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Preface

We describe in this book, recent advances on fuzzy logic augmentation of
nature-inspired optimization metaheuristics and their application in areas, such as
intelligent control and robotics, pattern recognition, time series prediction, and
optimization of complex problems. The book is organized into two main parts,
which contain a group of papers around a similar subject. Part I consists of papers
with the main theme of theoretical aspects of fuzzy logic augmentation of nature-
inspired optimization metaheuristics, which basically consists of papers that pro-
pose new optimization algorithms enhanced using fuzzy systems. Part II contains
papers with the main theme of application of optimization algorithms, which are
basically papers using nature-inspired techniques to achieve optimization of com-
plex optimization problems in diverse areas of application.

In the part of theoretical aspects of fuzzy logic augmentation of nature-inspired
optimization metaheuristics, there are seven chapters that describe different con-
tributions that propose new models and concepts, which can be the considered as
the basis for enhancing nature-inspired algorithms with fuzzy logic. The aim of
using fuzzy logic is to provide dynamic adaptation capabilities to the optimization
algorithms, and this is illustrated with the cases of the bat algorithm, cuckoo search,
and other methods. In the part of applications of fuzzy nature-inspired algorithms
there are five chapters that describe different contributions on the application of the
nature-inspired algorithms to solve complex optimization problems. The nature-
inspired methods include variations of ant colony optimization, particle swarm
optimization, the bat algorithm, as well as new nature inspired paradigms.

In conclusion, the edited book comprises papers on diverse aspects of fuzzy
logic augmentation of nature-inspired optimization metaheuristics and their appli-
cation in areas, such as intelligent control and robotics, pattern recognition, time
series prediction, and optimization of complex problems. There are theoretical
aspects as well as application papers.

Mexico, May 2014 Oscar Castillo
Patricia Melin
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Part I
Theory



Fuzzy Logic for Dynamic Parameter
Tuning in ACO and Its Application
in Optimal Fuzzy Logic Controller Design

Héctor Neyoy, Oscar Castillo and José Soria

Abstract Ant Colony Optimization (ACO) is a population-based constructive
metaheuristic that exploits a form of past performance memory inspired by the
foraging behavior of real ants. The behavior of the ACO algorithm is highly
dependent on the values defined for its parameters. Adaptation and parameter
control are recurring themes in the field of bio-inspired algorithms. The present
paper explores a new approach of diversity control in ACO. The central idea is to
avoid or slow down full convergence through the dynamic variation of a certain
parameter. The performance of different variants of the ACO algorithm was
observed to choose one as the basis to the proposed approach. A convergence fuzzy
logic controller with the objective of maintaining diversity at some level to avoid
premature convergence was created. Encouraging results on several travelling
salesman problem (TSP) instances and its application to the design of fuzzy con-
trollers, in particular the optimization of membership functions for a unicycle
mobile robot trajectory control are presented with the proposed method.

1 Introduction

ACO is inspired by the foraging behavior of ant colonies, and targets discrete
optimization problems [1].

The behavior of the ACO algorithm is highly dependent on the values defined
for its parameters and has an effect on its convergence. Often these are kept static
during the execution of the algorithm. Changing the parameters at runtime, at a
given time or depending on the search progress may improve the performance of
the algorithm [2–4].

Control the dynamics of convergence to maintain a balance between exploration
and exploitation is critical for good performance.
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Early convergence leaves large sections of the search space unexplored. Slow
convergence does not concentrate its attention on areas where good solutions were
found.

Fuzzy control has emerged as one of the most active and fruitful areas of
research in the application of fuzzy set theory.

The methodology of the fuzzy logic controller is useful when processes are too
complex for analysis by conventional quantitative techniques or when the available
sources of information are interpreted in a qualitatively inaccurate or uncertain way
[5].

Determine the correct parameters for the fuzzy logic controller is a complex
problem, it is also a task that consumes considerable time. Because of their ability
to solve complex NP problems is made use of ACO for the selection of those
already mentioned parameters.

There is some interest in using ACO algorithms in mobile robotics [6, 7].
Nowadays robotic automation is an essential part in the manufacturing process. The
autonomous navigation of mobile robots is a challenge. A mobile robot can be
useful in unattainable goal situations due to geological conditions or where the
human being is endangered. So, mobile robotics is an interesting subject for science
and engineering.

This paper explores a new method of diversity control in ACO. The central idea
is to prevent or stop the total convergence through the dynamic adjustment of
certain parameter of the algorithm applied to the design of fuzzy controllers, spe-
cifically to the optimization of membership functions of a trajectory controller for a
unicycle mobile robot.

The rest of the paper is organized as follows. Section 2 presents an overview of
ACO. Section 3 describes a performance analysis on several TSP instances. Sec-
tion 4 presents a new method of parameter tuning through fuzzy logic, Sect. 5
shows some simulation results in TSP problems, Sect. 6 describes the optimized
fuzzy controller, Sect. 7 presents the considerations taken to implement the ACO
algorithm in the optimization of membership functions, Sect. 8 describes how the
proposal was applied, Sects. 9 and 10 presents simulation results in the membership
functions optimization problem, finally Sect. 11 presents some conclusions.

2 Ant Colony Optimization (ACO)

The first ACO algorithm was called Ant System (AS) and its objective was to solve
the traveling salesman problem (TSP), whose goal is to find the shortest route to
link a number of cities. In each iteration, each ant keeps adding components to build
a complete solution, the next component to be added is chosen with respect to a
probability that depends on two factors. The pheromone factor that reflects the past
experience of the colony and the heuristic factor that evaluates the interest of
selecting a component with respect to an objective function. Both factors weighted
by the parameters α and β respectively (1).

4 H. Neyoy et al.



Pkij ¼
sij
� �a

gij
� �b

P
l 2 Nk

i sil½ �a gil½ �b0
; if j 2 Nk

i ð1Þ

After all ants have built their tours, pheromone trails are updated. This is done by
lowering the pheromone value on all arcs by a constant factor (2), which prevents
the unlimited accumulation of pheromone trails and allows the algorithm to forget
bad decisions previously taken.

sij  ð1� qÞsij; 8ði; jÞ 2 L ð2Þ

And by depositing pheromone on the arcs that ants have crossed in its path (3).
The better the tour the greater the amount of pheromone that their arcs receive.

sij  sij þ
Xn
k¼1

Dskij; 8ði; jÞ 2 L ð3Þ

Dskij ¼
1
Ck ; if arc ði; jÞ belongs to Tk;
0; otherwise;

�

A first improvement on the initial AS, called the elitist strategy for Ant System
(EAS). The idea is to provide strong additional reinforcement to the arcs belonging
to the best tour found since the start of the algorithm (4) [1].

sij  sij þ
Xn
k¼1

Dskij þ eDsbsij ; 8ði; jÞ 2 L ð4Þ

Dsbsij ¼
1
Cbs ; if arc ði; jÞ belongs to Tk

0; otherwise;

�

Another improvement over AS is the rank-based version of AS (ASRank). In
ASrank each ant deposits an amount of pheromone that decreases with its rank.
Additionally, as in EAS, the best-so-far ant always deposits the largest amount of
pheromone in each iteration [1].

sij  sij þ
Xw�1
r¼1
ðw� rÞDskij þ Dsbsij ð5Þ

3 Performance Analysis of ACO

To observe the performance of the AS, EAS and ASRank ACO variants 30 exper-
iments were performed by method for each instance of the examined TSP (Table 1),

Fuzzy Logic for Dynamic Parameter Tuning … 5



which are in the range of 14 to 100 cities, all extracted from TSPLIB [8], using the
parameters recommended by the literature (Table 2) [1].

The behavior of AS and EAS was very similar in all experiments (Tables 3, 4, 5,
6, 7), the performance of the three variants began to worsen by increasing the
problem complexity, however ASRank performance decreased to a lesser extent than
their counterparts when the number of cities was greater than 50 (Tables 5, 6, 7).

Since ASRank had more success finding the minimum and scored lower averages
withmore complex TSP instances than the other approaches discussed (Figs. 1 and 2).
It can be concluded that AS and EAS have better performance when the number of
cities is low unlike ASRank that works best when the number of cities is not so small
due to the pheromone deposit mechanism of this approach, where only the w-1 ants
with the shorter tours and the ant with the best so far tour are allowed to deposit
pheromone. This strategy can lead to a stagnation situation where all the ants follow
the same path and construct the same tour [1] as a result of excessive increase in the
pheromone trails of suboptimal routes (Figs. 3 and 4).

Table 1 TSP instances
considered

TSP Number of cities Best tour length

Burma14 14 3,323

Ulysses22 22 7,013

Berlin52 52 7,542

Eil76 76 538

kroA100 100 21,282

Table 2 Parameters used for
each ACO algorithm

ACO α β ρ m τ0
AS 1 2 0.5 n m/Cnn

ASRank 1 2 0.1 n 0.5r(r − 1)/ρCnn

EAS 1 2 0.5 n (e + m)/ρCnn

m = n
Cnn = 20 for each tsp except burma 14 where Cnn = 10
EAS e = 6
ASRank r = w − 1; w = 6

Table 3 Performance
obtained for the TSP instance
Burma14

ACO Best Average Successful runs

AS 3,323 3,323 30/30

ASRank 3,323 3,329 19/30

EAS 3,323 3,323 30/30

6 H. Neyoy et al.



Table 4 Performance
obtained for the TSP instance
Ulysses22

ACO Best Average Successful runs

AS 7,013 7,022 30/30

ASRank 7,013 7,067 19/30

EAS 7,013 7,018 30/30

Table 5 Performance
obtained for the TSP instance
Berlin52

ACO Best Average Successful runs

AS 7,542 7,557 2/30

ASRank 7,542 7,580 17/30

EAS 7,542 7,554 6/30

Table 6 Performance
obtained for the TSP instance
Eil76

ACO Best Average Successful runs

AS 547 556 0/30

ASRank 538 543 1/30

EAS 544 555 0/30

Table 7 Performance
obtained for the TSP instance
KroA100

ACO Best Average Successful runs

AS 22,305 22,483 0/30

ASRank 21,304 21,549 0/30

EAS 22,054 22,500 0/30

Fig. 1 Average results of each approach discussed

Fuzzy Logic for Dynamic Parameter Tuning … 7



Fig. 2 Percentage of success in finding the global minimum of each approach discussed

Fig. 3 Convergence plot of the ACO algorithm variant ASRank

8 H. Neyoy et al.



4 Fuzzy Logic Convergence Controller

Due to the obtained results it was decided to use ASRank as the basis for our
proposed ACO variant. The central idea is to prevent or stop the total convergence
through the dynamic variation of the alpha parameter.

Alpha has a big effect in the diversity. Is recommended to keep α in the range of
0 < α < 1 [1].

A value closer to 1 will emphasize better paths but reduce diversity, while lower
α will keep more diversity but reduce selective pressure [3].

However, it appears impossible to fix a universally best α. In most approaches it
is taken to be 1, so that the selection probability is linear in the pheromone level.

An adaptive parameter control strategy was used; this takes place when there is
some form of feedback from the search that is used to determine the direction and/or
magnitude of the change to the strategy parameter [9]. In our case, the average
lambda branching factor, this factor measures the distribution of the values of the
pheromone trails and provides an indication of the size of the search space effec-
tively explored [1].

A convergence fuzzy controller to prevent or delay the full convergence of the
algorithm was created (Fig. 5). Fuzzy control can be seen as the translation of
external performance specifications and observations of a plant behavior into a rule
based linguistic control strategy [5].

Fig. 4 Behavior of the average lambda branching factor during the execution of the algorithm
ACO variant ASRank

Fuzzy Logic for Dynamic Parameter Tuning … 9



The objective of the controller is to maintain the average lambda branching
factor at a certain level to avoid a premature convergence, so its rules were made to
fulfill this purpose (Fig. 6).

The controller uses as inputs the error and change of error (Fig. 7) with respect to
an average lambda branching factor reference level and provides as output an
increase in the value of parameter alpha (Fig. 8).

Fig. 5 Block diagram of the proposed system to control the convergence of the ACO algorithm
variant ASRank

If (error is P) and (error_change is P) then (alpha increment is N) 
If (error is N) and (error_change is N) then (alpha increment is P) 
If (error is P) and (error_change is Z) then (alpha increment is N) 
If (error is N) and (error_change is Z) then (alpha increment is P) 
If (error is P) and (error_change is N) then (alpha increment is Z) 
If (error is N) and (error_change is P) then (alpha increment is Z) 
If (error is Z) and (error_change is Z) then (alpha increment is Z) 
If (error is Z) and (error_change is N) then (alpha increment is P) 
If (error is Z) and (error_change is P) then (alpha increment is N) 

Fig. 6 Rules of the proposed fuzzy system to control the convergence of the ACO algorithm

Fig. 7 Membership functions of the input variables of the fuzzy system proposed to control the
convergence of the ACO algorithm

10 H. Neyoy et al.



5 Simulation in TSP Problems

The controller was able to maintain diversity in a more appropriate level, avoiding
the full convergence of the algorithm (Fig. 9).

The same number of experiments that in the above analysis were performed and
obtained the following results (Table 8).

Fig. 8 Membership functions of the output variables of the fuzzy system proposed to control the
convergence of the ACO algorithm

Fig. 9 Behavior of the average lambda branching factor during the execution of the developed
approach

Fuzzy Logic for Dynamic Parameter Tuning … 11



It was found that the proposed method was able to improve the results of the
strategies studied, obtaining lower averages (Fig. 10) and reaching the global
minimum on more occasions than the analyzed variants (Fig. 11).

To verify the above in a more formal way a Z test for means of two samples was
performed (Table 9).

The 3 ACO variants mentioned above were analyzed in addition to the approach
developed in 5 instances of the TSP, 30 experiments were performed for each
instance, 150 experiments were made in total of we extracted a 30 data random
sample for each method.

With a significance level of 5 % it was found sufficient statistical evidence to
claim that the average of AS (Fig. 12a), EAS (Figura 12b) and ASRank (Fig. 12c) is
higher than the obtained for ASRank + ConvCont in the experiments, this means that
our approach improved the performance of the discussed variants on the studied
problems, as had been observed in the first analysis.

Table 8 Performance obtained by the strategy proposed in the instances discussed above

TSP Best Average Successful runs

Burma14 3,323 3,323 30/30

Ulysses22 7,013 7,013 30/30

Berlin52 7,542 7,543 26/30

Eil76 538 539 21/30

KroA100 21,292 21,344 0/30

Fig. 10 Average of the results obtained by the proposal and each approach under review

12 H. Neyoy et al.



Fig. 11 Percentage of success in finding the global minimum of the proposal and each approach
under review

Table 9 Null and alternative
hypothesis for the statistical
hypothesis testing performed
for TSP problems

Case Null hypothesis (H0) Alternative hypothesis
(Ha)

1 μAS ≤ μASRank+ConvCont μAS > μASRank+ConvCont
2 μEAS ≤ μASRank+ConvCont μEAS > μASRank+ConvCont
3 μASRank ≤ μASRank

+ConvCont

μASRank > μASRank
+ConvCont

Fig. 12 Results of the statistical hypothesis testing performed for a AS vs. ASRank + ConvCont,
b EAS vs. ASRank + ConvCont, c ASRank vs. ASRank + ConvCont for TSP problems

Fuzzy Logic for Dynamic Parameter Tuning … 13



6 Fuzzy Trajectory Controller for a Unicycle Mobile Robot

It decided to optimize a fuzzy trajectory controller for a unicycle mobile robot to
test the developed method in a more complex problem. The control proposal for the
mobile robot is: Given a path qd(t) and a desired orientation, a fuzzy logic controller
must be designed to apply an adequate torque τ, such that measured positions q(t)
reaches the reference trajectory qd(t). That is:

lim
t!1 k qdðtÞ � qðtÞ k¼ 0 ð6Þ

The fuzzy system to optimize [10] is a Takagi-Sugeno type, for simplicity it is
decided to modify and convert it into a Mamdani type controller so that the input
and output parameters are represented by linguistic variables.

The controller receives as input variables the error in the linear (ev) and angular
(ew) speed (Fig. 13), that is, the difference between the predefined desired speed and
the actual speed of the plant, and as output variables, the right (τ1) and left (τ2)
torques of said robot (Fig. 14).

The membership functions of the input variables are trapezoidal for the negative
(N) and positive (P) linguistic terms, and triangular for the zero (Z) linguistic term.
The output variables have three membership functions, negative (N), zero (Z),
positive (P) of triangular shape and uses nine fuzzy rules which are shown below
(Fig. 15).

Fig. 13 Membership functions of the fuzzy trajectory controller input variables

14 H. Neyoy et al.



7 ACO for Membership Functions Optimization

ACO was used to find the membership functions optimal parameters through its
adjustment and by the subsequently evaluation of the system.

The parameters a, b, f, j, k corresponding to the membership functions of
the input variables remain fixed to simplify the problem. The algorithm will find the
optimal values of the parameters c, i in a straightforward manner and, through
the optimum position of the intersection points (X1, Y1), (X2, Y2), the value of the
parameters d, e, g, h (Fig. 16).

Regarding the membership functions of the output variables, the algorithm will
search for the optimum center (b, h, except e that remains fixed for simplicity) and
span of each one (a, c, d, f, g, i) (Fig. 17).

Fig. 14 Membership functions of the fuzzy trajectory controller output variables

If (ev is N) and (ew is N) then (τ1 is N)(τ2 is N) 
If (ev is N) and (ew is Z) then (τ1 is N)(τ2 is Z) 
If (ev is N) and (ew is P) then (τ1 is N)(τ2 is P) 
If (ev is Z) and (ew is N) then (τ1 is Z)(τ2 is N) 
If (ev is Z) and (ew is Z) then (τ1 is Z)(τ2 is Z) 
If (ev is Z) and (ew is P) then (τ1 is Z)(τ2 is P) 
If (ev is P) and (ew is N) then (τ1 is P)(τ2 is N) 
If (ev is P) and (ew is Z) then (τ1 is P)(τ2 is Z) 
If (ev is P) and (ew is P) then (τ1 is P)(τ2 is P) 

Fig. 15 Rules of the of the fuzzy trajectory controller discussed

Fuzzy Logic for Dynamic Parameter Tuning … 15



The application of ACO to optimize membership functions involves some
considerations. First, encode all parameters in a weighted graph. For this purpose
we chose a complete graph of 43 nodes to maintain the similarity of the problem
with a classical TSP where a minimum Hamiltonian circuit is searched.

The range of each variable was discretized in 22 normalized values in the range
[−1 1], and a symmetric data matrix of 43 × 43 with the distance between nodes
was created. The parameters of the membership functions of the fuzzy system are
obtained through the distance between two nodes using the relations of Tables 10,
11, 12, 13.

Fig. 16 Membership functions of the input variables of the fuzzy system to control the robot
trajectory

Fig. 17 Membership functions of the output variables of the fuzzy system to control the robot
trajectory

16 H. Neyoy et al.



The next step is to define an appropriate objective function. The objective
function represents the quality of the solution, and acts as an interface between the
optimization algorithm and the problem considered. The mean square error was
used to evaluate the fitness of the fuzzy system.

Table 10 Relation variable
weight for the linear speed
error input of the fuzzy sys-
tem to optimize

Variable Relation

c c ¼ �1þ 0:475
ðd1;j2 þ d2;j2 Þ

2

� �
þ 0:475

X1 X1 ¼ cþ m1
ðd3;j3 þ d4;j4 Þ

2

� �
þ c1

� �

m1 ¼ � c
2

C1 ¼ �ðcþ m1Þ
Y1 Y1 ¼ 0:5

ðd5;j5 þ _d6;j6 Þ
2

� �
þ 0:5

i i ¼ �1� 0:475
ðd11;j11 þ d12;j12 Þ

2

� �
þ 0:475

X2 X2 ¼ iþ m2
ðd7;j7 þ d8;j8 Þ

2

� �
þ c2

� �

m2 ¼ c
2

C2 ¼ i� m2Þ
Y2 Y2 ¼ 0:5

ðd9;j9 þ d10;j10 Þ
2

� �
þ 0:5

Table 11 Relation variable
weight for the angular speed
error input of the fuzzy sys-
tem to optimize

Variable Relation

c c ¼ �1þ 0:475
ðd13;j13 þ d14;j14 Þ

2

� �
þ 0:475

X1 X1 ¼ cþ m3
ðd15;j15 þ d16;j16 Þ

2

� �
þ c3

� �

m3 ¼ � c
2

C3 ¼ �ðcþ m3Þ
Y1 Y1 ¼ 0:5

ðd17;j17 þ d18;j18 Þ
2

� �
þ 0:5

i i ¼ 1� 0:475
ðd23;j23 þ d24;j24 Þ

2

� �
þ 0:475

X2 X2 ¼ iþ m4
ðd19;j19 þ d20;j20 Þ

2

� �
þ c4

� �

m4 ¼ � c
2

C4 ¼ i� m4Þ
Y2 Y2 ¼ 0:5

ðd21;j21 þ d22;j22 Þ
2

� �
þ 0:5
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MSE ¼ 1
N

XN
K¼1
½yðkÞ � ~yðkÞ�2 ð7Þ

where:
y(k) Reference value at instant k
~yðkÞ Computed output of the system at instant k
N Number of samples considered

Table 12 Relation variable
weight for the right torque
output of the fuzzy system to
optimize

Variable Relation

b b ¼ 0:5
d25;j25 þ d26;j26

2

� �
� 0:5

Span1 span1 ¼ 0:475
d27;j27 þ d28;j28

2

� �
þ 0:525

Span2 span2 ¼ 0:475 d29;j29
	 
þ 0:525

h h ¼ 0:5
ðd30;j30 þ d31;j31 Þ

2

� �
þ 0:5

Span3 span3 ¼ 0:475
d32;j32 þ d33;j33

2

� �
þ 0:525

Table 13 Relation variable
weight for the left torque
output of the fuzzy system to
optimize

Variable Relation

b b ¼ 0:5
d34;j34þd35;j35

2

� �
� 0:5

Span1 span1 ¼ 0:475
d36;j36þd37;j37

2

� �
þ 0:525

Span2 span2 ¼ 0:475 d38;j38
	 
þ 0:525

H h ¼ 0:5
d39;j39þd40;j40

2

� �
þ 0:5

Span3 span3 ¼ 0:475
d41;j41þd42;j42

2

� �
þ 0:525

Table 14 Parameters used for each ACO algorithm in the membership function optimization
problem

ACO α β ρ m τ0
AS 1 0 0.5 n m/Cnn

ASRank 1 0 0.1 n 0.5r(r − 1)/ρCnn

EAS 1 0 0.5 n (e + m)/ρCnn

ASRank + CONVCONT 1 0 Dynamic n 0.1

m = n
Cnn = length of a tour generated by a nearest-neighbor heuristic
EAS e = 6
ASRank, ASRank + CONVCONT: r = w − 1; w = 6
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Since the system is responsible for controlling the linear (v) and angular
(w) velocities of the plant, the overall error is given by:

MSEv ¼ 1
N

XN
K¼1
½vðkÞ � ~vðkÞ�2

MSEw ¼ 1
N

XN
K¼1
½wðkÞ � ~wðkÞ�2

Errorglobal ¼ MSEv þMSEw

This was used to represent the entire length of each ant generated graph.

8 ASRank + ConvCont for Membership Functions
Optimization

Due to the nature of the problem do not features heuristic information to balance
between the influence of the knowledge we have a priori of the problem and the
pheromone trails that ants have generated, thus the dynamic variation of the
parameter alpha had a null effect on the convergence of the algorithm when applied
to the optimization of membership functions (Fig. 18).

Fig. 18 Membership functions of the input variables of the fuzzy system proposed to control the
convergence of the ACO algorithm without heuristic information
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It was decided to continue with the same strategy of convergence control, but
this time by varying the evaporation rate (ρ) and the weight to be given to the
amount of pheromone that each ant leaves on its trail (w) to control diversity, so a
fuzzy system was implemented for this task.

The controller uses as inputs the error (e) and change of error (ce) with respect to
an average lambda branching factor reference level (Fig. 18) and provides as output
the evaporation rate corresponding to arcs which belong (ρbs) and do not belong (ρ)
to the best so far tour in addition to an increase in the weight that is given to the
pheromone increment of the arcs that form part of the best so far tour (ubs) and the
remaining arcs (u) in ASRank (Fig. 19).

Again the rules were created with the intention to keep the average lambda
branching factor at some level to slow the convergence process and are shown
(Fig. 20):

Thus Eqs. 2 and 4 corresponding to the evaporation and pheromone deposit
process in ASRank become:

sbsij  ð1� qbsÞsbsij ; 8ði; jÞ 2 Tbs

sbsij  ð1� qÞsij; 8ði; jÞ 62 Tbs

sij  sij þ
Xw�1
r¼1

ðw� rÞðuÞ
ðw� 1Þ Dsrij þ ubsDbs

ij

Dsrij ¼
1
Cr

yDsbsij ¼
1
Cbs

9 Simulation in Membership Functions Optimization Problem

The model of the mobile robot and the path used in the simulations performed by
the ACO algorithm are defined in [10].

The approach described in previous section was able to maintain diversity in the
required level (Fig. 21) unlike the convergence controller that was tested in the
Sect. 5.

If (error is P) and (error_change is P) then ( N) ( P) ( bs P) (  N)

If (error is N) and (error_change is N) then ( P) ( N) ( bs N) (  P)

If (error is P) and (error_change is Z) then ( N) ( P) ( bs P) (  N)

If (error is N) and (error_change is Z) then ( N) ( P) ( bs P) (  N)

If (error is P) and (error_change is N) then ( N) ( P) ( bs P) (  N)

If (error is N) and (error_change is P) then ( N) ( P) ( bs P) (  N)

If (error is Z) and (error_change is Z) then ( N) ( P) ( bs P) (  N)

If (error is Z) and (error_change is N) then ( N) ( P) ( bs P) (  N)

If (error is Z) and (error_change is P) then ( N) (  P) ( bs P) (  N)

Δbs
u u

Δ
Δ

uΔ

uΔ

uΔ

uΔ

uΔ

uΔ

uΔ

uΔ
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u
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u
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Fig. 19 Rules of the proposed fuzzy system to control the convergence of the ACO algorithm
without heuristic information
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30 experiments were performed by approach (Table 15) to compare the per-
formance of classical approaches with the developed proposal. Using the following
parameters (Table 14).

With the exception of ASRank, the average simulation results obtained were very
similar. The proposal got the lowest average but despite that was EAS which
generated the lowest MSE controller (Fig. 23) and therefore more accurate trajec-
tory (Fig. 22).

Fig. 20 Membership functions of the output variables of the fuzzy system proposed to control the
convergence of the ACO algorithm without heuristic information
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It is difficult to determine whether the proposal exceeded the classical approa-
ches with the above analysis, so a Z test for two samples means was performed to
come to a conclusion (Table 16).

No statistical evidence was found with a significance level of 5 % that the
average of AS or EAS is greater than the average of ASRank + CONVCONT
(Figs. 24a, b).

With a significance level of 5 %, only statistical evidence that the average of the
results of simulations of ASRank is greater than ASRank + CONVCONT was found
(Fig. 24c), that is, the proposal was only able to outperform the ASRank variant.

Fig. 21 Behavior of the average lambda branching factor during the execution of the developed
approach to control the convergence of the ACO algorithm without heuristic information

Table 15 Results obtained
by the proposal and each
approach under review algo-
rithm in the memerbership
function optimization
problem

ACO Best Average

AS 0.0015 0.0172

EAS 0.00013 0.0161

ASRank 0.00015 0.0572

ASRank + CONVCONT 0.00029 0.0131
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10 ASRank + ConvCont vs. S-ACO

The results obtained with the developed proposal were compared with the obtained
by [6] who attacked the same membership function optimization problem for the
same fuzzy trajectory controller and unicycle mobile robot model, the difference
lies in S-ACO as strategy used to solve the problem and the directed graph of 12
nodes chosen to represent it.

At first glance it can be observed that the best result ASRank + CONVCONT was
significantly lower than S-ACO as well as the average of the results obtained in the
experiments (Table 17), this is reflected in the path generated by each controller
(Fig. 25), therefore we conclude that its performance is higher.

To support the above a t-test for means of two samples was performed, for which
it took a random sample of 10 experiments per technique to compare their
performance.

The null hypothesis claims that the average of S-ACO is less than or equal to
ASRank + CONVCONT.

Since t is located at the rejection zone with a significance level of 5 % and 9
degrees of freedom there is sufficient statistical evidence to prove that the average of
S-ACO is greater than ASRank + ConvCont (Fig. 26), that is, the developed
approach outperformed the method used by [6] and therefore likewise AS and EAS
by the Sect. 9 analysis.

Fig. 22 Trajectory obtained by the best generated controller
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Fig. 23 Membership functions of the best generated controller

Table 16 Null and alterna-
tive hypothesis for the statis-
tical hypothesis testing
performed for membership
function optimization
problem

Case Null hypothesis (H0) Alternative hypothesis
(Ha)

1 μAS ≤ μASRank+ConvCont μAS > μASRank+ConvCont
2 μEAS ≤ μASRank+ConvCont μEAS > μASRank+ConvCont
3 μASRank ≤ μASRank

+ConvCont

μASRank > μASRank
+ConvCont
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Fig. 24 Results of the statistical hypothesis testing performed for a AS vs. ASRank + ConvCont,
b EAS vs. ASRank + ConvCont, c ASRank vs. ASRank + ConvCont for membership functions
optimization problem

Table 17 Performance
obtained by ASRank + CONV-
CONT and S-ACO in the
membership function optimi-
zation problem

ACO Best Average

ASRank + CONVCONT 0.00029 0.0131

S-ACO 0.0982 0.1199

Fig. 25 Trajectories generated by the controller obtained by the best of experiments performed
with: a ASRank + ConvCont, b S-ACO
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11 Conclusions

Maintaining diversity is important for good performance in the ACO algorithm. An
adaptive control strategy of the parameter alpha for this purpose was used, which
was embodied in a diversity fuzzy controller which allows avoiding or delaying the
total convergence and thereby controlling the exploration and exploitation capa-
bilities of the algorithm.

The strategy was compared with 3 variants of the ACO algorithm on several
instances of the TSP taken from TSPLIB. An improvement was observed by
dynamically changing the parameter alpha value, as was seen in the statistical
analysis performed, where our approach outperforms the classical strategies.

It was found that the parameter alpha is not the most appropriate when there is
no heuristic information to guide the search as was the case with the optimization of
membership functions, since it is not possible to balance between the previous
knowledge of the problem and by the generated by the algorithm itself during its
execution and thus control the convergence of the algorithm. So it was decided to
continue with the same strategy for this kind of problem, but varying the evapo-
ration rate and the weight that is given to the amount of pheromone which each ant
deposited, what allowed controlling the convergence of the algorithm without
heuristic information. This modification improved the performance of ASRank,
however since this variant scored the lowest performance, is probably not the most
appropriate in these cases.

The formulated strategy was outperformed by AS and EAS in the membership
functions optimization problem but managed to outperform the method developed in
[6], so it was concluded that the improvement could not come from the convergence
control made and is attributed to the way in which the problem was encoded.

As future work it intends to apply convergence control to other variants of ACO
algorithm. Modify the reference, and thus diversity in an intelligent way, depending
of the search progress or some other performance measure. Look for heuristic
information relevant to the membership functions optimization problem that drives
the search process in early iterations of the algorithm, making it possible to use the
strategy of dynamic variation of the parameter alpha and an analysis in presence of
noise of the generated controller by ACO algorithm.

H0: µS-ACO ≤ µASRank+ConvCont

Ha: µS-ACO > µASRank+ConvCont

α = 0.05 

Fig. 26 Results of the statistical hypothesis testing performed for a S-ACO vs.
ASRank + ConvCont
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Fuzzy Classification System Design Using
PSO with Dynamic Parameter Adaptation
Through Fuzzy Logic

Frumen Olivas, Fevrier Valdez and Oscar Castillo

Abstract In this paper a new method for dynamic parameter adaptation in particle
swarm optimization (PSO) is proposed. PSO is a metaheuristic inspired in social
behaviors, which is very useful in optimization problems. In this paper we propose
an improvement to the convergence and diversity of the swarm in PSO using fuzzy
logic. Simulation results show that the proposed approach improves the perfor-
mance of PSO.

Keywords Fuzzy logic � Particle swarm optimization � Dynamic parameter
adaptation � Fuzzy classifier � Fuzzy classification system

1 Introduction

Fuzzy logic or multi-valued logic is based on fuzzy set theory proposed by Zadeh
[14], which helps us in modeling knowledge, through the use of if-then fuzzy rules.

The fuzzy set theory provides a systematic calculus to deal with linguistic
information, and that improves the numerical computation by using linguistic labels
stipulated by membership functions [7].

Particle swarm optimization (PSO) that was introduced by Kennedy and Eberhart
in 1995 [9, 10], maintains a swarm of particles and each particle represents a possible
solution. These particles “fly” through a multidimensional search space, where the
position of each particle is adjusted according to your own experience and that of its
neighbors [4].

PSO has recently received many improvements and applications. Most of the
modifications to PSO are to improve convergence and to increase the diversity of
the swarm [4]. So in this paper we propose an improvement to the convergence and
diversity of PSO through the use of fuzzy logic. Basically, fuzzy rules are used to
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control the key parameters in PSO to achieve the best possible dynamic adaptation
of these parameter values.

The rest of the paper is organized as follows. Section 2 describes the proposed
methodology. Section 3 shows how the experiments were performed with the
proposed method and the simple method using the benchmark functions defined in
Sect. 2. Section 4 shows how to perform the statistical comparison with all its
parameters and analysis of results. Section 5 shows the design of fuzzy classifier.
Section 6 shows the methodology to follow for the design of fuzzy classifier.
Section 7 shows how the experiments were performed with the proposed method
and the simple method in the design of fuzzy classifier. Section 8 shows how to
perform the statistical comparison with all its parameters and analysis of results.
Section 9 shows the conclusions of the design of fuzzy classifier design. Finally, the
conclusions of this paper are presented.

2 Methodology for Parameter Adaptation

The dynamics of PSO is defined by Eqs. 1 and 2, which are the equations to update
the position and velocity of the particle, respectively.

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ ð1Þ

vijðt þ 1Þ ¼ vijðtÞ þ c1r1ðtÞ yijðtÞ � xijðtÞ
� �þ c2r2jðtÞ byjðtÞ � xijðtÞ

� � ð2Þ

Parameters c1 and c2 were selected to be adjusted using fuzzy logic, since those
parameters account for the movement of the particles.

The parameter c1 or cognitive factor represents the level of importance given the
particle to its previous positions.

The parameter c2 or social factor represents the level of importance that the
particle gives the best overall position.

Based on the literature [4] the recommended values for c1 and c2 must be in the
range of 0.5 and 2.5, plus it is also suggested that changing the parameters c1 and
c2 dynamically during the execution of this algorithm can produce better results.

In addition it is also found that the algorithm performance measures, such as:
diversity of the swarm, the average error at one point in the execution of the
algorithm, the iterations themselves, needs to be considered to run the algorithm,
among others. In our work all the above are taken in consideration for the fuzzy
systems to modify the parameters c1 and c2 dynamically changing these parameters
in each iteration of the algorithm.

For measuring the iterations of the algorithm, it was decided to use a percentage
of iterations, i.e. when starting the algorithm the iterations will be considered “low”,
and when the iterations are completed it will be considered “high” or close to
100 %. To represent this idea we use Eq. 3.
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Iteration ¼ Current Iteration
Maximum of Iterations

ð3Þ

The diversity measure is defined by Eq. 4, which measures the degree of
dispersion of the particles, i.e. when the particles are closer together there is less
diversity as well as when particles are separated then diversity is high. As the reader
will realize the equation of diversity can be considered as the average of the
Euclidean distances between each particle and the best particle.

Diversity SðtÞð Þ ¼ 1
ns

Xns
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx
j¼1

xijðtÞ � �xjðtÞ
� �2

vuut ð4Þ

The error measure is defined by Eq. 5, which measures the difference between
the swarm and the best particle, by averaging the difference between the fitness of
each particle and the fitness of the best particle.

Error ¼ 1
ns

Xns
i¼1

FitnessðxiÞ �MinFð Þ ð5Þ

Therefore for designing the fuzzy systems, which dynamically adjust the
parameters of c1 and c2, the three measures described above were considered as
inputs. It is obvious that for each fuzzy system the outputs are c1 and c2.

In regards to the inputs of the fuzzy systems, the iteration variable has by itself a
defined range of possible values which range from 0 to 1 (0 is 0 % and 1 is the
100 %), but with the diversity and the error, we perform a normalization of the values
of these to have values between 0 and 1. Equation 6 shows how the normalization of
diversity is performed and Eq. 7 shows how the normalization of the error is
obtained.

Diver Norm ¼ if MinDiver ¼ MaxDiverfDiver Norm ¼ 0

if MinDiver 6¼ MaxDiverfDiver Norm ¼ FnNorm

�

FnNorm ¼ Diversity�MinDiver
MaxDiver �MinDiver

ð6Þ

Equation 6 shows two conditions for the normalization of diversity, the first
provides that where the maximum Euclidean distance is equal to the minimum
Euclidean distance, this means that the particles are exactly in the same position so
there is no diversity. The second condition deals with the cases with different
Euclidean distances.

Error Norm ¼ if MinF ¼ MaxFfError Norm ¼ 1
if MinF 6¼ MaxFfError Norm ¼ Error�MinF

MaxF�MinF

�
ð7Þ
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Equation 7 shows two conditions to normalize the error, the first one tells us that
when the minimum fitness is equal to the maximum fitness, then the error will be 1;
this is because the particles are close together. The second condition deals with the
cases with different fitness.

The design of the input variables can be appreciated in Figs. 1, 2 and 3, which
show the inputs iteration, diversity, and error respectively, each input is granulated
into three triangular membership functions.

For the output variables, as mentioned above, the recommended values for c1
and c2 are between 0.5 and 2.5, so that the output variables were designed using
this range of values. Each output is granulated in five triangular membership
functions, the design of the output variables can be seen in Figs. 4 and 5, c1 and c2
respectively.

Fig. 1 Input 1: iteration

Fig. 2 Input 2: diversity
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Fig. 3 Input 3: error

Fig. 4 Output 1: c1

Fig. 5 Output 2: c2
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Having defined the possible input variables, it was decided to combine them to
generate different fuzzy systems for dynamic adjustment of c1 and c2. Based on the
combinations of possible inputs, there were seven possible fuzzy systems, but it was
decided to consider only the systems that have more inputs (since we previously
considered fuzzy systems with only a single input), so that eventually there were
three fuzzy systems which are defined below.

The first fuzzy system has iteration and diversity as inputs, which is shown in
Fig. 6. The second fuzzy system has iteration and error as inputs and is shown in
Fig. 7. The third fuzzy system has iteration, diversity, and error as inputs, as shown
in Fig. 8.

To design the rules of each fuzzy system, it was decided that in early iterations
the PSO algorithm must explore and eventually exploit. Taking into account other
variables such as diversity, for example, when diversity is low, that is, that the

Fig. 6 First fuzzy system

Fig. 7 Second fuzzy system

Fig. 8 Third fuzzy system
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particles are close together, we must use exploration, and when diversity is high we
must use exploitation.

The rules for each fuzzy system are shown in Figs. 9, 10 and 11, for the fuzzy
systems 1, 2 and 3, respectively.

Also for the comparison of the proposed method with respect to the PSO without
parameter adaptation, we considered benchmark mathematical functions, defined in
[6, 11], which are 27 in total, and in each we must find the parameters that give us
the global minimum of each function. In Fig. 12 there is a sample of the functions
that are used.

As indicated in Fig. 12 we only considered functions of one or two dimensions
for the experiments.

So that once defined the fuzzy systems that dynamically adjust the parameters of
PSO, and defined the problem in which it applies (Benchmark mathematical
functions), the proposal is as shown in Fig. 13, where we can notice that c1 and c2
parameters are adjusted by a fuzzy system, and in turn this “fuzzy PSO” searches
for the optimal parameters for the Benchmark mathematical functions.

Fig. 9 Rules for fuzzy system 1

Fig. 10 Rules for fuzzy system 2
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Fig. 11 Rules for fuzzy system 3

Fig. 12 Benchmark mathematical functions
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3 Experimentation with the Fuzzy Systems
and the Benchmark Mathematical Functions

For the experiments we used the parameters contained in Table 1. Table 1 shows
the parameters of the methods to be compared; in this case, we perform a com-
parison of the proposed method and its variations against the simple PSO algorithm.

Since functions do not have the same global minimum, for comparison it was
decided to normalize the results of each function, for this it is used Eq. 8, which
gives results between 0 and 1, which means that a number close to 0 is better than a
number close to 1.

Experiment Norm ¼ Experiment � GlobalMin
GlobalMax� GlobalMin

����
���� ð8Þ

To normalize the results with Eq. 8, we need the maximum and the minimum of
each benchmark mathematical function; in our case these data are known. Also, the
absolute value is needed, because we want to know how much difference between
the results of the experiment and the minimum value of the function. Therefore,
Table 2 shows some experimental results of each method with each function.

Fig. 13 Proposal for fuzzy
dynamic adaptation of PSO

Table 1 Parameters for each method

Parameter Simple PSO Fuzzy PSO 1 Fuzzy PSO 2 Fuzzy PSO 3

Population 10 10 10 10

Iterations 30 30 30 30

C1 1 Dynamic Dynamic Dynamic

C2 3 Dynamic Dynamic Dynamic
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4 Statistical Comparison

To perform the statistical comparison, we have:
3 methods to compare against the simple PSO, (FPSO1, FPSO2, FPSO3).
27 Benchmark mathematical functions.
10 experiments were performed for each method by each function, so it has a

total of 270 experiments for each method. Of this total, we took a random sample of
50 experiments for each method for statistical comparison.

The statistical test used for comparison is the z-test, whose parameters are
defined in Table 3.

With the parameters in Table 3, we applied the statistical z-test, giving the
following results (Table 4):

In applying the statistic z-test, with significance level of 0.05, and the alternative
hypothesis says that the average of the proposed method is lower than the average
of simple PSO, and of course the null hypothesis tells us that the average of the
proposed method is greater than or equal to the average of simple PSO, with a
rejection region for all values fall below −1.645. So the statistical test results are
that: for the fuzzy PSO 1, there is significant evidence to reject the null hypothesis,
as in the fuzzy PSO 3. But in the fuzzy PSO 2, there is no significant evidence to

Table 2 Simulation results

Function Minimum Simple PSO Fuzzy PSO 1 Fuzzy PSO 2 Fuzzy PSO 3

1 1 0.0005 0.0000 0.0001 0.0003

2 0 0.0000 0.0000 0.0000 0.0000

3 0 0.0000 0.0009 0.0000 0.0000

4 0 0.0000 0.0000 0.0000 0.0000

5 −20 0.1042 0.0665 0.0728 0.0743

6 −100.2238 0.1275 0.1277 0.0000 0.0000

7 −18.5547 0.1929 0.2484 0.2645 0.1253

8 0 0.0000 0.0000 0.0003 0.0000

9 0 0.0017 0.0039 0.0157 0.0019

10 0 0.0000 0.0000 0.0001 0.0000

Table 3 Parameters for the statistical z-test

Parameter Value

Level of significance 95 %

Alpha 0.05 %

Ha µ1 < µ2

H0 µ1 ≥ µ2

Critical value −1.645
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reject the null hypothesis. In conclusion, two of the proposed variants of PSO were
significantly better than simple PSO.

We proposed a method for dynamic adaptation of the parameters of PSO to
improve the quality of results. With the results of the statistic test, we can conclude
that there is significant evidence to say that the proposed approach could help in the
adaptation of parameters in PSO.

Future work includes experiments with functions with more than two dimen-
sions, comparison with other approaches of PSO, for example, PSO with inertia
weight and PSO with constriction. Also try to achieve better results for the PSO
with fuzzy system 2, more specifically with the input error and the rules of the fuzzy
system. In future work also we try to apply the proposed method to other types of
problems, for example, optimization of fuzzy systems.

5 Fuzzy Classifier Design

To design fuzzy classifiers were used methods such as PSO simple and proposed
methods with parameters adapted dynamically. These methods were applied to
different dataset taken from [1, 2, 3, 5, 8, 12, 13], in which the goal is to obtain a
fuzzy classifier that “classify” the data in the best way possible. Figure 14 shows an
example of a dataset, in this case the Fisher’s Iris dataset [5], which shows that it
has 4 attributes (length and width of sepal and petal length and width), 150 records
and three distinct classes. The figure shows some graphs which visually compares
the attributes of Fisher’s Iris dataset.

6 Methodology for Designing Fuzzy Classifiers

The methodology proposed for the design of fuzzy classifiers, defined below:

1. Given a dataset, is obtained the number of different classes, and is divided into
70 % for training and 30 % exclusively for testing.

2. From the training data are obtained some necessary features, such as: number of
attributes, attribute ranges, etc.

3. It generates a fuzzy classifier of base, from the characteristics obtained.
4. Optimize the rules from fuzzy classifier using the data for training.

Table 4 Results of applying statistical z-test

Our method Simple method Z value Evidence

FPSO1 Simple PSO −2.1937 Significant

FPSO2 Simple PSO −0.6801 Not significant

FPSO3 Simple PSO −2.1159 Significant
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5. Test the best fuzzy classifier found, so far, with the test data.
6. Optimize the membership functions of the best fuzzy classifier found, which has

optimized rules, using data for training.
7. Test the best fuzzy classifier found with the test data.

The following defines each step of the methodology for the design of fuzzy
classifiers.

In the first step, given a dataset, we obtain the number of different classes, then is
divide the dataset, is taken 30 % of the dataset randomly without replacement, the
remaining records, that is, 70 % becomes our set of data for training, but before that,
are obtained the number of different classes of 70 %, and if this is less than the total
of different classes of full dataset, we proceed to select a new random 30 % of
records, until the 70 % of the data contains at least one record of each class, this to
guarantee that the fuzzy classifier have all possible output classes.

In the second step, to obtain the necessary features from the training data, we
obtain the number of attributes, and ranges are obtained from the minimum and
maximum of each attribute.

In the third step, to generate a fuzzy classifier, a structure is created to define a
Sugeno-type fuzzy system from scratch, where the inputs are each attribute of the
dataset and the ranges of the inputs are the ranges of each attribute, and the output

Fig. 14 Fisher’s Iris dataset
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of the fuzzy classification system, is given by the total number of classes. Also
defines the number of membership functions per input, since the system is Sugeno
each output, that is each class, will be an integer. The rules of the fuzzy classifier
are all possible combinations in the antecedents, and all the consequents are the first
class. Figure 15 shows a fuzzy classifier for Fisher’s Iris dataset.

In Fig. 15 one can observe the fuzzy system for classification of Iris dataset. The
Iris dataset has four attributes, which are: sepal length, sepal width, petal length and
petal width, these attributes are reflected in the inputs of the fuzzy system.

Figure 16 shows the inputs and the output of the fuzzy system, as you can see,
each entry has its own range, defined by the training data, in addition, each input
has two membership functions, placed symmetrically (can be more membership
functions but in the example used only two), and has every possible output dataset
class.

Figure 17 shows the set of rules of the fuzzy system for classification of the Iris
dataset. As can be observed the number of rules is defined by the number of inputs
and their membership functions, in the example, there are 4 inputs with 2 mem-
bership functions each, so the maximum number of possible combinations in the
antecedents is 16 (that is 2 × 2 × 2 × 2 or 24), plus all rules have class number 1 as
consequent, that is for simplicity, since the next step is an optimization of these
rules.

Fig. 15 Fuzzy classifier for Iris dataset

Fig. 16 Inputs and outputs from the fuzzy system for classification of Iris dataset
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Only for purposes of assessing the evolution of the fuzzy classifier, we applied
this to the classification of the test data, that to obtain an error of classification using
Eq. 9. The error in this case is 66.67 %, this because the consequent of all rules is
Class 1, and since the dataset contains 3 classes with 50 records each, this is, the
third part of the dataset is for a class.

Error of classification ¼ Misclassified Records
Total Records

ð9Þ

For the fourth step, are used the PSO methods (simple and proposed), for
optimization of the rules of the fuzzy classifier previously generated. The optimi-
zation of the rules, in this case, is the modification of the consequents of the rules,
so that the length of each particle depends on the number of rules to optimize, in
Fig. 18 shown an example of a particle for optimizing the rules of the fuzzy
classifier for Iris dataset, where you can see it has 16 positions each corresponding
to each rule, and possible values are the numbers 1, 2 or 3, which correspond to the
possible classes.

For the fifth step, simply is used the best fuzzy classifier found in the previous
step, to classify the test data and obtain an error of classification in this case of
22.67 %. As can be seen by comparing errors before optimize rules (66.67 %) and
once optimized, there is an improvement in the data classification.

For the sixth step, the optimization of the membership functions consist in
“move” the points of the membership functions of the inputs, continuing the
example, there are 4 inputs with 2 triangular membership functions each, so you
should to “move” 3 points for each membership function, which gives a total of 24
points, these 24 points become the size of the particle. Figure 19 shows an example
of a particle for optimizing the membership functions of the fuzzy classifier system.

Fig. 17 Set of rules from the fuzzy classifier

Fig. 18 Particle for optimizing the rules of the fuzzy classifier
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For the last step uses the best fuzzy classifier found, after optimization of rules
and membership functions to classify the test data and obtain a classification error.
In this case the classification error is 14 % compared with the classification error
optimized keeping only the rules (22.67 %), so that there is an improvement in the
classification of data, and is saved the fuzzy classifier with less error.

Figure 20 shown the rules optimized of the fuzzy classifier, and Fig. 21 shown
the membership functions of each input once optimized.

Fig. 19 Particle for optimizing the membership functions of the fuzzy classifier

Fig. 20 Set of optimized rules of the fuzzy classifier

Fig. 21 Optimized membership functions of the fuzzy classifier
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7 Experimentation in the Design of Fuzzy Classifiers

For experimentation in the design of fuzzy classifiers, we used dataset taken from
[1, 2, 3, 5, 8, 12, 13]. Table 5 shows the main features of these dataset.

As can be seen in Table 5, the data supported by the proposed method (so far)
are: numerical and categorical. Addition the proposed method can work with a
varied number of attributes (inputs for fuzzy classifier), number of classes (outputs)
and number of instances (records to classify).

The parameters used for each method are the same as specified by performing
experiments with benchmark mathematical functions, this is, the parameters
included in Table 1.

Table 6 shows some of the results of experiments in the design of fuzzy clas-
sifiers (first results were taken of each method with each dataset, and in total 10
experiments were performed for each method with each dataset). Moreover, these
experiments using Eq. 9, so that have values between the ranges of 0–1.

Table 5 Dataset used in the design of fuzzy classifiers

Name Instances Classes Attributes Types of data

Abalone [12] 4,177 28 8 Numeric and categorical

Breast tissue [8] 106 6 9 Numeric

Breast cancer
Wisconsin [13]

699 2 6 Numeric and categorical

Car evaluation [2] 1,728 4 6 Categorical

Iris [5] 150 3 4 Numeric

Wine [1] 178 3 13 Numeric

Wine quality red [3] 4,898 11 12 Numeric

Wine quality white [3] 4,898 11 12 Numeric

Table 6 Experiments of each method with each dataset in the design of fuzzy classifiers

Dataset PSO simple FPSO1 FPSO2 FPSO3

Abalone [12] 0.3556 0.1333 0.2667 0.2222

Breast tissue [8] 0.0667 0.0714 0.1238 0.0905

Breast cancer Wisconsin [13] 0.7813 0.5938 0.6563 0.6563

Car evaluation [2] 0.7399 0.7418 0.7784 0.6956

Iris [5] 0.9346 0.8900 0.8892 0.8708

Wine [1] 0.4815 0.4259 0.3704 0.4259

Wine quality red [3] 0.5208 0.4729 0.4917 0.4417

Wine quality white [3] 0.5687 0.5844 0.5531 0.5401
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8 Statistical Comparison for Fuzzy Classifiers

For the statistical comparison we have:
3 methods to compare against PSO simple, which are: FPSO1, FPSO2, FPSO3

with 8 datasets.
10 experiments were performed for each method with each dataset, so that it has

a total of 80 experiments per method. From this total, took a random sample of 30
experiments for each method.

The statistical test used for comparison is the z-test, whose parameters are
defined in Table 7.

With the results contained in Table 7, we applied the statistical z-test, obtaining
the results contained in Table 8.

In applying the statistic z-test, with significance level of 0.05, and the alternative
hypothesis says that the average of the proposed method is lower than the average
of simple PSO, and of course the null hypothesis tells us that the average of the
proposed method is greater than or equal to the average of simple PSO, with a
rejection region for all values fall below −1.645. So the statistical test results are
that: for the FPSO1, there is significant evidence to reject the null hypothesis. But in
the FPSO2 and FPSO3, there is no significant evidence to reject the null hypothesis.

One of the main reasons that the methods FPSO2 and FPSO3, have not found
sufficient statistical evidence to reject the null hypothesis, is because both use the
variable input error, and given that this variable needs to know the minimum and
maximum of each experiment, this made the use of this variable does not give good
results.

In analyzing the results of the statistical test in the design of fuzzy classifiers can
see that only the first method found statistical evidence to reject the null hypothesis,
i.e., that the proposed method obtains less error in designing fuzzy classifiers.

Table 7 Parameters for sta-
tistical z-test

Parameter Value

Level of significance 95 %

Alpha 0.05 %

Ha µ1 < µ2

H0 µ1 ≥ µ2

Critical value −1.645

Table 8 Results of applying statistical z-test

Our method Simple method Z value Evidence

FPSO1 Simple PSO −2.1502 Significant

FPSO2 Simple PSO −0.8841 Not significant

FPSO3 Simple PSO −1.4242 Not significant
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The reason that only the first proposed method obtains good results is because
when fuzzy systems are designed to adjust parameters, was taken as a premise, that
at the beginning the optimization method (PSO here), should explore the search
space to explode eventually found the best area, and to do this, the best variables to
use are the iteration and diversity, which are precisely the entries of the first method
and the other two methods involve variable error, it is for this reason that the first
method can handle diversity and convergence in a better way than the other two
methods.

9 Conclusions

We conclude that dynamically adjust parameters of an optimization method (in this
case the particle swarm optimization PSO), can improve the quality of results and
increase the diversity of solutions to a problem.

Three fuzzy systems were designed for adjusting the parameters for particle
swarm optimization, which was obtained in two systems statistical evidence of an
improvement in the quality of the results of the method of particle swarm opti-
mization when applied in the minimization of benchmark mathematical functions.

Experiments were conducted with the proposed methods in the minimization of
mathematical functions and the design of fuzzy classifiers, and a comparison was
made between the method of simple particle swarm optimization and the proposed
methods, i.e. with fuzzy parameters adjustment.

By comparing the proposed methods and the simple method of PSO, in the
design of fuzzy classifiers was found that only the first method obtained statistical
evidence to reject the null hypothesis, which says that in developing this thesis was
possible to develop a method for adjusting the parameters C1 and C2 of the PSO
using fuzzy logic. And in this way improve the results compared with the simple
method of PSO.
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Differential Evolution with Dynamic
Adaptation of Parameters
for the Optimization of Fuzzy Controllers

Patricia Ochoa, Oscar Castillo and José Soria

Abstract The proposal described in this paper uses the Differential Evolution (DE)
algorithm as an optimization method in which we want to dynamically adapt its
parameters using fuzzy logic control systems, with the goal that the fuzzy system
calculates the optimal parameter of the DE algorithm to find better results,
depending on the type of problems the DE is applied. In this case we consider a
fuzzy system to dynamically change the variable F.

1 Introduction

The use of fuzzy logic in evolutionary computing is becoming a common approach
to improve the performance of the algorithms [15, 16, 17]. Currently the parameters
involved in the algorithms are determined by trial and error. In this aspect we
propose the application of fuzzy logic which is responsible in performing the
dynamic adjustment of mutation and crossover parameters in the Differential
Evolution (DE) algorithm. This has the goal of providing better performance to
Differential Evolution.

Fuzzy logic or multi-valued logic is based on fuzzy set theory proposed by
Zadeh in 1965 which helps us in modeling knowledge, through the use of if-then
fuzzy rules. The fuzzy set theory provides a systematic calculus to deal with lin-
guistic information, and that improves the numerical computation by using lin-
guistic labels stipulated by membership functions [12]. Differential Evolution (DE)
is one of the latest evolutionary algorithms that have been proposed. It was created
in 1994 by Price and Storn in, attempts to resolve the problem of Chebychev
polynomial. The following year these two authors proposed the DE for optimization
of nonlinear and non-differentiable functions on continuous spaces.
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The DE algorithm is a stochastic method of direct search, which has proven to be
effective, efficient and robust in a wide variety of applications such as learning of a
neural network, a filter design of IIR, aerodynamically optimized. The DE has a
number of important features which make it attractive for solving global optimi-
zation problems, among them are the following: it has the ability to handle non-
differentiable, nonlinear and multimodal objective functions, usually converges to
the optimal uses with few control parameters, etc.

The DE belongs to the class of evolutionary algorithms that is based on popu-
lations. It uses two evolutionary mechanisms for the generation of descendants:
mutation and crossover; finally a replacement mechanism, which is applied between
the vector father and son vector determining who survive into the next generation.
There exist works where they currently use fuzzy logic to optimize the performance
of the algorithms, to name a few articles such as:

Optimization of Membership Functions for Type-1 and Type 2 Fuzzy Con-
trollers of an Autonomous Mobile Robot Using PSO [1], Optimization of a Fuzzy
Tracking Controller for an Autonomous Mobile Robot under Perturbed Torques by
Means of a Chemical Optimization Paradigm [2], Design of Fuzzy Control Systems
with Different PSO Variants [4], A Method to Solve the Traveling Salesman
Problem Using Ant Colony Optimization Variants with Ant Set Partitioning [6],
Evolutionary Optimization of the Fuzzy Integrator in a Navigation System for a
Mobile Robot [7], Optimal design of fuzzy classification systems using PSO with
dynamic parameter adaptation through fuzzy logic [8], : Dynamic Fuzzy Logic
Parameter Tuning for ACO and Its Application in TSP Problems [10], Bio-inspired
Optimization Methods on Graphic Processing Unit for Minimization of Complex
Mathematical Functions [18].

Similarly there are papers on Differential Evolution (DE) applications that uses
this algorithm to solve real problems. To mention a few:

A fuzzy logic control using a differential evolution algorithm aimed at modelling
the financial market dynamics [5], Design of optimized cascade fuzzy controller
based on differential evolution: Simulation studies and practical insights [11],
Eliciting transparent fuzzy model using differential evolution [3], Assessment of
human operator functional state using a novel differential evolution optimization
based adaptive fuzzy model [14, 20].

This paper is organized as follows: Sect. 2 shows the concept of the Differential
Evolution algorithm. Section 3 describes the proposed methods. Section 4 the
Benchmark Functions, Sect. 5 the proposed Fuzzy System, Sect. 6 Experiments and
Methodology, Sect. 7 shows the Simulation Results and Sect. 8 the Conclusions.

2 Differential Evolution

The Differential Evolution (DE) is an optimization method belonging to the cate-
gory of evolutionary computation applied in solving complex optimization
problems.
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The DE is composed of 4 steps:

Initialization.
Mutation.
Crossover.
Selection.

This is a non-deterministic technique based on the evolution of a vector popu-
lation (individuals) of real values representing the solutions in the search space. The
generation of new individuals is carried out by differential crossover and mutation
operators [13].

The operation of the algorithm is explained below.

2.1 Population Structure

The differential evolution algorithm maintains a pair of vector populations, both of
which contain Np D-dimensional vectors of real-valued parameters [8].

Px;g ¼ xi;g
� �

; i ¼ 0; 1; . . . ; Np; g ¼ 0; 1; . . .; gmax ð1Þ

xi;g ¼ xj;i;g
� �

; j ¼ 0; 1; . . .; D� 1 ð2Þ

where
Px current population
gmax maximum number of iterations
i index population
j parameters within the vector

Once the vectors are initialized, three individuals are selected randomly to
produce an intermediate population, Pv,g, of Np mutant vectors, vi,g.

Pv;g ¼ vi;g
� �

; i ¼ 0; 1; . . .; Np� 1; g ¼ 0; 1; . . .; gmax ð3Þ

vi;g ¼ vj;I;g
� �

; j ¼ 0; 1; . . .; D� 1 ð4Þ

Each vector in the current population are recombined with a mutant vector to
produce a trial population, Pu, the NP, mutant vector ui,g:

Pv;g ¼ ui;g
� �

; i ¼ 0; 1; . . .; Np� 1; g ¼ 0; 1; . . .; gmax ð5Þ

ui;g ¼ uj;I;g
� �

; j ¼ 0; 1; . . .; D� 1 ð6Þ
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2.2 Initialization

Before initializing the population, the upper and lower limits for each parameter
must be specified. These 2D values can be collected by two initialized vectors, D-
dimensional, bL y bU, to which subscripts L and U indicate the lower and upper
limits respectively. Once the initialization limits have been specified number gen-
erator randomly assigns each parameter in every vector a value within the set range.
For example, the initial value (g = 0) of the j-th vector parameter is i-th:

xj;i;0 ¼ randj 0; 1ð Þ � bj;U� bj;L
� �þ bj;L ð7Þ

2.3 Mutation

In particular, the differential mutation adds a random sample equation showing how
to combine three different vectors chosen randomly to create a mutant vector.

vi;g ¼ xr0;g þ F � xr1;g�xr2;g
� � ð8Þ

The scale factor, F ∈ (0, 1) is a positive real number that controls the rate at
which the population evolves. While there is no upper limit on F, the values are
rarely greater than 1.0.

2.4 Crossover

To complement the differential mutation search strategy, DE also uses uniform
crossover. Sometimes known as discrete recombination (dual). In particular, DE
crosses each vector with a mutant vector:

Ui;g ¼ ðuj;i;gÞ ¼ vj;i;g
xj;i;g

if randj 0;1ð Þ � Cr or j¼jrandð Þ
otherwise:

� �
ð9Þ

2.5 Selection

If the test vector, Ui,g has a value of the objective function equal to or less than its
target vector, Xi,g,. It replaces the target vector in the next generation; otherwise, the
target retains its place in population for at least another generation [2]

Xi;gþ1 ¼ Ui;g

Xi;g

if f Ui;gð Þ � f Xi;gð Þ
otherwise:

� �
ð10Þ
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The process of mutation, recombination and selection are repeated until the
optimum is found, or terminating pre criteria specified is satisfied. DE is a simple,
but powerful search engine that simulates natural evolution combined with a
mechanism to generate multiple search directions based on the distribution of
solutions in the current population. Each vector i in the population at generation G,
xi,G, called at this moment of reproduction as the target vector will be able to
generate one offspring, called trial vector (ui,G). This trial vector is generated as
follows: First of all, a search direction is defined by calculating the difference
between a pair of vectors r1 and r2, called “differential vectors”, both of them
chosen at random from the population. This difference vector is also scaled by using
a user defined parameter called “F ≥ 0”. This scaled difference vector is then added
to a third vector r3, called “base vector”. As a result, a new vector is obtained,
known as the mutation vector. After that, this mutation vector is recombined with
the target vector (also called parent vector) by using discrete recombination (usually
binomial crossover) controlled by a crossover parameter 0 ≤ CR ≤ 1 whose value
determines how similar the trial vector will be with respect to the target vector.
There are several DE variants. However, the most known and used is DE/rand/1/
bin, where the base vector is chosen at random, there is only a pair of differential
vectors and a binomial crossover is used. The detailed pseudocode of this variant is
presented in Fig. 1 [9].

Fig. 1 “DE/rand/1/bin”
pseudocode rand [0, 1) is a
function that returns a real
number between 0 and 1.
Randint (min, max) is a
function that returns an
integer number between min
and max. NP, MAX GEN, CR
and F are user-defined
parameters n is the
dimensionality of the problem
[9]
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3 Proposed Method

The Differential Evolution (DE) Algorithm is a powerful search technique used for
solving optimization problems. In this paper a new algorithm called Fuzzy Dif-
ferential Evolution (FDE) with dynamic adjustment of parameters for the optimi-
zation of controllers is proposed. The main objective is that the fuzzy system will
provides us with the optimal parameters for the best performance of the DE
algorithm. In addition the parameters that the fuzzy system optimizes are the
crossover and mutation, as shown in Fig. 2.

4 Benchmark Function

In this paper we consider 6 Benchmark functions which are briefly explained below
[19].

Fig. 2 The proposed differential evolution (DE) algorithm by integrating a fuzzy system to
dynamically adapt parameters
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• Sphere Function

Number of variables: n variables.
Definition:

f ðxÞ ¼
Xn
i¼1

x2i ð11Þ

Search domain: −5.12 ≤ xi ≤ 5.12, i = 1, 2, …, n.
Number of local minima: no local minimum except the global one.
The global minima: x* = (0, …, 0), f(x*) = 0
Function graph: for n = 2 presented in Fig. 3

• Griewank Function

Number of variables: n variables.
Definition:

f ðxÞ ¼ 1
4000

Xn
i¼1

x2i �
Yn
i¼1

cos
xiffiffi
i

p
� �

þ 1 ð12Þ

Search domain: −600 ≤ xi ≤ 600, i = 1, 2, …, n.
Number of local minima: no local minimum except the global one.
The global minima: x* = (0, …, 0), f(x*) = 0
Function graph: for n = 2 presented in Fig. 4

• Schwefel Function

Number of variables: n variables.
Definition:

f ðxÞ ¼
Xn
i¼1

�xi sinð
ffiffiffiffiffiffi
xij j

ph i
ð13Þ

Fig. 3 Sphere function
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Search domain: −500 ≤ xi ≤ 500, i = 1, 2, …, n.
Number of local minima: no local minimum except the global one.
The global minima: x* = (0, …, 0), f(x*) = 0
Function graph: for n = 2 presented in Fig. 5

• Rastringin Function

Number of variables: n variables.
Definition:

f ðxÞ ¼ 10nþ
Xn
i¼1

x2i � 10 cosð2pxiÞ
	 
 ð14Þ

Search domain: −5.12 ≤ xi ≤ 5.12, i = 1, 2, …, n.
Number of local minima: no local minimum except the global one.
The global minima: x* = (0, …, 0), f(x*) = 0
Function graph: for n = 2 presented in Fig. 6

• Ackley Funcion

Number of variables: n variables.

Fig. 4 Griewank function

Fig. 5 Schwefel function
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Definition:

f ðxÞ ¼ �a � expð�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
x2i Þ

r
� exp

1
n

Xn
i¼1

cosðcxiÞ
 !

þ aþ expð1Þ ð15Þ

Search domain: −15 ≤ xi ≤ 30, i = 1, 2, …, n.
Number of local minima: no local minimum except the global one.
The global minima: x* = (0, …, 0), f(x*) = 0
Function graph: for n = 2 presented in Fig. 7

• Rosenbrock Funcion

Number of variables: n variables.
Definition:

f ðxÞ ¼
Xn�1

i¼1

100ðxiþ1 � x2i Þ2 þ ð1� xiÞ2
h i

: ð16Þ

Fig. 6 Rastrigin function

Fig. 7 Ackley function

Differential Evolution with Dynamic Adaptation of Parameters … 57



Search domain: −5 ≤xi ≤ 10, i = 1, 2, …, n.
Number of local minima: no local minimum except the global one.
The global minima: x* = (0, …, 0), f(x*) = 0
Function graph: for n = 2 presented in Fig. 8

5 Fuzzy System

This paper mentioned two fuzzy systems with which the experiments were per-
formed. It has a fuzzy system which increase the F variable and another variable
decrease F.

Then the fuzzy system, in which F is increased dynamically.

• Contains one input and one output
• Is of Mamdani type.
• All membership functions are triangular.
• The input of the fuzzy system is defined by the generations and granulated into

three membership functions they are: MF1 = ‘Low’[−0.5 0 0.5], MF2 = ‘Med-
ium’[0 0.5 1], MF3 = ‘High’[0.5 1 1.5].

• The output of the fuzzy system and the variable F is granulated in three
membership functions which are: MF1 = ‘Low’, [−0.5 0 0.5], MF2 = ‘Medium’,
[0 0.5 1] MF3 = ‘High’, [0.5 1 1.5].

• The fuzzy system uses 3 rules and what it does is increased the value of the F
variable in a range of (0.1).

Shown in Fig. 9.
Then the fuzzy system, in which F is dynamically decreased is described as

follows:

• Contains one input and one output
• Is Mamdani type.

Fig. 8 Rosenbrock function
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• All functions are triangular.
• The input of the fuzzy system is generations and divided into three membership

functions they are: MF1 = ‘Low’[−0.5 0 0.5], MF2 = ‘Medium’ [0 0.5 1],
MF3 = ‘High’[0.5 1 1.5].

• The output of the fuzzy system and the variable F is divided in three mem-
bership functions which are: MF1 = ‘Low’, [−0.5 0 0.5], MF2 = ‘Medium’, [0
0.5 1] MF3 = ‘High’, [0.5 1 1.5].

• The fuzzy system uses 3 rules and what it does is decreased the value of the F
variable in a range of (0.1).

Shown in Fig. 10.

6 Experiments and Methodology

Experiments with the Differential Evolution algorithm varying the F value (variable
mutation) manually in a range from 0.1 to 0.9, were performed with several gen-
erations values (GR) 100, 500, 1000, 2000, 3000, 4000 and 5000. Population
variables are held constant (NP) = 250, dimension (D) = 50, crossover (CR) = 0.1,
upper limit (H) = 500 and lower (L). = -500.

To make a comparison with the differential evolution algorithm the averages of
the experiments are obtained for each generation number. Experiments are per-
formed by varying F from 0.1 to 0.9 and 30 experiments for each F. then an overall
average is obtained for comparison with the Fuzzy Differential Evolution with
increase and decrease of the F value.

For experiments with the Fuzzy Differential Evolution algorithm F changes
dynamically increasing and decreasing F between 0 and 1, 30 experiments for each
number of generations are performed and an average is obtained by generation.

For functions Ackley and Rosenbrock search space since we were using was
very spacious for the Ackley function, the upper limit (H) = 32.768 and the lower
limit (L) = −32.768, for the Rosenbrock function the upper limit (H) = 2.048 and
the lower limit (L) = −2.048.

1. - If (Generations is Low) then (F is Low) (1)
2. - If (Generations isMedium) then (F is Medium) (1)
3. - If (Generations is High) then (F isHigh) (1)

Fig. 9 Rules of the fuzzy system

1. - If (Generations is Low) then (F is High) (1)
2. - If (Generations is Medium) then (F is Medium) (1)
3. - If (Generations is High) then (F isLow) (1)

Fig. 10 Rules of the fuzzy system
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7 Simulation Results

In this paper we show five tables to compare the results of the Benchmark functions
mentioned above, where the variable F is modified manually in the Difference
Evolution algorithm, F is increased and described dynamically with the proposed
Fuzzy Differential Evolution algorithm.

Table 1 shows a comparison for the Sphere function, F is manually varied in the
Differential Evolution algorithm and in the Fuzzy Differential Evolution algorithm
F is increased and decreased dynamically with the number of generations with
which the experiments were performed.

Table 2 shows a comparison of the Griewarnk function, F is manually varied in
the Differential Evolution algorithm and in the Fuzzy Differential Evolution algo-
rithm F is increased and decreased dynamically with the number of generations
with which the experiments were performed.

Table 3 shows a comparison of the Schwefel function, F is manually varied in
the Differential Evolution algorithm and in the Fuzzy Differential Evolution algo-
rithm F is increased and decreased dynamically with the number of generations
with which the experiments were performed.

Table 4 shows a comparison of the Rastringin function, F is manually varied in
the Differential Evolution algorithm and in the Fuzzy Differential Evolution algo-
rithm F is increased and decreased dynamically with the number of generations
with which the experiments were performed.

Table 5 shows a comparison of the Ackley function, F is manually varied in the
Differential Evolution algorithm and in the Fuzzy Differential Evolution algorithm
F is increased and decreased dynamically with the number of generations with
which the experiments were performed.

Table 6 shows a comparison of the Rosenbrock function, F is manually varied in
the Differential Evolution algorithm and in the Fuzzy Differential Evolution algo-
rithm F is increased and decreased dynamically with the number of generations
with which the experiments were performed.

Table 1 Sphere function

Generations Differential
evolution

Fuzzy differential evolution
with increasing F

Fuzzy differential evolu-
tion with decreasing F

100 274810.954 264876.554 191810.002

500 3416.56935 35.9248183 19.9166364

1000 3.91E+01 0.00048186 0.00024121

2000 9.61E−03 7.2858E−14 3.6657E−14

3000 2.39E−06 1.3168E−23 5.5608E−24

4000 6.10E−10 1.8705E−33 9.4497E−34

5000 1.54E−13 3.1962E−43 1.36E−43
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Table 2 Griewarnk function

Generations Differential
evolution

Fuzzy differential evolution
with increasing F

Fuzzy differential evolu-
tion with decreasing F

100 69.9332605 67.0770188 48.1462646

500 1.37127437 0.6940305 0.51379811

1000 2.07E−01 3.4223E−05 1.836E−05

2000 0.00087914 5.2217E−15 2.2797E−15

3000 2.2279E−07 0 0

4000 5.78723E−11 0 0

5000 1.52742E−14 0 0

Table 3 Schwefel function

Generations Differential
evolution

Fuzzy differential evolution
with increasing F

Fuzzy differential evolu-
tion with decreasing F

100 10421.718 11169.3347 10932.22075

500 8100.8323 5193.63165 4842.340175

1000 6388.8028 14.5133895 3.958285778

2000 4043.1945 0.00063638 0.000636378

3000 548.84107 0.00063638 0.000636378

4000 0.1285108 0.00063638 0.000636378

5000 0.1323711 0.00063638 0.000636378

Table 4 Rastringin function

Generations Differential
evolution

Fuzzy differential evolution
with increasing F

Fuzzy differential evolu-
tion with decreasing F

100 277759.787 268207.392 184622.012

500 3774.94974 379.027991 342.483337

1000 2.25E+02 144.499278 150.754739

2000 63.1322564 76.3943085 84.6821796

3000 43.6992981 47.4723588 57.9202967

4000 31.1808589 24.2475708 37.6116134

5000 16.6249025 1.2237E−05 1.1348E−04

Table 5 Ackley function

Generations Differential
evolution

Fuzzy differential evolution
with increasing F

Fuzzy differential evolu-
tion with decreasing F

100 13.5629222 14.568239 13.3167462

500 1.89192803 0.4362296 0.26047838

1000 2.77E−01 0.00084351 0.00059808

2000 1.43E−03 1.0485E−08 7.5391E−09

3000 2.07E−05 1.2961E−13 1.02E−13

4000 3.27E−07 8.941E−15 7.52E−15

5000 5.11E−09 7.99E−15 6.81E−15
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8 Conclusions

We can conclude that the Differential Evolution algorithm with Fuzzy F Decrease
performs better than the Differential Evolution algorithm with F increase because in
most mathematical functions when a Decrease the EDF algorithm obtained better
results. We can also conclude with experiments that manually using a small F we
can get better results.

The number of iterations used in the algorithm development differential is
greater than the number of iterations used in the Differential Evolution in Fuzzy
algorithms in increase or decrease.

Another important aspect to consider for the experiments is the search space that
is given to each function, as happened with Ackley and Rosenbrock functions
which the search space is modified to obtain better results.
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A New Bat Algorithm with Fuzzy Logic
for Dynamical Parameter Adaptation
and Its Applicability to Fuzzy Control
Design

Jonathan Pérez, Fevrier Valdez and Oscar Castillo

Abstract We describe in this paper the Bat Algorithm and a new approach is
proposed using a fuzzy system to dynamically adapt its parameters. The original
method is compared with the proposed method and also compared with genetic
algorithms, providing a more complete analysis of the effectiveness of the bat
algorithm. Simulation results on a set of mathematical functions with the fuzzy bat
algorithm outperform the traditional bat algorithm and genetic algorithms and
proposed to implement the method in a controller to analyze the effectiveness of the
algorithm.

Keywords Bat algorithm � Genetic algorithm � Fuzzy system

1 Introduction

This paper is focus on the study of the Bat Algorithm, which has proven to be one
of the best to face problems of nonlinear global optimization.

The bat algorithm is a metaheuristic optimization method proposed by Yang in
2010 and this algorithm is based on the behavior of micro bats echolocation pulses
with different emission and sound.

The bat algorithm has the characteristic of being one of the best methods to solve
problems of nonlinear global optimization. In this paper the use of the bat algorithm
with a fuzzy system is presented with the aim of dynamically setting some of the
parameters in the algorithm. The goal is improving the performance of the algo-
rithm against other metaheuristics in optimization problems to validate our
approach we used on a set of benchmark mathematical functions.

Once the modification in the bat algorithm is performed, tests were performed
with benchmark mathematical functions to analyze its effectiveness. Also the
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original method is compared with the proposed method and genetic algorithms,
providing a more complete analysis of the effectiveness of bat algorithm. Simula-
tion results with the fuzzy bat algorithm outperform the traditional bat algorithm
and genetic algorithms.

In the current literature there are papers where the bat algorithm has been used,
like in the paper A New Metaheuristic Bat-Inspired Algorithm [22]. In this paper,
we propose a new metaheuristic method, the Bat Algorithm, making comparison
with the PSO and GA algorithms by applying them to Benchmark functions, in the
paper the Performance of Firefly and Bat Algorithm for Unconstrained Optimiza-
tion Problems is shown [6]. In this paper we compare the algorithm against firefly
algorithm using bat Benchmark functions, the paper proposes the Bat Algorithm:
Literature Review and Applications [23], perform detailed explanation of the bat
algorithm and the applications and variants existing at present. In the paper A
Comparison of BA, GA, PSO, BP and LM for Training Feed forward Neural
Networks in e-Learning Context [10], a comparison of algorithms for training feed
forward neural networks was done. Several tests were made on two gradient descent
algorithms: Backpropagation and Levenberg-Marquardt, and three population
based heuristic: Bat Algorithm, Genetic Algorithm, and Particle Swarm Optimi-
zation. Experimental results show that the bat algorithm (BA) outperforms all other
algorithms in training feed forward neural networks [10], A Binary Bat Algorithm
for Feature Selection [15], performed applying the bat algorithm for feature
selection using a binary version of the algorithm, in the paperLocal Memory Search
Bat Algorithm for Grey Economic Dynamic System [25], in this paper, the LMSBA
is introduced in economic control field, test and simulation results are ideal, and
programming of method is concise. This algorithm is suitable for numerical solu-
tion in practical dynamic economic control, providing numerical theoretical foun-
dation for steady, healthy and optimal economic growth [15]. In the paper Solving
Multi-Stage MultiMachine Multi-Product Scheduling Problem Using Bat Algo-
rithm, the algorithm takes into account the just in time production philosophy by
aiming to minimise the combination of earliness and tardiness penalty costs [14]. In
the paper use of Fuzzy Systems and Bat Algorithm for Energy Modeling in a Gas
Turbine Generator (GTG), is proposed the purpose of this paper has been to
demonstrate the use of fuzzy methods to capture variation of exergy destruction in a
GTG [1].

In other works listed below on the use of bat algorithm we have, in the article
Chaotic bat algorithm [5], performed in which the aggregation of chaos in the
standard version of bat algorithm. In the paper A bat-inspired algorithm for
structural optimization [8], performing the comparison of several algorithms
showing affection bat algorithm in resolving problems of bar among others. In the
paper Bat inspired algorithm for discrete size optimization of steel frames [7], is
shows, the objective of this study is to investigate efficiency of the bat algorithm in
discrete sizing optimization problems of steel frames [7]. In the paper a New Meta-
heuristic Bat Inspired Classification Approach for Microarray Data [13], the bat
algorithm successfully formulated and is used to update the weight of the FLANN
classifier. In the paper A wrapper approach for feature selection based on Bat
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Algorithm and Optimum-Path Forest [17], is described combines an exploration of
the search space and an intense local analysis by exploiting the neighborhood of a
good solution to reduce the feature space dimensionality [17], in the paper Bat
algorithm for the fuel arrangement optimization of reactor core [9], for the first time,
the bat optimization algorithm is applied for the LPO problem. Prior to perform the
LPO, the developed BA was validated against a test function obtaining the exact
minimum value during various iterations.

This paper is organized as follows in Sect. 2 describe the original bat algorithm,
in Sect. 3 describe genetic algorithm, in Sect. 4 describe of the benchmark math-
ematical functions, in Sect. 5 describe the results between genetic algorithm and bat
algorithm, in Sect. 6 describe proposed method and results, in Sect. 7 describe
proposed bat algorithm apply a controller and Sect. 8 describe the conclusions.

2 Bat Algorithm

This section describes the basic concepts of the Bat Algorithm.

2.1 Rules of Bats

If we idealize some of the echolocation characteristics of microbats, we can develop
various bat-inspired algorithms or bat algorithms. For simplicity, we now use the
following approximate or idealized rules [22]:

1. All bats use echolocation to sense distance, ant they also ‘know’ the difference
between food/prey and background barriers in some magical way.

2. Bats fly randomly witch velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automati-
cally adjust the wavelength (or frequency) of their emitted pulses and adjust the
rate of pulse emission r ϵ [0, 1], depending on the proximity of their target.

3. Although loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum constant value Amin.

For simplicity, the frequency f ϵ [0, fmax], the new solutions xi
t and velocity vi

t at
a specific time step t are represented by a random vector drawn from a uniform
distribution [6].

2.2 Pseudocode for the Bat Algorithm

The basic steps of the bat algorithm, can be summarized as the pseudo code shown
in Fig. 1
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2.3 Movements in the Bat Algorithm

Each bat is associated with a velocity vi
t and location xi

t, at iteration t, in a
dimensional search or solution space. Among all the bats, there exist a current best
solution x*. Therefore, the above three rules can be translated into the updating
equations for xi

t and velocities vi
t:

fi ¼ fmin þ ðfmax � fminÞb; ð1Þ

vti ¼ vt�1
i þ ðxt�1

i � x�Þfi; ð2Þ

xti ¼ xt�1
i þ vti; ð3Þ

where β ϵ [0, 1] is a random vector selected from a uniform distribution [17].
As mentioned earlier, we can either use wavelengths or frequencies for imple-

mentation, we will use fmin = 0 and fmax = 1, depending on the domain size of the
problem of interest. Initially, each bat is randomly assigned a frequency which is
drawn uniformly from [fmin − fmax]. The loudness and pulse emission rates
essentially provide a mechanism for automatic control and auto zooming into the
region with promising solutions [23].

2.4 Loudness and Pulse Rates

In order to provide an effective mechanism to control the exploration and exploi-
tation and switch to exploitation stage when necessary, we have to vary the

Initialize the bat population xi(i=1, 2,..., n) and vi

Initialize frequency fi, pulse rates ri and the loudness Ai

While (t<Max numbers of iterations)
Generate new solutions by adjusting frequency 
and updating velocities and locations/solutions [equations (1) to (3)]
if(rand>ri)

Select a solution among the best solutions
Generate a local solution around the selected best solution

end if
Generate a new solutions by flying randomly
if (rand <Ai& f(xi) < f(x*))

Accept the new solutions 
Increase ri and reduce Ai

end if 
Rank the bats and find the current best x*

end while

Fig. 1 Pseudo code of the bat algorithm
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loudness Ai and the rate ri of pulse emission during the iterations. Since the
loudness usually decreases once a bat has found its prey, while the rate of pulse
emission increases, the loudness can be chosen as any value of convenience,
between Amin and Amax, assuming Amin = 0 means that a bat has just found the prey
and temporarily stop emitting any sound. With these assumptions, we have

Atþ1
i ¼ aAt

i; r
tþ1
i ¼ r0i ½1� expð�ctÞ�; ð4Þ

where α and γ are constants. In essence, here α is similar to the cooling factor of a
cooling schedule in simulated annealing. For any 0 < α < 1 and γ > 0, we have

At
i ! 0; rti ! r0i ; as t ! 1: ð5Þ

In the simplest case, we can use α = γ, and we have used α = γ = 0.9 to 0.98 in
our simulations [6].

3 Genetic Algorithms

Genetic algorithms (GAs) emulate genetic evolution. The characteristics of indi-
viduals are therefore expressed using genotypes. The original form of the GA, as
illustrated by John Holland in 1975, had distinct features: (1) a bit string repre-
sentation, (2) proportional selection, and (3) cross-over as the primary method to
produce new individuals. Since then, several variations to the original Holland GA
have been developed, using different representation schemes, selection, cross-over,
mutation and elitism operators [3].

3.1 Representation

The classical representation scheme for GAs is a binary vector of fixed length. In
the case of an nx-dimensional search space, each individual consists on nx variables
with each variable encoded as a bit string. If variables have binary values, the length
of each chromosome is nx bits. In the case of nominal-valued variables, each
nominal value can be encoded as an nd-dimensional bit vectors where 2nd is the
total numbers of discrete nominal values for that variable. Each nd -bit string
represents a different nominal value. In the case of continuous-valued variables,
each variable should be mapped to an nd -dimensional bit vector,

/ : R ! ð0; 1Þnd ð6Þ
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The range of continuous space needs to be restricted to a finite range, [xmin, xmax].
Using standard binary decoding, each continuous variable xij of chromosome xi is
encoded using a fixed length bit string.

GAs have also been developed that use integer or real-valued representations
and order-based representations where the order of variables in a chromosome plays
an important role. Also, it is not necessary that chromosomes be of fixed length [3].

3.2 Crossover Operations

Several crossover operators have been developed for GAs depending on the format
in which individuals are represented. For binary representations, uniform crossover,
one-point crossover and two-point crossover are the most popular:

• Uniform Crossover, where corresponding bit positions are randomly exchan-
ged between the two parents to produce two offspring.

• One-Point Crossover, where a random bit position is selected, and the bit
substrings after the selected bit are swapped between the two parents to produce
two offspring.

• Two-Point Crossover, where two bit positions are randomly selected and the
bit substrings between the selected bit positions are swapped between the two
parents.

For continuous valued genes, arithmetic crossover can be used:

xij ¼ rjx1j þ ð1:0� rjÞx2j ð7Þ

where rj * U(0, 1) and xi is the offspring produced from parents x1 and x2 [3].

3.3 Mutation

The mutation scheme used in a GA depends on the representation scheme. In the
case of bit string representations,

Random Mutation, randomly negates bits, while
In-Order Mutation, performs random mutation between two randomly selected
bit positions.

For discrete genes with more than two possible values that a gene can assume,
random mutation selects a random value from the finite domain of the gene. In the
case of continuous valued genes, a random value sampled from a Gaussian distri-
bution with zero mean and small deviation is usually added to the current gene value.
As an alternative, random noise can be sampled from a Cauchy distribution [3].
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4 Benchmark Mathematical Functions

This section lists a number of the benchmark mathematical functions used to
evaluate the performance of the optimization algorithms.

In the area of optimization mathematical functions have been used to test dif-
ferent methods: Parallel Particle Swarm Optimization with Parameters Adaptation
Using Fuzzy Logic [20], An improved evolutionary method with fuzzy logic for
combining Particle Swarm Optimization and Genetic Algorithms [12], Optimal
design of fuzzy classification systems using PSO with dynamic parameter adapta-
tion through fuzzy logic [19], Parallel Particle Swarm Optimization with Parameters
Adaptation Using Fuzzy Logic [16], and others in the literature.

The mathematical functions are defined below:

• Sphere

f ðxÞ ¼
Xnx
j¼1

x2j ð8Þ

Witch xj 2 ½�100; 100� and f �ðxÞ ¼ 0:0
• Rosenbrock

f ðxÞ ¼
Xnz=2
j¼1

½100ðx2j � x22j�1Þ2 þ ð1� x2j�1Þ2� ð9Þ

Witch xj 2 ½�2:048; 2:048� and f �ðxÞ ¼ 0:0
• Rastrigin

f ðxÞ ¼
Xnx
j¼1

ðx2j � 10 cosð2pxjÞ þ 10Þ ð10Þ

With xj 2 ½�5:12; 5:12� and f �ðxÞ ¼ 0:0
• Ackley

f ðxÞ ¼ �20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nx

Pnx
j¼1

x2j � 1
enx

Pnx
j¼1

cosð2pxjÞ
r

þ 20þ e ð11Þ

With xj 2 ½�30; 30� and f �ðxÞ ¼ 0:0
• Zakharov

f(x) ¼
Xn
i¼1

x2i þ ð
Xn
i¼1

0:5ixiÞ2 þ ð
Xn
i¼1

0:5ixiÞ4 ð12Þ
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Witch xi 2 ½�5; 10� and f �ðxÞ ¼ 0:0
• Sum Square

f ðxÞ ¼
Xn
i¼1

ix2i ð13Þ

Witch xi 2 ½�2; 2� and f �ðxÞ ¼ 0:0

The mathematical functions were integrated directly into the code bat algorithm
and genetic algorithm.

5 Results Between GA and the Bat Algorithm

In this section the Bat algorithm is compared against the genetic algorithm. In each
of the algorithms, 6 Benchmark math functions were used separately for a
dimension of 10 variables, and 30 tests were made for each function with different
parameters in the algorithms.

The parameters in the Bat algorithm are as follows:

• Population size: 2–40 Bats
• Volume: 0.5–1
• Pulse frequency: 0.5–1
• Frequency min.: 0–2
• Frequency max.: 0–2

The parameters for the genetic algorithm are shown below:

• Number of Individuals: 4–40
• Selection: Stochastic, Remainder, Uniform, Roulette
• Crossover: Scattered, Single Point, Two Point, Heuristic, Arithmetic
• Mutation: Gaussian, Uniform

The results of the tests made with the De Jong’s function for the two algorithms
are shown in Table 1.

The results of the tests made with the Rosenbrock function for the two algo-
rithms are shown in Table 2.

The results of the tests made with the Rastrigin function for the two algorithms
are shown in Table 3.

The results of the tests made with the Ackley function for the two algorithms are
shown in Table 4.

The results of the tests made with the Zakharov function for the two algorithms
are shown in Table 5.

The results of the tests made with the Sum of Squares function for the two
algorithms are shown in Table 6.
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Table 1 Simulation results for the Jong’s function

Bat algorithm Genetic algorithm

Numbers bats Best Population Best

2 0.00857 4 0.00065

5 0.00360 5 0.01615

10 0.00002 10 0.02947

20 0.00013 20 0.12585

30 0.00001 30 0.05043

40 0.00000 40 0.00494

Table 2 Simulation results for the Rosenbrock function

Bat algorithm Genetic algorithm

Numbers bats Best Population Best

2 0.00548 4 0.08984

5 0.27251 5 0.04515

10 0.30381 10 0.02647

20 0.13730 20 0.00875

30 0.38909 30 0.00122

40 0.25128 40 0.00024

Table 3 Simulation results for the Rastrigin function

Bat algorithm Genetic algorithm

Numbers bats Best Population Best

2 0.07301 4 0.01493

5 0.06367 5 0.02538

10 0.04916 10 0.00098

20 0.00871 20 0.00586

30 0.00351 30 0.00146

40 0.04394 40 0.00171

Table 4 Simulation results for the Ackley function

Bat algorithm Genetic algorithm

Numbers bats Best Population Best

2 0.00060 4 0.00376

5 0.00040 5 0.03481

10 0.00001 10 0.00068

20 0.00018 20 0.00000

30 0.00017 30 0.00249

40 0.00003 40 0.00110
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In the comparative study of genetic algorithms and the effectiveness of the bat
algorithm, the bat algorithm results with modification of parameters by trial and
error are good but the rate of convergence of the genetic algorithm is much faster,
the comparison was made with the original versions of the two algorithms with the
recommended literature parameters.

6 Proposed Method

The Bat Algorithm has the characteristic of being one of the best to face problems
of nonlinear global optimization. In this paper the enhancement of the bat algorithm
using a fuzzy system is presented with the aim of dynamically setting some of the
parameters in the algorithm. The goal is improving the performance of the algo-
rithm against other metaheuristics in optimization problems by testing through the
use of benchmark mathematical functions.

In the area of fuzzy logic for adapting parameters in metaheuristics we can find a
similar work: Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application
in TSP Problems [16].

Table 5 Simulation results for the Zakharov function

Bat algorithm Genetic algorithm

Numbers bats Best Population Best

2 0.02818 4 0.00291

5 0.02152 5 0.00392

10 0.00010 10 0.00084

20 0.00005 20 0.01018

30 0.00000 30 0.00259

40 0.00000 40 0.00638

Table 6 Simulation results for the sum square function

Bat algorithm Genetic algorithm

Numbers bats Best Population Best

2 0.01027 4 0.02947

5 0.00129 5 0.00958

10 0.00010 10 0.00084

20 0.00002 20 0.01018

30 0.00000 30 0.00259

40 0.00003 40 0.00638
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Usually in the bat algorithm, the modification of the parameters is done by trial
and error, modifying the parameters, which are wavelength λ, loudness (volume)
A0, low frequency and high frequency. In the present work an implementation of a
fuzzy system, which is responsible for setting any of these parameters dynamically
in order to improve the performance of the algorithm achieving greater effective-
ness is presented.

Once the modification in the bat algorithm is performed, tests were performed
with benchmark mathematical functions to analyze its effectiveness. At the end, the
original method is compared with the proposed method and also compared with
the genetic algorithm, providing a more complete analysis of the effectiveness of
the bat algorithm. Simulation results with the fuzzy bat algorithm outperform the
traditional bat algorithm and genetic algorithms.

The general approach of the proposed bat algorithm method can be seen in
Fig. 2.

The fuzzy system proposed is of Mamdani type because it is more common in
this type of fuzzy control and the defuzzification method was the centroid. The
membership functions are of triangular form in the inputs and outputs.

Also, the membership functions were chosen of triangular form based on past
experiences in this type of fuzzy control. The fuzzy system consists of 9 rules.

In this section the comparison of the Bat algorithm is made against the fuzzy Bat
Algorithm for each of the algorithms we consider 6 Benchmark math functions
separately for a dimension of 10 variables, where 30 tests were performed for each
function varying the parameters of the algorithms.

The results of the tests of the De Jong’s function between the original method
and the proposed one taking the best result of 30 experiments for each method are
shown in Table 7.

Initialize the bat population xi(i=1, 2,..., n) and vi

Initialize frequency fi, pulse rates ri and the loudness Ai

While (t<Max numbers of iterations)
Generate new solutions by adjusting frequency 
and updating velocities and locations/solutions [equations (1) to 
(3)]
if(rand>ri)

Select a solution among the best solutions
Generate a local solution around the selected best solution

end if
Generate a new solutions by flying randomly
if (rand <Ai& f(xi) < f(x*))

Accept the new solutions 
Increase ri and reduce Ai

end if 
Rank the bats and find the current best x*

end while

Fuzzy 
System

Fig. 2 Proposed scheme of the Bat Algorithm
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The results of the tests of the Rosenbrock function between the original method
and the proposed one taking the best result of 30 experiments for each method are
shown in Table 8.

The results of the tests of the Rastrigin function between the original method and
the proposed one taking the best result of 30 experiments for each method are
shown in Table 9.

The results of the tests of the Acley function between the original method and
the proposed one taking the best result of 30 experiments for each method are
shown in Table 10.

The results of the tests of the function between the original method and the
proposed one taking the best result of 30 experiments for each method are shown in
Table 11.

Table 7 Simulation results for the De Jong’s function

Bat algorithm Fuzzy Bat algorithm

Number of bats Best Numbers of bats Best

40 0.000009 10 0.000001

Table 8 Simulation results for the Rosenbrock function

Bat algorithm Fuzzy Bat algorithm

Number of bats Best Number of bats Best

2 0.005489 2 0.01275594

Table 9 Simulation results for the Rastrigin function

Bat algorithm Fuzzy Bat algorithm

Number of bats Best Number of bats Best

30 0.003517 30 0.02243067

Table 10 Simulation results for the Ackley function

Bat algorithm Fuzzy Bat algorithm

Number of bats Best Number of bats Best

10 0.000014 30 0

Table 11 Simulation results for the Zakharov function

Bat algorithm Fuzzy Bat algorithm

Number of bats Best Number of bats Best

30 0.000005 30 0
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The results of the tests of the Sum Squared function between the original method
and the proposed one taking the best result of 30 experiments for each method are
shown in Table 12.

7 Bat Algorithm Apply to the Inverted Pendulum

In this section we consider the application of the bat algorithm to the design of a
controller to demonstrate the effectiveness of the algorithm. In the literature we can
find that the following works have applied this method: Optimal Power Dispatch
Using Bat Algorithm [2], Application of an improved SVR based Bat algorithm for
short-term price forecasting in the Iranian Pay-as-Bid electricity market [18], Bat
algorithm for topology optimization in microelectronic applications [24], Optimal
placement and sizing of DER’s with load models using BAT algorithm [21],
Optimal Partial-Retuning of Decentralised PI Controller of Coal Gasifier Using Bat
Algorithm [11], Design of Optimal Membership Functions for Fuzzy Controllers of
the Water Tank and Inverted Pendulum with PSO Variants [4], and others in the
literature.

In this section we present the application of the bat algorithm in the development
of the fuzzy controller of the inverted pendulum. The proposed methodology is to
perform the analysis of the problem of the inverted pendulum, which consists of the
system in this example consists of an inverted pendulum mounted to a motorized
cart. The inverted pendulum system is an example commonly found in control
system textbooks and research literature. Its popularity derives in part from the fact
that it is unstable without control, that is, the pendulum will simply fall over if the
cart isn’t moved to balance it. Additionally, the dynamics of the system are non-
linear. The objective of the control system is to balance the inverted pendulum by
applying a force to the cart that the pendulum is attached to. A real-world example
that relates directly to this inverted pendulum system is the attitude control of a
booster rocket at takeoff.

The Bat algorithm would take care of finding the optimal parameter values for
some of the inverted pendulum problem, the end of the integration results with the
original parameters recommended in the literature and the results obtained with the
application of the algorithm will be shown.

Table 12 Simulation results for the sum squared function

Bat algorithm Fuzzy Bat algorithm

Number of bats Best Number of bats Best

30 0.000006 10 0.00899885
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8 Conclusions

In the simulation analysis for the comparative study of genetic algorithms and the
effectiveness of the bat algorithm, the rate of convergence of the genetic algorithm
is faster, the comparison was made with the original versions of the two algorithms
with the recommended literature parameters, this conclusion is based on 6
Benchmark math functions results may vary according to mathematical or
depending on the values set in the parameters of the algorithm.

In Sect. 6 the analysis for the comparative study of Bat Algorithm and proposed
modification of Bat Algorithm, we find that there are promising results, but we read
to continue improving the algorithm.

The application of the bat algorithm to various problems has a very wide field
where the revised items its effectiveness is demonstrated in various applications,
their use can be mentioned in the processing digital pictures, search for optimal
values, neural networks, and many applications.
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Optimization of Benchmark Mathematical
Functions Using the Firefly Algorithm
with Dynamic Parameters

Cinthya Solano-Aragón and Oscar Castillo

Abstract Nature-inspired algorithms are more relevant today, such as PSO and
ACO, which have been used in several types of problems such as the optimization
of neural networks, fuzzy systems, control, and others showing good results [1–5].
There are other methods that have been proposed more recently, the firefly algo-
rithm is one of them, this paper will explain the algorithm and describe how it
behaves. In this paper the firefly algorithm was applied in optimizing benchmark
functions and comparing the results of the same functions with genetic algorithms.

Keywords Genetic algorithms � Firefly algorithm � Benchmark functions �
Optimization

1 Introduction

Optimization is the process of adjusting the inputs to or characteristics of a device,
mathematical process, or experiment to find the minimum or maximum output or
result (Fig. 1). The input consists of variables; the process or function is known as
the cost function, objective function, or fitness function; and the output is the cost or
fitness. If the process is an experiment, then the variables are physical inputs to the
experiment [6].

The main problem of optimization is to find the values of the variables of a
function to be optimized. These types of problems exist in many disciplines.
Despite the fact that there are many methods of solution, there are many problems
that need special attention and are difficult to solve using deterministic solution
methods. In contrast to the deterministic algorithms, meta-heuristic methods are not
affected by the behavior of the optimization problem. This makes the algorithms
more widely usable.
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The rest of the paper is organized as follows. Section 2 we describe the Firefly
Algorithm developed by Xin-She Yang. In Sect. 3, talks about methodology for
parameter adaptation. In Sect. 4, shows the experimentation with benchmark
mathematical functions. Finally Sect. 5, shows the conclusions.

2 Firefly Algorithm

The Firefly Algorithm (FA) is a meta-heuristic, nature-inspired, optimization
algorithm which is based on the social (flashing) behavior of fireflies. The flashing
light of fireflies is an amazing sight in the summer sky in the tropical and temperate
regions. The primary purpose for a firefly’s flash is to act as a signal system to
attract other fireflies. In addition, flashing may also serve as a protective warning
mechanism [7].

For simplicity, the flashing characteristics of fireflies are idealized in the fol-
lowing three rules [8–10]:

• All fireflies are unisex, so that one firefly is attracted to other fireflies regardless
of their sex.

• Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less bright one will move towards the brighter one. The attrac-
tiveness is proportional to the brightness and they both decrease as their distance
increases. If no one is brighter than a particular firefly, it moves randomly.

• The brightness of a firefly is affected or determined by the landscape of the
objective function to be optimized.

2.1 Attractiveness

The form of the attractiveness function of a firefly is the following monotonically
decreasing function [8]:

b rð Þ ¼ b0e
�crm ðm� 1Þ ð1Þ

where r is the distance between any two fireflies, b0 is the attractiveness at r = 0 and
c is a fixed light absorption coefficient.

Fig. 1 Diagram of a function or process that is to be optimized. Optimization varies the input to
achieve a desired output
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2.2 Distance

The distance between any two fireflies i and j at Xi and Xj, respectively, is the
Cartesian distance as follows:

rij ¼k Xi � Xj k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

xi;k � xj;k
� �2

vuut ð2Þ

where xi;k is the kth component of the spatial coordinate Xi of ith firefly and d is the
number of dimensions.

2.3 Movement

The movement of a firefly i is attracted to another more attractive (brighter) firefly
j is determined by following equation:

xtþ1
i ¼ xti þ b0e

�cr2
ij xtj � xti
� �

þ at 2t
i ð3Þ

where the second term is due to the attraction while the third term is randomization
with a being the randomization parameter. rand is a random number generator
uniformly distributed in [0, 1]. For most cases in the implementation,
b0 ¼ 1 and a 2 ½0; 1�.

3 Methodology for Parameter Adaptation

Because in the Firefly Algorithm, there are two important issues: the variation of
light intensity and formulation of the attractiveness, we decided to use the
parameters that affect to implement changes in its evolution expecting better results.

Here we use fuzzy logic and describe the system used.
In Fig. 2 we can see the parameters can will be a change in the evolution of

algorithm before showing the different variations of FIS that we develop in search
of better results.

The design of the input variables can be appreciated in Figs. 3, 4 and 5, which
show the inputs iteration, diversity, and error respectively, each input is granulated
into three triangular membership functions.

For the output variables, the recommended values for β are between 0 and 1 and
γ are between 0.1 and 10, so that the output variables were designed using this
range of values. Each output is granulated in five triangular membership functions,
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Fig. 2 Scheme of dynamic parameters

Fig. 3 Input 1: iteration

Fig. 4 Input 2: diversity
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Fig. 5 Input 3: error

Fig. 6 Output 1: β (Beta)

Fig. 7 Output 2: γ (Gamma)
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the design of the output variables can be seen in Figs. 6 and 7, β (Beta) and γ
(Gamma) respectively.

Having defined the possible input variables, it was decided to combine them to
generate different fuzzy systems for dynamic adjustment of β and γ (Fig. 8).

4 Experimentation with Benchmark Mathematical
Functions

In the field of evolutionary computation, it is common to compare different algo-
rithms using a large test set, especially when the test set involves function opti-
mization. However, the effectiveness of an algorithm against another algorithm
cannot be measured by the number of problems that it solves better. If we compare
two searching algorithms with all possible functions, the performance of any two
algorithms will be, on average, the same. As a result, attempting to design a perfect
test set where all the functions are present in order to determine whether an algo-
rithm is better than other for every function. This is the reason why, when an
algorithm is evaluated, we must look for the kind of problems where its perfor-
mance is good, in order to characterize the type of problems for which the algorithm
is suitable. In this way, we have made a previous study of the functions to be
optimized for constructing a test set with six benchmark functions and a better
selection. This allows us to obtain conclusions of the performance of the algorithm
depending on the type of function. The mathematical functions analyzed in this
paper are in the table. The functions of Table 1 were evaluated considering 20
variables [11–14] .

We performed additional experiments using the functions contained in Haupt
and Haupt [15], we present the parameters used in Table 2 for all experiments. In
Table 3 we can see the results of first experiments using Firefly Algorithm (Simple
FA) and Fuzzy Firefly Algorithm (Fuzzy FA). In Table 4 we find the results of the
functions contained in the book of Haupt and Haupt [15] using Firefly Algorithm
(Simple FA) and Fuzzy Firefly Algorithm (Fuzzy FA).

Fig. 8 Rules of fuzzy system
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Table 1 Mathematical functions

Function Expression

Rastrigin
f xð Þ ¼ 10nþPn

i¼1
ðx2 � 10 cosð2pxiÞÞ

Rosenbrock
f xð Þ ¼ Pn�1

i¼1
½100 x2i � x2i þ 1

� �2þðxi � 1Þ2�

Ackley
f xð Þ ¼ 20þ e� 20e�1=5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn
i¼1

x2i

s
� e1=n

Pn
i¼1

cosð2px1Þ

Shubert
f xð Þ ¼ P5

i¼1
i cosð iþ 1ð Þx1Þ þ i

� � P5
i¼1

i cosð iþ 1ð Þx2 þ i
� �

Sphere
f xð Þ ¼ Pn

i¼1
x2i

Griewank
f xð Þ ¼ Pn

i¼1

x2
i

4000 �
Qn
i¼1

cos xi=
ffiffi
i

p� �þ 1

Table 2 Parameters for each
method

Parameter Simple FA Fuzzy FA

Population 25 25

Iterations 20 20

β (Beta) 0.20 Dynamic

γ (Gamma) 1.0 Dynamic

Table 3 Simulation results Mathematical
functions

Minimum Simple
FA

Fuzzy FA

Rastrigin 0 3.47E−02 7.28E−03

Rosenbrock 0 7.39E−03 7.50E−03

Ackley 0 1.89E−02 1.19E−02

Shubert −186.73 −186.584 −186.597

Sphere 0 7.55E−04 6.45E−03

Griewank 0 1.67E−02 5.58E−03
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5 Conclusion

The behavior of the algorithm along the conducting experiments was stable and do
not show a large expected compared with other algorithms that have been used for
solving these problems despite the use of dynamic parameters.

In the previous work [16] that had been done we used the algorithm without any
modification Firefly no improvement and was likewise very near but still searched
results, we think you could still improve; so we decided to make the change
parameters dynamically using fuzzy logic.

Find better solutions in most of the experiments, we used a total of 22 math
functions and experiments performed 10 each; we can conclude that the firefly
algorithm is a good method for solving functions.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, Reading,
Mass, Addison Wesley, Reading (1989)

2. Melendez, A., Castillo, O.: Evolutionary optimization of the fuzzy integrator in a navigation
system for a mobile robot. Recent Adv. Hybrid Intell. Syst. 21–31 (2013)

3. Rodriguez Vázquez, K.: Multiobjective Evolutionary Algorithms in Non-linear System
Identification. Automatic Control and Systems Engineering, The University of Sheffield,
Sheffield, p. 185 (1999)

Table 4 Simulation results of Haupt, R., and Haupt, S

Function Minimum Simple FA Fuzzy FA

f1 1 0.9598 0.9905

f2 0 1.64E−02 6.78E−03

f3 1 0.9875 0.9874

f4 0 5.22E−03 1.80E−02

f5 0–1 3.46E−02 2.08E−02

f6 −100.22 −99.9847 −100.1064

f7 −18.5547 −18.2410 −18.51348

f8 −18.5547 −17.9456 −18.5374

f9 0 6.70E−02 3.18E−04

f10 0 1.63E−02 3.34E−03

f11 0 5.69E−02 2.74E−02

f12 −0.5231 −0.5121 −0.5218

f13 0 6.83E−03 6.83E−03

f14 −0.3356 −0.3312 −0.3324

f15 −16.947 −15.9856 −16.5745

f16 −23.806 −23.5312 −23.7412

88 C. Solano-Aragón and O. Castillo



4. Astudillo, L., Melin, P., Castillo, O.: Optimization of a fuzzy tracking controller for an
autonomous mobile robot under perturbed torques by means of a chemical optimization
paradigm. Recent Adv. Hybrid Intell. Syst. 3–20 (2013)

5. Cervantes, L., Castillo, O.: Genetic optimization of membership functions in modular fuzzy
controllers for complex problems. Recent Adv Hybrid Intell. Syst. 51–62 (2013)

6. Holland, H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor (1975)

7. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Europe (2008)
8. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms

Foundations and Applications (SAGA’09). Lecture Notes in Computing Sciences, Vol. 5792. ,
Springer, New York, pp. 169–178 (2009)

9. Yang, X.S.: Firefly algorithm stochastic test functions and design optimization. Int. J. Bio-
Inspired Comput. 2(2), 78–84 (2010)

10. Yang, X.S.: Firefly algorithm, lévy flights and global optimization. In: Bramer, M., Ellis, R.,
Petridis, M. (eds.) Research and Development in Intelligent Systems, Vol. XXVI,
pp. 209–218. Springer, London (2010)

11. Valdez, F., Melin, P.: Comparative study of particle swarm optimization and genetic
algorithms for mathematical complex functions. J. Autom. Mob. Robot. Intell. Syst.
(JAMRIS) 2, 43–51 (2008)

12. Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for
combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11(2),
2625–2632 (2011)

13. Valdez, F., Melin, P., Castillo, O.: Bio-inspired optimization methods on graphic processing
unit for minimization of complex mathematical functions. Recent Adv. Hybrid Intell. Syst.
313–322 (2013)

14. Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., García, J.M.: Valdez: optimal design of
fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy
logic. Expert Syst. Appl. 40(8), 3196–3206 (2013)

15. Haupt, R., Haupt, S.: Practical genetic algorithms 2nd ed. A Wiley-Interscience Publication
(1998)

16. Solano-Aragon, C., Castillo, O.: Optimization of benchmark mathematical functions using the
firefly algorithm. Recent Adv. Hybrid Approaches Designing Intell. Syst. 177–189 (2013)

Optimization of Benchmark Mathematical Functions … 89



Cuckoo Search via Lévy Flights
and a Comparison with Genetic
Algorithms

Maribel Guerrero, Oscar Castillo and Mario García

Abstract The purpose of this paper is to present a brief literature review of the
cuckoo search algorithm (CS) and analyze its behavior by applying it to a set of
benchmark mathematical functions. CS is a stochastic algorithm, inspired by the
nature of a family bird called Cuckoo. CS algorithms are reinforced with Lévy
flights to analyze the search space in a successful manner. We performed a com-
parison of Cuckoo Search (CS) and Genetic Algorithm (GA), these algorithms were
tested on five mathematical functions for analysis.

Keywords Cuckoo search algorithm � Genetic algorithm � Levy flights

1 Introduction

In this paper we describe the Cuckoo Search Algorithm via Lévy flights with the
intention of making a comparison with Genetic Algorithms. Based on the per-
formed simulations, in Sect. 5 we present tables with the optimization results
obtained after applying the CS and GA to mathematical functions.

The comparative study was performed in order to observe the behavior presented
by the CS algorithm with 5 mathematical functions and with different number of
variables.

Cuckoo Search (CS) is one of the latest nature-inspired meta-heuristic algo-
rithms, developed in 2009 by Xin-She Yang of Cambridge University and Suash
Deb of C. V. Raman College of Engineering. CS is based on the brood parasitism of
some cuckoo species. In addition, this algorithm is enhanced by the so-called Lévy
flights, rather than by simple isotropic random walks.
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Cuckoo Search has been applied in many areas of computational intelligence and
optimization. For example, in engineering design applications, cuckoo search has
superior performance over other algorithms for a range of continuous optimization
problems such as the spring design and welded beam design problems [7, 8, 21].

Other works include a discrete cuckoo search algorithm proposed by Tein and
Ramli [15] to solve nurse scheduling problems. Another one is the modified the
cuckoo search via Lévy flights proposed by Yang and Deb [20] Lévy flights
reinforce the CS algorithm, due to the behavior of some birds and fruit flies. Zheng
and Zhou [23] provided a variant of Cuckoo Search using Gaussian process.Yang
and Deb [22] proposed the MultiObjective Cuckoo Search (MOCS) for design
engineering applications.

There are various applications including: Interesting results were obtained using
Cuckoo Search for training neural networks, as shown Valian et al. [17]. The
Cuckoo Search has also been used to generate independent paths for software
testing and test data generation [3, 12, 14]. In the context of data fusion and wireless
sensor network, Cuckoo Search has been shown to be very efficient [4, 5]. Fur-
thermore, Vazquez [18] used Cuckoo Search to train spiking neural network
models, while Chifu et al. [1] optimized semantic web service composition pro-
cesses using Cuckoo Search.

The paper is organized as follows: in Sect. 2 the description of the Cuckoo
Search Algorithm, its variants and the pseudo code are presented, in Sect. 3 a
description of the Genetic Algorithm, in Sect. 4 the description of the mathematical
functions is presented, in Sect. 5 we can find the results of the simulations, in Sect.
6 the conclusions from the analysis of results obtained after applying mathematical
functions are presented.

2 Cuckoo Search Algorithm

The Cuckoo is a fascinating bird, not only because of the beautiful sound it can
make, but also because of their aggressive reproduction strategy. Some species such
as the Ani and Guira cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their own eggs. Quite a
number of species engage the obligate brood parasitism by laying their eggs in the
nests of other host birds (often other species) [19].

For simplicity in describing the Cuckoo Search, we now use the following three
idealized rules [13]:

1. Each cuckoo lays one egg at a time, and dumps its egg in randomly chosen
nest.

2. The best nests with high quality of eggs will carry over to the next
generations.
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3. The number of available host nests is fixed, and the egg laid by a cuckoo is
discovered by the host bird with a probability pa in [0, 1]. In this case, the host
bird can either throw the egg away or abandon the nest, and build a completely
new nest. For simplicity, this last assumption can be approximated by the
fraction pa of the n nests are replaced by new nests (with new random
solutions).

As a further approximation, this last assumption can be approximated by
replacing a fraction pa of the n host nests with new nests (with new random
solutions). For a maximization problem, the quality or fitness of a solution can
simply be proportional to the value of the objective function. Other forms of fitness
can be defined in a similar way to the fitness function in Genetic Algorithms.

The basic steps of the Cuckoo Search (CS) can be summarized as the pseudo
code shown in Sect. 2.3.

2.1 Variants

The original Cuckoo Search was first tested using numerical function optimization
benchmarks. Usually, this kind of problems represents a test bed for new developed
algorithms. In line with this, standard benchmark function suites [9, 21] have been
developed in order to make comparison between algorithms as fair as possible. For
example, some original studies in this area are:

• Cuckoo Search via Lévy flights [20].
• An efficient Cuckoo Search algorithm for numerical function optimization [11].
• Multimodal function optimization [10].

Cuckoo search can deal with multimodal problems naturally and efficiently.
However, researchers have also attempted to improve its efficiency further so as to
obtained better solutions than those in the literature [6], and one such study that is
worth mentioning is by Jamil and Zepernick [10].

2.2 Lévy Flights

On the other hand, various studies have shown that the flight behavior of many
animals and insects has demonstrated the typical characteristics of Lévy flights. A
recent study by Reynolds and Frye shows that fruit flies or Drosophila melano-
gaster, explore their landscape using a series of straight flight paths punctuated by
a sudden 90° turn, leading to a Lévy-flight-style intermittent scale free search
pattern.

Cuckoo Search via Lévy Flights and a Comparison … 93

http://dx.doi.org/10.1007/978-3-319-10960-2_2


Studies on human behavior such as the Ju/’hoansi hunter-gatherer foraging pat-
terns also show the typical feature of Lévy flights. Even light can be related to Lévy
flights. Subsequently, such behavior has been applied to optimization and optimal
search, and preliminary results show its promising capability.

2.3 Pseudo Code for Cuckoo Search Algorithm

The pseudocode is as follows:

2.4 Generate a New Solution

When generating new solutions x(t + 1), for say a cuckoo i, a Lévy flight is
performed using Eq. 1:

xðtþ1Þ
i ¼ xi þ a� L�evyðkÞ ð1Þ

where:

xðtþ1Þ
i

The new position,

xi Current position
a Is the step size which should be related to the scales of the problem of

interests, where a� 0

The product � means entry-wise multiplications.
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L�evyðkÞ The probability distribution
k It is a constant ð1� k� 3Þ.
t The number of current generation (Time)

In general, a random walk is a Markov chain whose next status/location only
depends on the current location (the first term in the above Eq. 1) and the transition
probability (the second term).

The Lévy flight essentially provides a random walk while the random step length
is drawn from a Lévy distribution, in Eq. 2 we can see that distribution:

L�evy� u ¼ t�k; 1\k� 3ð Þ; ð2Þ

Which has an infinite variance with an infinite mean. Here the steps essentially
form a random walk process with a power law step-length distribution with a heavy
tail. Some of the new solutions should be generated by Lévy walk around the best
solution obtained so far, this will speed up the local search.

However, a substantial fraction of the new solutions should be generated by far
field randomization and whose locations should be far enough from the current best
solution, this will make sure the system will not be trapped in a local optimum.

3 Genetic Algorithms

The Genetic Algorithm (GA) is an optimization and search technique based on the
principles of genetics and natural selection. A GA allows a population composed of
many individuals to evolve under specified selection rules to a state that maximizes
the “fitness” (i.e., minimizes the cost function).

Genetic Algorithm (GA), is introduced by John Holland from the University of
Michigan initiated his work on genetic algorithms at the beginning of the 1960s, is
the powerful stochastic algorithm based on the principles of natural selection and
natural genetic, applied in optimization problems and machine learning.

In GA maintains a population of individuals, each individual is represented by a
strings or chromosomes and y probabilistically modifies the population by some
genetic operators such as selection, crossover and mutation, with the intent of
seeking a near-optimal solution to the problem.

The main driving operators of a GA are selection (to model survival of the
fittest) and recombination through application of a crossover operator (to model
reproduction).
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3.1 Representation—the Chromosome

An individual in a GA is usually represented by a vector of fixed length with values
in each of their positions of 0 or 1. If we have an ND-dimensional search space,
each individual consists of n variables with each variable encoded as a bit string; the
length of each chromosome is ND bits. In the case of nominal-valued variables,
each nominal value can be encoded as an ND-dimensional bit vector where 2ND is
the total numbers of discrete nominal values for that variable. Each ND-bit string
represents a different nominal value. In the case of continuous-valued variables,
each variable should be mapped to an ND-dimensional bit vector.

/ : R ! ð0; 1Þnd ð3Þ

The domain of continuous space needs to be restricted to a finite range, [xmin,
xmax]. Using standard binary decoding, each continuous variable xij of chromo-
some xi is encoded using a fixed length bit string.

3.2 Crossover Operations

Several crossover operators have been developed to compute for GAs depending on
the format in which individuals are represented:

• One-point crossover: Holland [2] suggested that segments of genes be swapped
between the parents to create their offspring, and not single genes.
A one-point crossover operator was developed that randomly selects a crossover
point and the bit strings after that point are swapped between the two parents.

• Two-point crossover: In this case two bit positions are randomly selected, and
the bit strings between these points are swapped.

Uniform Crossover, where corresponding bit positions are randomly exchanged
between the two parents to produce two offspring

3.3 Mutation

For binary representations, the following mutation operators have been developed:

• Uniform (random) mutation, where bit positions are chosen randomly and the
corresponding bit values negated.

• In-order mutation, where two mutation points are randomly selected and only
the bits between these mutation points undergo random mutation.
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• Gaussian mutation: the bit string that represents a decision variable be converted
back to a floating-point value and mutated with Gaussian noise. For each
chromosome random numbers are drawn from a Poisson distribution to deter-
mine the genes to be mutated.

4 Benchmark Mathematical Functions

To test the CS and GA algorithm, we use a set of 5 benchmark functions used to
evaluate the performance of optimization algorithms were obtained [16], called
F1 (Spherical Function), F2 (Rosenbrock Function), F3 (Ackley Function), F4
(Rastringin Function) and F5 (Griewank Function).

The functions were evaluated with 8, 16, 32, 64 and 128 dimensions.
Figure 1 the Eq. 4 represents the F1 function, the Eq. 5 represents the F2

function, so on.
The mathematical functions are shown below:

Spherical Function (F1)

f ðxÞ ¼
Xnx
j¼1

x2j ð4Þ

Witch xj 2 ½�5:12; 5:12� and f 	ðxÞ ¼ 0:0

Rosenbrock Function (F2)

f ðxÞ ¼
Xnz=2
j¼1

½100ðx2j � x22j�1Þ2 þ ð1� x2j�1Þ2� ð5Þ

Witch xj 2 ½�5; 10� and f 	ðxÞ ¼ 0:0

Ackley Function (F3)

f ðxÞ ¼ 20þ e� 20e�1=5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

j¼1
x2j � e

1
n

Xn

j¼1
cosð2pxjÞ

r
ð6Þ

With xj 2 ½�5; 30� and f 	ðxÞ ¼ 0:0

Rastringin Function (F4)

f ðxÞ ¼ 10n
Xnx
j¼1

½x2j � 10 cosð2pxjÞ� ð7Þ

With xj 2 ½�5:12; 5:12� and f 	ðxÞ ¼ 0:0

Griewank Function (F5)

Cuckoo Search via Lévy Flights and a Comparison … 97



f ðxÞ ¼ 1þ
Xnx
n¼1

x2n
40000

YN
n¼1

cosðxnÞ ð8Þ

Witch xi 2 ½�600; 600� and f 	ðxÞ ¼ 0:0

5 Simulation Results

The test of the CS and GA was madean implementation in the Matlab programming
language.

The implementation was developed for CS using a computer with processor Intel
Core 2 Duo of 64 bits that works to a frequency of clock of 2.93 GHz, 4.00 GB of
RAM Memory and Windows 7 Ultimate Operating System. Data for tests with GA
were obtained from reference [16].

In the tables we can find the number of variables used (VARIABLE), the best
result obtained (BEST), the average of 50 times (AVERAGE), the worst results
obtained (WORST).

In Table 1,we can find the parameters used for all the tests performed for the CS
algorithm.

In the Table 2, we can find the parameters used for all the tests performed for the
GA algorithm.

5.1 Simulation Results with the Cuckoo Search Algorithm

In this Section we show tables from 7 to 12 where it can be appreciated that after
executing the Cuckoo Search algorithm 50 times, with different number of

Table 1 Parameters used
in CS

Parameter Value

Population size 100 nests

Pa 0.75 probability Pa discovered
by the host bird

a 0.05 step size

Table 2 Parameters used
in GA

Parameter Value

Population size 100 individuals

Crossover (k1) 80 %

Mutation (k2) 5 %

Selection Roulette
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Table 3 Experimental results with CS for spherical Function (F1)

F1

Variables Best Average Worst

8 2.50E−25 4.74E−24 2.13E−23

16 2.25E−13 4.99E−13 1.05E−12

32 4.25E−07 8.92E−07 1.65E−06

64 0.001709 0.002822 0.00453256

128 0.227951 0.33637 0.43696553

Table 4 Experimental results with CS for Rosenbrock function (F2)

F2

Variables Best Average Worst

8 0.0017451 0.02512 0.27673769

16 0.1928658 3.752432 8.34213099

32 24.63969 28.39019 31.5022726

64 151.64964 230.5317 293.189601

128 2262.9706 2677.951 3431.05473

Table 5 Experimental results with CS for Ackley function (F3)

F3

Variables Best Average Worst

8 2.65E−07 1.65E−06 7.18E−06

16 0.00558276 0.01776329 0.04590806

32 0.14201793 0.49304933 1.02257225

64 2.66494517 3.07581938 3.726809

128 2.66494517 3.07581938 3.726809

Table 6 Experimental results with CS for Rastringin function (F4)

F4

Variables Best Average Worst

8 0.38091491 1.62804412 2.40289176

16 16.3558737 23.8306045 31.1494267

32 84.1365234 108.086428 127.969947

64 282.981597 346.106282 400.833459

128 812.083589 912.6544 993.524008
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Table 7 Experimental results with CS for Griewank function (F5)

F5

Variables Best Average Worst

8 0.2534578 0.04387996 0.0621054

16 4.28E−05 0.00031296 0.00324406

32 0.00255137 0.00613996 0.01612947

64 0.36120341 0.64115893 0.83964767

128 1.71383703 2.18576009 2.69262304

Table 8 Experimental results with GA for spherical function (F1)

F1

Variables Best Average Worst

8 8.66E−07 0.00094 0.0070

16 4.09E−06 0.00086 0.0083

32 1.14E−06 0.00094 0.0056

64 1.00E−05 0.00098 0.0119

128 1.00E−05 9.42E−04 0.0071

Table 9 Experimental results with GA for Rosenbrock function (F2)

F2

Variables Best Average Worst

8 5.29E−05 0.05823 0.30973

16 0.00071 0.05683 0.50171

32 0.00228 0.05371 0.53997

64 0.00055 0.053713 0.26777

128 0.000286 0.05105 0.26343

Table 10 Experimental results with GA for Ackley function (F3)

F3

Variables Best Average Worst

8 3.006976 3.14677173 3.38354

16 3.163963 3.351902975 3.57399568

32 3.246497 3.14677173 3.86201

64 3.519591 3.86961452 4.15382873

128 3.8601773 4.209902992 4.55839099

100 M. Guerrero et al.



variables, we can find the best, average and worst results with each of the math-
ematical functions.

The results in Table 3 show that the CS with static parameters 50 experiments
for Spherical Function (F1), we can find that for 8, 16, 32, 64 variables, CS showed
better results compared to the Table 8 of GA.

In Table 4 we can find that CS achieve better resultsin 8 variables for Rosen-
brock Function, and in Table 9 with GA achieve the best results with 16, 32, 64 and
128 variables.

CS for Ackley Function (F3) we can find in Table 5 that the algorithm surpassed
the results shown in Table 10 with GA.

Table 6 achieve better results CS in 8 and 16 variables in average relative to the
Table 11 the GA.

We can achieve in the Table 7, CS algorithm findbetter results for 16, 32, 64
variables, compared with Table 12 the GA.

5.2 Simulation Results with The Genetic Algorithm (GA)

In this Section we find the tables of results obtained by Genetic Algorithm for each
mathematical function [16].

Table 8 find the results of GA with Spherical Function (F1), Unlike the results
find in Table 3 the CS, GA shows better results for 128 variables.

Table 11 Experimental results with GA for Rastringin function (F4)

F4

Variables Best Average Worst

8 0.499336 6.7430 15.3442

16 8.160601 24.01 43.39

32 46.008504292 82.35724 129.548

64 162.4343 247.0152194 347.216184

128 524.78094 672.6994 890.93943

Table 12 Experimental results with GA for Griewank function (F5)

F5

Variables Best Average Worst

8 0.001547453 0.026897950 0.09962

16 0.0053780643 0.12157227 0.34964841

32 0.141923311 0.410196991 0.9173677

64 0.7874362847 0.980005731 1.00242183

128 1.0051894441 1.006888465 1.00810391
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We can see in Table 9 that GA, find better results as opposed to the results of the
CS in Table 4 for 16, 32, 64 and 128 variables.

In comparing the results of Table 5 the CS, Table 10 the GA not exceeded results
the CS.

In the Table 11 the GA has better average for variable 32, 64 and 128, in
comparison with the results of CS in Table 6.

Table 12 The GA, find good results in average for the variables 8 and 128, in
comparison with the Table 7 presents good results for 16, 32, 64 variables.

6 Conclusions

In the results of the CS algorithm, we can analyze it according to the parameters
selected for this algorithm there may be variations in results, allowing the method to
converge faster, we can denote that good results are obtained compared to the
genetic algorithm, but, we have to work harder to find out what are the parameters
that affect the CS algorithm and improve on Rosenbrock and Rastringin functions to
gradually increase the number of variables.

The CS algorithm has many variants, and has been applied to programming
problems nursing, training neural networks, in software testing and test data,
generation in wireless sensor networks, among other applications, has shown
promising results CS.
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A Harmony Search Algorithm
Comparison with Genetic Algorithms

Cinthia Peraza, Fevrier Valdez and Oscar Castillo

Abstract We describe in this paper a Harmony Search (HS) Algorithm and their
areas of application, variants and comparison with other existing algorithms. HS is
a metaheuristic music inspired algorithm used to solve a wide range of optimization
problems applied to different areas, which has been very successful as indicated by
the literature. A comparison with genetic algorithms was performed to evaluate the
advantages of HS.

Keywords Harmony search � Optimization problems � Mathematical functions �
Genetic algorithms

1 Introduction

We describe in this paper a harmony search algorithm which is metaheuristic
algorithm inspired by music. In particular we refer to the improvisation of jazz
version of Hs and its comparison with the genetic algorithm. These algorithms were
applied to benchmark mathematical functions and comparative tables were made
showing the optimization of results between Genetic Algorithm and Harmony
Search algorithm.

The comparative study of the two algorithms is performed in order to show the
effectiveness of harmony search algorithm versus optimization problem, in the same
manner proving that it is more effective than the genetic algorithm.

The paper is organized as follows: in this Sect. 2 a description about Harmony
Search Algorithm is presented, in this Sect. 3 a description of Genetic Algorithm is
shown, in Sect. 4 description the mathematical functions is presented, in Sect. 5 a
description about the optimization problems is shown, in Sect. 6 the simulations
results are described and we can appreciate a comparison between Harmony Search
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algorithm and genetic algorithms, and in Sect. 7 the conclusions obtained after the
study of the two algorithms versus mathematical functions is presented.

In the literature there are works where the Harmony Search has been used. In [4]
a new Meta heuristic algorithm for continuous engineering optimization Theory and
practice is presented. In this paper the authors propose a new harmony search(HS)
meta heuristic algorithm based approach for engineering optimization problems
with continuous design variables it uses a stochastic random search instead of a
gradient search so that derivative information is unnecessary various engineering
optimization problems, including mathematical function minimization and struc-
tural engineering optimization problems, are presented to demonstrate the effec-
tiveness and robustness of the HS algorithm. The results indicate that the proposed
approach is a powerful search and optimization technique that may yield better
solutions to engineering problems than those obtained using current algorithms. In
[5] the Parameter setting free harmony search algorithm is presented, the authors
proposed this study a novel technique to eliminate tedious and experience requiring
parameter assigning efforts. The new parameter setting free (PSF) technique which
this study suggests contains one additional matrix which contains an operation type
(random selection, memory consideration, or pitch adjustment) for every variable in
harmony memory. In [15] the Harmony Search Benchmarking of heuristic opti-
mization methods is presented, the authors propose it is short history when many
heuristic optimization methods appear. As example Particle swarm optimization
method (PSO) or Repulsive particle swarm optimization method (RPSO), Gravi-
tational search algorithm (GSA), Central force optimization (CFO), Harmony
search algorithm (HAS) etc. Those methods are working differently but all of them
can optimize same problems. There is general question: Exists any standard
benchmark which can be used for individual methods comparing. It is a bit hard to
answer this question because it is possible to find some optimization problems
which are widely used along some papers but in fact there does not exists summary
which can be uses for standard evaluation of optimization process. In [9] the Global
Best Harmony Search is presented, the authors propose a new variant of HS con-
cepts from swarm intelligence are borrowed to enhance the performance of HS. The
performance of the GHS is investigated and compared with HS and a recently
developed variation of HS. The experiments performed show that the GHS gen-
erally outperformed the other approach when applied to ten benchmark problems.
The effect of noise on the performance of the three HS variants is investigated and a
scalability study is conducted. The effect of the GHS parameters is analyzed.
Finally, the three HS variants are compared on several Integer Programming test
problem. The results show that the three approaches seem to be an efficient alter-
native for solving Integer Programming problem. In [16] the Self adaptive: har-
mony search algorithm for optimization is presented, the authors proposed a new
metaheuristic optimization algorithm harmony search (HS) with continuous design
variables was developed. This algorithm is conceptualized using the musical
improvisation process of searching for a perfect state of harmony. Although several
variants and an increasing number of applications have appeared, one of its main
difficulties is how to select suitable parameter values. In [10] the An improved
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harmony search algorithm for solving optimization problems is presented, in this
paper the authors propose develops an improved harmony search (IHS) algorithm
for solving optimization problems. IHS employs a novel method for generating new
solution vectors that enhances accuracy and convergence rate of harmony search
(HS) algorithm, in [11] the a survey on applications of the harmony search algo-
rithm, in this paper they propose thoroughly reviews and analyses the main char-
acteristics and application portfolio of the so called Harmony Search algorithm a
meta heuristic approach that has been shown to achieve excellent results in a wide
range of optimization problems. In [8] the A Tabu Harmony Search Based
Approach to Fuzzy Linear Regression is presented, the authors propose an
unconstrained global continuous optimization method based on tabu search and
harmony search to support the design of fuzzy linear regression (FLR) models.
Tabu and harmony search strategies are used for diversification and intensification
of FLR, respectively. The authors propose approach offers the flexibility to use any
kind of an objective function based on client’s requirements or requests and the nature
of the data set and then attains its minimum error. In [14] the A new gravitational
search algorithm using fuzzy logic to parameter adaptation the authors propose a new
method using fuzzy logic to change alpha parameter and give a different gravitation
and acceleration to each agent in order to improve its performance, we use this new
approach for mathematical functions and present a comparison with original
approach. In [3] the Fuzzy Control of Parameters to Dynamically Adapt the PSO and
GAAlgorithms the authors propose a new hybrid approach for mathematical function
optimization combining Particle SwarmOptimization (PSO) and Genetic Algorithms
(GAs) using Fuzzy Logic for parameter adaptation and integrate the results. In [7] the
Music Inspired Harmony Search Algorithm Theory and practice, the authors propose
we show the performance of the algorithm and the areas in which it can be applied. In
[6] the Harmony Search Algorithms for structural design optimization the authors
propose a show us the type of problems you can solve the harmony search algorithm
and some methods that have been proposed to improve in certain areas of application.
In [12] the Differential evolution with dynamic adaptation of parameters for the
optimization of fuzzy controllers is presented, the authors propose a new algorithm
using fuzzy logic with dynamic adaptation of parameters.

2 Harmony Search Algorithm

Harmony search is a relatively new heuristic optimization algorithm inspired music
and was first developed by ZW Gemm et al. in 2001 [7].

This algorithm can be explained more in detail with the process of improvisation
that takes a musician, which consists of three options:

1. Play any song you have in your memory
2. Play a similar composition to an existing
3. Play a new song or randomly
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If we formalize these three options for optimization, we have three corre-
sponding components: memory usage of harmony, pitch adjustment and random-
ization [17].

2.1 Memory in Harmony Search Algorithm

The use of harmony memory is important because it is similar to choosing the best
people in genetic algorithms. This will ensure the best harmonies will be transferred
to the new memory harmony. In order to use this memory more effectively, we can
assign a parameter raccept € [0, 1] call acceptance rate memory. If this rate is too
low, just select the best harmonies and may converge very slowly [17].

raccept 2 0; 1½ � ð1Þ

2.2 Pitch Adjustment

To adjust the pitch slightly in the second component, we have to use such a method
can adjust the frequency efficiently. In theory, the tone can be adjusted linearly or
nonlinearly, but in practice the linear is used. If the current solution is Xold (or
pitch), then the new solution (tone) is generated Xnew.

xnew ¼ xold þ bpð2rand � 1Þ ð2Þ

where “rand” is a random number drawn from a uniform distribution [0, 1]. Here is
it bandwidth, which controls the local range of tone adjustment in fact, we can see
that the pitch adjustment (2) is a random step.

Pitch setting is similar to the mutation operator in genetic algorithms. We can
assign a pitch adjustment rate to control the degree of adjustment. If too low, there
is usually no change. If too high, then the algorithm may not converge at all [17].

2.3 Randomization

The third component is a randomization component (3) that is used to increase the
diversity of the solutions. Although the tone setting has a similar role, but it is
limited to certain local tone adjustment and therefore correspond to a local search.
The use of randomization can further push the system to explore various regions
with high diversity solution in order to find the global optimum [17]. So we have:

Pa ¼ Plower limit þ Prange � rand ð3Þ
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where rand is a generator of random numbers in the range of 0 and 1. (Search space)
Prange ¼ Pupper limit � Plower limit

The three components in harmony search can be summarized in the pseudo code
shown in Sect. 2.4, where you can find that the probability of a true randomization
(4) is

Prandom ¼ 1� raccept ð4Þ

And the actual probability of tone adjustment (5) is

Ptono ¼ raccept � rpa ð5Þ

2.4 Pseudo Code for Harmony Search Algorithm

The pseudo code for HS is presented below:

2.5 Variants

There are three variants of the algorithm that have been applied to achieve better
results briefly explain each of them:
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The improved harmony search algorithm (IHS)
To address the shortcomings of the HS, Mahdavi et al. [10] proposed a new variant
of the HS, called the improved harmony search (IHS). The IHS dynamically
updates (rpa) according to the following equation,

RpaðtÞ ¼ Rpamin þ ðRpamax � RpaminÞ
NI

þ t ð6Þ

where Rpa(t) is the pitch adjusting rate for generation t, PARmin is the minimum
adjusting rate, PARmax is the maximum adjusting rate and t is the generation
number.

In addition, bp is dynamically updated as follows:

bpðtÞ ¼ bpmaxeð
lnðbpminÞ

bpmax
Þ

NI
Þ � t ð7Þ

where bp(t) is the bandwidth for generation t, bpmin is the minimum bandwidth and
bpmax is the maximum bandwidth.

A major drawback of the IHS is that the user needs to specify the values for
bwmin and bpmax which are difficult to guess and problem dependent.

Best overall harmony search (GHS)
Inspired by the concept of swarm intelligence as proposed in Particle Swarm
Optimization (PSO) [2], a new variation of HS is proposed in this paper. In a global
best PSO system, a swarm of individuals (called particles) fly through the search
space. Each particle represents a candidate solution to the optimization problem.

The position of a particle is influenced by the best position visited by itself (i.e.
its own experience) and the position of the best particle in the swarm (i.e. the
experience of swarm).

The new approach, called global-best harmony search (GHS), modifies the pitch-
adjustment step of the HS such that the new harmony can mimic the best harmony
in the HM. Thus, replacing the bp parameter altogether and adding a social
dimension to the HS. Intuitively, this modification allows the GHS to work effi-
ciently on both continuous and discrete problems.

The GHS has exactly the same steps as the IHS with the exception that Step 3 is
modified as follows:
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New global harmony search (NGHS)

The NGHS algorithm is an improved version of harmony search algorithm (HS),
and it includes two important operations: position updating and genetic mutation
with a low probability. The former can enhance the convergence of the NGHS, and
the latter can effectively prevent the NGHS from trapping into the local optimum.
Based on a large number of experiments, the NGHS has demonstrated high effi-
ciency on solving chemical equation balancing. The results show that the NGHS
can be an efficient alternative for solving chemical equation balancing [1].

2.6 Application Areas

The harmony search algorithm has been applied so far to various optimization
problems. Moreover, the structure of the algorithm has been customized by case
adjust basic structure. To overcome this situation, the algorithm of harmony search
(HS) used a new stochastic derivative, using the experiences of musicians in jazz
improvisation and may be applicable to discrete variables. Instead of tilting the
information of an objective function, the stochastic derivative HS gives a proba-
bility of being selected for each value of a decision variable.

The HS algorithm has been applied to various problems in science and engi-
neering optimization including:

Optimization function, the distribution of water, groundwater modeling, energy
saving clearance, structural design, vehicle routing, and others. The possibility of
combining harmony search with other algorithms such as particle swarm optimi-
zation and genetic algorithms has also been investigated [17].
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3 Genetic Algorithms

Genetic algorithms (GA) emulate genetic evolution. The characteristics of indi-
viduals are therefore expressed using genotypes. The original form of the GA, as
illustrated by John Holland in 1975, had the distinct features: (1) a bit string
representation, (2) proportional selection, and (3) cross-over as the primary method
to produce new individuals. Since then, several variations to the original Holland
GA have been developed, using different representation schemes, selection,
crossover, mutation and elitism operators [2].

3.1 Representation

The classical representation scheme for GAs is of binary vectors of fixed length. In
the case of an nx-dimensional search space, each individual consists on nx variables
with each variable encoded as a bit string. If variables have binary values, the length
of each chromosome is nx bits. In the case of nominal-valued variables, each
nominal value can be encoded as an nd-dimensional bit vectors where 2nd is the
total numbers of discrete nominal values for that variable. Each nd-bit string rep-
resents a different nominal value. In the case of continuous-valued variables, each
variable should be mapped to an nd-dimensional bit vector,

u : R ! ð0; 1Þnd ð8Þ

The range of continuous space needs to be restricted to a finite range, [xmin, xmax].
Using the standard binary decoding, each continuous variable xij of chromosome xi is
encoded using a fixed length bit string.

GAs have also been developed that use integer or real valued representations and
order based representations where the order of variables in a chromosome plays an
important role. Also, it is not necessary that chromosomes be of fixed length [2].

3.2 Crossover Operations

Several crossover operators have been developed for GA’s depending on the format
in which individuals are represented. For binary representations, uniform crossover,
one-point crossover and two-point crossover are the most popular:

• Uniform Crossover, where corresponding bit positions are randomly exchan-
ged between the two parents to produce two offspring.

• One-Point Crossover, where a random bit position is selected, and the bit
substrings after the selected bit are swapped between the two parents to produce
two offspring.
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• Two-Point Crossover, where two bit positions are randomly selected and the
bit substrings between the selected bit positions are swapped between the two
parents.

For continuous valued genes, arithmetic crossover can be used:

xij ¼ rjx1j þ ð1:0� rjÞx2j ð9Þ

where rj*U(0, 1) and xi is the offspring produced from parents x1 and x2 [2].

3.3 Mutation

The mutation scheme used in a GA depends on the representation scheme. In the
case of bit string representations, we here:

• Random Mutation, randomly negates bits, while
• In-Order Mutation, performs random mutation between two randomly selected

bit positions.

For discrete genes with more than two possible values that a gene can.
Assume, random mutation selects a random value from the finite domain of the

gene. In the case of continuous valued genes, a random value sampled from a
Gaussian distribution with zero mean and small deviation is usually added to the
current gene value. As an alternative, random noise can be sampled from a Cauchy
distribution [2].

4 Benchmark Mathematical Functions

This section list a number of the classical benchmark functions used to validate
optimization algorithms.

In the area of optimization using mathematical functions have been considered in
the works mentioned below: A new gravitational search algorithm using fuzzy logic
to parameter adaptation [14], Differential evolution with dynamic adaptation of
parameters for the optimization of fuzzy controllers [12], Bat algorithm comparison
with genetic algorithm using benchmark functions [13].

To validate our method we used a set of 6 benchmark mathematical functions,
called Spherical, Rosenbrock, Rastrigin, Ackley, Zakharov, Sum Square; all
functions were evaluated with 4, 5, 10, 20, 30 and 40 Harmonies.

Figure 1 shows the plot corresponding to the Spherical function and Eq. 10
represents the Spherical function. Figure 2 shows the plot corresponding to
Rosenbrock function and Eq. 11 represents the Rosenbrock function.
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The mathematical functions are shown below:

f ðxÞ ¼
Xnx
j¼1

x2j ð10Þ

Witch xj 2 ½�100; 100� and f �ðxÞ ¼ 0:0

f ðxÞ ¼
Xnz=2
j¼1

½100ðx2j � x22j�1Þ2 þ ð1� x2j�1Þ2� ð11Þ

Witch xj 2 ½�2:048; 2:048� and f �ðxÞ ¼ 0:0
Figure 3 shows the plot corresponding to Rastrigin function and Eq. 12 shows

the description the Rastrigin function.

f ðxÞ ¼
Xnx
j¼1

ðx2j � 10 cosð2pxjÞ þ 10Þ ð12Þ

With xj 2 ½�5:12; 5:12� and f �ðxÞ ¼ 0:0

Fig. 1 Spherical function

Fig. 2 Rosenbrock function
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Figure 4 shows the plot corresponding to Ackley function and Eq. 13 shows the
description the Ackley function.

f ðxÞ ¼ �20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nx

Pnx
j¼1

x2j � 1
enx

Pnx
j¼1

cosð2pxjÞ
r

þ 20þ e ð13Þ

With xj 2 ½�30; 30� and f �ðxÞ ¼ 0:0
Figure 5 shows the plot corresponding to Zakharov function and Eq. 14 shows

the description the Zakharov function.

f ðxÞ ¼
Xn
i¼1

x2i þ ð
Xn
i¼1

0:5ixiÞ2 þ ð
Xn
i¼1

0:5ixiÞ4 ð14Þ

Witch xi 2 ½�5; 10� and f �ðxÞ ¼ 0:0

Fig. 3 Rastrigin function

Fig. 4 Ackley function
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Figure 6 shows the plot corresponding to Sum Square function and Eq. 15 shows
the description the Sum Square function.

f ðxÞ ¼
Xn
i¼1

ix2i ð15Þ

Witch xi 2 ½�2; 2� and f �ðxÞ ¼ 0:0

5 Optimization Problems

The optimization problem can be defined as:

Min y ¼ f xð Þ ð16Þ

Fig. 5 Zakharov function

Fig. 6 Sum square function
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Basically the problems can be divided into unimodal and multimodal.
Another aspect are constrains. Some problems have not constrains. The best

optimization method has to find optimal value in all cases.
There exist many algorithms for problem solving. Some of them are special,

some are more general. Many problems cannot be solved by deterministic algo-
rithm, so heuristic algorithm are used. In the set of metaheuristic algorithms we can
find PSO [3], GSA [14], DE [12] and others.

Unimodal functions

Have only one local optimum. Those functions are relatively easy to analyze for
optimums. They are used for checking the speed of optimization and convergence.
There are used commonly two functions. First one is Schefel’s and second one is
Rastrigin’s.

Multimodal functions

Multimodal functions have multiple local optimums. Some methods will stuck in
local optimum. Main goal of those problems is to test solvers how they are able to
avoid local optimum. Some problems have no single global optimum. Some of
them have one global optimum and many local which are very close in the term of
fitness function. First one is Sphere, second one is Sum and Product and third one is
Griewank’s.

6 Simulation Results

In this section the comparison of the Harmony Search algorithm is made against
genetic algorithms [13]. In each of the algorithms 6 mathematical functions
Benchmark were considered separately, a dimension of 10 variables was used with
30 runs for each function varying the parameters of the algorithms.

The parameters used in the HS were:

• Size solution harmonies: 4–40 Harmonies.
• Harmony memory accepting: 0.75–0.95.
• Pitch adjustment: 0.1–0.5.
• Pitch range: 200–400.

The parameters for the genetic algorithm are shown below [13]:

• Number of Individuals: 4–40.
• Selection: Stochastic, Remainder, Uniform, Roulette.
• Crossover: Scattered, Single Point, Two Point, Heuristic and Arithmetic.
• Mutation: Gaussian, Uniform.

A Harmony Search Algorithm Comparison … 117



6.1 Simulation Results with Harmony Search Algorithm

In this section we show the experimental results obtained by the Harmony Search
algorithm in separate tables of the mathematical functions. Table 1 shows the
simulation results for the Spherical function.

From Table 1 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Spherical function. Table 2 shows the simulation results for the Rosenbrock
function.

From Table 2 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Rosenbrock function. Table 3 shows the simulation results for the Rastrigin
function.

Table 1 Simulation results for the spherical function

Number of harmonies Best Worst Mean

4 0.000038975 0.00014863 0.0000762868

5 0.000039501 0.00014258 0.0000792732

10 0.000053865 0.00012135 0.0000883132

20 0.000029966 0.000079598 0.0000476648

30 0.000024495 0.000080963 0.0000499808

40 0.000023567 0.000077813 0.0000523875

Table 2 Simulation results for the Rosenbrock function

Number of harmonies Best Worst Mean

4 0.0000000010631 0.00000039836 0.0000000578908

5 0.00000000073035 0.00000032337 0.0000000521

10 0.000000000079568 0.00000023364 0.0000000475

20 0.000000000014716 0.001 0.0000387

30 0.0000000010014 0.001 0.00112

40 0.00000000010979 0.0079 0.00176

Table 3 Simulation results for the Rastrigin function

Number of harmonies Best Worst Mean

4 0.000000000011045 0.00000007236 0.0000000139

5 0.0000000000093081 0.000000011282 0.0000000126

10 0.00000000061454 0.00000022195 0.0000000324

20 0.000000000032507 0.000000092489 0.0000000172

30 0.00000000006964 0.00000022386 0.0000000321

40 0.00000000037211 0.00000017014 0.0000000275
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From Table 3 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Rastrigin function. Table 4 shows the simulation results for the Ackley
function.

From Table 4 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Ackley function. Table 5 shows the simulation results for the Zakharov
function.

From Table 5 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Zakharov function. Table 6 shows the simulation results for the Sum Square
function.

Table 4 Simulation results for the Ackley function

Number of harmonies Best Worst Mean

4 0.0000098012 0.00031775 0.000122722

5 0.0000087238 0.00017561 0.0000969749

10 0.000022005 0.00035406 0.000139821

20 0.0000093788 0.00028147 0.0000940209

30 0.000016206 0.00040138 0.000136185

40 0.000031467 0.00045383 0.000116993

Table 5 Simulation results for the Zakharov function

Number of Harmonies Best Worst Mean

4 0.000095054 0.00032929 0.00019524

5 0.00007544 0.00033906 0.00022226

10 0.000095173 0.00040378 0.00027224

20 0.000073328 0.00037254 0.00019199

30 0.000077163 0.00036816 0.00022529

40 0.00019508 0.0018 0.00052135

Table 6 Simulation results for the sum square function

Number of harmonies Best Worst Mean

4 0.0000086056 0.000037648 0.00002513

5 0.0000065348 0.000041995 0.0000238824

10 0.000021245 0.00010459 0.000064354

20 0.0000048182 0.000046886 0.000029147

30 0.000011206 0.000054988 0.0000351173

40 0.000017024 0.000056469 0.0000379489
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From Table 6 it can be appreciated that after executing the HS Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Sum Square function.

6.2 Simulation Results with the Genetic Algorithm

In this section we show the experimental obtained by the genetic algorithm in
separate tables of the mathematical functions [13]. Table 7 shows the simulation
results for the Sum Sphere function using genetic algorithm.

From Table 7 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Sphere function. Table 8 shows the simulation results for the Rosenbrock
function using genetic algorithm.

From Table 8 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Rosenbrock function. Table 9 shows the simulation results for the Rastrigin
function using genetic algorithm.

From Table 9 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results

Table 7 Simulation results for the sphere function

Population Best Worst Mean

4 0.000655746 0.867154805 0.501445118

5 0.016158419 0.735175081 0.297672568

10 0.029477858 0.985900891 0.616489628

20 0.125851757 1.018067545 0.250640697

30 0.050431819 0.928690136 0.521845011

40 0.004944109 1.847289399 0.558953430

Table 8 Simulation results for the Rosenbrock function

Population Best Worst Mean

4 0.089847334 0.802024183 0.561886727

5 0.045156568 0.878087097 0.476680695

10 0.026476082 0.788665597 0.212878969

20 0.008755795 0.654965394 0.151633433

30 0.001220403 0.292128413 0.050677876

40 0.000245092 0.843183891 0.242982579
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for the Rastrigin function. Table 10 shows the simulation results for the Ackley
function using genetic algorithm.

From Table 10 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Ackley function. Table 11 shows the simulation results for the Zakharov
function using genetic algorithm.

From Table 11 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Zakharov function. Table 12 shows the simulation results for the Sum
Square function using genetic algorithm.

Table 9 Simulation results for the Rastrigin function

Population Best Worst Mean

4 0.014939893 0.997649164 0.532383503

5 0.025389969 1.023785562 0.484650675

10 0.000983143 1.991943912 0.591455815

20 0.005860446 0.973098541 0.416048173

30 0.001461684 1.030270667 0.402938563

40 0.0017108 1.011176844 0.304818043

Table 10 Simulation results for the Ackley function

Population Best Worst Mean

4 0.003764969 0.974296237 0.346336685

5 0.034816548 1.008082845 0.555913584

10 0.00068874 1.006617458 0.309683405

20 0.00000943 0.999864848 0.217317909

30 0.0024992 0.045123886 0.01309672

40 0.00110442 0.963070253 0.229423519

Table 11 Simulation results for the Zakharov function

Population Best Worst Mean

4 0.00291835 0.974030463 0.442892629

5 0.003929128 2.494950163 0.368494675

10 0.000621031 0.999709009 0.475767117

20 0.00754580 0.787983798 0.444793802

30 0.00074412 4.568706165 1.518534814

40 0.01262987 2.859991576 1.30142878
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From Table 12 it can be appreciated that after executing the Genetic Algorithm
30 runs, with different parameters, we can find the best, average and worst results
for the Sum Square function.

7 Conclusions

The HS algorithm is a new method which can solve various types of problem very
easily and effectively because it not requires many complex calculations. The HS
can handle discrete, continuous variables and can be applied to linear and nonlinear
functions.

In the analysis of results obtained with the genetic algorithm and harmony
search, we conclude that the HS is better than the GA this is demonstrated with the
tables mentioned in the previous section to obtain a minimum error in all the
benchmark functions which was applied, the same number of dimensions were used
to perform the comparison.

The analysis of simulation results between HS and GA method considered in this
work, lead us to the conclusion that for the optimization of benchmark functions,
the HS method is a good alternative because it is easier to optimize and achieve
good results try that with GA.

As we can realize in each of the tables where the results of the experiments with
HS is best values were obtained.

With this it has been that the algorithm HS is better than GA.
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A Gravitational Search Algorithm
for Optimization of Modular Neural
Networks in Pattern Recognition

Beatriz González, Fevrier Valdez, Patricia Melin
and German Prado-Arechiga

Abstract The Gravitational Search Algorithm (GSA) is a novel heuristic optimi-
zation method based on the laws of gravity and mass interactions. We described in
this paper a gravitational search algorithm to optimize the architecture of the
modular neural network for recognition of medical images. In this case, we are
using an echocardiograms database. Results obtained with this database are good;
in this case the best learning algorithm was scaled conjugate gradient (SCG) with
90.27 % recognition rate comparing with gradient descent with adaptive learning
rate backpropagation (GDA) with 84.72 %.

Keywords Modular neural network � Gravitational search algorithm �
Pattern recognition � Echocardiograms � GSA

1 Introduction

In the last years, the interest in algorithms inspired by natural phenomena, has
grown considerably [5–8]. It has been shown by many researchers that these
algorithms are well suited to solve complex problems, for example Genetic
Algorithm (GA) [13], Ant Colony Search Algorithm (ACO) [3], Particle Swarm
Optimization (PSO) [7], etc.

The Gravitational Search Algorithm (GSA) is a novel heuristic optimization
method based on the laws of gravity and mass interactions. We describe in this
paper the use of the GSA algorithm to optimize the architecture of the Modular
Neural Network (MNN) for echocardiogram recognition.

This paper focuses on the field of nature inspired computation and several
approaches have been studied about optimization of modular neural networks in
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pattern recognition, and some can be found in [4, 10, 14, 15]. Research in medical
imaging is growing on the last years as it is normally a non-invasive method of
diagnosis [1, 9]. For this reason, we are considering the application of the GSA
algorithm to optimize the architecture of the modular neural network for recognition
of medical images. In this case, we are using an echocardiograms database.

Normally there are many speckle noise points on the ultrasound images. So the
resulting images are contaminated with this noise that corrodes the borders of the
cardiac structures [2]. This characteristic turns difficult to perform image process-
ing, and specially the pattern recognition. Besides this kind of noise, other factors
influence the outcome of ultrasound image recognition.

Furthermore, the poor imaging quality of 2D echo videos due to low contrast,
speckle noise, and signal dropouts, also cause problems in image interpretation [9].

The rest of the paper describes this approach in detail and is organized as
follows. In Sect. 2, we describe basic concepts such as, modular neural network, the
law of gravity and second motion law, gravitational search algorithm. In Sect. 3
describe the Modular Neural Network Architecture and the database of echocar-
diograms Recognition. In Sect. 4 experimental results se presented. In Sect. 5 the
conclusions are presented.

2 Basic Concepts

2.1 Modular Neural Networks

Modular neural networks have several advantages: Each module often addresses a
simpler task, and hence can be trained in fewer iterations than the monolithic neural
network. Each module is small, with fewer weights than the monolithic neural
network, so that the time taken for each module´s training iteration. Modules can
often be trained independently, in parallel.

2.2 The Law of Gravity and Second Motion Law

Isaac Newton proposed the law of gravity stating that “The gravitational force
between two particles is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them” [11]. The gravity
force is present in each object in the universe and its behavior is called “action at a
distance”, this means gravity acts between separated particles without any interme-
diary andwithout any delay. The gravity law is represented by the following equation:

F ¼ G
M1M2

R2 ð1Þ
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where:
F is the magnitude of the gravitational force,
G is gravitational constant,
M1 and M2 are the mass of the first and second particles respectively and,
R is the distance between the two particles.

The Gravitational search algorithm furthermore to be based on Newtonian
gravity law it is also based on Newton’s second motion law, which says “The
acceleration of an object is directly proportional to the net force acting on it and
inversely proportional to its mass” [12]. The second motion law is represented by
the following equation:

a ¼ F
M

ð2Þ

where:
a is the magnitude of acceleration,
F is the magnitude of the gravitational force and,
M is the mass of the object.

2.3 Gravitational Search Algorithm

The approach was made for E. Rashedi et al., where they introduce a new algorithm
for finding the best solution in problem search spaces using physical rules. Based on
populations and the same time it takes as fundamental principles the law of gravity
and second motion law, its principal features are that agents are considered as
objects and their performance is measured by their masses, all these objects are
attract each other by the gravity force, and this force causes a global movement of
all objects, the masses cooperate using a direct form of communication, through
gravitational force, an agent with heavy mass correspond to good solution therefore
its move more slowly than lighter ones, finally its gravitational and inertial masses
are determined using a fitness function [12].

We can notice that in Eq. (1) appears the gravitational constant G, this is a physic
constant which determines the intensity of the gravitational force between the
objects and it is defined as a very small value. The equation by which G is defined is:

GðtÞ ¼ Gðt0Þx t0
t

� �b
; b\1: ð3Þ

where:
G(t) is the value of the gravitational constant at time t and,
G0(t) is the value of the gravitational constant at the first cosmic quantum-interval

of time t0.
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The way in which the position of a number N of agents is represented by

Xi ¼ ðX1
i ; . . .;X

d
i ; . . .;X

n
i Þ for i ¼ 1; 2; . . .;N; ð4Þ

where Xd
i presents the position of ith agent in the dth dimension.

Now, Eq. (1) with new concepts of masses is defined as following: the force
acting on mass i from mass j in a specific time t, is

Fd
ijðtÞ ¼ GðtÞMpiðtÞxMaj

RijðtÞ þ e
ðxdj ðtÞ � ddj ðtÞÞ ð5Þ

where Maj is the active gravitational mass related to agent j, Mpi is the passive
gravitational mass related to agent I, G(t) is gravitational constant at time t, e is a
small constant, and RijðtÞ is the Euclidian distance between two agents I and j:

RijðtÞ ¼ XiðtÞ; XjðtÞ
���� ð6Þ

The stochastic characteristic of this algorithm is based on the idea of the total
force that acts on agent i in a dimension d be a randomly weighted sum of dth
components of the forces exerted from other agents,

Fd
i ðtÞ ¼

X
j¼i;j6¼1

randiF
d
ijðtÞ ð7Þ

where randj is a random number in the interval [0,1]. The acceleration now is
showed as,

adi ðtÞ ¼
Fd
i

MiiðtÞ ð8Þ

where Mii is the inertial mass of ith agent. For determine the velocity of an agent we
considered as a fraction of its current velocity added to its acceleration.

Vd
i ðt þ 1Þ ¼ randixV

d
i ðtÞ þ adi ðtÞ ð9Þ

The position of agents could be calculated as the position in a specific time t
added to its velocity in a time t + 1 as follows,

xdi ðt þ 1Þ ¼ Xd
i ðtÞ þ Vd

i ðt þ 1Þ ð10Þ
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In this case the gravitational constant G is initialized at the beginning and will be
reduced with time to control the search accuracy. Its Equation is:

GðtÞ ¼ GðG0; tÞ ð11Þ

This is because G is a function of the initial value G0 and time t. As mentioned
previously gravitational and inertia masses are simply calculated by the fitness
evaluation and a heavier mass means a more efficient agent. The update the
gravitational and inertial masses is performed with the following equations,

Ma i ¼ Mpi ¼ Mii ¼ Mi; i ¼ 1; 2; . . .;N; ð12Þ

miðtÞ ¼ fitiðtÞ � worstðtÞ
besttðtÞ � worstðtÞ ð13Þ

MiðtÞ ¼ miðtÞPN
j¼1 miðtÞ

ð14Þ

the fitness value of the agent i at time t is defined by fiti(t), and best(t) and worst(t)
are represented as:

bestðtÞ ¼ min
j2 1;...;Nf g

fitjðtÞ ð15Þ

worstðtÞ ¼ max
j2 1;...;Nf g

fitjðtÞ ð16Þ

If we want to use GSA for a maximization problem you only have to change
Eqs. (15) and (16) as following,

bestðtÞ ¼ max
j2 1;...;Nf g

fitjðtÞ ð17Þ

worstðtÞ ¼ min
j2 1;...;Nf g

fitjðtÞ ð18Þ

The gravitational search algorithm has a kind of elitism in order that only a set of
agents with bigger mass apply their force to the other. This is with objective to have
a balance between exploration and exploitation with lapse of time it is achieved by
the only the Kbest agents will attract the others Kbest is a function of time, with the
initial value K0 at the beginning and decreasing with time. In such a way, at the
beginning, all agents apply the force, and as time passes, Kbest is decreased linearly
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and at the end there will be just one agent applying force to the others [14]. For that
reason Eq. (7), can be modified as follows,

Fd
i ðtÞ ¼

X
j2Kbest;j 6¼1

randiF
d
ijðtÞ ð19Þ

where Kbest is the set of first K agents with the best fitness value and largest mass.
A better representation of GSA process is showing it next, it is the principle of this
algorithm (Fig. 1).

First an initial population is generated, next fitness of each agent is evaluated,
thereafter update the gravitational constant G, best and worst of the population; next
step is calculating mass and acceleration of each agent, if meeting end of iterations,
in this case maximum of iterations then returns the best solution, else executes the
same steps starting from fitness evaluation. Is in third step, where we apply the
modification in this algorithm, we propose changing alpha parameter to update G
and help to GSA a better performance.

Fig. 1 General principle of
GSA. Taken of [12]
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2.4 Parameters Settings in the Gravitational Search
Algorithm

The following parameters were used in the setting of the GSA:

N = 20; Number of agents
max_it:10; Maximum number of iterations
α = 25; alpha
G0 = 90;

3 Modular Neural Network Architecture

We are using a Modular Neural Network in this paper. Figure 2 shows the archi-
tecture used for this work and is described as follows: We have 2 modules, where
each module has one layer for input of the data, also 2 hidden layers are used and
one layer in the output of the Modular Neural Network and finally, the recognize
echocardiograms in the last block with this architecture.

3.1 Database of Echocardiograms Recognition

This database has the following characteristics: It contains 18 individuals, 10
images per individual. Contains images of disease patients and healthy patients.
Figure 3 shows some of the echocardiograms included in this database.

Fig. 2 Modular neural network architecture
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For image preprocessing, we reduced the image size from 200 × 125 to 80 × 80
pixels taken the region of interest (ROI) to eliminate as much as possible noise.

4 Experimental Results

We describe below the simulation results of our approach for echocardiograms
recognition with modular neural networks (MNN). The challenge is to find the
optimal architecture of this type of Modular Neural Networks, which means finding
out the optimal number of layers and nodes of the neural network. We are using
echocardiograms database with 10 grayscale images in bmp format of 18 subjects, 6
images by each subject were used for training the Modular Neural Network and 4
images were used to recognition. Regarding the gravitational search algorithm for
Modular.

Neural Networks, we used N = 20; Number of agents, max_it = 10; Maximum
number of iterations, α = 25; alpha G0 = 90.

In Table 1 we show results of the gravitational search algorithm for optimization
of modular neural networks in pattern recognition was trained with Gradient des-
cent with adaptive learning rate backpropagation “traingda” training method. The
best percentage of identification for this experiment was 84.72 %.

In Table 2 we show results of the gravitational search algorithm for optimization
of modular neural networks in pattern recognition was trained with scaled Conju-
gate Gradient “trainscg” training method. The best percentage of identification for
this experiment was 90.27 %.

Regarding the gravitational search algorithm for Modular Neural Networks also,
we used N = 30; Number of agents, max_it = 20; Maximum number of iterations,
α = 25; alpha G0 = 90.

Fig. 3 Database of echocardiograms recognition
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Table 1 Experimental results with Traingda training method

Epoch Error Training Training time % Ident

500 0.0001 Traingda 00:45:59 80.55

500 0.0001 Traingda 00:44:49 79.16

500 0.0001 Traingda 00:41:26 72.22

500 0.0001 Traingda 00:42:58 73.61

500 0.0001 Traingda 00:40:45 84.72

500 0.0001 Traingda 00:58:15 63.88

500 0.0001 Traingda 01:05:10 75

500 0.0001 Traingda 01:06:41 70.83

500 0.0001 Traingda 00:46:47 80.5

500 0.0001 Traingda 00:28:03 72.22

Table 2 Experimental results with Trainscg training method

Epoch Error Training Training time % Ident

500 0.0001 Trainscg 00:28:22 83.33

500 0.0001 Trainscg 00:46:15 87.5

500 0.0001 Trainscg 00:22:40 86.11

500 0.0001 Trainscg 00:28:32 87.5

500 0.0001 Trainscg 00:10:29 80.55

500 0.0001 Trainscg 00:11:58 83.33

500 0.0001 Trainscg 00:29:18 83.33

500 0.0001 Trainscg 00:30:09 80.55

500 0.0001 Trainscg 00:22:56 81.94

500 0.0001 Trainscg 00:25:08 90.27

Table 3 Experimental results with Trainscg training method

Epoch Error Training Training time % Ident

500 0.0001 Trainscg 01:02:39 70.83

500 0.0001 Trainscg 01:08:23 77.77

500 0.0001 Trainscg 01:08:26 73.61

500 0.0001 Trainscg 01:03:21 70.83

500 0.0001 Trainscg 01:04:04 80.55

500 0.0001 Trainscg 01:04:00 73.61

500 0.0001 Trainscg 01:43:25 77.77

500 0.0001 Trainscg 00:54:31 70.83

500 0.0001 Trainscg 01:02:15 77.77

500 0.0001 Trainscg 01:13:28 70.83
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In Table 3 we show results of the gravitational search algorithm for optimization
of modular neural networks in pattern recognition was trained with scaled Conju-
gate Gradient “trainscg” training method. The best percentage of identification for
this experiment was 80.55 %.

5 Conclusions

The results obtained with the proposed method are good; the best learning algo-
rithm in this case was the scaled conjugate gradient (SCG) with 90.27 %. Com-
paring with gradient descent with adaptive learning rate backpropagation (GDA)
with 84.72 %, SCG gets the best training time and recognition. Results obtained are
good, however, other methods could be used to improve results, just to make a
comparison or, apply another kind of preprocessing, normally there are many
speckle noise on the ultrasound images, furthermore, the poor imaging quality of
echo videos due to low contrast, speckle noise, and signal dropouts also cause
problems in image interpretation.
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Ensemble Neural Network Optimization
Using the Particle Swarm Algorithm
with Type-1 and Type-2 Fuzzy Integration
for Time Series Prediction

Martha Pulido and Patricia Melin

Abstract This paper shows the optimization of ensemble neural networks using
the Particle Swarm algorithm for time series prediction with Type-1 and Type-2
Fuzzy Integration. The time series that is being considered in this paper is the Dow
Jones Time Series. Simulation results show that the ensemble approach produces
good prediction of the Dow Jones time series.

Keywords Ensemble neural networks � Particle swarm � Optimization � Time
series prediction

1 Introduction

Time Series is called a set of measurements of some phenomenon or experiment
recorded sequentially in time. The first step in analyzing a time series is to plot it,
this allows: to identify the trend, seasonal, irregular variations. A classic model for a
time series can be expressed as a sum or product of three components: trend,
seasonality and random error term.

Time series predictions are very important because based on them we can
analyze past events to know the possible behavior of futures events and thus we can
take preventive or corrective decisions to help avoid unwanted circumstances [1, 2].

2 Optimization

In mathematics, computer science, or management science, mathematical optimi-
zation (alternatively, optimization or mathematical programming) is the selection of
a best element (with regard to some criteria) from some set of available alternatives.
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In the simplest case, an optimization problem consists of maximizing or mini-
mizing a real function by systematically choosing input values from within an
allowed set and computing the value of the function. The generalization of opti-
mization theory and techniques to other formulations comprises a large area of
applied mathematics. More generally, optimization includes finding “best avail-
able” values of some objective function given a defined domain (or a set of con-
straints), including a variety of different types of objective functions and different
types of domains.

An optimization problem can be represented in the following way:
Given a function f : A ! R from some set A to the real numbers
Sought an element x0 in A such that f(x0) ≤ f(x) for all x in A (“minimization”) or

such that f(x0) ≥ f(x) for all x in A (“maximization”)

Such a formulation is called an optimization problem or a mathematical pro-
gramming problem (a term not directly related to computer programming, but still
in use for example in linear programming). Many real-world and theoretical
problems may be modeled in this general framework. Problems formulated using
this technique in the fields of physics and computer vision may refer to the tech-
nique as energy minimization, speaking of the value of the function f as repre-
senting the energy of the system being modeled.

Typically, A is some subset of the Euclidean space Rn, often specified by a set of
constraints, equalities or inequalities that the members of A have to satisfy. The
domain A of f is called the search space or the choice set, while the elements of
A are called candidate solutions or feasible solutions.

The function f is called, variously, an objective function, a loss function or cost
function (minimization), indirect utility function (minimization) [3], a utility
function (maximization), a fitness function (maximization), or, in certain fields, an
energy function, or energy functional. A feasible solution that minimizes (or
maximizes, if that is the goal) the objective function is called an optimal solution.

By convention, the standard form of an optimization problem is stated in terms
of minimization. Generally, unless both the objective function and the feasible
region are convex in a minimization problem, there may be several local minima,
where a local minimum x* is defined as a point for which there exists some δ > 0 so
that for all x such that

x� x�k k� d;

the expression

f ðx�)� f ðxÞ

holds; that is to say, on some region around x* all of the function values are greater
than or equal to the value at that point. Local máxima are defined similarly [4–11].
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3 Particle Swarm Optimization

The Particle Swarm Optimization algorithm maintains a swarm of particles, where
each particle represents a potential solution. In analogy with evolutionary compu-
tation paradigms, a swarm is a population, while a particle is similar to an individual.
In simple terms, the particles are “flown” through a multidimensional search space
where the position of each particle is adjusted according to its own experience and
that of their neighbors. Let xi(t)denote the position of particle i in the search space at
time step t unless otherwise selected, t denotes discrete time steps. The position of
the particle is changed by adding a velocity, vi(t). to the current position i,e.

xi t þ 1ð Þ ¼ xiðtÞ þ vi t þ 1ð Þ ð1Þ

with

xið0Þ�U Xmin;Xmaxð Þ:

It is the velocity vector the one that drivers of the optimization process, and
reflects both the experimental knowledge of the particles and the information
exchanged in the vicinity of particles. The experimental knowledge of a particle
which is generally known as the cognitive component, which is proportional to the
distance of the particle from its own best position (hereinafter, the personal best
position particles) that are from the first step. Socially exchanged information is
known as the social component of the velocity equation.

For the best PSO, the particle velocity is calculated as:

vij t þ 1ð Þ ¼ vij(s) + c1r1½yijðtÞ - xij(t)�;þc2r2ðtÞ½ŷj tð Þ � xij(t)] ð2Þ

where vijðt) is the velocity of the particle i in dimension j at time step t; c1yc2 are
positive acceleration constants used to scale the contribution of cognitive and social
skills, respectively, y r1j(t); y r2j(t)�U 0; 1ð Þ are random values in the range [0,1].

The best personal position in the next time step t + 1 is calculated as:

yiðt þ 1Þ ¼ yi tð Þ if f ðxi xi t þ 1ð Þð Þ� fyiðtÞÞ
xi t þ 1ð Þ if f xi xi t þ 1ð Þð Þ[ fyi tð Þð Þ

�
: ð3Þ

where f : Rnx ! R is the fitness function, as with EAs, measuring fitness with the
function will help find the optimal solution, for example the objective function
quantifies the performance, or the quality of a particle (or solution).

The overall best position, ŷ(t) at time step t, s defined as:

ŷ(t) 2 yo(t),. . .,yns(t)f (y(t)f g f (y(t)) = min yo(t),. . .,yns(t)f (y(t),f g ð4Þ

where ns is the total number of particles in the swarm. Importantly, the above
equation defining and establishingŷ the best position is uncovered by either of the
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particles so far as this is usually calculated from the best position best personal
[12–15],

The overall best position may be selected from the actual swarm particles, in
which case:

ŷðtÞ ¼ min f xoðtÞð Þ; . . .f xnsðtÞð Þ;f g ð5Þ

4 Fuzzy Systems as Methods of Integration

Fuzzy logic was proposed for the first time in the mid-sixties at the University of
California Berkeley by the brilliant engineer Lofty A. Zadeh., who proposed what
it’s called the principle of incompatibility: “As the complexity of system increases,
our ability to be precise instructions and build on their behavior decreases to the
threshold beyond which the accuracy and meaning are mutually exclusive char-
acteristics.” Then introduced the concept of a fuzzy set, under which lies the idea
that the elements on which to build human thinking are not numbers but linguistic
labels. Fuzzy logic can represent the common knowledge as a form of language that
is mostly qualitative and not necessarily a quantity in a mathematical language [16].

Type-1 Fuzzy system theory was first introduced by Zadeh [17] in 1965, and has
been applied in many areas such as control, data mining, time series prediction, etc.

The basic structure of a fuzzy inference system consists of three conceptual
components: a rule base, which contains a selection of fuzzy rules, a database (or
dictionary) which defines the membership functions used in the rules, and reasoning
mechanism, which performs the inference procedure (usually fuzzy reasoning) [18].

Type-2 Fuzzy systems were proposed to overcome the limitations of a type-1
FLS, the concept of type-1 fuzzy sets was extended into type-2 fuzzy sets by Zadeh
in 1975. These were designed to mathematically represent the vagueness and
uncertainty of linguistic problems; thereby obtaining formal tools to work with
intrinsic imprecision in different type of problems; it is considered a generalization
of the classic set theory. Type-2 fuzzy sets are used for modeling uncertainty and
imprecision in a better way [19, 20, 21, 22, 23, 24, 25, 26, 16].

5 Problem Statement and Proposed Method

The objective of this work is to develop a model that is based on integrating the
responses of an ensemble neural network using type-2 fuzzy systems and optimi-
zation. Figure 1 represents the general architecture of the proposed method, where
historical data, analyzing data, create the ensemble neural network and integrate
responses of the ensemble neural network with type-2 fuzzy system integration and
we obtaining the output are shown. The information can be historical data, these can
be images, time series, etc., in this case we show the application to time series
prediction of the Dow Jones where we obtain good results with this series.
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Figure 2 shows a type-2 fuzzy system consisting of with 5 inputs depending on
the number of modules of the neural network ensemble and one output. Each input
and output linguistic variable of the fuzzy system uses 2 Gaussian membership
functions. The performance of the type-2 fuzzy integrators is analyzed under dif-
ferent levels of uncertainty to find out the best design of the membership functions
and consist of 32 rules. For the type-2 fuzzy integrator using 2 membership
functions which are called low prediction and high prediction for each of the inputs
and output of the fuzzy system. The memberships functions are of Gaussian type,
we consider 3 sizes for the footprint uncertainty 0.3, 0.4 and 0.5 to obtain a better
prediction of our time series.

Figure 3 shows the possible rules of a type-2 fuzzy system.
Figure 4 represents the Particle Structure to optimize the ensemble neural net-

work, where the parameters that are optimized is the number de modules, number of
layers, number of neurons.

Historical data of the Dow Jones time series was used for the ensemble neural
network trainings, where each module was fed with the same information, unlike
modular networks, where each module is fed with different data, which leads to
architectures that are not uniform.

Fig. 1 General architecture of the proposed method
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The Dow Jones (DJ) is a U.S. company that publishes financial information.
Founded in 1882 by three reporters: Charles Henry Dow, Edward David Jones and
Charles Milford Bergstresser.

In the same year it began publishing a financial newsletter called “The Cus-
tomer’s Afternoon Letter which “would be the precursor of the famous financial
newspaper The Wall Street Journal first published on July 8, 1889.

The newsletter showed publicly share prices and the financial accounts of
companies, information that until then had only the people close to the companies.

To better represent the movements of the stock market at the time, the Dow
Jones designed a barometer of economic activity meter with twelve companies
creating the Dow Jones stock index.

Like the New York Times and the Washington Post newspapers, the company is
open to the market but is controlled the by the private sector. So far, the company is
controlled by the Bancroft family, which controls 64 % of the shares entitled to vote
[12].

Data of the Dow Jones time series: We are using 800 points that correspond to a
period from 08/12/2008 to 09/09/2011 (as shown in Fig. 4). We used 70 % of the
data for the ensemble neural network trainings and 30 % to test the network [13].

System Dowjones: 5 inputs, 1 outputs, 32 rules

Prediction1 (2)

Prediction2 (2)

Prediction3 (2)

Prediction4 (2)

Prediction5 (2)

Prediction (2)

Dowjones

(mamdani)

32 rules

Fig. 2 Type-2 fuzzy system
for DowJones time series
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6 Simulation Results

In this section we present the simulation results obtained with the integration of
ensemble neural networks with type-1 and type-2 fuzzy integration and optimiza-
tion with the Particle Swarm for the Dow Jones time series.

Table 1 shows the particle swarm results (as shown in Fig. 5) where the pre-
diction error is of 0.0037691 (Table 2).

Fig. 3 Rules of type-2 fuzzy inference system of the Dow Jones time series

Number
of

Modules

Number
of

Layers 1
Neurons 

1

Neurons
... n

Fig. 4 Particle structure to optimize the ensemble neural network
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Table 1 Particle Swarm results for the ensemble neural network

No. Iterations Particles Number of
modules

Number
of layers

Number of
neurons

Duration Prediction
error

1 100 100 3 2 19,9
19,21
8,11

02:22:18 0.0056306

2 100 100 4 2 18,25
16,16
21,23
6,24

02:40:22 0.0058939

3 100 100 2 1 3
5

03:11:05 0.005457

4 100 100 2 2 8,14
5,4

01:32:11 0.0037691

5 100 100 3 3 3,12,13
10,27,26
8,17,11

01:20:27 0.0046956

6 100 100 3 2 23,13
16,17
11,11

02:06:15 0.0044795

7 100 100 3 3 17,11,22
21,24,21
8,21,11

01:09:03 0.0050147

8 100 100 2 2 20,26
6,4

01:26:20 0.0041311

g 100 100 4 3 8,21,21
21,22,16
15,16,9

01:37:07 0.0048197

10 100 100 3 2 23,7
4,20
11,21

02:00:41 0.0045441
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Fig. 5 Dow Jones time series
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Fuzzy integration is also performed by implementing a type-2 fuzzy system in
which the results were as follows: for the best evolution with a degree of uncer-
tainty of 0.3 a forecast error of 0.0222 was obtained, and with a degree of uncer-
tainty of 0.4 the error is of: 0.02145 and with a degree uncertainty 0.5 the error of
0.0205, as shown in Table 3.

Table 2 Results of type-1
fuzzy integration of DJ

Experiment Integration type-1

Experiment 1 0.3972

Experiment 2 0.0538

Experiment 3 0.2642

Experiment 4 0.0608

Experiment 5 0.0866

Experiment 6 0.1184

Experiment 7 0.24589

Experiment 8 0.1541

Experiment 9 0.1186

Experiment 10 0.1152

Table 3 Results of type-2
fuzzy integration of DJ

Experiment Prediction
error 0.3
uncertainty

prediction
error 0.4
uncertainty

Prediction
error 0.5
uncertainty

Experiment 1 0.4284 0.3961 0.3522

Experiment 2 0.3257 0.3152 0.3089

Experiment 3 0.3580 0.2121 0.2126

Experiment 4 0.0528 0.0421 0.0445

Experiment 5 0.0456 0.0432 0.029

Experiment 6 0.0352 0.0348 0.0258

Experiment 7 0.0397 0.0356 0.0347

Experiment 8 0.0080 0.0653 0.0621

Experiment 9 0.0222 0.02145 0.0205

Experiment 10 0.0437 0.0428 0.0418
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7 Conclusions

In this paper we considered the PSO algorithm to optimize the architecture of the
ensemble neural network to predict the time series of the Dowjones, where good
results were obtained, and we can say that this algorithm in good in speed when
compared with other optimization techniques PSO is an effective and efficient
metahuristic to find the solution of problems. In conclusion the use of ensemble
neural networks with type-2 fuzzy integration could be a good choice in predicting
complex time series. Future works would be was optimize with particles swarm the
type-1 and type-2 fuzzy systems to obtain a better prediction error. Type-1 and
Type-2 fuzzy system could optimized in terms of the parameter of membership
functions, membership type and number of rules.
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Clustering Bin Packing Instances
for Generating a Minimal Set of Heuristics
by Using Grammatical Evolution

Marco Aurelio Sotelo-Figueroa, Héctor José Puga Soberanes,
Juan Martín Carpio, Héctor J. Fraire Huacuja, Laura Cruz Reyes
and Jorge Alberto Soria Alcaraz

Abstract Grammatical Evolution has been used to evolve heuristics for the Bin
Packing Problem. It has been shown that the use of Grammatical Evolution can
generate an heuristic for either one instances or a full instance set for this problem.
In many papers the selection of instances for heuristics generation has been done
randomly. The present work proposes a methodology to cluster bin packing
instances and choose the instances to generate an heuristic for each cluster. The
number of heuristics generated is based on the number of clusters. There were used
only one instance by cluster. The results obtained were compared through non-
parametric tests against the best known heuristics.

Keywords Grammatical Evolution � Bin Packing Problem � Heuristics
1 Introduction

The Heuristics [1, 2] are defined as “a type of strategy that dramatically limits the
search for solutions” meanwhile the Metaheuristics [3] are defined as “a master
strategy that guides and modifies other heuristics to obtain solutions generally better
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that the ones obtained with a local search optimization”. One important charac-
teristic of heuristics is that they can obtain a result for an instance problem in
polynomial time [4], although heuristics are developed for a specific instance
problem. Metaheuristics however can work over several instances of a given
problem or various problems, but it is necessary to adapt the metaheuristics to work
with each problem.

It has been shown that metaheuristics, like Genetic Programming [5], can gen-
erate an heuristic that can be applied to an instance problem [6]. However there are
others metaheuristics that work like the Genetic Programming’s paradigm [7] such
as Grammatical Differential Evolution [8], Grammatical Swarm [9] and others
[10–12] and is possible to generate an heuristics with them.

In [6, 12–16] was generated a heuristics for a problem, with each instance set
they tried to generate an heuristic. To do it was chosen one instance to train the
metaheuristic, but the instance was chosen randomly among the instance set.

In the present paper we will work with the Bin Packing Problem because it is a
problem that has been amply studied and that has generated heuristics [17–20] and
metaheuristics [21–23] to try to get betters results.

In [24, 25] was proposed a metric to cluster the Bin Packing Instances, such
metric was based on generalize the Bin Packing Problem and the item’s weights of
each instance. It showed that was possible to cluster the instances into three cases,
and was showed how to determinate which instances from each cluster is hardest
for common algorithms.

The heuristics generated by the clustering the Bin Packing Instances using
Grammatical Evolution were compared to those generated by [26] using the non-
parametric Friedman Test [27], the quality of each heuristic was based on the free
space percentage obtained through the fitness function.

The aim of the investigation is to prove that by mean of the Schwerin’s metric is
possible to cluster bin packing instances, for generating cluster representative
heuristics by using metaheuristic algorithms; this removes the redundant generation
of heuristics. This phenomena have been observed in heuristic generation methods
that lack of the clustering process even using the same metaheuristic algorithm.

2 Bin Packing Problem

The classical one dimensional bin packing problem (BPP) [28] consists of a set of
pieces, which must be packed into as few bins as possible. Each piece j has a weight
wj, and each bin has capacity c. The objective is to minimise the number of bins
used, where each piece is assigned to one bin only, and the weight of the pieces in
each bin does not exceed c. This NP-complete decision problem naturally gives rise
to the associated NP-hard optimization problem.
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A mathematical definition of Bin Packing Problem [28, 29] is:
Minimize:

z ¼
Xn
i¼1

yi ð1Þ

Subject to:

Xn
j¼1

wjxij � cyi i 2 N ¼ 1; . . .; nf g ð2Þ

Xn
i¼1

xij ¼ 1 j 2 N ð3Þ

yi 2 0; 1f g i 2 N ð4Þ

xij 2 0; 1f g i 2 N; j 2 N ð5Þ

where:
wj weight of item j
yj binary variable that shows if the bin i have items
xij indicates whether the item j is in the bin i
n number of available bins (also the number of items n)
c capacity of each bin

2.1 Instances

Schoenfield proposed the Hard28 [30]. It is considered like the most difficult
instances which could not be solved neither by the pure cutting plane algorithm
from [31] nor by many reduction methods.

Beasley [32] proposed a collection of test data sets, known as OR-Library and
maintained by the Beasley University, which were studied by Falkenauer [22]. This
collection contains a variety of test data sets for a variety of Operational Research
problems, as the BPP in several dimensions. For the one dimensional BPP the
collection contains eight data sets, that can be classified in two classes:

• Unifor The data sets from binpack1 to binpack4 consist of items of sizes uni-
formly distributed in ð200; 100Þ to be packed into bins of size 150. The number
of bins in the current known solution was found by [22].

• Triplets The data sets from binpack5 to binpack8 consist of items from ð24; 50Þ
to be packed into bins of size 100. The number of bins can be obtained dividing
the size of the data set by three.
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Scholl [33] proposed another collection of data sets and was report 1184 of the
problems have been solved to optimality. Alvim [34] reported the optimal solutions
for the remaining 26 problems. The collection contains three data sets:

Set 1 It has 720 instances with items drawn from a uniform distribution on three
intervals ½1; 100�, ½20; 100�, and ½30; 100�. The bin capacity is C = 100, 120, and
150 and n = 50, 100, 200, and 500.
Set 2 It has 480 instances with C = 1000 and n = 50, 100, 200, and 500. Each bin
has an average of 3–9 items.
Set 3 It has 10 instances with C = 100,000, n = 200, and items are drawn from a
uniform distribution on ½20000; 35000�: Set 3 is considered the most difficult of
the three sets.

2.2 Fitness Measure

In [35] was propose an objective function which puts a premium on bins that are
filled completely or nearly so. Importantly, the fitness function is designed to avoid
the problem of plateaus in the search space, that occur when the fitness function
does not discriminate between heuristics that use the same number of bins.

Fitness ¼ 1�
Pn

i¼1

Pm

j¼1
wjxij

c

� �2

n

0
BBB@

1
CCCA ð6Þ

where:
n number of bins
m number of item
wj weight of item j-th
xij xij ¼ 1 if the item j is in the bin

0 otherwise

�

c bin capacity

2.3 Heuristics

To solve the Bin Packing Problem are many heuristics like the Best-Fit [19]. It is a
constructive heuristic which packs a set of pieces one at a time, in the order that
they are presented. The heuristic sorts the bins and iterates through the open bins,
and the current piece is placed in the first bin into which it fits. This heuristic is for
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the online bin packing problem, because it packs pieces one at a time, and a piece
cannot be moved once it has been assigned to a bin. The Best-Fit algorithm can be
seen in the algorithm 1.

2.4 Clustering

The Bin Packing Problem doesn’t have too much to parametrize apart the item’s
weight and the bin’s capacity. Many researchers have investigated the range and
weights and they have found that a smaller range makes the instance more difficult
for common algorithms [24, 36–38].

Schwerin [24] showed that all the items inside the bin packing instance can be
generated as follows:

w 2 vLv; vUv½ � ð7Þ

where:
w item
vL lower bound
vU upper bound
v bin capacity

In [25, 37] was proposes to clustering the bin packing instances into three
groups, as shown in the Table 1, such clusters were based on the Eq. (7).

Table 1 Bin packing
instance clusters

Group Condition

Triplets vL ¼ 1
4 and vU ¼ 1

2

Hards �w � 1
3 or close to 1

n where n� 3

Regulars the others
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3 Grammatical Evolution

Grammatical Evolution (GE) [7] is a grammar-base form of Genetic Programming
(GP) [39]. GE joins the principles from molecular biology, which are used by the
GP, and the power of formal grammars. Unlike GP, the GE adopts a population of
lineal genotypic integer strings, or binary strings, witch are transformed into
functional phenotypic through a genotype-to-phenotype mapping process, this
process is also know as Indirect Representation [40]. This transformation is gov-
erned through a Backus Naur Form grammar (BNF). Genotype strings are evolved
with no knowledge of their phenotypic equivalent, only use the fitness measure.

3.1 Mapping Process

When approaching a problem using GE, initially a BNF grammar must be defined.
This grammar specifies the syntax of desired phenotypic programs to be produced
by GE. The development of a BNF grammar also affords the researcher the ability
to incorporate domain biases or domain-specific functions.

A BNF grammar is made up of the tuple N, T, P, S; where N is the set of all non-
terminal symbols, T is the set of terminals, P is the set of production rules that map
N ! T , and S is the initial start symbol where S ∈ N. Where there are a number of
production rules that can be applied to a non-terminal, a “|” (or) symbol separates
the options.

Using the grammar as the GE input, the Eq. (8) is used to choose the next
production based-on the non-terminal symbol.

Rule ¼ c%r ð8Þ

where c is the codon value and r is the number of production rules available for the
current non-terminal.

An example of the mapping process employed by GE is shown in Fig. 1

4 Experiments

The proposed approach tries to evolve an heuristic for each cluster; to do this was
joined the instances from all instances set and was applied the clustering process
based on the Table 1. In [26] was proposed a Grammar to evolve heuristics and
these heuristics obtained had the same performance of the Best-Fit heuristic
(Fig. 2).
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where:
S size of the current piece
C bin capacity
F sum of the pieces already in the bin
Bin sort the bins base on the bin number
Cont sort the bins base on the bin contents
Asc sort the elements in ascendant order
Des sort the elements in descendant order

Fig. 1 An example a transformation from genotype to phenotype using a BNF Grammar. It begins
with the start symbol, if the production rule from this symbol is only one rule, then the production
rule gets instead of the start symbol, and the process begins to choose the productions rules base on
the current genotype. It is taking each genotype and the non-terminal symbol from the left to
realize the next production using the Eq. (8) until all the genotypes are mapped or there aren’t more
non-terminals in the phenotype

inicio = exprs ( expr ) <=( expr )

exprs = Sort ( exprk order ) ♣
exprk = Bin ♣ Content

order = Asc ♣ Des

expr ♣= ( expr op expr ) ♣ var ♣ abs ( expr2 )p ♣ ( p p p ) ♣ ♣ ( p )

expr2 = ( expr2 op expr2 ) var

var = F ♣ C ♣ S

op = + ♣ * ♣ - ♣ /

Fig. 2 Grammar proposal by
[26] to obtain results like the
obtained by the best-fist
heuristic
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After an heuristic is generated for each cluster, it is applied to all cluster’s
instance. To compare the results between the different works was necessary to
gather the instances into their original instances sets.

The fitness was calculated applying the objective function Eq. (6) to each
instances and was added all the fitness into the instances set.

The metaheuristic’s parameters used was taked from [26] in the who the author
used a Covery Arrays to choose the right parameters, those parameters are shown in
the Table 2.

For each set an heuristic was generated and it was chosen after performing 32
experiments and choose the median between them. The results were compared
against the results obtained from the heuristics Best-Fit and the obtained by [26].
The comparison was implemented through the non-parametric test of Friedman,
Aligned Friedman and Quade [27, 41]. Those non-parametric tests allow to discern
if the raised hypothesis is true or false, and they use an post hoc analysis when the
raised hypothesis is false.

5 Results

The Table 3 shows the heuristics generated by clustering the instances set. After
was rejoined the intances into their original instance set was estimated the instance
set’s fitness, the results obtained are shown in the Table 4.

With the results obtained a non-parametric test was performed, in order to prove
the hypothesis. Since the hypothesis proved to be false, the Table 5 shown the
values and the p-values from each non-parametric test, was necessary applied the
post hoc procedures to obtain the ranking of the heuristics, as shown in Table 6.

Table 2 Initialization
parameters of each GE run

Parameter Value

Population size 50

Differential weight 0.9

Crossover rate 1.0

Scheme DE/best/1

Function calls 1,000

Table 3 Heuristics obtained
for each cluster

Cluster Heuristic

Triplets (abs((F + S))) ≤ (C)

Hard Sort (Bin, Asc). ((S + F)) ≤ (abs(C))

Regular Sort (Cont, Des). ((F + abs(S))) ≤ (C)

158 M.A. Sotelo-Figueroa et al.



6 Conclusions and Future Work

Based on the obtained results in Sect. 5, it is possible to conclude that it is possible
to cluster the instances using Schwerin’s metric and generate heuristics using GE.

The results obtained show that with only three heuristics applied to the Bin
Packing Instances we can obtain the same performance that if we make one heu-
ristic by each instance set.

Is necessary to search for a Grammar that gives better heuristics than the Best-Fit
heuristic and analyze if others metaheuristics can be used with the Mapping
Process.

Table 4 Results obtained

Instance BestFit GE GE-Cluster

bin1data 44.561 44.561 44.561

bin2data 44.561 44.561 44.561

bin3data 1.3902 1.3902 1.3902

binpack1 2.4258 2.4258 2.4258

binpack2 2.2591 2.2591 2.2591

binpack3 2.0145 2.0145 2.0145

binpack4 1.8387 1.8387 1.8387

binpack5 0.0 0.0 0.0

binpack6 0.0 0.0 0.0

binpack7 0.0 0.0 0.0

binpack8 0.0 0.0 0.0

hard28 0.6555 0.6555 0.6555

Table 5 Non parametric test
p-values

Non parametric test Value p-value

Friedman 0.0 1.0

Aligned Friedman 9.49732 0.00866

Quade 0.0 1.0

Table 6 Rankings of the
algorithms

Algorithm Ranking

Friedman Aligned Friedman Quade

BestFit 2.0 18.5 2.0

GE 2.0 18.5 2.0

GE-Cluster 2.0 18.5 2.0
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The current investigation is based on the one dimensional bin packing problem
but this methodology can be used to solve other problems, due to the generality of
the approach, to this aim is necessary to look up for the right metric.
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Comparative Study of Particle Swarm
Optimization Variants in Complex
Mathematics Functions

Juan Carlos Vazquez, Fevrier Valdez and Patricia Melin

Abstract Particle Swarm Optimization (PSO) is one of the evolutionary compu-
tation techniques based on the social behaviors of birds flocking or fish schooling,
biologically inspired computational search and optimization method. Since first
introduced by Kennedy and Eberhart (A new optimizer using particle swarm theory
39–43, 1995 [1]) in 1995, several variants of the original PSO have been developed
to improve speed of convergence, improve the quality of solutions found, avoid
getting trapped in the local optima and so on. This paper is focused on performing a
comparison of different approaches of inertia weight such as constant, random
adjustments, linear decreasing, nonlinear decreasing and fuzzy particle swarm
optimization; we are using a set of 4 mathematical functions to validate our
approach. These functions are widely used in this field of study.

1 Introduction

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in
1995 [1, 2], and is a stochastic search method based on population. The idea behind
this algorithm was inspired by the social behavior of animals, such as bird flocking
or fish schooling. The process of the PSO algorithm in finding optimal values
follows the work of this animal society. In a PSO system, a swarm of individuals
(called particles) fly through the search space. Each particle represents a candidate
solution to the optimization problem. The performance of each particle is measured
using a fitness function that varies depending on the optimization problem. The
PSO has been applied successfully to a number of problems, including standard
function optimization problems [3–6], solving permutation problems [7, 8] and
training multi-layer neural networks [5, 9, 10]. The basic PSO has problems with
consistently converging to good solutions, so, there are several modifications that
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have been proposed from the original PSO. It modifies to accelerate achieving of
the best conditions, improving convergence of the PSO and increasing the diversity
of the swarm. A brief description of some inertia weight approaches is pre-
sented below. A fuzzy particle swarm optimization is developed to improve the
performance of PSO and is compared with basic modifications of PSO. Benchmark
functions were used to measure the performance of the PSO algorithm with the
different approaches. This paper is organized as follows: Sect. 2 describes the
standard PSO algorithms, Sect. 3 describe the different variants of inertia weight
used in this paper, Sect. 4 provides a brief description of fuzzy logic and describe
the fuzzy system used in this paper, Sect. 5 presents simulation results for functions
mathematic and finally, conclusions are summarized in Sects. 6.

2 Standard PSO Algorithm

The basic equations are usually given as follow:

vijðt þ 1Þ ¼ viijðtÞ þ c1r1jðtÞ½yijðtÞ � xijðtÞ� þ c2r2jðtÞ½ŷjðtÞ � xijðtÞ� ð1Þ

xiðt þ 1Þ ¼ xijðtÞ þ vijðt þ 1Þ ð2Þ

The social network employed by the PSO reflects the star topology. For the star
neighborhood topology, the social component of the particle velocity update
reflects information obtained from all the particles in the swarm, referred to as ŷðtÞ;
where viðtÞ is the velocity of particle i in dimension j = 1,…, nx at time step t, xijðtÞ
is the position of particle i in dimension j at time step t, c1 and c2 are positive
acceleration constants used to scale the contribution of the cognitive and social
components respectively, and r1jðtÞ; r1jðtÞ�U (0, 1) are random values in the
range [0, 1], sampled from a uniform distribution. These random values introduce a
stochastic element to the algorithm.

Let xiðtÞdenote the position of particle i in the search space at time step t, which
denotes discrete time steps. The position of the particle is changed by adding a
velocity, viðtÞ to the current position. It is the velocity vector that drives the opti-
mization process, and reflects both the experiential knowledge of the particle and
socially exchanged information from the particle’s neighborhood.

3 Variants of PSO

Several variants of the PSO algorithm have been developed [11–13]. It has been
shown that the question of convergence of the PSO algorithm is implicitly guar-
anteed if the parameters are adequately selected [14, 15].
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3.1 Inertia Weight

This variation was introduced by Shi and Eberthart [13] as a mechanism to control
the exploration and exploitation abilities of the swarm, and as a mechanism to
eliminate the need for velocity clamping [16]. The inertia weight was successful in
addressing the first objective, but could not completely eliminate the need for
velocity clamping. The inertia weight, w, basically works by controlling how much
memory of the previous flight direction will influence the new velocity. The
velocity equation is changed from Eq. (1) to:

vijðt þ 1Þ ¼ wvijðtÞ þ c1r1jðtÞ½yijðtÞ � xijðtÞ� þ c2r2jðtÞ½ŷjðtÞ � xijðtÞ� ð3Þ

The value of w is extremely important to ensure convergent behavior, and to
optimally tradeoff exploration and exploitation. For w� 1; velocities increase over
time, accelerating towards the maximum velocity (assuming velocity clamping is
used), and the swarm diverges. For w\1; particles decelerate until their velocities
reach zero (depending on the values of the deceleration coefficients). Large values
for w facilitate exploration, with increased diversity. Very small values eliminate
the exploration ability of the swarm. Little momentum is then preserved from the
previous time step, which enables quick changes in direction. The smaller w, the
more do the cognitive and social components control position updates.

As with the maximum velocity, the optimal values for the inertia weight is
problem dependent [15]. Initial implementations of the inertia weight used a static
value for the entire search duration, for all particles for each dimension. Later
implementations made use of dynamically changing inertia values. These approa-
ches usually start with large inertia values, which decrease over time to smaller
values. In doing so, particles are allowed to explore in the initial search steps, while
favoring exploitations as time increases. The choice of values for w has to be made
in conjunction with the selection of the values for c1 and c2.

Approaches to dynamically varying the inertia weight can be grouped into the
following categories:

• Random adjustments, where a different inertia is randomly selected at each
iteration. One approach is to sample from a Gaussian distribution, e.g.

ð4Þ
where is small enough to ensure that w is not predominantly greater than one.
Alternatively, Peng et al. used [17]

w ¼ c1r1 þ c2r2ð Þ ð5Þ

with no random scaling of the cognitive and social components.
• Linear decreasing, where an initially large inertia weight (usually 0.9) is lin-

early decreased to a small value (usually 0.4). From Naka et al. [18], Yoshida
et al. [19]
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wðtÞ ¼ ðwð0Þ � wðntÞÞ ðnt � tÞ
nt

þ wðntÞ ð6Þ

Where nt is the maximum number of time steps for which the algorithm is
executed, w(0) is the initial inertia weight, w(nt) is the final inertia weight, and w
(t) is the inertia at time step t. Note that w(0) > w(nt).

• Nonlinear decreasing, where an initially large value decreases nonlinearly to a
small value. Nonlinear decreasing methods allow a shorter exploration time than
the linear decreasing methods, with more time spent on refining solutions
(exploiting). Nonlinear decreasing methods will be more appropriate for
smoother search space. The following nonlinear methods have been defined:

– From Naka et al. [18],

wðt þ 1Þ ¼ ðwðtÞ � 0:4Þðnt � tÞ
nt þ 0:4

ð7Þ

With w(0) = 0.9.

• Increasing inertia, where the inertia is linearly increased from 0.4 to 0.9 [18,
20].

The linear and nonlinear adaptive inertia methods above are very similar to the
temperature schedule of simulated annealing [21].

4 Fuzzy Logic

Fuzzy logic was investigated for the first time in the mid-sixties at the University of
California Berkeley by the brilliant Iranian engineer Zadeh [22], when he realized
what it is called the principle of incompatibility: “As the complexity of a system
increases, our ability to build precise and instructions on their behavior decreases to
the threshold beyond which the accuracy and meaning are mutually exclusive
characteristic.” This principle is the basic to the fuzzy systems used today. The
structure of a Fuzzy System consists of the following elements:

1. The rule base that contains linguistic rules provided by the expert, or can be
extracted from numerical data.

2. The fuzzifier, which assigns to the numerical entries in their corresponding
membership function. This is needed to activate rules, which are specified in
term of linguistic variables; fuzzifier takes the input values and determines the
degree to which they belong to each of the fuzzy sets via membership functions.

3. The fuzzy inference engine defines the allocation of input fuzzy sets to the
corresponding values of the output fuzzy sets. This determines the degree to
which each part of the antecedent is satisfied for each rules.
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4. The defuzzifier in the case of Mamdani-assigned sets of outputs in a number that
is a fact not fuzzy. Given a fuzzy set which manages a range of output values,
the defuzzifier returns a number within a set of fuzzy numbers.

4.1 Fuzzy System

A fuzzy particle swarm optimization is developed to improve the performance of
PSO; where the inertia weight w and learning factories c1 and c2 are dynamically
adjusted on the basic of fuzzy sets and rules during the evolution process [23, 24].
We define a fuzzy system for parameter adaptation to consist of the following
components:

– Two inputs, one to represent the number of generation for unchanged best
fitness (NU), and the other the current value of the inertia weight (W).

– Three output, learning (c1 and c2) and the change in inertia weight (chw).
– Three fuzzy sets, namely LOW, MEDIUM and HIGH, respectively imple-

mented as a left triangle, triangle and right triangle membership function.
– Nine fuzzy rules from which the change in inertia is calculated. An example rule

in the fuzzy is:
If normalized NU is LOW, and

W value is LOW
then the C1 is LOW, C2 is LOW and chW is HIGH

The range of NU is normalized into [0, 1.0], the value for w is bounded in
0.2 ≤ w ≤ 1.2 and the values of c1 and c2 are bounded in 1.0 ≤ c1, c2 2.0.

5 Simulation Results for Mathematical Functions

In this section four mathematical functions are tested under the different reviewed
approaches of inertia weight.

5.1 F1 Function

xj j þ cos xð Þ ð12Þ

where �100\xn\100 n = 1, n is the number of the variable to be optimized. The
objective is to find the minimum of F1 function and the related variable locations.
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Figure 1 shows the surface plot of the F1 function in one variable. There is a unique
minimum point in the figure with location f 0ð Þ ¼ 1.

For the simulations we used a population size of 20, 40, 60, 80 and 100.
c1 ¼ c2 ¼ 2; Constant inertia weight (W) = 0.8, 100,000 generations and 8
experiments.

Table 1 shows the optimization results of F1 function, where W is the inertia
weight with different approaches (Constant, Random adjustments, Linear decreas-
ing, Nonlinear decreasing), Tswarm is the population size, Gen is average of
generations, Success rate is the reached minimum in the generation Gen and the
number of variables is 1 (Table 2).

5.2 F2 Function

x sin 4xð Þ þ 1:1y sin 2yð Þ ð13Þ

where 0\xn\10 n = 2, n is the number of variables to be optimized. The objective
is to find the minimum of F2 function and the related variable locations. Figure 2
shows the surface plot of the F2 function in one variable. There is a unique min-
imum point in the figure with location f 0:9039; 0:8668ð Þ ¼ �18:5547.

For the simulations we used a population size of 20, 40, 60, 80 and 100.
c1 ¼ c2 ¼ 2; Constant inertia weight (W) = 0.8, 100,000 generations and 8
experiments.

Table 3 shows the optimization results of F2 function, where W is the inertia
weight with different approaches (Constant, Random adjustments, Linear decreas-
ing, Nonlinear decreasing), Tswarm is the population size, Gen is average of

Fig. 1 Surface plot of the F1
function in n = 1 variable
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generations, Success rate is the reached minimum in the generation Gen and the
number of variables is 2 (Table 4).

5.3 F3 Function

f xð Þ ¼
XN�1

n¼1
100 xnþ1 � x2n

� �2þ 1� xn½ �2
n o

ð14Þ

where �100\xi\100, i = 1, 2,…, n, n is the number of variables to be optimized.
The objective is to find the minimum of F3 function and the related variable
locations. Figure 3 shows the surface plot of the F3 function in one variable. There
is a unique minimum point in the figure with location f 1; 1ð Þ ¼ 0.

Table 2 Optimization results
of F1 function with adjust of
fuzzy parameter (W, c1, c2)
with 1variable

Number of variables Tswar Gen Success rate

1 40 263.7 1

1 60 246.1 1

1 80 246.9 1

1 100 240.9 1

1 200 234.9 1

1 300 226.9 1

1 400 228.2 1

Fig. 2 Surface plot of the F2
function in n = 2 variables
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For the simulations we used a population size of 20, 40, 60, 80 and 100.
c1 ¼ c2 ¼ 2; Constant inertia weight (W) = 0.8, 100,000 generations and 8
experiments.

Table 5 shows the optimization results of F3 function, where W is the inertia
weight with different approaches (Constant, Random adjustments, Linear decreas-
ing, Nonlinear decreasing), Tswarm is the population size, Gen is average of
generations, Success rate is the reached minimum in the generation Gen and the
number of variables is 8 (Table 6).

5.4 F4 Function

10N þ
XN

n¼1
x2n � 10 cos 2pxnð Þ� � ð15Þ

where �100\xi\100, i = 1, 2,…, n, n is the number of variables to be optimized.
The objective is to find the minimum of F2 function and the related variable
locations. Figure 2 shows the surface plot of the F2 function in one variable. There
is a unique minimum point in the figure with location f 0; 0ð Þ ¼ 0.

Fig. 3 Surface plot of the F3
function in n = 2 variables

Table 4 Optimization results
of F2 function with adjust of
fuzzy parameter (W, c1, c2)
with 2 variables

Number of variables Tswar Gen Success rate

2 40 41.7 −18.5547

2 60 34.7 −18.5547

2 80 33.9 −18.5547

2 100 33.2 −18.5547

2 200 26.7 −18.5547

2 300 24.8 −18.5547

2 400 22 −18.5547
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For the simulations we used a population size of 20, 40, 60, 80 and 100.
c1 ¼ c2 ¼ 2; Constant inertia weight (W) = 0.8,10,000 generations and 8 experi-
ments (Fig. 4).

Table 7 shows the optimization results of F4 function, where W is the inertia
weight with different approaches (Constant, Random adjustments, Linear decreas-
ing, Nonlinear decreasing), Tswarm is the population size, Gen is average of
generations, Success rate is the reached minimum in the generation Gen and the
number of variables is 8 (Tables 8 and 9).

Table 6 Optimization results of F3 function with adjust of fuzzy parameter (W, c1, c2) with 8 and
10 variables

Number of
variables

Tswar Gen Success
rate

Number of
variables

Tswar Gen Success
rate

8 60 100,000 3.0252e-26 10 60 100,000 2.159e-10

8 80 100,000 8.659 e-27 10 80 100,000 1.533e-25

8 100 100,000 2.168e-26 10 100 100,000 1.535e-23

8 200 100,000 1.373e-27 10 200 100,000 4.283e-24

8 300 100,000 2.885e-28 10 300 100,000 5.167e-22

8 400 100,000 1.498e-28 10 400 100,000 1.015e-26

Fig. 4 Surface plot of the F4
function in n = 2 variables
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6 Conclusions

In this paper, we proposed a comparative study of inertia weight approaches.
Simulation tests on four mathematical functions were performed to compare the
proposed study. The simulation results of the different approaches of inertia weight
show that among more variables has the function the PSO used more generations to
find the minimum, therefore results show great difference in both the constant
inertia weight as its approaches. Was applied a fuzzy particle swarm optimization
showing better difference between the results of the different approaches of inertia
weight, noteworthy that the adjustment was both the value of inertia weight (w) as
acceleration coefficients (c1 and c2), therefore, we increased the number of variables
to see better the performance of fuzzy PSO, showing significant results. Parameters
can be adjusted of fuzzy PSO (input variables, type of membership and rules) to
improve results as future work.

Table 8 Optimization results of F4 function with adjust of fuzzy parameter (W, c1, c2) with 8 and
10 variables

Number of
variables

Tswar Gen Success
rate

Number of
variables

Tswar Gen Success
rate

8 40 3740.1 0 10 40 4018.5 0

8 60 2023 0 10 60 2761.3 0

8 80 1852.3 0 10 80 1955.4 0

8 100 1471.9 0 10 100 1935.6 0

8 200 836.6 0 10 200 1236.4 0

8 300 701.9 0 10 300 877.2 0

8 400 533.6 0 10 400 1145.6 0

Table 9 Optimization results of F4 function with adjust of fuzzy parameter (W, c1, c2) with 20 and
30 variables

Number
of
variables

Tswar Gen Success
rate

Number
of
variables

Tswar Gen Success
rate

20 40 38206 0 30 40 39357.7 0

20 60 18821 0 30 60 28866.2 0

20 80 10017 0 30 80 22006 0

20 100 5983.7 0 30 100 17492 0

20 200 3297.2 0 30 200 8994 0

20 300 3783.9 0 30 300 9641.5 0

20 400 2824.1 0 30 400 7856 0
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Optimization of Modular Network
Architectures with a New Evolutionary
Method Using a Fuzzy Combination
of Particle Swarm Optimization
and Genetic Algorithms

Fevrier Valdez

Abstract We describe in this paper a new hybrid approach for optimization
combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs)
using Fuzzy Logic to integrate the results. The new evolutionary method combines
the advantages of PSO and GA to give us an improved FPSO + FGA hybrid
method. Fuzzy Logic is used to combine the results of the PSO and GA in the best
way possible. Also fuzzy logic is used to adjust parameters in the FPSO and FGA.

1 Introduction

We describe in this paper a new evolutionary method combining PSO and GA, to
give us an improved FPSO + FGA hybrid method. We apply the hybrid method to
optimize the architectures of Modular Neural Networks (MNNs) for pattern rec-
ognition. We also apply the hybrid method to mathematical function optimization
to validate the new approach. In this case, we are using the Rastrigin’s function,
Rosenbrock’s function, Ackley’s function, Sphere’s function Griewank’s function,
Michalewics’s function, Zakharov’s function, Dixon’s function, Levy’s function
and Perm’s function [1, 2, 3].

The paper is organized as follows: in part 2 a description about the genetic
algorithms for optimization problems is given, in part 3 the Particle Swarm Opti-
mization is presented, the FPSO + FGA method is presented in part 4 and 5, the
simulation results for modular neural network optimization are presented in part 6,
finally we can see the conclusions reached after the study of the proposed evolu-
tionary computing method.
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2 Genetic Algorithm for Optimization

John Holland, from the University of Michigan initiated his work on genetic
algorithms at the beginning of the 1960s. His first achievement was the publication
of Adaptation in Natural and Artificial System [4] in 1975.

He had two goals in mind: to improve the understanding of natural adaptation
process, and to design artificial systems having properties similar to natural systems [5].

The basic idea is as follows: the genetic pool of a given population potentially
contains the solution, or a better solution, to a given adaptive problem. This solution
is not “active” because the genetic combination on which it relies is split between
several subjects. Only the association of different genomes can lead to the solution.

Holland’s method is especially effective because it not only considers the role of
mutation, but it also uses genetic recombination, (crossover) [6]. The crossover of
partial solutions greatly improves the capability of the algorithm to approach, and
eventually find, the optimal solution.

The essence of the GA in both theoretical and practical domains has been well
demonstrated [7]. The concept of applying a GA to solve engineering problems is
feasible and sound. However, despite the distinct advantages of a GA for solving
complicated, constrained and multi-objective functions where other techniques may
have failed, the full power of the GA in application is yet to be exploited [8, 9].

In Fig. 1 we show the reproduction cycle of the Genetic Algorithm.
The Simple Genetic Algorithm can be expressed in pseudo code with the fol-

lowing cycle:
1. Generate the initial population of individuals aleatorily P(0)
2. While (number _ generations <= maximum _ numbers _ generations)

Do:

{

Evaluation;
Selection;
Reproduction;
Generation ++;

Fig. 1 The reproduction
cycle
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}

3. Show results
4. End

3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization
technique developed by Eberhart and Kennedy in 1995, inspired by social behavior
of bird flocking or fish schooling [10].

PSO shares many similarities with evolutionary computation techniques such as
Genetic Algorithms (GA) [11]. The system is initialized with a population of
random solutions and searches for optima by updating generations. However,
unlike the GA, the PSO has no evolution operators such as crossover and mutation.
In the PSO, the potential solutions, called particles, fly through the problem space
by following the current optimum particles [12].

Each particle keeps track of its coordinates in the problem space, which are
associated with the best solution (fitness) it has achieved so far (The fitness value is
also stored). This value is called pbest. Another “best” value that is tracked by the
particle swarm optimizer is the best value, obtained so far by any particle in
the neighbors of the particle. This location is called lbest. When a particle takes all
the population as its topological neighbors, the best value is a global best and is
called gbest [13].

The particle swarm optimization concept consists of, at each time step, changing
the velocity of (accelerating) each particle toward its pbest and lbest locations (local
version of PSO). Acceleration is weighted by a random term, with separate random
numbers being generated for acceleration toward pbest and lbest locations [13].

In the past several years, PSO has been successfully applied in many research
and application areas. It is demonstrated that PSO gets better results in a faster,
cheaper way compared with other methods [14, 15].

Another reason that PSO is attractive is that there are few parameters to adjust.
One version, with slight variations, works well in a wide variety of applications.
Particle swarm optimization has been used for approaches that can be used across a
wide range of applications, as well as for specific applications focused on a specific
requirement [14, 16-18].

The pseudo code of the PSO is as follows
For each particle

Initialize particle

End
Do

Optimization of Modular Network Architectures … 181



For each particle

Calculate fitness value
If the fitness value is better than the best fitness value (pBest) in history

set current value as the new pBest

End
Choose the particle with the best fitness value of all the particles as the gBest
For each particle

Calculate particle velocity
Update particle position

End

While maximum iterations or minimum error criteria is not attained

4 FPSO + FGA Method

This method combines the characteristics of PSO and GA using several fuzzy
systems for integration of results and parameter adaptation. In this section, the
proposed FPSO + FGA method is presented.

The general idea of the proposed FPSO + FGA method can be seen in Fig. 2.
The method can be described as follows:

1. A mathematical function to be optimized is received.
2. The role of both FPSO and FGA is evaluated.
3. A main fuzzy system is responsible for receiving values resulting from step 2.
4. The main fuzzy system decides which method to use (FPSO or FGA)
5. Another fuzzy system receives the values of Error and DError as inputs to

evaluate if it is necessary to change the parameters in FPSO or FGA.
6. There are 3 fuzzy systems. One is for decision making (is called ‘fuzzymain’),

the second one is to change the parameters of the GA (is called ‘fuzzyga’), in
this case change the value of the crossover and mutation rate and the third fuzzy
system is used to change the parameters of the PSO (is called ‘fuzzypso’) in this
case change the values of the cognitive acceleration ‘c1’, and social acceleration
‘c2’. The main fuzzy system (called ‘fuzzymain’) decides in the final step the
optimum value for the function introduced in step 1.

7. Repeat the above steps until the termination criterion of the algorithm is met.
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5 Full Model of FPSO + FGA

The basic idea of the FPSO + FGA scheme is to combine the advantage of the
individual methods using a fuzzy system for decision making and the others two
fuzzy systems to improve the parameters of the FGA and FPSO when is necessary
(Fig. 3).

As can be seen in the proposed hybrid FPSO + FGA method, it is the internal
fuzzy system structure, which has the primary function of receiving as inputs (Error
and DError) the results of the FGA and FPSO outputs. The fuzzy system is
responsible for integrating and decides which are the best results being generated at
run time of the FPSO + FGA. It is also responsible for selecting and sending the
problem to the “fuzzypso” fuzzy system when the FPSO is activated or to the
“fuzzyga” fuzzy system when FGA is activated. Also activating or temporarily
stopping depending on the results being generated. Figure 4 shows the membership
functions of the main fuzzy system that is implemented in this method. The fuzzy
system is of Mamdani type because it is more common in this type of fuzzy control
and the defuzzification method is the centroid. In this case, we are using this type of

Fig. 2 The FPSO + FGA scheme
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defuzzification because in other papers we have achieved good results [19]. The
membership functions are of triangular form in the inputs and outputs as is shown
in Fig. 4. Also, the membership functions were chosen of triangular form based on
past experiences in this type of fuzzy control. The fuzzy system consists of 9 rules.
For example, one rule is if error is P and DError is P then best value is P (view
Fig. 5). Figure 6 shows the fuzzy system rule viewer. Figure 7 shows the surface
corresponding to this fuzzy system. The other two fuzzy systems are similar to the
main fuzzy system.

Fig. 3 Simulation of sphere’s function with FPSO

Fig. 4 Fuzzy system membership functions
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Fig. 5 Fuzzy system rules

Fig. 6 Fuzzy system rules
viewer

Fig. 7 Surface of fuzzy
system
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5.1 FPSO (Fuzzy Particle Swarm Optimization)

This section presents a detailed description of the FPSO model. The classical
representation scheme for GAs is binary vectors of fixed length. In the case of an
nx—dimensional search space, each individual consists of nx variables with each
variable encoded as a binary string.

The swarm is typically modeled by particles in multidimensional space that have
a position and a velocity. These particles fly through hyperspace (i.e., Rn) and have
two essential reasoning capabilities: their memory of their own best position and
knowledge of the global or their neighborhood’s best. In Fig. 3 we can see a
simulation of Sphere’s function. In a minimization optimization problem, “best”
simply meaning the position with the smallest objective value. Members of a swarm
communicate good positions to each other and adjust their own position and
velocity based on these good positions. So a particle has the following information
to make a suitable change in its position and velocity:

• A global best that is known to all and immediately updated when a new best
position is found by any particle in the swarm.

• The neighborhood best that the particle obtains by communicating with a subset
of the swarm.

• The local best, which is the best solution that the particle has seen.

In this case, the social information is the best position found by the swarm,
referred as ŷ(t). For gbest FPSO, the velocity of particle i is calculated as

vijðt þ 1Þ ¼ vijðtÞ þ c1r1jðtÞ½yijðtÞ � xijðtÞ� þ c2r2jðtÞ½ŷjðtÞ � xijðtÞ� ð1Þ

where vijðtÞ is the velocity of particle i in dimension j = 1,…, nx at time step t, xijðtÞ
is the position of particle i in dimension j at time step t, C1 and C2 represents the
cognitive and social acceleration. In this case, these values are fuzzy because they
are changing dynamically when the FPSO is running, and r1j(t), r2j*U(0, 1) are
random values in the range [0, 1].

5.2 FGA (Fuzzy Genetic Algorithm)

This section presents a detailed description of the FGA. Several crossover operators
have been developed for GAs, depending on the format in which individuals are
represented. For binary representations, uniform crossover, one point crossover and
two points cross over are the most popular. In this case we are using two points
crossover with fuzzy crossover rate because we are adding a fuzzy system called
‘fuzzyga’ that is able of change the crossover and mutation rate.
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5.3 Definition of the Fuzzy Systems Used in FPSO + FGA

‘fuzzypso’: In this case we are using a fuzzy system called ‘fuzzypso’, and the
structure of this fuzzy system is as follow:
Number of Inputs: 2
Number of Outputs: 2
Number of membership functions: 3
Type of the membership functions: Triangular
Number of rules: 9
Defuzzification: Centroid
The main function of the fuzzy system called ‘fuzzypso’ is to adjust the
parameters of the PSO. In this case, we are adjusting the following parameters:
‘c1’ and ‘c2’; where:
‘c1’ = Cognitive Acceleration
‘c2’ = Social Acceleration
We are changing these parameters to test the proposed method. In this case, with
‘fuzzypso’ is possible to adjust in real time the 2 parameters that belong to the
PSO.
‘fuzzyga’: In this case we are using a fuzzy system called ‘fuzzyga’, the
structure of this fuzzy system is as follows:
Number of Inputs: 2
Number of Outputs: 2
Number of membership functions: 3
Type of membership functions: Triangular
Number of rules: 9
Defuzzification: Centroid
The main function of the fuzzy system called ‘fuzzypso’ is to adjust the
parameters of the GA. In this case, we are adjusting the following parameters:
‘mu’, ‘cr’; where:
‘mu’ = mutation
‘cr’ = crossover
‘fuzzymain’: In this case, we are using a fuzzy system called ‘fuzzymain’. The
structure of this fuzzy system is as follows:
Number of Inputs: 2
Number of Outputs: 1
Number of membership functions: 3
Type of membership functions: Triangular
Number of rules: 9
Defuzzification: Centroid
The main function of the fuzzy system, called ‘fuzzymain’ is to decide on the
best way for solving the problem, in other words if it is more reliable to use the
FPSO or FGA. This fuzzy system is able to receive two inputs, called error and
derror, it is to evaluate the results that are generated by FPSO and FGA in the
last step of the algorithm.
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6 Simulation Results for Modular Neural Network
for Optimization

Several tests of the FPSO + FGA method for MNN optimization were made in the
Matlab programming language.

All the implementations were developed using a computer with quad core2
processor of 64 bits that works to a frequency of clock of 2.5 GHz, 4 GB of RAM
Memory and Windows Vista operating system.

We describe below simulation results of our approach for face recognition with
modular neural networks (MNNs). We used two-layer feed-forward MNNs with the
Conjugated-Gradient training algorithm [19]. The challenge is to find the optimal
architecture of this type of neural network, which means finding out the optimal
number of layers and nodes of the neural network [20]. We are using the Yale face
database [16] that contains 165 grayscale images in GIF format of 15 individuals,
for this paper only 10 subjects were used for training the MNN. There are 5 images
per subject, one per different facial expression: center-light, happy, left-light, nor-
mal and right-light.

In total 50 images were used (see Fig. 9). Three images per subject were used for
training the MNN and the other two for the recognition. Regarding the genetic
algorithm for NN evolution, we used a hierarchical chromosome for representing
the relevant information of the network. First, we have the bits for representing the
number of layers of the MNN, in this case, the initial topology was of 3 modules
with 2 layers per module with 500 neurons in the first layer, 300 neurons in the
second layer in each module. Therefore we used a representation the 2415 bits in
total (view Fig. 8). The PSO is organized in a similar fashion, but there is less
number of parameters. In Fig. 11 we can see the architecture of a MNN that we are
using with the evolutionary proposed method FPSO + FGA.

The fitness function used in this case for the MNN combines the information of
the error objective and also the information about the number of nodes as a second
objective. This is shown in the following equation.

Modules = 3
Layers = 2 x module
NNL1M1 = 500, NNL2M1 = 300
NNL1M2 = 500, NNL2M2 = 300
NNL1M3 = 500, NNL2M3 = 300
Total bits = 2415  

Fig. 8 Binary representation for FPSO + FGA (No optimized)
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f ðzÞ ¼ 1
a � RankingðObjV1Þ þ b � ObjV2

� �
� 10 ð2Þ

The first objective is basically the average sum of squared of errors as calculated
by the predicted outputs of the MNN compared with real values of the function.
This is given by the following equation.

Fig. 9 Images of the Yale
face database
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f1 ¼ 1
N

XN
i¼1

ðYi � yiÞ2 ð3Þ

The second objective is the complexity of the neural network, which is measured
by the total number of nodes in the architecture.

The final topology of the neural network for the problem of face recognition is
obtained by the hybrid evolutionary method FPSO + FGA. The comparison of the
final objective values (errors) will be shown in the following section. In the final
architecture, the result of the MNN evolution is a particular architecture with dif-
ferent number of nodes by layers. Several tests were made; we obtained different
optimized architectures for this Modular Neural Network; the best architecture
obtained was the following:

Layers = 2 x module
NNL1M1 = 90, NNL2M1 = 50
NNL1M2 = 100, NNL2M2 = 150
NNL1M3 = 70, NNL2M3 = 90
Total bits = 565
Where:
NNL1M1 = Number of neurons of the layer 1 in module 1.
NNL1M1 = Number of neurons of the layer 1 in module 1.
NNL2M1 = Number of neurons of the layer 2 in module 1.
NNL1M2 = Number of neurons of the layer 1 in module 2.
NNL2M2 = Number of neurons of the layer 2 in module 2.
NNL1M3 = Number of neurons of the layer 1 in module 3.
NNL2M3 = Number of neurons of the layer 2 in module 3.

Modules = 3
Layers = 2 x module
NNL1M1 = 90, NNL2M1 = 50
NNL1M2 = 100, NNL2M2 = 150
NNL1M3 = 70, NNL2M3 = 90
Total bits = 565  

Fig. 10 Binary representation optimized for FPSO + FGA
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We can see in the Fig. 10 the binary representation for this optimized archi-
tecture. With this final topology the Neural Network was trained and the ten images
were recognized. It can be seen in table I the different architectures obtained with
this method. The proposed method optimizes the initial architecture proposed for
the problem of face recognition (Fig. 11).

The Parameters of Table 1 and 2, are as follows:

Ima = Number of images. Mod = Number of modules. NNL = Number of
neurons Layer 1, 2 or 3. GE = Goal Error. RE = Reached Error.
IDENT = Number of images recognized. Train M = Training Method for the
MNN. FGA = Parameters of Fuzzy Genetic Algorithm. FPSO = Parameters of
Fuzzy Genetic Algorithm. VAR = Number of variables for the mathematical
function.

Also this FPSO + FGA have been applied, for optimization of complex math-
ematical functions to validate our approach. The Table 2, shows the simulation
results with 10 mathematical functions. It can be seen in Table 2 that this method is
good alternative to solve this type of problems. The mathematical functions are
evaluated with 2, 4, 8 and 16 variables. The mean was calculated after running the
FPSO + FGA 50 times. The parameters in FPSO + FGA as crossover, mutation,
social and cognitive acceleration are fuzzy, because are changing dynamically when
the method is running, this is main characteristic of this method to find the best
results.

Module 3

Module 1

Module 2 INTEGRATION Output

I
n
p
u
t
s

X1

X2

X3

Fig. 11 Architecture of the modular neural network
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7 Conclusions

The analysis of the simulation results of the evolutionary method considered in this
paper, FPSO + FGA lead us to the conclusion that for the optimization of Modular
Neural Networks with this method is a good alternative because it is easier to
optimize the architecture of Modular Neural Network than to try it with PSO or GA
separately. This is, because the combination PSO and GA with fuzzy rules gives a
new hybrid method FPSO + FGA. It can be seen in Table 1 that the second and five
architectures obtained after applying FPSO + FGA recognize the ten images, and as
a consequence we are demonstrating that it is reliable for this type of applications.
Recently we are working with more images to test the effectiveness of this
approach. Also, we can appreciate that this method has been tested with 10
benchmark mathematical functions to validate our approach. In Table 2 we can see
been the simulation results obtained with the method.
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