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Abstract. A Skyline query retrieves all objects in a dataset that are not
dominated by other objects according to some given criteria. Although
there are a few parallel Skyline algorithms on multicore processors, it is
still a challenging task to fully exploit the advantages of such modern
hardware architectures for efficient Skyline computation. In this paper
we present high-performance parallel Skyline algorithms based on the
lattice structure generated by a Skyline query. We compare our meth-
ods with the state-of-the-art algorithms for multicore Skyline processing.
Experimental results on synthetic and real datasets show that our new
algorithms outperform state-of-the-art multicore Skyline techniques for
low-cardinality domains. Our algorithms have linear runtime complexity
and fully play on modern hardware architectures.
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1 Introduction

The Skyline operator [1] has emerged as an important and very popular summa-
rization technique for multi-dimensional datasets. A Skyline query selects those
objects from a dataset D that are not dominated by any others. An object p
having d attributes (dimensions) dominates an object q, if p is better than q in
at least one dimension and not worse than q in all other dimensions, for a defined
comparison function. This dominance criteria defines a partial order and there-
fore transitivity holds. The Skyline is the set of points which are not dominated
by any other point of D. Without loss of generality, we consider the Skyline with
the min function for all attributes.

Most of the previous work on Skyline computation has focused on the develop-
ment of efficient sequential algorithms [2]. However, the datasets to be processed
in real-world applications are of considerable size, i.e., there is the need for im-
proved query performance, and parallel computing is a natural choice to achieve
this performance improvement, since multicore processors are going mainstream
[3]. This is due to the fact that Moore’s law of doubling the density of transistors
on a CPU every two years – and hence also doubling algorithm’s performance –
may come to an end in the next decade due to thermal problems. Thus, the chip
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manufactures tend to integrate multiple cores into a single processor instead of
increasing the clock frequency. In upcoming years, we will see processors with
more than 100 cores, but not with much higher clock rates. However, since most
applications are build on using sequential algorithms, software developers must
rethink their algorithms to take full advantage of modern multicore CPUs [3].
The potential of parallel computing is best described by Amdahl’s law [4]: the
speedup of any algorithm using multiple processors is strictly limited by the
time needed to run its sequential fraction. Thus, only high parallel algorithms
can benefit from modern multicore processors.

Typically an efficient Skyline computation depends heavily on the number
of comparisons between tuples, called dominance tests. Since a large number of
dominance tests can often be performed independently, Skyline computation has
a good potential to exploit multicore architectures as described in [5–7]. In this
paper we present algorithms for high-performance parallel Skyline computation
which do not depend on tuple comparisons, but on the lattice structure con-
structed by a Skyline query over low-cardinality domains. Following [8, 2] many
Skyline applications involve domains with small cardinalities – these cardinali-
ties are either inherently small (such as star ratings for hotels), or can naturally
be mapped to low-cardinality domains (such as price ranges on hotels).

The remainder of this paper is organized as follows: In Section 2 we discuss
some related work. In Section 3 we revisit the Hexagon algorithm [9], since it is
the basic idea behind our parallel algorithms. Based on this background we will
present our parallel Skyline algorithms in Section 4. We conduct an extensive
performance evaluation on synthetic and real datasets in Section 5. Section 6
contains our concluding remarks.

2 Related Work

Algorithms of the block-nested-loop class (BNL) [1] are the most prominent algo-
rithms for computing Skylines. In fact the basic operation of collecting maxima
during a single scan of the input data can be found at the core of several Sky-
line algorithms, cp. [10, 2]. Another class of Skyline algorithms is based on a
straightforward divide-and-conquer (D&C) strategy. D&C uses a recursive split-
and-merge scheme, which is definitely applicable in parallel scenarios [11].

There is also a growing interest in distributed Skyline computation, e.g., [12–
16], where data is partitioned and distributed over net databases. Also there
are several approaches based on the MapReduce framework, e.g., [17]. All ap-
proaches have in common that they share the idea of partitioning the input
data for parallel shared-nothing architectures communicating only by exchang-
ing messages. The nodes locally process the partitions in parallel, and finally
merge the local Skylines. The main difference of such a parallel Skyline compu-
tation resides in the partitioning schemes of the data. The most used partitioning
scheme is grid-based partitioning [14]. Recent work [18] focus on an angle-based
space partitioning scheme using hyperspherical coordinates of the data points.
In [19], the authors partition the space using hyperplane projections to obtain
useful partitions of the dataset for parallel processing.
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Im et al. [6] focuses on exploiting properties specific to multicore architectures
in which participating cores inside a processor share everything and communicate
simply by updating the main memory. They propose a parallel Skyline algorithm
called pSkyline. pSkyline divides the dataset linearly into N equal sized parti-
tions. The local Skyline is then computed for each partition in parallel using
sSkyline [6]. Afterwards the local Skyline results have to be merged. Liknes et
al. [7] present the APSkyline algorithm for efficient multicore computation of
Skyline sets. They focus on the partitioning of the data and use the angle-based
partitioning from [18] to reduce the number of candidate points that need to be
checked in the final merging phase. The authors of [5] modified the well-known
BNL algorithm to develop parallel variants based on a shared linked list for the
Skyline window. In their evaluation, the lazy locking scheme [20] is shown to be
most efficient in comparison to continuous locking or lock-free synchronization.
There is also recent work on computing Skylines using specialized parallel hard-
ware, e.g., GPU [21] and FPGA [22]. In contrast to previous works, our approach
is based on the parallel traversal of the lattice structure of a Skyline query.

3 Skyline Computation Using the Lattice Revisited

Our parallel algorithms are based on the algorithms Hexagon [9] and LS-B [8],
which follow the same idea: the partial order imposed by a Skyline query over a
low-cardinality domain constitutes a lattice. This means if a, b ∈ D, the set {a, b}
has a least upper bound and a greatest lower bound in D. Visualization of such
lattices is often done using Better-Than-Graphs (BTG) (Hasse diagrams), graphs
in which edges state dominance. The nodes in the BTG represent equivalence
classes. Each equivalence class contains the objects mapped to the same feature
vector. All values in the same class are considered substitutable.

An example of a BTG over a 2-dimensional space is shown in Figure 1a. We
write [2, 4] to describe a two-dimensional domain where the first attribute A1

is an element of {0,1,2} and attribute A2 an element of {0,1,2,3,4}. The arrows
show the dominance relationship between elements of the lattice.
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Fig. 1. The Hexagon algorithm revisited [9]
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The node (0, 0) presents the best node, i.e., the least upper bound for two
arbitrary nodes a and b in the lattice. The node (2, 4) is the worst node and
serves as the greatest lower bound. The bold numbers next to each node are
unique identifiers (ID) for each node in the lattice, cp. [9]. Nodes having the
same level are incomparable. That means for example, that neither the objects
in the node (0, 4) are better than the objects in (2, 2) nor vice versa. They have
the same overall level 4. A dataset D does not necessarily contain representatives
for each lattice node. In Figure 1a the gray nodes are occupied (non-empty) with
real elements from the dataset whereas the white nodes have no element (empty).

The method to obtain the Skyline can be visualized using the BTG. The
elements of the dataset D that compose the Skyline are those in the BTG that
have no path leading to them from another non-empty node in D. In Figure 1a
these are the nodes (0, 1) and (2, 0). All other nodes have direct or transitive
edges from these both nodes, and therefore are dominated. The algorithms in
[9, 8] exploit these observations and in general consist of three phases:

1) Phase 1: The Construction Phase initializes the data structures. The lattice
is represented by an array in main memory with the size of the lattice, i.e.,
the number of nodes. Each position in the array stands for one node ID in
the lattice. Initially, all nodes of the lattice are marked as empty.

2) Phase 2: In the Adding Phase the algorithm iterates through each element
t of the dataset D. For each element t the unique ID and the node of the
lattice that corresponds to t is determined. This node is marked non-empty.

3) Phase 3: After all tuples have been processed, the nodes of the lattice that
are marked as non-empty and which are not reachable by the transitive dom-
inance relationship from any other non-empty node of the lattice represent
the Skyline values. Nodes that are non-empty but are reachable by the dom-
inance relationship, and hence are not Skyline values, are marked dominated
to distinguish them from present Skyline values.

From an algorithmic point of view this is done by a combination of breadth-
first traversal (BFT) and depth-first traversal (DFT). The nodes of the lattice
are visited level-by-level in a breadth-first order (the blue dashed line in
Figure 1b). When an empty node is reached, it is removed from the BFT
relation. Each time a non-empty and not dominated node is found, a DFT
is done marking all dominated nodes as dominated. For example, the node
(0, 1) in Figure 1b is not empty. The DFT walks down to the nodes (1, 1) and
(0, 2). Which one will be visited first is controlled by a so called edge weight,
cp. [9]. Here, (1, 1) will be marked as dominated and the DFT will continue
with (2, 1), etc. (the red solid arrows in Figure 1b). If the DFT reaches the
bottom node (2, 4) (or an already dominated node) it will recursively follow
the other edge weights, i.e. the red dashed arrows, and afterwards the red
dotted arrows. Afterwards the BFT will continue with node (1, 0), which will
be removed because it is empty. The next non-empty node is (1, 1), which is
already dominated and therefore we will continue with (2, 0). Since all other
nodes are marked as dominated, the algorithm will stop and the remaining
nodes (0, 1) and (2, 0) present the Skyline.
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4 Parallel Skyline Algorithms

In this section we describe our parallel algorithms, the used data structures,
discuss some implementation issues, and have a look at the complexity and
memory requirements of our algorithms.

4.1 Parallel Skyline Computation

For the development of our parallel Skyline algorithms we combine a split ap-
proach of the input dataset with a shared data structure supporting fine grained
locking and apply them to the Hexagon algorithm described in Section 3.

The general idea of parallelizing the Hexagon algorithm is to parallelize the
adding phase (Phase 2) and the removal phase (Phase 3). Phase 1 is not worth
to parallelize because of its simple structure and minor time and effort for the
initialization. Parallelizing Phase 2 can be done using a simple partitioning ap-
proach of the input dataset, whereas for Phase 3 two different approaches can be
used: In the first variant the parallel Phase 3 starts after all elements were added
to the BTG. We call this algorithm ARL-Skyline (Adding-Removal-Lattice-
Skyline). The second approach runs the adding and removal simultaneously.
This algorithm is called HPL-Skyline (High-Parallel-Lattice-Skyline).

The ARL-Skyline Algorithm (ARL-S) is designed as follows:

– Phase 1: Initialize all data structures.

– Phase 2: Split the input dataset into c partitions, where c is the number
of used threads. For each partition a worker thread iterates through the
partition, determines the IDs for the elements and marks the corresponding
entries in the BTG as non-empty.

– Phase 3: After adding all elements to the BTG a breadth-first walk begin-
ning at the top starts (blue line in Figure 2a). For each non-empty and not
dominated node run tasks1 for the depth-first walk with the dominance test.
In parallel continue with the breadth-first walk.

For example, if the node (0, 1) is reached in Figure 2a, two further tasks can
be started in parallel to run a DFT down to (0, 2) and (1, 1) (red solid ar-
rows). Continuing with the BFT we reach the already dominated node (1, 1)
and afterwards (2, 0). A new DFT task follows the red dashed arrows to mark
nodes as dominated. Note that the BFT task might be slower or faster than
the DFT from node (0, 1) and therefore the DFT could follow different paths
in the depth-first dominance search. The pseudocode for ARL-S reduced to
its essence is decpicted in Figure 2b; the fork/join task for the DFT can be
found in Figure 3b.

1 We use the ForkJoinPool from Java 7 to manage the recursive DFT tasks.
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(a) BTG for ARL-S (b) Pseudocode

Fig. 2. The ARL-Skyline algorithm

The HPL-S algorithm combines Phase 2 and 3 of ARL-S to one phase.

The HPL-Skyline Algorithm (HPL-S) is designed as:

– Phase 1: Initialize all data structures.
– Phase 2+3: Similar to Phase 2 in ARL-S we split the dataset into c par-

titions, for each partition a worker thread ci. If one of the worker threads
marks a node in the BTG as non-empty, it immediately starts a task for the
DFT dominance test (if not done yet) and continues with adding elements,
cp. Figure 3a. The simplified pseudocode is shown in Figure 3b.

For example, thread c1 adds an element to (0, 3) and immediately starts
additional tasks for the DFT (red arrows). Simultaneously another thread
c2 adds an element to the node (0, 1) and starts tasks for the DFT and
dominance tests (red dotted arrows). After thread c1 has finished, it wants to
add an element to (1, 1). However, since it is already marked as dominated,
thread c1 can continue with adding elements to other nodes in the BTG
without performing a DFT dominance test.

After all threads have finished, a breadth-first traversal is done on the
remaining nodes (blue line in Figure 3a). Again, the non-empty and not
dominated nodes present the Skyline.

The advantage of the HPL-S in comparison to ARL-S is that the DFT search
will mark dominated nodes as dominated and other parallel running threads do
not have to add possible elements to these already dominated nodes. This saves
memory and runtime.



High Parallel Skyline Computation over Low-Cardinality Domains 103

2(0, 2)

3(0, 3)

4(0, 4)

1(0, 1)

9(1, 4)

0(0, 0)

6(1, 1)

7(1, 2)

8(1, 3)

14(2, 4)

5(1, 0)

13(2, 3)

10(2, 0)

11(2, 1)

12(2, 2)

(a) BTG for HPL-S (b) Pseudocode

Fig. 3. The HPL-Skyline algorithm

4.2 Data Partitioning and Choosing the Right Data Structure

Data Partitioning. The performance of known parallel and distributed BNL
and D&C style algorithms (and many variants) are heavily influenced by the un-
derlying partitioning of the input dataset. [13] suggests a grid-based partitioning,
[18, 7] uses an angle-based partitioning, and [19] uses hyperplane projections to
divide the dataset into disjoint sets. The lattice algorithms are independent from
the partitioning, because the dominance tests are done on the lattice structure
instead of relying on a tuple-to-tuple comparison. This is also the reason why the
underlying data distribution (i.e., whether the dataset attributes are correlated,
independent, or anti-correlated) does not influence performance.

Choosing the Right Data Structure. In general concurrency on a shared
data structure requires a fine grained locking amongst all running threads to
avoid unnecessary locks. In addition, one has to ensure that no data is read or
written which has just been accessed by another thread (dirty reads or writes)
in order to avoid data inconsistency. When considering for example the parallel
removal phase in HPL-S (Figure 3b), a critical situation may occur if two threads
try to append (line 10 in HPL-S) or delete an element (line 6 in DFT) on the
same node simultaneously. This problem can be tackled by synchronization and
locking protocols, cp. [5]. The lazy locking approach uses as few locks as possi-
ble. Locks are only acquired when they are really needed, i.e., when modifying
nodes. Reading can be done in parallel without inconsistency problems. From a
performance point of view lazy locking is definitely superior to all other locking
protocols like continuous locking, full, or lock-free synchronization.
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For the lattice implementation we used three different data structures: Ar-
rays, HashMaps, and SkipLists [23]. Using an array means that each index in
the array represents an ID in the lattice. The entries of the array are nodes hold-
ing the different states empty, non-empty, and dominated. Each node follows the
lazy locking synchronization2. For the HashMap and SkipList implementation3

we used the approach of a level-based storage, cp. Figure 4. An array models
the levels of the BTG. Then the nodes are stored in a HashMap or SkipList.
Adding an element to the BTG means computing the ID and the level it belongs
to and marking the node at the right position as non-empty or dominated. The
advantage of the level-based storage using SkipLists in contrast to HashMaps
lies in the reduced memory requirements, because we do not have to initialize
the whole data structure in main memory. A node is initialized on-the-fly if it
is marked as non-empty or dominated. Additionally, if each node in a level is
dominated, we can remove all nodes from the corresponding SkipList, mark the
level-entry in the array as dominated and free memory.
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Fig. 4. Level-based storage of the BTG using SkipLists

In [20, 5] a LazyList with some advantages against the concurrent SkipList
implementation was proposed to use for concurrent programming. Nevertheless,
we decided to use SkipLists instead of LazyLists, because the traversal of a
SkipList is faster than that of a LazyList due to the additional pointers which
skip some irrelevant elements. Since not all nodes in the lattice are present and
we have to find some nodes in the lattice during the DFT search quickly, the
concurrent SkipList is the better choice.

4.3 Complexity Analysis and Memory Requirements

Complexity Analysis. The original lattice based algorithms [9, 8] have linear
runtime complexity. More precisely, the complexity is O(dV + dn), where d is
the dimensionality, n is the number of input tuples, and V is the product of
the cardinalities of the d low-cardinality domains from which the attributes are
drawn. Since there are V total entries in the lattice, each compared with at most
d entries, this step is O(dV ), cp. [8]. In the original version of Hexagon all entries
in the lattice are positioned in an array. Since array accesses are O(1), the pass
through the data to mark an entry as non-empty is O(dn).

2 Implemented with ReentrantReadWriteLock in Java 7.
3 We use ConcurrentHashMap and ConcurrentSkipListMap from Java 7.
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The ARL-S and HPL-S algorithms with an array as BTG representation
follow the original implementation of [9, 8] and therefore have a complexity of
O(dV + dn). Using a level-based representation of the BTG with a HashMap
for each level, we have a constant access for each level and O(1) for the look-up
in the HashMap, since we can use a perfect hash function due the known width
of the BTG in each level, cp. [24]. In summary this leads to O(dV + dn), too.
For the SkipList based BTG implementation we have O(dV + dn logw), since
operations on SkipLists are O(logw) [23], where w is the number of elements in
the SkipList, i.e., the width of the BTG in the worst case.

Memory Requirements. Given a discrete low-cardinality domain dom(A1)×
. . . × dom(Am) on attributes Ai, the number of nodes in the BTG is given by∏m

i=1(max(Ai) + 1) [9]. Each node of the BTG has one of three different states:
empty, non-empty, and dominated. The easiest way to encode these three states
is by using two bits with 0x00 standing for empty, 0x01 for non-empty and 0x10
for dominated. This enables us to use the extremely fast bit functions to check
and change node states. Since one byte can hold four nodes using two bits each,
we have in summary that the BTG for a Skyline query may require the following
maximal amount of memory, i.e, it is linear w.r.t. the size of the BTG.

mem(BTG) :=

⌈
1

4

m∏

i=1

(max(Ai) + 1)

⌉

4.4 Remarks

Concurrent programming usually increases performance when the number of
used threads is equal or less than the number of available processor cores and
idling of threads can be prevented. Otherwise it can decrease performance due
to waiting or mutual locking program codes. Our algorithms use high parallelism
to complete the running tasks. This might be a performance problem for very
small BTGs, if many threads work on a lattice where the size is much smaller
than the number of threads. In this case there could be a lot of synchronization
necessary. However, in practical Skyline problems this should not occur.

Another question concerns the speedup of concurrently programmed algo-
rithms with larger input data. A good description of potentially benefits is given
by Gustafson’s Law [4], which says that computations involving arbitrarily large
datasets can be efficiently parallelized. Our algorithms depend on the lattice
size and the dominance tests on the lattice nodes, but not on a tuple-to-tuple
comparison. Therefore, for larger datasets only the adding phase influences the
performance, but not the removal phase, because the BTG size is independent
from the input size. In addition, the HPL-S algorithms have the advantage of an
“premature domination” of nodes, i.e., we filter out unnecessary elements early.

Due to Amdahl’s law the sequential part of concurrent programs must be
reduced to a minimum. In our algorithms only the initialization of the data
structure (Phase 1), and the last tuple scanning is sequential, because initializing
an array, a SkipList or HashMap is just instantiating these objects.
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The reader will notice that the lattice based algorithms require two scans
of the dataset to output the Skyline, the first to mark positions in the lattice
structure and a second to output Skyline elements from values derived from the
lattice. Another approach used in [9] is to mark the nodes in the lattice as non-
empty and additionally hold pointers to the elements in the dataset. Obviously,
this requires more memory, but avoids the second linear scan of the dataset.

In summary that means that we have high parallel algorithms with a minimal
sequential part and therefore expect an enormous speed-up in Skyline evaluation.

5 Experiments

This section provides our comprehensive benchmarks on synthetic and real data
to reveal the performance of the outlined algorithms. Due to the restricted space
of the paper we only present some selected characteristic tests. However, all
results show the same trends as those presented here.

5.1 Benchmark Framework

For our synthetic datasets we used the data generator commonly used in Skyline
research [1]. We generated anti-correlated (anti), correlated (corr), and indepen-
dent (ind) distributions and varied three parameters: (1) the data cardinality
n, (2) the data dimensionality d, and (3) the number of distinct values for each
attribute domain. For real data we used the entries from www.zillow.com. This
dataset contains more than 2M entries about real estate in the United States.
Each entry includes number of bedrooms and bathrooms, living area in sqm, and
age of the building. The Zillow dataset also serves as a real-world application
which requires finding the Skyline on data with a low-cardinality domain.

Our algorithms have been implemented using Java 7 using only built-in tech-
niques for locking, compare-and-swap operations, and thread management. All
experiments are performed on a single node running Debian Linux 7.1. The
machine is equipped with two Intel Xeon 2.53 GHz quad-core processors using
Hyper-Threading, that means a total of 16 cores.

5.2 Experimental Results

Comparison of ARL-S and HPL-S. For our algorithmsARL-S andHPL-S
we used different data structures, i.e. A (Array),HM (HashMap), SL (SkipList)
as described in Section 4. For comparison we used synthetic datasets, because
they allow us to carefully explore the effect of various data characteristics.

Figure 5a presents the runtime performance of our algorithms on different data
cardinality n. We used n = 1 · 106 to 10 · 106 tuples and 5 dimensions, since this
is realistic in practical cases. We fixed the number of threads to c = 8 and used a
domain derived from [1, 2, 5, 100, 100]. In this case the lattice has 367236 nodes.
The array based implementations ARL-S A and HPL-S A perform best, whereas
the level-based versions with non-linear time complexity are worser, cp. Section
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Fig. 5. Experimental results

4.3. Interestingly, the HashMap implementation of the BTG is not as good as
the SkipList based version. Maybe this is due to the additional computation of
the hash function. The Skyline size ranges from 392 (n = 106) to 3791 objects
(n = 10 · 106).

In Figure 5b we compared the SkipList and Array variants of ARL-S and
HPL-S. We used correlated data on 4 dimensions and varied the number of
threads up to 16 (’one thread per core’). As expected, ARL-S A and HPL-S A
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are the best algorithms exploiting a high parallelism on a data structure having
constant access time.

Figure 5c shows the segmented runtime for our algorithms, i.e., the time for the
construction phase, the adding phase, and the removal phase. In all algorithms
the time for the construction phase is negligible. The adding phase is the most
time consuming part. The HashMap based implementations are worser than the
SkipList implementations, since the adding phase takes much longer Thereby,
the removal phase is nearly the same. The both array based implementations are
significantly faster than the competitors. HPL-S A is slightly better than ARL-S
A, in particular in the removal phase. Note that we separated the time for adding
and removal in the HPL-S algorithms, since this two phases are combined to one
phase in HPL-S.

We also considered the memory usage of our algorithms in this experiment.
We measured the most memory consuming part, i.e., the adding phase, because
in that phase all objects must fit into memory (we associated the BTG nodes
with the input objects). ARL-S HM uses more than 70 MB of memory, whereas
ARL-S SL using a SkipList can reduce the memory usage to 45 MB due to
the fact of dynamic adding and removal of single nodes of the BTG. ARL-S A
using an array needs about 50 MB of memory. In contrast, all HPL-S algorithms
need much less memory due to the combined adding and removal phase. HPL-S
HM using 35 MB still needs the most memory, whereas HPL-S SL uses a total
memory of 5 MB. HPL-S A takes 25 MB. In summary, the HPL-S algorithm
using a SkipList is the most memory saving algorithm.

For speed-up experiments we used independent data, fixed n = 106 and used
d = 3, 5 and 7 dimensions. We executed our HPL-S A algorithm using up to 16
threads. The results are shown in Figure 5d. Our HPL-S A algorithm achieves su-
perlinear speed-up until 6 threads, which we believe to be the result of a relative
small BTG size (about 3000 nodes for d = 7). In the case of 3 and 5 dimen-
sions the BTG is much smaller, but in these cases much more synchronization
is necessary, because threads may try to lock the same node.

Comparison of Multi-core Skyline Algorithms. We compared our algo-
rithms against the state-of-the-art multicore algorithms APSkyline [7] using
equi-volume angle-based partitioning, pSkyline [11], and the lazy locking par-
allel BNL (pBNL) [5]. For a better overview we skipped the Parallel Divide-
and-Conquer approach, because it is outperformed by pBNL [5]. Note that all
our results are in line with the results presented in [5] and [7].

In Figure 5e we show the results in the case of an anti-correlated dataset as
we increase the number of threads from 1 to 512. We expected to reach peak
performance at 16 threads, which is the maximum number of hardware threads
(two quad-core processors using Hyper-Threading). As the number of threads
increase beyond 16, the performance gain moderately ceases for all algorithms
due to the increased synchronization costs without additional parallel computing
power. For the used low-cardinality domain [2, 2, 2, 2, 100] we observed that our
algorithms ARL-S A and HPL-S A outperform the competitors until 128 threads.
Beyond that, the parallel computing power decreases and ARL-S A and HPL-S
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A become worser. This is due to the fact of the high number of locks on the BTG
nodes, in particular when using 512 threads. The Skyline has 37971 objects.

In Figure 5f we measure the speed-up of each algorithm on anti-correlated
data using n = 5 · 106 and 5 dimensions ([2, 3, 5, 10, 100]). We observed that all
algorithms have nearly linear speed-up up to 8 threads. From the ninth thread
on, the performance only marginally increases and beyond 16 thread it gradually
decreases. This can be explained with decreasing cache locality and increasing
communication costs as our test systems uses two quad-core processors with
Hyper-Threading (8 cores per CPU). Starting with the ninth core, the second
processor must constantly communicate with the first.

Figure 5g presents the behavior of the algorithms for increased data size.
APSkyline is better than pBNL and pSkyline as mentioned in [7]. However, the
domain derived from [2, 3, 5, 10, 100], which is typical for Skyline computation
(a few small attributes together with a large attribute) [8], is best suited for our
algorithms, which significantly outperform all others.

Figure 5h shows the obtained results when increasing the number of dimen-
sions: d = 3 ([2,2,100]) to d = 7 ([2,2,2,2,2,2,100]). The number of input tuples
(anti) was fixed to n = 106 and c = 16. pSkyline and APSkyline are quiet similar
for all dimensions, whereas pBNL is better for d = 3. It should be mentioned that
the size of the Skyline set normally increases on anti-correlated data with the
dimensionality of the dataset [25] (138 Skyline objects for d = 3, 4125 objects
for d = 7). This makes Skyline processing for algorithms relying on tuple-to-
tuple comparison more demanding. This experiments verifies the advantage of
our algorithms based on the lattice structure and not on a tuple comparison, in
particular for higher values of dimensionality.

Real Dataset. In Figure 5i we show the obtained results for the real-world
Zillow dataset. The parallel BNL algorithm is outperformed in an order of mag-
nitude by all other algorithms. APSkyline is outperformed by pSkyline because
of an unfair data partitioning as mentioned in [7]. Our lattice based algorithms
do not rely on any partitioning scheme and are independent from data distri-
bution. Therefore, the best performing algorithms are ARL-S A and HPL-S A.
Thereby the latter one slightly performs better. For both algorithms the adding
phase is the most time consuming part. Note that we skipped the HashMap and
SkipList implementations for an better overview. They are also outperformed by
ARL-S A and HPL-S A. There are 95 objects in the Skyline.

6 Conclusion

In this paper we presented two algorithms for high-performance parallel Skyline
computation on shared-memory multi-processor systems. Both algorithms are
based on the lattice structure constructed by a Skyline query over low-cardinality
domains, and do not rely on any data partitioning. Our algorithms have linear
runtime complexity and a memory requirement which is linear w.r.t. the size of
the lattice. In our extensive experiments on synthetic and real data, we showed
the superior characteristics of these algorithms in different settings. Exploiting
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the parallelization on the lattice structure we are able to outperform state-of-
the-art approaches for Skyline computation on modern hardware architectures.
As future work we want to extend our algorithms to handle high-cardinality
domains, which could be a challenging task.

Acknowledgement. We want to thank Selke et al. [5] for providing us with the
source code of the parallel BNL and pSkyline. The implementation of APSkyline
is based on the source code made available by Liknes et al. [7].
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