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Preface

We describe in this book, recent advances on fuzzy logic augmentation of
nature-inspired optimization metaheuristics and their application in areas, such as
intelligent control and robotics, pattern recognition, time series prediction, and
optimization of complex problems. The book is organized into two main parts,
which contain a group of papers around a similar subject. Part I consists of papers
with the main theme of theoretical aspects of fuzzy logic augmentation of nature-
inspired optimization metaheuristics, which basically consists of papers that pro-
pose new optimization algorithms enhanced using fuzzy systems. Part II contains
papers with the main theme of application of optimization algorithms, which are
basically papers using nature-inspired techniques to achieve optimization of com-
plex optimization problems in diverse areas of application.

In the part of theoretical aspects of fuzzy logic augmentation of nature-inspired
optimization metaheuristics, there are seven chapters that describe different con-
tributions that propose new models and concepts, which can be the considered as
the basis for enhancing nature-inspired algorithms with fuzzy logic. The aim of
using fuzzy logic is to provide dynamic adaptation capabilities to the optimization
algorithms, and this is illustrated with the cases of the bat algorithm, cuckoo search,
and other methods. In the part of applications of fuzzy nature-inspired algorithms
there are five chapters that describe different contributions on the application of the
nature-inspired algorithms to solve complex optimization problems. The nature-
inspired methods include variations of ant colony optimization, particle swarm
optimization, the bat algorithm, as well as new nature inspired paradigms.

In conclusion, the edited book comprises papers on diverse aspects of fuzzy
logic augmentation of nature-inspired optimization metaheuristics and their appli-
cation in areas, such as intelligent control and robotics, pattern recognition, time
series prediction, and optimization of complex problems. There are theoretical
aspects as well as application papers.

Mexico, May 2014 Oscar Castillo
Patricia Melin
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Fuzzy Logic for Dynamic Parameter
Tuning in ACO and Its Application
in Optimal Fuzzy Logic Controller Design

Héctor Neyoy, Oscar Castillo and José Soria

Abstract Ant Colony Optimization (ACO) is a population-based constructive
metaheuristic that exploits a form of past performance memory inspired by the
foraging behavior of real ants. The behavior of the ACO algorithm is highly
dependent on the values defined for its parameters. Adaptation and parameter
control are recurring themes in the field of bio-inspired algorithms. The present
paper explores a new approach of diversity control in ACO. The central idea is to
avoid or slow down full convergence through the dynamic variation of a certain
parameter. The performance of different variants of the ACO algorithm was
observed to choose one as the basis to the proposed approach. A convergence fuzzy
logic controller with the objective of maintaining diversity at some level to avoid
premature convergence was created. Encouraging results on several travelling
salesman problem (TSP) instances and its application to the design of fuzzy con-
trollers, in particular the optimization of membership functions for a unicycle
mobile robot trajectory control are presented with the proposed method.

1 Introduction

ACO is inspired by the foraging behavior of ant colonies, and targets discrete
optimization problems [1].

The behavior of the ACO algorithm is highly dependent on the values defined
for its parameters and has an effect on its convergence. Often these are kept static
during the execution of the algorithm. Changing the parameters at runtime, at a
given time or depending on the search progress may improve the performance of
the algorithm [2—4].

Control the dynamics of convergence to maintain a balance between exploration
and exploitation is critical for good performance.
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Early convergence leaves large sections of the search space unexplored. Slow
convergence does not concentrate its attention on areas where good solutions were
found.

Fuzzy control has emerged as one of the most active and fruitful areas of
research in the application of fuzzy set theory.

The methodology of the fuzzy logic controller is useful when processes are too
complex for analysis by conventional quantitative techniques or when the available
sources of information are interpreted in a qualitatively inaccurate or uncertain way
[5].

Determine the correct parameters for the fuzzy logic controller is a complex
problem, it is also a task that consumes considerable time. Because of their ability
to solve complex NP problems is made use of ACO for the selection of those
already mentioned parameters.

There is some interest in using ACO algorithms in mobile robotics [6, 7].
Nowadays robotic automation is an essential part in the manufacturing process. The
autonomous navigation of mobile robots is a challenge. A mobile robot can be
useful in unattainable goal situations due to geological conditions or where the
human being is endangered. So, mobile robotics is an interesting subject for science
and engineering.

This paper explores a new method of diversity control in ACO. The central idea
is to prevent or stop the total convergence through the dynamic adjustment of
certain parameter of the algorithm applied to the design of fuzzy controllers, spe-
cifically to the optimization of membership functions of a trajectory controller for a
unicycle mobile robot.

The rest of the paper is organized as follows. Section 2 presents an overview of
ACO. Section 3 describes a performance analysis on several TSP instances. Sec-
tion 4 presents a new method of parameter tuning through fuzzy logic, Sect. 5
shows some simulation results in TSP problems, Sect. 6 describes the optimized
fuzzy controller, Sect. 7 presents the considerations taken to implement the ACO
algorithm in the optimization of membership functions, Sect. 8 describes how the
proposal was applied, Sects. 9 and 10 presents simulation results in the membership
functions optimization problem, finally Sect. 11 presents some conclusions.

2 Ant Colony Optimization (ACO)

The first ACO algorithm was called Ant System (AS) and its objective was to solve
the traveling salesman problem (TSP), whose goal is to find the shortest route to
link a number of cities. In each iteration, each ant keeps adding components to build
a complete solution, the next component to be added is chosen with respect to a
probability that depends on two factors. The pheromone factor that reflects the past
experience of the colony and the heuristic factor that evaluates the interest of
selecting a component with respect to an objective function. Both factors weighted
by the parameters o and [ respectively (1).
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After all ants have built their tours, pheromone trails are updated. This is done by
lowering the pheromone value on all arcs by a constant factor (2), which prevents
the unlimited accumulation of pheromone trails and allows the algorithm to forget
bad decisions previously taken.

—(L=p)w;, V(j) el )

And by depositing pheromone on the arcs that ants have crossed in its path (3).
The better the tour the greater the amount of pheromone that their arcs receive.

Ty — T+ ZA‘E (i,j) e L (3)

Atk = %’ if arc (i, ) belongs to Tk;
v 0, otherwise;

A first improvement on the initial AS, called the elitist strategy for Ant System
(EAS). The idea is to provide strong additional reinforcement to the arcs belonging
to the best tour found since the start of the algorithm (4) [1].

Ty — Tjj + ZA‘EU + eA‘clj , V(@,j)eL 4)

Nebs — o, ifarc(i,j) belongsto T
v 0, otherwise;

Another improvement over AS is the rank-based version of AS (ASgank). In
AS...k each ant deposits an amount of pheromone that decreases with its rank.

Additionally, as in EAS, the best-so-far ant always deposits the largest amount of
pheromone in each iteration [1].

,'-<—‘EU+Z —rAr —I—A‘cbs (5)

3 Performance Analysis of ACO

To observe the performance of the AS, EAS and ASg.,x ACO variants 30 exper-
iments were performed by method for each instance of the examined TSP (Table 1),
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Tabl.e 1 TSP instances TSP Number of cities Best tour length
considered
Burmal4 14 3,323
Ulysses22 22 7,013
Berlin52 52 7,542
Eil76 76 538
kroA100 100 21,282
Table 2 Parame.ters used for A o B o m T
each ACO algorithm o
AS 1 2 0.5 n m/C
ASRank 1 2 0.1 n 0.5r(r — 1)/pC™
EAS 1 2 05 n (e + m)/pC™
m=n
C™ =20 for each tsp except burma 14 where C™ = 10
EASe=06

ASgakt=wW— 1, w=06

which are in the range of 14 to 100 cities, all extracted from TSPLIB [8], using the
parameters recommended by the literature (Table 2) [1].

The behavior of AS and EAS was very similar in all experiments (Tables 3, 4, 5,
6, 7), the performance of the three variants began to worsen by increasing the
problem complexity, however ASg., performance decreased to a lesser extent than
their counterparts when the number of cities was greater than 50 (Tables 5, 6, 7).

Since ASgrank had more success finding the minimum and scored lower averages
with more complex TSP instances than the other approaches discussed (Figs. 1 and 2).
It can be concluded that AS and EAS have better performance when the number of
cities is low unlike ASg,, that works best when the number of cities is not so small
due to the pheromone deposit mechanism of this approach, where only the w-1 ants
with the shorter tours and the ant with the best so far tour are allowed to deposit
pheromone. This strategy can lead to a stagnation situation where all the ants follow
the same path and construct the same tour [1] as a result of excessive increase in the
pheromone trails of suboptimal routes (Figs. 3 and 4).

Tab!e 3 PerformanC? ACO Best Average Successful runs
obtained for the TSP instance
Burmal4 AS 3,323 3,323 30/30

ASRank 3,323 3,329 19/30

EAS 3,323 3,323 30/30
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Table 4 Performance
obtained for the TSP instance
Ulysses22

Table 5 Performance
obtained for the TSP instance
Berlin52

Table 6 Performance
obtained for the TSP instance
Eil76

Table 7 Performance
obtained for the TSP instance
KroA100

0.07
0.06
0.05 -
0.04 -

0.03 -

Average

0.02 -
0.01

14

ACO Best Average Successful runs
AS 7,013 7,022 30/30
ASRank 7,013 7,067 19/30
EAS 7,013 7,018 30/30
ACO Best Average Successful runs
AS 7,542 7,557 2/30
ASRank 7,542 7,580 17/30
EAS 7,542 7,554 6/30
ACO Best Average Successful runs
AS 547 556 0/30
ASRank 538 543 1/30
EAS 544 555 0/30
ACO Best Average Successful runs
AS 22,305 22,483 0/30
ASRank 21,304 21,549 0/30
EAS 22,054 22,500 0/30
apmm AS
ASRank
e EAS
22 52 76 100

Number of cities

Fig. 1 Average results of each approach discussed
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120
100 -

80 -

60 - a=gmm AS

40 ASRank

=g EAS

Percentage of success

20

14 22 52 76 100
Number of cities

Fig. 2 Percentage of success in finding the global minimum of each approach discussed

4600 T T T T T T T : T
Best
s Average

4400 ¢

4200 ]

F -

=]

=]
L

Tour length
3

3600

3400

32m L 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
lteration

Fig. 3 Convergence plot of the ACO algorithm variant ASg.nx
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5 T T T T T T T T

5 -
I

Average lamda branching factor
[}
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0 50 100 150 200 250 300 350 400 450 500
lteration

Fig. 4 Behavior of the average lambda branching factor during the execution of the algorithm
ACO variant ASgank

4 Fuzzy Logic Convergence Controller

Due to the obtained results it was decided to use ASg..x as the basis for our
proposed ACO variant. The central idea is to prevent or stop the total convergence
through the dynamic variation of the alpha parameter.

Alpha has a big effect in the diversity. Is recommended to keep a in the range of
O<a<1I[1]

A value closer to 1 will emphasize better paths but reduce diversity, while lower
a will keep more diversity but reduce selective pressure [3].

However, it appears impossible to fix a universally best a. In most approaches it
is taken to be 1, so that the selection probability is linear in the pheromone level.

An adaptive parameter control strategy was used; this takes place when there is
some form of feedback from the search that is used to determine the direction and/or
magnitude of the change to the strategy parameter [9]. In our case, the average
lambda branching factor, this factor measures the distribution of the values of the
pheromone trails and provides an indication of the size of the search space effec-
tively explored [1].

A convergence fuzzy controller to prevent or delay the full convergence of the
algorithm was created (Fig. 5). Fuzzy control can be seen as the translation of
external performance specifications and observations of a plant behavior into a rule
based linguistic control strategy [5].
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ge lamda branching

/XX\ alpha increment N AcO factor
¥

Change of error Fuzzy logic convergence
control

v

Fig. 5 Block diagram of the proposed system to control the convergence of the ACO algorithm
variant ASgank

The objective of the controller is to maintain the average lambda branching
factor at a certain level to avoid a premature convergence, so its rules were made to
fulfill this purpose (Fig. 6).

The controller uses as inputs the error and change of error (Fig. 7) with respect to
an average lambda branching factor reference level and provides as output an
increase in the value of parameter alpha (Fig. 8).

If (error is P) and (error_change is P) then (alpha increment is N)
If (error is N) and (error_change is N) then (alpha increment is P)
If (error is P) and (error_change is Z) then (alpha increment is N)
If (error is N) and (error_change is Z) then (alpha increment is P)
If (error is P) and (error_change is N) then (alpha increment is Z)
If (error is N) and (error_change is P) then (alpha increment is Z)
If (error is Z) and (error_change is Z) then (alpha increment is Z)
If (error is Z) and (error_change is N) then (alpha increment is P)
If (error is Z) and (error_change is P) then (alpha increment is N)

Fig. 6 Rules of the proposed fuzzy system to control the convergence of the ACO algorithm

1 T T N T T T T FI T T
0.5 .
U 1 L 1 1
0.2 0 02 04

-1 08 06 -04 -0

Degree of membership

06 08 1
error

1 T Y T T T T |~ T
05F Y .
u 1 1 1
0.2 0 02 0O

Degree of membership

-1 08 06 -04 -0 4 06 08 1
error change

Fig. 7 Membership functions of the input variables of the fuzzy system proposed to control the
convergence of the ACO algorithm
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08+ -
06 R
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0.2F -
0 i
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alphaincrement

Degree of membership

Fig. 8 Membership functions of the output variables of the fuzzy system proposed to control the
convergence of the ACO algorithm

5 Simulation in TSP Problems

The controller was able to maintain diversity in a more appropriate level, avoiding
the full convergence of the algorithm (Fig. 9).

The same number of experiments that in the above analysis were performed and
obtained the following results (Table 8).

14 T T T T T T T T T
Branching
12 i — — — Reference
10k .
5
Q
&
2 8} 1
£
(&)
=
(43
= gl 4
o
=
e
3
4+ A 4
2_- \ s 1 v v J i
D 1 1 1 L 1 1 1 1 L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

Fig. 9 Behavior of the average lambda branching factor during the execution of the developed
approach
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Table 8 Performance obtained by the strategy proposed in the instances discussed above

TSP Best Average Successful runs
Burmal4 3,323 3,323 30/30
Ulysses22 7,013 7,013 30/30

Berlin52 7,542 7,543 26/30

Eil76 538 539 21/30

KroA100 21,292 21,344 0/30

It was found that the proposed method was able to improve the results of the
strategies studied, obtaining lower averages (Fig. 10) and reaching the global
minimum on more occasions than the analyzed variants (Fig. 11).

To verify the above in a more formal way a Z test for means of two samples was
performed (Table 9).

The 3 ACO variants mentioned above were analyzed in addition to the approach
developed in 5 instances of the TSP, 30 experiments were performed for each
instance, 150 experiments were made in total of we extracted a 30 data random
sample for each method.

With a significance level of 5 % it was found sufficient statistical evidence to
claim that the average of AS (Fig. 12a), EAS (Figura 12b) and ASg..« (Fig. 12¢) is
higher than the obtained for ASg,,« + ConvCont in the experiments, this means that
our approach improved the performance of the discussed variants on the studied
problems, as had been observed in the first analysis.

0.07
0.06
0.05
% 0.0
? .04 e AS
Q
2 0.03 ASRank
0.02 engpes EAS
0.01 espimn ASRank+ConvCont
0

14 22 52 76 100
Number of cities

Fig. 10 Average of the results obtained by the proposal and each approach under review
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120
3100
8
g 80
w
s
g 60 .
&
o
¢ 40
] -
o

20

0

14 22

52

13

e AS

ASRank

el EAS

s ASRank+ConvCont

76 100

Number of cities

Fig. 11 Percentage of success in finding the global minimum of the proposal and each approach

under review

Table 9 Null and alternative
hypothesis for the statistical
hypothesis testing performed
for TSP problems

Case | Null hypothesis (Hp) Alternative hypothesis
(Ha)

1 Has < HASRank+ConvCont Has > HASRank+ConvCont

2 HEAS < MASRank+ConvCont MEAS > HASRank+ConvCont

3 MASRank = MASRank MASRank > HASRank

+ConvCont

+ConvCont

Z,=1.6448

Fig. 12 Results of the statistical hypothesis testing performed for a AS vs. ASganx + ConvCont,
b EAS vs. ASgrank + ConvCont, ¢ ASgank VS. ASrank + ConvCont for TSP problems
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6 Fuzzy Trajectory Controller for a Unicycle Mobile Robot

It decided to optimize a fuzzy trajectory controller for a unicycle mobile robot to
test the developed method in a more complex problem. The control proposal for the
mobile robot is: Given a path g,(t) and a desired orientation, a fuzzy logic controller
must be designed to apply an adequate torque t, such that measured positions ¢()
reaches the reference trajectory g,(z). That is:

lim [ g4 () — q(1) [|= 0 (6)

—00

The fuzzy system to optimize [10] is a Takagi-Sugeno type, for simplicity it is
decided to modify and convert it into a Mamdani type controller so that the input
and output parameters are represented by linguistic variables.

The controller receives as input variables the error in the linear (e,) and angular
(e, speed (Fig. 13), that is, the difference between the predefined desired speed and
the actual speed of the plant, and as output variables, the right (t;) and left (1)
torques of said robot (Fig. 14).

The membership functions of the input variables are trapezoidal for the negative
(N) and positive (P) linguistic terms, and triangular for the zero (Z) linguistic term.
The output variables have three membership functions, negative (N), zero (Z),
positive (P) of triangular shape and uses nine fuzzy rules which are shown below
(Fig. 15).

Degree of membership
o
o —_
' =
PN
q
1

(]

L
.
(=]
™
.
=
(2]
.
(=]
F=N
.
o
(N]

02 04 06 08 1

2 ot

-
=
g
g

-1 08 06 04 -02 0 02 04 06 08 1
ew

Degree of membership
o
[8) ]

]

Fig. 13 Membership functions of the fuzzy trajectory controller input variables
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Fig. 14 Membership functions of the fuzzy trajectory controller output variables

If (e, is N) and (e, is N) then (1, is N)(1, is N)
If (e, is N) and (e, is Z) then (t; is N)(T, is Z)
If (e, is N) and (e, is P) then (1; is N)(1, is P)
If (e, is Z) and (e, is N) then (1; is Z)(1, is N)
If (e, is Z) and (e, is Z) then (1, is Z)(T, is Z)
If (e, is Z) and (e, is P) then (1, is Z)(1, is P)
If (e, is P) and (e, is N) then (1 is P)(T, is N)
If (e, is P) and (e, is Z) then (1, is P)(1, is Z)
If (e, is P) and (e, is P) then (7, is P)(1, is P)

Fig. 15 Rules of the of the fuzzy trajectory controller discussed
7 ACO for Membership Functions Optimization

ACO was used to find the membership functions optimal parameters through its
adjustment and by the subsequently evaluation of the system.

The parameters a, b, f, j, k corresponding to the membership functions of
the input variables remain fixed to simplify the problem. The algorithm will find the
optimal values of the parameters ¢, i in a straightforward manner and, through
the optimum position of the intersection points (X1, Y1), (X2, Y2), the value of the
parameters d, e, g, h (Fig. 16).

Regarding the membership functions of the output variables, the algorithm will
search for the optimum center (b, &, except e that remains fixed for simplicity) and
span of each one (q, ¢, d, f, g i) (Fig. 17).
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Fig. 17 Membership functions of the output variables of the fuzzy system to control the robot

trajectory
The application of ACO to optimize membership functions involves some

considerations. First, encode all parameters in a weighted graph. For this purpose
we chose a complete graph of 43 nodes to maintain the similarity of the problem

with a classical TSP where a minimum Hamiltonian circuit is searched.
The range of each variable was discretized in 22 normalized values in the range

[-1 1], and a symmetric data matrix of 43 x 43 with the distance between nodes
was created. The parameters of the membership functions of the fuzzy system are
obtained through the distance between two nodes using the relations of Tables 10,

11, 12, 13.
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Table 10 Relation variable Variable

Relation

weight for the linear speed
error input of the fuzzy sys-

¢ = —1+0475(125%2)) 4 0.475

tem to optimize
P X,

dyj, +ds
Xl =c+ <ml(W) +Cl)

C
m; = —E
Ci=—(c+m)

Y,

Y, = 0.5 <Ld~ws ;dw) +05

i = —1 - 0475 (1)) 0,475

X5

d7j, +dg
=it (2 he)) 4 )

c
m2:§
Czii—l’}’lz)

Y2

v = 05(1atfol) 105

Table 11 Relation variable Variable

Relation

weight for the angular speed

¢ = —1+0475(\Ra ful) 4 0,475

disi dis.;
Xl:”("“(w)*“)

c
ms = —E
Cy; = —(c+m3)

¥ = 0.5 (U)o,

i=1- 0475yl 4 0,475

dyg dy;
X, =i+ <m4 (( 19«/19; 20,}20)) +C4>

Cc
my — ——
2

C4:i—}’}14)

error input of the fuzzy sys- ¢
tem to optimize
P! X,
Y,
i
X5
Y2

Y, =05 <M) 105

The next step is to define an appropriate objective function. The objective
function represents the quality of the solution, and acts as an interface between the
optimization algorithm and the problem considered. The mean square error was
used to evaluate the fitness of the fuzzy system.
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Taple 12 Relat.ion variable Variable Relation
weight for the right torque I
output of the fuzzy system to b b=0.5 (ﬂyﬂ) —-0.5
optimize )
Span, spany = 0475 (222 40,525
Span, spany = 0.475(dao ) + 0.525
h h=0.5 <(d3ﬂd‘30 ;’d?’lm)) +0.5
Spans spans = 0.475 <_d32-132 ;dssm) +0.525
Taple 13 Relation variable Variable Relation
weight for the left torque e id
output of the fuzzy system to b b=05 (M) -05
optimize
Span, spany = 0.475(“232700) 4 0,525
Span, spany = 0.475(dss j,, ) + 0.525
H h=05 (d”m ‘;’d*‘ﬂm) + 0.5
Span; spanz = 0.475 (d_‘”-fu ;'dazJAz) +0.525
1 g 2
MSE =3 (k) = 5(0)] ™
K=1
where:

y(k) Reference value at instant k
y(k) Computed output of the system at instant k
N Number of samples considered

Table 14 Parameters used for each ACO algorithm in the membership function optimization
problem

ACO o B p m Ty

AS 1 0 0.5 n m/C™

ASRank 1 0 0.1 n 0.51(r — 1)/pC™
EAS 1 0 0.5 n (e + m)/pC™
ASgrank + CONVCONT 1 0 Dynamic n 0.1

m=n

C™ = length of a tour generated by a nearest-neighbor heuristic

EASe=6

ASRank, ASgac + CONVCONT: r=w—1; w=6



Fuzzy Logic for Dynamic Parameter Tuning ... 19

Since the system is responsible for controlling the linear (v) and angular
(w) velocities of the plant, the overall error is given by:

MSE, = > [v(k) = 9(0)F
K=1
1 2
MSE,, = NZ [w(k) — w(k)]

Errorgopa = MSE, + MSE,,

This was used to represent the entire length of each ant generated graph.

8 ASgrank + ConvCont for Membership Functions
Optimization

Due to the nature of the problem do not features heuristic information to balance
between the influence of the knowledge we have a priori of the problem and the
pheromone trails that ants have generated, thus the dynamic variation of the
parameter alpha had a null effect on the convergence of the algorithm when applied
to the optimization of membership functions (Fig. 18).
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Fig. 18 Membership functions of the input variables of the fuzzy system proposed to control the
convergence of the ACO algorithm without heuristic information
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If (error is P) and (error_change is P) then (ABS N) (4yP) ( pbs P) (pN)
If (error is N) and (error_change is N) then (AES P) (44N) (p*N) (pP)
If (error is P) and (error_change is Z) then (AES N) (4,P) (p"“ P) (pN)
If (error is N) and (error_change is Z) then (AS® N) (4, P) (p* P) (pN)
If (error is P) and (error_change is N) then (A2 N) (4,P) (p™ P) (pN)
If (error is N) and (error_change is P) then (AES N) (4,P) (pbs P) (pN)
If (error is Z) and (error_change is Z) then (AES N) (44P) (p™P) (pN)
If (error is Z) and (error_change is N) then (ABS N) (4yP) (p™P) (pN)
If (error is Z) and (error_change is P) then (Ags N) (4, P) 0™ P) (pN)

Fig. 19 Rules of the proposed fuzzy system to control the convergence of the ACO algorithm
without heuristic information

It was decided to continue with the same strategy of convergence control, but
this time by varying the evaporation rate (p) and the weight to be given to the
amount of pheromone that each ant leaves on its trail (w) to control diversity, so a
fuzzy system was implemented for this task.

The controller uses as inputs the error (e) and change of error (ce) with respect to
an average lambda branching factor reference level (Fig. 18) and provides as output
the evaporation rate corresponding to arcs which belong (p”*) and do not belong (p)
to the best so far tour in addition to an increase in the weight that is given to the
pheromone increment of the arcs that form part of the best so far tour (1) and the
remaining arcs (u) in ASgank (Fig. 19).

Again the rules were created with the intention to keep the average lambda
branching factor at some level to slow the convergence process and are shown
(Fig. 20):

Thus Egs. 2 and 4 corresponding to the evaporation and pheromone deposit
process in ASgank become:

e (1= )l W) e T

y I/

TZ.S — (1 — p)‘L','j, v(l7.]) g ™

w— 1
T — T+ Z A‘c + ubSAb’
Lo 1
Arii = Cr yA U = Cbs

9 Simulation in Membership Functions Optimization Problem

The model of the mobile robot and the path used in the simulations performed by
the ACO algorithm are defined in [10].

The approach described in previous section was able to maintain diversity in the
required level (Fig. 21) unlike the convergence controller that was tested in the
Sect. 5.
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Fig. 20 Membership functions of the output variables of the fuzzy system proposed to control the
convergence of the ACO algorithm without heuristic information

30 experiments were performed by approach (Table 15) to compare the per-
formance of classical approaches with the developed proposal. Using the following
parameters (Table 14).

With the exception of ASgank, the average simulation results obtained were very
similar. The proposal got the lowest average but despite that was EAS which
generated the lowest MSE controller (Fig. 23) and therefore more accurate trajec-
tory (Fig. 22).
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Fig. 21 Behavior of the average lambda branching factor during the execution of the developed
approach to control the convergence of the ACO algorithm without heuristic information

Table 15 Results obtained ACO Best Average

by the proposal and each

approach under review algo- AS 0.0015 0.0172

rithm in the memerbership EAS 0.00013 0.0161

function optimization AS

problem Rank 0.00015 0.0572
ASgank + CONVCONT 0.00029 0.0131

It is difficult to determine whether the proposal exceeded the classical approa-
ches with the above analysis, so a Z test for two samples means was performed to
come to a conclusion (Table 16).

No statistical evidence was found with a significance level of 5 % that the
average of AS or EAS is greater than the average of ASg.,,x + CONVCONT
(Figs. 24a, b).

With a significance level of 5 %, only statistical evidence that the average of the
results of simulations of ASg.. is greater than ASg,,x + CONVCONT was found
(Fig. 24c), that is, the proposal was only able to outperform the ASg,. Vvariant.
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Fig. 22 Trajectory obtained by the best generated controller

10 ASgank + ConvCont vs. S-ACO

The results obtained with the developed proposal were compared with the obtained
by [6] who attacked the same membership function optimization problem for the
same fuzzy trajectory controller and unicycle mobile robot model, the difference
lies in S-ACO as strategy used to solve the problem and the directed graph of 12
nodes chosen to represent it.

At first glance it can be observed that the best result ASg,,x + CONVCONT was
significantly lower than S-ACO as well as the average of the results obtained in the
experiments (Table 17), this is reflected in the path generated by each controller
(Fig. 25), therefore we conclude that its performance is higher.

To support the above a t-test for means of two samples was performed, for which
it took a random sample of 10 experiments per technique to compare their
performance.

The null hypothesis claims that the average of S-ACO is less than or equal to
ASRank + CONVCONT.

Since t is located at the rejection zone with a significance level of 5 % and 9
degrees of freedom there is sufficient statistical evidence to prove that the average of
S-ACO is greater than ASg., + ConvCont (Fig. 26), that is, the developed

approach outperformed the method used by [6] and therefore likewise AS and EAS
by the Sect. 9 analysis.
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Fig. 23 Membership functions of the best generated controller

Table 16 Null and alterna-
tive hypothesis for the statis-
tical hypothesis testing
performed for membership
function optimization
problem

Case | Null hypothesis (Ho) Alternative hypothesis
(Ha)

1 Has < HASRank+ConvCont Has > HASRank+ConvCont

2 HEAS < HASRank+ConvCont MEAS > HASRank+ConvCont

3 MASRank = MASRank MASRank > HASRank

+ConvCont

+ConvCont
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Fig. 24 Results of the statistical hypothesis testing performed for a AS vs. ASganx