brain
processes [23, 24].

(a) Delta (d) The frequency range of delta brain rhythm is in between 0.1 and 4.
Its normal amplitude is <100 (V). This frequency is dominant in infants during
deep stages of adult sleep and serious organic brain diseases. These frequency
occurs after transaction of the upper brain stem separating the reticular acti-
vating system.

(b) Theta (h) The frequency range for theta is between 8 and 13. Its normal
amplitude in 20–60 (V). They are Rare in EEG of awake adults. These fre-
quencies are dominant during emotional stress in some adults.

(c) Alpha (a) The frequency range of alpha is between 8 and 13. Its normal
amplitude is in 20–60 (V). They are fully present when a subject is mentally
inactive, alert, with eyes closed. Blocked or attenuated by deep sleep, atten-
tion. When a person is alert and their attention is directed to a specific activity,
the alpha waves are replaced by waves of higher frequency and lower
amplitude. Eye opening/closure offers the most effective manipulation.

Fig. 13.4 Examples of an
EEG rhythm
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(d) Beta (b) The frequency range of beta is between 14 and 30. Its normal
amplitude is less than 20 (V). Beta I waves have lower frequencies, which
disappear during mental activity. Beta II waves have higher frequencies,
appear during tension and intense mental activity.

13.3.4 Application of EEG

This section highlights the many clinical and cognitive research applications that
have been established over the years for EEG. In his original papers, Hans Berger
laid the foundations for most of today’s clinical uses for EEG. The greatest
advantage of EEG over other brain imaging technologies is speed and cost.
Complex patterns of neural activity can be recorded with millisecond resolution.

According to Bickford [4] research and clinical applications of the EEG in
humans and animals are to:

• Monitor alertness, coma and brain death.
• Locate areas of damage following head injury.
• Test afferent pathways (by evoked potentials).
• Monitor cognitive engagement (alpha rhythm).
• Produce biofeedback situations, alpha, etc.
• Control anesthesia depth (servo anesthesia).
• Investigate epilepsy and locate seizure origin.
• Test epilepsy drug effects.
• Assist in experimental cortical excision of epileptic focus.
• Monitor human and animal brain development.
• Test drugs for convulsive effects.
• Investigate sleep disorder and physiology.

Though the EEG has a reduced spatial resolution, it has an excellent temporal
resolution of less than a millisecond [15]. It is also relatively inexpensive and
simple to acquire. So it is the only practical non-invasive brain imaging modality
for repeated real-time brain behavioral analysis. For this reason, the remainder of
this thesis will focus on EEG as the input brain imaging modality for HCI design.
The next section explains the anatomical and physiological structure of the brain.

13.3.5 Human Brain

This section explains the anatomical and physiological structure of the brain. It
focuses on how the brain generates electrical activity that can be recorded on the
scalp. In order to understand the generation of electrical current, we must first look
at the fundamental of the brain cell, the neuron.
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13.3.5.1 The Neuron

In the EEG, the potentials are due to the summation of the electrical potentials of
many brain nerve cells, called neurons [15]. The human brain at birth consists of
approximately 100-billion (1011) neurons at an average density of 104 neurons per
cubic mm [36]. The number of neurons decreases with age [33]. Neurons share the
same characteristics and have the same parts as other cells, but the electrochemical
aspect lets them transmit electrical signals and pass messages to each other over
long distances. Neurons have three basic parts. Its parts are illustrated in Fig. 13.5.

Cell Body—This central part has all of the necessary components of the cell,
such as the nucleus (contains DNA), endoplasmic reticulum and ribosome (for
building proteins) and mitochondria (for supplying energy). If the cell body dies,
the neuron dies.

Axon—This long, cable-like projection of the cell carries the electrochemical
message (action potential—AP) along the length of the cell.

Dendrites—These small, branch-like projections of the cell make connections to
other cells and allow communication with other neurons. Dendrites can be located
on one or both ends of the cell.

There exist different types of neurons that can have varying structures depending
on their functionality. Sensory, motor and cortical pyramidal cell neurons are
examples of such different types. The pyramidal neuron cell is the most prevalent
neuron cell in the cerebral cortex, particularly in the cortical peaks and valleys (gyri
and sulci respectively) that are parallel to the scalp. It is the key neuron structure
responsible for the most electrical activity recordable by EEG. It has a long straight
dendrite that extends up perpendicularly towards the surface of the brain. Hence
most neurons in the cerebral cortex have parallel dendrites, which cause a sum-
mation of potentials in one direction. In inter-neuron communication system,
electrical activity consists mostly of Na+, K+, Ca+ and Cl− ions that are pumped
through channels in neuron membranes in the direction governed by the membrane
potential [30]. When neurons activated by means of an electrochemical

Fig. 13.5 General structure
of neuron
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concentration gradient, local current flows produced. The electrical activity of
neurons can be divided into two subsets: action potentials (AP) and postsynaptic
potentials (PSP). If the PSP reaches the threshold conduction level of the post-
synaptic neuron, the neuron fires and an AP initiated. The electrical potentials
generated by low frequency summed inhibitory and excitatory PSPs from pyra-
midal neuron cells. It creates electrical dipoles between the soma and apical den-
drites. These PSPs summate in the cortex and extend to the scalp surface where they
recorded as the EEG. Nerve cell APs have a much smaller potential field distri-
bution and are much shorter in duration than PSPs. APs do not contribute signif-
icantly to either scalp or clinical intracranial EEG recordings. Only large
populations of active neurons can generate electrical activity recordable on the
scalp. Alison et al. [1] lists four prerequisites, which must be met for the activity of
any network of neurons to be visible in an EEG recording:

i. The neurons must generate most of their electrical signals along an axis ori-
ented perpendicular to the scalp.

ii. The neuronal dendrites must be aligned in parallel so that their field potentials
summate to create a signal which detectable at a distance.

iii. The neurons should fire in near synchrony.
iv. The electrical activity produced by each neuron needs to have the same

electrical sign. Thus a majority of neuronal communication remains invisible
to EEG [1].

13.3.6 BCI Framework

This section highlights and explains the functional components involved in an
EEG-based BCI system. The basic components required for implementation are
depicted in Fig. 13.6 and summarized as follows:

The data acquisition stage involves the recording of the raw EEG data from
electrodes at specific locations on the scalp that form the input to the BCI system
[8]. Choices such as the number, position and density of electrodes determine the
input channels. The pre-processing stage of the acquisition process involves
amplification, analog filtering and A/D conversion. The next stage is an optional
information optimization stage that involves improving the signal-to-noise ratio
(SNR) by removing artifacts and reducing information redundancy from the EEG
channels.

Feature extraction is the most important stage to any BCI. It involves the
development of command-dependent discriminatory features of the pre-processed
EEG signals by employing DSP algorithms to identify with command-related
activity. It is this stage that often characterizes the BCI design approach. If robust
features that are resilient to artifacts and the volumetric smearing effect of the
neuronal signals can be extracted, the need for the previous information optimi-
zation stage is reduced. It also reduces the challenge on the classifier to discriminate
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between the features of different controls. It is important to note that the experi-
mental paradigm is as crucial as the feature extraction methods for the consistent
elicitation of physiological brain patterns.

The classification or feature translation stage involves the identification of the
feature patterns to facilitate the categorization of the users commands [43]. It can be
anything from a simple threshold or linear model to a complex nonlinear neural
network based classifier that can be trained to categorize the features according to
the control selection. Most classifiers are based on a probabilistic approach whereby
the class of highest probability is chosen. A nothing class can be included to offer a
no selection instead of a control.

The output of the classification stage is the controlling input of the device. The
device control transforms the classification into a device action. The output of the
classification stage may instruct the device that no appropriate control was classified
and hence to perform no action. Mason [27] proposed a general framework for
brain-computer design in the hope of standardizing terminology and functional
models to facilitate the benchmarking of BCI systems. They proposed the generic
functional model for a BCI system in Fig. 13.7. They stressed the importance of
having such a model to compare the performance of BCI communication tech-
nologies within the research community [27].

Fig. 13.6 Functional components of EEG based BCI systems

Fig. 13.7 Proposed functional model of EEG based BCI systems
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With the explanation of the various components of a BCI system listed above,
the question still remains about how the BCI design process begins and how all
these components interlink. The preliminary stage to any BCI requires an investi-
gation into the paradigm and the brain activity which one hopes to generate to offer
distinguishable controls [48]. This requires recording numerous sessions or trials of
data to later examine for distinguishable features. The averaging of trials at the time
or frequency domain is initially carried out in the hope of observing a general
characteristic pattern. The greatest challenge is to see if this characteristic activity
can be elicited on a single-trial basis or over a small segment of continuous EEG
data. The feature extraction methods must be employed to represent EEG charac-
teristics by a number of values that can distinguish the different brain activity and
resulting controls on a single-trial or online basis. Thus a BCI system can be
designed using this human-controlled EEG activity alteration to offer control.

13.3.7 Categorization

This section aims to highlight a number of ways to describe or characterize a BCI
system while at the same time identifying and explaining the various options.

Invasive or Non-invasive BCI: Electric currents produced by synchronizing
synaptic currents within the brain. It can be measured by (list by order of increasing
invasiveness) scalp recorded EEG which uses epidural electrodes or intra cortical
electrodes known as electrocorticography (ECoG). Scalp recorded EEG based BCIs
are most common because they are non-invasive and cheap. Intra cortical electrodes
achieve higher spatial resolution at the expense of spatial coverage and significant
increase in cost and risk. Single neuron cortical activity has been successfully
applied in BCI systems [14, 26]. Aside from the practical issues such as cost,
invasiveness and comfort, the choice of invasive versus non-invasive recordings
depends on the volume of cortical tissue producing useful information, the ability of
the intra cortical electrode to locate the appropriate tissue masses, and on the ability
of the scalp EEG to produce stable, robust, intentional signals that can be controlled
by the user (Figs. 13.8 and 13.9).

Online or Offline BCI: The fundamental aspect to a BCI is that it can be
implemented in real time to facilitate actual direct user control. Offline systems are
for theoretical simulations of an actual BCI system to facilitate exploratory inves-
tigations of the BCI components. This makes it possible to examine, for example,
different electrode positions, pre-processing and feature extraction methods, clas-
sifiers etc. Offline systems quote a predicted or simulated accuracy by employing
unbiased methods for separating training and test data, for example cross-fold
validation. The performance can be compared with a similarly implemented online
BCI without feedback provided that all the recorded EEG Data is used, i.e. no EEG
data are rejected containing EOG or EMG artifacts. As most training data during an
offline investigation has rejected artifact corrupted trials, the performance could be
very different to an actual online real-life implementation where Artifacts and EEG
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inter-trial variability could cause significant feature outliers that would result in
poor control classifications. Online systems require the signal processing compo-
nents of the BCI framework to be done in real-time. Real-time implemented sys-
tems make it possible to provide feedback to the user. As feedback is such an
integral part of a BCI framework, particularly in the operant conditioning approach,
online systems are the only true indicator of a BCI performance (Fig. 13.10).

Universal or Individual: Universal BCIs assume that by gathering EEG data from
multiple users it is possible to find features and a classification function that will be
valid in general for every user. In individual BCI design, the system is tailored to the
individual and the fact that no two individuals are the same both physiologically and
psychologically. Adaptive systems such as the Adaptive Brain Interface project [28,
29] boast the adaptability of the system to the user, time and psychological varia-
tions. A universal BCI design that is too general will have poor performance.

Independent or Dependent: Dependent BCIs rely on upon the ocular activity to
generate a specific EEG pattern, i.e. a visual evoked potential (VEP) associated with
the direction of visual attention [29]. If a person has the use of their eye muscles,
there exist a number of eye-tracking or eye-blinking based methods of

Fig. 13.8 Invasive electrode
placement

Fig. 13.9 NonInvasive
electrode placement
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communication that offer better performance than BCI systems. Independent BCIs
do not require any muscular intervention of any kind to generate the command-
related EEG activity. This approach is more closely linked to the definition of a BCI
system set out in [43].

Paradigm: BCI can be categorized according to what kind of imagery or mental
tasks the users are required to perform in order to generate the command-related
EEG activity. This choice is closely linked with the type of brain activity or neural
mechanism that the BCI designer wishes to exploit. Motor imagery is one of the
most common methods of EEG elicitation that has been used in many BCI. It is
used to generate sensory motor activity. Mental tasks such as arithmetic or spatial
relations have also been used. Visual related tasks have been heavily exploited in
the area of P300 and VEP elucidation. BCIs based on the Operant Conditioning
approach may leave the choice of imagery or mental strategy up to the user.

13.4 Materials and Methodology

Music induces emotion in mind. These emotions are dependent not only kinds of
music, but also sensitivity of the person subjected to music. However, songs may be
classified as per their overall effect on the mind. For this study, we used the

Fig. 13.10 Online BCI system
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classification based on the basis of songs appeal with respect to patriotism, hap-
piness, romantic or sadness. The Table 13.1 gives names of popular Indian songs as
per their general classification as considered in the work. Understanding of induced
brain signals due to hearing of music will be essential information for training
computers to identify different types of music.

13.4.1 Subject Selection

We have selected 10 male subjects in the age group of 20–25. The subjects were
found to be healthy without any mental disorder. They did not have any commu-
nication problem. Also, they had healthy vision. All Subjects were instructed to sit
comfortably on an armchair in front of the screen in the research lab.

The lab electromagnetically was shielded to minimize the effects of noise.
Figure 13.11 shows an example of acquisition of EEG signal.

Fig. 13.11 An example of acquisition of EEG signals

Fig. 13.12 An overview of proposed offline BCI system for mood recognition
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13.4.2 Procedure

All subjects were educated about objective of the experiments. They were told that
this experiment had been designed to be used for BCI as mood recognition system.
In this study, we have created EEG dataset containing data of five mental tasks of
ten different subjects. The electrodes placed on the scalp of the subject as per the
International 10–20 standard. Each test was conducted for 25 min, with eye closed
and each subject was asked to concentrate on these given tasks. For all modes, the
subjects were asked to sit comfortably on a chair along with the headphones. They
were told that it is important to change their mood according to song. Subject were
carefully listen the different types of music in a quite room. Figure 13.12 shows the
proposed model of BCI system for mood recognition.

13.4.3 Apparatus and Recording Procedure

The EEG signals was captured by the commercial available EEG machine, i.e.
RMS (Recorders and Medicare Systems) EEG-32 Super Space machine as shown
in Fig. 13.13. Each acquisition experiment was recorded for 5 min with sampling
rate of 250/s i.e. the sample time between two sample was 4 ms. The other
parameters of the EEG machine were set as follows: low filter: 1 Hz, high filter:
70 Hz, sensitivity: 7 V, number of channels: 17, sweep speed: 30 mm/s and
Montage: BP PARA (R). As mentioned above, the experiment was conducted on
10 subjects. The electrodes were placed on scalp of the subject as per the inter-
national 10–20 standard as given in Fig. 13.2. The data acquisition was done in
each case for 5 min. The different parameters of the EEG machine were set as
follows: low filter 1 Hz, High filter 70 Hz, sensitivity at 7 V, number of channel 19,
sweep speed 30 mm/s, Montage set BPPARA (R) for all the experiments. The EEG
signal has been processed by statistical analysis methods such as Principle Com-
ponent Analysis (PCA) and Linear Discriminate Analysis (LDA).

Fig. 13.13 Photograph of RMS-EEG-32 Super Spec machine
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The Tables 13.2, 13.3, 13.4, 13.5 and 13.6 shows the values of delta (d), Theta
(h), Alpha (a), and Beta (b) frequency power band during relax, sad, happy,
National and Romantic mode respectively. We are interested in different brain
regions so the Electrodes are divided according to the brain region as left hemi-
sphere, right hemisphere and center hemisphere. Here we firstly covert the time
domain data into frequency domain using Fourier transform as shown in Fig. 13.14.

This frequency domain data is divided into four rhythms: 0.1–3.5 Hz (delta, d),
4–7.5 Hz (theta, h), 8–13 Hz (alpha, a), 14–30 Hz (beta, b). Delta wave is asso-
ciated with deep sleep. It is high amplitude and low frequency wave. Theta cor-
responds to sleep and Brain Injury. Alpha represents relaxation and alertness. If the
alpha frequency is less then it indicated the more activity. It is inversely propor-
tional to degree of alertness. Beta rhythm is more active during the problem solving
task. In this study we are concentrating on alpha rhythms. For each rhythm we have
calculated the mean frequency of window size equal to 5 as shown in Fig. 13.15.

Table 13.2 Region wise EEG data of different electrodes in relax mode activity

Electrodes Relax mode data

Left Delta Theta Alpha Beta

FP1 35.61039 3.548158 4.646447 0.525526

F7 2.435526 1.356711 2.459605 0.320921

F3 1.823816 2.045526 2.873289 0.415395

T3 2.969079 1.761447 3.992763 0.478421

C3 2.035263 2.304605 4.400395 0.557632

T5 5.530789 3.101579 6.144342 1.140263

P3 4.788289 2.333026 8.504342 1.171842

O1 5.708026 1.996053 5.090263 0.764737

Right 4.763931

FP2 29.77434 3.099605 4.6725 0.49

F4 3.448816 2.242368 4.026053 0.472368

F8 2.887632 1.617368 2.942763 0.308289

C4 2.086053 1.879605 3.442632 0.441447

T4 4.182763 2.040526 3.880132 0.433158

P4 5.035658 2.487368 7.784474 1.285395

T6 6.584474 2.996447 6.025921 1.030132

O2 7.614605 2.436053 6.310395 0.911842

Center 4.885609

FZ 2.515789 2.175658 3.958684 0.424211

Cz 2.623026 2.334868 3.366053 0.460526

P2 4.233158 2.664868 8.147368 1.0475

5.157368
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13.5 Data Analysis

Table 13.7 denotes the mean values of alpha rhythms in left, right and center
regions of brain for different moods.

As we know that alpha rhythm is inversely proportional to the brain activity that
is if alpha rhythm is more then it indicates the less activity in brain and if it is less
then it indicates the more activity in brain. From table it is cleared that subject has
performed more activity in the brain for Happy and National Song mode as com-
pared to sad and Romantic Song mode. Also the alpha value of National Song mode
is much lesser as compared to alpha value of other moods, so subjects generates
more activity in the brain for National Mode. So we say that the subject is more

Table 13.3 Region wise EEG data of different electrodes in sad mode activity

Electrodes Sad mode data

Left Delta Theta Alpha Beta

FP1 6.848816 2.374474 4.089342 0.470132

F7 2.885395 1.303289 2.219868 0.346316

F3 2.595658 1.481053 2.200263 0.452237

T3 1.996184 1.375921 3.843816 0.538553

C3 2.089737 1.427763 4.206711 0.577895

T5 13.93553 3.692105 4.339079 0.991316

P3 3.6525 1.763289 5.789737 1.073289

o1 8.462237 2.7225 3.890658 0.694211

Right 3.822434

FP2 7.450921 2.843553 4.218816 0.466316

F4 3.712105 2.457237 3.121447 0.556053

F8 3.702105 1.635395 2.934868 0.349737

C4 1.319474 1.287763 4.211184 0.406711

T4 4.313158 1.749605 4.842368 0.469342

P4 3.222368 1.893026 6.302237 1.011711

T6 3.960658 2.219342 4.456974 0.832632

o2 3.171579 2.123947 4.419211 0.860263

Center 4.313388

FZ 2.603947 2.181842 3.619342 0.499605

Cz 2.727632 1.904737 3.773289 0.543026

P2 2.792895 2.393158 7.901447 1.152632

5.098026
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alert National Song Mode. From Fig. 13.16, it is cleared that the emotional intensity
which is inversely proportional to alpha rhythm is more for National mode and
decreased from National to Romantic, Romantic to Happy and Happy to Sad mode.

13.5.1 Region Wise Data Analysis

This section explains the EEG data analysis in left and right hemisphere.
Table 13.8 gives the distance matrix of mean values of alpha rhythms in right

region of brain. From distance matrix it is cleared that sad song mode is closer to
relax song mode and the distance between relax mode and national song mode,
happy mode and romantic mode is more. Also distance between the sad mode and

Table 13.4 Region wise EEG data of different electrodes in Happy mode activity

Electrodes Happy mode data

Left Delta Theta Alpha Beta

FP1 9.942895 1.728026 2.978684 0.480658

F7 2.081711 0.717105 1.438289 0.255

F3 1.463026 1.026842 1.534737 0.337105

T3 1.769474 0.852368 2.636579 0.386711

C3 1.510921 1.089079 3.345132 0.484079

T5 6.889474 1.824474 3.475395 0.79

P3 2.834079 1.278816 5.437632 1.155789

o1 2.947632 1.389211 2.838684 0.710132

Right 2.960641

FP2 10.22132 1.861184 3.273158 0.453289

F4 2.782368 1.491579 2.636711 0.485526

F8 4.684342 1.171711 2.186842 0.320263

C4 1.186184 0.913684 2.592105 0.383947

T4 3.015395 1.131053 3.053947 0.419211

P4 4.705 1.277632 4.578816 1.115132

T6 3.001711 1.667237 3.689737 0.784737

o2 3.151974 1.539342 3.039211 0.745526

Center 3.131316

FZ 2.316842 1.655789 2.643289 0.396974

Cz 2.483289 1.541974 2.266711 0.400526

P2 2.152368 1.694474 5.421316 0.963158

3.443772
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happy mode, romantic mode and National mode is more. Thus we say that the
subject is more relaxed in sad song mode and more alert in national song mode
(Table 13.9).

Table 13.8 gives the distance matrix of mean values of alpha rhythms in left
region of brain. From distance matrix it is cleared that sad song mode is closer to
relax song mode and the distance between relax mode and national song mode is
more. Subject is more relaxed in sad song mode and more alert in national song
mode. This shows that the EEG signal carries useful information related to different
moods of a person. EEG signal contains large data. We can reduce this data by
finding more active region for emotion. Again it is possible to reduce this data by
finding electrode position which is more active. Now we analyse this data according
to different electrode positions in different regions (Figs. 13.17, 13.18, 13.19, 13.20,
13.21, 13.22, 13.23, 13.24, 13.25, 13.26, 13.27, 13.28, 13.29, 13.30 and 13.31).

Table 13.5 Region wise EEG data of different electrodes in national mode activity

Electrodes National mode data

Left Delta Theta Alpha Beta

FP1 12.52684 2.065658 2.268158 0.526711

F7 1.836184 0.887368 1.290526 0.356447

F3 1.803553 1.229474 1.494342 0.418553

T3 2.331053 0.918158 2.456447 0.497237

C3 1.876447 1.110526 2.940395 0.582895

T5 4.679474 1.732368 4.071447 1.028026

P3 4.098684 1.463684 5.681184 1.210658

o1 4.008158 1.473158 2.356789 0.693289

Right 2.819911

FP2 11.37 2.029342 2.578684 0.491974

F4 2.664868 1.701447 2.423158 0.472763

F8 2.156842 1.229211 1.752895 0.311184

C4 1.668553 1.213684 2.241053 0.441974

T4 3.044342 1.378816 2.455132 0.481447

P4 4.546579 1.64 4.098947 1.548684

T6 3.311974 1.712632 3.537368 1.001447

o2 5.170132 1.579605 3.556447 0.943289

Center 2.830461

FZ 2.277105 1.811842 2.447632 0.425132

Cz 2.481842 1.651579 2.2875 0.403026

P2 2.704079 1.878026 4.415526 1.011579

3.050219
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Table 13.6 Region wise EEG data of different electrodes in romantic mode activity

Electrodes Romantic mode data

Left Delta Theta Alpha Beta

FP1 8.154079 2.411842 3.451316 0.488158

F7 1.790395 1.058816 1.497105 0.235263

F3 1.994474 1.343947 1.600132 0.335789

T3 1.843289 1.225658 2.692895 0.393816

C3 1.675526 1.233289 3.185263 0.456316

T5 5.898421 2.286447 3.748026 0.691974

P3 3.166447 1.546974 5.665658 1.174211

o1 3.888158 1.953947 3.414079 0.631842

Right 3.156809

FP2 7.963026 2.540395 4.053816 0.492632

F4 4.284079 2.751579 3.083158 0.588421

F8 3.063553 1.547105 2.037632 0.330789

C4 1.890132 1.471447 2.849342 0.396184

T4 2.917763 1.671579 2.713026 0.417368

P4 3.508947 1.938289 4.976579 1.180658

T6 2.698289 2.411447 3.783684 0.756184

o2 3.148158 2.207763 3.809605 0.753289

Center 3.413355

FZ 2.487237 2.125921 2.562763 0.425526

Cz 2.393553 1.772237 2.148289 0.361316

P2 2.333421 2.113816 5.897105 1.025658

3.536053

Fig. 13.14 Time domain and frequency domain data
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Fig. 13.15 EEG data divided into window size of 5

Table 13.7 Region wise mean EEG data of different electrodes in different mode activity for
subject1

Modes Left Right Center

Relax song mode 4.763931 4.885609 5.157368

Happy song mode 2.960641 3.131316 3.443772

Sad song mode 3.8222434 4.313388 5.098026

National song mode 2.819911 2.830461 3.05219

Romantic song mode 3.156809 3.413355 3.536053

Fig. 13.16 Alpha rhythms for all moods
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Table 13.10 shows mean alpha frequency for all electrodes in different regions.
Figure 13.32 shows the graph of Mean alpha rhythms in different brain regions.

From graph it is cleared that the emotions more active in left region as compared to
right region of brain. From Table 13.10 the electrode F7 of left region of brain is
more active as compared to other electrodes.

Table 13.11 shows the mean values of alpha power of different electrodes of all
subjects in left hemisphere region. The table contains the mean values of alpha
power of different relax mode, Happy Mode, Sad Mode, National Mode and

Table 13.8 Distance matrix of mean values of EEG data in right region

Relax Happy Sad National Romantic

Relax 0 1.754293 0.572221 2.055148 1.472254

Happy 1.754293 0 1.182072 0.300855 0.282039

Sad 0.572221 1.182072 0 1.482927 0.900033

National 2.055148 0.300855 1.482927 0 0.582894

Romantic 1.472254 0.282039 0.900033 0.582894 0

Table 13.9 Distance matrix of mean values of EEG data in left region

Relax Happy Sad National Romantic

Relax 0 1.80329 0.941497 1.94402 1.607122

Happy 1.80329 0 0.861793 0.14073 0.196168

Sad 0.941497 0.861793 0 1.002523 0.665625

National 1.94402 0.14073 1.002523 0 0.336898

Romantic 1.607122 0.196168 0.665625 0.336898 0

Fig. 13.17 Alpha power
waves in left region
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Fig. 13.18 Comparative
alpha power waves of
relax to different moods
for electrode F7

Fig. 13.19 Comparative
alpha power waves of
relax to different moods
for electrode F3

Fig. 13.20 Comparative
alpha power waves of
relax to different moods
for electrode T3
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Fig. 13.21 Comparative
alpha power waves of
relax to different moods
for electrode C3

Fig. 13.22 Comparative
alpha power waves of
relax to different moods
for electrode T5

Fig. 13.23 Alpha power
waves in right region
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Fig. 13.24 Comparative
alpha power waves of
relax to different moods
for electrode F4

Fig. 13.25 Comparative
alpha power waves of
relax to different moods
for electrode F8

Fig. 13.26 Comparative
alpha power waves of
relax to different moods
for electrode c4
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Fig. 13.27 Comparative
alpha power waves of
relax to different moods
for electrode T4

Fig. 13.28 Comparative
alpha power waves of
relax to different moods
for electrode T6

Fig. 13.29 Alpha power
waves in center region
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Romantic mode. We also calculate the average values for all subjects. From table it
is clear that the alpha value for relax mode is more this means that less activity in
brain for relax mode. It is also observed that we are less alert in sad mode as
compared to Happy, National and Romantic mode. So it is possible to make clear
distinction between the different activities in left hemisphere.

Table 13.12 shows the distance matrix for mean values of alpha power of
different electrodes of all subjects in left hemisphere region. From distance matrix
we observe that the value of sad mode is closer to relax mode that is less activity. It
is also possible to distinguish the activity (sad, Happy) (Sad, National) and (Sad,
Romantic) and the distance is >0.2. The values of Happy, National and Romantic
are little close to each other. That is natural because the National Mode and

Fig. 13.30 Comparative
alpha power waves of
relax to different moods
for electrode Fz

Fig. 13.31 Comparative
alpha power waves of
relax to different moods
for electrode cz
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Romantic mode always corresponds to Happy Mode. The person experiences the
happy emotions in National and Romantic mode. Thus it is possible to distinguish
all the activities.

Table 13.13 shows the mean values of alpha power of different electrodes of all
subjects in right hemisphere region. The table contains the mean values of alpha
power of different relax mode, Happy Mode, Sad Mode, National Mode and
Romantic mode. We also calculate the average values for all subjects. From table it
is clear that the alpha value for relax mode is more, this means that less activity in
brain for relax mode. It is also observed that we are less alert in sad mode as
compared to Happy, National and Romantic mode. So it is possible to make clear
distinction between the different activities in right hemisphere.

Table 13.10 Mean alpha frequency for selected electrodes

Electrode Relax Happy Sad National Romantic

F7 2.45961 1.43829 2.21987 1.29053 1.49711

F3 2.87329 1.53474 2.20026 1.49434 1.60013

T3 3.99276 2.63658 3.84382 2.45645 2.69289

C3 4.40039 1.53474 2.20026 1.49434 1.60013

T5 6.14434 3.47539 4.33908 4.07145 3.74803

F4 4.02605 2.63671 3.12145 2.42316 3.08316

F8 2.94276 2.18684 2.93487 1.75289 2.03763

C4 3.44263 2.592105 4.211184 2.241053 2.849342

T4 3.88013 3.05395 4.84237 2.45513 2.71303

T6 6.02592 3.68974 4.45697 3.53737 3.78368

Fz 3.95868 2.643289 3.619342 2.447632 2.562763

Cz 3.36605 2.26671 7.90145 4.41553 5.89711

Fig. 13.32 Graph of mean
alpha rhythms in different
brain regions
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Table 13.11 Alpha power EEG data of all subjects in left hemisphere

Subject Relax Happy Sad National Romantic

Subject1 4.763931 2.960641 3.822434 2.819911 3.156809

Subject2 12.34842 9.966793 10.53576 11.89535 9.743734

Subject3 1.816595 1.068355 1.499737 1.556776 2.154868

Subject4 15.18015 20.16189 19.44457 17.87863 20.13546

Subject5 7.822977 3.698947 4.228569 4.247039 2.867928

Subject6 0.419326 0.531201 0.616135 0.409704 0.544227

Subject7 4.300641 1.120938 2.64528 0.947023 1.488964

Subject8 1.689359 0.859984 0.713832 0.863931 0.739342

Subject9 2.255822 1.648109 2.036316 1.590066 1.84273

Subject10 2.995 0.990461 1.679556 0.905477 1.114153

Average 5.359222 4.300732 4.722219 4.311391 4.378822

Table 13.12 Distance matrix of alpha power EEG data of all subject in left hemisphere

Relax Happy Sad National Romantic

Relax 0 1.0584 0.6370 1.0478 0.9804

Happy 1.0584 0 0.4214 0.0106 0.0780

Sad 0.6370 0.4214 0 0.4108 0.3433

National 1.0478 0.0106 0.4108 0 0.06743

Romantic 0.9804 0.0780 0.3433 0.06743 0

Table 13.13 Alpha power EEG data of all subjects in right hemisphere

Subject Relax Happy Sad National Romantic

Subject1 4.8856 3.1313 4.3134 2.8305 3.4134

Subject2 18.96076 16.83107 17.21783 18.54388 17.68658

Subject3 1.472763 0.919523 1.237336 1.224112 1.719605

Subject4 17.19579 23.20265 20.06566 19.56446 22.33031

Subject5 5.509194 2.989638 3.007566 2.84051 2.278586

Subject6 0.445839 0.558536 0.636776 0.394474 0.605905

Subject7 6.919211 1.328635 3.149885 1.075395 1.689013

Subject8 7.912736 6.994478 7.089778 6.639047 7.103343

Subject9 3.766678 1.820313 3.890033 1.655428 2.436842

Subject10 5.839707 4.407395 5.489906 4.147237 4.770092

Average 7.290827 6.218354 6.609817 5.891504 6.403368
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The Table 13.14 shows the distance matrix for mean values of alpha power of
different electrodes of all subjects in left hemisphere region. From distance matrix
we observe that the value of sad mode is closer to relax mode that is less activity. It
is also possible to distinguish the activity (sad, Happy) (Sad, National) and (Sad,
Romantic) and the distance is >0.2. Also it is possible to distinguish the between
(Happy, National) (Happy, Romantic) and (National, Romantic mode) which is not
possible in Left Hemisphere. This proves that the emotions are more separable in
right hemisphere as compared to left hemisphere.

Table 13.15 shows the comparative EEG data of all subjects in left hemisphere
and Right hemisphere. From the data it is cleared that the emotions are left dom-
inant. The dominance is less for relax activity and it is maximum for romantic
mode.

13.5.2 Linear Discriminate Analysis on Alpha Power Rhythm

Linear Discriminate Analysis is a well known scheme for feature extraction and
dimension reduction. It has been widely used in many applications such as face
recognition, image retrieval, microarray classification. LDA projects the data onto a
lower dimensional vector space such that the ratio of the between class distance to
the within class distance is maximized, thus achieves maximum discrimination
(Figs. 13.33, 13.34, 13.35, 13.36, 13.37 and 13.38).

Table 13.14 Distance matrix of alpha power EEG data of all subject in right hemisphere

Relax Happy Sad National Romantic

Relax 0 1.072473 0.68101 1.399323 0.887459

Happy 1.072473 0 0.391463 0.32685 0.185014

Sad 0.68101 0.391463 0 0.718313 0.206449

National 1.399323 0.32685 0.718313 0 0.511864

Romantic 0.887459 0.185014 0.206449 0.511864 0

Table 13.15 Comparative EEG data of all subjects in left and right hemisphere

Region Relax Happy Sad National Romantic

Left 5.359222 4.300732 4.722219 4.311391 4.378822

Right 7.290827 6.218354 6.609817 5.891504 6.403368

%Dominance 24.84 44.58 39.97 36.65 46.24
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Fig. 13.33 EEG signal
classification using lda for
subject1

Fig. 13.34 EEG alpha power
signal analysis using lda for
subject1

Fig. 13.35 EEG signal
classification using lda for
subject2
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Fig. 13.36 EEG alpha power
signal analysis using lda for
subject2

Fig. 13.37 EEG signal
classification using lda for
subject1

Fig. 13.38 EEG alpha power
signal analysis using lda for
subject1
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13.6 Conclusion

This study successfully achieves the goal to design a system which provides a data
base which can be used for the design of mood recognition system. In this study we
show that it is possible to recognize the different moods of person using EEG
signal. One of the parameters may be used the alpha power. Larger values of alpha
powers indicate activities related to moods induced by National, Happy, Romantic
songs, whereas smaller values correspond to Sad mood. So it is possible to dis-
tinguish these different moods using alpha power values. Also we observe the
different brain locations as Left Hemisphere and Right Hemisphere to recognize the
significance according to different moods. We find the signals in the left hemisphere
are more dominant over the right hemisphere for emotions. This means that the
mood EEG signals are more powerful in left region as compared to right regions.
Thus we conclude that the left region of brain gives more response to the emotions
rather than right region. Here we reduce the EEG database from brain region to left
hemisphere. Further we reduce it to single electrode as F7 which reside in left
region. The data base generated in our study may be used to interface brain with
computer for mood recognition system. This has wide varieties of applications in
future. For example, the entertainment industries may use it for composition of
songs as per their effect on brain. This research is useful as it concentrate on single
electrode. We also developed linear discriminate analysis based system for classi-
fication emotions related to song induced activity.
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Chapter 14
Digit Recognition System Using EEG
Signal

Rakesh Deore, Bharati Gawali and Suresh Mehrotra

Abstract Based on Linear Discriminate analysis (LDA), Principle Component
Analysis we explore the characteristics of multichannel Electroencephalogram
(EEG), which is recorded from no of subjects recognizing different numbers dis-
played on the screen by a GUI software designed in Visual Basic 6. The scaling
exponent of each digit is different especially at positions C3 and C4, and at posi-
tions O1 and O2. LDA exhibits its robustness against noises in our works. We
could benefit more from the results of this paper in designing mental tasks and
selecting brain areas in brain-computer interface (BCI) systems. The objective of
this system is to report the work done related to sensitivity of EEG signals related to
specific thought process. The thought process was chosen to be numbers (0–9). The
main objective of this work is the analysis and classification of EEG signals among
the men and machines and provide a secure communication interface. EEG
recordings of six male right-handed subjects in the age group of (20–25) were
taken. The subjects were normal without any mental disorder. They did not have
any problem in communicating and had normal vision. All subjects have good
knowledge of digits. A simple display system in visual basic is prepared for the
project. This system generates random number with interval of 2 s. After every 2 s a
random number is displayed on the screen. The recording was captured for 3 min.
This process was repeated for five times. The EEG signal has been processed by
statistical analysis methods such as LDA and PCA. It was found that the EEG
signals are sensitive to thought process. So it is possible to recognize thought
process through EEG signals. In our ten digit thought process, we get ten distinct
clusters by analyzing EEG signals through statistical technique like LDA and PCA.
The recognition rate of LDA is 70 %. The recognition rate of PCA is 37 %. So we
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establish that LDA is more powerful method as compared to PCA. We observe that
the EEG signal is more dominant on right hemisphere as compared to left hemi-
sphere. The data base created has potential to be used as a digital recognition
system. It has tremendous applications in design of security system.

Keywords Linear discriminate analysis � Principle component analysis � Human
computer interaction � Digit recognition

14.1 Introduction

Recently developments in computer and digital signal processing made it possible
to associate electroencephalogram (EEG) signal for communication between human
and computer. Information security has become a significant issue in recent years as
new ways of information exchange arise due to rapid development of computing,
information and internet technologies. The primary benefit of EEG-based Human
Computer Interaction (HCI) systems is that no motor output (including speech)
required [5, 6, 9–11, 13, 14, 18–20, 21–24, 26, 28–30, 32–34]. Some of the issues
regarding the information security handled by taking advantage of HCI system. The
proposed system tries to device a new secure method of communication between
human and machine e.g. inputting security code. In this chapter, we have dealt
problems related to brain activities induced by some external activities like digit
recognition. It is shown that the EEG signals are sensitive to these external activities
and it is possible to identify the external activities by analyzing the EEG signals [2].
These signals are qualitative in nature and very difficult to quantify them. The alpha
power and beta power may be used to quantify these activities. It will be more
specific if we can recognize thoughts process through EEG signals. These thought
process will be more specific. The system will have tremendous applications like
physically disabled peoples to communicate with computer through electroen-
cephalogram (EEG) signal interface and using thought passwords security systems
etc. The objective of the present chapter is report the work done related to sensi-
tivity of EEG signals related to specific thought process. The thought process was
chosen to be numbers (0–9). The main objective of this work is the analysis and
classification of EEG signals among the men and machines and provide a secure
communication interface. The electrical nature of the human nervous system has
been recognized for more than a century. It is well known that the variation of the
surface potential distribution on the scalp reflect functional activities emerging from
the brain. This surface potential variation can be recorded by affixing an array of
electrodes to the scalp and measuring the voltage between pairs of these electrodes,
which are then filtered, amplified and recorded. The resulting data is called EEG
(Electroencephalogram) signals. The EEG has small signal amplitude in range of
microvolt. EEG can help diagnose conditions such as seizure disorders, strokes,
brain tumors, head trauma, and other physiological problems. The pattern of EEG
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activity changes with the level of a person’s arousal. A relaxed person has many
slow EEG waves whereas an excited person has many fast waves. A standardized
system of electrode placement is the international 10–20 system. A common
problem with EEG data is contamination from muscle activity on the scalp. It is
desirable to remove such artifacts to get a better picture of the internal workings of
the brain [16]. As the neurons in our brain communicate with each other by firing
electrical impulses this creates an electrical field that travels through the cortex, the
skull and the scalp. The fundamental assumption behind the EEG signal is that it
reflects the dynamics of electrical activity in populations of neurons. The crucial
property of such populations is that they can work in synchrony. The EEG is
supposed to be generated by oscillations between the cortex and the thalamus.
These oscillations seem to be generated by physical properties of a neuron and by
functions of the ionic channels in the cell walls of the thalamic cell. The thalamus is
a kind of relay station which passes all information. The potential fluctuation that is
generated by sum of potentials in the cortex and thalamus is measured by calcu-
lating potential difference between the actual measuring electrode and the reference
electrode. The signals picked by the electrodes may be combined to channels or a
channel corresponds to a single electrode. The signal is then amplified and filtered
from artifacts [31]. The research work provides an opportunity for people who are
physically challenged to interact with system like any other human [25]. The role of
signal processing is crucial in the development of real-time Brain Computer
Interface. The several improvements have been made in this area but none of them
have been successful enough to use them in a real system. The goal of creating
more effective classification algorithms, have focused numerous investigation in the
search of few techniques of feature extraction. In this chapter, we are going to
address the problems which belong to the framework of HCI research. Here, we
focused on the study of Electroencephalogram (EEG) signal and signal classifica-
tion techniques through Linear Discriminate Analysis (LDA) and Principle Com-
ponent Analysis (PCA). The EEG signal is a unique and valuable measure of the
brains electrical function. The study of EEG signal helps to investigate neuropsy-
chological process that could be utilized to implement a HCI system. LDA and
PCA statistical methods isolate the discriminate component and dimension reduc-
tion of large data. The design and implementation of HCI system requires sound
knowledge of data acquisition process, EEG waveform characteristics; signal
processing methodologies for feature extraction and classification. The research
objectives are summarized as follows

• Examine electroencephalography as a means of identifying mental activity such
as Digit Recognition.

• Investigate the statistical methods for classification that will classify the EEG
signals related to mental activity such as digit recognition.

• Develop experimental BCI systems for digit recognition.
• Identify the regions in the brain activated by different mental activities such as

digit recognition.
• Detection of dominated brain regions for digit recognition activity.
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The remainder of the chapter is organized as follows: Sect. 14.2 describes lit-
erature survey. Section 14.3 explains the experimental data acquisition. Experi-
mental analysis is given in Sect. 14.4. Section 14.5 describe the feature extraction
process in detail. In this section we process EEG data of different brain regions.
Section 14.6 discussed the conclusion of work.

14.2 Literature Survey

The Electroencephalogram (EEG) is a unique and valuable measure of brains
electrical function. Electrical Signals are produced by brain activity were first
recorded from the cortical surface in animals by Ricard Carton (1875) and from
human scalp by Beger [4]. EEG activities mainly used for clinical diagnosis and
explores brain function. Now a day different researchers shows that brain activity
might serve an entirely different purpose that they might provide the brain with
another means of conveying messages and commands to external world. EEG is
one such technique which measures the electric fields that are produced by the
activity in the brain [1, 27]. EEG signals arise due to electrical potential produced
by the brain. EEG spectrum contain characteristic waveforms which fall in 4 fre-
quency bands viz alpha (8–13 Hz), beta (13–30 Hz), theta (4–8 Hz), delta (<than
4 Hz). Alpha waves are found in normal awake people, not engaged in intense
mental activity, which disappear when a person is asleep. Beta waves with higher
frequency are seen during intense mental activity and stress. Delta waves occur
during deep sleep, during infancy and in serious organic brain diseases. Theta
waves appear during emotional stress in adults in sleep, particularly during dis-
appointment and frustration [15]. Literature review of similar work which focuses
more on identification from EEG of healthy subjects rather than classification of
pathological cases for diagnosis were made [3, 8, 17]. EEG is collected at the
millisecond level, in contrast to the longer time intervals required for traditional
measures such as mouse clicks or user responses. This permits effective monitoring
of workload fluctuations in very rapid decision-making processes that are unob-
servable using traditional methods. As security issue is always challenging to the
real world applications many biometric approaches, such as fingerprint, iris and
retina, have been proposed to improve recognizing accuracy or practical facility in
individual identification in security. However, there is little research on individual
identification using EEG methodology mainly because of the complexity of EEG
signal collection and analysis in practice [35]. In future we can work to extract
individual specific information from a persons EEG and use this information to
develop identification methods like EEG biometry.
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14.3 Experimental Data Acquisition

We designed a fixed setup for a study with six subjects. They all have no or very
little experience about BCI system. Brain signals measured from 19 electrodes
mounted on the scalp. To exclude the possibility of influence from non central
nervous system activity, EOG and EMG recorded additionally. Those channels
used to remove noise from EEG signal.

14.3.1 Methodology

Subject Selection: EEG recordings of six male right-handed subjects in the age
group of (20–25) were taken. The subjects were normal without any mental disorder.
They did not have any problem in communicating and had normal vision. Subjects
were made to sit comfortably on an arm chair facing the screen in electromagneti-
cally shielded room. The subjects had given their written consent for recording EEG
signals before participating. All subject have good knowledge of digits. Procedure:
All subjects were instructed that this experiment has been designed to be used for
HCI. They came to the laboratory and were instructed about the nature of task which
was to be administered. The experiment was conducted in a quite room. The subject
were briefed about the EEG procedure and Digit Project. A simple display system in
visual basic is prepared for the project. This system generates random number with
interval of 2 s. After every 2 s a new number is displayed on the screen. Subjects
were told that it important to think number that is displayed on screen. Here we
repeat this procedure for 3 min. Thus we get data of 90 digit in single trail. The
complete procedure repeated for 3 times on the same subject. Finally we process 270
digit of data in three trails. Here we get EEG data of digits (0–9). In 270 readings the
data of each digit is repeated random times. The data of first two trails is used for
training and the data of last trail is used for testing. Demonstration of display system
was shown to each subject before experiment start so that he was more familiar to the
task and we will get proper signals (Figs. 14.1 and 14.2).

14.3.2 Apparatus and Recording Procedure

The EEG signals, for each mode, was captured by RMS (Recorders and Medicare
Systems) EEG-32 Super Space machine shown in Fig. 14.3 for 3 min with sampling
rate of 250/s. The other parameters of the EEG machine were set as follows: low
filter: 1 Hz, high filter: 70 Hz, sensitivity: 7 V, number of channels: 17, sweep
speed: 30 mm/s and Montage: BP PARA (R). As stated above, the experiment was
conducted on six subjects. The electrodes were placed on scalp of subjects as per
the international 10–20 standard as given in Fig. 14.4. The EEG signal has been
processed by statistical analysis methods such as LDA and PCA.
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Fig. 14.1 Acuisition of EEG signals from different subjects a Pukhraj Shrishrimal b Vishal Wagh
c Vishal Waghmare d Amit Shelke

Fig. 14.2 Snapshot of digit display system

Fig. 14.3 Photograph of RMS-EEG -32 super spec machine
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14.4 Experimental Analysis

The EEG recordings were captured according to the time of numbers generated on
the GUI. The readings were statistically analyzed. There are four frequency bands
associated with the EEG signals. All fours bands with their functionalities are listed
in Table 14.1. The Delta frequency up to 4 HZ has been found dominant during
some continuous attention tasks [7].

By observing the Table 14.1, we concentrated on the probability of signals of all
19 electrodes for recognizing the number. The Linear Discriminate analysis (LDA)
and Principle Component Analysis techniques are used for data classification and
dimensionality reduction. They easily handle the case where the Within-class fre-
quencies are unequal and their performance has been examined on randomly
generated test data. These method maximizes the ratio of between-class variance to
the within-class variance in any particular data set thereby guaranteeing maximal
separability. The use of LDA and PCA for data classification are applied for
classification of all ten numbers in a hope of providing better classification.

14.4.1 Linear Discriminate Analysis

Linear Discriminate Analysis is a well known scheme for feature extraction and
dimension reduction. It has been widely used in many applications such as face
recognition, image retrieval, microarray classification. LDA projects the data onto a
lower dimensional vector space such that the ratio of the between class distance to

Fig. 14.4 An international 10–20 system of electrode placement
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the within class distance is maximized, thus achieves maximum discrimination.
LDA aims to nd a vector space G spanned by gi where G ¼ ½g1; g2; . . .; gl� such that
each ai is projected onto G by ðg1T :ai; . . .; glT :aiÞT 2 Rl. Assume that the original
data in A is partitioned into k classes as A ¼ fa1; a2; . . .; akg where ai contains
points from the ith class. LDA aims to find the optimal transformation G such that

Fig. 14.5 Flowchart for linear discriminate analysis

Table 14.1 Frequency Rhythms associated with EEG signal

Name Frequency Location

Delta Up to 4 Has been found dominant during some continuous attention task

Theta 4 to <8 Appears in drowsiness or arousal condition in children and adults

Alpha 8–13 Found to be prominent in relaxed reflecting condition

Beta 13–30 Has been found in alert working active, busy or anxious thinking, or
active concentration
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the class structure of the original high dimensional space is preserved in the low
dimensional space. In general if each class is tightly grouped, but well separated
from the other classes, the quality of considered to be high. In discriminate analysis
two scatter matrices, called as within class (Sw) and between-class (Sb) matrices,
are denied to quantify the quality of cluster. It is easy to verify that trace (Sw)
measures the closeness of the vectors within the classes, while trace (Sb) measures
the separation between classes. In the low dimensional space resulting from the
linear transformation. Linear Discriminant Analysis is a simple probabilistic
approach to classification in which each class is assume to follow a normal dis-
tribution. LDA generated the cluster for different digits as shown in Fig. 14.6. From
Fig. 14.6 it is clear that it is possible to distinguish the different digits (Fig. 14.6).

14.4.2 Principle Component Analysis

Principal Component analysis is commonly used to project data samples to lower-
dimensional subspace that maximizes the variance of projected data. Principal
Component Analysis finds direction of most variance in the data by computing
singular value decomposition on the mean centred data matrix [12]. PCA is usually
applied to a collection of samples from all classes. PCA identifies the largest
variations in the data via the principle components (PC) and represent the data in a

Fig. 14.6 Graph showing the clusters of different classes using LDA
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coordinate system defined by the PCs. PCA generated the clusters for different
digits in the following format. From the following figure we may say that there is no
clear distinction between different digits (Figs. 14.7 and 14.8).

Fig. 14.7 Flowchart for principle component analysis

Fig. 14.8 Graph showing the
clusters of different classes
using PCA
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14.4.3 Comparative Study of LDA and PCA

The graphs are shown in following Figs. 14.9, 14.10, 14.11, 14.12, 14.13, 14.14,
14.15, 14.16, 14.17 and 14.18 shows the sample EEG signal from digits 0–9. This
signal carry data from all 19 electrodes. As EEG signal is divided into four fre-
quencies. So the graph shows 76 different points (Figs. 14.19, 14.20 and 14.21).

Now lets visualise the training data and the testing data for the digit 0. From
graph is shown in following Fig. 14.22 it is clear that the training data and testing
data set exhibit the same behaviour. So it is possible to recognise digit 0 as 0. We
similarly analyse the data for all other digits, we get the same behaviour. This
shows that the EEG signal carry useful information related to all digits. This
analysis gives the base to build the digit recognition system using EEG signal.
Number generator software generates number at random. Table 14.2 shows the total

Fig. 14.9 Sample EEG signal
for digit 0 of training dataset

Fig. 14.10 Sample EEG
signal for digit 1 of training
dataset
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Fig. 14.11 Sample EEG
signal for digit 2 of training
dataset

Fig. 14.12 Sample EEG
signal for digit 3 of training
dataset

Fig. 14.13 Sample EEG
signal for digit 4 of training
dataset
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Fig. 14.14 Sample EEG
signal for digit 5 of training
dataset

Fig. 14.15 Sample EEG
signal for digit 6 of training
dataset

Fig. 14.16 Sample EEG
signal for digit 7 of training
dataset
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Fig. 14.17 Sample EEG
signal for digit 8 of training
dataset

Fig. 14.18 Sample EEG
signal for digit 9 of training
dataset

Fig. 14.19 Sample EEG
signal for digit 0 of training
dataset1
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number of training and testing datasets for each digit. Numbers are generated at
random, therefore the training and testing dataset of each digit vary.

Now We build the training data base using LDA and PCA. The Table 14.3 gives
the recognition rate of LDA and PCA methods.

Table 14.3 shows that the recognition rate of LDA method is better than PCA.
LDA exhibits 70.931 % recognition rate for digit recognition. PCA exhibits
37.557 % of recognition rate for digit recognition. Following figure shows the
clusters of different digits using LDA and PCA (Figs. 14.23, 14.24, 14.25, 14.26,
14.27 and 14.28).

From the above discussion it is cleared that LDA is more applicable for EEG
signal analysis. So we used LDA for our further research. Until now we processed
the complete EEG data with all four frequency. We also check all probabilities of
frequencies such as (alpha) (beta) (delta) (theta) (alpha beta) (alpha delta) (alpha
theta) (alpha beta delta) (alpha delta theta) (beta delta theta). Their corresponding

Fig. 14.20 Sample EEG
signal for digit 0 of training
dataset2

Fig. 14.21 Sample EEG
signal for digit 0 of testing
dataset1
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graphs are as shown in following figures (Figs. 14.29, 14.30, 14.31, 14.32, 14.33,
14.34, 14.35, 14.36, 14.37, 14.38, 14.39 and 14.40).

Table 14.4 shows the average digit recognition rate using LDA. We are inter-
ested to see which frequency rhythm is more active during digit recognition
activity. Digit recognition is a compounding of multiple bodily functions, then we
didn’t get proper clusters for individual frequencies. Then we tried multiple com-
binations of different frequencies. We establish that all frequencies take part in digit
recognition activity.

Fig. 14.22 EEG signal of training and testing data for digit 0

Table 14.2 Information of
training and testing data

Digit data Training data set Testing data set

0 20 10

1 12 6

2 10 5

3 24 12

4 22 11

5 14 7

6 20 10

7 16 8

8 20 10

9 22 11

Total 180 90
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14.4.4 Region Wise Data Analysis

The 10/20 system or International 10/20 system is an internationally recognized
method for electrode placement. It describes the location of scalp electrodes. The
system based on the relationship between the locations of an electrode and the
underlying area of the cerebral cortex. The Number 10 and 20 refers to the fact that
the distances between adjacent electrodes are either 10 or 20 % of total front, back
or right, left distance of the skull. Each site has a letter to identify the lobe and a
number to identify the hemisphere location [11]. The Brain is divided as Left

Table 14.3 Comparative recognition rate using LDA and PCA

Digit Recognition rate using LDA Recogntion rate using PCA

0 59.32 23.21

1 82.23 61.23

2 59.54 21.78

3 89.25 45.23

4 62.23 45.12

5 38.23 9.5

6 84.56 40.17

7 97.27 53.23

8 73.23 45.89

9 63.45 30.21

Average 70.931 37.557

Fig. 14.23 EEG signal classification using LDA for subject1
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Hemisphere and Right Hemisphere. Even numbers (2, 4, 6, 8) refer to an electrode
positions on the right hemisphere. Odd numbers (1, 3, 5, 7) refer to electrode
positions on the left hemisphere. Table 14.5 gives electrodes with their lobes.

Since the architecture of the brain is non-uniform and the cortex is functionally
organized, the EEG can vary depending on the location of the recording electrodes.

The Table 14.6 shows the values of different frequency power band during digit
recognition. The Electrodes are divided according to the brain region as left
hemisphere, right hemisphere and center hemisphere.

Fig. 14.24 EEG signal classification using LDA for subject2

Fig. 14.25 EEG signal classification using LDA for subject3
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Fig. 14.26 EEG signal
classification using PCA for
subject1

Fig. 14.27 EEG signal
classification using PCA for
subject2

Fig. 14.28 EEG signal
classification using PCA for
subject3
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Fig. 14.29 EEG alpha signal
classification using LDA

Fig. 14.30 EEG beta signal
classification using LDA

Fig. 14.31 EEG delta signal
classification using LDA

394 R. Deore et al.



The Table 14.7 shows the summary of different frequency power band during
digit recognition. In both regions each digit has different mean frequency. This
implies that it is possible to distinguish the different digits using this EEG signal.
The EEG signal frequency on the right region is smaller than the EEG frequency on
left region.

The Tables 14.8 and 14.9 shows the distance matrices of EEG signal in left and
right hemisphere. From both distance matrices it is vindicated that there is a sig-
nificant conflict between each couple of digits.

Fig. 14.32 EEG theta signal classification using LDA

Fig. 14.33 EEG alpha, beta
signal classification using
LDA
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Fig. 14.34 EEG alpha delta
signal classification using
LDA

Fig. 14.35 EEG alpha theta
signal classification using
LDA

Fig. 14.36 EEG beta theta
signal classification using
LDA
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Fig. 14.37 EEG beta theta
signal classification using
LDA

Fig. 14.38 EEG alpha beta
theta signal classification
using LDA

Fig. 14.39 EEG alpha beta
theta signal classification
using LDA
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Fig. 14.40 EEG beta delta
theta signal classification
using LDA

Table 14.4 Comparison of
recognition rate of different
frequency probabilities using
LDA

Average recognition rate using LDA
(%)

Frequency
probabilities

23 Alpha

28 Beta

39 Delta

34 Theta

41 Alpha beta

43 Alpha delta

41 Alpha theta

45 Beta delta

46 Beta theta

52 Delta theta

63 Alpha beta theta

57 Alpha delta theta

54 Beta delta theta

70 Alpha beta delta
theta

Table 14.5 Electrode with
their lobes

Electrode Lobe

F Frontal

T Temporal

C Central

P Parietal

O Occipital
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Table 14.10 gives the mean values of all subjects 10 digit data in left hemisphere
region of brain. The digit 3 having maximum EEG power where as digit 0 having
minimum EEG power.

Table 14.11 gives the mean values of all subjects 10 digit data in right hemi-
sphere region of brain. Here we get the same behavior i.e. digit 3 having maximum
EEG power where as digit 0 having minimum EEG power. From Tables 14.10 and
14.11 we observe that the EEG signal values are more dominant on right hemi-
sphere as compared to left hemisphere. The percentage of left dominance is listed in
Table 14.12.

14.5 Feature Extraction

In this section we process the different level frequency data. In order to process
frequency data we need to select time series data for interval of two second, convert
it into different frequency level using FFT. The xls file for such data looks like as
shown in following table (Table 14.13, Fig. 14.41).

In our experiment setup we store data of 90 digits with interval of 2 s for each
digit. When data acquisition process completes we get 90 xls files which contains
the eeg data of all 90 digits. Thus data stored is very large. In order to process this
data we perform following steps

1. First store the EEG data into xls file, save the file with name which is easy to
process and indicates the interval of data as shown in following Fig. 14.42.
These files contains frequency domain data of different digits which are sepa-
rated by time interval of 2 s.

2. Now we write the following code so that it is possible to gather the scattered
data from different file into a single file.

Table 14.7 Summary of
mean EEG data in different
regions of the brain

Digit Left Right

0 1.026143 1.025714

1 0.902429 0.874921

2 1.035984 0.906896

3 0.998857 0.862

4 1.103143 1.038429

5 0.941778 0.87173

6 0.836606 0.81303

7 0.891089 0.785446

8 0.95668 0.945259

9 1.002857 0.913143
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Table 14.13 EEG power sample data

Electrode F-Range (Hz) Abs power
(V ** 2)

Rel power (%) PPF (Hz) MPF (Hz)

FP1-CAR 0.0–4.0 320.27 93 2 2

4.0–8.0 23.06 6.7 4 4

8.0–12.0 1.01 0.3 8.5 8.5

12.0–16.0 0.2 0.1 12.5 13

FP2-CAR 0.0–4.0 477.89 94.4 2 2

4.0–8.0 27.22 5.4 4 4.5

8.0–12.0 0.7 0.1 8 8.5

12.0–16.0 0.22 0 15.5 13

F7-CAR 0.0–4.0 6.97 76.9 1 1.5

4.0–8.0 1.24 13.7 5.5 5.5

8.0–12.0 0.39 4.3 8.5 8.5

12.0–16.0 0.46 5.1 14.5 14.5

F3-CAR 0.0–4.0 5.42 56.8 1 1

4.0–8.0 2.03 21.2 7 6

8.0–12.0 1.26 13.2 11 10.5

12.0–16.0 0.84 8.8 12.5 13

FZ-CAR 0.0–4.0 3.82 46 1.5 1

4.0–8.0 2.78 33.5 7 5.5

8.0–12.0 0.8 9.7 8.5 10

12.0–16.0 0.9 10.8 12 13

F4-CAR 0.0–4.0 5.66 63.6 0 0.5

4.0–8.0 2.01 22.5 6 6

8.0–12.0 0.53 6 10.5 10.5

12.0–16.0 0.7 7.9 12.5 13

Fig. 14.41 Time domain and frequency domain data
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filename = ′ E : \june\myfiles\first\f ′

wfilename = ′ E : \\june\myfiles\first\first.xls′

j = 2

fori = 0 : 2 : 178

begin

filename1 = strcat(filename, int2str( i + 1) ,′ t′, int2str( i + 2) ,′ .xls′)

s = xlsread(filename1,′ c3 : c96′)

s = transpose(s)

range = strcat( ′a′, int2str(j) ,′ : cp′, int2str(j))

xlswrite(wfilename, s, range)

j = j + 1

end

3. Now data looks like.
4. Remove the artifacts from EEG data.
5. Apply LDA method to generate distinct classes and analyze this classes.
6. Following figure shows the classification between all ten numbers using LDA

(Table 14.14, Fig. 14.43).
7. Data generated by LDA is as follows.

Table 14.15 shows the cluster information for digit zero. The cluster contains total
ten points with center at (−0.0016, 0.1466) and radius = 0.01931. Out of the ten points
only five points are inside the circle. So we say that the density of cluster is 50 %.

Fig. 14.42 Figure showing the name scheme for xls file
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Table 14.16 shows the cluster information for digit one. The cluster contains
total six points with center at (0.107965628, 0.093447148) and
radius = 0.238866421. Out of the six points five points are inside the circle. So we
say that the density of cluster is 83 %. Table 14.17 shows the cluster information for
digit two. The cluster contains total five points with center at (−0.064113698,
0.096575553) and radius = 0.065449459. Out of the five points three points are
inside the circle. So we say that the density of cluster is 60 %.

Table 14.18 shows the cluster information for digit three. The cluster contains
total eleven points with center at (0.032867432, −0.22817591) and
radius = 0.288061438. Out of the eleven points ten points are inside the circle. So
we say that the density of cluster is 91 %.

Table 14.19 shows the cluster information for digit four. The cluster contains
total eleven points with center at (0.106169638, 0.034016434) and radius

Table 14.14 EEG data of different digits at different electrodes

FP1 FP2

Digit Alpha Theta Delta Beta Alpha Theta Delta Beta

0 6.6 3.88 1.57 0.64 20.71 5.8 2.19 1.33

1 307.08 7.89 1.18 0.45 378.32 9.06 0.73 0.36

1 1099.21 29.37 0.69 0.56 600.3 6.53 0.8 0.81

1 178.76 1.95 0.7 0.34 294.3 2.68 0.7 0.29

2 39.27 3.76 1.16 0.69 35.88 3.31 0.7 0.39

2 329.91 65.23 2.92 0.49 531.62 95.3 1.95 0.31

2 1796.51 1.9 1.27 0.47 942.38 2.52 1.13 0.32

3 84.96 4.36 0.43 0.35 113.62 4.62 0.42 0.12

4 21.87 1.36 0.38 0.25 19.68 4.52 0.2 0.25

4 276.9 5.78 0.26 0.4 435.76 9.89 0.74 0.27

5 8.34 0.93 0.63 0.24 12.91 1.69 1.06 0.4

5 127.71 2.73 0.88 0.15 266.54 3.79 0.52 0.32

5 473.01 8.41 1.36 0.43 758.05 8.26 1.01 0.22

6 1406.7 5.09 1.76 0.41 1471.16 7.8 2.02 0.31

6 35.01 1.83 0.72 0.21 71.91 2.02 0.41 0.12

6 50.83 5.9 1.02 0.47 89.54 9.02 0.82 0.62

7 320.27 23.06 1.01 0.2 477.89 27.22 0.7 0.22

7 117.25 3.07 0.51 0.28 192.26 3.79 0.57 0.16

7 283.35 23.11 1.02 0.17 451.97 33.8 1.17 0.52

8 375.29 7.24 1.45 0.19 563.83 10.78 0.53 0.42

9 61.88 1.12 0.87 0.26 118.35 1.11 1.43 0.14
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= 0.109176504. Out of the eleven points seven points are inside the circle. So we
say that the density of cluster is 64 %.

Table 14.20 shows the cluster information for digit five. The cluster contains
total seven points with center at (0.10241185, 0.034016434) and radius
= 0.103655998. Out of the seven points two points are inside the circle. So we say
that the density of cluster is 40 %.

Table 14.21 shows the cluster information for digit six. The cluster contains total
seven points with center at (−0.278322, 0.140508139) and radius = 0.279101655.

Fig. 14.43 Graph showing the clusters of different classes using LDA

Table 14.15 Cluster
information for digit-0

X Y Distance from center of cluster

0.0093 0.1466 0.0017

0.0046 0.1903 0.0444

0.0026 0.1191 0.0269

−0.0159 0.1268 0.0192

0.0020 0.1437 0.0027

−0.0123 0.1181 0.0279

−0.0040 0.1754 0.0296

0.0083 0.1313 0.0147

−0.0087 0.1410 0.0052
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Out of the seven points six points are inside the circle. So we say that the density of
cluster is 86 %.

Table 14.22 shows the cluster information for digit seven. The cluster contains
total five points with center at (−0.006807753, 0.287239623) and radius
= 0.157660533. Out of the five points six points are inside the circle. So we say that
the density of cluster is 100 %.

Table 14.16 Cluster
information for digit-1

X Y Distance from center of cluster

0.1056 0.0928 0.8920

0.1090 0.0988 0.1081

0.1026 0.1028 0.1084

0.1092 0.0946 0.1080

0.1107 0.0805 0.1087

0.1108 0.0912 0.1080

Table 14.17 Cluster
information for digit-2

X Y Distance from center of cluster

−0.0717 0.1189 2.0642

−0.0597 0.0793 0.0664

−0.0609 0.0886 0.0646

−0.0641 0.1005 0.0642

−0.0642 0.0957 0.0641

Table 14.18 Cluster
information for digit-3

X Y Distance from center of cluster

0.0330 −0.2168 2.9672

0.0258 −0.1912 0.0495

0.0347 −0.2304 0.0329

0.0353 −0.2425 0.0358

0.0305 −0.1763 0.0614

0.0384 −0.2199 0.0339

0.0301 −0.2959 0.0753

0.0339 −0.2577 0.0442

0.0086 −0.2293 0.0329

0.0461 −0.1991 0.0439

0.0324 −0.2192 0.0341
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Table 14.23 shows the cluster information for digit eight. The cluster contains
total eight points with center at (0.045618502, 0.013377525) and radius =
0.048312754. Out of the eight points six points are inside the circle. So we say that
the density of cluster is 75 %.

Table 14.24 shows the cluster information for digit nine. The cluster contains
total eleven points with center at (−0.035999385, 0.122955778) and radius =

Table 14.19 Cluster
information for digit-4

X Y Distance from center of cluster

0.1062 0.0086 0.1092

0.1065 0.0292 0.1063

0.0942 0.0332 0.1062

0.1074 0.0539 0.1080

0.0973 0.0516 0.1076

0.1034 0.0021 0.1109

0.1130 0.0682 0.1115

0.1047 0.0179 0.1074

0.1054 0.0380 0.1062

0.1039 0.0768 0.1145

0.1260 −0.0053 0.1132

Table 14.20 Cluster
information for digit-5

X Y Distance from center of cluster

0.0945 −0.3761 0.1024

0.1093 −0.4021 0.1057

0.0954 −0.3837 0.1027

0.1021 −0.3582 0.1039

0.1110 −0.3592 0.1038

0.1036 −0.3912 0.1035

0.1009 −0.3609 0.1035

Table 14.21 Cluster
information for digit-6

X Y Distance from center of cluster

−0.2701 −0.1206 0.2790

−0.2752 −0.1909 0.2828

−0.2725 −0.1219 0.2789

−0.2829 −0.1526 0.2786

−0.2803 −0.1493 0.2785

−0.2894 −0.1298 0.2785

−0.2806 −0.1372 0.2783
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0.042695393. Out of the eleven points seven points are inside the circle. So we say
that the density of cluster is 64 %. All data points in a single cluster are called as
cluster feature (CF). Let CF is a data structure summarizing information about all
points in the dataset.

Table 14.22 Cluster
information for digit-7

X Y Distance from center of cluster

−0.0062 0.2886 0.0069

0.0026 0.2885 0.0069

−0.0122 0.2819 0.0087

−0.0008 0.2775 0.0119

−0.0139 0.2444 0.0434

Table 14.23 Cluster
information for digit-8

X Y Distance from center of cluster

0.0606 −0.0017 0.0480

0.0392 0.0186 0.0459

0.0399 0.0189 0.0460

0.0498 0.0185 0.0459

0.0433 0.0454 0.0557

0.0405 −0.0133 0.0528

0.0465 0.0047 0.0464

0.0451 0.0159 0.0457

Table 14.24 Cluster
information for digit-9

X Y Distance from center of cluster

−0.0383 0.1054 0.0401

−0.0619 0.0842 0.0529

−0.0432 0.1419 0.0407

−0.0182 0.1393 0.0396

−0.0407 0.1491 0.0445

−0.0158 0.1231 0.0360

−0.0393 0.1237 0.0360

−0.0247 0.1364 0.0384

−0.0402 0.1208 0.0361

−0.0410 0.1524 0.0465

−0.0326 0.0763 0.0589
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CF ¼ ðn; LSÞ

where LS is linear sum of n data points.

ie
Xn
i¼1

xi
Xn
i¼1

yi

where n is the number of data points in data set. Mean of data set provides the
center of ðx0; y0Þ of the distribution. Then the distance of each point in a cluster
from the center of cluster is given by Vidal [31].

Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þ ðyi � y0Þ2

q

The radius of cluster is calculated as

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þ ðyi � y0Þ2

q

n

So the resultant values of center and radius for different clusters is as follows.
From Table 14.25 we observe that the EEG signal for digits 0–9 is different. It is

possible to separate the digits. Table 14.26 shows the radius of cluster for digit 0
having minimum value and the radius of luster for digit 3 having maximum values.
Also the digit 7 having maximum recognition rate of 100 % and digit 5 having
minimum recognition rate of 40 %. From table it is clear that each digit is well
separable. So it is possible to recognize the digit using EEG and LDA.

Table 14.25 center and
radius for different clusters

Digit X Y Distance

0 −0.0016 0.145886 0.019312253

1 0.107965628 0.093447148 0.238866421

2 −0.064113698 0.096575553 0.065449459

3 0.032867432 −0.22817591 0.288061438

4 0.106169638 0.034016434 0.109176504

5 0.10241185 −0.375910337 0.103655998

6 −0.278322 −0.140508139 0.279101655

7 −0.006807753 0.287239623 0.157660533

8 0.045618502 0.013377525 0.048312754

9 −0.035999385 0.122955778 0.042695393
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14.6 Conclusion

Recording are sampled at 250 Hz for 90 s so length of data is very large. But it is
transformed using Fourier transformation into frequency data. For each digit we get
19 scaling exponent responding each channel. The data is filtered by band pass
filter. The effective component of EEG is usually supposed to be concentrated at
1–30 HZ and frequency of baseline excursion is comparatively lower (1 HZ) and
the frequency of power interruption and EMG interruption is higher (>= 50 HZ). So
we set the parameters as Low filter 1 Hz, High filter 70 Hz, Number of channels:
06, Sweep speed 30 mm/s and Montage: BP PARA (R). Considering the calculation
results for the same digit, the results of one subject during each trail are compar-
atively consistent. Linear Discriminate Analysis and Principle Component analysis
are well known scheme for feature extraction and dimension reduction. We have
trail dataset having size of 180 and testing dataset having size of 90. The recog-
nition rate of LDA is approximately 70 %. Similarly the recognition rate of PCA is
37 %. Thus LDA is more powerful than PCA for feature extraction. After we study
the different probabilities of frequency. From the number of observations we
conclude that all factors of EEG signal are important. So we get accurate recog-
nition rate for all frequency components. The frequency is different for different
digits. also there is well separation between the clusters of digits. Thus we proposed
an effective method for extracting properties of EEG data. This study is used to
effectively extract EEG features related to Digits. Here we also concentrated region
wise study of EEG signal. From the data it is cleared that the EEG power of right
hemisphere is more dominant than left hemisphere. In these studies we were
concentrated on 19 electrodes. Our study is foundation for using Brain Computer
Interface in security systems. It was found that the EEG signals are sensitive to
thought process. So it is possible to recognize thought process through EEG signals.
In our ten digit thought process, we successfully separates ten digits by analyzing

Table 14.26 clusters
information in terms of radius
and density

Digit Radius Density (%)

0 0.019312253 50

1 0.238866421 83

2 0.065449459 60

3 0.288061438 91

4 0.109176504 64

5 0.103655998 40

6 0.279101655 86

7 0.157660533 100

8 0.048312754 75

9 0.042695393 64
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EEG signals through statistical technique like LDA. The data base created has
potential to be used as a digital recognition system. It has tremendous applications
in design of security system.
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