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Abstract We describe in this paper a Harmony Search (HS) Algorithm and their
areas of application, variants and comparison with other existing algorithms. HS is
a metaheuristic music inspired algorithm used to solve a wide range of optimization
problems applied to different areas, which has been very successful as indicated by
the literature. A comparison with genetic algorithms was performed to evaluate the
advantages of HS.
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1 Introduction

We describe in this paper a harmony search algorithm which is metaheuristic
algorithm inspired by music. In particular we refer to the improvisation of jazz
version of Hs and its comparison with the genetic algorithm. These algorithms were
applied to benchmark mathematical functions and comparative tables were made
showing the optimization of results between Genetic Algorithm and Harmony
Search algorithm.

The comparative study of the two algorithms is performed in order to show the
effectiveness of harmony search algorithm versus optimization problem, in the same
manner proving that it is more effective than the genetic algorithm.

The paper is organized as follows: in this Sect. 2 a description about Harmony
Search Algorithm is presented, in this Sect. 3 a description of Genetic Algorithm is
shown, in Sect. 4 description the mathematical functions is presented, in Sect. 5 a
description about the optimization problems is shown, in Sect. 6 the simulations
results are described and we can appreciate a comparison between Harmony Search
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algorithm and genetic algorithms, and in Sect. 7 the conclusions obtained after the
study of the two algorithms versus mathematical functions is presented.

In the literature there are works where the Harmony Search has been used. In [4]
a new Meta heuristic algorithm for continuous engineering optimization Theory and
practice is presented. In this paper the authors propose a new harmony search(HS)
meta heuristic algorithm based approach for engineering optimization problems
with continuous design variables it uses a stochastic random search instead of a
gradient search so that derivative information is unnecessary various engineering
optimization problems, including mathematical function minimization and struc-
tural engineering optimization problems, are presented to demonstrate the effec-
tiveness and robustness of the HS algorithm. The results indicate that the proposed
approach is a powerful search and optimization technique that may yield better
solutions to engineering problems than those obtained using current algorithms. In
[5] the Parameter setting free harmony search algorithm is presented, the authors
proposed this study a novel technique to eliminate tedious and experience requiring
parameter assigning efforts. The new parameter setting free (PSF) technique which
this study suggests contains one additional matrix which contains an operation type
(random selection, memory consideration, or pitch adjustment) for every variable in
harmony memory. In [15] the Harmony Search Benchmarking of heuristic opti-
mization methods is presented, the authors propose it is short history when many
heuristic optimization methods appear. As example Particle swarm optimization
method (PSO) or Repulsive particle swarm optimization method (RPSO), Gravi-
tational search algorithm (GSA), Central force optimization (CFO), Harmony
search algorithm (HAS) etc. Those methods are working differently but all of them
can optimize same problems. There is general question: Exists any standard
benchmark which can be used for individual methods comparing. It is a bit hard to
answer this question because it is possible to find some optimization problems
which are widely used along some papers but in fact there does not exists summary
which can be uses for standard evaluation of optimization process. In [9] the Global
Best Harmony Search is presented, the authors propose a new variant of HS con-
cepts from swarm intelligence are borrowed to enhance the performance of HS. The
performance of the GHS is investigated and compared with HS and a recently
developed variation of HS. The experiments performed show that the GHS gen-
erally outperformed the other approach when applied to ten benchmark problems.
The effect of noise on the performance of the three HS variants is investigated and a
scalability study is conducted. The effect of the GHS parameters is analyzed.
Finally, the three HS variants are compared on several Integer Programming test
problem. The results show that the three approaches seem to be an efficient alter-
native for solving Integer Programming problem. In [16] the Self adaptive: har-
mony search algorithm for optimization is presented, the authors proposed a new
metaheuristic optimization algorithm harmony search (HS) with continuous design
variables was developed. This algorithm is conceptualized using the musical
improvisation process of searching for a perfect state of harmony. Although several
variants and an increasing number of applications have appeared, one of its main
difficulties is how to select suitable parameter values. In [10] the An improved
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harmony search algorithm for solving optimization problems is presented, in this
paper the authors propose develops an improved harmony search (IHS) algorithm
for solving optimization problems. IHS employs a novel method for generating new
solution vectors that enhances accuracy and convergence rate of harmony search
(HS) algorithm, in [11] the a survey on applications of the harmony search algo-
rithm, in this paper they propose thoroughly reviews and analyses the main char-
acteristics and application portfolio of the so called Harmony Search algorithm a
meta heuristic approach that has been shown to achieve excellent results in a wide
range of optimization problems. In [8] the A Tabu Harmony Search Based
Approach to Fuzzy Linear Regression is presented, the authors propose an
unconstrained global continuous optimization method based on tabu search and
harmony search to support the design of fuzzy linear regression (FLR) models.
Tabu and harmony search strategies are used for diversification and intensification
of FLR, respectively. The authors propose approach offers the flexibility to use any
kind of an objective function based on client’s requirements or requests and the nature
of the data set and then attains its minimum error. In [14] the A new gravitational
search algorithm using fuzzy logic to parameter adaptation the authors propose a new
method using fuzzy logic to change alpha parameter and give a different gravitation
and acceleration to each agent in order to improve its performance, we use this new
approach for mathematical functions and present a comparison with original
approach. In [3] the Fuzzy Control of Parameters to Dynamically Adapt the PSO and
GAAlgorithms the authors propose a new hybrid approach for mathematical function
optimization combining Particle SwarmOptimization (PSO) and Genetic Algorithms
(GAs) using Fuzzy Logic for parameter adaptation and integrate the results. In [7] the
Music Inspired Harmony Search Algorithm Theory and practice, the authors propose
we show the performance of the algorithm and the areas in which it can be applied. In
[6] the Harmony Search Algorithms for structural design optimization the authors
propose a show us the type of problems you can solve the harmony search algorithm
and some methods that have been proposed to improve in certain areas of application.
In [12] the Differential evolution with dynamic adaptation of parameters for the
optimization of fuzzy controllers is presented, the authors propose a new algorithm
using fuzzy logic with dynamic adaptation of parameters.

2 Harmony Search Algorithm

Harmony search is a relatively new heuristic optimization algorithm inspired music
and was first developed by ZW Gemm et al. in 2001 [7].

This algorithm can be explained more in detail with the process of improvisation
that takes a musician, which consists of three options:

1. Play any song you have in your memory
2. Play a similar composition to an existing
3. Play a new song or randomly
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If we formalize these three options for optimization, we have three corre-
sponding components: memory usage of harmony, pitch adjustment and random-
ization [17].

2.1 Memory in Harmony Search Algorithm

The use of harmony memory is important because it is similar to choosing the best
people in genetic algorithms. This will ensure the best harmonies will be transferred
to the new memory harmony. In order to use this memory more effectively, we can
assign a parameter raccept € [0, 1] call acceptance rate memory. If this rate is too
low, just select the best harmonies and may converge very slowly [17].

raccept 2 0; 1½ � ð1Þ

2.2 Pitch Adjustment

To adjust the pitch slightly in the second component, we have to use such a method
can adjust the frequency efficiently. In theory, the tone can be adjusted linearly or
nonlinearly, but in practice the linear is used. If the current solution is Xold (or
pitch), then the new solution (tone) is generated Xnew.

xnew ¼ xold þ bpð2rand � 1Þ ð2Þ

where “rand” is a random number drawn from a uniform distribution [0, 1]. Here is
it bandwidth, which controls the local range of tone adjustment in fact, we can see
that the pitch adjustment (2) is a random step.

Pitch setting is similar to the mutation operator in genetic algorithms. We can
assign a pitch adjustment rate to control the degree of adjustment. If too low, there
is usually no change. If too high, then the algorithm may not converge at all [17].

2.3 Randomization

The third component is a randomization component (3) that is used to increase the
diversity of the solutions. Although the tone setting has a similar role, but it is
limited to certain local tone adjustment and therefore correspond to a local search.
The use of randomization can further push the system to explore various regions
with high diversity solution in order to find the global optimum [17]. So we have:

Pa ¼ Plower limit þ Prange � rand ð3Þ

108 C. Peraza et al.



where rand is a generator of random numbers in the range of 0 and 1. (Search space)
Prange ¼ Pupper limit � Plower limit

The three components in harmony search can be summarized in the pseudo code
shown in Sect. 2.4, where you can find that the probability of a true randomization
(4) is

Prandom ¼ 1� raccept ð4Þ

And the actual probability of tone adjustment (5) is

Ptono ¼ raccept � rpa ð5Þ

2.4 Pseudo Code for Harmony Search Algorithm

The pseudo code for HS is presented below:

2.5 Variants

There are three variants of the algorithm that have been applied to achieve better
results briefly explain each of them:
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The improved harmony search algorithm (IHS)
To address the shortcomings of the HS, Mahdavi et al. [10] proposed a new variant
of the HS, called the improved harmony search (IHS). The IHS dynamically
updates (rpa) according to the following equation,

RpaðtÞ ¼ Rpamin þ ðRpamax � RpaminÞ
NI

þ t ð6Þ

where Rpa(t) is the pitch adjusting rate for generation t, PARmin is the minimum
adjusting rate, PARmax is the maximum adjusting rate and t is the generation
number.

In addition, bp is dynamically updated as follows:

bpðtÞ ¼ bpmaxeð
lnðbpminÞ

bpmax
Þ

NI
Þ � t ð7Þ

where bp(t) is the bandwidth for generation t, bpmin is the minimum bandwidth and
bpmax is the maximum bandwidth.

A major drawback of the IHS is that the user needs to specify the values for
bwmin and bpmax which are difficult to guess and problem dependent.

Best overall harmony search (GHS)
Inspired by the concept of swarm intelligence as proposed in Particle Swarm
Optimization (PSO) [2], a new variation of HS is proposed in this paper. In a global
best PSO system, a swarm of individuals (called particles) fly through the search
space. Each particle represents a candidate solution to the optimization problem.

The position of a particle is influenced by the best position visited by itself (i.e.
its own experience) and the position of the best particle in the swarm (i.e. the
experience of swarm).

The new approach, called global-best harmony search (GHS), modifies the pitch-
adjustment step of the HS such that the new harmony can mimic the best harmony
in the HM. Thus, replacing the bp parameter altogether and adding a social
dimension to the HS. Intuitively, this modification allows the GHS to work effi-
ciently on both continuous and discrete problems.

The GHS has exactly the same steps as the IHS with the exception that Step 3 is
modified as follows:
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New global harmony search (NGHS)

The NGHS algorithm is an improved version of harmony search algorithm (HS),
and it includes two important operations: position updating and genetic mutation
with a low probability. The former can enhance the convergence of the NGHS, and
the latter can effectively prevent the NGHS from trapping into the local optimum.
Based on a large number of experiments, the NGHS has demonstrated high effi-
ciency on solving chemical equation balancing. The results show that the NGHS
can be an efficient alternative for solving chemical equation balancing [1].

2.6 Application Areas

The harmony search algorithm has been applied so far to various optimization
problems. Moreover, the structure of the algorithm has been customized by case
adjust basic structure. To overcome this situation, the algorithm of harmony search
(HS) used a new stochastic derivative, using the experiences of musicians in jazz
improvisation and may be applicable to discrete variables. Instead of tilting the
information of an objective function, the stochastic derivative HS gives a proba-
bility of being selected for each value of a decision variable.

The HS algorithm has been applied to various problems in science and engi-
neering optimization including:

Optimization function, the distribution of water, groundwater modeling, energy
saving clearance, structural design, vehicle routing, and others. The possibility of
combining harmony search with other algorithms such as particle swarm optimi-
zation and genetic algorithms has also been investigated [17].
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3 Genetic Algorithms

Genetic algorithms (GA) emulate genetic evolution. The characteristics of indi-
viduals are therefore expressed using genotypes. The original form of the GA, as
illustrated by John Holland in 1975, had the distinct features: (1) a bit string
representation, (2) proportional selection, and (3) cross-over as the primary method
to produce new individuals. Since then, several variations to the original Holland
GA have been developed, using different representation schemes, selection,
crossover, mutation and elitism operators [2].

3.1 Representation

The classical representation scheme for GAs is of binary vectors of fixed length. In
the case of an nx-dimensional search space, each individual consists on nx variables
with each variable encoded as a bit string. If variables have binary values, the length
of each chromosome is nx bits. In the case of nominal-valued variables, each
nominal value can be encoded as an nd-dimensional bit vectors where 2nd is the
total numbers of discrete nominal values for that variable. Each nd-bit string rep-
resents a different nominal value. In the case of continuous-valued variables, each
variable should be mapped to an nd-dimensional bit vector,

u : R ! ð0; 1Þnd ð8Þ

The range of continuous space needs to be restricted to a finite range, [xmin, xmax].
Using the standard binary decoding, each continuous variable xij of chromosome xi is
encoded using a fixed length bit string.

GAs have also been developed that use integer or real valued representations and
order based representations where the order of variables in a chromosome plays an
important role. Also, it is not necessary that chromosomes be of fixed length [2].

3.2 Crossover Operations

Several crossover operators have been developed for GA’s depending on the format
in which individuals are represented. For binary representations, uniform crossover,
one-point crossover and two-point crossover are the most popular:

• Uniform Crossover, where corresponding bit positions are randomly exchan-
ged between the two parents to produce two offspring.

• One-Point Crossover, where a random bit position is selected, and the bit
substrings after the selected bit are swapped between the two parents to produce
two offspring.
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• Two-Point Crossover, where two bit positions are randomly selected and the
bit substrings between the selected bit positions are swapped between the two
parents.

For continuous valued genes, arithmetic crossover can be used:

xij ¼ rjx1j þ ð1:0� rjÞx2j ð9Þ

where rj*U(0, 1) and xi is the offspring produced from parents x1 and x2 [2].

3.3 Mutation

The mutation scheme used in a GA depends on the representation scheme. In the
case of bit string representations, we here:

• Random Mutation, randomly negates bits, while
• In-Order Mutation, performs random mutation between two randomly selected

bit positions.

For discrete genes with more than two possible values that a gene can.
Assume, random mutation selects a random value from the finite domain of the

gene. In the case of continuous valued genes, a random value sampled from a
Gaussian distribution with zero mean and small deviation is usually added to the
current gene value. As an alternative, random noise can be sampled from a Cauchy
distribution [2].

4 Benchmark Mathematical Functions

This section list a number of the classical benchmark functions used to validate
optimization algorithms.

In the area of optimization using mathematical functions have been considered in
the works mentioned below: A new gravitational search algorithm using fuzzy logic
to parameter adaptation [14], Differential evolution with dynamic adaptation of
parameters for the optimization of fuzzy controllers [12], Bat algorithm comparison
with genetic algorithm using benchmark functions [13].

To validate our method we used a set of 6 benchmark mathematical functions,
called Spherical, Rosenbrock, Rastrigin, Ackley, Zakharov, Sum Square; all
functions were evaluated with 4, 5, 10, 20, 30 and 40 Harmonies.

Figure 1 shows the plot corresponding to the Spherical function and Eq. 10
represents the Spherical function. Figure 2 shows the plot corresponding to
Rosenbrock function and Eq. 11 represents the Rosenbrock function.
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The mathematical functions are shown below:

f ðxÞ ¼
Xnx
j¼1

x2j ð10Þ

Witch xj 2 ½�100; 100� and f �ðxÞ ¼ 0:0

f ðxÞ ¼
Xnz=2
j¼1

½100ðx2j � x22j�1Þ2 þ ð1� x2j�1Þ2� ð11Þ

Witch xj 2 ½�2:048; 2:048� and f �ðxÞ ¼ 0:0
Figure 3 shows the plot corresponding to Rastrigin function and Eq. 12 shows

the description the Rastrigin function.

f ðxÞ ¼
Xnx
j¼1

ðx2j � 10 cosð2pxjÞ þ 10Þ ð12Þ

With xj 2 ½�5:12; 5:12� and f �ðxÞ ¼ 0:0

Fig. 1 Spherical function

Fig. 2 Rosenbrock function
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Figure 4 shows the plot corresponding to Ackley function and Eq. 13 shows the
description the Ackley function.

f ðxÞ ¼ �20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nx

Pnx
j¼1

x2j � 1
enx

Pnx
j¼1

cosð2pxjÞ
r

þ 20þ e ð13Þ

With xj 2 ½�30; 30� and f �ðxÞ ¼ 0:0
Figure 5 shows the plot corresponding to Zakharov function and Eq. 14 shows

the description the Zakharov function.

f ðxÞ ¼
Xn
i¼1

x2i þ ð
Xn
i¼1

0:5ixiÞ2 þ ð
Xn
i¼1

0:5ixiÞ4 ð14Þ

Witch xi 2 ½�5; 10� and f �ðxÞ ¼ 0:0

Fig. 3 Rastrigin function

Fig. 4 Ackley function
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Figure 6 shows the plot corresponding to Sum Square function and Eq. 15 shows
the description the Sum Square function.

f ðxÞ ¼
Xn
i¼1

ix2i ð15Þ

Witch xi 2 ½�2; 2� and f �ðxÞ ¼ 0:0

5 Optimization Problems

The optimization problem can be defined as:

Min y ¼ f xð Þ ð16Þ

Fig. 5 Zakharov function

Fig. 6 Sum square function
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Basically the problems can be divided into unimodal and multimodal.
Another aspect are constrains. Some problems have not constrains. The best

optimization method has to find optimal value in all cases.
There exist many algorithms for problem solving. Some of them are special,

some are more general. Many problems cannot be solved by deterministic algo-
rithm, so heuristic algorithm are used. In the set of metaheuristic algorithms we can
find PSO [3], GSA [14], DE [12] and others.

Unimodal functions

Have only one local optimum. Those functions are relatively easy to analyze for
optimums. They are used for checking the speed of optimization and convergence.
There are used commonly two functions. First one is Schefel’s and second one is
Rastrigin’s.

Multimodal functions

Multimodal functions have multiple local optimums. Some methods will stuck in
local optimum. Main goal of those problems is to test solvers how they are able to
avoid local optimum. Some problems have no single global optimum. Some of
them have one global optimum and many local which are very close in the term of
fitness function. First one is Sphere, second one is Sum and Product and third one is
Griewank’s.

6 Simulation Results

In this section the comparison of the Harmony Search algorithm is made against
genetic algorithms [13]. In each of the algorithms 6 mathematical functions
Benchmark were considered separately, a dimension of 10 variables was used with
30 runs for each function varying the parameters of the algorithms.

The parameters used in the HS were:

• Size solution harmonies: 4–40 Harmonies.
• Harmony memory accepting: 0.75–0.95.
• Pitch adjustment: 0.1–0.5.
• Pitch range: 200–400.

The parameters for the genetic algorithm are shown below [13]:

• Number of Individuals: 4–40.
• Selection: Stochastic, Remainder, Uniform, Roulette.
• Crossover: Scattered, Single Point, Two Point, Heuristic and Arithmetic.
• Mutation: Gaussian, Uniform.
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6.1 Simulation Results with Harmony Search Algorithm

In this section we show the experimental results obtained by the Harmony Search
algorithm in separate tables of the mathematical functions. Table 1 shows the
simulation results for the Spherical function.

From Table 1 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Spherical function. Table 2 shows the simulation results for the Rosenbrock
function.

From Table 2 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Rosenbrock function. Table 3 shows the simulation results for the Rastrigin
function.

Table 1 Simulation results for the spherical function

Number of harmonies Best Worst Mean

4 0.000038975 0.00014863 0.0000762868

5 0.000039501 0.00014258 0.0000792732

10 0.000053865 0.00012135 0.0000883132

20 0.000029966 0.000079598 0.0000476648

30 0.000024495 0.000080963 0.0000499808

40 0.000023567 0.000077813 0.0000523875

Table 2 Simulation results for the Rosenbrock function

Number of harmonies Best Worst Mean

4 0.0000000010631 0.00000039836 0.0000000578908

5 0.00000000073035 0.00000032337 0.0000000521

10 0.000000000079568 0.00000023364 0.0000000475

20 0.000000000014716 0.001 0.0000387

30 0.0000000010014 0.001 0.00112

40 0.00000000010979 0.0079 0.00176

Table 3 Simulation results for the Rastrigin function

Number of harmonies Best Worst Mean

4 0.000000000011045 0.00000007236 0.0000000139

5 0.0000000000093081 0.000000011282 0.0000000126

10 0.00000000061454 0.00000022195 0.0000000324

20 0.000000000032507 0.000000092489 0.0000000172

30 0.00000000006964 0.00000022386 0.0000000321

40 0.00000000037211 0.00000017014 0.0000000275
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From Table 3 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Rastrigin function. Table 4 shows the simulation results for the Ackley
function.

From Table 4 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Ackley function. Table 5 shows the simulation results for the Zakharov
function.

From Table 5 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Zakharov function. Table 6 shows the simulation results for the Sum Square
function.

Table 4 Simulation results for the Ackley function

Number of harmonies Best Worst Mean

4 0.0000098012 0.00031775 0.000122722

5 0.0000087238 0.00017561 0.0000969749

10 0.000022005 0.00035406 0.000139821

20 0.0000093788 0.00028147 0.0000940209

30 0.000016206 0.00040138 0.000136185

40 0.000031467 0.00045383 0.000116993

Table 5 Simulation results for the Zakharov function

Number of Harmonies Best Worst Mean

4 0.000095054 0.00032929 0.00019524

5 0.00007544 0.00033906 0.00022226

10 0.000095173 0.00040378 0.00027224

20 0.000073328 0.00037254 0.00019199

30 0.000077163 0.00036816 0.00022529

40 0.00019508 0.0018 0.00052135

Table 6 Simulation results for the sum square function

Number of harmonies Best Worst Mean

4 0.0000086056 0.000037648 0.00002513

5 0.0000065348 0.000041995 0.0000238824

10 0.000021245 0.00010459 0.000064354

20 0.0000048182 0.000046886 0.000029147

30 0.000011206 0.000054988 0.0000351173

40 0.000017024 0.000056469 0.0000379489

A Harmony Search Algorithm Comparison … 119



From Table 6 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Sum Square function.

6.2 Simulation Results with the Genetic Algorithm

In this section we show the experimental obtained by the genetic algorithm in
separate tables of the mathematical functions [13]. Table 7 shows the simulation
results for the Sum Sphere function using genetic algorithm.

From Table 7 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Sphere function. Table 8 shows the simulation results for the Rosenbrock
function using genetic algorithm.

From Table 8 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Rosenbrock function. Table 9 shows the simulation results for the Rastrigin
function using genetic algorithm.

From Table 9 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results

Table 7 Simulation results for the sphere function

Population Best Worst Mean

4 0.000655746 0.867154805 0.501445118

5 0.016158419 0.735175081 0.297672568

10 0.029477858 0.985900891 0.616489628

20 0.125851757 1.018067545 0.250640697

30 0.050431819 0.928690136 0.521845011

40 0.004944109 1.847289399 0.558953430

Table 8 Simulation results for the Rosenbrock function

Population Best Worst Mean

4 0.089847334 0.802024183 0.561886727

5 0.045156568 0.878087097 0.476680695

10 0.026476082 0.788665597 0.212878969

20 0.008755795 0.654965394 0.151633433

30 0.001220403 0.292128413 0.050677876

40 0.000245092 0.843183891 0.242982579
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for the Rastrigin function. Table 10 shows the simulation results for the Ackley
function using genetic algorithm.

From Table 10 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Ackley function. Table 11 shows the simulation results for the Zakharov
function using genetic algorithm.

From Table 11 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Zakharov function. Table 12 shows the simulation results for the Sum
Square function using genetic algorithm.

Table 9 Simulation results for the Rastrigin function

Population Best Worst Mean

4 0.014939893 0.997649164 0.532383503

5 0.025389969 1.023785562 0.484650675

10 0.000983143 1.991943912 0.591455815

20 0.005860446 0.973098541 0.416048173

30 0.001461684 1.030270667 0.402938563

40 0.0017108 1.011176844 0.304818043

Table 10 Simulation results for the Ackley function

Population Best Worst Mean

4 0.003764969 0.974296237 0.346336685

5 0.034816548 1.008082845 0.555913584

10 0.00068874 1.006617458 0.309683405

20 0.00000943 0.999864848 0.217317909

30 0.0024992 0.045123886 0.01309672

40 0.00110442 0.963070253 0.229423519

Table 11 Simulation results for the Zakharov function

Population Best Worst Mean

4 0.00291835 0.974030463 0.442892629

5 0.003929128 2.494950163 0.368494675

10 0.000621031 0.999709009 0.475767117

20 0.00754580 0.787983798 0.444793802

30 0.00074412 4.568706165 1.518534814

40 0.01262987 2.859991576 1.30142878
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From Table 12 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Sum Square function.

7 Conclusions

The HS algorithm is a new method which can solve various types of problem very
easily and effectively because it not requires many complex calculations. The HS
can handle discrete, continuous variables and can be applied to linear and nonlinear
functions.

In the analysis of results obtained with the genetic algorithm and harmony
search, we conclude that the HS is better than the GA this is demonstrated with the
tables mentioned in the previous section to obtain a minimum error in all the
benchmark functions which was applied, the same number of dimensions were used
to perform the comparison.

The analysis of simulation results between HS and GA method considered in this
work, lead us to the conclusion that for the optimization of benchmark functions,
the HS method is a good alternative because it is easier to optimize and achieve
good results try that with GA.

As we can realize in each of the tables where the results of the experiments with
HS is best values were obtained.

With this it has been that the algorithm HS is better than GA.
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