
Expectation Invariants for Probabilistic Program Loops
as Fixed Points

Aleksandar Chakarov and Sriram Sankaranarayanan

Department of Computer Science
University of Colorado, Boulder, CO

{firstname.lastname}@colorado.edu

Abstract. We present static analyses for probabilistic loops using expectation
invariants. Probabilistic loops are imperative while-loops augmented with calls
to random variable generators. Whereas, traditional program analysis uses Floyd-
Hoare style invariants to over-approximate the set of reachable states, our
approach synthesizes invariant inequalities involving the expected values of pro-
gram expressions at the loop head. We first define the notion of expectation invari-
ants, and demonstrate their usefulness in analyzing probabilistic program loops.
Next, we present the set of expectation invariants for a loop as a fixed point of the
pre-expectation operator over sets of program expressions. Finally, we use exist-
ing concepts from abstract interpretation theory to present an iterative analysis
that synthesizes expectation invariants for probabilistic program loops. We show
how the standard polyhedral abstract domain can be used to synthesize expecta-
tion invariants for probabilistic programs, and demonstrate the usefulness of our
approach on some examples of probabilistic program loops.

1 Introduction

Inductive loop invariants are commonly used in program verification to prove proper-
ties of loops in (non-deterministic) programs. Abstract interpretation provides a power-
ful framework to synthesize inductive invariants automatically from the given program
text [7]. In this paper, we provide a static analysis framework for probabilistic loops
that can call random number generators to sample from pre-specified distributions such
as Bernoulli, uniform and normal. Probabilistic programs arise in a variety of domains
ranging from biological systems [16] to randomized algorithms [21]. In this paper, we
present an abstract interpretation framework for deriving expectation invariants of prob-
abilistic loops. Expectation invariants are expressions whose expectations at any given
iteration of the loop exist, and are always non-negative.

Proving expectation invariants often requires approximating the distribution of states
after n steps of loop execution (see [2,18,20,9,15] for techniques that approximate dis-
tributions in a sound manner). However, even simple programs, such as the program
shown in Figure 1, can exhibit complex distributions of reachable states after just a few
steps of loop execution (see Figure 2). Extrapolating from a few to arbitrarily many loop
iterations requires the notion of “inductive invariants” for probabilistic programs. In this
paper, we build upon the standard notion of quantitative invariants originally consid-
ered by McIver and Morgan [17]. First we extend quantitative invariants from single
expressions to a set of expressions that are mutually invariant: multiple expressions

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 85–100, 2014.
c© Springer International Publishing Switzerland 2014

86 A. Chakarov and S. Sankaranarayanan

whose expectations are nonnegative simultaneously. Next, we characterize invariants as
a fixed point, making them amenable to automatic approximation using abstract inter-
pretation. We demonstrate polyhedral analysis over numerical probabilistic programs
that manipulate real- and integer-valued state variables.

Our approach first defines the notion of inductive invariants using the pre-expectation
operator, along the lines of McIver and Morgan [17]. We lift the pre-expectation oper-
ator to a cone of expressions, and subsequently construct a monotone operator over
finitely generated cones. Any pre-fixed point of this monotone operator is shown to cor-
respond to expectation invariants. We then use the descending abstract Kleene iteration
starting from the cone � of all affine (or fixed degree polynomial expressions) to iter-
atively apply the monotone operator to this cone and obtain a pre-fixed point. A (dual)
widening operator is used to accelerate this process.

We apply our technique to some small but complex examples of probabilistic pro-
grams and demonstrate the power of our approach to synthesize expectation invariants
that are otherwise hard to realize manually. We also compare our approach with the tool
PRINSYS that synthesizes quantitative invariants using a constraint-based approach by
solving constraints on the unknown coefficients of a template invariant form [13,11].

Related Work. The broader area of probabilistic program analysis has seen much
progress over the recent past. Our previous work combining symbolic execution of
probabilistic programs with volume computation, provides an extensive review of ap-
proaches in this area [22]. Therefore, we restrict ourselves to very closely related works.

McIver and Morgan were among the first to consider deductive approaches for prob-
abilistic programs using the concept of quantitative invariants [17]. Their work focuses
on programs where the stochastic inputs are restricted to discrete distributions over a
finite set of support. We naturally lift this restriction to consider a richer class of dis-
tributions in this paper including Gaussian, Poisson, Uniform or Exponential random
variables. Our setup can use any distributions whose expectations (and some higher
moments) exist, and are available. Furthermore, our technique synthesizes invariants
that are polynomial expressions involving the program variables. In particular, indica-
tor functions over program assertions are not considered in this paper [13,17]. Indicator
functions complicate the computation of the pre-expectation when a richer class of dis-
tributions are allowed. Finally, McIver & Morgan treat demonic non-deterministic as
well as stochastic inputs. Our approach, currently, does not support (demonic) non-
determinism; but is potentially extensible when demonic non-determinism is present.
Our previous work [3] first considered the relationship between quantitative invariants
and the well-known concept of martingales and super-martingales from probability the-
ory [24]. In particular, it demonstrates the use of concentration of measure inequalities
to prove probability bounds on assertions at various points in the program [10]. The
notion of inductive expectation invariants is a strict generalization of that considered
in our previous work. While martingales and super-martingales are analogous to a sin-
gle inductive linear inequality, we consider the analog of multiple mutually inductive
linear invariants. The use of abstract interpretation framework is an additional contri-
bution. The generation of quantitative invariants was first studied by Katoen et al. [13],
using a constraint-based approach [6,23], implemented in the tool PRINSYS [11]. An
experimental comparison is provided in Section 5.

Expectation Invariants for Probabilistic Program Loops 87

real x := rand(-5,3)
real y := rand(-3,5)
int count := 0
while (x+y <= 10)

if flip(3/4)
x := x + rand(0,2)
y := y + 2

count++

real x := rand(-5,3)
real y := rand(-3,5)
int count := 0
while (forever)

if (x + y <= 10)
if flip(3/4)

x := x + rand(0,2)
y := y + 2

count++
else

// Preserve x,y,count

Fig. 1. (Left) Simple example of a probabilistic program loop, (Middle) Modified loop with
stuttering semantics, and (Right) histogram of the value of count after executing the stuttering
loop for at most 25 steps.

Abstract domains for probabilistic programs were first considered by Monniaux [18],
by enriching standard abstract domains with bounds on the measure. Refinements of
this idea appear in the work of Mardziel et al [15] and Bouissou et al. [2]. Instead of
the explicit representations of distributions found in these works, we characterize sets
of distributions by means of bounds on moments of expressions. Alternatively, Mon-
niaux presents a backward abstract interpretation scheme to compute the probability
of an observable assertion at the program output, and characterize the output distribu-
tion [19]. The backwards approach treats the program as a measurable function, and the
backward abstract interpretation follows the natural definition of the output distribu-
tion through the inverse mapping [5]. However, the approach seemingly requires a user
generated query or a systematic gridding of the output states to define the distribution.
Cousot and Monerau [9] present a systematic and general abstract semantics for proba-
bilistic programs that views the abstract probabilistic semantics obtained by separately
considering abstractions of the program semantics, the probability (event) space, and a
“law abstraction” that is a function mapping abstract states to the distribution over the
set of possible abstract next states obtained from a single step of program execution.
Their approach conveniently captures existing techniques as instances of their frame-
work, while providing new ways of abstracting probabilistic program semantics. Based
on our current understanding, the approach in this paper fits into their framework by
viewing expectation invariants as representing sets of distributions, and the proposed
transfer functions as law abstractions that characterize next state distributions.

Example 1. Figure 1 shows a simple probabilistic program written in an imperative lan-
guage. Each execution of the loop updates variables x,y with probability 3

4 or chooses
to leave them unchanged with probability 1

4 . The variable count acts as a loop counter.
Our approach first rewrites the program to yield a stuttering loop (see Fig. 1(Middle)).
Analyzing the stuttering loop yields expectation invariants such as

(∀ n ∈ N) E(count | n) ≤ 56

9
.

Here, n refers to the number of iterations of the stuttered loop and E(count | n) is the
expected value of count over the distribution of reachable states after n ∈ N iterations.

88 A. Chakarov and S. Sankaranarayanan

We ask a natural followup question: what is the expected number of steps the pro-
gram takes to complete execution, i.e. what is the value E(count) upon termination of
the original program? A simple dynamic approach is to simulate (execute) the program
a large number of times and obtain an empirical estimate for E(count). Figure 1(Right)
presents the simulation results in the form of a histogram.

Here, we propose a static analysis approach whose goal is to establish facts about the
behavior of the program. For one, we can conclude that the original program terminates
almost surely since the E(count | n) is shown to be finite for all n. Knowing that count
is always nonnegative, we can now apply Markov’s concentration of measure inequal-
ity [5,10] to conclude bounds on the probabilities of the value of count at any program
step: P(count ≥ 25 | n) ≤ E(count | n)

25 ≤ 56
175 ≈ 0.32. Often, we can use much stronger

inequalities, should the necessary conditions for these be met. In addition, our analysis
yields many other interesting results, for instance: ∀ n ∈ N, E(3count − 2y + 2 | n) =
0 and E(4x + 4y − 9count | n) = 0.

Outline. The remainder of this paper is organized as follows: Section 2 introduces the
preliminaries of probabilistic programs before we extend the discussion to expectation
invariants and cones in Section 3. Section 4 presents an abstract interpretation based
iterative approach to compute fixed points under the pre-expectation operator. Section 5
is a summary of the experiments we conducted using our prototype version of the tool
and a comparison with the PRINSYS tool. Proofs of our main results and details of our
probabilistic benchmarks have been provided in an extended version [4].

2 Preliminaries

Probabilistic Programs. Let P be a probabilistic program in an imperative language
with random number generators including unifInt(lb, ub), unifReal(lb,
ub), and gaussian(mean, var). These constructs draw values from standard dis-
tributions with well-defined, finite expected values. Let X = {x1, . . . , xm} be a set of
real-valued program variables and R = {r1, . . . , rl} be a set of real-valued random
variables. Vectors x and r denote valuations of all program, respectively random, vari-
ables. The random variables have a joint distribution DR. Formally, the distribution is
defined over an underlying σ-algebra (Ω,F) with an appropriate measure μr.

A linear inequality over X is an expression of the form aT x ≤ b for a vector a ∈
R

m, b ∈ R. A linear assertion ϕ[X] involving X is a conjunction of linear inequalities
ϕ :

∧n
i=1 a

T

i x ≤ bi and can be succinctly expressed in matrix notation as ϕ : Ax ≤ b.

Definition 1 (Probabilistic Loops). A probabilistic loop is a tuple 〈T ,D0, n〉, wherein
T : {τ1, . . . , τk} is a set of probabilistic transitions (from the loop head to itself), D0 is
the initial probability distribution and n is a formal loop counter variable.

Each probabilistic transition τi : 〈gi,Fi〉 consists of (a) guard assertion gi[X] over
X; and (b) update function Fi(x, r) that yields the next state x′ := Fi(x, r).

In this paper, we restrict ourselves to piecewise linear (PWL) probabilistic programs,
wherein each transition τi has linear assertion guards and piecewise linear updates.
Further, we also restrict ourselves to studying expectation invariants over simple loops.

Expectation Invariants for Probabilistic Program Loops 89

An extension of these ideas to programs with arbitrary control flow structure including
nested loops will be discussed in our extended version [4].

Definition 2 (PWL Transitions). A piecewise linear transition τ : 〈g,F(x, r)〉 has
the following special structure:

– g is a linear guard assertion over X;
– F(x, r) is a (continuous) piecewise linear update function for X , where, for ease

of presentation, r is decomposed into a vector of continuous (random) choices rc

and a vector of discrete Bernoulli choices (coin flips) rb. As a result, the update
function may be written as

F (x, r) =

⎧
⎪⎪⎨

⎪⎪⎩

f1 : A1x+B1rc + d1, with probability p1,
...

fk : Akx+ Bkrc + dk, with probability pk,

Options f1, . . . , fk, abstract the effect of the Bernoulli choices in rb, and are called
forks, while p1, . . . , pk are fork probabilities satisfying 0 < pi ≤ 1, and

∑k
i=1 pi =

1. A1, . . . , Ak ∈ R
m×m, B1, . . . , Bk ∈ R

m×l, and d1, . . . , dk ∈ R.

No Nondeterminism. For a probabilistic loop 〈T ,D0, n〉, we preclude demonic non-
determinism using two restrictions:

Mutual Exclusion: For all pairs τ1 : 〈g1,F1〉 and τ2 : 〈g2,F2〉 in T , g1∧g2 ≡ false.
Exhaustiveness: For all transitions τi,

∨
τi∈T gi ≡ true.

Mutual exclusion and mutual exhaustiveness together guarantee that precisely one tran-
sition can be taken at a time step n and the choice is a function of the state x.

Execution Model. A state of the probabilistic loop is a tuple 〈x, n〉 that provides values
for the program variables X and the loop counter n. The state 〈x0, 0〉 is called an initial
state if x0 is a sample drawn from the initial distribution D0 and n = 0.

Definition 3 (Sample Path). A sample path (or an execution) of the loop is an infinite

sequence (x0, 0)
τ (0),r0−−−−→ (x1, 1)

τ (1),r1−−−−→ (x2, 2) → · · · τ (n−1),rn−1−−−−−−−−→ (xn, n) → · · · ,
wherein, (a) (x0, 0) is a sample from D0 and (b) for each i ≥ 0, (xi+1, i + 1) is
obtained by executing the unique transition τ (i) : (gi,Fi) that is enabled on the state
(xi, i). This execution involves a sample from the Bernoulli (discrete) random variables
to choose a fork of the transition τ (i) and a choice of the continuous random variables
rc to obtain xi+1 = Fi(xi, ri).

We demonstrate the definitions above on a simple example.

Example 2. In Figure 1 (Middle) we present the stuttering version of a simple proba-
bilistic program with a loop, where the initial values of the program variables reaching
the loop head come from the joint distributionD0 : 〈x, y, count〉 ∼ U [−5, 3]×U [−3, 5]×
{0}. This modification adds a new program path that preserves the values of program
variables once the loop guard x + y ≤ 10 is violated. The program has two transitions
T : {τ1, τ2}, where τ1 represents the loop body:

90 A. Chakarov and S. Sankaranarayanan

Fig. 2. (Left) Some sample paths for the program in Figure 1. (Right) Frequency histograms for
the distributions Dn for n = 0, 25.

τ1 (loop body) τ2 (stuttering)
g1 : (x+ y ≤ 10)

Fτ1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 :

⎡

⎢
⎣

x’ �→ x + r1,

y’ �→ y + 2,

count’ �→ count + 1,

⎤

⎥
⎦ w.p. 3

4

f2 :

⎡

⎢
⎣

x’ �→ x,

y’ �→ y,

count’ �→ count + 1,

⎤

⎥
⎦ w.p. 1

4

g2 : (x+ y > 10)

Fτ2 :

⎧
⎨

⎩

x’ �→ x,
y’ �→ y,
count’ �→ count,

Here r1 represents the uniform random variable over [0, 2]. Transition τ2 represents
the stuttering after x + y > 10. It is added to satisfy the mutual exclusiveness and
exhaustiveness requirements. It has a single fork that preserves the values of x, y, count.
Figure 2 depicts 200 sample paths obtained by simulating the program (for 25 steps)
and distributions Dn for n = 0 and n = 25 obtained by running the program 106 times.

Operator Semantics: Probabilistic program semantics can be thought of as continu-
ous linear operators over over the state distributions, starting from the initial distribution

D0: D0
�P�−−→ D1

�P�−−→ · · · �P�−−→ Dn
�P�−−→ · · · . Here �P� models the effect of a single

loop iteration and Dn is the distribution of the states after n iterations of the loop. This
matches the standard probabilistic program semantics [14,19]. The definition of Dn and
�P� are described in the extended version [4].

Pre-Expectations. We now define the useful concept of pre-expectation of an expres-
sion e over the program variables across a transition τ following earlier work by McIver
and Morgan [17]. Let τ : 〈g,F〉 be a transition and e[x] be an expression involving the
state variables x of the program.

Expectation Invariants for Probabilistic Program Loops 91

The pre-expectation operator preEτ is an expression transformer that associates
each expression e with the next-step expectation expression preEτ (e[x

′]) across τ ,
in terms of the current state variables of the program. Formally,

preEτ (e[x
′]) : �R(e[x

′ �→ F(x, r)] | x)

The expectation�R is taken over the distribution of r in the transition τ .
Consider a PWL transition τ with k > 0 forks, f1, . . . , fk, each of the form fj :

Ajx+Bjr + dj with fork probability pj . The pre-expectation operator is defined as

preEτ (e
′) =

k∑

j=1

pjER(PRE(e′, fj) | x)

where PRE(e′, fj) is the substitution of post variables x′ for their update values fj(x, r)
in expression e. The expectation ER(g) denotes the expectation of g over the joint
distribution R of the random variables.

Example 3. We illustrate the notion of a pre-expectation of a program expression by
considering the expression 3 + 2x − y across transition τ1 in the Figure 1.

preEτ1(3 + 2x′ − y′) :

(
3
4 [3 + 2�r1(x+ r1)− (y + 2)] + // from fork f1
1
4 [3 + 2x− y] // from fork f2

)

.

Simplifying, we obtain preEτ1(3 + 2x′ − y′) = 3 + 2x − y + 3
2�r1(r1) − 3

2 . Noting
that �r1(r1) = 1, we obtain preEτ1(3 + 2x′ − y′) = 3 + 2x − y.

Likewise, we define preE(e′) (without a transition as a subscript) as

�gτ1
× preEτ1(e

′) + · · ·+ �gτk
× preEτk(e

′) ,

wherein �g(x) is the indicator function: �g(x) = 1 if x |= g(x), and 0, otherwise.
We now state a key result involving pre-expectations. Consider a prefix σ of a sam-

ple execution (x0, 0) → (x1, 1) → · · · → (xn, n). Given that the current state is
(xn, n), we wish to find out the expectation of an expression e over the distribution of
all possible next states (xn+1, n+ 1). Let ê : preE(e′).

Lemma 1. The expected value of e over the post-state distribution starting from state
(xn, n) is the value of the pre-expectation ê evaluated over the current state xn:

�(e(xn+1)|xn, n) = ê(xn) =
∑

τi∈T
�gi(xn)preEτi(e

′) .

Finally, we extend Lemma 1 to the full distribution Dn from which xn is drawn.

Lemma 2. The expected value of e over the post-state distribution Dn+1 given a dis-
tribution Dn for the current state valuations xn satisfies:

EDn+1(e(xn+1))=EDn(preE(e)(xn))=EDn [ê] = EDn

[
∑

τi∈T
�gi(xn)preEτi(e

′)

]

.

92 A. Chakarov and S. Sankaranarayanan

3 Expectation Invariants

Expectation invariants are invariant inequalities on the expected value of program ex-
pressions. Therefore, one could view the set of possible state distributions Di at step i
as the concrete domain over which our analysis operates to produce the abstract facts
in the form of expectation invariants over these distributions. We formalize expectation
invariants and derive a fixed point characterization of expectation invariants.

3.1 Definitions and Examples

Let P : 〈T ,D0, n〉 be a probabilistic loop and let 〈x0, 0〉 be the initial state of the
system. From Section 2 we know that x0 is drawn from an initial distribution D0 and
that any n-step sample execution of P defines a sample trajectory through the distribu-
tions of reachable states D0, . . . ,Dn at step i for any 0 ≤ i ≤ n. We then define the
expectation of a program expression e at time step n as E(e(xn) | n) = EDn(e(xn)).

Definition 4 (Expectation Invariants). An e over the program variables X is called
an expectation invariant (EI) iff for all n ≥ 0, E(e | n) ≥ 0.

Thus, expectation invariants are program expressions whose expectations over the ini-
tial distribution are non-negative, and under any number of iterations of the probabilistic
loop remain non-negative.

Example 4. Consider the program from Example 1, and the expression y − x. Initially,
E(y − x | 0) = ED0(y − x) = 1 − (−1) = 2 ≥ 0. We can show that E(y − x | i) =
E(y | i)− E(x | i) ≥ 0 at any step i. Therefore, y − x is an expectation invariant.

The concept of expectation invariant defined here is closely related to that of martin-
gales studied in our earlier work [3]. The importance of expectation invariants is that a
set of “inductive” EI is a set of mutually inductive constraints over state distributions.
This allows the analysis to track and transfer sufficient amount of information about the
distributions across loop iterations without ever having to explicitly construct these.

Proving EI. We now focus on the question of proving that a given expression e over
the program variables is an expectation invariant. This requires constructing (approxi-
mations) to the distribution Dn for each n, or alternatively, an argument based on math-
ematical induction. We first observe an important property of each Dn.

Definition 5 (Admissible Distribution). We say that a distribution D over the state-
space X is admissible if all moments exist.1 In other words, for any polynomial p(x)
over the program variables, ED(p(x)) exists, and is finite.

Let us assume that any program P which we attempt to analyze is such that

1 While the existence of only the first moment suffices, our experiments demonstrate that our
current synthesis approach can be extended to polynomial expectation invariants.

Expectation Invariants for Probabilistic Program Loops 93

1. D0, the initial state distribution, is admissible;
2. For each transition τ , the distribution of the random variables DR is admissible.

Under these assumptions and following the linearity of the statements and the guards
in the program, we can show the following fact.

Lemma 3. For all n ∈ N, the distribution Dn is admissible.

Rather than construct Dn explicitly for each n (which quickly becomes impractical),
we formulate the principle of inductive expectation invariants. Consider expressions
E = {e1, . . . , em} wherein each ei is a linear (or polynomial) expression involving the
program variables.

Definition 6 (Inductive Expectation Invariants). The set E of expressions forms an
inductive expectation invariant of the program P iff for each ej , j ∈ [1,m],

1. ED0(ej) ≥ 0, i.e., the expectation at the initial step is non-negative.
2. For every admissible distribution D over the state-space X ,

(ED(e1) ≥ 0 ∧ · · · ∧ ED(em) ≥ 0) |= ED(preE(ej)) ≥ 0 . (1)

The inductive expectation invariant principle stated above follows the standard Floyd-
Hoare approach of “abstracting away” the distribution at the nth step by the inductive
invariant itself, and using these to show that the invariant continues to hold for one more
step. Furthermore, it abstracts away from a specific Dn to any admissible distribution
D. However, Def. 6 is quite unwieldy, in practice, since the quantification over all pos-
sible admissible distributions D over the state space X is a higher order quantifier (over
probability spaces and measurable functions). Rather than reason with this quantifier,
we will use the following facts about expectations to formulate a new principle:

Theorem 1 (Facts About Expectations over Admissible Distributions). The follow-
ing hold over all possible admissible distributions D over a σ-algebra X , linear asser-
tion ϕ, and linear (or polynomial expressions) e, e1, . . . , ek:

1. Linearity of expectation: ED(λ1e1 + . . .+ λkek) = λ1ED(e1) + · · ·+ λkED(ek),
for λi ∈ R.

2. Indicator Functions: ED(�e≥0 × e) ≥ 0, and in general, if ϕ |= e ≥ 0 then
ED(�ϕ × e) ≥ 0, provided �ϕ� is measurable.

3. ED(�ϕe+ �¬ϕe) = ED(e), provided �ϕ� is measurable.

Using these facts as “axioms”, we attempt to reformulate the key step 2 of Def. 6
as a simple quantified statement in (first-order) linear arithmetic. Consider, once again,
the key statement of the principle (1). The central idea of our approach is to express the
pre-expectation preE(ej) for each ej ∈ E as

preE(ej) =
m∑

i=1

λj,iei +
∑

p

μj,p (�ϕp × gp) , (2)

wherein λj,i ≥ 0 and μj,p ≥ 0 are real-valued multipliers, gp are linear expressions
over the program variables and ϕp are assertions such that ϕp |= gp ≥ 0. The origin of
the expressions gp and assertions ϕp will be made clear, shortly. Let us fix a finite set
of expressions E = {e1, . . . , em}.

94 A. Chakarov and S. Sankaranarayanan

Lemma 4. If E satisfies the relaxed induction principle (2) then E satisfies the original
induction principle (1).

3.2 Conic Inductive Expectation Invariants

We now formalize this intuition using the concept of conic inductive expectation invari-
ants. Let P be a program with transitions T . Let gi be a linear assertion representing
the guard of the transition τi. We express gi as

∧ni

j=1 gi,j ≥ 0, wherein gi,j are affine
program expressions. Let gi : (gi,1 . . . gi,ni)

T be a vector representing gi. Likewise,
let E = {e1, . . . , em} be a finite set of expressions, we denote the vector of expressions
as e : (e1, . . . , em)T .

Definition 7 (Conic Inductive Expectation Invariants). The finite set E is a conic
inductive invariant of the program P iff for each ej ∈ E,

1. Initial Condition: ED0(ej) ≥ 0

2. Induction Step: There exists a vector of multipliers λj ≥ 0, such that for each
transition τl : (gl,Fl), preEτl(ej) can be expressed as a conic combination of
expressions in E and the expressions in gl:

(∃ λj ≥ 0) (∀ τl ∈ T) (∃ μl ≥ 0) preEτl(ej) = λT
j e+ μl

Tgl . (3)

In particular, we note that the order of quantification in Eq. (3) is quite important. We
note for a given expression ej the multipliers λj must stay the same across all the transi-
tions τl ∈ T . This will ensure the applicability of the linearity of expectation. Changing
the order of quantification makes the rule unsound, as discussed in the extended version
of the paper[4].

Example 5. The set E = {e1 : y − 2x, e2 : 2x − y + 3, e3 : 4x − 3count + 4, e4 :
−2x+ y− 3, e5 : −4x+3count− 4} is a conic inductive invariant for the program in
Example 1. Consider e1 : y − 2x. We have

preEτ1(e1) : Er1

(
3

4
(y + 2− 2x − 2r1) +

1

4
(y − 2x)

)

= y − 2x.

Likewise, preEτ2(e1) : e1, since τ2 is a stuttering transition.
Therefore, setting λ : (1 0 0 0 0)T , we obtain preE(e1) : λTe+ 0 × �x+y≤10 . For

a non-trivial example, see the extended version of the paper [4].

Theorem 2. Let E be a conic inductive invariant for a program P as given by Defini-
tion 7. It follows that each ej ∈ E is an expectation invariant of the program.

Thus far, we have presented inductive expectation invariants as a finite set of expres-
sions E = {e1, . . . , em}, satisfying the conditions in Definitions 6 or 7. We transfer our
notion from a finite set of expressions to a finitely generated cone of these in preparation
for our fixed point characterization given in the next section.

Expectation Invariants for Probabilistic Program Loops 95

Definition 8 (Cones). Let E = {e1, . . . , ek} be a finite set of program expressions over
the program variables x. The set of conic combinations (the cone) of E is defined as

Cone(E) =

{

λ0 +

k∑

i=1

λiei | 0 ≤ λi, 0 ≤ i ≤ k

}

.

Expressions ei are called the generators of the cone.

Given a non-empty linear assertion assertion ϕ :
∧k

i=1 ei ≥ 0, it is well-known that
ϕ |= e ≥ 0 iff e ∈ Cone(e1, . . . , ek). Likewise, let E be an inductive expectation
invariant. It follows that any e ∈ Cone(E) is an expectation invariant of the program P .

Example 6. Revisiting Example 5, we consider the conic combination:

4(−2x + y − 3) + 3(4x − 3count + 4) = 4x + 4y − 9count

As a result, we conclude that EDn(4x + 4y − 9count) ≥ 0 at each step n ≥ 0.
Analyzing the program by replacing the probabilistic statements with non-

deterministic choice, and performing polyhedral abstract interpretation yields the in-
variant x + y ≤ 14 [8]. This allows us to bound the set of support for Dn, and also
allows us to conclude that EDn(14− x − y) ≥ 0. Combining these facts, we obtain,

EDn(56− 9count) ≥ 0, or equivalently, EDn(count) ≤ 56

9
.

4 Expectation Invariants as Fixed Points

In this section, we show that the notion of conic invariants as presented in Definition 7
can be expressed as a (pre-) fixed point of a monotone operator over finitely gener-
ated cones representing sets of expressions. This naturally allows us to use abstract
interpretation starting from the cone representing all expressions (�) and performing a
downward Kleene iteration until convergence. We use a (dualized) widening operator
to ensure fast convergence to fixed point in finitely many iterations.

Let P be a program over variables x with transitions T : {τ1, . . . , τk} and initial
distribution D0. For simplicity, we describe our approach to generate affine expressions
of the form c0 + cTx for c0 ∈ R, c ∈ R

n. Let A(x) represent the set of all affine
expressions over x.

Polyhedral Cones of Expectation Invariant Candidates: Our approach uses finitely
generated cones I : Cone(E) where E = {e1, . . . , em} is a finite set of affine expres-
sions over x. Each element e ∈ I represents a candidate expectation invariant. Once a
(pre-) fixed point is found by our technique, we obtain a cone I∗ : Cone(E∗), wherein
E∗ will be shown to be a conic inductive invariant according to Definition 7.

A finitely generated cone of affine expressions I : Cone(E) is represented by a
polyhedral cone of its coefficients C(I) : {(c0, c) | c0 + cTx ∈ I}. The generators of
C(I) are coefficient vectors (c0,i, ci) representing the expression ei : c0,i + cTi x.

Our analysis operates on the lattice of polyhedral cone representations, CONES, or-
dered by the set theoretic inclusion operator ⊆. This is, in fact, dual to the polyhedral
domain, originally proposed by Cousot & Halbwachs [8].

96 A. Chakarov and S. Sankaranarayanan

Initial Cone: For simplicity, we will assume that D0 is specified to us, and we are able
to compute ED0(x) precisely for each program variable. The initial cone I0 is given by

I0 : Cone ({x1 − ED0(x1),ED0(x1)− x1, · · · ,ED0(xn)− xn, xn − ED0(xn)}) .

Such a cone represents the invariant candidates xi = ED0(xi).

Pre-Expectation Operators: We now describe the parts of the monotone operator
over finitely generated cones. Let E = {e1, . . . , em} be a set of expressions. Let τ :
〈g,F〉 be a transition, wherein g :

∧p
l=1 gl ≥ 0. We first present a pre-expectation

operator over cones, lifting the notation preEτ from expressions to cones of such:

Definition 9 (Pre-Expectation Operator). The pre-expectation of a cone I : Cone(E)
w.r.t a transition τ is defined as:

preEτ (I) = {(e,λ) ∈ A(x)×R
m | λ ≥ 0 ∧ ∃ μ ≥ 0 (preEτ (e) ≡

m∑

j=1

λjej +

p∑

i=1

μigi) }.

The refinement preEτ (I) of a cone contains all affine program expressions whose pre-
expectation belongs to the conic hull of I and the cone generated by the guard asser-
tion. For technical reasons, we attach to each expression a certificate λ that shows its
membership back in the cone. This can be seen as a way to ensure the proper order of
quantification in Definition 7.

Given a polyhedron C(I) representing I , we can show that C(preEτ (I)) is a poly-
hedral cone over the variables (c0, c) representing the expression coefficients and λ for
the multipliers. Our extended version [4] presents in detail the steps for computing the
pre-expectation of a cone as well as the fixpoint computation across multiple transitions.

Next, we define a pre-expectation operator across all transitions:

preE(I) = {e ∈ A(x) | (∃ λ ≥ 0) (e,λ) ∈
k⋂

j=1

preEτj (I)}

An expression e belongs to preE(I) if for some λ ≥ 0, (e,λ) ∈ preEτj (I) for each
transition τj ∈ T .

Given a cone C(I), we first compute the cones C(Î1), . . . , C(Îk) representing the
pre-expectations across transitions τ1, . . . , τk, respectively. Next, we compute C(I ′) :

(∃ λ)
k⋂

j=1

C(Îj), representing I ′ : preE(I), by intersecting the cones C(Îj) and pro-

jecting the dimensions corresponding to λ.
We define the operator G over cones as G(I) : I0 ∩ preE(I), where I0 is the initial

cone.

Theorem 3. The operator G satisfies the following properties:

1. G is a monotone operator over the lattice CONES ordered by set-theoretic inclusion.
2. A finite set of affine expressions E is a conic inductive invariant (Def. 7) if and only

if I : Cone(E) is a pre-fixed point of G, i.e, I ⊆ G(I).

Expectation Invariants for Probabilistic Program Loops 97

Iteration over Polyhedral Cones: Our goal is to compute the greatest fixed point of G
representing the largest cone of expressions whose generators satisfy Definition 7. We
implement this by a downward Kleene iteration until we obtain a pre-fixed point, which
in the ideal case is also the greatest fixed point of G.

(J0 : A(x)) ⊇ (J1 : G(J0)) ⊇ · · · (Jk+1 : G(Jk)) · · · until convergence: Ji ⊆ Ji+1 .

However, the domain CONES has infinite descending chains and is not a complete lat-
tice. Therefore, the greatest fixed point cannot necessarily be found in finitely many
steps by the Kleene iteration. We resort to a dual widening operator �̃ to force conver-
gence of the downward iteration.

Definition 10 (Dual Widening). Let I1, I2 be two successive cone iterates, satisfying
I1 ⊇ I2. The operator �̃(I1, I2) is a dual widening operator if:

– �̃(I1, I2) ⊆ I1, �̃(I1, I2) ⊆ I2;
– For every infinite descending sequence J0 ⊇ G(J0) ⊇ G2(J0) ⊇ · · · , the widened

sequence J ′
0 = J0, J ′

n = J ′
n−1�̃Jn converges in finitely many steps.

A common strategy to compute an approximation of the greatest fixed point when
using dual widening is to delay widening for a fixed number K of iterations.

Example 7. Consider a simulation of a peg performing an unbounded random walk in
two dimensions (x, y). Starting at the origin, at every step the peg chooses uniformly
at random a direction {N, E, S, W} and a random step size r1 ∼ U [0, 2]. The program
2D-WALK tracks the steps (count) and the Manhattan distance (dist) to the origin.

The following table summarizes the result of the expectation invariant analysis:

Cone Generators Constraints Cone Generators Constraints

I0
1, −count, count,

c0 ≥ 0 I4
1, 4 − count, count, c0 + 4c4 ≥ 0,

x, −x, y, −y, dist, −dist, x, −x, y, −y, dist, −dist c0 ≥ 0

I1
1, 1− count, count, c0 + c4 ≥ 0,

I5
1, 5 − count, count, c0 + 4c4 ≥ 0,

x, −x, y, −y, dist, −dist c0 ≥ 0 x, −x, y, −y, dist, −dist c0 ≥ 0

I2
1, 2− count, count, c0 + 2c4 ≥ 0, .

.

.
.
.
.

.

.

.x, −x, y, −y, dist, −dist c0 ≥ 0

I3
1, 3− count, count, c0 + 3c4 ≥ 0,

I∞
1, count, c4 ≥ 0,

x, −x, y, −y, dist, −dist c0 ≥ 0 x, −x, y, −y, dist, −dist c0 ≥ 0

The table shows the value of expression count is unbounded from above. To force con-
vergence, we employ dual widening after a predefined number (K = 5) of iterations.

Definition 11 (Standard Dual Widening). Let I1 = Cone(g1, . . . , gk) and I2 =
Cone(h1, . . . , hl) be two finitely generated cones such that I1 ⊇ I2. The dual widening
operator I1�̃I2 is defined as I = Cone(gi | gi ∈ I2). Cone I is the cone generated by
the generators of I1 that are subsumed by I2.

Example 8. Returning to Example 7, we consider cone iterates I4, I5. In this case gen-
erator subsumption reduces to a simple containment check. Since generator 4− count
is not subsumed in I5, we arrive at I ′5 ≡ I4�̃I5 = Ĩ∗ = I∞.

Note 1. Alternatively, one can define dual widening as a widening operator [12,1] over
the dual polyhedron that the generators of I1, I2 give rise to. On the set of PWL loop
benchmarks our dual widening approach and those based on [12] and [1] produce iden-
tical fixed points where the difference in timings is not statistically significant.

98 A. Chakarov and S. Sankaranarayanan

Table 1. Summary of results: |X| is the number of program variables; |T | - transitions; # -
iterations to convergence; �̃ - use of dual widening. Lines (Rays) is the number of resultant
inductive expectation equalities (inequalities). Time is taken on a MacBook Pro (2.4 GHz) laptop
with 8 GB RAM, running MacOS X 10.9.1 (where ε = 0.05 sec).

Name Description |X| |T | Iters Fixpoint-gen
Time

�̃ Lines Rays
MOT-EXAMPLE Motivating Example of Figure 1 3 2 2 No 2 1 ≤ ε

MOT-EX-LOOP-INV Example 1 with added loop invariants 3 2 2 No 2 2 0.10
MOT-EX-POLY Ex. 1 generate poly constr (deg ≤ 2) 9 2 2 No 5 2 0.18
2D-WALK Random walk in 2 dimensions 4 4 7 Yes 3 1 ≤ ε

AGGREGATE-RV Accumulate RVs 3 2 2 No 2 0 ≤ ε

HARE-TURTLE Stochastic Hare-Turtle race 3 2 2 No 1 1 ≤ ε

COUPON5 Coupon Collector’s Problem (n = 5) 2 5 2 No 1 2 ≤ ε

FAIR-COIN-BIASED Simulating biased coin with fair coin 3 2 3 No 1 1 ≤ ε

HAWK-DOVE-FAIR Stochastic 2-player game (collaborate) 6 2 2 No 4 1 ≤ ε

HAWK-DOVE-BIAS Stochastic 2-player game (exploit) 6 2 2 No 3 1 ≤ ε

FAULTY-INCR Faulty incrementor 2 2 7 Yes 1 1 ≤ ε

5 Experimental Results and Future Work

We present the experimental results of our prototype implementation that relies on
PPL [1] for manipulating the polyhedral representations of cones. Table 1 presents the
summary of the experiments we conducted on a set of probabilistic benchmarks. In [4],
we present a description of these models and the expectation invariants obtained.

In all experiments we emphasize precision over computational effort. All examples
except MOT-EX-LOOP-INV and MOT-EX-POLY run in under ε = 0.05 seconds, so we
choose not to report these timing. Accordingly, dual widening �̃ delay was set suffi-
ciently large at K = 5 to only force finite convergence but not to speed up computa-
tion. Nevertheless, the iterations converge quite fast and in many cases without the use
of widening. Programs 2D-WALK and FAULTY-INCR require the widening (�̃) opera-
tor to ensure convergence. In all cases, line generators of the final pre-fixed point yield
expectation invariants like E(e) = 0 and rays yield the invariants E(e) ≥ 0.

Comparison with PRINSYS[11]. PRINSYS[11] implements the constraint-based
quantitative invariant synthesis approach developed by Katoen et al. [13]. The tool uses
a manually supplied template with unknown coefficients. The REDUCE computer al-
gebra system is used to perform quantifier elimination and simplify the constraints.
We applied PRINSYS with a linear template expression

∑
j cjxj for state variables xj

in the program. Our comparison was carried out over 6 benchmark examples that are
distributed with the tool. The comparison checked whether PRINSYS could discover
quantitative invariants discovered by our approach. From a total set of 28 inductive ex-
pectation invariants our tool generates, PRINSYS could generate 3 of them. This shows
that mutual inductive expectation invariants investigated in this paper are significant

Expectation Invariants for Probabilistic Program Loops 99

for probabilistic loops. Next, we attempted to check whether PRINSYS can discover
additional linear quantitative invariants not discovered by our approach due to the in-
completeness of widening. Unfortunately, this check turned out inconclusive at the time
of the experiment. The existing PRINSYS implementation automatically generates and
simplifies nonlinear constraints on the template coefficients. However, the process of
deriving an actual quantitative invariant requires manually extracting solutions from a
set of nonlinear inequalities. Our manual efforts failed to find new invariants unique to
the PRINSYS tool, but the overall comparison remains incomplete since we could not
arguably find all solutions manually. However, it is important to observe that PRINSYS
can generate invariants for templates that include indicator functions, while our tech-
nique does not. Similarly, PRINSYS handles nondeterminism in the programs, while
we do not. The full details of the comparison can be found in the extended version [4].

Ongoing/Future Work. In many of the benchmark examples presented, invariants
found using standard abstract interpretation by treating the stochastic choices as de-
monic nondeterminism help improve the quality of our expectation invariants. Going
further, we would like to combine classical abstract interpretation with the techniques
presented here to handle programs that mix non-deterministic and stochastic choices.
Finally, we demonstrate polynomial invariant synthesis in Example MOT-EX-POLY by
instrumenting monomials of fixed degree (deg ≤ 2) as fresh variables. Our analysis is
thus able to generate polynomial expectation invariants such as E(4x2−4xy+y2 | n) ≥
0, and E(4x2−4xy+y2−y+6 | n) = 0. A sound formalization of polynomial invariant
generation under relaxed independence conditions, and generalization of this approach
to higher-order moments are also part of our future work.

Acknowledgments. The authors thank the anonymous reviewers for their insightful
comments and Friedrich Gretz for helping us compare our work with PRINSYS. This
work was supported by US National Science Foundation (NSF) under award number
1320069. All opinions are those of the authors and not necessarily of the NSF.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foundations for
decision problems in separation logic with general inductive predicates. In: Muscholl, A.
(ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 411–425. Springer, Heidelberg (2014)

2. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to
affine arithmetic. Computing 94(2-4), 189–201 (2012)

3. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martingales. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526. Springer,
Heidelberg (2013)

4. Chakarov, A., Sankaranarayanan, S.: Expectation invaraiants for probabilistic program loops
as fixed points (2014) (extended version) (Draft, Available upon request)

5. Chung, K.L.: A course in probability theory, vol. 3. Academic Press, New York (1974)
6. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-

linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 420–432. Springer, Heidelberg (2003)

100 A. Chakarov and S. Sankaranarayanan

7. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: ACM Principles of Programming
Languages, pp. 238–252 (1977)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a
program. In: POPL 1978, pp. 84–97 (January 1978)

9. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) ESOP 2012.
LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012)

10. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press (2009)

11. Gretz, F., Katoen, J.-P., McIver, A.: Prinsys - on a quest for probabilistic loop invariants. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054,
pp. 193–208. Springer, Heidelberg (2013)

12. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. PhD thesis, Institut National Polytechnique de Grenoble-INPG (1979)

13. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant generation for
probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp.
390–406. Springer, Heidelberg (2010)

14. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981)
15. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of knowledge-based

security policies. In: 2011 IEEE 24th Computer Security Foundations Symposium (CSF),
pp. 114–128. IEEE (2011)

16. McAdams, H., Arkin, A.: It’s a noisy business! genetic regulation at the nanomolar scale.
Trends Genetics 15(2), 65–69 (1999)

17. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Mono-
graphs in Computer Science. Springer (2004)

18. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: SAS 2000. LNCS,
vol. 1824, pp. 322–340. Springer, Heidelberg (2000)

19. Monniaux, D.: Backwards abstract interpretation of probabilistic programs. In: Sands, D.
(ed.) ESOP 2001. LNCS, vol. 2028, pp. 367–382. Springer, Heidelberg (2001)

20. Monniaux, D.: Abstract interpretation of programs as markov decision processes. Science of
Computer Programming 58(1), 179–205 (2005)

21. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)
22. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs:

inferring whole program properties from finitely many paths. In: PLDI, pp. 447–458. ACM
(2013)

23. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analysis.
In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)

24. Williams, D.: Probability with Martingales. Cambridge University Press (1991)

	Expectation Invariants for Probabilistic Program Loops as Fixed Points
	1 Introduction
	2 Preliminaries
	3 Expectation Invariants
	3.1 Definitions and Examples
	3.2 Conic Inductive Expectation Invariants

	4 Expectation Invariants as Fixed Points
	5 Experimental Results and Future Work
	References

