
Markus Müller-Olm
Helmut Seidl (Eds.)

 123

21st International Symposium, SAS 2014
Munich, Germany, September 11–13, 2014
Proceedings

Static AnalysisLN
CS

 8
72

3
AR

Co
SS

Lecture Notes in Computer Science 8723
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Markus Müller-Olm Helmut Seidl (Eds.)

Static Analysis

21st International Symposium, SAS 2014
Munich, Germany, September 11-13, 2014
Proceedings

13

Volume Editors

Markus Müller-Olm
Westfälische Wilhelms-Universität Münster
Institut für Informatik, FB 10
Einsteinstr. 62
48149 Münster, Germany
E-mail: markus.mueller-olm@wwu.de

Helmut Seidl
Technische Universität München
Institut für Informatik, 12
Boltzmannstr. 3
85748 Garching, Germany
E-mail: seidl@in.tum.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10935-0 e-ISBN 978-3-319-10936-7
DOI 10.1007/978-3-319-10936-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946920

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Static analysis is increasingly recognized as a fundamental tool for program
verification, bug detection, compiler optimization, program understanding, and
software maintenance. The series of Static Analysis Symposia has served as the
primary venue for presentation of theoretical, practical, and application advances
in the area.

This volume contains the proceedings of the 21st International Static Analysis
Symposium, SAS 2014, which was held during September 11–13 in Munich, Ger-
many. Previous symposia were held in Seattle, Deauville, Venice, Perpignan, Los
Angeles, Valencia, Kongens Lyngby, Seoul, London, Verona, San Diego, Madrid,
Paris, Santa Barbara, Pisa, Aachen, Glasgow, and Namur. Three workshops were
affiliated with SAS 2014 that took place in parallel on September 10: the 6th
Workshop on Numerical and Symbolic Abstract Domains (NSAD 2014), the 5th
Workshop on Static Analysis and Systems Biology (SASB 2014), and the 5th
Workshop on Tools for Automatic Program Analysis (TAPAS 2014).

We received 53 papers. Each submission was reviewed – with the help of
external subreviewers – by at least three Program Committee members. Out of
the 53 submissions the Program Committee selected 20 papers for presentation
at the conference and inclusion in the proceedings. As last year, we encouraged
the authors to submit virtual machine images (VMs) containing artifacts and
evaluations presented in their submission. While these VMs were not formally
evaluated, they were used as an additional source of information during the
evaluation of the papers. Overall, we received 23 VMs among them 12 accompa-
nying accepted papers. The latter will be made available for future reference on
http://www.staticanalysis.org, subject to approval by the respective authors.

Besides presentations of the contributed papers the program of SAS 2014
comprised three invited talks by Patrice Godefroid (Microsoft Research, Red-
mond) on Dynamic Program Verification, Luke Ong (University of Oxford) on
Higher-Order Model Checking: From Theory To Practice, and Tomáš Vojnar
(Brno University of Technology) on Fully Automated Shape Analysis Based on
Forest Automata with Data Constraints.

We would like to thank the Program Committee members and the external
reviewers for their dedicated work in the program selection. We acknowledge the
support by Microsoft, CEA, and itestra that sponsored SAS 2014. We thank
Manuel Hermenegildo for his support in hosting the VMs and Andreij Voronkov

VI Preface

and his team for providing EasyChair that was of indispensable help in managing
the paper submission and selection process as well as the compilation of the
proceedings.

June 2014 Markus Müller-Olm
Helmut Seidl

Organization

Program Comittee

Ahmed Bouajjani LIAFA, University Paris Diderot, France
Michele Bugliesi Università Ca’ Foscari, Italy
Vijay D’Silva University of California at Berkeley, USA
Johannes Kinder Royal Holloway, University of London, UK
Andy King University of Kent, UK
Laura Kovács Chalmers University of Technology, Sweden
Viktor Kuncak EPFL Lausanne, Switzerland
Francesco Logozzo Microsoft Research, USA
Isabella Mastroeni Università degli Studi di Verona, Italy
Alan Mycroft Cambridge University, UK
Anders Møller Aarhus University, Denmark
Markus Müller-Olm Universität Münster, Germany
Aditya Nori Microsoft Research, India
Madhusudan Parthasarathy University of Illinois at Urbana-Champaign, USA

Sylvie Putot CEA, LIST & École Polytechnique, Palaiseau,
France

Xavier Rival Inria Paris-Rocquencourt, France
Sriram Sankaranarayanan University of Colorado at Boulder, USA
Helmut Seidl TU München, Germany
Gregor Snelting Karlsruher Institut für Technologie, Germany
Eran Yahav Technion, Israel

Additional Reviewers

Albarghouthi, Aws
Amtoft, Torben
Atig, Mohamed Faouzi
Ben Sassi, Mohamed Amin
Blanchette, Jasmin Christian
Bono, Viviana
Botincan, Matko
Bouissou, Olivier
Bucur, Stefan
Calzavara, Stefano
Chawdhary, Aziem
Cox, Arlen
Crafa, Silvia
Dalla Preda, Mila

David, Yaniv
Dillig, Işil
Dinsdale-Young, Thomas
Dolan, Stephen
Drǎgoi, Cezara
Dräger, Klaus
Emmi, Michael
Enea, Constantin
Genaim, Samir
Giacobazzi, Roberto
Gurfinkel, Arie
Hack, Sebastian
Halder, Raju
Hardekopf, Ben

VIII Organization

Jiang, Liu
Jobstmann, Barbara
Katz, Omer
Kerneis, Gabriel
Khedker, Uday
Kneuss, Etienne
Konnov, Igor
Lal, Akash
Le Gall, Tristan
Lin, Zhiqiang
Madhavan, Ravichandhran
Marin, Andrea
Midtgaard, Jan
Mimram, Samuel
Miné, Antoine
Monniaux, David

Myreen, Magnus
Müller, Peter
Partush, Nimrod
Peleg, Hila
Ramalingam, Ganesan
Ranzato, Francesco
Spoto, Fausto
Surendran, Rishi
Tiwari, Ashish
Vafeiadis, Viktor
Vojnar, Tomáš
Védrine, Franck
Wickerson, John
Zanardini, Damiano
Zuleger, Florian

Invited Talks

Dynamic Program Verification

Patrice Godefroid

Microsoft Research

pg@microsoft.com

Abstract. Static analysis is not the only way to verify universal (for-
all-paths) properties of programs: program verification can also be per-
formed dynamically. As a recent milestone, we were able to prove, for the
first time in 2013, attacker memory safety of an entire operating-system
image parser, namely the ANI Windows image parser, using composi-
tional exhaustive testing (implemented in the dynamic test generation
tool SAGE and using the Z3 SMT solver), i.e., no static analysis what-
soever. However, several key verification steps were performed manually,
and these verification results depend on assumptions regarding input-
dependent loop bounds, fixing a few buffer-overflow bugs, and excluding
some code parts that are not memory safe by design. This talk will dis-
cuss dynamic program verification, and its strengths and weaknesses.

Higher-Order Model Checking: From Theory

To Practice

C.-H. Luke Ong

University of Oxford

Higher-order model checking is the problem of model checking trees generated
by higher-order recursion schemes, or equivalently the λY-calculus (i.e. simply-
typed λ-calculus with fixpoint combinators). With respect to monadic second-
order properties, the model checking of trees generated by higher-order recursion
schemes was first proved to be decidable in 2006 [11], using game semantics [6].
A variety of semantic and algorithmic techniques and models of computation
have since been employed to study higher-order model checking, notably, inter-
section types [9], collapsible pushdown automata [5] and Krivine machines [15].
Algorithmic properties that refine and extend the monadic second-order decid-
ability result have also been introduced, such as logical reflection [2], effective
selection [4] and transfer theorem [16]. A recent advance [18] generalises higher-
order model checking to the model checking of (λY-definable) higher-type Böhm
trees, based on a compositional analysis.

Higher-order model checking has been applied to the verification of higher-
order programs [7]. Higher-order recursion schemes / λY-calculus are an ap-
pealing abstract model for model checking higher-order programs: not only do
they have rich and decidable logical theories, they accurately model higher-order
control flow [5, 17] and are highly expressive [12]. Indeed, in a precise sense, re-
cursion schemes are the higher-order analogue of Boolean programs, which have
played a successful rôle in the model checking of first-order, imperative programs
[1]. Techniques such as predicate abstraction and CEGAR have been incorpo-
rated into higher-order model checking, enabling the automatic verification of
higher-order programs that use infinite data domains [10] and pattern-matching
algebraic data types [13]. At the same time, despite the severe worst-case com-
plexity of the problem, there has been significant progress in algorithm design
[8, 3, 14] with the aim of solving the higher-order model checking problem for
many “practical” instances.

In this talk, I will provide a survey of higher-order model checking, and discuss
further directions.

References

1. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

Higher-Order Model Checking: From Theory To Practice XIII

2. Broadbent, C.H., Carayol, A., Ong, C.-H.L., Serre, O.: Recursion schemes and
logical reflection. In: LICS, pp. 120–129 (2010)

3. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: CSL (2013)

4. Carayol, A., Serre, O.: Collapsible pushdown automata and labeled recursion. In:
LICS, pp. 165–174 (2012)

5. Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown au-
tomata and recursion schemes. In: LICS, pp. 452–461 (2008)

6. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

7. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: POPL, pp. 416–428 (2009)

8. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 260–274. Springer, Heidelberg (2011)

9. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: LICS, pp. 179–188 (2009)

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: PLDI, pp. 222–233 (2011)

11. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS, pp. 81–90 (2006)

12. Ong, C.-H.L.: Models of higher-order computation: Recursion schemes and collapsi-
ble pushdown automata. In: Logics and Languages for Reliability and Security, pp.
263–299 (2010)

13. Ong, C.-H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: POPL, pp. 587–598 (2011)

14. Ramsay, S.J., Neatherway, R.P., Ong, C.-H.L.: A type-directed abstraction refine-
ment approach to higher-order model checking. In: POPL, pp. 61–72 (2014)

15. Salvati, S., Walukiewicz, I.: Krivine machines and higher-order schemes. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp.
162–173. Springer, Heidelberg (2011)

16. Salvati, S., Walukiewicz, I.: Using models to model-check recursive schemes. In:
Hasegawa, M. (ed.) TLCA 2013. LNCS, vol. 7941, pp. 189–204. Springer, Heidel-
berg (2013)

17. Tobita, Y., Tsukada, T., Kobayashi, N.: Exact flow analysis by higher-order model
checking. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294,
pp. 275–289. Springer, Heidelberg (2012)

18. Tsukada, T., Ong, C.-H.L.: Compositional higher-order model checking via ω-
regular games over Böhm trees”. In: CSL/LICS (to appear, 2014)

Fully Automated Shape Analysis Based on

Forest Automata with Data Constraints

Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence
Božetěchova 2, 612 66 Brno, Czech Republic

e-mail: vojnar@fit.vutbr.cz

Dealing with programs that use complex dynamic linked data structures belongs
to the most challenging tasks in formal program analysis. The reason is a ne-
cessity of coping with infinite sets of reachable heap configurations that have
a form of complex graphs. Representing and manipulating such sets in a suffi-
ciently general, efficient, and automated way is a notoriously difficult problem.
Moreover, the problem becomes even harder when program correctness depends
on relationships between data values that are stored in the dynamically allocated
structures.

In this talk, we present an approach to shape analysis based on the notion
of forest automata (FAs) that were proposed for representing sets of reachable
configurations of programs with complex dynamic linked data structures in [2].
FAs have a form of tuples of tree automata (TAs) that encode sets of heap graphs
decomposed into tuples of tree components whose leaves may refer back to the
roots of the components.

Alongside the notion of FAs, a shape analysis applying FAs in the frame-
work of abstract regular tree model checking (ARTMC) was proposed in [2] and
implemented in the open source tool called Forester1, which has a form of a
gcc plugin. ARTMC accelerates the computation of sets of reachable program
configurations represented by FAs by abstracting their component TAs, which
is done by collapsing some of their states.

In order to allow for representing complex heap graphs, the notion of FAs
allowed one to hierarchically structure the automata and to provide user-defined
FAs—called boxes—that encode repetitive graph patterns of shape graphs to be
used as alphabet symbols of other, higher-level FAs. Later, a technique of au-
tomatically learning the FAs to be used as boxes was proposed in [3], which
rendered the approach fully automated. Finally, in [1], the framework was ex-
tended with constraints between data elements of nodes in the heaps represented
by FAs, allowing one to verify programs depending on ordering relations among
data values.

Both of the above extensions have been implemented in the Forester tool and
experimentally evaluated on a number of small but—from the point of view of

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

Fully Automated Shape Analysis Based on Forest Automata XV

automated shape analysis—highly challenging programs manipulating different
flavours of lists (singly/doubly linked, circular, nested, ...), trees, skip lists, and
their combinations. The experiments showed that the approach is not only fully
automated, rather general, but also quite efficient.

Acknowledgement. The works on which the talk is based were supported by
the Czech Science Foundation (projects P103/10/0306, 102/09/H042, and P14-
11384S), the Czech Ministry of Education (projects COST OC10009 and MSM
0021630528), as well as the EU/Czech IT4Innovations Centre of Excellence
project CZ.1.05/1.1.00/02.0070.

References

1. Abdulla, P.A., Hoĺık, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Veri-
fication of Heap Manipulating Programs with Ordered Data by Extended Forest
Automata. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
224–239. Springer, Heidelberg (2013)

2. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata
for Verification of Heap Manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011)

3. Hoĺık, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully Automated
Shape Analysis Based on Forest Automata. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 740–755. Springer, Heidelberg (2013)

Table of Contents

Block Me If You Can! Context-Sensitive Parameterized Verification 1
Parosh Aziz Abdulla, Frédéric Haziza, and Lukáš Hoĺık

Peak Cost Analysis of Distributed Systems . 18
Elvira Albert, Jesús Correas, and Guillermo Román-Dı́ez

Backward Analysis via over-Approximate Abstraction and
under-Approximate Subtraction . 34

Alexey Bakhirkin, Josh Berdine, and Nir Piterman

SawjaCard: A Static Analysis Tool for Certifying Java Card
Applications . 51

Frédéric Besson, Thomas Jensen, and Pierre Vittet

Cyclic Abduction of Inductively Defined Safety and Termination
Preconditions . 68

James Brotherston and Nikos Gorogiannis

Expectation Invariants for Probabilistic Program Loops as Fixed
Points . 85

Aleksandar Chakarov and Sriram Sankaranarayanan

An Abstract Domain to Infer Octagonal Constraints with Absolute
Value . 101

Liqian Chen, Jiangchao Liu, Antoine Miné, Deepak Kapur, and
Ji Wang

Verifying Recursive Programs Using Intraprocedural Analyzers 118
Yu-Fang Chen, Chiao Hsieh, Ming-Hsien Tsai,
Bow-Yaw Wang, and Farn Wang

Automatic Analysis of Open Objects in Dynamic Language
Programs . 134

Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival

Invariance of Conjunctions of Polynomial Equalities for Algebraic
Differential Equations . 151

Khalil Ghorbal, Andrew Sogokon, and André Platzer

On Program Equivalence with Reductions . 168
Guillaume Iooss, Christophe Alias, and Sanjay Rajopadhye

XVIII Table of Contents

A Progress Bar for Static Analyzers . 184
Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

Sparse Dataflow Analysis with Pointers and Reachability 201
Magnus Madsen and Anders Møller

Reactivity of Cooperative Systems: Application to ReactiveML 219
Louis Mandel and Cédric Pasteur

Synthesis of Memory Fences via Refinement Propagation 237
Yuri Meshman, Andrei Dan, Martin Vechev, and Eran Yahav

Speeding Up Logico-Numerical Strategy Iteration . 253
David Monniaux and Peter Schrammel

Cost-Aware Automatic Program Repair . 268
Roopsha Samanta, Oswaldo Olivo, and E. Allen Emerson

An Abstract Domain Combinator for Separately Conjoining Memory
Abstractions . 285

Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

A Decision Tree Abstract Domain for Proving Conditional
Termination . 302

Caterina Urban and Antoine Miné

Region-Based Selective Flow-Sensitive Pointer Analysis 319
Sen Ye, Yulei Sui, and Jingling Xue

Author Index . 337

Block Me If You Can!�

Context-Sensitive Parameterized Verification

Parosh Aziz Abdulla1, Frédéric Haziza1, and Lukáš Holík2

1 Uppsala University, Sweden
2 Brno University of Technology, Czech Republic

Abstract. We present a method for automatic verification of systems with a pa-
rameterized number of communicating processes, such as mutual exclusion pro-
tocols or agreement protocols. To that end, we present a powerful abstraction
framework that uses an efficient and precise symbolic encoding of (infinite) sets
of configurations. In particular, it generalizes downward-closed sets that have
successfully been used in earlier approaches to parameterized verification. We
show experimentally the efficiency of the method, on various examples, includ-
ing a fine-grained model of Szymanski’s mutual exclusion protocol, whose cor-
rectness, to the best of our knowledge, has not been proven automatically by any
other existing methods.

1 Introduction

We consider the verification of safety properties for parameterized systems: systems
that consist of an arbitrary number of components (processes) organized according to
a certain predefined topology. In this paper, we consider the case where the system has
a linear topology (the processes form an array). Our method can be easily extended
to other topologies such as rings, trees, or multisets (the latter are systems where the
processes are entirely anonymous, e.g. Petri nets). Processes can perform two types
of transitions, namely local and global transitions. In the former, the process does not
need to check the states of the rest of the processes in the system. A global transition is
either universal or existential. For example, in a universal transition, a process (at po-
sition i) may perform a transition only if all processes to its left (i.e. with index j < i)
satisfy a property ϕ. In an existential transition, it is required that some (rather than all)
processes satisfy ϕ. Parameterized systems arise naturally in the modeling of mutual
exclusion algorithms, bus protocols, distributed algorithms, telecommunication proto-
cols, and cache coherence protocols. The task is to perform parameterized verification,
i.e. to verify correctness regardless of the number of processes. This amounts to the
verification of an infinite family; namely one for each possible size of the system. We
consider safety properties, i.e. properties that forbid reachability of bad configurations.
For instance, mutual exclusion protocols must guarantee that no reachable configuration
contains two processes in the critical section.

� supported by the Uppsala Programming for Multicore Architectures Research Center
(UPMARC), the Czech Science Foundation (13-37876P, 14-11384S), Brno University
of Technology (FIT-S-12-1, FIT-S-14-2486).

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 1–17, 2014.
© Springer International Publishing Switzerland 2014

2 P.A. Abdulla, F. Haziza, and L. Holík

An important line of research in parameterized verification has been based on the
observation that such systems may have invariants that are downward-closed wrt. a nat-
ural ordering on the set of configurations (e.g. the subword ordering for systems with
linear topologies, or the multiset ordering on Petri nets). The existence of downward-
closed invariants allows the employment of well quasi-ordered transition systems [2,1].
In particular, a downward-closed set D can be characterized by a finite set of counter-
examples. This set contains the configurations that are the minimal elements of the
complement of D (notice the complement of D is upward-closed). This characterization
gives compact symbolic representations leading to very efficient implementations. This
observation has resulted in several powerful frameworks such as the “Expand, Enlarge,
and Check” method [26], monotonic abstraction [6], and small model based verification
[4]. Although these frameworks are applicable to a wide range of parameterized sys-
tems, there are several classes of systems that are beyond their applicability. The reason
is that such systems do not allow good downward-closed invariants, and hence over-
approximating the set of reachable configurations by downward-closed sets will give
false counter-examples. In this paper, we propose a method that targets a class of invari-
ants which are needed in many practical cases and cannot be expressed as downward-
closed sets, hence cannot be inferred by the above-mentioned methods. Specifically,
we express invariants as quantified formulae over process indices and states within a
configuration. The formulae are of the form:

φ = ∀i1, . . . , in ∃in+1, . . . , in+m : ψ(i1, . . . , in+m)

where i1, . . . , in+m are pairwise distinct position variables and ψ(i1, . . . , in+m) is a
boolean formula that relates the process positions, their local states and the topological
constraints at those positions. We call these properties almost downward-closed (hence-
forth ∀∃-formulae), since they are a generalization of downward-closed sets. Observe
that downward-closed properties correspond to the special case where the formulae
solely have universal quantification.

Let us illustrate the notion of an almost downward-closed good invariant with the
example of a barrier implementation (see Fig. 1). All processes start in the state B before
the barrier. The first process at the barrier moves to state P and acts as a pivot. All other
arriving processes must wait in state W as long as there is a pivot. When all processes
have arrived at the barrier, the pivot can proceed to the state A after the barrier, which
in turn releases the waiting processes.

B

W P

A

∃ P ∀ B

� ∃ P ∀ W

Fig. 1. Barrier

The system is correct if there cannot be at the same time a
process in the state B and a process in the state A. A waiting
process W trying to move to the state A counts on the fact that
if there is a process in B, then there is also a process in P. If
this implication did not hold, the barrier would be incorrect,
because the move from W to A could be performed under
presence of B. The weakest good invariant must reflect this
implication, and state that (i) A and B never coexist, and (ii) if W and B appear together
then P is present. The first condition denotes a downward-closed set, any configura-
tion that does not contain both A and B satisfies it. On the contrary, the second condi-
tion is not downward-closed. It is an implication of the form “contains W and B” ⇒

Block Me If You Can! 3

“must contain P”, which can be characterized using the disjunction of a downward-
closed set (the antecedent) and an upward-closed set (the consequent). (Recall A ⇒
B ⇔ ¬A ∨ B and when A is upward-closed, ¬A is downward-closed). This example
illustrates an almost downward-closed property, and also a situation where inferring
such properties is needed. The system does not indeed have any good downward-closed
invariant.

We propose a method that can fully automatically infer almost downward-closed
invariants through the creation of small models. This allows to carry out parameterized
verification fully automatically through analyzing, in an abstract domain, only a small
number of processes (rather than the whole family). To define the abstraction, we will
first introduce a new symbolic encoding, called context-sensitive views, that allows to
characterize almost downward-closed sets. Context-sensitive views are generalizations
of minimal elements used for characterizing downward-closed sets. They retain enough
information in order to disable (or block) universal transitions, which would have been
otherwise enabled without the presence of contexts. We show that our abstract predicate
transformer is exact, so the method is guaranteed to find the weakest almost downward-
closed good invariant (if it exists).

To simplify the presentation, we will assume in the first part of the paper that global
transitions are performed atomically. However, in reality, such transitions are imple-
mented as a for-loop ranging over process indices and do not assume atomicity. More-
over, any number of processes may be performing a for-loop simultaneously. This
makes the model of fine-grained systems and the verification task significantly harder,
since it requires to distinguish intermediate states of such for-loops. We show that our
method retains its simplicity and efficiency when instantiated to the (more complicated)
case of fine-grained parameterized systems where the atomicity assumption is dropped.
To the best of our knowledge, it is the only method which combines the ability to infer
almost downward-closed invariants with the support of fine-grained modeling. We have
used it to fully automatically verify several systems which were not previously verified
automatically. Among these, we highlight the fully automatic verification of the fine-
grained and complete version of Szymanski’s mutual exclusion protocol, which has
been considered a challenge in parameterized verification.

Outline. We first consider a basic model in Section 2 which only allows atomically
checked global conditions and instantiate the abstract domain for such systems in Sec-
tion 4. We present our verification procedure in Section 5 and introduce in Section 6 how
the settings are adapted to cope with non-atomicity. We report on our experimental results
in Section 7, describe related work in Section 8 and conclude the paper in Section 9.

2 Parametrized Systems

We introduce a standard model [31,13,6,30] of parameterized systems operating on a
linear topology, where processes may perform local or global transitions. Formally, a
parameterized system is a pair P = (Q,Δ) where Q is a finite set of process local
states and Δ is a set of transition rules over Q. A transition rule is either local or
global. A local rule is of the form s → s′, where the process changes its local state
from s to s′ independently from the local states of the other processes. A global rule is

4 P.A. Abdulla, F. Haziza, and L. Holík

either universal or existential. It is of the form: if Q j ◦i : S then s → s′, where Q ∈
{∃,∀}, ◦ ∈ {<,>, �=} and S ⊆ Q. We call s the source, s′ the target, Q the quantifier
and ◦ the range. S represents a set of witness process states. Here, the ith process
checks the local states of the other processes before it makes the move. For the sake
of presentation, we only consider, in this section, a version where each process checks
atomically the other processes. The more realistic and more difficult case, where the
atomicity assumption is dropped, will be introduced in Section 6. For instance, the
condition ∀j < i : S means that “every process j, with a lower index than i, should be
in a local state that belongs to the set S”; the condition ∀j �=i : S means that “the local
state of all processes, except the one at position i, should be in the set S”.

A configuration in P is a word over the alphabet Q. We use C to denote the set of all
configurations and c[i] to denote the state of the ith process within the configuration c.
We use �a;b� to denote the set of integers in the interval [a;b] (i.e. �a;b� = [a;b] ∩N).
For a configuration c, a position i ≤ |c|, and a transition δ ∈ Δ, we define the immediate
successor δ(c, i) of c under a δ-move of the ith process (evaluating the condition) such
that δ(c, i) = c′ iff c[i] = s, c′[i] = s′, c[j] = c′[j] for all j : j �= i and either (i) δ is a
local rule s → s′, or (ii) δ is a global rule of the form if Q j ◦ i : S then s → s′, and
one of the following two conditions is satisfied:
– Q = ∀ and for all j ∈ �1; |c|� such that j ◦ i, it holds that c[j] ∈ S
– Q = ∃ and there exists some j ∈ �1; |c|� such that j ◦ i and c[j] ∈ S.

For a set of configurations X ⊆ C, we define the post-image of X as the set post(X) =
{δ(c, i) | c ∈ X,i ≤ |c|,δ ∈ Δ}.

An instance of the reachability problem is defined by a parameterized system P =
(Q,Δ), a set I ⊆ Q+ of initial configurations, and a set B ⊆ Q+ of bad configurations.
We say that c ∈ C is reachable iff there are c0, . . . , cl ∈ C such that c0 ∈ I , cl = c, and
for all 0 ≤ i < l, there are δi ∈ Δ and j ≤ |ci| such that ci+1 = δi(ci, j). We use R to
denote the set of all reachable configurations (from I). We say that the system P is safe
with respect to I and B if no bad configuration is reachable, i.e. R ∩ B = ∅.

The set I of initial configurations is usually a regular set. In order to define the
set B of bad configurations, we use the usual subword relation �, i.e., u � s1 . . .sn iff
u = si1 . . . sik

,1 ≤ i1 < .. . < ik ≤ n. We assume that B is the upward-closure {c ∈ C |
∃b ∈ Bmin : b � c} of a given finite set Bmin ⊆ Q+ of minimal bad configurations. This
is a common way of specifying bad configurations which often appears in practice.

3 Example: Szymanski’s Protocol

We illustrate the notion of a parameterized system with the example of Szymanski’s mu-
tual exclusion protocol [33]. The protocol ensures exclusive access to a shared resource
in a system consisting of an unbounded number of processes organized in an array. The
transition rules of the parameterized system are given in Fig. 3 and the source code in
Fig. 2. The state of the ith process is modelled with a number, which reflects the values
of the program location and the local variable flag[i]. A configuration of the induced
transition system is a word over the alphabet { 0 , . . . , 11 } of local process states. The
task is to check that the protocol guarantees exclusive access to the shared resource
regardless of the number of processes. A configuration is considered to be bad if it

Block Me If You Can! 5

0 flag [i] = 1;
1 for(j=0;j<N;j++){ if(flag [j]≥ 3) goto 1 ; }
2 flag [i] = 3;
3 for(j=0;j<N;j++){

if (flag [j] = 1) {
4 flag [i] = 2;
5 for(j=0;j<N;j++){ if(flag [j]==4) goto 7 ; }
6 goto 5 ;

}
}

7 flag [i] = 4;
8 for(j=0;j<i;j++){ if(flag [j]≥ 2) goto 8 ; }
9 /* Critical Section */
10 for(j=i+1;j<N;j++) { if(flag [j]==2 ‖ flag [j]==3) goto 10 ; }
11 flag [i] = 0; goto 0 ;

Fig. 2. Szymanski’s protocol implementation (for process i)

contains two occurrences of state 9 or 10 , i.e., the set of minimal bad configurations
Bmin is { 9 9 , 9 10 , 10 9 , 10 10 }. Initially, all processes are in state 0 , i.e. I = 0

+.

Standing outside
the waiting room
with the intention

to enter, eventually
blocking the doorway

Waiting for the
last one to enter

Critical Section

Emptying the waiting room
and reopening the entry door

Non
critical
work

Entry Door

Exit Door

0

1

2

3

5

7

8

9

10

11

∀j �= i : {0,1,2,5,6}

∀j �= i : ¬{1,2}

∃j �= i : {1,2}

∃j �= i : {8,9,10}

4

6

∀j < i : {0,1,2}

∀j > i : ¬{3..7}

Fig. 3. Szymanski’s protocol transition system

Many techniques [4,3,7,13,30,8,12]
have been used to verify automati-
cally the safety property of Szyman-
ski’s mutual exclusion protocol but
only in restricted settings. They either
assume atomicity of the global con-
ditions and/or only consider a more
compact variant of the protocol (i.e.
where the invariant can be expressed
solely by a downward-closed set). The
full and fine-grained version has been
considered a challenge in the verifi-
cation community. To the best of our
knowledge, this paper presents the first
technique to address the challenge of
verifying the protocol fully automati-
cally without atomicity assumption.

4 Views and ∀∃-Formulae

We introduce our symbolic encoding and show how it corresponds to ∀∃-formulae.

Context-Sensitive Views. A context-sensitive view (henceforth only called view)
is a pair (b1 . . . bk,R0 . . .Rk), often written as R0b1R1 . . . bkRk, where b1 . . . bk is a
configuration and R0 . . .Rk is a context, such that Ri ⊆ Q for all i ∈ �0;k�.

6 P.A. Abdulla, F. Haziza, and L. Holík

h(i) h(i+1)

i i+1

Fig. 4. Projection

We call the configuration b1 . . . bk the base of the view
where k is its size and we call the set Ri the ith con-
text. We use Vk to denote the set of views of size up
to k. For k,n ∈ N,k ≤ n, let Hk

n be the set of strictly
increasing injections h : �0;k + 1� → �0;n + 1�, i.e.
1 ≤ i < j ≤ k =⇒ 1 ≤ h(i) < h(j) ≤ n. Moreover,
we require that h(0) = 0 and h(k + 1) = n + 1.

Projections. We define the projection of a configuration. For h ∈ Hk
n and a config-

uration c = q1 . . . qn, we use Πh(c) to denote the view v = R0b1R1 . . . bkRk, obtained
in the following way (see Fig. 4):
(i) bi = qh(i) for i ∈ �1;k�, (ii) Ri = {qj | h(i) < j < h(i + 1)} for i ∈ �0;k�. Intu-
itively, respecting the order, k elements of c are retained as the base of v, while all other
elements are collected into contexts as sets in the appropriate positions.

We also define projections of views. For a view v = R0b1R1 . . . bnRn and h ∈ Hk
n ,

we overload the notation for the projection of configurations and use Πh(v) to denote
the view v′ = R′

0b′
1R′

1 . . . b′
kR′

k, such that (i) b′
i = bh(i) for i ∈ �1;k� and

(ii) R′
i = {bj | h(i) < j < h(i + 1)}∪(

⋃
h(i)≤j<h(i+1) Rj) for all i ∈ �0;k� (see Fig. 5).

h(i) h(i+1)

i i+1

Fig. 5. View Projection

We define an entailment relation on views of the
same size. Let u = R0b1R1, . . . , bnRn and v =
R′

0b′
1R′

1, . . . , b′
nR′

n be views of the same size n. We say
that v entails u or that u is weaker than v, denoted u� v, if
b1 · · ·bn = b′

1 · · ·b′
n and Ri ⊆ R′

i for all i ∈ �0;n�. Views of
different sizes are not comparable. For two sets V and W
of views, we write V � W if every w ∈ W entails some
v ∈ V . Formally, V � W ⇔ ∀w ∈ W,∃v ∈ V,v � w. We
use �V � to denote the set of views in V that are weakest, i.e. minimal w.r.t. �. We use
V � W to denote the set �V ∪ W �.

Abstraction and Concretization. Let k ∈N. The abstraction function αk maps x,
a view or a configuration, into the set of its projections of the size k or smaller: αk(x) =
{Πh(x) | h ∈ H�

|x|,
 ≤ min(k, |x|)}. For a set X of views or of configurations, we de-
fine αk(X) as the set �∪x∈Xαk(x)�, i.e. its weakest projections. The concretization
function γk maps a set of views V ⊆ Vk into the set of configurations γk(V) = {c ∈ C |
V � αk(c)}.

We pinpoint the fact that views work collectively, rather than individually. That is,
a set of configurations is characterized by a set of views. Consider for example that
a set V of views contains the view WB[P]. We write contexts in square brackets and
we omit empty contexts for brevity. Then, in order to characterize the configuration
WBP, it must also contain the views [W]BP and W[B]P (or weaker). The three views
together characterize the configuration, while the view WB[P] alone cannot. Abstraction
and concretization are illustrated on a larger example in Fig. 6.

Lemma 1. For any k ∈ N, V ⊆ V and X ⊆ C, X ⊆ γk(V) ⇐⇒ V � αk(X), i.e. the
pair (αk,γk) forms a Galois connection.

For any set X ⊆ C and k ∈ N, it is clear that γk(αk(X)) ⊇ X . In fact, we can observe
that the precision of the abstraction increases with k, i.e. γ1(α1(X)) ⊇ γ2(α2(X)) ⊇

Block Me If You Can! 7

1 2 3

2 3 4

1 4

1 2 3

1 2 3

1 4

1 2 3

2 3 4

2 3 4

2 3 4

+ views of size 1

1 2 3

2 3 4

1 4

1 2 3 4

α2
γ2

Configurations ConfigurationsViews

Fig. 6. Abstraction and Concretization

γ3(α3(X)) ⊇ . . . ⊇ X . We illustrate this property with the following example. Con-
sider the set X of configurations of the barrier protocol from Fig. 1 described by the
regular expression BB+P. Its abstraction with k = 1 is the set of views V1 = α1(X) =
{B[B, P], [B]B[P], [B]P}.The concretization γ1(V1) is the set of configurations follow-
ing the regular expression B(B|P)∗B(B|P)∗P (i.e. the information preserved is that con-
figurations begin by B, end by P, and there are at least two Bs). With k = 2, we get
V2 = α2(X) = {BB[P], B[B]P, [B]BP} ∪ V1. Its concretization is γ2(V2) = BB+P which
is equal to the original set X . The role of contexts may be seen already with k = 1: the
concretization of V1 preserves the information that there is at least one P and at least
two Bs present in every configuration. This set is not downward-closed.

Views vs ∀∃-formulae. An ∀∃-formula is a formula of the form:

φ = ∀i1, . . . , in ∃in+1, . . . , in+m : ψ(i1, . . . , in+m)

∀ i1 i2 i3 ∃ i4 i5 i6 i7 : ψ(. . .)

1 4 2 6 5 3 7

1 4 2 5,6 3 7

Fig. 7. view ↔ ∀∃-formula

where i1, . . . , in+m are pairwise distinct position vari-
ables and ψ(i1, . . . , in+m) is a boolean combination of
basic formulae. A basic formula is either (i) a topological
predicate of the form ij < ik or (ii) a state predicate of
the form c[ij] = q, where j,k ∈ �1;n + m� and q ∈ Q.

The notion of satisfaction by a configuration c of a
basic formula ψ(i1, . . . , i�) is defined in the natural way.
More precisely, an assignment ρ is a function that maps
the indices i1, . . . , i� to pairwise different positions within
the configuration c (i.e. ρ(ij) ∈ �0; |c|� and ρ(ij) �= ρ(ik)
for all j,k ∈ �1;
�). We write c |=ρ ψ, if c satisfy the for-
mula ψ(i1, . . . , i�) under the assignment ρ. We say that c satisfies φ and write c |= φ,
if for every assignment ρ of i1, . . . , in, there exists an assignment ρ′ of in+1, . . . in+m

such that c |=ρ∪ρ′ ψ. We use �φ� to denote the set {c ∈ C | c |= φ} of all configurations
that satisfy φ.

Lemma 2. For any set C of configurations, there exists an ∀∃-formula φ such that
C = �φ� iff there exists a finite set of views V and k ∈ N such that C = γk(V).

Lemma 2 shows that the ∀∃-formulae correspond to sets of views. Intuitively, the base
of a view captures the predicates in an ∀∃-formula relating the position variables from

8 P.A. Abdulla, F. Haziza, and L. Holík

the universal quantification, while the contexts capture those from the existential quan-
tification. For example, we recall the set V1 = α1(X) = {B[B, P], [B]B[P], [B]P}, where
X is the set of configurations described by the regular expression BB+P. Its concretiza-
tion γ1(V1) is expressed by the ∀∃-formula ∀i ∃j,k : (c[i], c[j], c[k] = B, B, P ∧ i <
j,k) ∨ (c[j], c[i], c[k] = B, B, P ∧ j < i < k) ∨ (c[j], c[i] = B, P ∧ j < i). For k = 2, the
concretization of V2 = α2(X) = {BB[P], B[B]P, [B]BP} ∪ V1 is expressed by the ∀∃-
formula ∀i,j ∃k : (c[i], c[j], c[k] = B, B, P ∧ i < j < k) ∨ (c[i], c[k], c[j] = B, B, P ∧ i <
k < j) ∨ (c[k], c[i], c[j] = B, B, P ∧ k < i < j).

5 Verification Procedure

We present our verification method for the class of parameterized systems described in
Section 2. We fix a parameterized system P = (Q,Δ) for the rest of the section. We
use the abstract domain from Section 4. For k ∈ N, the abstract post-image of a set of
views V is defined, as usual, as αk ◦post ◦γk(V). The core of our verification procedure
consists in checking whether there is a k ∈N such that the least fixpoint of αk ◦post ◦γk

is a set of views with the following properties: its concretization (i) covers the set I of
initial configurations and (ii) is disjoint from the set B of bad configurations. More
precisely, the precision of the abstraction increases with k, so we iterate the fixpoint
computation μX.αk(I) � αk ◦ post ◦ γk(X) for increasing values of k starting from
k = 1, until point (ii) holds.

We present our procedure in a stepwise manner. Since γk(V) is in general infinite,
we need to compute the abstract post-image symbolically. First, we introduce a sym-
bolic abstract transformer and show that it precisely corresponds to the abstract post.
Although we show that is possible to compute the abstract transformer precisely (and
therefore the aforementioned fixpoint), we also introduce an over-approximation for
efficiency reasons. Finally, we stitch the different components together and describe
the sound and complete procedure. Since the symbolic transformer is exact, if there
exists an almost downward-closed invariant (i.e., good invariant expressible by an ∀∃-
formula, or equivalently by a set of views), then the iteration is guaranteed to discover
it and terminate for some value of k [14].

Symbolic Post Operator. To define the symbolic post operator, we first define
a transition relation on views. For a view v = (base,ctx), i ≤ |base|, and a transi-
tion δ ∈ Δ, we define the symbolic immediate successor of v under a δ-move of the
ith process from base, denoted δ#(v,i). Informally, the moving process checks the
other processes from the base. In addition, if δ is a universal transition, the moving
process checks as well the processes in the contexts. If the transition is enabled, the
moving process from base changes its state according to the δ-transition, otherwise it
is blocked. The contexts do not change. In fact, we can here observe the role played by
a context: it retains enough information in a view to disable (or block) universal transi-
tions, which would have been otherwise enabled without the presence of contexts. This
reduces the risk of running a too coarse over-approximation.

Formally, for a view v = R0b1R1. . .bnRn and i ≤ n, δ#(v,i) = R0b′
1R1. . .b′

nRn

iff bi = s, b′
i = s′, bj = b′

j for all j : j �= i and either (i) δ is a local rule s → s′, or
(ii) δ is a global rule of the form if Q j ◦ i : S then s → s′, and one of the following

Block Me If You Can! 9

two conditions is satisfied: (a) Q = ∀ and it holds both that bj ∈ S for all j ∈ �1;n� such
that j ◦ i and that Rj ⊆ S for all j ∈ �0;n� such that j ◦ i, or (b) Q = ∃ and there exists
j ∈ �1;n� such that j ◦ i and bj ∈ S. Note that we do not need to check the contexts
in the latter case. Indeed, this is supported by the fact that the views work collectively.
If there is a view where a process appears in a context, then there is always another
view where it appears in the base, while the others are in a context. Finally, for a set of
views V , we define spost(V) = {δ#(v,i) | v ∈ V,i ≤ |v|,δ ∈ Δ}.

We now explain how we define the symbolic post operating on views. It is based on
the observation that a process needs at most one other process as a witness in order to
perform its transition (cf. existential transitions). A moving process can appear either
(i) in the base of a view, or (ii) in a context. Extending adequately the view with one
extra process is enough to determine whether the moving process, in case (i), can per-
form its transition. However, in case (ii), since spost only updates processes of the base,
a first extension with one process “materializes” the moving process into the base and
a second extension by one process considers its witness. Therefore, it is sufficient to ex-
tend the views with two extra processes to determine if a transition is enabled, whether
the moving process belongs to the base or a context of a view. Formally, for a set V of
views of size k and for
 > k, we define the extensions of V of size
 as the set of views∮ �

k (V) = αl(γk(V)). Finally, we define the symbolic post as αk ◦ spost ◦ ∮ k+2
k (V).

Lemma 3 allows us to conclude that the symbolic post is the best abstract transformer.

Lemma 3. For any k and set of views V of size up to k,
V � αk ◦ post ◦ γk(V) = V � αk ◦ spost ◦ ∮ k+2

k (V)

The definition of
∮ �

k (V) still involves the potentially infinite set γk(V), so it cannot

be computed in a straightforward manner. We show how
∮ �

k (V) can be computed via
a translation to finite automata, consisting of three steps, sketched here and described
in details in the technical report [5]:

1. Translate V into an ∀∃-formula φ such that �φ� = γk(V) (by Lemma 2)
2. Translate φ into a finite automaton Aφ such that L(Aφ) = �φ�
3. Compute α�(L(Aφ))

Approximation. The described automata-theoretic procedure to compute
∮ �

k (V)
comes at some cost. Step 2 involves internally the complementation of an intermedi-
ate automaton, which is at worst exponential, both in time and space. We therefore in-
troduce an over-approximation and compute �

∫ �
k (V) = {v ∈ V | αk(v) � V, |v| ≤
}, i.e.

the set of views of size
 that can be generated from V , without inspecting its concretiza-
tion first. By lemma 4 (below), it follows that the views in �

∫ �
k (V) over-approximate the

views in
∮ �

k (V) and may enable more universal transitions than they should. Indeed,

views in �
∫ �

k (V) have (at least) the same bases as the views in
∮ �

k (V), but they might have
smaller contexts (and are therefore weaker). Consider for example the case where k = 2,

 = 3 and the set of views V = {ab,bc,ac[e], ce[f],ae,be,af,bf,cf,ef}. The set �

∫ 3
2 (V)

contains the view abc[e] but
∮ �

k (V) contains the view abc[e,f] because the smallest
configuration in γ2(V) that has abc as a subword is abcef (this is due to the view ce[f]

10 P.A. Abdulla, F. Haziza, and L. Holík

which enforces the presence of f). Another example is V = {ab,bc,ac[e],a[c]e, [a]ce}.
Here, �

∫ 3
2 (V) contains abc[e], however, there is no view with the base abc in

∮ 3
2 (V)

since there is no configuration with the subword abc in γ2(V).

Lemma 4. For any
 ≥ k and V ⊆ V , �
∫ �

k (V) �
∮ �

k (V)

Sound and Complete Algorithm. We combine the fixpoint computation of the
symbolic post with a systematic state-space exploration in order to find a bad configura-
tion. The algorithm (described succintly in Alg. 1) proceeds by iteration over configura-
tions and views of size up to k, starting from k = 1 and increasing k after each iteration.
Every iteration consists in two computations in parallel: (i) Using the exact post-image,
we compute the set Rk of configurations reachable from the initial configurations, in-
volving only configurations of size k (line 2). Note that there are only finitely many
such configurations and that we consider, in this paper, length-preserving transitions,1

so this step terminates and (ii) the fixpoint computation of the symbolic post over views
of size up to k. Alg. 1: Verification Procedure

1 for k := 1 to ∞ do
2 if bad(Rk) then return Unsafe

3 V := μX .αk(I) �αk ◦ spost ◦ ∮ k+2
k (X)

4 if ¬bad(V) then return Safe

A reachable bad configuration
of some size must be reachable
through a sequence of transitions
involving configurations of some
maximal size, so it will be eventu-
ally discovered. By lemma 4, it is
sound to replace the fixpoint computation of the symbolic post with the approximated
set of views �

∫ k+2
k (line 3). Finally, the termination criteria on line 2 and 4 require the

use of the function bad which returns either if a set of configurations contains a bad
configuration or whether a set of views characterizes a bad configuration. The func-
tion bad is implemented by checking whether any configuration from Bmin appears in
its input set either (i) as a subword of a configuration or (ii) within the base of a view.
We do not inspect any context, because the views work collectively and there is always
another view in the set which contains this context in its base.

The resulting verification algorithm is sound and terminates for some k if and only
if there is a reachable bad configuration or if there is a good almost downward-closed
invariant. It uses the property of small models, that is, most behaviors are captured with
small instances of the systems, either in the form of configurations and views.

Acceleration. The fixpoint computation on line 3 can be accelerated by leveraging
the entailment relation. It is based on the observation that Rk contains configurations
of size up to k, which can be used as initial input for the fixpoint computation (rather
than I). All views of size k in αk(Rk) have empty contexts (i.e. they are weakest).

1 Although, in this paper, there is no process deletion nor creation, our method works
with non length-preserving transitions. The set Rk is not anymore computed by
simply searching through the state-space, since a sequence of transitions from a con-
figuration of size k might lead to arbitrarily many configurations of larger sizes. The
alternative definition of Rk is configurations that may be reached via sequences of
transitions involving configurations of the size up to k. This again defines a finite
search space, and it holds that every reachable configuration is within Rj for some j.

Block Me If You Can! 11

They avoid the computations of the symbolic post on any stronger views. A similar
argument can be used to see that it is not necessary to apply spost on the views in
�
∫ k+2

k (X) that are stronger than the views in αk+2(Rk+2). We therefore seed the fix-
point computation with a larger set than αk(I), namely αk(Rk ∪ Rk+1 ∪ Rk+2), and
cache the set of views αk+2(Rk+2).

6 Non-atomically Checked Global Conditions

We extend our model and method to handle parameterized systems where global condi-
tions are not checked atomically. We replace both existentially and universally guarded
transition rules by the following variant of a for-loop rule:

if foreach j ◦ i : S then s → s′ else s → e

where e ∈ Q is an escape state and the other s, s′, ◦ and S are named as in Sec-
tion 2. For instance, line 3 of Szymanski’s protocol is be replaced by if foreach j �=
i : ¬{1,2} then 3 → 7 else 3 → 4. Essentially, for a configuration with linear topol-
ogy, a process at position i inspects the state of another process at position j, in-order.
Without loss of generality, we will assume that the for-loops iterate through process
indices in increasing order. If the state of the process at position j is not a reason for the
process i to escape, process i moves on to inspect the process at position j + 1, unless
there is no more process to inspect in which case process i completes its transition.

We extend the semantics of a system with for-loop rules from transition systems of
Section 2 in the following way: A configuration is now a pair c = (q1 · · ·qn,�) where
q1 · · ·qn ∈ Q+ is as before and where � : �1;n� → �0;n� is a total map which assigns
to every position i of c the last position which has been inspected by the process i.
Initially, �(i) is assigned 0.

We fix a rule δ = if foreach j ◦ i : S then s → t else s → e from Δ, a config-
uration c with |c| = n, and i ∈ �1;n�. We first define the position next(i) which the
process at position i is expected to inspect next. Formally, next(i) = min{j ∈ �1;n� |
j > �(i), j ◦ i} is the smallest position larger than than �(i) which satisfies next(i)◦ i.
Notice that if process i has already inspected the right-most position j which satisfies
j ◦ i, then (and only then) next(i) is undefined.

We distinguish three types of δ-move on c by the process at position i: (i) δi(c, i) for
a loop iteration, (ii) δe(c, i) for escaping and (iii) δt(c, i) for termination. Each type of
move is defined only if qi = s.
– δi(c, i) is defined if next(i) is defined and qnext(i) ∈ S. It is obtained from c by only
updating �(i) to next(i). Intuitively, process i is only ticking position next(i).
– δe(c, i) is defined if next(i) is defined and qnext(i) �∈ S. It is obtained from c by
changing the state of the process i to e and resetting �(i) to 0. Intuitively, process i has
found a reason to escape.
– δt(c, i) is defined if next(i) is undefined, and it is obtained from c by changing the
state of the process i to t and resetting �(i) to 0. Intuitively, process i has reached the
end of the iteration and terminates its transition (i.e. moves to its target state).

12 P.A. Abdulla, F. Haziza, and L. Holík

3→

3

Iteration

31 →

41

Escape

3→
7

Terminal

h(l) h(l +1)

l l +1

Process i �(i)

ρ(l)

Fig. 8. Projection with non-
atomicity. The blue states have
been inspected by process i, the
green states have not.

We now instantiate the abstract domain by
adapting the notion of views from Section 4. A
view is now of the form (R0q1R1 . . . qnRn,�,ρ),
where (q1 · · ·qn,�) is a configuration called the
base, and (R0, · · · ,Rn,ρ) is a context, such that
R0, . . . ,Rn ⊆ Q and ρ : �1;n� → 2Q is a total map
which assigns a subset of Q to every i ∈ �1;n�.
Intuitively, the role of ρ(i) is to keep track of the
processes that process i has not yet inspected in
case they get mixed up in a context with other al-
ready inspected processes. This will be the case,
as depicted in Fig.8, for one context only, say R�

(in fact, R� is the context where �(i) is projected to). It is trivial to see that contexts of
higher (resp. lower) indices than
 contain processes that are not (resp. are) inspected
by process i.

The projection of a configuration into a view is defined similarly as in Section 5. For
h ∈ Hk

n,k ≤ n, and a configuration c = (q1· · ·qn,�), Πh(c) = (Πh(q1· · ·qn),�′,ρ′)
where �′ and ρ′ are defined as follows. For all i ∈ �1;k�, there exists
 such that
h(
) ≤ �(i) < h(
 + 1). Then, �′(i) =
 and ρ′(i) = {qj | �(i) < j < h(
 + 1)}. The
projection of views is defined analogously. Note that this definition also implies that the
concretization of a set of views is precise enough and reconstructs configurations with
in-order ticks.

The entailment relation between the views v = (R0q1R1 . . .qnRn,�,ρ) and v′ =
(R′

0q′
1R′

1 . . . q′
nR′

n,�′,ρ′) (of the same size) is defined such that v � v′ iff (i) both have
the same base, i.e. (q1 · · ·qn,�) = (q′

1 · · ·q′
n,�′), (ii) Ri ⊆ R′

i for all i ∈ �0;n�, and
(iii) ρ(i) ⊆ ρ′(i) for all i ∈ �1;n�. This intuitivelly reflects that the more unticked states
within a context the likelier it is for a transition to be blocked, and the larger contexts
are the likelier they retain non-ticked states.

Finally, abstraction, concretization, and spost (and therefore symbolic post) are then
adapted using the new definition of projection, entailment and post . This also implies
that the contexts are inspected in-order and all processes in a context at once. Lemma 1, 3
and 4 hold in the same wording. The symbolic post with contexts and non-atomicity is
precisely the abstract post and we use a similar over-approximation than in Section 5.

3

3

→

Iteration

5 3

5 4

→

Escape

3

7

→

Terminal

Block Me If You Can! 13

7 Experiments

We have implemented a prototype in OCaml based on our method to verify the safety
property of numerous protocols.

Table 1. Linear topologies ± Atomicity
Protocol Time |V |
∀∃-example*

0.005 22 ✓
0.006 - ✗

Burns
0.004 34 ✓
0.011 64 ✓

Dijkstra
0.027 93 ✓
0.097 222 ✓

Szymanski*
0.307 168 ✓
1.982 311 ✓

Szymanski (compact)*
0.006 48 ✓
0.557 194 ✓

Szymanski (random) 1.156 - ✗

Bakery
0.001 7 ✓
0.006 30 ✓

Gribomont-Zenner*
0.328 143 ✓

32.112 888 ✓
Simple Barrier* 0.018 61 ✓
(as array) 1.069 253 ✓

* contexts needed ✓: Safe ✗: Unsafe

We report the results running on a 3.1 GHz
computer with 4GB memory. Table 1 dis-
plays, for various protocols with linear topol-
ogy (over 2 lines), the running times (in
seconds) and the final number of views gen-
erated (|V |). The first line is the result of
the atomic version of the protocol, while the
second line corresponds to the non-atomic
version. The complete descriptions of the
experiments can be found the technical re-
port [5]. In most cases, the method ter-
minates almost immediately illustrating the
small model property: all patterns occur for
small instances of the system.

For the first example of Table 1 in the case
of non-atomicity, our tool reports the protocol
to be Unsafe (✗). The method is sound. It is indeed a real error and not an artifact of
the over-approximation. In fact, this is also the case when we intentionally tweak the
implementation of Szymanski’s protocol and force the for-loops to iterate randomly
through the indices, in the non-atomic case. The tool reports a trace, that is, a sequence
of configurations — here involving only 3 processes — as a witness of an (erroneous)
scenario that leads to a violation of the mutual exclusion property.

Table 2. Petri Net with Inhibitor Arcs
Protocol Time |V |
Critical Section with lock 0.001 42 ✓
Priority Allocator 0.001 33 ✓
Barrier with Counters 0.001 22 ✓

Simple Barrier
contexts

needed 0.001 8 ✓
Light Control 0.001 15 ✓
List with Counter Automata 0.002 38 ✓

The method is not limited to linear topolo-
gies. We also used the method to verify
several examples with a multiset topology:
Petri nets with inhibitor arcs. Inhibitor places
should retain some content (therefore cre-
ating a context) in order to not fire the
transition and potentially make the over-
approximation too coarse. The bottom part of
Table 2 lists examples where the contexts

were necessary to verify the protocol, while the top part lists examples that did not
require any.

Table 3. Leveraging the heuristics

Protocol Time |V | it.

Agreement
insertion heuristic 8.247 199 28
all contexts 3.9503.950 216 1
contexts discovery 166.893 121 4

Gribomont-Zenner
insertion heuristic 0.3280.328 143 7
all contexts 0.808 317 1
contexts discovery 50.049 217 3

Szymanski,
non-atomic

insertion heuristic 2.0532.053 311 26
all contexts 48.065 771 1
contexts discovery 732.643 896 7

Heuristics. If α2(R2 ∪ R3) = α2(R2 ∪
R3 ∪ R4), it is likely the case that the
computation in Alg. 1 (line 3) is al-
ready at fixpoint for k = 2 and dis-
covered all the bases of the system in
the sets from the above equation. It is
therefore interesting to inspect whether
a new base could be discovered by

14 P.A. Abdulla, F. Haziza, and L. Holík

the symbolic post, while ignoring contexts (to consider the weakest views).
If not, a fixpoint is indeed discovered and the invariant is strong enough to imply safety.
If so, we can stop the computations, detect which views led to the new inserted base and
remember their contexts for the next round of computations. This heuristic happen to be
very successful in the case of Szymanski’s protocol (in its non-atomic full version). On
the other hand, this idea can be used in general: Do not remember any contexts, there-
fore considering the weakest views, and if the procedure discovers a counter-example,
we trace the views that generated it and remember their contexts for the next round of
computations, in a CEGAR-like fashion. It is however inefficient if all views most likely
need a context (as shown with the ring agreement example). Table 3 presents the results
of using the insertion and context discovery heuristics. The time is given in seconds and
it. represents the number of iteration to terminate.

8 Related Work
An extensive amount of work has been devoted to regular model checking, e.g. [29,15];
and in particular augmenting regular model checking with techniques such as widen-
ing [11,34], abstraction [12], and acceleration [8]. All these works rely on computing
the transitive closure of transducers or on iterating them on regular languages. There
are numerous techniques less general than regular model checking, but they are lighter
and more dedicated to the problem of parameterized verification. The idea of counter
abstraction is to keep track of the number of processes which satisfy a certain prop-
erty [27,22,16,17,32]. In general, counter abstraction is designed for systems with un-
structured or clique architectures, but may be used for systems with other topologies too.

Several works reduce parameterized verification to the verification of finite-state
models. Among these, the invisible invariants method [9,31] and the work of [30]
exploit cut-off properties to check invariants for mutual exclusion protocols. In [10],
finite-state abstractions for verification of systems specified in WS1S are computed
on-the-fly by using the weakest precondition operator. The method requires the user to
provide a set of predicates to compute the abstract model. Environment abstraction [13]
combines predicate abstraction with the counter abstraction. The technique is applied
to Szymanski’s algorithm (with atomicity assumption).

The only work we are aware of that attempts to automatically verify systems with
non-atomic global transitions is [7]. It applies the recently introduced method of mono-
tonic abstraction [6], which combines regular model checking with abstraction in
order to produce systems that have monotonic behaviors wrt. a well quasi-ordering
on the state-space. The verification procedure in this case operates on unbounded ab-
stract graphs, and thus is a non-trivial extension of the existing framework. The method
of [26,25] and its reformulated, generic version of [24] come with a complete method
for well-quasi ordered systems which is an alternative to backward reachability analysis
based on a forward exploration, similarly to our recent work [4].

Constant-size cut-offs have been defined for ring networks in [21] where commu-
nication is only allowed through token passing. More general communication mecha-
nisms such as guards over local and shared variables are described in [20]. However, the
cut-offs are linear in the number of states of the components, which makes the verifica-
tion task intractable on most of our examples. The work in [28] also relies on dynamic

Block Me If You Can! 15

detection of cut-off points. The class of systems considered in [28] corresponds essen-
tially to Petri nets.

Most of the mentioned related works can verify only systems with good downward-
closed invariants, up to several exceptions: Regular model checking can express even
more complicated properties of states with the word topology. Our method is signifi-
cantly simpler and more efficient. The data structure [23] extends the data structures
discussed in [18,19] so that they are able to express almost downward-closed sets of
states with multiset topology. The work [3] allows to infer almost downward-closed
invariants using an extension of backward reachability algorithm with CEGAR. Last,
in [30], the need of inferring almost downward-closed invariants may be sometimes
circumvent by manually introducing auxiliary variables.

The only two works we are aware of that support handling non-atomic global transi-
tions are [4] and [3].

Our method is simpler and more efficient than most of the mentioned methods,
but what distinguishes it most clearly is that it is the only one that combines han-
dling non-atomic global transitions and automatic inference of almost downward-closed
properties.

9 Conclusion and Future Work

We have presented a method for automatic verification of parameterized systems which
alleviates the lack of precision from [4] that it exhibits on systems without fully down-
ward-closed invariants. This is a unique method that combines the feature of discovering
non downward-closed invariants while allowing to model systems with fine-grained
transitions.

The method performs parameterized verification by only analyzing a small set of
instances of the system (rather than the whole family) and captures the reachability of
bad configurations to imply safety. Our algorithm relies on a very simple abstraction
function, where a configuration of the system is approximated by breaking it down into
smaller pieces. This gives rise to a finite representation of infinite sets of configurations
while retaining enough precision. We showed that the presented algorithm is complete
for systems with almost downward-closed invariants. Based on the method, we have
implemented a prototype which performs efficiently on a wide range of benchmarks.

We are currently working on extending the method to the case of multi-threaded
programs running on machines with different memory models. These systems have
notoriously complicated behaviors. Showing that verification can be carried out through
the analysis of only a small number of threads would allow more efficient algorithms
for these systems.

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bulletin of Symbolic
Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for
infinite-state systems. In: LICS 1996, pp. 313–321 (1996)

16 P.A. Abdulla, F. Haziza, and L. Holík

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated context-sensitive analy-
sis for parameterized verification. In: Lee, D., Lopes, A., Poetzsch-Heffter, A.
(eds.) FMOODS 2009. LNCS, vol. 5522, pp. 41–56. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02138-1_3

4. Abdulla, P.A., Haziza, F., Holík, L.: All for the price of few (parameterized verification
through view abstraction). In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 476–495. Springer, Heidelberg (2013)

5. Abdulla, P.A., Haziza, F., Holík, L.: Block me if you can (context-sensitive parameterized
verification). Technical Report FIT-TR-2014-03, Brno University of Technology (2014)

6. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model checking without
transducers (on efficient verification of parameterized systems). In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

7. Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Handling parameterized systems
with non-atomic global conditions. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI
2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

8. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made simple
and efficient. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002.
LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)

9. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with auto-
matically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

10. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verification of a cache coherence proto-
col: Safety and liveness. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 317–330.
Springer, Heidelberg (2002)

11. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)

12. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

13. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141.
Springer, Heidelberg (2006)

14. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL 1979,
pp. 269–282. ACM, New York (1979),
http://doi.acm.org/10.1145/567752.567778

15. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 286–297. Springer, Heidelberg (2001)

16. Delzanno, G.: Automatic verification of cache coherence protocols. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg (2000)

17. Delzanno, G.: Verification of consistency protocols via infinite-state symbolic model check-
ing. In: FORTE 2000. IFIP Conference Proceedings, vol. 183, pp. 171–186. Kluwer (2000)

18. Delzanno, G., Raskin, J.F., Begin, L.V.: Csts (covering sharing trees): Compact data struc-
tures for parameterized verification. In: Software Tools for Technology Transfer (2001)

19. Delzanno, G., Raskin, J.-F.: Symbolic representation of upward-closed sets. In: Graf, S.
(ed.) TACAS 2000. LNCS, vol. 1785, pp. 426–441. Springer, Heidelberg (2000)

20. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) CADE-17. LNCS (LNAI), vol. 1831, pp. 236–254. Springer,
Heidelberg (2000)

21. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL 1995, pp. 85–94 (1995)
22. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999.

IEEE Computer Society (1999)

http://dx.doi.org/10.1007/978-3-642-02138-1_3
http://doi.acm.org/10.1145/567752.567778

Block Me If You Can! 17

23. Ganty, P.: The Interval Sharing Tree Data Structure (1999), https://github.com/
pierreganty/mist/wiki/The-Interval-Sharing-Tree-Data-Structure

24. Ganty, P., Raskin, J.-F., Van Begin, L.: A Complete Abstract Interpretation Framework for
Coverability Properties of WSTS. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.
LNCS, vol. 3855, pp. 49–64. Springer, Heidelberg (2006)

25. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check... made efficient. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 394–407. Springer,
Heidelberg (2005)

26. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check: New algorithms for the
coverability problem of wsts. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

27. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal of the
ACM 39(3), 675–735 (1992)

28. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent
programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
645–659. Springer, Heidelberg (2010)

29. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with
rich assertional languages. Theoretical Computer Science 256, 93–112 (2001)

30. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized systems.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer,
Heidelberg (2007)

31. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In:
Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg
(2001)

32. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1,infinity)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer,
Heidelberg (2002)

33. Szymanski, B.K.: A simple solution to lamport’s concurrent programming problem with
linear wait. In: Proceedings of the 2nd International Conference on Supercomputing, ICS
1988, pp. 621–626. ACM, New York (1988),
http://doi.acm.org/10.1145/55364.55425

34. Touili, T.: Regular Model Checking using Widening Techniques. Electronic Notes in The-
oretical Computer Science 50(4) (2001); Proc. of VEPAS 2001

https://github.com/pierreganty/mist/wiki/The-Interval-Sharing-Tree-Data-Structure
https://github.com/pierreganty/mist/wiki/The-Interval-Sharing-Tree-Data-Structure
http://doi.acm.org/10.1145/55364.55425

Peak Cost Analysis of Distributed Systems

Elvira Albert1, Jesús Correas1, and Guillermo Román-Dı́ez2

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. We present a novel static analysis to infer the peak cost of
distributed systems. The different locations of a distributed system com-
municate and coordinate their actions by posting tasks among them.
Thus, the amount of work that each location has to perform can greatly
vary along the execution depending on: (1) the amount of tasks posted
to its queue, (2) their respective costs, and (3) the fact that they may be
posted in parallel and thus be pending to execute simultaneously. The
peak cost of a distributed location refers to the maximum cost that it
needs to carry out along its execution. Inferring the peak cost is chal-
lenging because it increases and decreases along the execution, unlike
the standard notion of total cost which is cumulative. Our key contribu-
tion is the novel notion of quantified queue configuration which captures
the worst-case cost of the tasks that may be simultaneously pending to
execute at each location along the execution. A prototype implementa-
tion demonstrates the accuracy and feasibility of the proposed peak cost
analysis.

1 Introduction

Distributed systems are increasingly used in industrial processes and products,
such as manufacturing plants, aircraft and vehicles. For example, many control
systems are decentralized using a distributed architecture with different process-
ing locations interconnected through buses or networks. The software in these
systems typically consists of concurrent tasks which are statically allocated to
specific locations for processing, and which exchange messages with other tasks
at the same or at other locations to perform a collaborative work. A decen-
tralized approach is often superior to traditional centralized control systems in
performance, capability and robustness. Systems such as control systems are of-
ten critical: they have strict requirements with respect to timing, performance,
and stability. A failure to meet these requirements may have catastrophic con-
sequences. To verify that a given system is able to provide the required quality,
an essential aspect is to accurately predict worst-case costs. We develop our
analysis for a generic notion of cost that can be instantiated to the number of
executed instructions (considered as the best abstraction of time for software),
the amount of memory created, the number of tasks posted to each location, or
any other cost model that assigns a non-negative cost to each instruction.

Existing cost analyses for distributed systems infer the total resource con-
sumption [3] of each distributed location, e.g., the total number of instructions

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 18–33, 2014.
c© Springer International Publishing Switzerland 2014

Peak Cost Analysis of Distributed Systems 19

that it needs to execute, the total amount of memory that it will need to allocate,
or the total number of tasks that will be added to its queue. This is unfortunately
a too pessimistic estimation of the amount of resources actually required in the
real execution. An important observation is that the peak cost will depend on
whether the tasks that the location has to execute are pending simultaneously.
We aim at inferring such peak of the resource consumption which captures the
maximum amount of resources that the location might require along any ex-
ecution. In addition to its application to verification as described above, this
information is crucial to dimensioning the distributed system: it will allow us to
determine the size of each location task queue; the required size of the location’s
memory; and the processor execution speed required to execute the peak of in-
structions and provide a certain response time. It is also of great relevance in
the context of software virtualization as used in cloud computing, as the peak
cost allows estimating how much processing/storage capacity one needs to buy
in the host machine, and thus can greatly reduce costs.

This paper presents, to the best of our knowledge, the first static analysis to
infer the peak of the resource consumption of distributed systems, which takes
into account the type and amount of tasks that the distributed locations can
have in their queues simultaneously along any execution, to infer precise bounds
on the peak cost. Our analysis works in three steps: (1)Total cost analysis. The
analysis builds upon well-established analyses for total cost [9,3,18]. We assume
that an underlying total cost analysis provides a cost for the tasks which mea-
sures their efficiency. (2) Queues configurations. The first contribution is the
inference of the abstract queue configuration for each distributed component,
which captures all possible configurations that its queue can take along the ex-
ecution. A particular queue configuration is given as the sets of tasks that the
location may have pending to execute at a moment of time. We rely on the in-
formation gathered by a may-happen-in-parallel analysis [7,1,11,5] to define the
abstract queue configurations. (3) Peak cost. Our key contribution is the notion
of quantified queue configuration, which over-approximates the peak cost of each
distributed location. For a given queue configuration, its quantified configuration
is computed by removing from the total cost inferred in (1) those tasks that do
not belong to its configuration, as inferred in (2). The peak for the location is
the maximum of the costs of all configurations that its queue can have.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer of peak cost within the SACO system [2], a
static analyzer for distributed concurrent programs. In preliminary experiments
on some typical applications for distributed programs, the peak cost achieves
gains up to 70% w.r.t. a total cost analysis. The tool can be used on-line from a
web interface available at http://costa.ls.fi.upm.es/web/saco.

2 The Distributed Model

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered queue

http://costa.ls.fi.upm.es/web/saco

20 E. Albert, J. Correas, and G. Román-Dı́ez

(newLoc)
t = tsk(tid ,m, l, 〈x = newLoc; s〉, c), fresh(lid1) , l′ = l[x→ lid1]

loc(lid , tid , {t}∪Q)�loc(lid , tid , {tsk(tid ,m, l′, s, c+cost(newLoc))}∪Q)‖loc(lid1,⊥,{})
(async)

l(x) = lid1, fresh(tid1), l1=buildLocals(z̄,m1), l′ = l[f → tid1]

loc(lid , tid , {tsk(tid ,m, l, 〈f=x!m1(z); s〉, c)} ∪ Q) ‖ loc(lid1, ,Q′) �
loc(lid , tid , {tsk(tid ,m, l′, s, c+ cost(f=x!m1(z)))}∪Q) ‖

loc(lid1, , {tsk(tid1,m1, l1, body(m1), 0) ∪ Q′})
(await-t)

t = tsk(tid ,m, l, 〈await f?; s〉, c), l(f) = tid1, tsk(tid1, , , s1,) ∈ Locs, s1 = τ

loc(lid, tid , {t} ∪ Q) � loc(lid , tid , {tsk(tid ,m, l, s, c+ cost(await f?))} ∪ Q)

(await-f)
t = tsk(tid ,m, l, 〈await f?; s〉, c), l(f) = tid1, tsk(tid1, , , s1,) ∈ Locs, s1 	= τ

loc(lid , tid , {t} ∪ Q) � loc(lid,⊥, {tsk(tid ,m, l, 〈await f?; s〉, c)} ∪ Q)

(select)
select(Q)=tid ,

t=tsk(tid , , , s, c)∈Q, s 	=τ

loc(lid ,⊥,Q)�loc(lid , tid ,Q)

(return)
t = tsk(tid ,m, l, 〈return; 〉, c)

loc(lid, tid , {t} ∪ Q) �
loc(lid ,⊥, {tsk(tid ,m, l, τ, c+cost(return))}∪Q)

Fig. 1. (Summarized) Cost Semantics for Distributed Execution

of pending tasks. Initially all processors are idle. When an idle processor’s task
queue is non-empty, some task is selected for execution. Besides accessing its own
processor’s global storage, each task can post tasks to the queues of any proces-
sor, including its own, and synchronize with the completion of tasks. When a
task completes or when it is awaiting for another task to terminate, its processor
becomes idle again, chooses the next pending task, and so on.

2.1 Syntax

The number of distributed locations needs not be known a priori (e.g., locations
may be virtual). Syntactically, a location will therefore be similar to an object
and can be dynamically created using the instruction newLoc. The program is
composed by a set of methods defined as M ::=T m(T̄ x̄){s} where s::= s; s |
x=e | if e then s else s | while e do s | return | b=newLoc| f=b!m(ē)| await f?. The
notation T̄ is used as a shorthand for T1, . . . , Tn, and similarly for other names.
The special location identifier this denotes the current location. For the sake of
generality, the syntax of expressions e and types T is left open. The semantics
of future variables f and concurrency instructions is explained below.

2.2 Semantics

A program state has the form loc1‖ . . . ‖locn, denoting the currently existing
distributed locations. Each location is a term loc(lid , tid ,Q) where lid is the
location identifier, tid is the identifier of the active task which holds the location’s
lock or ⊥ if the lock is free, and Q is the set of tasks at the location. Only one
task, which holds the location’s lock, can be active (running) at this location.

Peak Cost Analysis of Distributed Systems 21

All other tasks are pending, waiting to be executed, or finished, if they terminated
and released the lock. Given a location, its set of ready tasks is composed by
the tasks that are pending and the one that it is active at the location. A task
is a term tsk(tid ,m, l, s, c) where tid is a unique task identifier, m is the name
of the method executing in the task, l is a mapping from local variables to their
values, s is the sequence of instructions to be executed or s = τ if the task has
terminated, and c is a positive number which corresponds to the cost of the
instructions executed in the task so far. The cost of executing an instruction i
is represented in a generic way as cost(i).

The execution of a program starts from a method m in an initial state S0

with a single (initial) location of the form S0=loc(0, 0, {tsk(0,m, l, body(m), 0)}).
Here, l maps parameters to their initial values and local references to null (stan-
dard initialization), and body(m) refers to the sequence of instructions in the
method m. The execution proceeds from the initial state S0 by selecting non-
deterministically one of the locations and applying the semantic rules depicted
in Fig. 1. The treatment of sequential instructions is standard and thus omit-
ted. The operational semantics � is given in a rewriting-based style where at
each step a subset of the state is rewritten according to the rules as follows. In
NewLoc, an active task tid at location lid creates a location lid1 which is intro-
duced to the state with a free lock. Async spawns a new task (the initial state
is created by buildLocals) with a fresh task identifier tid1 which is added to the
queue of location lid1. The case lid=lid1 is analogous, the new task tid1 is sim-
ply added to Q of lid . The future variable f allows synchronizing the execution
of the current task with the termination of created task. The association of the
future variable to the task is stored in the local variables table l′. In Await-t,
the future variable we are awaiting for points to a finished task and await can be
completed. The finished task t1 is looked up at all locations in the current state
(denoted by Locs). Otherwise, Await-f yields the lock so that any other task of
the same location can take it. Rule Select returns a task that is not finished, and
it obtains the lock of the location. Return releases the lock and it will never be
taken again by that task. Consequently, that task is finished (marked by adding
τ). For brevity, we omit the return instructions in the examples.

3 Peak Cost of Distributed Systems

The aim of this paper is to infer an upper bound on the peak cost for all lo-
cations of a distributed system. The peak cost refers to the maximum amount
of resources that a given location might require along any execution. The over-
approximation consists in computing the sum of the costs of all tasks that can
be simultaneously ready in the location’s queue. Importantly, as the number of
ready tasks in the queue can increase and decrease along the execution, in order
to define the notion of peak cost, we need to observe all intermediate states along
the computation and take the maximum of their costs.

Example 1. Figure 2 shows to the left a method m that spawns several tasks at
a location referenced from variable x (the middle code can be ignored by now).

22 E. Albert, J. Correas, and G. Román-Dı́ez

1 m (C x, int n){
2 x! r() ;
3 while(n>0){
4 x!p(n);
5 f=x!q(n);
6 await f ?;
7 n = n−1;
8 }
9 x! s() ;

10 }

11 main (int i){
12 a© C x=newLoc;
13 b© C y=newLoc;
14 z=this!m(x,i);
15 await z?;
16 this !m(y,i−1);
17 }
18 r (){...}
19 p (int i){...}
20 q (int i){...}
21 s (){...}

1©

r1

x

2©

r1

p1

x

3©

r1

p1

q1

x

4©

r1

p1

x

5©

r1

p1

p2

q2

x

6©

r1

p1

p2

p3

q3

x

. . .

7©

r1

p1

... n

pn

qn

x

8©

r1

p1

... n

pn

x

9©

r1

p1

... n

pn

s1

x

Fig. 2. Running example

To the right of the figure, we depict the tasks that are ready in the queue of
location x at different states of the execution of m. For instance, the state 1© is
obtained after invoking method r at line 2 (L2 for short). The first iteration of the
while loop spawns a task p (state 2©) and then invokes q (state 3©). The important
observation is that q is awaited at L6, and thus it is guaranteed to be finished at
state 4©. The same pattern is repeated in subsequent loop iterations (states 5© to
7©). The last iteration of the loop, captured in state 7©, accumulates all calls to
p, and the last call to q. Observe that at most one instance of method q appears
in the queue at any point during the execution of the program. Finally, state 8©
represents the exit of the loop (L8) and 9© when method s is invoked at L9. The
await at L6 ensures that methods q and s will not be queued simultaneously.

We start by formalizing the notion of peak cost in the concrete setting. Let us
provide some notation. Given a state S≡loc1‖ . . . ‖locn, we use loc ∈ S to refer
to a location in S . The set of ready tasks at a location lid at state S is defined
as ready tasks(S , lid) = {tid | loc(lid, ,Q) ∈ S , tsk(tid, , , s,)∈Q, s �=τ}. Note
that we exclude the tasks that are finished. Given a finite trace t ≡ S0→ . . .→SN ,
we use C(lid, tid) to refer to the accumulated cost c in the final state SN by the
task tsk(tid, , , , c)∈Q that executes at location loc(lid, ,Q)∈SN , and C(Si, lid)
to refer to the accumulated cost of all active tasks that are in the queue at state Si

for location lid: C(Si, lid) =
∑

tid∈ready tasks(Si,lid)
C(lid, tid). Now, the peak cost

of location lid is defined as the maximum of the addition of the costs of the tasks
that are simultaneously ready at the location at any state: peak cost(t, lid) =
max({C(Si, lid) | Si ∈ t}). Observe that the cost always refers to the cost of
each task in the final state SN . This way we are able to capture the cost that a
location will need to carry out at each state Si with i ≤ N in which we have a
set of ready tasks in its queue but they have (possibly) not been executed yet.

Since execution is non-deterministic in the selection of tasks, given a program
P (x), multiple (possibly infinite) traces may exist. We use executions(P (x)) to
denote the set of all possible traces for P (x).

Definition 1 (peak Cost). The peak cost of a location with identifier lid in a
program P on input values x, denoted P(P (x), lid), is defined as:
P(P (x), lid) = max({peak cost(t, lid) | t ∈ executions(P (x))})

Peak Cost Analysis of Distributed Systems 23

Example 2. Let us reason on the peak cost for the execution of m. We use
....
m to

refer to the concrete cost of a task executing method m. We use subscripts
....
mj

to refer to the cost of the j-th task spawned executing method m. As the cost
often depends on the parameters, in general, we have different costs

....
m1,

....
m2,. . .

for the multiple executions of the same method. The queue of x in states 2© and
4© accumulates the cost

....
r1 +

....
p1 . At 6©, it accumulates

....
r1 +

....
p1 +

....
p2 +

....
p3 +

....
q3 .

The peak cost corresponds to the maximum among all states. Note that it is
unknown if the cost at 7© is larger than the cost at 3©- 5©- 6©-. . .. This is because
at each state we have a different instance of q running, and it can be that

....
q1

is larger than the whole cost of the next iterations. Only some states can be
discarded (for instance 1© and 2© are subsumed by 3©, and 8© by 9©).

The above example reveals several important aspects that make the inference of
the peak cost challenging: (1) We need to infer all possible queue configurations.
This is because the peak cost is non-cumulative, and any state can require the
maximum amount of resources and constitute the peak cost. This contrasts with
the total cost in which we only need to observe the final state. (2) We need
to track when tasks terminate their execution and eliminate them from the
configuration (the await instructions will reveal this information). (3) We need
to know how many instances of tasks we might have running and bound the cost
of each instance, as they might not all have the same cost.

4 Basic Concepts: Points-to, Cost, and MHP Analyses

Our peak cost analysis builds upon well-established work on points-to analysis
[14,13], total cost analysis [9,18,3] and may-happen-in-parallel (MHP) analysis
[11,5]. As regards the points-to and may-happen-in-parallel analyses, this section
only reviews the basic concepts which will be used later by our peak cost analysis.
As for the total cost analysis, we need to tune several components of the analysis
in order to produce the information that the peak cost analysis requires.

Points-to Analysis. Since locations can be dynamically created, we need an
analysis that abstracts them into a finite abstract representation, and that tells
us which (abstract) location a reference variable is pointing-to. Points-to analysis
[14,13,16] solves this problem. It infers the set of memory locations that a ref-
erence variable can point-to. Different abstractions can be used and our method
is parametric on the chosen abstraction. Any points-to analysis that provides
the following information with more or less accurate precision can be used (our
implementation uses [13]): (1) O, the set of abstract locations; (2) M(o), the
set of methods executed in tasks at the abstract location o ∈ O; (3) a function
pt(pp, v) which for a given program point pp and a variable v returns the set of
abstract locations in O to which v may point to.

Example 3. Consider the main method shown in Fig. 2, which creates two new
locations x at program point a© (abstracted as o1) and y at b© (abstracted as
o2) and passes them as parameters in the calls to m (at L14, L16). By using the

24 E. Albert, J. Correas, and G. Román-Dı́ez

points-to analysis we obtain the following relevant information, O={ε, o1, o2}
where ε is the location executing main, M(o1)={r, p, q, s}, M(o2)={r, p, q, s},
pt(L14, x)={o1} and pt(L16, y)={o2}. Observe that the abstract task executing
p at location o1 represents multiple instances of the tasks invoked at L4.

Cost Analysis. The notion of cost center (CC) is an artifact used to define
the granularity of a cost analyzer. In [3], the proposal is to define a CC for each
distributed location, i.e., CCs are of the form c(o) where o ∈ O. In essence,
the analyzer every time that accounts for the cost of executing an instruc-
tion b at program point pp, it also checks at which locations it is executing.
This information is provided by the points-to analysis as Opp=pt(pp, this). The
cost of the instruction is accumulated in the CCs of all elements in Opp as∑

c(o)∗cost(b), ∀o ∈ Opp, where cost(b) expresses in an abstract way the cost
of executing the instruction. If we are counting steps, then cost(b) = 1. If we
measure memory, cost(b) refers to memory created by b. Then, given a method
m(x̄), the cost analyzer computes an upper bound for the total cost of executing

m of the form Ĉm(x̄)=
∑n

i=1 c(oi)∗Ci, where oi∈O and Ci is a cost expression
that bounds the cost of the computation carried out by location oi when execut-
ing m. We omit the subscript in Ĉ when it is clear from the context. Thus, CCs
allow computing costs at the granularity level of the distributed locations. If one
is interested in studying the computation performed by one particular location
oj , denoted Ĉm(x̄)|oj , we simply replace all c(oi) with i �=j by 0 and c(oj) by
1. The use of CCs is of general applicability and different approaches to cost
analysis (e.g., cost analysis based on recurrence equations [17], invariants [9] or
type systems [10]) can trivially adopt this idea so as to extend their frameworks
to a distributed setting. In principle, our method can work in combination with
any analysis for total cost (except for the accuracy improvement in Sec. 5.3).

Example 4. By using the points-to information obtained in Ex. 3, a cost ana-
lyzer (we use in particular [2]) would obtain the following upper bounds on the
cost distributed at the locations o1 and o2 (we ignore location ε in what fol-
lows as it is not relevant): Ĉmain(i)=c(o1)∗r̂1 + c(o1)∗i∗p̂1 + c(o1)∗i∗q̂1 + c(o1)∗ŝ1 +
c(o2)∗r̂2 + c(o2)∗(i−1)∗p̂2 + c(o2)∗(i−1)∗q̂2 + c(o2)∗ŝ2. There are two important ob-
servations: (1) the analyzer computes the worst-case cost p̂1 for all instances of
tasks spawned at L4 executing p at location o1 (note that it is multiplied by
the number of iterations of the loop “i”); (2) the upper bound at location o2 for
the tasks executing p is p̂2, and it is different from p̂1 as the invocation to m at
L16 has different initial parameters. By replacing c(o1) by 1 we obtain the cost

executed at the location identified by o1, that is, Ĉmain|o1=r̂1 + i∗p̂1 + i∗q̂1 + ŝ1.

Context-Sensitive Task-Level Cost Centers. Our only modification to the
total cost analysis consists in using context-sensitive task-level granularity by
means of appropriate CCs. Let us first focus on the task-level aspect. We want
to distinguish the cost of the tasks executing at the different locations. We define
task-level cost centers, T , as the set {o:m ∈ O×M | o ∈ pt(pp, this)∧ pp ∈ m},
which contains all methods combined with all location names that can execute

Peak Cost Analysis of Distributed Systems 25

them. In the example, T ={ε:m, o1:r, o1:p, o1:q, o1:s, o2:r, o2:p, o2:q, o2:s}. Now,
the analyzer every time that accounts for the cost of executing an instruction
inst, it checks at which location it is executing (e.g., o) and to which method
it belongs (e.g., m), and it accumulates c(o:m)∗cost(b). Thus, it is straightfor-
ward to modify an existing cost analyzer to include task-level cost centers. The
context-sensitive aspect refers to the fact that the whole cost analysis can be
made context-sensitive by considering the calling context when analyzing the
tasks [15]. As usual, the context is the chain of call sites (i.e., the program point
in which the task is spawned and those of its ancestor calling methods). The
length of the chains is up to a maximum k which is a fixed parameter of the
analysis. For instance, for k=2, we distinguish 14:4:p the task executing p from
the first invocation to m at L14 and 16:4:p the one arising from L16. Their asso-
ciated CCs are then o1:14:4:p and o2:16:4:p. In the formalization, we assume that
the context (call site chain) is part of the method name m and thus we write
CCs simply as c(o:m). Then, given an entry method p(x̄), the cost analyzer will
compute a context-sensitive task-level upper bound for the cost of executing p of
the form Ĉp(x̄)=

∑n
i=1 c(oi:mi)∗Ci, where oi:mi ∈ T , and Ci is a cost expression

that bounds the cost of the computation carried out by location oi executing
methodmi, wheremi contains the calling context. The notation Ĉp(x̄)|o:m is used

to obtain the cost associated with c(o:m) within Ĉp(x̄), i.e., the one obtained by
setting to zero all c(o′:m′) with o′ �=o or m′ �=m and to one c(o:m).

Example 5. For the methodmain shown in Fig. 2, the cost expression obtained by
using task-level CCs and k=0 (i.e., making it context insensitive) is the following:
Ĉ(i)=c(o1:r)∗r̂1+c(o1:p)∗i∗p̂1+c(o1:q)∗i∗q̂1+c(o1:s)∗ŝ1+c(o2:r)∗r̂2+c(o2:p)∗(i−1)∗p̂2+
c(o2:q)∗(i−1)∗q̂2+c(o2:s)∗ŝ2. To obtain the cost carried out by o1 when executing
q, we replace c(o1:q) by 1 and the remaining CCs by 0, resulting in Ĉ(i)|o1:q=i∗q̂1.
For k>0, we simply add the call site sequences in the CCs, e.g., c(o1:14:4:p).

May-Happen-in-Parallel Analysis. We use a MHP analysis [11,5] as a black
box and assume the same context and object-sensitivity as in the cost analysis.
We require that it provides us: (1) The set of MHP pairs, denoted ẼP , of the
form (o1:p1, o2:p2) which indicates that program point p1 running at location
o1 and program point p2 running at location o2 might execute in parallel. (2)
A function nact(o:m) that returns 1 if only one instance of m can be active at
location o or ∞ if we might have more than one ([5] provides both 1 and 2).

Example 6. An MHP analysis [5] infers for the main method in Fig. 2, among
others, the following set of MHP pairs at location o1, {(o1:18, o1:19), (o1:18, o1:20),
(o1:18, o1:21), (o1:19, o1:20), (o1:19, o1:21)}. In essence, each pair is capturing that
the corresponding methods might happen in parallel, e.g., (o1:18, o1:19) implies
that methods r and p might happen in parallel. The MHP analysis learns infor-
mation from the await to capture that only one instance of q can be active at
location o1, thus nact(o1:q)=1. On the contrary, the number of active calls to p
is greater than 1, then nact(o1:p)=∞.

26 E. Albert, J. Correas, and G. Román-Dı́ez

5 Peak Cost Analysis

r

p q

s

c1

c2

Fig. 3. Gt(o1) for Fig 2

In this section we present our framework to in-
fer the peak cost. It consists of two main steps:
we first infer in Sec. 5.1 the configurations that
the (abstract) location queue can feature (we use
the MHP information in this step); and in a sec-
ond step, we compute in Sec. 5.2 the cost associ-
ated with each possible queue configuration (we
use the total cost in this step). Finally, we discuss
in Sec. 5.3 an important extension of the basic
framework that can increase its accuracy.

5.1 Inference of Queue Configurations

Our goal now is to infer, for each abstract location in the program, all its non-
quantified configurations, i.e., the sets of method names that can be executing
in tasks that are simultaneously ready in the location’s queue at some state in
the execution. Configurations are non-quantified because we ignore how many
instances of a method can be pending in the queue and their costs.

Definition 2 (Tasks Queue Graph). Given a program P , an abstract location
o ∈ O and the results of the MHP analysis ẼP , the tasks queue graph for o
Gt(o)=〈Vt, Et〉 is an undirected graph where Vt =M(o) and Et = {(m1,m2) |
(p1, p2) ∈ ẼP , p1∈m1, p2∈m2,m1 �=m2}.
It can be observed in the above definition that when we have two program
points that may-happen-in-parallel in the location’s queue, then we add an edge
between the methods to which those points belong.

Example 7. By using the MHP information for location o1 in Ex. 6, we obtain
the tasks queue graph Gt(o1) shown in Fig. 3 with the following set of edges
{(r, p), (r, q), (r, s), (p, s), (p, q)} (dotted lines will be explained later).

The tasks queue graph allows us to know the sets of methods that may be ready
in the queue simultaneously. This is because, if two methods might be queued at
the same time, there must be an edge between them in the tasks queue graph. It
is then possible to detect the subsets of methods that can be queued at the same:
those that are connected with edges between every two nodes that represent such
subset, i.e., they form a clique. Since we aim at finding the maximum number
of tasks that can be queued simultaneously, we need to compute the maximal
cliques in the graph. Formally, given an undirected graph G=〈V,E〉, a maximal
clique is a set of nodes C⊆V such that every two nodes in C are connected by
an edge, and there is no other node in V \C connected to every node in C.

Example 8. For Gt(o1) in Fig. 3, we have two maximal cliques: c1 = {p, q, r} and
c2 = {p, r, s}, which capture the states 7© and 9© of the queue of o1 (see Fig. 2).
Observe that the maximal cliques subsume other states that contain subsets of
a maximal clique. For instance, states 1©- 6© are subsumed by c1.

Peak Cost Analysis of Distributed Systems 27

1 Unit m1 () {
2 fa=x!a();
3 fb=x!b();
4 await fa?;
5 fc=x!c();
6 await fb?;
7 await fc ?;
8 }
9 Unit m2 () {

10 x!d();
11 x! e() ;
12 }

13 Unit ex1 () {
14 ff =this!m1();
15 await ff ?;
16 this !m2();
17 }

18 Unit ex2 () {
19 ff =this!m2();
20 await ff ?;
21 this !m1();
22 }

a

b

c

d

e

a

b

c

d

e

a

b

x

L3

b

x

L4

c

b

x

L5

x

L16

d

e

x

L17

d

e

x

L21

d

e

a

b

x

L3

d

e

b

x

L4

d

e

b

c

x

L5

d

e

x

L22

Fig. 4. Queue Configurations Example

Definition 3 (Queue Configuration). Given a location o, we define its queue
configuration, denoted by K(o), as the set of maximal cliques in Gt(o).

Therefore, a queue configuration is a set of sets, namely each element in K(o)
is a set of method names which capture a possible configuration of the queue.
Clearly, all possible (maximal) configurations must be considered in order to
obtain an over-approximation of the peak cost.

Example 9. Let us see a more sophisticated example for queue configurations.
Consider the methods in Fig. 4 which have two distinct entry methods, ex1
and ex2. They both invoke method m1, which spawns tasks a, b and c. m1
guarantees that a, b and c are completed when it finishes. Besides, we know that
b and c might run in parallel, while the await instruction in L4 ensures that a
and c cannot happen in parallel. Method m2 spawns tasks d and e and does
not await for their termination. We show in the middle of Fig. 4 the different
configurations of the queue of x (at the program points marked on top) when
we execute ex1 (above) and ex2 (below). Such configurations provide a graphical
view of the results of the MHP analysis (which basically contains pairs for each
two elements in the different queue states). In the queue of ex1, we can observe
that the await instructions at the end of m1 guarantee that the queue is empty
before launching m2 (see queue at L16). To the right of the queue we show the
resulting tasks queue graph for ex1 obtained by using the MHP pairs which
correspond to the queues showed in the figure. Then, we have K(x)={{a, b},
{b, c}, {d, e}}. Note that these cliques capture the states of the queue at L3, L5
and L17, respectively. As regards ex2, the difference is that m2 is spawned before
m1. Despite the await at L21, m2 is not awaiting for the termination of d nor
e, thus at L21 the queue might contain d and e. As for m1, we have a similar
behaviour than before, but now we have to accumulate also d and e along the
execution of m1. The resulting tasks queue graph is showed to the right. It can
be observed that it is densely connected, and now K(x)={{d, e, a, b}, {d, e, b, c}}.
Such cliques correspond to the states of the queue at L3 and L5, respectively.

28 E. Albert, J. Correas, and G. Román-Dı́ez

5.2 Inference of Quantified Queue Configurations

In order to quantify queue configurations and obtain the peak cost, we need
to over-approximate: (1) the number of instances that we might have running
simultaneously for each task, (2) the worst-case cost of such instances. The main
observation is that the upper bounds on the total cost in Sec. 4 already contain
both types of information. This is because the cost attached to the CC c(o:m)
accounts for the accumulation of the resource consumption of all tasks running
method m at location o. We therefore can safely use Ĉ(x)|o:m as upper bound of
the cost associated with the execution of method m at location o.

Example 10. According to Ex. 5, the costs accumulated in the CCs of o1:q and
o1:p are Ĉ(i)|o1:p = i ∗ p̂ and Ĉ(i)|o1:q = i ∗ q̂. Note that o1:q is accumulating
the cost of all calls to q, as the fact that there is at most one active call to q is
not taken into account by the total cost analysis. This is certainly a sound but
imprecise over-approximation that will be improved in Sec. 5.3.

The key idea to infer the quantified queue configuration, or simply peak cost, of
each location is to compute the total cost for each element in the set K(o) and
stay with the maximum of all of them. Given an abstract location o and a clique
k ∈ K(o), we have that Ĉ(x)|k =

∑
m∈k Ĉ(x)|o:m is the cost for the tasks in k.

Definition 4. Given a program P (x) and an abstract location o, the peak cost

for o, denoted P̂(P (x), o), is defined as P̂(P (x), o) = max({Ĉ(x)|k | k ∈ K(o)}).
Intuitively, as the elements of K capture all possible configurations that the
queue can take, it is sound to take the maximum cost among them.

Example 11. Following Ex. 8, the quantified queue configuration, that gives the
peak cost, accumulates the cost of all nodes in the two cliques, Ĉ(i)|c1=r̂+i∗p̂+i∗q̂
and Ĉ(i)|c2=r̂+i∗p̂+ŝ. The maximum between both expressions captures the

peak cost for o1, P̂(main(i), o1) = max({r̂+i∗p̂+i∗q̂, r̂+i∗p̂+ŝ}).

The following theorem states the soundness of our approach.

Theorem 1 (Soundness). Given a program P with arguments x, a concrete

location lid, and its abstraction o, we have that P(P (x), lid) ≤ P̂(P (x), o).

5.3 Number of Tasks Instances

As mentioned above, the basic approach has a weakness. From the queue con-
figuration, we might know that there is at most one task running method m
at location o. However, if we use Ĉ(x)|o:m, we are accounting for the cost of all
tasks running method m at o. We can improve the accuracy as follows. First,
we use an instantiation of the cost analysis in Sec. 4 to determine how many
instances of tasks running m at o we might have. This can be done by defining
function cost in Sec. 4 as follows: cost(inst) = 1 if inst is the entry instruction to

a method, and 0 otherwise. We denote by Ĉc(x) the upper bound obtained using
such cost model that counts the number of tasks spawned along the execution,
and Ĉc(x)|o:m the number of tasks executing m at location o.

Peak Cost Analysis of Distributed Systems 29

Example 12. The expression that bounds the number of calls from main is Ĉc(i)=
c(o1:r)+i∗c(o1:p)+i∗c(o1:q)+c(o1:s)+c(o2:r)+(i−1)∗c(o2:p)+(i−1)∗c(o2:q)+c(o2:s).

It can be seen that CCs are the same as the ones used in Ex. 5. The difference
is that when inferring the number of calls we do not account for the cost of each
method but rather count 1. Then, Ĉc(i)|o1:q = i and Ĉc(i)|o2:q = i−1.

Let us assume that the same cost analyzer has been used to approximate Ĉ
and Ĉc, and that the analysis assumed the worst-case cost of m for all in-
stances of m. Then, we can gain precision by obtaining the cost as C̃(x)|o:m =

Ĉ(x)|o:m/Ĉc(x)|o:m if nact(o:m) = 1 and C̃(x)|o:m = Ĉ(x)|o:m, otherwise. Intu-
itively, when the MHP analysis tells us that there is at most one instance of m
(by means of nact) and, under the above assumptions, the division is achieving
the desired effect of leaving the cost of one instance only.

Example 13. As we have seen in Ex. 6, the MHP analysis infers nact(o1:p) =∞
and nact(o1:q) = 1. Thus, by the definition of C̃, the cost for p is C̃(i)|o1:p = i ∗ p̂
(the same obtained in Ex. 10). However, for q we can divide the cost accumulated

by all invocations to q by the number of calls to q, C̃(i)|o1:q = i ∗ q̂/i = q̂.

14:2:r

14:4:p

14:5:q

14:9:s 16:2:r

16:4:p

16:5:q

16:9:s

Fig. 5. Queue Config. for Fig. 2

Unfortunately, it is not always sound to
make such division. The problem is that the
cost accumulated in a CC for a method m
might correspond to the cost of executions of
m from different calling contexts that do not
necessarily have the same worst-case cost. If
we divide the expression Ĉ(x)|o:m by the num-
ber of instances, we are taking the average of
the costs, and this is not a sound upper bound
of the peak cost, as the following example il-
lustrates.

Example 14. Consider a method main′ which is as main of Fig. 2 except that
we replace L16 by this!m(x, i− 1), i.e., while main uses two different locations, x
and y, in main′ we only use x. Such modification affects the precision because it
merges o1 and o2 in a single queue, o1. Now, in main′, s, launched by the first call
to m, might run in parallel with q, spawned in the second call to m. Therefore,
in Fig. 3 a new edge that connects q and s appears, and consequently, the new
queue configuration contains all methods in just one clique {p, q, r, s}. Moreover,
CCs o1:q with o2:q are merged in a single CC o1:q. For main′, the cost of q̂ is
Ĉ(i)|o:q=i∗q̂+(i−1)∗q̂, and the number of calls is Ĉc(i)|o:q=i+ (i−1). Assume that
the cost of q is q̂ = n ∗ 5 which is a function on the parameter n. The worst-case
cost for q̂ depends on the calling context: in the context at L14, we have q̂ = i∗5
while in L16, we have q̂ = (i−1)∗5. Then, the cost that we obtain for main′ is

Ĉ(i)|o:q=i∗i∗5+(i−1)∗((i−1)∗5). The division of Ĉ(i) by Ĉc(i) is not sound because
it computes the average cost of all calls to q, rather than the peak.

30 E. Albert, J. Correas, and G. Román-Dı́ez

Importantly, we can determine when the above division is sound in a static way.
The information we are seeking is within the call graph for the program: (1) If
there are not convergence nodes in the call graph (i.e., the call graph is a tree),
then it is guaranteed that we do not have invocations to the same method from
different contexts. In this case, if there are multiple invocations, it is because
we are invoking m from the same context within a loop. Typically, automated
cost analyzers assume the same worst-case cost for all loop iterations and, in
such case, it is sound to make the division. Note that if the total cost analysis
infers a different cost for each loop iteration, the accuracy improvement in this
section cannot be applied; (2) If there are convergence nodes, then we need to
ensure that the context-sensitive analysis distinguishes the calls that arise from
different points, i.e., we have different CCs for them. This can be ensured if the
length of the chains of call sites used in the context by the analysis, denoted
k, is larger than kd, the depth of the subgraph of the call graph whose root is
the first convergence node encountered. Note that, in the presence of recursive
methods, we will not be able to apply this accuracy improvement since the depth
is unbounded. Theorem 1 holds for C̃ if the context considered by the analysis
is greater than kd.

Theorem 2. Let P̃(P (x), o) be the peak cost computed using C̃. We have that

P(P (x), lid)≤P̃(P (x), o) if k>kd, where k is the length of the context used.

Example 15. Let us continue with main′ of Ex. 14. Assuming that p, q, r and
s do not make any further call, the call graph has m as convergence node,
and thus kd=1. Therefore, we apply the context-sensitive analysis with k=2.
The context-sensitive analysis distinguishes 14:4:p, 16:4:p, and, in q, 14:5:q and
16:5:q. The queue configuration is showed in Fig. 5. In contrast to Ex. 14 we
have three different cliques, K(o1)={{14:4:p, 14:2:r, 14:5:q}, {14:4:p, 14:2:r, 14:9:s,
16:4:p, 16:2:r, 16:5:q}, {14:4:p, 14:2:r, 14:9:s, 16:4:p, 16:2:r, 16:9:s}}, which capture
more precisely the queue states (e.g., we know that 16:5:q cannot be in the
queue with 16:9:s but it might be with 14:9:s). Besides, we have two differ-
ent CCs for q, 14:5:q and 16:5:q, which allow us to safely apply the division
as to obtain the cost of a single instance of q for the two different contexts.
We obtain Ĉ(i)|14:5:q=i∗i∗5 and Ĉ(i)|16:5:q=(i−1)∗((i−1)∗5), and for the number
of calls, Ĉc(i)|14:5:q=i and Ĉc(i)|16:5:q=i−1. Using such expressions we compute
C̃(i)|14:5:q = i∗5 and C̃(i)|16:5:q = (i−1)∗5 which are sound and precise over-
approximations for the cost due to calls to q.

6 Experimental Evaluation

We have implemented our analysis in SACO [2] and applied it to some typical
examples of distributed systems: BBuffer, a bounded-buffer for communicating
producers and consumers; MailS, a client-server distributed system; Chat, a chat
application; DistHT, a distributed hash table; and P2P, a peer-to-peer network.
Experiments have been performed on an Intel Core i5 (1.8GHz, 4GB RAM),
running OSX 10.8. Table 1 summarizes the results obtained. Columns Bench.

Peak Cost Analysis of Distributed Systems 31

Table 1. Experimental results (times in seconds)

Context Insensitive Context Sensitive

Bench. loc #c T #q %q %m %M %
̂P #′

q %′
q %′

m %′
M %

˜P
BBuffer 107 6 2.0 9 66.7% 50.0% 100% 78.1% 10 52.2% 17.6% 100% 31.6%

MailS 97 6 2.8 8 75.1% 71.6% 100% 81.7% 8 73.3% 71.6% 100% 81.7%

DistHT 150 4 2.5 8 69.4% 53.7% 100% 88.0% 8 69.4% 46.4% 100% 88.0%

Chat 328 10 2.4 16 66.0% 50.0% 100% 90.8% 16 66.0% 7.5% 100% 90.8%

P2P 259 9 28.0 26 52.9% 91.1% 100% 97.3% 32 32.3% 44.6% 100% 64.7%

Mean 66.0% 62.3% 100% 87.1% 58.6% 37.46% 100% 71.3%

and loc show, resp., the name and the number of program lines. Column #c

shows the number of locations identified by the analysis. Columns T and #q

show, resp., the time to perform the analysis and the number of cliques.
We aim at comparing the gain of using peak cost analysis w.r.t. total cost. Such

gain is obtained by evaluating the expression that divides the peak cost by the to-
tal cost for 15 different values of the input parameters, and computing the average.
The gain is computed at the level of locations, by comparing the peak cost for the
location with the total cost for such location in all columns except in %q, where
we show the average gain at the level of cliques. Columns%m and%M show, resp.,
the greatest and smallest gain among all locations. Column %

̂P shows the aver-
age gain weighted by the cost associated with each location (locations with higher
resource consumption have greater weight). Columns #′

q, %
′
q, %

′
m, %

′
M , and %

˜P
contain the same information for the context-sensitive analysis. As we do not have
yet an implementation of the context-sensitive analysis, we have replicated those
methods that are called from different contexts.DistHT and Chat do not need repli-
cation. The last row shows the arithmetic mean of all results.

We can observe in the table that the precision gained by considering all possi-
ble queue states (%q and %′

q) is significant. In the context-insensitive analysis, it
ranges from a gain of 53% to 75% (on average 66%). Such value is improved in the
context sensitive analysis, resulting in an average gain of 58.6%. This indicates
that the cliques capture accurately the cost accumulated in the different states
of the locations’ queues. The gain of the context sensitive analysis is justified by
the larger number of cliques (#′

q) in BBuffer and P2P. The maximal gains showed
in columns %m (and %′

m) indicate that the accuracy can be improved on average
62.3% (and 37.46%). The minimal gains in %M and %′

M are always 100%, i.e., no
gain. This means that in all benchmarks we have at least one state that accumu-
lates the cost of all methods executed at its location (typically because await is

never used). Columns %
̂P and %

˜P show, in BBuffer and P2P, that P̃ significantly

outperforms P̂. Such improvement is achieved by a more precise configuration
graph that contains more cliques, and by the division on the number of calls in
methods that require a significant part of the resource consumption. However,
in MailS, P̃ does not improve the precision of P̂. This is because the methods
that contain one active instance are not part of the cliques that lead to the peak
cost of the location. Despite of the NP-completeness of the clique problem, the
time spent performing the clique computation is irrelevant in comparison with

32 E. Albert, J. Correas, and G. Román-Dı́ez

the time taken by the upper bound computation (less than 50ms for all bench-
marks). All in all, we argue that our experiments demonstrate the accuracy of
the peak cost analysis, even in its context insensitive version, with respect to
the total cost analysis.

7 Conclusions, Related and Future Work

To the best of our knowledge, our work constitutes the first analysis framework
for peak cost of distributed systems. This is an essential problem in the context
of distributed systems. It is of great help to dimension the distributed system in
terms of processing requirements, and queue sizes. Besides, it paves the way to
the accurate prediction of response times of distributed locations. The task-level
analysis in [4] is developed for a specific cost model that infers the peak of tasks
that a location can have. There are several important differences with our work:
(1) we are generic in the notion of cost and our framework can be instantiated to
measure different types of cost, among them the task-level; (2) the distributed
model that we consider is more expressive as it allows concurrent behaviours
within each location (by means of instruction await), while [4] assumes a simpler
asynchronous language in which tasks are run to completion; (3) the analysis
requires the generation of non-standard recurrence equations, while our analysis
benefits from the upper bounds obtained using standard recurrence equations
for total cost, without requiring any modification. Indeed, the analysis in [4]
could be reformulated in our framework using the MHP analysis of [11,12].

Also, the peak heap consumption in the presence of garbage collection is a non
cumulative type of resource. The analysis in [6] presents a sophisticated frame-
work for inferring the peak heap consumption by assuming different garbage
collection models. As before, in contrast to ours, the analysis is based on gener-
ating non-standard equations and for a specific type of resource. In this case, the
differences are even more notable as the language in [6] is sequential. Analysis
and verification techniques of concurrent programs seek finite representations
of the program traces which avoid the exponential explosion in the number of
traces (see [8] and its references). In this sense, our queue configurations are a
coarse representation of the traces. As future work, we plan to further improve
the accuracy of our analysis by splitting tasks into fragments according to the
processor release points within the task. Intuitively, if a task contains an await
instruction we would divide into the code before the await and the code after.
This way, we do not need to accumulate the cost of the whole task if only the
fragment after the await has been queued.

Acknowledgments. Thisworkwas fundedpartially by theEUprojectFP7-ICT-
610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-
project.eu) and by the Spanish projects TIN2008-05624 and TIN2012-38137.

http://www.envisage-project.eu
http://www.envisage-project.eu

Peak Cost Analysis of Distributed Systems 33

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of x10 programs. In: Yelick, K.A., Mellor-Crummey, J.M. (eds.) PPOPP,
pp. 183–193. ACM (2007)

2. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: Static Analyzer for Con-
current Objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 562–567. Springer, Heidelberg (2014)

3. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078,
pp. 238–254. Springer, Heidelberg (2011)

4. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-Level Analysis for a Lan-
guage with Async-Finish parallelism. In: Proc. of LCTES 2011, pp. 21–30. ACM
Press (2011)

5. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012.
LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

6. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Heap Space Analysis for Garbage
Collected Languages. Science of Computer Programming 78(9), 1427–1448 (2013)

7. Barik, R.: Efficient computation of may-happen-in-parallel information for concur-
rent java programs. In:Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan,
P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 152–169. Springer, Heidelberg (2006)

8. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL, pp.
129–142. ACM (2013)

9. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Es-
timation of Program Computational Complexity. In: Proc. of POPL 2009, pp.
127–139. ACM (2009)

10. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
In: Proc. of POPL 2011, pp. 357–370. ACM (2011)

11. Lee, J.K., Palsberg, J.: Featherweight x10: A core calculus for async-finish paral-
lelism. SIGPLAN Not. 45(5), 25–36 (2010)

12. Lee, J.K., Palsberg, J., Majumdar, R.: Complexity results for may-happen-in-
parallel analysis (2010) (manuscript)

13. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for
Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

14. Shapiro, M., Horwitz, S.: Fast and Accurate Flow-Insensitive Points-To Analysis.
In: Proc. of POPL 1997, Paris, France, pp. 1–14. ACM (January 1997)

15. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your Contexts Well: Under-
standing Object-Sensitivity. In: Proc. of POPL 2011, pp. 17–30. ACM (2011)

16. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI, pp. 387–400 (2006)

17. Wegbreit, B.: Mechanical Program Analysis. Communications ACM 18(9), 528–539
(1975)

18. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) Static Analysis. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

Abstract. We propose a novel approach for computing weakest liberal safe pre-
conditions of programs. The standard approaches, which call for either under-
approximation of a greatest fixed point, or complementation of a least fixed point,
are often difficult to apply successfully. Our approach relies on a different decom-
position of the weakest precondition of loops. We exchange the greatest fixed
point for the computation of a least fixed point above a recurrent set, instead of
the bottom element. Convergence is achieved using over-approximation, while
in order to maintain soundness we use an under-approximating logical subtrac-
tion operation. Unlike general complementation, subtraction more easily allows
for increased precision in case its arguments are related. The approach is not re-
stricted to a specific abstract domain and we use it to analyze programs using the
abstract domains of intervals and of 3-valued structures.

1 Introduction

Forward static analyses usually compute program invariants which hold of executions
starting from given initial conditions, e.g., over-approximations of reachable states.
Conversely, backward static analyses for universal properties compute program invari-
ants which ensure given assertions hold of all executions, e.g., under-approximations
of safe states. Forward analysis of programs has been a notable success, while such
backward analysis has seen much less research and is done less frequently (a notable
example is [17]).

The standard formulation of forward analyses involves over-approximating a least
fixed point of a recursive system of equations (transformers) that over-approximate the
forward semantics of commands. Conversely, backward analyses for universal proper-
ties usually involve under-approximating a greatest fixed point of under-approximate
equations.

The over-approximating abstractions used by forward analyses are far more com-
mon and well-developed than the under-approximations used by backward analyses.
One approach to under-approximation is via over-approximate abstraction and under-
approximate complementation . � /. For example, lower widening p � q may be seen as
p � q. However, computing the complement is, in many cases, infeasible or impractical
(e.g., for 3-valued structures [22], separation logic [8], or polyhedra [12]).

Here, we suggest an alternative backward analysis approach that uses least fixed-
point approximation, and an under-approximate logical subtraction operation in lieu

Backward Analysis via over-Approximate

Abstraction and under-Approximate Subtraction

Alexey Bakhirkin1, Josh Berdine2, and Nir Piterman1

1 University of Leicester, Department of Computer Science
2 Microsoft Research

M. Müller-Olm and H. Seidl (eds.): SAS 2014, LNCS 8723, pp. 34–50, 2014.
c© Springer International Publishing Switzerland 2014

of complementation. (Logical subtraction can also be understood as and with comple-
ment or not implies.) We show how to extend a computation of a recurrent set of a
program with a least fixed-point approximation to obtain an under-approximation of
the safe states from which no execution can lead to a failure (such as violating an asser-
tion, dividing by zero, or dereferencing a dangling-pointer – i.e., an event that causes
program execution to immediately abort and signal an error). Soundness is ensured by
subtracting an over-approximation of the unsafe states.

Using subtraction instead of complementation has several advantages. First, it is
easier to define in power set domains for which complementation can be hard or im-
practical. Second, as the approximations of safe and unsafe states are the results of
analyzing the same code, they are strongly related and so subtraction may be more
precise than a general under-approximate complementation.

Our approach is not restricted to a specific abstract domain and we use it to analyze
numeric examples (using the domain of intervals) and examples coming from shape
analysis (using the domain of 3-valued structures).

2 Preliminaries

Let U denote the set of program memory states and � … U a failure state. The concrete
domain for our analysis is the power set P.U/ ordered by �, with least element ∅,
greatest element U , join [, and meet \.

We introduce an abstract domain D (with v, ?, >, t, and u) and a concretization
function � WD ! P.U/. For an element of an abstract domain, d 2 D; �.d/ is the set
of states represented by it. For example, for a program with two variables x and y, an
element of the interval domain d D hx W Œ1I 2�; y W Œ3I 4�i represents all states satisfying
.1 � x � 2/ ^ .3 � y � 4/, i.e., �.d/ D f.x; y/ j 1 � x � 2 ^ 3 � y � 4g.

For a lattice L, we define complementation as a function . � / W L! L such that for
every l 2 L; �.l/ \ �.l/ D ∅ (i.e., they represent disjoint sets of states – but we do
not require that �.l/[�.l/ D U). For example, if d 2 D over-approximates the unsafe
states, then d under-approximates the safe states. For our concrete domain P.U/ (and
similarly, for every power set of atomic elements), we can use standard set-theoretic
complement: S D U X S .

We define subtraction as a function . � � � / W L! L! L such that for l1; l2 2 L
we have �.l1 � l2/ � �.l1/ and �.l1 � l2/ \ �.l2/ D ∅. For example, given a domain
D, we can define subtraction for the power set domain P.D/ as

D1 �D2 D fd1 2 D1j 8 d2 2 D2: �.d1/ \ �.d2/ D ∅g (1)

This way, subtraction can be defined in e.g., the domain of 3-valued structures that
does not readily support complementation. We claim that a useful subtraction is often
easier to define than a useful complementation. We also note that for every l0 2 L, the
function �l:.l0 � l/ is a complementation. However, for a given l , the accuracy of this
complement depends on the actual choice of l0.

Backward Analysis via over-Approximate Abstraction 35

2.1 Programming Language Syntax and Semantics

We consider a simple structured programming language. Given a set of atomic state-
ments A ranged over by a, statements C of the language are constructed as follows:

C WWD a atomic statement
j C1 I C2 sequential composition: executes C1 and then C2

j C1 C C2 branch: non-deterministically branches to either C1 or C2

j C � loop: iterated sequential composition of � 0 copies of C

We assume A contains: the empty statement skip, an assertion statement assert'
(for a state formula '), and an assumption statement Œ'�. Informally, an assertion im-
mediately aborts the execution and signals an error if ' is not satisfied, and we con-
sider that there are no valid executions violating assumptions. Standard condition-
als if.'/ C1 else C2 can be expressed by .Œ'�IC1/ C .Œ:'�IC2/. Similarly, loops
while.'/ C can be expressed by .Œ'�IC/� I Œ:'�.

A state formula ' denotes a set of non-failure states �'� � U that satisfy '. The
semantics of a statement C is a relation �C � � U � .U [f�g/. For s; s0 2 U , �C �.s; s0/
means that executing C in state s may change the state to s0. Then, �C �.s; �/means that
s is unsafe: executing C from state s may result in failure (may cause the program to
immediately abort). Let �U be the diagonal relation on states �U D f.s; s/ j s 2 Ug.
Let composition of relations in U � .U [f�g/ be defined as S � R D .R [f.�; �/g/ ı
S where ı is standard composition of relations. Fixed points in U � .U [f�g/ are
with respect to the subset order, where lfp�X:F.X/ denotes the least fixed point of
�X:F.X/, and similarly, gfp�X:F.X/ denotes the greatest fixed point of �X:F.X/.
For an atomic statement a, we assume that �a� is a predefined left-total relation, and the
semantics of other statements is defined as follows:

�skip� D �U �C1 I C2� D �C1� � �C2�
�Œ'�� D f.s; s/ j s 2 �'�g �C1 C C2� D �C1� [�C2�

�assert'� D f.s; s/ j s 2 �'�g [
f.s; �/ j s 2 U ^ s … �'�g

�C �� D lfp�X:�U [.�C � �X/

Note that the assumption that atomic statements denote left-total relations excludes
statements that affect control flow such as break or continue. In what follows, we
constrain considered programs in the following way. Programs cannot have nested loops
and assumption statements Œ'� are only allowed to appear at the start of branches and at
the entry and exit of loops (they cannot be used as normal atomic statements):

C WWD a j C1 I C2 j .Œ'� I C1/C .Œ � I C2/ j .Œ � I C/� I Œ'�
We require that for branches and loops, ' _ D 1 (i.e., �'�[� � D U). That is, for a
loop-free statement, the domain of its semantics is U . We also require that the language
of state formulas is closed under negation.

2.2 Fixed-Point Characterizations of Safe and Unsafe States

Given a statement C and a set of states S � U , we define:

36 A. Bakhirkin, J. Berdine, and N. Piterman

– pre.C; S/ D fs 2 U j 9s0 2 S: �C �.s; s0/g. The states that may lead to S after
executing C .

– fail.C / D fs 2 U j �C �.s; �/g. The unsafe states: those that may cause C to fail.
– wp.C; S/ D fs 2 U j 8s0 2 U [f�g: �C �.s; s0/) s0 2 Sg. The weakest liberal

precondition that ensures safety [7] – safe states that must lead to S if execution of
the statement terminates.

We abbreviate pre.C; S/ [fail.C / to pre+fail.C; S/.

Lemma 1. For a statement C and a set of states S � U ,
wp.C; S/ D U X pre+fail.C;U X S/.
The proof is a direct calculation based on the definitions. See the companion technical
report [3] for proofs.

For a programC , our goal is to compute (an under-approximation of) wp.C;U/, and
(an over-approximation of) its complement fail.C /. If we are interested in termination
with specific postcondition ', we add an assert' statement to the end of the program.
We characterize these sets (as is standard [9,10]) as solutions to two functionals P and
N that associate a statement C and a set of states S (resp., V) � U with a predicate
P.C; S/, resp., N.C; V /. P.C; S/ (the positive side) denotes the states that must either
lead to successful termination in S or cause non-termination, andN.C; V / (the negative
side) denotes the states that may lead to failure or termination in V .

P.a; S/ D wp.a; S/ N.a; V / D pre+fail.a; V /

P.Œ'�; S/ D �:'� [S N.Œ'�; V / D �'� \ V
P.assert'; S/ D �'� \ S N.assert'; V / D �:'� [V
P.C1IC2; S/ D P.C1; P.C2; S// N.C1IC2; V / D N.C1; N.C2; V //

P.C1 C C2; S/ D P.C1; S/ \ P.C2; S/ N.C1 C C2; V / D N.C1; V / [N.C2; V /

P.C �; S/ D gfp�X: S \ P.C;X/ N.C �; V / D lfp�Y: V [N.C; Y /

Lemma 2. For a statement C and set of states S � U , P.C; S/ D U XN.C; U X S/.
The proof is by structural induction.

Lemma 3. For a statement C and sets of states S; V � U , P.C; S/ D wp.C; S/, and
N.C; V / D pre+fail.C; V /.

The proof is by structural induction, relying on continuity of pre+fail.

3 Least Fixed-Point Characterization of Safe States

The direct solution of the positive side is by under-approximating a greatest fixed point.
This can be problematic since most domains are geared towards over-approximating
least fixed points. Hence, we are not going to approximate the greatest fixed point for the
positive side directly. Instead, we restate the problem for loops such that the resulting
characterization leads to a least fixed point computation where termination is ensured
by using an appropriate over-approximate abstraction.

Backward Analysis via over-Approximate Abstraction 37

In this section, we focus on the looping statement:

Cloop D .Œ � I Cbody/
� I Œ'� (2)

where Cbody is the loop body; if holds the execution may enter the loop body; and if
' holds the execution may exit the loop. To simplify the presentation, in what follows,
we assume that the semantics of Cbody is directly known. Since Cbody is itself loop-free,
�Cbody� does not induce fixed points, and the transformers for the loop body can be
obtained, e.g., by combining the transformers for its sub-statements.

3.1 Recurrent Sets

We reformulate the characterizations of safe states in terms of least fixed points with
the use of recurrent sets. For the loop in (2), an existential recurrent set is a set R9, s.t.

R9 � � �
8s 2 R9: 9s0 2 R9: �Cbody�.s; s0/

These are states that may cause non-termination (i.e., cause the computation to stay
inside the loop forever). For the loop in (2), a universal recurrent set is a set R8, s.t.

R8 � �:'�
8s 2 R8:

�8s0 2 U [f�g: �Cbody�.s; s0/) s0 2 R8
�

These are states that must cause non-termination. For practical reasons discussed later
in Sect. 4.2, we do not require these sets to be maximal.

Lemma 4. For the loop Cloop D .Œ � I Cbody/
� I Œ'�, and a set of states S � U

R8 � P.Cloop; S/ R9 XN.Cloop; U X S/ � P.Cloop; S/

For R8, the proof correlates universal recurrence and wp, relying on monotonicity of
P.Cloop; � /. For R9, the result follows from Lemma 2.

3.2 Positive Least Fixed Point via Recurrent Sets

We begin with an informal explanation of how we move from a greatest fixed point
formulation to a least fixed point one. Observe that for the loop in (2), the positive and
negative sides (following the definition in Sect. 2.2) are characterized by:

P.Cloop; S/ D gfp�X: .�:'� [S/ \ ��: � [P.Cbody; X/
�

N.Cloop; V / D lfp�Y: .�'� \ V / [�� � \N.Cbody; Y /
� (3)

Then, since loops only occur at the top level, a program Cprg that contains the loop Cloop
can be expressed as Cinit I Cloop I Crest (where Cinit or Crest may be skip). Let:

– Prest D P.Crest;U/ – the safe states of the loop’s continuation.
– Nrest D N.Crest;∅/ – states that may cause failure of the loop’s continuation. Note

that Nrest D U X Prest.

38 A. Bakhirkin, J. Berdine, and N. Piterman

U

Ploop Nloop

Tmust R9

(a) Partitioning with existential recurrence.

U

Ploop Nloop

R8 Tmay

(b) Partitioning with universal recurrence.

Fig. 1. Partitioning of the states at the loop entry

– Ploop D P.Cloop; Prest/ – the safe states of the loop and its continuation.
– Nloop D N.Cloop; Nrest/ – states that may cause failure of the loop or its continua-

tion. Note that Nloop D U X Ploop.
For the loop in (2), Fig. 1 shows how the states entering the loop can be partitioned.
In the figure, by Tmust, we denote the states that must cause successful termination of
the loop (in a state belonging to Prest), and by Tmay, we denote states that may cause
successful termination.

Fig. 1a shows that the positive side for the loop in (2) can be partitioned into the
following two parts:

– R9 XNloop – states that may cause non-termination but may not fail;
– Tmust – states that must cause successful termination of the loop.
Tmust can be characterized as the least fixed point:

Tmust D lfp�X: .�: � \ Prest/ [
��
.� � \ Prest/ [�:'�� \ wp.Cbody; X/

�

Intuitively, the states in �: �\Prest cause the loop to immediately terminate (such that
the rest of the program does not fail), those in ..� �\Prest/[�:'�/\wp.Cloop; �: �\
Prest/ can make one iteration through the loop, and so on.

Fig. 1b shows that the positive side can also be partitioned in another way:
– R8 – states that must cause non-termination of the loop;
– Tmay XNloop – states that may cause successful termination but may not fail.

In a way similar to [10], Tmay can be characterized as the least fixed point:

Tmay D lfp�X: .�'� \ Prest/ [
�� � \ pre.Cbody; X/

�

Intuitively, from states �'� \ Prest, the loop may immediately terminate in a state safe
for Crest, from states � �\ pre.Cbody; �'�\Prest/ the loop may make one iteration and
terminate, and so on. From this, it can be shown that

Tmay XNloop D lfp�X:
�
.�'� \ Prest/ XNloop

� [�
.�:'� \ pre.Cbody; X// XNloop

�

We replace with :', since the states in � � \ �'� \ pre.Cbody; X/ are either al-
ready included in the first disjunct (if belonging to Prest), or are unsafe and removed by
subtraction.

Backward Analysis via over-Approximate Abstraction 39

Following these least fixed point characterizations, we re-express the equation for
the positive side of the loop (3) using the existential recurrent set R9 as follows, where
N D N.Cloop;U X S/:

P 9.Cloop; S/ D lfp�X: .R9 XN/ [.�: � \ S/
[

��
.� � \ S/ [�:'�� \ wp.Cbody; X/

� (4)

or using the universal recurrent set R8 as follows:

P 8.Cloop; S/ D lfp�X:R8 [
�
.�'� \ S/ XN �

[
���:'� \ pre.Cbody; X/

� XN
� (5)

Theorem 1. The alternative characterizations of the positive side of the loop: (4) and
(5) – under-approximate the original characterization (3). That is, for a set S � U ,

P 9.Cloop; S/ � P.Cloop; S/ P 8.Cloop; S/ � P.Cloop; S/

4 Approximate Characterizations

In Sects. 2.2 and 3.2, we characterized both the negative and the positive sides as least
fixed points. For the negative side, our goal is to over-approximate the least fixed point,
and we can do that using standard tools. That is, we move to an abstract domain D(v,
?, >, t, u, �) where widening � and join t may coincide for domains that do not
allow infinite ascending chains. For the positive side our goal is to under-approximate
the least fixed point, and to do so, we build an increasing chain of its approximations
and use the previously computed negative side and subtraction to ensure soundness.

As before, since we do not allow nested loops, we assume that abstract transformers
for loop bodies are given. For a loop-free statement C and d 2 D, we assume: over-
and under-approximating transformers pre].C; d/ and wp[.C; d/, over-approximating
operation fail].C /; and for assumption statements Œ'�: under- and over-approximate
transformers Œ'; d �[and Œ'; d �] such that:

�.pre].C; d// � pre.C; �.d// �.fail].C // � fail.C /

�.wp[.C; d// � wp.C; �.d// �.Œ'; d �[/ � �'� \ �.d/ � �.Œ'; d �]/
We abbreviate Œ';>�[to Œ'�[and Œ';>�] to Œ'�].

Note that the above includes both over-approximating and under-approximating op-
erations. In section 4.1, we relax the requirements and obtain an analysis where sub-
traction is the only under-approximating operation.

For a statement C and n 2 D, the approximate negative side N].C; n/, which over-
approximates N.C; �.n//, is (non-recursively) defined as follows:

N].a; n/ D pre+fail].a; n/

N].C1 I C2; n/ D N]
�
C1; N

].C2; n/
�

40 A. Bakhirkin, J. Berdine, and N. Piterman

N]
�
.Œ'�IC1/C .Œ �IC2/; n

� D Œ';N].C1; n/�
] t Œ ;N].C2; n/�

]

N]
�
.Œ �ICbody/

�I Œ'�; n� D the first nj 2 fnigi�0 such that nj C1 v nj where

n0 D Œ'; n�] and niC1 D ni � Œ ;N].Cbody; ni /�
]

For a statement C and a pair of elements p; n 2 D that are disjoint (�.p/\ �.n/ D
∅), we define the approximate positive sideP [.C; p; n/ such that it under-approximates
P.C;U X �.n//. P [.C; p; n/ is defined mutually with an auxiliary Q\.C; p; n/ by in-
duction on the structure of C . Optimally, Q\.C; p; n/ represents a tight under-approx-
imation of P.C; �.p//, but actually need not be an under-approximation. Also, note
how n is used to abstractly represent the complement of the set of interest.

For loop-free code, P [and Q\ are (non-recursively) defined as follows:

P [.C; p; n/ D Q\.C; p; n/ �N].C; n/

Q\.a; p; n/ D wp[.a; p/

Q\.C1 I C2; p; n/ D P [
�
C1; P

[.C2; p; n/;N
].C2; n/

�

Q\
�
.Œ'�IC1/C .Œ �IC2/; p; n

� D �
P [.C1; p; n/ u P [.C2; p; n/

� t
Œ: ;P [.C1; p; n/�

[t Œ:'; P [.C2; p; n/�
[

For a loop Cloop D .Œ �ICbody/
�I Œ'�, we define a sequence fqigi�0 of approximants

toQ\.Cloop; p; n/, where qiC1 D qi � �.qi / and the initial point q0 and the transformer
� are defined following either the characterization (4) using an approximation R\

9 2 D
of an existential recurrent set of the loop:

q0 D
�
R

\
9 �N].Cloop; n/

� t Œ: ;p�[
�.qi / D

�
Œ ; p�[u wp[.Cbody; qi /

� t Œ:';wp[.Cbody; qi /�
[

or the characterization (5) using an approximation R\
8 2 D of a universal recurrent set:

q0 D R\
8 t

�
Œ'; p�[�N].Cloop; n/

�

�.qi / D
�
Œ:'; pre].Cbody; qi /�

[�N].Cloop; n/
�

As for loop-free commands, Q\ can be computed first, and P [defined using the result.
That is, define Q\.Cloop; p; n/ D qj where pj is the first element such that qj C1 v qj ,
and then define P [.Cloop; p; n/ D Q\.Cloop; p; n/ �N].Cloop; n/.

Alternatively, P [and Q\ can be computed simultaneously by also defining a se-
quence fpigi�0 of safe under-approximants of P [.Cloop; p; n/, where p0 D q0 and
piC1 D .pi � �.qi // � N].Cloop; n/. Then P [.Cloop; p; n/ D pj where pj is the first
element such that qj C1 v qj or pj C1 6� pj . In this case, we may obtain a sound P [be-
fore the auxiliary Q\ has stabilized. While we have not yet done rigorous experimental
validation, we prefer this approach when dealing with coarse subtraction.

When analyzing a top-level program Cprg, the analysis starts with N].Cprg;?/ and
precomputes N] (an over-approximation of unsafe states) for all statements of the pro-
gram. Then it proceeds to compute P [.Cprg;>;?/ (an under-approximation of safe
input states) reusing the precomputed results for N].

Backward Analysis via over-Approximate Abstraction 41

Note that we are using join and widening on the positive side which means that Q\

may not under-approximate the positive side of the concrete characterization. The use
of widening allows for the ascending chain to converge, and subtraction of the negative
side ensures soundness of P [. In other words, while the alternate concrete characteriza-
tions (4) and (5) are used to guide the definition of the approximate characterizations,
soundness is argued directly rather than by using (4) and (5) as an intermediate step.

Theorem 2. For a statement C and p; n 2 D s.t. �.p/ \ �.n/ D ∅, N].C; n/ �
N.C; �.n// and P [.C; p; n/ � P.C;U X �.n//. Hence, for a top-level program Cprg,
�.N].Cprg;?// � N.Cprg;∅/ (i.e., it over-approximates input states that may lead to
failure), and �.P [.Cprg;>;?// � P.Cprg;U/ (i.e., it under-approximates safe input
states).

The argument for N] proceeds in a standard way [11]. Soundness for P [then follows
due to the use of subtraction.

4.1 Optimizations of Constraints

Use of over-approximate operations Since we are subtracting N].C; n/ anyway, we
can relax the right-hand side of the definition of Q\.C; p; n/ without losing sound-
ness. Specifically, we can replace under-approximating and must- operations by their
over-approximating and may- counterparts. This way, we obtain an analysis where sub-
traction is the only under-approximating operation.

– For a loop-free statement C , always use pre].C; p/ in place of wp[.C; p/ (note
that we already use pre] on the positive side for loop bodies when starting from a
universal recurrent set). This can be handy, e.g., for power set domains where pre]

(unlike wp[) can be applied element-wise. Also, these transformers may coincide
for deterministic loop-free statements (if the abstraction is precise enough). Later,
when discussing Example 2, we note some implications of this substitution.

– For a state formula ', use Œ'; � �] in place of Œ'; � �[. Actually, for some combina-
tions of an abstract domain and a language of formulas, these transformers coin-
cide. For example, in a polyhedral domain, conjunctions of linear constraints with
non-strict inequalities have precise representations as domain elements.

– For branching statements, use Œ'; P [.C1; p; n/�
] t Œ ; P [.C2; p; n/�

] in place of
the original expression.

– In the definition of Q\, an over-approximate meet operation u] suffices.
The result of these relaxations is:

Q\.a; p; n/ D pre].a; p/

Q\.C1 I C2; p; n/ D P [
�
C1; P

[.C2; p; n/;N
].C2; n/

�

Q\
�
.Œ'�IC1/C .Œ �IC2/; p; n

� D Œ'; P [.C1; p; n/�
] t Œ ; P [.C2; p; n/�

]

q0 D
�
R

\
9 �N].Cloop; n/

� t Œ: ;p�]
�.qi / D

�
Œ ; p�] u] pre].Cbody; qi /

� t Œ:'; pre].Cbody; qi /�
]

42 A. Bakhirkin, J. Berdine, and N. Piterman

or

q0 D R\
8 t

�
Œ'; p�] �N].Cloop; n/

�

�.qi / D
�
Œ:'; pre].Cbody; qi /�

] �N].Cloop; n/
�

No subtraction for Q\ For a similar reason, subtraction can be removed from the
characterization of Q\ without affecting soundness of P [.
Bound on the positive side Another observation is that for a loop Cloop as in (2), the
positive side P.Cloop; S/ is bounded by �:'� [S , as can be seen from the character-
ization (3). This can be incorporated into a specialized definition for loops, defining
P [.Cloop; p; n/ D

�
Q\.Cloop; p; n/u .Œ:'�] tp/

��N].Cloop; n/ or by performing the
meet during computation of Q\ by defining qiC1 D

�
qi � �.qi /

� u .Œ:'�] t p/.

4.2 Approximating the Recurrent Set

When approximating the positive side for a loop, the computation is initialized with an
approximation of the recurrent set induced by the loop. Our analysis is able to start with
either an existential or a universal recurrent set depending on what search procedure
is available for the domain. The instantiation of our approach for numerical domains
uses the tool E-HSF [5] that is capable of approximating both existential and universal
recurrence. Other tools for numeric domains are described in [13,24]. The instantiation
of our approach for the shape analysis with 3-valued logic uses a prototype procedure
that we have developed to approximate existential recurrent sets.

Normally, the search procedures are incomplete: the returned sets only imply recur-
rence, and the search itself might not terminate (we assume the use of timeouts in this
case). For this reason, in Sect. 3, we prefer not to define the recurrent sets to be max-
imal. This incompleteness leaves room for our analysis to improve the approximation
of recurrence. For example, sometimes the solver produces a universal recurrence that
is closed under forward propagation, but is not closed under backward propagation. In
such cases, our analysis can produce a larger recurrent set.

5 Examples

In this section, we demonstrate our approach on several examples: first for a numeric
domain, and then for the shape analysis domain of 3-valued structures. We note that
numeric programs are considered here solely for the purpose of clarity of explanation,
since the domain is likely to be familiar to most readers. We do not claim novel results
specifically for the analysis of numeric programs, although we note that our approach
may be able to complement existing tools. Detailed explanations of Examples are in-
cluded in the companion technical report [3].

Example 1 aims at describing steps of the analysis in detail (to the extent allowed
by space constraints). Example 2 is restricted to highlights of the analysis and includes
a pragmatic discussion on using pre] on the positive side. Examples 3 and 4 consider
programs from a shape analysis domain and we only report on the result of the analysis.

Backward Analysis via over-Approximate Abstraction 43

1 while x � 1 do
2 if x D 60 then
3 x 50

4 end
5 x x C 1
6 if x D 100 then
7 x 0

8 end
9 end

10 assert 0

(a) With syntactic sugar.

1

�
Œx � 1�I

2..Œx D 60�I 3x 50/C .Œx ¤ 60�I skip//I
5x x C 1I
6..Œx D 100�I 7x 0/C .Œx ¤ 100�I skip//I

��I Œx � 0�I
10 assert 0

(b) Desugared.

Fig. 2. Example program 1

Example 1. In this example, we consider the program in Fig. 2: Fig. 2a shows pro-
gram text using syntactic sugar for familiar while-language, and Fig. 2b shows the
corresponding desugared program. We label the statements that are important for the
analysis with the corresponding line numbers from Fig. 2a (like in 3x 50).

We assume that program variables (just x in this case) take integer values. For the
abstract domain, we use disjunctive refinement over intervals allowing a bounded num-
ber of disjuncts (e.g., [2]). Recall that hx W ŒaI b�; y W ŒcI d�i denotes a singleton abstract
state of a program with two variables x and y, representing the set of concrete states,
satisfying .a � x � b/ ^ .c � y � d/. Note that for this abstract domain and the
formulas, appearing in the program, Œ � �[and Œ � �] coincide, and we write Œ � �\ to denote
either. To emphasize that the analysis can produce useful results even when using a
coarse subtraction function, we use subtraction as defined in (1). That is, we just drop
from the positive side those disjuncts that have a non-empty intersection with the neg-
ative side. For example, fhx W Œ1I 3�i; hx W Œ5I 7�ig � hx W Œ6I 8�i D hx W Œ1I 3�i. The
analysis is performed mechanically by a prototype tool that we have implemented.

To simplify the presentation, in this example, we bound the number of disjuncts
in a domain element by 2. Also to simplify the presentation, we omit the]- and [-
superscripts, and write, e.g., pre+fail for pre+fail]. For a statement labeled with i , we
write N j

i to denote the result of the j -th step of the computation of its negative side,
and Ni to denote the computed value (similarly, for P).

We start with the analysis of the negative side. For the final statement,

N 1
10 D pre+fail.assert 0;?/ D >

then, we proceed to the first approximation for the loop (for clarity, we compute pre of
the body in steps),

N 1
1 D Œx � 0;N 1

10�
\ D hx W .�1I 0�i

N 1
7 D pre+fail.x 0;N 1

1 / D >
N 1

6 D Œx D 100;N 1
7 �

\ t Œx ¤ 100;N 1
1 �

\ D fhx W .�1I 0�i; hx W Œ100�ig
N 1

5 D pre+fail.x x C 1;N 1
6 / D fhx W .�1I�1�i; hx W Œ99�ig

44 A. Bakhirkin, J. Berdine, and N. Piterman

N 1
3 D pre+fail.x 50;N 1

5 / D ?
N 1

2 D Œx D 60;N 1
3 �

\ t Œx ¤ 60;N 1
5 �

\ D fhx W .�1I�1�i; hx W Œ99�ig
N 2

1 D N 1
1 t Œx � 1;N 1

2 �
\ D fhx W .�1I 0�i; hx W Œ99�ig

then, repeating the same similar sequence of steps for the second time gives

N 2
1 D N 2

1 t Œx � 1;N 2
2 �

\ D fhx W .�1I 0�i; hx W Œ98; 99�ig
at which point we detect an unstable bound. The choice of widening strategy is not
our focus here, and for demonstration purposes, we proceed without widening, which
allows to discover the stable bound of 61. In a real-world tool, to retain precision, some
form of widening up to [14] or landmarks [23] could be used. Thus, we take

N1 D fhx W .�1I 0�i; hx W Œ61I 99�ig
N2 D fhx W .�1I�1�i; hx W Œ61I 99�ig N6 D fhx W .�1I 0�i; hx W Œ61I 100�ig
N3 D ? N7 D >
N5 D fhx W .�1I�1�i; hx W Œ61I 99�ig N10 D >

To initialize the positive side for the loop, we use a universal recurrent set obtained by
three calls to E-HSF with different recurrent set templates. The result is R8 D fhx W
Œ4I 60�i; hx W Œ100IC1/ig. Note that in this example, universal recurrence and safety
coincide, and our analysis will be able to improve the result by showing that the states
in hx W Œ1I 3�i are also safe. Since we are using a power set domain, we choose to use
pre instead of wp for the final statement (as described in Sect. 4.1), not just for the loop
(where we need to use it due to starting with R8). We start with

P 1
10 D pre.assert 0;>/ �N10 D ?�N10 D ?

then proceed to the loop (again, computing pre of its body in steps),

P 1
1 D R8 t Œx � 0; P 1

10�
\ �N1 D fhx W Œ4I 60�i; hx W Œ100IC1/ig

P 1
7 D pre.x 0; P 1

1 / �N7 D ?
P 1

6 D Œx D 100; P 1
7 �

\ t Œx ¤ 100; P 1
1 �

\ �N6

D fhx W Œ4 W 60�i; hx W Œ101IC1/ig �N6

D fhx W Œ4 W 60�i; hx W Œ101IC1/ig
P 1

5 D pre.x x C 1; P 1
6 / �N5 D fhx W Œ3 W 59�i; hx W Œ100IC1/ig

P 1
3 D pre.x 50; P 1

5 / �N3 D >
P 1

2 D Œx D 60; P 1
3 �

\ t Œx ¤ 60; P 1
5 �

\ �N2

D fhx W Œ3I 59�i; hx W Œ60�i; hx W Œ100IC1/ig �N2

D fhx W Œ3I 60�i; hx W Œ100IC1/ig
P 2

1 D .P 1
1 t .Œx � 1; P 1

2 �
\ �N2// �N2 D fhx W Œ3I 60�i; hx W Œ100IC1/ig

at which point we detect an unstable bound, but we again proceed without widening
and are able to discover the stable bound of 1. Also note that (as observed in Sect. 4.1),

Backward Analysis via over-Approximate Abstraction 45

P1 is bounded by P10 t Œ:x � 0�\ D hx W Œ1IC1/i. This bound could be used to
improve the result of widening. Thus, we take

P1 D fhx W Œ1I 60�i; hx W Œ100IC1/�ig
P2 D fhx W Œ0I 60�i; hx W Œ100IC1/�ig P6 D fhx W Œ1I 60�i; hx W Œ101IC1/�ig
P3 D > P7 D ?
P5 D fhx W Œ0I 59�i; hx W Œ100IC1/�ig P10 D ?

Thus, in this example, our analysis was able to prove that initial states fhx W Œ1I 60�i; hx W
Œ100IC1/�ig are safe, which is a slight improvement over the output of E-HSF.

Example 2. In this example, we consider the program in Fig. 3. In the program, 	
stands for a value non-deterministically chosen at runtime. All the assumptions made
for Example 1 are in effect for this one as well, except that we increase the bound
on the size of the domain element to 4. The analysis is able to produce the following
approximation of the safe entry states:

fhx W Œ100IC1/; y W >i; hx W .�1I 0�; y W .�1I�1�i;
hx W .�1I 0�; y W Œ1IC1/i; hx W Œ1I 99�; y W Œ1IC1/ig

This example also displays an interplay between coarse subtraction and the use of over-
approximate operations (especially, pre) on the positive side. In order to retain precision
when coarse subtraction is used, it seems important to be able to keep the positive side
partitioned into a number of disjuncts. In a real-world analysis, this can be achieved,
e.g., by some form of trace partitioning [16]. In this example, we employ a few sim-
ple tricks, one of those can be seen from Fig. 3. Observe that we translated the non-
deterministic condition in lines 3-7 of the syntactically sugared program (Fig. 3a) into
equivalent nested conditions (statement 3 of the desugared program in Fig. 3b) which
allows the necessary disjuncts to emerge on the positive side.

Shape Analysis Examples In what follows, we demonstrate our approach for a shape
analysis domain. We treat two simple examples using the domain of 3-valued structures,
and we claim that our approach provides a viable decomposition of backward analysis
(for this domain and probably for some other shape analysis domains). For background
information on shape analysis with 3-valued logic, please refer to [22] and accompa-
nying papers, e.g., [19,1,25]. To handle the examples, we use a mechanized procedure
built on top of the TVLA shape analysis tool (http://www.cs.tau.ac.il/~tvla/).

Example 3. In this example, we consider the program in Fig. 4. The program manipu-
lates a pointer variable x, and the heap cells each have a pointer field n. We compare x
to nil to check whether it points to a heap cell. We write x ! n to denote access to the
pointer field n of the heap cell pointed to by x. The program in Fig. 4 just traverses its
input structure in a loop.

The analysis identifies that both cyclic and acyclic lists are safe inputs for the pro-
gram – and summarizes them in eight and nine shapes respectively. Figures 6 and 7
show examples of the resulting shapes.

46 A. Bakhirkin, J. Berdine, and N. Piterman

1 while x � 1 do
2 if x � 99 then
3 if y � 0 ^ 	 then
4
5 assert 0

6
7 end
8 if 	 then
9 x �1

10 end
11 end
12 x x C 1
13 end
14 assert y ¤ 0

(a) With syntactic sugar.

1.Œx � 1�I
2..Œx � 99�I

3..Œy � 0�I 4.5 assert 0C skip//

C .Œy � 1�I skip//I
8.9x �1C skip/

/C .Œx � 100�I skip//I
12x x C 1

/�I Œx � 0�I
14 asserty ¤ 0

(b) Desugared.

Fig. 3. Example program 2

1 while x ¤ nil do
2 x .x ! n/

3 end

Fig. 4. Example program 3

1 while x ¤ nil do
2 x .x ! n/

3 x .x ! n/

4 end

Fig. 5. Example program 4

Example 4. In this example, we consider the program in Fig. 5. In this program, the
loop body makes two steps through the list instead of just one. While the first step (at
line 2) is still guarded by the loop condition, the second step (at line 3) is a source
of failure. That is, the program fails when given a list of odd length as an input. The
abstraction that we employ is not expressive enough to encode such constraints on the
length of the list. The analysis is able to show that cyclic lists represent safe inputs, but
the only acyclic list that the analysis identifies as safe is the list of length exactly two.

6 Related Work

In [15], a backward shape analysis with 3-valued logic is presented that relies on the
correspondence between 3-valued structures and first-order formulas [25]. It finds an
over-approximation of states that may lead to failure, and then (as 3-valued structures
do not readily support complementation) the structures are translated to an equivalent
quantified first-order formula, which is then negated. This corresponds to approximat-
ing the negative side in our approach and then taking the complement, with the excep-
tion that the result is not represented as an element of the abstract domain. At least in
principle, the symbolic abstraction Ǫ of [20] could map back to the abstract domain.

For shape analysis with separation logic [21], preconditions can be inferred using
a form of abduction called bi-abduction [6]. The analysis uses an over-approximate

Backward Analysis via over-Approximate Abstraction 47

x
rx ;

hn

rx ;

hn

n

n

Fig. 6. Example of a safe structure
causing non-termination

x
rx ;

hn

rx ;

hn

n

n

rx
n

Fig. 7. Example of a safe structure leading
to successful termination

abstraction, and it includes a filtering step that checks generated preconditions (by
computing their respective postconditions) and discards the unsound ones. The pur-
pose of the filtering step – keeping soundness of a precondition produced with over-
approximate abstraction – is similar to our use of the negative side.

For numeric programs, the problem of finding preconditions for safety has seen
some attention lately. In [18], a numeric analysis is presented that is based primarily
on over-approximation. It simultaneously computes the representations of two sets: of
states that may lead to successful termination, and of states that may lead to failure.
Then, meet and generic negation are used to produce representations of states that can-
not fail, states that must fail, etc. An under-approximating backward analysis for the
polyhedral domain is presented in [17]. The analysis defines the appropriate under-
approximate abstract transformers and to ensure termination, proposes a lower widen-
ing based on the generator representation of polyhedra. With E-HSF [5], the search for
preconditions can be formulated as solving 89 quantified Horn clauses extended with
well-foundedness conditions. The analysis is targeted specifically at linear programs,
and is backed by a form of counterexample-guided abstraction refinement.

7 Conclusion and Future Work

We presented an alternative decomposition of backward analysis, suitable for domains
that do not readily support complementation and under-approximation of greatest fixed
points. Our approach relies on an under-approximating subtraction operation and a pro-
cedure that finds recurrent sets for loops – and builds a sequence of successive under-
approximations of the safe states. This decomposition allowed us to implement a back-
wards analysis for the domain of 3-valued structures and to obtain acceptable analysis
results for two simple programs.

For shape analysis examples, we employed quite a simplistic procedure to approx-
imate a recurrent set. One direction for future research is into recurrence search proce-
dures for shape analysis that are applicable to realistic programs.

Another possible direction is to explore the settings where non-termination counts
as failure. This is the case, e.g., when checking abstract counterexamples for concrete
feasibility [4].

48 A. Bakhirkin, J. Berdine, and N. Piterman

Acknowledgements. We thank Andrey Rybalchenko for helpful discussion
and assistance with E-HSF, and Mooly Sagiv and Roman Manevich for sharing
the source code of TVLA. A. Bakhirkin is supported by a Microsoft Research
PhD Scholarship.

References

1. Arnold, G., Manevich, R., Sagiv, M., Shaham, R.: Combining shape analyses by
intersecting abstractions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.
LNCS, vol. 3855, pp. 33–48. Springer, Heidelberg (2006)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
STTT 9(3-4), 413–414 (2007)

3. Bakhirkin, A., Berdine, J., Piterman, N.: Backward analysis via over-approximate
abstraction and under-approximate subtraction. Tech. Rep. MSR-TR-2014-82, Mi-
crosoft Research (2014)

4. Berdine, J., Bjørner, N., Ishtiaq, S., Kriener, J.E., Wintersteiger, C.M.: Resourceful
reachability as HORN-LA. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR-19 2013. LNCS, vol. 8312, pp. 137–146. Springer, Heidelberg (2013)

5. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
869–882. Springer, Heidelberg (2013)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. In: Shao, Z., Pierce, B.C. (eds.) POPL, pp. 289–300.
ACM (2009)

7. Calcagno, C., Ishtiaq, S.S., O’Hearn, P.W.: Semantic analysis of pointer aliasing,
allocation and disposal in Hoare logic. In: PPDP, pp. 190–201 (2000)

8. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: APLAS, pp. 289–300 (2001)

9. Clarke, E.M.: Program invariants as fixed points (preliminary reports). In: FOCS,
pp. 18–29. IEEE Computer Society (1977)

10. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S.S., Jones,
N.D. (eds.) Program Flow Analysis: Theory and Applications, pp. 303–342.
Prentice-Hall (1981)

11. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Log. Program. 13(2&3), 103–179 (1992)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) POPL, pp. 84–96.
ACM Press (1978)

13. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: Necula, G.C., Wadler, P. (eds.) POPL, pp. 147–158. ACM
(2008)

14. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Form. Method. Syst. Des. 11(2), 157–185 (1997)

15. Lev-Ami, T., Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring
quantified preconditions. Tech. Rep. TR-2007-12-01, Tel Aviv University (Decem-
ber 2007)

16. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005)

Backward Analysis via over-Approximate Abstraction 49

17. Miné, A.: Inferring sufficient conditions with backward polyhedral under-
approximations. Electr. Notes Theor. Comput. Sci. 287, 89–100 (2012)

18. Popeea, C., Chin, W.N.: Dual analysis for proving safety and finding bugs. Sci.
Comput. Program. 78(4), 390–411 (2013)

50 A. Bakhirkin, J. Berdine, and N. Piterman

19. Reps, T., Sagiv, M., Loginov, A.: Finite differencing of logical formulas for static
analysis. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 380–398. Springer,
Heidelberg (2003)

20. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004)

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

22. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

23. Simon, A., King, A.: Widening polyhedra with landmarks. In: Kobayashi, N. (ed.)
APLAS 2006. LNCS, vol. 4279, pp. 166–182. Springer, Heidelberg (2006)

24. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008)

25. Yorsh, G., Reps, T.W., Sagiv, M., Wilhelm, R.: Logical characterizations of heap
abstractions. ACM Trans. Comput. Log. 8(1) (2007)

SawjaCard: A Static Analysis Tool for Certifying

Java Card Applications

Frédéric Besson, Thomas Jensen, and Pierre Vittet

Inria, Rennes, France

Abstract. This paper describes the design and implementation of a
static analysis tool for certifying Java Card applications, according to
security rules defined by the smart card industry. Java Card is a dialect
of Java designed for programming multi-application smart cards and the
tool, called SawjaCard, has been specialised for the particular Java Card
programming patterns. The tool is built around a static analysis engine
which uses a combination of numeric and heap analysis. It includes a
model of the Java Card libraries and the Java Card firewall. The tool
has been evaluated on a series of industrial applets and is shown to
automate a substantial part of the validation process.

1 Introduction

Security plays a prominent role in the smart card industry, due to their exten-
sive use in banking and telecommunication. Hence, certification of smart cards
has become accepted industrial practice. Traditional certifications (e.g., against
the Common Criteria [1]) focus primarily on the protection mechanisms of the
card’s hardware and operating system. More recently, attention has been drawn
to the increasing number of applications that execute on the cards and the smart
card industry has elaborated a set of secure coding guidelines [20,12] that apply
to basic applications. Basic applications are granted limited privileges and the
goal of the guidelines is to ensure that they do not interfere with more sensitive
(e.g., banking) applications. The verification of these guidelines is done by an
independent authority that analyses the code and issues a certificate of confor-
mance (or pinpoints failures of compliance). In collaboration with a company
from the smart card industry we have developed the static analysis tool Saw-
jaCard that can significantly simplify and automate the validation of smart card
basic applications.

We consider applications written in the Java Card language – a dialect of Java
dedicated to smart cards. To be validated, an application must respect a series
of secure coding rules. SawjaCard is designed for the certification procedure
proposed by AFSCM, the French industry association for Near Field Communi-
cation (NFC) technology providers, which consists of around 65 rules in total.
These rules impose requirements on how an application is programmed, how it
uses the resources of the card, and what kind of exceptions are acceptable.

Our main contribution is the implementation of the first static analysis tool
able to automate the validation of basic applications according to AFSCM rules.

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 51–67, 2014.
© Springer International Publishing Switzerland 2014

52 F. Besson, T. Jensen, and P. Vittet

Our experiments show that SawjaCard proves automatically 87% of the proper-
ties. This work also demonstrates that precise but informal security guidelines
can be mapped to formal properties that can be checked by harvesting a static
analysis result. The design of the static analysis engine is a contribution of its
own: we exploit the characteristics of Java Card but also constraints imposed
by guidelines to get a precise yet efficient analyser. In terms of static analysis,
the main contribution is a novel abstract domain for identifying a variant of the
object-oriented singleton object pattern, where the nullity of a field is used to
control the execution of an allocation instruction (Section 4.2).

We first present Java Card, highlighting the features relevant for security val-
idation such as the Java Card firewall. The security requirements are described,
and we explain how they can be verified on the model obtained through static
analysis. We then present the main features of the analysis engine that is at the
core of the tool. This includes the above-mentioned domain for detecting single-
ton objects and the use of trace partitioning for identifying file accesses. The tool
has been evaluated against a series of industrial applications. We explain how
the tool has significantly improved the certification procedure by automating a
large part of the code verification.

2 Java Card

Java Card is a software development framework dedicated to multi-application
smart cards. It includes a reduced version of Java, and has its own binary code
format dedicated to devices with limited memory and processing capabilities.
Like in Java, a Java Card application or library is written as a set of packages
containing classes. After a standard Java compilation, Java Card converts all the
classes belonging to the same package into a so-called CAP file. The CAP file
is optimised to be small and meet smart card constraints, e.g., fields, methods
and classes are referred via token integers in order to reduce the size of the file.

Java Card keeps the class-based object oriented model of Java. Class inheri-
tance, interfaces and the resolution mechanism for virtual and static calls is the
same as in Java. Primitive types are restricted to the Java boolean, byte, short
and optionally integer (might not be supported by every platform and the use
of integer is also forbidden in some security guidelines). Arrays are limited to
single-dimensional arrays. Strings are not available, neither as a primitive type,
nor as a provided library class. Garbage collection is not required by the Java
Card specification and it is still common not to have a garbage collector in a
smart card. As memory is precious, application are expected to allocate data
only during their installation phase and as parsimoniously as possible. Security
guidelines emphasise this aspect (e.g., allocation in a loop is forbidden).

The bytecode language is close to the Java bytecode language but with some
noticeable differences. It is still a stack-based language with basically a reduced
instruction set. However there are some differences which makes the Java Card
bytecode more than a strict subset. For example, the operand stack contains 16
bits values and the standard operations work on such short values. Hence, each
arithmetical operation is semantically different from its Java counterpart.

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 53

2.1 Modelling the Java Card Runtime and Its Libraries

Our static analysis tool performs a whole program analysis. It takes a single
application CAP file but also expects additional CAP files representing all the
used libraries. The core Java Card libraries are usually not available for analysis.
They are i) proprietary; ii) card dependent; iii) and (partly) implemented using
native code. To get a portable and card independent whole program, we have
implemented the core Java Card libraries and standard extensions such as Glob-
alPlatform or ETSI standard UICC [10] using pure Java Card code extended
by specification methods that are built-ins of the analyser: RANDOM, ASSUME and
ASSERT. As we are not interested in proving functional correctness but security
properties, the model of a method is usually simple and is based on the informal
specification of the libraries. The model initialises system resources of the Java
Card runtime. For instance, it allocates singleton exceptions objects that are
owned by the Java Card runtime or global system input/output buffers. The
model is also responsible for simulating the different phases of the applet life cy-
cle. The install phase consists in initialising the applet state. The applet is also
assigned its Application IDentifier (AID) and is registered within the Java Card
runtime. The process phase is an infinite event loop where the applet processes
commands. Eventually, the applet enters the uninstall phase where it is removed
from the card.

2.2 Modelling the Java Card Firewall

The Java Card security architecture relies on a firewall which strongly limits
inter-applet communication. The firewall mechanism guarantees that an inter-
applet communication triggers a dynamic run-time check whose success depends
on the owner of the object and the running context of the code. Every created
object is assigned an owner, which is the context of the applet performing the
object allocation. Each method is assigned the context of its enclosing applet. At
runtime, the virtual machine ensures that an applet can only manipulate objects
in its context and raises a SecurityException otherwise.

Communication between applets is achieved through Shareable interfaces. Us-
ing a specific method of the runtime, an applet A receives a shareable request
from an explicitly identified applet B. The applet A can accept the request de-
pending on the identity of B and return an object o implementing a Shareable
interface. When applet B calls a method of object o, a context switch occurs and
the method runs with the context of A.

Our Java model makes explicit the security checks performed by the Fire-
wall using built-in API calls to obtain the owner of objects GET_OWNER or the
running contexts GET_CALLER_CONTEXT (see Fig. 1). The owner/context properties
are directly modelled by the abstract domains: each abstract object in the heap
is assigned a owner and the abstract call stack is tagged by running contexts.
This precise modelling of the Firewall is necessary to rule out security exceptions.
Needless to say that the validation of applets strictly forbids security exceptions.

54 F. Besson, T. Jensen, and P. Vittet

1 /* @API javacard.framework.AID: "Throws: SecurityException

2 * - if anObject object is not accessible in the caller's
context" */

3 public final boolean equals(Object anObject){

4 short caller_ctx = GET_CALLER_CONTEXT();

5 if(!JCRESystem.accessible_in_caller_context(anObject, caller_ctx))

6 throw JCRESystem.securityException;

7 if (anObject==null || !(anObject instanceof AID)) return false;

8 return [...] }

Fig. 1. Example of API performing a Firewall check

3 Validation of Java Card Applications

The validation of Java Card applications is based on several sets of coding guide-
lines, edited by industrial stakeholders. The main source of guidelines comes from
the AFSCM [20], a French association of companies working in the area of NFC
and contact-less smart cards. The AFSCM guidelines consists of 65 coding rules
that specify properties that an applet must obey in order to be validated. Rules
from the Global Platform [12] initiative have also been integrated. Some rules
(such as ”The interactions between different interfaces must be clearly defined.”)
are not amenable to automatic verification. Others are not considered because
they concern the Java source (”A switch statement must always include a de-
fault case.”). Eliminating duplicates, we extracted 55 verifiable rules from the
guidelines mentioned above, and classified them as shown in Fig. 2.

The rules vary significantly in granularity and type of property. Some proper-
ties are purely syntactic (“An application must not contain a nop instruction”,
or “An application shall not use an AID already registered.”) whereas others
require information about the dynamic behaviour of the application (“no null
pointer exceptions” or “no array-out-of bounds exceptions”). Some rules specify
restrictions on how library methods can be called, and with what arguments.
Most of these rules cannot be verified as is, exactly due to the undecidability of

Type Number Examples

syntactical 20 Strictly forbidden methods, no Nop, package name checking

constant values 6 Constant array size, Proactive commands and events

call graph 6 Allocation only in specific part of the code.

exceptions 10 Ensure that various exceptions will never occur

file system 4 Report read or written files, ensure deletion of created file.

termination 1 No recursive code.

other 8 Applet instance should not be placed in static field.

total 55

Fig. 2. Classification of the rules (from AFSCM [20] and Global Platform [12])

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 55

the underlying semantic property, and approximations are called for. As men-
tioned above, an important feature of these rules is that certain rules simplify the
verification of others. E.g., knowing that the rules “Recursive code is forbidden”
and “Arrays must be allocated with a determined size” are satisfied means that
the analyser can strive for more precision without running into certain complex-
ity and computability issues. In the following, we explain how the validation of
the rules can be done by mining the static analysis result.

Numeric Values: In Java Card, resources are often accessed using integer
identifiers and managed by calling methods with a fixed set of flags. Many rules
specify that those integers must be constant or range over a set of legitimate
values. Our analyser is computing an abstraction of numeric values and therefore
of method arguments. The abstraction of the method arguments is checked for
compliance with the rules.

Array Values: Some resources can be coded by arrays of integers. For in-
stance, files are identified by an array [i1;...;in] which represents the file
name i1/.../in. Menu entries (i.e., strings) are coded by arrays of bytes.
As with numeric values, validation rules often require those arrays to be con-
stant. Files are an exception. File names are constructed by a sequence of calls
fh.select(d1) . . . fh.select(dn) where fh is a FileView object and the di
are typically constants, identifying directories. Our analyser does not track se-
quences of events but our model of the class FileView is an array representing
the current working directory that is updated by calls to the select method.
Our analyser models arrays and provides for each index a numeric abstraction of
the content. This abstraction is queried in order to validate rules about resources
encoded as arrays.

Control-Flow: The validation rules impose constraints on the control-flow
graph of the application—especially during the installation phase. For instance,
most memory allocations are required only to take place during the install phase,
identified by a call to the install method. The analysis is constructing an ab-
stract control-flow graph corresponding to the inlined control-flow graph of the
application. Constraints over the control-flow graph can therefore be checked by
exploring the abstract control-flow graph. For the particular case of memory al-
location, we traverse the graph and make sure that memory allocation primitives
e.g., new statement, are only accessible from the install method.

Exceptional Behaviour: Validation rules are strict about exception han-
dling. Run-time exceptions such as ArrayOutOfBounds, NullPointerException
and ClassCastException are strictly forbidden. In our bytecode intermediate
representation, run-time exceptions correspond to explicit instructions and we
generate verification conditions for all those instructions. For obvious reasons,
security exceptions (SecurityException) are also forbidden. The abstraction of
the heap is designed to model object ownership and can be used to ensure that
the security checks performed by the Java Card Firewall do no raise Securi-
tyException. There are other rules about exceptional behaviours which can be
interpreted as coding guidelines. The analysis is precisely modelling the flow of
exceptions. In particular, it collects for each handler the caught exception and

56 F. Besson, T. Jensen, and P. Vittet

for each method call the escaping exceptions. This information is sufficient for
checking all the rules regarding exceptions.

4 Overview of the Static Analysis Engine

Our static analysis engine is designed specifically for Java Card and its partic-
ular programming style. Existing general purpose analysis frameworks for Java
e.g., [32,19,17] cannot be applied directly to Java Card. Firstly, existing frame-
works do not provide a CAP front-end – this is a non-negligible engineering issue.
Although CAP files are compiled from class files, the inverse transformation is far
from obvious. For instance, the instruction set is different and dynamic method
lookup is compiled using explicit virtual tables. Secondly, our static analysis
engine exploits fully the fact that Java Card programs are relatively small, for-
bid recursion and allocate few objects. Standard Java analyses designed to scale
for object-oriented programs cannot exploit this. Finally, the Java Card firewall
which has no Java counterpart is also modelled directly at the analysis level.

Our analyser operates on a 3-address code intermediate bytecode represen-
tation A3Bir [7] that is obtained by pre-processing the binary CAP file. This
representation is adapted from the Sawja framework [17] and has the advan-
tage of making explicit the different runtime checks performed by the Java Card
Virtual Machine. An example of such intermediate code is given Fig. 4.

The static analysis engine implements an inter-procedural scheme which con-
sists in a dynamic inlining of method calls. The benefit is a precise inter-procedural
scheme that mimics the behaviour of a concrete interpreter. In terms of abstract
domains, the domain of the inter-procedural analysis is D∗ given that D is the
domain for the intra-procedural analysis. This approach is effective for two rea-
sons that are specific to Java Card: recursion is forbidden and the programs are
relatively small.

4.1 Combining Intervals, Constant Sets and Symbolic Equalities

To abstract numeric values, the analyser is using a combination of three abstract
domains: intervals, finite sets and symbolic equalities. The code snippet of Fig 3
illustrates their collaboration. The abstract domain of intervals Int is very pop-
ular but is not precise enough if used alone. At Line 4 of Fig. 3, the interval
[0;5] is used to abstract the non-consecutive values 0 and 5. As many Java Card
methods take as arguments integer flags or return integer flags that are in general
not consecutive, this is a common source of imprecision. To deal with this issue,
we use a domain Fin = P(Cst) ∪ {�} where Cst is the set of constants that
appear in the program text. For efficiency, information about these constants
is lost after arithmetic operations and reductions with the interval domain are
limited to the cases of ⊥ and singletons i.e., abstract elements with represent a
single concrete value. For Line 4, the product Int × Fin gives a precise invariant
but would still be unable to infer that at Line 6 the value of i can only be 5. To
get this result, it is necessary to propagate through the test j==0 the knowledge

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 57

1 byte i = 0; /*i:[0;0] & {0}*/

2 if(RANDOM_BOOL()){

3 i = 5; /*i:[5;5] & {5}*/

4 } /*i:[0;5] & {0;5} */

5 byte j = i; /*i:[0;5] & {0,5} j:[0;5] & {0,5} with j == i */

6 i = (j==0) ? (byte)(i+5) : i; /*i:[5;5] & {5} j:[0;5] & {0,5} */

Fig. 3. Collaboration between numeric abstract domains

that j equals i. This is a known weakness of non-relational domains which
compute an abstraction for each variable independently. There are well-known
numeric relational domains e.g., convex polyhedra [6], octagons [24]. These do-
mains are very expressive but are also computationally costly. Our analyser is
using a more cost-effective weakly relational domain [25] computing for each
program point and each local variable x an equality x = e where e is a side-
effect free expression of our intermediate representation i.e., an expression built
upon variables, arithmetic operators and field accesses. At Line 5, we have the
equality j==i. Hence, when j==0, i is also 0 and when j != 0, j have value 5 and
so has i. Combined, the three domains are able to compute the precise invariant
of Line 6.

Symbolic expressions improve the precision of numeric abstractions but also
significantly contribute to ruling out spurious null pointers. This is illustrated
by Fig. 4. Our goal is to verify that bar is called with a non-null argument. At
source level, this property is obvious. However, the cumulative effect of Java com-
pilation, CAP conversion and the re-construction of our analyser intermediate
representation introduces temporary variables. Without symbolic expressions,
at Line 3, we only know that the temporary variable t0 is not null but this vari-
able is not used anymore. Symbolic expressions keep track of equalities between
variables t0, t1, t2, the constant null and the value of field this.foo. Using
the theory of equality, we can deduce at Line 2 that this.foo is not null. This
information is propagated at Line 4 where we deduce that t2 is also not null.
Therefore, at the call in Line 5, t2 is still not null.

4.2 Points-to Analysis with Detection of Singleton Objects

Our heap abstraction is flow-sensitive and takes the form of a points-to graph [15].
A node in the graph is an abstract object identified by a call-stack and the

1 void baz(){

2 if(foo!=null)

3 bar(foo);}

1 t0=this.foo; t1=null; if (t0==t1) goto 5;

2 /* t0==this.foo & t1==null */

3 t2=this.foo; checknotnull (this!=null);

4 /* t0==this.foo & t1==null & t2==this.foo */

5 this.bar(t2); return;

Fig. 4. Left: Source code Right: A3Bir representation

58 F. Besson, T. Jensen, and P. Vittet

creation point of the new statement, or a special node representing the null value.
Object creation is done with parsimony in Java Card, and most new statements
only ever allocate one object. In other words, most abstract objects are single-
tons representing a single concrete object. If an abstract object is a singleton,
the analyser can precisely model side effects and perform strong updates.

Abstract counting of the number of allocations of an abstract object o ∈ AO
is a standard technique for identifying singletons objects. The properties ”not
allocated”, ”allocated at most once” and ”allocated many times” are encoded by
the numeric domain {0, 1,∞}. Our domain is therefore Cnt = AO → {0, 1,∞}.
In Java Card most objects are allocated during the install phase. This phase is
loop-free and abstract counting therefore precisely identifies singleton objects.
However, abstract counting fails at identifying singleton objects that are allo-
cated during the process command loop.

To improve precision we propose a novel abstract domain able to capture
variants of the so-called object-oriented singleton pattern. The idea behind the
singleton pattern is that a field fd is either i) null and the singleton object
is not allocated or ii) not null and the singleton object is allocated. To cap-
ture such conditional invariants, our singleton domain maps each field to a val-
uation of the abstract allocation counters. The abstract domain is therefore
Sgton = Field → Cnt . Consider sgton ∈ Sgton and a field fd . The intuition is
that sgton(fd) only provides information about abstract counters under the con-
dition that the field fd is null. When the points-to ensures that a field fd is
definitely not null, the condition does not holds and sgton(fd) can be set arbi-
trarily, in particular it can be strengthened to ⊥. When the points-to ensures
that a field fd is definitely null, the condition holds and sgton(fd) can be used
to strengthen the current abstract counters. If the condition cannot be decided,
the information sgton(fd) remains dormant but becomes useful after e.g., a test
fd = null or would be updated after an assignment to the field fd .

Formally, given a concretisation γCnt : Cnt → P(Heap) for the Cnt domain,
the concretisation γ : Sgton→ P(Heap) is defined by:

h ∈ γ(sgton) iff
∧
fd

h(fd) = null ⇒ h ∈ γCnt (sgton(fd)).

Fig. 5 illustrates how the reduced product [4] of a points-to, Sgton and Cnt
analyses can ensure the singleton property. Before the loop (Line 1), the object
o is not allocated, the field fd is definitely null and the conditional property
(fd = null⇒ (o �→ 0)) holds. At the head of the loop (Line 4), the object o is
a singleton, the field fd is either null or points to the object o. The singleton
domain holds the key invariant: the object o is not allocated when the field fd
is null. After the test fd == null (Line 6), we refine our points-to and conclude
that fd is definitely null. Therefore, the conditional property of the singleton
domain holds: we can exploit the right hand side of the condition and refine the
abstract counter (o �→ 0� o �→ 1 = o �→ 0) and conclude that the object o is not
allocated. After the allocation of o (Line 8), the object o is a singleton (o �→ 1)
and fd points to o. Hence, fd is definitely not null. This is where the conditional

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 59

1 /* fd = null & (fd = null⇒ (o → 0)) & o → 0 */

2 [...]

3 while(true){

4 /* fd ∈ {null, o} & (fd = null⇒ (o → 0)) & o → 1 */

5 if (fd == null)

6 /* fd = null & (fd = null⇒ (o → 0)) & o → 0 */

7 fd = new o();

8 /* fd = o & (fd = null⇒ ⊥) & o → 1 */ }

Fig. 5. Singleton pattern

singleton domain becomes useful. Because the condition fd = null now no longer
applies, the abstract counters can be strengthened to ⊥. For simplicity, say that
the abstract state after the (empty) else branch is the abstract state of the loop
head of Line 4. At the end of the conditional, after the join, we get the same
abstract state as at the loop head, which is therefore a fixpoint.

In practice, our Sgton domain also maintains conditions over instance fields
and numeric fields (false plays the role of null). For our Java Card applications,
those enhancements allow a precise identification of all singleton objects.

5 File System Access: A Case for Trace Partitioning

Trace partitioning [27] is a generic technique for locally improving the precision
of a static analysis. It consists in partitioning an abstract state depending on
a history of events. Suppose that the original abstract state is D�, after trace
partitioning, the abstract state is (Event∗ ×D �)∗ where Event is an arbitrary set
of syntactic events (e.g., a call to a specific method) or semantic events (e.g., the
variable x has value v). We have successfully used trace partitioning for precisely
determining the files accessed by an application.

As explained in Section 3, Java Card comes with a hierarchical file system.
In our model, the current directory i1/.../in is coded by an array of short
[i1;...;in] that is stored in the path field of a file handler object fh im-
plementing the FileView interface. Moving to the in+1 directory is done by the
method call fh.select(in+1). Therefore, determining the accessed files requires
a precise analysis of the array content.

Consider the code of Fig. 6 that is representative of how files are accessed in
Java Card. Suppose that before calling the cd method, the field fh is either null
or points to an object ofh such that ∀i, ofh.path[i] = 0. At the method return,
with our base abstraction, the effect of the three paths is merged. We loose preci-
sion and get res = fh ∈ {null; ofh}∧ofh.path[0] ∈ [0; 1] ∧ ofh.path[1] ∈ [0; 20].
However, the precise post-condition of the cd method is P1 ∨ P2 ∨ P3 where each
Pi models the effect of a particular execution path.

P1
�
= res = null ∧ fh = null ∧ ofh.path[0] = 0 ∧ ofh.path[1] = 0

P2
�
= res = null ∧ fh = ofh ∧ ofh.path[0] = 1 ∧ ofh.path[1] = 0

P3
�
= res = ofh ∧ fh = ofh ∧ ofh.path[0] = 1 ∧ ofh.path[1] = 20

60 F. Besson, T. Jensen, and P. Vittet

1 public static FileView cd(){

2 if (fh!=null){

3 fh.select((short)1);

4 if(RANDOM_BOOL()){return null;}

5 fh.select((short)20); }

6 return fh; }

Fig. 6. Typical code for accessing files

Even for Java Card, the disjunctive completion [4] of our base abstract do-
main does not scale. Trace partitioning [27] offers a configurable trade-off be-
tween efficiency and precision. In particular, it allows a fine-grained control of
when abstract states should be merged or kept separate. Our trace partition-
ing strategy is attaching to abstract states the trace of the encountered select

calls. A trace event is therefore of the form selecti where i identifies uniquely
the method call in the control-flow graph. At the end of the cd method, we
obtain: [] : P1 [select3] : P2 [select3; select5] : P3. The security guidelines
mandate that the applet install phase and the processing of a single command
of the process phase should terminate. We exploit this information and merge
traces at those specific events. This strategy is precise and terminating for all
the Java Card applications we have analysed.

6 Experimental Evaluation

We have evaluated SawjaCard on 8 industrial Java Card applets. For confiden-
tiality reasons, we are required to keep them anonymous. The applications are
representative of basic applications. There are loyalty applets but also phone
applications. They require few privileges but access nonetheless certain non-
sensitive part of the file system. The characteristics of the applets can be found
in Fig. 7. For each applet, we provide the number of instructions of the appli-
cation and the number of instructions taking into account the libraries used by
the application. To give a finer estimate of the complexity of the code, we also
provide the number of nodes in the inlined control-flow graph constructed by
SawjaCard. However, this is still a coarse-grained measure of code complexity
which is weakly correlated with the analysis time. For instance, applet A1 exe-
cutes more instructions than applet A2, has fewer CFG nodes but takes longer

Applet A1 A2 A3 A4 A5 A6 A7 A8

Instrs (app) 2769 2835 1823 1399 636 752 1245 230

Instrs (+ libs) 5824 5236 4301 5643 2834 3044 3402 2040

CFG 3435 6096 1491 1247 825 999 842 487

Time 29min 19min 6min 2min 32s 18s 4s 2s

Fig. 7. Applet characteristics

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 61

to analyse. The analysis time is obtained using a laptop with a Intel Core i7
processor and 8 GB of memory.

Fig. 8 summarises the analysis results for the 8 applets. We made a selection
of the properties that can be evaluated in a fully automatic way i.e., the result is
either boolean or can be expressed as a percentage of alarms. An entry in Fig. 8
reads as follows. A � denotes a fully verified property. A property is marked x if
it is a true violation according to our manual inspection of the code. A ? denotes
a false positive. A number denotes a percentage. For instance, 90 means that the
property holds for 90% of the program points relevant for the property – per-
centages are rounded from below. If it is in bold red, the remaining alarms are
true violation. Otherwise, we could not ascertain the absence of false positives.
For 75% of the properties, SawjaCard reports no alarm and thus those prop-
erties are automatically validated. We have investigated the remaining alarms
manually. For 12% of the properties, we have concluded that the alarms were all
genuine violations of the properties. Therefore, the verdict of SawjaCard is pre-
cise for 87% of the properties. For the remaining 13%, there are false positives.
For instance, we identified that certain ArrayOutOfBounds alarms were due to
a lack of precision of the analysis. However, on average, SawjaCard validates
nonetheless about 87% of array accesses. For the remaining alarms, there are
false positives but also real alarms. In the following, we explain in more details
a selection of the properties of Fig 8.

Alarms A1 A2 A3 A4 A5 A6 A7 A8

NullPointerException 94 98 99 99 97 98 97 99

ArrayOutOfBounds 71 88 92 87 92 98 90 98

CatchIndividually 46 23 82 31 32 67 57 53

CatchNonISOException x x x x x x x x
HandlerAccess x � x x x � � �
AllocSingleton � � � � � x � �
SDOrGlobalRegPriv x � � � � � � �
SWValid ? � � � � � � �
ReplyBusy ? � � � � � � �
ClassCastException � � � � � � � �
NegativeArraySize � � � � � � � �
ArrayStoreException � � � � � � � �
SecurityException � � � � � � � �
AppletInStaticFields � � � � � � � �
ArrayConstantSize � � � � � � � �
InitMenuEntries � � � � � � � �

Fig. 8. Analysis results – selected properties

NullPointerException1 The precision of our null pointer analysis is satisfactory
as SawjaCard validates 98% of reference accesses. Moreover, for 4 of the applets,

1 From AFSCM rules: A basic application shall not include any code that leads to
NullPointerException, whatever this exception is caught or not.

62 F. Besson, T. Jensen, and P. Vittet

we could conclude after manual inspection that the remaining alarms were real
errors. For the other 4, the reasoning is more intricate and there might still
be false positives. A typical error we found consists in ignoring that certain
APIs can (according to the official specification) return a null pointer in some
unusual cases. For instance, the method getEntry of the class uicc.toolkit.
ToolkitRegistrySystem may return null if the server does not exist or if the
server returns null. None of the analysed application performs the necessary
defensive check to protect itself against such a null pointer.

ArrayOutOfBounds2 SawjaCard validates 87% of array accesses. The remaining
accesses are sometimes false positives. In particular, we have identified an ac-
cess whose verification would require a relational numeric analysis. However, a
simple rewrite of the code would also resolve the problem. Other array accesses
rely on invariants that are not available to the analyser. For instance, certain
array indexes are read from files. More precisely, when reading a file, certain
applications first read a special segment, which is the file status. The full size of
the file is a field of this file status. As the content of the file cannot be known,
it is impossible to track this length.

CatchIndividually3 This rule corresponds to a strict coding discipline that is
almost syntactic: each type of exception should be caught by a different handler.
This property is responsible for numerous alarms. All the reported alarms cor-
respond to true violations of the rule. For instance, the following not compliant
code snippet catches all the different exceptions with a single handler.

1 try{buffer =

JCSystem.makeTransientByteArray((short)140,CLEAR_ON_RESET);}

2 catch (Exception e) {buffer = new byte[(short)140];}

CatchNonISOException4 All the applets trigger alarms for this property. The
alarms correspond to violations of the property. The exceptions that are ignored
correspond to exceptions that are not thrown by the application itself but escape
from library code. It might very well be that the proprietary implementations
never raise these exceptions. Nonetheless, their possibility is reflected by our
model of the API which is based on the Java Card API specification.

Other properties. The AFSCM rules forbid the classic Java exceptions: Class-
CastException, NegativeArraySize and ArrayStoreException. For all the applets,

2 From AFSCM rules: An application must not include any code that leads to Array-
OutOfBoundException, caught or not.

3 From Global Platform rules: The Application should catch each exception defined
by the used APIs individually in the application code and should explicitly rethrow
the exception to the card runtime environment if needed.

4 From AFSCM rules: All exceptions thrown during the execution from any defined
entry point must be caught by the application, except ISOException that are thrown
in response to a command.

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 63

SawjaCard proves their absence. Thanks to our modelling of Java Card Firewall,
SawjaCard is also able to rule out SecurityExceptions. The rule AppletInStat-
icFields specifies that applet objects should not be stored in static fields. This
property is validated for all the applets. The next two rules concern values that
should be constant: array sizes and menu entries. Those rules are also vali-
dated for all the applets. The rule SDOrGlobalRegPriv is about privileges that
should be granted to access certain APIs. Applet 1 requires certain privileges
and therefore raises an alarm. The rules SWValid and ReplyBusy specify the
range of the status word return by applets. The rule is verified for all the applets
except applet 1. This is probably a false alarm given that the applet is using a
non-standard way of computing the status word. The last rule concerns certain
method calls returning handlers that should be protected by try-catch blocks.
SawjaCard raises an alarm for all the applets. This rule is indeed violated.

DeadCode5 For all the applets, SawjaCard detects some dead code which is due
to the Java compilation. Consider the following method which unconditionally
throws an exception. The return instruction is not reachable but is required by
the Java compiler.

1 void dead_code (short val){ SystemException.throwIt(1); return; }

The Java compiler also enforces that method should list the exceptions they
might raise using a throws clause. However, the algorithm for checking this clause
is purely syntactic. To make Java Card compile, a defensive approach consists
in adding handlers for all the potential exceptions. For certain calls, SawjaC-
ard proves that certain exceptions are never thrown and that the handlers are
therefore dead code. For compliance with the rule, a workaround would be to
remove the useless handlers and add to the throws clause of the method all the
exceptions that are proved impossible.

File handling6 There is a significant number of properties concerning files. Some
of them are simple and do not lead to false positives (such as CreateFile, Create-
FilesAtInstall, FileResizing which only require to check arguments for specific
method calls). Other properties are more complex and require a precise identi-
fication of the files that are read or written. Using trace partitioning (see Sec-
tion 5), we can precisely identify files paths that are constructed by a sequence
of select instructions with constant arguments. However, certain applets make
the assumption that the AID of a particular application is stored at a specific
position in a system file. The AIDs is thereafter used to access the root of the
sub file system owned by the application AID. Our model of the file system is too
coarse to encode this assumption and therefore we cannot handle this pattern.

5 From AFSCM rules: dead code must be deleted/removed from the code.
6 From AFSCM rules: The file system provides access to files that are under the control
of the Mobile Network Operator. These files shall not be accessed by applications,
except for a few exceptions.

64 F. Besson, T. Jensen, and P. Vittet

Allocation7 The alarms are real violations. Most applets allocate objects af-
ter the install phase. Yet, more relaxed rules allow the allocation of singleton
objects. This rule is still violated by applet 6 which repeatedly tries to get a han-
dler. In our model of the library, each unsuccessful try allocates an intermediate
object and is therefore responsible for a memory leak. For the other applets, our
singleton domain is precise and ensures that memory allocation is finite.

7 Related Work

For analysing Java programs, there are mature static analysis frameworks such
as Soot [32] and Wala [19]. Based on Wala, the Joana tool [13] is able to prove
security properties based on information-flow. Information-flow analyses would
probably benefit from the Java Card restrictions. Currently, AFSCM guidelines
do not consider such properties and are limited to safety properties.

Algorithms tuned for Java are usually not well-fitted for the constraints of
Java Card. In particular, state-of-the-art algorithms for constructing control-
flow graphs of Java programs are based on context-sensitive flow-insensitive
points-to analyses [22,29]. For Java Card, our analyser demonstrates that a
context-sensitive flow-sensitive points-to analysis is viable. It dynamically in-
lines methods calls and therefore literally computes an ∞-CFA. The Astree
analyser is using a similar strategy for handling function calls [5]. In their con-
text, the programs are large and function calls are rare. Java Card programs are
comparatively tiny but method calls are ubiquitous.

For Java, Hubert et al., [16] show how to infer the best @NonNull annota-
tions for Fähnrich and Leino type system [11]. The static analyser Julia [30,31]
implements a more costly but also more precise null pointer analysis that can
be efficiently implemented using BDDs. Because our objects are singletons, our
flow-sensitive points-to analysis performs strong updates and is therefore precise
enough to precisely track null pointers and rule out NullPointerExceptions.

Might and Shivers [23] show how to improve abstract counting of objects using
abstract garbage collection. Their analysis can prove that an abstract object
corresponds to a single live concrete object. Our singleton domain is based on a
different program logic and can ensure that an abstract object is only allocated
once. As Java Card usually does not provide garbage collection, we really need
to prove that there are only a finite number of allocated objects.

Semantics [28,9] and analyses [14,8] have been proposed for Java Card. Huis-
man et al., [18] propose a compositional approach to ensure the absence of illicit
applet interactions through Shareable interfaces. For basic applications such inter-
actions are simply forbidden. Our tool verifies that applets do not exposeShareable
interfaces and therefore enforces a simpler but stronger isolation property. A ver-
sion of the Key deductive verification framework [2] has been successfully applied

7 From Global Platform rules: A basic application should not perform instantiations
in places other than in install() or in the applet’s constructor.

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 65

to Java Card [26]. JACK [3] is another deductive verification tool dedicated to
Java Card that is based on the specification language JML [21]. However, deduc-
tive verification is applied at the source level and requires annotations of the code
with pre-(post-)conditions. This methodology is not applicable in our validation
context which needs to be fully automatic for binary CAP files.

8 Conclusions

The validation process for smart card applications written in Java Card involves
around 55 rules that restrict the behaviour of the applications. This process can
benefit substantially from static analysis techniques, which can automate most
of the required verifications, and provide machine-assistance to the certifier for
the rest. The SawjaCard validation tool contains a static analysis which com-
bines analysis techniques for numeric and heap-based computations, and which
is further enhanced by specific domain constructions dedicated to the handling
of the file system and Java Card firewall. A substantial part of building such a
validation tool involves the modelling of libraries for which we propose to build
a series of stubs whose behaviour approximates the corresponding APIs suffi-
ciently well for the analysis to be accurate. Benchmarks on a series of industrial
application shows that the tool can analyse such applications in a reasonable
time and eliminate more than 80% of the required checks automatically.

The development of the tool suggests several avenues for further improve-
ments. The properties for which the tool could be improved are ArrayOutOf-
BoundException and file properties. The numeric analysis is only weakly rela-
tional, and it would be possible to increase its precision by using a full-blown
relational domains such as polyhedra or octagons. An effective alternative to
significantly reduce the number of alarms would be to impose stricter coding
rules (for example defensive checks for narrowing down the range of non con-
stant indexes). Our model of the file system could also be improved. To get a
precise and scalable analysis, our assessment is that file system specific abstract
domains should be designed. Certain properties are also simply not provable
because they depend on invariants that are established by the personalisation
phase of the application. This phase happens after the install phase and corre-
sponds to commands issued, in a secure environment, by the card manufacturer.
Currently, the end of this phase has no standard specification and cannot be
inferred from the applet code. For the others properties we have satisfactory
results: when the tool emits an alarm, it corresponds to a real error in the appli-
cation. The tool has been recently transferred to industry where it will be used
as part of the validation process.

Acknowledgements. We thankDelphineDemange,VincentMonfort andDavid
Pichardie for their contributions to the development of SawjaCard.

66 F. Besson, T. Jensen, and P. Vittet

References

1. Common Criteria for Information Technology Security Evaluation (2012)
2. Ahrendt, W., et al.: The KeY system: Integrating Object-Oriented Design and

Formal Methods. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 327–330. Springer, Heidelberg (2002)

3. Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.-L., Pavlova,
M.I., Requet, A.: JACK - A Tool for Validation of Security and Behaviour of Java
Applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2006. LNCS, vol. 4709, pp. 152–174. Springer, Heidelberg (2007)

4. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
POPL, pp. 269–282. ACM Press (1979)

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

6. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: POPL, pp. 84–96. ACM Press (1978)

7. Demange, D., Jensen, T., Pichardie, D.: A Provably Correct Stackless Interme-
diate Representation for Java Bytecode. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 97–113. Springer, Heidelberg (2010)

8. Éluard, M., Jensen, T.P.: Secure Object Flow Analysis for Java Card. In: CARDIS,
pp. 97–110. USENIX (2002)

9. Éluard, M., Jensen, T., Denne, E.: An Operational Semantics of the Java Card
Firewall. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp.
95–110. Springer, Heidelberg (2001)

10. ETSI Project Smart Card Platform. Smart Cards; UICC Application Programming
Interface (UICC API) for Java CardTM

11. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: OOPSLA, pp. 302–312. ACM (2003)

12. GlobalPlatform Inc. GlobalPlatform Card Composition Model Security Guidelines
for Basic Applications (2012)

13. Graf, J., Hecker, M., Mohr, M.: Using JOANA for Information Flow Control in
Java Programs - A Practical Guide. In: ATPS 2013. LNI, vol. 215, pp. 123–138.
GI (2013)

14. Hansen, R.R., Siveroni, I.: Towards Verification of Well-Formed Transactions in
Java Card Bytecode. Electr. Notes Theor. Comput. Sci. 141(1), 145–162 (2005)

15. Hind, M.: Pointer Analysis: Haven’t We Solved This Problem Yet? In: PASTE
2001, pp. 54–61. ACM (2001)

16. Hubert, L.: A non-null annotation inferencer for Java bytecode. In: PASTE, pp.
36–42. ACM (2008)

17. Hubert, L., Barré, N., Besson, F., Demange, D., Jensen, T., Monfort, V., Pichardie,
D., Turpin, T.: Sawja: Static Analysis Workshop for Java. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 92–106. Springer, Heidelberg (2011)

18. Huisman, M., Gurov, D., Sprenger, C., Chugunov, G.: Checking Absence of Illicit
Applet Interactions: A Case Study. In: Wermelinger, M., Margaria-Steffen, T. (eds.)
FASE 2004. LNCS, vol. 2984, pp. 84–98. Springer, Heidelberg (2004)

19. IBM. The T.J. Watson Libraries for Analysis (Wala),
http://wala.sourceforge.net

20. Le Pallec, P., Diallo, S., Simon, T., Saif, A., Briot, O., Picard, P., Bensimon, M.,
Devisme, J., Eznack, M.: Cardlet Development Guidelines. AFSCM (2012)

http://wala.sourceforge.net

SawjaCard: A Static Analysis Tool for Certifying Java Card Applications 67

21. Leavens, G.T., Kiniry, J.R., Poll, E.: A JML Tutorial: Modular Specification and
Verification of Functional Behavior for Java. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, p. 37. Springer, Heidelberg (2007)

22. Lhoták, O., Hendren, L.J.: Evaluating the benefits of context-sensitive points-
to analysis using a BDD-based implementation. ACM Trans. Softw. Eng.
Methodol. 18(1) (2008)

23. Might, M., Shivers, O.: Improving flow analyses via GammaCFA: abstract garbage
collection and counting. In: ICFP, pp. 13–25. ACM (2006)

24. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

25. Miné, A.: Symbolic Methods to Enhance the Precision of Numerical Abstract Do-
mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2006)

26. Mostowski, W.: Formalisation and Verification of Java Card Security Properties
in Dynamic Logic. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 357–371.
Springer, Heidelberg (2005)

27. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (2007)

28. Siveroni, I.: Operational semantics of the Java Card Virtual Machine. J. Log. Al-
gebr. Program. 58(1-2), 3–25 (2004)

29. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understand-
ing object-sensitivity. In: POPL, pp. 17–30. ACM (2011)

30. Spoto, F.: The Nullness Analyser of julia. In: Clarke, E.M., Voronkov, A. (eds.)
LPAR-16 2010. LNCS, vol. 6355, pp. 405–424. Springer, Heidelberg (2010)

31. Spoto, F.: Precise null-pointer analysis. Software and System Modeling 10(2), 219–
252 (2011)

32. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot
- a Java bytecode optimization framework. In: CASCON, p. 13. IBM (1999)

Cyclic Abduction of Inductively Defined Safety

and Termination Preconditions

James Brotherston1 and Nikos Gorogiannis2

1 Dept. of Computer Science, University College London
2 Dept. of Computer Science, Middlesex University London

Abstract. We introduce cyclic abduction: a new method for automati-
cally inferring safety and termination preconditions of heap-manipulating
while programs, expressed as inductive definitions in separation logic.
Cyclic abduction essentially works by searching for a cyclic proof of the
desired property, abducing definitional clauses of the precondition as
necessary in order to advance the proof search process.

Weprovide an implementation,Caber, of our cyclic abductionmethod,
based on a suite of heuristically guided tactics. It is often able to automati-
cally infer preconditions describing lists, trees, cyclic and composite struc-
tures which, in other tools, previously had to be supplied by hand.

1 Introduction

Whether a given pointer program is memory-safe, or eventually terminates, un-
der a given precondition, are well-known (and undecidable) problems in program
analysis. In this paper, we consider the even more difficult problem of inferring
reasonable safety / termination preconditions, in separation logic [21] with in-
ductive definitions, for such heap-aware programs.

Analyses of heap-manipulating programs based upon separation logic now
extend, in some cases, to substantial code bases (see e.g. [22,20]), and rely on
the use of inductive predicates to specify the shape of data structures stored
in memory. However, such predicates are typically hard-coded into these anal-
yses, which must therefore either give up or ask the user for advice when they
encounter a data structure not described by the hard-coded predicates. For ex-
ample, the well known SpaceInvader [22] and SLAyer [5] analysers perform
accurately on programs using combinations of linked lists, but report a false bug
if they encounter a tree. Thus automatically inferring, or abducing, the inductive
predicates needed to analyse individual procedures has the potential to greatly
boost the automation of such verifiers.

The abduction of safety or termination preconditions is a highly non-trivial
problem. At one end of the scale, the weakest (liberal) precondition (cf. Dijk-
stra [14]) can straightforwardly be extracted from a program P , but is useless
for analysis: Deciding which program states satisfy this precondition is as hard
as deciding from which states P runs safely / terminates! At the other end,
many correct preconditions are too strong in that they rule out the execution

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 68–84, 2014.
c© Springer International Publishing Switzerland 2014

Inductively Defined Safety and Termination Preconditions 69

of some or all of the program. Thus we are required to perform a fine balancing
act: find the weakest precondition that is at least somewhat “natural”. Unfortu-
nately, for fundamental computability reasons, we cannot hope to obtain such a
precondition in general, so we must instead look for reasonable approximating
heuristics.

Our main contribution is a new method, cyclic abduction, for inferring safety
and/or termination preconditions, expressed as inductive definitions in separa-
tion logic, for heap-manipulating while programs. Our approach is based upon
heuristic search in a formal system of cyclic proofs, adapted from the cyclic
termination proofs in [8]. A cyclic proof is a derivation tree possibly containing
back-links, which identify leaves of the tree with arbitrary interior nodes. This can
create potentially unsound cycles in the reasoning, and so a (decidable) global
soundness condition must be imposed upon these derivations to qualify them
as genuine proofs. In fact, we can consider cyclic proofs of memory safety or of
termination as desired, simply by imposing two different soundness conditions.

Given a program, cyclic abduction aims to simultaneously construct an in-
ductively defined precondition in separation logic and a cyclic proof of safety
or termination for the program under this precondition. Broadly speaking, we
search for a cyclic proof that the program has the desired property, and when
the proof search gets stuck, we abduce (i.e., guess) part of the precondition in
order to proceed. Approximately, the main abduction principles are:

– symbolically executing branching commands in the derivation leads to con-
ditional disjunction in the definitions;

– symbolically executing dereferencing commands in the derivation forces us
to include pointer formulas in the definitions;

– forming back-links in the derivation leads to the instantiation of recursion
in the definitions; and

– encountering a loop in the program alerts us to the possibility that we may
need to generalise the precondition.

We have implemented our abduction procedure as an automatic tool, Caber,
that builds on the generic cyclic theorem prover Cyclist [11]. Caber is able to
automatically abduce safety and/or termination preconditions for a fairly wide
variety of common small programs, including the majority of those tested in the
Mutant tool, where the (list-based) preconditions previously had to be supplied
by hand [2]. Caber can abduce definitions of a range of data structures such as
lists, trees, cyclic structures, or composites such as trees-of-lists.

The remainder of this paper is structured as follows. Section 2 introduces
the programming language and our language of logical preconditions. Section 3
presents our formal system of cyclic safety/termination proofs on which our ab-
duction technique is based. In Section 4 we present our cyclic abduction strategy
in detail, and Section 5 describes the implementation of Caber and its experi-
mental evaluation. Section 6 examines related work and Section 7 concludes.

Due to space limitations, we have had to omit quite a few details. These can
be found in an earlier technical report [10].

70 J. Brotherston and N. Gorogiannis

2 Programs and Preconditions

In this section we present a basic language of while programs with heap pointers,
and the fragment of separation logic we use to express program preconditions.
We often use vector notation to abbreviate tuples or lists, e.g. x for (x1, . . . , xk),
and we write xi for the ith element of the tuple x.

Syntax of Programs. We assume infinite sets Var of variables and Fld of
field names. An expression is either a variable or the constant nil. Branching
conditions B and command sequences C are defined as follows, where x, y range
over Var, f over Fld and E over expressions:

B ::= � | E = E | E �= E
C ::= ε | x := E; C | y := x.f ; C | x.f := E; C |

free(x); C | x := new(); C |
ifB thenC elseC fi; C | whileB doC od; C

where y := x.f and x.f := E′ respectively read from and write to field f of
the heap cell with address x, and � represents a non-deterministic condition.
A program is simply a list of field names followed by a command sequence:
fields f1, . . . , fk; C.

Program Semantics. We use a RAM model employing heaps of records. We
fix a set Val of values and an infinite subset Loc ⊂ Val of locations, i.e., addresses
of heap cells. The “nullary” value nil ∈ Val \ Loc will not be the address of any
heap cell. A stack is a function s : Var→ Val. The semantics [[E]]s of expression
E in stack s is defined by [[x]]s =def s(x) for x ∈ Var, and [[nil]]s =def nil .

A heap is a partial function h : Loc ⇀fin (Val List) mapping finitely many
locations to tuples of values (i.e. records); we write dom(h) for the domain of
heap h, i.e. the set of locations on which h is defined, and e for the empty heap
that is undefined everywhere. If h1 and h2 are heaps with dom(h1)∩dom(h2) = ∅,
we define h1 ◦ h2 to be the union of h1 and h2; otherwise, h1 ◦ h2 is undefined.

We write s[x �→ v] to denote the stack defined exactly as s except that
(s[x �→ v])(x) = v, and adopt a similar update notation for heaps.

We employ a standard small-step operational semantics of our programs. A
(program) state is either a triple (C, s, h) where C is a command sequence, s a
stack and h a heap, or the special state fault , used to catch memory errors. Given
a program fields f1, . . . , fk; C, we map the field names f1, . . . , fk onto elements
of heap records by fj =def j. The semantics of programs is then standard, given
by a relation � on states (omitted here for space reasons, but see [10]). We write
�n for the n-step variant of�, and�∗ for its reflexive-transitive closure. A state
(C, s, h) is safe if there is no computation (C, s, h) �∗ fault , and terminating if
it is safe and there is no infinite �-computation starting from (C, s, h).

As in [23,8], extending the heap memory cannot lead to new memory faults
under our semantics, and so the following proposition holds:

Proposition 1. If (C, s, h) is safe (resp. terminating) and h◦h′ is defined then
(C, s, h ◦ h′) is also safe (terminating).

Inductively Defined Safety and Termination Preconditions 71

Syntax of Preconditions. We express preconditions using the symbolic heap
fragment of separation logic [3] extended with inductive definitions. We assume
an infinite set of predicate symbols, each with associated arity.

Definition 1. Formulas are given by the following grammar:

F ::= � | ⊥ | E = E | E �= E | emp | x �→ E | P (E) | F ∗ F
where x ∈ Var, E ranges over expressions, P over predicate symbols and E over
tuples of expressions (matching the arity of P in P (E)). We write F [E/x] for the
result of replacing all occurrences of variable x by the expression E in formula
F . Substitution is extended pointwise to tuples; but when we write F [E/xi], we
mean that E should be substituted for the ith component of x only.

We define ≡ to be the least equivalence on formulas closed under associativity
and commutativity of ∗ and F ∗ emp ≡ F .

Definition 2. An inductive rule set is a finite set of inductive rules each of the
form F

z⇒ P (E), where F and P (E) are formulas and z (often suppressed) is a
tuple listing the set of all variables appearing in F and E. If Φ is an inductive
rule set we define ΦP to be the set of all inductive rules for P in Φ, i.e. those of
the form F ⇒ P (E). We say P is undefined if ΦP is empty.

Semantics of Preconditions. Satisfaction s, h |=Φ F of the formula F by stack
s and heap h under inductive rule set Φ is defined by structural induction:

s, h |=Φ � ⇔ always
s, h |=Φ ⊥ ⇔ never
s, h |=Φ E1 = E2 ⇔ [[E1]]s = [[E2]]s and h = e
s, h |=Φ E1 �= E2 ⇔ [[E1]]s �= [[E2]]s and h = e
s, h |=Φ emp ⇔ h = e
s, h |=Φ E �→ E ⇔ dom(h) = {[[E]]s} and h([[E]]s) = [[E]]s
s, h |=Φ P (E) ⇔ (h, [[E]]s) ∈ [[P]]Φ

s, h |=Φ F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |=Φ F1 and s, h2 |=Φ F2

Note that we interpret (dis)equalities as holding in the empty heap. The seman-
tics [[P]]Φ of the predicate P under Φ is defined as follows:

Definition 3. Assume that Φ defines predicates P1, . . . , Pn with respective ari-
ties a1, . . . , an. We let each ΦPi be indexed by j, and for an inductive rule ΦPi,j

of the form F ⇒ Pix, we define an operator ϕi,j by:

ϕi,j(X) =def {(s(x), h) | s, h |=X F}
whereX = (X1, . . . , Xn) and eachXi ⊆ Valai×Heaps, and |=X is the satisfaction
relation above, except that [[Pi]]

X =def Xi. We then define

[[P]]Φ =def μX. (
⋃

j ϕ1,j(X), . . . ,
⋃

j ϕn,j(X))

We write [[Pi]]
Φ for the ith component of [[P]]Φ.

For any inductive rule set, the satisfiability of a formula in our fragment is
decidable [9], which is very helpful in evaluating abduced preconditions. On the
other hand, entailment between formulas in the fragment is undecidable [1].

72 J. Brotherston and N. Gorogiannis

3 Formal Cyclic Safety/Termination Proofs

Here we present our formal cyclic proof system, adapted from the cyclic termi-
nation proofs in [8], for proving memory safety and/or termination of programs.
We can consider memory safety rather than termination simply by imposing an
alternative soundness condition on proofs.

A proof judgement is given by F � C, where C is a command sequence and F
is a formula. The proof rules for judgements are given in Fig. 1. By convention,
the primed variables x′, x′′ etc. appearing in the premises of rules are chosen
fresh, and we write B to mean E �= E′ if B is E = E′, and vice versa. The rule
(Frame) can be seen as a special case of the general frame rule of separation
logic (cf. [23]), where the postcondition is omitted; its soundness depends on
Proposition 1. We also include a rule for unfolding a formula of the form P (E)
according to the definition of P in a given inductive rule set Φ. (Predicate folding
is a special case of lemma application, handled by the (Cut) rule.)

Definition 4. The judgement F � C is valid (resp. termination-valid) w.r.t.
inductive rule set Φ if s, h |=Φ F implies (C, s, h) is safe (resp. terminating).

Lemma 1. Suppose the conclusion F � C of an instance of a rule R from
Figure 1 is invalid w.r.t. Φ, i.e. s, h |=Φ F but (C, s, h) �n fault for some stack
s, heap h and n ∈ N. Then there is a premise F ′ � C′ of this rule instance and
stack s′, heap h′ and m ∈ N such that s′, h′ |=Φ F ′, but (C′, s′, h′) �m fault .
Moreover, m ≤ n, and if R is a symbolic execution rule then m < n.

Definition 5. A pre-proof of F � C is a pair (D,L), where D is a finite deriva-
tion tree with F � C at its root, and L is a “back-link” function assigning to
every open leaf
 of D a node L(
) of D such that the judgements at
 and L(
)
are identical. A pre-proof (D,L) can be seen as a graph by identifying each open
leaf
 of D with L(
); a path in P is then understood as usual.

Definition 6. A pre-proof P is a cyclic (safety) proof if there are infinitely
many symbolic execution rule applications along every infinite path in P .

We can treat termination rather than safety by replacing the soundness con-
dition of Defn. 6 with the condition in [8], which essentially demands that some
inductive predicate is unfolded infinitely often along every infinite path in the
pre-proof. Thus, by a simple adaptation of the soundness result in [8]:

Theorem 7. For any inductive rule set Φ, if there is a cyclic safety (resp. ter-
mination) proof of F � C, then F � C is valid (resp. termination-valid) w.r.t. Φ.

Proof. We just consider safety here, and refer to [8] for the termination case.
Suppose F � C has a cyclic safety proof P but is invalid. By Lemma 1, there is
an infinite path (Fk � Ck)k≥0 in P , and an infinite sequence (nk)k≥0 of natural
numbers such that nk+1 < nk whenever Fk � Ck is the conclusion of a symbolic
execution rule instance, and nk+1 = nk otherwise. Since P is a cyclic safety
proof, there are infinitely many symbolic executions along (Fk � Ck)k≥0. Thus
(nk)k≥0 is an infinite descending chain of natural numbers, contradiction. ��

Inductively Defined Safety and Termination Preconditions 73

Symbolic execution rules:

x = E[x′/x] ∗ F [x′/x] � C

F � x := E; C F � ε

x = Ef [x
′/x] ∗ (y → E ∗ F)[x′/x] � C

|E| ≥ f
y → E ∗ F � x := y.f ; C

x → E[E/Ef] ∗ F � C
|E| ≥ f

x → E ∗ F � x.f := E; C

x → (x′
1, . . . , x

′
k) ∗ F [x′/x] � C

F � x := new(); C

F � C

x → E ∗ F � free(x); C

B ∗ F � C; C′′

B ∗ F � ifB thenC elseC′
fi; C′′

B ∗ F � C; whileB doC od; C′

B ∗ F � whileB doC od; C′

B ∗ F � C′; C′′

B ∗ F � ifB thenC elseC′
fi; C′′

B ∗ F � C′

B ∗ F � whileB doC od; C′

F � C; C′′ F � C′; C′′

F � if � thenC elseC′
fi; C′′

F � C; whileB doC od; C′ F � C′

F � while � doC od; C′

Logical rules:

F � C
(Frame)

F ∗G � C

F � C
x not in C (Subst)

F [E/x] � C

F ′ � C
F ≡ F ′ (Equiv)

F � C

(t1 = t2 ∗ F)[t2/x, t1/y] � C
(=)

(t1 = t2 ∗ F)[t1/x, t2/y] � C

G′ ∗ F � C
G � G′ (Cut)

G ∗ F � C

(=)
t1 = t2 ∗ t1 	= t2 ∗ F � C

(→)
x → E ∗ x → E′ ∗ F � C

Predicate unfolding rule:

(E = Ej[xj/zj] ∗ Fj [xj/zj] ∗ F � C)1≤j≤k ΦP = {F1
z1⇒ P (E1), . . . , Fk

zk⇒ P (Ek)}
∀xj ∈ {xj}. xj is fresh

(P)
P (E) ∗ F � C

Fig. 1. Hoare logic rules for proof judgements

74 J. Brotherston and N. Gorogiannis

4 Cyclic Abduction: Basic Strategy and Tactics

We now turn to the main contribution of this paper: our cyclic abduction method
for inferring inductive safety and/or termination preconditions of programs.
Here, we first explain the high-level strategy for abducing such preconditions,
and then develop a number of automatic tactics implementing this strategy.

4.1 Overview of Abduction Strategy

The typical initial problem we are faced with is: given a program with code C
and input variables x, find an inductive definition set Φ such that the judgement
P (x) � C is (termination-)valid wrt. Φ, where P is a predicate symbol.

Our strategy for finding such a Φ is to search for a cyclic proof of the judge-
ment P (x) � C, abducing inductive rules as necessary to enable the search to
progress. We now set out informally the main principles governing this process.

Principle 1. The first priority of the search procedure is to close the current
branch of the derivation tree, preferably by applying an axiom, or else by forming
a back-link to some other node. (The formation of back-links must respect the
relevant soundness condition on cyclic proofs.)

If closing the branch is not possible, the second priority is to apply the sym-
bolic execution rule for the (foremost) command appearing at the current subgoal.

Principle 2. We may abduce inductive rules and/or deploy the logical rules as
“helper functions” to serve the priorities laid out in Principle 1, i.e., in order to
form a back-link or to apply the symbolic execution rule for a command.

We may abduce inductive rules only for predicate symbols that are in the
current subgoal, and currently undefined. When we abduce inductive rules for a
predicate, we always immediately unfold that predicate in the current subgoal.

Principle 3. Before symbolically executing a while loop, one can attempt to
generalise the precondition F appearing at the subgoal in question. That is to
say, we can try to find a formula F ′ such that F ′ � F is a valid entailment,
and, by applying (Cut), proceed with the proof search using the precondition F ′

in place of F . If necessary, we may abduce inductive rules in order to obtain F ′.

4.2 Tactics

A tactic in our setting, as is standard in automated theorem proving, is sim-
ply a transformer on proof states. However, since we employ cyclic proofs with
back-links joining leaves to arbitrary proof nodes, our proof state must reflect
the entire pre-proof rather than just the current subgoal. Furthermore, since
we are allowed to abduce new inductive rules in the proof search, the current
inductive rule set must also form part of the proof state. Thus our proof states
are comprised of the following elements:

P: A partial pre-proof, representing the portion of proof constructed so far.
Some of the leaves of P may be open; we call these the open subgoals of P .

Inductively Defined Safety and Termination Preconditions 75

Φ: The set of inductive rules abduced so far in the proof search.

: The open subgoal of P on which to operate next.

Example 1. Figure 2 shows an abductive cyclic proof of a program that non-
deterministically traverses l and r fields of pointer x until it reaches nil; as
expected, the abduced predicate defines binary trees. We will often refer to this
proof, which satisfies both the safety and the termination soundness condition,
as a running example in order to illustrate our abductive tactics.

4.3 Abductive Tactic for Branching Commands

Our proof rules for deterministic if and while commands (Fig. 1) require the
precondition to determine the status of the branching condition. We introduce
an abductive tactic, abduce branch, that fires whenever the symbolic execution
of such a rule fails.

Suppose abduce branch is applied to the proof state (P , Φ,
) where the com-
mand sequence C in the judgement appearing at the current subgoal
 is of
the form whileB doC od;C′ or ifB thenC elseC′ fi;C′′ (where B �= �). For
simplicity we assume B is an equality or disequality between two program vari-
ables x, y (the case where one of the two terms is nil is very similar). First,
abduce branch selects a subformula of the form P (E) appearing in
 such that
P is undefined in Φ, and x and y occur in the tuple E. Thus, we may write the
judgement appearing at
 as F ∗ P (E) � C where x = Ek and y = Ej (and
k �= j). Then, abduce branch adds the following inductive rules for P to Φ:

B[zk/x, z�/y] ∗ P ′(z)⇒ P (z)

B[zk/x, z�/y] ∗ P ′′(z)⇒ P (z)

where P ′, P ′′ are fresh predicate symbols and z is a tuple of appropriately many
arbitrary variables. abduce branch then unfolds the indicated occurrence of
P (E) in
, and applies the appropriate symbolic execution rule for C to each
of the new subgoals (this step is now guaranteed to succeed).

The proof in Figure 2 begins by applying abduce branch in order to symboli-
cally execute the while command, abducing a suitable definition of predicate P0.

4.4 Abductive Tactic for Dereferencing Assignments

The symbolic execution rules for commands that dereference a memory address
(Fig. 1) require the precondition to guarantee that this address is indeed allo-
cated. The tactic abduce deref enables the symbolic execution of such com-
mands by abducing the allocation of the appropriate address.

Formally, suppose abduce deref is applied to the proof state (P , Φ,
), where
the first command C in the judgement at
 is of the form free(x) or x.f := E or
y := x.f . First, abduce deref selects a subformula of the form P (E) appearing

76 J. Brotherston and N. Gorogiannis

ε
x
=

n
il
∗
P
1
(x
)
�
ε
w
h
i
l
e
x
�=

n
il

x
=

n
il
∗
P
1
(x
)
�
0

P
0
(x
)
�
0

(F
ra
m
e)

x
′
�=

n
il
∗

x
′
�→

(x
,z
)
∗
P
0
(x
)
∗
P
4
(x

′ ,
x
,z
)
�
0

A
(P

3
)

x
′
�=

n
il
∗

x
′
�→

(x
,z
)
∗
P
3
(x

′ ,
x
,z
)
�
0

x
:=

x
.l

x
�=

n
il
∗

x
�→

(y
,z
)
∗
P
3
(x
,y
,z
)
�
2

A
(P

2
)

x
�=

n
il
∗
P
2
(x
)
�
2

P
0
(x
)
�
0

(F
ra
m
e)

x
′
�=

n
il
∗

x
′
�→

(y
,x

)
∗
P
0
(y
)
∗
P
0
(x
)
∗
P
5
(x

′ ,
y
,x

)
�
0

A
(P

4
)

x
′
�=

n
il
∗

x
′
�→

(y
,x

)
∗
P
0
(y
)
∗
P
4
(x

′ ,
y
,x

)
�
0

(P
3
)

x
′
�=

n
il
∗

x
′
�→

(y
,x

)
∗
P
3
(x

′ ,
y
,x

)
�
0

x
:=

x
.r

x
�=

n
il
∗

x
�→

(y
,z
)
∗
P
3
(x
,y
,z
)
�
3

(P
2
)

x
�=

n
il
∗
P
2
(x
)
�
3
i
f
�
..
.

x
�=

n
il
∗
P
2
(x
)
�
1

w
h
i
l
e
x
�=

n
il

x
�=

n
il
∗
P
2
(x
)
�
0

A
(P

0
)

P
0
(x
)
�
0

a
b
d
u
c
e
b
r
a
n
c
h

a
b
d
u
c
e
d
e
r
e
f

a
b
d
u
c
e
b
a
c
k
l
i
n
k

f
i
e
l
d
s
l,
r;

0
:

w
h
i
l
e
x
�=

n
il
d
o

1
:

i
f
�
t
h
e
n

2
:

x
:=

x
.l

e
l
s
e

3
:

x
:=

x
.r

f
i

o
d

x
=

n
il
∗
P
1
(x
)
⇒

P
0
(x
)

x
�=

n
il
∗
P
2
(x
)
⇒

P
0
(x
)

x
�→

(y
,z
)
∗
P
3
(x
,y
,z
)
⇒

P
2
(x
)

P
0
(y
)
∗
P
4
(x
,y
,z
)
⇒

P
3
(x
,y
,z
)

P
0
(z
)
∗
P
5
(x
,y
,z
)
⇒

P
4
(x
,y
,z
)

x
=

n
il
∗
em

p
⇒

P
0
(x
)

x
�=

n
il
∗
x
�→

(y
,z
)
∗
P
0
(y
)
∗
P
0
(z
)
⇒

P
0
(x
)

F
ig
.
2
.
T
o
p
:
a
b
d
u
ct
iv
e
p
ro
o
f
fo
r
a
b
in
a
ry

tr
ee

se
a
rc
h
p
ro
g
ra
m

(s
h
ow

n
b
o
tt
o
m

le
ft
).

N
o
te

th
a
t
ju
d
g
em

en
ts

re
fe
r
to

th
e
in
d
ic
es

a
tt
a
ch

ed
to

p
ro
g
ra
m

co
m
m
a
n
d
s;

a
n
d
w
e
w
ri
te
A
(P

)
to

in
d
ic
a
te

a
co
m
b
in
ed

a
b
d
u
ct
io
n
-a
n
d
-u
n
fo
ld
in
g
p
ro
o
f
st
ep

.
B
o
tt
o
m

ce
n
tr
e:

in
d
u
ct
iv
e
ru
le
s

a
b
d
u
ce
d
d
u
ri
n
g
th
e
p
ro
o
f.
B
o
tt
o
m

ri
g
h
t:

si
m
p
li
fi
ed

in
d
u
ct
iv
e
ru
le
s.

Inductively Defined Safety and Termination Preconditions 77

at
, where P is undefined in Φ, and x occurs in the tuple E at position k (i.e.,
x = Ek). Then, the inductive rule below is added to Φ:

P ′(x � y) ∗ xk �→ y⇒ P (x)

where � is tuple concatenation, P ′ is a fresh predicate symbol, and x and y
are tuples of distinct, fresh variables such that |x| = |E|, and |y| is the number
of fields in the program. abduce deref then unfolds the selected occurrence of
P (E) in
 (introducing fresh variables as appropriate), and applies the symbolic
execution rule for C to the resulting subgoal (which will now succeed).

In the case of the proof in Figure 2, we apply abduce deref when attempting
to symbolically execute the command x := x.l on the middle branch at line 2,
abducing a suitable definition for P2 in the process. A similar situation arises
when we attempt to symbolically execute the command x := x.r on the right
hand branch, with the crucial difference that here the only predicate in the
precondition, P2, has already been defined. In this case, abduce deref is able
to succeed by unfolding P2(x) according to its existing definition.

4.5 Abductive Tactic for Forming Back-Links

In principle, we may attempt to form a back-link from an open subgoal labelled
by F � C to any other proof node labelled by F ′ � C, provided that: (a) F � F ′

is a valid entailment; and (b) the addition of this back-link does not violate the
soundness condition on cyclic proofs. Here we present a tactic, abduce backlink,
that attempts to form such back-links automatically during the proof search.

Formally, suppose that abduce backlink is applied to proof state (P , Φ,
).
First, the tactic non-deterministically selects a node
′ of P , distinct from
, such
that the command sequences at
′ and
 are identical. Then it tries to manipulate

 using logical rules so as to obtain a precondition identical to the one at
′. More
precisely, for any predicate P in
 that is undefined in Φ, abduce backlink

attempts to abduce inductive rules for P such that after unfolding P , the logical
rules (Frame) and (Subst) can be used to obtain an identical copy of
′.

We write
 as F1 ∗ P (E) � C, where P is undefined in Φ, and
′ as F2 � C.
Then abduce backlink abduces an inductive rule of the form F ′ ∗P ′(z)⇒ P (z)
where P ′ is a fresh predicate, and F ′ is chosen so as to satisfy

F2[θ] ⊆multiset F1 ∗ F ′[E/z]

for some substitution θ of expressions for non-program variables only (here we
view formulas as ∗-separated multisets). Providing we can find suitable F ′ (which
is essentially a unification problem), abduce backlink transforms P by applying
rules to
 and inserting a new back-link to
′ as follows:

...

F2 � C

...

F2 � C
(Subst)

F2[θ] � C
(Frame)

F1 ∗ F ′[E/z] ∗ P ′(E) � C
(P)

F1 ∗ P (E) � C

78 J. Brotherston and N. Gorogiannis

As with our other tactics, abduce backlink is also allowed to try unfolding
a defined predicate in the subgoal
 if no undefined predicates are available.
Finally, abduce backlink ensures that the proposed back-link does not violate
the relevant soundness condition on cyclic proofs by calling a model checker.

In the middle branch of the proof in Figure 2, we call abduce backlink after
symbolically executing x := x.l. The tactic proceeds by abducing a suitable
definition for P3 and applying (Frame), allowing a back-link to the root of the
proof. For the similar goal on the rightmost branch, abduce backlink instead
unfolds P3 and then abduces a suitable inductive rule for the undefined P4.

We observe that abduce backlink is “forgetful” in that it uses (Frame) to
discard parts of the precondition. An alternative would be to use (Cut) with an
entailment theorem prover to establish the required logical entailment F � F ′

(such steps are needed for some proofs). We did implement such a tactic, calling
on the separation logic entailment prover in Cyclist [11], but found the costs to
be prohibitive in the absence of a sophisticated lemma speculation mechanism.

4.6 Tactic for Existential Generalisation

Symbolically executing while loops creates a potentially infinite branch of the
proof search, unless it can be closed either by an axiom or, more commonly, by
forming a back-link. However, naive attempts to back-link to a target judgement
often fail because the judgement specifies a too-precise relationship between
program variables which is not preserved by the loop body. One solution, typical
of inductive theorem proving in general, is to generalise the precondition of
a while loop so as to “forget” such variable relationships. The tactic ex gen

implements this principle.
Formally, suppose ex gen is applied to the proof state (P , Φ,
), where the

judgement labelling current subgoal
 is of the form F � while B do C od; C′.
Then for every program variable x modified by the loop body C, ex gen replaces
every occurrence of x in a subformula of F of the form E = E′, E �= E′ or
y �→ E by a fresh (existentially quantified) variable w. (This step uses (Cut),
and is easily seen to be sound.) This tactic may generalise over any subset of
variables modified by the loop body and present in F .

Example 2. Figure 3 shows the proof of a program with two nested while loops;
the outer loop traverses next pointers while the inner loop traverses down point-
ers. Here, the abduced precondition defines a list of lists.

Consider the goal x �= nil ∗ x �→ (y, z) ∗ P3(x, y, z) � 2 in Figure 3. Since z is
modified by the inner loop body, and the precondition contains x �→ (y, z), we
call ex gen, which replaces x �→ (y, z) by x �→ (y, w), where w is a fresh variable.
This generalisation will be needed later in order to form a backlink (as x �→ (y, z)
does not hold after executing the loop body, but ∃w. x �→ (y, w) does).

Other, more complex types of generalisation are also possible (and are needed
for some proofs), but are outside the scope of what we can cover in a single paper.

Inductively Defined Safety and Termination Preconditions 79

ε

x
=

n
il
∗
P

1
(x

)
�

ε
w
h
i
l
e
x
	=

n
il

x
=

n
il
∗
P

1
(x

)
�

0

P
0
(x

)
�

0
(F

ra
m
e
)

x
′
	=

n
il
∗
z
=

n
il
∗
x
′

→

(x
,
w
)
∗
P

0
(x

)
∗
P

6
(x

′ ,
x
,
z
)
�

0
A
(P

4
)

x
′
	=

n
il
∗
z
=

n
il
∗
x
′

→

(x
,
w
)
∗
P

4
(x

′ ,
x
,
z
)
�

0
x

:=
x
.n

e
x
t

x
	=

n
il
∗
z
=

n
il
∗
x

→

(y
,
w
)
∗
P

4
(x

,
y
,
z
)
�

4
w
h
i
l
e
z
	=

n
il

x
	=

n
il
∗
z
=

n
il
∗
x

→

(y
,
w
)
∗
P

4
(x

,
y
,
z
)
�

2

x
	=

n
il
∗
x

→

(y
,
w
)
∗
P

3
(x

,
y
,
z
)
�

2
(F

ra
m
e
)

x
	=

n
il
∗
z
′
	=

n
il
∗
x

→

(y
,
w
)
∗
z
′

→

(v
,
z
)
∗
P

3
(x

,
y
,
z
)
∗
P

8
(x

,
y
,
z
′ ,
v
,
z
)
�

2
A
(P

7
)

	=
n
il
∗
z
′
	=

n
il
∗
x

→

(y
,
w
)
∗
z
′

→

(v
,
z
)
∗
P

7
(x

,
y
,
z
′ ,
v
,
z
)
�

2
z

:=
z
.d
o
w
n

x
	=

n
il
∗
z
	=

n
il
∗
x

→

(y
,
w
)
∗
z

→

(v
,
v
′)

∗
P

7
(x

,
y
,
z
,
v
,
v
′)

�
3

A
(P

5
)

x
	=

n
il
∗
z
	=

n
il
∗
x

→

(y
,
w
)
∗
P

5
(x

,
y
,
z
)
�

3
w
h
i
l
e
z
	=

n
il

x
	=

n
il
∗
z
	=

n
il
∗
x

→

(y
,
w
)
∗
P

5
(x

,
y
,
z
)
�

2
A
(P

3
)

x
	=

n
il
∗
x

→

(y
,
w
)
∗
P

3
(x

,
y
,
z
)
�

2
E
X
-G

E
N

x
	=

n
il
∗
x

→

(y
,
z
)
∗
P

3
(x

,
y
,
z
)
�

2
z

:=
x
.d
o
w
n

x
	=

n
il
∗
x

→

(y
,
y
′)

∗
P

3
(x

,
y
,
y
′)

�
1

A
(P

2
)

x
	=

n
il
∗
P

2
(x

)
�

1
w
h
i
l
e
x
	=

n
il

x
	=

n
il
∗
P

2
(x

)
�

0
A
(P

0
)

P
0
(x

)
�

0

f
i
e
l
d
s
n
e
x
t,
d
o
w
n
;

0
:
w
h
i
l
e
x
	=

n
il
d
o

1
:

z
:=

x
.d
o
w
n
;

2
:

w
h
i
l
e
z
	=

n
il
d
o

3
:

z
:=

z
.d
o
w
n

o
d
;

4
:

x
:=

x
.n

e
x
t

o
d

x
=

n
il
∗
P

1
(x

)
⇒

P
0
(x

)

x
	=

n
il
∗
P

2
(x

)
⇒

P
0
(x

)

x

→

(y
,
y
′)

∗
P

3
(x

,
y
,
y
′)

⇒
P

2
(x

)

z
=

n
il
∗
P

4
(x

,
y
,
z
)
⇒

P
3
(x

,
y
,
z
)

z
	=

n
il
∗
P

5
(x

,
y
,
z
)
⇒

P
3
(x

,
y
,
z
)

P
0
(y

)
∗
P

6
(x

,
y
,
z
)
⇒

P
4
(x

,
y
,
z
)

z

→

(v
,
v
′)

∗
P

7
(x

,
y
,
z
,
v
,
v
′)

⇒
P

5
(x

,
y
,
z
)

P
3
(x

,
y
,
w
)
∗
P

8
(x

,
y
,
z
,
v
,
w
)
⇒

P
7
(x

,
y
,
z
,
v
,
w
)

x
=

n
il
⇒

P
0
(x

)

x
	=

n
il
∗
x

→

(y
,
y
′)

∗
P

3
(y

,
y
′)

⇒
P

0
(x

)

z
=

n
il
∗
P

0
(y

)
⇒

P
3
(y

,
z
)

z
	=

n
il
∗
z

→

(v
,
v
′)

∗
P

3
(y

,
v
′)

⇒
P

3
(y

,
z
)

F
ig
.
3
.
T
o
p
:
a
b
d
u
ct
iv
e
p
ro
o
f
fo
r
li
st
-o
f-
li
st
s
tr
av

er
sa
l.
B
o
tt
o
m
,
le
ft

to
ri
g
h
t:

p
ro
g
ra
m
;
p
re
d
ic
a
te
s
fo
u
n
d
;
si
m
p
li
fi
ed

p
re
d
ic
a
te
s.

80 J. Brotherston and N. Gorogiannis

4.7 Simplification of Inductive Rule Sets. When an abductive proof search
succeeds, the returned set of abduced inductive rules will typically be too com-
plex for human consumption. We apply some fairly straightforward simplifica-
tions to improve readability (as shown in Figures 2 and 3).

First, all undefined predicates are interpreted as the empty memory emp (this
being a safe and spatially minimal interpretation). Second, we in-line the def-
initions of predicates defined by a single inductive rule; to ensure this process
terminates, the definition of Q may only be in-lined into the body of P when Q
was abduced later in the search than P . Finally, we eliminate any parameters
from a predicate that are unused by its definition and therefore redundant.

5 Implementation and Evaluation

We have implemented our cyclic abduction strategy as an experimental tool,
Caber (from “Cyclic ABducER”). Caber is built on top of the open-source
theorem prover Cyclist, a generic framework for constructing cyclic theorem
provers [11]. It essentially provides an instantiation of the proof system in Sec-
tion 3 (based on an earlier version in [11]), and an abductive proof search algo-
rithm implementing the tactics in Section 4. Safety versus termination is handled
via a prover switch. When a proof is found, we check that the abduced predicates
are satisfiable, using the method in [9]. The implementation of Caber amounts
to about 3000 lines of OCaml code, excluding minor changes to Cyclist.

Program LOC Time Search Defs. Term.
(ms) Depth Class Proved

1 List traverse 3 20 3 A �
2 List insert 14 8 7 B �
3 List copy 12 0 8 B �
4 List append 10 12 5 B �
5 Delete last from list 16 12 9 B �
6 Filter list 21 48 11 C �
7 Dispose list 5 4 5 A �
8 Reverse list 7 8 7 A �
9 Cyclic list traverse 5 4 5 A �

10 Binary tree search 7 8 4 A �
11 Binary tree insert 18 4 7 B �
12 List of lists traverse 7 8 5 B �
13 Traverse even-length list 4 8 4 A �
14 Traverse odd-length list 4 4 4 A �
15 Ternary tree search 10 8 5 A �
16 Conditional diverge 3 4 3 B ×
17 Traverse list of trees 11 12 6 B �
18 Traverse tree of lists 17 68 7 A �
19 Traverse list twice 8 64 9 B �

Program LOC Time Search Defs. Term.
(ms) Depth Class Proved

1 Mutant test #1 4 4 3 A �
2 Mutant test #2 6 8 5 A �
3 Mutant test #3 6 8 7 A �
4 Mutant test #4 11 52 8 C �
5 Mutant test #5 16 16 12 B �
6 Mutant test #6 6 4 5 A �
7 Mutant test #7 8 4 7 A �
8 Mutant test #8 30 × × × ×
9 Mutant test #9 13 16 13 B �

10 Mutant test #10 21 4 13 C �
11 Mutant test #11 17 292 13 C T/O

Fig. 4. Experimental results for the Caber tool. T/O indicates timeout (30s). See
below for explanation of “Defs. Class” column.

Our experimental evaluation of Caber is summarised in Fig. 4. The test suite
includes programs manipulating lists, trees, cyclic structures and higher-order
structures like lists-of-lists and trees-of-lists. We also obtained under permission
the programs used to test the Mutant termination checker [4]. These are loops

Inductively Defined Safety and Termination Preconditions 81

extracted from the Windows kernel that manipulate list-like structures of varying
complexity. Our tests were performed on a x64 Linux system with an Intel i5
CPU at 3.4GHz and 4Gb of RAM. Run-times were generally very low, with no
test taking more than 300 ms, apart from Mutant test #11 whose termination
proof times out. The definitions abduced by the safety- and termination-proving
runs on each program were identical, except on test #16 and Mutant test #11.

Evaluating the quality of abduced definitions is not trivial. In principle, defini-
tions could be partially ordered by entailment (cf. [12]) but for our language this
is known to be undecidable [1]. Instead, we manually classify solutions into three
categories. A solution is rated “A” if it is syntactically equal to the standard pre-
condition for that example, “B” if it is at least provably equal to the standard
precondition, and “C” if it is strictly stronger than the standard precondition.

Out of 30 tests in total, 14 tests (47%) produce predicates rated “A”, 11 tests
(37%) produce predicates rated “B”, and 4 tests (13%) produce predicates rated
“C”, with one test (3%) failing entirely. Categories A and B include cyclic list
traversal (program 9 in Fig. 4), list of lists traversal (12), searching binary and
ternary search trees (10, 15) and traversal of even- and odd-length lists (13, 14).
The last four programs typically cannot be handled by (safety-checking) tools
such as SpaceInvader and SLAyer. Test #6 and Mutant tests #4, #10, #11
produce C-rated definitions, and Mutant test #8 fails altogether. The common
cause behind these (partial) failures is essentially the need for better abstraction
and lemma speculation techniques, as discussed briefly in Section 4.6.

6 Related Work

Our approach to the abduction of inductive definitions is close in spirit, if not so
much in execution, to inductive recursion synthesis in AI (for a survey see [16]).
The main novelties of our approach, compared to this technique, are: (a) that
we abduce Hoare-style preconditions for imperative programs in separation logic,
rather than inputs to functional programs in first-order logic; and (b) that we
employ a cyclic proof search to abduce induction schemas.

Our abductive tactics for symbolic execution are similar to the approach taken
in [12], which performs abduction for separation logic over a fixed signature of
(higher-order) lists. In a different setting, Dillig et al. [15] abduce loop invariants
as Boolean combinations of integer inequalities. In contrast, we directly abduce
the inductive definitions of arbitrary data structures on-the-fly, by refining the
meaning of predicate symbols during proof search.

There have also been a number of previous efforts to synthesise inductive
predicates of separation logic for use in program analysis. Lee et al. present a
shape analysis using an abstract domain of shape graphs based on a grammar of
heaps [19]. The main limitation of the technique is the restriction of the inferred
predicates to at most two parameters. Later, Berdine et al. developed a shape
analysis employing a higher-order list predicate, from which various list-like data
structures can be synthesised [2]. Again, the choice of abstract domain limits the
class of predicates that can be discovered; for example, predicates defining trees

82 J. Brotherston and N. Gorogiannis

cannot be expressed in this domain. Guo et al. leverage inductive recursion syn-
thesis to infer inductive loop invariants in a shape analysis based on separation
logic [17]. Chang and Rival propose a shape analysis whose abstract domain is
parameterised by “invariant checkers”, which are essentially inductive definitions
provided by the user [13]. Finally, He et al. build on the bi-abductive techniques
proposed in [12] to infer procedure specifications based on user-defined predi-
cates [18]. The main differences between these works and our own is that they
only consider safety and not termination; and they are generally based upon
pre-defined recursion schemas or abstract domains, rather than inferring predi-
cate definitions directly as we do. Guo et al. [17], based on inductive recursion
synthesis techniques, is a notable exception to the latter rule.

Recently, Brockschmidt et al. developed a termination prover for Java pro-
grams based on term rewriting [7] that also performs some inference of heap
predicates during analysis. In contrast to our work, their analysis assumes mem-
ory safety, while we guarantee it. Several authors have also considered the prob-
lem of inferring termination preconditions for integer programs (e.g., [6]). The
heap is not usually considered, and the abduced preconditions are generally lin-
ear combinations of inequalities between integer expressions.

7 Conclusions and Future Work

In this paper we lay the foundations of a new technique, cyclic abduction, for in-
ferring the inductive definitions of data structures manipulated by while pointer
programs. This problem is far more challenging than the already difficult one of
inferring pre/postconditions based on fixed predicates. Presently, our prototype
tool Caber infers correct preconditions for small programs manipulating data
structures such as lists, trees, cyclic lists and compositions of these. In particu-
lar, Caber abduces the correct termination preconditions, previously supplied
by hand, for over 90% of the tests reported for Mutant in [4].

We note that cyclic abduction is subject to the same fundamental limitation
as most static analyses: For computability reasons, there is no general solution
to the abduction problem, and thus we cannot do better than a heuristic search.

The main avenue for future work is to improve the abduction heuristics in
order to cover larger and more difficult examples than Caber is currently able
to handle automatically. In particular, the while language in this paper does not
feature procedure calls. There is no difficulty in extending the proof system in
Section 3 to programs with procedures, adding postconditions to judgements to
capture the effect of procedure calls. However, the abduction problem becomes
much more difficult, as preconditions and postconditions must be abduced si-
multaneously. We know how to achieve this for some simple examples, but have
not yet implemented it. For more complicated examples, we need to establish in-
ductive entailments between formulas at procedure call sites, again highlighting
the need for good lemma speculation techniques.

Current limitations of the implementation, which are however not fundamen-
tal, include: search space explosion in the presence of too many record fields

Inductively Defined Safety and Termination Preconditions 83

and/or temporary variables in the program; the absence of heuristics for ab-
ducing information not explicitly manipulated by the program (e.g. numerical
information [20]) and difficulty in abducing suitably segmented structures when
several pointers traverse the same data structure.

Our approach is very “pure” in that the only source of information for ab-
duction is the text of the program itself. Thus the recursion in the abduced
predicates will typically reflect the manipulation of data structures by the pro-
gram. In principle, one could compare abduced predicates to a “library” of known
structures using a suitable inductive theorem prover for separation logic.

Although by no means a silver bullet, we believe that cyclic abduction offers
a promising and natural approach to automatic specification inference.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 411–425. Springer,
Heidelberg (2014)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

4. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

5. Berdine, J., Cook, B., Ishtiaq, S.: Slayer: Memory safety for systems-level code. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

6. Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer,
Heidelberg (2012)

7. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 105–122. Springer, Heidelberg (2012)

8. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: Proc. POPL-35. ACM (2008)

9. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure
for satisfiability in separation logic with inductive predicates. In: Proceedings of
CSL-LICS. ACM (2014) (to appear)

10. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety
and termination preconditions. Technical Report RN/13/14, University College
London (2013)

11. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012)

12. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. Journal of the ACM 58(6) (December 2011)

84 J. Brotherston and N. Gorogiannis

13. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: Proc. POPL-35.
ACM (2008)

14. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
15. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via ab-

ductive inference. In: Proceedings of OOPSLA. ACM (2013)
16. Flener, P., Yilmaz, S.: Inductive synthesis of recursive logic programs: achievements

and prospects. The Journal of Logic Programming 41(2-3), 141–195 (1999)
17. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion

synthesis. In: Proc. PLDI-28 (June 2007)
18. He, G., Qin, S., Chin, W.-N., Craciun, F.: Automated specification discovery

via user-defined predicates. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS,
vol. 8144, pp. 397–414. Springer, Heidelberg (2013)

19. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using
grammar-based shape analysis. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 124–140. Springer, Heidelberg (2005)

20. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for
heap-manipulating programs. In: Proc. POPL-37. ACM (2010)

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. LICS-17. IEEE Computer Society (2002)

22. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

23. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Nielsen, M.,
Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 402–416. Springer,
Heidelberg (2002)

Expectation Invariants for Probabilistic Program Loops
as Fixed Points

Aleksandar Chakarov and Sriram Sankaranarayanan

Department of Computer Science
University of Colorado, Boulder, CO

{firstname.lastname}@colorado.edu

Abstract. We present static analyses for probabilistic loops using expectation
invariants. Probabilistic loops are imperative while-loops augmented with calls
to random variable generators. Whereas, traditional program analysis uses Floyd-
Hoare style invariants to over-approximate the set of reachable states, our
approach synthesizes invariant inequalities involving the expected values of pro-
gram expressions at the loop head. We first define the notion of expectation invari-
ants, and demonstrate their usefulness in analyzing probabilistic program loops.
Next, we present the set of expectation invariants for a loop as a fixed point of the
pre-expectation operator over sets of program expressions. Finally, we use exist-
ing concepts from abstract interpretation theory to present an iterative analysis
that synthesizes expectation invariants for probabilistic program loops. We show
how the standard polyhedral abstract domain can be used to synthesize expecta-
tion invariants for probabilistic programs, and demonstrate the usefulness of our
approach on some examples of probabilistic program loops.

1 Introduction

Inductive loop invariants are commonly used in program verification to prove proper-
ties of loops in (non-deterministic) programs. Abstract interpretation provides a power-
ful framework to synthesize inductive invariants automatically from the given program
text [7]. In this paper, we provide a static analysis framework for probabilistic loops
that can call random number generators to sample from pre-specified distributions such
as Bernoulli, uniform and normal. Probabilistic programs arise in a variety of domains
ranging from biological systems [16] to randomized algorithms [21]. In this paper, we
present an abstract interpretation framework for deriving expectation invariants of prob-
abilistic loops. Expectation invariants are expressions whose expectations at any given
iteration of the loop exist, and are always non-negative.

Proving expectation invariants often requires approximating the distribution of states
after n steps of loop execution (see [2,18,20,9,15] for techniques that approximate dis-
tributions in a sound manner). However, even simple programs, such as the program
shown in Figure 1, can exhibit complex distributions of reachable states after just a few
steps of loop execution (see Figure 2). Extrapolating from a few to arbitrarily many loop
iterations requires the notion of “inductive invariants” for probabilistic programs. In this
paper, we build upon the standard notion of quantitative invariants originally consid-
ered by McIver and Morgan [17]. First we extend quantitative invariants from single
expressions to a set of expressions that are mutually invariant: multiple expressions

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 85–100, 2014.
c© Springer International Publishing Switzerland 2014

86 A. Chakarov and S. Sankaranarayanan

whose expectations are nonnegative simultaneously. Next, we characterize invariants as
a fixed point, making them amenable to automatic approximation using abstract inter-
pretation. We demonstrate polyhedral analysis over numerical probabilistic programs
that manipulate real- and integer-valued state variables.

Our approach first defines the notion of inductive invariants using the pre-expectation
operator, along the lines of McIver and Morgan [17]. We lift the pre-expectation oper-
ator to a cone of expressions, and subsequently construct a monotone operator over
finitely generated cones. Any pre-fixed point of this monotone operator is shown to cor-
respond to expectation invariants. We then use the descending abstract Kleene iteration
starting from the cone � of all affine (or fixed degree polynomial expressions) to iter-
atively apply the monotone operator to this cone and obtain a pre-fixed point. A (dual)
widening operator is used to accelerate this process.

We apply our technique to some small but complex examples of probabilistic pro-
grams and demonstrate the power of our approach to synthesize expectation invariants
that are otherwise hard to realize manually. We also compare our approach with the tool
PRINSYS that synthesizes quantitative invariants using a constraint-based approach by
solving constraints on the unknown coefficients of a template invariant form [13,11].

Related Work. The broader area of probabilistic program analysis has seen much
progress over the recent past. Our previous work combining symbolic execution of
probabilistic programs with volume computation, provides an extensive review of ap-
proaches in this area [22]. Therefore, we restrict ourselves to very closely related works.

McIver and Morgan were among the first to consider deductive approaches for prob-
abilistic programs using the concept of quantitative invariants [17]. Their work focuses
on programs where the stochastic inputs are restricted to discrete distributions over a
finite set of support. We naturally lift this restriction to consider a richer class of dis-
tributions in this paper including Gaussian, Poisson, Uniform or Exponential random
variables. Our setup can use any distributions whose expectations (and some higher
moments) exist, and are available. Furthermore, our technique synthesizes invariants
that are polynomial expressions involving the program variables. In particular, indica-
tor functions over program assertions are not considered in this paper [13,17]. Indicator
functions complicate the computation of the pre-expectation when a richer class of dis-
tributions are allowed. Finally, McIver & Morgan treat demonic non-deterministic as
well as stochastic inputs. Our approach, currently, does not support (demonic) non-
determinism; but is potentially extensible when demonic non-determinism is present.
Our previous work [3] first considered the relationship between quantitative invariants
and the well-known concept of martingales and super-martingales from probability the-
ory [24]. In particular, it demonstrates the use of concentration of measure inequalities
to prove probability bounds on assertions at various points in the program [10]. The
notion of inductive expectation invariants is a strict generalization of that considered
in our previous work. While martingales and super-martingales are analogous to a sin-
gle inductive linear inequality, we consider the analog of multiple mutually inductive
linear invariants. The use of abstract interpretation framework is an additional contri-
bution. The generation of quantitative invariants was first studied by Katoen et al. [13],
using a constraint-based approach [6,23], implemented in the tool PRINSYS [11]. An
experimental comparison is provided in Section 5.

Expectation Invariants for Probabilistic Program Loops 87

real x := rand(-5,3)
real y := rand(-3,5)
int count := 0
while (x+y <= 10)

if flip(3/4)
x := x + rand(0,2)
y := y + 2

count++

real x := rand(-5,3)
real y := rand(-3,5)
int count := 0
while (forever)

if (x + y <= 10)
if flip(3/4)

x := x + rand(0,2)
y := y + 2

count++
else

// Preserve x,y,count

Fig. 1. (Left) Simple example of a probabilistic program loop, (Middle) Modified loop with
stuttering semantics, and (Right) histogram of the value of count after executing the stuttering
loop for at most 25 steps.

Abstract domains for probabilistic programs were first considered by Monniaux [18],
by enriching standard abstract domains with bounds on the measure. Refinements of
this idea appear in the work of Mardziel et al [15] and Bouissou et al. [2]. Instead of
the explicit representations of distributions found in these works, we characterize sets
of distributions by means of bounds on moments of expressions. Alternatively, Mon-
niaux presents a backward abstract interpretation scheme to compute the probability
of an observable assertion at the program output, and characterize the output distribu-
tion [19]. The backwards approach treats the program as a measurable function, and the
backward abstract interpretation follows the natural definition of the output distribu-
tion through the inverse mapping [5]. However, the approach seemingly requires a user
generated query or a systematic gridding of the output states to define the distribution.
Cousot and Monerau [9] present a systematic and general abstract semantics for proba-
bilistic programs that views the abstract probabilistic semantics obtained by separately
considering abstractions of the program semantics, the probability (event) space, and a
“law abstraction” that is a function mapping abstract states to the distribution over the
set of possible abstract next states obtained from a single step of program execution.
Their approach conveniently captures existing techniques as instances of their frame-
work, while providing new ways of abstracting probabilistic program semantics. Based
on our current understanding, the approach in this paper fits into their framework by
viewing expectation invariants as representing sets of distributions, and the proposed
transfer functions as law abstractions that characterize next state distributions.

Example 1. Figure 1 shows a simple probabilistic program written in an imperative lan-
guage. Each execution of the loop updates variables x,y with probability 3

4 or chooses
to leave them unchanged with probability 1

4 . The variable count acts as a loop counter.
Our approach first rewrites the program to yield a stuttering loop (see Fig. 1(Middle)).
Analyzing the stuttering loop yields expectation invariants such as

(∀ n ∈ N) E(count | n) ≤ 56

9
.

Here, n refers to the number of iterations of the stuttered loop and E(count | n) is the
expected value of count over the distribution of reachable states after n ∈ N iterations.

88 A. Chakarov and S. Sankaranarayanan

We ask a natural followup question: what is the expected number of steps the pro-
gram takes to complete execution, i.e. what is the value E(count) upon termination of
the original program? A simple dynamic approach is to simulate (execute) the program
a large number of times and obtain an empirical estimate for E(count). Figure 1(Right)
presents the simulation results in the form of a histogram.

Here, we propose a static analysis approach whose goal is to establish facts about the
behavior of the program. For one, we can conclude that the original program terminates
almost surely since the E(count | n) is shown to be finite for all n. Knowing that count
is always nonnegative, we can now apply Markov’s concentration of measure inequal-
ity [5,10] to conclude bounds on the probabilities of the value of count at any program
step: P(count ≥ 25 | n) ≤ E(count | n)

25 ≤ 56
175 ≈ 0.32. Often, we can use much stronger

inequalities, should the necessary conditions for these be met. In addition, our analysis
yields many other interesting results, for instance: ∀ n ∈ N, E(3count− 2y + 2 | n) =
0 and E(4x + 4y− 9count | n) = 0.

Outline. The remainder of this paper is organized as follows: Section 2 introduces the
preliminaries of probabilistic programs before we extend the discussion to expectation
invariants and cones in Section 3. Section 4 presents an abstract interpretation based
iterative approach to compute fixed points under the pre-expectation operator. Section 5
is a summary of the experiments we conducted using our prototype version of the tool
and a comparison with the PRINSYS tool. Proofs of our main results and details of our
probabilistic benchmarks have been provided in an extended version [4].

2 Preliminaries

Probabilistic Programs. Let P be a probabilistic program in an imperative language
with random number generators including unifInt(lb, ub), unifReal(lb,
ub), and gaussian(mean, var). These constructs draw values from standard dis-
tributions with well-defined, finite expected values. Let X = {x1, . . . , xm} be a set of
real-valued program variables and R = {r1, . . . , rl} be a set of real-valued random
variables. Vectors x and r denote valuations of all program, respectively random, vari-
ables. The random variables have a joint distribution DR. Formally, the distribution is
defined over an underlying σ-algebra (Ω,F) with an appropriate measure μr.

A linear inequality over X is an expression of the form aT x ≤ b for a vector a ∈
Rm, b ∈ R. A linear assertion ϕ[X] involving X is a conjunction of linear inequalities
ϕ :

∧n
i=1 a

T

i x ≤ bi and can be succinctly expressed in matrix notation as ϕ : Ax ≤ b.

Definition 1 (Probabilistic Loops). A probabilistic loop is a tuple 〈T ,D0, n〉, wherein
T : {τ1, . . . , τk} is a set of probabilistic transitions (from the loop head to itself),D0 is
the initial probability distribution and n is a formal loop counter variable.

Each probabilistic transition τi : 〈gi,Fi〉 consists of (a) guard assertion gi[X] over
X; and (b) update function Fi(x, r) that yields the next state x′ := Fi(x, r).

In this paper, we restrict ourselves to piecewise linear (PWL) probabilistic programs,
wherein each transition τi has linear assertion guards and piecewise linear updates.
Further, we also restrict ourselves to studying expectation invariants over simple loops.

Expectation Invariants for Probabilistic Program Loops 89

An extension of these ideas to programs with arbitrary control flow structure including
nested loops will be discussed in our extended version [4].

Definition 2 (PWL Transitions). A piecewise linear transition τ : 〈g,F(x, r)〉 has
the following special structure:

– g is a linear guard assertion over X;
– F(x, r) is a (continuous) piecewise linear update function for X , where, for ease

of presentation, r is decomposed into a vector of continuous (random) choices rc

and a vector of discrete Bernoulli choices (coin flips) rb. As a result, the update
function may be written as

F (x, r) =

⎧⎪⎪⎨⎪⎪⎩
f1 : A1x+B1rc + d1, with probability p1,

...

fk : Akx+ Bkrc + dk, with probability pk,

Options f1, . . . , fk, abstract the effect of the Bernoulli choices in rb, and are called
forks, while p1, . . . , pk are fork probabilities satisfying 0 < pi ≤ 1, and

∑k
i=1 pi =

1. A1, . . . , Ak ∈ Rm×m, B1, . . . , Bk ∈ Rm×l, and d1, . . . , dk ∈ R.

No Nondeterminism. For a probabilistic loop 〈T ,D0, n〉, we preclude demonic non-
determinism using two restrictions:

Mutual Exclusion: For all pairs τ1 : 〈g1,F1〉 and τ2 : 〈g2,F2〉 in T , g1∧g2 ≡ false.
Exhaustiveness: For all transitions τi,

∨
τi∈T gi ≡ true.

Mutual exclusion and mutual exhaustiveness together guarantee that precisely one tran-
sition can be taken at a time step n and the choice is a function of the state x.

Execution Model. A state of the probabilistic loop is a tuple 〈x, n〉 that provides values
for the program variables X and the loop counter n. The state 〈x0, 0〉 is called an initial
state if x0 is a sample drawn from the initial distribution D0 and n = 0.

Definition 3 (Sample Path). A sample path (or an execution) of the loop is an infinite

sequence (x0, 0)
τ (0),r0−−−−→ (x1, 1)

τ (1),r1−−−−→ (x2, 2) → · · · τ (n−1),rn−1−−−−−−−−→ (xn, n) → · · · ,
wherein, (a) (x0, 0) is a sample from D0 and (b) for each i ≥ 0, (xi+1, i + 1) is
obtained by executing the unique transition τ (i) : (gi,Fi) that is enabled on the state
(xi, i). This execution involves a sample from the Bernoulli (discrete) random variables
to choose a fork of the transition τ (i) and a choice of the continuous random variables
rc to obtain xi+1 = Fi(xi, ri).

We demonstrate the definitions above on a simple example.

Example 2. In Figure 1 (Middle) we present the stuttering version of a simple proba-
bilistic program with a loop, where the initial values of the program variables reaching
the loop head come from the joint distributionD0 : 〈x, y, count〉 ∼ U [−5, 3]×U [−3, 5]×
{0}. This modification adds a new program path that preserves the values of program
variables once the loop guard x + y ≤ 10 is violated. The program has two transitions
T : {τ1, τ2}, where τ1 represents the loop body:

90 A. Chakarov and S. Sankaranarayanan

Fig. 2. (Left) Some sample paths for the program in Figure 1. (Right) Frequency histograms for
the distributions Dn for n = 0, 25.

τ1 (loop body) τ2 (stuttering)
g1 : (x+ y ≤ 10)

Fτ1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 :

⎡⎢⎣x’ �→ x + r1,

y’ �→ y + 2,

count’ �→ count + 1,

⎤⎥⎦ w.p. 3
4

f2 :

⎡⎢⎣x’ �→ x,

y’ �→ y,

count’ �→ count + 1,

⎤⎥⎦ w.p. 1
4

g2 : (x+ y > 10)

Fτ2 :

⎧⎨⎩x’ �→ x,
y’ �→ y,
count’ �→ count,

Here r1 represents the uniform random variable over [0, 2]. Transition τ2 represents
the stuttering after x + y > 10. It is added to satisfy the mutual exclusiveness and
exhaustiveness requirements. It has a single fork that preserves the values of x, y, count.
Figure 2 depicts 200 sample paths obtained by simulating the program (for 25 steps)
and distributionsDn for n = 0 and n = 25 obtained by running the program 106 times.

Operator Semantics: Probabilistic program semantics can be thought of as continu-
ous linear operators over over the state distributions, starting from the initial distribution

D0: D0
�P�−−→ D1

�P�−−→ · · · �P�−−→ Dn
�P�−−→ · · · . Here �P� models the effect of a single

loop iteration and Dn is the distribution of the states after n iterations of the loop. This
matches the standard probabilistic program semantics [14,19]. The definition ofDn and
�P� are described in the extended version [4].

Pre-Expectations. We now define the useful concept of pre-expectation of an expres-
sion e over the program variables across a transition τ following earlier work by McIver
and Morgan [17]. Let τ : 〈g,F〉 be a transition and e[x] be an expression involving the
state variables x of the program.

Expectation Invariants for Probabilistic Program Loops 91

The pre-expectation operator preEτ is an expression transformer that associates
each expression e with the next-step expectation expression preEτ (e[x

′]) across τ ,
in terms of the current state variables of the program. Formally,

preEτ (e[x
′]) : �R(e[x

′ �→ F(x, r)] | x)

The expectation�R is taken over the distribution of r in the transition τ .
Consider a PWL transition τ with k > 0 forks, f1, . . . , fk, each of the form fj :

Ajx+Bjr + dj with fork probability pj . The pre-expectation operator is defined as

preEτ (e
′) =

k∑
j=1

pjER(PRE(e′, fj) | x)

where PRE(e′, fj) is the substitution of post variables x′ for their update values fj(x, r)
in expression e. The expectation ER(g) denotes the expectation of g over the joint
distributionR of the random variables.

Example 3. We illustrate the notion of a pre-expectation of a program expression by
considering the expression 3 + 2x− y across transition τ1 in the Figure 1.

preEτ1(3 + 2x′ − y′) :

(
3
4 [3 + 2�r1(x+ r1)− (y + 2)] + // from fork f1
1
4 [3 + 2x− y] // from fork f2

)
.

Simplifying, we obtain preEτ1(3 + 2x′ − y′) = 3 + 2x − y + 3
2�r1(r1) − 3

2 . Noting
that �r1(r1) = 1, we obtain preEτ1(3 + 2x′ − y′) = 3 + 2x− y.

Likewise, we define preE(e′) (without a transition as a subscript) as

�gτ1
× preEτ1(e

′) + · · ·+ �gτk
× preEτk(e

′) ,

wherein �g(x) is the indicator function: �g(x) = 1 if x |= g(x), and 0, otherwise.
We now state a key result involving pre-expectations. Consider a prefix σ of a sam-

ple execution (x0, 0) → (x1, 1) → · · · → (xn, n). Given that the current state is
(xn, n), we wish to find out the expectation of an expression e over the distribution of
all possible next states (xn+1, n+ 1). Let ê : preE(e′).

Lemma 1. The expected value of e over the post-state distribution starting from state
(xn, n) is the value of the pre-expectation ê evaluated over the current state xn:

�(e(xn+1)|xn, n) = ê(xn) =
∑
τi∈T

�gi(xn)preEτi(e
′) .

Finally, we extend Lemma 1 to the full distribution Dn from which xn is drawn.

Lemma 2. The expected value of e over the post-state distribution Dn+1 given a dis-
tribution Dn for the current state valuations xn satisfies:

EDn+1(e(xn+1))=EDn(preE(e)(xn))=EDn [ê] = EDn

[∑
τi∈T

�gi(xn)preEτi(e
′)

]
.

92 A. Chakarov and S. Sankaranarayanan

3 Expectation Invariants

Expectation invariants are invariant inequalities on the expected value of program ex-
pressions. Therefore, one could view the set of possible state distributions Di at step i
as the concrete domain over which our analysis operates to produce the abstract facts
in the form of expectation invariants over these distributions. We formalize expectation
invariants and derive a fixed point characterization of expectation invariants.

3.1 Definitions and Examples

Let P : 〈T ,D0, n〉 be a probabilistic loop and let 〈x0, 0〉 be the initial state of the
system. From Section 2 we know that x0 is drawn from an initial distribution D0 and
that any n-step sample execution of P defines a sample trajectory through the distribu-
tions of reachable states D0, . . . ,Dn at step i for any 0 ≤ i ≤ n. We then define the
expectation of a program expression e at time step n as E(e(xn) | n) = EDn(e(xn)).

Definition 4 (Expectation Invariants). An e over the program variables X is called
an expectation invariant (EI) iff for all n ≥ 0, E(e | n) ≥ 0.

Thus, expectation invariants are program expressions whose expectations over the ini-
tial distribution are non-negative, and under any number of iterations of the probabilistic
loop remain non-negative.

Example 4. Consider the program from Example 1, and the expression y− x. Initially,
E(y − x | 0) = ED0(y − x) = 1 − (−1) = 2 ≥ 0. We can show that E(y − x | i) =
E(y | i)− E(x | i) ≥ 0 at any step i. Therefore, y− x is an expectation invariant.

The concept of expectation invariant defined here is closely related to that of martin-
gales studied in our earlier work [3]. The importance of expectation invariants is that a
set of “inductive” EI is a set of mutually inductive constraints over state distributions.
This allows the analysis to track and transfer sufficient amount of information about the
distributions across loop iterations without ever having to explicitly construct these.

Proving EI. We now focus on the question of proving that a given expression e over
the program variables is an expectation invariant. This requires constructing (approxi-
mations) to the distributionDn for each n, or alternatively, an argument based on math-
ematical induction. We first observe an important property of each Dn.

Definition 5 (Admissible Distribution). We say that a distribution D over the state-
space X is admissible if all moments exist.1 In other words, for any polynomial p(x)
over the program variables, ED(p(x)) exists, and is finite.

Let us assume that any program P which we attempt to analyze is such that

1 While the existence of only the first moment suffices, our experiments demonstrate that our
current synthesis approach can be extended to polynomial expectation invariants.

Expectation Invariants for Probabilistic Program Loops 93

1. D0, the initial state distribution, is admissible;
2. For each transition τ , the distribution of the random variablesDR is admissible.

Under these assumptions and following the linearity of the statements and the guards
in the program, we can show the following fact.

Lemma 3. For all n ∈ N, the distribution Dn is admissible.

Rather than constructDn explicitly for each n (which quickly becomes impractical),
we formulate the principle of inductive expectation invariants. Consider expressions
E = {e1, . . . , em} wherein each ei is a linear (or polynomial) expression involving the
program variables.

Definition 6 (Inductive Expectation Invariants). The set E of expressions forms an
inductive expectation invariant of the program P iff for each ej , j ∈ [1,m],

1. ED0(ej) ≥ 0, i.e., the expectation at the initial step is non-negative.
2. For every admissible distribution D over the state-space X ,

(ED(e1) ≥ 0 ∧ · · · ∧ ED(em) ≥ 0) |= ED(preE(ej)) ≥ 0 . (1)

The inductive expectation invariant principle stated above follows the standard Floyd-
Hoare approach of “abstracting away” the distribution at the nth step by the inductive
invariant itself, and using these to show that the invariant continues to hold for one more
step. Furthermore, it abstracts away from a specific Dn to any admissible distribution
D. However, Def. 6 is quite unwieldy, in practice, since the quantification over all pos-
sible admissible distributionsD over the state space X is a higher order quantifier (over
probability spaces and measurable functions). Rather than reason with this quantifier,
we will use the following facts about expectations to formulate a new principle:

Theorem 1 (Facts About Expectations over Admissible Distributions). The follow-
ing hold over all possible admissible distributions D over a σ-algebra X , linear asser-
tion ϕ, and linear (or polynomial expressions) e, e1, . . . , ek:

1. Linearity of expectation: ED(λ1e1 + . . .+ λkek) = λ1ED(e1) + · · ·+ λkED(ek),
for λi ∈ R.

2. Indicator Functions: ED(�e≥0 × e) ≥ 0, and in general, if ϕ |= e ≥ 0 then
ED(�ϕ × e) ≥ 0, provided �ϕ� is measurable.

3. ED(�ϕe+ �¬ϕe) = ED(e), provided �ϕ� is measurable.

Using these facts as “axioms”, we attempt to reformulate the key step 2 of Def. 6
as a simple quantified statement in (first-order) linear arithmetic. Consider, once again,
the key statement of the principle (1). The central idea of our approach is to express the
pre-expectation preE(ej) for each ej ∈ E as

preE(ej) =
m∑
i=1

λj,iei +
∑
p

μj,p (�ϕp × gp) , (2)

wherein λj,i ≥ 0 and μj,p ≥ 0 are real-valued multipliers, gp are linear expressions
over the program variables and ϕp are assertions such that ϕp |= gp ≥ 0. The origin of
the expressions gp and assertions ϕp will be made clear, shortly. Let us fix a finite set
of expressions E = {e1, . . . , em}.

94 A. Chakarov and S. Sankaranarayanan

Lemma 4. If E satisfies the relaxed induction principle (2) then E satisfies the original
induction principle (1).

3.2 Conic Inductive Expectation Invariants

We now formalize this intuition using the concept of conic inductive expectation invari-
ants. Let P be a program with transitions T . Let gi be a linear assertion representing
the guard of the transition τi. We express gi as

∧ni

j=1 gi,j ≥ 0, wherein gi,j are affine
program expressions. Let gi : (gi,1 . . . gi,ni)

T be a vector representing gi. Likewise,
let E = {e1, . . . , em} be a finite set of expressions, we denote the vector of expressions
as e : (e1, . . . , em)T .

Definition 7 (Conic Inductive Expectation Invariants). The finite set E is a conic
inductive invariant of the program P iff for each ej ∈ E,

1. Initial Condition: ED0(ej) ≥ 0

2. Induction Step: There exists a vector of multipliers λj ≥ 0, such that for each
transition τl : (gl,Fl), preEτl(ej) can be expressed as a conic combination of
expressions in E and the expressions in gl:

(∃ λj ≥ 0) (∀ τl ∈ T) (∃ μl ≥ 0) preEτl(ej) = λT
j e+ μl

Tgl . (3)

In particular, we note that the order of quantification in Eq. (3) is quite important. We
note for a given expression ej the multipliers λj must stay the same across all the transi-
tions τl ∈ T . This will ensure the applicability of the linearity of expectation. Changing
the order of quantification makes the rule unsound, as discussed in the extended version
of the paper[4].

Example 5. The set E = {e1 : y − 2x, e2 : 2x− y + 3, e3 : 4x − 3count + 4, e4 :
−2x+ y− 3, e5 : −4x+3count− 4} is a conic inductive invariant for the program in
Example 1. Consider e1 : y− 2x. We have

preEτ1(e1) : Er1

(
3

4
(y + 2− 2x− 2r1) +

1

4
(y − 2x)

)
= y− 2x.

Likewise, preEτ2(e1) : e1, since τ2 is a stuttering transition.
Therefore, setting λ : (1 0 0 0 0)T , we obtain preE(e1) : λTe+ 0 × �x+y≤10 . For

a non-trivial example, see the extended version of the paper [4].

Theorem 2. Let E be a conic inductive invariant for a program P as given by Defini-
tion 7. It follows that each ej ∈ E is an expectation invariant of the program.

Thus far, we have presented inductive expectation invariants as a finite set of expres-
sions E = {e1, . . . , em}, satisfying the conditions in Definitions 6 or 7. We transfer our
notion from a finite set of expressions to a finitely generated cone of these in preparation
for our fixed point characterization given in the next section.

Expectation Invariants for Probabilistic Program Loops 95

Definition 8 (Cones). Let E = {e1, . . . , ek} be a finite set of program expressions over
the program variables x. The set of conic combinations (the cone) of E is defined as

Cone(E) =

{
λ0 +

k∑
i=1

λiei | 0 ≤ λi, 0 ≤ i ≤ k

}
.

Expressions ei are called the generators of the cone.

Given a non-empty linear assertion assertion ϕ :
∧k

i=1 ei ≥ 0, it is well-known that
ϕ |= e ≥ 0 iff e ∈ Cone(e1, . . . , ek). Likewise, let E be an inductive expectation
invariant. It follows that any e ∈ Cone(E) is an expectation invariant of the programP .

Example 6. Revisiting Example 5, we consider the conic combination:

4(−2x + y− 3) + 3(4x− 3count + 4) = 4x + 4y− 9count

As a result, we conclude that EDn(4x + 4y− 9count) ≥ 0 at each step n ≥ 0.
Analyzing the program by replacing the probabilistic statements with non-

deterministic choice, and performing polyhedral abstract interpretation yields the in-
variant x + y ≤ 14 [8]. This allows us to bound the set of support for Dn, and also
allows us to conclude that EDn(14− x− y) ≥ 0. Combining these facts, we obtain,

EDn(56− 9count) ≥ 0, or equivalently, EDn(count) ≤ 56

9
.

4 Expectation Invariants as Fixed Points

In this section, we show that the notion of conic invariants as presented in Definition 7
can be expressed as a (pre-) fixed point of a monotone operator over finitely gener-
ated cones representing sets of expressions. This naturally allows us to use abstract
interpretation starting from the cone representing all expressions (�) and performing a
downward Kleene iteration until convergence. We use a (dualized) widening operator
to ensure fast convergence to fixed point in finitely many iterations.

Let P be a program over variables x with transitions T : {τ1, . . . , τk} and initial
distributionD0. For simplicity, we describe our approach to generate affine expressions
of the form c0 + cTx for c0 ∈ R, c ∈ Rn. Let A(x) represent the set of all affine
expressions over x.

Polyhedral Cones of Expectation Invariant Candidates: Our approach uses finitely
generated cones I : Cone(E) where E = {e1, . . . , em} is a finite set of affine expres-
sions over x. Each element e ∈ I represents a candidate expectation invariant. Once a
(pre-) fixed point is found by our technique, we obtain a cone I∗ : Cone(E∗), wherein
E∗ will be shown to be a conic inductive invariant according to Definition 7.

A finitely generated cone of affine expressions I : Cone(E) is represented by a
polyhedral cone of its coefficients C(I) : {(c0, c) | c0 + cTx ∈ I}. The generators of
C(I) are coefficient vectors (c0,i, ci) representing the expression ei : c0,i + cTi x.

Our analysis operates on the lattice of polyhedral cone representations, CONES, or-
dered by the set theoretic inclusion operator ⊆. This is, in fact, dual to the polyhedral
domain, originally proposed by Cousot & Halbwachs [8].

96 A. Chakarov and S. Sankaranarayanan

Initial Cone: For simplicity, we will assume thatD0 is specified to us, and we are able
to compute ED0(x) precisely for each program variable. The initial cone I0 is given by

I0 : Cone ({x1 − ED0(x1),ED0(x1)− x1, · · · ,ED0(xn)− xn, xn − ED0(xn)}) .

Such a cone represents the invariant candidates xi = ED0(xi).

Pre-Expectation Operators: We now describe the parts of the monotone operator
over finitely generated cones. Let E = {e1, . . . , em} be a set of expressions. Let τ :
〈g,F〉 be a transition, wherein g :

∧p
l=1 gl ≥ 0. We first present a pre-expectation

operator over cones, lifting the notation preEτ from expressions to cones of such:

Definition 9 (Pre-Expectation Operator). The pre-expectation of a cone I : Cone(E)
w.r.t a transition τ is defined as:

preEτ (I) = {(e,λ) ∈ A(x)×Rm | λ ≥ 0 ∧ ∃ μ ≥ 0 (preEτ (e) ≡
m∑

j=1

λjej +

p∑
i=1

μigi) }.

The refinement preEτ (I) of a cone contains all affine program expressions whose pre-
expectation belongs to the conic hull of I and the cone generated by the guard asser-
tion. For technical reasons, we attach to each expression a certificate λ that shows its
membership back in the cone. This can be seen as a way to ensure the proper order of
quantification in Definition 7.

Given a polyhedron C(I) representing I , we can show that C(preEτ (I)) is a poly-
hedral cone over the variables (c0, c) representing the expression coefficients and λ for
the multipliers. Our extended version [4] presents in detail the steps for computing the
pre-expectation of a cone as well as the fixpoint computation across multiple transitions.

Next, we define a pre-expectation operator across all transitions:

preE(I) = {e ∈ A(x) | (∃ λ ≥ 0) (e,λ) ∈
k⋂

j=1

preEτj (I)}

An expression e belongs to preE(I) if for some λ ≥ 0, (e,λ) ∈ preEτj (I) for each
transition τj ∈ T .

Given a cone C(I), we first compute the cones C(Î1), . . . , C(Îk) representing the
pre-expectations across transitions τ1, . . . , τk, respectively. Next, we compute C(I ′) :

(∃ λ)
k⋂

j=1

C(Îj), representing I ′ : preE(I), by intersecting the cones C(Îj) and pro-

jecting the dimensions corresponding to λ.
We define the operator G over cones as G(I) : I0 ∩ preE(I), where I0 is the initial

cone.

Theorem 3. The operator G satisfies the following properties:

1. G is a monotone operator over the lattice CONES ordered by set-theoretic inclusion.
2. A finite set of affine expressions E is a conic inductive invariant (Def. 7) if and only

if I : Cone(E) is a pre-fixed point of G, i.e, I ⊆ G(I).

Expectation Invariants for Probabilistic Program Loops 97

Iteration over Polyhedral Cones: Our goal is to compute the greatest fixed point of G
representing the largest cone of expressions whose generators satisfy Definition 7. We
implement this by a downward Kleene iteration until we obtain a pre-fixed point, which
in the ideal case is also the greatest fixed point of G.

(J0 : A(x)) ⊇ (J1 : G(J0)) ⊇ · · · (Jk+1 : G(Jk)) · · · until convergence: Ji ⊆ Ji+1 .

However, the domain CONES has infinite descending chains and is not a complete lat-
tice. Therefore, the greatest fixed point cannot necessarily be found in finitely many
steps by the Kleene iteration. We resort to a dual widening operator �̃ to force conver-
gence of the downward iteration.

Definition 10 (Dual Widening). Let I1, I2 be two successive cone iterates, satisfying
I1 ⊇ I2. The operator �̃(I1, I2) is a dual widening operator if:

– �̃(I1, I2) ⊆ I1, �̃(I1, I2) ⊆ I2;
– For every infinite descending sequence J0 ⊇ G(J0) ⊇ G2(J0) ⊇ · · · , the widened

sequence J ′
0 = J0, J ′

n = J ′
n−1�̃Jn converges in finitely many steps.

A common strategy to compute an approximation of the greatest fixed point when
using dual widening is to delay widening for a fixed number K of iterations.

Example 7. Consider a simulation of a peg performing an unbounded random walk in
two dimensions (x, y). Starting at the origin, at every step the peg chooses uniformly
at random a direction {N, E, S, W} and a random step size r1 ∼ U [0, 2]. The program
2D-WALK tracks the steps (count) and the Manhattan distance (dist) to the origin.

The following table summarizes the result of the expectation invariant analysis:

Cone Generators Constraints Cone Generators Constraints

I0
1, −count, count,

c0 ≥ 0 I4
1, 4 − count, count, c0 + 4c4 ≥ 0,

x, −x, y, −y, dist, −dist, x, −x, y, −y, dist, −dist c0 ≥ 0

I1
1, 1− count, count, c0 + c4 ≥ 0,

I5
1, 5 − count, count, c0 + 4c4 ≥ 0,

x, −x, y, −y, dist, −dist c0 ≥ 0 x, −x, y, −y, dist, −dist c0 ≥ 0

I2
1, 2− count, count, c0 + 2c4 ≥ 0, .

.

.
.
.
.

.

.

.x, −x, y, −y, dist, −dist c0 ≥ 0

I3
1, 3− count, count, c0 + 3c4 ≥ 0,

I∞
1, count, c4 ≥ 0,

x, −x, y, −y, dist, −dist c0 ≥ 0 x, −x, y, −y, dist, −dist c0 ≥ 0

The table shows the value of expression count is unbounded from above. To force con-
vergence, we employ dual widening after a predefined number (K = 5) of iterations.

Definition 11 (Standard Dual Widening). Let I1 = Cone(g1, . . . , gk) and I2 =
Cone(h1, . . . , hl) be two finitely generated cones such that I1 ⊇ I2. The dual widening
operator I1�̃I2 is defined as I = Cone(gi | gi ∈ I2). Cone I is the cone generated by
the generators of I1 that are subsumed by I2.

Example 8. Returning to Example 7, we consider cone iterates I4, I5. In this case gen-
erator subsumption reduces to a simple containment check. Since generator 4− count
is not subsumed in I5, we arrive at I ′5 ≡ I4�̃I5 = Ĩ∗ = I∞.

Note 1. Alternatively, one can define dual widening as a widening operator [12,1] over
the dual polyhedron that the generators of I1, I2 give rise to. On the set of PWL loop
benchmarks our dual widening approach and those based on [12] and [1] produce iden-
tical fixed points where the difference in timings is not statistically significant.

98 A. Chakarov and S. Sankaranarayanan

Table 1. Summary of results: |X| is the number of program variables; |T | - transitions; # -
iterations to convergence; �̃ - use of dual widening. Lines (Rays) is the number of resultant
inductive expectation equalities (inequalities). Time is taken on a MacBook Pro (2.4 GHz) laptop
with 8 GB RAM, running MacOS X 10.9.1 (where ε = 0.05 sec).

Name Description |X| |T | Iters Fixpoint-gen
Time

�̃ Lines Rays
MOT-EXAMPLE Motivating Example of Figure 1 3 2 2 No 2 1 ≤ ε

MOT-EX-LOOP-INV Example 1 with added loop invariants 3 2 2 No 2 2 0.10
MOT-EX-POLY Ex. 1 generate poly constr (deg ≤ 2) 9 2 2 No 5 2 0.18
2D-WALK Random walk in 2 dimensions 4 4 7 Yes 3 1 ≤ ε

AGGREGATE-RV Accumulate RVs 3 2 2 No 2 0 ≤ ε

HARE-TURTLE Stochastic Hare-Turtle race 3 2 2 No 1 1 ≤ ε

COUPON5 Coupon Collector’s Problem (n = 5) 2 5 2 No 1 2 ≤ ε

FAIR-COIN-BIASED Simulating biased coin with fair coin 3 2 3 No 1 1 ≤ ε

HAWK-DOVE-FAIR Stochastic 2-player game (collaborate) 6 2 2 No 4 1 ≤ ε

HAWK-DOVE-BIAS Stochastic 2-player game (exploit) 6 2 2 No 3 1 ≤ ε

FAULTY-INCR Faulty incrementor 2 2 7 Yes 1 1 ≤ ε

5 Experimental Results and Future Work

We present the experimental results of our prototype implementation that relies on
PPL [1] for manipulating the polyhedral representations of cones. Table 1 presents the
summary of the experiments we conducted on a set of probabilistic benchmarks. In [4],
we present a description of these models and the expectation invariants obtained.

In all experiments we emphasize precision over computational effort. All examples
except MOT-EX-LOOP-INV and MOT-EX-POLY run in under ε = 0.05 seconds, so we
choose not to report these timing. Accordingly, dual widening �̃ delay was set suffi-
ciently large at K = 5 to only force finite convergence but not to speed up computa-
tion. Nevertheless, the iterations converge quite fast and in many cases without the use
of widening. Programs 2D-WALK and FAULTY-INCR require the widening (�̃) opera-
tor to ensure convergence. In all cases, line generators of the final pre-fixed point yield
expectation invariants like E(e) = 0 and rays yield the invariants E(e) ≥ 0.

Comparison with PRINSYS[11]. PRINSYS[11] implements the constraint-based
quantitative invariant synthesis approach developed by Katoen et al. [13]. The tool uses
a manually supplied template with unknown coefficients. The REDUCE computer al-
gebra system is used to perform quantifier elimination and simplify the constraints.
We applied PRINSYS with a linear template expression

∑
j cjxj for state variables xj

in the program. Our comparison was carried out over 6 benchmark examples that are
distributed with the tool. The comparison checked whether PRINSYS could discover
quantitative invariants discovered by our approach. From a total set of 28 inductive ex-
pectation invariants our tool generates, PRINSYS could generate 3 of them. This shows
that mutual inductive expectation invariants investigated in this paper are significant

Expectation Invariants for Probabilistic Program Loops 99

for probabilistic loops. Next, we attempted to check whether PRINSYS can discover
additional linear quantitative invariants not discovered by our approach due to the in-
completeness of widening. Unfortunately, this check turned out inconclusive at the time
of the experiment. The existing PRINSYS implementation automatically generates and
simplifies nonlinear constraints on the template coefficients. However, the process of
deriving an actual quantitative invariant requires manually extracting solutions from a
set of nonlinear inequalities. Our manual efforts failed to find new invariants unique to
the PRINSYS tool, but the overall comparison remains incomplete since we could not
arguably find all solutions manually. However, it is important to observe that PRINSYS
can generate invariants for templates that include indicator functions, while our tech-
nique does not. Similarly, PRINSYS handles nondeterminism in the programs, while
we do not. The full details of the comparison can be found in the extended version [4].

Ongoing/Future Work. In many of the benchmark examples presented, invariants
found using standard abstract interpretation by treating the stochastic choices as de-
monic nondeterminism help improve the quality of our expectation invariants. Going
further, we would like to combine classical abstract interpretation with the techniques
presented here to handle programs that mix non-deterministic and stochastic choices.
Finally, we demonstrate polynomial invariant synthesis in Example MOT-EX-POLY by
instrumenting monomials of fixed degree (deg ≤ 2) as fresh variables. Our analysis is
thus able to generate polynomial expectation invariants such as E(4x2−4xy+y2 | n) ≥
0, and E(4x2−4xy+y2−y+6 | n) = 0. A sound formalization of polynomial invariant
generation under relaxed independence conditions, and generalization of this approach
to higher-order moments are also part of our future work.

Acknowledgments. The authors thank the anonymous reviewers for their insightful
comments and Friedrich Gretz for helping us compare our work with PRINSYS. This
work was supported by US National Science Foundation (NSF) under award number
1320069. All opinions are those of the authors and not necessarily of the NSF.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foundations for
decision problems in separation logic with general inductive predicates. In: Muscholl, A.
(ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 411–425. Springer, Heidelberg (2014)

2. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to
affine arithmetic. Computing 94(2-4), 189–201 (2012)

3. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martingales. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526. Springer,
Heidelberg (2013)

4. Chakarov, A., Sankaranarayanan, S.: Expectation invaraiants for probabilistic program loops
as fixed points (2014) (extended version) (Draft, Available upon request)

5. Chung, K.L.: A course in probability theory, vol. 3. Academic Press, New York (1974)
6. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-

linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 420–432. Springer, Heidelberg (2003)

100 A. Chakarov and S. Sankaranarayanan

7. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: ACM Principles of Programming
Languages, pp. 238–252 (1977)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a
program. In: POPL 1978, pp. 84–97 (January 1978)

9. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) ESOP 2012.
LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012)

10. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press (2009)

11. Gretz, F., Katoen, J.-P., McIver, A.: Prinsys - on a quest for probabilistic loop invariants. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054,
pp. 193–208. Springer, Heidelberg (2013)

12. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. PhD thesis, Institut National Polytechnique de Grenoble-INPG (1979)

13. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant generation for
probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp.
390–406. Springer, Heidelberg (2010)

14. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981)
15. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of knowledge-based

security policies. In: 2011 IEEE 24th Computer Security Foundations Symposium (CSF),
pp. 114–128. IEEE (2011)

16. McAdams, H., Arkin, A.: It’s a noisy business! genetic regulation at the nanomolar scale.
Trends Genetics 15(2), 65–69 (1999)

17. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Mono-
graphs in Computer Science. Springer (2004)

18. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: SAS 2000. LNCS,
vol. 1824, pp. 322–340. Springer, Heidelberg (2000)

19. Monniaux, D.: Backwards abstract interpretation of probabilistic programs. In: Sands, D.
(ed.) ESOP 2001. LNCS, vol. 2028, pp. 367–382. Springer, Heidelberg (2001)

20. Monniaux, D.: Abstract interpretation of programs as markov decision processes. Science of
Computer Programming 58(1), 179–205 (2005)

21. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)
22. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs:

inferring whole program properties from finitely many paths. In: PLDI, pp. 447–458. ACM
(2013)

23. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analysis.
In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)

24. Williams, D.: Probability with Martingales. Cambridge University Press (1991)

An Abstract Domain to Infer Octagonal Constraints
with Absolute Value�

Liqian Chen1, Jiangchao Liu2, Antoine Miné2,3, Deepak Kapur4, and Ji Wang1

1 National Laboratory for Parallel and Distributed Processing,
National University of Defense Technology, Changsha, P.R.China

{lqchen,wj}@nudt.edu.cn
2 École Normale Supérieure, Paris, France

{jliu,mine}@di.ens.fr
3 CNRS, France

4 University of New Mexico, NM, USA
kapur@cs.unm.edu

Abstract. The octagon abstract domain, devoted to discovering octagonal con-
straints (also called Unit Two Variable Per Inequality or UTVPI constraints) of a
program, is one of the most commonly used numerical abstractions in practice,
due to its quadratic memory complexity and cubic time complexity. However, the
octagon domain itself is restricted to express convex sets and has limitations in
handling non-convex properties which are sometimes required for proving some
numerical properties in a program. In this paper, we intend to extend the octagon
abstract domain with absolute value, to infer certain non-convex properties by
exploiting the absolute value function. More precisely, the new domain can infer
relations of the form {±X ± Y ≤ c,±X ± |Y | ≤ d,±|X| ± |Y | ≤ e}. We provide
algorithms for domain operations such that the new domain still enjoys the same
asymptotic complexity as the octagon domain. Moreover, we present an approach
to support strict inequalities over rational or real-valued variables in this domain,
which also fits for the octagon domain. Experimental results of our prototype are
encouraging; The new domain is scalable and able to find non-convex invariants
of interest in practice but without too much overhead (compared with that using
octagons).

1 Introduction

The precision and efficiency of program analysis based on abstract interpretation [9,10]
rely a lot on the chosen abstract domains. Most existing numerical abstract domains
(such as intervals [8], octagons [24], polyhedra [11], etc.) can only express convex sets,
due to the fact that they usually utilize a conjunction of convex constraints to represent
abstract elements. At control-flow joins in programs, an abstract domain often exploits
a join operation to abstract the disjunction (union) of the convex constraint sets from the
incoming edges into a conjunction of new convex constraints. The convexity limitations
of abstract domains may lead to imprecision in the analysis and thus may cause many

� This work is supported by the 973 Program under Grant No. 2014CB340703, the NSFC under
Grant Nos. 61120106006, 61202120, 91118007.

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 101–117, 2014.
© Springer International Publishing Switzerland 2014

102 L. Chen et al.

false alarms. E.g., to remove a division-by-zero false alarm, the analysis needs to find
a range excluding 0 for the divisor, which is in general a non-convex property and may
be out of the reasoning power of convex abstract domains.

The Absolute Value (AV) function is one of the most used functions in mathematics
and widely used in numerical computations. The AV function is supported by many
modern program languages. E.g., the C99 standard for the C programming language
provides the abs() and fabs() functions to compute the absolute value of an integer
number and a floating-point number respectively. However, due to non-convexity, the
AV function in the program code is rarely well handled during program analysis. More-
over, the AV function has natural ability to encode disjunctions of linear constraints
in a program that account for a large class of non-convex constraints in practice. E.g.,
x ≤ −1 ∨ x ≥ 1 can be encoded as |x| ≥ 1, while (x � 1 ∨ y � 2) can be encoded as
|x − 1| + |y − 2| > 0. Hence, we could exploit the non-convex expressiveness of the AV
function to design non-convex abstract domains. Based on this insight, in [7], Chen et
al. proposed an abstract domain of linear AV inequalities but which is exponential in
complexity and thus has scalability limitations in practice.

In this paper, we propose a new abstract domain, namely the abstract domain of oc-
tagonal constraints with absolute value (AVO), to infer relations of the form {±X ± Y ≤
c,±X±|Y | ≤ d,±|X|±|Y | ≤ e} over each pair of variables X, Y in the program where con-
stants c, d, e ∈ R are automatically inferred by the analysis. AVO is more expressive than
the classic octagon abstract domain and allows expressing certain non-convex (even
unconnected) sets, thanks to the non-convex expressiveness of the AV function. We
propose several closure algorithms over AV octagons to offer different time-precision
tradeoffs. On this basis, we provide algorithms for domain operations such that the new
domain still enjoys the same asymptotic complexity as the octagon domain. In addition,
we show how to extend AVO to support strict inequalities over rational or real-valued
variables. In other words, after the extension, AVO can additionally infer relations that
are of the form {±X±Y < c,±X±|Y | < d,±|X|±|Y | < e}. Experimental results of our pro-
totype are encouraging on benchmark programs and large embedded C programs; AVO
is scalable to large-scale programs and able to find non-convex invariants of interest in
practice.

Motivating Example. In Fig. 1, we show a small instructive example adapted from
[14] (by replacing the double type by real type), which is originally extracted from the
XTide1 package that provides tide and current predictions in various formats. It shows
a frequently used pattern in implementing a Digital Differential Analyzer algorithm in
computer graphics. This example is challenging to analyze as it involves complicated
non-convex constraints (due to disjunctions, the usage of the AV function) as well as
strict inequalities, and precise reasoning over these constraints is required to prove the
absence of the potential risk of division-by-zero errors.

At location ① in Fig. 1, it holds that (dx � 0∨dy � 0) which describes a non-convex
set of points that includes all points in R2 except the origin (0, 0). Using octagonal
constraints with absolute value, it can be encoded as −|dx| − |dy| < 0. At location ②, it
holds that −|dx| − |dy| < 0 ∧ |dx| − |dy| < 0 which implies that −|dy| < 0 and thus the
division by dy in the then branch will not cause division-by zero error. At location ③,

1 http://www.flaterco.com/xtide/

http://www.flaterco.com/xtide/

An Abstract Domain to Infer Octagonal Constraints 103

it holds that −|dx| − |dy| < 0 ∧ −|dx| + |dy| ≤ 0 which implies that −|dx| < 0 and thus
the division by dx in the else branch will not cause division-by zero error. However, if
using convex abstract domains such as octagons and polyhedra,� (no information) will
be obtained at ① and thus the division-by-zero false alarms will be issued in both the
then and else branches. Moreover, since the program involves strict inequality tests,
we need an abstract domain supporting strict inequalities to do precise reasoning.

static void p line16 primary (...) {
real dx, dy, x, y, slope;

...

if (dx == 0.0 && dy == 0.0)
return;

① if (fabs(dy) > fabs(dx)) {
② slope = dx / dy;

...

} else {
③ slope = dy / dx;

...

} }

Loc AV octagons
① −|dx| − |dy| < 0
−|dx| − |dy| < 0∧

② |dx| − |dy| < 0∧
−|dy| < 0
−|dx| − |dy| < 0∧

③ −|dx| + |dy| ≤ 0∧
−|dx| < 0

Fig. 1. Motivating example from [14] which is originally extracted from the XTide package

The rest of the paper is organized as follows. Section 2 reviews the octagon abstract
domain. Section 3 presents a new abstract domain of octagonal constraints with abso-
lute value. Section 4 presents our prototype implementation together with experimental
results. Section 5 discusses some related work before Section 6 concludes.

2 The Octagon Abstract Domain

In this section, we give a brief review of the background of the octagon abstract domain
and we refer the reader to [24] for details.

2.1 Octagon Representation

Let V = {V1, . . . ,Vn} be a finite set of program variables in a numerical set I (which
can be Q, or R). The octagon abstract domain manipulates a set of so-called octagonal
constraints (also called Unit Two Variable Per Inequality or UTVPI constraints) that
are of the form ±Vi ± V j ≤ c where ± ∈ {−1, 0,+1} and c ∈ I. From the geometric
point of view, the set of points satisfying a conjunction of octagonal constraints forms
an octagon (the projection of which on a 2D plane parallel to the axes is a 8-sided
polygon).

Potential Constraints. An octagonal constraint over V = {V1, . . . ,Vn} can be re-
formulated as a so-called potential constraint that is of the form V ′i − V ′j ≤ c over

104 L. Chen et al.

V′ = {V ′1, . . . ,V ′2n} where V ′2k−1 represents +Vk and V ′2k represents −Vk. E.g., the octag-
onal constraint Vi + V j ≤ c can be encoded as either V ′2i−1 − V ′2 j ≤ c or V ′2 j−1 − V ′2i ≤ c.
Moreover, a unary octagonal constraint such as Vi ≤ c (and −Vi ≤ c) can be encoded
as V ′2i−1 − V ′2i ≤ 2c (and V ′2i − V ′2i−1 ≤ 2c). A conjunction of potential constraints can
be represented as a directed weighted graph G with nodes V′ and edges labeled with
weights in I. For each constraint V ′j −V ′i ≤ c in the constraint conjunction, there will be
an edge from V ′i to V ′j labelled with weight c in G.

Difference Bound Matrices. An equivalent but more practical representation for the
conjunction of potential constraints C over n variables is to use a Difference Bound
Matrix (DBM) [12]. A DBM representing C is a n × n matrix M defined by

Mi j
def
= inf{ c | (V j − Vi ≤ c) ∈ C}

where inf(∅) = +∞ and n is the number of variables involved in C. For a set of potential
constraints described by a DBM M of dimension n, we define the following concretiza-
tion function γPot : DBM→ P(V → I):

γPot(M)
def
= { (V1, . . . ,Vn) ∈ In | ∀i, j,V j − Vi ≤ Mi j }.

Similarly, for a set of octagonal constraints described by a DBM M of dimension 2n,
we define the following concretization function γOct : DBM→ P(V → I):

γOct(M)
def
= { (V1, . . . ,Vn) ∈ In | (V1,−V1, . . . ,Vn,−Vn) ∈ γPot(M) }.

Some octagonal constraints over V have two different encodings as potential con-
straints over V′, and thus can be represented by two elements in the DBM. E.g.,
Vi + V j ≤ c can be described by either V ′2i−1 − V ′2 j ≤ c (i.e., M(2 j)(2i−1) = c) or
V ′2 j−1 − V ′2i ≤ c (i.e., M(2i)(2 j−1) = c). To ensure that elements of such pairs encode
equivalent constraints, we define the coherence of a DBM as

M is coherent ⇐⇒ ∀i, j, Mi j = M j̄ ı̄

where the ·̄ operator on indices is defined as:

ı̄
def
=

{
i + 1 if i is odd
i − 1 if i is even

Let DBM denote the set of all DBMs. We enrich DBM with a new smallest element,
denoted by ⊥DBM. Then we get a lattice (DBM,�DBM,�DBM,�DBM,⊥DBM,�DBM) where

M �DBM N
def⇐⇒ ∀i, j,Mi j ≤ Ni j (M �DBM N)i j

def
= max(Mi j,Ni j)

(�DBM)i j
def
= +∞ (M �DBM N)i j

def
= min(Mi j,Ni j)

2.2 Closure

An octagon can still have several distinct representations using coherent DBMs. To
compare octagons, we thus construct a normal form on DBMs to represent octagons.

An Abstract Domain to Infer Octagonal Constraints 105

The octagon abstract domain utilizes a so-called strong closure of the DBM, as the
normal form for a non-empty DBM representing octagons. The strong closure (denoted
as M•) of a DBM M encoding octagonal constraints is defined as:

M• def
= inf
�DBM
{X� ∈ DBM | γOct(M) = γOct(X�)}

The octagon domain uses a modified version of the Floyd-Warshall algorithm to
compute M• (which is firstly proposed by Miné [23] and later improved by Bagnara
et al. [3]), which is of cubic-time complexity. Strong closure is a basic operator in the
octagon domain. Most abstract operators over octagons can be obtained based on the
strong closure of DBMs. We refer the reader to [24] for details.

3 An Abstract Domain of Octagonal Constraints with Absolute
Value

In this section, we show how to extend the octagon abstract domain with absolute value.

3.1 Octagonal Constraints with Absolute Value

A constraint is said to be an AV octagonal constraint if it is of the following forms:

• octagonal constraints: ±Vi ± V j ≤ a
• constraints with absolute value of one variable per inequality: ±Vi ± |V j| ≤ b
• constraints with absolute value of two variables per inequality: ±|Vi| ± |V j| ≤ c

where ± ∈ {−1, 0,+1} and a, b, c ∈ I ∪ {+∞}. From the geometric point of view, we
call AV octagon the geometric shape of the set of points satisfying a conjunction of
AV octagonal constraints. Now, we will design a new abstract domain, namely AVO, to
infer AV octagonal constraints among program variablesV = {V1, . . . ,Vn}.

According to Theorem 1 in [7], it is easy to derive the following theorem.

Theorem 1. Let e be an arbitrary expression that does not involve variable X. Then

|X| + e ≤ c ⇐⇒
{

X + e ≤ c
−X + e ≤ c

A direct consequence of Theorem 1 is that those constraints with positive coefficients
on the AV term are redundant with other AV octagonal constraints and do not bring
additional expressiveness. Hence, in the domain representation of AVO, we only need
to encode AV octagonal constraints of the following forms:

• ±Vi ± V j ≤ a
• ±Vi − |V j| ≤ b
• −|Vi| − |V j| ≤ c

For example, to describe a planar AV octagon over program variables x, y, we only need
to consider at most 15 AV octagonal constraints, which are listed in Fig. 4(a).

106 L. Chen et al.

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

y

x

(f)

Fig. 2. The geometric shape of AV octagonal constraints. (a) depicts an octagon with constraint
set C = {x ≤ 4,−x ≤ 4, y ≤ 4,−y ≤ 4, x + y ≤ 7, x − y ≤ 7,−x + y ≤ 7,−x − y ≤ 7}; (b)
depicts −|x| ≤ −1; (c) depicts −|x| + y ≤ 2; (d) depicts −|x| − y ≤ 2; (e) depicts −|x| − |y| ≤ −4; (f)
depicts an AV octagon with constraint set C′ = C ∪ {−|x| ≤ −1,−|y| ≤ −1,−|x| + y ≤ 2,−|x| − y ≤
2, x − |y| ≤ 2,−x − |y| ≤ 2,−|x| − |y| ≤ −4}.

Due to the non-convexity expressiveness of the AV function, an AV octagon is non-
convex in general, but its intersection with each orthant in Rn gives a (possibly empty)
octagon. Fig. 2 shows typical geometric shape of AV octagonal constraints. In particu-
lar, Fig. 2(a) shows a typical shape of octagons, while Fig. 2(f) shows an example of an
AV octagon that is non-convex and even unconnected.

Expressiveness Lifting. Note that in the AVO domain representation, the AV function
| · | applies to only (single) variables rather than expressions. E.g., consider the relation
y = ||x| − 1| + 2 which encodes a piecewise linear function with more than two pieces,
whose plot is shown in Fig. 3. The AVO domain cannot express directly this piecewise
linear function (in the space of x, y), since | · | applies to an expression |x| − 1. Indeed, in
Fig. 3 the region in the orthant where both x and y are positive is not an octagon.

y = ||x| − 1| + 2

−1

1

0 1

y

x

Fig. 3. A piecewise linear function with nested AV functions

In order to express such complicated relations, we follow the same strategy as in
[7]. We introduce new auxiliary variables to denote those expressions that appear inside
the AV function. E.g., we could introduce an auxiliary variable ν to denote the value
of the expression |x| − 1. Then using AVO domain elements in the space with higher
dimension (involving 3 variables: x, y, ν), such as {y = |ν| + 2, ν = |x| − 1}, we could
express complicated relations in the space over lower dimension (involving 2 variables:
x, y), such as y = ||x| −1|+2. Note that due to the octagonal shape, the expression inside
the AV function can only be

e ::= ±X ± c | ±|e| ± c

where c is a constant and X is a variable.

An Abstract Domain to Infer Octagonal Constraints 107

3.2 Extending Difference-Bound Matrices

Now, we show how to encode AV octagonal constraints using DBMs. Similarly to oc-
tagonal constraints, an AV octagonal constraint over {V1, . . . ,Vn} can be reformulated
as a potential constraint of the form V ′′i − V ′′j ≤ c over {V ′′1 , . . . ,V ′′4n} where

• V ′′4k−3 represents +Vk,
• V ′′4k−2 represents −Vk,
• V ′′4k−1 represents |Vk|,
• V ′′4k represents −|Vk|.

As an example, in Fig. 4, we show a general set of constraints for a planar AV octagon
(left) and its DBM representation (right).

x ≤ a1
−x ≤ a2

y ≤ a3
−y ≤ a4

x +y ≤ a5
x −y ≤ a6
−x +y ≤ a7

−x −y ≤ a8

−|x| ≤ b1

−|y| ≤ b2
−|x| +y ≤ b3

−|x| −y ≤ b4
x −|y| ≤ b5
−x −|y| ≤ b6

−|x| −|y| ≤ c1

(a)

x −x |x| −|x| y −y |y| −|y|
x 0 2a2
−x 2a1 0
|x| 0 2b1
−|x| 0

y a6 a8 b4 0 2a4

−y a5 a7 b3 2a3 0
|y| b5 b6 c1 0 2b2

−|y| 0
(b)

Fig. 4. DBMs for AV octagons. (a) shows a constraint set for a planar AV octagon; (b) shows a
DBM to encode the constraints.

For a set of AV octagonal constraints described by a DBM M of dimension 4n, we
define the following concretization function γAVO : DBM→ P(V → I):
γAVO(M)

def
=
{

(V1, . . . ,Vn) ∈ In | (V1,−V1, |V1|,−|V1|, . . . ,Vn,−Vn, |Vn|,−|Vn|) ∈ γPot(M)
}
.

Some AV octagonal constraints have two different encodings as potential constraints
in V′′, and can be represented by two elements in the DBM. E.g., −|Vi| − |V j| ≤ c
can be described by either V ′′4 j − V ′′4i−1 ≤ c (i.e., M(4i−1)(4 j) = c) or V ′′4i − V ′′4 j−1 ≤ c
(i.e., M(4 j−1)(4i) = c). In addition, according to the specific property over AV constraints
shown in Theorem 1, DBMs encoding AV octagons have another restriction, i.e.,

e + Vi ≤ c1 ∧ e − Vi ≤ c2 =⇒ e + |Vi| ≤ max(c1, c2) (1)

where e ∈ {±V j,±|V j|}. To this end, we define the AV coherence of a DBM as

M is AV coherent ⇐⇒⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀i, j, Mi j = M j̄ ı̄

∀ j, k, M(4k) j = max(M(4k−3) j,M(4k−2) j) if j � 4k
∀i, k, Mi(4k−1) = max(Mi(4k−2),Mi(4k−3)) if i � 4k − 1

The first condition is similar to the coherence condition for DBMs that encode octagons.
The second condition is due to the restriction (1) over the −|Vk| row, while the third
condition is due to the restriction (1) over the |Vk| column.

108 L. Chen et al.

3.3 Conversions between Octagons and AV Octagons

The intersection of an AV octagon with each orthant gives an octagon. Based on this
insight, we now present operators for conversions between octagons and AV octagons.
Let u = (1, . . . , 1)T be the unit vector, and S n = {s ∈ Rn | |s| = u}. We define an operator
C = S2Cons(s) to derive a conjunction C of sign constraints from s ∈ S n, such that

Ci
def
=

{
xi ≥ 0 if si = 1
xi ≤ 0 if si = −1

First, we define an operator AVO2Oct(M, s) to convert an AV octagon (described by
M that is a DBM of dimension 4n) into an octagon (described by N that is a DBM of
dimension 2n) with respect to a given orthant (described by s ∈ S n), as:

N
def
= AVO2Oct(M, s)

such that γOct(N) equals to the solution set of the conjunction of S2Cons(s) with the
constraint set corresponding to M. From the algorithmic view, N can be easily obtained
from M, by considering the sign of each variable defined in s. E.g.,

N(2k−1)(2k) =

{
M(4k−3)(4k−2) if sk = −1
min(M(4k−3)(4k−2),M(4k−1)(4k)) if sk = 1

where M(4k−3)(4k−2) and M(4k−1)(4k) denote the upper bounds for (−Vk)−Vk and (−|Vk|)−
|Vk| respectively. If Vk ≥ 0, we know the upper bound for (−Vk) − Vk (denoted by
N(2k−1)(2k) in the DBM representation of octagons) will be min(M(4k−3)(4k−2),M(4k−1)(4k)).

Note that an octagon itself is an AV octagon. However, if we know the orthant that
an octagon lies in, we could deduct additionally upper bounds for AV expressions (such
as −|X| − |Y |), to saturate the DBM. To this end, we define an operator Oct2AVO(N, s)
to convert an octagon (N) in a given orthant (s ∈ S n) into an AV octagon (M), as:

M
def
= Oct2AVO(N, s)

such that the solution set of the conjunction of the constraint set corresponding to M
with S2Cons(s) is equivalent to γOct(N).

3.4 Closure Algorithms

To obtain a unique representation for a non-empty AV octagon, we define the so-called
AV strong closure M|•| for a DBM encoding a non-empty AV octagon, as

M|•| def
= inf
�DBM
{X� ∈ DBM | γAVO(M) = γAVO(X�)}

Strong Closure by Enumerating the Signs of all n Variables. We provide an ap-
proach to compute the AV strong closure M|•| by enumerating the signs of all n vari-
ables:

AVOStrClo(M)
def
= �DBM

s∈S n

{
M′ ∈ DBM | M′ = Oct2AVO(N•, s),N = AVO2Oct(M, s)

}
The intuition is as follows. The intersection of an AV octagon M with each orthant s
gives an octagon N. Hence, we could enumerate all orthants and in each orthant we
compute the AV strong closure via the regular strong closure of the octagon domain.

An Abstract Domain to Infer Octagonal Constraints 109

1 DBM4n×4n WeakCloVia3Sign(M : DBM4n×4n){

2 M′,M′′,M′|•| : DBM12×12;

3 N : DBM6×6;

4 for k ← 1 to n
5 for i← 1 to n
6 for j← 1 to n
7 M′ ← M/{Vk,Vi,Vj};
8 M′|•| ← �DBM

s∈S 3 {M′′ ∈ DBM | M′′ = Oct2AVO(N•, s),N = AVO2Oct(M′, s)};
9 M/{Vk,Vi,Vj} ← M′|•|;

10 for i← 1 to 4n
11 if (Mii < 0) return ⊥DBM; else Mii ← 0;
12 return M; }

Fig. 5. The weak closure algorithm by enumerating the signs of 3 variables in each step.
M/{Vk,Vi,Vj} denotes the sub-matrix of M consisting of the rows and columns corresponding
to variables in {Vk,Vi,Vj}.

It is not hard to see that AVOStrClo(M) = M|•|. However, the time complexity of this
approach is O(2n × n3). At the moment, we do not know whether the problem of com-
puting the AV strong closure for AV octagons is NP-hard or not.

To offer different time-precision tradeoffs, we now propose two approaches that are
of cubic time complexity to compute weak closures M◦ (such that M• �DBM M◦) for
AV octagons. Note that the key behind the closure algorithm is to combine the con-
straints over (Vi,Vk) and those over (Vk,V j) to tighten the constraints over (Vi,V j), by
constraint propagation through the intermediate variable Vk. Based on this insight, we
first propose a weak closure algorithm WeakCloVia3Sign() by enumerating the signs
of 3 variables {Vi,Vk,V j} each time to perform constraint propagation. Then we propose
a cheaper weak closure algorithm WeakCloVia1Sign() by enumerating only the sign of
the intermediate variable Vk each time to perform constraint propagation.

Weak Closure by Enumerating the Signs of 3 Variables Each Time. In Fig 5, we
show the WeakCloVia3Sign() algorithm. In the loop body, we compute the AV strong
closure among three variables Vi,Vk,V j (by enumerating 8 orthants due to the signs of 3
variables), and then update the tightened constraints over Vi,Vk,V j in the original DBM.
Note that WeakCloVia3Sign() gives AV strong closure for AV octagons involving only
3 variables. However, in general, WeakCloVia3Sign() does not guarantee to result in
the AV strong closure for more than 3 variables.

Weak Closure by Enumerating the Sign of One Variable Each Time. In Fig 7,
we show the WeakCloVia1Sign() algorithm. Rather than enumerating the signs of 3
variables, in the loop body of WeakCloVia1Sign() we enumerate only the sign of the
intermediate variable Vk. For each case of the sign of Vk, we call TightenIJviaK() which
is shown in Fig. 6 to tighten the constraints over {±Vi,±|Vi|,±V j,±|V j|} by combining
the constraints over {±Vi,±|Vi|,±Vk} and those over {±Vk,±|V j|,±V j}. We now explain
how TightenIJviaK() works by considering the case where Vk ≥ 0. When Vk ≥ 0,
we have |Vk| = Vk. Hence, it holds that V ′′ − |Vk| ≤ c =⇒ V ′′ − Vk ≤ c where V ′′ ∈
{0,±Vi,±|Vi|,±V j,±|V j|}. Then, we use V ′′−|Vk| ≤ c to tighten the upper bound for V ′′−

110 L. Chen et al.

1 DBM12×12 TightenIJviaK(M : DBM12×12, K positive : bool){
2 M′,M′|•| : DBM12×12;

3 M′ ← M; k ← 1; i← 2; j← 3; // Let V′′ = {0,±Vi,±|Vi|,±Vj,±|Vj|}
4 if (K positive == true){ // V ′′ − |Vk | ≤ c =⇒ V ′′ − Vk ≤ c where V ′′ ∈ V′′
5 M′

(4k−3)(4k−2) ← min(0,M′
(4k−3)(4k−2),M

′
(4k−1)(4k));

6 for n← 0 to 3 {
7 M′

(4k−3)(4i−n) ← min(M′
(4k−3)(4i−n),M

′
(4k−1)(4i−n));

8 M′
(4 j−n)(4k−2) ← min(M′

(4 j−n)(4k−2),M
′
(4 j−n)(4k)); } }

9 else{ // V ′′ − |Vk | ≤ c =⇒ V ′′ + Vk ≤ c where V ′′ ∈ V′′
10 M′

(4k−2)(4k−3) ← min(0,M′
(4k−2)(4k−3),M

′
(4k−1)(4k));

11 for n← 0 to 3 {
12 M′

(4k−2)(4i−n) ← min(M′
(4k−2)(4i−n),M

′
(4k−1)(4i−n));

13 M′
(4 j−n)(4k−3) ← min(M′

(4 j−n)(4k−3),M
′
(4 j−n)(4k)); } }

14 for n← (4 ∗ i − 3) to 4 ∗ j
15 for m← (4 ∗ i − 3) to 4 ∗ j
16 M′

nm ← min(M′
nm,M

′
n(4k−3) + M′

(4k−3)m,M
′
n(4k−2) + M′

(4k−2)m);
17 // Vk − V ′′n ≤ c ∧ V ′′m − Vk ≤ d =⇒ V ′′m − V ′′n ≤ c + d where V ′′n ,V ′′m ∈ V′′ \ {0}
18 return M′; }

Fig. 6. A algorithm to tighten AV constraints between Vi and Vj through Vk

Vk. E.g., if we have −Vk ≤ c1 and −|Vk| ≤ c2 in the input DBM, we can derive a upper
bound for −Vk as −Vk ≤ min(0, c1, c2), which corresponds to line 5 in TightenIJviaK().
After line 14, the information over the rows and columns corresponding to ±|Vk| in the
DBM becomes redundant. Hence, from line 14 to line 16, we only need to consider the
propagation through ±Vk (without need through ±|Vk|). Overall, WeakCloVia1Sign() is
less precise but cheaper than WeakCloVia3Sign().

1 DBM4n×4n WeakCloVia1Sign(M : DBM4n×4n){

2 M′,M′|•|,N,N′ : DBM12×12;

3 for k ← 1 to n
4 for i← 1 to n
5 for j← 1 to n {
6 M′ ← M/{Vk,Vi,Vj};
7 N ← TightenIJviaK(M′, true); // when Vk ≥ 0
8 N′ ← TightenIJviaK(M′, f alse); // when Vk ≤ 0
9 M′|•| ← N �DBM N′;

10 M/{Vi,Vj} ← M′|•|/{Vi,Vj}; }
11 for i← 1 to 4n
12 for j← 1 to 4n
13 Mi j ← min(Mi j, (Miı̄ + M j̄ j)/2);
14 for i← 1 to 4n
15 if (Mii < 0) then return ⊥DBM; else Mii ← 0;
16 return M; }

Fig. 7. The weak closure algorithm by enumerating the sign of one variable in each step

An Abstract Domain to Infer Octagonal Constraints 111

The initial constraint set
y ≤ 24 −|y| + x ≤ 10 −s − |x| ≤ 36

−|s| − z ≤ 8 −z − y ≤ 84 s + y ≤ 80

Common constraints found by 3 closure algorithms
s − z ≤ 164 y + x ≤ 58 y − z ≤ 132
−z ≤ 108 x − |z| ≤ 94

AV strong closure
−|x| − z ≤ 86

x − z ≤ 112

WeakCloVia3Sign
−|x| − z ≤ 86

x − z ≤ 142

WeakCloVia1Sign
−|x| − z ≤ 108

x − z ≤ 142

Fig. 8. An example of applying 3 closure algorithms on the same initial constraint set

Example 1. In Fig 8, we apply the above 3 closure algorithms on the same initial set
of constraints. The AV strong closure finds x − z ≤ 112 while WeakCloVia3Sign()
and WeakCloVia1Sign() are less precise and can only find x − z ≤ 142. Moreover,
WeakCloVia1Sign() gives less precise result −|x| − z ≤ 108 than WeakCloVia3Sign()
which can find −|x| − z ≤ 86.

3.5 Other Domain Operations

Closure is a basic operator in the AVO domain. Most abstract operators over AV oc-
tagons can be obtained following similar ideas as those over octagons by replacing
strong closure with AV strong closure (if necessary). In practice, since our AV strong
closure is of exponential-time complexity, we use weak closure instead. When we use
weak closure, all the AVO domain operations can be O(n3) in the worst case. However,
we do not have a normal form for AV octagons when using weak closure, and most
domain operations are not guaranteed to be the best abstraction. E.g., for the inclusion
test, we have γAVO(M) ⊆ γAVO(N) ⇐⇒ M|•| �DBM N when using AV strong closure.
If we use any of our weak closures, denoted as M|◦|, it holds that M|◦| �DBM N =⇒
γAVO(M) ⊆ γAVO(N) but it may not hold that γAVO(M) ⊆ γAVO(N) =⇒ M|◦| �DBM N.

For test transfer functions, first, constraints in the tests are abstracted into AV oc-
tagonal constraints, following similar ideas as abstracting arbitrary constraints into oc-
tagonal constraints [24]. Moreover, we employ AVO join operation to try to encode
disjunctive constraints in tests as conjunctive AV octagonal constraints. E.g., consider
the condition that holds at ① in Fig. 1, i.e., |dx| � 0 ∨ |dy| � 0. The disequality |dx| � 0
which itself can be rewritten as a disjunction dx < 0 ∨ −dx < 0, can be encoded as
−|dx| < 0 by the AVO join operation. Then, −|dx| < 0 ∨ −|dy| < 0 can be further
encoded as −|dx| − |dy| < 0 by the AVO join operation. Hence, even when the original
condition test does not involve AV, AV may be introduced during constraint abstraction.
After the process of constraint abstraction, the AV octagonal constraints derived from
the tests are then used to tighten the current AVO abstract element.

For assignment transfer functions, we allow the right-hand side expression to involve
AV, such as x := ±|y| ± c. However, we can simply transform assignments with AV
into conditional branches with assignments that do not involve AV. E.g., the assignment
x := a∗|e|+c where a, e, c are expressions, can be transformed into: if (e ≥ 0) then x :=
a ∗ e + c; else x := −a ∗ e + c; fi.

112 L. Chen et al.

3.6 Supporting Strict Inequalities

In practice, strict inequalities (such as |x| + |y| > 0) may appear in branch conditions of
a program. To this end, we extend the AVO domain to support strict inequalities. In the
domain representation, we maintain a boolean matrix S of the same size as the DBM
M that encodes an AV octagon, such that

S i j
def
=

{
0 if V ′′j − V ′′i < Mi j

1 if V ′′j − V ′′i ≤ Mi j

We define the order over pairs (m, s)’s where m ∈ I and s ∈ {0, 1}, as

(m, s) � (m′, s′)
def⇐⇒ (m < m′) ∨ (m = m′ ∧ s ≤ s′))

Note that � is a total order on (I, bool), i.e., at least one of (m, s) � (m′, s′) and (m′, s′) �
(m, s) holds. Let DBMS denote the set of all pairs of DBMs and boolean matrices.
A lattice over DBMS can be obtained by “lifting” the operations from DBM and the
boolean matrices element-wise. In addition, we define the addition over DBMS as:

(Mik, S ik) + (Mk j, S k j)
def
= (Mik + Mk j, S ik&S k j)

Then in the abstract domain supporting strict inequalities, all domain operations can
be adapted from the domain that supports only non-strict inequalities by replacing op-
erations over DBM with operations over DBMS. E.g., in the AVO domain supporting
strict inequalities, the emptiness test is to check whether it holds that ∃i,Mii < 0∨(S ii =

0 ∧ Mii = 0). Whereas, in the regular AVO domain, we only need to check whether it
holds that ∃i,Mii < 0.

4 Implementation and Experimental Results

We have implemented the AVO domain in the APRON abstract domain library [19].

4.1 Experimental Comparison of Three Closure Algorithms

We first compare in precision and efficiency the three closure algorithms proposed in
Sect.3.4 for AV octagons. We conduct our experiments on randomly generated DBMs
(of dimension 4n but partially initialized) over different numbers of variables (n). The
experimental result is shown in Fig 9. “�cases” gives the number of test cases for each
such number n. “str” denotes the AV strong closure algorithm, “wk3s” denotes
WeakCloVia3Sign(), and “wk1s” denotes WeakCloVia1Sign(). “%same results” shows
the percentage of test cases where the two compared algorithms give the same resulting
DBMs. The column “%different elements” presents the average percentage of the num-
ber of different elements in the resulting DBMs to the size of the DBMs, when the two
compared algorithms produce different resulting DBMs.

From the result, we can see that WeakCloVia1Sign() is much more efficient than the
other two closure algorithms. For those test cases where the two compared algorithms
produce different resulting DBMs, the percentage of the number of different elements

An Abstract Domain to Infer Octagonal Constraints 113

average time %same results %different elements
�vars �cases

str wk3s wk1s
str= str= wk3s= str� str� wk3s �
wk3s wk1s wk1s wk3s wk1s wk1s

4 10000 2.4ms 7ms 0.19ms 94% 94% 99% 0.94% 0.79% 0.78%
8 1000 380ms 160ms 20ms 36% 28% 74% 0.83% 1.5% 0.26%
10 1000 5.7s 410ms 53ms 10% 5.3% 51% 1.1% 2.1% 0.18%

Fig. 9. An experimental comparison of 3 closure algorithms on randomly generated DBMs

in the resulting DBMs is very low. In other words, the two different resulting DBMs are
mostly the same except for very few elements. During our experiments, at the moment,
we found no test case for which weak closures give +∞ for an element where the strong
closure gives a finite constant in the resulting DBMs.

4.2 Experiments on NECLA Division-by-Zero Benchmarks

We have conducted experiments using the Interproc [20] static analyzer on the NECLA
Benchmarks: Division-by-zero False Alarms [14]. The benchmark set is extracted from
source code of several open-source projects. These programs illustrate commonly used
techniques that programmers use to protect a division-by-zero (e.g., by using the AV
function), and are challenging for analysis since they involve non-convex constraints
(e.g., disjunctions, constraints involving the AV function) and strict inequalities.

Fig. 10 shows the comparison of invariants inferred by AVO (using the weak closure
algorithm WeakCloVia1Sign) with those by the octagon domain [24] and by the donut
domain [14] (the main idea of which is to represent concrete object by the so-called
hole that is the set minus of two convex sets). The motiv program corresponds to the
motivating example (shown in Fig. 1) with its two branches. The column “WCfS” gives
the weakest condition to prove the absence of the division-by-zero error in the program.
The results given in the column “donut domain” are taken from [14] (using boxes to
encode holes). From Fig. 10, we can see that the octagon domain fails to prove the
absence of division-by-zero error for all programs since it cannot express non-convex
properties nor strict inequalities. Our AVO domain succeeds to prove the absence of the
division-by-zero errors for all programs including xcor on which the donut domain fails
(due to its default heuristic for choosing holes).

program WCfS
donut domain octagons AV octagons

invariants
�false

invariants
�false

invariants
�false

alarms alarms alarms
motiv(if) dy � 0 dy � 0 0 dy ∈ [−∞,+∞] 1 |dy| > 0 0

motiv(else) dx � 0 dx � 0 0 dx ∈ [−∞,+∞] 1 |dx| > 0 0
gpc den � 0 den � [−0.1, 0.1] 0 den ∈ [−∞,+∞] 1 |den| ≥ 0.1 0
goc d � 0 d � [−0.09, 0.09] 0 d ∈ [−∞,+∞] 1 |d| ≥ 0.1 0
x2 Dx � 0 Dx � 0 0 Dx ∈ [−∞,+∞] 1 |Dx| > 0 0

xcor usemax � 0 usemax � [1, 10] 1 usemax ≥ 0 1 usemax > 0 0

Fig. 10. Experimental results on NECLA division-by-zero benchmarks

114 L. Chen et al.

code id
size

octagons AV octagons result comparison

time (s) �alarm �iter. time (s) �alarm �iter.
� alarm time � iter.

(KLOC) reduction increase reduction

P1 154 6216 881 110 7687 881 110 0 23.66% 0
P2 186 6460 1114 116 7854 1114 115 0 21.58% 1
P3 103 1112 403 25 2123 403 25 0 90.92% 0
P4 493 17195 4912 158 38180 4912 158 0 122.04% 0
P5 661 18949 7075 105 43660 7070 104 5 130.41% 1
P6 616 34639 8192 118 70541 8180 108 12 103.65% 10
P7 2428 99853 10980 317 217506 10959 317 21 117.83% 0
P8 3 517 0 19 581 0 19 0 12.38% 0
P9 18 534 16 27 670 16 27 0 25.47% 0
P10 26 1065 102 42 1133 102 42 0 6.38% 0

Fig. 11. Experimental results using ASTRÉE on large embedded C codes

4.3 Experiments on ASTRÉE

We have also evaluated the scalability of AVO when analyzing large realistic programs,
by integrating it into the ASTRÉE analyzer [4] and analyzing its dedicated benchmarks:
a set of large embedded industrial C codes performing much integer and float compu-
tation. ASTRÉE contains many abstract domains, including octagons and disjunctive
domains (such as trace partitioning and decision diagrams) and domains specialized for
the analyzed benchmarks; It is carefully tuned to give few alarms and remain efficient.
Hence, we did not expect the AVO domain to bring a notable increase in precision (by
simply replacing octagons with AVO, a single program featured a reduction of 4 alarms).
For a more fair comparison, we evaluated how AVO could replace, by its natural ability
to represent disjunctions, the dedicated disjunctive domains in ASTRÉE. We disabled
these disjunctive domains and ran analyses with the regular octagon domain and with
AVO. Following the experiments from Fig. 9, we chose to use the more scalable weak
closure WeakCloVia1Sign for these large analyses. The results are shown in Fig. 11.
The last columns give the number of alarms removed by using AVO and the increase in
analysis time. We observe three instances of alarm reductions and an increase of up to
+130% of analysis time at worst. Additionally, the majority of codes are composed of a
single large synchronous loop running 106 iterations, and we provide for those the num-
ber of abstract iterations needed to reach a fixpoint. Our experiments show that using the
more precise AVO domain can slightly increase the convergence rate and never decrease
it. Overall, our results show that, although it cannot compete with domains specifically
tailored to analyze a code family, AVO nevertheless brings modest improvements in pre-
cision, and keeps the analysis time in the same order of magnitude.

5 Related Work

In abstract interpretation, most existing numerical abstract domains can only express
convex sets, such as the classical convex polyhedra domain [11] together with all its
subdomains (including octagons [24], two variables per inequality (TVPI) [27], tem-
plate polyhedra [26], subpolyhedra [21], etc.)

An Abstract Domain to Infer Octagonal Constraints 115

Until now, only a few numerical abstract domains natively allow representing non-
convex sets, e.g., congruences [15], max-plus polyhedra [2], interval linear abstract
domains [5,6] and quadratic templates [1]. To enhance numerical abstract domain with
non-convex expressiveness, some work makes use of BDDs [17,18] while some makes
use of mathematical functions that could express non-convex properties such as max
[16] and the absolute value function [7]. The donut domain [14] utilizes the set differ-
ence of two convex sets to express non-convex properties. Recently, [13] studies the
impact of using non-lattice abstract domains (including non-convex numerical abstract
domains) and proposes general remedies for precision and termination.

The AVO domain that we introduce in this paper is closest to the abstract domain of
linear AV inequalities [7] which can infer general linear AV constraints but is of expo-
nential complexity. The AVO domain enjoys abstract operators in cubic time complexity
and quadratic memory complexity. Moreover, the AVO domain supports strict inequali-
ties. [25] presents an abstract domain extending DBMs (encoding potential constraints)
with disequality constraints of the form “x � y” or “x � 0”, rather than extending the
octagon domain. Moreover, disequalities are different from strict inequalities in that a
disequality is a disjunction of two strict inequalities, while in this paper we consider the
conjunction of strict inequalities. The pentagon domain [22] also chooses on purpose to
perform the closure in an incomplete (but sound) way, to improve the efficiency in prac-
tice at the cost of precision. Our purpose to have weak closure in this paper is similar,
but to low down the complexity due to absolute value.

6 Conclusion

In this paper, we present an analysis to discover octagonal (or UTVPI) relations among
the values and the absolute values of variables of a program (±X ± Y ≤ c,±X ± |Y | ≤
d,±|X| ± |Y | ≤ e) , which generalizes the octagon abstract domain (±X ± Y ≤ c) [24].
The analysis explores the absolute value function as a mean to describe non-convex
behaviors in the program. First, we present a representation to encode AV octagons via
DBMs. Then we propose 3 closure algorithms for AV octagons to offer different time
precision tradeoffs. On this basis, we provide algorithms for domain operations such
that the new domain still enjoys the cubic time complexity, as octagons. In addition, we
present an approach to extend AVO to support strict inequalities over rational or real-
valued variables, which also fits for octagons. Experimental results are encouraging on
benchmark programs and large embedded C programs: AVO is scalable and able to find
useful non-convex invariants, without too much overhead compared with octagons.

It remains for future work to consider the domain of AV integer octagonal constraints
(i.e., AV octagonal constraints with integers as constant terms), wherein the key is to
have a tight closure algorithm for AV integer octagonal constraints.

References

1. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation
to compute accurate numerical invariants in static analysis. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg (2010)

116 L. Chen et al.

2. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring min and max invariants using max-plus
polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 189–204.
Springer, Heidelberg (2008)

3. Bagnara, R., Hill, P.M., Mazzi, E., Zaffanella, E.: Widening operators for weakly-relational
numeric abstractions. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp.
3–18. Springer, Heidelberg (2005)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: PLDI, pp. 196–207. ACM Press
(2003)

5. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: An abstract domain to infer
interval linear relationships. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp.
309–325. Springer, Heidelberg (2009)

6. Chen, L., Miné, A., Wang, J., Cousot, P.: An abstract domain to discover interval linear
equalities. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp.
112–128. Springer, Heidelberg (2010)

7. Chen, L., Miné, A., Wang, J., Cousot, P.: Linear absolute value relation analysis. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 156–175. Springer, Heidelberg (2011)

8. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proc. of
the 2nd International Symposium on Programming, pp. 106–130. Dunod, Paris (1976)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM Press
(1977)

10. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL, pp.
269–282. ACM Press (1979)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL, pp. 84–96. ACM Press (1978)

12. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis,
J. (ed.) Automatic Verification Methods for Finite State Systems. LNCS, vol. 407, pp.
197–212. Springer, Heidelberg (1990)

13. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Abstract interpretation
over non-lattice abstract domains. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 6–24. Springer, Heidelberg (2013)

14. Ghorbal, K., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut domains: Effi-
cient non-convex domains for abstract interpretation. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 235–250. Springer, Heidelberg (2012)

15. Granger, P.: Static analysis of arithmetical congruences. International Journal of Computer
Mathematics, 165–199 (1989)

16. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression abstraction
and max operator with application in timing analysis. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg (2008)

17. Gurfinkel, A., Chaki, S.: Boxes: A symbolic abstract domain of boxes. In: Cousot, R., Martel,
M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg (2010)

18. Howe, J.M., King, A., Lawrence-Jones, C.: Quadtrees as an abstract domain. Electr. Notes
Theor. Comput. Sci. 267(1), 89–100 (2010)

19. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

20. Lalire, G., Argoud, M., Jeannet, B.: Interproc., http://pop-art.inrialpes.fr/people/
bjeannet/bjeannet-forge/interproc/

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/

An Abstract Domain to Infer Octagonal Constraints 117

21. Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable approach to infer linear inequal-
ities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 229–244.
Springer, Heidelberg (2009)

22. Logozzo, F., Fähndrich, M.: Pentagons: A weakly relational abstract domain for the efficient
validation of array accesses. Sci. Comput. Program. 75(9), 796–807 (2010)

23. Miné, A.: The octagon abstract domain. In: Proc. of the Workshop on Analysis, Slicing, and
Transformation, AST 2001, pp. 310–319. IEEE CS Press (2001)

24. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1),
31–100 (2006)

25. Péron, M., Halbwachs, N.: An abstract domain extending difference-bound matrices with
disequality constraints. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,
pp. 268–282. Springer, Heidelberg (2007)

26. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems us-
ing mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp.
25–41. Springer, Heidelberg (2005)

27. Simon, A., King, A., Howe, J.M.: Two Variables per Linear Inequality as an Abstract Do-
main. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89. Springer, Heidel-
berg (2003)

Verifying Recursive Programs

Using Intraprocedural Analyzers

Yu-Fang Chen1, Chiao Hsieh1,2, Ming-Hsien Tsai1,
Bow-Yaw Wang1, and Farn Wang2

1 Institute of Information Science, Academia Sinica, Taiwan
2 Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan

Abstract. Recursion can complicate program analysis significantly.
Some program analyzers simply ignore recursion or even refuse to check
recursive programs. In this paper, we propose an algorithm that uses a
recursion-free program analyzer as a black box to check recursive pro-
grams. With extended program constructs for assumptions, assertions,
and nondeterministic values, our algorithm computes function summaries
from inductive invariants computed by the underlying program analyzer.
Such function summaries enable our algorithm to check recursive pro-
grams. We implement a prototype using the recursion-free program an-
alyzer CPAChecker and compare it with other program analyzers on
the benchmarks in the 2014 Competition on Software Verification.

1 Introduction

Program verification is a grand challenge with significant impact in computer
science. Its main difficulty is in great part due to complicated program features
such as concurrent execution, pointers, recursive function calls, and unbounded
basic data types [7]. Subsequently, it is extremely tedious to develop a verification
algorithm that handles all features. Researches on program verification typically
address some of these features and simplify others. Verification tools however are
required to support as many features as possible. Since implementation becomes
increasingly unmanageable with additional features, incorporating algorithms
for all features in verification tools can be a nightmare for developers.

One way to address the implementation problem is by reduction. If verify-
ing a new feature can be transformed to existing features, development efforts
can be significantly reduced. In this paper, we propose an algorithm to extend
intraprocedure (recursion-free) program analyzers to verify recursive programs.
Such analyzers supply an inductive invariant when a program is verified to be
correct and support program constructs such as assumptions, assertions, and
nondeterministic values. Our algorithm transforms any recursive program into
non-recursive ones and invokes an intraprocedure program analyzer to verify
properties about the generated non-recursive programs. The verification results
allow us to infer properties on the given recursive program.

Our algorithm proceeds by iterations. In each iteration, it transforms the
recursive program into a non-recursive program that under-approximates the

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 118–133, 2014.
c© Springer International Publishing Switzerland 2014

Verifying Recursive Programs Using Intraprocedural Analyzers 119

behaviors of the original and sends the under-approximation to an intraprocedure
program analyzer. If the analyzer verifies the under-approximation, purported
function summaries for recursive functions are computed. Our algorithm then
transforms the original recursive program into more non-recursive programs with
purported function summaries. It finally checks if purported function summaries
are correct by sending these non-recursive programs to the analyzer.

Compared with other analysis algorithms for recursive programs, ours is very
lightweight. It only performs syntactic transformation and requires standard
functionalities from underlying intraprocedure program analyzers. Moreover, our
technique is very modular. Any intraprocedural analyzer providing proofs of in-
ductive invariants can be employed in our algorithm. With the interface between
our algorithm and program analyzers described here, incorporating recursive
analysis with existing program analyzers thus only requires minimal implemen-
tation efforts. Recursive analysis hence benefits from future advanced intrapro-
cedural analysis with little cost through our lightweight and modular technique.

We implement a prototype using CPAChecker (over 140 thousand lines of
Java code) as the underlying program analyzer [6]. In our prototype, 1256 lines
of OCaml code are for syntactic transformation and 705 lines of Python code
for the rest of the algorithm. 270 lines among them are for extracting function
summaries. Since syntactic transformation is independent of underlying program
analyzers, only about 14% of code need to be rewritten should another analyzer
be employed. We compare it with program analyzers specialized for recursion in
experiments. AlthoughCPAChecker does not support recursion, our prototype
scores slightly better than the second-place tool Ultimate Automizer on the
benchmarks in the 2014 Competition on Software Verification [9].
Organization: Preliminaries are given in Section 2. We give an overview of
our technique in Section 3. Technical contributions are presented in Section 4.
Section 5 reports experimental results. Section 6 describes related works. Finally,
some insights and improvements are discussed in Section 7.

2 Preliminaries

We consider a variant of the WHILE language [17]:

Expression " p ::= x x ∈ Vars

| false | true | 0 | 1 | . . . constant
| nondet nondeterministic value
| f(p) function invocation
| p# p # ∈ {+,−,=,>, and, or}
| not p

Command " c ::= x := p assignment
| c; c sequential composition
| return p function return
| assume p assumption
| assert p assertion

120 Y.-F. Chen et al.

Vars denotes the set of program variables, and Vars′ = {x′ : x ∈ Vars} where
x′ represents the new value of x after execution of a command. The nondet

expression evaluates to a type-safe nondeterministic value. Simultaneous assign-
ments are allowed in our language. To execute a simultaneous assignment, all
expressions on the right hand side are first evaluated and then assigned to re-
spective variables. We assume that simultaneous assignments are type-safe in
the sense that the number of variables on the left-hand-side always matches that
of the right-hand-side. The return command accepts several expressions as ar-
guments. Together with simultaneous assignments, functions can have several
return values.

A function f is represented as a control flow graph (CFG) Gf =
〈V,E, cmdf, uf, rf, s, e〉 where the nodes in V are program locations, E ⊆ V × V
are edges, each edge (
,
′) ∈ E is labeled by the command cmdf(
,
′), uf and
rf are formal parameters and return variables of f, and s, e ∈ V are the entry
and exit locations of f. The superscript in Gf denotes the CFG corresponds to
the function f. The special main function specifies where a program starts. To
simplify presentation, we assume the functions in a program use disjoint sets of
variables and the values of formal parameters never change in a function. Notice
that this will not affect the expressiveness of a CFG because one can still make
copies of formal parameters by assignments and change the values of the copied
versions. Also we assume that there are no global variables because they can be
simulated by allowing simultaneous assignment to return variables [3].

Figure 1 shows control flow graphs for the McCarthy 91 program from [16].
The main function assumes the variable n is non-negative. It then checks if the
result of mc91(n) is no less than 90 (Figure 1a). The mc91 function branches on
whether the variable m is greater than 100. If so, it returns m − 10. Otherwise,
mc91(m) stores the result of mc91(m+ 11) in s, and returns the result of mc91(s)
(Figure 1b). Observe that a conditional branch is modeled with the assume

command in the figure. Loops can be modeled similarly.

s

1

2

3

e

assume n >= 0

r := mc91(n)

assert [r = 91 or

(n > 101 and

r = n− 10)]

return 0

(a) main

s

1

2

3

4

e

assume m > 100

assume not(m > 100)

return m− 10

s := mc91(m+ 11)

t := mc91(s)

return t

(b) mc91

Fig. 1. McCarthy 91

Verifying Recursive Programs Using Intraprocedural Analyzers 121

Let Gf = 〈V,E, cmdf, uf, rf, s, e〉 be a CFG. An inductive invariant
Π(Gf, I0) = {I� :
 ∈ V } for Gf from I0 is a set of first-order logic formu-
lae such that Is = I0, and for every (
,
′) ∈ E

I� ∧ τcmdf(�,�′) =⇒ I ′�′

where I ′ is obtained by replacing every x ∈ Vars in I with x′ ∈ Vars′, and
τcmdf(�,�′) specifies the semantics of the command cmdf(
,
′). An inductive in-
variant Π(Gf, I0) is an over-approximation to the computation of Gf from I0.
More precisely, assume that the function f starts from a state satisfying I0.
For every
 ∈ V , Gf must arrive in a state satisfying I� when the computation
reaches
.

Let T be a program fragment (it can be either a function represented as a
CFG or a sequence of program commands). P and Q are logic formulae. A Hoare
triple (|P |)T (|Q|) specifies that the program fragment T will reach a program
state satisfying Q provided that T starts with a program state satisfying P and
terminates. The formula P is called the precondition and Q is the postcondition
of the Hoare triple. We use the standard proof rules for partial correctness with
two additional rules for the assumption and assertion commands:

Assume
(|P |) assume q (|P ∧ q|)

P =⇒ q
Assert

(|P |) assert q (|P |)
The assume command excludes all computation not satisfying the given expres-
sion. The assert command aborts the computation if the given expression is
not implied by the precondition. No postcondition can be guaranteed in such a
case. Observe that an inductive invariant Π(Gf, I0) establishes (|I0|)Gf(|Ie|). A
program analyzer accepts programs as inputs and checks if all assertions (spec-
ified by the assert command) are satisfied. One way to implement program
analyzers is to compute inductive invariants.

Proposition 1. Let Gf = 〈V,E, cmdf, uf, rf, s, e〉 be a CFG and Π(Gf, true)
be an inductive invariant for Gf from true. If |= I� =⇒ B� for every edge
(
,
′) ∈ E with cmd(
,
′) = assert(B�), then all assertions in Gf are satisfied.

A program analyzer checks assertions by computing inductive invariants is called
an inductive program analyzer. Note that an inductive program analyzer need
not give any information when an assertion fails. Indeed, most inductive program
analyzers simply report false positives when inductive invariants are too coarse.
A recursion-free inductive program analyzer is a program analyzer that checks
recursion-free programs by computing inductive invariants. Several recursion-free
inductive program analyzers are available, such as CPAChecker [6], Blast [5],
UFO [2], Astrée [10], etc. Our goal is to check recursive programs by using a
recursion-free inductive program analyzer as a black box.

3 Overview

Let BasicAnalyzer denote a recursion-free inductive program analyzer, and
let a program P = {Gmain} ∪ {Gf : f is a function} consist of the CFGs of

122 Y.-F. Chen et al.

the main function and functions that may be invoked (transitively) from main.
Since non-recursive functions can be replaced by their control flow graphs after
proper variable renaming, we assume that P only contains the main and recursive
functions. If P does not contain recursive functions, BasicAnalyzer is able to
check P by computing inductive invariants.

When P contains recursive functions, we transform Gmain into a recursion-
free program Gmain. The program Gmain under-approximates the computation
of Gmain. That is, every computation of Gmain is also a computation of Gmain.
If BasicAnalyzer finds an error in Gmain, our algorithm terminates and re-
ports it. Otherwise, BasicAnalyzer has computed an inductive invariant for
the recursion-free under-approximation Gmain. Our algorithm computes function
summaries of functions in P from the inductive invariant of Gmain. It then checks
if every function summary over-approximates the computation of the correspond-
ing function. If so, the algorithm terminates and reports that all assertions in P
are satisfied. If a function summary does not over-approximate the computation,
our algorithm unwinds the recursive function and reiterates (Algorithm 1).

Input: A program P = {Gmain} ∪ {Gf : f is a function}
k ← 0;
P0 ← P ;
repeat

k ← k + 1;
Pk ← unwind every CFG in Pk−1;
switch BasicAnalyzer (Gmain

k) do
case Pass(Π (Gmain

k , true)):
S := ComputeSummary(Pk, Π(Gmain

k , true))
case Error : return Error

complete?← CheckSummary(Pk, S);

until complete?;
return Pass(Π(Gmain

k , true)), S;

Algorithm 1. Overview

To see how to under-approximate computation, consider a control flow graph
Gmain

k . The under-approximation Gmain
k is obtained by substituting the command

assume false for every command with recursive function calls (Figure 2). The
substitution effectively blocks all recursive invocations. Any computation of
Gmain

k hence is also a computation of Gmain
k . Note that Gmain

k is recursion-free.
BasicAnalyzer is able to check the under-approximation Gmain

k .
When BasicAnalyzer does not find any error in the under-approximation

Gmain
k , it computes an inductive invariant Π(Gmain

k , true). Our algorithm then
computes summaries of functions in P . For each function f with formal param-
eters uf and return variables rf, a function summary for f is a first-order con-
junctive formula which specifies the relation between its formal parameters and
return variables. The algorithm ComputeSummary(Pk, Π(Gmain

k , true)) com-
putes summaries S by inspecting the inductive invariant Π(Gmain

k , true)
(Section 4.3).

Verifying Recursive Programs Using Intraprocedural Analyzers 123

s

1

2

3

e

smc911

11

21

31

41

emc911

assume n >= 0

m1 := n

assert [r = 91 or

(n > 101 and

r = n− 10)]

return 0

assume m1 > 100

assume not(m1 > 100)

rmc91 :=
m1 − 10

assume false

assume false

rmc911 := t1
r := rmc911

Fig. 2. Under-approximation of McCarthy 91

After function summaries are computed, Algorithm 1 verifies whether
function summaries correctly specify computations of functions by invoking
CheckSummary(Pk, S). The algorithm CheckSummary(Pk, S) checks this by
constructing a recursion-free control flow graph G̃f with additional assertions
for each function f and verifying G̃f with BasicAnalyzer. The control flow
graph G̃f is obtained by substituting function summaries for function calls. It is
transformed from Gf by the following three steps:

1. Replace every function call by instantiating the summary for the callee;
2. Replace every return command by assignments to return variables;
3. Add an assertion to validate the summary at the end.

Figure 3 shows the control flow graph G̃mc91 with the function summary
S[mc91] = not(m ≥ 0). Observe that G̃mc91 is recursion-free. BasicAnalyzer
is able to check G̃mc91 and invalidates this function summary.

s

1

2

3

4

5

e

assume m > 100

assume not(m > 100)

rmc91 := m− 10

s := nondet;
assume not(m+ 11 ≥ 0)

t := nondet;
assume not(s ≥ 0)

rmc91 := t

assert not(m ≥ 0)

Fig. 3. Check Summary in McCarthy 91

124 Y.-F. Chen et al.

In order to refine function summaries, our algorithm unwinds recursive func-
tions as usual. More precisely, consider a recursive function f with formal pa-
rameters uf and return variables rf. Let Gf be the control flow graph of f and
Gmain

k be a control flow graph that invokes f. To unwind f in Gmain
k , we first

construct a control flow graph Hf by replacing every return q command in f

with the assignment rf := q. For each edge (
,
′) labeled with the command
x := f(p) in Gmain

k , we remove the edge (
,
′), make a fresh copy Kf of Hf by
renaming all nodes and variables, and then add two edges: add an edge from

 to the entry node of Kf that assigns p to fresh copies of formal parameters
in Kf and another edge from the exit node to
′ that assigns fresh copies of
return variables to x. The control flow graph Gmain

k+1 is obtained by unwinding
every function call in Gmain

k . Figure 4 shows the control flow graph obtained by
unwinding main twice. Note that the unwinding graph Gmain

k+1 still has recursive

function calls. Its under-approximation Gmain
k+1 is more accurate than Gmain

k .

s

1

2

3

e

smc911

11

21

31

41

emc911

s2

12

22

32

42

e2

s3

13

23

33

43

e3

assume n >= 0

m1 := n

assert [r = 91 or

(n > 101 and

r = n− 10)]

return 0

assume

m1 > 100

assume

not(m1 > 100)

rmc911 :=
m1 − 10

m2 := m1 + 11

m3 := s1

rmc911 := t1

r := rmc911

assume

m2 > 100

assume not(m2 > 100)

rmc912 := m2 − 10

s2 := mc91(m2 + 11)

t2 := mc91(s2)

rmc912 := t2
s1 := rmc912

assume m3 > 100

assume not(m3 > 100)

rmc913 :=
m3 − 10

s3 := mc91(m3 + 11)

t3 := mc91(s3)

rmc913 := t3

t1 := rmc913

Fig. 4. Unwinding McCarthy 91

4 Proving via Transformation

We give details of the constructions and establish the soundness of Algorithm 1.
Our goal is to establish the following theorem:

Theorem 1. Let Gmain = 〈V,E, cmdmain, umain, rmain, s, e〉 be a control flow graph
in P . If Algorithm 1 returns Pass, there is an inductive invariant Π(Gmain, true)
such that I� =⇒ B� for every (
,
′) ∈ E with cmdmain(
,
′) = assert B�.

By Proposition 1, it follows that all assertions in Gmain are satisfied. Moreover, by
the semantics of the assert command, all assertions in the program are satisfied.

Verifying Recursive Programs Using Intraprocedural Analyzers 125

	

	′

markf(rename(Gg, i))

	

	′

sgi

egi

x := g(p)

u
g
i := p

x := r
g
i

Fig. 5. Unwinding Function Calls

4.1 Unwinding

We first define the rename function rename(Gf, i). It returns a CFG
〈Vi, Ei, cmdfi , u

f
i , r

f
i , si, ei〉 obtained by first replacing every return command

return q by assignments to return variables rf := q and then renaming all
variables and locations in Gf with the index value i. The function unwind(Gf)
returns a CFG Kf obtained by replacing all function call edges in Gf with the
CFG of the called function after renaming. In order to help extracting sum-
maries from the Kf, unwind(Gf) annotates in Kf the outermost pair of the
entry and exit locations si and ei of each unwound function g with an additional
superscript g, i.e., sgi and egi (Figure 5). The formal definition is given below.

Given a CFG Gf = 〈V,E, cmdf, uf, rf, s, e〉, we use Ê = {e ∈ E : cmdf(e) =
(x := g(p))} to denote the set of function call edges in E and define a function
idx(e) that maps a call edge e to a unique index value. The function markf(G

g)
returns a CFG that is identical to Gg, except that, for the case that no location
with superscript g appears in V (the locations of Gf), it annotates the entry and
exit locations, sk and ek, of the returned CFG with superscript g, i.e., s

g
k and e

g
k.

Note that, for each unwinding of function call, we mark only the outermost pair of
its entry and exit locations. Formally, unwind(Gf) = 〈Vu, Eu, cmdfu, u

f, rf, s, e〉
such that (1) Vu = V ∪

⋃
{Vi : (
,

′) ∈ Ê∧cmdf(
,
′) = (x := g(p))∧ idx(
,
′) =
i ∧ markf(rename(G

g, i)) = 〈Vi, Ei, cmdgi , u
g
i , r

g
i , s

′, e′〉} (2) Eu = E \ Ê ∪⋃
{Ei ∪ {(
, s′), (e′,
′)} : (
,
′) ∈ Ê ∧ cmdf(
,
′) = (x := g(p)) ∧ idx(
,
′) =

i ∧ markf(rename(G
g, i)) = 〈Vi, Ei, cmd

g
i , u

g
i , r

g
i , s

′, e′〉} with cmdfu(
, s
′) =

(ugi := p) and cmdfu(e
′,
′) = (x := r

g
i).

Proposition 2. Let Gf be a control flow graph. P and Q are logic formulae
with free variables over program variables of Gf. (|P |) Gf (|Q|) if and only if
(|P |) unwind(Gf) (|Q|).
Essentially, Gf and unwind(Gf) represent the same function f. The only differ-
ence is that the latter has more program variables after unwinding, but this does
not affect the states over program variables of Gf before and after the function.

4.2 Under-Approximation

Let Gf = 〈V,E, cmdf, uf, rf, s, e〉 be a control flow graph. The control flow graph
Gf = 〈V,E, cmdf, uf, rf, s, e〉 is obtained by replacing every function call in G
with assume false (Figure 6). That is,

126 Y.-F. Chen et al.

	

	′

	

	′

x := g(p) assume false

Fig. 6. Under-approximation

cmdf(
,
′) =

{
cmdf(
,
′) if cmdf(
,
′) does not contain function calls
assume false otherwise

Proposition 3. Let Gf be a control flow graph. P and Q are logic formulae with
free variables over program variables of Gf. If (|P |)Gf(|Q|), then (|P |)Gf(|Q|).

The above holds because the computation of Gf under-approximates the com-
putation of Gf. If all computation of Gf from a state satisfying P always ends
with a state satisfying Q, the same should also hold for the computation of Gf.

4.3 Computing Summaries

Let the CFG for the main function Gmain
k = 〈V,E, cmdmain, umain, rmain, s, e〉.

Function ComputeSummary(Pk, Π(Gmain
k , true)) extracts summaries from the

inductive invariant Π(Gmain
k , true) = {I� :
 ∈ V } (Algorithm 2).

Input: Pk: a program; {I� : 	 ∈ V }: an inductive invariant of Gmain
k

Output: S[•]: function summaries
foreach function f in the program Pk do

S[f] := true;
foreach pair of locations (sfi , e

f
i) ∈ V × V do

if Isfi contains return variables of f then S[f] := S[f] ∧ ∀Xf.Iefi
else S[f] := S[f] ∧ ∀Xf.(Isfi =⇒ Iefi)

return S[•];

Algorithm 2. ComputeSummary(Pk, Π(Gmain
k , true))

For each function f in the program Pk, we first initialize its summary S[f] to
true. The setXf contains all variables appearing inGmain

k except the set of formal
parameters and return variables of f. For each pair of locations (sfi , e

f
i) ∈ V ×V

in Gmain
k , if the invariant of location sfi contains return variables of f, we update

S[f] to the formula S[f] ∧ ∀Xf.Iefi . Otherwise, we update it to a less restricted
version S[f] ∧ ∀Xf.(Isfi =⇒ Iefi) (Figure 7).

Verifying Recursive Programs Using Intraprocedural Analyzers 127

markf(rename(Gf, i))

	

	′

sfi

efi

add ∀Xf.(Isf
i
=⇒ Ief

i
) to S[f]

ufi := p

x := rfi

Fig. 7. Updating a Summary

Proposition 4. Let Q be a formula over all variables in Gmain
k except rf. We

have (|Q|) rf := f(uf) (|Q|).

The proposition holds because the only possible overlap of variables in Q and
in rf := f(uf) are the formal parameters uf. However, we assume that values
of formal parameters do not change in a function (see Section 2); hence the
values of all variables in Q stay the same after the execution of the function call
rf := f(uf).

Proposition 5. Given the CFG Gmain
k = 〈V,E, cmdmain, umain, rmain, s, e〉. If

(|true|) rf := f(uf) (|S[f]|) holds, then (|Isfi |) rf := f(uf) (|Iefi |) for all (sfi , e
f
i) ∈

V × V .

For each pair (sfi , e
f
i) ∈ V × V , we consider two cases:

1. Isfi contains some return variables of f:
In this case, the conjunct ∀Xf.Iefi is a part of S[f], we then have

(|true|) rf := f(uf) (|S[f]|)
Postcondition Weakening

(|true|) rf := f(uf) (|∀Xf.Iefi |) Postcondition Weakening
(|true|) rf := f(uf) (|Iefi |) Precondition Strengthening
(|Isfi |) r

f := f(uf) (|Iefi |)

2. Isfi does not contain any return variables of f:
In this case, the conjunct ∀Xf.(Isfi =⇒ Iefi) is a part of S[f], we then have

Prop. 4
(|Isf

k
|) rf := f(uf) (|Isf

k
|)

(|true|) rf := f(uf) (|S[f]|)
(|true|) rf := f(uf) (|∀Xf.(Isf

k
=⇒ Ief

k
)|)

(|true|) rf := f(uf) (|Isf
k

=⇒ Ief
k
|)

(|Isf
k
|) rf := f(uf) (|Isf

k
=⇒ Ief

k
|)

(|Isf
k
|) rf := f(uf) (|Ief

k
|)

128 Y.-F. Chen et al.

	

	′

	

	′

	

	′

	

	′

x := g(p)
x := nondet;
assume S[g][ug → p, rg → x]

return q r := q

Fig. 8. Instantiating a Summary

4.4 Checking Summaries

Here we explain how to handle the function CheckSummary(Pk, S[•]), where
Pk is an unwound program and S[•] is an array of function summaries. Let
Gf

k = 〈V,E, cmdf, uf, rf, s, e〉 be a control flow graph for the function f in Pk.
In order to check whether the function summary S[f] for f specifies the relation
between the formal parameters and return values of f, we define another control

flow graph Ĝf
k,S = 〈V,E, ˆcmd

f
, uf, rf, s, e〉 where

ˆcmd
f
(, 	′) =

⎧⎨⎩
x := nondet; assume S[g][ug → p, rg → x] if cmdf(, 	′) = x := g(p)
rf := q if cmdf(, 	′) = return q
cmdf(, 	′) otherwise

The control flow graph Ĝf
k,S replaces every function call in Gf

k by instantiating
a function summary (Figure 8). Using the Hoare Logic proof rule for recursive
functions [22], we have the following proposition:

Proposition 6. Let Gf
k = 〈V,E, cmdf, uf, rf, s, e〉 be the control flow graph for

the function f and S[•] be an array of logic formulae over the formal parameters
and return variables of each function. If (|true|) Ĝg

k,S (|S[g]|) for every function

g in P , then (|true|) rf := f(uf) (|S[f]|).

It is easy to check (|true|) Ĝg
k,S (|S[g]|) by program analysis. Let Gf

k be the con-

trol flow graph for the function f and Ĝ
g
k,S = 〈V,E, ˆcmd

f
, uf, rf, s, e〉 as above.

Consider another control flow graph G̃f
k,S = 〈Ṽ , Ẽ, ˜cmd

f
, uf, rf, s, e〉 where

Ṽ = V ∪ {ẽ}
Ẽ = E ∪ {(e, ẽ)}

˜cmd
f
(
,
′) =

{
ˆcmd

f
(
,
′) if (
,
′) ∈ E

assert S[f] if (
,
′) = (e, ẽ)

Corollary 1. Let Gf
k = 〈V,E, cmdf, uf, rf, s, e〉 be the control flow graph for the

function f and S[•] be an array of logic formulae over the formal parameters
and return variables of each function. If BasicChecker(G̃

g
k,S) returns Pass

for every function g in P , then (|true|) rf := f(uf) (|S[f]|).

Verifying Recursive Programs Using Intraprocedural Analyzers 129

Input: Pk : an unwound program; S[•] : an array of function summaries
Output: true if all function summaries are valid; false otherwise
foreach function Gg

k ∈ Pk do

if BasicChecker(G̃g

k,S) 	= Pass then return false

return true;

Algorithm 3. CheckSummary(Pk, S)

4.5 Correctness

We are ready to sketch the proof of Theorem 1. Assume Algorithm 1 re-
turns Pass(Π(Gmain

k , true)) and S[•] on the input control flow graph Gmain =
〈V,E, cmdmain, umain, rmain, s, e〉. Let Gmain

k = 〈V k, Ek, cmdmaink , umain, rmain, s, e〉
and Π(Gmain

k , true) = {I� :
 ∈ V k}. By the definition of inductive invariants,
we have (|I�|) cmdmaink (
,
′) (|I�′ |) for every (
,
′) ∈ Ek. Moreover, V ⊆ V k

since Gmain
k is obtained by unwinding Gmain. Define Γ (Gmain, true) = {I� ∈

Π(Gmain
k , true) :
 ∈ V }. We claim Γ (Gmain, true) is in fact an inductive invari-

ant for Gmain.
Let Ê = {(
,
′) ∈ E : cmdmain(
,
′) = x := f(p)}. We have cmdmain(
,
′) =

cmdmaink (
,
′) for every (
,
′) ∈ E \ Ê. Thus (|I�|) cmdmain(
,
′) (|I�′ |) for ev-
ery (
,
′) ∈ E \ Ê by the definition of Γ (G, true) and the inductiveness of
Π(Gmain

k , true). It suffices to show that

(|I�|) x := f(p) (|I�′ |) or, equivalently, (|I�|) uf := p; rf := f(uf); x := rf (|I�′ |)

for every (
,
′) ∈ Ê. By the inductiveness of Π(Gmain
k , true), we have (|I�|) uf :=

p (|Isfk |) and (|Iefk |) x := rf (|I�′ |). Moreover, (|Isfk |) r
f := f(uf) (|Iefk |) by Proposi-

tion 5 and 6. Therefore

(|I�|) uf := p (|Isfk |) (|Isfk |) r
f := f(uf) (|Iefk |) (|Iefk |) x := rf (|I�′ |)

(|I�|) uf := p; rf := f(uf); x := rf (|I�′ |)
(|I�|) x := f(p) (|I�′ |)

5 Experiments

A prototype tool of our approach has been implemented with CPAChecker
1.2.11-svcomp14b1 as the underlying intraprocedural analyzer. In addition, be-
cause CPAChecker does not support universal quantifiers in the expression of
an assume command, we usedRedlog [19] for quantifier elimination. To evaluate
our tool, we performed experiments with all the benchmarks from the recursive

1 We use script/cpa.sh to invoke CPAChecker and use the configuration file
available at https://github.com/fmlab-iis/transformer/blob/master/tool/

verifier-conf/myCPA-PredAbstract-LIA.properties.

https://github.com/fmlab-iis/transformer/blob/master/tool/verifier-conf/myCPA-PredAbstract-LIA.properties
https://github.com/fmlab-iis/transformer/blob/master/tool/verifier-conf/myCPA-PredAbstract-LIA.properties

130 Y.-F. Chen et al.

category in the 2014 Competition on Software Verification (SV-COMP 2014) [9]
and followed the rules and the score schema (shown in Table 1) of the competition.
The experimental results show that our tool is quite competitive even compared
with the winners of the competition. It is solid evidence that our approach not
only extends program analyzers to handle recursion but also provides comparable
effectiveness.

Our tool was compared with four participants of SV-COMP 2014, namely
Blast 2.7.22 [5], CBMC 4.5-sv-comp-2014 [8] with a wrapper cbmc-wrapper.sh3,
Ultimate Automizer [13], and Ultimate Kojak [21]. The latter three tools
are the top three winners of the recursive category in SV-COMP 2014. The
recursive programs from the benchmarks of the recursive category comprise 16
bug-free and 7 buggy C programs. The experiments were performed on a virtual
machine with 4 GB of memory running 64-bit Ubuntu 12.04 LTS. The virtual
machine ran on a host with an Intel Core i7-870 Quad-Core CPU running 64-bit
Windows 7. The timeout of a verification task is 900 seconds.

The results are summarized in Table 2 where k is the number of unwindings of
recursive functions in Algorithm 1, Time is measured in seconds, the superscript
! or ? indicates that the returned result is respectively incorrect or unknown, E
indicates exceptions, and T.O. indicates timeouts. The parenthesized numbers
of CBMC are obtained by excluding certain cases, which will be explained later.

The results show that CBMC outperforms all the other tools. However, CBMC
reports safe if no bug is found in a program within a given time bound4, which is
set to 850 seconds in cbmc-wrapper.sh. In this case, the behaviors of the program
within certain length bounds are proven to be safe, but the absence of bugs is
not guaranteed (see Addition03 false.c in Table 2 for a counterexample). If we
ignore such cases in the experiments, CBMC will obtain a score of 14, and the
gap between the scores of CBMC and our tool becomes much smaller. Moreover,
this gap may be narrowed if we turn on some important optimizations such as
adjustment of block encoding provided in CPAChecker. We chose to disable
the optimizations in order to simplify the implementation of our prototype tool.

Compared to Ultimate Automizer, Ultimate Kojak, and Blast, our
tool can verify more programs and obtain a higher score. The scores of our tool
and Ultimate Automizer are very close mainly because of a false positive
produced by our tool. The false positive in fact came from a spurious error
trace reported by CPAChecker because modulo operation is approximated in
CPAChecker. If this case is excluded, our tool can obtain a score of 16.

6 Related Works

In [14,15], a program transformation technique for checking context-bounded con-
current programs to sequential analysis is developed. Numerous intraprocedural

2 We use the arguments -alias empty -enable-recursion -noprofile -cref -sv-
comp -lattice -include-lattice symb -nosserr with Blast.

3 The wrapper cbmc-wrapper.sh is provided by CBMC 4.5-sv-comp-2014, which is a
special version for SV-COMP 2014.

4 This was confirmed in a private communication with the developers of CBMC.

Verifying Recursive Programs Using Intraprocedural Analyzers 131

Table 1. Score schema in SV-COMP 2014

Points Program Correctness Reported Result

0 TRUE or FALSE UNKNOWN (due to timeout or exceptions)
+1 FALSE FALSE
-4 TRUE FALSE
+2 TRUE TRUE
-8 FALSE TRUE

Table 2. Experimental results of verifying programs in the recursive category of the
2014 Competition on Software Verification. (Time in sec.).

Program
Our Tool

Ultimate Ultimate
CBMC 4.5 Blast 2.7.2

Automizer Kojak
k Time Time Time Time Time

Ackermann01 true.c 1 6.5 T.O. T.O. 850.0 E
Ackermann02 false.c 4 57.3 4.2 T.O. 1.0 E
Ackermann03 true.c T.O. T.O. T.O. 850.0 E
Ackermann04 true.c T.O. T.O. T.O. 850.0 E
Addition01 true.c 2 14.1 T.O. T.O. 850.0 E
Addition02 false.c 2 9.9 3.7 3.5 0.3 4.0

Addition03 false.c T.O. T.O. T.O. 850.0! E
EvenOdd01 true.c 1 2.9! T.O. T.O. 1.3 0.1!

EvenOdd03 false.c 1 2.9 3.2 3.2 0.1 0.1
Fibonacci01 true.c 6 348.4 T.O. T.O. 850.0 E

Fibonacci02 true.c T.O. 60.7 72.1? 0.8 E
Fibonacci03 true.c T.O. T.O. T.O. 850.0 E
Fibonacci04 false.c 5 107.3 7.4 8.2 0.4 E
Fibonacci05 false.c T.O. 128.9 23.2 557.2 E

gcd01 true.c 1 6.6 5.4 7.3 850.0 16.1!

gcd02 true.c T.O. T.O. T.O. 850.0 E
McCarthy91 false.c 1 2.8 3.2 3.1 0.3 0.1

McCarthy91 true.c 2 12.5 81.3 6.8 850.0 16.2!

MultCommutative true.c T.O. T.O. T.O. 850.0 E
Primes true.c T.O. T.O. T.O. 850.0 E

recHanoi01 true.c T.O. T.O. T.O. 850.0 E

recHanoi02 true.c 1 5.6 T.O. T.O. 0.7 1.9!

recHanoi03 true.c T.O. T.O. T.O. 0.7 E

correct results 11 9 7 22 (10) 3
false negative 0 0 0 1 (0) 0
false positive 1 0 0 0 (0) 4

score 13 12 9 30 (14) -13

132 Y.-F. Chen et al.

analysis techniques have been developed over the years. Many tools are in fact
freely available (see, for instance, Blast [5], CPAChecker [6], and UFO [2]).
Interprocedural analysis techniques are also available (see [20,4,10,12,11,18] for a
partial list). Recently, recursive analysis attracts new attention. The Competition
on Software Verification adds a new category for recursive programs in 2014 [9].
Among the participants,CBMC [8],UltimateAutomizer [13], andUltimiate
Kojak [21] are the top three tools for the recursive category.

Inspired by Whale [1], we use inductive invariants obtained from verifying
under-approximation as candidates of summaries. Also, similar toWhale, we ap-
ply a Hoare logic proof rule for recursive calls from [22]. However, our technique
works on control flow graphs and builds on an intraprocedural analysis tool. It is
hence very lightweight and modular. Better intraprocedural analysis tools easily
give better recursive analysis through our technique. Whale, on the other hand,
analyzes by exploring abstract reachability graphs. Since Whale extends sum-
mary computation and covering relations for recursion, its implementation is more
involved.

7 Discussion

The number of unwindings is perhaps the most important factor in our recursive
analysis technique (Table 2). We find that CPAChecker performs poorly when
many unwindings are needed. We however do not enable the more efficient block
encoding in CPAChecker for the ease of implementation. One can improve the
performance of our algorithm with the efficient but complicated block encoding.
A bounded analyzer may also speed up the verification of bounded properties.

Our algorithm extracts function summaries from inductive invariants. There
are certainly many heuristics to optimize the computation of function summaries.
For instance, some program analyzers return error traces when properties fail.
In particular, a valuation of formal parameters is obtained when CheckSummary
(Algorithm 3) returns false. If the valuation is not possible in the main function,
one can use its inductive invariant to refine function summaries. We in fact
exploit error traces computed by CPAChecker in the implementation.

Acknowledgment. This work was partially supported by Ministry of Science
and Technology under grant numbers 100-2221-E-002 -122 -, 102-2221-E-001 -
017 -, 102-2221-E-001 -018 -, and the postdoctoral fellow program of Academia
Sinica, Taiwan.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An interpolation-based al-
gorithm for inter-procedural verification. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 39–55. Springer, Heidelberg (2012)

Verifying Recursive Programs Using Intraprocedural Analyzers 133

2. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework for
abstraction- and interpolation-based software verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 672–678. Springer, Heidelberg
(2012)

3. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

4. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. STTT 9(5-6), 505–525 (2007)

6. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

7. Clarke, E.M., Jain, H., Sinha, N.: Grand challenge: Model check software. In: VIS-
SAS, pp. 55–68 (2005)

8. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

9. Competition on software verification, http://sv-comp.sosy-lab.org/2014
10. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

11. Coverity, http://www.coverity.com/
12. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,

B.: Frama-C - a software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer,
Heidelberg (2012)

13. Heizmann, M., et al.: Ultimate Automizer with SMTInterpol - (competition con-
tribution). In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 641–643. Springer, Heidelberg (2013)

14. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37–51.
Springer, Heidelberg (2008)

15. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. Formal Methods in System Design 35(1), 73–97 (2009)

16. Manna, Z., Pnueli, A.: Formalization of properties of functional programs. J.
ACM 17(3), 555–569 (1970)

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999) ISBN 978-3-540-65410-0

18. Polyspace, http://www.mathworks.com/products/polyspace/
19. Redlog, http://www.redlog.eu/
20. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via

graph reachability. In: POPL, pp. 49–61 (1995)
21. Ultimate Kojak, http://ultimate.informatik.uni-freiburg.de/kojak/
22. von Oheimb, D.: Hoare logic for mutual recursion and local variables. In: Pandu

Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp.
168–180. Springer, Heidelberg (1999)

http://sv-comp.sosy-lab.org/2014
http://www.coverity.com/
http://www.mathworks.com/products/polyspace/
http://www.redlog.eu/
http://ultimate.informatik.uni-freiburg.de/kojak/

Automatic Analysis of Open Objects
in Dynamic Language Programs

Arlen Cox1, Bor-Yuh Evan Chang1, and Xavier Rival2

1 University of Colorado Boulder, Boulder, Colorado, USA
{arlen.cox,evan.chang}@colorado.edu

2 INRIA, CNRS, ENS Paris, Paris, France
xavier.rival@ens.fr

Abstract. In dynamic languages, objects are open—they support iteration over
and dynamic addition/deletion of their attributes. Open objects, because they have
an unbounded number of attributes, are difficult to abstract without a priori knowl-
edge of all or nearly all of the attributes and thus pose a significant challenge for
precise static analysis. To address this challenge, we present the HOO (Heap with
Open Objects) abstraction that can precisely represent and infer properties about
open-object-manipulating programs without any knowledge of specific attributes.
It achieves this by building upon a relational abstract domain for sets that is used
to reason about partitions of object attributes. An implementation of the resulting
static analysis is used to verify specifications for dynamic language framework
code that makes extensive use of open objects, thus demonstrating the effective-
ness of this approach.

1 Introduction

for(var p in s)
if(p in c) r[p] = "conflict";
else r[p] = s[p];

Fig. 1. The essence of open object-manipula-
ting

Static analysis of dynamic languages is
challenging because objects in these lan-
guages are open. Open objects have muta-
ble and iterable attributes (also called fields,
properties, instance variables, etc.); devel-
opers can programmatically add, remove,
and modify attributes of existing objects.
Because of their flexibility, open objects enable dynamic language developers to create
frameworks with object-manipulating routines [30] that decrease code size, increase code
reuse, and improve program flexibility and extensibility. In Fig. 1, we show JavaScript
code that conditionally adds attributes to the objectrwith attributes from objects—code
similar to this snippet is repeated in various forms in, for instance, frameworks that im-
plement class and trait systems. Because specific attributes of the objects r, s, and c are
unknown, we cannot conclude exactly what the structure of the object r is at the end of
this code. However, it can be derived from the structure of the original r, s, and c that
each attribute (written f̂) in the set of all attributes of r (written attr(r)) can fall into one
of three parts. First, if f̂ is in both attr(s) and attr(c), the corresponding value is 'conflict'.
Second, if f̂ is in attr(s) but not in attr(c), the corresponding value is from s. Lastly, if f̂
is not in attr(s), the value of attribute f̂ of object r is unchanged. In this paper, we argue
that inferring these partitions is a solution to what we call the open object abstraction
problem.

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 134–150, 2014.
© Springer International Publishing Switzerland 2014

Automatic Analysis of Open Objects 135

The open object abstraction problem occurs when the attributes of objects cannot
be known statically. Unfortunately, the open object abstraction problem significantly in-
creases the difficulty of static analysis. Objects no longer have a fixed set of attributes
but instead an unbounded number of attributes. Thus, abstractions of objects must not
only abstract the values to which the attributes point but also the attributes themselves.
Such abstractions must potentially conflate many attributes into a single abstract attribute.
As we demonstrate in this paper, the open object abstraction problem precludes simple
adaptations of abstractions for closed-object languages like Java to dynamic languages.

This paper develops the HOO (Heap with Open Objects) abstract domain [7] that
does not require knowledge of specific attributes to be precise. It partitions attributes of
objects into sets of attributes. Then it relates those sets of attributes with sets of attributes
from other objects. Thus, it can represent complex relationships like those that form in
the aforementioned example through a relational abstraction for sets. For example, it
can automatically infer the three partitions in the attributes of object r in the previous
example.

Unlike existing analyses that adapt closed-object abstractions [21, 31], the HOO ab-
stract domain is particularly suited for analyzing programs where significant pieces of the
program are unknown and thus many attributes of objects are unknown. Because HOO
partitions attributes on the fly and relates partitions to one another, it maintains useful
information even when unknown attributes are accessed and manipulated. Such infor-
mation is necessarily lost in closed-object adaptations and thus a domain like HOO is a
fundamental building block towards modular analysis of dynamic language programs.

In this paper we make the following contributions:
– We introduce HOO, an abstraction for objects that relates partitions of attributes

between multiple objects by building on a relational abstract domain for sets. Using
these relations, we directly abstract open objects instead of adapting existing object
abstractions that require knowledge of specific attributes. (Section 3).

– We introduce attribute materialization, an operation that extracts individual symbolic
attributes from attribute summaries, allowing strong updates of open objects. Using
attribute materialization, we derive transfer functions that use strong updates for pre-
cisely reading from objects and writing to objects (Section 4).

– We develop algorithms for widening and inclusion checking that are used to automat-
ically infer loop invariants in open-object-manipulatingprograms. These algorithms
use iteration-progress sets to allow strong updates across loop iterations, thus infer-
ring partitions of object attributes (Section 5).

– We evaluate HOO by using inferred post-conditions for object-transforming func-
tions like those commonly found in JavaScript libraries to prove properties about the
structure of objects (Section 6).

2 Overview

In this section we demonstrate the features of the abstraction by analyzing the example
loop from the introduction. Fig. 2 shows key analysis states in the final iteration of abstract
interpretation after starting from an annotated pre-condition shown at 1 . In this iteration,
the analysis proves that the loop invariant is inductive.

Before executing the loop, 1 is the abstract state, where we show three separate
abstract objects at addresses â1, â3, and â5 (where ân represents a singleton set of

136 A. Cox, B.-Y.E. Chang, and X. Rival

addresses and Ân represents a summary of addresses) that are pointed to by variables r,
s, and c (shown in dotted circles) respectively. The attributes of r, attr(r) are F̂r (where
f̂n represents a singleton set of attributes; F̂n represents any summary of attributes). Sim-
ilarly, attr(s) is F̂in$ F̂out. Each attribute in attr(r) contains an object address from the
summary Â2 (shown with a double circle). Since many dynamic languages permit read-
ing attributes that do not exist, the partition noti maps to the value of all attributes not in
the object. If this partition does not exist, the object is incomplete and behaves similarly
to a C# or a Java object (Section 3). Boxed on the right are constraints on attribute parti-
tions. These constraints are represented by a relational abstraction for sets, such as QUIC
graphs [10].

Appropriate partitioning of objects is vital for performing strong updates. To take
advantage of strong updates across loop iterations, 1 shows a special partitioning of
s. The partition F̂in is the set of all attributes that have not yet been visited by the loop,
whereas the partition F̂out is the set of all attributes that have already been visited by the
loop and thus is initially empty. On each iteration an element is removed from F̂in and
placed into F̂out, allowing relationships to represent not just the initial iteration of the
loop, but any iteration. We see these relationships in the loop invariant i .

The loop invariant i shows the three partitions of attr(r) mentioned in the introduc-
tion. The partitions are constrained by F̂out, because the overwritten portion of attr(r)
can only be from the elements that have already been visited by the loop. Additionally
the F̂ ′′out partition is restricted to have no elements in common with F̂c. This corresponds
to the branch within the loop that determines whether 'conflict' or s[p] is written. This
invariant was inferred using abstract interpretation [7] by the HOO abstract domain.

Once in the body of the loop, the variablepis bound to a singleton set f̂ that is split from
F̂in. Depending on the value of f̂ , one of two cases occurs. In 2 we highlight the changes
using blue and dashed points-to arrows, showing that f̂ is contained in the properties of â5

F̂c. Storing 'conflict' into r[p] gives 3 by first removing f̂ from all partitions that make
up attr(r) and then adding a new partition f̂ and thus performing attribute materialization
of f̂ from the object summary. Because f̂ is now materialized, subsequent updates to f̂
will update the same f̂, rather than weakening the value abstraction that corresponds to
one of the larger partitions. Here, the abstract value that corresponds to f̂ is set to 'conflict'.

The second case writess[p] tor[p]when f̂ is not contained in F̂c. The starting state
4 is like 2 except that f̂ �⊆ F̂c. The result similarly materializes f̂ in â1 before pointing

that partition to the abstract value Â4. Thus in both branches of theif, we perform strong
updates in the abstraction. Transfer functions and strong updates are detailed in Section 4.

After the if, we join the two abstract states 3 and 5 . In essence, the join process
(Section 5) merges partitions that have common properties. Here, f̂ is summarized into
F̂ ′out in 3 and F̂ ′′out in 5 . The three partitions of attr(r) thus arise from the part of attr(r)
that was left after materializing f̂ , and the two branches of theif, which is represented in
the set domain with a partial path condition. Once f̂ is summarized into F̂ ′out or F̂ ′′out, the
graphs match and thus the joined graph also matches as is shown in 6 . However, because
of the folding and the branch condition, the side constraints do not match and thus a join
is computed in the abstract domain for sets. Because the domain is sufficiently precise,
the set constraints shown in 6 are derived. Thus join is implemented by graph matching
intertwined with queries and join operations in the abstract domain for sets.

Automatic Analysis of Open Objects 137

1

⎡⎢⎢⎢⎢⎣
r â1

F̂r
notiundef

Â2 s â3

F̂in

F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6 F̂in= F̂s∧F̂out= /0

for(var p in s)

i

⎡⎢⎢⎢⎢⎢⎢⎣
r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out
noti undef

Â2 s â3

F̂in

F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6
F̂in$F̂out= F̂s
∧F̂ ′r= F̂r\F̂out

∧F̂ ′out$F̂ ′′out= F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c

{
if(p in c) {

2

⎡⎢⎢⎢⎢⎢⎢⎣
r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out
noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in$ f̂$F̂out= F̂s
∧F̂ ′r= F̂r\F̂out

∧F̂ ′out$F̂ ′′out= F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂⊆ F̂c

r[p] = "conflict";

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r â1

F̂ ′r
F̂ ′out 'conflict'

f̂ 'conflict'
F̂ ′′out
noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in$ f̂$F̂out= F̂s
∧F̂ ′r= F̂r\(F̂out$ f̂)
∧F̂ ′out$F̂ ′′out= F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂⊆ F̂c

} else {

4

⎡⎢⎢⎢⎢⎢⎢⎣
r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out
noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in$ f̂$F̂out= F̂s
∧F̂ ′r= F̂r\F̂out

∧F̂ ′out$F̂ ′′out= F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂∩F̂c= /0

r[p] = s[p];

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r â1

F̂ ′r
F̂ ′out 'conflict'

f̂
F̂ ′′out
noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in$ f̂$F̂out= F̂s
∧F̂ ′r= F̂r\(F̂out$ f̂)
∧F̂ ′out$F̂ ′′out= F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂∩F̂c= /0

}

6

⎡⎢⎢⎢⎢⎢⎢⎣
r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out
noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in$ f̂$F̂out= F̂s
∧F̂ ′r= F̂r\(F̂out$ f̂)
∧F̂ ′out$F̂ ′′out= F̂out$ f̂
∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c

}

Fig. 2. Final iteration of analysis of the example loop from the Introduction. The loop invariant i

shows the three inferred partitions of attr(r), and the set constraints (on the right) relate those three
partitions to the partitions originally found in the three objects.

138 A. Cox, B.-Y.E. Chang, and X. Rival

At the end of the loop body, it is necessary to summarize the iteration element f̂ into
the already-visited set F̂out. This allows the analysis to progress and it allows checking
if the resulting state is contained in the loop invariant. The summarization process is a
rewrite process where the partition f̂ in â3 is merged with the partition F̂out and F̂out$ f̂
is rewritten with F̂out in the side constraints. The containment checking is similar to the
join algorithm and proceeds by intertwined graph matching and set domain containment
queries. In this case, the result of summarization matches the loop invariant i and thus
the iteration process is complete and the loop invariant is inductive.

To find the loop invariant, HOO constructed new partitions (Section 3) through at-
tribute materialization and updated them with strong updates (Section 4). Then it related
those partitions with the iteration-progress variable F̂out by summarization (Section 5).
As a result, HOO determined it did not need more partitions to express the loop invariant
and that the result object r was related to the source object s through three partitions of
attr(r).

3 Abstraction of Dynamic Language Heaps

In this section, we define the HOO abstraction. The HOO abstraction abstracts con-
crete dynamic language program states. A concrete program state σ has the following
definition:

σ :C=Addr
fin→OMap×Value⊥ o :OMap=Attr

fin→Value

Concrete states are finite maps from heap addresses (Addr) to concrete objects. A con-
crete object consists of two parts. The first part is the object mapping (OMap) that is a
finite map from attributes (Attr) to values (Value). The second part is an optional value
that is returned when an undefined attribute is read.

The HOO abstraction represents sets of concrete states with a finite disjunction of
abstract states, that each consist of a heap graph and set constraints represented using an
abstract domain for sets. Formally the HOO abstraction is the following:

Definition 1 (Abstract State). An abstract state Σ∈ Ĉ is a pair of an abstract heap graph
Ĥ and an element of an abstract domain for sets Ŝ. The syntax of abstract heap graphs is

Ĥ ::=EMP | TRUE | Ĥ∗Ĥ | Â ·F̂ �→V̂ | Â ·noti �→V̂

where symbols Â, F̂, andV̂ represent sets of addresses, attributes, and values respectively.
We also use symbols â, f̂ , and v̂ to represent singleton sets of address, attributes, and
values. The symbols for addresses and attributes are also symbols for values:

Â∈Âddr F̂∈Âttr V̂∈V̂alue= Âddr∪Âttr∪···

The resulting abstract domain is a reduced product [8] between a heap abstract domain
element Ĥ and a set abstract domain element Ŝ. The set domain is used to represent
relationships between sets of attributes of objects. The information from the set domain
affects points-to facts Â ·F̂ �→ V̂ by constraining the sets of addresses Â, attributes F̂, and

Automatic Analysis of Open Objects 139

values V̂. Therefore the meaning of a HOO abstract state is closely tied to the meaning of
set constraints. Since HOO is parametric with respect to the abstract domain for sets, its
concretization is given in terms of a concretization for the set domain γ(Ŝ):

γ(Ĥ,Ŝ)
def
=
{
(η ,σ)

∣∣(η ,σ)∈γ(Ĥ)∧η∈γ(Ŝ)
}

where η :E= V̂alue⇀℘(Value)

The η is a valuation function that maps value symbols (including address and attribute
symbols) to sets of concrete values. The set domain restricts the η function, which in turn
restricts the concrete state σ through the concretization of the heap. If is a placeholder
for unused existentially quantified variables, the concretization of the heap is defined as
follows:

γ(EMP)
def
={η,σ |Dom(σ)= /0}

γ(TRUE)
def
=E×C

γ(Â ·F̂ �→V̂)
def
=
{

η,σ
∣∣∀a∈η(Â), f ∈η(F̂).∃v∈η(V̂),o.(o,)=σ(a)∧v=o(f)

}
γ(Â ·noti �→V̂)

def
=
{

η,σ
∣∣∀a∈η(Â).∃v∈η(V̂).(,v)=σ(a)

}
γ(Ĥ1∗Ĥ2)

def
=
{

η,σ
∣∣∃σ1,σ2.(η,σ1)∈γ(Ĥ1)∧(η,σ2)∈γ(Ĥ2)∧σ =σ1⊗σ2

}
The concretization of a points-to fact can represent part of many objects. The base

addresses of the objects are retrieved from the valuation η(Â), but only the attributes
retrieved from the valuation η(F̂) are considered by this points-to fact. HOO uses an
attribute splitting model similar to JStar [27] or Xisa [4], thus not every attribute of every
object in η(Â) is represented in η(F̂). Because each of the symbols Â is a set, each abstract
address may be a summary, but if the set domain can represent singletons [10, 28], these
need not always be summaries.

The points-to fact for the default value Â · noti �→ V̂ restricts the default value for
each object in η(Â). These default value points-to facts serve a dual purpose, however.
Because of the field splitting model, not all objects must have all of their attributes in
a formula. The presence of a default points-to fact indicates that all of the objects of
η(Â) are complete; they have all of their attributes represented in the formula. Incomplete
objects may not have all of their attributes represented in the formula and thus abstract
transfer functions may only access attributes that must be in the known parts of the object
(see Section 4).

The separating conjunction has mostly the standard semantics [29]. Because objects
can be split and the attributes are not fixed, we must define the composition ⊗ of two
separate concrete states differently:

σ1⊗σ2=λ a.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1(a) a∈Dom(σ1)\Dom(σ2)

σ2(a) a∈Dom(σ2)\Dom(σ1)(
o1⊕o2,

d1	d2

) (o1,d1)=σ1(a)

(o2,d2)=σ2(a)

a∈Dom(σ1)∩Dom(σ2)

o1⊕o2=λ s.

{
o1(f) f ∈Dom(o1)\Dom(o2)

o2(f) f ∈Dom(o2)\Dom(o1)

140 A. Cox, B.-Y.E. Chang, and X. Rival

Separate objects are composed trivially, but objects that have been split have their object
maps composed using object map composition⊕. This is only defined if there are disjoint
attributes in each partial object map. Additionally, default values are composed with 	
which yields the non-bottom value if possible and is undefined for two non-bottom values.

Graphical Notation. In most of this paper, we use a graphical notation to help ease
understanding. This notation can be translated to the formalization given in this section.
In the graphical notation, a single circle represents an object address. If that circle is
labeled with a ân, f̂n, or v̂n the object is a singleton address, attribute or value respectively
and thus corresponds to a single concrete value. If that circle is labeled with a Ân, F̂n, or V̂n

and has a double border, the object is a summary. If that circle is labeled with a program
variable, it represents a singleton stack location. Objects with fields are represented using
the table notation, where each row corresponds to a points-to fact starting from a base
address from the set Ân.

Example 1 (Graphical Notation Equivalence). The following graphical notation and log-
ical notation are equivalent. We use the unit attribute () to represent the points-to relation-
ship from the stack variable r to the singleton object â1.

r â1

F̂r
noti

â2

â3

equivalent to
r·{()} �→ â1

∗â1 ·F̂r �→ â2

∗â1 ·noti �→ â3

4 Materialization and Transfer Functions

To precisely analyze programs that manipulate values in summaries, it is necessary to
materialize individual elements from the summaries. Materialization occurs in execution
of transfer functions in the language of commands c that represents the core behaviors
for open-object manipulation in dynamic languages:

c ::= let x=attr(x1) | let x=choose(x1) set operations| let x=x1∪x2 | let x=x1\x2

| let x=x1[x2] | x1[x2] :=x3 | for x1 in x2 do c object operations
| let x=new{} | c1;c2 |while e do c | let x=e standard operations

This section is concerned with load and store object operations because these operations
require attribute materialization, which is mandatory for inferring precise relationships
between objects with unknown attributes. Aside from for-in, which is defined in the
next section, other operations, including choose(x1), which selects a singleton set from
a set and attr(x1), which gets the union of all attributes of an object, are straightforward
and given in the technical report [11].

The concrete semantics of load let x=x1[x2] and store x1[x2] :=x3 are straightforward.
They look up the object x1, then try to find the given attribute x2. Load binds to x the
value that corresponds to the attribute if it is found, otherwise it binds the default value
for the object. Store removes the given attribute if it is found and adds a new attribute that
corresponds to the right-hand side x3.

Automatic Analysis of Open Objects 141

To perform loads and stores on abstract objects the abstract transformers for load and
store must determine how to manipulate and utilize the partitions on the accessed object.
The process of transforming an object so that it has precisely the partitions necessary for
performing a particular load or store is attribute materialization.

Concrete and abstract transfer functions are defined over the command language c.
Concrete transformers �c� : C → C transition a single concrete state to a single con-

crete state. Abstract transformers �̂c� : Ĉ→℘(Ĉ) (shown as Hoare triples [20] with the
graphical notation), however, transition a single abstract state to a set of abstract states
representing a disjunction. This disjunction capability is used in transfer functions that
perform case splits, such as the load transfer function. In the implementation of HOO, we
use a disjunctive domain combinator to manage these sets.

It is possible to implement transfer functions that manipulate complete, incomplete,
summary, and singleton objects. Here we define the store and load transfer functions for
complete singleton objects. For incomplete objects, there are separate transfer functions:
before a materialization can occur, it must be proven that the attribute already exists in
the object. This ensures that attributes that are defined in the missing part of the object
cannot be read or overwritten by any operations. When operating on a summary object, a
singleton must first be materialized. This materialization is trivially defined through case
splits that result in finite disjunctions.

Attribute Materialization for Store: Attribute materialization for store operations is sim-
ple. Since the value of the particular attribute is about to be overwritten, there is no need
to preserve the original value. The implementation of store is the following:

a b

x1 â1

F̂1
...

...

F̂n

noti

v̂1
...

v̂n

v̂d

x3 v̂

x2 f̂

Ŝ x1[x2] :=x3
x1 â1

F̂ ′1
...

...

F̂ ′n
f̂

noti

v̂1
...

v̂n

v̂d
x3 v̂

x2 f̂

Ŝ
∧F̂ ′1 = F̂1\ f̂

...

∧F̂ ′n = F̂n\ f̂

Store looks up the corresponding objects to x1, x2, and x3 in a , which in this case are
â1, f̂ , and v̂ respectively. Attribute materialization then iterates through each partition in
â1 and reconstructs the partition by removing f̂ from the partition. If f̂ was not already
present in the partition, this represents no change, otherwise it explicitly removes f̂ . Fi-
nally, after all of the existing partitions have been reconstructed, a new partition for f̂
is created and it is pointed to the stored value v̂ giving b . By performing this attribute
materialization, we have guaranteed that subsequent reads of the same property f̂, even
if we do not know its concrete value, will be directed to f̂ , and thus store performs strong
updates.

Attribute Materialization for Load: Attribute materialization for load is similar to store.
The key difference is that there is a possible result for each partition of the read object.
The HOO abstract domain uses a finite disjunction to represent the result of this case split:

142 A. Cox, B.-Y.E. Chang, and X. Rival

a b c d

x1 â1

F̂1
...

...

F̂n

noti

v̂1
...

v̂n

v̂d

x2 f̂

Ŝ

let x=x1[x2]

x1 â1

F̂ ′1
f̂

F̂2
...

...

F̂n

noti

v̂1

v̂2
...

v̂n

v̂d

x2 f̂

x

Ŝ∧F̂1 = F̂ ′1$ f̂

···
x1 â1

F̂1
...

...

F̂n-1
F̂ ′n
f̂

noti

v̂1
...

v̂n-1

v̂n

v̂d

x2 f̂

x

Ŝ∧F̂n = F̂ ′n$ f̂

x1 â1

F̂1
...

...

F̂n

noti

v̂1
...

v̂n

v̂d

x2 f̂

x

Ŝ∧
f̂ �⊆ F̂1∪···∪F̂n

A load operation must determine which, if any, of the partitions the attribute f̂ is in.
In the worst case, it could be in any of the partitions and therefore a result must be
considered for each case. In each non-noti case, f̂ is constrained to be in that particular
partition and therefore in no other partition. If this is inconsistent under the current anal-
ysis state, the abstract state will become bottom for that case and it can be dropped. The
noti partition, which implicitly represents all attributes not currently in the object, must
be considered as a possible source for materialization if there is a chance the attribute
does not already exist in the object. Such a materialization does not explicitly cause any
repartitioning because noti still represents all of the not present attributes (which now
does not include f̂).

If the values that are being loaded (in this case v̂1,···,v̂n,v̂d) are not singleton values, the
load operation must also materialize one value from that summary. When materializing
from a summary object, additional partitions can be generated. For each object that has
a partition that maps to the summary, that partition must be split into two parts: one that
maps to a new summary and one that maps to the singleton that was materialized. While it
is possible that these case splits introduced by load could become prohibitive, we have not
found this to be a significant problem. Typically unknown attributes are not completely
unknown and thus limit case splits or the number of partitions for an object is sufficiently
small that these case splits do cause significant problems. If the precision provided by the
case splits is unneeded, the resulting states can be joined to eliminate cases.

Example 2 (Store with summary values). When loading from an attribute f̂ that is con-
tained in a partition F̂ of an object â that maps to a summary V̂, additional partitions are
produced. The result contains three partitions instead of two. Some attributes from F̂map
to V̂ ′ and some map to v̂. Therefore, while the analysis knows that f̂ maps to v̂ because
that is why it chose to materialize v̂, it does not know that other attributes of F̂ do not also
map to v̂. Therefore, it splits the remainder of F̂ into two partitions: one F̂ ′ that maps to
the remainder of the values V̂ ′ and another F̂ ′′ that maps to the materialized value v̂.

a b

x â1

F̂

V̂

f̂⊆ F̂

Materialize f̂ from F̂ x â1

F̂ ′

F̂ ′′

f̂

V̂ ′

v̂

F̂= F̂ ′ $F̂ ′′ $ f̂
∧V̂=V̂ ′ $v̂

Automatic Analysis of Open Objects 143

Theorem 1 (Soundness of transfer functions). Transfer functions are sound because
for any command c, the following property holds:

∀(Ĥ,Ŝ)∈ Ĉ,σ ∈γ(Ĥ ,Ŝ),Σ̄⊆ Ĉ.

Σ̄ = �̂c�(Ĥ,Ŝ)⇒∃(Ĥ ′,Ŝ′)∈ Σ̄ .�c�σ ∈γ(Ĥ ′,Ŝ′)

5 Automatic Invariant Inference

In this section we give the join, widening, and inclusion check algorithms that are required
for automatically and soundly generating program invariants. Here the focus is inferring
loop invariants for for-in loops — the primary kind of loop for object-manipulation.
The analysis of for-in loops first translates these loops intowhile loops. This allows
HOO to follow the standard abstract interpretation procedure for loops, while introducing
iteration-progress variables to aid the analysis in inferring precise loop invariants.

for x1 in x2 do c
def
=

let s=new{};
s['in'] :=attr(x2);
s['out'] := /0;
while s['in'] �= /0 do

let x1=choose(s['in']);
s['in'] :=s['in']\{x1}
c;
s['out']=s['out']∪{x1}

These iteration-progress variables are introduced in
the translation process shown in the inset figure. For the
object being iterated over x2, the s['in'] variable keeps
track of attributes that have not yet been visited by the
loop, while s['out'] keeps track of attributes that have al-
ready been visited by the loop. To keep these variables
up to date, the translation employs the set manipulating
commands introduced in Section 4.

Once translated, HOO takes advantage of s['in'] and
s['out'] to represent relations between partitions of at-
tributes. Adding these ghost variables, allows partitions to be equal to a function of the
already visited portion attr(x2). On the exit of the loop, s['in'] is the empty set and s['out']
is attr(x2), so partitions related to s['out'] are now related to attr(x2).

These iteration-progress variables are essential for performing strong updates. When
analyzing an iteration of a loop, partitions that arise from attribute materialization arise
simultaneously with partitions that arise in iteration-progress variables. Thus these par-
titions become related and even when partitions from attribute materialization must be
summarized, the relationship with the iteration progress variable is maintained. The sum-
marization process occurs as part of join and widening.

Join Algorithm: The join algorithm takes two abstract states Ĥ1,Ŝ1 and Ĥ2,Ŝ2 and com-
putes an overapproximation of all program states described by each of these abstract
states. When joining abstractions of memory, the algorithm must match objects in Ĥ1 and
objects in Ĥ2 to objects in a resulting abstract memory Ĥ3. This matching of objects can
be described by two mapping functions M1 and M2, where M1 : Âddr1

fin→ Âddr3 maps
symbols from Ĥ1 to symbols from Ĥ3 and M2 : Âddr2

fin→ Âddr3 maps symbols from Ĥ2

to symbols from Ĥ3. However, because HOO abstracts open objects, the join algorithm
must match partitions of objects as well. This matching is represented with a relation
PJ⊆℘(Âttr1)×℘(Âttr2)×Âttr3 that relates sets of partitions from objects in Ĥ1 and Ĥ2

to partitions in Ĥ3. Because partitions can be split and because new, empty partitions can
be created, join can produce an unbounded number of partitions.

144 A. Cox, B.-Y.E. Chang, and X. Rival

Table 1. Join templates match objects in two abstract heaps, producing a third heap that overap-
proximates both. Matchings M1, M2, PJ are generated on the fly and used in joining the set domain
after the heaps are joined.

Prerequisites Ĥ1, Ŝ1 � Ĥ2, Ŝ2 � Result

M1(Â1)= Â3
M2(Â2)= Â3

Â1

noti V̂1

� Â2

noti V̂2

� Â3

noti V̂3

M1(V̂1)=V̂3
M2(V̂2)=V̂3

M1(Â1)= Â3
M2(Â2)= Â3

Â1

F̂1 V̂1’

noti V̂1

�
Â2

F̂2 V̂2’

noti V̂2

� Â3

F̂3 V̂3’

noti V̂3

M1(V̂1)=V̂3, M2(V̂2)=V̂3
M1(V̂ ′1)=V̂ ′3, M2(V̂ ′2)=V̂ ′3
({F̂1},{F̂2},F̂3)∈PJ

M1(Â1)= Â3
M2(Â2)= Â3
remainder of
object matches

Â1
...

...

F̂ i
1 V̂ i

1
...

...

F̂m
1 V̂ m

1
...

...

�

Â2
...

...

F̂ j
2 V̂ j

2
...

...

F̂n
2 V̂ n

2
...

...

�
Â3

...
...

F̂k
3 V̂ k

3
...

...

({F̂ i
1,···,F̂m

1 },{F̂
j

2 ,···F̂n
2 },F̂k

3)∈PJ

M1(V̂ i
1)=V̂ k

3 , M2(V̂
j

2)=V̂ k
3

...
...

M1(V̂ m
1)=V̂ k

3 , M2(V̂ n
2)=V̂ k

3

The fundamental challenge for the HOO abstraction’s join algorithm is computing
these symbol matchings M1, M2, and PJ. To construct the matchings, the join algorithm
begins at the symbolic addresses of stack allocated variables. It adds equivalent variables
from the three graphs to M1 and M2, then it begins an iterative process. Starting from
a matching that already exists in M1 and M2, it derives additional matchings that are
potential consequences. To derive these additional matchings, a template system is used.
The templates are shown in Table 1. These templates consume corresponding parts of
a memory abstraction, producing a resultant memory abstraction that holds under the
matchings. This iterative process is applied until no more templates can be applied. Any
remaining heap at this point results in TRUE being added to the result. The result of join
is complete matchings M1, M2, and PJ , as well as, a memory abstraction Ĥ3. To get the
resulting set abstraction Ŝ3, the sets are joined under the same matchings, where multiple
matchings are interpreted as a union.

There are three templates described in Table 1. The first trivially joins any two empty
objects into an empty object. The default values are subsequently matched. The second
template joins any two objects that have only one partition. The values from that partition
are added to the mapping as well as the default values. The last template is parametric.
If some number of partitions can be matched with some number of partitions then those
can all be merged into a single partition in the result. This template requires applying
other rules to complete the joining of the objects. If it is unknown how to match partitions
for all of an object, this template allows matching part of the object. If the result is that
remaining partitions are single partitions, even if there is no natural way to match them,
they will be matched by applying template two.

Example 3 (Joining objects). Here we join â1 objects from the overview example at pro-
gram points 3 and 5 to get the result shown at 6 . To compute the join we construct
matchings M1, M2, and PJ. Initially M1 = [â1 �→ â1], M2 = [â1 �→ â1], and PJ = /0. If we
were to match F̂ ′out with F̂ ′out or F̂ ′′out with F̂ ′′out, we would get an imprecise join because
we would be forced to match f̂ with itself even though it has two values that should not

Automatic Analysis of Open Objects 145

be joined. Instead, we apply the third template to merge partitions with like values, thus
merging f̂ with F̂ ′′out in 3 and with F̂ ′′out in 5 . Since the only remaining partition is F̂ ′r, we
match F̂ ′r and F̂ ′r giving the following matchings and join result:

M1 =[â1 �→ â1,â2 �→ â2,â4 �→ â4]

M2 =[â1 �→ â1,â2 �→ â2,â4 �→ â4]

PJ ={({F̂ ′r},{F̂ ′r},F̂ ′r), ({F̂ ′out, f̂},{F̂ ′out},F̂ ′out), ({F̂ ′′out},{F̂ ′′out, f̂},F̂ ′′out)}

â1

F̂ ′r
F̂ ′out 'conflict'

f̂ 'conflict'

F̂ ′′out
noti undef

â2

â4

�

â1

F̂ ′r
F̂ ′out 'conflict'

f̂

F̂ ′′out
noti undef

â2

â4

�
â1

F̂ ′r
F̂ ′out 'conflict'

F̂ ′′out
noti undef

â2

â4

Widening algorithm: In HOO, the join and widening algorithms are nearly identical.
However, unlike join, widening must select matchings that ensure convergence of the
analysis, by guaranteeing that the number of partitions does not grow unboundedly and
that the arrangement of the partitions is fixed (i.e. there is no oscillation in which parti-
tions are matched during widening). While there are many possible approaches that meet
these criteria, we utilize allocation site information to resolve decisions during the match-
ing process. Only objects from the same allocation site may be matched, which causes
only attribute sets whose corresponding values are from the same allocation site to be
matched. To ensure convergence, after some number of iterations, all objects from the
same allocation site can be forced to be matched. This bounds the partitions per abstract
object to one per allocation site and bounds the number of abstract objects to one per
allocation site, so as long as the underlying set domain converges on an abstraction for
each partition, the analysis will converge.

Inclusion Check Algorithm: Inclusion checking determines if an abstract state is already
described by another abstract state. The process for deciding if an inclusion holds is
similar to the join processes. If M,PI � Ĥa,Ŝa (Ĥb,Ŝb, all concrete states described by
Ĥa,Ŝa must be contained in the set of all concrete states described by Ĥb,Ŝb. It works in
a fashion similar to join by constructing matchings M and PI from symbols in Ĥa,Ŝa to
symbols in Ĥb,Ŝb. It employs the same methodology as join. Objects are matched, one-
by-one, until no more matches can be made. This matching builds up the mapping M that
is then used for an inclusion check in the set domain. If the mapping was successfully
constructed and the inclusion check holds in the set domain, the inclusion check holds on
the HOO domain. The templates for augmenting the mapping are essentially the same as
those for join shown in Table 1, except with only M1 and with PI only using the first and
third components and where Ĥ2,Ŝ2 is ignored with Ĥ1,Ŝ1 corresponding to Ĥa,Ŝa and
the result corresponding to Ĥb,Ŝb.

Theorem 2 (Join Soundness). Join is sound under matchings M1, M2, PJ because

If M1,M2,PJ� Ĥ1,Ŝ1�Ĥ2,Ŝ2 �Ĥ3,Ŝ3 then

∀σ ,η .(η ,σ)∈γ(Ĥ1,Ŝ1)∧(η ,σ)∈γ(Ĥ2,Ŝ2)⇒∃η3.(η3,σ)∈γ(Ĥ3,Ŝ3)

146 A. Cox, B.-Y.E. Chang, and X. Rival

We do not state properties other than soundness due to the dependence of HOO’s be-
havior on its instantiation. Because of the non-trivial interaction between the set domain
and HOO, properties of HOO are affected by properties of the set domain. More precise
set domain operations typically yield more precision in HOO. Additionally, the choice of
heuristics for template application can affect the results of join, widening, and inclusion
check, thus leading to a complex dependency between precision and heuristics. While
this dependence can affect many properties, it does not affect soundness.

6 Precision Evaluation

In this section we test several hypotheses: first, that HOO is fast enough to be useful;
second, that HOO is at least as precise as other open-object abstractions when objects
have unknown attributes; and third, that HOO infers partitions and relations between
partitions of unknown attributes precisely enough to verify properties of intricate object-
manipulating programs. To investigate these hypotheses, we created a prototype imple-
mentation in OCaml and ran it on a number of small diagnostic benchmarks, each of
which consists of one or more loops that manipulate open objects. These benchmarks are
drawn from real JavaScript frameworks such as JQuery, Prototype.js, and Traits.js1. We
chose them to test commonly occurring idioms that manipulate open objects in dynamic
languages. To have properties to verify, we developed partial correctness specifications
for each of the benchmarks. We then split the post-conditions of the specifications into
a number of properties to verify that belong in one of two categories: memory proper-
ties assert facts about pointers (e.g., r �=s), and object properties assert facts about the
structure of objects (e.g., if the object at â1 has attribute f̂ , then object at â2 also has
attribute f̂).

We use these benchmarks to compare HOO with TAJS [21], which is currently the
most precise (for open objects) JavaScript analyzer. Because TAJS is a whole-program
analysis, it is not intended to verify partial correctness specifications and consequently,
it adapts a traditional field-sensitive object representation for open objects. However,
it employs several features to improve precision when unknown attribute are encoun-
tered during analysis: it implements a recency abstraction [1] to allow strong updates on
straight-line code, and it implements correlation tracking [31] to allow statically known
attributes to be iteratively copied using for-in loops.

In the results in Table 2, we find that TAJS and HOO are able to prove the same memory
properties. The diagnostic benchmarks are not designed to exercise intricate memory
structures, so all properties are provable with an allocation site abstraction. Because both
TAJS and HOO use allocation site information, both prove all memory properties.

For object properties, HOO is always at least as precise as TAJS, and significantly
more so when unknown attributes are involved. The static benchmark is designed to
simulate the “best-case scenario” for whole program analyses: it supplies all attributes
to objects before iterating over them. Here, TAJS relies on correlation tracking to prove
all properties. HOO can also prove all of these properties. It infers a separate partition
for each statically known attribute, effectively making it equivalent to TAJS’s object
abstraction.
1 http://jquery.com, http://prototypejs.org, and http://traitsjs.org

http://jquery.com
http://prototypejs.org
http://traitsjs.org

Automatic Analysis of Open Objects 147

Table 2. Analysis results of diagnostic benchmarks. Time compare analysis time excluding JVM
startup time. Memory properties compares TAJS and HOO in verifying pointer properties. Object
properties compares TAJS and HOO in verifying object structure properties. The # Props columns
are the total number of properties of that kind.

Time (s) Memory Properties Object Properties

Program TAJS HOO TAJS HOO # Props TAJS HOO # Props

static 0.06 0.09 1 1 1 3 3 3
copy 0.13 0.02 1 1 1 0 3 3
filter 0.40 0.10 0 0 0 0 6 6
compose 0.71 0.54 0 0 0 0 7 7
merge 0.19 0.06 2 2 2 0 5 5

Our other benchmarks iterate over objects where the attributes are unknown. Here,
HOO proves all properties, while TAJS fails to prove any. TAJS’s imprecision is unsur-
prising because correlation tracking does not work with unknown attributes and recency
abstraction does not enable strong updates in loops. HOO, on the other hand, succeeds
because it infers partitions of object attributes and relates those partitions to other parti-
tions. In the copy benchmark, attributes and values are copied one attribute at a time to a
new object. HOO infers that after the iteration is complete, the attributes of both objects
are equal. HOO can also verify the filter benchmark, which is the example presented
throughout this paper that requires conditional and partial overwriting of objects. Addi-
tionally, HOO continues to be precise even when complex compositions are involved, as
in thecompose andmerge benchmarks, which perform parallel and serial composition
of objects. For these benchmarks HOO infers relationships between multiple objects and
sequentially updates objects through multiple for-in loops.

On these benchmarks, HOO is often faster than TAJS, but this is likely due to TAJS’s
full support for JavaScript and the DOM and thus performance is really incomparable.
Actually, HOO’s performance is highly dependent on the efficiency of the underlying
set domain due to the large number of set domain operations that HOO uses. However,
despite not having a heavily optimized set domain, HOO analyzes these benchmarks
quickly.

This evaluation demonstrates that HOO is effective at representing and verifying prop-
erties of open objects, both with statically known attributes and with entirely unknown
attributes. Additionally it shows that HOO provides significant precision improvement
over existing open-object abstractions when attributes are unknown and that HOO does
not take a significant amount of time to verify complex properties.

7 Related Work

Analyses for dynamic languages: Because one of the main features of dynamic lan-
guages is open objects, all analyses for dynamic languages must handle open objects to a
degree. As opposed to directly abstracting open objects, TAJS [21, 22], WALA [31], and
JSAI [19, 24] extend standard field-sensitive analyses to JavaScript by adding a summary

148 A. Cox, B.-Y.E. Chang, and X. Rival

field for all unknown attributes. They employ clever interprocedural analysis tricks to
propagate statically known object attributes through loops and across function call bound-
aries. Consequently, with the whole program, they can often precisely verify properties of
open-object manipulating programs. Without the whole program, these techniques lose
precision because they conflate all unknown object attributes into a single summary field
and weakly update it through loops.

Analyses for containers: Because objects in dynamic languages behave similarly to con-
tainers, it is possible that a container analysis could be adapted to this task. Powerful
container analyses such as [14] and [17] can represent and infer arbitrary partitions of
containers. This is similar to HOO except that they do not use set abstractions to rep-
resent the partitions, but instead use SMT formulas and quantifier templates. For some
applications these are excellent choices, but for dynamic languages where the key type
of the containers is nearly always strings, this suffers. HOO can use abstract domains for
sets [10, 28] and thus if these domains are parametric over their value types, HOO can
support nearly any key-type abstraction.

Arrays and lists are restricted forms of containers on which there has been a significant
amount of work [2, 9, 13, 16, 18, 23, 25]. The primary difference between arrays and
more general containers and open objects is that arrays typically contain related values
next to one another. Partitions of arrays are implicitly ordered and because array keys
typically do not have gaps, partitions are defined using expressions that identify partition
boundaries. Because open objects have gaps and are unordered, array analyses are not
applicable. Regardless, array abstraction inspires the partitioning of open objects that
we use.

Decision procedures: In addition there are analyses that do not handle loops without
annotations for both dynamic languages and containers. DJS [5, 6] is a flow-sensitive
dependent type system for JavaScript. It can infer intermediate states in straight-line code,
but it requires annotations for loops and functions. Similarly JuS [15] supports straight-
line code for JavaScript. Jahob and its brethren [26] use a battery of different decision
procedures to analyze containers and the heap together for Java programs. Finally, array
decision procedures [3, 12] can be adapted to containers, but all of these approaches
require significant annotation of non-trivial loop invariants to be effective on open-object-
manipulating programs.

8 Conclusion and Future Work

In an effort to verify properties of incomplete, open-object-manipulating programs, we
created the HOO abstract domain. It is capable of verifying complex object manipula-
tions even when object attributes are completely unknown. While it is effective today, we
want to extend it to allow inferring relationships between attributes and their correspond-
ing values. Such relationships enable determining precisely which value in a summary
is being materialized and proving properties about specific values, even when they are
included in a summary. We plan to pursue such an extension as we believe that it could
enable verification of programs that use open objects not only as objects, but also as
containers.

Automatic Analysis of Open Objects 149

Acknowledgements. Thank you to our anonymous reviewers and members of CUPLV
and Antique for the helpful reviews and feedback. This material is based upon work sup-
ported in part by the National Science Foundation under Grant Numbers CCF-1055066
and CCF-1218208. The research leading to these results has also received funding from
the European Research Council under the FP7 grant agreement 278673, Project Mem-
CAD.

References

1. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

2. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Abstract domains for automated reasoning
about list-manipulating programs with infinite data. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 1–22. Springer, Heidelberg (2012)

3. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg
(2006)

4. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247–260 (2008)
5. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: OOPSLA, pp. 587–606

(2012)
6. Chugh, R., Rondon, P.M., Jhala, R.: Nested refinements: A logic for duck typing. In: POPL,

pp. 231–244 (2012)
7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)
8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL, pp.

269–282 (1979)
9. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic

and scalable array content analysis. In: POPL, pp. 105–118 (2011)
10. Cox, A., Chang, B.-Y.E., Sankaranarayanan, S.: QUIC graphs: Relational invariant generation

for containers. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 401–425. Springer,
Heidelberg (2013)

11. Cox, A., Chang, B.-Y.E., Rival, X.: Automatic analysis of open objects in dynamic language
programs (extended). Technical report, University of Colorado Boulder (2014)

12. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In: FMCAD,
pp. 45–52 (2009)

13. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg (2010)

14. Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In: POPL, pp.
187–200 (2011)

15. Gardner, P., Maffeis, S., Smith, G.D.: Towards a program logic for JavaScript. In: POPL, pp.
31–44 (2012)

16. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array operations. In:
POPL, pp. 338–350 (2005)

17. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical do-
mains. In: POPL, pp. 235–246 (2008)

18. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs. In: PLDI,
pp. 339–348 (2008)

19. Hardekopf, B., Wiedermann, B., Churchill, B., Kashyap, V.: Widening for control-flow. In:
McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 472–491. Springer,
Heidelberg (2014)

150 A. Cox, B.-Y.E. Chang, and X. Rival

20. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

21. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg (2009)

22. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy propagation. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 320–339. Springer, Heidelberg
(2010)

23. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

24. Kashyap, V., Sarracino, J., Wagner, J., Wiedermann, B., Hardekopf, B.: Type refinement for
static analysis of JavaScript. In: DLS, pp. 17–26 (2013)

25. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a theo-
rem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485.
Springer, Heidelberg (2009)

26. Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department, Mas-
sachusetts Institute of Technology (February 2007)

27. Parkinson, M.J.: Local reasoning for Java. PhD thesis, University of Cambridge (2005)
28. Pham, T.-H., Trinh, M.-T., Truong, A.-H., Chin, W.-N.: Fixbag: A fixpoint calculator for quan-

tified bag constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 656–662. Springer, Heidelberg (2011)

29. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp.
55–74 (2002)

30. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior of
JavaScript programs. In: PLDI, pp. 1–12 (2010)

31. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking for points-
to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 435–458.
Springer, Heidelberg (2012)

Invariance of Conjunctions of Polynomial Equalities
for Algebraic Differential Equations�

Khalil Ghorbal1, Andrew Sogokon2, and André Platzer1

1 Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA
{kghorbal,aplatzer}@cs.cmu.edu

2 University of Edinburgh, LFCS, School of Informatics, Edinburgh, Scotland, UK
a.sogokon@sms.ed.ac.uk

Abstract In this paper we seek to provide greater automation for formal deduc-
tive verification tools working with continuous and hybrid dynamical systems.
We present an efficient procedure to check invariance of conjunctions of poly-
nomial equalities under the flow of polynomial ordinary differential equations.
The procedure is based on a necessary and sufficient condition that characterizes
invariant conjunctions of polynomial equalities. We contrast this approach to an
alternative one which combines fast and sufficient (but not necessary) conditions
using differential cuts for soundly restricting the system evolution domain.

1 Introduction

The problem of reasoning about invariant sets of dynamical systems is of fundamental
importance to verification and modern control design [3,22,28,26]. A set is an invariant
of a dynamical system if no trajectory can escape from it. Of particular interest are
safety assertions that describe states of the system which are deemed safe; it is clearly
important to ensure that these sets are indeed invariant.

Hybrid systems combine discrete and continuous behavior and have found applica-
tion in modelling a vast quantity of industrially relevant designs, many of which are
safety-critical. In order to verify safety properties in hybrid models, one often requires
the means of reasoning about safety in continuous systems. This paper focuses on de-
veloping and improving the automation of reasoning principles for a particular class
of invariant assertions for continuous systems – conjunctions of polynomial equalities;
these can be used, e.g. to assert the property that certain values (temperature, pressure,
water level, etc.) in the system are maintained at a constant level as the system evolves.

In practice, it is highly desirable to have the means of deciding whether a given set
is invariant in a particular dynamical system. It is equally important that such methods
be efficient enough to be of practical utility. This paper seeks to address both of these
issues. The contributions of this paper are twofold:

• It extends differential radical invariants [11] to obtain a characterization of invari-
ance for algebraic sets under the flow of algebraic differential equations. It also in-
troduces an optimized decision procedure to decide the invariance of algebraic sets.

� This material is based upon work supported by the National Science Foundation by NSF
CAREER Award CNS-1054246, NSF EXPEDITION CNS-0926181, CNS-0931985, DARPA
FA8750-12-2-0291 and EPSRC EP/I010335/1.

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 151–167, 2014.
c© Springer International Publishing Switzerland 2014

152 K. Ghorbal, A. Sogokon, and A. Platzer

• It explores an approach combining deductively less powerful rules [15,27,17,25]
using differential cuts [23] to exploit the structure of the system to yield efficient
proofs even for non-polynomial systems. Furthermore, differential cuts [23] are
shown to fundamentally improve the deductive power of Lie’s criterion [15].

The two approaches to proving invariance of conjunctive equational assertions explored
in this paper are complementary and aim at improving proof automation—deductive
power and efficiency—in deductive formal verification tools. The detailed proofs of all
presented results are available in [12].

Content. In Section 2, we recall some basic definitions and concepts. Section 3 intro-
duces a new proof rule to check the invariance of a conjunction of polynomial equa-
tions along with an optimized implementation. Section 4 presents another novel ap-
proach to check invariance of a conjunction; it leverages efficient existing proof rules
together with differential cuts and differential weakening. An automated proof strategy
that builds on top of this idea is given in Section 5. The average performance of these
different approaches is assessed using a set of 32 benchmarks (Section 6).

2 Preliminaries

Let x = (x1, . . . , xn) : Rn, and x(t) = (x1(t), . . . , xn(t)), where xi : R → R,
t �→ xi(t). The ring of polynomials over the reals will be denoted by R[x1, . . . , xn].
We consider autonomous1 differential equations described by polynomial vector fields.

Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate polynomi-
als in the polynomial ring R[x]. A polynomial vector field, p, is an explicit system of
ordinary differential equations with polynomial right-hand side:

dxi

dt
= ẋi = pi(x), 1 ≤ i ≤ n . (1)

One important problem is that of checking the invariance of a variety (or algebraic
set), with evolution domain constraints H ; that is, we ask whether a polynomial con-
junction h1 = 0 ∧ · · · ∧ hr = 0, initially true, holds true in all reachable states that
satisfy the evolution domain constraints. The problem is equivalent to the validity of
the following formula in differential dynamic logic [22]:

(h1 = 0 ∧ · · · ∧ hr = 0)→ [ẋ = p&H](h1 = 0 ∧ · · · ∧ hr = 0) (2)

where [ẋ = p&H]ψ is true in a state xι if the postcondition ψ is true in all states
reachable from xι—satisfying H—by following the differential equation ẋ = p for
any amount of time as long as H is not violated. For simplicity, for a polynomial h in
x, we write h = 0 for h(x) = 0.

1 Autonomous means that the rate of change of the system over time depends only on the sys-
tem’s state, not on time. Non-autonomous systems with time dependence can be made au-
tonomous by adding a new state variable to account for the progress of time.

Invariance of Conjunctions of Polynomial Equalities 153

Geometrically, the dL formula in Eq. (2) is true if and only if the solution x(t) of the
initial value problem (ẋ = p, x(0) = xι), with hi(xι) = 0 for i = 1, . . . , r, is a real
root of the system h1 = 0, . . . , hr = 0 as long as it satisfies the constraints H .

The algebraic counterpart of varieties are ideals. Ideals are sets of polynomials that
are closed under addition and external multiplication. That is, if I is an ideal, then for all
h1, h2 ∈ I , the sum h1 + h2 ∈ I; and if h ∈ I , then, qh ∈ I , for all q ∈ R[x1 . . . , xn].

We will use ∇h to denote the gradient of a polynomial h, that is the vector of its
partial derivatives

(
∂h
∂x1

, . . . , ∂h
∂xn

)
. The Lie derivative of a polynomial h along a vector

field p is defined as follows (the symbol “·” denotes the scalar product):

Lp(h)
def
= ∇h · p =

n∑
i=1

∂h

∂xi
pi . (3)

Higher-order Lie derivatives are: L(k+1)
p (h) = Lp(L

(k)
p (h)), where L(0)

p (h) = h.

3 Characterizing Invariance of Conjunctive Equations

In this section we give an exact characterization of invariance for conjunctions of poly-
nomial equalities under the flow of algebraic differential equations. The characteriza-
tion, as well as the proof rule, generalize our previous work which handles purely equa-
tional invariants of the form h = 0 without considering evolution domains.

The differential radical invariants proof rule DRI [11, Theorem 2] has been shown to
be a necessary and sufficient criterion for the invariance of equations of the form h = 0:

(DRI)
h = 0→

∧N−1
i=0 L

(i)
p (h) = 0

h = 0→ [ẋ = p] h = 0
. (4)

The order N ≥ 1 denotes the length of the chain of ideals 〈h〉 ⊆ 〈h,Lp(h)〉 ⊆ · · ·
which reaches a fixed point after finitely many steps by the ascending chain property
of Noetherian rings. Thus, the order N is always finite and computable—using Göbner
Bases [4]—for polynomials with rational coefficients. The premise of the proof rule
DRI is a real quantifier elimination problem and can be solved algorithmically [5].

A naı̈ve approach to prove invariance of a conjunction h1 = 0∧· · ·∧hr = 0, without
evolution domain constraints, is to use the proof rule DRI together with the following
sum-of-squares equivalence from real arithmetic:

h1 = 0 ∧ · · · ∧ hr = 0 ≡R

r∑
i=1

h2
i = 0 . (5)

Sums-of-squares come at the price of doubling the polynomial degree, thereby increas-
ing the complexity of checking the premise (Section 3.2 discusses the link between
polynomial degree and the complexity of DRI-based proof rules). Instead, we present
an extension of the proof rule DRI that exploits the underlying logical structure of
conjunctions. For a conjunction of equations h1 = 0∧· · ·∧hr = 0, the order N is gen-
eralized to the length of the chain of ideals formed by all the polynomials h1, . . . , hr

and their successive Lie derivatives:

I = 〈h1, . . . , hr〉 ⊆ 〈h1, . . . , hr,Lp(h1), . . . ,Lp(hr)〉 ⊆ 〈h1, . . . ,L
(2)
p (hr)〉 · · · (6)

154 K. Ghorbal, A. Sogokon, and A. Platzer

Theorem 2 (Conjunctive Differential Radical Characterization). Let h1, . . . , hr ∈
R[x] and let H denote some evolution domain constraint. Then, the conjunction h1 =
0∧· · ·∧hr = 0, is invariant under the flow of the vector field p, subject to the evolution
constraint H , if and only if

H �
r∧

j=1

hj = 0→
r∧

j=1

N−1∧
i=1

L(i)
p (hj) = 0 . (7)

where N denotes the order of the conjunction.

Here � is used, as in sequent calculus, to assert that whenever the constraint H (an-
tecedent) is satisfied, then at least one (in this case, the only) formula to the right of
� is also true. The proof is in the companion report [12]. When the evolution domain
constraints are dropped (H = True) and r = 1 (one equation), one recovers exactly the
statement of [11, Theorem 2] which characterizes invariance of atomic equations. Intu-
itively, Theorem 2 says that on the invariant algebraic set, all higher-order Lie deriva-
tives of each polynomial hi must vanish. It adds however a crucial detail: checking
finitely many—exactly N—higher-order Lie derivatives is both necessary and suffi-
cient. The theorem does not check for invariance of each conjunct taken separately,
rather it handles the conjunction simultaneously. The order N is a property of the ideal
chain formed by all the polynomials and their Lie derivatives. If Ni denotes the order
of each atom hi taken separately, then one can readily see that

N ≤ max
i

Ni . (8)

The equality does not hold in general: consider for instance h1 = x1, h2 = x2 and
p = (x2, x1). Since L(2)

p (hi) = hi, for i = 1, 2, we have N1 = N2 = 2. However,

〈x1, x2〉 = 〈h1, h2〉 ⊆ 〈h1, h2,Lp(h1),Lp(h2)〉 = 〈x1, x2, x2, x1〉 = 〈x1, x2〉,

which means that N = 1. This example highlights one of the main differences between
this work and the characterization given in [16, Theorem 24], where the criterion is
given by

H �
r∧

j=1

hj = 0→
r∧

j=1

Nj−1∧
i=1

L(i)
p (hj) = 0 . (9)

The computation of each order Nj requires solving Nj ideal membership problems.
One can appreciate the difference with the criterion of Theorem 2 which only requires
N ideal membership checks for the entire conjunction. In the worst case, when N =
Nk = maxiNi, Theorem 2 performs

∑r
j=1,j 	=k Nj fewer ideal membership checks

compared to the criterion of Eq. (9). A smaller order N confers an additional benefit
of reducing the cost of quantifier elimination—discussed in Section 3.2—by bringing
down both the total number of polynomials and their maximum degree.

Invariance of Conjunctions of Polynomial Equalities 155

Remark 3. The order N in Theorem 2 can be reduced further at the prohibitive cost2 of
computing the real radicals of the ideals in Eq. (6). Ideally, one should also account for
H when computing N . When H is an algebraic set, its generators should be appended
to the ideal 〈h1, . . . , hr〉. We leave the semi-algebraic case for future work.

Using Theorem 2, the differential radical invariant proof rule DRI [11] generalizes
to conjunctions of equations with evolution domain constraints as follows:

(DRI∧)
H �

(∧r
j=1 hj = 0

)
→

∧r
j=1

∧N−1
i=1 L

(i)
p (hj) = 0(∧r

j=1 hj = 0
)
→ [ẋ = p&H]

(∧r
j=1 hj = 0

) . (10)

Next, we implement the proof rule DRI∧ and discuss its theoretical complexity.

3.1 Decision Procedure

To check the validity of the premise in the proof rule DRI∧, one needs to compute
the order N and to decide a purely universally quantified sentence in the theory of
real arithmetic. These two tasks do not have to be performed in that precise order. We
present an algorithm that computes N on the fly while breaking down the quantifier
elimination problem into simpler sub-problems.

Algorithm 1 implements the proof rule DRI∧. The algorithm returns True if and only
if the candidate is an invariant. The variable Ň strictly increases and converges, from
below, toward the finite unknown order N . It is therefore a decision procedure for the
invariance problem with conjunctive equational candidates.

At each iteration of the while loop it checks whether a fixed point of the chain of
ideals has been reached, implying Ň = N . To this end, it computes a Gröbner basis
(GB) of the ideal I (line 2), containing the polynomials hi as well as their respective
higher-order Lie derivatives up to the derivation order Ň − 1. Then it enters a fore-
ach loop (line 8), where it computes the Ň th order Lie derivatives and their respective
reductions (or remainders) (LieD) by the Gröbner basis GB. All Lie derivatives with
non-zero remainders are stored in the list LD (line 12). If the list is empty, then all Ň th
Lie derivatives are in the ideal I: the fixed point of the chain of ideals is reached, and
Ň = N . This also means that True can be returned since all prior quantifier elimination
calls returned True. Otherwise, the outermost while loop (line 5) needs to be executed
one more time after increasing Ň (line 20). Before re-executing the while loop, how-
ever, we make sure that the premise of the proof rule DRI∧ holds up to Ň . Since in this
case, we know that Ň < N , if the quantifier elimination fails to discharge the premise
of the proof rule DRI∧ at Ň , then we do not need to go any further as the invariance
property is already falsified.

The while loop decomposes the right hand side of the implication in Eq. (10) along
the conjunction

∧N−1
i=1 : the ith iteration checks whether the conjunction

∧r
j=1 L

(i)
p hj

vanishes. The main purpose of the foreach loop in line 16 is to decompose further the

2 The upper bound on the degrees of the generators of the real radical of an ideal I is d2
O(n2)

[20], where d is the maximum degree of the generators of I .

156 K. Ghorbal, A. Sogokon, and A. Platzer

Algorithm 1. Checking invariance of a conjunction of polynomial equations.
Data: H (evolution domain constraints), p (vector field), x (state variables)
Data: h1, . . . , hr (conjunction candidate)
Result: True if and only if h1 = 0 ∧ . . . ∧ hr = 0 is an invariant of [ẋ = p&H]

1 Ň ← 1
2 I← {h1, . . . , hr} // Elements of the chain of ideals
3 L← {h1, . . . , hr} // Work list of polynomial to derive
4 symbs← Variables[p, h1, . . . , hr]
5 while True do
6 GB← GröbnerBasis[I, x]
7 LD← {} // Work list of Lie derivatives not in I
8 foreach 	 in L do
9 LieD← LieDerivative[, p, x]

10 Rem← PolynomialRemainder[LieD, GB, x]
11 if Rem 	= 0 then
12 LD← LD ∪ LieD

13 if LD = {} then
14 return True

15 else
16 foreach 	 in LD do
17 if QE[∀ symbs (H ∧ h1 = 0 ∧ · · · ∧ hr = 0→ 	 = 0)] 	= True then
18 return False

19 I← GB ∪ LD
20 Ň ← Ň + 1
21 L← LD

conjunction
∧r

j=1 using the logical equivalence a→ (b ∧ c) ≡ (a→ b) ∧ (a→ c) for
any boolean variables a, b, and c. This leads to more tractable problems of the form:

H �
r∧

j=1

hj = 0→ L(i)
p (hj) = 0 . (11)

Observe that the quantifier elimination problem in line 17 performs a universal closure
for all involved symbols—state variables and parameters— denoted by symbs and
determined once at the beginning of the algorithm using the procedure Variables
(line 4). Besides, the quantifier elimination problem in line 17 can be readily adapted
to explicitly return extra conditions on the parameters to ensure invariance of the given
conjunction. When the algorithm returns False, any counterexample to the quantifier
elimination problem of line 17 can be used as an initial condition for a concrete coun-
terexample that falsifies the invariant.

Invariance of Conjunctions of Polynomial Equalities 157

3.2 Complexity

Algorithm 1 relies on two expensive procedures: deciding purely universally quantified
sentences in the theory of real arithmetic (line 17) and ideal membership of multivariate
polynomials using Gröbner bases (line 6). We discuss their respective complexity.

Quantifier elimination over the reals is decidable [29]. The purely existential frag-
ment of the theory of real arithmetic has been shown to exhibit singly exponential
time complexity in the number of variables [1]. Theoretically, the best bound on the
complexity of deciding a sentence in the existential theory of R is given by (sd)O(n),
where s is the number of polynomials in the formula, d their maximum degree and n
the number of variables [1]. However, in practice this has not yet led to an efficient deci-
sion procedure, so typically it is much more efficient to use partial cylindrical algebraic
decomposition (PCAD) due to Collins & Hong [5], which has running time complexity
doubly-exponential in the number of variables.

Ideal membership of multivariate polynomials with rational coefficients is complete
for EXPSPACE [18]. Gröbner bases [4] allow membership checks in ideals generated by
multivariate polynomials. Significant advances have been made for computing Gröbner
bases [9,10] which in practice can be expected to perform very well. The degree of
the polynomials involved in a Gröbner basis computation can be very large. Theoreti-
cally, a Gröbner basis may contain polynomials with degree 22

d

[19]. The degrees of
all the polynomials involved are bounded by O(d2

n

) [8]. Gröbner bases are also highly
sensitive to the monomial order arranging the different monomials of a multivariate
polynomial (see, e.g., [6, Chapter 2] for formal definitions). The Degree Reverse Lexi-
cographic (degrevlex) order gives (on average) Gröbner bases with the smallest total
degree [2], although there exist known examples (cf. Mora’s example in [14]) for which,
even for the degrevlex monomial ordering, the (reduced) Gröbner basis contains a
polynomial of total degree O(d2). Finally, the rational coefficients of the generators of
Gröbner bases may become involved (compared to the rational coefficients of the orig-
inal generators of the ideal), which can have a negative impact on the running time and
memory requirements.

3.3 Optimization

The theoretical complexity of both the quantifier elimination and Gröbner bases algo-
rithms suggests several opportunities for optimization for Algorithm 1. The maximal
degree of the polynomials appearing in H is assumed to be fixed. We can reduce the
polynomial degrees in the right-hand side of the implication in Eq. (11) as follows: by
choosing a total degree monomial ordering (e.g. degrevlex), the remainder Rem has
at most the same total degree as LieD; replacing LieD by Rem serves to reduce (on
average) the cost of calling a quantifier elimination procedure. Lem. 4 proves that sub-
stituting LieD by its remainder Rem in line 17 does not compromise correctness.

Lemma 4. Let q be the remainder of the reduction of the polynomial s by the Gröbner
basis of the ideal generated by the polynomials h1, . . . , hr. Then,

h1 = 0 ∧ · · · ∧ hr = 0→ s = 0 if and only if h1 = 0 ∧ · · · ∧ hr = 0→ q = 0 .

158 K. Ghorbal, A. Sogokon, and A. Platzer

The same substitution reduces the Gröbner basis computation cost since it attempts to
keep a low maximal degree in all the polynomials appearing in the generators of the
ideal I. Lem. 5 shows that it is safe to perform this substitution: the ideal I remains
unchanged regardless of whether we choose to construct the list LD using LieD or
Rem.

Lemma 5. Let q be the remainder of the reduction of the polynomial s by the Gröbner
basis of the ideal generated by the polynomials h1, . . . , hr. Then,

〈h1, . . . , hr, s〉 = 〈h1, . . . , hr, q〉 .

Although this optimization reduces the total degree of the polynomials involved, the
coefficients of the remainder q may get more involved than the coefficients of the origi-
nal polynomial s. In [12], we give an example featuring the Motzkin polynomial where
such problem occurs. In Section 6 we give an empirical comparison of the optimized—
as detailed in this section—versus the unoptimized version of Algorithm 1.

4 Sufficient Conditions for Invariance of Equations

The previous section dealt with a method for proving invariance which is both necessary
and sufficient for conjunctions of polynomial equalities. Given the proof ruleDRI∧, it is
natural to ask whether previously proposed sufficient proof rules are still relevant. After
all, theoretically, DRI∧ is all that is required for producing proofs of invariance in this
class of problems. This is a perfectly legitimate question; however, given the complexity
of the underlying decision procedures needed for DRI∧ it is perhaps not surprising that
one will eventually face scalability issues. This, in turn, motivates a different question
- can one use proof rules (which are perhaps deductively weaker than DRI∧) in such a
way as to attain more computationally efficient proofs of invariance?

Before addressing this question, this section will review existing sufficient proof
rules which allow reasoning about invariance of atomic equational assertions. In Fig. 1,
DI= shows the equational differential invariant [23] proof rule. The condition is suffi-
cient (but not necessary) and characterizes polynomial invariant functions [23,25]. The
premise of the Polynomial-consecution rule [27,17], P-c in Fig. 1, requires Lp(h) to be
in the ideal generated by h. This condition is also only sufficient and was mentioned as
early as 1878 [7]. The Lie proof rule gives Lie’s criterion [15,21,25] for invariance of
h = 0 and characterizes smooth invariant manifolds. The rule DW is called differential
weakening [24] and covers the trivial case when the evolution constraint implies the in-
variant candidate; in contrast to all other rules in the table, DW can work with arbitrary
invariant assertions.

Unlike the necessary and sufficient condition provided by the rule DRI (see Eq. (4)),
all the other proof rules in Figure 1 only impose sufficient conditions and may thus fail
at a proof even in cases when the candidate is indeed an invariant.

The purpose of all the rules shown in Figure 1, save perhaps DW, is to show in-
variance of atomic equations. However, in general, one faces the problem F → [ẋ =
p & H]C, where F is a formula defining a set of states where the system is initial-
ized, and C is the post-condition where the system always enters after following the
differential equation ẋ = p as long as the domain constraint H is satisfied.

Invariance of Conjunctions of Polynomial Equalities 159

(DI=)
H � Lp(h) = 0

(h = 0)→ [ẋ = p & H](h = 0)
(P-c)

H � Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p &H](h = 0)

(Lie)
H � h = 0→ (Lp(h) = 0 ∧∇h 	= 0)

(h = 0)→ [ẋ = p &H](h = 0)
(DW)

H � F

F → [ẋ = p &H]F

Fig. 1. Proof rules for checking the invariance of h = 0w.r.t. the vector fieldp: DI= [25, Theorem
3], P-c [27, Lemma 2], Lie [21, Theorem 2.8], DW [24, Lemma 3.6]

One way to prove such a statement is to find an invariant I which is true initially (i.e.
F → I), is indeed an invariant for the system (I → [ẋ = p & H]I), and implies the
post-condition (I → C). These conditions can be formalized in the proof rule [26]

(Inv)
F → I I → [ẋ = p &H]I I → C

F → [ẋ = p &H]C
.

In this paper we consider the special case when the invariant is the same as the post-
condition, so we can drop the last clause and the rule becomes

(Inv)
F → C C → [ẋ = p &H]C

F → [ẋ = p &H]C
.

In the following sections, we will be working in a proof calculus, rather than consid-
ering a single proof rule, and will call upon this definition in the proofs we construct.

5 Differential Cuts and Lie’s Rule

When considering a conjunctive invariant candidate h1 = 0∧ h2 = 0∧ · · · ∧ hr = 0, it
may be the case that each conjunct considered separately is an invariant for the system.
Then, one could simply invoke the following basic result about invariant sets to prove
invariance of each atomic formula individually.

Proposition 6. Let S1, S2 ⊆ Rn be invariant sets for the differential equation ẋ = p,
then the set S1 ∩ S2 is also an invariant.

Corollary 7. The proof rule

(∧Inv)
h1 = 0→ [ẋ = p &H]h1 = 0 h2 = 0→ [ẋ = p &H]h2 = 0

h1 = 0 ∧ h2 = 0→ [ẋ = p &H](h1 = 0 ∧ h2 = 0)
(12)

is sound and may be generalized to accommodate arbitrarily many conjuncts.

Of course, one still needs to choose an appropriate proof rule from Figure 1 (or DRI)
in order to prove invariance of atomic equational formulas. For purely polynomial prob-
lems it would be natural to attempt a proof using DRI first, but in the presence of tran-
scendental functions, one may need to resort to other rules. In general however, even if
the conjunction defines an invariant set, the individual conjuncts need not themselves be

160 K. Ghorbal, A. Sogokon, and A. Platzer

x1

x 2

x1

x 2

Fig. 2. System invariant x1 = 0 (left) used in a differential cut to show that the intersection at the
origin (right) is an invariant

invariants. If such is the case, one cannot simply break down the conjunctive assertion
using the rule ∧Inv and prove invariance of each conjunct individually. In this section,
we explore using a proof rule called differential cut (DC) to address this issue.

Differential cuts were introduced as a fundamental proof principle for differential
equations [23] and can be used to (soundly) strengthen assumptions about the system
evolution.

Proposition 8 (Differential Cut [23]). The proof rule

(DC)
F → [ẋ = p]C F → [ẋ = p & C]F

F → [ẋ = p]F
,

where C and F denote quantifier-free first-order formulas, is sound.

Remark 9. The rule ∧Inv may in fact be derived from DW, Inv, and DC.

One may appreciate the geometric intuition behind the rule DC if one realizes that
the left branch requires one to show that the set of states satisfying C is an invariant
for the system initialized in any state satisfying F . Thus, the system does not admit any
trajectories starting in F that leave C and hence by addingC to the evolution constraint,
one does not restrict the behavior of the original system.

Differential cuts may be applied repeatedly to the effect of refining the evolution con-
straint with more invariant sets. It may be profitable to think of successive differential
cuts as showing an embedding of invariants in a system.

There is an interesting connection between differential cuts and embeddings of in-
variant sub-manifolds, when used with the proof rule Lie. To develop this idea, let us
remark that if one succeeds at proving invariance of some h1 = 0 using the rule Lie in
a system with no evolution constraint, one shows that h1 = 0 is a smooth invariant sub-
manifold of Rn. If one now considers the system evolving inside that invariant manifold
and finds some h2 = 0 which can be proved to be invariant using Lie with h1 = 0 act-
ing as an evolution constraint, then inside the manifold h1 = 0, h2 = 0 defines an

Invariance of Conjunctions of Polynomial Equalities 161

invariant sub-manifold (even in cases when h2 = 0 might not define a sub-manifold
of the ambient space Rn). One can proceed using Lie in this way to look for further
embedded invariant sub-manifolds. We will illustrate this idea using a basic example.

Example 10 (Differential cut with Lie). Let the system dynamics be p = (x1,−x2).
This system has an equilibrium at the origin, i.e. p(0) = 0. Consider an invariant
candidate x1 = 0 ∧ x1 − x2 = 0. One cannot use Lie directly to prove the goal

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p] (x1 = 0 ∧ x1 − x2 = 0).

Instead, DC can be used to cut by x1 = 0, which is an invariant for this system
provable using Lie. The left branch of DC is proved as follows:

*(R)
x1 = 0 ∧ x1 − x2 = 0→ x1 = 0

*(R)
x1 = 0→ x1 = 0 ∧ (1 �= 0)

(Lie)
x1 = 0→ [ẋ = p] x1 = 0

(Inv)
x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p & x1 = 0] x1 = 0

One can also prove that x1 = x2 is a invariant under the evolution constraint x1 = 0:

*
(DW)

x1 = 0 → [ẋ = p & x1 = 0] x1 = 0

*
(R)

x1 = 0 � x1 − x2 = 0 → x1 + x2 = 0 ∧ (1 �= 0 ∨ −1 �= 0)
(Lie)

x1 − x2 = 0 → [ẋ = p & x1 = 0] x1 − x2 = 0
(∧Inv)

x1 = 0 ∧ x1 − x2 = 0 → [ẋ = p & x1 = 0] (x1 = 0 ∧ x1 − x2 = 0)

Using these two sub-proofs to close the appropriate branches, the rule DC proves

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p] (x1 = 0 ∧ x1 − x2 = 0).

While this example is very simplistic, it provides a good illustration of the method be-
hind differential cuts. We used DC to restrict system evolution to an invariant manifold
x1 = 0 using Lie and then used Lie again to show that x1−x2 = 0 defines an invariant
sub-manifold inside x1 = 0. This is illustrated in Fig. 2.

It is also worth noting that the choice of conjunct for use in the differential cut was
crucial. Had we initially picked x1−x2 = 0 to act as C in DC, the proof attempt would
have failed, since this does not define an invariant sub-manifold of R2 (see Fig. 2).

Let us now remark that by employingDC, we proved invariance of a conjunction which
could not be described by an atomic equational assertion which is provable using the
rule Lie, or by using Lie to prove invariance of each conjunct after breaking down
the conjunction with the rule ∧Inv. It has previously been shown that differential cuts
increase the deductive power of the system when used in concert with differential in-
variants [23,26,25]. We prove that the same is true for differential cuts with Lie. Indeed,
differential cuts serve to address some of the limitations inherent in both DI= and Lie.

Theorem 11. The deductive power of Lie together with DC is strictly greater than
that of Lie considered separately. We write this as DC+Lie * Lie.

Proof. In Example 10 we demonstrate the use of Lie together with DC to prove in-
variance of a conjunction of polynomial equalities which is not provable using Lie

162 K. Ghorbal, A. Sogokon, and A. Platzer

alone. To see this, suppose that for the system in Example 10 there exists some real-
valued differentiable function g(x) whose zero level set is precisely the origin, i.e.
(g(x) = 0) ≡ (x = 0). Then, for all x ∈ R2 \ {0} this function evaluates to g(x) > 0
or g(x) < 0 (by continuity of g(x)) and 0 is thus the global minimum or global max-
imum, respectively. In either case, g(x) = 0 =⇒ ∇g(x) = 0 is valid, which cannot
satisfy the premise of Lie. �

Similar to the embedding of invariants observed when combining differential cuts
with Lie proof rule, we briefly explore an intriguing connection between the use of
differential cuts together with DI= and higher integrals of dynamical systems.

The premise of the rule DI= establishes that h(x) is a first integral (i.e. a constant
of motion) for the system in order to conclude that h = 0 is an invariant. More general
notions of invariance have been introduced to study integrability of dynamical systems.
For instance, h(x) is a second integral if Lp(h) = αh, where α is some function; this
is also sufficient to conclude that h = 0 is an invariant. Let us remark that in a purely
polynomial setting, such an h ∈ R[x] is known as a Darboux polynomial [13,7] and
the condition corresponds to ideal membership in the premise of P-c. Going further,
a third integral is a function h(x) that remains constant on some level set of a first
integral g(x) [13, Section 2.6], i.e. Lp(h) = αg where g is a first integral and α is
some function. These ideas generalize to higher integrals (see [13, Section 2.7]).

Example 12 (Deconstructed aircraft [25] - differential cut with DI=). Consider the sys-
tem ẋ = p = (−x2, x3,−x2) and consider the invariant candidate x2

1+x2
2 = 1∧x3 =

x1. One cannot use DI= directly to prove the goal

x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p] (x2
1 + x2

2 = 1 ∧ x3 = x1) .

We can apply DC to cut by x1 = x3, which is a first integral for the system and is thus
provable using DI=. The left branch of DC is proved as follows:

*(R)
x2
1 + x2

2 = 1 ∧ x3 = x1 → x3 = x1

*(R) −x2 = −x2(DI=)
x3 = x1 → [ẋ = p]x3 = x1

(Inv)
x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p]x3 = x1

For the right branch of DC we need to show that x2
1 + x2

2 = 1 is an invariant under the
evolution constraint x3 = x1. This is again provable using DI=:

*
(DW)

x3 = x1 → [ẋ = p & x3 = x1] x3 = x1

*
(R)

x3 = x1 � −2x1x2 + 2x2x3 = 0
(DI=)

x2
1 + x2

2 = 1 → [ẋ = p & x3 = x1] x2
1 + x2

2 = 1
(∧Inv)

x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p & x3 = x1] (x2
1 + x2

2 = 1 ∧ x3 = x1)

We can now construct a proof of invariance for the conjunction using DC.
Note that in this example, we have only ever had to resort to the rule DI= for showing

invariance of an equational candidate. We first showed that x3 − x1 is an invariant
function (first integral) for the system. After restricting the evolution domain to the zero
set of the first integral, x3 − x1 = 0, we proved that the polynomial x2

1 + x2
2 − 1 is

conserved in the constrained system. In this example we have Lp(x
2
1 + x2

2 − 1) =

Invariance of Conjunctions of Polynomial Equalities 163

−2x1x2 + 2x2x3 = 2x2(x3 − x1), where (x3 − x1) is a first integral of the system.
Thus, x2

1 + x2
2 − 1 is in fact a (polynomial) third integral.

5.1 Proof Strategies using Differential Cuts

Differential cuts can be used to search for a proof of invariance of conjunctive equa-
tional assertions. This involves selecting some conjunct hi = 0 to cut by (that is use
it as C in DC). If the conjunct is indeed an invariant, it will be possible to strengthen
the evolution domain constraint and proceed in a similar fashion by selecting a new
C from the remaining conjuncts until a proof is attained. A formal proof of invariance
using differential cuts can be quite long and will repeatedly resort to proof rules such
as (∧Inv) (Eq. (12)) and DW (Fig. 1), which is used to prune away conjuncts that have
already been added to the evolution domain constraint.

Our proof strategy iteratively selects a conjunct with which to attempt a differential
cut as a recursive function (DCSearch, elaborated in [12]). Before calling this function,
the conjuncts are put into ascending order with respect to the number of variables ap-
pearing in the conjunct. For purely polynomial problems, the ordering is also ascending
with respect to the total degree of the polynomials. The aim of this pre-processing step
is to ensure that conjuncts which are potentially less expensive to check for invariance
are processed first (see Section 3.2). There is in general no easy way of selecting the
“right” proof rule for showing invariance of atomic equations; a possible, albeit not very
efficient, solution would be to iterate through all the available proof rules. This would
combine their deductive power, but could also lead do diminished performance. In prac-
tice, selecting a good proof rule for atomic invariants is very much a problem-specific
matter. We have implemented DCSearch to use the proof rule DI= before trying Lie.

5.2 Performance and Limitations

Unlike with purely automated methods, such as DRI∧, knowledge about the system
is often crucial for differential cuts to be effective; however, this knowledge can some-
times be used to construct proofs that are more computationally efficient. We have iden-
tified an example—detailed in [12]—with 13 state variables which defeats the current
implementation of DRI∧ and which is easily provable using differential cuts together
with both DI= and Lie (solved quickly by running DCSearch). Though very much an
artificial problem, it demonstrates that structure in the problem can sometimes be ex-
ploited to yield efficient proofs using DC. This is especially useful for large systems
with many variables where the structure of the problem is well-understood. Addition-
ally, we see that a combination of proof rules (DI=,Lie,DC) can be both helpful and
efficient.

While differential cuts can serve to increase the deductive power of sufficient proof
rules, there are invariant conjunctions of equalities for which applying DC on the con-
juncts given in the problem will altogether fail to be fruitful. This is due to DCSearch
relying on the fact that at least some of the conjuncts considered individually are invari-
ants for the system, which may not be the case even if the conjunction is invariant.

164 K. Ghorbal, A. Sogokon, and A. Platzer

6 Experiments

In this section, we empirically compare the performance of three families of proof rules
for checking the invariance of conjunctions: (1) DRI-related proof rules including
SoSDRI (DRI plus sum-of-squares rewriting), DRI∧ as well as their optimized ver-
sions as detailed in Section 3.3, (2) DCSearch: the differential cut proof search pre-
sented in Section 5.1, and (3) the Liu et al. procedure [16] applied to a conjunction of
equalities.

We do not consider domain constraints, i.e. H = True. The running time for each
proof rule as well as the dimension, the different degrees of the candidates and the vec-
tor fields, of the used set of benchmarks can be found in the companion report [12].
In Fig. 3, the pair (k, t) in the plot of a proof rule P reads: the proof rule P solved k
problems each in less than t seconds. The set of benchmarks contains 32 entries com-
posed of equilibria (16), singularities (8), higher integrals (4) and abstract examples (4).
The examples we used in our benchmarks originate from a number of sources - many
of them come from textbooks on Dynamical Systems; others have been hand-crafted
to exploit sweetspots of certain proof rules. For instance, we constructed Hamiltonian
systems, systems with equilibria and systems with smooth invariants of various poly-
nomial degrees. The most involved example has 13 state variables, a vector field with
a maximum total degree of 291 and an invariant candidate with total degree of 146. It
should be noted that these benchmarks are not necessarily representative, but neverthe-
less, an important first step towards a more comprehensive empirical analysis we hope
to pursue.

One can clearly see that for the considered set of examples, the proof rule DRI∧ is
much more efficient on average compared to SoSDRI as it solves 31—out of 32—in
less than 0.1s each. The optimization discussed in Section 3.3 yields a slight improve-
ment in the performance of both SoSDRI and DRI∧. Notice that its benefit is clearer in
SoSDRI as the involved polynomials have large degrees. In most examples, both DRI∧

Fig. 3. Empirical performance comparison of different proof rules and strategies. The total num-
ber of problems solved each in at most ts (log scale) is given in the x-axis for each method.

Invariance of Conjunctions of Polynomial Equalities 165

and DRI∧-OPT are very efficient. However, the optimized version was able to falsify,
in 1.2s, an invariant whereas the unoptimized version, as well as all the other proof
rules, timed out after 60s. We also noticed for another example—featuring the Motzkin
polynomial—that SoSDRI-OPT timed out whereas SoSDRI was able to check the in-
variance in 15s. When we investigated this example, it turned out that the rational
coefficients of the remainder gets complicated compared to the original polynomial be-
fore reduction. For this particular example, the optimized version was able to prove the
invariance in 300s which is 20 times slower than the unoptimized version. For a third
example, all DRI-related proof rules timed out after 60s in one example which was
discharged by DCSearch in less than 6s. (cf. [12] for more details about those different
examples).

7 Related Work

In this paper we focus on checking invariance of algebraic sets under the flow of poly-
nomial vector fields. For similar techniques used to automatically generate invariant
algebraic sets we refer the reader to the discussion in [11].

Nagumo’s Theorem [3], proved by Mitio Nagumo in 1942, characterizes invari-
ant closed sets—a superset of algebraic sets—of locally Lipschitz-continuous vector
fields—a superset of polynomial vector fields. The geometric criterion of the theorem
is however intractable. The analyticity of solutions of analytic vector fields—a superset
of polynomial vector fields—also gives a powerful, yet intractable, criterion to reason
about invariant sets. In [28], the authors attempted to define several special cases ex-
ploiting either Nagumo’s theorem or the analyticity of solutions, to give proof rules for
checking invariance of (closed) semi-algebraic sets under the flow of polynomial vec-
tor fields. Liu et al. in [16] also used analyticity of solutions to polynomial ordinary
differential equations and extended [28] using the ascending chain condition in Noethe-
rian rings to ensure termination of their procedure; they gave a necessary and sufficient
condition for invariance of arbitrary semi-algebraic sets under the flow of polynomial
vector fields and proved the resulting conditions to be decidable.

We develop a purely algebraic approach where the ascending chain condition is also
used but without resorting to local Taylor series expansions. As in [16], we require
finitely many higher-order Lie derivatives to vanish; what is different, however, is the
definition of the finite number each characterization requires: in [16], one is required to
compute orders Ni of each atom hi and to prove that all higher-order Lie derivatives
of hi, up to order Ni − 1, vanish. We state a weaker condition as we only require that
all higher-order Lie derivatives of hi up to order (N − 1), for all i, vanish. A straight-
forward benefit of our characterization is the immediate reduction of the computational
complexity as discussed in Section 3 and shown empirically in Section 6.

Zerz and Walcher [30] have previously considered the problem of deciding invari-
ance of algebraic sets in polynomial vector fields; they gave a sufficient condition for
checking invariance of algebraic sets which can be seen as one iteration of Algorithm 1.
Therefore, Section 3 generalizes their work by providing a complete characterization of
invariant algebraic sets in polynomial vector fields.

166 K. Ghorbal, A. Sogokon, and A. Platzer

8 Conclusion

We have introduced an efficient decision procedure (DRI∧) for deciding invariance of
conjunctive equational assertions for polynomial dynamical systems. We have explored
the use of the differential cut rule both as a means of increasing the deductive power of
existing sufficient proof rules and also as a way of constructing more computationally
efficient proofs of invariance.

The empirical performance we observe in the optimized implementations of DRI
and DRI∧ is very encouraging and we are confident that a proof strategy in a deduc-
tive formal verification system should give precedence to these methods. However, cer-
tain problems fall out of scope of these rules. For instance, when the problems involve
transcendental functions, or still take unreasonably long time to prove. We leave these
interesting questions for future work.

References

1. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier
elimination. J. ACM 43(6), 1002–1045 (1996)

2. Bayer, D., Stillman, M.E.: A criterion for detecting m-regularity. Inventiones Mathemati-
cae 87, 1 (1987)

3. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
4. Buchberger, B.: Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory, ch. 6,

pp. 184–232. Reidel Publishing Company, Dodrecht (1985)
5. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimina-

tion. J. Symb. Comput. 12(3), 299–328 (1991)
6. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms - an introduction to com-

putational algebraic geometry and commutative algebra, 2nd edn. Springer (1997)
7. Darboux, J.G.: Mémoire sur les équations différentielles algébriques du premier ordre et du

premier degré. Bulletin des Sciences Mathématiques et Astronomiques 2(1), 151–200 (1878)
8. Dubé, T.: The structure of polynomial ideals and Gröbner bases. SIAM J. Comput. 19(4),

750–773 (1990)
9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure

and Applied Algebra 139(1-3), 61–88 (1999)
10. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to

zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC 2002, pp. 75–83. ACM, New York (2002)

11. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer,
Heidelberg (2014)

12. Ghorbal, K., Sogokon, A., Platzer, A.: Invariance of conjunctions of polynomial equalities for
algebraic differential equations. Tech. Rep. CMU-CS-14-122, School of Computer Science,
CMU, Pittsburgh, PA (June 2014), http://reports-archive.adm.cs.cmu.edu/
anon/2014/abstracts/14-122.html

13. Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced series in
nonlinear dynamics. World Scientific (2001)

14. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equa-
tions. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer,
Heidelberg (1983)

http://reports-archive.adm.cs.cmu.edu/anon/2014/abstracts/14-122.html
http://reports-archive.adm.cs.cmu.edu/anon/2014/abstracts/14-122.html

Invariance of Conjunctions of Polynomial Equalities 167

15. Lie, S.: Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwen-
dungen, Teubner, Leipzig (1893)

16. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical
systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) EMSOFT, pp.
97–106. ACM (2011)

17. Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems
by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 373–389. Springer, Heidelberg (2010)

18. Mayr, E.W.: Membership in polynomial ideals over Q is exponential space complete. In:
Cori, R., Monien, B. (eds.) STACS 1989. LNCS, vol. 349, pp. 400–406. Springer, Heidelberg
(1989)

19. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups
and polynomial ideals. Advances in Mathematics 46(3), 305–329 (1982)

20. Neuhaus, R.: Computation of real radicals of polynomial ideals II. Journal of Pure and Ap-
plied Algebra 124(1-3), 261–280 (1998)

21. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer (2000)
22. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2),

143–189 (2008)
23. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.

Comput. 20(1), 309–352 (2010)
24. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics.

Springer (2010)
25. Platzer, A.: A differential operator approach to equational differential invariants. In: Beringer,

L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 28–48. Springer, Heidelberg (2012)
26. Platzer, A.: The structure of differential invariants and differential cut elimination. Logical

Methods in Computer Science 8(4), 1–38 (2012)
27. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems.

Formal Methods in System Design 32(1), 25–55 (2008)
28. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: Kannan,

R., Kumar, K.N. (eds.) FSTTCS. LIPIcs, vol. 4, pp. 383–394. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2009)

29. Tarski, A.: A decision method for elementary algebra and geometry. Bulletin of the American
Mathematical Society 59 (1951)

30. Zerz, E., Walcher, S.: Controlled invariant hypersurfaces of polynomial control systems.
Qualitative Theory of Dynamical Systems 11(1), 145–158 (2012)

On Program Equivalence with Reductions

Guillaume Iooss1,2, Christophe Alias2, and Sanjay Rajopadhye1

1 Colorado State University
2 ENS-Lyon, CNRS UMR 5668, INRIA, UCB-Lyon

Abstract. Program equivalence is a well-known problem with a wide range of
applications, such as algorithm recognition, program verification and program op-
timization. This problem is also known to be undecidable if the class of programs
is rich enough, in which case semi-algorithms are commonly used. We focus
on programs represented as Systems of Affine Recurrence Equations (SARE),
defined over parametric polyhedral domains, a well known formalism for the
polyhedral model. SAREs include as a proper subset, the class of affine con-
trol loop programs. Several program equivalence semi-algorithms were already
proposed for this class. Some take into account algebraic properties such as asso-
ciativity and commutativity. To the best of our knowledge, none of them manage
reductions, i.e., accumulations of a parametric number of sub-expressions using
an associative and commutative operator. Our main contribution is a new semi-
algorithm to manage reductions. In particular, we outline the ties between this
problem and the perfect matching problem in a parametric bipartite graph.

1 Introduction

Program equivalence is an old and well-known problem in computer science with many
applications, such as program comprehension, algorithm recognition [1], program ver-
ification [2,3], semi-automated debugging, compiler verification [4], translation valida-
tion [5,6,7,8] to name just a few. However, the program equivalence problem is known
to be undecidable as soon as the considered program class is rich enough to be interest-
ing. Moreover, if we account for the semantic properties of objects manipulated in the
program and relax the considered equivalence, the problem becomes harder.

Considerable prior work on program equivalence exists, in particular in the context
of translation validation (in which we seek to prove the equivalence between a source
and a target program). Necula [5] builds a correlation relation between the control flow
graphs of the source and the target programs, and relies on a solver to check whether
this relation is a bisimulation [9,10]. Such an approach is restricted to structure preserv-
ing optimizations, and cannot deal with advanced transformations like loop reordering
which can arbitrarily change the control structure of the program. Zuck et al. [7] override
these limits and introduce “permutation rules” to validate a reordering transformation.
They also derive a runtime test for advanced loop optimizations. When a problem is de-
tected, the code escapes to an unoptimized version. Kundu et al. [8] combine the benefits
of these approaches to check statically that an optimizing transformation is sound.

In this paper, we focus on Systems of Affine Recurrence Equations (SARE) with re-
ductions. SAREs are a formalism for reasoning about many compute- and data-intensive

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 168–183, 2014.
c© Springer International Publishing Switzerland 2014

On Program Equivalence with Reductions 169

programs in the polyhedral model and used in automatic parallelization. A reduction is
the application of an associative and commutative operator to a set of (sub) expres-
sions.1 Thus, in order to decide equivalence between two reductions, we need to take
care of the associativity and commutativity properties over a potentially parametric
number of elements.

A well known semi-algorithm for SAREs was proposed by Barthou et al [11]. The
idea is to encode the problem of equivalence of two programs into a Memory State Au-
tomaton, i.e., an automaton whose states are associated with vectors and whose edges
are associated with conditions on these vectors. The equivalence problem on SARE can
be reduced to a reachability problem on this automaton, which is also undecidable, but
for which, several heuristics are applicable (based on the transitive closure operation).
However, no semantic properties are considered (the equivalence is purely structural).
Shashidhar et al. [12] proposed another equivalence algorithm based on Array Data
Dependence Graph (ADDG). Their algorithm manages associativity and commutativ-
ity over a finite number of elements. However, because complicated recurrences are
managed by unfolding loops, it cannot manage parametrized programs. Verdoolaege
et al [13] proposed an improved formalism based on a dependence graph, that allows
them to manage parametrized program. They also present an alternative way to deal
with recurrences, based on the widening operation. In the two previous papers, com-
mutativity is managed by testing every permutation of the arguments of operators until
we find a good one. This approach is no longer possible if the number of arguments is
parametrized. Karfa et al. [14] also proposed an algorithm to decide equivalence based
on ADDG. The idea behind their equivalence checking is to build an arithmetic expres-
sion corresponding to the computation done by the considered program. By normaliz-
ing this expression, they are able to manage the semantic properties of binary operators.
However, because they need to have a finite arithmetic expression, they are not able to
manage recursion and reductions.

In this paper, we propose a semi-algorithm that decides the equivalence of two pro-
grams containing reductions. More precisely, our contributions are as follows.

– Building on the Barthou et al. formalization, we propose a rule to manage the
equivalence between two reductions (Section 3). This rule can be extended to cover
equivalence with a finite number of reductions combined with the same operator.

– The previous rule maps corresponding sub-terms of both reductions through a bi-
jection. We propose a semi-algorithm to infer such bijection (Section 4) that
• first extracts the set of constraints our bijection needs to satisfy,
• transforms them into a finite list of partial bijection (i.e., bijections defined

over subsets of the actual space), and finally
• simply combines these partial bijections together to form our bijection.

We show the relation between our problem of partial bijection combination, and
the perfect matching problem on a parametric bipartite graph.

– We propose heuristics to solve the perfect matching problem for graphs of para-
metric size. One in particular, is based on a novel extension of the well-known
augmenting path algorithm (that addresses only the non-parametric case).

1 Some authors do not require commutativity, in which case a reduction must be applied to an
ordered set of sub-expressions. In this paper we would like to allow many general reordering
transformations, and therefore insist on commutativity.

170 G. Iooss, C. Alias, and S. Rajopadhye

2 Preliminaries

We first describe the class of programs we consider. Then, we define the notion of equiv-
alence modulo associativity and commutativity, and detail Barthou’s semi-algorithm,
since it serves as our starting point.

2.1 System of Affine Recurrence Equations with Reductions

A reduction is the application of an associative and commutative binary operator ⊕ on
a parametric set of (sub) expressions. For example

⊕
0≤i<N

A[i] is a reduction of N sub-

expressions A[i], N being a parameter. We study the equivalence of programs in the
language Alpha, as defined by Mauras [15] and extended by Le Verge [16]. Any Alpha
program represents a System of Affine Recurrence Equations (SARE) with reductions,
defined as follows.

Definition 2.1. A SARE with reductions is a set of equations of the form:

X[i] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

...
Expr(. . .Y[uY,k(i)] . . .) if i ∈ DX

k
...

where X is defined overDX =
⊎
k
DX

k ⊆ Zd, theDX
k being disjoint.

– X, Y, . . . are called variables. They are defined over a polyhedral domain DX and
associate a value to each point of their domain.

– Some variables are marked as input (or output) variables. An input variable cannot
be defined by an equation of the SARE and any other variable X has exactly one
equation which computes its value, for each point ofDX.

– Expr[i] is an expression and may be one of
• A variable Y[uY,k(i)] where uY,k is an affine function.
• An operation f (Expr1[i], . . .Exprn[i]) where f is a n-ary operator.
• A reduction

⊕
π(i′)=i

Expr′[i′] where π is called the projection function. Because

i′ ∈ DExpr′ , we can control the set of expressions summed together through the
definition domain of Expr′.

Example 2.1. The standard matrix multiplication algorithm for N × N matrices is de-
scribed by following SARE with inputs A and B, and output C, each defined over
DA = DB = DC = [|0; N − 1|]2.

C[i,j] =
N−1∑
k=0
A[i,k] * B[k,j]

Our equivalence semi-algorithm accepts as inputs, a pair of SAREs with reductions.
We currently do not treat “recursive” reductions, i.e., those in which a variable being
defined by a reduction appears inside the reduction. For example, the following SARE

On Program Equivalence with Reductions 171

for a “recursive prefix sum,” which combines a parametric number of elements of A to
define the ith element A[i], is not accepted:

O = A[N]

A[i] =

⎧⎪⎪⎨⎪⎪⎩
∑

0≤k<i
A[k] if 0 < i ≤ N

1 if i=0

2.2 Equivalence Modulo Associativity and Commutativity

There are several notions of equivalence of programs. The simplest one is called Her-
brand equivalence and corresponds to the structural equivalence (the computation per-
formed by both programs is identical). We also need to give a mapping between the
inputs of the two programs, to say which inputs are equivalent. For example, the SARE
O[i] = f(A[i]) + B[i] is equivalent to the SARE O′[i] = Temp′[i] + B′[i],
Temp′[i] = f(A′[i]) assuming that the input pairs A/A′ and B/B′ are equivalent. It
will be also equivalent to any SARE obtained by applying any data-dependence pre-
serving transformation (i.e., a transformation which does not modify the computation).
However, if we permute the arguments of the addition (commutativity) in one of them,
it will no longer be equivalent to the other. The problem of Herbrand equivalence of
general SAREs is undecidable [11].

We consider Herbrand equivalence modulo associativity and commutativity: a SARE
is equivalent to any other SARE obtained by applying any data-dependence preserving
transformation plus associativity and commutativity of the corresponding binary oper-
ators. For example, the SARE O[i] = (A[i] + 2) + B[i] is equivalent to O′[i] =
Temp′[i] + 2, Temp′[i] = A′[i] + B′[i]. Moreover, because reductions implic-
itly use associativity and commutativity, we need this extended notion of equivalence
to compare SAREs with reductions. For example, under such equivalence, the SARE
O[i] =

∑
i
A[i] is equivalent to O′[i′] =

∑
i′
A′[N-i′]

2.3 Deciding Herbrand Equivalence of Two SAREs

Barthou et al. [11] proposed a semi-algorithm to decide Herbrand equivalence of SAREs.
It first builds an equivalence memory state automaton encodeing the equivalence prob-
lem and then studies the accessibility set of particular states of this automaton.

Definition 2.2. A Memory State Automaton (MSA) [11] is a finite automaton where:

– Every state p is associated with an integer vector vp of some dimension np.
– Every transition from p to q is associated with a firing relation Fp,q ∈ Znp × Znq .
– A transition from 〈p, vp〉 to 〈q, vq〉 can only happen if (vp, vq) ∈ Fp,q.

We say that a state p is accessible iff there exists a finite path from the initial state p0

to p for some associated vector. The accessibility relation of a state p is:

Rp = {(v0, vp) | 〈p0, v0〉 →∗ 〈p, vp〉}

172 G. Iooss, C. Alias, and S. Rajopadhye

Step 1: Building the equivalence MSA: Consider two SAREs. We use the convention
that expressions, operators and indices of the second SARE are “primed” (e.g., X′, E′1).
The equivalence MSA is defined (and built) as follows:

– States: A state is labeled by an equation e(i) = e′(i′) and is associated with the
vector (i, i′).

– Initial state: The initial state of the automaton is O[i0] = O′[i′
0
]

– Final state: There are two kinds of final states: the success states and the failure
states. The failure states are:
• f (. . .) = f ′(. . .) where f and f ′ are different operators,
• Ik[i] = f ′(. . .) or f (. . .) = I′k[i′],
• Ik[i] = I′k′[i] where Ik and I′k′ are not corresponding inputs.

In contrast, the accept states are:
• f () = f ′() (i.e., two identical constants)
• Ik = I′k′ where Ik and I′k′ are corresponding inputs.

– Transitions: We have 3 types of transitions (rules) in the equivalence MSA: De-
compose, Compute and Generalize, as described in Fig 1. The Decompose rule
deals with operators and simply says that two expressions using the same operator
are equivalent iff their arguments are equivalent. The Compute rule allows us to
“unroll” a definition and creates a state per case. Note that for each value (i, i′) as-
sociated with the source state, there is only one accessible state among the created
states. The Generalize rule is useful to deal with recursions. It replaces an affine
expression by a fresh index, allowing us to go into a state we may have already
encountered, but with different index values.

f (E1(i), . . . , En(i)) = f (E′1(i′), . . . , E′n(i′))

E1(i) = E′1(i′) En(i) = E′n(i′). . .

Decompose rule

X[i] = . . .

Expr1(i) = . . . Exprk(i) = . . .

i ∈ Δ1 i ∈ Δk

. . .

where X[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i ∈ Δ1 : Expr1(i)
. . . : . . .
i ∈ Δk : Exprk(i)

Compute rule

. . . X[u(i)] . . . = . . .

. . . X[j] . . . = . . .

j = u(i)

where j is a fresh variable.
Generalize rule

Fig. 1. Construction rules for the equivalence automaton

Step 2: Equivalence and reachability problem in the equivalence automaton: Intu-
itively, if a state Expr[i] = Expr[i′] can be reached for a given (i, i′), then these two
expressions must be equivalent in order for the two SAREs to be equivalent. Thus, the
equivalence problem between the two considered SAREs can be decided by studying
the accessibility sets of the success and failure states.

On Program Equivalence with Reductions 173

Theorem 2.1 (from [11]). Two SAREs are equivalent iff, in their equivalence MSA:

– All failure states are not accessible from the start state.
– The accessibility relation of each success state is included in the identity relation.

Indeed, a failure state corresponds to the comparison of two expressions which are
obviously not equivalent. The success condition states that, if we start from the initial
states with an equality of the indices of the outputs, the indices of any reachable success
state must be the same (i.e., I[i] cannot be identical to I[j] for i � j).

Example: As an example, let us compare the following SARE with itself:

O = A[N]

A[i] =

{
1 ≤ i ≤ N : f (I[i], A[i − 1])
i = 0 : I[0]

where O is the output of the SARE and I the input. The equivalence automaton is the
following (success states are in blue and failure states in red):

O = O′

A[N] = A′[N]

A[i] = A′[i′]

I[0] = A′[i′] f (I[i], A[i − 1]) = A′[i′]

I[0] = I′[0]

I[0] = f (I′[i′], A′[i′ − 1])

f (I[i], A[i − 1]) = I′[0] f (I[i], A[i − 1]) = f (I′[i′], A′[i′ − 1])

I[i] = I′[i′] A[i − 1] = A′[i′ − 1]

(Comp)

(Gen) i = N, i′ = N

(Comp)i = 0 i > 0

(Comp)i′ = 0 i′ > 0 (Comp)i′ = 0 i′ > 0

(Dec)

(Gen)
i = i − 1

i′ = i′ − 1

Notice how the automaton has a cycle: it corresponds to the comparison between
the recursions of both SARE. We can notice that, for every state of the automaton, we
have i = i′ (indeed, for each transition we are modifying i, we are also modifying i′ in
the same way). Thus, because the reachability set of the failure states are respectively
{i, i′ | i = 0 ∧ i′ > 0} and {i, i′ | i > 0 ∧ i′ = 0}, then they are both empty. Moreover, the
equalities that need to be satisfied when reaching a success state are respectively 0 = 0
(trivially satisfied) and i = i′ (satisfied). Thus, according to Thm 2.1 these two SARE
are equivalent.

Limitation of the equivalence algorithm: This algorithm only checks Herbrand equiv-
alence, semantic properties like associativity/commutativity of operators are not taken
into account. For instance, if we try to compare the SAREs O = I1 + I2 and O′ = I′2+ I′1,
the equivalent automaton will have a decompose rule which will generate two failure
states with respective labels (I1 = I′2) and (I2 = I′1).

174 G. Iooss, C. Alias, and S. Rajopadhye

3 Decompose Reduce Rule

In the previous section, we presented Barthou’s equivalence algorithm, based on the
construction of an equivalence automaton. This algorithm can be extended to manage
reductions, by adding a new construction rule (called Decompose Reduce):

⊕
π(k)=i

E[k] =
⊕
π′(k′)=i′

E′[k′]

E[k] = E′[k′]

σ(k) = k′

The idea of this rule is to map every occurrence of the left reduction E[k] to an
equivalent occurrence E′[k′] on the right reduction, such that these two occurrences are
equivalent. In other words, if we manage to find a bijection σ between the occurrences
k of the left reduction and the occurrences k′ of the right reduction such that E[k]
is equivalent to E′[k′], then both reductions are equivalent. During the equivalence
automaton construction step, we leave σ as a symbolic function (it does not impact the
construction of the rest of the automaton), and the rest of the algorithm (described in
Section 4) will focus on inferring such a σ.

Because this rule is based on a bijection which associates exactly one occurrence
from the left reduction to another from the right reduction, we cannot manage situations
where a left-occurrence must be mapped to the sum of several right-occurrences (or vice
versa). In such situations, we will not be able to find a correct σ and we will be unable
to conclude if both reductions are equivalent or not. This is handled in Section 5 where
we extend the rule to manage sums of reductions.

4 Inferring the Bijection

The Decompose Reduction rule presented above allows us to deal with reductions. It
involves a bijection σ that maps instances from the left reduction to instances from the
right reduction. However, we still need to find the actual value of σ (or, at least, prove
its existence), such that the conditions of Thm 2.1 are still valid, and we now tackle this
problem.

4.1 Illustrative Example

To give the intuition of the algorithm, let us first consider the following SAREs:

O =
∑
i

A[i]

A[i] =

{
0 < i ≤ N : I[i]
i = 0 : I[i + 1]

O′ =
∑
i′

A′[i′]

A′[i′] =
{

i′ = N : I′[1]
0 ≤ i′ < N : I′[i′ + 1]

These two SAREs sum up all the I[i], except for I[0], but with I[1] being counted
twice (for index points i = 0, 1 in the first SARE, and for i′ = 0,N in the second one).

On Program Equivalence with Reductions 175

Thus, when we compare the terms of the two bijections, we should map A[0] to either
A′[0] or A′[N] and A[1] to the other one, and each remaining A[i] to A′[i′]. Let us
derive these bijections from the equivalence automaton, which is shown below, where
σ : [|0; N|] �→ [|0; N|]:

O = O′

∑
i

A[i] =
∑
i′

A[i′]

A[i] = A′[i′]

I[i] = A′[i′] I[i + 1] = A′[i′]

I[i] = I′[1] I[i] = I′[i′ + 1] I[i + 1] = I′[1] I[i + 1] = I′[i′ + 1]

(Comp)

(Decomp reduce) σ(i) = i′

0 < i ≤ N i = 0(Comp)

i′ = N 0 ≤ i′ < N(Comp) i′ = N 0 ≤ i′ < N(Comp)

Extraction of the constraints: We want to find a bijection σ such that the conditions of
Thm 2.1 are satisfied, i.e., one that makes all failure state unreachable, and the indices
of all success states equal. For example, let us consider the second success state I[i] =
I′[i′ + 1]: we need i = i′ + 1 at this state, thus because we have to go through two
conditions 0 < i and i′ < N. Thus, if σ maps a non-negative i to a i′ below N, then i′
must be equal to i−1. By studying the accessibility set of each final state, we obtain the
following constraints:

[σ(i) = i′ ∧ (1 ≤ i ≤ N) ∧ (i′ = N) ∧ i = 1]
∨[σ(i) = i′ ∧ (1 ≤ i ≤ N) ∧ (0 ≤ i′ < N) ∧ i = i′ + 1]
∨[σ(i) = i′ ∧ (i = 0) ∧ (i′ = N) ∧ i + 1 = 1]
∨[σ(i) = i′ ∧ (i = 0) ∧ (0 ≤ i′ < N) ∧ i + 1 = i′ + 1]

Obtaining the partial bijections: Notice that our constraints admit a kind of structure:
the constraints on i and i′ are separated, except for the equalities coming from the suc-
cess state itself. In our example, each Diophantine equation admits a unique solution,
and we can express i′ as a function of i. We end up with an injective affine function
whose definition and image domain is given by the constraints on i and i′. We can re-
fine these domains to make this function a partial bijection σ̃ (i.e., a bijection defined
over a subset of the whole space). At this point, if σ is equal to σ̃ for each i ∈ D, then
σ will satisfy the constraints for every (i, σ̃(i)), therefore we will satisfy the conditions
of Thm 2.1 for these values of i.

In our example, let us consider the first constraint. The Diophantine equations are
i = 1, i′ = N. Thus, the corresponding partial bijection will be defined on the domain
{1} and will have {N} as an image domain. By doing the same for all constraints, we
obtain the following set of partial bijections:

σ̃1:

{ { 1 } �→ { N }
1 �→ N

σ̃2:

{
[|1; N|] �→ [|0; N − 1|]

i �→ i − 1
σ̃3:

{ { 0 } �→ { N }
0 �→ N

σ̃4:

{ { 0 } �→ { 0 }
0 �→ 0

176 G. Iooss, C. Alias, and S. Rajopadhye

Sticking the partial bijections: We can represent the definition and image domain of σ
as the nodes of a bipartite graph and the partial bijections as the edges of this graph:

...
...

0

1

2

N − 1

N

0′
1′
2′

N − 1′
N′

: σ̃1

: σ̃2

: σ̃3

: σ̃4

There is an edge from a node i to i′ iff there is a partial bijection which maps i to i′,
i.e., iff selectingσ(i) = i′ satisfies the conditions of Thm 2.1. Thus, finding a bijectionσ
which satisfies Thm 2.1 is identical to finding a matching in this graph. In our example,
we do not have any choice for i ∈ [|2; N|], but we can map i = 0 and 1 to either i′ = 0′
or N′. Thus, we have two possible bijections:

σ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 �→ N (σ̃1)
i �→ i − 1 when i ≥ 2 (σ̃2)
0 �→ 0 (σ̃4)

or σ :

{
i �→ i − 1 when i ≥ 1 (σ̃2)
0 �→ N (σ̃3)

We managed to build a bijection, thus we can conclude that the two reductions are
equivalent. Therefore, the two considered SAREs are equivalent. In summary, our semi-
algorithm proceeds in the three steps below, each of which is explained in the following
subsections.

1. Extract the constraints on σ from the equivalence automaton,
2. Transform these constraints into partial bijections σ̃, which are portions of σ where

the equivalence constraints are satisfied,
3. Combine these partial bijections to obtain σ.

4.2 Extraction of the Constraints

To prove the equivalence, we need to find a validσ satisfying the constraints of Thm 2.1.
However, these constraints are obtained on the final states, whose indices might be
different from the ones used to define σ. Thus, we need to “pull up” the constraints
from the final state to the state just below the Decompose Reduce rule. To do this, we
introduce the notion of accept domain:

Definition 4.1. An accept domain Caccept of a state s is the set of values (i, i′) such that
all paths starting from s with vector (i, i′) will never end up in a failure state, and will
end up with equal values of i and i′ on a success state.

Intuitively, the accept domain consists of all index points for which the conditions of
Thm 2.1 will be satisfied. Thus, to obtain the conditions on σ, we need to compute the
accept domain of the topmost state, i.e., the one below the Decompose Reduce rule.

On Program Equivalence with Reductions 177

The accept domain Caccept of a state can be computed by a bottom-up recurrence:

– Success state I[u(i)] = I′[v(i′)]: Caccept = {i, i′ | u(i) = v(i′)}.
– Failure state: Caccept = ∅
– Compute rule: The accept domain is the union of the accept domains of its chil-

dren, each intersected with the corresponding conditionals from its definition.
– Decompose rule: The accept domain is the intersection of the accept domains of

its children.
– Generalize rule: The accept domain is the preimage by the generalization function

of the accept domain of its child.

If the sub-automaton below the Decompose Reduce rule is acyclic, we can easily
compute the accept domain of the top-most state. We end up with the constraints that σ
must satisfy for equivalence. If the sub-automaton below the Decompose Reduce rule is
cyclic, we cannot do a bottom-up recurrence directly.

In general, the sub-automaton below the Decompose Reduce rule can be cyclic.
These loops can be handled by using a transitive closure operation. However, the tran-
sitive closure operation might give us an over-approximation. Thus, to remain sound,
we consider the complementary set of accept domain, called reject domain (i.e., the set
of values (i, i′) such that there exists a path ending in a failure state or on a success state
with different index values). Moreover, the way we apply our transitive closure (based
on Finite State Automaton) forces us to use reject domains for the cyclic case.

4.3 Obtaining the Partial Bijections

First of all, let us prove that the constraints obtained in the previous step of the algorithm
have a particular form:

Proposition 4.1 The constraints onσ can be represented as a disjunction of constraints
in which the constraints involving indices from both SAREs must be equalities.

Proof. The constraints on σ come from two places in the equivalence automaton: the
transitions and the accept states. Because of the transition rules, there are no guards (or
actions) that simultaneously use both sets of indices (i and i′). Thus, these constraints
will end up inD andD′. As for accept states, the only constraints we have are equalities
between an affine function of i and another affine function of i′. Thus, when we perform
the bottom-up recursion, we will still have an equality between two affine functions.

We have a system of parametric linear Diophantine equations [u(i) = v(i′)] where
i′ ∈ D′ are the unknowns. By solving this system, we obtain 3 cases:

– No solution: the constraint is unsatisfiable, thus we can remove it.
– A single solution: i′ = Ai.i + Ap.p + b where Ai is full-column rank. We have a

single partial bijection σ̃(i) = Ai.i + Ap.p + b. Its antecedent and image domains
can be computed by using the constraints fromD andD′.

– Multiple solutions: i′ = At.t + Ai.i + Ap.p+ b where t parametrizes the set of so-
lutions. Likewise, we can compute the antecedent and image domains of the partial
bijection.

178 G. Iooss, C. Alias, and S. Rajopadhye

Our illustrative example in Sec. 4.1 was in the second case. To illustrate the third
case, let us consider the following set of constraints: 0 ≤ i, j < N ∧ 0 ≤ i′, j′ <
N ∧ i+ j = i′ + j′. We have the following solutions: i′ = i+ t and j′ = j− t where t ∈ Z.
Thus, we have a family of partial bijections, parametrized by t.

If we manage to combine these partial bijections together into a full bijection σ,
then this full bijection will satisfy the constraints we derived in the previous subsection.
Thus, this full bijection σ will satisfy the conditions of Thm 2.1 and the two reductions
will be equivalent. Therefore, we need to combine these partial bijections into a full
bijection to finish the derivation of σ.

4.4 Parametric Perfect Matching Problem

Now that we have a list of partial bijections derived from the constraints that σ need
to satisfy, we need to combine them together to form a full bijection. This can be done
by using a greedy heuristic which builds a total bijection σ made of pieces of partial
bijections. The idea is to iterate over the partial bijections in an arbitrary order, and add
them to the construction of σ if it can be used to extend it while making sure that we
still have a bijection.

However, because the antecedent or the image domain between two partial bijections
may overlap, picking one to buildσmight discard other choices of mapping. This might
lead us to something similar to a “local optimum:” a situation where we arrive at a
partial bijection which cannot be improved by extending it with a partial bijection.

Note that finding such σ is exactly finding a perfect matching of a bipartite graph of
parametric size. Indeed, if we consider a bipartite graph whose classes of nodes are re-
spectively the antecedent domainDant (i.e., the set of points on which σ is defined) and
the image domainDim of the bijectionσ, and whose edges (i, i′) are all the couples such
that we have a partial bijection σ̃ such that i′ = σ̃(i). Thus, finding a perfect matching
in this bipartite graph corresponds to picking a single image i′ for every element i of
the antecedent domain, while covering the whole image domainDim uniquely.

In the non-parametric case, a perfect matching to a bipartite graph G = ((U,V), E)
can be found by applying the augmenting path algorithm [17]. This polynomial algo-
rithm determines if a given matching is a maximal matching (which can be used to
check for the existence of a perfect matching), and if not, how to extend it (which can
be used to incrementally build this perfect matching). The idea of this algorithm is to
search for an augmenting path, i.e., a path starting at a point of x ∈ U and ending on a
point y ∈ V which is not saturated by the current matching σ, and alternating between
edges belonging to σ and edges not belonging to σ. If an augmenting path is found, it
is possible to improve the current matching σ by removing from σ, all the edges of the
augmenting path, and by adding all the edges of the path not belonging to σ.

For example, in the following non-parametric bipartite graph, the current matching
admits an augmenting path, which is [3, 2′, 2, 1′, 0, 0′] (with x = 3 and y = 0′).

U V

0

1

2

3

0′
1′
2′
3′ : current matching

: augmented path
Partitions of G : (U,V) U V

0

1

2

3

0′
1′
2′
3′

Old mapping New mapping

On Program Equivalence with Reductions 179

For a parametric bipartite graph, the perfect matching problem is much harder, be-
cause we cannot afford to iterate over all the points (and edges) of the graph. However,
in our case, because we have a finite compact representation of the edges (the partial
bijections), we are able to do operations in constant time (such as computing the neigh-
borhood of a point). Thus, it is possible to extend the augmenting path algorithm to
manage partially the augmenting paths of these graphs. This extended augmenting path
algorithm is shown in Algorithm 1.

Input : Bipartite graph G = (Dant,Dim) whose edges are described by a family of σ̃
Current matching σcur : Dcur �→ D′cur

Output: Either a proof that σ is a maximum matching, or an augmenting-path

U =Dant −Dcur ; // Unsaturated points of the antecedent domain
V = Dim −D′cur ; // Unsaturated points of the image domain
AP = [(U, [])] ; // List of augmenting paths beginnings
Uexplored = U ; // Points toward which an augmenting path has been found
NU = neighborhood of U ; // Union of the images of U by all the σ̃
while (NU ∩ V = ∅) do

foreach [UAP, path] in AP and σ̃ partial bijection do
Uσ̃ = σ−1

cur(σ̃(UAP)) − Uexplored ; // Path to new points discovered
if (Uσ̃ � ∅) then // New augmenting path portion discovered

Add (Uσ̃, path :: σ̃) to AP ; // Updating the augmenting path list
Uexplored = Uexplored ∪Uσ̃

end
end
if Uexplored did not change during this iteration then
σcur is a maximum matching

end
NU = neighborhood of Uexplored

end
Find one set (UAP, path) in AP whose neighborhood intersect V
Find the partial bijection σ̃ which send the previously found set partially into V
Return the augmenting path (path :: σ̃)

Algorithm 1. Parametric augmenting path algorithm

Dant

Dim

U Uσ̃1

N(U) V

σ−1
cur

σ̃1 σ̃2

Illustration of the parametric augmented path algorithm

Uσ̃1 : found after one iteration

Augmenting path [σ̃1, σ̃2] found at iteration 2

The algorithm builds an augmenting path by exploring the augmenting path tree of
the bipartite graph in a breadth-first fashion. To improve the current mapping σ, we
need to get the actual augmenting path. The algorithm keeps track of the “potential
starts” of augmenting paths in the list AP. If a pair (UAP ⊂ Dant, path) is added to AP

180 G. Iooss, C. Alias, and S. Rajopadhye

(line 10), then we have found a set of paths starting from U, finishing at UAP, that are
the starts of augmenting paths, and that use the partial bijections listed in path to go
fromDant toDim.

When we find an augmenting path, we actually find a (potentially parametric) set
of augmenting paths, each of them non-mutually interfering (because σ and all the σ̃
are bijections), which can all be used together to improve σ. Also, keeping track of
the partial bijections used in an augmenting path is enough information to characterize
them: indeed, all the edges of an augmenting path going fromDim to Dant use σ.

We also note that iterating on all the partial bijection can be done in constant non-
parametric time: indeed, if we get a family of partial bijections σ̃t in the previous step,
we can still compute the image of a set through any σ̃t directly, instead of iterating over
all the values of t.

This algorithm is only able to find augmenting paths of non-parametric length. For
example, we need N iterations of the algorithm to find the augmenting path in the fol-
lowing graph:

...
...

0

1

N − 1

N

0′
1′

N − 1′
N′

: current σ
: σ̃1

U = {0}
Uexplorated(iteration i) = [|0; i|]

In summary, to combine the partial bijections into σ, we proceed as follows: first
we use a greedy heuristic to quickly build a bijection. If the bijection is not total, then
we try to improve it by using the augmenting path algorithm. There are three possible
results to this algorithm: (i) a set of non-interfering augmenting paths is found, and we
can improve our current bijection, (ii) our current σ is a maximum matching (thus, it is
not possible to combine the partial bijections into a total bijection) or (iii) the algorithm
does not terminate after an arbitrary number of iterations (there might be an augmenting
path of parametric length, but we are not able to deal with this situation). While σ is
not total, we keep applying the augmenting path algorithm.

5 Extensions

Sums of reductions The Decompose Reduce can be extended to sums of reductions:

. . . ⊕ ⊕
πi(ki)=i

Ei[ki] ⊕ . . . = . . . ⊕
⊕
π′i (k′

i
)=i′

E′i [k′
i
] ⊕ . . .

E1[k1] = F1[k′
1
] En[kn] = Fm[k′m]

σ(1, k1) = (1, k′
1
) σ(n, kn) = (m, k′m)

.

Because an occurrence of a given left reduction can be mapped to an occurrence
to any right reduction, this rule is creating n × m sub-states, each one corresponding

On Program Equivalence with Reductions 181

Table 1. Execution time (in milliseconds) that the algorithm spends in each phase for a few simple
examples. Experiments were done on an Intel core i5-3210M running Linux.

Example Nstates Automaton Partial Bijections Gathering Total

Example 4.1 15 74 206 133 414
Loop reverse 5 48 56 21 126
Distributed summation 15 75 788 297 1161
Non equivalence 4 45 48 84 179
Tiling 7 71 245 83 400

to all possible pairwise comparisons between the expressions. Moreover, we add one
scalar dimension to the antecedent and image domains ofσ: the value of this dimension
corresponds to the reduction number in which the occurrence occurs. Thus, because
each occurrence (α, kα) from the α-th left reduction will be mapped through σ to a
single occurrence of the β-th right reduction, all the other sub-states Eα = E′γ (where
γ � β) will become inaccessible for the index kα. That way, the bijection extraction will
naturally end up with a correct correspondence between the reductions.

This rule can be adapted to manage the associativity and commutativity of a finite sum
of non reduce expressions: indeed, we can use the following identity: E[i] =

⊕
Id(k)=i

E[k].

This ends up checking all possible equivalences between a left and a right expression,
which is the idea to manage associativity and commutativity in Verdoolaege’s equiva-
lence algorithm [13].

Reduction behind another reduction If we encounter a Decompose Reduce behind an-
other Decompose Reduce, then the second bijection σ2 might depend on the first bijec-
tion σ1. Thus, the derivation of both σ is related, and must not be separated. Instead of
deriving independently the constraints for each bijection, we can introduceσ = (σ1, σ2)
the bijection whose first dimensions correspond to σ1 and last dimensions correspond
to σ2. The extracted constraints will deal with σ and the rest of the derivation algorithm
will apply. This result can be extended to any number of reduction, as soon as there is a
finite non-parametric number of instances of σk (to be able to define σ).

6 Implementation

We have implemented a prototype of the equivalence algorithm2 in Java, based on our
polyhedral compilation/transformation framework, AlphaZ. The implementation is still
in progress: currently we do not support loops behind a Decompose Reduction rule in
the equivalence automaton, and we do not support our second extension (combination
of reduction expressions using the same operator). We have run our implementation on
several examples, and we report their corresponding execution time in Figure 1. Every
example manages parametric reductions, thus their equivalence cannot be decided by
the previous work.

2 Available at: http://cs.colostate.edu/AlphaZ/equivalence/index.html

 http://cs.colostate.edu/AlphaZ/equivalence/index.html

182 G. Iooss, C. Alias, and S. Rajopadhye

The Loop reverse example compares two 1D summation, one summing in increas-
ing order and the other one in decreasing order. The Distributed summation example
compares two sums of reductions, summing the terms I[i] for 0 ≤ i < 2N differently.
In the first sum, the terms are split across the two reductions according to the parity of
i. In the second sum, the terms are split between 0 ≤ i < N and N ≤ i < 2N. The Non
Equivalence example compares two reductions which are not equivalent (the second
reduction has one extra term). The Tiling example compares a 1D summation (

∑
i

I[i])

with its tiled counterpart (
∑
ib

∑
il

I[16ib + il] where 0 ≤ il < 16).

7 Conclusion

We have presented an extension to Barthou’s program equivalence semi-algorithm for
SAREs to support the associativity and commutativity properties of reductions applied
to parametric number of sub-terms. The key idea was to find a bijection σ that cor-
rectly maps each sub-expression of one reduction expression to a corresponding sub-
expression of another reduction. We developed an algorithm to infer σ, and showed its
relationship with the perfect matching problem in a parametric bipartite graph.

The idea of using and deriving a bijection can probably be used in other existing
equivalence algorithms, such as the one by Verdoolaege et al. [13]. Some of these al-
gorithms might take other program representation as input, such as affine control loop
programs. It is possible to translate such program by extracting the true dependences
using techniques such as Array Dataflow Analysis [18]. Moreover, if the reductions are
not provided, we need to use reduction detection techniques [19,20,21]. Also, there are
probably links between the notions introduced in both algorithms, such as our accept
domain and their relation Rwant corresponding to the (“desired correspondence between
the iterations of both computations”).

About the parametric augmenting path algorithm, it might be possible to detect aug-
menting paths of parametric sizes if they present some regularity (such as periodicity
of partial bijections). It would also be interesting to determine the maximum length of
all the non-parametric augmenting paths: this number will be useful to determine the
needed number of iterations of the while loop in our algorithm.

Our future plans involve the use of this algorithm to recognize instances of linear
algebra algorithms (which often include reductions), with a goal to subsequently do
“semantic tiling,” a program optimization technique that improves performance by ex-
ploiting semantic properties. Finally, we would like to thank Alain Darte for helpful
discussions.

Acknowledgement. This work was supported in part by the AFOSR under grant
FA9550-13-1-0064, and by the NSF under grants 0917319 and 1240991.

References

1. Alias, C.: Program Optimization by Template Recognition and Replacement. PhD thesis,
Université de Versailles (2005)

2. Godlin, B., Strichman, O.: Regression Verification. In: Proceedings of the 46th Annual De-
sign Automation Conference, pp. 466–471 (2009)

On Program Equivalence with Reductions 183

3. Feng, X., Hu, A.J.: Cutpoints for Formal Equivalence Verification of Embedded Software. In:
Proceedings of the 5th ACM International Conference on Embedded Software, pp. 307–316
(2005)

4. Hoare, T.: The Verifying Compiler: A Grand Challenge for Computing Research. In: Pro-
ceedings of the 2003 Joint Modular Languages Conference, pp. 25–35 (2003)

5. Necula, G.C.: Translation Validation for an Optimizing Compiler. In: Proceedings of the
21st ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 83–95 (2000)

6. Pnueli, A., Siegel, M.D., Singerman, E.: Translation Validation. In: Steffen, B. (ed.) TACAS
1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

7. Zuck, L., Pnueli, A., Goldberg, B., Barrett, C., Fang, Y., Hu, Y.: Translation and Run-Time
Validation of Loop Transformations. Formal Methods in System Design 27(3), 335–360
(2005)

8. Kundu, S., Tatlock, Z., Lerner, S.: Proving Optimizations Correct using Parameterized Pro-
gram Equivalence. In: Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 327–337 (2009)

9. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press
(2011)

10. Jančar, P.: Decidability of Bisimilarity for One-Counter Processes. Information and Compu-
tation 158, 1–17 (2000)

11. Barthou, D., Feautrier, P., Redon, X.: On the Equivalence of Two Systems of Affine Re-
currence Equations (Research Note). In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002.
LNCS, vol. 2400, pp. 309–313. Springer, Heidelberg (2002)

12. Shashidhar, K.C., Bruynooghe, M., Catthoor, F., Janssens, G.: Verification of Source Code
Transformations by Program Equivalence Checking. In: Bodik, R. (ed.) CC 2005. LNCS,
vol. 3443, pp. 221–236. Springer, Heidelberg (2005)

13. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence Checking of Static Affine Pro-
grams Using Widening to Handle Recurrences. ACM Transactions on Programming Lan-
guages and Systems 34(3), 11:1–11:35 (2012)

14. Karfa, C., Banerjee, K., Sarkar, D., Mandal, C.: Verification of Loop and Arithmetic Trans-
formations of Array-Intensive Behaviors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 32(11), 1787–1800 (2013)

15. Mauras, C.: ALPHA: un Langage Équationnel pour la Conception et la Programmation
d’Architectures Parallèles Synchrones. PhD thesis, L’Université de Rennes I, IRISA, Cam-
pus de Beaulieu, Rennes, France (December 1989)

16. Le Verge, H.: Un Environnement de Transformations de Programmmes pour la Synthèse
d’Architectures Régulières. PhD thesis, L’Université de Rennes I, IRISA, Campus de
Beaulieu, Rennes, France (October 1992)

17. West, D.B.: Introduction to Graph Theory. Prentice Hall (1999)
18. Feautrier, P.: Dataflow Analysis of Array and Scalar References. International Journal of

Parallel Programming 20, 23–53 (1991)
19. Redon, X., Feautrier, P.: Detection of Scans. Parallel Algorithms and Applications 15,

229–263 (2000)
20. Sato, S., Iwasaki, H.: Automatic Parallelization via Matrix Multiplication. In: Proceedings

of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 470–479 (2011)

21. Zou, Y., Rajopadhye, S.: Scan Detection and Parallelization in “Inherently Sequential”
Nested Loop Programs. In: Proceedings of the 10th International Symposium on Code Gen-
eration and Optimization, pp. 74–83 (2012)

A Progress Bar for Static Analyzers�

Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

Seoul National University, Seoul, Korea

Abstract. We present a technique for devising a progress indicator of
static analyzers. Progress indicator is a useful user interface that shows
how close a static analysis has progressed so far to its completion. Be-
cause static analysis’ progress depends on the semantic complexity, not
on the code size, of the target software, devising an accurate progress-
indicator is not obvious. Our technique first combines a semantic-based
pre-analysis and a statistical method to approximate how a main anal-
ysis progresses in terms of lattice height of the abstract domain. Then,
we use this information during the main analysis and estimate the anal-
ysis’ current progress. We apply the technique to three existing analyses
(interval, octagon, and pointer analyses) for C and show the technique
estimates the actual analysis progress for various benchmarks.

1 Introduction

We aim to develop a progress bar for static analyzers. Realistic semantic-based
static analyzers usually take a long time to analyze real-world software. For
instance, Sparrow [1], our static analyzer for full C, takes more than 4 hours
to analyze one million lines of C code [14]. Astrée [2] has also been reported to
take over 20 hours to analyze programs of size over 500KLOC [5]. Nonetheless,
such static analyzers are silent during their operation and users cannot but wait
several hours without any progress information.

Estimating static analysis progress at real-time is challenging in general. Static
analyzers take most of their time in fixpoint computation, but estimating the
progress of fixpoint algorithms has been unknown. One challenge is that the
analysis time is generally not proportional to the size of the program to analyze.
For instance, Sparrow [14] takes 4 hours in analyzing one million lines but
require 10 hours to analyze programs of sizes around 400KLOC. Similar obser-
vations have been made for Astrée as well: Astrée takes 1.5 hours for 70KLOC
but takes 40 minutes for 120KLOC [5].

In this paper, we present an idea for estimating static analysis progress. Our
basic approach is to measure the progress by calculating lattice heights of in-
termediate analysis results and comparing them with the height of the final
analysis result. To this end, we employ a semantic-based pre-analysis and a sta-
tistical regression technique. First, we use the pre-analysis to approximate the

� This work was supported by the Engineering Research Center of Excellence Program
of Korea Ministry of Science, ICT & Future Planning(MSIP) / National Research
Foundation of Korea(NRF) (Grant NRF-2008-0062609).

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 184–200, 2014.
c© Springer International Publishing Switzerland 2014

A Progress Bar for Static Analyzers 185

height of the fixpoint. This estimated height is then fine-tuned with the statis-
tical method. Second, because this height progress usually does not indicate the
actual progress (speed), we normalize the progress using the pre-analysis.

We show that our technique effectively estimates static analysis progress in
a realistic setting. We have implemented our idea on top of Sparrow [1]. In
our experiments with various open-source benchmarks, the proposed technique
is found to be useful to estimate the progress of interval, octagon, and pointer
analyses. The pre-analysis overheads are 3.8%, 7.3%, and 36.6% on average in
interval, pointer, and octagon analysis, respectively.

Contributions. This paper makes the following contributions:

– We present a technique for estimating static analysis progress. To our knowl-
edge, our work is the first attempt to estimate static analysis progress.

– We show its applicability for numerical analyses (with intervals and oc-
tagons) and a pointer analysis on a suite of real C benchmarks.

Related Work. Though progress estimation techniques have been extensively
studied in other fields [12,7,4,8,10,11], there have been no research for static
analyzers. For instance, a varaiety of progress estimation techniques have been
proposed for long-running software systems such as databases [7,4,8] and par-
allel data processing systems [11,10]. Static analyzers are also a long-running
software system but there are no progress estimation techniques for them. Fur-
thermore, our method is different from existing techniques. Existing progress
estimators [10,8,11,4] and algorithm runtime prediction [6] are based solely on
statistics or machine learning. By contrast, we propose a technique that combines
a semantics-based pre-analysis with machine learning.

Outline. Section 2 describes the overall approach to our progress estimation and
the remaining sections fill the details. Section 3 defines a class of non-relational
static analyses and Section 4 gives the details on how we develop a progress bar
for these analyses. Section 5 experimentally evaluates the proposed technique.
Section 6 discusses the application to relational analyses. Section 7 concludes.

2 Overall Approach to Progress Estimation

In this section, we describe the high-level idea of our progress estimation tech-
nique. In Section 4, we give details that we used in our experiments.

2.1 Static Analysis

We consider a static analysis designed by abstract interpretation. In abstract
interpretation, a static analysis is specified with an abstract domain D and se-
mantic function F : D → D, where D is a cpo (complete partial order).The
analysis’ job is to compute the following sequence until stabilized:⊔

i∈N

F i(⊥) = F 0(⊥) � F 1(⊥) � F 2(⊥) � · · · (1)

186 W. Lee, H. Oh, and K. Yi

where F 0(⊥) = ⊥ and F i+1(⊥) = F (F i(⊥)). When the chain is infinitely long,
we can use a widening operator

�
: D× D→ D to accelerate the sequence.

2.2 Progress Estimation

We aim to develop a progress bar that proceeds at a linear rate. That is, the es-
timated progress directly indicates the amount of work that has been completed
so far. Suppose that the sequence in (1) requires n iterations to stabilize, and
assume that computing the abstract semantics F (X) at each iteration takes a
constant time regardless of the input X . Then, the actual progress of the analysis
at ith iteration is defined by i

n . We aim at estimating this progress.
Basically, our method estimates the progress by calculating the lattice heights

of intermediate analysis results. Suppose that we have a function H : D → N
that takes an abstract domain element X ∈ D and computes its height. The
heights of domain elements need not be precisely defined, but we assume that
H satisfies two conditions: 1) the height is initially zero. 2) H is monotone. The
second condition is for building a progress bar that monotonically increases as
the analysis makes progress.

The first job in our progress estimation is to approximate the height of the
final analysis result. Let Hfinal be the height of the final analysis result, i.e.,
Hfinal = H(

⊔
i∈N

F i(⊥)). In Section 4.3, we describe a method for precisely
estimating Hfinal with the aid of statistical regression. This height estimation
method is orthogonal to the rest part of our progress estimation technique. In
this overview, let H�

final be the estimated final height and assume, for simplicity,

that H�
final = Hfinal .

A Naive Approach. Given H and H�
final , a simple progress bar could be devel-

oped as follows. At each iteration i, we first compute the height of the current
analysis result:

Hi = H(F i(⊥)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H�
final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotoni-
cally increases as the analysis makes progress, and has 1 when the analysis is
completed.

Problem of the Naive Approach. We noticed that this simple method for
progress estimation is, however, unsatisfactory in practice. The main problem is
that the height progress does not necessarily indicate the amount of computation
that has been completed. For instance, the solid line in Figure 1(a) depicts how the
heightprogress increases during our interval analysis of programsendmail-8.14.6

(The dotted diagonal line represents the ideal progress bar). As the figure shows,

A Progress Bar for Static Analyzers 187

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
g
h
t
p
ro
g
re
ss

main
pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
g
h
t
p
ro
g
re
ss

(a) original height-progress (b) normalized height-progress

Fig. 1. The height progress of a main analysis can be normalized using a pre-analysis.
In this program (sendmail-8.14.6), the pre-analysis takes only 6.6% of the main
analysis time.

the height progress rapidly increases during the early stage of the analysis and after
that slowly converges. We found that this progress bar is not much useful to infer
the actual progress nor to predict the remaining time of the analysis.

Our Approach. We overcome this problem by normalizing the height progress
using the relationship between the actual progress and the height progress. Sup-
pose at the moment that we are given a function normalize : [0, 1] → [0, 1]
that maps the height progress into the corresponding actual progress. Indeed,
normalize represents the inverse of the graph (the solid line) shown in Figure
1(a). Given such normalize, the normalized height progress is defined as follows:

P̄i = normalize(Pi) = normalize
(Hi

H�
final

)
(2)

Note that, unlike the original height progress Pi, the normalized progress P̄i

would represent the actual progress, increasing at a linear rate. However, note
also that we cannot compute normalize unless we run the main analysis.

The key insight of our method is that we can predict the normalize function
by using a less precise, but cheaper pre-analysis than the main analysis. Our hy-
pothesis is that if the pre-analysis is semantically related with the main analysis,
it is likely that the pre-analysis’ height-progress behavior is similar to that of
the main analysis. In this article, we show that this hypothesis is experimentally
true and allows to estimate sufficiently precise normalization functions.

We first design a pre-analysis as a further abstraction of the main analysis.
Let D� and F � : D� → D� be such abstract domain and semantic function of the
pre-analysis, respectively. In Section 4.2, we give the exact definition of the pre-
analysis design we used. Next, we run this pre-analysis, computing the following
sequence until stabilized:

188 W. Lee, H. Oh, and K. Yi⊔
i∈N

F �i(⊥�) = F �0(⊥�) � F �1(⊥�) � F �2(⊥�) � · · ·

Suppose that the pre-analysis stabilizes in m steps (m is often much smaller
than n, the number of iterations for the main analysis to stabilize). Then, we
collect the following data during the course of the pre-analysis:

(
H�

0

H�
m

,
0

m
), (

H�
1

H�
m

,
1

m
), · · · , (

H�
i

H�
m

,
i

m
), · · · , (

H�
m

H�
m

,
m

m
)

whereH�
i = H(γ(F �i(⊥�))). The second component i

m of each pair represents the
actual progress of the pre-analysis at the ith iteration, and the first represents the
corresponding height progress. Generalizing the data (using a linear interpolation
method), we obtain a normalization function normalize� : [0, 1] → [0, 1] for the
pre-analysis.

The normalization function normalize� of such a pre-analysis can be a good
estimation of the normalization function normalize of the main analysis. For
instance, the dotted curve in Figure 1(a) shows the height progress of our pre-
analysis (defined in Section 4.2), which has a clear resemblance with the height
progress (the solid line) of the main analysis. Thanks to this similarity, it is
acceptable in practice to use the normalization function normalize� for the pre-
analysis instead of normalize in our progress estimation. Thus, we revise (2) as
follows:

P̄ �
i = normalize�

(Hi

Hfinal

)
(3)

That is, at each iteration i of the main analysis, we show the estimated nor-
malized progress P̄ �

i to the users. Figure 1(b) depicts P̄ �
i for sendmail-8.14.6

(on the assumption that H�
final = Hfinal). Note that, unlike the original progress

bar (the solid line in Figure 1(a)), the normalized progress bar progresses at an
almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop
our progress estimation technique. For presentation brevity, we consider non-
relational analyses. However, our overall approach to progress estimation is also
applicable to relational analyses. In Section 6, we discuss the application to a
relational analysis with the octagon domain.

Static Analysis. A program is a tuple 〈C, ↪→〉 where C is a set of program
points, (↪→) ⊆ C × C is a relation that denotes control flows: c ↪→ c′ indicates
that c′ is a next program point of c. Each program point is associated with a
command: cmd(c) denotes the command associated with program point c.

A Progress Bar for Static Analyzers 189

We consider a class of static analyses whose abstract domain maps program
points to abstract states:

D = C→ S

where the abstract state is a map from abstract locations to abstract values:

S = L→ V

We assume that the set of abstract locations is finite and V is a complete lattice.
The abstract semantics of the program is characterized by the least fixpoint of
abstract semantic function F ∈ (C→ S)→ (C→ S) defined as,

F (X) = λc ∈ C.fc(
⊔

c′↪→c

X(c′)) (4)

where fc ∈ S→ S is the transfer function for control point c.

Example 1 (Interval Analysis). Consider the following imperative language.:

x := e | assume(x < n) where e → n | x | e + e

All basic commands are assignments or assume commands. An expression may
be a constant integer (n), a binary operation (e + e), a variable expression (x).
Let Var be the set of all program variables. We define the abstract state as a
map from program variables to the lattice of intervals:

L = Var V = {[l , u] | l , u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥} (5)

The transfer function fc : S→ S is defines as follows:

fc(s) =

{
s[x �→ V(e)(s)] cmd(c) = x := e
s[x �→ s(x) � [−∞, n− 1])] cmd(c) = assume(x < n)

where auxiliary function V(e) ∈ S→ V computes the abstract value for e under
s:

V(n)(s) = [n, n], V(e1 + e2)(s) = V(e1)(s) ⊕ V(e2)(s), V(x)(s) = s(x)

where ⊕ denotes the abstract binary operator for the interval domain.

Example 2 (Pointer Analysis). Consider the following imperative language:

x := e | ∗x := e where e → x | &x | ∗x

We design a (flow-sensitive) pointer analysis as follows. The abstract state is a
map from program variables to its points-to set, i.e.,

L = Var V = P(Var) (6)

The transfer function fc : S→ S is defines as follows:

fc(s) =

{
s[x �→ V(e)(s)] cmd(c) = x := e
s[l1 �→ s(l1) ∪ V(e)(s)] · · · [ln �→ s(ln) ∪ V(e)(s)] cmd(c) = ∗x := e

190 W. Lee, H. Oh, and K. Yi

where s(x) = {l1, . . . , ln}. For simplicity, we do not consider strong updates. In
this case, V(e)(s) is defined as follows:

V(x)(s) = s(x), V(&x)(s) = {x}, V(∗x)(s) =
⋃

l∈s(x)

s(l)

Fixpoint Computation with Widening. When the domain of abstract val-
ues (V) has infinite height, we need a widening operator

�
: V × V → V to

approximate the least fixpoint of F . In practice, the widening operator is ap-
plied at only headers of flow cycles [3]. Let W ⊆ C be the set of widening points
(all loop headers in the program) in the program.

Example 3. We use the following widening operator in our interval analysis:

[l, u]
�
[l′, u′] = [if (l′ < l) then −∞ else l, if (u′ > u) then +∞ else u].

4 Details on Our Progress Estimation

As described in Section 2, our progress estimation is done in two steps: (1) we first
run a pre-analysis to obtain an estimated normalization function normalize� and
an estimated final height H�

final ; (2) using them, at each iteration of the main
analysis, we measure the height progress, convert it to the estimated actual
progress, and show it to users. However, Section 2 has left out a number of
details. In this section, we give the details that we tried:

– In Section 4.1, we define our height function H.
– In Section 4.2, we describe our pre-analysis design.
– In Section 4.3, we present techniques for precise estimation of the final height.

4.1 The Height Function

We first define height function H : (C→ S)→ N that takes an abstract domain
element and computes its height. Since our analysis is non-relational, we assume
that the height of an abstract domain element is computed point-wise as follows:

H(X) =
∑
c∈C

∑
l∈L

h(X(c)(l)) (7)

where h : V→ N is the height function for the abstract value domain (V).

Example 4. For the interval domain V in (5), we use the following height func-
tion:

h(⊥) = 0

h([a, b]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 a = b ∧ a, b ∈ Z
2 a < b ∧ a, b ∈ Z
3 a ∈ Z ∧ b = +∞
3 a = −∞ ∧ b ∈ Z
4 a = −∞ ∧ b = +∞

A Progress Bar for Static Analyzers 191

We defined this height function based on the actual workings of our interval
analysis. Constant intervals (the first case) have height 1 since they are usually
immediately generated from program texts. The finite intervals (the second case)
are often introduced by joining two constant intervals. Intervals with one infinite
bound (the third and fourth cases) are due to the widening operator. Note that
our widening operator (Example 3) immediately assigns ±∞ to unstable bounds.
[−∞,+∞] is generated with the widening is applied to both bounds.

Example 5. For the pointer domainV in (6), we use the following height function:

h(S) =

{
4 || S ||≥ 4
|| S || otherwise

This definition is based on our observation that, in flow-sensitive pointer analysis
of C programs, most of the points-to sets have sizes less than 4.

4.2 Pre-analysis via Partial Flow-Sensitivity

A key component of our method is the pre-analysis that is used to estimate both
the height-progress behavior and the maximum height of the main analysis.
One natural method for further abstracting static analyses in Section 3 is to
approximate the level of flow-sensitivity. In this subsection, we design a pre-
analysis that was found to be useful in progress estimation.

We consider a class of pre-analyses that is partially flow-sensitive version of
the main analysis. While the main analysis is fully flow-sensitive (i.e., the orders
of program statements are fully respected), our pre-analysis only respects the
orders of some selected program points and regards other program points flow-
insensitively.

In particular, we are interested in a pre-analysis that only distinguishes pro-
gram points around headers of flow cycles. In static analysis, the most interesting
things usually happen in flow cycles. For instance, because of widening and join,
significant changes in abstract states occur at flow cycle headers. Thus, it is
reasonable to pay particular attention to height increases occurred at widen-
ing points (W). To control the level of flow-sensitivity, we also distinguish some
preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Sup-
pose that a parameter depth is given, which indicates how many preceding points
of flow cycle headers are separated in our pre-analysis. Then, we decide to dis-
tinguish the following set Φ ⊆ C of program points:

Φ = {c ∈ C | w ∈W ∧ c ↪→depth w}

where c ↪→i c′ means that c′ is reachable from c within i steps of ↪→.
We define the pre-analysis that is flow-sensitive only for Φ as a special instance

of the trace partitioning [16]. The set of partitioning indicies Δ is defined by
Δ = Φ∪ {•}, where • represents all the other program points not included in Φ.
That is, we use the following partitioning function δ : C→ Δ:

192 W. Lee, H. Oh, and K. Yi

δ(c) =

{
c c ∈ Φ
• c �∈ Φ

With δ, we define the abstract domain (D�) and semantic function (F �) of the
pre-analysis as follows:

C→ S −−−→←−−−
α

γ
Δ→ S

where
γ(X) = λc. X(δ(c)).

The semantic function F � : (Δ→ S)→ (Δ→ S) is defined as,

F �(X) = λi ∈ Δ. (
⊔

c∈δ−1(i)

fc(
⊔

c′↪→c

X(δ(c′))) (8)

where δ−1(i) = {c ∈ C | δ(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth ∈ [0,∞]. A larger depth value yields a more
precise pre-analysis. In our experiments (Section 5), we use 1 for the default
value of depth and show that how the progress estimation quality improves with
higher depth values. It is easy to check that our pre-analysis is sound with respect
to the main analysis regardless of parameter depth.

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of
the final analysis result. Note that Hfinal cannot be computed unless we actually

run the main analysis. Instead, we compute H�
final , an estimation of Hfinal . We

replace the Hfinal in (3) by H�
final as follows:

P̄ �
i = normalize�

(Hi

H�
final

)
(9)

Our goal is to compute H�
final such that |H�

final − Hfinal | is as smaller as
possible, for which we use the pre-analysis and a statistical method. First, we
compute Hpre , the final height of the pre-analysis result, i.e.,

Hpre = H(γ(lfpF �))

Next, we statistically refine Hpre into H�
final such that |H�

final −Hfinal | is likely
smaller than |Hpre − Hfinal |. The job of the statistical method is to predict

α =
Hfinal

Hpre
(0 ≤ α ≤ 1) for a given program. With α, H�

final is defined as follows:

H�
final = α ·Hpre

We assume that α is defined as a linear combination of a set of program
features in Table 1. We used eight syntactic features and six semantic features.

A Progress Bar for Static Analyzers 193

The features are selected among over 30 features by feature selection for the
purpose of removing redundant or irrelevant ones for better accuracy. We used
L1 based recursive feature elimination to find optimal subset of features using
254 benchmark programs.

The feature values are normalized to real numbers between 0 and 1. The Post-
fixpoint features are about the post-fixpoint property. Since the pre-analysis
result is a post fixpoint of the semantic function F , i.e., γ(lfpF �) ∈ {x ∈ D |
x , F (x)}, we can refine the result by iteratively applying F to the pre-analysis
result. Instead of doing refinement, we designed simple indicators that show
possibility of the refinement to avoid extra cost. For every traning example, a
feature vector is created with a negligible overhead.

We used the ridge linear regression as the learning algorithm. The ridge linear
regression algorithm is known as a quick and effective technique for numerical
prediction.

Table 1. The feature vector used by linear regression to construct prediction models

Category Feature

function calls in the program
Inter-procedural # functions in recursive call cycles

(syntactic) # undefined library function calls

the maximum loop size
the average loop sizes

Loop-related the standard deviation of loop sizes
(syntactic) the standard deviation of depths of loops

loopheads

Numerical analysis # bounded intervals in the pre-analysis result
(semantic) # unbounded intervals in the pre-analysis result

Pointer analysis # points-to sets of cardinality over 4 in the pre-analysis result
(semantic) # points-to sets of cardinality under 4 in the pre-analysis result

Post-fixpoint # program points where applying the transfer function once
(semantic) improves the precision

height decrease when transfer function is applied once

In a way orthogonal to the statistical method, we further reduce |H�
final −

Hfinal | by tuning the height function. We reduce |H�
final −Hfinal | by considering

only subsets of program points and abstract locations. However, it is not the
best way to choose the smallest subsets of them when computing heights. For
example, we may simply set both of them to be an empty set. Then, |H�

final −
Hfinal | will be zero, but both Hfinal and H�

final will be also zero. Undoubtedly,
that results in a useless progress bar as estimated progress is always zero in that
case.

Our goal is to choose program points and abstract locations as small as possi-
ble, while maintaining the progress estimation quality. To this end, we used the
following two heuristics:

194 W. Lee, H. Oh, and K. Yi

– We focus only on abstract locations that contribute to increases of heights
during the main analysis. Let D(c) an over-approximation of the set of such
abstract locations at program point c:

D(c) ⊇ {l ∈ L | ∃i ∈ {1 . . . n}.h(Xi(c)(l))− h(Xi−1(c)(l)) > 0}

Note that sincewe cannotobtain the set apriori,weuse anover-approximation.
– We consider only on flow cycle headers in the height calculation. This is be-

cause cycle headers are places where significant operations (join and widen-
ing) happen.

Thus, we revise the height function H : D→ N in (7) as follows:

H(X) =
∑
c∈W

∑
l∈D(c)

h(X(c)(l)) (10)

Because W ⊆ C and ∀c. D(c) ⊆ L, the height approximation error for the new
H is smaller than that of the original H in (7).

We performed 3-fold cross validation using 254 benchmarks including GNU
softwares and linux packages. For interval analysis, we obtained 0.06 as a mean
absolute error of α, and 0.05 for pointer analysis.

5 Experiments

In this section, we evaluate our progress estimation technique described so far.
We show that our technique effectively estimates the progress of an interval
domain–based static analyzer, and a pointer analyzer for C programs.

5.1 Setting

We evaluate our progress estimation technique with Sparrow [1], a realistic C
static analyzer that detects memory errors such as buffer-overruns and null deref-
erences. Sparrow basically performs a flow-sensitive and context-insensitive
analysis with the interval abstract domain. The abstract state is a map from
abstract locations (including program variables, allocation-sites, and structure
fields) to abstract values (including intervals, points-to sets, array and structure
blocks). Details on Sparrow’s abstract semantics is available at [13]. Spar-
row performs a sparse analysis [14] and the analysis has two phases: data de-
pendency generation and fixpoint computation. Our technique aims to estimate
the progress of the fixpoint computation step and, in this paper, we mean by
analysis time the fixpoint computation time.

We have implemented our technique as described in Section 2 and 4. We used
the height function defined in Example 4 and 5. To estimate numerical, and
pointer analysis progresses, we split the Sparrow into two analyzers so that
each of them may analyze only numeric or pointer-related property respectively.
The pre-analysis is based on the partial flow-sensitivity defined in Section 4.2,

A Progress Bar for Static Analyzers 195

where we set the parameter depth as 1 by default. That is, the pre-analysis is
flow-sensitive only for flow cycle headers and their immediate preceding points.

All our experiments were performed on a machine with a 3.07 GHz Intel Core
i7 processor and 24 GB of memory. For statistical estimation of the final height,
we used the scikit-learn machine learning library [15].

5.2 Results

We tested our progress estimation techniques on 8 GNU software packages for
each of analyses. Table 2 and 3 show our results.

Table 2. Progress estimation results (interval analysis). LOC shows the lines of code
before pre-processing. Main reports the main analysis time. Pre reports the time spent
by our pre-analysis. Linearity indicates the quality of progress estimation (best : 1).
Height-Approx. denotes the precision of our height approximation (best : 1). Err
denotes mean of absolute difference between Height-Approx. and 1 (best : 0).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.

bison-1.875 38841 3.66 0.91 0.73 24.86% 1.03
screen-4.0.2 44745 40.04 2.37 0.86 5.92% 0.96
lighttpd-1.4.25 56518 27.30 1.21 0.89 4.43% 0.92
a2ps-4.14 64590 32.05 11.26 0.51 35.13% 1.06
gnu-cobol-1.1 67404 413.54 99.33 0.54 24.02% 0.91
gnugo 87575 1541.35 7.35 0.89 0.48% 1.12
bash-2.05 102406 16.55 2.26 0.80 13.66% 0.93
sendmail-8.14.6 136146 1348.97 5.81 0.69 0.43% 0.93

TOTAL 686380 3423.46 130.5 0.74 3.81% Err : 0.07

Table 3. Progress estimation results (pointer analysis).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.

screen-4.0.2 44745 15.89 1.56 0.90 9.82% 0.98
lighttpd 56518 11.54 0.87 0.76 7.54% 1.03
a2ps-4.14 64590 10.06 3.48 0.65 34.59% 1.04
gnu-cobol-1.1 67404 32.27 12.22 0.91 37.87% 1.03
gnugo 87575 217.77 3.88 0.64 1.78% 0.97
bash-2.05 102406 3.68 0.78 0.56 21.20% 1.04
proftpd-1.3.2 126996 74.64 11.14 0.82 14.92% 1.03
sendmail-8.14.6 136146 145.62 3.15 0.58 2.16% 0.98

TOTAL 686380 511.47 37.08 0.73 7.25% Err : 0.03

The Linearity column in Table 2, and 3 quantifies the “linearity”, which we
define as follows:

1−
∑

1≤i≤n(
i
n − P̄ �

i)
2∑

1≤i≤n(
i
n −

n+1
2n)2

196 W. Lee, H. Oh, and K. Yi

where n is the number of iterations required for the analysis to stabilize and
P̄ �
i is the estimated progress at ith iteration of the analysis. This metric is just

a simple application of the coefficient of determination in statistics, i.e., R2,
which presents how well P̄ � fits the actual progress rate i

n . The closer to 1 lin-

earity is, the more similar to the ideal progress bar P̄ �
i is. Figure 3 presents

the resulting progress bars for each of benchmark programs providing graphical
descriptions of the linearity. In particular, the progress bar proceeds almost lin-
early for programs of the linearity close to 0.9 (lighttpd-1.4.25, gnugo-3.8
in interval analysis, gnu-cobol-1.1, bash-2.05 in pointer analysis). For some
programs of relatively low linearity (gnu-cobol-1.1, bash-2.05 in interval anal-
ysis, gnugo-3.8, proftpd-1.3.2 in pointer analysis), the progress estimation is
comparatively rough but still useful.

The Height-Approx. column stands for the accuracy of final height approx-
imation

Hfinal

H�
final

where H�
final is estimated final height via the statistical technique

described in section 4.3. Err denotes an average of absolute errors |Height-
Approx. −1|. To prove our statistical method avoids overfitting problem, we
performed 3-fold cross validation using 254 benchmarks including GNU soft-
wares and linux packages. For interval analysis, we obtained 0.063 Err with
0.007 standard deviation. For pointer analysis, 0.053 Err with 0.001 standard
deviation. These results show our method avoids overfitting, evenly yielding pre-
cise estimations at the same time.

The Overhead column shows the total overhead of our method, which in-
cludes the pre-analysis running time (Section 4.2). The average performance
overheads of our method are 3.8% in interval analysis, and 7.3% in pointer anal-
ysis respectively.

5.3 Discussion

Linearity vs. Overhead. In our progress estimation method, we can make
tradeoffs between the linearity and overhead. Table 2, 3 show our progress esti-
mations when we use the default parameter value (depth = 1) in the pre-analysis.
By using a higher depth value, we can improve the precision of the pre-analysis
and hence the quality of the resulting progress estimation at the cost of extra
overhead. For two programs, the following table shows the changes in linearity
and overhead when we change depth from 1 to 3:

Program Linearity change Overhead change

bash-2.05 (pointer) 0.56 → 0.70 21.2% → 37.5%
sendmail-8.14.6 (interval) 0.69 → 0.95 0.4% → 18.4%

Height Approximation Error. In our experiments, we noticed that our
progress estimationmethod is sensitive to the height approximation error (H�

final−
Hfinal). Although we precisely estimate heights of the fixpoints, there are cases
where even small error sometimes leads to unsatisfactory results. For instance,

A Progress Bar for Static Analyzers 197

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
g
h
t
p
ro
g
re
ss

main
pre

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
g
h
t
p
ro
g
re
ss

(a) original height-progress (b) normalized height-progress

Fig. 2. Our method is also applicable to octagon domain–based static analyses

the reason why the progress for gnu-cobol-1.1 is under-estimated is the height
approximation error(0.09).

We believe enhancing the precision will be achieved by increasing training
examples and relevant features.

6 Application to Relational Analyses

The overall approach of our progress estimation technique may adapt easily to
relational analyses as well. In this section, we check the possibility of applying
our technique to the octagon domain–based static analysis [9].

We have implemented a prototype progress estimator for the octagon analysis
as follows. For pre-analysis, we used the same partial flow-sensitive abstraction
described in Section 4.2 with depth = 1. Regarding the height function H, we also
used that of the interval analysis. Note that, since an octagon domain element
is a collection of intervals denoting ranges of program variables such as x and y,
their sum x+ y, and their difference x− y, we can use the same height function
in Example 4. In this prototype implementation, we assumed that we are given
heights of the final analysis results.

Figure 2 shows that our technique effectively normalizes the height progress
of the octagon analysis. The solid lines in Figure 2(a) depicts the height progress
of the main octagon analysis of program wget-1.9 and the dotted line shows
that of the pre-analysis. By normalizing the main analysis’ progress behavior,
we obtain the progress bar depicted in Figure 2(b), which is almost linear.

Figure 3 depicts the resulting progress bar for other benchmark programs,
and the following table reports detailed experimental results.

198 W. Lee, H. Oh, and K. Yi

Time(s)
Program LOC Main Pre Linearity Overhead
httptunnel-3.3 6174 49.5 8.2 0.91 16.6%
combine-0.3.3 11472 478.2 16 0.89 3.4%
bc-1.06 14288 63.9 43.8 0.96 68.6%
tar-1.17 18336 977.0 73.1 0.82 7.5%
parser 18923 190.1 104.8 0.97 55.1%
wget-1.9 35018 3895.36 1823.15 0.92 46.8%
TOTAL 69193 5654.0 2069.49 0.91 36.6%

Even though we completely reused the pre-analysis design and height function for
the interval analysis, the resulting progress bars are almost linear. This prelimi-
nary results suggest that our method could be applicable to relational analyses.

7 Conclusion

We have proposed a technique for estimating static analysis progress. Our tech-
nique is based on the observation that semantically related analyses would have
similar progress behaviors, so that the progress of the main analysis can be esti-
mated by a pre-analysis. We implemented our technique on top of a realistic C
static analyzer and show our technique effectively estimates its progress.

Acknowledgment. The authors would like to thank the anonymous referees
for their comments in improving this work.

References

1. Sparrow, http://ropas.snu.ac.kr/sparrow

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of
the ACM SIGPLAN-SIGACT Conference on Programming Language Design and
Implementation, pp. 196–207 (2003)

3. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

4. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating progress of execution
for sql queries. In: Proceedings of the 2004 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2004, pp. 803–814. ACM, New York
(2004)

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
astrée scale up? Formal Methods in System Design 35(3), 229–264 (2009)

6. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
The state of the art. CoRR, abs/1211.0906 (2012)

7. König, A.C., Ding, B., Chaudhuri, S., Narasayya, V.: A statistical approach to-
wards robust progress estimation. Proc. VLDB Endow. 5(4), 382–393 (2011)

http://ropas.snu.ac.kr/sparrow

A Progress Bar for Static Analyzers 199

8. Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M.W.: Toward a progress indica-
tor for database queries. In: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2004, pp. 791–802. ACM, New York
(2004)

9. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

10. Morton, K., Friesen, A., Balazinska, M., Grossman, D.: Estimating the progress of
MapReduce pipelines. In: Proc. of ICDE, pp. 681–684. IEEE (2010)

11. Morton, K., Balazinska, M., Grossman, D.: Paratimer: a progress indicator for
mapreduce dags. In: Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2010, pp. 507–518. ACM, New York
(2010)

12. Myers, B.A.: The importance of percent-done progress indicators for computer-
human interfaces. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 1985, pp. 11–17. ACM, New York (1985)

13. Oh, H., Brutschy, L., Yi, K.: Access analysis-based tight localization of abstract
memories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
356–370. Springer, Heidelberg (2011)

14. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for C-like languages. In: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (2012)

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

16. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. on
Programming Languages and System 29(5), 26–51 (2007)

A Progress Graphs

In this appendix, progress graphs are presented. Figure 3 presents the result-
ing interval, pointer, and octagon analysis progress bars respectively. Dotted
diagonal line denotes the ideal progress bar.

200 W. Lee, H. Oh, and K. Yi

In
te
rv
a
l
a
n
a
ly
si
s

P
o
in
te
r
a
n
a
ly
si
s

O
ct
a
g
o
n
a
n
a
ly
si
s

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

b
i
s
o
n
-
1
.
8
7
5

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

s
c
r
e
e
n
-
4
.
0
.
2

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

p
r
o
f
t
p
d
-
1
.
3
.
2

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

s
c
r
e
e
n
-
4
.
0
.
2

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

b
c
-
1
.
0
6

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

c
o
m
b
i
n
e
-
0
.
3
.
3

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

l
i
g
h
t
t
p
d
-
1
.
4
.
2
5

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

a
2
p
s
-
4
.
1
4

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

l
i
g
h
t
t
p
d
-
1
.
4
.
2
5

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

a
2
p
s
-
4
.
1
4

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

h
t
t
p
t
u
n
n
e
l
-
3
.
3

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

p
a
r
s
e
r

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

g
n
u
g
o
-
3
.
8

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

g
n
u
-
c
o
b
o
l
-
1
.
1

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

g
n
u
g
o
-
3
.
8

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

g
n
u
-
c
o
b
o
l
-
1
.
1

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

t
a
r
-
1
.
1
7

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

w
g
e
t
-
1
.
9

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

b
a
s
h
-
2
.
0
5

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

s
e
n
d
m
a
i
l
-
8
.
1
4
.
5

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

b
a
s
h
-
2
.
0
5

0
0.
2

0.
4

0.
6

0.
8

1

0

0.
2

0.
4

0.
6

0.
81

ac
tu
al

p
ro
gr
es
s

heightprogress

s
e
n
d
m
a
i
l
-
8
.
1
4
.
5

F
ig
.
3
.
O
u
r
p
ro
g
re
ss

es
ti
m
a
ti
o
n
w
h
en

d
ep
th

=
1
.

Sparse Dataflow Analysis
with Pointers and Reachability

Magnus Madsen and Anders Møller

Aarhus University, Denmark
{magnusm,amoeller}@cs.au.dk

Abstract. Many static analyzers exploit sparseness techniques to re-
duce the amount of information being propagated and stored during
analysis. Although several variations are described in the literature, no
existing technique is suitable for analyzing JavaScript code. In this pa-
per, we point out the need for a sparse analysis framework that supports
pointers and reachability. We present such a framework, which uses static
single assignment form for heap addresses and computes def-use informa-
tion on-the-fly. We also show that essential information about dominating
definitions can be maintained efficiently using quadtrees. The framework
is presented as a systematic modification of a traditional dataflow anal-
ysis algorithm.

Our experimental results demonstrate the effectiveness of the technique
for a suite of JavaScript programs. By also comparing the performance
with an idealized staged approach that computes pointer information with
a pre-analysis, we show that the cost of computing def-use information on-
the-fly is remarkably small.

1 Introduction

Previous work on dataflow analysis has demonstrated that sparse analysis is a
powerful technique for improving performance of many kinds of static analysis
without sacrificing precision [7,8,14,15,20,21], compared to more basic dataflow
analysis frameworks [12, 13]. The key idea in sparse analysis is that dataflow
should be propagated directly from definitions to uses in the program code, un-
like “dense” analysis that propagates dataflow along the control-flow. A potential
advantage of sparse analysis is that it propagates and stores only relevant infor-
mation, not entire abstract states. Another advantage is that transfer functions
need only be recomputed when their dependencies change.

While developing analysis tools for JavaScript we have found that the existing
approaches described in the literature for building sparse analyses do not apply
to the language features and common programming patterns that appear in
JavaScript code. Specifically, context-sensitive branch pruning (a variant of un-
reachable code elimination by Wegman and Zadeck [21]) is an important analysis
technique, as explained below, for handling the use of function overloading, which
in JavaScript is programmed using reflection. Moreover, the common wisdom
from analysis of e.g. Java code that context-insensitive analysis is usually faster

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 201–218, 2014.
c© Springer International Publishing Switzerland 2014

202 M. Madsen and A. Møller

than context-sensitive analysis [18] apparently does not apply to JavaScript code,
which, as discussed below, makes it difficult to design practically useful staged
sparse analyses for this language.

function f(b, x, y) {
var r;
if (b.p) {
r = x.a;

} else {
r = y.a;

}
return r;

}

As a motivating example, consider the JavaScript
function on the right that exhibits a simple form
of overloading. Here, the branch condition b.p de-
cides whether the f function should have one be-
havior or another (in real-world JavaScript code,
complex function overloading is mimicked using
various kinds of reflection in branch conditions, but
the pattern is the same). It is often the case that
the branch condition is determinate relative to the
call context [17]. That is, in one call context, b.p
is known to be true, and in another call context, it is known to be false. In a
context-sensitive dense analysis, this is no problem for the precision: f is simply
analyzed in two contexts, corresponding to the two cases, such that the analysis
logically clones f and analyzes it twice. When dataflow reaches the if state-
ment, the analysis can then discover that one branch is dead and only propagate
dataflow along the live branch.

To reason precisely about such program code, for example, with the purpose
of computing call graphs or information about types of expressions, a static anal-
ysis must account for reachability, i.e. whether branches are live or dead in the
individual contexts. At the same time it must handle heap allocated storage, as
objects are pervasive in JavaScript. Moreover, even apparently simple operations
in JavaScript, such as reading an object property, are complex procedures that
involve e.g. type coercion and traversal of dynamically constructed prototype
chains. This makes it beneficial to design analysis techniques that support com-
plex transfer functions, for example, all computable monotone functions [12]. It
is well known how to accomplish all this using dense analysis (see e.g. the TAJS
analysis [9]). Our goal is to take the step to sparse analysis, without sacrificing
precision compared to the original dense version.

One way to build sparse analyses for programs with pointers is to use a staged
approach where a pre-analysis computes a sound approximation of the memory
addresses that are defined or used at each operation in the code, and then es-
tablish def-use edges that the main analysis can use for sparse flow-sensitive
dataflow propagation [8, 14]. Unfortunately, this does not work in our setting,
unless the pre-analysis is as precise as the main analysis (and in that case, there
would be no need for the main analysis, obviously): If the pre-analysis is flow-
insensitive, for example, it would establish def-use edges from both x.a and y.a
to r in our example, which would destroy the precision of the main analysis.
Note that one of the main results of Oh et al. [14] is that, in their setting, ap-
proximations in the pre-analysis may lead to less sparseness but it will never
affect the precision of the main analysis (due to their use of data dependence
instead of def-use chains). However, for a language like JavaScript where most
operations may throw exceptions, their algorithm largely degrades to a dense

Sparse Dataflow Analysis with Pointers and Reachability 203

analysis if reachability is involved. In another line of work, Tok et al. [20] and
Chase et al. [2] compute def-use edges on-the-fly rather than using a pre-analysis,
but also without taking reachability into account. Conversely, the sparse condi-
tional constant analysis by Wegman and Zadeck [21] handles reachability, but
not pointers. In summary, no existing technique satisfies the needs for making
sparse analysis for languages like JavaScript.

Our contributions are as follows:

– We present the first algorithm for sparse dataflow analyses that supports
pointers, reachability, and arbitrary monotone transfer functions, while pre-
serving the precision of the corresponding dense analysis, and without re-
quiring a pre-analysis to compute def-use information.

– We describe experimental results, based on a dataflow analysis for JavaScript,
that show a considerable performance improvement when using sparse anal-
ysis compared to a traditional dense approach, which demonstrates that it is
possible to perform efficient sparse analysis in a setting that involves pointers
and reachability.

– We show experimentally that the overhead of computing dominating defi-
nitions on-the-fly is small, which makes our approach preferable to staged
approaches that compute that information with a pre-analysis.

– We demonstrate that quadtrees are a suitable data structure for maintaining
essential information about dominating definitions in sparse analysis.

We explain the technique as a framework where we can switch from dense to
sparse analysis, without affecting the abstract domains or the transfer functions.

2 A Basic Analysis Framework

Our starting point is a variant of the classical monotone framework for flow-
sensitive dataflow analysis [12] where programs are represented as control-flow
graphs with abstract states associated with the entry and exit program points of
each node. For simplicity this presentation focuses on intraprocedural analysis,
although our implementation supports interprocedural analysis as discussed in
Section 4.

We assume that we are given a control-flow graph where each node represents
a statement s ∈ S, together with a set of abstract memory addresses a ∈ A, a
lattice of abstract values v ∈ V , and a transfer function Ts for each statement
s. The transfer functions are assumed to be expressed using the following three
primitive operations:

– Read(s ∈ S, a ∈ A) : V . Returns the value v at the address a at the program
point immediately before the statement s.

– Write(v ∈ V, s ∈ S, a ∈ A). Writes the value v to the address a at the
program point immediately after the statement s. Note that an invocation
Write(v, s, a) models a strong update [2]; if a weak update is desired, the
transfer function should invoke Write(v � Read(s, a), s, a).

204 M. Madsen and A. Møller

– Continue(ssrc ∈ S, sdst ∈ S). Indicates that the transfer function Tssrc has
completed and that sdst is a possible successor, in other words that sdst is
reachable from ssrc. (For example, this allows the transfer function for an if
statement to selectively propagate dataflow to one of its branches.)

As conventional, the framework applies the transfer functions using an iter-
ative worklist algorithm, starting from a designated program entry statement,
until the global fixpoint is reached. The ordering of the worklist W is left un-
specified, so the analysis implementor may freely choose any. We assume the
lattice V has finite height; for simplicity we ignore widening.

In the case of JavaScript, most transfer functions are complex operations that
involve multiple Read and Write operations. For example, the transfer function
for a simple assignment x = y.p in general requires traversal of scope chains and
prototype chains. This can be accomplished as shown in previous work on the
TAJS analysis [9]. Although that analysis uses more elaborate abstract domains,
it can in principle all be expressed within the present framework.

A traditional dense propagation strategy [12] maintains an entire abstract
state at each program point as a map from addresses to values:

I : S ×A→ V is the map of incoming states
O : S ×A→ V is the map of outgoing states

Reading from an address is then simply a matter of looking up its value in
the abstract state in I, and writing similarly updates O. (In practice, analysis
implementations often maintain only O, since the information in I can be inferred
when needed; we include both maps explicitly to simplify the presentation in
Section 3.) Continuing from ssrc to sdst is handled by joining the entire outgoing
state at ssrc into the incoming state at sdst. To initiate the analysis, I and O
return the bottom element ⊥ of V for every statement and address, except that
we assume an entry statement sentry with a no-op transfer function (that just
calls Continue) and where I(sentry , a) and O(sentry , a) both describe the initial
abstract state for every address a. The initial worklist is then W = {sentry}.

More formally, reading the value of an address a ∈ A at statement s ∈ S is
implemented simply by looking up the value in the incoming state:

Read(s ∈ S, a ∈ A) : V

1 return I(s, a)

Similarly, writing a value v ∈ V to the address a ∈ A at statement s ∈ S is
implemented by writing to the outgoing state:

Write(v ∈ V, s ∈ S, a ∈ A)

1 O(s, a) := v

Propagation of dataflow from statement ssrc ∈ S to sdst ∈ S is implemented
by joining all the values from the outgoing state of ssrc into the incoming state
of sdst. If a value is changed then sdst is added to the worklist. Reachability is
implicitly supported since an unreachable statement has every value set to the

Sparse Dataflow Analysis with Pointers and Reachability 205

bottom element ⊥, whereas we assume that every reachable statement will have
at least one value set to non-bottom, and so propagation from a reachable state-
ment to an unreachable statement will always cause the unreachable statement
to be added to the worklist:

Continue(ssrc ∈ S, sdst ∈ S)

1 for each a ∈ A
2 let v = O(ssrc, a)
3 let v′ = I(sdst, a)
4 if v 	� v′

5 I(sdst, a) := v � v′

6 W := W ∪ {sdst}

The main fixpoint computation is implemented by the Solve procedure. It
maintains a global worklist W of pending statements and iteratively extracts a
statement and evaluates its transfer function, which may cause new statements
to be added to the worklist. The fixpoint is found when the worklist is empty:

Solve(E : A→ V), where E is the entry state
1 I(s, a) := O(s, a) := ⊥ for all s ∈ S, a ∈ A
2 I(sentry, a) := O(sentry, a) := E(a) for all a ∈ A
3 W := {sentry}
4 while W 	= ∅
5 let s = Dequeue(W)
6 O(s, a) := I(s, a) for all a ∈ A
7 apply the transfer function Ts

3 Sparse Analysis

We now show how the basic analysis framework from the preceding section can
be changed into our sparse analysis technique. As a first step, we modify the
definitions of the incoming and outgoing states to become partial maps, I :
S ×A ↪→ V and O : S ×A ↪→ V , since we now want to maintain values only for
the statements and addresses that are involved in Read or Write operations,
respectively. Next, we add four new components that are all built incrementally
during the fixpoint computation:

R ⊆ S × S is the set of reachable edges
P : S ×A ↪→ V specifies the placement and values of φ-nodes
DU ⊆ S ×A× S is the set of def-use edges
F : S × S → P(A) is the map of frontier addresses

The R component now explicitly tracks the set of reachable edges in the control-
flow graph: if Continue(ssrc, sdst) has been invoked, then (ssrc, sdst) ∈ R. As in
previous sparse analysis techniques, we use SSA (static single assignment form)
to ensure that each use site has a unique associated definition site [4,7,21]. When
P (s, a) is defined with some value v, the statement s plays the role of a φ-node

206 M. Madsen and A. Møller

for address a, where v is then the merged value from the incoming dataflow. As
effect we obtain SSA for all addresses, not only for local variables. Each triple
(s1, a, s2) ∈ DU represents a def-use edge, where s1 is a definition site or a
φ-node and s2 is a use site or a φ-node for a.

Since the analysis discovers definition sites and use sites incrementally, the set
of def-use edges changes during the analysis. The F map supports this construc-
tion of def-use edges whenever frontier edge becomes reachable, as explained
later in this section.

The Solve procedure is unmodified, except that line 6 is omitted in the sparse
analysis version. The remainder of this section explains the modifications of the
Read, Write, and Continue procedures.

Notation and terminology We view maps as mutable dictionaries. For example,
if f : A→ B is a map, then f(x) := v denotes the update of f such that subse-
quently f(x) = v. If f : X ↪→ Y is a partial map, then f� denotes the domain
of f , i.e. the subset of X where f is defined. We assume the reader is familiar
with the concepts of SSA, dominance frontiers, and dominator trees from e.g.
Cytron et al. [4]. Specifically, a statement s2 is in the dominance frontier of a
statement s0 if s0 dominates some predecessor s1 of s2 in the control-flow graph,
but s0 does not dominate s2. The edge (s1, s2) is then called a frontier edge of
s0. We say that a statement s is a φ-node (resp. definition site or use site) for
an address a if (s, a) ∈ P� (resp. (s, a) ∈ O� or (s, a) ∈ I�). Only merge points
in the control-flow graph can be used as φ-nodes. For simplicity, we assume that
the statements at merge points are no-ops, such that they cannot be definition
sites or use sites (thus, P� and I� ∪O� are disjoint).

The following key invariants are maintained by the Read, Write, and
Continue operations in the sparse analysis framework:

[flow] If (s1, a, s2) ∈ DU for some statements s1, s2 and some address a, then
– either O(s1, a) or P (s1, a) is defined with some value v,
– either I(s2, a) or P (s2, a) is defined with some value v′, and
– the value of a at s1 has been propagated to s2, i.e. v (v′.

[def-use] If (and only if) a statement s1 is a definition site or φ-node for some
address a, i.e. (s1, a) ∈ O� ∪P�, sk is a use site or φ-node for a, i.e. (sk, a) ∈
I� ∪ P�, such that s1 dominates sk and there is a path s1, s2, . . . , sk where
each step is reachable, i.e. (si, si+1) ∈ R for all i, and moreover, there is no
definition site or φ-node for a between s1 and sk, i.e. (si, a) /∈ I� ∪P� for all
i = 2, 3, . . . , k − 1, then there exists a def-use edge (s1, a, sk) ∈ DU .

[phi-use] If s is a φ-node for a, i.e. (s, a) ∈ P�, then for every reachable incoming
control-flow graph edge (s1, s) ∈ R there is a def-use edge (s2, a, s) ∈ DU
where s2 is the nearest dominator of s1 and s2 is a definition site or φ-node
for a.

Sparse Dataflow Analysis with Pointers and Reachability 207

[phi] If a statement s0 is a definition site or φ-node for some address a, i.e.
(s0, a) ∈ O� ∪P�, then for every frontier edge (s1, s2) of s0 that is reachable,
i.e. (s1, s2) ∈ R, the statement s2 is a φ-node for a, i.e. (s2, a) ∈ P�.

[frontier] If a ∈ F (s1, s2) for some statements s1, s2 and some address a, then
(s1, s2) is a frontier edge of a dominator s0 of s1 that defines a, i.e. (s0, a) ∈
O� ∪ P�.

Intuitively, the [flow] invariant ensures that dataflow has always been propagated
along the existing def-use edges; [def-use] expresses the main requirements for
construction of def-use edges, in particular that def-use edges respect reachabil-
ity and dominance of definitions; [phi-use] ensures that def-use edges to φ-nodes
also exist for all reachable incoming edges; [phi] ensures that φ-nodes are cre-
ated along reachable dominance frontiers; and [frontier] expresses that F records
which addresses are relevant for contructing def-use edges whenever a frontier
edge becomes reachable.

3.1 Reading Values

The Read(s, a) operation retrieves the requested value from the incoming state
if s is already known to be a use site for a. If a new use is discovered, the
appropriate def-use edge must be introduced and the value propagated to s:

Read(s ∈ S, a ∈ A) : V

1 if (s, a) /∈ I�
2 I(s, a) := ⊥
3 let s1 = FindDef(s′, a) where s′ is the immediate dominator of s
4 DU := DU ∪ {(s1, a, s)}
5 Propagate(s1, a, s)
6 return I(s, a)

The FindDef procedure searches up the dominator tree to find the nearest
definition site or φ-node for a:

FindDef(s ∈ S, a ∈ A) : S
1 if (s, a) ∈ O� ∪ P�

2 return s
3 else
4 return FindDef(s′, a) where s′ is the immediate dominator of s

We show in Section 3.4 how FindDef can be implemented more efficiently
than this pseudo-code suggests. Also note that by initializing I(sentry , a) and
O(sentry , a) for every address a according to the initial abstract state when the
analysis starts, Read and FindDef are well-defined because sentry is the root
of the dominator tree.

The Propagate procedure, which is also used by the Write operation later,
propagates a single value from a definition site or φ-node to a use site or φ-
node, in order to satisfy the [flow] invariant. If the destination is a use site and

208 M. Madsen and A. Møller

its incoming state changes, then that statement is added to the worklist W . If
the destination is a φ-node then propagation is invoked recursively for all its
outgoing def-use edges:

Propagate(ssrc ∈ S, a ∈ A, sdst ∈ S)

1 if (ssrc, a) ∈ O�

2 let v = O(ssrc, a)
3 else // must have (ssrc, a) ∈ P�

4 let v = P (ssrc, a)
5 if (sdst, a) ∈ I�
6 let vold = I(sdst, a)
7 if v 	� vold

8 I(sdst, a) := v � vold

9 W := W ∪ {sdst}
10 else // must have (sdst, a) ∈ P�

11 let vold = P (sdst, a)
12 if v 	� vold

13 P (sdst, a) := v � vold

14 for each s where (sdst, a, s) ∈ DU
15 Propagate(sdst, a, s)

Notice that recursive calls to Propagate can only happen along chains of def-use
edges between φ-nodes, which are placed only at merge points, so the recursion
is bounded by the block nesting depth of the program being analyzed.

3.2 Writing Values

The Write operation writes the given value to the outgoing state. If a new
definition site is discovered, the set of def-use edges must be updated. Moreover,
the written value is propagated along the outgoing def-use edges:

Write(v ∈ V, s ∈ S, a ∈ A)

1 if (s, a) /∈ O�

2 Update(s, a)
3 O(s, a) := v
4 Forward(s, a)
5 else
6 O(s, a) := v
7 for each sdst where (s, a, sdst) ∈ DU
8 Propagate(s, a, sdst)

Whenever a new definition site is discovered in Write (line 1), def-use edges
that bypass the new definition site and have the same address must be updated
(line 2) and φ-nodes must be introduced at the iterated dominance frontiers
along with associated def-use edges (line 4).

Sparse Dataflow Analysis with Pointers and Reachability 209

A

B C

D

E

F
W

V Z

Y

X

(a) (b)

Fig. 1. Two control-flow graph fragments (with thick edges representing control-flow)
that illustrate the Update procedure. (a) The statement A defines some address that
is used at both statements D and F (corresponding to the def-use edges A→ D and
A → F). At some point a definition is discovered at E. The dominating definition at E
is A. Its use at D is not dominated by E and thus not affected by the new definition
at E. The use at F, however, is dominated by E, so the def-use edge A→ F is replaced
by E→ F. (b) The statement X defines some address that is used by the φ-node at W
(corresponding to the def-use edge X →W). If a new definition is discovered at Y then
X→ W must be replaced by Y →W since X dominates Y.

Update(s ∈ S, a ∈ A)

1 let s1 = FindDef(s, a)
2 for each s2 where (s1, a, s2) ∈ DU
3 if s strictly dominates s2
4 DU := (DU \ {(s1, a, s2)}) ∪ {(s, a, s2)}
5 for each (s3, s4) ∈ S × S that is a frontier edge of s
6 let s0 = FindDef(s3, a)
7 if s0 strictly dominates s
8 if (s0, a, s4) ∈ DU
9 DU := (DU \ {(s0, a, s4)}) ∪ {(s, a, s4)}

The Update procedure updates the def-use edges that bypass the new definition.
The first part (lines 1–4) handles the def-use edges that end at a statement
dominated by the new definition, to restore the [def-use] invariant as illustrated
in Figure 1(a); the second part (lines 5–9) handles the def-use edges that end at
a dominance frontier node of the new definition, corresponding to [phi-use] as
illustrated in Figure 1(b).

Note that DU does not always grow monotonically, since Update both adds
and removes edges. Termination is still ensured: a def-use edge (s1, a, s2) is only
removed if a new definition site sd is discovered such that sd dominates s2.
Definitions are never removed, so the edge (s1, a, s2) can never be re-added, and
only a finite number of def-use edges can be created. All other components in the
sparse framework are monotonically increasing during the fixpoint computation.

210 M. Madsen and A. Møller

The purpose of the Forward procedure is to introduce φ-nodes at the iterated
dominance frontiers, together with def-use edges for the corresponding reachable
frontier edges, and maintain the [frontier] invariant:

Forward(s ∈ S, a ∈ A)

1 for each (s1, s2) ∈ S × S that is a frontier edge of s
2 if a /∈ F (s1, s2)
3 F (s1, s2) := F (s1, s2) ∪ {a}
4 if (s1, s2) ∈ R
5 MakePhi(s2, a)

Although a statement typically has a single frontier edge, it is possible to have
multiple, for example, in connection to statements that may throw exceptions.
Line 3 in Forward adds a to the frontier addresses of the frontier edge (s1, s2),
which indicates that a has been defined by a statement that dominates s1. If
that edge is already known to be reachable, we may need to add a new φ-node
at the frontier, which is handled by MakePhi as explained next.

MakePhi(s ∈ S, a ∈ A)

1 if (s, a) /∈ P�

2 Update(s, a)
3 P (s, a) := ⊥
4 for each s1 ∈ S where s1 is an immediate predecessor of s in the control-flow graph
5 if (s1, s) ∈ R
6 let s2 = FindDef(s1, a)
7 DU := DU ∪ {(s2, a, s)}
8 Propagate(s2, a, s)
9 Forward(s, a)

The MakePhi procedure is only invoked with s being a dominance frontier node.
If s is not already a φ-node for a (line 1), we mark it as one (line 3). However,
since a φ-node has a similar effect as a definition site, Update is called first
to update the def-use edges, c.f. line 2 in Write. A φ-node also has a similar
effect as a use site, although generally with multiple incoming def-use edges. For
this reason, we make sure a def-use edge exists for every reachable income edge
(lines 4–8), c.f. lines 3–5 in Read. Finally, the process is continued recursively
for the iterated dominance frontiers (line 9).

3.3 Propagating Reachability

As the propagation of dataflow values is performed along def-use edges by
Propagate, the primary role of Continue is to propagate reachability:

Continue(ssrc ∈ S, sdst ∈ S)

1 if (ssrc, sdst) /∈ R
2 R := R ∪ {(ssrc, sdst)}
3 W := W ∪ {sdst}
4 for each a ∈ A where a ∈ F (ssrc, sdst) ∨ (sdst, a) ∈ P�

5 MakePhi(sdst, a)

Sparse Dataflow Analysis with Pointers and Reachability 211

Y

Z

X

{a,b} {b,c}

Fig. 2. A control-flow graph fragment, where the frontier edges X→ Z and Y→ Z hold
the addresses {a, b} and {b, c}, respectively. The edge X → Z is already reachable, and
φ-nodes for {a, b} at Z have already been introduced. Now Continue is invoked for
the edge Y → Z. Continue ensures that appropriate def-uses edge to Z are introduced
for all the addresses a, b, and c, and for all the incoming edges to Z.

If the given control-flow graph edge (ssrc, sdst) is not already reachable, we mark
it as reachable (line 2) and add sdst to the worklist. However, this may trigger
calls to MakePhi in two situations, corresponding to the two cases in line 4: The
condition a ∈ F (ssrc, sdst) signals that (ssrc, sdst) is a frontier edge of a statement
that defines a, so we must ensure that sdst is a φ-node for a and therefore call
MakePhi. The condition (sdst, a) ∈ P� captures the case where sdst is already a
φ-node for a, but now there is a new reachable incoming edge, which is handled
by lines 4–8 in MakePhi as illustrated in Figure 2. Notice that we carefully
ensure in Forward, MakePhi, and Continue that no dataflow is propagated
across control-flow edges, in particular frontier edges, until they are known to
be reachable.

Proposition. The sparse framework has same analysis precision as the basic
framework. Specifically, if O(s, a) = v for some s ∈ S, a ∈ A, and v ∈ V
after analyzing a given program with the sparse framework, then we also have
O(s, a) = v when analyzing the program with the basic framework.

3.4 A Data Structure for Finding Dominating Definitions

During the fixpoint computation new definition sites and use sites are discovered
incrementally by the Read and Write operations. A key challenge is how to
ensure that the FindDef operation is able to quickly find the nearest dominating
definition for any statement in the control-flow graph.

The naive version of FindDef from Section 3.1 is easy to implement, as also
suggested by Chase et al. [2]. It is, however, impractical because each invocation
requires a traversal along a spine of the dominator tree, in the worst case from
the given statement all the way to the root. As an example, consider a straight-
line program consisting of k statements in sequence. Invoking FindDef at the
last statement may then require traversal of all k statements to find the nearest
dominating definition.

A better approach is to maintain dominator information separately for each
address and only for the nodes that are known to be definition sites or φ-nodes.
The idea is to equip each statement in the control-flow graph with two numbers,

212 M. Madsen and A. Møller

A
J

C

A

B C

ED

GF

H

J

A

B C J

ED

GF

H

1 18 20

G

0

0

10

2010

2 3 4 15 16 17

5 6 7 12 13 14

8 9 10 11

x

y

(a) (b) (c)

Fig. 3. (a) A control-flow graph fragment where the statements A, C and J are defini-
tion sites for some address. The statement G is a use site of the same address. (b) The
dominator tree for the control-flow graph with the definition sites and use site marked.
(c) The 2d points associated with the timestamps of the dominator tree.

x and y, as shown in Figure 3. The numbers are obtained through a depth-first
traversal of the dominator tree, such that the first number x is the discovery
time and the second number y is the exit time. Using these numbers we can
determine dominance between nodes: if p dominates q, then p must have been
discovered before q, i.e. xp < xq, and all children of q must have been visited
before exiting p, i.e. yq < yp. As an example, in Figure 3, statement E dominates
F since xE < xF and yF < yE.

A key observation is that to find the nearest dominating definition of a node
q we need to find a node p where xp < xq and yq < yp. Of all nodes that satisfy
these conditions we wish to find the one with maximum x value. For example,
in Figure 3 the nearest dominating definition at G is C, which satisfies these
properties.

One approach is to store the definitions in a resizable array and perform a
linear scan to find the nearest dominating definition, as in Staiger-Stöhr [19].
Unfortunately, this requires O(d) time, where d is the number of definitions.
Another approach is to define an ordering such that finding all dominating def-
initions takes O(log d) time and then scan through these to find the nearest
dominating definition, as in Tok et al. [20]. However, the scanning may still
require O(d) time.

Our solution works as follows. If we interpret the number pair (xq, yq) of a node
q as a point in a two dimensional space, then finding the nearest dominating defi-
nition p is equivalent to finding the point (xp, yp) in the rectangle [0, xq]× [yq,∞]
with the maximum xp. This is a well-known problem in the computational geom-
etry literature; one data structure solving this problem is the quadtree [5]. Find-
ing the nearest dominating definition then takes O(

√
n) time where n is the num-

ber of control-flow graph nodes, and a new node can be inserted in O(logn) time.
Quadtrees are simple to implement and have a low constant-factor overhead.

Sparse Dataflow Analysis with Pointers and Reachability 213

Our experimental comparison (see Section 4) confirms that quadtrees lead to a
faster implementation than the naive version of FindDef and Staiger-Stöhr’s ap-
proach. In principle one could combine the techniques and getO(min (

√
n, d)), but

in practice using the quadtrees alone seems to work well.
To summarize, we pre-compute the two numbers for every statement in the

control-flow graph and then maintain a quadtree ya for each a ∈ A containing
every statement s ∈ S where (s, a) ∈ O� ∪ P�. The FindDef procedure from
Section 3.1 is then replaced by a search in ya.

4 Implementation and Evaluation

We have implemented a dataflow analysis for JavaScript, configurable for both
the traditional dense propagation (Section 2) and the sparse analysis with on-
the-fly SSA construction (Section 3). The dataflow lattices and transfer functions
are designed in the style of the TAJS analysis by Jensen et al. [9], structured such
that all transfer functions are expressed using the Read, Write and Continue
operations. For the quadtrees, we use a variant called compressed quadtrees [6].
Interprocedural dataflow is handled by straightforward generalizations of the al-
gorithms from the preceding sections. Call graphs are built on-the-fly, similar
to TAJS. For the interprocedural sparse analysis, φ-nodes are made at function
entries and at no-op statements that are placed after call sites where dataflow
may merge from different functions. Searching for dominating definitions may
then span multiple functions backward via the call edges, and similarly, defi-
nitions inside a function are propagated forward along dominance frontiers of
the call sites. The full implementation is approximately 20,000 lines of Scala
code, whereof the core that corresponds to Section 2 and 3 constitutes less than
1,000 lines.

Our experiments are based on the collection of JavaScript programs shown in
Table 1. (Our current implementation does not contains models of the browser
API and HTML DOM, so we settle for stand-alone JavaScript programs.) The
collection contains programs from the Mozilla SunSpider and Google Octane
benchmark suites, plus a few additional programs found on the web. All ex-
periments are performed on an Intel Core 2 Duo 2.5 GHz PC. The analysis
implementation and all benchmarks are available online.1

We consider the following three research questions:

Q1: Is our sparse analysis technique more efficient than the basic analysis frame-
work? The literature shows that sparse analysis is usually highly effective,
but since none of the existing techniques are applicable to our setting, which
involves both pointers and reachability, we cannot know a priori whether
our sparse analysis has similar advantages.

Q2: How does the performance of our sparse analysis algorithm compare to
staged analysis techniques? As argued in Section 1, performing sparse anal-
ysis on the basis of imprecise reachability information would affect not only

1 http://www.brics.dk/sparse/

214 M. Madsen and A. Møller

Table 1. Experimental results. Lines shows the number of source code lines and Nodes
shows the number of control-flow graph statements for each program, to indicate their
sizes. Basic and Sparse are the total analysis time for the basic and sparse frameworks,
respectively. SSA overhead shows the time spent on SSA construction during the sparse
analysis, using three different implementations for maintaining dominating definitions.
All times are shown in milliseconds, with timeout representing a timeout of 90 seconds.

Program Total time SSA overhead

Name Lines Nodes Basic Sparse % Quadtree Naive Array

deltablue.js 885 3303 timeout 35780 43% 15223 23347 21927
richards.js 541 1655 timeout 703 31% 216 391 405
splay.js 398 1058 79844 705 28% 198 268 273
3d-cube.js 343 2875 timeout 1974 24% 482 991 899
3d-raytrace.js 443 3000 timeout 2723 30% 812 1686 2954
access-nbody.js 170 847 63864 488 39% 189 262 218
crypto-aes.js 426 2581 timeout 713 25% 177 451 486
crypto-md5.js 295 1508 30561 2091 3% 53 111 117
garbochess.js 2812 16146 timeout 5764 26% 1501 3138 4362
simplex.js 450 2121 timeout 465 28% 128 282 235
jpg.js 889 5146 timeout 2621 21% 538 1035 992
javap.js 1430 5561 timeout 1693 33% 559 1479 3037

the degree of sparseness but also the precision of the main analysis, and we
want our sparse analysis to be as precise as with the basic framework. On
the other hand, our algorithm could potentially be simplified without af-
fecting analysis precision by using a pre-analysis to compute definition sites
and use sites for SSA construction, instead of performing it all on-the-fly.
For this reason, it is interesting to measure the overhead of computing that
information in our on-the-fly sparse analysis framework.

Q3: Are quadtrees a suitable choice in practice, compared to other techniques
for maintaining information about reaching definitions? In Section 3.4 we
argued that quadtrees have a good theoretical complexity, however, this
needs to be supported empirically.

To answer Q1 we instantiate the analysis with both configurations (using
quadtrees for the sparse analysis). The columns Basic and Sparse in Table 1 show
the corresponding analysis times. The numbers show that our sparse analysis is
in most cases more than an order of magnitude faster than the basic framework.
As result, we have demonstrated that it is possible to perform efficient sparse
analysis in a setting that involves pointers and reachability.

We address Q2 by assuming an ideal pre-analysis that computes the definition
sites and use sites and from this constructs the SSA form, with the full preci-
sion of the on-the-fly sparse analysis. Designing a realistic pre-analysis involves
a trade-off: it has to be fast (at least, faster than the original dense analysis),
and it has to be reasonably precise (since imprecision can lead to less sparseness

Sparse Dataflow Analysis with Pointers and Reachability 215

in the main analysis). With such a pre-analysis, we can perform sparse analysis
and still account for reachability – reminiscent of the sparse conditional con-
stant analysis by Wegman and Zadeck [21]. The SSA overhead columns (% and
Quadtree) in Table 1 show how much time is spent by our sparse analysis in-
side the operations FindDef, Update, Forward, and MakePhi (excluding
Propagate), relative to the entire sparse analysis and in milliseconds, when
using the quadtree implementation of FindDef. This constitutes work that in
principle could be omitted if using a pre-analysis. We observe that between 3%
and 43% of the analysis time is spent in these parts. In other words, the best
imaginable pre-analysis will only be able to achieve a speedup of less than 1.7x
(for deltablue.js) and on average less than 1.4x. Moreover, by using our on-
the-fly approach, the analysis developer is relieved of the burden of designing
and implementing a fast and precise pre-analysis.

Regarding Q3, the columns Quadtree, Naive, and Array show the time for SSA
construction with different implementations of the data structure used for finding
dominating definitions. The Quadtree column corresponds to our quadtree-based
implementation described in Section 3.4, Naive corresponds to FindDef from
Section 3.1, and Array follows the approach of Staiger-Stöhr [19], as discussed in
Section 3.4. In all cases the quadtree implementation is the fastest and typically
outperforms the alternatives by a factor of 1.4x to 5.4x.

5 Related Work

The basic ideas in sparse analysis originate from Reif and Lewis [15] who sug-
gested the use of global value graphs, for example for efficient constant prop-
agation analysis. The concept of SSA form is attributed to Rosen et al. [16].
Cytron et al. [4] introduced the concept of dominance frontiers as an effective
mechanism for placing φ-nodes. As mentioned in the introduction, the sparse
conditional constant analysis by Wegman and Zadeck [21] builds on top of this
work and takes reachability into account during the analysis by tracking which
def-use edges represent executable flow. The notion of dependence flow graphs
by Johnson et al. [11] is a variant of SSA that incorporates branch conditions
and thereby supports subsequent dataflow analysis with reachability. Common
to this line of work is that heap objects and pointers are not supported.

For programming languages with pointers, most work on sparse analysis has
focused on pointer analysis, not dataflow analysis in general. The semi-sparse
pointer analysis by Hardekopf and Lin [7] uses SSA and sparse analysis for top-
level variables that are not accessed via pointers, whereas address-taken variables
and heap allocated data are treated using standard flow-sensitive analysis with-
out sparseness.

Other techniques handle pointers typically by staging the analysis using a
pre-analysis to approximate possible definition sites and use sites [3,8,14]. How-
ever, as discussed previously, that approach cannot support reachability without
sacrificing analysis precision or sparseness. By computing definition sites and use
sites on-the-fly, we avoid that problem.

216 M. Madsen and A. Møller

The analysis by Chase et al. [2] handles pointers and performs sparse analysis
on the basis of φ-nodes that are computed on-the-fly, however, it does not account
for reachability. The analysis framework by Tok et al. [20] is based on similar
ideas. The algorithms used in those analyses for finding dominating definitions
are discussed in Section 3.4. A related analysis framework has been presented
by Staiger-Stöhr [19].

Numerous other program analysis techniques have been designed to prevent
various kinds of redundancy in the dataflow propagation. Of particular relevance
is the lazy propagation technique by Jensen et al. [10] that restricts dataflow at
call sites that is not needed by the function being called. When use sites are in-
crementally discovered, the relevant values are recovered by a backward traversal
of the call graph, which is reminiscent of the search for nearest dominating def-
initions in our sparse analysis. We conjecture that our sparse analysis may be
more efficient than lazy propagation; however, lazy propagation is known to work
smoothly together with recency abstraction [1,9], which is a useful technique for
boosting analysis precision, and it is an open problem whether sparse analysis
and recency abstraction can also be combined effectively.

In summary, the present work can be understood as a generalization and
combination of ideas from on-the-fly SSA construction [2, 19, 20] while taking
reachability into account [11,21]. Furthermore, we propose a more efficient data
structure, based on insights from computational geometry [5], for managing dom-
inating definitions, compared to the existing techniques [19, 20].

6 Conclusion

We conclude that it is possible to perform efficient sparse dataflow analysis in a
setting that requires reasoning about pointers and reachability. Our experimental
evaluation shows not only that the sparse analysis is significantly faster than the
dense counterpart, but also that the overhead of on-the-fly SSA construction
is small, which makes the approach a promising alternative to staged analyses.
Moreover, we have demonstrated that quadtrees are suitable for maintaining
information about dominating definitions.

Our next step is to integrate the analysis algorithm into the TAJS tool to
become able to explore the performance on a larger class of JavaScript applica-
tion. It may also be interesting to apply the algorithm to other programming
languages and other abstract domains.

Acknowledgments. The authors thank Casper Kejlberg-Rasmussen, Jesper
Sindal Nielsen, and Ondřej Lhoták for inspiring discussions about data structures
and dataflow analysis. The work presented in this paper was supported by the
Danish Research Council for Technology and Production.

Sparse Dataflow Analysis with Pointers and Reachability 217

References

1. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

2. Chase, D.R., Wegman, M., Kenneth Zadeck, F.: Analysis of pointers and struc-
tures. In: Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation (June 1990)

3. Chow, F., Chan, S., Liu, S.-M., Lo, R., Streich, M.: Effective representation of
aliases and indirect memory operations in SSA form. In: Gyimóthy, T. (ed.) CC
1996. LNCS, vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

4. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Effi-
ciently computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer (1997)

6. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical So-
ciety, Boston (2011)

7. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In: Proc. 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(January 2009)

8. Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: Proc. 9th International Symposium on Code Generation and Optimization
(April 2011)

9. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

10. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy propa-
gation. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 320–339.
Springer, Heidelberg (2010)

11. Johnson, R., Pingali, K.: Dependence-based program analysis. In: Proc. ACM SIG-
PLAN Conference on Programming Language Design and Implementation (June
1993)

12. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informat-
ica 7, 305–317 (1977)

13. Kildall, G.A.: A unified approach to global program optimization. In: Proc. ACM
Symposium on Principles of Programming Languages (October 1973)

14. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for C-like languages. In: Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (June 2012)

15. Reif, J.H., Lewis, H.R.: Symbolic evaluation and the global value graph. In: Proc.
4th ACM Symposium on Principles of Programming Languages (January 1977)

16. Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Global value numbers and re-
dundant computations. In: Proc. 15th ACM Symposium on Principles of Program-
ming Languages (January 1988)

17. Schäfer, M., Sridharan, M., Dolby, J., Tip, F.: Dynamic determinacy analysis. In:
Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (June 2013)

18. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understand-
ing object-sensitivity. In: Proc. 38th ACM Symposium on Principles of Program-
ming Languages (January 2011)

218 M. Madsen and A. Møller

19. Staiger-Stöhr, S.: Practical integrated analysis of pointers, dataflow and control
flow. ACM Transactions on Programming Languages and Systems 35(1), 5:1–5:48
(2013)

20. Tok, T.B., Guyer, S.Z., Lin, C.: Efficient flow-sensitive interprocedural data-flow
analysis in the presence of pointers. In: Mycroft, A., Zeller, A. (eds.) CC 2006.
LNCS, vol. 3923, pp. 17–31. Springer, Heidelberg (2006)

21. Wegman, M.N., Kenneth Zadeck, F.: Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems 13(2),
181–210 (1991)

Reactivity of Cooperative Systems

Application to ReactiveML

Louis Mandel1,3 and Cédric Pasteur2,3

1 Collège de France
2 DI École normale supérieure (now at ANSYS-Esterel Technologies)

3 INRIA Paris-Rocquencourt

Abstract. Cooperative scheduling enables efficient sequential imple-
mentations of concurrency. It is widely used to provide lightweight threads
facilities as libraries or programming constructs in many programming
languages. However, it is up to programmers to actually cooperate to
ensure the reactivity of their programs.

We present a static analysis that checks the reactivity of programs by
abstracting them into so-called behaviors using a type-and-effect system.
Our objective is to find a good compromise between the complexity of the
analysis and its precision for typical reactive programs. The simplicity of
the analysis is mandatory for the programmer to be able to understand
error messages and how to fix reactivity problems.

Ourwork is applied and implemented in the functional synchronous lan-
guage ReactiveML. It handles recursion, higher-order processes and first-
class signals. We prove the soundness of our analysis with respect to the
big-step semantics of the language: a well-typed program with reactive ef-
fects is reactive. The analysis is easy to implement and generic enough to
be applicable to other models of concurrency such as coroutines.

1 Introduction

Most programming languages offer lightweight thread facilities, either integrated
in the language like the asynchronous computations [30] of F#, or available as a
library like GNU Pth [12] for C, Concurrent Haskell [15] or Lwt [34] for OCaml.
These libraries are based on cooperative scheduling: each thread of execution
cooperates with the scheduler to let other threads execute. This enables an ef-
ficient and sequential implementation of concurrency, allowing to create up to
millions of separate threads, which is impossible with operating system threads.
Synchronization also comes almost for free, without requiring synchronization
primitives like locks.

The downside of cooperative scheduling is that it is necessary to make sure
that threads actually cooperate:

– Control must regularly be returned to the scheduler. This is particularly true
for infinite loops, which are very often present in reactive and interactive
systems.

– Blocking functions, like operating system primitives for I/O, cannot be called.

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 219–236, 2014.
c© Springer International Publishing Switzerland 2014

220 L. Mandel and C. Pasteur

The solution to the latter is simple: never use blocking functions inside coop-
erative threads. All the facilities mentioned earlier provide either I/O libraries
compatible with cooperative scheduling or a means to safely call blocking func-
tions. See Marlow et al. [22] for an overview on how to implement such libraries.

Dealing with the first issue is usually the responsibility of the programmer.
For instance, in the Lwt manual [11], one can find:

[...] do not write function that may take time to complete without using
Lwt [...]

The goal of this paper is to design a static analysis, called reactivity analysis,
to statically remedy this problem of absence of cooperation points. The analysis
checks that the programmer does not forget to cooperate with the scheduler.
Our work is applied to the ReactiveML language [19], which is an extension
of ML with a synchronous model of concurrency [6] (Section 2). However, we
believe that our approach is generic enough to be applied to other models of
concurrency (Section 6). The contributions of this paper are the following:

– A reactivity analysis based on a type-and-effect system [18] in Section 4. The
computed effects are called behaviors [3] and are introduced in Section 3.
They represent the temporal behaviors of processes by abstracting away
values but keeping part of the structure of the program and are used to
check if processes cooperate or not.

– A novel approach to subeffecting [23], that is, subtyping on effects, based
on row polymorphism [26] in Section 4.4. It allows to build a conservative
extension of the existing type system with little overhead.

– A proof of the soundness of the analysis (Section 4.5): a well-typed program
with reactive effects is reactive.

The paper ends with some examples (Section 5), discussion (Section 6) and
related work (Section 7). The work presented here is implemented in the Reac-
tiveML compiler1 and it has already helped detecting many reactivity bugs. An
extended version of the paper, the implementation, the source code of the ex-
amples and an online toplevel are available at http://reactiveml.org/sas14.

2 Overview of the Approach

ReactiveML extendsMLwith programming constructs inspired from synchronous
languages [6]. It introduces a built-in notion of parallelism where time is defined
as a succession of logical instants. Each parallel process must cooperate to let time
elapse. It is a deterministic model of concurrency that is compatible with the dy-
namic creation of processes [9]. Synchrony gives us a simple definition for reactiv-
ity: a reactive ReactiveML program is one where each logical instant terminates.

Let us first introduce ReactiveML syntax and informal semantics using a sim-
ple program that highlights the problem of non-reactivity. Then we will discuss
the design choices and limitations of our reactivity analysis using a few other
examples.

1 http://www.reactiveml.org

http://reactiveml.org/sas14
http://www.reactiveml.org

Reactivity of Cooperative Systems 221

2.1 A First Example

We start by creating a process that emits a signal every timer seconds:2

1 let process clock timer s =

2 let time = ref (Unix.gettimeofday ()) in
3 loop
4 let time’ = Unix.gettimeofday () in

5 if time’ -. !time >= timer then (emit s (); time := time’)
6 end

In ReactiveML, there is a distinction between regular ML functions and pro-
cesses, that is, functions whose execution can span several logical instants. Pro-
cesses are defined using the process keyword. The clock process is parametrized
by a float timer and a signal s. Signals are communication channels between
processes, with instantaneous broadcast. The process starts by initializing a lo-
cal reference time with the current time (line 2), read using the gettimeofday
function of the Unix module from the standard library. Then it enters an infinite
loop (line 3 to 6). At each iteration, it reads the new current time and emits
the unit value on the signal s if enough time has elapsed (line 5). The compiler
prints the following warning when compiling this process:

W: Line 3, characters 2-115, this expression may be an instantaneous loop

The problem is that the body of the loop is instantaneous. It means that this
process never cooperates, so that logical instants do not progress. In ReactiveML,
cooperating is done by waiting for the next instant using the pause operator. We
solve our problem by calling it at the end of the loop (line 6):

5 if time’ -. !time >= timer then (emit s (); time := time’);
6 pause

7 end

The second part of the program is a process that prints top every time a
signal s is emitted. The do/when construct executes its body only when the
signal s is present (i.e. it is emitted). It terminates by returning the value of
its body instantaneously after the termination of the body. Processes have a
consistent view of a signal’s status during an instant. It is either present or
absent and cannot change during the instant.

10 let process print_clock s =

11 loop
12 do
13 print_string "top"; print_newline ()

14 when s done
15 end

W: Line 11, characters 2-78, this expression may be an instantaneous loop

Once again, this loop can be instantaneous, but this time it depends on the
presence of the signal. While the signal s is absent, the process cooperates. When
it is present, the body of the do/when executes and terminates instantaneously.
So the body of the loop also terminates instantaneously, and a new iteration of
the loop is started in the same logical instant. Since the signal is still present,

2 The vocabulary is the one of synchronous languages, not the one of FRP.

222 L. Mandel and C. Pasteur

the body of the do/when executes one more time, and so on. This process can
also be fixed by adding a pause statement in the loop.

We can then declare a local signal s and put these two processes in parallel.
The result is a program that prints top every second:

17 let process main =
18 signal s default () gather (fun x y -> ()) in
19 run (print_clock s) || run (clock 1. s)

The declaration of a signal takes as arguments the default value of the signal
and a combination function that is used to compute the value of the signal when
there are multiple emissions in a single instant. Here, the default value is () and
the signal keeps this value in case of multi-emission. The || operator represents
synchronous parallel composition. Both branches are executed at each instant
and communicate through the local signal s.

2.2 Intuitions and Limitations

In the previous example, we have seen the first cause of non-reactivity: instan-
taneous loops. The second one is instantaneous recursive processes:

let rec process instantaneous s =
emit s (); run (instantaneous s)

W: This expression may produce an instantaneous recursion

The execution of emit is instantaneous, therefore the recursive call creates a loop
that never cooperates. A sufficient condition to ensure that a recursive process is
reactive is to have at least one instant between the instantiation of the process and
any recursive call. The idea of our analysis is to statically check this condition.

This condition is very strong and is not always satisfied by interesting reactive
programs. For instance, it does not hold for a parallel map (the let/and construct
executes its two branches in parallel, matching is instantaneous):

let rec process par_map p l =
match l with
| [] -> []

| x :: l -> let x’ = run (p x)
and l’ = run (par_map p l) in x’ :: l’

W: This expression may produce an instantaneous recursion

This process has instantaneous recursive calls, but it is reactive because the re-
cursion is finite if the list l is finite. As the language allows to create mutable and
recursive data structures, it is hard to prove the termination of such processes.
For instance, the following expression never cooperates:

let rec l = 0 :: l in run (par_map p l)

Consequently, our analysis only prints warnings and does not reject programs.
ML functions are always considered instantaneous. So they are reactive if

and only if they terminate. Since we do not want to prove their termination,
our analysis has to distinguish recursions through functions and processes. This
allows us to assume that ML functions always terminate and to issue warnings
only for processes.

Reactivity of Cooperative Systems 223

Furthermore, we do not deal with blocking functions, such as I/O primitives,
that can also make programs non-reactive. Indeed, such functions should never
be used in the context of cooperative scheduling. There are standard solutions
for this problem [22].

This analysis does not either consider the presence status of signals. It over-
approximates the possible behaviors, as in the following example:

let rec process imprecise =
signal s default () gather (fun x y -> ()) in
present s then () else (* implicit pause *) ();

run imprecise
W: This expression may produce an instantaneous recursion

The present/then/else construct executes its first branch instantaneously if the
signal is present or executes the second branch with a delay of one instant
if the signal is absent. This delayed reaction to absence, first introduced by
Boussinot [9], avoids inconsistencies in the status of signals. In the example, the
signal is absent so the else branch is executed. It means that the recursion is
not instantaneous and the process is reactive. Our analysis still prints a warning,
because if the signal s could be present, the recursion would be instantaneous.

Finally, we only guarantee that the duration of each instant is finite, not that
the program is real-time, that is, that there exists a bound on this duration for
all instants, as shown in this example:

let rec process server add =
await add(p, ack) in

run (server add) || let v = run p in emit ack v

The server process listens on a signal add to receive both a process p and a signal
ack on which to send back results. As it creates one new process each time the
add signal is emitted, this program can execute an arbitrary number of processes
at the same time. It is thus not real-time, but it is indeed reactive, as waiting
for the value of a signal takes one instant (one has to collect and combine all the
values emitted during the instant).

3 The Algebra of Behaviors

The idea of our analysis is to abstract processes into a simpler language called
behaviors, following Amtoft et al. [3] and to check reactivity on these behaviors.
The main design choice is to completely abstract values and the presence of
signals. It is however necessary to keep an abstraction of the structure of the
program in order to have a reasonable precision.

3.1 The Behaviors

The algebra of behaviors is given by:3

κ ::= • | 0 | φ | κ || κ | κ+ κ | κ;κ | μφ. κ | run κ

3 Precedence of operators is the following (from highest to lowest): run, ;, +, || and
finally μ. For instance: μφ. κ1 || run κ2 + •;κ3 means μφ. (κ1 || ((run κ2) + (•;κ3))).

224 L. Mandel and C. Pasteur

Actions that take at least one instant to execute, i.e. surely non-instantaneous
actions, such as pause, are denoted •. Potentially instantaneous ones, like call-
ing a pure ML function or emitting a signal, are denoted 0. The language also
includes behavior variables φ to represent the behaviors of processes taken as
arguments, since ReactiveML has higher-order processes.

Behaviors must reflect the structure of the program, starting with parallel
composition. This is illustrated by the following example, which defines a com-
binator par_comb that takes as inputs two processes q1 and q2 and runs them in
parallel in a loop:

let process par_comb q1 q2 = loop (run q1 || run q2) end

The synchronous parallel composition terminates when both branches have ter-
minated. It means that the loop is non-instantaneous if either q1 or q2 is non-
instantaneous. To represent such processes, behaviors include the parallel com-
position, simply denoted ||. Similarly, we can define another combinator that
runs one of its two inputs depending on a condition c:

let process if_comb c q1 q2 = loop (if c then run q1 else run q2) end

In the case of if_comb, both processes must be non-instantaneous. As we want to
abstract values, we represent the different alternatives using a non-determinstic
choice operator + and forget about the conditions.

It is also necessary to have a notion of sequence, denoted ; in the language of
behaviors, as illustrated by the two following processes:

let rec process good_rec = pause; run good_rec

let rec process bad_rec = run bad_rec; pause

W: This expression may produce an instantaneous recursion

The order between the recursive call and the pause statement is crucial as the
good_rec process is reactive while bad_rec loops instantaneously. As it is defined
recursively, the behavior κ associated with the good_rec process must verify
that κ = •; run κ. The run operator is associated with running a process. This
equation can be solved by introducing an explicit recursion operator μ so that
κ = μφ. •; run φ. Recursive behaviors are defined as usual:

μφ. κ = κ[φ← μφ. κ] μφ. κ = κ if φ �∈ fbv (κ)

We denote fbv (κ) the set of free behavior variables in κ. There is no operator
for representing the behavior of a loop. Indeed, a loop is just a special case of
recursion. The behavior of a loop, denoted κ∞ (where κ is the behavior of the
body of the loop), is thus defined as a recursive behavior by κ∞
 μφ. (κ; run φ).

3.2 Reactive Behaviors

Using the language of behaviors, we can now characterize the behaviors that
we want to reject, that is instantaneous loops and recursions. To formally de-
fine which behaviors are reactive, we first have to define the notion of a non-
instantaneous behavior, i.e. processes that take at least one instant to execute:

Reactivity of Cooperative Systems 225

Definition 1 (Non-instantaneous Behavior). A behavior is non-instantan-
eous, denoted κ ↓, if:

• ↓ φ ↓
κ1 ↓

κ1;κ2 ↓
κ2 ↓

κ1;κ2 ↓
κ1 ↓

κ1 || κ2 ↓
κ2 ↓

κ1 || κ2 ↓
κ1 ↓ κ2 ↓
κ1 + κ2 ↓

κ ↓
μφ. κ ↓

κ ↓
run κ ↓

Note that function calls are not non-instantaneous. The fact that variables are
considered non-instantaneous means that any process taken as argument is sup-
posed to be non-instantaneous. The reactivity is then checked when this variable
is instantiated with the actual behavior of the process.

A behavior is said to be reactive if for each recursive behavior μφ. κ, the
recursion variable φ does not appear in the first instant of the body κ. This
enforces that there must be at least one instant between the instantiation of a
process and each recursive call and is formalized in the following definition.

Definition 2 (Reactive Behavior). A behavior κ is reactive if ∅ � κ, where
the relation R � κ is defined by:

R � 0 R � •
φ 	∈ R

R � φ

R � κ1 not(κ1 ↓) R � κ2

R � κ1;κ2

R � κ1 κ1 ↓ ∅ � κ2

R � κ1;κ2

R � κ1 R � κ2

R � κ1 || κ2

R � κ1 R � κ2

R � κ1 + κ2

R ∪ {φ} � κ

R � μφ. κ

R � κ

R � run κ

The predicate R � κ means that the behavior κ is reactive with respect to the set
of variables R, that is, these variables do not appear in the first instant of κ and
all the recursions inside κ are not instantaneous. The rule for a variable φ checks
that φ is not a recursion variable introduced in the current instant. The recursion
variables are added to the set R when checking the reactivity of a recursive
behavior μφ. κ. In the case of the sequence κ1;κ2, we can remove variables fromR
if κ1 is non-instantaneous. One can also check from the definition of κ∞ as a
recursive behavior that this definition also implies that the body of a loop is
non-instantaneous.

3.3 Equivalence on Behaviors

We can define an equivalence relation≡ on behaviors that will be used to simplify
the behaviors. The relation is reflexive, symmetric and transitive closure of the
following rules. The operators ; and || and + are idempotent and associative.
|| and + are commutative (but not ;). The 0 behavior (resp. •) is the neutral
element of ; and || (resp. +). The relation also satisfies the following rules (where
op is ; or || or +):

226 L. Mandel and C. Pasteur

κ1 ≡ κ2

μφ. κ1 ≡ μφ. κ2

κ1 ≡ κ2

run κ1 ≡ run κ2

•∞ ≡ •
κ1 ≡ κ′

1 κ2 ≡ κ′
2

κ1 op κ2 ≡ κ′
1 op κ

′
2

It is easy to show, for example, that: μφ. ((• || 0); (run φ+run φ)) ≡ μφ. (•; run φ).
An important property of this relation is that it preserves reactivity. It is ex-
pressed as follows:

Property 1. if κ1 ≡ κ2 and R � κ1 then R � κ2.

Proof. By induction on the proof of κ1 ≡ κ2.

4 The Type-and-Effect System

The link between processes and behaviors is done by a type-and-effect sys-
tem [18], following the work of Amtoft et al. [3]. The behavior of a process
is its effect computed using the type system. After type-checking, the compiler
checks the inferred behaviors and prints a warning if one of them is not reactive.

The type system is a conservative extension of the original one of ReactiveML,
that is, it is able to assign a behavior to any ReactiveML program that was
accepted previously. It is an important feature as we only want to show warnings
and not reject programs.

4.1 Abstract Syntax

We consider here a kernel of ReactiveML:

v ::= c | (v, v) | n | λx.e | process e

e ::= x | c | (e, e) | λx.e | e e | rec x = v | process e | run e | pause
| let x = e and x = e in e | signal x default e gather e in e | emit e e

| present e then e else e | loop e | do e until e(x)→ e | do e when e

Values are constants c (integers, unit value (), etc.), pairs of values, signal names
n, functions and processes. The language is a call-by-value lambda-calculus, ex-
tended with constructs for creating (process) and running (run) processes, wait-
ing for the next instant (pause), parallel definitions (let/and), declaring signals
(signal), emitting a signal (emit) and several control structures: the test of pres-
ence of a signal (present), the unconditional loop (loop), weak preemption
(do/until) and suspension (do/when). The expression do e1 until s(x)→ e2 ex-
ecutes its body e1 and interrupts it if s is present. In case of preemption, the con-
tinuation e2 is executed on the next instant, binding x to the value of s. We denote
variables that do not appear free in the body of a let and () the unique value

of type unit. From this kernel, we can encode most constructs of the language:
e1 || e2
 let = e1 and = e2 in ()

e1; e2
 let = () and = e1 in e2
await e1(x) in e2
 do (loop pause) until e1(x)→ e2
let rec process f x1 . . . xp = e1 in e2

 let f = (rec f = λx1. . . . λxp.process e1) in e2

Reactivity of Cooperative Systems 227

4.2 Types

Types are defined by:

τ ::= α | T | τ × τ | τ → τ | τ process[κ] | (τ, τ) event (types)

σ ::= τ | ∀φ. σ | ∀α. σ (type schemes)

Γ ::= ∅ | Γ, x : σ (environments)

A type is either a type variable α, a base type T (like bool or unit), a product,
a function, a process or a signal. The type of a process is parametrized by its
return type and its behavior. The type (τ1, τ2) event of a signal is parametrized
by the type τ1 of emitted values and the type τ2 of the received value (since a
gathering function of type τ1 → τ2 → τ2 is applied).

Types schemes quantify universally over type variables α and behavior vari-
ables φ. We denote ftv(τ) (resp. fbv (τ)) the set of type (resp. behavior) variables
free in τ and fv(τ) = ftv(τ), fbv (τ). Instantiation and generalization are defined
in a classic way: σ[α← τ] ≤ ∀α. σ σ[φ← κ] ≤ ∀φ. σ

gen(τ, e, Γ) = τ if e is expansive

gen(τ, e, Γ) = ∀ᾱ.∀φ̄. τ where ᾱ, φ̄ = fv (τ) \ fv(Γ) otherwise

Analogously to the treatment of references in ML, we must be careful not to
generalize expressions that allocate signals. We use the syntactic criterion of
expansive and non-expansive expressions [33]. An expression is expansive if it can
allocate a signal or a reference, in which case its type should not be generalized.

The notions of reactivity and equivalence are lifted from behaviors to types. A
type is reactive if it contains only reactive behaviors. Two types are equivalent,
also denoted τ1 ≡ τ2, if they have the same structure and their behaviors are
equivalent.

4.3 Typing Rules

Typing judgments are given by Γ � e : τ | κ meaning that, in the type environ-
ment Γ , the expression e has type τ and behavior κ. We write Γ � e : τ | ≡ 0
when the behavior of the expression e is equivalent to 0. The initial typing en-
vironment Γ0 gives the types of primitives:

Γ0
 [true : bool; fst : ∀α1, α2. α1 × α2 → α1; . . .]

The rules defining the type system are given in Figure 1. If all the behaviors
are erased, it is exactly the same type system as the one presented in [19], which
is itself an extension of the ML type system. We discuss here the novelties of the
rules related to behaviors:

– The Process rule stores the behavior of the body in the type of the process,
as usual in type-and-effect systems. The presence of the κ′ behavior and the
Mask rule are related to subeffecting and will be discussed in Section 4.4.

228 L. Mandel and C. Pasteur

τ ≤ Γ (x)

Γ � x : τ | 0
τ ≤ Γ0(c)

Γ � c : τ | 0
Γ � e1 : τ1 | ≡ 0 Γ � e2 : τ2 | ≡ 0

Γ � (e1, e2) : τ1 × τ2 | 0

Γ, x : τ1 � e : τ2 | ≡ 0

Γ � λx.e : τ1 → τ2 | 0
(App)

Γ � e1 : τ2 → τ1 | ≡ 0 Γ � e2 : τ2 | ≡ 0

Γ � e1 e2 : τ1 | 0

Γ, x : τ � v : τ | ≡ 0

Γ � rec x = v : τ | 0
(Process)

Γ � e : τ | κ
Γ � process e : τ process[κ+ κ′] | 0

Γ � e : τ process[κ] | ≡ 0

Γ � run e : τ | run κ
Γ � pause : unit | •

Γ � e1 : τ1 | κ1 Γ � e2 : τ2 | κ2 Γ, x1 : gen(τ1, e1, Γ), x2 : gen(τ2, e2, Γ) � e3 : τ | κ3

Γ � let x1 = e1 and x2 = e2 in e3 : τ | (κ1 || κ2);κ3

Γ � e1 : τ2 | ≡ 0 Γ � e2 : τ1 → τ2 → τ2 | ≡ 0 Γ, x : (τ1, τ2) event � e : τ | κ
Γ � signal x default e1 gather e2 in e : τ | 0;κ

Γ � e : (τ1, τ2) event | ≡ 0 Γ � e1 : τ | κ1 Γ � e2 : τ | κ2

Γ � present e then e1 else e2 : τ | κ1 + (•;κ2)

Γ � e1 : (τ1, τ2) event | ≡ 0 Γ � e2 : τ1 | ≡ 0

Γ � emit e1 e2 : unit | 0
Γ � e : τ | κ

Γ � loop e : unit | (0;κ)∞

Γ � e1 : τ | κ1 Γ � e : (τ1, τ2) event | ≡ 0 Γ, x : τ2 � e2 : τ | κ2

Γ � do e1 until e(x)→ e2 : τ | κ1 + (•; κ2)

Γ � e1 : τ | κ Γ � e : (τ1, τ2) event | ≡ 0

Γ � do e1 when e : τ | κ + •∞ (Mask)
Γ � e : τ | κ φ 	∈ fbv(Γ, τ)

Γ � e : τ | κ[φ ← •]

Fig. 1. Type-and-effect rules

– A design choice made in ReactiveML is to separate pure ML expressions,
that are surely instantaneous, from processes. For instance, it is impossible
to call pause within the body of a function, that must be instantaneous. A
static analysis (used for efficient code generation) performed before typing
checks this well-formation of expressions, denoted k � e in [19] and recalled
in Appendix A [20]. Requiring the behavior of some expressions, like the
arguments of an application or the body of a function, to be equivalent to 0
does not add any new constraint with respect to this existing analysis.

– We do not try to prove the termination of pure ML functions without any
reactive behavior. The App rule shows that we assume that function calls
always terminate instantaneously.

– In the case of present e then e1 else e2, the first branch e1 is executed
immediately if the signal e is present and the second branch e2 is executed

Reactivity of Cooperative Systems 229

at the next instant if it is absent. This is reflected in the behavior associated
with the expression. Similarly, for do e1 until e(x)→ e2, the expression e2
is executed at the instant following the presence of e.

– The reason why the behavior associated with loop is equal to (0;κ)∞ and
not simply κ∞ will be explained in Section 4.5. Intuitively, the soundness
proof will use an induction on the size of the behaviours and thus requires
the behavior of a sub-expression to always be smaller. This also applies
for signal and do/when.

– Finally, note that there is no special treatment for recursive processes. We
will see in the next section that recursive behaviors are introduced during
unification.

4.4 Subeffecting with Row Polymorphism

The typing rule (Process) for the creation of processes intuitively mean that a
process has at least the behavior of its body. The idea is to add a free behavior
variable to represent other potential behaviors of the process. This subtyping
restricted to effects is often referred to as subeffecting [23]: we can always replace
an effect with a bigger, i.e. less precise, one. It allows to assign a behavior to any
correct ReactiveML program. For instance, it is possible to build a list of two
processes with different behaviors (the • behavior is printed ’*’ and behavior
variables φ are denoted ’r):

let process p1 = ()
val p1: unit process[0 + ’r1]

let process p2 = pause
val p2: unit process[* + ’r2]

let l = [p1; p2]

val l: unit process[0 + * + ’r] list

If the behavior of a process had been exactly equal to the behavior of its body,
this expression would have been rejected by the type system.

The consequence of the typing rule for processes is that the principal type of an
expression process e is always of the form κ+φ where κ is the behavior of e and
φ a free variable. The idea to use a free type variable to represent other possible
types is reminiscent of Remy’s row types [26]. It makes it possible to implement
subeffecting using only unification, without manipulating constraint sets as in
traditional approaches [31,3]. It thus becomes easier to integrate it into any
existing ML type inference implementation. For instance, OCaml type inference
is also based on row polymorphism [27], so it would be easy to implement our
type system on top of the full language.

We can reuse any existing inference algorithm, like algorithm W or M [16]
and add only the following algorithm Uκ for unification of behaviors. It takes
as input two behaviors and returns a substitution that maps behavior vari-
ables to behaviors, that we denote [φ1 �→ κ1;φ2 �→ κ2; . . .]. During unification,

230 L. Mandel and C. Pasteur

the behavior of a process is always either a behavior variable φ, a row κ + φ
or a recursive row μφ. (κ+ φ′). Therefore, the unification algorithm only has to
consider these cases:

Uκ(κ, κ) = []

Uκ(φ, κ) = Uκ(κ, φ) =

{
[φ → μφ. κ] if occur check(φ, κ)

[φ → κ] otherwise

Uκ(κ1 + φ1, κ2 + φ2) = [φ1 → κ2 + φ;φ1 → κ1 + φ], φ fresh

Uκ(μφ
′
1. (κ1 + φ1), κ2) = Uκ(κ2, μφ

′
1. (κ1 + φ1))

= letK1 = μφ′
1. (κ1 + φ1) in Uκ(κ1[φ

′
1 ← K1] + φ1, κ2)

It should be noted that unification never fails, so that we obtain a conser-
vative extension of ReactiveML type system. This unification algorithm reuses
traditional techniques for handling recursive types [13]. The last case unfolds a
recursive row to reveal the row variable, so that it can be unified with other rows.

A downside of our approach is that it introduces one behavior variable for each
process, so that the computed behaviors may become very big and unreadable.
The purpose of the Mask rule is to remedy this, by using effect masking [18].
The idea is that if a behavior variable appearing in the behavior is free in the
environment, it is not constrained so we can give it any value. In particular, we
choose to replace it with •, which is the neutral element of +, so that it can be
simplified away.

4.5 Proof of Soundness

We now present the proof sketch of the soundness of our analysis, that is, that
at each instant, the program admits a finite derivation in the big-step semantics
of the language and rewrites to a well-typed program with reactive effects.

The big-step semantics of ReactiveML, also called the behavioral semantics in
reference to the semantics of Esterel [25], describes the reaction of an expression
during an instant i by the smallest signal environment Si (the set of present
signals) such that:

ei
Ei,bi−−−→
Si

ei+1

which means that during the instant i, in the signal environment Si, the expres-
sion ei rewrites to ei+1 and emits the signals in Ei. The boolean bi indicates if
ei+1 has terminated. Additional conditions express, for instance, the fact that
the emitted values in Ei must agree with the signal environment Si. An execu-
tion of a program comprises a succession of a (potentially infinite) number of
reactions and terminates when the status bi is equal to true. The definition of
the semantics was introduced in [19] and is recalled in Appendix B [20].

A program is reactive if at each instant, the semantics derivation of ei is finite.
To prove that, we first isolate the first instant of the behavior of ei, noted fst(κi).
This function is formally defined by:

Reactivity of Cooperative Systems 231

fst(0) = fst(•) = 0

fst(φ) = φ

fst(run κ) = run (fst(κ))

fst(κ1 || κ2) = fst(κ1) || fst(κ2)

fst(κ1 + κ2) = fst(κ1) + fst(κ2)

fst(κ1;κ2) =

{
fst(κ1) if κ1 ↓
fst(κ1); fst(κ2) otherwise

fst(μφ. κ) = fst(κ[φ← μφ. κ])

The important property of this function is that if a behavior κi of ei is reactive (as
defined in Section 3.2), then fst(κi) is finite. Hence we can prove by induction
on the size of fst(κi) that the semantics derivation is finite. The soundness
theorem is stated as follows:

Theorem 1 (Soundness). If Γ � e : τ | κ and τ and κ are reactive and we

suppose that function calls terminate, then there exists e′ such that e
E,b−−→
S

e′ and

Γ � e′ : τ | κ′ with κ′ reactive.

Proof. The proof has two parts. The first part is the proof that the result is well-
typed. We use classic syntactic techniques for type soundness [24] on the small-
step semantics described in [19]. The proof of equivalence of the two semantics
is also given in the same paper. The second part is the proof that the semantics
derivation of one instant is finite by induction on the size of the first-instant
behavior of well-typed expressions. We only consider one instant because thanks
to type preservation, if the theorem is true for one instant, it is true for the
following ones. The details of the proof are given in Appendix C [20].

5 Examples

We present here the result of the analysis on some examples. These examples
can be downloaded and tried at http://reactiveml.org/sas14.

Using a type-based analysis makes it easy to deal with cases of aliasing, as in
the following example:4

let rec process p =

let q = (fun x -> x) p in run q
val p: ’a process[rec ’r. (run ’r + ..)]

W: This expression may produce an instantaneous recursion

The process q has the same type as p, and thus the same behavior, so the
instantaneous recursion is easily detected. As for objects in OCaml [27], row
variables that appear only once are printed ‘..’.

The analysis can also handle combinators like the par_comb and if_comb ex-
amples of Section 3.1. Here is another more complex example using higher-order
functions and processes. We define a function h_o that takes as input a combi-
nator f. It then creates a recursive process that applies f to itself and runs the
result:

4 Some behaviors are simplified using the extension described in Appendix D [20].

http://reactiveml.org/sas14

232 L. Mandel and C. Pasteur

let h_o f =

let rec process p = let q = f p in run q
in p

val h_o: (’a process[run ’r1 + ’r2] -> ’a process[’r1])

-> ’a process[run ’r1 + ’r2]

If we instantiate this function with a process that waits an instant before calling
its argument, we obtain a reactive process:

let process good = run (h_o (fun x -> process (pause; run x)))
val good: ’a process[run (run (rec ’r1. *; run (run ’r1))) + ..]

This is no longer the case if the process calls its argument instantaneously. The
instantaneous recursion is again detected by our static analysis:

let process pb = run (h_o (fun x -> process (run x)))
val pb: ’a process[run (run (rec ’r1. run run ’r1)) + ..]

W: This expression may produce an instantaneous recursion

Another process that can be analyzed is a fix-point operator. It takes as input
a function expecting a continuation, and applies it with itself as the continuation.
This fix-point operator can be used to create a recursive process:

let rec fix f x = f (fix f) x
val fix: ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b

let process main =
let process p k v = print_int v; run (k (v+1)) in run (fix p 0)

val main: ’a process[(run (rec ’r. run ’r)) + ..]

W: This expression may produce an instantaneous recursion

In the example, the analysis detects the problem of reactivity although there is
no explicit recursive process.

6 Discussion

Implementation. The type inference algorithm of ReactiveML has been ex-
tended to compute the behaviors of processes, with minimal impact on its struc-
ture and complexity thanks to the use of row polymorphism for subeffecting (see
Section 4.4). The rules given in Section 3.2 are easily translated into an algo-
rithm for checking the reactivity of behaviors that is polynomial in the size of
behaviors.

In practice, the analysis has an impact on the type-checking time but it is
negligible compared to the global compilation time. For example on a 1.7GHz
Intel Core i5 with 4Go RAM, the compilation of the examples of the ReactiveML
distribution (about 5000 lines of code) takes about 0.15s where 0.02s are spent
in the type checker (0.005s without the reactivity analysis). Then it takes 3.5s
to compile the generated OCaml code.

Evaluation. The analysis is very useful to detect early small reactivity bugs such
as the one presented Section 2.1. We have also used the analysis on bigger appli-
cations: a mobile ad-hoc network simulator (1800 Source Lines Of Code), a sensor
network simulator (1700 SLOC), and a mixed music sequencer (3400 SLOC).

Reactivity of Cooperative Systems 233

There is no warning for both simulators. For the mixed music sequencer,
there are warnings on eleven processes. Eight warnings are due to structural
recursions (similar to the example par_map). Most of them come from the fact
that the program is a language interpreter defined as a set of mutually recursive
processes on the abstract syntax tree. Another warning comes from a record
containing a process that is not annotated with a non-instantaneous behavior.
The last two warnings are due to loops around the execution of a musical score.
In this case, the analysis does not use the fact that the score is a non-empty list.

In all these cases, it was easy for the programmer to check that these warnings
were false positives. The last three warnings can be removed by adding a pause
in parallel to the potentially instantaneous expressions.

Other Models of Concurrency. We have already extended our analysis to
take into account time refinement [21]. We believe this work could be applied to
other models of concurrency. One just needs to give the behavior • to operations
that cooperate with the scheduler, like yield. We are considering an extension
to the X10 language,5 where cooperation points could be clocks.

In a synchronous world, the fact that each process cooperates at each instant
implies the reactivity of the whole program, as processes are executed in lock-
step. In another model, assumptions on the fairness of the scheduler may be
required. This should not be a major obstacle, as these hypotheses are already
made in most systems, e.g. in Concurrent Haskell [15]. The distinction between
processes and functions is important to avoid showing a warning for all recursive
functions.

7 Related Work

The analysis of instantaneous loops is an old topic on which much has already
been written, even recently [1,14,4]. It is related to the analysis of productivity
and deadlocks in list programs [29] or guard conditions in proof assistants [5],
etc. Our purpose was to define an analysis that can be used in the context of
a general purpose language (mutable values, recursion, etc.). We tried to find a
good compromise between the complexity of the analysis and its precision for
typical reactive programs written in ReactiveML. The programmer must not be
surprised by the analysis and the error messages. We focus here only on directly
related work.

Our language of behaviors and type system are inspired by the work of Amtoft
et al. [3]. Their analysis is defined on the ConcurrentML [28] language, which
extends ML with message passing primitives. The behavior of a process records
emissions and receptions on communication channels. The authors use the type
system to prove properties on particular examples, not for a general analysis. For
instance, they prove that emission on a given channel always precedes the emis-
sion on a second channel in a given program. The idea of using a type-and-effect
system for checking reactivity or termination is not new. For instance, Boudol [8]

5 http://x10-lang.org/

http://x10-lang.org/

234 L. Mandel and C. Pasteur

uses a type-and-effect system to prove termination of functional programs using
references, by stratifying memory to avoid recursion through references.

Reactivity analysis is a classic topic in synchronous languages, that can also be
related to causality. In Esterel [25], the first imperative synchronous language, it
is possible to react immediately to the presence and the absence of a signal. The
consequence is that a program can be non-reactive because there is no consistent
status for a given signal: the program supposes that a signal is both present and
absent during the same instant. This problem is solved by checking that programs
are constructively correct [25]. Our concurrency model, inherited from the work
of Boussinot [9], avoids these problems by making sure that processes are causal
by construction. We then only have to check that loops are not instantaneous,
which is called loop-safe by Berry [25]. It is easy to check that an Esterel program
is loop-safe as the language is first order without recursion [32].

Closer to ReactiveML, the reactivity analysis of FunLoft [2] not only checks
that instants terminate, but also gives a bound on the duration of the instants
through a value analysis. The analysis is also restricted to the first-order setting.
In ULM [7], each recursive call induces an implicit pause. Hence, it is impossible
to have instantaneous recursions, at the expense of expressivity. For instance, in
the server example of Section 2.2, a message could be lost between receiving a
message on add and awaiting a new message.

The causality analysis of Lucid Synchrone [10] is a type-and-effect system
using row types. It is based on the exception analysis defined by Leroy et al. [17].
Both are a more direct application of row types [26], whereas our system differs
in the absence of labels in rows.

8 Conclusion

We have presented a reactivity analysis for the ReactiveML language. The idea
of the analysis is to abstract processes into a simpler language called behaviors
using a type-and-effect system. Checking reactivity of behaviors is then straight-
forward. We have proven the soundness of our analysis, that is, that a well-typed
program with reactive effects is reactive. Thanks in particular to the syntactic
separation between functions and processes, the analysis does not detect too
many false positives in practice. It is implemented in the ReactiveML compiler
and it has been proven very useful for avoiding reactivity bugs. We believe that
this work can be applied to other models of cooperative scheduling.

Acknowledgments. This work would not have been possible without previous
experiments made with Florence Plateau and Marc Pouzet. Timothy Bourke
helped us a lot in the preparation of this article. We are grateful for the proof-
reading and discussions with Guillaume Baudart and Adrien Guatto. Finally,
we also thank the reviewers for there numerous comments and suggestions.

Reactivity of Cooperative Systems 235

References

1. Abel, A., Pientka, B.: Well-founded recursion with copatterns. In: International
Conference on Functional Programming (2013)

2. Amadio, R., Dabrowski, F.: Feasible reactivity in a synchronous π-calculus. In:
Principles and Practice of Declarative Programming, pp. 221–230 (2007)

3. Amtoft, T., Nielson, F., Nielson, H.: Type and Effect Systems: Behaviours for
Concurrency. Imperial College Press (1999)

4. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
International Conference on Functional Programming (2013)

5. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termina-
tion of recursive definitions. Mathematical Structures in Computer Science 14(01),
97–141 (2004)

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., De Simone,
R.: The synchronous languages twelve years later. In: Proc. of the IEEE (2003)

7. Boudol, G.: ULM: A core programming model for global computing. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 234–248. Springer, Heidelberg (2004)

8. Boudol, G.: Typing termination in a higher-order concurrent imperative language.
Information and Computation 208(6), 716–736 (2010)

9. Boussinot, F.: Reactive C: an extension of C to program reactive systems. Software:
Practice and Experience 21(4), 401–428 (1991)

10. Cuoq, P., Pouzet, M.: Modular Causality in a Synchronous Stream Language. In:
Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 237–251. Springer, Heidelberg
(2001)

11. Dimino, J.: Lwt User Manual (2014), http://ocsigen.org/lwt/
12. Engelschall, R.: Portable multithreading: The signal stack trick for user-space

thread creation. In: USENIX Annual Technical Conference (2000)
13. Huet, G.: A unification algorithm for typed λ-calculus. Theoretical Computer Sci-

ence 1(1), 27–57 (1975)
14. Jeffrey, A.: Functional reactive programming with liveness guarantees. In: Interna-

tional Conference on Functional Programming (2013)
15. Jones, S., Gordon, A., Finne, S.: Concurrent Haskell. In: Principles of Programming

Languages, pp. 295–308 (1996)
16. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm.

Transactions on Programming Languages and Systems 20(4), 707–723 (1998)
17. Leroy, X., Pessaux, F.: Type-based analysis of uncaught exceptions. Transactions

on Programming Languages and Systems 22(2), 340–377 (2000)
18. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Principles of Pro-

gramming Languages (1988)
19. Mandel, L., Pouzet, M.: ReactiveML: A reactive extension to ML. In: Principles

and Practice of Declarative Programming (2005)
20. Mandel, L., Pasteur, C.: Reactivity of cooperative systems – extended version.

Research Report 8549, INRIA (2014), http://reactiveml.org/sas14
21. Mandel, L., Pasteur, C., Pouzet, M.: Time refinement in a functional synchronous

language. In: Principles and Practice of Declarative Programming. (2013)
22. Marlow, S., Jones, S., Thaller, W.: Extending the Haskell foreign function interface

with concurrency. In: Haskell 2004, pp. 22–32. ACM (2004)
23. Nielson, F., Nielson, H.: Type and effect systems. Correct System Design (1999)
24. Pierce, B.: Types and programming languages. The MIT Press (2002)
25. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel. Springer (2007)

http://ocsigen.org/lwt/
http://reactiveml.org/sas14

236 L. Mandel and C. Pasteur

26. Rémy, D.: Type inference for records in a natural extension of ML. Theoretical
Aspects of Object-Oriented Programming. MIT Press (1993)

27. Rémy, D.: Using, understanding, and unraveling the OCaml language from practice
to theory and vice versa. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.)
Applied Semantics. LNCS, vol. 2395, pp. 413–536. Springer, Heidelberg (2002)

28. Reppy, J.: Concurrent programming in ML. Cambridge University Press (2007)
29. Sijtsma, B.A.: On the productivity of recursive list definitions. Transactions on

Programming Languages and Systems 11(4), 633–649 (1989)
30. Syme, D., Petricek, T., Lomov, D.: The F# asynchronous programming model.

Practical Aspects of Declarative Languages, 175–189 (2011)
31. Talpin, J.P., Jouvelot, P.: The type and effect discipline. In: Logic in Computer

Science (1992)
32. Tardieu, O., de Simone, R.: Loops in Esterel. Transaction on Embedded Comput-

ing 4(4), 708–750 (2005)
33. Tofte, M.: Type inference for polymorphic references. Information and computa-

tion 89(1), 1–34 (1990)
34. Vouillon, J.: Lwt: A cooperative thread library. In: ACM workshop on ML (2008)

Synthesis of Memory Fences
via Refinement Propagation

Yuri Meshman2, Andrei Dan1, Martin Vechev1, and Eran Yahav2

1 ETH Zurich
{andrei.dan,martin.vechev}@inf.ethz.ch

2 Technion
{yurime,yahave}@cs.technion.ac.il

Abstract. We address the problem of fence inference in infinite-state concur-
rent programs running on relaxed memory models such as TSO and PSO. We
present a novel algorithm that can automatically synthesize the necessary fences
for infinite-state programs.

Our technique is based on two main ideas: (i) verification with numerical do-
mains: we reduce verification under relaxed models to verification under sequen-
tial consistency using integer and boolean variables. This enables us to combine
abstraction refinement over booleans with powerful numerical abstractions over
the integers. (ii) synthesis with refinement propagation: to synthesize fences for
a program P , we combine abstraction refinements used for successful synthesis
of programs coarser than P into a new candidate abstraction for P . This “proof
reuse” approach dramatically reduces the time required to discover a proof for P .

We implemented our technique and successfully applied it to several chal-
lenging concurrent algorithms, including state of the art concurrent work-stealing
queues.

1 Introduction
Modern architectures use relaxed memory models in which memory operations may
be reordered and executed non-atomically [2]. To allow programmer control over those
orderings, processors provide special memory fence instructions. Unfortunately, man-
ually reasoning where to place fences in a concurrent program running on a relaxed
architecture is a challenging task. Using too many fences hinders performance, while
missing necessary fences leads to incorrect programs.

Placing Memory Fences. Finding a correct and efficient fence assignment is impor-
tant for expert designers of concurrent algorithms as well as for developers wishing to
implement a concurrent algorithm from the literature (these algorithms are regularly
published without any mention of fences). Yet, manually finding the right fence as-
signment is difficult as these algorithms often rely on subtle ordering of events, which
may be violated under relaxed memory models [11, Ch.7]. Further, the process of plac-
ing fences has to be repeated whenever the algorithm changes or is ported to another
architecture.

Our Approach. In this work we propose a novel automatic framework for synthesis
of memory fences that can handle infinite-state programs. Given a program P , a safety

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 237–252, 2014.
c© Springer International Publishing Switzerland 2014

238 Y. Meshman et al.

specificationS, an abstractionα and a memory modelM , our system automatically syn-
thesizes a memory fence assignment f such that the programP with fence assignment f
(denoted by P 〈f〉) can be shown to satisfy the specification S under M using α, that is
[[P 〈f〉]]αM |= S. This is a particularly challenging task as even automatic verification is a
difficult problem: currently there is very little work on automatic verification of infinite-
state concurrent programs [8,1] running on relaxed architectures, yet most concurrent
algorithms are infinite-state (e.g. [23,6]). Our system is based on two key ideas.

Synthesis via Abstraction Refinement Across Programs. First, we introduce a synthe-
sis algorithm which explores the abstraction refinements needed to verify a program
P by combining abstraction refinements used for successful verification of programs
coarser than P (programs that use a superset of fences). This is important as finding an
abstraction refinement that is precise enough to verify a concurrent program is known
to be a difficult problem. Our “proof reuse” approach reduces the time required to prove
P . To the best of our knowledge, this is the first work which performs abstraction refine-
ment by learning information across multiple programs, as opposed to the traditional
abstraction refinement typically performed within a single program.

Verification via Reduction with Numerical Abstract Domains. Second, we verify a
program under relaxed memory models by reduction to a program under sequential
consistency. This reduction approach, also advocated by other works [3,8], is powerful
as it enables one to leverage advances in the analysis of concurrent programs under
sequential consistency. Based on this general idea, we reduce the verification problem
under relaxed models to a problem of verification under sequential consistency using
integer and boolean variables.

This reduction enables us to use powerful numerical abstract domains such as Poly-
hedra [7] and allows us for the first time to verify properties of infinite state concurrent
algorithms such as the Chase-Lev [6] and THE [9] work stealing queues. However, nu-
merical domains are insufficient by themselves as they can only represent convex infor-
mation and the non-determinism introduced by relaxed memory models often requires
capturing disjunctions. To track such information precisely, we leverage the expressive
power of an abstract domain that combines numerical information with finite boolean
information (predicates). We track the non-deterministic aspects of the relaxed memory
model using disjunctions in the finite part of the domain.

Main Contributions. The novel contributions of our system are:

– A verification procedure based on transforming a program under relaxed seman-
tics into a program under sequential consistency, enabling application of powerful
numerical abstract domains. To refine the abstraction, we show how to track the
non-deterministic aspects (which induce non-convex information) inherent in re-
laxed memory models via disjunctions encoded in the finite part of the domain.

– An efficient synthesis procedure which searches for minimal fence assignments by
combining abstraction refinements used in successful proofs of coarser programs.

– An implementation and evaluation of our system for the x86-TSO and PSO memory
models instantiated with classical numerical domains such as Polyhedra. We per-
formed an extensive experimental study on a set of 15 concurrent algorithms. We
believe this is the first time classic abstract interpretation has been used to prove
properties of infinite-state work-stealing queues [6,9].

Synthesis of Memory Fences via Refinement Propagation 239

2 Overview
In this section, we provide an informal overview of our approach using Peterson’s mu-
tual exclusion algorithm (shown in Fig. 1). More elaborate examples are considered in
Section 5.

2.1 Motivating Example

In Fig. 1, each of the two threads attempts to reach their critical section (CS) at Line 7.
To enter the critical section, a thread first checks whether the other thread intends to
enter the critical section (by checking the value of flag0 or flag1), as well as its turn
(value of turn).

Our goal is to guarantee that both threads do not enter the critical section simul-
taneously. This property holds when the two threads run on a sequentially consistent
machine, but no longer holds when they run on a relaxed memory model such as PSO
or TSO. Under relaxed memory models, the writes to flag0, flag1, and turn per-
formed by one thread may be buffered and not yet visible to the other thread when it
reaches the condition at Line 5. As a result, both processes may enter the critical sec-
tion simultaneously. For example, if thread 1 enters the critical section, and its write to
flag0=1 has not yet been flushed to main memory, thread 2 will pass its check at Line 5
and also enter the critical section. To guarantee that the mutual exclusion holds under
relaxed memory models, the programmer has to explicitly add memory fences to the
program. However, because fences are expensive, the programmer faces the challenge
of inserting the minimal set of sufficient fences that makes mutual exclusion hold.

2.2 Searching for Fence Assignment and Refinement Placement

Our goal is to synthesize a minimal fence assignment for a given program, specification,
and memory model. Finding such a minimal fence assignment involves a search over
the space of possible fences and automatically checking the correctness of each program
in the space. To automatically verify a program, we employ abstraction refinement. In
our setting, abstraction refinement is described as a set of program locations (discussed
in detail later) which we refer to as a refinement placement.This leads to the following
two-dimensional synthesis challenge:

Find a refinement placement and a minimal fence assignment which verify the program

Thread 1:

1 flag0 = 1;
2 turn = 1;
3 f1 = flag1;
4 lt1 = turn;
5 if ((lt1 != 0) & (f1 != 0))
6 goto 3;
7 nop; // CS
8 flag0 = 0;
9 goto 1;

Thread 2:

1 flag1 = 1;
2 turn = 0;
3 f2 = flag0;
4 lt2 = turn;
5 if ((f2 != 0) & (lt2 = 0))
6 goto 3;
7 nop; // CS
8 flag1 = 0;
9 goto 1;

assert always ((pc1 	= 7) ∨ (pc2 	= 7))

Fig. 1. Peterson mutual exclusion algorithm

240 Y. Meshman et al.

Naive Approach. A naive approach where we perform an exhaustive search of the
fence/refinement space is almost always non-feasible. For example, even for Peterson’s
algorithm, there are 26 potential fence assignments and 223 potential refinement place-
ments (we explain these in Section 2.3), leading to a total number of 229 points in the
fence/refinement space!

Our approach: semantic program and proof propagation. Our approach works by
pruning large parts of the search space, based on the following two observations (here
we use the notationP 〈f, r〉 to mean programP with fence assignment f and refinement
placement r):

– implied correctness: if the program P 〈f, r〉 is verified successfully, then it implies
the correctness of any other point in space which uses a superset of the fences in f
or a superset of the refinement locations in r.

– implied incorrectness: if the program P 〈f, r〉 fails to verify, then it implies the
incorrectness of any other point in space which uses a subset of the fences in f or
a subset of the refinement locations in r.

Fig. 2 shows an example of one of our propagation techniques (discussed in Sec-
tion 3.1) and is meant to give an intuition. Here, successful verification of P 〈f1, r1〉 and
P 〈f2, r2〉 implies the correctness of all programs in the search space “below” these two
(all programs with a subset of the fences). Further exploration of the space can first at-
tempt to verify the point P 〈f3, r3〉 which employs a smaller set of fences (f3 = f1∩f2)
yet uses a refinement placement which combines successful refinement placements from
different programs (i.e. r1 and r2). The intuition behind this combination is that slight
relaxation of the program via fewer fences should only require slight adjustment of the
abstraction refinement. Our experimental evaluation (Section 5) shows that propagation
is effective for finding a minimal fence assignment for many of our benchmarks.

 propagation of:
 program correctness
 +
abstraction refinements

means the program need not be explored further

means the program has been explored

means is a successful abstraction refinement used to verify program

 is a suggestion to prove program with a combined abstraction refinement

Legend:

means the program is about to be explored

f1,r1 f1,r1 f2,r2 f2,r2

f3,r3
f3,r3

Fig. 2. Propagation of program correctness and abstraction refinements

Synthesis of Memory Fences via Refinement Propagation 241

2.3 Refinement Placement - Reduction and Abstraction

We next describe several ingredients of our approach to verification of infinite-state
programs running on relaxed memory models.

/* begin store */
if flag0_cnt_0 > 0 {

overflow = true;
halt;

}
flag0_cnt_0 = flag0_cnt_0 + 1;
if flag0_cnt_0 < 2

flag0_1_0 = 1;
/* end store */
/* begin flush */
yield;
while * do {

if flag0_cnt_0 > 0 {
flag0 = flag0_1_0;
flag0_cnt_0 = flag0_cnt_0 - 1;
yield;

}
}
/* end flush */
yield;

Fig. 3. Translation of flag0=1 under PSO

As described in the motivat-
ing example, on a relaxed memory
model, writes to shared memory
are not immediately visible to all
processes: writes are first placed
into a local buffer and then (non-
deterministically), a flush instruc-
tion pops values from that buffer
and writes them to shared mem-
ory. In our setting, this mechanism
is encoded in source code via a
translation phase.

Non-determinism due to flushes.
Fig. 3 shows the translation of
the statement flag0=1 for the
PSO memory model (in this
model, each thread maintains a
FIFO buffer for each shared
variable). Intuitively, flag0=1 is
translated into two parts: i) the
write to the FIFO buffer and a
non-deterministic flush. Details
of this translation are discussed
in Section 4. Here, we only dis-
cuss the translation of the flush.
A flush from a store buffer works by writing back to shared memory an arbitrary
number of items from the buffer. This is captured by the while (∗) loop that has a
non-deterministic termination condition (denoted by ∗).

The non-deterministic loop introduces a significant challenge when reasoning with
numerical domains (which capture state via relations between variables). The reason
is that two program states appearing right after the while loop has completed differ
significantly depending on whether the flush was performed or not. Both states can be
captured with disjunctions, but standard (convex) numerical domains often dramatically
lose precision exactly in such (disjunctive) cases.

Local abstraction refinement. To address this loss of precision, we use an abstract
domain that combines numerical information with a finite boolean domain. By carefully
introducing boolean predicates, we can refine the abstraction (by splitting the numerical
state) in a local manner. While local refinement may restore sufficient precision for
successful verification, it unfortunately comes at an exponential cost. The addition of
new predicates can lead to an exponential blowup of the program analysis, as each
predicate may double the state space. Further, such a refinement is not required for all
locations of a flush. For example, if we can prove that a flush is always reached with

242 Y. Meshman et al.

an empty buffer, the flush will have no effect, and thus there is no need to refine the
abstraction at such locations (we elaborate on this point in Section 4.4).

This introduces the challenge of finding a suitable refinement placement (a subset
of the flush program locations) that is precise enough to enable verification yet is
scalable enough for the analysis to terminate in reasonable time.

3 Abstraction-Guided Fence Synthesis
In this section, we present a new synthesis algorithm which propagates both fence as-
signments and refinement placements. Our algorithm leverages implied correctness/in-
correctness to reduce the search space. The algorithm treats the two dimensions of the
problem as having the same importance, and looks for a minimal fence assignment
and a minimal refinement. In addition, the algorithm strives to minimize the number of
fences based on a new concept where an abstraction refinement is obtained by combin-
ing successful refinements across programs.

3.1 Abstraction-Guided Fence Synthesis

Algorithm 1 provides a declarative description of our approach. The algorithm takes
as input a program P , a specification S, a memory model M and an abstraction α,
and produces a (possibly modified) program P ′ that satisfies the specification under M
with a minimal verifiable fence assignment. The algorithm leverages information from
several points in the space in the verification effort of a given point.

Fence assignment and refinement placement. A fence assignment f for a program P
with program labels Labp is simply a subset of program labels f ⊆ Labp. A refinement
placement r for a program P is also a subset of program labels, but it is restricted only
to program labels of flush operations. The details of the refinement are elaborated in
Section 4 and are not important for understanding the central concept of the synthesis
algorithm presented in this section. For a given fence assignment f and a refinement
placement r, P 〈f, r〉 denotes the program P with fences placed according to f and an
abstraction refinement selected according to r.

Searching for satisfying placements. The algorithm begins by initializing a worklist
with (i) the program under a full fence assignment (Line 3) together with (ii) a refine-
ment placement of program locations that are reasonable (Line 4) as determined by our
Empty Buffer Analysis (EBA) (see Section 4.4).

For each element of the worklist, the algorithm tries to improve the fence assign-
ment and refinement placement (Lines 8 and 9). The operation of these two functions
is discussed later in this section. Our algorithm then invokes the underlying verifier to
check if [[P 〈f, r〉]]αM |= [[S]]αM (Line 10).

Optimized Semantic Search. Our algorithm maintains the two sets verified and
falsified for storing points 〈f, r〉 that have been verified or where verification failed,
respectively. Initially, both of these sets are empty. In the case of successful verification,
the algorithm adds 〈f, r〉 to the set of verified points in space. However, the algorithm
does more than that: it also adds to verified all points which consist of a superset
of fences as well as a superset of refinements. Successful verification of P 〈f, r〉 means
that the search can proceed to explore more relaxed versions of the program. The helper

Synthesis of Memory Fences via Refinement Propagation 243

function relax(f,r,K) is used to compute a set of 〈f’,r’〉 pairs that admit more
behaviors (via a subset of fences) as well as coarser abstractions:

relax(f,r,K) = {〈f’,r’〉 | f’ ⊂ f and r’ ⊆ r and 〈f’,r’〉 �∈ K}

Input: P - program, S - Spec, M - memory model, α - abstraction, s.t. [[P]]αSC |= [[S]]α

Output: P ′ - program such that [[P ′]]αM |= [[S]]αM with minimal a number of fences
1 verified = ∅
2 falsified = ∅
3 f = fullFenceAssignment(P)
4 worklist = {〈f,EBA(P,f)〉}
5 while worklist 	= ∅ do
6 〈f,r〉 = select some pair from worklist
7 known = verified ∪ falsified
8 f = improveF(f,known)
9 r = improveR(f,r,known)

10 if [[P 〈f,r〉]]αM |= [[S]]αM then
11 verified ∪= {〈f̂, r̂〉 | f ⊆ f̂,r ⊆ r̂}
12 alternatives = relax(f,r,known)

13 else
14 falsified ∪= {〈f’,r’〉 | f’ ⊆ f, r’ ⊆ r}
15 alternatives = restrict(f,r,known)

16 end
17 worklist = (worklist ∪ alternatives) \ known

18 end
19 〈f,r〉 = min(verified)
20 return P 〈f,r〉

Algorithm 1. Semantic search for finding minimal verifiable fence assignments

In the case of failed verification, the algorithms can add 〈f, r〉 to the set of falsified
points in space, but once again, it can do more than that. That is, the algorithm adds to
the set falsified all points in the space which consist of a subset of fences and a sub-
set of abstraction refinements. Failed verification 〈f, r〉means that the search should ex-
plore more restricted versions of the program. The helper function restrict(f,r,K)
computes a set of 〈f’,r’〉 pairs that admit fewer behaviors (via a superset of fences)
as well as more refined abstractions:

restrict(f,r,K) = {〈f’,r’〉 | f ⊆ f’ and r ⊂ r’ and 〈f’,r’〉 �∈ K}

The algorithm terminates when there are no more alternatives to explore, and returns
a program with a minimal fence assignment (in our implementation, we return all non-
comparable minimal fence assignments).

Parametric choices. Our algorithm is parameterized on three dimensions:

– the choice for the next pair 〈f, r〉 to select at Line 6. The method of choosing the
next element determines if our search will be similar to a depth-first search, to a
breadth-first search or to a search that explores random elements of the space.

244 Y. Meshman et al.

– the function ImproveF. This function leverages the knowledge of previous verifi-
cation attempts (i.e., from the set known). For example, if f already verified for a
different refinement r’ and f’ is a configuration in known which verified, then we
can inspect f ∩ f’ instead of f.

– the function ImproveR. With this function we improve the refinement r based
on available knowledge (i.e., from the set known). For a fence assignment f and a
refinement r, if 〈f’, r〉 and 〈f”, r’〉 both previously successfully verified and if f’
and f” are stronger than f (that is, a superset of fences), then ImproveR will return
r ∪ r’. Intuitively, this makes the abstraction refinement more precise, increasing
the chances of success.

4 Automatic Verification

In this section we discuss the three steps of our automatic verification procedure: the
reduction procedure, the underlying program analysis and the mechanism of abstraction
refinement. We also discuss a static empty buffer analysis that is used by our algorithm
to compute a set of possible abstraction placements to chose from (as discussed earlier).

4.1 Reduction

Similarly to [3,8], we reduce a program P running on a relaxed model M to a program
PM running on sequential consistency. This enables us to directly leverage advances in
program analysis for sequential consistency. We adopt a similar translation procedure
to [8] where the key idea in constructing PM is representing the abstraction of the
store buffers of M as variables in PM . We illustrate the process for when M is the PSO
memory model. The process for x86-TSO is similar. For PSO, it is sufficient to consider
a program PPSO where every shared variable X in the program P is also associated
with: (i) additional k local variables for each thread t: x1_t, . . . , xk_t, representing the
content of a local store buffer for this variable in each thread t, (ii) a buffer counter
variable xcnt_t that records the current position in the store buffer of X in thread t.

The translation uses the function [[]] which takes as input a statement S, a thread t,
and a bound k on the maximum buffer size and produces a new statement as output [[S]]tk
(Fig. 4). The translation procedure is described in detail in [8]. Let us take a closer look
at the most challenging method, the flush.

A flush is translated into a non-deterministic loop. If the buffer counter for the
variable is positive, then it non-deterministically decides whether to update the shared
variable X . If it has decided to update X , the earliest write (i.e. x1_t) is stored in X .
The contents of the local variables are then updated by shifting: the content of each xi_t

is taken from the content of the successor x(i+1)_t where 1 ≤ i < k. Finally, the buffer
count is decremented.

In our encoding of concurrent programs, context switches between threads are ex-
plicitly specified with yield statements (we place yield statements after every in-
struction). Because under the relaxed memory model a flush can be executed non-
deterministically by the memory subsystem at any moment during program execution,
our reduction places a (translated) flush after every yield.

Synthesis of Memory Fences via Refinement Propagation 245

[[X = r]]tk
if xcnt_t = k then
abort(“overflow”);
xcnt_t = xcnt_t + 1;
if xcnt_t = 1 then x1_t = r; ...
if xcnt_t = k then xk_t = r;

[[r = X]]tk

if xcnt_t = 0 then r = X; ...
if xcnt_t = k then r = xk_t;

[[fence]]tk
� for each shared variable X
generate:
assume (xcnt_t = 0);
� end of generation

[[flush]]tk
while * do

� for each shared variable X
generate:
if xcnt_t > 0 then

if * then
X = x1_t;
if xcnt_t > 1 then

x1_t = x2_t;
...
if xcnt_t = k
then
x(k−1)_t =
xk_t

end
xcnt_t = xcnt_t− 1;

end
end
� end of generation

end

Fig. 4. PSO Translation Rules: each sequence is atomic

4.2 Analysis with Numerical Abstract Domains

Once we have obtained the reduced program PM , we use abstract interpretation with
advanced numerical domains to verify its properties under sequential consistency. In
particular, if the property we are interested in verifying relates only to shared numerical
variables G appearing in program P (for example, the property of no array access out
of bounds), then when translating accesses to variables of G by P , the reduction to
program PM will only introduce additional numerical variables over the variables in
G: these are the local variables and counters. This enables us to directly use powerful
numerical domains such as the Polyhedra abstract domain over the resulting program
PM . There are three possible outcomes of the automatic verification step:

– The program PM verifies in which case the verification is successful.
– The program PM does not verify because an overflow occurred during the analysis.

There could be two reasons why overflow occurs:
• there exists a concrete execution in the program which indeed does lead to an

overflow (e.g. multiple stores to a shared variable without a fence in between).
• the abstraction is imprecise enough to establish that there is no overflow.

We cannot distinguish between these two cases and hence, when overflow occurs,
we increase k to a small bound (at most the number of removed fences) or refine
the abstraction (detailed below). Our experience is that small values of k combined
with an abstraction refinement of the numerical analysis work well in practice.

– The program PM does not verify because the property being checked fails to verify
under the current abstraction. In this case, we typically apply abstraction refinement
to the numerical analysis.

246 Y. Meshman et al.

4.3 Abstraction Refinement of Numerical Analysis

As discussed above, abstraction refinement is often a vital step to enable successful
verification of the program PM . A key question then is which parts of the program PM

require a more refined treatment in the abstract? To find these statements in PM , we em-
ploy a two-step approach, where we always first verify the program P under sequential
consistency, before trying to verify the translated program PM . This allows us to focus
the search for abstraction refinement on the statements in PM that are the root cause for
the new behaviors. In our setting, these are the flush instructions appearing in PM as
it is via these statements that relaxed memory effects eventually become visible.

Abstraction refinement of the numerical analysis is accomplished in our system by
directly encoding the suggested refinement into the programPM by automatically intro-
ducing boolean auxiliary variables at places where the memory model relaxation takes ef-
fect. In particular, the number of boolean variables is proportional to k and these boolean
variables are initialized appropriately inside the branches of the translated flush state-
ment (to true or false respectively, depending at which branch the boolean variable is
assigned). E.g. for peterson’s algorithm (Fig. 1), under minimal verifiable fence place-
ment for TSO, our analysis found that a boolean variable was needed at the flush after
Thread 1 assignment to turn but not after that assignment for Thread 0.

This is yet another advantage of the reduction approach: it enables us to quickly ex-
periment with and provide the abstraction refinements over the base numerical domains
by modifying the program PM instead of trying to somehow change the internals of
an existing program analyzer (or build a new analysis). In particular, our system inte-
grates with CIP [13] (which supports logico-numerical domains) enabling us to match
the auxiliary boolean variables with the logical part of the combined domain.

Overall, we believe that we have found a good match between the particular type
of abstraction refinement required in our context, the fact that this refinement can be
encoded in the program and the ability of an existing analyzer to consume this encoding
directly into its abstract domain.

4.4 Empty-Buffer Analysis

The additional predicates from refinement placement track the non-determinism due to
flushes. However, such non-determinism is only relevant when the store buffers are not
empty. When the store buffers are empty, a flush operation has no effect, and thus
there is no need for a refinement at that program point. The challenge of course is to
statically identify program locations in which the store buffers are guaranteed to be
empty in any possible execution of the program. Towards that end, we use a simple
static analysis that identifies program points where buffers are guaranteed to be empty.
The analysis is sound, when it reports that a store buffer is empty, it guarantees that it
will be empty in any possible execution. In Section 5, we show that the empty buffer
analysis is effective and produces an upper bound on refinements that is significantly
lower than the total number of possible locations.

5 Evaluation
We implemented our approach as described in previous sections and evaluated it on
a range of challenging concurrent algorithms. To the best of our knowledge, this is
the first extensive analysis study in the context of relaxed memory models involving

Synthesis of Memory Fences via Refinement Propagation 247

infinite-state reasoning and abstract interpretation. All of our experiments were per-
formed on an Intel(R) Xeon(R) 2.13GHz machine with 250 GB RAM.

For the automatic verification step, we used ConcurInterProc [14] which uses the
APRON numerical abstract domain library [15]. To check that the inferred invariants
imply the specification, we used the Z3 SMT solver.

5.1 Concurrent Algorithms

In our experiments we used 15 concurrent algorithms (7 finite-state and 8 infinite-state).
Among these, there are 3 (infinite-state) array-based work-stealing queues and 7 mutual
exclusion algorithms. We are not aware of any previous attempts to automatically verify
properties of concurrent data structures such as the work stealing queues (WSQs) under
relaxed models. For all of the algorithms we verified safety properties (e.g. a pair of
labels is unreachable). For the WSQs, we verified consistency properties such as: the
head index of the queue is always less than the tail index.

While our technique never reports incorrect fence assignments, due to non-monotonic
analysis, the final result might lose the minimality guarantee. We note that in our bench-
marks, this situation was never encountered. To cope with non-monotonicity, the tool
has to spend more time searching when intermediate points fail to verify. In specific
situations (certain outputs from ConcurInterProc), the search continues or even retries
to verify a program when the verification tool ConcurInterProc returns “unknown”.

5.2 Results

Our experimental results for both PSO and TSO memory models are summarized in
Tables 1, 2, 3, and 4. Not all of the algorithms are shown due to space restriction.
Graphs for the remaining results can be found in [22]. The first column of each table
contains a tuple, under each benchmark name – the first element is the maximal number
of fences for the algorithm, and the second element is the total number of locations
for abstraction placements. For each benchmark, we bounded the search time to an
hour, two hours and four hours. Each time bound result has two parts: the minimal
number of fences achieved (columns labeled f) and the minimal relaxation under that
fence assignment that the algorithm was able to find (columns labeled r). We compared
three versions of our search:(i) breadth-first search (lines labeled bfs), (ii) depth-first
search (lines labeled dfs) both without propagation and (iii) search with propagation
(prop). At each point, the algorithm explores the next element from the worklist which
is highest in the lattice for bfs, or lowest for dfs. After successful or failed verification
and updating the set known, we update the worklist with the immediate successors
of the attempted configuration (above or below the explored element - depending on
whether it was verified or not). The third search configuration (labeled prop) is a bfs
search with propagation.

The graphs depict the time it took to discover the minimal fence assignment. The
x-axis is the time in a “hour:minute:seconds” format and the y-axis is the number of
fences discovered. For some cases, such as PC1, it can be seen that the initial behavior
of the prop approach is similar to that of dfs. This is due to a “streak” of successful ver-
ifications where a successful verification from a previous stage (say fence assignments
“remove #9” and “remove #8” verified) affects the next element attempted by the prop
approach (for the example given “remove #8 and #9” will be attempted). This behavior

248 Y. Meshman et al.

is similar to dfs. For algorithms such as KESSEL and PGSQL, it can be seen that the dfs
approach finds early in the search a non-optimal fence assignment (the prop approach
finds a better assignment later) and no new points appear in the graph. In those cases
the dfs approach proceeds to explore lower elements in the lattice and fails repeatedly.

For several algorithms only the full assignment of fences was verified. Those algo-
rithms are described in Table 2. Here (unlike Table 1), the graph’s y-axis is the abstrac-
tion refinement placement that verified. Those graphs have more points and describe
more clearly the difference between the three approaches (dfs, bfs and prop). In many
cases, bfs explores “too many” elements high in the lattice, dfs converges fast to the
lowest element it can verify but then it needs to backtrack. For WSQ-THE, dfs didn’t find
a placement smaller than the full one. Perhaps given more time it would ”backtrack”
and find a placement equivalent to the one the prop approach found.

Summary. It can be seen that the search with propagation (prop) finds smaller fence
assignments quicker than bfs and fewer or equal fence assignments than dfs.

6 Related Work
Next, we discuss some of the work that is most closely related to ours. These works
include automatic verification (most closely related) techniques, dynamic analysis and
bounded model checking approaches, search propagation in synthesis as well as robust-

Table 1. PSO results. The graphs show discovered fence assignments over time.

algorithm 1h 2h 4h

max(f, r) f r f r f r

abp prop 0 0 0 0 0 0

(2,17) bfs 0 0 0 0 0 0

dfs 0 0 0 0 0 0

concloop prop 2 4 2 4 2 4

(4,14) bfs 2 8 2 4 2 4

dfs 2 4 2 4 2 4

kessel prop 3 0 3 0 3 0

(6,12) bfs 5 2 4 7 4 1

dfs 4 7 4 7 4 7

loop2-TLM prop 4 5 4 5 4 5

(6,21) bfs 5 2 4 4 4 3

dfs 5 6 4 10 4 10

pc1 prop 2 0 2 0 1 3

(9,27) bfs 9 2 9 2 8 6

dfs 1 0 1 0 1 0

pgsql prop 4 0 4 0 4 0

(8,23) bfs 8 2 8 1 7 1

dfs 7 8 7 8 7 8

Synthesis of Memory Fences via Refinement Propagation 249

Table 2. PSO results. The graphs show discovered refinement placements over time.

algorithm 1h 2h 4h

max (f, r) f r f r f r

wsq-chase prop 4 0 4 0 4 0

(4,19) bfs 4 0 4 0 4 0

dfs 4 0 4 0 4 0

wsq-fifo prop 2 0 2 0 2 0

(2,13) bfs 2 6 2 5 2 4

dfs 2 6 2 0 2 0

wsq-the prop 7 5 7 4 7 0

(7,33) bfs 7 5 7 4 7 3

dfs 7 7 7 7 7 7

Table 3. TSO results. The graphs show discovered fence assignments over time

algorithm 1h 2h 4h

(f, r) f r f r f r

abp prop 0 0 0 0 0 0

(2,17) bfs 0 0 0 0 0 0

dfs 0 0 0 0 0 0

concloop prop 2 4 2 4 2 4

(4,14) bfs 2 8 2 4 2 4

dfs 2 4 2 4 2 4

kessel prop 5 3 4 0 4 0

(6,12) bfs 5 3 5 1 5 1

dfs 5 6 5 6 5 6

loop2-TLM prop 6 2 5 8 4 14

(6,21) bfs 5 8 5 8 5 7

dfs 5 10 5 10 5 10

pc1 prop 3 3 3 3 1 14

(9,27) bfs 9 3 9 2 8 6

dfs 5 9 5 9 5 9

peterson prop 5 2 4 3 4 3

(6,23) bfs 6 0 5 5 5 2

dfs 4 7 4 7 4 7

pgsql prop 5 7 5 7 5 7

(8,23) bfs 8 4 8 3 8 1

dfs 8 8 8 8 8 8

250 Y. Meshman et al.

Table 4. TSO results - The graphs show discovered refinement placements over time

algorithm 1h 2h 4h

(f, r) f r f r f r

queue prop 1 0 1 0 1 0

(1,13) bfs 1 0 1 0 1 0

dfs 1 0 1 0 1 0

wsq-chase prop 4 0 4 0 4 0

(4,19) bfs 4 0 4 0 4 0

dfs 4 0 4 0 4 0

ness. Generally, while there has been some work on bounded model checking of con-
current programs running on relaxed memory models, there has been almost no work
on automatically verifying infinite-state concurrent programs running on these models.

Program Transformation. One general direction for handling relaxed memory model
programs is to encode their effects into a program and then analyze the resulting pro-
gram using standard tools geared towards sequential consistency. Towards that, the
works of [3,4] suggest source-to-source transformations which encode the relaxed mem-
ory semantics into the target program. We also believe that this is a viable path and in
our work, we also use a similar encoding approach. However, as we have seen, direct
encoding of the semantics is typically not sufficient when dealing with infinite-state
programs where the precision of the abstraction is critical.

Handling infinite-state programs. Kuperstein et al. [18] handle some forms of infinite-
ness (such as that coming from the buffers), but do not handle general infinite-state
programs under sequential consistency. Other works in this direction are those of Lin-
den et al. [19,20] which shows how to use automata as symbolic representation of store
buffers. Their work focused on programs that are finite-state under sequential consis-
tency. The work of Vafeiadis et al. [25] presents an approach for eliminating fences un-
der x86-TSO. Their approach is based on compiler transformations and assumes that the
input program is correct. The work of Abdulla et al. [1] builds on [18] and is able to han-
dle infinite-state programs under x86-TSO. That work combines predicate abstraction
with the store buffers abstraction from [18]. The approach uses traditional abstraction
refinement in order to discover the necessary predicates. Our recent work [8] handles
both x86-TSO and PSO memory models and also uses predicate abstraction. However,
the procedure for inferring the predicates necessary to verify the program under relaxed
memory models differs from standard abstract refinement. Instead, the paper proposes a
form of proof extrapolation: it first assumes that the program is verified under sequential
consistency and then shows how to adapt these predicates (in a memory-model specific
way) into new predicates which are then used as candidates for the verification under
the particular relaxed memory model. Both of these approaches are based on predicate
abstraction and require the predicates to be inferred via refinement or adaptation. In
contrast, the techniques presented in this work are based on iterative numerical abstract
interpretation which promises to scale better (but is focused on numerical domains). In
addition, our search algorithm combines propagation of abstraction refinements across

Synthesis of Memory Fences via Refinement Propagation 251

programs with program restriction via fence inference. Our work also has relevance
to the well known technique of lazy abstraction [10] which introduces the concept of
adjusting the level of abstraction for different sections of the verified program’s state
space. In our approach, the search can be seen as selectively introducing refinements
which guide the analyzer. However, unlike previous work, we learn new refinements by
combining existing successful refinements from several programs.

Explicit Model Checking for Relaxed Memory Models. There have been several works
(e.g., [18,16,17,12]) focusing on explicit-state model checking under relaxed mem-
ory models. Among those, [17] focuses on fence inference and [12] also describes an
explicit-state model checking and inference technique for the .NET memory model.
These approaches are sound only for finite-state programs, and cannot handle infinite-
state programs. CheckFence [5] takes a different approach, instead of working with
operational memory models and explicit model-checking, they convert a program into
a form that can be checked against an axiomatic model specification. This technique
unrolls loops at a preprocessing stage and cannot handle infinite-state programs.

In addition, there has recently been interest in exploring dynamic techniques for
testing programs running on various relaxed memory models. The work of Liu et al.
[21] dynamically analyzes (via a demonic scheduler) concurrent algorithms under the
TSO and PSO memory models and whenever it finds a violating trace proposes a repair
which inserts memory fences into the program. Recently, there has also been work on
leveraging various partial order reduction techniques for bounded model checking of
concurrent C++ programs [24]. Both of these works attempt to handle larger programs
by sacrificing soundness.

7 Conclusion

In this work, we presented a system that can automatically synthesize fences in infinite-
state concurrent algorithms running on relaxed memory models such as TSO and PSO.
Our system is based on two core ideas.

First, in addition to propagating correctness between different fence assignments,
the synthesizer explores the space of programs by using a form of “proof propagation”:
computing a candidate abstraction refinement of a given program by combining suc-
cessful abstraction refinements of coarser programs. Second, we reduce the problem
of automatic verification under a relaxed memory model into one of verification un-
der sequential consistency using only integer and boolean variables. This enables us to
leverage powerful numerical abstractions over the integers and to refine these abstrac-
tions by directly encoding the boolean refinement in the reduced program.

Finally, we evaluated our system on 15 challenging concurrent algorithms, including
concurrent work-stealing queues. We believe that this is the first extensive study of
using abstract interpretation techniques in the context of relaxed memory models and
the first time properties of some of these algorithms have been verified.

References
1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic fence inser-

tion in integer programs via predicate abstraction. In: Miné, A., Schmidt, D. (eds.) SAS 2012.
LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg (2012)

252 Y. Meshman et al.

2. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. IEEE Com-
puter 29, 66–76 (1995)

3. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak mem-
ory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

4. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115. Springer,
Heidelberg (2011)

5. Burckhardt, S., Alur, R., Martin, M. M.K.: CheckFence: checking consistency of concurrent
data types on relaxed memory models. In: PLDI 2007 (2007)

6. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: SPAA (2005)
7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a

program. In: POPL 1978 (1978)
8. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed memory

models. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 84–104.
Springer, Heidelberg (2013)

9. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multithreaded
language. In: PLDI 1998 (1998)

10. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL 2002 (2002)
11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (April

2008)
12. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification. Form.

Methods Syst. Des. 31(3) (December 2007)
13. Jeannet, B.: The CONCURINTERPROC interprocedural analyzer for concurrent programs,

http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
14. Jeannet, B.: Relational interprocedural verification of concurrent programs. Software and

System Modeling 12(2), 285–306 (2013)
15. Jeannet, B., Miné, A.: APRON: A library of numerical abstract domains for static analysis.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

16. Jonsson, B.: State-space exploration for concurrent algorithms under weak memory order-
ings (preliminary version). SIGARCH Comput. Archit. News 36(5), 65–71 (2009)

17. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD
2010 (2010)

18. Kuperstein, M., Vechev, M., Yahav, E.: Partial-coherence abstractions for relaxed memory
models. In: PLDI 2011 (2011)

19. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying programs on
relaxed memory models. In: van de Pol, J., Weber, M. (eds.) Model Checking Software.
LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010)

20. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in PSO
memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 339–353. Springer, Heidelberg (2013)

21. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M., Yahav, E.: Dynamic synthesis for relaxed
memory models. In: PLDI 2012 (2012)

22. Meshman, Y., Dan, A., Vechev, M., Yahav, E.: Synthesis of memory fences via refinement
propagation. Tech. rep.

23. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent work stealing. In: PPoPP 2009
(2009)

24. Norris, B., Demsky, B.: CDSchecker: checking concurrent data structures written with c/c++
atomics. In: OOPSLA 2013 (2013)

25. Vafeiadis, V., Zappa Nardelli, F.: Verifying fence elimination optimisations. In: Yahav, E.
(ed.) Static Analysis. LNCS, vol. 6887, pp. 146–162. Springer, Heidelberg (2011)

http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi

Speeding Up

Logico-Numerical Strategy Iteration�

David Monniaux1 and Peter Schrammel2

1 CNRS / VERIMAG
2 University of Oxford

Abstract. We introduce an efficient combination of polyhedral anal-
ysis and predicate partitioning. Template polyhedral analysis abstracts
numerical variables inside a program by one polyhedron per control loca-
tion, with a priori fixed directions for the faces. The strongest inductive
invariant in such an abstract domain may be computed by a combi-
nation of strategy iteration and SMT solving. Unfortunately, the above
approaches lead to unacceptable space and time costs if applied to a pro-
gram whose control states have been partitioned according to predicates.
We therefore propose a modification of the strategy iteration algorithm
where the strategies are stored succinctly, and the linear programs to
be solved at each iteration step are simplified according to an equiva-
lence relation. We have implemented the technique in a prototype tool
and we demonstrate on a series of examples that the approach performs
significantly better than previous strategy iteration techniques.

1 Introduction

Program verification for unbounded execution times generally relies on finding
inductive loop (or procedure) invariants. In the abstract interpretation approach,
loop invariants are automatically searched within a class known as an abstract
domain. When dealing with numerical variables, it is common to search for in-
variants shaped as products of intervals (constraints l≤x≤u with the program
variable x and bounds l, u), convex polyhedra (constraint system Ax≤ c with
the matrix A, the vector of program variables x, and the vector of bounds c), or
restricted classes of convex polyhedra such as octagons (±xi ± xj≤c). Intervals
and octagons are instances of template polyhedra: polyhedra where A is fixed a
priori, whereas in the general polyhedral approach, A is discovered. The restric-
tion to fixed A reduces the problem to finding suitable values for a fixed number
of bounds c, and even, for certain classes of transitions, minimizing these bounds
using strategy iteration [1] (also known as policy iteration) or other techniques,
thereby producing the least (or strongest) inductive invariant in the abstract

� The research leading to these results has received funding from the European
Research Council under the European Unions Seventh Framework Programme
(FP7/20072013) / ERC grant agreement 306595 “STATOR” and the ARTEMIS
Joint Undertaking under grant agreement number 295311 “VeTeSS”

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 253–267, 2014.
c© Springer International Publishing Switzerland 2014

http://stator.imag.fr/
http://vetess.eu/

254 D. Monniaux and P. Schrammel

domain. In contrast, for unknown A the number of constraints (rows in the A
matrix) may grow quickly and is most often limited by widening heuristics [2].

In order to handle programs that contain constructs other than linear arith-
metic, for example, pointers, dynamic data stuctures, non-linear arithmetic, etc,
one can split control nodes according to n predicates, as in predicate abstrac-
tion. The number of control nodes may thus grow exponentially in n. A similar
situation arises in reactive programs for control applications, where a main loop
updates global variables at each iteration, including Booleans encoding “modes”
of operation. Such a system has a single distinguished control point (the head of
the main loop), yet, one wants to distinguish invariants according to the mode
of operation of the system. Assuming modes are defined by the values of the n
Boolean variables, this can be achieved by splitting the loop head into 2n distinct
control nodes and computing one invariant for each of them.

Should we apply a max-strategy iteration modulo SMT algorithm [1] to these
2n control nodes, its running time would be in the worst case proportional to
2d2

n

where d is the number of disjuncts in the formula defining the semantics of
the program. Worse, it would construct linear programming problems with 2n

unknowns, where
 is the number of rows in the A matrix. While high worst case
complexity is not necessarily an objection (many algorithms behave in practice
better than their worst case), constructing exponentially-sized linear programs
at every iteration of the algorithm is certainly too costly. We thus previously left
this partitioning variant as an open problem [1, §9] [3, §3.5].

Contributions. The main contribution of this paper is an algorithm that com-
putes the same result as these prohibitively expensive methods, but limits the
costs by computing on-the-fly equivalence between constraint bounds (of which
there are exponentially many) and constructing problems whose size depends
on the number of these equivalence classes. These equivalence classes, in intu-
itive terms, distinguish Boolean variables with respect to the abstraction chosen
(the A matrix). This is a novel aspect that distinguishes our approach from
quotienting techniques (e.g. [4]). Finally, we show the results of an experimen-
tal evaluation conducted with our prototype implementation that demonstrate
the largely improved performance in comparison to previous strategy iteration
techniques.

2 Strategy Iteration Basics

Let us now recall the framework of strategy iteration over template linear con-
straint domains [5], reformulating it to the setting of programs with linear arith-
metic and Boolean variables. As explained above, Boolean variables may be
introduced by predicate abstraction or by the encoding of the control flow as
in reactive systems. Similar to [1], this allows us to represent an exponential
number of paths as a single compact transition formula. We then explain why
previous algorithms [1, 5] are unacceptably inefficient on exponentially many
control nodes.

Speeding Up Logico-Numerical Strategy Iteration 255

Notation. We distinguish values by denoting them x̂, ŷ . . . as opposed to vari-
ables x, y, Variables x1, . . . , xn are denoted collectively as a vector x. (x,y) |=
F means that x,y are free variables of formula F that should satisfy F .

2.1 Program Model and Abstract Domain

We model a program as a transition system with m rational variables x ∈ Qm

(the numeric state) and n Boolean variables b ∈ Bn (the Boolean state), where
B = {0, 1}. Let I = (b0,x0) be the initial state. The transition relation τ is
of the form ∃y1, . . . , yE ∈ Q, ∃p1, . . . , pd ∈ B. T where T is a quantifier-free
formula in negation normal form, whose atoms are either propositional (bi, ¬bi,
pi, ¬pi), linear (in)equalities (

∑
αixi +

∑
α′
ix

′
i +

∑
βiyi �� c, where the αi, α

′
i,

βi and c are rational constants) with �� ∈ {≤, <,=}, and yi variables to encode
nondeterminism, e.g. reactive inputs or linearization of non-linear arithmetic; the
free variables of τ are x,x′, b where primed (respectively, unprimed) variables
denote the state after (respectively, before) the transition. Furthermore, we add
pi variables to each disjunction with non-propositional literals, i.e., x ≤ 3∨x ≥ 6
becomes (pi ∧ x ≤ 3) ∨ (¬pi ∧ x ≥ 6). This encoding is necessary to uniquely
identify each disjunct by a Boolean proposition and extract it from a SAT model.
The free variables of T are thus grouped into b, b′,x,x′,p,y where (b,x) and
(b′,x′) define respectively the departure and arrival states and p,y stand for
intermediate values and choices.

Example. We consider the following running example (a variant of the classical
thermostat model):

1 bool e r r o r = 0 , heat on = 1 ;
2 bool fan on = read button () ;
3 r e a l t = 1 6 ;
4 while (1) {
5 r e a l t e = r ead ex ter nal temp () ;
6 assume(14<= t e && te <=19);
7 fan on = read button () ? ! fan on : fan on ;
8 i f (! e r r o r && (t <15 | | t >30)) e r r o r = 1 ;
9 else i f (! e r r o r && heat on && t >22) heat on = 0 ;

10 else i f (! e r r o r && heat on && t <=22) t = (15∗ t + t e)/16 + 1 ;
11 else i f (! heat on && t <18) heat on = 1 ;
12 else i f (! heat on && t >=18) t = (15∗ t + t e) / 1 6 ;
13 }

This program has the following transition relation T with n = 3 Boolean vari-
ables b = (e, h, f) (short for (error,heat on,fan on)), m = 1 numerical variables
x = (t), d = 3 path choice variables p = (p0, p1, p2)), y = (te), and initial states
¬e ∧ h ∧ t = 16:
¬p0 ∧ p1 ∧ p2 ∧ ¬e ∧ e ′ ∧ (h = h ′) ∧ t > 30 ∧ t′ = t ∨
¬p0 ∧ p1 ∧ ¬p2∧ ¬e ∧ e ′ ∧ (h = h ′) ∧ t < 15 ∧ t′ = t ∨
p0 ∧ p1 ∧ p2 ∧¬e ∧ h ∧ ¬e ′ ∧ ¬h ′ ∧ 22 < t ≤ 30 ∧ t′ = t ∨
p0 ∧ p1 ∧ ¬p2 ∧ ¬e ∧ h ∧ ¬e ′ ∧ h ′ ∧t ≤ 22 ∧ 14 ≤ te ≤ 19 ∧ t′ = 15t+te

16
+ 1 ∨

p0 ∧ ¬p1 ∧ p2 ∧ ¬h ∧ h ′ ∧ (e = e ′) ∧ 15 ≤ t < 18 ∧ t′ = t ∨
p0 ∧ ¬p1 ∧ ¬p2∧¬h ∧ ¬h ′ ∧ (e = e ′)∧ t ≥ 18 ∧ 14 ≤ te ≤ 19 ∧ t′ = 15t+te

16

256 D. Monniaux and P. Schrammel

The disjuncts stem from lines 9 –13; line 9 produces two path choices.

Abstract Domain. Let A be a
 × m rational matrix, with rows A1, . . . ,A�.

An element ρ of the abstract domain D� is a function Bn → Q
�
with Q =

Q ∪ {−∞,+∞}. ρ(b) = c means that at a Boolean state b the vector of nu-
merical variables x is such that Ax ≤ c coordinate-wise. Moreover, we write
ρ(b)= −∞ if any coordinate ci= − ∞, meaning that the Boolean state b is
unreachable (because Ax≤c is false). We note γ(ρ) the set of states (b,x) veri-
fying these conditions. Q� is ordered by coordinate-wise ≤, inducing a point-wise
ordering (on D�. γ is thus monotone w.r.t. (and the inclusion ordering on
sets of states. We denote by ρ(i, b) the i-th coordinate of ρ(b). ρ is said to be an
inductive invariant if it contains the initial state (Ax0 ≤ ρ(b0)) and it is stable
by transitions:

∀b,x, b′,x′. (b,x) ∈ γ(ρ) ∧ (b,x, b′,x′) |= τ =⇒ (b′,x′) ∈ γ(ρ′),
The main contribution of this paper is an effective way to compute the least

inductive invariant ρ in this abstract domain w.r.t. (.

2.2 Strategy Iteration

Recall that the original strategy iteration algorithm [5] applies to disjunctive
systems of linear inequalities (of exponential size in d) induced by the collecting
semantics of the program over template polyhedra (see Equ. (1) below). Previous
work [1] improves the algorithm by keeping the system implicit, only extracting
a linear size system at any given time using SMT solving. Note that τ , after
replacing each free Boolean variable by a Boolean constant, is equivalent to a
disjunction of (at most) 2d formulas of the form ∃y.C where C is a conjunc-
tion of non-strict linear inequalities, and d is the number of Boolean existential
quantifiers in τ . In both algorithms, a strategy selects one disjunct in C for each
template row i′. Hence, we can use these algorithms in our setting by selecting
a disjunct for each template row and each Boolean valuation for (b′,p). This
motivates the following definition:

A strategy associates with each Boolean state b′ and each constraint index
1≤ i′≤
 either the special value ⊥, meaning that b′ is unreachable and denoted
by σ(i′, b′) = π(i′, b′) = ⊥, or a pair

(
σ(i′, b′), π(i′, b′)

)
where σ(i′, b′) ∈ Bn is

a Boolean state and π(i′, b′) ∈ Bd gives “path choices”. Once π ∈ Bd is chosen,
the result of substituting T [π/p] is a conjunction of linear inequalities and a
propositional formula (in the variables b, b′); let Tπ denote the conjunction of
these linear inequalities.

Algorithm. Let us now see how the algorithm iterates until the least inductive
invariant is reached. The algorithm maintains, at iteration number k, a current
strategy (σk, πk). Initially, the abstract value ρ0 is ⊥ everywhere save at the
initial Boolean state b0, where ρ(b0) = Ax0; σ0 and π0 are ⊥ everywhere. For
k ≥ 0, the strategy yields ρk+1 as the least fixed point μ≥ρk

Ψπ greater than
ρk, Ψπ being an order-continuous operator on the lattice (Bn × {1, . . . ,
})→ Q
defined as:

Speeding Up Logico-Numerical Strategy Iteration 257

Ψπ(ρ)
�
= (i′, b′) �→ sup

{
Aix

′ | ∃x,y. Tπ(i′,b′) ∧ (Ax ≤ ρ(σ(i′, b′)))
}

(1)

We explain in §2.3 how to compute this fixed point; let us now see how σk+1

and πk+1 are obtained from σk and πk, and how termination is decided [1, §6.5].
Each iteration goes as follows: for all Boolean states b̂′ ∈ Bn and all b̂ with
ρk(b̂) �= −∞:

1. construct formula T [b̂/b, b̂′/b′], that is, T where variables b and b′ have been

replaced by Boolean values b̂ and b̂
′
;

2. conjoin it with constraints Ax ≤ ρk(b) and Aix > ρk(i, b
′), thus obtaining

T [b̂/b, b̂′/b′] ∧Ax ≤ ρk(B̂) ∧Aix
′ > ρk(i, b̂

′) (2)

3. check whether this formula (in free variables x1,. . ., xm, x′
1,. . ., x

′
m, y1, . . . , yE ,

p1, . . . , pd) is satisfiable;

4. if this formula is satisfiable, ρk does not describe an inductive invariant: the
satisfying instance describes a transition from a state (b,x) to a state (b′,x′)
such that (b,x) lies within the invariant but (b′,x′) does not; this solution

yields a new strategy πk+1(i, b̂
′) = p̂ and σk+1(i, b̂

′) = b̂, which improves on
the preceding one [1, §6.3];

5. if πk+1(i, b̂
′) and σk+1(i, b̂

′) are not set by the preceding step, leave them to

the their previous values πk(i, b̂
′) and σk(i, b̂

′); if none have been updated,
this means ρk is the least inductive invariant, thus exit;

6. otherwise, compute ρk+1 = μ≥ρk
Ψπk+1

and continue iterating.

The main loop of this algorithm enumerates each of the 2(n+d)m2n strategies at
most once. Remark the important improvement condition: at every iteration but
the last, Ψπ(ρ) > ρ. Since there is a finite number of strategies that may deem
ρ non-inductive and each of them is chosen at most once, we are guaranteed to
terminate with the least fixed point (without using any widening) within a finite
number of steps.

Example. Let us analyze our running example using the box template (t,−t)T .
Assume the current abstract value1 ρk(i, ēhf) = 16 for i ∈ {1, 2}. To compute

an improved strategy σk+1, πk+1, we have to check all values of (b̂, b̂′), e.g.,
(ēhf , ē ′h′f ′): instantiating Equ. 2 with these values (with T from our running
example and i = 1) gives(

p0 ∧ p1 ∧ ¬p2 ∧ t ≤ 22 ∧ 14 ≤ te ≤ 19 ∧ (t′ = 15t+te
16

+ 1)
)
∧
(
t = 16

)
∧
(
t′ > 16

)
which is satisfied, for instance, by the model (x̂, x̂′, p̂) = (16, 17, (1, 1, 0)). Hence,
we update the strategy by setting σk+1(1, ēhf) = ēhf and
πk+1(1, ēhf) = (1, 1, 0), which induces

Tπk+1(1,ēhf) = (t ≤ 22 ∧ 14 ≤ te ≤ 19 ∧ (t′ = 15t+te
16

+ 1)) .

1 For better readability, we write, for example, ēhf for the value (0, 1, 1) of (e, h, f).

258 D. Monniaux and P. Schrammel

After having checked all (b̂, b̂′), we can compute the strategy value, i.e., the
fixed point of Ψπk+1

, which updates ρk+1(1, ēhf) to 365
16 in this case.2 The way

this is computed is explained in the next section.

2.3 Computing the Strategy Value

We recall now how to compute the strategy fixed point μ≥ρΨπ [1, §6.4], under
the condition that Ψπ(ρ) ≥ ρ (which is always the case, because of the way π is
chosen).

The first step is to identify the Boolean states b “abstractly unreachable”:
such b form the least set Z containing all b �= b0 such that π(i, b) = ⊥ and
stable by: if b′ �= b0 is such that σ(i, b′) ∈ Z then b′ ∈ Z; for all b ∈ Z, set
ρ(b) := −∞.

Construct a system of linear inequalities in the unknowns vi,b for b ∈ Bn and
1 ≤ i ≤ m, plus fresh variables: for all b′ /∈ Z, for all 1 ≤ i′ ≤ m such that
ρ(i′, b′) < +∞, add the inequalities
• Ajx ≤ vj,σ(i′,b′) for all 1 ≤ j ≤ m (“in departure state invariant”)

• Ai′x
′ ≥ vi′,b′ (“in arrival state invariant”)

• those from the conjunction Tπ(i′,b′) (“obeys the transition relation”)

where variables x and y have been replaced by fresh variables (each different
i, b′ has its own set of fresh replacements). ρ(i, b′) is obtained by linear program-
ming as the maximum of vi′,b′ satisfying this system. This linear program has
solutions, otherwise the strategy σ, π would not have been chosen; if it has no
optimal solution it means that ρ(i′, b′) = +∞.

Note that these O(2nm) linear programs have O(2nm) variables and a system
of inequalities of size O(2n|T |) where |T | is the size of formula T . It is in fact
possible to replace these O(2nm) linear programs by two linear programs of size
O(2nm): first, one using the ∞-abstraction (see [6, §8,9]) to obtain which of
the vi′,b′ go to +∞, then another for maximizing

∑
vi′,b′ restricted to the vi′,b′

found not to be +∞ by the ∞-abstraction.

3 Our Algorithm

Notice three difficulties in the preceding algorithm: there are, a priori, 22n SMT-
solving tests to be performed at each iteration; the linear programs have expo-
nential size; and there are at most 2(n+d)2n strategies, thus a doubly exponential
bound on the number of iterations. In intuitive terms, the first two difficulties
stem from the explicit expansion of the exponential set of Boolean states, despite
the implicit representation of the exponential set of execution paths between any
two control (Boolean) states b and b′, a weakness that we shall now remedy.

3.1 Strategy Improvement Step

The first difficulty is the easiest to solve: the 22n SMT-tests, one for each pair
(b, b′) of control states, can be folded into one single test where the b and b′ also
are unknowns to be solved for.
2 By maximizing t for any te, we get 15·22+19

16
+ 1 = 365

16
.

Speeding Up Logico-Numerical Strategy Iteration 259

Note that the structure of ρ, Bn → Q
�
, can be viewed as {1, . . . ,
} → (Bn →

Q). Hence, we need not store a 2n×
 array of rationals (or infinities), but we can
implement it efficiently as an array (of size
) of Mtbdds [7] with the bounds ci,j
in the leaves. Assume for a given template row i, we have si different bounds ci,j ,
and denote φi,j the propositional formula describing the set of Boolean states
that map to bound ci,j . Then, observe that φi,j for 1≤ j ≤ si form a partition
of Bn. We use the notation ρ(i) = {φi,1 → ci,1, . . . , φi,si → ci,si} to represent an
Mtbdd, and ρ(i, b) = ci,j to obtain the bound ci,j for state b for template row i.

Strategy improvement condition. In Equ. 2, one may replace Ax ≤ ρ(b) and
Aix > ρ(i′, b′) respectively by ψ1 and ψ2:

ψ1
�
=
∧
i

si∨
j=1

φi,j(b) ∧Aix ≤ ci,j (3)

ψ2
�
=

si∨
j=1

φi′,j(b
′) ∧Aix

′ = ci′,j +Δ ∧Δ > 0 (4)

Remark that ψ =def ψ1 ∧ T ∧ ψ2 is satisfiable iff there is a transition from
(b,x) inside the invariant defined by ρ to (b′,x′) outside of it. The strategy
iteration algorithm progresses regardless of Δ as long as Δ > 0.

Obtaining a solution b,x, b′,x′,y,p |= ψ enables us to improve the strategy
by setting σ(i, b′) := b and π(i, b′) := p, as in §2.2.

Example. Let us assume the following current abstract value in the analysis of
our running example:

ρ(1) = {¬e ∧ h → 16, e ∨ ¬h → −∞}
ρ(2) = {¬e ∧ h → −16, e ∨ ¬h → −∞}

We build Equ. 2 using Equs. 3 and 4:

ψ = T ∧

⎛⎝(
¬e ∧ h ∧ t ≤ 16 ∨ (e ∨ ¬h) ∧ t ≤ −∞

)
∧(

¬e ∧ h ∧ −t ≤ −16 ∨ (e ∨ ¬h) ∧ −t ≤ −∞
)
∧(

¬e ′ ∧ h ′ ∧ (t′ = 16 +Δ) ∨ (e ′ ∨ ¬h ′) ∧ (−t′ = −∞+Δ)
)
⎞⎠ ∧Δ > 0

This formula is satisfied, e.g., by the model (b̂, b̂′, x̂, x̂′, p̂) = (ēhf , ēhf , 16, 17,
(1, 1, 0)). Hence, we update σ(1, ēhf) := ēhf and π(1, ēhf) := (1, 1, 0). We have
to repeat this check excluding the above solution to find other models, e.g.,
(ēhf̄ , ēhf , 16, 17, (1, 1, 0)).

Improving the strategy this way would however be costly, since we would have

to do it one b̂
′
at a time (by naive model enumeration).

Model generalization. There is however a better way by generalizing from an

obtained model to a set of b̂
′
that can be updated at once: Notice now that, fixing

x̂ and ŷ arising from a solution, ψ[x̂/x, ŷ/y] becomes a purely propositional

formula, whose models also yield suitable solutions for b, b′,p. Fix b̂ and p̂ from

a solution, then the free variables are now only the b′; then for any solution b̂′

of ψ[x̂/x, ŷ/y, b̂/b, p̂/p], we can set π(b̂′, i) := p̂ and σ(b̂′, i) := b̂. We can thus

improve strategies for whole sets of b̂
′
at once in nondeterministic systems.

260 D. Monniaux and P. Schrammel

Algorithm 1. Improve: Selecting the strategy improvement

1. stable := true
2. for i′ ∈ {1, . . . , 	} do
3. U := false // U defines the set of b′ such that π(i′, b′) has been updated.

4. while ¬U ∧
(∧

i

∨si
j=1 φi,j(b) ∧Aix ≤ ci,j

)
∧ Ti′ ∧(∨si

j=1 φi,j(b
′) ∧Aix

′ = ci,j +Δ
)
∧Δ > 0 is satisfiable do

5. 〈b̂, x̂, b̂′, x̂′, p̂, ŷ〉 := a model of the above formula
6. F := Ti[x̂/x, ŷ/y] ∧ ¬U
7. stable := false
8. while F is satisfiable do
9. 〈b̂1, b̂′1, p̂1〉 := a model of F
10. G := F [b̂1/b, p̂1/p]
11. F := F ∧ ¬G
12. π[i′, G] := p̂ // π[i′, G] := p̂ means “in the mapping b′ → π(i′, b′),
13. σ[i′, G] := b̂ // replace all images of b′ satisfying formula G
14. U := U ∨G // by p̂” (respectively for σ).
15. end while
16. end while
17. end for

Algorithm 2. Iterate: Main strategy iteration algorithm

for i ∈ {1, . . . , 	} do
φ1,i := (b = b0); c1,i := Aix

0; φ2,i := (b 	= b0); c2,i := −∞
end for
stable := false
while ¬stable do

Improve
if ¬stable then

Compute-Strategy-Value (see §3.2)
end if

end while

Our strategy improvement algorithm (procedure Improve, Alg. 1) thus pro-
ceeds as follows: it maintains a set U of “already improved” values of b′, and
requests (b, b′,p) by SMT-solving as described above, with the additional con-
straint that b′ /∈ U ; if no such solution is found, it terminates, having done all
improvements, otherwise it generalizes b′ to a whole set of solutions as described
above, and improves the strategy for all these b′. The strategy π, σ and the set
U are stored in Bdds.

Example. Let us assume we have the current abstract value
ρ(1) = {¬e ∧ h → 365

16 , e ∨ ¬h → −∞}
ρ(2) = {¬e ∧ h → −16, e ∨ ¬h → −∞}.

Moreover, assume that we have obtained the model of ψ: (b̂, b̂′, x̂, x̂′, p̂) =
(ēhf , ēh̄f , 365

16 , 365
16 , (1, 1, 1)). Substituting the values of this solution for x and

x′ in formula ψ, we get F = p0∧p1 ∧p2∧¬e ∧h ∧¬e ′ ∧¬h′. Now, we substitute
the above values for b and p in F , which gives us G = ¬e ′ ∧¬h′. We update the

Speeding Up Logico-Numerical Strategy Iteration 261

strategy σ, π for the whole set of states satisfying G, i.e., {ēh̄f , ēh̄ f̄ } at once,
and we add G to U . Then we ask the SAT solver again for a model of the for-
mula F ∧ ¬G, which is unsatisfiable in this example. We continue enumerating
the solutions of ψ, but this time excluding U , i.e., we call the SMT solver with
ψ ∧ ¬U , which is unsatisfiable in our example. Hence, we have completed strat-
egy improvement for the first template row. For row 2, we proceed similarly and
obtain the same strategy update. The associated strategy value computation
yields the abstract value ρ:

ρ(1) = {¬e → 365
16 , e → −∞}

ρ(2) = {¬e ∧ h → −16, ¬e ∧ ¬h → −22, e → −∞}.

Theorem 1. Iterate (Alg. 2) terminates in at most 2(n+d)m2n iterations, with
the final ρ being equal to that computed by the algorithm of §2.2, yielding the least
inductive invariant in the domain.3

3.2 Computing the Strategy Value with Fewer Unknowns

There remains the second difficulty: computing the value of a given strategy,
that is, computing ρ(b) for b ∈ Bn, thus solving linear programs with at least
m2n variables [1, §6.4]. We solve this difficulty by remarking that ρ(i, b) is the
same for all b in the same equivalence class with respect to ∼i: b1 ∼i b2 ⇐⇒
π(i, b1) = π(i, b2) ∧ σ(i, b1) = σ(i, b2). Assuming b �→ σ(i, b) and b �→ π(i, b)
are stored as MtBdds, the equivalence classes are obtained as Bdds using the
reverse images of these functions.

We then apply the algorithm from §2.3, but instead of the whole set of ρ(i, b)
unknowns for b ∈ Bn and 1≤ i≤m, we only pick one unknown ci,j per equiv-
alence class; these unknowns define ρ in the form expected by the strategy im-
provement step of §3.1. Remark that, if the equivalence classes are computed as
Bdds, it is trivial to turn them into logical formulas φi,j of linear size w.r.t. that
of the Bdd. Notice that also the ∞-abstraction technique [6, §8,9] applies. Let
b̄
i
denote the equivalence class of b with respect to ∼i; π directly maps from

equivalence classes as π(i, b̄
i
)
�
= π(i, b) (resp. for σ).

Example. Let us assume the current abstract value

ρ(1) = {¬e → 365
16 , e → −∞}

ρ(2) = {¬e ∧ h → −16, ¬e ∧ ¬h → −22, e → −∞}.
Moreover, assume that we have computed the following strategy for the first
template row: σ(1, ēh̄f) = σ(1, ē h̄ f̄) ∈ {ēh̄f , ē h̄ f̄ } and π(1, ēh̄f) = π(1, ēh̄ f̄) =
(1, 0, 0). Then the states ēh̄f and ē h̄ f̄ will be in the same equivalence class,
because both bounds will have the same value in the strategy fixed point. Hence,
we have to generate only one set of constraints for both states when solving the
LP problem that characterizes the strategy fixed point ρ.

3 Due to space limitations, we refer to the extended version [8] for the proofs.

262 D. Monniaux and P. Schrammel

We finally obtain4
{
ρ(1) = {¬e → 365

16 , e → −∞}
ρ(2) = {¬e ∧ h → −16, ¬e ∧ ¬h → − 71

4 , e → −∞}. This

is actually the strongest inductive abstract invariant of our program: ¬e∧h∧16 ≤
t ≤ 365

16 ∨ ¬e ∧ ¬h ∧
71
4 ≤ t ≤ 365

16 .

Theorem 2. Let ρ� be the result of the modified strategy evaluation and ρk+1 =
μ≥ρk

Ψπk+1
be the result of the original strategy evaluation. Then for all i, b,

ρ(i, b) = ρ�(i, b̄
i
).

3.3 Abstraction through Limitation of Partitioning

Even though we have taken precautions against unnecessarily large numbers of
unknowns by grouping “equivalent” Boolean states together, it is still possible
that the number of equivalence classes to consider grows too much as the algo-
rithm proceeds. It is however possible to freeze them permanently to their last
sufficiently small value. Only small modifications to the algorithms are neces-
sary: The strategy value computation (§3.2) remains the same except that the
equivalence classes are never recomputed. Let φi,1, . . . , φi,si denote the proposi-
tional formulas (in b) defining the equivalence classes with respect to constraint
number i. In the strategy improvement step (§3.1) σ(i, j) ∈ Bn (resp. π(i, j))
is now defined for the index 1 ≤ j ≤ si of an equivalence class with respect to
constraint i.

4 Experiments

We have prototypically implemented the algorithm in the static analyzerReaVer
[9] (taking Lustre code as input) using the LP solver QSOpt Ex5, the SMT
solver Yices6 and the BDD package Cudd7. The implementation makes heavy
use of incremental SMT solving.

Tested variants of the algorithm. We implemented the following variants of the
algorithm to compare their performance:
(n) Naive model enumeration using SMT solving per template row as explained

in the first part of §3.1. This corresponds to updating π and σ in Alg. 1 using

the model obtained in line 5 (G = (b′ = b̂
′
)) without doing lines 6 to 11 and

15.
(t) Enhancement of (n) by trying to reapply successfully improving models to

other template rows.

4 By maximizing −t for any te in t ≥ 18 ∧ 14 ≤ te ≤ 19 ∧ t′ = 15t+te
16

, we get
− 15·18+14

16
= − 71

4
.

5 version 2.5.6, http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
6 version 1.0.40, http://yices.csl.sri.com/
7 version 2.4.2, http://vlsi.colorado.edu/~fabio/CUDD/

http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
http://yices.csl.sri.com/
http://vlsi.colorado.edu/~fabio/CUDD/

Speeding Up Logico-Numerical Strategy Iteration 263

(s) Symbolic encoding of template rows and model enumeration over the whole
template at once, i.e., lines 2 and 17 are omitted because the template row
i′ becomes part of the SMT formula to be solved for in line 4, and is then
retrieved from the model returned in line 5.

(g) Alg. 1 with generalization as described in §3.1, but without the inner itera-
tions (i.e., without lines 7 to 9 and 15) that search for models of the purely
propositional formula F . Hence, (g) obtains the models to be generalized
from the SMT formula in line 4 only.

(m) Alg. 1 as given.
All these variants reduce the number of unknowns in the LP problem using
equivalence classes (see §3.2). Furthermore, we used an implementation of the
original max-strategy algorithm [5] (GS07), and the improvements using SMT
solving proposed in [10] (GM11). Note that these latter two algorithms need
to enumerate O(2n) control states (where n is the number of Booleans in the
recurrent state). Yet, the size of the control flow graphs (see Table 1) generated
using the method described in [9, §7.3] is often far smaller than the worst case.
The difference between GS07 and GM11 is essentially that, for each template
row, the former tests all strategies to find an improvement, whereas the latter
asks the SMT solver to find an improving strategy in the disjunction of available
strategies.

It is important to note that all these variants of the algorithm return the
same invariants, i.e. the strongest invariants in the domain Bn → A where A is
a given template abstract domain. The only difference is the way the strategy
improvement is computed.

Comparisons. We performed two kinds of comparisons:8

1. We evaluated the scalability of various variants of the max-strategy improve-
ment algorithm on small benchmarks (1-, 2-, and 3-dimensional array traver-
sals, parametric in size by duplicating functionality and adding Boolean
variables) that exhibit the strategy and state space explosion expected to
occur in larger benchmarks. We used box and octagonal templates, giving a
total of 96 benchmarks.

2. We compared the max-strategy improvement algorithm with standard for-
ward analysis with widening and with abstract acceleration [11, 12] (both
using widening after two iterations and applying two descending iterations9)
on reactive system models (traffic lights [13], our thermostat, car window
controller [14], and drug pump [15]), again deriving the more complex vari-
ants 2 and 3 by adding and duplicating functionality (e.g. branching multiple
drug pumps to a patient and checking the concentration in the blood).

Results. The first comparison (see Fig. 1) shows that the various variants of the
algorithm behave quite differently in terms of runtime: The GM11 improvement

8 The examples and detailed experimental results can be found on
http://www.cs.ox.ac.uk/people/peter.schrammel/reaver/maxstrat/.

9 We did not not observe any improvement in precision beyond these values.

http://www.cs.ox.ac.uk/people/peter.schrammel/reaver/maxstrat/

264 D. Monniaux and P. Schrammel

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

an
al

ys
is

 ti
m

e
(s

)

number of benchmarks

[GS07]
[GM11]

n
t
s
g
m

Fig. 1. Comparison of various variants of the max-strategy improvement algorithm.
All these algorithms compute the same invariant. The timeout was 5 minutes.

Table 1. Comparison of max-strategy iteration with standard analysis approaches
(dom: domain used (boxes (B), zones (Z), octagons (O)); number of variables: Boolean
(b), numerical (n), Boolean and numerical inputs (bi, ni); number of locations (lc) and
edges (ed) of the control flow graph (CFG); analysis time in seconds; property proved
(p); fastest in bold). (* computed with octagons, because zones are not available).

size previous algorithms this paper std. abstr.
vars CFG GS07 [5] GM11 [10] g s analysis accel.

dom b n bi ni lc ed time p time p time p time p time p time p
Traffic 1 B 6 6 0 0 18 61 2.16 � 2.10 � 2.33 � 2.16 � 1.22 � 0.43 �
Traffic 2 Z 6 8 0 0 18 151 122 � 114 � 108 � 97.0 � 3.49 2.86*
Traffic 3 Z 8 8 1 0 50 619 674 � 640 � 357 � 329 � 22.1 19.2*
Thermostat 1 B 4 3 0 2 6 15 0.36 � 0.32 � 0.28 � 0.26 � 0.82 0.85
Thermostat 2 B 6 5 0 4 18 145 16.8 � 15.1 � 3.44 � 3.23 � 26.6 30.4
Thermostat 3 B 8 7 0 6 66 1357 720 � 715 � 66.5 � 61.9 � 674 908
Window 1 O 9 5 5 0 21 120 109 � 102 � 70.7 � 73.4 � 4.57 4.70
Window 2 O 11 5 6 0 45 452 394 � 372 � 189 � 286 � 18.57 23.5
Window 3 O 13 5 7 0 81 1388 1412 � 1220 � 242 � 697 � 70.2 93.5
DrugPump 1 B 4 10 4 1 6 231 92.6 � 90.3 � 6.05 � 4.55 � 210 120
DrugPump 2 B 7 12 8 1 34 11201 timeout > 1800 149 � 95.5 � timeout > 1800
DrugPump 3 B 10 14 8 1 146 112561 timeout > 1800 1019 � 1396 � timeout > 1800

is on average 22% faster than the original algorithm. (t) and (s) scale better than
(n). It is interesting to observe that (t) and (s) perform similarly although their
algorithms are very different. The most important optimization of the strategy
improvement algorithm proposed in this paper is the generalization step which
makes it scale several orders of magnitude better than the other variants, because
it avoids naive model enumeration. The results indicate that the full Alg. 1
(variant (m)) is slower than the variant (g) without the innermost iterations. A
possible explanation for this is that as soon as all models have been enumerated,
(m) has to confirm unsatisfiability by checking both F ∧ ¬G and ψ ∧ ¬U .

The results of the second comparison (see Table 1) indicate that max-strategy
iteration is able to compute better invariants than techniques relying on widen-
ing in the same Bn → A abstract domain. Enhanced widening techniques,

Speeding Up Logico-Numerical Strategy Iteration 265

such as abstract acceleration, do occasionally improve on precision, but with-
out guarantee to find the best invariant.

An open problem w.r.t. all template-based analysis techniques is however the
generation of good templates. For our experiments, we have chosen the weakest
of the standard templates (boxes, zones, octagons) that can express the required
invariant. Strategy iteration is in general the more expensive technique, but due
to our improvements the performance is pushing forward into a reasonable range.
Variant (g) – although a bit slower than (s) in many cases – seems to scale best.

5 Related Work

It has long been recognized that it is a good idea to distinguish states according
to Boolean variables or arbitrary predicates (as in predicate abstraction). Yet,
taking all Boolean variables into account tends to be unbearably expensive.
Various heuristics have therefore been proposed so as to partition Bn into a
reasonably small number of subsets [16]. Relations between the Boolean and
numerical states are only kept w.r.t. these equivalence classes [3]. Combining the
latter technique with the method presented in this paper to limit partitioning
would certainly improve efficiency, however, to the detriment of precision of the
obtained invariant which strongly depends on the choice of a clever partitioning
heuristics.

Early work in compilation and verification of reactive systems [4] advocated
quotienting the Boolean state space according to some form of concrete bisimu-
lation. In contrast, we compute coarser equivalences according to per-constraint
abstract semantics. In the Astrée analyzer, static heuristics determine reason-
ably small packs of “related” Booleans and numerical variables, such that the
values of the numerical variables are analyzed separately for each Boolean valu-
ation [17, §6.2.4]. In contrast, our equivalence classes are computed dynamically
and per-constraint.

The strategy iteration we have applied proceeds “upward”, by successive
under-approximations of the least inductive invariant; strategies correspond to
to “max” operators in a high-level vision of the problem. There also exists
“downward” strategy iteration, where strategies correspond to “min” opera-
tors: iterations produce successive over -approximations of the least inductive
invariant [18, 19], to which convergence is ensured in some cases. A bonus of
such an approach is that each iteration produces an over-approximation of the
least inductive invariant, which may be used to prove safety properties without
having to wait for convergence. Sadly, it does not seem to be easily adapted
to approaches based on SMT solving, since the SMT formulas would contain
universal quantifiers.

For a more comprehensive discussion of related work, we refer to the extended
version [8].

6 Conclusion

We propose a method for computing strongest invariants in linear template do-
mains when the control states are partitioned according to n Booleans or ar-

266 D. Monniaux and P. Schrammel

bitrary predicates, thereby combining predicate abstraction and template poly-
hedral abstraction. Our method performs strategy iteration, and dynamically
partitions the states according to an equivalence relation depending on the cur-
rent abstraction at each step. The final result is optimal in the sense that it is the
strongest invariant in the abstract domain which a naive algorithm would obtain
in at least exponential time and space. Our experimental results demonstrate
the significant performance impact of various optimizations and the ability to
compute more precise invariants in comparison to widening-based techniques.

In preceding work without partitioning [1, 10], the single-exponential upper
bound was shown to be reached by a contrived example program, and the deci-
sion problem associated with the least invariant computation (“given a template,
a transition relation, an initial state and a bad state, is there an inductive in-
variant that excludes the bad state”) was shown to be Σp

2 -complete. In contrast,
although we have an nexptime upper bound and proved exptime-hardness
(see [8] for a proof) for the problem with partitioning, we have not yet been
able to prove nexptime-completeness—thus the worst-case complexity could
possibly be better.

References

1. Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in
succinctly represented control flow graphs. Logical Methods in Computer Science
(2012) Journal version of an article in ESOP 2011

2. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11, 157–185 (1997)

3. Schrammel, P., Subotic, P.: Logico-numerical max-strategy iteration. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 414–433. Springer, Heidelberg (2013)

4. Bouajjani, A., Fernandez, J.C., Halbwachs, N., Raymond, P.: Minimal state graph
generation. Sci. Comput. Program. 18, 247–269 (1992)

5. Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer,
Heidelberg (2007)

6. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy
iteration. ACM Trans. Program. Lang. Syst. 33, 11:1–11:48 (2011)

7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35, 677–691 (1986)

8. Monniaux, D., Schrammel, P.: Scaling up logico-numerical strategy iteration (ex-
tended version) (2014), http://arxiv.org/abs/1403.2319

9. Schrammel, P.: Logico-Numerical Verification Methods for Discrete and Hybrid
Systems. PhD thesis, Université de Grenoble (2012)

10. Gawlitza, T.M., Monniaux, D.: Improving strategies via SMT solving. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 236–255. Springer, Heidelberg (2011)

11. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

12. Schrammel, P., Jeannet, B.: Applying abstract acceleration to (co-)reachability
analysis of reactive programs. J. of Symb. Comp. 47, 1512–1532 (2012)

http://arxiv.org/abs/1403.2319

Speeding Up Logico-Numerical Strategy Iteration 267

13. Bonakdarpour, B., Kulkarni, S.S., Arora, A.: Disassembling real-time fault-tolerant
programs. In: EMSOFT, pp. 169–178. ACM (2008)

14. Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system
testing. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254,
pp. 133–148. Springer, Heidelberg (2013)

15. Sankaranarayanan, S., Homaei, H., Lewis, C.: Model-based dependability analy-
sis of programmable drug infusion pumps. In: Fahrenberg, U., Tripakis, S. (eds.)
FORMATS 2011. LNCS, vol. 6919, pp. 317–334. Springer, Heidelberg (2011)

16. Schrammel, P., Jeannet, B.: Logico-numerical abstract acceleration and application
to the verification of data-flow programs. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 233–248. Springer, Heidelberg (2011)

17. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI, pp.
196–207. ACM (2003)

18. Gaubert, S., Goubault, É., Taly, A., Zennou, S.: Static analysis by policy iteration
on relational domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
237–252. Springer, Heidelberg (2007)

19. Sotin, P., Jeannet, B., Védrine, F., Goubault, E.: Policy iteration within logico-
numerical abstract domains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 290–305. Springer, Heidelberg (2011)

Cost-Aware Automatic Program Repair

Roopsha Samanta1,�, Oswaldo Olivo2, and E. Allen Emerson2

1 The University of Texas at Austin and IST Austria
rsamanta@ist.ac.at

2 The University of Texas at Austin
{olivo,emerson}@cs.utexas.edu

Abstract. We present a formal framework for repairing infinite-state,
imperative, sequential programs, with (possibly recursive) procedures
and multiple assertions; the framework can generate repaired programs
by modifying the original erroneous program in multiple program lo-
cations, and can ensure the readability of the repaired program using
user-defined expression templates; the framework also generates a set of
inductive assertions that serve as a proof of correctness of the repaired
program. As a step toward integrating programmer intent and intuition
in automated program repair, we present a cost-aware formulation —
given a cost function associated with permissible statement modifica-
tions, the goal is to ensure that the total program modification cost does
not exceed a given repair budget. As part of our predicate abstraction-
based solution framework, we present a sound and complete algorithm
for repair of Boolean programs. We have developed a prototype tool
based on SMT solving and used it successfully to repair diverse errors in
benchmark C programs.

1 Introduction

Program debugging — the process of fault localization and error elimination —
is an integral part of ensuring correctness in existing or evolving software. Being
essentially manual, program debugging is often a lengthy, expensive part of a
program’s development cycle. There is an evident need for improved formaliza-
tion and mechanization of this process. However, program debugging is hard
to formalize — there are multiple types of programming mistakes with diverse
manifestations, and multiple ways of eliminating a detected error. Moreover, it is
particularly challenging to assimilate and mechanize the expert human intuition
involved in the choices made in manual program debugging.

In this paper, we present a cost-aware formulation of the automated program
debugging problem that addresses the above concerns. Our formulation obviates
the need for a separate fault localization phase by directly focusing on error
elimination, i.e., program repair. We fix a set U of update schemas that may
be applied to program statements for modifying them. An update schema is a

� This author was supported in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM) and by the Austrian Science Fund (FWF) NFN
project S11402-N23 (RiSE)

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 268–284, 2014.
c© Springer International Publishing Switzerland 2014

Cost-Aware Automatic Program Repair 269

compact description of a class of updates that may be applied to a program state-
ment in order to repair it. For instance, the update schema assign �→ assign

permits replacement of the assignment statement x := y with other assignment
statements such as x := x+ y or y := x+ 1, assign �→ skip permits deletion of
an assignment statement, etc. In this paper, U includes deletion of statements,
replacement of assignment statements with other assignment statements, and
replacement of the guards of conditional and loop statements with other guards.
We assume we are given a cost function that assigns some user-defined cost to
each application of an update schema to a program statement. Given an erro-
neous program P , a cost function c and a repair budget δ, the goal of cost-aware
automatic program repair is to compute a program P̂ such that: P̂ is correct, P̂
is obtained by modifying P using a set of update schemas from U and the total
modification cost does not exceed δ. We postulate that this quantitative formula-
tion [6] is a flexible and convenient way of incorporating user intent and intuition
in automatic program debugging. For instance, the user can define appropriate
cost functions to search for P̂ that differs from P in at most δ statements, or
to penalize any modification within some trusted program fragment, or to favor
the application of a particular update schema over another, and so on.

Our approach to cost-aware repair of imperative, sequential programs is based
on predicate abstraction [13], which is routinely used by verification tools such
as SLAM [5], SLAM2 [2], SATABS [8], etc. for analyzing infinite-state programs.
These tools generate Boolean programs which are equivalent in expressive power
to pushdown systems and enjoy desirable computational properties such as de-
cidability of reachability [4]. Inevitably, Boolean programs have also been ex-
plored for use in automatic repair of sequential programs for partial correctness
[14] and total correctness [22]. These papers, however, do not accommodate a
quantitative formulation of the repair problem and can only compute repaired
programs that differ from the original erroneous program in exactly one expres-
sion. Moreover, these papers do not attempt to improve the readability of the
concrete program P̂ , obtained by concretizing a repaired Boolean program.

Our predicate abstraction-based approach to automatic program repair re-
laxes the above limitations. Besides erroneous P , c, and δ, our framework requires
a Boolean program B, obtained from P through iterative predicate abstraction-
refinement, such that B exhibits a non-spurious path to an error. We present an
algorithm which casts the question of repairability of B, given U , c, and δ, as an
SMT query; if the query is satisfiable, the algorithm extracts a correct Boolean
program B̂ from the witness to its satisfiability. Along with B̂, we also extract a
set of inductive assertions from the witness, that constitute a proof of correct-
ness of B̂. This algorithm for Boolean program repair is sound and complete,
relative to U , c, and δ. A repaired Boolean program B̂, along with its proof,
is concretized to obtain a repaired concrete program P̂, along with a proof of
correctness. However, the concretized repairs may not be succinct or readable.
Hence, our framework can also accept user-supplied templates specifying the
desired syntax of the modified expressions in P̂ to constrain the concretization.

270 R. Samanta, O. Olivo, and E.A. Emerson

Alternate approaches to automatic repair and synthesis of sequential programs
[17,26–28] that do not rely on abstract interpretations of concrete programs, also
often encode the repair/synthesis problem as a constraint-solving problem whose
solution can be extracted using SAT or SMT solvers. Except for [28], these ap-
proaches, due to their bounded semantics, are imprecise and cannot handle total
correctness1. The authors in [17] use SMT reasoning to search for repairs sat-
isfying user-defined templates; the templates are needed not only for ensuring
readability of the generated repairs, but also for ensuring tractability of their
inherently undecidable repair generation query. They also include a notion of
minimal diagnoses, which is subsumed by our more general cost-aware formu-
lation. Given user-defined constraints specifying the space of desired programs
and associated proof objects, the scaffold-based program synthesis approach of
[28] attempts to synthesizes a program, along with a proof of total correctness
consisting of program invariants and ranking functions for loops. In contrast to
[28], our framework only interacts with a user for improving the readability of the
generated repairs and for the cost function; all predicates involved in the genera-
tion of the repaired Boolean program and its proof are discovered automatically.
Besides the above, there have been proposals for program repair based on com-
puting repairs as winning strategies in games [15], abstraction interpretation
[18], mutations [10], genetic algorithms [1,12], using contracts [29], and focusing
on data structure manipulations [25,30]. There are also customized program re-
pair engines for grading and feedback generation for programming assignments,
cf. [24]. Finally, a multitude of algorithms [3, 7, 16, 31] have been proposed for
fault localization, based on analyzing error traces. Some of these techniques can
be used as a preprocessing step to improve the efficiency of our algorithm, at
the cost of giving up on the completeness of the Boolean program repair module.

Summary of contributions: We define a new cost-aware formulation of automatic
program repair that can incorporate programmer intuition and intent (Sec. 3).
We present a formal solution framework (Sec. 4 and Sec. 5) that can repair
infinite-state, imperative, sequential programs with (possibly recursive) proce-
dures and multiple assertions. Our method can modify the original erroneous
program in multiple program locations and can ensure the readability of the re-
paired program using user-defined expression templates. If our method succeeds
in generating a repaired program P̂, it generates a proof of P̂’s correctness, con-
sisting of inductive assertions, that guarantees satisfaction of all the assertions
in the original program P . As part of our predicate abstraction-based solution,
we present a sound and complete algorithm for repair of Boolean programs. Fi-
nally, we present experimental results for repairing diverse errors in benchmark
C programs using a prototype implementation (Sec. 6).

2 Background

Predicate abstraction [4, 13] is an effective technique for model checking
infinite-state programs with respect to safety properties. It uses iterative

1 Our framework can be extended to handle total correctness by synthesizing ranking
functions along with inductive assertions.

Cost-Aware Automatic Program Repair 271

counterexample-guided abstraction refinement to compute a finite-state, con-
servative abstraction of a concrete program P based on a finite set {φ1, . . . , φr}
of predicates. The resulting abstract program is termed a Boolean program B
(see Fig. 1a and Fig. 1b): the control-flow of B is the same as that of P and the
set {b1, . . . , br} of variables of B are Boolean variables, with each bi representing
the predicate φi for i ∈ [1, r]. If B is found to be correct, the method concludes
that P is correct. In our work, the interesting case is when the method termi-
nates reporting an error. This happens when the method computes a Boolean
program containing an abstract counterexample path which is found to be feasi-
ble in P . Henceforth, we fix a concrete program P , and a corresponding Boolean
program B that exhibits such a non-spurious counterexample path. Let γ denote
the mapping of the Boolean variables in B to their respective predicates: for
each i ∈ [1, r], γ(bi) = φi. The mapping γ can be extended in a standard way to
expressions over the Boolean variables.
Program Syntax. For our technical presentation, we fix a common, simpli-
fied syntax for concrete and abstract programs (see [23] for a precise definition)
— a program consists of a declaration of global variables, followed by a list of
procedure definitions; a procedure definition consists of a declaration of local
variables, followed by a sequence of (labeled) statements; a statement is a skip,
(parallel) assignment, assume, assert, goto, (call-by-value) procedure call or
return statement2. A Boolean expression is either a deterministic Boolean ex-
pression or the expression ∗, which nondeterministically evaluates to true or
false.

We make the following assumptions: (a) there is a distinguished initial proce-
dure main, (b) all variable and formal parameter names are globally unique, and
(c) goto statements are used only to simulate the flow of control in structured
programs. In addition, for Boolean programs, we assume: (a) all variables and
formal parameters are Boolean, (b) all expressions are Boolean expressions and
(c) the Boolean expressions in assume and assert statements are deterministic.
Notation. For program P , let {F0, . . . , Ft} be its set of procedures with F0 being
the main procedure, and let GV (P) denote the set of global variables. For proce-
dure Fi, let Li denote the set of locations. Let V (P) denote the set of all variables
of P , and L(P) =

⋃t
i=1 Li denote the set of locations of P . For a location
 within

a procedure Fi, let inscope(
) denote the set of all variables in P whose scope
includes l. We denote by stmt(
), formal (
) and local (
) the statement at
 and
the sets of formal parameters and local variables of the procedure containing

, respectively. We denote by entryi ∈ Li the location of the first statement in
Fi. For Boolean program B, we use the same notation, replacing P with B as
needed. When the context is clear, we simply use V , L instead of V (P), L(B) etc.

Transition Graphs. In addition to a textual representation, we will often find
it convenient to use a transition graph representation of programs (see Fig. 1c).
The transition graph representation of P , denoted G(P), comprises a set of la-
beled, rooted, directed graphs G0, . . . ,Gt, with exactly one node, err , in common.

2 We take the liberty of using if and while statements for our examples.

272 R. Samanta, O. Olivo, and E.A. Emerson

main() {
int x;
	1 : if (x ≤ 0)
	2 : while (x < 0){
	3 : x := x+ 2;
	4 : skip;

}
else

	5 : if (x == 1)
	6 : x := x− 1;
	7 : assert (x > 1);

}
(a) P

main() {
/ ∗ γ(b0) = x ≤ 1, γ(b1) = x == 1, γ(b2) = x ≤ 0 ∗ /
Bool b0, b1, b2 := ∗, ∗, ∗;
	1 : if (¬b2) then goto 	5;
	2 : if (∗) then goto 	0;
	3 : b0, b1, b2 := ∗, ∗, ∗;
	4 : goto 	2;
	0 : goto 	7;
	5 : if (¬b1) then goto 	7;
	6 : b0, b1, b2 := ∗, ∗, ∗;
	7 : assert (¬b0);

}
(b) B

	1

	2

	3

	4

	0

	5

	6

	7

err exit

assume (b2)

assume (true)

b0, b1, b2 := ∗, ∗, ∗

assume (¬b2)

assume (b1)

assume (true)

as
su
me
(¬
b1
)

b0, b1, b2 := ∗, ∗, ∗

(c) G(B)

Fig. 1. An example concrete program P , a corresponding Boolean program B and B’s
transition graph

Informally, the ith graph Gi captures the flow of control in procedure Fi with
its nodes and edges labeled by locations and corresponding statements of Fi,
respectively (see [23] for a formal definition). The set Ni of nodes of Gi, given by
Li ∪ exit i ∪ err , includes a unique entry node entryi, a unique exit node exit i
and the error node err (every node
 with stmt(
) being an assert statement
has two successors, one of which is err). A path π in Gi is a sequence of labeled
connected edges; we denote the sequence of statements labeling the edges in π
as stmt(π).

Program Semantics and Correctness. An operational semantics can be de-
fined for our programs in an obvious way, by formalizing the effect of each type
of program statement on a program configuration. A configuration η of a pro-
gram P is a tuple of the form (
, Ω, ζ), where
 ∈ L(P), Ω is a valuation of the

Cost-Aware Automatic Program Repair 273

variables in inscope(
) and ζ is a stack of elements. Each element of ζ is of the

form (
̃, Ω̃), where
̃ is a location and Ω̃ is a valuation of the variables in local (
̃).
A configuration (
, Ω, ζ) of P is called an initial configuration if
 = entry0 and
ζ is the empty stack. We use η � η′ to denote that P can transition from con-
figuration η to η′; the transitions rules for each type of program statement at

are standard (see [23] for details).

An execution path of program P is a sequence of configurations, η � η′ �
η′′ � . . ., obtained by repeated application of transition rules, starting from
an initial configuration η. An execution path may be finite or infinite. The last
configuration (
, Ω, ζ) of a finite execution path may either be a terminating
configuration with
 = exit0, or an error configuration with
 = err or a stuck
configuration. An execution path ends in a stuck configuration η if no transition
rule is applicable to η.

An assertion in program P , is a statement of the form
 : assert (g), and
represents the expected valuation of the program variables at location
. We will
use the term assertion to denote both the statement
 : assert (g) as well as the
quantifier-free, first order expression g. We say a program configuration (
, Ω, ζ)
satisfies an assertion g, if the embedded variable valuation Ω satisfies g.

Given a program P (or, B) annotated with a set of assertions, P (or, B) is
partially correct iff every finite execution path of P (or B) ends in a terminating
configuration (for all nondeterministic choices that B might make). P (or, B) is
totally correct iff every execution path is finite and ends in a terminating config-
uration (for all nondeterministic choices that B might make). Unless otherwise
specified, an incorrect program is one that is not partially correct.

3 Cost-Aware Program Repair

3.1 The Problem

Let Σ = {skip, assign, assume, assert, call, return, goto} denote the set of
statement types in program P . Given a statement s, let τ(s) be an element of Σ
denoting the statement type of s. Let U = {u0, u1, . . . , ud} be a set of permissible,
statement-level update schemas: u0 = id is the identity update schema that
maps every statement to itself, and ui, i ∈ [1, d], is a function σ �→ σ̂, σ, σ̂ ∈
Σ \ {assert}, that maps a statement type to a statement type. For each update
schema u, given by σ �→ σ̂, we say u can be applied to statement s to get
statement ŝ if τ(s) = σ; we then have τ(ŝ) = σ̂. For example, u, given by
assign �→ assign, can be applied to the assignment statement
 : x := y to get
an assignment statement
 : y := x+ 1. Notice that update schemas in U do not
affect the label of a statement, and that we do not permit modifying an assert

statement. In this paper, we fix the following set of update schemas:

U = {id,assign �→ assign, assign �→ skip, assume �→ assume, (1)

call �→ call, call �→ skip}.

We extend the notion of a statement-level update to a program-level update
as follows. For programs P , P̂, let the respective sets of locations be L, L̂ and let

274 R. Samanta, O. Olivo, and E.A. Emerson

stmt(
), ŝtmt(
) denote the respective statements at location
. Let RU ,L : L �→ U
be an update function that maps each location of P to an update schema in U .
We say P̂ is an RU ,L-update of P iff L = L̂ and for each
 ∈ L, ŝtmt(
) is
obtained by applying RU ,L(
) on stmt(
).

Let cU ,L : U × L → N be a cost function that maps a tuple, consisting of a
statement-level update schema u and a location
 of P , to a certain cost. Thus,
cU ,L(u,
) is the cost of applying update schema u to the stmt(
). We impose
an obvious restriction on cU ,L: ∀
 ∈ L : cU ,L(id,
) = 0. Since we have already
fixed the set U and the program P , we henceforth use c, R instead of cU ,L, RU ,L,
respectively, The total cost, Costc(R), of performing an R-update of P is given
by

∑
�∈L c(R(
),
).

Given an incorrect concrete program P annotated with assertions, a cost
function c, and a repair budget δ, the goal of cost-aware program repair is to
compute P̂ such that:

1. P̂ is partially correct, and,
2. there exists R:

(a) P̂ is some R-update of P , and
(b) Costc(R) ≤ δ.

If there exists such a P̂ , we say P̂ is a (U , c, δ)-repair of P .
Notice that without U , c and δ, there would be no restriction on the relation

of the repaired program P̂ to the incorrect program P ; in particular, P̂ could be
any correct program constructed from scratch, without using P at all. Insightful
choices for these can help prune the search space for repaired programs and help
generate a repaired program similar to what the programmer may have in mind.

3.2 Solution Overview

We present a predicate abstraction-based framework for cost-aware program re-
pair. Thus, in addition to P , c, δ, our framework requires (a) a Boolean program
B such that B is obtained from P via iterative predicate abstraction-refinement
and B exhibits a non-spurious counterexample path, and (b) the correspond-
ing function γ that maps Boolean variables to their respective predicates. The
computation of a suitable repaired program P̂ involves two main steps:

1. Cost-aware repair of B to obtain B̂, and
2. Concretization of B̂ to obtain P̂ .

In the following sections, we describe these two steps in detail.

4 Cost-Aware Repair of Boolean Programs

Our solution to cost-aware repair of a Boolean program B relies on automatically
computing inductive assertions, along with a suitable B̂, that together certify the
partial correctness of B̂. In what follows, we explain our adaptation of the method
of inductive assertions [11, 19] for cost-aware program repair.

Cost-Aware Automatic Program Repair 275

Cut-set. Let N be the set of nodes in G(B), the transition graph representation
of B. We define a cut-set Λ ⊆ N as a set of nodes, called cut-points, such that
for every i ∈ [0, t]: (a) entry i, exit i ∈ Λ, (b) for every edge (
, ς,
′) in Gi where
stmt(
) is a procedure call or an assert statement,
,
′ ∈ Λ, and (c) every
cycle in G contains at least one node in Λ. A pair of cut-points
,
′ is said to
be adjacent if every path from
 to
′ contains no other cut-point. A verification
path is any path from a cut-point to an adjacent cut-point.
Example: The set {
1,
2,
7, exit} (shaded blue) in Fig. 1c is a valid cut-set for
Boolean program B in Fig. 1b. The verification paths in G(B) corresponding to

this cut-set are: (1)
1
assume (b2)−−−−−−−→
2, (2)
2

assume (T)−−−−−−→
3
b0,b1,b2 := ∗,∗,∗−−−−−−−−−−→
4 −→
2,

(3)
2
assume (T)−−−−−−→
0 −→
7, (4)
1

assume (¬b2)−−−−−−−−→
5
assume (¬b1)−−−−−−−−→
7, (5)
1

assume (¬b2)−−−−−−−−→

5

assume (b1)−−−−−−−→
6
b1,b1,b2 := ∗,∗,∗−−−−−−−−−−→
7 and (6)
7 −→ exit .

Inductive assertions. We denote an inductive assertion associated with cut-
point
 in Λ by I�. Informally, an inductive assertion I� has the property that
whenever control reaches
 in any program execution, I� must be true for the
current values of the variables in scope. For Boolean program B, I� is a Boolean
formula over Vs[
], where Vs[
] denotes an
th copy of the subset Vs of the program
variables, with Vs = GV ∪ formal (
) if
 ∈ {exit1, . . . , exit t}, and Vs = inscope(
)
otherwise. Thus, except for the main procedure, the inductive assertions at the
exit nodes of all procedures exclude the local variables declared in the procedure.
Let IΛ denote the set of inductive assertions associated with all the cut-points
in Λ.

Verification Conditions. A popular approach to verification of sequential, im-
perative programs is to compute IΛ such that IΛ satisfies a set of constraints
called verification conditions. Let π be a verification path in Gi, from cut-point

to adjacent cut-point
′. The verification condition corresponding to π, denoted
VC (π), is essentially the Hoare triple 〈I�〉 stmt(π) 〈I�′〉, where stmt(π) is the
sequence of statements labeling π. When I�, I�′ are unknown, VC (π) can be
seen as a constraint encoding all possible solutions for I�, I�′ such that: every
program execution along path π, starting from a set of variable valuations sat-
isfying I�, terminates in a set of variable valuations satisfying I�′ .

Program Verification Using the Inductive Assertions Method. Given
B annotated with assertions, and a set Λ of cut-points, B is partially correct if
one can compute a set IΛ of inductive assertions such that: for every verification
path π between every pair
,
′ of adjacent cut-points in G(B), VC (π) is valid.
Example: It is not possible to compute such a set of inductive assertions for the
Boolean program in Fig. 1b as the program is incorrect.

Cost-aware Repairability Conditions. Let C : N → N be a function map-
ping nodes in G to costs. We find it convenient to use C� to denote the value C(
)
at node/location
. We set Ientry0

= true and C� = 0 if
 ∈ {entry0, . . . , entryt}.

276 R. Samanta, O. Olivo, and E.A. Emerson

Informally, C� with
 ∈ Ni can be seen as recording the cumulative cost of ap-
plying a sequence of update schemas to the statements in procedure Fi from
entryi to
. Thus, for a specific update function R with cost function c, Cexit0
records the total cost Costc(R) of performing an R-update of the program. Given
a verification path π in Gi, from cut-point
 to adjacent cut-point
′, we extend
the definition of VC (π) to define the cost-aware repairability condition corre-
sponding to π, denoted CRC (π). CRC (π) can be seen as a constraint encoding
all possible solutions for inductive assertions I�, I�′ and update functions R,
along with associated functions C, such that: every program execution that pro-
ceeds along path π via statements modified by applying the update schemas
in R, starting from a set of variable valuations satisfying I�, terminates in a
set of variable valuations satisfying I�′ , for all nondeterministic choices that the
program might make along π.

Before we proceed, note that I� is a Boolean formula over Vs[
], where for
all locations λ �=
′ in verification path π from
 to
′, Vs = inscope(λ). In
what follows, the notation �u�(stmt(λ)) represents the class of statements that
may be obtained by applying update schema u on stmt(λ), and is defined for
our permissible update schemas in Fig. 2. Here, f, f1, f2 etc. denote unknown
Boolean expressions3, over the variables in inscope(λ). Note that the update
schema assign �→ assign, modifies any assignment statement, to one that as-
signs unknown Boolean expressions to all variables in Vs.

u �u�(stmt(λ))

id stmt(λ)
assign → skip skip

assume → skip skip

call → skip skip

assign → assign b1, . . . , b|Vs| := f1, . . . , f|Vs|
assume → assume assume f
call → call call Fj(f1, . . . , fk), where stmt(λ): call Fj(e1, . . . , ek)

Fig. 2. Definition of �u�(stmt(λ))

We now define CRC (π). While there are three cases to consider, due to lack of
space, we only define CRC (π) when stmt(π) does not contain a procedure call
or assert statement. We refer the reader to [23] for the definitions of CRC (π)
when stmt(π) contains a procedure call and when stmt(π) contains an assert

statement.
Let Aλ denote a Boolean formula/assertion associated with location λ in π.

CRC (π) is given by the (conjunction of the) following set of constraints:

3 To keep our exposition simple, we assume that these unknown Boolean expressions
are deterministic. However, in our prototype tool (see Sec. 6), we have the abil-
ity to compute modified statements with nondeterministic expressions such as ∗ or
choose(f1, f2).

Cost-Aware Automatic Program Repair 277

A� = I�
A�′ ⇒ I�′ (2)∧

��λ≺�′

∧
u∈Ustmt(λ)

R(λ) = u ⇒ Cλ′ = Cλ + c(u, λ) ∧

Aλ′ = sp(�u�(stmt(λ)),Aλ).

In the above, ≺ denotes the natural ordering over the sequence of locations in
π with λ, λ′ being consecutive locations. The notation Ustmt(λ) ⊆ U denotes the
set of all update schemas in U which may be applied to stmt(λ). The notation
sp(�u�(stmt(λ)),Aλ) denotes the strongest postcondition of the assertion Aλ

over the class of statements �u�(stmt(λ)). We define this strongest postcondition
using multiple variable copies - a copy Vs[λ] for each location λ in π. Let us
assume that Aλ is a Boolean formula of the form4:

Aλ = ρ[
, λ̀] ∧
∧
b∈Vs

b[λ] = ξ[λ̀], (3)

where λ̀, λ are consecutive locations in π, ρ[
, λ̀] is a Boolean expression over

all copies Vs[μ],
 1 μ 1 λ̀, representing the path condition imposed by the

program control-flow, and ξ[λ̀] is a Boolean expression over Vs[λ̀] representing

the λth copy of each variable b in terms of the λ̀th copy of the program variables.
Note that A� = I� is of the form ρ[
].

�u�(stmt(λ)) sp(�u�(stmt(λ)),Aλ)

skip
ρ[, λ̀] ∧

∧
b∈Vs

b[λ′] = b[λ]
goto

assume g g[λ] ∧ ρ[, λ̀] ∧
∧

b∈Vs
b[λ′] = b[λ]

assume f f [λ] ∧ ρ[, λ̀] ∧
∧

b∈Vs
b[λ′] = b[λ]

b1, . . . , bm := e1, . . . , em ρ[, λ̀] ∧
∧

bi∈Vs,i∈[1,m] bi[λ
′] = ei[λ] ∧∧

bi∈Vs,i�∈[1,m] bi[λ
′] = bi[λ]

b1, . . . , b|Vs| := f1, . . . , f|Vs| ρ[, λ̀] ∧
∧

bi∈Vs
bi[λ

′] = fi[λ]

Fig. 3. Definition of sp(�u�(stmt(λ)),Aλ)

Given the above Aλ, sp(�u�(stmt(λ)),Aλ) is defined in Fig. 3. Observe that
sp(�u�(stmt(λ)),Aλ) is a Boolean formula of the same form as (3), over variable

4 In general, Aλ is a disjunction over Boolean formulas of this form;
sp(�u�(stmt(λ)),Aλ) can then be obtained by computing a disjunction over the
strongest postconditions obtained by propagating each such Boolean formula
through �u�(stmt(λ)) using the rules in Fig. 3.

278 R. Samanta, O. Olivo, and E.A. Emerson

copies from Vs[
] to Vs[λ
′]. For the entries assume g and b1, . . . , bm := e1, . . . , em,

the expressions g, e1, . . . , em are known beforehand (these entries correspond to
u = id). For the entries assumef and b1, . . . , b|Vs| := f1, . . . , f|Vs|, the expres-
sions f, f1, . . . , f|Vs| are unknown (these entries correspond to u = assume �→
assume and u = assign �→ assign, respectively). Notation such as f [λ] denotes
that f is an unknown Boolean expression over Vs[λ]. For nondeterministic ex-
pressions in the RHS of an assignment statement b1, . . . , bm := e1, . . . , em, the
strongest postcondition is computed as the disjunction of the strongest postcon-
ditions over all possible assignment statements obtained by substituting each ∗
expression with either false or true.

Thus, to summarize, the set of constraints in (2) encodes all I�, C�, I�′ , C�′
and R such that: if R is applied to the sequence of statements stmt(π) to get
some modified sequence of statements, say ŝtmt(π), and program execution pro-
ceeds along ŝtmt(π), then sp(ŝtmt(π), I�) ⇒ I�′ , and C�′ equals the cumulative
modification cost, counting up from C�.

Cost-aware Boolean Program Repair. Given a cut-set Λ of G(B), let ΠΛ

be the set of all verification paths between every pair of adjacent cut-points in
Λ. Consider the following formula:

∃Unknown ∀Var : Cexit0 ≤ δ ∧
∧

π∈ΠΛ

CRC (π) ∧ AssumeConstraints (4)

where Unknown is the set of all unknowns and Var is the set of all Boolean
program variables and their copies used in encoding each CRC (π). The set
of unknowns includes the set IΛ of inductive assertions, update function R,
unknown expressions f, f1 etc. associated with applications of update schemas
in R and valuations at each program location of the cumulative-cost-recording
function C. Finally, AssumeConstraints ensures that any modifications to the
guards of assume statements corresponding to the same conditional statement
are consistent. Thus, for every pair of updated assume (f1), assume (f2) state-
ments labeling edges starting from the same node in the transition graph, the
unknown functions f1, f2 are constrained to satisfy f1 = ¬f2.

If the above formula is true, then we can extract models for all the un-
knowns from the witness to the satisfiability of the formula: ∀Var : Cexit0 ≤ δ
∧
∧

π∈ΠΛ
CRC (π) ∧ AssumeConstraints. In particular, we can extract an R

and the corresponding modified statements to yield a correct Boolean program
B̂. The following theorem states the soundness and completeness of the above
algorithm for repairing Boolean programs for partial correctness (see [23] for the
proof).

Theorem 41. Given the set U specified in (1), and given an incorrect Boolean
program B annotated with assertions, cost function c and repair budget δ,

1. if there exists a (U , c, δ)-repair of B, the above method finds a (U , c, δ)-repair
of B,

2. if the above method finds a B̂, then B̂ is a (U , c, δ)-repair of B.

Cost-Aware Automatic Program Repair 279

Example: For the Boolean program in Fig. 1b, our tool modifies two statements:
(1) the guard for stmt(
1) is changed from b2 to b0∨ b1∨¬b2 and (2) the guard
for stmt(
2) is changed from ∗ to b0 ∨ b1 ∨ b2.

5 Concretization

We now present the second step in our framework for computing a concrete re-
paired program P̂. In what follows, we assume that we have already extracted
models for B̂ and IΛ.

Concretization of B̂. This involves computing a mapping, denoted Γ , from
each modified statement of B̂ into a corresponding modified statement in the
concrete program. We define Γ for each type of modified statement in B̂. Let us
fix our attention on a statement at location
, with Vs(B), Vs(P) denoting the
set of abstract, concrete program variables, respectively, whose scope includes
.
Let r = |Vs(B)| and q = |Vs(P)|.

1. Γ (skip) = skip

2. Γ (assume (g)) = assume (γ(g))
3. Γ (call Fi(e1, . . . , ek)) = call Fi(γ(e1), . . . , γ(ek))
4. The definition of Γ for an assignment statement is non-trivial. In fact, in this

case, Γ may be the empty set, or may contain multiple concrete assignment
statements.
We say that an assignment statement b1, . . . , br := e1, . . . , er in B is con-
cretizable if one can compute expressions f1, . . . , fq over Vs(P), of the same
type as the concrete program variables v1, . . . , vq in Vs(P), respectively, such
that a certain constraint is valid. To be precise, b1, . . . , br := e1, . . . , er in B
is concretizable if the following formula is true:

∃f1, . . . , fq ∀v1, . . . , vq :

r∧
j=1

γ(bj)[v1/f1, . . . , vq/fq] = γ(ej) (5)

Each quantifier-free constraint γ(bj)[v1/f1, . . . , vq/fq] = γ(ej) above essen-
tially expresses the concretization of the abstract assignment bj = ej . The
substitutions v1/f1, . . . , vq/fq reflect the new values of the concrete program
variables after the concrete assignment v1, . . . , vq := f1, . . . , fq. If the above
formula is true, we can extract models expr1, . . . , exprq for f1, . . . , fq, re-
spectively, from the witness to the satisfiability of the inner ∀-formula. We
then say:

v1, . . . , vq := expr1, . . . , exprq ∈ Γ (b1, . . . , br := e1, . . . , er).

Example: For our example in Fig. 1, the modified guards, b0 ∨ b1 ∨ ¬b2 and
b0∨b1∨b2, in stmt(
1) and stmt(
2) of B̂, respectively are concretized into true
and x ≤ 1, respectively using γ.

280 R. Samanta, O. Olivo, and E.A. Emerson

Template-based concretization of B̂. Our framework/tool can also accept
user-supplied templates, specifying the desired syntax of the expressions in con-
crete modified statements. The concretization of B̂ is then guided by the given
templates. This is another avenue for incorporating programmer expertise and
intent into automatic program repair. Due to lack of space, we skip a detailed
description and refer the interested reader to [23].

Concretization of inductive assertions. The concretization of each inductive
assertion I� ∈ IΛ is simply γ(I�).

6 Experiments with a Prototype Tool

We have built a prototype tool for repairing Boolean programs. The tool accepts
Boolean programs generated by the predicate abstraction tool SATABS (version
3.2) [8] from sequential C programs. In our experience, we found that for C pro-
grams with multiple procedures, SATABS generates (single procedure) Boolean
programs with all procedure calls inlined within the calling procedure. Hence,
we only perform intraprocedural analysis in this version of our tool. The set of
update schemas handled currently is {id, assign→ assign, assume→ assume};
we do not handle statement deletions. We set the costs c(assign → assign,
)
and c(assume→ assume,
) to some large number for every location
 where we
wish to disallow statement modifications, and to 1 for all other locations — we
essentially search for a repaired program with at most δ modifications amongst
candidate locations. We initialize the tool with δ = 1. We also provide the tool
with a cut-set of locations for its Boolean program input.

The tool automatically generates an SMT query corresponding to the inner
∀-formula in (4). When generating this repairability query, for update schemas
involving expression modifications, we stipulate every deterministic Boolean ex-
pression g be modified into a (unknown) deterministic Boolean expression f (as
described in Fig. 2), and every nondeterministic Boolean expression be modified
into a (unknown) nondeterministic expression of the form choose(f1, f2). The
SMT query is then fed to the SMT-solver Z3 (version 4.3.1) [20]. The solver
either declares the formula to be satisfiable, and provides models for all the un-
knowns, or declares the formula to be unsatisfiable. In the latter case, we can
choose to increase the repair budget by 1, and repeat the process.

Once the solver provides models for all the unknowns, we can extract a re-
paired Boolean program automatically. Currently, the next step, concretization,
is automated in part. For assignment statements, we manually formulate SMT
queries corresponding to the inner ∀-formula in (5), and feed these queries to
Z3. If the relevant queries are satisfiable, we can obtain a repaired C program.
If the queries are unsatisfiable, we attempt template-based concretization using
linear-arithmetic templates. In some experiments, we allowed ourselves a degree
of flexibility in guiding the solver to choose the right template parameters.

In Fig. 4, we present some of the details of repairing a C program drawn from
the NEC Laboratories Static Analysis Benchmarks [21]. After our tool automati-
cally generated a repaired Boolean program for this example, we manually wrote

Cost-Aware Automatic Program Repair 281

int main() {
int x, y;
int a[10];
	1 : x := 1U;

	2 : while (x ≤ 10U) {
	3 : y := 11− x;
	4 : assert (y ≥ 0 ∧ y < 10);
	5 : a[y] := − 1;
	6 : x := x+ 1;

}
}

Boolean program vars/predicates:
γ(b0) = y < 0, γ(b1) = y < 10

Boolean program repair:
Change stmt(3) from
b0, b1 := ∗, ∗ to b0, b1 := F, T

Concrete program repair:
Change stmt(3) to y := 10− x

Inductive Assertions:
They were all true

Fig. 4. Repairing program necex14

an SMT query corresponding to (5) to concretize the assignment statement at
location
3, and obtained y := 0 as the repair for the concrete program. Unsat-
isfied by this repair, we formulated a template-based SMT query, restricting the
RHS of stmt(
3) to the template −x + c, where c is unknown. The query was
found to be satisfiable, and yielded c = 10. As shown in Fig. 4, all inductive
assertions generated for this example were true.

In Table 1, we present the results of repairing some handmade examples
(handmade2 is the same example as in Fig. 1), and some benchmark programs
from NEC Labs [21] and the 2014 Competition on Software Verification [9]. The
complexity of the programs from [9] stems from nondeterministic assignments
and function invocations within loops. All experiments were run on the same
machine, an Intel Dual Core 2.13GHz Unix desktop with 4 GB of RAM.

We enumerate the time taken for each individual step involved in generating a
repaired Boolean program. The columns labeled LoC(P) and LoC(B) enumerate
the number of lines of code in the original C program and the Boolean program
generated by SATABS, respectively. The column labeled V (B) enumerates the
number of variables in each Boolean program. The column B-time enumerates
the time taken by SATABS to generate each Boolean program, the column Que-
time enumerates the time taken by our tool to generate each repairability query
and the column Sol-time enumerates the time taken by Z3 to solve the query. The
columns # Asg and # Asm count the number of assign→ assign and assume→
assume update schemas applied, respectively, to obtain the final correct program.

Notice that our implementation either produces a repaired program very
quickly, or fails to do so in reasonable time whenever there is a significant increase
in the number of Boolean variables, e.g. for veris.c NetBSD-libc loop true.
This is because the SMT solver might need to search over simultaneous non-
deterministic assignments to all the Boolean variables for every assignment state-
ment in B in order to solve the repairability query. For the last two programs,
SATABS was the main bottleneck, with SATABS failing to generate a Boolean
program with a non-spurious counterexample after 10 minutes; we experienced
issues while using SATABS on programs with a lot of character manipulation.

We emphasize that when successful, our tool can repair a diverse set of errors
in programs containing loops, multiple procedures and pointer and array vari-
ables. In our benchmarks, we were able to repair operators (e.g., an incorrect

282 R. Samanta, O. Olivo, and E.A. Emerson

Table 1. Experimental results

Name LoC(P) LoC(B) V (B) B-time Que-time Sol-time # Asg # Asm

handmade1 6 58 1 0.180s 0.009s 0.012s 0 1
handmade2 16 53 3 0.304s 0.040s 0.076s 0 2

necex6 24 66 3 0.288s 0.004s 0.148s 1 0
necex14 13 60 2 0.212s 0.004s 0.032s 1 0

while infinite loop 1 true 5 33 1 0.196s 0.002s 0.008s 0 1
array true 23 57 4 0.384s 0.004s 0.116s 1 1
n.c11 true 27 50 2 0.204s 0.002s 0.024s 1 0
terminator 03 true 22 38 2 0.224s 0.004s 0.036s 1 1
trex03 true 23 58 3 0.224s 0.036s 0.540s 1 1
trex04 true 29 36 1 0.200s 0.004s 0.004s 2 0
veris.c NetBSD− libc loop true 30 144 23 3.856s - - - -
vogal true 41 - - > 10m - - - -
count up down true 18 - - > 10m - - - -

conditional statement x < 0 was repaired to x > 0) and array indices (e.g.,
an incorrect assignment x:=a[0] was repaired to x:=a[j]), and modify constants
into program variables (e.g. an incorrect assignment x:=0 was repaired to x:=d,
where d was a program variable). Also, note that for many benchmarks, the
repaired programs required multiple statement modifications.

7 Discussion

The framework described in this paper computes a repaired concrete program
in two separate steps: computation of a repaired Boolean program B̂, followed
by its concretization. The separation of these two steps is not necessary and is
potentially sub-optimal. It may not be possible to concretize a repaired Boolean
program computed in the first step, while there may exist some other concretiz-
able B̂. The solution is to directly search for B̂ such that all modified statements
of B̂ are concretizable. This can be done by combining the constraints presented
in Sec. 5 with the one in (4). As noted in Sec. 1, we can target total correctness
of the repaired programs by associating ranking functions along with inductive
assertions with each cut-point in Λ, and including termination conditions as part
of the constraints. Finally, we wish to explore ways to ensure that the repaired
program does not unnecessarily restrict correct behaviors of the original pro-
gram. We conjecture that this can be done by computing the weakest possible
set of inductive assertions and a least restrictive B̂.

Acknowledgements. The authors would like to thank Gérard Basler, Daniel
Kröning and Georg Weissenbacher for their help with SATABS.

References

1. Arcuri, A.: On the Automation of Fixing Software Bugs. In: International Confer-
ence on Software Engineering (ICSE), pp. 1003–1006. ACM (2008)

2. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static Driver Verifica-
tion with under 4% False Alarms. In: Formal Methods in Computer Aided Design
(FMCAD), pp. 35–42 (2010)

Cost-Aware Automatic Program Repair 283

3. Ball, T., Naik, M., Rajamani, S.K.: From Symptom to Cause: Localizing Errors
in Counterexample Traces. In: Principles of Programming Languages (POPL), pp.
97–105. ACM (2003)

4. Ball, T., Rajamani, S.K.: Boolean Programs: A Model and Process for Software
Analysis. Tech. Rep. 2000-14, MSR (2000)

5. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties
of Interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122.
Springer, Heidelberg (2001)

6. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Syn-
thesis through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

7. Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic Debugging. In: Interna-
tional Conference on Software Engineering (ICSE), pp. 121–130. ACM (2011)

8. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

9. Competition on Software Verification (SV-COMP): Loops Benchmarks (2014),
http://sv-comp.sosy-lab.org/2014/benchmarks.php

10. Debroy, V., Wong, W.E.: Using Mutation to Automatically Suggest Fixes for Faulty
Programs. In: Software Testing, Verification and Validation (ICST), pp. 65–74
(2010)

11. Floyd, R.W.: Assigning Meanings to Programs. In: Mathematical Aspects of Com-
puter Science, pp. 19–32. American Mathematical Society (1967)

12. Goues, C.L., Dewey-Vogt, M., Forrest, S., Weimer, W.: A Systematic Study of Au-
tomated Program Repair: Fixing 55 out of 105 Bugs for $8 Each. In: International
Conference on Software Engineering (ICSE), pp. 3–13. IEEE Press (2012)

13. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

14. Griesmayer, A., Bloem, R., Cook, B.: Repair of Boolean Programs with an Ap-
plication to C. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
358–371. Springer, Heidelberg (2006)

15. Jobstmann, B., Griesmayer, A., Bloem, R.: Program Repair as a Game. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

16. Jose, M., Majumdar, R.: Cause Clue Clauses: Error Localization using Maximum
Satisfiability. In: Programming Language Design and Implementation (PLDI), pp.
437–446. ACM (2011)

17. Könighofer, R., Bloem, R.: Automated Error Localization and Correction for Im-
perative Programs. In: Formal Methods in Computer Aided Design (FMCAD), pp.
91–100 (2011)

18. Logozzo, F., Ball, T.: Modular and Verified Automatic Program Repair. In: Ob-
ject Oriented Programming Systems Languages and Applications (OOPSLA), pp.
133–146. ACM (2012)

19. Manna, Z.: Introduction to Mathematical Theory of Computation. McGraw-Hill,
Inc. (1974)

20. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

21. NEC: NECLA Static Analysis Benchmarks, http://www.nec-labs.com/research/
system/systems SAV-website/benchmarks.php

http://sv-comp.sosy-lab.org/2014/benchmarks.php
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php

284 R. Samanta, O. Olivo, and E.A. Emerson

22. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic Generation of Local
Repairs for Boolean Programs. In: Formal Methods in Computer Aided Design
(FMCAD), pp. 1–10 (2008)

23. Samanta, R., Olivo, O., Emerson, E.A.: Cost-Aware Automatic Program Repair.
CoRR abs/1307.7281 (2013)

24. Singh, R., Gulwani, S., Solar-Lezama, A.: Automatic Feedback Generation for In-
troductory Programming Assignments. In: Programming Language Design and
Implementation, PLDI (2013)

25. Singh, R., Solar-Lezma, A.: Synthesizing Data-Structure Manipulations from Sto-
ryboards. In: Foundations of Software Engineering (FSE), pp. 289–299 (2011)

26. Solar-Lezama, A., Rabbah, R., Bodik, R., Ebcioglu, K.: Programming by Sketching
for Bit-streaming Programs. In: Programming Language Design and Implementa-
tion (PLDI), pp. 281–294. ACM (2005)

27. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
Sketching for Finite Programs. In: Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pp. 404–415. ACM (2006)

28. Srivastava, S., Gulwani, S., Foster, J.S.: From Program Verification to Program
Synthesis. In: Principles of Programming Languages (POPL), pp. 313–326. ACM
(2010)

29. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Auto-
mated Fixing of Programs with Contracts. In: International Symposium on Soft-
ware Testing and Analysis (ISSTA), pp. 61–72. ACM (2010)

30. Nokhbeh Zaeem, R., Gopinath, D., Khurshid, S., McKinley, K.S.: History-Aware
Data Structure Repair using SAT. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 2–17. Springer, Heidelberg (2012)

31. Zeller, A., Hilebrandt, R.: Simplifying and Isolating Failure-Inducing Input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

An Abstract Domain Combinator for Separately
Conjoining Memory Abstractions�

Antoine Toubhans1, Bor-Yuh Evan Chang2, and Xavier Rival1

1 INRIA, ENS, CNRS, Paris, France
2 University of Colorado, Boulder, Colorado, USA

{toubhans,rival}@di.ens.fr, bec@cs.colorado.edu

Abstract. The breadth and depth of heap properties that can be inferred by the
union of today’s shape analyses is quite astounding. Yet, achieving scalability
while supporting a wide range of complex data structures in a generic way re-
mains a long-standing challenge. In this paper, we propose a way to side-step
this issue by defining a generic abstract domain combinator for combining mem-
ory abstractions on disjoint regions. In essence, our abstract domain construction
is to the separating conjunction in separation logic as the reduced product con-
struction is to classical, non-separating conjunction. This approach eases the de-
sign of the analysis as memory abstract domains can be re-used by applying our
separating conjunction domain combinator. And more importantly, this combina-
tor enables an analysis designer to easily create a combined domain that applies
computationally-expensive abstract domains only where it is required.

1 Introduction

While there exist static analyses for the most common data structures such as lists, trees,
or even overlaid lists and trees [10,4,14,11], it is uncommon for static analyses to effi-
ciently support all of these simultaneously. For instance, consider the code fragment of
Fig. 1 that simultaneously manipulates linked lists and trees, iteratively picking some
value from the list and searching for it in the tree. Although verification of the memory
safety and data structures preservation is possible with several tools (e.g. [18,20]), this
will not take into account most efficient data-structure-specific algorithms (e.g. analy-
sis for linked lists presented in [15] achieves polynomial complexity transfer functions).
On the other hand, using only a linked-list-specific efficient analysis will lead to a dra-
matic loss of precision, as tree features are not supported. The general problem is much
broader than just lists and trees: in real-world programs, it is common to find not only
lists, trees, and overlaid lists and trees, but also buffers, arrays, and other complex heap
structures, and therefore static analysis is either imprecise or inefficient.

Instead of using one monolithic analysis, we propose to combine off-the-shelf data-
structure-specific analyses that reason about disjoint regions of memory. The approach
presented in this paper is in the context of abstract interpretation [6]. Therefore, com-
bining analyses is realized by a separating combination of memory abstract domains

� The research leading to these results has received funding from the European Research Council
under the FP7 grant agreement 278673, Project MemCAD and the United States National
Science Foundation under grant CCF-1055066.

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 285–301, 2014.
c© Springer International Publishing Switzerland 2014

286 A. Toubhans, B.-Y.E. Chang, and X. Rival

01 : int ∗x = NULL; 10 : while(. . .){ 24 : r = searchTree(∗x, t);
02 : List ∗h, ∗e; 11 : x = malloc(sizeof(int)); 25 : // do something on r

03 : Tree ∗t, ∗r; 12 : ∗x = e -> data . . .
. 30 : }

Fig. 1. A code fragment manipulating simultaneously several data structures

called the sub-domains. Combined memory abstract domains describe each disjoint
memory region using one of its sub-domains. We show how separation (i.e. the fact
that data structures do not share cell blocks) can be used to decompose a heterogeneous
memory into several sub-instances that can be handled independently.

This construction increases and eases the abstract domain design capabilities. Com-
bined abstract domains are more extensible and flexible, as a sub-domain can be indi-
vidually added, removed, strengthened, or weakened in the combination. Moreover, it
allows paying the cost of complex algorithms that usually come with expressive abstract
domains only in the memory region that really requires it. On the other hand, simpler
light-weight abstract domains can be used to represent a significant part of the memory
that does not contain complex structures.

Such a combination poses several challenges. Because, even if disjoint in memory,
concrete data structures can still be correlated (e.g. have shared values or pointers to
each other), we need to carefully abstract the interface between memory regions in the
combination. Maintaining a right partitioning (i.e. which memory region should be
abstracted in which sub-domain) during the analysis process is also challenging. For
example, when analyzing a memory allocation, the analysis decides which sub-domains
should handle it. Even though any choice is sound, there are sub-domains more relevant
than others in many cases. This approach has been successfully applied to numerical
domains and made it possible to obtain scalable and precise analyses [3] and reusable
abstract domains [13]. Our proposal brings, in a way, the same improvement to memory
abstract domains. We justify this statement by the following contributions:

– we introduce (Section 2) and formalize (Section 3.2) the separating combination
functor that takes two memory abstract sub-domains matching the signature given
in Section 3.1 and returns a new combined memory abstract domain;

– we define an abstract domain for the interface between memory regions (Section 3.2)
that carefully describes correlations between memory regions;

– we set up the abstract transfer functions (Section 4) that compose abstract transfer
functions of sub-domains and extract information from an abstract interface;

– we give a heuristic for the decision of which sub-domain should handle a newly
allocated block (Section 4.1);

– we evaluate the separating combination functor by an implementation in the Mem-
CAD analyzer (Section 5) and empirically verify that combined analyses remain
efficient and precise while offering greater flexibility.

2 Overview

In this section, we provide an informal description of our combined analysis (formal
details are presented in Sections 3 and 4). We present an abstract interpretation [6]
based analysis of the code fragment of Fig. 1, using a combination of memory abstract

An Abstract Domain Combinator 287

domains. The analysis goal is to prove memory safety and data structure (lists and trees)
preservation. Fig. 2 shows two abstract memories computed during the analysis.

An Abstraction of the Memory Using Several Memory Abstract Domains. The program
manipulates a memory that can be decomposed in three disjoint regions (i) the list
region (denoted L) containing linked-list nodes (ii) the tree region (denoted T) con-
taining tree nodes (iii) the region accounting for the rest of the memory that contains
only bounded data structures (denoted B). This naturally leads to the choice of a sepa-
rating combination of three memory abstract sub-domains M�

l , M
�
t, M

�
b that will reason

respectively about region L , T and B .
Fig. 2(a) shows the combined abstract memory computed by the analysis before

line 11. Each thick black bordered boxes (labeled B , L and T) contains an element
m�

b ∈ M�
b, m�

l ∈ M�
l and m�

t ∈ M�
t called abstract sub-memories. Greek letters

that appear in the sub-memories are called the symbolic names and are used by sub-
domains to internally represent concrete values and heap addresses. The combined
abstract memory represents a set of memories where variable h (resp. e) points to the
head (resp. the last element) of a linked list, variable t points to the root of a tree,
variable x is the null pointer and content of variable r can be any concrete value.

Describing the interface between memory regions is crucial for precision. In partic-
ular, the combined abstract memory should account for (i) pointers from region B to
regions L and T and (ii) sharing of values between cells of different memory regions
such as value v in the last list node and the left tree node from the tree root. The in-
terface abstract domain I� (Section 3.2) achieves this by maintaining a set of equalities
between symbolic names of different abstract sub-memories. An equality between two
symbolic names simply means that they represent the same concrete value. For instance,
pointer h crossing the memory regions B and L is represented by (i) β0 representing
the content of cell h in the m�

b, (ii) λ0 representing the address of the head of the list in
the m�

l , and (iii) equality β0 = λ0 in the abstract interface. Thus, this combined abstract
memory is a quadruple made of three abstract sub-memories m�

b ∈ M�
b, m�

l ∈ M�
l and

m�
t ∈ M�

t and an abstract interface i� ∈ I�. In the two combined abstract memories
shown in Fig. 2, abstract sub-memories are represented in gray inside the thick black
boxes whereas dark blue edges and values depict the abstract interface.

B

L

T

&h &e &x &t &r

β0 β1 0 β2 �
� � �

λ0 λ1 λ2
�λ1 � v0. . .

�

�

τ0 τ2

τ1

τ1 τ2 � �

v

. . .

. . .

. . .

. . .

�

�

� �

� �

(a) Abstract memory state before line 11

B

L

T

&h &e &x β3 &t &r

β0 β1 β3 v β2 β4
�� � �

�

λ0 λ1 λ2
�λ1 � v0. . .

�

�

τ0 τ2

τ1

τ1 τ2 � �

v

. . .

. . .

. . .

. . .

�

�

� �

� �

(b) Abstract memory state after line 24

Fig. 2. Two combined abstract memories inferred during the analysis

288 A. Toubhans, B.-Y.E. Chang, and X. Rival

Combined Analysis. The analysis automatically derives the post-condition shown in
Fig. 2(b) from the pre-condition shown in Fig. 2(a) by composing abstract transfer func-
tions for program statements between line 11 and 24. In the following, we demonstrate
the key features of the combination of memory abstract domains by analyzing the two
program statements at line 11 and 12. In particular, the assignment at line 11 involves a
memory allocation but remains quite simple compared to the assignment at line 12 that
requires post-condition computations to be distributed across sub-memories using the
abstract interface. The first step when analyzing an assignment consists in evaluating
its left and right hand-sides, that is, finding symbolic names representing the address of
the updated cell and the written value (Section 4.2).

The right hand side of the assignment at line 11 contains a memory allocation in-
struction, hence the analysis should decide which sub-domain is the most relevant for
handling it. Indeed, even though any choice is sound for the analysis, a bad decision
could lead to a loss in precision or in efficiency. While the three sub-domains could pre-
cisely handle the memory allocation, M�

b is expected to be more efficient for handling
bounded data structures. Because of the type passed to malloc, the new cell will likely
never be summarized as part of a list or a tree, m�

b should therefore handle the memory
allocation. While not complete (C types cannot fully describe the programmer intended
data structure), we find that this simple heuristic works well in practice. In Fig. 2(b),
this sub-memory contains a new cell at abstract address β3 (red background highlights
created cells). The right hand side is evaluated to β3 and evaluation of the left hand
side is trivial and provides a symbolic name that is in m�

b so that both are evaluated in
the same sub-memory. Therefore and thanks to the local reasoning principle, the post-
condition can be computed only for abstract sub-memory m�

b, using the sound abstract
transfer function provided by M�

b. In Fig. 2(b), the cell that correspond to x has been
updated to β3 (green background highlights updated cells).

Computing an abstract post-condition of the assignment at line 12 exhibits two main
issues. First, the evaluation of its right hand side crosses sub-memories, requiring a
mechanism for extracting information from the interface i�. Second, the left and right
hand sides are not evaluated in the same sub-memories. Thus, handling the assignment
requires abstract transfer functions for I�. The right hand side is evaluated iteratively
over its syntax: (i) the content of cell e is evaluated to β1, which cannot be resolved
as an address of a cell in m�

b, (ii) equality β1 = λ2 is extracted from i� that allows the
resolution to continue in m�

l , and (iii) the content of abstract address λ2 at field data

is v in m�
l . As ∗x is evaluated to β3 in m�

b, the left and right hand sides are evaluated
respectively in m�

b and m�
l . Thus, the post-condition is computed (i) in m�

b as the written
cell is abstracted in this abstract sub-memory and (ii) in i� as the written value is not
represented in m�

b. The cell at address β3 is updated to a fresh symbolic name in m�
b

and then set to be equal to v in i� using the abstract transfer function for I�.

3 The Separating Combination of Memory Abstract Domains

In this section, we first set up a general notion of a memory abstract domain (Sec-
tion 3.1). before introducing the separating combination (Section 3.2). A memory ab-
stract domain M� provides a representation for sets of concrete memories. Intuitively,

An Abstract Domain Combinator 289

m	
b = αa

0 → {0 : βc
0} ∗ αa

1 → {0 : βc
1} ∗ αa

2 → {0 : βc
2} ∗ αa

3 → {0 : βc
3} ∗ αa

4 → {0 : βc
4}

∧ &h = αa
0 ∧ &e = αa

1 ∧ &x = αa
2 ∧ &t = αa

3 ∧ &r = αa
4 ∧ βc

2 = 0

(a) Abstract memory m	
b

&r = 0x...a16

&t = 0x...a12

&x = 0x...a8

&e = 0x...a4

&h = 0x...a0

0x0

0x...d0

0x0

0x...c0

0x...b0

(b) Concrete memory mb

νb : αa
0 → 0x...a0 βc

0 → 0x...b0
αa
1 → 0x...a4 βc

1 → 0x...c0
αa
2 → 0x...a8 βc

2 → 0x0
αa
3 → 0x...a12 βc

3 → 0x...d0
αa
4 → 0x...a16 βc

4 → 0x0
(c) Valuation νb : N

M
�
b
→ V

Fig. 3. Bounded data structure abstract domain: (mb, νb) ∈ γ
M

�
b
(m	

b)

it consists of a set of predicates describing memory quantified on symbolic names (de-
noted NM�) that represent concrete values (denoted V). Thus, concretization involves
valuations mapping symbolic names to the value they represent. Once this general no-
tion is formalized, we formally introduce the separating combination as a binary functor
that takes as input two memory abstract domains M�

1, M�
2 and returns a new memory

abstract domain M�
1 � M�

2. The functor can be iteratively applied in order to cope with
more than two memory abstract sub-domains. The combined abstract domain describes
disjoint memory regions using either predicates of M�

1 or M�
2. Moreover, correlations

between regions are described by the interface abstract domain I� that maintains equal-
ities between symbolic names quantified in different sub-memories.

3.1 Memory Abstract Domain

Concrete Memories. We let A denote the set of concrete addresses, and we assume
addresses to be concrete values (i.e. A ⊆ V). Henceforth, we adopt a standard model
for concrete memories where a concrete memory m is a finite map from addresses to
values. Therefore, the set of concrete memories is defined by M

def
= A ⇀fin V. We

let F = {f, g, . . .} denote the set of valid field names, and we treat them as numerical
offsets so that for a ∈ A and f ∈ F, a + f denotes the address at field f of the block at
address a. As the separating combination is reasoning about disjoint memory region, we
write m1 $m2 for the union of two disjoint memories (i.e. dom(m1)∩ dom(m2) = ∅,
where dom(mi) denotes the domain of mi as a partial function).

A memory abstract domain is a lattice of abstract memories M�, together with a fixed
infinite set of symbolic names NM� , a concretization function γM� and sound abstract
transfer functions (detailed in Section 4). An abstract memory m� ∈ M� internally
utilizes symbolic names to represent concrete values. We define the set of valuations
VM�

def
= NM� ⇀fin V. Intuitively, a valuation ν ∈ VM� relates symbolic names to

concrete values when concretizing. Concretization is a function γM� : M� → P(M ×
VM�) and γM�(m�) collects a set of couples (m, ν) ∈ M × VM� made of a concrete
memory and a valuation that maps symbolic names quantified in m� to concrete values
in m.

290 A. Toubhans, B.-Y.E. Chang, and X. Rival

0x...c4

0x...c0

0x...e4

0x...e0

0x...b4

0x...b0

666

0x0

13

0x...c0

42

0x...e0

(a) Concrete memory
ml

νl : λ0 → 0x...b0 λ2 → 0x0
λ1 → 0x...c0 λ3 → 666

(b) Valuation νl : N
M

�
l
→ V

λ0 λ1 λ2

λ3
λ2 = 0x0

next

data

list list

(c) Abstract memory m	
l

Fig. 4. Separating shape graph abstract domain, parameterized by list inductive definition:
(ml, νl) ∈ γ

M
�
l
(m	

l)

Example 1 (Bounded structure abstract domain). As a first example, we describe a
memory abstract domain that represents precisely block contents, but is unable to sum-
marize unbounded regions such as list and tree data structures. This memory abstract
domain can be considered an instantiation of M�

b seen in the overview (Section 2). The
set of symbolic names consists of either symbols for addresses (denoted αa

0 , α
a
1 , . . .) or

symbols for cell contents (denoted βc
0, β

c
1, . . .). Definitions of abstract memories and

the concretization function is given by:

m� ::= abstract memories γ
M

�
b
(m�)

| emp empty memory {([], ν) | ν ∈ VM�}
| αa �→ {f : βc} memory cell {([ν(αa) + f �→ ν(βc)], ν) | ν ∈ VM�}
| m�

1 ∗ m�
2 disjoint memory {(m1 $m2, ν) | ∀i ∈ {1, 2}. (mi, ν) ∈ γ

M
�
b
(m�

i)}
| m�

b ∧ n� with constraints {(m, ν) | (m, ν) ∈ γ
M

�
b
(m�

b) ∧ ν � n�}

An abstract memory m� consists of a separating conjunction of atomic predicatesαa �→
{f : βc} abstracting a cell at address αa+f of content βc. Fig. 3 shows the abstract sub-
memory m�

b depicted in labeled box B in Fig. 2(a) and a pair (mb, νb) that concretizes
it. Properties about values and addresses are expressed in n�, using a product with a
numerical domain [5]. For instance, a numerical domain enabling linear equalities is
used in Fig. 3(a). Besides, a product with a pointer domain may be used to capture,
for example, aliasing relations. The memory abstract domain of [16] extends this basic
layout (and handles unions, non-fixed cell sizes, etc.).

Example 2 (Separating shape graphs). The separating shape graph abstract domain
of [4] provides a second example of a memory abstract domain. An abstract memory is
a separating conjunction [17] of predicates, which could be either points-to predicates
(depicted as thin edges in Fig. 4(c)) and inductive predicates (depicted as bold edges in
Fig. 4(c)). Inductive predicates are annotated with inductive definitions supplied as a
parameter of the domain. Thus, depending on the parameterization, this domain may
provide an instantiation for M�

l or M�
t in the example of Section 2. Non-parameterizable

An Abstract Domain Combinator 291

unfold
∨

λ0 = 0x0 λ0 �= 0x0

empλ0 λ0 λ1

λ2

list next

data

list

Fig. 5. List inductive definition rewriting rule

abstract domains [10] have a similar layout. A graph containing only points-to edges is
concretized into the disjoint merge of the cells described by each points-to edge. The
concretization of inductive predicates proceeds by unfolding. For instance the inductive
definition for list leads to the unfolding rule shown in Figure 5. As in the previous exam-
ple, a numerical abstract domain should be used in order to express content properties.
Fig. 4(c) presents an instance m�

l of the separating shape graph domain parameterized
by a list definition that corresponds to the labeled box L depicted in Fig. 2(a) in the
overview. A pair (ml, νl) that concretizes m�

l is given in Fig. 4(a) and Fig. 4(b).

3.2 The Separating Combination

In this section, we assume a pair of memory abstract domainsM�
1,M

�
2 are fixed, with in-

dependent sets of symbolic namesN
M

�
1
,N

M
�
2

and concretization functions γ
M

�
1
, γ

M
�
2
. In

the following, we introduce the interface abstract domain before defining the combined
memory abstract domain M�

1 � M�
2.

Interface Abstract Domain. We let I�〈M�
1,M

�
2〉 denote the interface abstract domain

that expresses sets of equality relations between symbolic names of M�
1 and M�

2. In-
tuitively, an abstract interface is a finite set of pairs representing equalities. Thus, the
interface abstract domain is defined by I�〈M�

1,M
�
2〉

def
= Pfin(NM

�
1
× N

M
�
2
) and an ab-

stract interface i� is concretized into a set of pairs of valuations of M�
1 and M�

2 in the
following way:

γI�(i
�)

def
=
{
(ν1, ν2) ∈ VM�

1
× V

M
�
2
| ∀(α1, α2) ∈ i�. ν1(α1) = ν2(α2)

}
We write I� instead of I�〈M�

1,M
�
2〉 when there is no ambiguity about the choice of the

memory abstract sub-domains. We also define a judgment i� � α1 = α2 meaning that
the pair (α1, α2) belongs to the transitive closure of the relation induced by i�. Thus, it
meets the soundness condition i� � α1 = α2 ∧ (ν1, ν2) ∈ γI�(i

�) ⇒ ν1(α1) = ν2(α2).

The Separating Abstract Domain Combinator. Combined abstract memories consist
of triples (m�

1,m
�
2, i

�) made of two abstract sub-memories describing disjoint memory
regions and an abstract interface representing correlations between the sub-memories.
Thus, the combined abstract domain is defined by M�

1�M�
2

def
= M�

1×M�
2× I�〈M�

1,M
�
2〉.

We define the set of symbolic names of the combined abstract domain as the disjoint
union of symbolic names of the abstract sub-domains. Formally:

N
M

�
1�M

�
2

def
=
{
(M�

1 : α1) | α1 ∈ NM
�
1

}
$
{
(M�

2 : α2) | α2 ∈ NM
�
2

}

292 A. Toubhans, B.-Y.E. Chang, and X. Rival

m
�
b = αa

0
→ {0 : βc
0} ∗ αa

1
→ {0 : βc
1}

∗ αa
2
→ {0 : βc

2} ∗ αa
3
→ {0 : βc

3}
∗ αa

4
→ {0 : βc
4} ∧ &h = αa

0 ∧ . . . λ0 λ1 λ2

λ3
m

�
l

λ2 = 0x0

next

data

list list

i� =

{(βc
0, λ0) , (β

c
1, λ1)}

(a) Combined abstract memory (m	
b,m

	
l , i

)

&r = 0x...a16

&t = 0x...a12

&x = 0x...a8

&e = 0x...a4

&h = 0x...a0

0x0

0x...d0

0x0

0x...c0

0x...b0

0x...c4

0x...c0

0x...e4

0x...e0

0x...b4

0x...b0

666

0x0

13

0x...c0

42

0x...e0

(b) Concrete memory mb �ml

νb ⊕ νl : N
M

�
b
�M

�
l
−→ V

(M	
b : α

a
0) → 0x...a0 (M	

b : βc
0) → 0x...b0

(M	
b : α

a
1) → 0x...a4 (M	

b : βc
1) → 0x...c0

(M	
b : α

a
2) → 0x...a8 (M	

b : βc
2) → 0x0

(M	
b : α

a
3) → 0x...a12 (M	

b : βc
3) → 0x...d0

(M	
b : α

a
4) → 0x...a16 (M	

b : βc
4) → 0x0

(M	
l : λ0) → 0x...b0 (M	

l : λ2) → 0x0

(M	
l : λ1) → 0x...c0 (M	

l : λ3) → 666
(c) Valuation νb ⊕ νl ∈ V

M
�
b
�M

�
l

Fig. 6. Combined memory abstract domain: (mb � ml, νb ⊕ νl) ∈ γ
M

�
b
�M

�
l
(m	

b,m
	
l , i

) as

(mb, νb) ∈ γ
M

�
b
(m	

b) (Fig. 3), (ml, νl) ∈ γ
M

�
l
(m	

l) (Fig. 4) and (νb, νl) ∈ γI�(i
)

At the combined abstract domain level, (M�
i : αi) denotes symbolic name αi of the

abstract sub-domain M�
i . To define the meaning of a combined abstract memory, we

give a concretization function γ
M

�
1�M

�
2
: M�

1 � M�
2 → P(M × V

M
�
1�M

�
2
) that derives

from concretization functions γ
M

�
i
: M�

i → P(M × V
M

�
i
) of the memory abstract sub-

domains. To achieve this, we define a valuation combinator⊕ : V
M

�
1
×V

M
�
2
→ V

M
�
1�M

�
2

that puts two valuations together, that is, (ν1 ⊕ ν2)(M
�
i : αi)

def
= νi(αi). Then, the

concretization of a combined abstract memory is given by

γ
M

�
1�M

�
2
(m�

1,m
�
2, i

�)
def
=

{
(m1 $m2, ν1 ⊕ ν2)

∀i ∈ {1, 2}. (mi, νi) ∈ γ
M

�
i
(m�

i)

∧ (ν1, ν2) ∈ γI�(i
�)

}

Example 3 (Separating combination of M�
b and M�

l). We now consider an instantiation
of the separating combination functor, with the bounded data structure domain M�

b (pre-
sented in Example 1) and the list-parameterized separating shape graph domain M�

l

(presented in Example 2). Fig. 6(a) presents a combined abstract memory (m�
b,m

�
l , i

�)
that combines abstract sub-memories already presented in Fig. 3(a) and Fig. 4(c) to-
gether with the abstract interface i� = {(βc

0, λ0), (β
c
1, λ1)}. We provide a pair (m, ν)

in Fig. 6(b) and Fig. 6(c) concretizing (m�
b,m

�
l , i

�) obtained by combining the concrete
pairs (mb, νb) and (ml, νl) presented in Fig. 3 and Fig. 4. Note that (νb, νl) ∈ γI�(i

�)
as νb(βc

0) = νl(λ0) = 0x...b0 and νb(β
c
1) = νl(λ1) = 0x...c0.

An Abstract Domain Combinator 293

4 Analysis Algorithms

We now discuss the inference of invariants in the combined domain. A memory ab-
stract domain M� provides for each concrete memory operation f : M → P(M), a
counterpart abstract transfer function f � : M� → M� that is sound (i.e. ∀(m, ν) ∈
γM�(m�). ∀m′ ∈ f(m). ∃ν′ ⊇ ν. (m′, ν′) ∈ (γM� ◦ f �)(m�)). Abstract transfer func-
tions may introduce new symbolic names but may not remove nor change the meaning
of existing symbolic names. Hence, a valuation ν′ in the concretization of the post-
condition must extend valuation ν that concretizes the pre-condition. Abstract inter-
preters also require lattice operations (e.g. inclusion checking, widening) to achieve
precise fixed point computations.

In a combined abstract domain, abstract transfer functions should distribute compu-
tations to the sub-memories and the abstract interface, using abstract transfer functions
provided by sub-domains. In this section, we detail this mechanism for abstract trans-
fer functions handling memory allocations (Section 4.1), assignments (Sections 4.2,
and 4.3), and for inclusion checking (Section 4.4).

4.1 Creation of Memory Cells

Creation of new memory cells occurs either when a block for a new variable is created
or when heap space is allocated at run time (e.g. malloc as at line 11 in Fig. 1). In a
memory abstract domain M�, this operation is handled by the abstract transfer function
newM� , which is the abstract counterpart of the concrete transfer function new : int×
M→ P(A×M) (defined in a standard way). Intuitively, newM� takes as input an integer
size s and an abstract memory m�

pre and returns a pair consisting of a symbolic name

α representing the address of the allocated block and an abstract memory m�
post where

the cell has been created. Therefore, it ensures that, if newM�(s,m�
pre) = (α,m�

post)

and (m, ν) ∈ γM�(m�
pre), then the following holds:

(a,m′) ∈ new(s,m)⇒ ∃ν′ ⊇ ν. (m′, ν′) ∈ γM�(m�
post) ∧ ν′(α) = a

Creation of Memory Cells in a Combined Domain. Because of the separation principle
(Section 3.2), a cell must be represented in exactly one sub-memory in a combined
abstract memory m� = (m�

1,m
�
2, i

�). Therefore, we provide two possible definitions
for new

M
�
1�M

�
2

deriving from two symmetric rules NEW1 and NEW2 . Intuitively, the
abstract transfer function defined by rule NEW1 (resp. NEW2) always represents new
cells using sub-domain M�

1 (resp. M�
2).

NEW1
new

M
�
1
(s,m�

1) = (α1,m
�
1,post)

new
M

�
1�M

�
2
(s, (m�

1,m
�
2, i

�)) = ((M�
1 : α1), (m

�
1,post,m

�
2, i

�))

While both choices are sound, some sub-domains are more suitable than others. For
instance, in M�

b�M�
l , it would be inappropriate to let the allocation of a cell expected to

be summarized as part of a list be done in M�
b, where summarization cannot be achieved.

294 A. Toubhans, B.-Y.E. Chang, and X. Rival

l (∈ LM�) ::= α (α ∈ NM�)
| l · f (l ∈ LM� ; f ∈ F)
| ∗r (r ∈ RM�)

r (∈ RM�) ::= l (l ∈ LM�)
| &l (l ∈ LM�)
| v (v ∈ V)

(a) Syntax of l-value and r-value expressions

LM��α�m	 = (α, 0)

LM��l�m
	 = (α, f)

LM��l · g�m	 = (α, f + g)

RM��r�m
	 = α+ f

LM��∗r�m	 = (α, f)

LM��l�m
	 = (α, f)

RM��l�m
	 = read M�(α, f, m

)

LM��l�m
	 = (α, f)

RM��&l�m	 = α+ f RM��v�m
	 = v

(b) Evaluation rules for l-value and r-value expressions

Fig. 7. Evaluations of l-values LM��l� : M	 → NM� ×F and r-valuesRM��r� : M	 → EM� only
rely on the reading operation read M� : NM� × F×M	 → EM�

If we consider the analysis of the memory allocation at line 11 in Fig. 1, the choice is
guided by C types: the created cell has type int which is not recursive, and thus it
will likely never require summarization. Therefore, the cell creation can be handled
by any sub-memories without any loss in precision. As sub-domain M�

b is more light-
weight than M�

l in terms of computational cost, it should abstract the new cell. Then,
invoking new

M
�
b�M

�
l

deriving from rule NEW1 to the combined memory of Fig. 6(a)

returns symbolic name (M�
b : α

a
5) and the following combined abstract memory:

m
�
b = αa

0
→ {0 : βc
0} ∗ αa

1
→ {0 : βc
1}

∗ αa
2
→ {0 : βc

2} ∗ αa
3
→ {0 : βc

3}
∗ αa

4
→ {0 : βc
4} ∗ αa

5
→ {0 : βc
5}

∧ &h = αa
0 ∧ . . .

λ0 λ1 λ2

λ3
m

�
l

λ2 = 0x0

next

data

list list

i� =

{(βc
0, λ0) , (β

c
1, λ1)}

While not being critical for soundness, such empirical hints are important to avoid either
a loss of precision or a slowdown in the analysis.

4.2 Evaluation of l-Value and r-Value Expressions

We consider the abstract transfer functions handling operations such as assignments
and tests. These operations involve l-values l ∈ LM� and r-values r ∈ RM� . Their
syntax (shown in Fig. 7(a)) includes classical forms of expressions encountered in a
C-like language (structure fields, dereferences, address of, etc.). In this section, we
define a mechanism for evaluating l-value and r-value expressions. More formally, the
evaluation of an l-value l in abstract memory m� returns a pair LM��l� m� = (α, f)
consisting of a symbolic name α and a field f such that α + f denotes the address
represented by l . Similarly, the evaluation of a r-value r returns an symbolic expression
RM��r� m� = e that denotes the value represented by r . A symbolic expression e ∈
EM� is either of the form α+ f (where α ∈ NM� and f ∈ F) or a concrete value v ∈ V.

Evaluation Algorithm. The computation of LM��.� and RM��.� proceeds by induction
over the expressions syntax as shown in Fig. 7(b), assuming a read operation read M� is
provided by memory abstract domain M�, so as to “extract” the contents of a cell at the
abstract level: partial function read M� inputs a symbolic name α representing the base

An Abstract Domain Combinator 295

address of a concrete block, a field f and an abstract memory state m�, and returns a
symbolic expression representing the contents of that field. It may also fail to identify
the cell and is then undefined (this may happen in a combined memory abstract domain
when reading a cell in the “wrong” sub-memory). In some memory abstract domains
(such as the separating shape graph domain presented in Example 2), read M� may need
to perform unfolding [4] and thus, return a finite set of disjuncts, however this issue is
orthogonal to the present development, so we leave it out here. Overall, it should satisfy
the following soundness condition:

(m, ν) ∈ γM�(m�) ∧ read M�(α, f,m�) = β + g =⇒ m(ν(α) + f) = ν(β) + g

(m, ν) ∈ γM�(m�) ∧ read M�(α, f,m�) = v =⇒ m(ν(α) + f) = v

Read Operation in the Combined Domain. To read a cell at address ((M�
1 : α1), f)

in a combined abstract memory (m�
1,m

�
2, i

�), the analysis first attempts to read cell at
address (α1, f) in m�

1. Therefore, the read operation derives from the following rule:

READDIRECT1
read

M
�
1
(α1, f,m

�
1) = β1 + g

read
M

�
1�M

�
2
((M�

1 : α1), f, (m
�
1,m

�
2, i

�)) = (M�
1 : β1) + g

It may turn out that the cell at address (M�
1 : α1) is abstracted in sub-memory m�

2 in
which case rule READDIRECT1 cannot be applied. In fact, by the separation princi-
ple (Section 3.2), a cell is represented in exactly one sub-memory. To cope with this
issue, the reading operation can retrieve the cell by looking for a symbolic name of sub-
domain M�

2 that is bound to α1 by the abstract interface. In such cases, the definition of
read

M
�
1�M

�
2

follows the rule:

READACROSS1
read

M
�
2
(α2, f,m

�
2) = β2 + g i� � α1 = α2

read
M

�
1�M

�
2
((M�

1 : α1), f, (m
�
1,m

�
2, i

�)) = (M�
2 : β2) + g

Example 4 (An evaluation across sub-memories). We consider the evaluation of the
right hand side e -> data of assignment at line 12 in Fig. 1 on the following combined
abstract memory that is computed by the analysis after assignment at line 11 (assign-
ment is treated in Section 4.3).

m
�
b = αa

0
→ {0 : βc
0} ∗ αa

1
→ {0 : βc
1}

∗ αa
2
→ {0 : βc

2} ∗ αa
3
→ {0 : βc

3}
∗ αa

4
→ {0 : βc
4} ∗ αa

5
→ {0 : βc
5}

∧ &e = αa
1 ∧ &x = αa

2 ∧ . . . ∧ βc
2 = αa

5

λ0 λ1 λ2

λ3
m

�
l

λ2 = 0x0

next

data

list list

i� =

{(βc
0, λ0) , (β

c
1, λ1)}

First, variable e is replaced by symbolic name (M�
b : αa

1) denoting its address and its
content is evaluated to (M�

b : β
c
1). Then, reading cell at address (M�

b : β
c
1) + data fails

in M�
b as the cell is actually abstracted in M�

l . Therefore, the reading operation retrieves
that cell at address (M�

l : λ1) + data, using the equality (βc
1, λ1) ∈ i�. Finally, the

evaluation ends up with symbolic r-value (M�
l : λ3).

296 A. Toubhans, B.-Y.E. Chang, and X. Rival

4.3 Abstract Transfer Function for Assignment

The analysis requires a set of abstract transfer functions handling operations such as
assignment and test that need to evaluate l-value and r-value expressions [5]. Among
those, the assignment is arguably the most sophisticated one, thus we describe only this
operation here. The classical analysis of assignment l = r shown in [5] proceeds as
follows: (1) the left hand side is evaluated to a pair LM��l�m� = (α, f) representing
the address of the cell that will be updated; (2) the right hand side is evaluated to a
symbolic expression RM��r�m� = e representing the written value; and (3) the cell
is updated in the abstract level, using the abstract cell write operation writeM� provided
by the memory abstract domain M�. Intuitively, writeM�(α, f, e,m�) returns an abstract
memory where the cell at address α+f has been updated to e. To state the soundness of
this operation, we extend a valuation ν to cope with symbolic expressions in a natural
way by defining ν(α + f)

def
= ν(α) + f and ν(v)

def
= v. Therefore, writeM� satisfies the

condition:

(m, ν) ∈ γM�(m) ⇒ ∃ν′ ⊇ ν. (m[ν(α) + f ← ν(e)], ν′) ∈ γM�(writeM�(α, f, e, m))

Cell Write Operation in a Combined Domain. A simple case occurs when left and
right hand sides are both evaluated in the same sub-memory, in which case the cell
write operation simply lifts computation to the corresponding sub-domain. However, a
trickier case occurs when l-value and r-value are evaluated to different sub-memories,
such as ((M�

1 : α1), f) and (M�
2 : β2) + g. In this case, the cell writing is performed in

m�
1 as the cell requiring update is abstracted there. However, to avoid losing precision,

the analysis needs a symbolic expression in m�
1 to relate the new content. Therefore,

two cases may be encountered:
– β2 is bound to a symbolic name β1 ∈ NM

�
1

by the abstract interface, in which case
write

M
�
1�M

�
2

is defined following the rule:

WRITEACROSS1
write

M
�
1
(α1, f, β1 + g,m�

1) = m�
1,post i� � β1 = β2

write
M

�
1�M

�
2
((M�

1 : α1), f, (M
�
2 : β2) + g, (m�

1,m
�
2, i

�)) = (m�
1,post,m

�
2, i

�)

– β2 is not bound in the abstract interface, in which case a fresh variable β1 is used
to account for it in m�

1. Then write
M

�
1�M

�
2

is defined following the rule:

WRITEACROSSWEAK1
write

M
�
1
(α1, f, β1 + g,m�

1) = m�
1,post β1 fresh in m�

1

write
M

�
1�M

�
2
((M�

1 : α1), f, (M
�
2 : β2) + g, (m�

1,m
�
2, i

�)) = (m�
1,post,m

�
2, i

� ∪ {(β1, β2)})

Example 5 (Assignment across sub-memories). We consider the computation of the
post-condition of assignment ∗x = e -> data at line 12 in Fig. 1, from the pre-
condition shown in Example 4. The left and right hand sides are respectively evaluated
to ((M�

b : αa
5), 0) and (M�

l : λ3) (as shown in Example 4). Moreover, there is no sym-
bolic name in m�

b bound to λ3 in m�
l by the abstract interface. Therefore, write

M
�
b�M

�
l

derives from rule WRITEACROSSWEAK1, and produces the following post-condition:

An Abstract Domain Combinator 297

m
�
b = αa

0
→ {0 : βc
0} ∗ αa

1
→ {0 : βc
1}

∗ αa
2
→ {0 : βc

2} ∗ αa
3
→ {0 : βc

3}
∗ αa

4
→ {0 : βc
4} ∗ αa

5
→ {0 : γc}
∧ &x = αa

2 ∧ . . . ∧ βc
2 = αa

5

λ0 λ1 λ2

λ3
m

�
l

λ2 = 0x0

next

data

list list

i� =

{(βc
0, λ0) , (β

c
1, λ1)

(γc, λ3)}

4.4 Inclusion Checking

Fix-point computations [6] require widening and inclusion checking operators. In this
section, we only detail the algorithm for inclusion checking as the widening algorithm
is similar [5]. At a memory abstract domain M� level, the inclusion checking relies
on the abstract comparison operator compare

M� that inputs two abstract memories m�
l

and m�
r and returns a mapping Φ when it successfully establishes the abstract inclusion

m�
l (m�

r. Intuitively, the returned mapping relates symbolic names in m�
r to symbolic

names in m�
l that valuations should map to the same value for the inclusion to hold.

More formally, the soundness condition states the following:

compare
M�(m

�
l ,m

�
r) = Φ ∧ (m, ν) ∈ γM�(m�

l) =⇒ (m, ν ◦ Φ) ∈ γM�(m�
r)

Inclusion Checking in a Combined Domain. To compare the two combined abstract
memories m�

l = (m�
1,l,m

�
2,l, i

�
l) and m�

r = (m�
1,r,m

�
2,r, i

�
r), the analysis first invokes

the abstract comparisons of the sub-domains respectively on (m�
1,l,m

�
1,r) and

(m�
2,l,m

�
2,r). When both succeed and thus return Φ1 and Φ2, the analysis checks the in-

clusion of the abstract interfaces by: i�l (
Φ2

Φ1
i�r ⇐⇒ ∀(α1, α2) ∈ i�r. i�l � Φ1(α1) =

Φ2(α2). Therefore, the abstract comparison operator is defined by the following rule:

INCL

compare
M

�
1
(m�

1,l,m
�
1,r) = Φ1 compare

M
�
2
(m�

2,l,m
�
2,r) = Φ2 i�l (

Φ2

Φ1
i�r

compare
M

�
1�M

�
2
((m�

1,l,m
�
2,l, i

�
l), (m

�
1,r,m

�
2,r, i

�
r)) = Φ1 ⊕ Φ2

Refinement Using Initial Mappings. While sound, such a definition could lead to a loss
of precision. For some memory abstract domains (such as the separating shape graphs
domain), the abstract comparison operator internally initializes a mapping between sym-
bolic names representing addresses of the same program variable (that valuations should
clearly map to the same value). However, in a combined domain, a sub-memory with no
such symbolic names is plausible (e.g. consider m�

l in the combined abstract memory of
Fig. 6(a)), and the sub-domain abstract comparison will therefore likely fail to establish
the inclusion. To cope with that issue, the analysis provides an initial mapping as hint
to the unsuccessful abstract comparison, that derives from the relationship inferred by
the successful abstract comparison. More precisely, if compare

M
�
1

succeeds and returns

Φ1, the initial mapping defined by Φinit
2 (β2,r) = β2,l ⇔ ∃β1,r ∈ NM

�
1
. i�r � β1,r =

β2,r ∧ i�l � Φ1(β1,r) = β2,l can be passed as optional argument to compare
M

�
2
.

298 A. Toubhans, B.-Y.E. Chang, and X. Rival

Filename MAD #P ∨ t(s) % tCF(s) tSD(s) #R #RA
insert_remove.c I<list> 3 2.09 0.248 basis - 0.174 230 -

(158 LOC) B � I<list> 3 2.09 0.151 60 0.035 0.055 230 16
balancing.c I<tree> 3 2.56 0.501 basis - 0.376 314 -
(188 LOC) B � I<tree> 3 2.56 0.323 64 0.068 0.125 314 72

search_list_tree.c I<list,tree> 5 3.40 0.330 basis - 0.286 172 -
(138 LOC) I<list> � I<tree> 5 3.40 0.364 110 0.031 0.292 172 48

B � I<list,tree> 5 3.40 0.194 59 0.035 0.098 172 70
B � I<list> � I<tree> 5 3.40 0.231 70 0.071 0.113 172 70

Fig. 8. Analysis results (measured on a 2.2 Ghz Intel Core i7 with 8 GB of RAM): MAD is
the memory abstract domain used (B stands for the bounded data structure domain, I<.> stands
for the separating shape graphs domain instantiated with inductive definitions that are either list
or tree, � stands for separating combination of domains), #P is the number of properties proven
by the analysis, ∨ is average number of disjuncts at each program point, t is the total analysis
time in seconds,% is the time of analysis compared to analysis using a monolithic domain, tCF
(resp. tSD) is the time of analysis spent in the combination functor (resp. sub-domains), #R is the
number of read operation calls and #RA is the number of read operations crossing sub-memories

5 Implementation and Empirical Evaluation

We test empirically the precision and efficiency of the combined analysis compared to a
monolithic one and describe the results here. The separating combination described in
this paper is implemented in the MemCAD analyzer1. The analysis is fully automatic.
It takes as input C code and the desired structure of the memory abstract domain. The
two analysis variants were applied to a set of over 15 micro-benchmarks, similar to the
code fragment in Fig. 1. We verify memory safety properties, such as the absence of
null pointer dereferences, as well as structural assertions (annotated in the code). In
Fig. 8, we report on some representative analysis results relevant to questions in this
paper. The C programs considered consist of data structure-manipulation routines (e.g.
insertion, deletion, search) for lists and trees either called sequentially or interleaved.
They can all be analyzed using a monolithic domain.

First, we note that importantly the combined analyses retain the same level of preci-
sion as the monolithic analyses in terms of the number of properties that can be proven
(column #P). For each program, the number of properties proven on the first line (mono-
lithic) is the same as the number proven on the subsequent lines (various combinations).
The key part of the combined analysis is the interface between sub-memories. Its neces-
sity is demonstrated by the ratio of read operations that cross the sub-memories in the
combined analyses (column #RA over #R).

Next, we consider the relative efficiency of the various memory abstract domain
combinations with respect to the monolithic version. Regardless of configuration, the
MemCAD analyzer computes for each program point, a finite disjunction of abstract
memories. We first observe that the use of a combined domain does not introduce an
extra combinatorial factor as the number of disjuncts is the same for the monolithic
and the combined analyses (column ∨). To probe into the overhead of our combination
functor, we considered in search_list_tree.c decomposing the memory abstract domain
into list- and tree-specific regions (I<list> � I<tree>). In this case, the list and tree

1 http://www.di.ens.fr/~rival/memcad.html

http://www.di.ens.fr/~rival/memcad.html

An Abstract Domain Combinator 299

domains are instantiations of the same generic, parametric separating shape graph do-
main. Thus, this instantiation pays for the overhead of the separating combination with-
out the benefit of an optimized sub-domain. We observe that there is an overhead, but it
seems acceptable given that the separating combination offers the possibility of replac-
ing the sub-domains with specialized and optimized versions (a ratio of 110%-120% in
the two instances shown here).

The win with our separating combination functor comes from applying it with an
optimized sub-domain. In the variants with B � · · · , we use a bounded data structure
domain to efficiently manage the bounded part of the memory (e.g. the top activation
record in the call stack). This sub-domain is implemented efficiently knowing that
it only needs to abstract bounded data structures. From Fig. 8, we see that separat-
ing out the bounded part of memory into a more efficient specialized domain is highly
effective—noticeably decreasing the overall analysis times despite the overhead of com-
bination (a ratio of around 60% in all cases).

6 Related Work

The first important abstract domain combination operation to be introduced is the re-
duced product [7], which has enabled constructing very expressive abstract domains
from simpler ones. Intuitively, a property is decomposed into a conjunction of (possi-
bly radically different) basic properties. This construction was applied to a wide range
of analyzers, including ASTRÉE [3], where a large set of numerical abstract domains
exchange information over a chain of reduced products [8]. The benefit of reduced
product is even greater for libraries of abstractions with a common interface such as
APRON [13]. It was also used to describe the Nelson-Oppen procedure [9].

Our contribution seeks to simplify abstract domain construction, while allowing
greater expressiveness. It exploits separation [17], albeit in a different way than the
numerous shape analyses that exploit it in the definition of their summarization predi-
cates [10,2,4]. In these analyses, separation permits (hopefully all) updates to be han-
dled as strong updates, which is crucial for both precision and efficiency. Our analysis
exploits separation so as to combine independent memory abstract domains, so as to
achieve at least the same precision and better efficiency by delegating the abstraction
of particular data structures to the most appropriate sub-domains. Note that the sub-
domains may (and in all the examples shown in this paper, do) also make use of separa-
tion as the aforementioned analyses. In [23], separation was used to represent distinct
heap regions using heterogeneous abstractions, yet this work relies on code specifica-
tions transformed into sub-problems handled by different abstractions, and proceeds by
verification, although our combinator allows inference of invariants.

Other combinations of abstractions have been proposed so as to enhance memory
analyses. In particular, [14] presents an approach that uses classical conjunction to-
gether with zone variables to relate corresponding regions. Moreover, [11] combines
formulae by distinguishing per-field and per-object separating conjunctions. In [15],
sets of sub-graphs are used to represent properties about non-correlated data structures
and to realize a gain in performance. These analyses are based on problem specific de-
compositions while our domain combinator is generic, in the sense that it does not make
any assumptions on the way the memory properties are represented in the sub-domains.

300 A. Toubhans, B.-Y.E. Chang, and X. Rival

In previous work [22], we proposed a reduced product for memory abstractions as
a generic abstract domain combinator. This combinator does not rely on separation
and provides a different form of separation of concerns than our separating combinator:
in [22], sub-domains express a collection of properties of the same structure whereas
the separating conjunction operator combines domains representing distinct structures.
Moreover, we introduced a hierarchical memory abstraction to abstract structures al-
located inside other structures [21]; in that work the whole memory is abstracted in
the main domain, and a sub-domain describes nested structures. These combinators
are implemented as ML functors in the MemCAD analyzer and can be used together
(although assessing such compositions is beyond the scope of this paper).

7 Conclusion

In this paper, we introduced a combinator for separately conjoining memory abstract
domains, enabling composite analyses that are precise, efficient, and flexible. Our
proposal enables a separation of concerns when designing static analyses that need to
deal with complex data structures, as very different domains can be combined to ab-
stract disjoint memory regions. A natural extension of our study would be to integrate
other memory abstractions, as found in 3-valued logic shape analyses [19,1,12], into
our framework.

References

1. Arnold, G., Manevich, R., Sagiv, M., Shaham, R.: Combining shape analyses by intersecting
abstractions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
33–48. Springer, Heidelberg (2006)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.:
Shape analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: Programming Languages Design
and Implementation, PLDI (2003)

4. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: Principles of Program-
ming Languages, POPL (2008)

5. Chang, B.-Y.E., Rival, X.: Modular construction of shape-numeric analyzers. In: SAIRP
(2013)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Principles of Programming
Languages, POPL (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Principles of
Programming Languages, POPL (1979)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Com-
bination of abstractions in the astrée static analyzer. In: Okada, M., Satoh, I. (eds.) ASIAN
2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg (2008)

9. Cousot, P., Cousot, R., Mauborgne, L.: The reduced product of abstract domains and the com-
bination of decision procedures. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604,
pp. 456–472. Springer, Heidelberg (2011)

An Abstract Domain Combinator 301

10. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer,
Heidelberg (2006)

11. Drăgoi, C., Enea, C., Sighireanu, M.: Local shape analysis for overlaid data structures. In:
Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 150–171. Springer,
Heidelberg (2013)

12. Ferrara, P., Fuchs, R., Juhasz, U.: TVLA+: TVLA and value analyses together. In:
Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp.
63–77. Springer, Heidelberg (2012)

13. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

14. Lee, O., Yang, H., Petersen, R.: Program analysis for overlaid data structures. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 592–608. Springer, Heidelberg
(2011)

15. Manevich, R., Berdine, J., Cook, B., Ramalingam, G., Sagiv, M.: Shape analysis by graph
decomposition. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 3–18.
Springer, Heidelberg (2007)

16. Miné, A.: Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In: Languages, Compilers, and Tools for Embedded Systems, LCTES
(2006)

17. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Symposium
on Logic in Computer Science, LICS (2002)

18. Rival, X., Chang, B.-Y.E.: Calling context abstraction with shapes. In: Principles of Pro-
gramming Languages, POPL (2011)

19. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: Principles
of Programming Languages, POPL (1999)

20. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans-
actions on Programming Languages And Systems, TOPLAS (2002)

21. Sotin, P., Rival, X.: Hierarchical shape abstraction of dynamic structures in static blocks.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 131–147. Springer,
Heidelberg (2012)

22. Toubhans, A., Chang, B.-Y.E., Rival, X.: Reduced product combination of abstract do-
mains for shapes. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 375–395. Springer, Heidelberg (2013)

23. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and heterogeneous
asbtractions. In: Programming Languages Design and Implementation, PLDI (2004)

A Decision Tree Abstract Domain
for Proving Conditional Termination�

Caterina Urban and Antoine Miné

ÉNS & CNRS & INRIA, France
{urban,mine}@di.ens.fr

Abstract. We present a new parameterized abstract domain able to refine exist-
ing numerical abstract domains with finite disjunctions. The elements of the ab-
stract domain are decision trees where the decision nodes are labeled with linear
constraints, and the leaf nodes belong to a numerical abstract domain.

The abstract domain is parametric in the choice between the expressivity and
the cost of the linear constraints for the decision nodes (e.g., polyhedral or oc-
tagonal constraints), and the choice of the abstract domain for the leaf nodes. We
describe an instance of this domain based on piecewise-defined ranking functions
for the automatic inference of sufficient preconditions for program termination.

We have implemented a static analyzer for proving conditional termination of
programs written in (a subset of) C and, using experimental evidence, we show
that it performs well on a wide variety of benchmarks, it is competitive with the
state of the art and is able to analyze programs that are out of the reach of existing
methods.

1 Introduction

Numerical abstract domains are widely used in static program analysis and verification
to maintain information about the set of possible values of the program variables along
with the possible numerical relationships between them. The most common abstract
domains — intervals [10], octagons [27] and convex polyhedra [14] — maintain this
information using convex sets consisting of conjunctions of linear constraints. The con-
vexity of these abstract domains makes the analysis scalable. On the other hand, it might
lead to too harsh approximations and imprecisions in the analysis, ultimately yielding
false alarms and a failure of the analyzer to prove the desired program property.

The key for an adequate cost versus precision trade-off is the handling of disjunctions
arising during the analysis (e.g., from program tests and loops). In practice, numerical
abstract domains are usually refined by adding weak forms of disjunctions to increase
the expressivity while minimizing the cost of the analysis [13,18,20,29, etc.].

In this paper, we propose a novel parameterized abstract domain for the disjunctive
refinement of numerical abstract domains which is particularly well-suited for proving
conditional termination of imperative programs.

� The research leading to these results has received funding from the ARTEMIS Joint Undertak-
ing under grant agreement no. 269335 (ARTEMIS project MBAT) (see Article II.9. of the JU
Grant Agreement)

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 302–318, 2014.
c© Springer International Publishing Switzerland 2014

A Decision Tree Abstract Domain 303

The elements of the abstract domain are inspired by the space partitioning trees [16]
developed in the context of 3D computer graphics and the use of decision trees in pro-
gram analysis and verification [3,23]: they are decision trees where the decision nodes
are labeled with linear constraints, and the leaf nodes belong to a numerical abstract
domain. These decision trees recursively partition the space of possible values of the
program variables inducing disjunctions into the numerical abstract domain.

The partitioning is dynamic: during the analysis, partitions (respectively, decision
nodes and constraints) are split (respectively, added) by tests, modified by assignments
and joined (respectively, removed) when merging control flows. In order to minimize
the cost of the analysis, a widening limits the height of the decision trees and the number
of maintained disjunctions.

We also emphasize that the partitioning is semantic-based rather than syntactic-
based: the linear constraints labeling the decision nodes are automatically inferred by
the analysis and do not necessarily appear in the program.

The abstract domain is parametric in the choice between the expressivity and the
cost of the linear constraints for the decision nodes (e.g., polyhedral or octagonal con-
straints), and the choice of the numerical abstract domain for the leaf nodes. As a result
of its adaptability, the abstract domain is well-suited to be used for the inference of
different program properties, from program invariants to ranking functions.

int f (int x, int y, int r) {
while 1(r > 0) {

2r = r + x;
3r = r − y;

}4

return 0;

}

Fig. 1. Simple C function. It terminates
if x < y.

In the following, we describe an instance of this
domain based on piecewise-defined ranking func-
tions [30,31] for the inference of sufficient precon-
ditions for program termination.

Through this instance we propose an approach
to termination analysis of imperative programs
which is modular, i.e., which allows reasoning on
a portion of the code (e.g., a function) at a time
— without any knowledge about the complete pro-
gram — and reusing the analysis result whenever
the same function is called.

To illustrate the potential of our approach, let
us consider the simple C function in Figure 1: at
each loop iteration, the value of r is increased by

the value of x and decreased by the value of y. Our abstract domain, parameterized
by polyhedral constraints at the decision nodes and affine ranking functions at the leaf
nodes and using a widening with thresholds, is able to automatically infer that the pro-
gram terminates in at most r loop iterations (i.e., in at most 3r + 1 program steps) if
x < y (the constraint x < y not appearing in the program).

Our Contribution. In summary, in this paper we make several contributions. First, we
propose a parameterized abstract domain for the disjunctive refinement of numerical ab-
stract domains. We show its adaptability to different abstractions, focusing in particular
on piecewise-defined ranking functions for proving program conditional termination.
Second, we thoroughly discuss the widening operator for ranking functions, which is
non trivial and of independent interest. Finally, we evaluate our approach for termina-
tion against state-of-the-art implementations [5,19,22].

304 C. Urban and A. Miné

2 Termination Semantics

We consider a programming language with non-deterministic statements. The opera-
tional semantics of a program is described by a transition system 〈Σ, τ〉, where Σ is
the set of program states and the program transition relation τ ⊆ Σ × Σ describes the
possible transitions between states during program execution. Let βτ
 {s ∈ Σ | ∀s′ ∈
Σ : 〈s, s′〉 �∈ τ} denote the set of final states.

The Floyd/Turing traditional method for proving program termination [15] consists
in inferring ranking functions, namely mappings from program states to elements of a
well-ordered set (e.g., 〈O, <〉, the well-ordered set of ordinals) whose value decreases
during program execution.

Intuitively, we can define a ranking function from the states of a program to ordinal
numbers in an incremental way: starting from the program final states and retracing the
program backwards while counting the maximum number of performed program steps
as value of the function. In [12], this intuition is formalized into a most precise ranking
function1 w ∈ Σ ⇀ O that can be expressed as the least fixpoint of the operator φ
starting from the totally undefined function ∅̇:

w
 lfp�
∅̇
φ

φ(v)
 λs.

⎧⎪⎨⎪⎩
0 if s ∈ βτ

sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} if s ∈ p̃re(dom(v))

undefined otherwise

where v1 � v2
 dom(v1) ⊆ dom(v2) ∧ ∀x ∈ dom(v1) : v1(x) ≤ v2(x) and
p̃re(X)
 {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}. The domain dom(w) of w is
the set of states definitely leading to program termination: any trace starting in a state
s ∈ dom(w) must terminate in at most w(s) execution steps, while at least one trace
starting in a state s �∈ dom(w) does not terminate.

The most precise ranking function w is sound and complete to prove program ter-
mination (see [12]). However, it is usually not computable. In [30,31], we present de-
cidable abstractions of w by means of piecewise-defined ranking functions over natural
numbers [30] and ordinals [31]. The abstractions refer to the following approximation
order (see [11] for further discussion on approximation and computational orders of an
abstract domain):

v1 (v2
 dom(v1) ⊇ dom(v2) ∧ ∀x ∈ dom(v2) : v1(x) ≤ v2(x).

They compute an over-approximation of the value of the function w and an under-
approximation of its domain of definition dom(w). In this way, an abstraction provides
sufficient preconditions for program termination: if the abstraction is defined on a pro-
gram state, then all program execution traces branching from that state are terminating.

1 A ⇀ B is the set of partial maps from a set A to a set B.

A Decision Tree Abstract Domain 305

3 Piecewise-Defined Ranking Functions

We derive new decidable abstractions of w by introducing the abstract domain of
constraint-based decision trees T and combining it with the piecewise-defined ranking
functions abstractions from [30,31].

Let X = {x1, . . . , xn} be a finite and totally ordered set of program variables with
value in Z. We split the program state space Σ into program control points P and
environments E
 X → Z, which map each program variable to its integer value at a
given program control point. No approximation is made on P . On the other hand, each
program control point p ∈ P is associated with an element t ∈ T of the abstract domain
T. Specifically, t represents an abstraction of the function v ∈ E ⇀ O defined on the
environments related to the program control point p:

〈E ⇀ O,(〉 γT←− 〈T ,(T〉.

(we postpone the formal definition of γT to Section 3.2).
We assume we are given as parameter a (possibly infinite) set L of linear constraints

over X (e.g., interval [10], octagonal [27] or polyhedral [14] constraints). We also as-
sume we are given an abstraction of partial functions from environments to ordinals by
means of a numerical abstract domain for functions F
 〈F ,(F〉 [30,31], equipped
with a bottom element⊥F representing the totally undefined function ∅̇.

r > 0

x ≥ y x ≥ y

⟘F 3r + 1 1 1

Fig. 2. Example of constraint-based de-
cision tree abstracting a function. The
leaves of the tree represent the value
of the function for the satisfied con-
straints on the variables.

The elements of the abstract domain T are dis-
junctive refinements of those of F (i.e., piecewise-
defined functions) in the form of constraint-based
decision trees, i.e., decision trees where the deci-
sion nodes are labeled by linear constraints in L,
and the leaf nodes belong to F . As an example,
in Figure 2, the constraint-based decision tree rep-
resents the piecewise-defined partial ranking func-
tion of the program in Figure 1:

f(x, y, r) =

⎧⎪⎨⎪⎩
1 r ≤ 0

3r + 1 r > 0 ∧ x < y

undefined r > 0 ∧ x ≥ y

In the following, we first dive into some more details on the functions abstract do-
main. Then, we give a more formal presentation of our constraint-based decision trees
and all abstract operators, including widening to ensure convergence.

3.1 Functions Abstract Domain

The functions abstract domain F abstracts a partial ranking function v ∈ E ⇀ O from
environments to ordinals by an element f ∈ F which is a function of the program
variables, or the element ⊥F representing potential non-termination, or the element �F

representing the lack of enough information to conclude. In the following, the leaf nodes

306 C. Urban and A. Miné

belonging to F \ {⊥F,�F} and {⊥F,�F} will be referred to as defined and undefined
leaf nodes, respectively.

In order to under-approximate the domain of definition of the most precise ranking
function, the concretization function γF maps all undefined leaf nodes to the totally
undefined function ∅̇:

γF(⊥F) = γF(�F) = ∅̇
In fact, the computational and approximation ordering of the abstract domain respec-
tively do and do not distinguish between ⊥F and �F. In particular, the element �F

is produced and used only by the widening operator discussed in the upcoming Sec-
tion 3.3.

In [30], we considered instances of the abstract domain F based on affine functions
f(x1, . . . , xn) = m1x1 + · · ·+mnxn + q, where m1, . . . ,mn, q are constants. In [31]
we extended the abstraction to functions over ordinals.

Remark 1. In this paper, we are mainly focusing on instances of T for program termi-
nation. However, we emphasize that T is also well-suited to be instantiated with other
numerical abstract domains. In fact, analogously to [20], we can have F
 {0,1}
and interpret the abstract domain T as the disjunctive refinement of numerical abstract
domains such as intervals [10], octagons [27] and convex polyhedra [14].

We assume that the abstract domain F is equipped with sound binary operators for ap-
proximation ordering(F, join �F and widening �F, as well as sound transfer functions
for assignments ASSIGNF and tests FILTERF. We refer to [30,31] for examples.

3.2 Constraint-Based Decision Trees

The decision tree abstract domain T is parametric in the choice of the abstract domain F
and the set of linear constraints L ⊆ {k1x1 + · · ·+ knxn ≤ kn+1 | k1, . . . , kn, kn+1 ∈
Z}. As for boolean decision trees where an ordering is imposed on all decision variables,
let <L∈ L×L be a total order on L. As an example, we can define <L to be the lexico-
graphic order on the coefficients k1, . . . , kn and constant kn+1 of the linear constraints.

An element t of the abstract domain T belongs to a set T and is either a leaf node
LEAF : f , with f an element of F , or a decision node NODE{c} : t1; t2, such that c is a
linear constraint in L (in the following denoted by t.c) and the left subtree t1 and the
right subtree t2 (in the following denoted by t.l and t.r, respectively) belong to T . In
particular, given a decision tree NODE{c} : t1; t2, the linear constraint c is always the
smallest constraint appearing in the tree, and the left and right subtrees t1 and t2 are
either both leaf nodes or both decision nodes labeled with the same linear constraint c′

(such that c <L c′), i.e., two decision nodes at the same height in the decision tree are
always labeled with the same linear constraint. In order to ensure a canonical represen-
tation, we also avoid a constraint c and its negation ¬c simultaneously appearing in a
constraint-based decision tree (e.g., by keeping only the largest constraint with respect
to <L between c and ¬c).

Remark 2. The choice of maintaining the same constraints at the same height in the
decision trees is important for the design of the widening operator as explained in the
following Section 3.3.

A Decision Tree Abstract Domain 307

Algorithm 1. Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ∧ ISLEAF(t2) then
3: return (t1, t2)
4: else if ISLEAF(t1) ∨ (ISNODE(t1) ∧ ISNODE(t2) ∧ t2.c <L t1.c) then
5: (l1, l2)← UNIFICATION(t1, t2.l)
6: (r1, r2)← UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) ∨ (ISNODE(t1) ∧ ISNODE(t2) ∧ t1.c <L t2.c) then
9: (l1, l2)← UNIFICATION(t1.l, t2)

10: (r1, r2)← UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else
13: (l1, l2)← UNIFICATION(t1.l, t2.l)
14: (r2, r2)← UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

A constraint-based decision tree t ∈ T , recursively partitions the space of values of
the program variables inducing disjunctions into the abstract domain F. Moreover, since
two decision nodes at the same height in the decision tree are always labeled with the
same linear constraint, they induce the same partition on their left and right subtrees.

Concretization Function. The concretization function γT depends on the concretiza-
tion function γF of the abstract domain F and produces a (partial) ranking function:

γT(LEAF : f) = γF(f)

γT(NODE{c} : t1; t2) = γT(t1)|c ∪̇ γT(t2)|¬c

where v|c is the partial ranking function v ∈ E ⇀ O whose domain dom(v) is re-
stricted to the environments satisfying the constraint c and ∪̇ joins partial functions
with disjoint domains: (f1∪̇f2)(x)
 f1(x), if x ∈ dom(f1), and (f1∪̇f2)(x)
 f2(x),
if x ∈ dom(f2), where dom(f1) ∩ dom(f2) = ∅.

Ordering, Join. The binary operators for the approximation ordering (T and join �T

of constraint-based decision trees rely on Algorithm 1 for tree unification. Given two
decision trees t1 ∈ T and t2 ∈ T , the tree unification algorithm finds a common refine-
ment for the trees, possibly adding decision nodes (cf. Lines 5-7 and Lines 9-11). Note
that the tree unification does not loose any information. Then, the binary operations are
carried out “leaf-wise” on the unified constraint-based decision trees.

Ordering. Given two unified constraint-based decision trees, their approximation order-
ing is decided by the approximation ordering(F of the abstract domain F:

(LEAF : f1) (T (LEAF : f2) = f1 (F f2

(NODE{c} : l1; r1) (T (NODE{c} : l2; r2) = (l1 (T l2) ∧ (r1 (T r2)

308 C. Urban and A. Miné

Algorithm 2. Tree Augment
1: function AUGMENT(t,C)
2: if ISEMPTY(C) then return t
3: else
4: c← min<LC /∗ c is the smallest constraint appearing in C ∗/
5: return (NODE{c} : AUGMENT(t, C \ {c}); AUGMENT(t,C \ {c}))

Algorithm 3. Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /∗ t
 LEAF : f ∗/
3: else
4: C ← ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) �T ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else
8: l ← AUGMENT(ASSIGN(t.l, x := a), C)
9: r ← AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

Join. Similarly, given two unified constraint-based decision trees, their join is built
using the join operator �F of the abstract domain F:

(LEAF : f1) �T (LEAF : f2) = LEAF : (f1 �F f2)

(NODE{c} : l1; r1) �T (NODE{c} : l2; r2) = NODE{c} : (l1 �T l2); (r1 �T r2)

Assignments, Tests. The transfer functions for assignments ASSIGNT and tests FILTERT

add, modify or delete decision nodes of a constraint-based decision tree. In particular,
both operators rely on Algorithm 2 for the extension of a constraint-based decision tree
t ∈ T with decision nodes built from linear constraints in C ⊆ L.

Assignments. We recall that the most precise ranking functionw defined in Section 2 is a
backward semantics. Consequently, we consider backward assignments to a constraint-
based decision tree. The transfer function ASSIGNT is described by Algorithm 3. An
assignment x := a to a tree t ∈ T is carried out independently on each constraint c ∈ L
appearing in t (cf. Line 4): given a constraint c, the primitive ASSIGNL substitutes the
expression a for the variable x within the constraint c. Since the modified constraint
may not be representable exactly in L, ASSIGNL produces a set of constraints C ⊆ L
approximating it. For instance, non-linear assignments can be modeled using standard
linearization techniques [3]. In case C is empty, it means that the constraint c does
not exist anymore and the subtrees of t should be joined (cf. Line 5). In case C is an
unsatisfiable set of constraints, it means that c is no longer satisfiable and we should
keep only the right subtree of t (cf. Line 6). Otherwise, C is a set of constraints that
should be substituted to c in t (cf. Lines 8-10). Finally, an assignment to a leaf node is
carried out by the operator ASSIGNF of the abstract domain F (cf. Line 2).

A Decision Tree Abstract Domain 309

Algorithm 4. Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /∗ t
 LEAF : f ∗/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C ← FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

Remark 3. Note that Algorithm 3 is general enough to also handle forward assignments,
in case the abstract domain T is instantiated with other numerical abstract domains
as mentioned in Remark 1. In fact, it is sufficient to modify the primitive ASSIGNL

accordingly in order to handle forward assignments.

Example 1. Let us consider the constraint-based decision tree NODE{x − y ≤ 0} :
(NODE{y ≤ 0} : α;β); (NODE{y ≤ 0} : γ; δ), where greek letters denote leaf nodes. The
forward non-invertible assignment y = 3, modifies the constraint x − y ≤ 0 to x ≤ 3
and removes the constraint y ≤ 0 which is no longer satisfiable: NODE{x ≤ 3} : β; δ.
Instead, the backward non-deterministic assignment y = ? removes y from any con-
straint appearing in the tree, enforcing the join of the leaf nodes α and β and the leaf
nodes γ and δ: NODE{x ≤ 0} : (α �T β); (γ �T δ). ��

Tests. The transfer function FILTERT for test statements is described by Algorithm 4.
First, a test statement c is handled independently on each leaf node (cf. Line 2). The
primitive FILTERL approximates c producing a set of constraints C ⊆ L (cf. Line 5).
Then, the constraint-based decision tree t ∈ T is augmented with C (cf. Line 6).

Note that, following an assignment or a test, the decision trees must be sorted and
normalized in order to remove possible multiple occurrences of a constraint c and pos-
sible occurrences of both a constraint c and its negation ¬c (e.g., by keeping only the
largest constraint with respect to <L between c and ¬c): for example, NODE{y ≤ 1} :
(NODE{y ≤ 0} : α;β); (NODE{y ≤ 0} : γ; δ) is sorted as NODE{y ≤ 0} : (NODE{y ≤ 1} :
α; γ); (NODE{y ≤ 1} : β; δ) and NODE{−y ≤ −1} : (NODE{y ≤ 0} : α;β); (NODE{y ≤
0} : γ; δ) is normalized as NODE{y ≤ 0} : γ;β.

The soundness of all the abstract operators of T follows immediately from the sound-
ness of the corresponding abstract operators of F.

3.3 Widening

The widening operator �T requires a more thorough discussion. The widening is al-
lowed more freedom than the other operators, in the sense that it is temporary allowed to
under-approximate the value of the most precise ranking function or over-approximate
its domain of definition, or both — in contrast with the approximation order (. This is
necessary in order to extrapolate a ranking function over the program states on which

310 C. Urban and A. Miné

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Fig. 3. Example of unsound abstraction (b) of a most precise ranking function (a)

it is not yet defined. This is possible because the only requirement of a static analysis
is that, when the iteration sequence with widening is stable for the computational order,
its limit is a sound abstraction of the program semantics of interest with respect to the
approximation order. For this reason, the widening �T consists of many steps that need
to be performed in order to guarantee the soundness of the analysis with respect to the
most precise ranking function w. In the following, we will go through these steps and
we will discuss them in some detail.

As running example, let us consider Figure 3. In Figure 3a we depict a transition sys-
tem and the value of the most precise ranking function for the well-founded part of the
transition relation. In Figure 3b we represent the concretization of a possible abstract
analysis iterate. In this case the abstraction both under-approximates the value of the
most precise ranking function (on the second state from the left — case B) and over-
approximates its domain of definition (including the first and the last state from the left
— case A and C, respectively). In case A, the loop causing non-termination is outside
the domain of definition of the (unsound) abstract function, while in case C the loop
is inside.

Step 1: Check for Case A. The first step that the widening operator �T has to do
is to check for cases like case A, where the domain of definition of the most precise
ranking function has been over-approximated including a program state from which a
non-terminating loop is reachable. In cases like case A, at the next iteration due to the
soundness of all the other abstract operators (cf. Section 3.2) the value of the abstract
function will become ⊥F. In order to handle such situations, the widening �T has to
look for leaf nodes whose value is now ⊥F and that previously belonged to a defined
subtree (i.e., a subtree with only defined leaf nodes). Then, it has to substitute their
value with �F in order to prevent successive iterates from mistakenly including again
the same program states into the abstract function.

Step 2: Domain Widening - Tree Left Unification. At this point, the widening opera-
tor �T calls Algorithm 5 for tree unification. Algorithm 5 is a slight modification of
Algorithm 1: given two constraint-based decision trees2 the left unification algorithm
enforces the refinement of the first tree on the second, possibly removing decision nodes

2 Algorithm 5 requires the constraints appearing in the first tree to be a subset of those appearing
in the second, which can always be ensured by computing t1�T(t1 �T t2) instead of t1�Tt2.

A Decision Tree Abstract Domain 311

Algorithm 5. Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ∧ ISLEAF(t2) then
3: return (t1, t2)
4: else
5: if ISLEAF(t1) ∨ (ISNODE(t1) ∧ ISNODE(t2) ∧ t2.c <L t1.c) then
6: return LEFT-UNIFICATION(t1, t2.l �T t2.r)
7: else
8: (l1, l2)← LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2)← LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

(by joining subtrees, cf. Line 6) and thus extrapolating the domain of the abstract rank-
ing function over program states on which it is not yet defined. In this way we might
loose information but we ensure convergence limiting the size of the constraint-based
decision trees.

Note that it is important to check for cases like case A before the tree left unification.
Otherwise, since leaf nodes whose value is ⊥F might disappear when joining subtrees,
we would not be able to detect them.

Step 3: Check for Case B and C. The third step that the widening operator�T has to do
is to check for cases like case B, where the value of the most precise ranking function
has been under-approximated, and cases like case C, where its domain of definition
has been over-approximated including a non-terminating loop. In cases like B and C,
at the next iteration the value of the abstract function will increase. In order to handle
such situations, the widening �T has to look for leaf nodes whose value has increased
between two iterates and it has to substitute their value with �F in order to prevent an
indefinite growth. Note that the widening is not able to distinguish between an under-
approximation of the value of the most precise ranking function (as in case B) and an
over-approximation of its domain of definition as in case C.

The following lemma establishes that the widening operator �T always recovers
from the inclusion of non-terminating program states into the domain of an abstract
ranking function at some iterate Xi (i.e., it always recovers from an over-approximation
of the domain dom(w) of the most precise ranking function w — cases A and C):

Lemma 1. dom(γT(Xi)) �⊆ dom(w)⇒ dom(γT(Xi+1)) ⊂ dom(γT(Xi))

It follows that the domain of the limit wT of the iteration sequence with widening is
a sound under-approximation of the domain of the most precise ranking function w:

Corollary 1. dom(γT(wT)) ⊆ dom(w)

In addition, the next lemma establishes that, if at some iterate Xi the value of the
most precise ranking function w is under-approximated (case B), the iteration sequence
with widening �T is not stable:

Lemma 2. ∃s ∈ dom(γT(Xi))∩dom(w) : w(s)>γT(Xi)(s)⇒ s �∈ dom(γT(Xi+1))

312 C. Urban and A. Miné

x

6 11

�T

x

6 11

=

x

6 11

Fig. 4. Example of Value Widening

It follows that the value of the limit wT of the iteration sequence with widening is a
sound over-approximation of the value of the most precise ranking function w:

Corollary 2. ∀s ∈ dom(w) ∩ dom(γT(wT)) : w(s) ≤ γT(wT)(s)

Step 4: Value Widening. Once the widening operator �T has checked for possible vi-
olations of the soundness and the domain of the abstract ranking function has been
extrapolated, the last step is devoted to extrapolating the value of the ranking function
over the program states on which it was not yet defined. The heuristic that we used in
[30] has proved to be rather effective and justifies our choice to maintain the same linear
constraint at the same height in the decision trees. We decided to widen the leaf nodes
defined only in the second tree with respect to their adjacent leaf nodes. The rationale
being that programs often loop over consecutive values of a variable, we use the infor-
mation available in adjacent partitions of the domain of the ranking function to infer the
shape of the ranking function for the current partitions, i.e., the leaf nodes defined only
in the second tree (cf. Figure 4). Since we maintain the same linear constraint at the
same height in the decisions tree, the adjacency between leaf nodes is pretty straightfor-
ward to define: two leaf nodes in a constraint-based decision tree are adjacent if their
paths from the root differ for exactly one constraint satisfaction.

Remark 4. In establishing relationships only between adjacent leaf nodes, we are con-
sidering a rather naı̈ve heuristic. Another possibility would be establishing relationships
between leaf nodes based on the parity of some variable, or based on numerical rela-
tionships between variables. It is also possible to improve the widening by introducing
thresholds in the left unification (in order to limit the loss of precision). We plan to
investigate these possibilities as part of our future work.

Example 2. Let F be the set of affine functions of the program variables (plus ⊥F and
�F) [30]. We consider the widening between3 t1
 NODE{x ≤ 0} : (LEAF : 1); t′1 and
t2
 NODE{x ≤ 0} : (LEAF : 1); t′2 where the decision (sub)trees t′1 and t′2 are:

t′1
 NODE{x− y ≤ 0} : (LEAF : ⊥F); (LEAF : 3)

t′2
 NODE{x− y ≤ 0} : (NODE{x− 2y ≤ 0} : (LEAF : 5); (LEAF : ⊥F)); (LEAF : 3)

First, the left unification modifies t′2 into: NODE{x − y ≤ 0} : (LEAF : 3); (LEAF : 5).
Then, the leaf node LEAF : 5, defined only in t′2, is widened with respect to its adjacent
leaf node LEAF : 3. This produces the leaf node LEAF : 2x+ 1. ��

3 Redundant constraints in the decision trees are omitted for conciseness.

A Decision Tree Abstract Domain 313

Since Algorithm 5 limits the height of constraint-based decision trees (cf. Step 2)
and we prevent the indefinite growth of the value of the functions inside the leaf nodes
(cf. Step 3), the iteration sequence with widening is eventually stable after finitely many
steps. Its limit wT is a sound abstraction of the most precise ranking function w:

Theorem 1. w (γT(wT).

Proof. Follows by definition of (from Corollary 1 and Corollary 2. ��

Remark 5. The reason for the complexity of the widening operator �T is the coex-
istence of an approximation and a computational order in the termination semantics
domain (cf. Section 2) as well as in the abstract domain. We believe that ours is the
first widening in the two-order settings. In case the abstract domain T is instantiated
with other numerical abstract domains as mentioned in Remark 1, the widening �T be-
comes straightforward (only the tree left unification and “leaf-wise” widening �F being
needed).

3.4 Abstract Termination Semantics

The operators of the abstract domain are combined together to compute an abstraction of
the most precise ranking function for a program, through backward invariance analysis.
The starting point is the constant function equal to 0 at the program final control point.
The ranking function is then propagated backwards towards the program initial control
point taking assignments and tests into account with join and widening around loops.
As a consequence of the soundness of all abstract operators and the soundness (and
termination) of the iteration sequence with widening, we can establish the soundness of
the analysis for proving program termination: the program states for which the analysis
finds a ranking function are states from which the program indeed terminates.

Example 3. Let us consider the following simple C program:

while 1(x > 0 ∧ y > 0) { 2x = x− y; }3

At each loop iteration, the value of x is decreased until it becomes less than or equal to
zero. The program always terminates whatever the initial values for x and y are.

We analyze this program using our abstract domain of constraint-based decision
trees, parameterized with polyhedral [14] constraints at the decision nodes and affine
functions [30] at the leaf nodes. The starting point is t3 = LEAF : 0 at the final control
point 3. We use a widening delay of two iterations. At the first iteration, at the program
control point 1 we obtain the decision tree t11 = NODE{x ≤ 0} : (LEAF : 1); (NODE{y ≤
0} : (LEAF : 1); (LEAF : ⊥F)) which, taking into account the assignment x = x − y,
becomes t12 = NODE{x− y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 2); (LEAF : ⊥F)); (LEAF : 2)
at the program control point 2. At the third iteration the widening comes into action be-
tween the decision trees of Example 2 yielding a fixpoint: t31 = NODE{x ≤ 0} : (LEAF :
1); (NODE{x − y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 1); (LEAF : 2x + 1)); (LEAF : 3)) (i.e.,
the ranking function f1(x, y) = 2x+1) which proves that the program terminates in at
most 2x+ 1 program steps, whatever the initial values for x and y are. ��

314 C. Urban and A. Miné

Tot FuncTion-OCT FuncTion-POLY FuncTion [31] Time

FuncTion-OCT 39 − 0 18 4s
FuncTion-POLY 46 7 − 24 11s
FuncTion [31] 27 6 5 − 13s

Fig. 5. Overview of the experimental evaluation for FuncTion

4 Implementation

We have implemented our abstract domain of constraint-based decision trees T into our
prototype static analyzer FuncTion4 based on piecewise-defined ranking functions. A
preliminary version of FuncTion [31] (without relational partitioning) participated in
the 3rd International Competition on Software Verification (SV-COMP 2014), which
featured a category for termination of C programs for the first time.

The prototype accepts programs written in a (subset of) C. It is written in OCaml and,
at the time of writing, the available abstractions for handling linear constraints in deci-
sion trees are based on intervals [10], octagons [27] and convex polyhedra [14], and the
available abstractions for ranking functions are based on affine functions. The operators
from the intervals, octagons and convex polyhedra abstract domains are provided by the
APRON library [24]. It is also possible to activate the extension to ordinal-valued rank-
ing functions [31] and tune the precision of the analysis by adjusting the widening delay.

The analysis proceeds by structural induction on the program syntax, iterating loops
until an abstract fixpoint is reached. In case of nested loops, a fixpoint on the inner loop
is computed for each iteration of the outer loop.

Experiments. We have evaluated our prototype implementation against a set of 87
terminating C programs collected from the SV-COMP 2014 termination category and
from various publications in the area [1,6,9, etc.]. All the experiments were performed
on a 1.30GHz Core i5 system with 4GB of RAM and running Ubuntu 12.04.

In Figure 5, we compared FuncTion to its preliminary version [31]. In particular, we
evaluated the expressiveness and efficiency of two instances of our abstract domain of
constraint-based decision trees: FuncTion-OCT (which uses octagonal constraints for
labeling the decision nodes) and FuncTion-POLY (which uses polyhedral constraints).
In the first column we report the total number of programs that each tool was able to
prove termination for. In the second to the fourth column, we consider each tool and
we report the number of programs that every other tool was able to prove terminating
among the programs that the tool was not able to prove termination for. Finally, the last
column reports the average running time in seconds for the programs where the tool
proved termination. The results match the expectations: FuncTion-OCT is faster than
FuncTion-POLY but less precise in seven examples; also, both FuncTion-OCT and
FuncTion-POLY are more precise than FuncTion in its preliminary version. Note that,
to improve precision, FuncTion [31] avoids trying to infer a ranking function for the
non-reachable states while FuncTion-OCT and FuncTion-POLY do not apply yet this

4 http://www.di.ens.fr/˜urban/FuncTion.html

http://www.di.ens.fr/~urban/FuncTion.html

A Decision Tree Abstract Domain 315

Tot FuncTion AProVE [19] T2 [5] Ultimate [22] Time Timeouts

FuncTion 51 − 8 8 3 6s 5

AProVE [19] 60 17 − 7 2 35s 19

T2 [5] 73 30 20 − 3 2s 0

Ultimate [22] 79 31 21 9 − 9s 1

Fig. 6. Overview of the experimental evaluation for termination.

kind of optimizations: for this reason, FuncTion [31] was able to prove termination for
respectively six and five programs that FuncTion-OCT and FuncTion-POLY were not
able to prove terminating.

We also compared FuncTion (using all the available abstractions) to some of the
other tools that participated to the termination category of SV-COMP 2014: AProVE
[19], T2 [5], and Ultimate Büchi Automizer [22]. Figure 6 shows an overview of the
experimental evaluation when using a time limit of 300 seconds for each example. In
the first column we report the total number of programs that each tool was able to prove
termination for. In the second to the fifth column, similarly to Figure 5, we consider
each tool and we report the number of programs that every other tool was able to prove
terminating among the programs that the tool was not able to prove termination for.
Finally, the last columns report the average running time in seconds for the programs
where the tool proved termination and the number of time outs (i.e., programs for which
the analysis took more than 300 seconds). We observe that FuncTion proved termina-
tion of 51 of the 87 programs considered, while the other tools get better results. We
noticed that the main reason for this is the value widening heuristic (cf. Section 3.3)
used by FuncTion. We plan to study these issues further and improve the widening
operator as part of our future work. However, we also observe that FuncTion was able
to prove termination for eight programs that AProVE and T2 were not able to prove ter-
minating, and for three programs that Ultimate Büchi Automizer was not able to prove
termination for. We noticed that all these programs are characterized by the presence of
multiple paths with unrelated or conflicting rankings inside loops: these programs are
handled in a natural way by the inherent partitioning at the basis of our tool while the
other tools must often resort to heuristics or specific workarounds [9].

5 Related Work

The use of (binary) decision trees (Binary Decision Diagrams, in particular) for verifica-
tion has been devoted a large body of work, especially in the area of timed-systems and
hybrid-system verification [23]. In this paper, we focus on common program analysis
applications and, in this sense, our abstract domain is mostly related to the ones pre-
sented in [13,20]: both ours and these abstract domains are a disjunctive refinement of
an abstract domain based on decision trees extended with linear constraints. However,
the abstract domain proposed in [20] is designed specifically for the disjunctive refine-
ment of the intervals abstract domain [10], while our abstract domain is parameterized
by the (possibly relational) abstract domain we want to build the disjunctive refinement

316 C. Urban and A. Miné

for. Moreover, while our abstract domain is based on binary decision trees where we im-
pose the same linear constraint at the same tree level, in [13] the choices at the decision
nodes may differ at each node and their number is not bounded a priori.

In general, despite all the available alternatives [3,13,18,20,21,29, etc.], it seems to
us that in the literature there is no disjunctive abstract domain well-suited for program
termination. A first (minor) reason is the fact that most of the existing disjunctive ab-
stract domains are designed specifically for forward analyses while ranking functions
are inferred through backward analysis (cf. Section 3.4). However, the main reason is
that adapting existing widening operators to ranking functions is not obvious due to the
coexistence of an approximation and computational ordering in the termination seman-
tics domain (cf. Section 2 and Section 3.3).

As for related work on termination, we emphasize that our method is able to directly
manipulate ranking functions which are dealt with as any other kind of invariants associ-
ated to program control points. In this sense, it differs from the majority of the literature
based on the indirect use of invariants for synthesizing ranking functions or just proving
termination [1,2,5,7,25, etc.]. Moreover, our approach is at the same time modular (i.e.,
able to reason on a portion of the code without any knowledge of the complete program)
and able to deal with arbitrary control structures (i.e., it is not limited to simple loops
as [28] or to non nested loops as [4]).

Finally, in the literature, we found only few works that have addressed the prob-
lem of automatically finding preconditions for program termination. In [8], the au-
thors proposed a method based on preconditions generating ranking functions from
potential rankings (i.e., mappings to elements of a well-ordered set whose value does
not necessarily decrease during program execution), while our preconditions are in-
herently obtained from the inferred ranking functions as the set of programs state for
which the ranking function is defined. Thus, our preconditions are derived by under-
approximation of the set of terminating states as opposed to the approaches presented in
[17,26] where the preconditions are derived by (complementing an) over-approximation
of the non-terminating states.

6 Conclusion and Future Work

In this paper, we proposed a novel parameterized abstract domain for the disjunctive
refinement of numerical abstract domains. We have shown its adaptability to different
abstractions, focusing in particular on piecewise-defined ranking functions for automati-
cally proving conditional termination. Our approach to program termination is semantic-
based and approximate in a provably sound way. It is able to analyze programs that are
out of the reach of state-of-the-art methods.

It remains for future work to improve the widening between ranking functions es-
tablishing cleverer relationships between leaf nodes of decision trees and introducing
thresholds in order to limit the loss of precision. We also plan to design more abstract
domains in order to support non-linear ranking functions (e.g., quadratic, cubic, expo-
nential, . . .).

Acknowledgements. We are grateful to the developers of AProVE [19], T2 [5], and
Ultimate Büchi Automizer [22] for their help with the experiments.

A Decision Tree Abstract Domain 317

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-Dimensional Rankings, Program Ter-
mination, and Complexity Bounds of Flowchart Programs. In: Cousot, R., Martel, M. (eds.)
SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg (2010)

2. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.W.: Variance Analyses from
Invariance Analyses. In: POPL, pp. 211–224 (2007)

3. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Static
Analysis and Verification of Aerospace Software by Abstract Interpretation. In: AIAA (2010)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear Ranking with Reachability. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg
(2005)

5. Brockschmidt, M., Cook, B., Fuhs, C.: Better Termination Proving through Cooperation.
In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429. Springer,
Heidelberg (2013)

6. Chen, H.Y., Flur, S., Mukhopadhyay, S.: Termination Proofs for Linear Simple Loops. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 422–438. Springer, Heidelberg
(2012)

7. Colón, M.A., Sipma, H.B.: Practical Methods for Proving Program Termination. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454. Springer,
Heidelberg (2002)

8. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving Conditional Termi-
nation. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340. Springer,
Heidelberg (2008)

9. Cook, B., See, A., Zuleger, F.: Ramsey vs. Lexicographic Termination Proving. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61. Springer, Heidelberg
(2013)

10. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Sympo-
sium on Programming, pp. 106–130 (1976)

11. Cousot, P., Cousot, R.: Higher Order Abstract Interpretation and Application to Comport-
ment Analysis Generalizing Strictness, Termination, Projection, and PER Analysis. In: ICCL,
pp. 95–112 (1994)

12. Cousot, P., Cousot, R.: An Abstract Interpretation Framework for Termination. In: POPL, pp.
245–258 (2012)

13. Cousot, P., Cousot, R., Mauborgne, L.: A Scalable Segmented Decision Tree Abstract Do-
main. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 72–95.
Springer, Heidelberg (2010)

14. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Variables of a
Program. In: POPL, pp. 84–96 (1978)

15. Floyd, R.W.: Assigning Meanings to Programs. Proceedings of Symposium on Applied
Mathematics 19, 19–32 (1967)

16. Fuchs, H., Kedem, Z.M., Naylor, B.F.: On Visible Surface Generation by a Priori Tree Struc-
tures. SIGGRAPH Computer Graphics 14(3), 124–133 (1980)

17. Ganty, P., Genaim, S.: Proving Termination Starting from the End. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397–412. Springer, Heidelberg (2013)

18. Giacobazzi, R., Ranzato, F.: Optimal Domains for Disjunctive Abstract Intepretation. Sci.
Comput. Program. 32(1-3), 177–210 (1998)

19. Giesl, J., Schneider-Kamp, P., Thiemann, R.: Automatic Termination Proofs in the Depen-
dency Pair Framework. In: IJCAR, pp. 281–286 (2006)

318 C. Urban and A. Miné

20. Gurfinkel, A., Chaki, S.: BOXES: A Symbolic Abstract Domain of Boxes. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg (2010)

21. Gurfinkel, A., Chaki, S.: Combining Predicate and Numeric Abstraction for Software Model
Checking. STTT 12(6), 409–427 (2010)

22. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear Ranking for Linear Lasso Pro-
grams. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 365–380.
Springer, Heidelberg (2013)

23. Jeannet, B.: Representing and Approximating Transfer Functions in Abstract Interpretation
of Hetereogeneous Datatypes. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, pp. 52–68. Springer, Heidelberg (2002)

24. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static Analy-
sis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

25. Larraz, D., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: Proving Termination of Imper-
ative Programs using Max-SMT. In: FMCAD, pp. 218–225 (2013)

26. Massé, D.: Policy Iteration-based Conditional Termination and Ranking Functions. In:
McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 453–471. Springer,
Heidelberg (2014)

27. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computation 19(1),
31–100 (2006)

28. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking
Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251.
Springer, Heidelberg (2004)

29. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static Analysis in Disjunctive
Numerical Domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 3–17. Springer, Hei-
delberg (2006)

30. Urban, C.: The Abstract Domain of Segmented Ranking Functions. In: Logozzo, F.,
Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 43–62. Springer, Heidelberg
(2013)

31. Urban, C., Miné, A.: An Abstract Domain to Infer Ordinal-Valued Ranking Functions. In:
Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412–431. Springer, Heidelberg (2014)

Region-Based Selective Flow-Sensitive
Pointer Analysis

Sen Ye, Yulei Sui, and Jingling Xue

Programming Languages and Compilers Group
School of Computer Science and Engineering, UNSW Australia

Abstract. We introduce a new region-based SELective Flow-Sensitive
(Selfs) approach to inter-procedural pointer analysis for C that operates
on the regions partitioned from a program. Flow-sensitivity is maintained
between the regions but not inside, making traditional flow-insensitive
and flow-sensitive as well as recent sparse flow-sensitive analyses all spe-
cial instances of our Selfs framework. By separating region partitioning
as an independent concern from the rest of the pointer analysis, Selfs
facilitates the development of flow-sensitive variations with desired effi-
ciency and precision tradeoffs by reusing existing pointer resolution al-
gorithms. We also introduce a new unification-based approach for region
partitioning to demonstrate the generality and flexibility of our Selfs
framework, as evaluated using SPEC2000/2006 benchmarks in LLVM.

1 Introduction

Finding a right balance between efficiency and precision lies at the core of pointer
analysis. A flow-insensitive analysis (FI), as formulated for C using Andersen’s
algorithm [2] in Figure 1(a), is fast but imprecise, because it ignores control flow
and thus computes a single solution pt to the entire program. Here, pt�v� gives the
points-to set of a variable v. In contrast, a flow-sensitive analysis (FS), as formu-
lated by solving a data-flow problem in Figure 1(b), makes the opposite tradeoff.
By respecting control flow ([S-OUTIN], [S-INOUT1] and [S-INOUT2]), separate so-
lutions pt�
� and pt�
� at distinct program points
 and
 (the ones immediately
before and after each
-labeled statement) are computed and maintained. Pre-
serving flow-sensitivity this way has two precision benefits. One is to track the
values read at a location through the control flow. The other is to enable strong
updates : if a location is definitely updated by an assignment, then the previous
values at the location can be killed. In [S-ADDROF], [S-COPY] and [S-LOAD], p at

 is strongly updated since pt�
��p� is killed. For any q � p, its points-to infor-
mation is preserved ([S-INOUT1]). In [S-STORE], o at
 is strongly updated if o
is a singleton, i.e., a concrete location uniquely pointed by p ([S-STORESU]) and
weakly updated otherwise ([S-STOREWU]). For a target o� not pointed by p, its
points-to information remains unchanged ([S-INOUT2]).

Flow-sensitivity is beneficial for a wide range of clients such as bug detec-
tion [22,30,31,34], program verification [10,11] and change impact analysis [1,4].
As the size and complexity of software increases, how to achieve flow-sensitivity

M. Müller-Olm and H. Seidl (Eds.): SAS 2014, LNCS 8723, pp. 319–336, 2014.
c© Springer International Publishing Switzerland 2014

320 S. Ye, Y. Sui, and J. Xue

[I-ADDROF]
p � &o

�o� � pt�p�
[I-COPY]

p � q

pt�q� � pt�p�

[I-STORE]
�p � q o � pt�p�

pt�q� � pt�o�
[I-LOAD]

p � �q o � pt�q�
pt�o� � pt�p�

(a) FI: constraints for Andersen’s algorithm (flow-insensitive)

[S-ADDROF]
	: p � &o

�o� � pt		
�p�
[S-COPY]

	: p � q

pt		
�q� � pt		
�p�

[S-STORESU� WU]
	: �p � q o � pt		
�p�

pt		
�q� � pt		
�o� pt		
�o� � pt		
�o�

[S-LOAD]
	: p � �q o � pt		
�q�

pt		
�o� � pt		
�p�
[S-OUTIN]

v � V 	� � succ�	�

pt		
�v� � pt		�
�v�

[S-INOUT1]
	: p � _ q � p

pt		
�q� � pt		
�q�
[S-INOUT2]

	: �p � _ o� � pt		
�p�
pt		
�o�� � pt		
�o��

V: set of variables succ: mapping statements to control flow successors

(b) FS: constraints for data-flow (flow-sensitive)

Fig. 1. Two traditional pointer analyses, FI and FS, for C programs

exactly or approximately with desired efficiency and precision tradeoffs becomes
attractive. The “sparse” approach [14,23,35] aims to achieve the same precision
as FS but more scalably. The basic idea is to first over-approximate the points-to
information in a program with a fast but imprecise pre-analysis and then refine
it by propagating the points-to facts sparsely only along the pre-computed def-
use chains instead of across all program points as FS does. Alternatively, the
“strong-update” approach [21] sacrifices the precision of FS in order to gain bet-
ter efficiency. The basic idea is to proceed flow-sensitively to perform the same
strong updates as in FS but falls back to FI otherwise. Despite these recent
advances on flow-sensitive analysis, balancing efficiency and precision remains
challenging, partly due to the difficulty in orchestrating various algorithms used
during the analysis and partly due to the desire to meet different clients’ needs.

A program usually exhibits diverse characteristics in its different code regions,
which should be handled with different efficiency and precision tradeoffs (to avoid
under- or over-analysing). In this paper, we propose a new region-based SELec-
tive Flow-Sensitive (Selfs) approach to pointer analysis for C that operates on
the regions partitioned from a program rather than individual statements as in
[14,35]. Top-level pointers can be put in SSA form [8] without requiring pointer
analysis. To track the value-flows of address-taken variables effectively, we will
perform a pre-analysis to enable their sparse analysis as in [14,23,35], but on a
region graph with its regions containing loads and stores. Each region is analysed
flow-insensitively but flow-sensitivity is maintained across the regions.

Region-Based Selective Flow-Sensitive Pointer Analysis 321

��������� �	
������ �	��
�	 �	���	 	1� init � �p�m, p�n, q�m, r�x, s�y, t�z�

����

����

����

����

���	1��init

���	1�����	1� � �m�x, n�x�

���	2�����	1�

���	2�����	2� � �v�x�

���	3�����	2�

���	3������	3�	�m�x�
 � �m�y�

���	4�����	2� � ���	3�

���	4�����	4� � �m�z, n�z�

	1:

	2:

	3:

	4:

����

����

����

����

���γ1�����γ1�

���γ1�����γ1� � �m�x, n�x�

���γ2�����γ1� � ���γ2�

���γ2�����γ2� � �m�y,m�z, n�z�

��������� �	
�	������ ���v
 � �x�

���
�����	��� �	
�	�����

	1:

	2:

	3:

	4:

γ1

γ2

��� �
����	������	 ���
���� ��� ��	 ����� ���
����

Fig. 2. An illustration of Selfs performed on regions γ1 and γ2 by preserving the
precision of FS with respect to the reads from variables (with further details given in
Figure 3 and Examples 1 – 3). The focus is on analysing the points-to relations for
the top-level variable v and the two address-taken variables m (a singleton) and n, by
assuming that the points-to relations in init are given. Here, pt	γ
 (pt	γ
), where γ is
a region, is an analogue of pt		
 (pt		
), where 	 is a statement.

Consider Figure 2, where the points-to relations in init are known before
the code is analysed. Figure 2(a) depicts the points-to relations obtained by
applying FS to the code. Note that a strong update on m (assumed to be a
singleton) is performed at
3. Figure 2(b) gives the solution obtained by Selfs on
a region graph (with two regions γ1 and γ2) to achieve more efficiently the same
precision for reads from (but not necessarily for writes into) each variable. As p
points to m and n, no strong update is possible at
1. Instead of flow-sensitively
propagating the points-to relations from
1 to
2, both can be analysed flow-
insensitively in region γ1 without any precision loss for the reads from m and n
at
2. Interestingly, even if a strong update is performed for m at
3, the points-to
relations from
2 and
3 are merged on entry of
4, making any read from m at

4 (if any) as precise as if
3 and
4 are analysed together in γ2 flow-insensitively.
Note that Selfs has over-approximated the potential target of m at
3: m�y
found by FS in Figure 2(a) with m�x, m�y and m�z given in Figure 2(b). As
argued in Section 3, preserving the precision for reads from all variables always
preserves the alias information (among others). By operating at the granularity
of regions rather than statements while maintaining flow-sensitivity across their
edges (illustrated further in Figure 3), Selfs is expected to run faster.

Our Selfs analysis is also advantageous in that region partitioning is sepa-
rated as an independent concern from the rest of the analysis. Different region
partitions may lead to different degrees of flow-sensitivity, resulting in differ-

322 S. Ye, Y. Sui, and J. Xue

ent efficiency and precision tradeoffs being made. As discussed in Section 3, the
two traditional analyses, FI and FS, given in Figure 1 and some recent sparse
flow-sensitive analyses [14,23,35] are all special instances of Selfs. As a result,
Selfs provides a general framework for designers to develop and evaluate dif-
ferent flow-sensitive variations by reusing existing pointer resolution algorithms.

This paper makes the following contributions:

– We present Selfs that performs inter-procedural flow-sensitive pointer anal-
ysis across but not inside the regions partitioned from a C program, allowing
different efficiency and precision tradeoffs to be made subject to different re-
gion partitioning strategies used (Section 2).

– We introduce a new unification-based region partitioning approach that en-
ables Selfs to achieve nearly the same precision as FS for almost all prac-
tical purposes (Section 3) and discuss some heuristics for trading precision
for efficiency in future work (Section 6).

– We have implemented Selfs in LLVM (version 3.3) and evaluated it using a
total of 14 benchmarks selected from SPEC2000 and SPEC2006 (Section 4).
Selfs can accelerate a state-of-the-art sparse yet precision-preserving ver-
sion [14] of FS by 2.13X on average while maintaining the same precision for
reads from variables, i.e., for all alias queries. In addition, the best speedups
are observed at h264ref (7.45X) and mesa (6.08X).

2 The Selfs Analysis Framework

In this section, we present our Selfs analysis on a given region graph created
from a program. In the next section, we describe some region partitioning strate-
gies. Section 2.1 makes precise the canonical representation used for analysing
C programs. Section 2.2 defines the region graphs operated on by Selfs. Sec-
tion 2.3 formalises our region-based flow-sensitive pointer analysis.

2.1 Canonical Representation

In the pointer analysis literature, a C program is represented by a CFG (Control-
Flow Graph) containing the four types of pointer-manipulating statements shown
in Figure 1: p�&o (AddrOf), p�q (Copy), p��q (Load) and �p�q (Store).
More complex statements are decomposed into these basic ones. Passing argu-
ments into and returning results from functions are modeled by copies. For a
given AddrOf statement p�&o, o is either a stack variable with its address
taken or an abstract object dynamically created at an allocation site.

For simplicity, we adopt the convention of LLVM by separating the set V of
all variables into two subsets, (1) A containing all possible targets, i.e., address-
taken variables of a pointer and (2) T containing all top-level variables, where
V � T 	A. For the four types of statements given, we have p, q
 T and o
 A.

Region-Based Selective Flow-Sensitive Pointer Analysis 323

2.2 Region Graph

Our Selfs analysis operates on a region graph created from a program being
analysed. Leveraging recent progress on sparse flow-sensitive analysis [14,23,35],
we will perform a pre-analysis to both guide region partitioning and enable sparse
analysis at the granularity of regions rather than individual statements.

To obtain a region graph from a program, top-level and address-taken vari-
ables are treated differently. In our Selfs framework, top-level variables are
always analysed sparsely since they can be put in SSA without requiring pointer
analysis. A top-level pointer that is defined multiple times is split into distinct
versions after SSA conversion. All versions of a variable, say qi1 , . . . , qin , that
reach a joint point at the CFG are combined by introducing a new Phi state-
ment, qj � φ�qi1 , . . . , qin�, where qj , qi1 , . . . , , qin
 T , so that every version is
defined once (statically). After SSA conversion, the (direct) def-use chains for
all top-level variables are readily available. As a result, their points-to sets can
be simply obtained flow-sensitively by performing a flow-insensitive analysis.

Unlike top-level variables, address-taken variables are read/written indirectly
via top-level pointers at loads/stores and thus harder to analyse sparsely. Spar-
sity requires points-to information to be propagated along def-use chains but
the (indirect) def-use chains for address-taken variables can only be computed
using points-to information. To break the cycle, we perform a pre-analysis as
in [7,14,23,30] to first over-approximate indirect def-use chains and then refine
them by performing a data-flow analysis sparsely along such pre-computed def-
use chains.

Note that an address-taken variable o accessed at a store represents a potential
use of o if a weak update is performed ([S-STOREWU] in Figure 1(b)). Due to
space limitation, we refer to [14] on how to over-approximate indirect def-use
chains (via a pre-analysis named Aux). The basic idea is to annotate a load
p � �q with a potential use of o for every o pointed by q and a store �p � q
with a potential use and def of o for every o pointed by p. Then indirect def-use
chains can be built by putting all address-taken variables in SSA.

Therefore, Selfs keeps track of value flows for top-level variables in SSA
explicitly along their (direct) def-use chains and refines value flows for address-
taken variables along their pre-computed (indirect) def-chains in a region graph.

Definition 1 (Region Graph). A region graph Grg � �Nrg, Erg� for a program
is a multi-edged directed graph. Nrg is a partition of the set of its loads and
stores into regions. Erg contains an edge γ1

o
�� γ2 labeled by an address-taken

variable o
 A from γ1 to γ2, where γ1 and γ2 may be identical, if there is an
indirect def-use chain for o from γ1 to γ2 computed by the pre-analysis.

Example 1. Consider our example again in Figure 3. Figure 3(b) duplicates the
region graph from Figure 2(b) except that its edges are now annotated explicitly
with address-taken variables indicating their value flows. By Definition 1, these
edges are added based on the statement-level indirect def-use chains obtained by
pre-analysis, given in Figure 3(a). The presence of self-loop edge(s) in a region
allows naturally the loads/stores inside to be analysed flow-insensitively. �

324 S. Ye, Y. Sui, and J. Xue

����

����

����

����

1:

2:

3:

4:

�n��m�

�m� �n�
�m�

�m�

�a� �������� ��	
��� �����

������ �������������

��
γ1 � �
1,
2	
γ2 � �
3,
4	

����

����

����

����

1:

2:

3:

4:

�m� �n�

�b� ������ ����

γ1

γ2

�m�

�n�

�m�

Fig. 3. The region graph in Figure 2(b) redrawn with all indirect def-use edges made
explicit. The pre-analysis yields pm, pn and qm (included in init in Figure 2).

2.3 Region-Based Flow-Sensitivity

Figure 4 gives the inference rules used in our Selfs framework. Top-level vari-
ables are analysed as before except that they are now in SSA ([R-PHI]). There-
fore, analysing the top-level variables in SSA flow-insensitively ([R-ALLOC] and
[R-COPY]) as in FI gives rise to the flow-sensitive precision obtained as in FS.
As a result, the points-to sets pt�p� and pt�q� of top-level pointers p and q are
directly read off at a load ([R-LOAD]), a store ([R-STORE]), and in [R-INOUT].

Selfs computes and maintains the points-to relations for address-taken vari-
ables sparsely in a region graph. Flow-sensitivity is maintained across the regions
(along their indirect region-level def-use edges) but not inside. This implies that
all statements in a region γ are handled flow-insensitively if �γ� 1 and flow-
sensitively otherwise (i.e., if �γ� � 1). As Selfs operates at the granularity of
regions, the notation pt�γ� (pt�γ�) for a region γ is an analogue of pt�
� (pt�
�)
for a statement
, as already illustrated in Figure 2(b). For a region γ containing
multiple statements, pt�γ� is the solution for all program points inside the region.

Below we explain the four rules, [R-DU], [R-INOUT], [R-LOAD] and [R-STORE],
used to compute the points-to relations for address-taken variables.

Together with [R-INOUT], [R-DU] represents the sparse propagation of points-
to relations for address-taken variables o
 A across their pre-computed def-use
chains at the granularity of regions. In contrast, FS propagates such points-to
relations blindly across the control flow ([S-OUTIN], [S-INOUT1] and [S-INOUT2]).

In [R-LOAD], γ � selR�
� is the region where the load at
 resides. No strong
update is possible even if γ contains a store since �γ� 1 will then hold. Regard-
less of how many statements that γ contains, the points-to set of o at the entry
of γ is propagated into the points-to set of p: pt�γ��o� � pt�p�, where pt�γ��o�
contains the points-to relations that are (1) either received from its predecessors
([R-DU]) or (2) generated inside γ (due to a self-loop edge labeled by o when
�γ� 1), in which case, all statements inside γ are analysed flow-insensitively.

[R-STORE] is similar except that the points-to set of o indirectly accessed at a
store is updated at the end of the region γ that contains the store. [R-STORESU],

Region-Based Selective Flow-Sensitive Pointer Analysis 325

[R-ADDROF]
	: p � &o

�o� � pt�p�
[R-COPY]

	: p � q

pt�q� � pt�p�
[R-PHI]

	: p � φ�_, q,_�

pt�q� � pt�p�

[R-STORESU� WU]
	: �p � q o � pt�p� γ � selR�	�

pt�q� � pt	γ
�o� pt	γ
�o� � pt	γ
�o�

[R-LOAD]
	: p � �q o � pt�q� γ � selR�	�

pt	γ
�o� � pt�p� [R-DU]
o � A γ

o
� γ�

pt	γ
�o� � pt	γ�
�o�

[R-INOUT]
γ � Nrg o� � �o � pt�p� � ��p � q� � γ�

pt	γ
�o�� � pt	γ
�o��

Fig. 4. Inference rules for Selfs (with top-level variables in SSA)

which is explained earlier in Section 1, comes into play only when �γ� � 1. Recall
that Selfs only analyses single-statement regions flow-sensitively.

Example 2. Let us apply our inference rules to the region graph in Figure 3(b)
to obtain the points-to relations given in Figure 2(b). As �γ1� � �γ2� � 2,
[R-STORESU] cannot be applied. When γ1 is processed, applying [R-STOREWU] to

1 adds m�x and n�x to pt�γ1� and applying [R-LOAD] to
2 yields pt�v� � x.
Applying [R-DU] to the two self-loop edges �m� and �n� around γ1 gives rise to
pt�γ1� � pt�γ1�. Applying [R-DU] to the two edges �m� and �n� from γ1 to γ2, we
obtain pt�γ2� � �m�x, n�x�.

When γ2 is analysed, [R-STOREWU] is applied to each store. So the points-to
relations in pt�γ2� are preserved in pt�γ2�. Then we add m�y generated at
3
and m� z and n� z at
4 to pt�γ2�. Next, applying [R-DU] to the self-loop
�m� on γ2 causes m� y and m� z to be added to pt�γ2�. Finally, we obtain
pt�γ2���m�x,m�y,m�z, n�x� and pt�γ2��pt�γ2�	�n�z�. �

Theorem 1 (Soundness). Selfs is sound if the pre-analysis used is.

Proof Sketch. A sound pre-analysis over-approximates the indirect def-use chains
used for constructing the edges in a region graph Grg. Essentially, Selfs combines
FI and FS to refine such pre-computed def-use chains flow-sensitively ([R-DU]
and [R-INOUT]) by performing strong updates ([R-STORESU]).

Theorem 2 (Precision). Suppose FI is used as the pre-analysis, Then Selfs
lies between FI and FS in terms of precision.

Proof Sketch. We can show that Selfs is no more precise than FS (with respect
to each variable’s points-to set) by observing the following facts: (1) performing
the pre-analysis with FI gives rise to over-approximated indirect def-use chains
(Theorem 1), (2) both analyses handle top-level pointers in exactly the same way
except that Selfs does it sparsely in SSA ([R-ADDROF], [R-COPY] and [R-PHI])
and FS takes a data-flow approach ([S-ADDROF] and [S-COPY]), and (3) Selfs

326 S. Ye, Y. Sui, and J. Xue

applies FS only to a region that contains one load or one store and FI to handle
the remaining regions flow-insensitively. Thus, for every variable, the points-to
set obtained by Selfs is no smaller than that obtained by FS.

To see that Selfs is no less precise than FI, we note that Selfs works by re-
fining the points-to sets produced by FI (as the pre-analysis) through performing
strong updates and maintaining inter-region flow-sensitivity.

Finally, some prior representative analyses are special instances of Selfs,
with the following changes made to Selfs (mainly to region partitioning):

FI in Figure 1(a): All loads and stores are in one region (and top-level vari-
ables are not in SSA if they are to be analysed also flow-insensitively).

[14]: Each region contains one load or one store (same precision as FS).
FS in Figure 1(b): Each region contains one statement and each inter-region

edge represents control flow, labeled by all variables.
[21]: Each store is in its own region if it can be strongly updated and all the

other stores and all the loads are in another region (less precise than FS).

3 Instantiating the Selfs Analysis

Selfs is sound (Theorem 1) and can easily achieve a precision between FI and
FS on an arbitrary region graph Grg (Theorem 2). Ideally, we should use a region
graph Grg that allows Selfs to attach the precision of FS at the efficiency of FI.

In this section, we introduce a new unification-based approach that allows
Selfs to preserve the precision of FS with respect to the reads from all variables,
thus making it nearly as precise as FS in practice. We also discuss how to relax
this so-called strict load-precision-preserving approach to tolerate some precision
loss in future work in Section 6. Our focus is on demonstrating the generality
and flexibility of Selfs in allowing efficiency and precision tradeoffs to be made
subject to region partitioning strategies used.

3.1 Load-Precision-Preserving Partitioning

As discussed in Section 2, Selfs degenerates into the sparse analysis [14] if Selfs
operates on a region graph, denoted Gone, such that each of its regions contains
one load or one store. In this important special case, Selfs is significantly faster
than FS while achieving the same precision as FS, but can still be costly for
large programs, especially when field-sensitivity is considered. By merging small
regions into larger ones, Selfs can run faster at some possible precision loss.

We introduce a partitioning strategy that works by unifying two regions into
a larger one successively, starting from any given region graph, say Gone. Some
unification steps are applied online if they require the knowledge about whether
a strong or weak update is performed at a store and some can otherwise be
applied offline. Our rules are load-precision-preserving in the sense that every
load behaves identically before and after each unification. Thus, for every load
� � � � �q, the points-to set of every target o pointed by q remains unchanged.

Region-Based Selective Flow-Sensitive Pointer Analysis 327

For almost all practical purposes, making all the loads precise is as good as
making Selfs as precise as FS. First of all, the points-to set of every top-level
pointer remains unchanged (since it is overwritten from either an AddrOf, a
Load statement, or possibly via a sequence of Copy or Phi assignments). Thus,
the precision for reads of q in � � � � q and � � � � �q is preserved. In addition, the
alias information remains unchanged. This is because in our LLVM-like canonical
representation, all aliases must be tested between top-level pointers. Similarly,
all function pointers are reserved in the same way as they are all top-level.

However, some stores can be imprecise, but only when they are not read from
later, as is the case of �q � s illustrated in Figure 2(b) and revisited later in
Example 3. Such stores are dead code and can thus be eliminated.

3.2 Unification

The following lemma gives a sufficient condition to make Selfs load-precision-
preserving and motivates the development of our unification approach.

Lemma 1. Let Grg be a region graph with its two regions identified by γi and γj.
Let G�

rg the resulting graph after γi and γj are unified (i.e., merged) into a new
region γi,j. Let L be the set of all regions in Grg such that each contains at least
one load. Let L� be similarly defined for G�

rg. Let π : L �� L� be defined such that
π�γ� � γ if γ � �γi, γj� and π�γ� � γi,j otherwise. If �γ
 L : pt�γ� � pt�π�γ��
before and after the unification, then Selfs is load-precision-preserving.

Proof. No strong update can be performed in a region γ that contains a load
since that would imply �γ� 1. For every region γ
 L, if pt�γ� � pt�π�γ��, then
pt�γ��o� � pt�π�γ���o� for every load p � �q that appears in both γ and π�γ�,
where o
 pt�q� ([R-LOAD]). So Selfs is load-precision-preserving.

This lemma is expensive to apply during the analysis. Guided by the basic
idea behind, we have developed a conservative but simple unification approach.
Each unification step operates on a small neighbourhood of the two regions
being unified. Our approach is promising as it can be relaxed to allow different
efficiency and precision tradeoffs to be made, as discussed in Section 6.

Definition 2 (Region Types). Given a region γ, τ�γ� � S if a strong update
can be performed inside (implying that γ contains a single store), τ�γ� � W if a
weak update can be performed inside, and τ�γ��L if γ contains loads only.

When unifying a region γ with another region in a region graph Grg �
�Nrg, Erg�, we can identify the potential points-to relations generated by γ and
the potential uses for the points-to relations generated by the two regions being
unified directly from Grg. Below we write rsucc (rpred) to relate a region to its
set of successors (predecessors) in a region graph.

– GEN�γ� � �o � γ
o
�� γ�, γ�
 Nrg� contains the address-taken variables

potentially defined in γ ([R-DU]), which implies GEN�γ� � ∅ if τ�γ� � L.

328 S. Ye, Y. Sui, and J. Xue

– USE�γ� � �γ� � γ�
 rsucc�γ�� 	 �γ � γ contains a load� gives the set of
potential uses for the points-to relations generated by γ and the region to be
unified together. Note that rsucc�γ���γ� if γ contains a store that produces
values used by some other stores or some loads also contained in γ (Figure 3).

– PRD�γ� � rpred�γ� gives the set of all potential defs for the points-to rela-
tions used in γ.

When merging two regions, we need to reason about the value flows for the
address-taken variables potentially defined inside these two regions.

Definition 3 (Value-Flow Reachability). Let γi and γj be two regions in
Grg � �Nrg, Erg�. We say that γj is o-reachable from γi, where o
 A, and write
γi

o
�� γj if there is either (1) an edge γi

o
�� γj
 Erg (directly reachable) or (2) a

path γi
o
�� γ1, . . . , γn

o
�� γj in Grg (indirectly reachable) via one or more regions,

γ1, . . . , γn, where τ�γk� �W , for weakly updating o.

When two regions γi and γj are unified, all loads and stores in the resulting
region are resolved flow-insensitively (since �γi 	 γj � 1), even though a strong
update is possible in either region before. The points-to relations flowing into
both γi and γj from PRD�γi� and PRD�γj� are merged, preserved and propa-
gated together with the points-to relations generated inside γi and γj to their
uses in USE�γi� and USE�γj�. In order to preserve the precision for loads, we
can ensure conservatively that the same propagation happens before and after
each unification (for loads). The presence of a strong update in γi or γj can
be unification-preventing only when the killed values in γi or γj cannot already
reach their uses in USE�γi� and USE�γj� before the unification.

Let us introduce some notational shorthand, where R,R� � Nrg and O � A:

R
O
�� R� �def �o
 O : �γ � γ�
 R�R� : γ

o
�� γ�

Theorem 3 (Load-Precision-Preserving Unification). Unifying γi and γj
will make Selfs load-precision-preserving if all the following conditions hold:

C1 �γi�
GEN�γi�
����� USE�γj�;

C2 PRD�γi�
GEN�γi�
����� USE�γi� 	USE�γj�;

C3 �γj�
GEN�γj�
����� USE�γi�; and

C4 PRD�γj�
GEN�γj�
����� USE�γi� 	USE�γj�.

Proof Sketch. By unifying γi and γj , only the points-to relations reaching the
regions in USE�γi� 	USE�γj� are affected. As is standard, Selfs is monotonic,
implying that no strong update at a store is possible after the store has been
weakly updated. Therefore, any indirect reachable path (Definition 3), once es-
tablished, will remain unchanged. For reasons of symmetry, let us consider C1
and C2 only. C1 says that whatever γi generates (along its def-use edges) must
be used not only by USE�γi� (by construction) but also by USE�γj�. C2 says
that even if some values are killed in γi due to a strong update, the killed values

Region-Based Selective Flow-Sensitive Pointer Analysis 329

will still reach both USE�γi� and USE�γj� via a different path (without going
through γi), rendering the values non-killable (effectively).

Let π be defined in Lemma 1. If C1 – C4 hold, then �γ
 USE�γi�	USE�γj� :
pt�γ� � pt�π�γ��. By Lemma 1, Selfs is load-precision-preserving.

Example 3. Let us apply Theorem 3 to the example given in Figure 3, assuming
initially that each statement is in its own region: γ1 � �
1�, γ2 � �
2�, γ3 � �
3�
and γ4 � �
4�. Let us try to unify γ1 and γ2. According to the region graph
given in Figure 3(a), we have GEN�γ1� � �m,n�, GEN�γ2� � ∅. USE�γ1� �
�γ2, γ3, γ4�, USE�γ2� � �γ2�, PRD�γ1� � ∅ and PRD�γ2� � �γ1�. By Theorem 3,
C1 – C4 are satisfied. So γ1 and γ2 are unifiable. We can also choose to unify
γ3 and γ4 instead. Then GEN�γ3� � �m�, GEN�γ4� � ∅. USE�γ3� � �γ4�,
USE�γ4� � ∅, PRD�γ3� � �γ1� and PRD�γ4� � �γ1, γ3�. Note that GEN�γ4� �
∅ because there are no outgoing def-use chains from
4. Again, C1 – C4 are
satisfied, making γ3 and γ4 unifiable. By proceeding in either order, we will
obtain the region graph shown in Figure 3(b).

Note that unifying γ3 and γ4 makes Selfs lose the precision at
3 as explained
earlier. However, in this example, both
3 and
4 are dead code. If we add a load

5 : w � �q immediately after
3, which is in a new region γ5 � �
5�, there will
be a new indirect def-use
3

m
��
5 in Figure 3(a). In this case, γ3 and γ4 are no

longer unifiable since USE�γ3� � �γ4, γ5�. By treating γ3 as γi in Theorem 3,
C2 is violated since there is only one path from γ1 to γ5: γ1

m
�� γ3

m
�� γ5, where

a strong update is performed on m in γ3. So γ5 is not m-reachable from γ1. In
fact, merging γ3 and γ4 will cause the load
5 : w � �q to lose precision since
the store at
3 will only be weakly updated afterwards. �

Figure 5 illustrates our unification approach further, by assuming that all in-
direct def-use chains are related to one address-taken variable, o. In Figure 5(d),
if W3 is S3 (with a strong update to o inside), then the unification cannot be
performed as L45 is not o-reachable from S1 (the predecessor of S2 and S3).
Otherwise, L45 may receive spurious points-to relations propagated from S1. In
Figure 5(h), S1 and W2345 cannot be unified further because the predecessors of
S1 reach W2345 via only S1 (where a strong update to o is performed).

4 Evaluation

We demonstrate the effectiveness of Selfs under our unification-based region par-
titioning strategy. The baseline is a state-of-the-art sparse yet precision-preserving
version [14], denoted SFS, of FS given in Figure 1(b). We have selected 14 large
C programs (totalling 672 KLOC) from SPEC CPU2000/CPU2006, with their
characteristics given in Figure A.1. Our platform is a 2.00GHz Intel Xeon 32-core
CPU running Ubuntu Linux with 64GB memory.

4.1 Methodology

As discussed in Section 2, SFS works on a region graph such that each region
contains one single load or store. To apply our load-precision-preserving parti-

330 S. Ye, Y. Sui, and J. Xue

S1

S2 W3

L4 L5

o

o o

o oo o

S1

S2 W3

L45

o o

o o

S1

S2 W3

L45

o

o o

o o

S1

S2 W3

L45

o

o o

o o

S1

W245 W3

o

o

o o
o

S1

S2 W345

o

o

o o
o

S1

W23

L45

o

o

o

S1

W2345

o

o

o�

�

�

�

�

�

�

�

�
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 5. Some possible unification sequences illustrated for a part of a region graph, by
assuming that all indirect-use edges are related to one single address-taken variable, o.
The type of a region is identified by S, W or L (Definition 2).

tioning in Selfs, we start with a region graph such that each load or store is
in its own region. We then apply our unification-based approach to form larger
regions. As a result, Selfs is load-precision-preserving (Theorem 3), resulting in
the same precision for alias queries as SFS (among others). We repeat a process
of picking a region randomly and trying to unify it with one of its predecessors,
successors, and siblings in that order until no more unification is possible.

For efficiency reasons, we verify the four conditions in Theorem 3 during the
Selfs analysis by restricting ourselves to the o-reachable paths (Definition 3)
such that each of its intermediate nodes is one of the two regions to be unified. As
a result, starting with Figure 5(a), we will accept Figures 5(c) and (d) but reject
Figure 5(b). Finally, some unification steps are performed offline rather than
online during the analysis if they do not require the knowledge about whether a
store in a region (containing that store only) can be strongly updated or not.

4.2 Implementation

We have implemented Selfs in LLVM (version 3.3). The source files of each
benchmark are compiled into bit-code files using clang and then linked together
using llvm-link, with mem2reg being applied to promote memory into registers.
We use FI, i.e., Andersen’s analysis (using the constraint resolution techniques
from [25,27]) as pre-analysis for building indirect def-use chains [14,30,31].

Selfs is field-sensitive. Each field of a struct is treated as a separate object,
but arrays are considered monolithic. Positive weight cycles (PWC s) that arise
from processing fields of struct objects are detected and collapsed [24]. Distinct
allocation sites are modeled by distinct abstract objects as in [14,30,31].

Region-Based Selective Flow-Sensitive Pointer Analysis 331

Program
Size Analysis Times (Secs) Selfs’ Regions

KLOC SFS Selfs Speedup (of L, S and W Types)
#L #S #W #Avg #Max

ammp 13.4 0.31 0.31 1.00 538 0 187 1.53 16
crafty 21.2 0.30 0.31 0.97 377 0 328 1.95 276
gcc 230.4 826.34 408.93 2.02 10690 294 6867 2.23 401
h264ref 51.6 40.84 5.48 7.45 3523 159 1460 1.94 128
hmmer 36.0 0.42 0.52 0.81 1170 59 487 1.59 56
mesa 61.3 1096.63 180.37 6.08 3801 0 2211 1.40 50
milc 15.0 0.28 0.26 1.08 566 8 253 1.69 66
parser 11.4 3.80 2.31 1.65 820 11 931 1.47 110
perlbmk 87.1 407.86 143.25 2.85 7514 513 4451 1.78 189
sjeng 13.9 0.07 0.19 0.37 463 0 524 1.50 14
sphinx3 25.1 1.16 1.23 0.94 953 14 598 1.98 42
twolf 20.5 1.07 1.02 1.05 1798 1 494 3.51 184
vortex 67.3 86.01 37.92 2.27 2369 198 2061 2.11 830
vpr 17.8 0.30 0.27 1.11 768 0 305 2.36 39

Fig. 6. Comparing SFS and Selfs

We have implemented SFS differently from that in [14]. In this paper, a
program’s call graph is built on the fly and points-to sets are represented using
sparse bit vectors, for both SFS and Selfs, which are implemented in LLVM 3.3.
In [14], implemented in LLVM 2.5, a program’s call graph is pre-computed and
points-to sets are represented using binary decision diagrams (BDDs).

4.3 Results and Analysis

As shown in Figure 6, Selfs is 2.13X faster than SFS on average under our load-
precision-preserving partitioning strategy while maintaining the same precision
for reads, i.e., for all alias queries in all the functions from a benchmark. The
best speedups are achieved at h264ref (7.45X) and mesa (6.08X). Note that
Selfs can go faster, approaching eventually the efficiency of FI, if increasingly
larger regions are used. The analysis time of a benchmark, which excludes the
time spent on pre-analysis, is the average of three runs.

Let us look at the results of the two analyses in more detail. SFS spends
2465.39 seconds to analyse all the benchmarks but Selfs finishes in 782.37 sec-
onds. In Columns 6 – 10, we see the number of regions of each type as well as
the average and maximum region sizes. The average region sizes range from 1.40
(mesa) to 3.51 (twolf). In gcc, perlbmk and vortex, each largest region ends
up with 150+ loads or stores being resolved flow-insensitively, with the precision
for all reads being preserved. This shows the great potential promised by Selfs
in achieving load-precision-preserving flow-sensitive analysis in a region-based
manner. With better tuned unification rules, better speedups are expected.

For relatively small program, such as ammp, hmmer, milc and sjeng, Selfs
yields little or no performance benefits due to the overhead on region partition-

332 S. Ye, Y. Sui, and J. Xue

am
m
p

cr
af
ty gc

c

h2
64

re
f

hm
m
er

m
es
a

m
ilc

pa
rs
er

pe
rlb

m
k
sje

ng

sp
hi
nx

3
tw

olf

vo
rt
ex vp

r
0

20

40

60

80

100

FSAnal
FIAnal
Partitioning
Propagation

A
n
al

ys
is

T
im

es
(%

)

Fig. 7. Percentage distributions of Selfs’ analysis time in a benchmark over “FSAnal”
(the time for its flow-sensitive analysis), “FIAnal” (the time for its flow-insensitive
analysis), “Partitioning” (the time on region partitioning), and “Propagation” (the time
for propagating points-to facts across the indirect def-use chains in the region graph)

ing, as illustrated in Figure 7. However, for relatively larger ones, which contain
more objects and more dense def-use chains to be dealt with flow-sensitively
(Figure A.1), such as gcc, mesa, perlbmk and vortex, Selfs is beneficial. The
best speedups are observed at h264ref (7.45X) and mesa (6.08X), because the
times for propagating points-to facts across indirect def-use chains have been
significantly reduced by 22.3X and 10.24X, respectively (Figure 8).

5 Related Work
Sparse Pointer Analysis. Sparse analysis, a recent improvement over the
classic iterative data-flow approach, can achieve flow-sensitivity more efficiently
by propagating points-to facts sparsely across pre-computed def-use chains
[14,15,23,32,35]. Initially, sparsity was experimented with in [16,17] on a Sparse
Evaluation Graph [5,26], a refined CFG with irrelevant nodes being removed.
On various SSA form representations (e.g., factored SSA [6], HSSA [7] and par-
tial SSA [20]), further progress was made later. The def-use chains for top-level
pointers, once put in SSA, can be explicitly and precisely identified, giving rise
to a so-called semi-sparse flow-sensitive analysis [15]. Recently, the idea of staged
analysis [11,14] that uses pre-computed points-to information to bootstrap a later
more precise analysis has been leveraged to make pointer analysis full-sparse for
both top-level and address-taken variables [14,23,35].

Hybrid Analysis. The aim of hybrid-sensitive pointer analysis is to find a
right balance between efficiency and precision. As a well-known example for
mixing different flow-insensitive analyses, one-level approach [9] lies between
Steensgaard’s and Andersen’s analyses (in terms of precision) by not applying its
unification process to top-level pointers. For context-sensitivity, hybrid analysis
has been used in Java to pick up the benefits of both call-site sensitivity and
object sensitivity [19]. In [21], strong updates are performed for only singleton
objects on top of a flow- and field-insensitive Andersen’s analysis. Earlier [12,29],
how to adjust the analysis precision according to clients’ needs is discussed.

Region-Based Selective Flow-Sensitive Pointer Analysis 333

Program Propagation Times (Secs) SpeedupSFS Selfs
ammp 0.13 0.05 2.60
crafty 0.02 0.01 2.00
gcc 741.42 270.32 2.74
h264ref 25.20 1.13 22.30
hmmer 0.11 0.09 1.22
mesa 719.97 70.31 10.24
milc 0.02 0.01 2.00
parser 2.65 0.43 6.16
perlbmk 285.90 68.96 4.15
sjeng 0.02 0.01 2.00
sphinx3 0.53 0.08 6.63
twolf 0.42 0.23 1.83
vortex 77.33 18.47 4.19
vpr 0.05 0.02 2.50

Fig. 8. Propagation times of SFS and Selfs for analysing the address-taken variables
across their indirect def-use chains

Region-based Analysis. Region-based analysis, which partitions a program
into different compilation units, was commonly used to explore locality and gain
more opportunities for compiler optimisations, such as inlining [13,33], partial
dead code elimination [3], and just-in-time optimisation [28]. In [36,37], programs
are decomposed into different regions according to the alias relations and each
region is solved independently. Same partition strategy was also adopted by [18]
to speed up a flow- and context-sensitive pointer analysis.

6 Conclusion

We introduce a new region-based flow-sensitive pointer analysis, called Selfs,
that allows efficiency and precision tradeoffs to be made subject to region parti-
tioning strategies used. We have implemented Selfs in LLVM and demonstrated
its effectiveness with a unification-based region partitioning strategy, by compar-
ing it with a state-of-the-art flow-sensitive analysis. In addition, our unification-
based approach is interesting in its own right as it leads to a particular analysis
that is as precise as FS for almost all practical purposes.

In future work, we will develop a range of partitioning strategies to relax our
unification-based approach. There is a lot of freedom in performing a precision-
loss partitioning (Theorems 1 and 2). In order to be tunable and client-specific,
a relaxed strategy can be designed along the following directions (among oth-
ers). First, the user can identify parts of a program that require flow-sensitive
analysis based on client analyses’ needs (e.g., hot functions and major changes
made during software development). Second, the user may request customised
flow-sensitivity for some selected variables. Third, some stores can always be
weakly updated (to enable more offline unification steps, for example). Finally,

334 S. Ye, Y. Sui, and J. Xue

our unification approach can be relaxed to enable more regions to be merged
without having to preserve the precision for all the loads.

Acknowledgments. The authors wish to thank the anonymous reviewers for
their valuable comments. This work is supported by Australian Research Grants,
DP110104628 and DP130101970, and a generous gift by Oracle Labs.

References

1. Acharya, M., Robinson, B.: Practical change impact analysis based on static pro-
gram slicing for industrial software systems. In: ICSE 2011, pp. 746–755 (2011)

2. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. PhD Thesis, DIKU, University of Copenhagen (1994)

3. Cai, Q., Gao, L., Xue, J.: Region-based partial dead code elimination on predicated
code. In: Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 150–166. Springer,
Heidelberg (2004)

4. Ceccarelli, M., Cerulo, L., Canfora, G., Di Penta, M.: In: ICSE 2010, pp. 163–166
(2010)

5. Choi, J.-D., Cytron, R., Ferrante, J.: Automatic construction of sparse data flow
evaluation graphs. In: POPL 1991, pp. 55–66 (1991)

6. Choi, J.-D., Cytron, R., Ferrante, J.: On the efficient engineering of ambitious pro-
gram analysis. IEEE Transactions on Software Engineering 20(2), 105–114 (1994)

7. Chow, F., Chan, S., Liu, S., Lo, R., Streich, M.: Effective representation of aliases
and indirect memory operations in SSA form. In: Gyimóthy, T. (ed.) CC 1996.
LNCS, vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

8. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems 13(4), 451–490 (1991)

9. Das, M.: Unification-based pointer analysis with directional assignments. In: PLDI
2000, pp. 35–46 (2000)

10. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: PLDI 2002, pp. 57–68 (2002)

11. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM Transactions on Software Engineering
and Methodology 17(2), 1–34 (2008)

12. Guyer, S.Z., Lin, C.: Client-driven pointer analysis. In: Cousot, R. (ed.) SAS 2003.
LNCS, vol. 2694, pp. 214–236. Springer, Heidelberg (2003)

13. Hank, R.E., Hwu, W.-M.W., Rau, B.R.: Region-based compilation: An introduc-
tion and motivation. In: MICRO 1995, pp. 158–168 (1995)

14. Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: CGO 2011, pp. 289–298 (2011)

15. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In: POPL 2009,
pp. 226–238 (2009)

16. Hind, M., Burke, M., Carini, P., Choi, J.-D.: Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems 21(4), 848–894 (1999)

17. Hind, M., Pioli, A.: Assessing the effects of flow-sensitivity on pointer alias analyses.
In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 57–81. Springer, Heidelberg
(1998)

Region-Based Selective Flow-Sensitive Pointer Analysis 335

18. Kahlon, V.: Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis. In: PLDI 2008, pp. 249–259 (2008)

19. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: PLDI 2013, pp. 423–434 (2013)

20. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004, pp. 75–86 (2004)

21. Lhoták, O., Chung, K.-C.A.: Points-to analysis with efficient strong updates. In:
POPL 2011, pp. 3–16 (2011)

22. Livshits, V.B., Lam, M.S.: Tracking pointers with path and context sensitivity for
bug detection in c programs. In: FSE 2003, pp. 317–326 (2003)

23. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for C-like languages. In: PLDI 2012, pp. 229–238 (2012)

24. Pearce, D., Kelly, P., Hankin, C.: Efficient field-sensitive pointer analysis of C.
ACM Transactions on Programming Languages and Systems 30(1) (2007)

25. Pereira, F., Berlin, D.: Wave propagation and deep propagation for pointer analysis.
In: CGO 2009, pp. 126–135 (2009)

26. Ramalingam, G.: On sparse evaluation representations. Theoretical Computer Sci-
ence 277(1), 119–147 (2002)

27. Rick Hank, R.R., Lee, L.: Implementing next generation points-to in Open64. In:
Open64 Developers Forum

28. Suganuma, T., Yasue, T., Nakatani, T.: A region-based compilation technique for
a Java just-in-time compiler. In: PLDI 2003, pp. 312–323 (2013)

29. Sui, Y., Li, Y., Xue, J.: Query-directed adaptive heap cloning for optimizing com-
pilers. In: CGO 2013, pp. 1–11 (2013)

30. Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse value-flow
analysis. In: ISSTA 2012, pp. 254–264 (2012)

31. Sui, Y., Ye, D., Xue, J.: Detecting memory leaks statically with full-sparse value-
flow analysis. IEEE Transactions on Software Engineering 40(2), 107–122 (2014)

32. Sui, Y., Ye, S., Xue, J., Yew, P.-C.: SPAS: Scalable path-sensitive pointer analysis
on full-sparse SSA. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 155–171.
Springer, Heidelberg (2011)

33. Triantafyllis, S., Bridges, M.J., Raman, E., Ottoni, G., August, D.I.: A framework
for unrestricted whole-program optimization. In: PLDI 2006, pp. 61–71 (2006)

34. Ye, D., Sui, Y., Xue, J.: Accelerating dynamic detection of uses of undefined vari-
ables with static value-flow analysis. In: CGO 2014, pp. 154–164 (2012)

35. Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow-and
context-sensitive pointer analysis scalable for millions of lines of code. In: CGO
2010, pp. 218–229 (2010)

36. Zhang, S., Ryder, B.G., Landi, W.: Program decomposition for pointer aliasing: A
step toward practical analyses. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039,
pp. 81–92. Springer, Heidelberg (1996)

37. Zhang, S., Ryder, B.G., Landi, W.A.: Experiments with combined analysis for
pointer aliasing. In: PASTE 1998, pp. 11–18 (1998)

336 S. Ye, Y. Sui, and J. Xue

A Appendix

Program
Size #Statement

#Ptrs
#Object

KLOC AddrOf Copy Load Store Total Glob. Heap Stk Func Total
ammp 13.4 702 6875 925 187 8689 29499 49 42 76 209 376
crafty 21.2 1632 9603 1011 367 12613 44744 457 33 70 147 707
gcc 230.4 8934 135332 32498 7832 184596 399377 1400 154 1018 2273 4845
h264ref 51.6 1829 27845 8324 1635 39633 114221 374 209 284 287 1154
hmmer 36 1195 7635 2083 581 11494 32415 42 376 89 155 662
mesa 61.3 2691 45447 6112 2298 56548 136415 35 322 465 1130 1952
milc 15 1104 8591 1138 263 11096 26437 92 63 203 270 628
parser 11.4 1417 6045 1626 964 10052 23417 174 114 42 353 683
perlbmk 87.1 4366 39602 17096 5154 66218 148231 415 28 458 1168 2069
sjeng 13.9 926 5579 848 632 7985 29624 214 14 119 173 520
sphinx3 25.1 1898 10169 2482 622 15171 36588 69 59 122 421 671
twolf 20.5 1371 14390 7526 506 23793 62430 304 192 116 212 824
vortex 67.3 6636 20408 6577 3185 36806 104218 739 29 1864 961 3593
vpr 17.8 1195 5703 2222 310 9430 28405 101 6 101 303 511

Fig.A.1. Program characteristics

Author Index

Abdulla, Parosh Aziz 1
Albert, Elvira 18
Alias, Christophe 168

Bakhirkin, Alexey 34
Berdine, Josh 34
Besson, Frédéric 51
Brotherston, James 68

Chakarov, Aleksandar 85
Chang, Bor-Yuh Evan 134, 285
Chen, Liqian 101
Chen, Yu-Fang 118
Correas, Jesús 18
Cox, Arlen 134

Dan, Andrei 237

Emerson, E. Allen 268

Ghorbal, Khalil 151
Gorogiannis, Nikos 68

Haziza, Frédéric 1
Hoĺık, Lukáš 1
Hsieh, Chiao 118

Iooss, Guillaume 168

Jensen, Thomas 51

Kapur, Deepak 101

Lee, Woosuk 184
Liu, Jiangchao 101

Madsen, Magnus 201
Mandel, Louis 219
Meshman, Yuri 237

Miné, Antoine 101, 302
Møller, Anders 201
Monniaux, David 253

Oh, Hakjoo 184
Olivo, Oswaldo 268

Pasteur, Cédric 219
Piterman, Nir 34
Platzer, André 151

Rajopadhye, Sanjay 168
Rival, Xavier 134, 285
Román-Dı́ez, Guillermo 18

Samanta, Roopsha 268
Sankaranarayanan, Sriram 85
Schrammel, Peter 253
Sogokon, Andrew 151
Sui, Yulei 319

Toubhans, Antoine 285
Tsai, Ming-Hsien 118

Urban, Caterina 302

Vechev, Martin 237
Vittet, Pierre 51

Wang, Bow-Yaw 118
Wang, Farn 118
Wang, Ji 101

Xue, Jingling 319

Yahav, Eran 237
Ye, Sen 319
Yi, Kwangkeun 184

	Preface
	Organization
	Dynamic Program Verification
	Higher-Order Model Checking: From Theory To Practice
	References

	Fully Automated Shape Analysis Based onForest Automata with Data Constraints
	References

	Table of Contents
	Block Me If You Can!
	1 Introduction
	2 Parametrized Systems
	3 Example: Szymanski’s Protocol
	4 Viewsand∀∃-Formulae
	5 Verification Procedure
	6 Non-atomically Checked Global Conditions
	7 Experiments
	8 Related Work
	9 Conclusion and Future Work
	References

	Peak Cost Analysis of Distributed Systems
	1 Introduction
	2 The Distributed Model
	2.1 Syntax
	2.2 Semantics

	3 Peak Cost of Distributed Systems
	4 Basic Concepts: Points-to, Cost, and MHP Analyses
	5 Peak Cost Analysis
	5.1 Inference of Queue Configurations
	5.2 Inference of Quantified Queue Configurations
	5.3 Number of Tasks Instances

	6 Experimental Evaluation
	7 Conclusions, Related and Future Work
	References

	Backward Analysis via over-ApproximateAbstraction and under-Approximate Subtraction
	1 Introduction
	2 Preliminaries
	2.1 Programming Language Syntax and Semantics
	2.2 Fixed-Point Characterizations of Safe and Unsafe States

	3 Least Fixed-Point Characterization of Safe States
	3.1 Recurrent Sets
	3.2 Positive Least Fixed Point via Recurrent Sets

	4 Approximate Characterizations
	4.1 Optimizations of Constraints
	4.2 Approximating the Recurrent Set

	5 Examples
	6 RelatedWork
	7 Conclusion and FutureWork
	References

	SawjaCard: A Static Analysis Tool for CertifyingJava Card Applications
	1 Introduction
	2 JavaCard
	2.1 Modelling the Java Card Runtime and Its Libraries
	2.2 Modelling the Java Card Firewall

	3 Validation of Java Card Applications
	4 Overview of the Static Analysis Engine
	4.1 Combining Intervals, Constant Sets and Symbolic Equalities
	4.2 Points-to Analysis with Detection of Singleton Objects

	5 File System Access: A Case for Trace Partitioning
	6 Experimental Evaluation
	7 Related Work
	8 Conclusions
	References

	Cyclic Abduction of Inductively Defined Safetyand Termination Preconditions�
	1 Introduction
	2 Programs and Preconditions
	3 Formal Cyclic Safety/Termination Proofs
	4 Cyclic Abduction: Basic Strategy and Tactics
	4.1 Overview of Abduction Strategy
	4.2 Tactics
	4.3 Abductive Tactic for Branching Commands
	4.4 Abductive Tactic for Dereferencing Assignments
	4.5 Abductive Tactic for Forming Back-Links
	4.6 Tactic for Existential Generalisation
	4.7 Simplification of Inductive Rule Sets.

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Expectation Invariants for Probabilistic Program Loops as Fixed Points
	1 Introduction
	2 Preliminaries
	3 Expectation Invariants
	3.1 Definitions and Examples
	3.2 Conic Inductive Expectation Invariants

	4 Expectation Invariants as Fixed Points
	5 Experimental Results and Future Work
	References

	An Abstract Domain to Infer Octagonal Constraints with Absolute Value
	1 Introduction
	2 The Octagon Abstract Domain
	2.1 Octagon Representation
	2.2 Closure

	3 An Abstract Domain of Octagonal Constraints with Absolute Value
	3.1 Octagonal Constraints with Absolute Value
	3.2 Extending Difference-BoundMatrices
	3.3 Conversions between Octagons and AV Octagons
	3.4 Closure Algorithms
	3.5 Other Domain Operations
	3.6 Supporting Strict Inequalities

	4 Implementation and Experimental Results
	4.1 Experimental Comparison of Three Closure Algorithms
	4.2 Experiments on NECLA Division-by-Zero Benchmarks
	4.3 Experiments on ´ASTREE

	5 Related Work
	6 Conclusion
	References

	Verifying Recursive ProgramsUsing Intraprocedural Analyzers
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Proving via Transformation
	4.1 Unwinding
	4.2 Under-Approximation
	4.3 Computing Summaries
	4.4 Checking Summaries
	4.5 Correctness

	5 Experiments
	6 Related Works
	7 Discussion
	References

	Automatic Analysis of Open Objects in Dynamic Language Programs
	1 Introduction
	2 Overview
	3 Abstraction of Dynamic Language Heaps
	4 Materialization and Transfer Functions
	5 Automatic Invariant Inference
	6 Precision Evaluation
	7 RelatedWork
	8 Conclusion and FutureWork
	References

	Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations
	1 Introduction
	2 Preliminaries
	3 Characterizing Invariance of Conjunctive Equations
	3.1 Decision Procedure
	3.2 Complexity
	3.3 Optimization

	4 Sufficient Conditions for Invariance of Equations
	5 Differential Cuts and Lie’s Rule
	5.1 Proof Strategies using Differential Cuts
	5.2 Performance and Limitations

	6 Experiments
	7 Related Work
	8 Conclusion
	References

	On Program Equivalence with Reductions
	1 Introduction
	2 Preliminaries
	2.1 System of Affine Recurrence Equations with Reductions
	2.2 Equivalence Modulo Associativity and Commutativity
	2.3 Deciding Herbrand Equivalence of Two SAREs

	3 Decompose Reduce Rule
	4 Inferring the Bijection
	4.1 Illustrative Example
	4.2 Extraction of the Constraints
	4.3 Obtaining the Partial Bijections
	4.4 Parametric PerfectMatching Problem

	5 Extensions
	6 Implementation
	7 Conclusion
	References

	A Progress Bar for Static Analyzers
	1 Introduction
	2 Overall Approach to Progress Estimation
	2.1 Static Analysis
	2.2 Progress Estimation

	3 Setting
	4 Details on Our Progress Estimation
	4.1 The Height Function
	4.2 Pre-analysis via Partial Flow-Sensitivity
	4.3 Precise Estimation of the Final Height

	5 Experiments
	5.1 Setting
	5.2 Results
	5.3 Discussion

	6 Application to Relational Analyses
	7 Conclusion
	References
	A Progress Graphs

	Sparse Dataflow Analysis with Pointers and Reachability
	1 Introduction
	2 A Basic Analysis Framework
	3 Sparse Analysis
	3.1 Reading Values
	3.2 Writing Values
	3.3 Propagating Reachability
	3.4 A Data Structure for Finding Dominating Definitions

	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion
	References

	Reactivity of Cooperative Systems
	1 Introduction
	2 Overview of the Approach
	2.1 A First Example
	2.2 Intuitions and Limitations

	3 The Algebra of Behaviors
	3.1 The Behaviors
	3.2 Reactive Behaviors
	3.3 Equivalence on Behaviors

	4 The Type-and-Effect System
	4.1 Abstract Syntax
	4.2 Types
	4.3 Typing Rules
	4.4 Subeffecting with Row Polymorphism
	4.5 Proof of Soundness

	5 Examples
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Synthesis of Memory Fences via Refinement Propagation
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Searching for Fence Assignment and Refinement Placement
	2.3 Refinement Placement - Reduction and Abstraction

	3 Abstraction-Guided Fence Synthesis
	3.1 Abstraction-Guided Fence Synthesis

	4 Automatic Verification
	4.1 Reduction
	4.2 Analysis with Numerical Abstract Domains
	4.3 Abstraction Refinement of Numerical Analysis
	4.4 Empty-Buffer Analysis

	5 Evaluation
	5.1 Concurrent Algorithms
	5.2 Results

	6 Related Work
	7 Conclusion
	References

	Speeding UpLogico-Numerical Strategy Iteration
	1 Introduction
	2 Strategy Iteration Basics
	2.1 Program Model and Abstract Domain
	2.2 Strategy Iteration
	2.3 Computing the Strategy Value

	3 Our Algorithm
	3.1 Strategy Improvement Step
	3.2 Computing the Strategy Value with Fewer Unknowns
	3.3 Abstraction through Limitation of Partitioning

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Cost-Aware Automatic Program Repair
	1 Introduction
	2 Background
	3 Cost-Aware Program Repair
	3.1 The Problem
	3.2 Solution Overview

	4 Cost-Aware Repair of Boolean Programs
	5 Concretization
	6 Experiments with a Prototype Tool
	7 Discussion
	References

	An Abstract Domain Combinator for Separately Conjoining Memory Abstractions
	1 Introduction
	2 Overview
	3 The Separating Combination of Memory Abstract Domains
	3.1 Memory Abstract Domain
	3.2 The Separating Combination

	4 Analysis Algorithms
	4.1 Creation of Memory Cells
	4.2 Evaluation of l-Value and r-Value Expressions
	4.3 Abstract Transfer Function for Assignment
	4.4 Inclusion Checking

	5 Implementation and Empirical Evaluation
	6 Related Work
	7 Conclusion
	References

	A Decision Tree Abstract Domain for Proving Conditional Termination
	1 Introduction
	2 Termination Semantics
	3 Piecewise-Defined Ranking Functions
	3.1 Functions Abstract Domain
	3.2 Constraint-Based Decision Trees
	3.3 Widening
	3.4 Abstract Termination Semantics

	4 Implementation
	5 Related Work
	6 Conclusion and Future Work
	References

	Region-Based Selective Flow-Sensitive Pointer Analysis
	1 Introduction
	2 TheSelfs Analysis Framework
	2.1 Canonical Representation
	2.2 Region Graph
	2.3 Region-Based Flow-Sensitivity

	3 Instantiating the Selfs Analysis
	3.1 Load-Precision-Preserving Partitioning
	3.2 Unification

	4 Evaluation
	4.1 Methodology
	4.2 Implementation
	4.3 Results and Analysis

	5 Related Work
	6 Conclusion
	References
	A Appendix

	Author Index

