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1 Introduction

The release of colored wastewater from textile industries in the ecosystem has been
a great environmental as well as public health concern over the decades. Textile
industry is a promising market due to the customer’s increasing demand for new
products. To fulfill these demands, textile industries are using selective dyestuffs
among 100,000 different commercially available dyes (Husain 2006). Over
20–40 % of the dyes used in textile industries released to the environment via
effluent discharge (Song et al. 2008) which causes serious environmental problems.
However, growing importance of green practices encourages the adaption of
microbe-based wastewater treatment technologies for textile effluents (Christie
2007). Several physical, chemical and physicochemical methods have been used for
textile wastewater treatment, but each of them has their own advantages and dis-
advantages. Physico-chemical methods of wastewater treatment are not only costly
methods, but also, some cases, very difficult to apply. Biological degradation and
decolorization using microorganisms, on the contrary, provides inexpensive,
effective, and specific, less energy intensive and eco-friendly methods for textile
wastewater treatment (Robinson et al. 2001).
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2 Textile Dyes

Textile industry is a growing sector which, in turn, uses of textile dyes in a large
quantity (Dos Santos et al. 2007). Around 100,000 commercially available dyes can
be classified according to their chromophoric groups, reactive groups, or even their
applications (Husain 2006; Dos Santos et al. 2007). Considering their chromophoric
groups, they fall into nine major classes as reflected in Table 1 (Rodríguez Couto
2009).

Azo dyes constitute more than half of commercial dyes available in the market.
Any synthetic organic dyes, that contain nitrogen in azo group (–N=N–) as part of
their molecular structures, fall into this class of dyes. Now-a-days more than 2000
different azoic dyes are being used in different industries and most of them are also

Table 1 Chromophoric groups of textile dyes

Chromophoric group Structure

Acridine

Anthraquinone

Azo

Diazonium

Nitro

Oxazine

Phthalocyanine

Thiazine

Triarylmethane
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used in textile industries (Amoozegar et al. 2011). Textile process consists of
several steps. Dying and scouring steps are the main sources of color in wastewaters
and effluents (Dos Santos et al. 2007).

3 Textile Wastewater Effluents Properties

Industrial effluents treatment approaches should be designed in a way to meet the
goals of protecting the assimilative capacity of surface waters; saving different
kinds of life; preserving or restoring the aesthetic and recreational value of surface
waters and protecting human beings from adverse effects of deteriorating water
quality conditions. Selection among different wastewater treatment facilities is
based on the knowledge of different factors, like physical, chemical and biological
characteristics of wastewater, the quality of water reservoirs (rivers, ponds, streams,
etc.) must be maintained in which the wastewater is to be released or the quality that
the wastewater should meet environmental standards after treatment for reuse for
various purposes. The main physical characteristics of industrial wastewaters are
their solid content, color, odour and temperature. However, chemical characteristics
of wastewaters are divided into two main classes: organic and inorganic charac-
teristics. Inorganic chemicals, that enable us to choose the proper method for the
wastewater treatment, are varying according to the wastewater origin. In organic
factors include free ammonia, organic nitrogen, nitrites, nitrates, organic and
inorganic phosphorous, chloride, sulphate, heavy metals, hydrogen sulphide, oxy-
gen, methane and carbon dioxide. In order to assess the organic content of
wastewaters, biological oxygen demand (BOD), chemical oxygen demand (COD),
total organic compound (TOC) and volatile organic compounds (VOC) need to be
determined carefully, as they have a great impact on choosing proper biological
treatment technology. Typical characteristics of textile industry wastewater are
presented in Table 2 (Al-Kdasi et al. 2004).

The textile industries wastewaters are a complex mixture of salts, acids, heavy
metals, organochlorine-based pesticides, pigments, dyes etc. Dyes and dyestuff are
of primary importance in textile manufacturing. In discriminate release of colored

Table 2 Composite textile
industry wastewater
characteristics

Parameters Values

pH 7.0–9.0

Biochemical oxygen demand (mg l−1) 80–6,000

Chemical oxygen demand (mg l−1) 150–12,000

Total suspended solids (mg l−1) 15–8,000

Total dissolved solids (mg l−1) 2,900–3,100

Chloride (mg l−1) 1,000–1,600

Total kjeldahl nitrogen (mg l−1) 70–80
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textile effluents to the environment HAS undesired impact on neighboring receptor
water bodies because of presence of toxic reactive dyes and dark coloration. Due to
environmental and health effects of dyes released in textile industry wastewater
made the textile wastewater decolorization a subject to scientific scrutiny (Christie
2007).

Textile dyeing industries are facing problems to meet the green practices stan-
dards for safe discharge of wastewater due to complex nature and hard-to-treat by
conventional methods. Therefore, in recent years, biological decolorization, using
microorganisms capable of decolorizing and detoxifying the synthetic dyes, has
been considered as a promising and environmentally benign method (McMullan
et al. 2001).

4 Microbial Degradation of Textile Dyes

Amongst different decolorization methods for textile wastewaters; the biological
methods seem to be most applicable. Bacteria, fungi and yeasts could be used based
on their ability to decolorize dyes in the wastewater through aerobic, anaerobic or
anaerobic/ aerobic systems. Among different techniques for wastewater decolor-
ization, the live or dead microbial biomass adsorption has a great significance in
biorecovery of dyes after decolorization of the effluents (McMullan et al. 2001).
Some of microorganisms that are able to decolorize textile dyes, are of different
taxonomic groups and their efficiency in dye removal has been summarized in
Table 3. Some microbes show a very high efficiency in waste water decolorization
which is attributed to their growth rate and versatile metabolism. However, harsh
condition of wastewater effluents poses a limiting factor for mesophilic microor-
ganisms to remediate the wastewaters properly. But the ability of extremophilic
microorganism to survive in such harsh condition has some advantages over other
mesophilic microorganisms for the bioremediation of colored wastewaters.

5 Extremophilic Microorganisms

Extremophiles are organisms that are adapted to grow optimally at or near to the
extreme ranges of environmental variables. Most of them thrive under conditions
that are clearly hostile from a human perspective. Extremophiles can fall in different
categories based on single environmental extreme they survive. Different categories
of extremophiles include acidophile, alkaliphile, endolith, halophile, hyperther-
mophile, hypolith, metallotolerant, oligotroph, piezophile, psychrophile, radiore-
sistant, thermophile, toxitolerant and xerophile (Horikoshi 2011). Besides, there
are many extremophiles which fall in two or more of above categories. They
represent the polyextremophiles which refer to microorganisms adapted to two
or more different environmental extremes (Rothschild and Mancinelli 2001).
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The exploration of extremobiosphere targets at discovery of extremophile micro-
organisms with new metabolisms, natural products, biocatalysts and other services
(Schiraldi and De Rosa 2002).

Extremophilic microorganisms have many applications in biotechnology,
medicine and industry. Extremozymes are one of the most important products of
extremophiles not only because of their industrial application, but also because they
can also be used as a model system for the study of stabilization and enzyme
activation mechanisms of protein structure-functional properties (Demirjian et al.
2001). Enzymes of thermophilic, hyperthermophilic, alkaliphilic and psycrophilic
groups of extremophilic microorganisms are the most promising for industrial
applications (Van Den Burg 2003). Highly thermostable hydrolases, like cellulases,
amylases, pectinases, chitinases, xylanases, lipases, proteases, pullulanases, glucose
isomerases, alcohol dehydrogenases, and esterases with broad industrial application
can be extracted from thermophilic and hyperthermophilic microorganisms. Some
other kinds of thermostable enzymes, like DNA polymerase, DNA ligase, restric-
tion enzymes and phosphatase with application in molecular biology and medicine,
are also produced by extremophilic microorganisms (Gomes and Steiner 2004;
Egorova and Antranikian 2005). Psychrophilic microorganisms with hydrolases,
like B-glucanases, pectinases, cellulases, and proteases, have some potential
applications in the waste treatment and food industry, while cold adapted enzymes
are of emerging interest in the detergent production industries (Cavicchioli et al.
2011). Alkaliphilic microorganisms are source of enzymes which are stable at high
pH values. Some examples of these enzymes with application in industrial sector
are elastase and keratinase in cosmetic industries and some other hydrolases, like
cellulases, proteinases, amylases, lipases with application in detergent production
industries. Some of extremophilic microbial enzymes have the potential to be used
in the biosensor systems (D’Auria et al. 2002).

Along with these enzymes, other biologically active substances and biopolymers
of extremophiles have also put their mark on industry and medicine, osmoprotec-
tant compounds, like ectoin and betain, bacteriorhodopsin (Oesterhelt and
Stoeckenius, 1973; Trivedi et al. 2011), β-carotene (León et al. 2003; Lamers et al.
2008), halocins and microhalocins (Haseltine et al. 2001; O’connor and Shand
2002) and long-chained poly unsaturated fatty acids are some examples of bio-
logically active substances of extremophiles with biotechnological applications.
Extremophiles are also source of useful biopolymers (Barbara et al. 2012) like
bioplastics (Lu et al. 2009) and exopolysaccharides (Nicolaus et al. 2010). Gas
vesicle and liposomes of some halophilic bacteria can be used for vaccine devel-
opment (Stuart et al. 2001, 2004).

One of the most interesting applications of extremophilic microorganisms is
their potential in bioremediation. Bioremediation is one of the most effective and
successful cleaning techniques for removal of toxicants from polluted environments
(Kumar et al. 2011). There are some strains of psychrophilic (Aislabie et al. 2006)
and halophilic microorganisms (Nicholson and Fathepure 2004, 2005; Liebgott
et al. 2007; Feng et al. 2012) which have been reported to degrade hydrocarbon
compounds. These strains have the potential to be used for oil spill or oilfield
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remediation. Heavy metals are one of the most important environmental concerns,
as their accumulation through food chain can cause serious health problems. Some
halophilic microorganisms have been reported with the ability to remediate heavy
metal pollution through absorption. Hence, they can be used as biological agents for
removal of heavy metals from highly saline industrial wastewaters (Popescu and
Dumitru 2009; Francis et al. 2000; Amoozegar et al. 2012). Exploring extremo-
philic microbial potential for bioremediation purposes will result in using organisms
that have a high tolerance to the environmental harsh conditions of salinity and high
temperature for in situ and ex situ remediation in bioreactors (Kumar et al. 2011).

6 Extremophilic Microorganisms and Textile Dyes

In discriminate release of colored wastewater into the environment has become
today a serious ecological obstacle. Therefore, green practices are tried to assort a
proper decolorization or degradation approaches for the colored industrial effluents
before releasing them to the environment. Extremophilic microorganisms are one of
the most attractive biological tools for bioremediation in the harsh condition of
most effluents. Factors, like pH, temperature, salinity, and dye concentration have a
great effect on dye removal by microorganisms.

In most cases, sodium concentrations above 3,000 ppm moderately inhibit most
of microbial activities except for halotolerant and halophilic microbes which can
tolerate or may require salt to be active (Anjaneya et al. 2011). Halophilic micro-
organisms can be found in hypersaline environment which are widely distributed
around the world. These microorganisms are a group of extremophiles which not
only cope with salinity as an environmental extreme (Oren 2011), but also sub-
jected to other kinds of extreme conditions, like high pH values, high or low
temperature, low oxygen availability, pressure, heavy metals and/ or other toxic
compounds (Oren 2002). Based on optimal growth with respect to the NaCl con-
centration, halophilic microorganisms fall into two physiological groups which
include extreme halophiles (optimal growth at 2.5–5.2 M NaCl) and moderate
halophiles (optimal growth at 0.5–2.5 M NaCl). Besides, there are some non-
halophilic microorganisms with optimal growth in medium with less than 0.2 M
NaCl concentration, but also they are able to tolerate high concentration of NaCl
and hence defined as halotolerant microbes (Kushsner and Kamekura 1988).

In textile dyeing process, different salts are used for different purposes which
include separating organic contaminants, inducing dyestuff precipitation, and
mixing with concentrated dyes to standardize them. Addition of sodium hydroxide
into dye bath to increase the pH could be another reason for elevated Sodium level
(Khalid et al. 2008a). High salt concentration could decrease the decolorization
process because of inability of microorganism to be active in this condition.
Therefore, halophilic and halotolerant microorganisms can be only useful in this
respect.
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Exiguobacterium acetylicum, Exiguobacterium indicum and Staphylococcus
gallinarum are able to decolorate Reactive Black 5 dye in medium containing
60000 ppm NaCl (Chen et al. 2011). Halotolerant Exiguobacterium sp. has the
ability to efficiently decolorize azo dye X-3B at 15 % (w/v) NaCl (Tan et al. 2009).
Three halophilic and halotolerant strains of the genus Halomonas have been
reported with the high ability of azo dye decolorization (Fig. 1) in a wide range of
NaCl concentration (up to 20 % w/v), temperature (25–40 °C) and pH (5–11) after
5 days of incubation (Asad et al. 2007).

Halomonas sp. strain GTW, which was isolated from the coastal sediments, is
able to grow well and completely decolorize K-2BP (98 %) at 30 °C (Guo et al.
2008a). Azo dye decolorization has been also reported with Shewanella aquima-
rina, which is able to grow at up to 7 % (w/v) NaCl (Meng et al. 2012). Further,
research also showed that Shewanella putrefaciens strain AS96 could be effective
for treatment of colored industrial wastewater containing high salt concentration up
to 60 (g l−1) NaCl (Khalid et al. 2008b). Psychrobacter alimentarius strain KS23
and Staphylococcus equorum strain KS26 which were isolated from seawater
sediment, were able to decolorize three reactive dyes including Reactive Black 5,
Reactive Golden Ovifix, and Reactive Blue BRS in medium with range of
0–100 g l−1 NaCl concentration (Khalid et al. 2012). A halophilic strain was
isolated from a solar sea-saltern in Turkey and found to be resistant against Lanaset
Navy R and Lanaset Brown B dyes. According to 16S rRNA gene sequence
analysis, the strain C-22 belongs to the genus Halobacillus which was the first
report for its ability of this genus in azo-metal complex dyes decolorization
(Demirci et al. 2011). A novel halotolerant bacterium Gracilibacillus sp. GTY was
isolated, showing the ability of dye decolorization by growing and resting cells, as
well as by extracted azo reductase. This strain was able to grow in the media with
15 % (w/v) of NaCl. Decolorization efficiency of the strain grown in very low,
or high concentrations did not suggest that salt concentrations controlled the

Fig. 1 Decolorization of azo
dye, remazol black B by
Halomonas sp. D2. The right
tube contains decolorization
medium without inoculation
and the left tube is inoculated
with the strain and it shows
decolorization after 96 h
incubation
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production of azo reductase (Salah Uddin et al. 2007). Decolorization of Acid Black
210 by a Vibrio harveyi TEMS1, isolated from coastal seawater of Turkey, has been
also studied. Decolorization studies were performed in medium with 5 g l−1 NaCl
concentration (Ozdemir et al. 2008). Shewanella algae and Shewanella marisflavi,
isolated from marine environments, demonstrated better azo dye decolorization
ability as compared to their strains isolated from non-saline sources. S. algae and S.
marisflavi are able to decolorize amaranth dye at up to 100 (g l−1) NaCl or Na2SO4

(Liu et al. 2013). The moderately halotolerant bacterial strain Bacillus firmus
effectively decolorized Polar red B (an azo dye) in synthetic saline wastewater
medium. Decolorization occurred in a wide range of sodium chloride (1–6 %, w/v),
dye (5–100 mg l−1) and at pH range of 6–10 after 24 h of incubation. Cell
immobilization studies of this strain clearly indicated that color removal was
significantly higher in immobilized cell systems especially at salt concentrations
higher than 4 % (Ogugbue et al. 2011).

Thermophilic microorganisms are a group of extremophiles which are able to
thrive and grow at high temperatures from 45 to 122 °C. Many of thermophiles
belong to the domain Archaea (Brock 1967). Thermophilic microbes are among
well studied extremophiles, as their enzymes are well suited for industrial processes
(Prieur 2007). Based on advantages of these organisms, natural and artificial hot
environments have been widely screened for novel thermophilic microorganisms
and bioactive compounds (Torkamani et al. 2008; Kublanov et al. 2009). The
biggest disadvantage of such microorganisms for biotechnological application is
higher equipment corrosion and liquid evaporation which haven’t been properly
tackled for large scale operations. Eight thermophilic consortia were separated from
Spain’s northwest hot springs with the ability of Reactive Black 5 dye decolor-
ization at 65 °C. From these consortia, 3 bacterial strains were isolated which
showed closest similarity to Anoxybacillus pushchinoensis, Anoxybacillus kam-
chatkensis and Anoxybacillus flavithermus (Deive et al. 2010; Sanromán et al.
2010). Anoxybacillus rupiensis is a thermophilic bacterium which was isolated from
hot springs of Maharashtra state in India. When reddish-black effluents of dyeing
unit of a textile factory in Aurangabad, Maharashtra with the pH of 10.5 were
subjected to this bacterium for decolorization, the results showed 75 % decolor-
ization through degradation at 60 °C in eight days (Gursahani and Gupta 2011).
Batch assays of mesophilic (30 °C) and thermophilic (55 °C) anaerobic consortia
were studied for decolorization of Reactive Red 2 and Reactive Orange 14 azoic
dyes. The contribution of fermentative and methanogenic microorganisms in both
temperatures was also evaluated. Results revealed that the application of thermo-
philic anaerobic treatment was an interesting option for the reductive decolorization
of azo dyes compared to mesophilic conditions (Dos Santos et al. 2005). Two
facultative anaerobic bacteria consortia and a bacterial isolate DTB showed the
ability of decolorization of textile colored discharge effluents. Both cultures were
able to grow and decolorize the effluents at elevated temperatures up to 60 °C.
These isolated bacteria can be used for textile colored wastewater treatment which
is normally discharged at elevated temperatures (Banat et al. 1997).
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Alkaline-adapted microorganisms can be divided into two main groups which
include; alkaliphiles and alkalitolerants. The term alkaliphiles is restricted to
microorganisms that require alkaline media for growth and their optimum growth
rate could be observed in at least two pH units above neutrality. Alkalitolerants are
able to grow at pH values more than 9 or 10, but their optimum growth rates occur
around neutrality or less (Grant and Tindall 1986; Jones et al. 1994). One of the
most important characteristic of textile wastewater effluents is their alkalinity. Using
alkaliphiles is inevitable for bioremediation process, because they are adapted to
sustain in the harsh conditions of dyeing process. An obligate alkaliphilic bacterium
Bacillus cohnii MTCC 3616 was used for textile azo dye Direct Red-22 aerobic
decolorization, showing 95 % efficiency for decolorization at 37 °C and pH 9 in 4 h
incubation under static conditions. The decolorization occurred in a broad pH range
(7–11), temperature (10–45 °C) and salinity (1–7 %) (Prasad and Rao 2013).
Alkaliphilic bacterial strain, Bacillus badius, isolated from a lake in India, showed
high potential towards the degradation of azo dyes up to 100 mg l−1 in 24 h under
aerobic condition. Azoreductase enzyme, which is able to cleave azo and nitro
groups of various compounds, has also been purified from this strain (Misal et al.
2011). Clostridium bifermentans strain SL186 was isolated from a contaminated
site and investigated for Reactive Red 3B-A, Reactive black 5 and Reactive Yellow
3G-P dyes decolorization. The bacterium retained decolorizing activity over a wide
range of pH values (6–12) with optimum activity at pH 10 (Joe et al. 2008).

7 Polyextremophilic Microorganisms and Textile Dyes

Extremophilic microorganisms are able to live under different types of stressful
conditions which provide them an opportunity to extend habitable space on earth
which can support essential biological processes like cell growth and main
metabolism. It is important to note that there are some kinds of extremophiles that
are adopted to grow optimally under multiple stress factors, known as polyex-
tremophiles. The term polyextremophiles was first coined by Rothschild and
Mancinelli (2001) to describe this group of micro-organisms. In comparison to
other types of microorganisms that will die or become dormant in harsh conditions,
extremophiles and polyextremophiles are able to grow with active metabolism in
the environmental harsh conditions, as they have application in such environments.
Different types of polyextremophiles are adopted to different combinations of
environmental extremes i.e. high temperature and low pH, high temperature and
high pH, high temperature and high pressure, low temperature and low pressure and
high salt concentration and high pH. The chemolithotrophic archaum Sulfolobus
acidocaldarius can easily flourish at 75 °C at pH 2–3, thus showing adaptation to
grow in high temperature and low pH (Reysenbach et al. 2006). The archaum
Thermococcus alcaliphilus, which is able to grow at 90 °C and at pH 10.5, was first
isolated from shallow marine hydrothermal springs (Keller et al., 1995). Thermo-
coccus barophilus, which flourishes at 100 °C and needs 15–17.5 MPa at the
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highest temperature, is an example of polyextremophiles at high temperature and
high pressure extremes (Marteinsson et al., 1999). Most of deep sea bacteria are
adapted to low temperature (2–4 °C) and high pressure (50–110 MPa) as polyex-
tremophiles. Soda lakes are the source of haloalkaliphilic microorganisms like
Natronobacterium gregoryi which can thrive in high pH and high salt concentra-
tions (Tindall et al. 1984). These are some examples of poly environmental
extremes which were explored for polyextremophilic life. Culture independent
methods revealed microbial life in the environmental extremes wherein we don’t
have expectation of life (Antunes et al. 2011; Stock et al. 2012). This helps us to
understand the true shape of habitable space on earth.

We are indirectly benefitted by extremophilic and polyextremophilic microor-
ganisms which are used in biotechnology and bioremediation (Rothschild and
Manicelli 2001). Many of industrial wastes have harsh conditions which make
extremophiles and polyextremophiles a good choice for their treatment before
releasing them into the environment. Understanding the physical, geochemical and
biological limits of life is an emerging biotechnological interest in view of appli-
cations of extremophiles, polyextremophiles and their biomolecules in industrial
processes and waste treatments (Podar and Reysenbach 2006; Taylor et al. 2012).

Textile colored effluent is one of the complex industrial effluents wherein
microorganisms, which are used for their decolorization, are subjected to a harsh
condition due to the high salinity, alkaline pH and high temperature of the effluents
(McMullan et al. 2001; Kandelbauer and Guebitz 2005). Extremophilic microor-
ganisms, which are naturally adapted to this harsh condition, are a perfect choice for
treatment of the wastewaters. As these effluents have a combination of environ-
mental extremes, polyextremophilic microorganisms attracted the attention of sci-
entists and became the subject of scientific scrutiny for finding new highly capable
microorganisms for textile colored wastewater treatment.

There are some examples of polyextremophilic microorganisms which have
been able to decolorize textile wastewaters. Four fungal strains, isolated from
environmental samples, were assayed for their ability for Brown GR dye decol-
orization. These strains belonged to the genus Aspergillus which showed the
highest decolorization efficiency at pH 4 and 2 % (w/v) NaCl concentration (Singh
et al. 2013).

A moderately halophilic and alkalitolerant bacterium was isolated from the salty
effluents of textile industries in central Iran with remarkable azo dyes decolorizing
ability over wide ranges of pH (7–11) and temperature (25–45°C), in presence of
NaCl and Na2SO4 (0.5–1.5 M) under both anaerobic and aerobic conditions
(Fig. 2). According to 16S rDNA sequence similarity analysis, this strain belonged
to the genus Halomonas with the highest similarity to Halomonas axialensis
(Pourbabaee et al. 2011).

Bacillus sp. strain SF was isolated from wastewater drain of textile finishing
company and showed growth at pH 9.3–10 and 60–65 °C temperature. This
alkali-thermophilic microorganism has the ability of azo dye decolorization. An
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NADH-dependent azoreductase was found to be responsible for the decolorization
of azo dyes, showing optimum range of 8 to 9, and the temperature 80 °C for
maximum activity (Paar et al. 2001; Maier et al. 2004).

8 Conclusion

Proper decolorization of colored wastewater effluents of textile industries is a major
environmental concern. Amongst different chemical, physical and biological
treatment methods, the biotechnological approaches based on microorganisms, are
the most effective and environmental friendly methods. Different strains of
microorganisms have shown the ability of textile dye decolorization. One of the
most important factors, which have a great impact on the setting of a proper
bioremediation plant for textile wastewater, is the effluent characteristics, high
salinity, temperature and alkalinity. Extremophilic microorganisms and their bio-
active molecules have been found to have a great potential for treatment of textile
wastewaters. Most of researches concerning extremophilic microorganisms for
bioremediation of textile waste waters have focused on their ability in decolor-
ization, but their final products haven’t been examined properly. Finding the
microbial enzymes and genes responsible for decolorization in extremophilic
microorganisms and using them for bioremediation is a future perspective.

T1         T2                T3             T4         T5         T6

Fig. 2 Microbial decolorization of textile dyes by Halomonas sp. strain IP8. From left to right
tube T1 contains decolorization medium with remazol black B without inoculums and T2 tube is
the same medium after decolorization with Halomonas sp. strain IP8; tube T3 contains
decolorization medium with remazol black GF without inoculums and T4 tube is the same medium
after decolorization with Halomonas sp. strain IP8 and T5 tube contains Cibacron Red 6B and T6
tube shows decolorization of dye by Halomonas sp. strain IP8
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