
Hybrid Fragmentation of XML Data Warehouse

Using K-Means Algorithm

Mohamed Kechar and Safia Nait Bahloul

University of Oran, LITIO Laboratory, BP 1524, El-M’Naouer, 31000 Oran, Algeria
{mkechar,nait1}@yahoo.fr

Abstract. The efficiency of the decision-making process in an XML
data warehouse environment, is in a narrow relation with the perfor-
mances of decision-support queries. Optimize these performances, auto-
matically contribute in improving decision making. One of the important
performances optimization techniques in XML data warehouse is frag-
mentation with its different variants (horizontal fragmentation and ver-
tical fragmentation). In this paper, we develop a hybrid fragmentation
algorithm combining a vertical fragmentation based on XPath expres-
sions and a horizontal fragmentation based on selection predicates. To
control the number of fragments, we use the K-Means algorithm. Finally,
we validate our approach under Oracle Berkeley DB XML by several ex-
periments done on XML data, derived from the XWB benchmark.

Keywords: XML Data Warehouse, Hybrid Fragmentation, XPath Ex-
pressions, Selection Predicates.

1 Introduction

With the emergence of XML, a large amount of heterogeneous XML data is ma-
nipulated by enterprises. Various works [11], [16], [26], and [27] have proposed
to integrate and store the XML data to exploit them in decision-making (the
birth of XML data warehouses). However, in a decision-making system, time
is considered as a major constraint. The managers of the company should take
appropriate decisions timely. Unfortunately, their decisions are based on analyz-
ing done on the results of several quite complex queries, called decision-support
queries. Characterized by join operations, selection operations and aggregation
operations, the response times of these queries is generally quite high. Optimize
the performances of such queries, contributes significantly to the improvement
of decision-making. In this context, several performance optimization techniques
have been proposed in the field of data warehouses, such as indexes, material-
ized views and data fragmentation. Among these techniques, fragmentation has
received much interest by the researcher’s community. Its efficiency has been
proven in the relational databases [1], [13], [25], the object-oriented databases
[5,6] and the relational data warehouses [3], [4], and [14]. However, few works
on fragmentation have been proposed in the XML data warehouses. To frag-
ment an XML data warehouse modeled by star schema [10], the authors in [22]

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 70–82, 2014.
c© Springer International Publishing Switzerland 2014

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 71

use the primary horizontal fragmentation and derived horizontal fragmentation.
They use the K-Means algorithm to group the selection predicates into disjoint
classes defining the horizontal XML fragments. In [23], the authors propose two
horizontal fragmentation techniques of an XML data warehouse. The first is
based on the concept of minterms [25] and the second is based on predicates
affinities[30]. The authors in [28], propose different models of partitioning of a
multi-version XML data warehouses. They propose the partitioning model of
XML documents, the partitioning model based on the XML schema of the XML
data warehouse and the mixed model that combines the first two models. The
approach proposed in [9], vertically fragment the XML data warehouse based
on all frequently paths used by queries. The authors use the association rules to
find the set of paths from which they derive the vertical fragmentation schema.
To the best of our knowledge, no hybrid fragmentation approach, combining the
vertical fragmentation and the horizontal fragmentation has been proposed to
date in the context of XML data warehouse. Although its efficiency has been
already proven in the relational databases [24], the Object Oriented databases
[2], and the relational data warehouses [15]. For this fact, we present in this pa-
per a hybrid fragmentation of an XML data warehouse. We partition vertically
the structure of the data warehouse into vertical fragments by a classification
of XPath expressions. Then we fragment horizontally the XML data of each
vertical fragment by a classification of selection predicates. We use in our clas-
sification the K-Means algorithm[18] with the euclidean distance. In addition to
its simplicity and its rapidity, it allows us to control the number of fragments.

The remainder of this paper is organized as follows. In Sect.2, we survey the
different multidimensional models and we focus on the flat model that we use
as a reference model. In Sect.3 we detail our hybrid fragmentation. Finally, we
present some experimental results of our evaluations in Sect.4.

2 Multidimensional Modeling of XML Data

In the literature, different XML data warehouse models have been proposed. In
[11] the XML dataWarehouse is represented by a collection of homogeneous XML
documents. Each XML document represents a fact with its measures and its di-
mensions. In [8], the authors propose the hierarchical model in which they use a
single XML document containing all facts and all dimensions. Each fact is rep-
resented by an XML element containing its measures and the references to the
XML elements containing its dimensions. In addition to the hierarchical model,
they define the flat model represented by a single XML document. Each fact in
this document is represented by a single XML element containing its measures
and its dimensions in the form of XML sub-elements. The XCube model proposed
by [17], uses an XML document named FaitsXCube to represent facts and another
XML document namedDimensionsXCube to represent dimensions. By analogy to
the relational star model [19], the authors in [10] and [27], model the XML data
warehouse by a central XML document containing all facts with their measures
surrounded by several XML documents representing the dimensions. These XML
documents are linked by primary keys and foreign keys.

72 M. Kechar and S.N. Bahloul

Performance evaluations of these different models of XML data warehouses
have been conducted in several works. For example in [8], the authors have con-
ducted evaluations and comparisons of performances between the hierarchical
model, the flat model, and XCube model. They noticed that the flat model pro-
vides better performance compared with the other two models, except that it
introduces redundancy of the dimensions. A performance comparison between
the star model, the flat model, and the model proposed in [11] has been car-
ried out in [10]. The authors have shown that the star model provides improved
performance for queries that use two joins. However, from three joins, the per-
formances decrease in favour of the flat model. In order to improve the response
time of XQuery queries, a join index has been proposed in [20]. By carefully
inspecting this index, we found that his representation is in compliance with a
flat model (a single XML document containing all the facts with their measures
and dimensions). Based on these performance evaluations, we use the flat model
depicted in Fig.1) as a reference model to represent the XML data warehouse.

In the following sections, we describe our hybrid fragmentation approach.

Fig. 1. Reference Model of the XML Data Warehouse

3 Hybrid Fragmentation of the XML Data Warehouse

In this section, we detail the three main phases of our hybrid fragmentation
approach. For the remaining sections, letters E, T and D refer respectively to,
the set of the names of distinct XML elements, the set of names of distinct
XML attributes and the set of distinct data values. Δ represents the XML data
warehouse modeled by the flat model and W is the workload executed on Δ.
We use in our approach the two concepts of the XPath expression (Definition 1)
and the selection predicate (Definition 2).

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 73

Definition 1. A path expression EC is a sequence root/e1/.../ {en|@ak}, with
{e1, ..., en} ∈ E and @ak ∈ T . The expression EC may contain the symbol ’*’
which indicates an arbitrary element of E, the symbol ’//’ indicating a sequence
of elements ei/.../ej such as i < j and the symbol ’[i]’ which indicates the position
of the element ei in the XML tree [7].

Definition 2. A selection predicate is defined by the expression Predj := P
θ value | φv(P) θ value | φb(P) | Q, with P a terminal XPath expression,
θ ∈ {=, <,>,≤,≥, �=}, value ∈ D, φv is an XPath function, that returns values
in D, φb is a Boolean function and Q denotes an arbitrary XPath expression [7].

3.1 Vertical Fragmentation Based on XPath Expressions

We define the vertical fragmentation of XML data warehouse Δ, by partitioning
its structure into K vertical fragments V F1, ..., V FK . Each fragment is a projec-
tion of a set of XPath expressions frequently accessed by the workload. In this
phase we proceed by:

Extraction of XPath Expressions. Each XQuery query belonging to W
is in conformity with the basic syntax of the FLWOR expression (For, Let,
Where, Order by, Return) [29]. For each query, we perform a syntactic analysis
by clause and we extract all its XPath expressions. Thus we identify the overall
set of XPath expressions EC used by the workload W .

XPath Expressions-Queries Usage Matrix (XPQUM). Defines the use
of each XPath expression by the set of queries. We create in XPQUM , a line i
for each XPath expression ECi ∈ EC and a column j for each query Qj ∈ W .
If the query Qj use ECi, then XPQUM(i, j) = 1, else XPQUM(i, j) = 0.

Vertical Fragmentation. In this step, we use the K-Means classification algo-
rithm [18] (the choice of K-Means is justified by its simplicity and rapidity) to
partition the set of XPath expressions into subsets (classes) that present a usage
similarity by queries. With the XPQUM matrix as classification context and an
integer K indicating the number of vertical fragments, the K-Means algorithm
generates K disjoint classes of XPath expressions. The XPath expressions of the
class Ci describe the structure of the vertical fragment V Fi and the set of frag-
ments V Fi (i = 1...K) defines our vertical fragmentation schema noted V FS.
After this partitioning (fragmentation), we assign every query to the vertical
fragments needed to its processing. We formalize this assignment as following:
Let:

– C1, C2, ..., Ck the sets of XPath expressions defining respectively the vertical
fragments V F1, V F2, ..., V Fk,

– SQi is the set of query assigned to V Fi,
– d is the number of queries requiring join operations in V FS schema,
– A the set of XPath expressions used by the query Qj,

74 M. Kechar and S.N. Bahloul

Then

1. If A ⊆ Ci then SQi ← SQi ∪ {Qj}.
2. If A ⊆ (Cx ∪ ...∪Cy) then SQx ← SQx ∪ {Qj},...,SQy ← SQy ∪ {Qj} and

d← d+ 1.

In case (2), the processing of the queryQj , requires a join operations between the
vertical fragments V Fx, ..., V Fy . These join operations are among the causes of
performance deterioration. For this fact, we minimize the number of join queries
(the d number) appearing in the vertical fragmentation schema V FS. We vary
N times the value of the number K of vertical fragments (N is random integer)
and for each value, we generate a vertical fragmentation schema. Among these
N schemas, we select the optimal according to the following rule:

Rule.1. A vertical fragmentation schema is optimal if and only if it contains
a minimum of queries requiring join operations between the vertical fragments.
Formally:

V FSi is optimal ≡ ∀j ∈ [1..N] , ∃i ∈ [1..N] / (di < dj) with i �= j . (1)

di is the number of join queries in the fragmentation schema V FSi.
Then for each vertical fragment V Fi ∈ V FSi, we create a vertical script

V Si represented by a XQuery query. The execution context (the clause for)
of this query is the XML data warehouse Δ and its clause return represents
the projection of all XPath expressions belonging to Ci. The selected vertical
fragmentation schema is the final result of this first phase as represented by the
Fig.2.

In the next section we detail the horizontal fragmentation of each vertical
fragment belonging to this schema.

3.2 Horizontal Fragmentation Based on Selection Predicates

In the second phase of our hybrid fragmentation, we fragment horizontally
the XML data of each vertical fragment V Fi into L horizontal fragments
FHi1,...,FHiL. The following steps are executed for each vertical fragment as
represented by the Fig.3.

Extraction of Selection Predicates. We perform a syntactical parsing of
the where clause of each query belonging to the set SQi (the set of queries
assigned to the vertical fragment V Fi). This parsing allows us to extract the set
of selection predicates noted PSi.

Selection Predicates-Queries Usage Matrix (SPQUM). It defines the
use of selection predicates of PSi by the queries of SQi. The SPQUM lines
correspond to the selection predicates and its columns represent queries. if the
predicate px exists in the where clause of the query Qy then SPQUM(x, y) = 1,
else SPQUM(x, y) = 0.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 75

Fig. 2. Vertical fragmentation of the XML data warehouse

Horizontal Fragmentation. Using the K-Means algorithm, we group into
classes the selection predicates that present a usage similarity by queries. Speci-
fying the number L of the horizontal fragments, the algorithm partitions the set
of the selection predicates of the MUPSR matrix in L disjoint classes represent-
ing the horizontal fragmentation schema noted HFSi. The selection predicates
of each class Cij (i the index of the vertical fragment and j = 1..L) define the
XML data of the horizontal fragment FHij . According to this partitioning, we
assign each query belonging to SQi to the horizontal fragments needed to its
processing as follows:
Let:

– Qh ∈ SQi,
– Ci1, Ci2, ..., CiL are the sets of selection predicates corresponding to the hor-

izontal fragments FHi1, FHi2, ..., FHiL.
– PSQh the set of the selection predicates used by the query Qh,
– d

′
the number of queries requiring union operations between FHij ,

– SQij the set of queries assigned to the fragment FHij

Then

1. If PSQh ⊆ Cij then SQij ← SQij ∪Qh.
2. if PSQh ⊆ (Cix ∪ ... ∪ Ciy) then SQix ← SQij ∪ {Qh},...,SQiy. ← SQiy ∪
{Qh} and d

′ ← d
′
+ 1.

In the case (2), the processing of the query Qh, requires the union of the horizon-
tal fragments FHix, ..., FHiy. In order to reduce these union operations, we vary

N
′
times the value of the number of horizontal fragments L and we generate a

horizontal fragmentation schema for each value. Among these N
′
fragmentation

schemas, we select the best according to the following rule:

76 M. Kechar and S.N. Bahloul

Rule.2. An horizontal fragmentation schema noted HFS is optimal if and only if
it contains a minimum of queries requiring union operations between horizontal
fragments

HFSi is optimal ≡ ∀j ∈
[
1..N

′]
, ∃i ∈

[
1..N

′]
/

(
d

′
i < d

′
j

)
with i �= j. (2)

d
′
i is the number of union queries in the fragmentation schema HFSi.
For each horizontal fragment HFij ∈ HFSi, we create a horizontal script

HSij represented by a XQuery query. The execution context (the clause for) of
this query is the vertical fragment V Fi and its where clause is the disjunction
between the selection predicates belonging to Cij .

At the end of these two phases, we generate an XML document containing
the hybrid fragmentation schema noted HDFS. For this, we merge each vertical
fragment V Fi ∈ V FS with its horizontal fragments belonging to HFSi.

Fig. 3. Horizontal fragmentation of each vertical fragment

3.3 Query Processing on the Fragmented Data Warehouse

The access to the XML data, after fragmentation, should be transparent to
the users of the warehouse. To ensure transparency, query processing must be
performed on fragmented XML data warehouse. For this, we rewrite the queries
according to their assignments carried out during the previous two phases. For
each query of the workload:

1. We run through the hybrid fragmentation schema (the XML document) and
we identify all fragments needed to its processing.

2. In its execution context, we replace the unfragmented data warehouse by the
already identified fragments.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 77

3. If it requires join operations between fragments, we adjust its where clause
by adding a join qualifications.

4. If it requires union operations between hybrid fragments, we add to its clause
for the XQuery function distinct-deep which removes the duplicate XML
data from its result.

In order to prove the effectiveness of the hybrid fragmentation detailed in the
previous sections, we have conducted various evaluations that we present in the
following section.

4 Experimental Studies

4.1 Experimental Conditions

We have conducted our evaluations under Oracle Berkeley DB XML[12] (an
XML native database allowing the storage of voluminous XML documents and
implements the XQuery1.0 queries execution engine). We have used the XML
dataset from the XML Data Warehouse Benchmark (XWB) proposed in [21].
Modeled with a star schema, the XML data warehouse of the XWB contains
the sales facts characterized by the measures: quantity of purchased product
and amount of purchased product. These facts are analyzed by the dimensions:
products, consumers, suppliers and time. While respecting the definition of flat
model (Sect.2), we have merged the facts and dimensions into a single XML
document representing our data warehouse. As a programming language, we
have used the Java language to implement our hybrid fragmentation algorithm in
which we have used the K-Means1 library. The machine used for our experiments
is equipped with a Intel Pentium processor and 02 GB of main memory.

4.2 Experimental Assessment and Analysis

In order to prove the effectiveness of our hybrid fragmentation algorithm, we have
performed various experiments. In the first, we have used a XML data warehouse
composed of 2000 facts and we have (i) calculated the global response time of 19
queries executed on the original XML data warehouse, (ii) fragmented this data
warehouse into 02 vertical fragments V F1 and V F2, (iii) calculated the global
response time of the same queries on the vertically fragmented data warehouse.
In the second experiment, we have (i) fragmented respectively V F1 and V F2

into 04 and 06 horizontal fragments (ii) calculated the global response time of
the 19 queries on the new hybrid fragments. Figure 4, summarizes the results
of this two experiments, and the Fig.5 shows the details of the queries response
time before fragmentation, after the vertical fragmentation, and after the hybrid
fragmentation.

According to the results shown in Fig.4, and compared to the unfragmented
XML data warehouse, we observe that the vertical fragmentation improves the

1 https://www.hepforge.org/downloads/jminhep/

https://www.hepforge.org/downloads/jminhep/

78 M. Kechar and S.N. Bahloul

global response time of the workload to 30%. As against, the global response
time of the same workload is improved to 82% after applying the hybrid frag-
mentation on the XML data warehouse. The detailed results shown by the Fig.5,
allows us to see clearly the effect of the hybrid fragmentation on queries response
times. Indeed, after a vertical fragmentation of the data warehouse, the process-
ing of the queries Q3, Q5, Q7, Q9, Q11,Q14, and Q15, requires a join operation
between the two vertical fragments V F1 and V F2. Their response time have not
been improved, on the contrary we notice a significant deterioration in the per-
formances of the queries Q7, Q14, and Q15. However, only the response times of
the queries requiring a single vertical fragment V F1 or V F2, have benefited from
some improvement. But after the hybrid fragmentation, we observe a meaning-
fully enhancement in the response time of each query, in particularly join queries,
that which proves the effectiveness of our hybrid fragmentation algorithm.

Fig. 4. Global response time of the workload on 2000 facts

In the Third experiment, we have applied our hybrid fragmentation algorithm
on three XML data warehouses of different sizes: 2000, 4000, and 8000 facts. We
have fragmented each data warehouse according to the same previous hybrid
fragmentation schema and we have calculated the global response time of 19
queries before and after fragmentation on each data warehouse. The obtained
results shown by the Fig.6, confirm that our hybrid fragmentation always guar-
antee an improvement of the performances even after the increase of the size of
the XML data warehouse.

Indeed, fragmenting XML data warehouse by our algorithm allows us to:

1. Group in hybrid fragments (XML documents) the XPath expressions (verti-
cal fragmentation) and the XML data (horizontal fragmentation) needed in
processing queries.

2. Generate fragments of small sizes compared to the size of the unfragmented
data warehouse.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 79

Fig. 5. Response time by query

Fig. 6. Response time of the workload on different sizes of data warehouses

The first point, allows us to improve the search time of the XML data to satisfy
a query. On the other side, the second point, allows us to improve the time needed
to browse the XML structure of the unfragmented data warehouse to search
data. According to these two points, we justify the performances improvement
provided by our hybrid fragmentation algorithm.

5 Conclusion

The processing time of the decision-support queries on an XML data warehouse
is quite high especially on a large volume of XML data. However, minimizing this

80 M. Kechar and S.N. Bahloul

processing time significantly contributes to the improvement of decision-making
process. In this context, we proposed a new fragmentation approach of XML data
warehouse called hybrid fragmentation. Firstly, we introduced the different mul-
tidimensional models of XML data. Based on several evaluations conducted be-
tween these models, we have chosen the flat model as a reference model to repre-
sent the XML data warehouse. Then, we detailed our hybrid fragmentation algo-
rithm in which we combined a vertical fragmentation based on XPath expressions
with a horizontal fragmentation based on the selection predicates. In our approach
we used the K-Means algorithm to control the number of fragments and generate
a fragmentation schema offering more improvement of performance. Finally, we
conducted various experiments to prove the validity of our algorithm. The results
obtained allowed us to confirm the effectiveness of our proposed hybrid fragmenta-
tion. In future work, we plan to conduct an experimental comparison between the
fragmentation algorithms proposed in [9] and [22], and our hybrid fragmentation
algorithm.

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal par-
titioning into automated physical database design. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, SIGMOD 2004,
pp. 359–370. ACM, New York (2004),
http://doi.acm.org/10.1145/1007568.1007609

2. Baio, F., Mattoso, M.: A mixed fragmentation algorithm for distributed object
oriented databases. In: Proc. of the 9th Int. Conf. on Computing Information,
pp. 141–148 (1998)

3. Bellatreche, L., Bouchakri, R., Cuzzocrea, A., Maabout, S.: Horizontal partitioning
of very-large data warehouses under dynamically-changing query workloads via
incremental algorithms. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC 2013, pp. 208–210. ACM, New York (2013),
http://doi.acm.org/10.1145/2480362.2480406

4. Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data ware-
houses: Hardness study, heuristics and ORACLE validation. In: Song, I.-Y., Eder,
J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87–96. Springer,
Heidelberg (2008)

5. Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal class partitioning in
object-oriented databases. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308,
pp. 58–67. Springer, Heidelberg (1997),
http://dl.acm.org/citation.cfm?id=648310.754717

6. Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and support for horizontal
class partitioning in object-oriented databases. Distrib. Parallel Databases 8(2),
155–179 (2000), http://dx.doi.org/10.1023/A:1008745624048

7. Berglund, A., Boag, S., Chamberlin, D.: andez, M.F.F.: Xml path language (xpath)
2.0, 2nd edn. (December 2010)

8. Boucher, S., Verhaegen, B., Zimányi, E.: XML Multidimensional Modelling and
Querying. CoRR abs/0912.1110 (2009)

http://doi.acm.org/10.1145/1007568.1007609
http://doi.acm.org/10.1145/2480362.2480406
http://dl.acm.org/citation.cfm?id=648310.754717
http://dx.doi.org/10.1023/A:1008745624048

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 81

9. Boukraâ, D., Boussäıd, O., Bentayeb, F.: Vertical fragmentation of XML data ware-
houses using frequent path sets. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011.
LNCS, vol. 6862, pp. 196–207. Springer, Heidelberg (2011),
http://dblp.uni-trier.de/db/conf/dawak/dawak2011.html#BoukraaBB11

10. Boukraa, D., Riadh Ben, M., Omar, B.: Proposition d’un modèle physique pour
les entrepôts XML. In: Premier Atelier des Systèmes Décisionnels (ASD 2006),
Agadir, Maroc (2006)

11. Boussaid, O., BenMessaoud, R., Choquet, R., Anthoard, S.: Conception et con-
struction d’entrepôts XML. In: 2ème journée francophone sur les Entrepôts de
Données et l’Analyse en ligne (EDA 2006), Versailles. RNTI, vol. B-2, pp. 3–22.
Cépaduès, Toulouse (Juin 2006)

12. Brian, D.: The Definitive Guide to Berkeley DB XML (Definitive Guide). Apress,
Berkely (2006)

13. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.
In: Proceedings of the 1982 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 1982, pp. 128–136. ACM, New York (1982),
http://doi.acm.org/10.1145/582353.582376

14. Dimovski, A., Velinov, G., Sahpaski, D.: Horizontal partitioning by predicate ab-
straction and its application to data warehouse design. In: Catania, B., Ivanović,
M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 164–175. Springer,
Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1885872.1885888

15. Elhoussaine, Z., Aboutajdine, D., Abderrahim, E.Q.: Algorithms for data ware-
house design to enhance decision-making. WSEAS Trans. Comp. Res. 3(3), 111–120
(2008), http://dl.acm.org/citation.cfm?id=1466884.1466885

16. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources.
In: Proceedings of the 4th ACM international workshop on Data warehousing and
OLAP, DOLAP 2001, pp. 40–47. ACM, New York (2001),
http://doi.acm.org/10.1145/512236.512242

17. Hümmer, W., 0004, A.B., Harde, G.: XCube: XML for Data Warehouses. In:
DOLAP, pp. 33–40 (2003)

18. MacQueen, J.: Some Methods for Classifcation and Analysis of Multivariate Ob-
servations. In: Proceeding of Fifth Berkley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–296 (1967)

19. Kimball, R.: A dimensional modeling manifesto. DBMS 10, 58–70 (1997),
http://portal.acm.org/citation.cfm?id=261018.261025

20. Mahboubi, H., Aouiche, K., Darmont, J.: Un index de jointure pour les entrepôts
de données xml. In: 6émes Journées Francophones Extraction et Gestion des Con-
naissances (EGC 2006), Lille. Revue des Nouvelles Technologies de l’Information,
vol. E-6, pp. 89–94. Cépadués, Toulouse (2006)

21. Mahboubi, H., Darmont, J.: Benchmarking xml data warehouses. In: Atelier Syst
emes Décisionnels (ASD 2006), 9th Maghrebian Conference on Information Tech-
nologies (MCSEAI 2006), Agadir, Maroc (December 2006)

22. Mahboubi, H., Darmont, J.: Data mining-based fragmentation of xml data ware-
houses. In: DOLAP, pp. 9–16 (2008)

23. Mahboubi, H., Darmont, J.: Enhancing xml data warehouse query performance by
fragmentation. In: Proceedings of the 2009 ACM Symposium on Applied Comput-
ing, SAC 2009, pp. 1555–1562. ACM, New York (2009),
http://doi.acm.org/10.1145/1529282.1529630

24. Navathe, S.B., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for
initial distributed database design. Journal of Computer and Software Engineer-
ing 3(4), 395–426 (1995)

http://dblp.uni-trier.de/db/conf/dawak/dawak2011.html#BoukraaBB11
http://doi.acm.org/10.1145/582353.582376
http://dl.acm.org/citation.cfm?id=1885872.1885888
http://dl.acm.org/citation.cfm?id=1466884.1466885
http://doi.acm.org/10.1145/512236.512242
http://portal.acm.org/citation.cfm?id=261018.261025
http://doi.acm.org/10.1145/1529282.1529630

82 M. Kechar and S.N. Bahloul

25. Ozsu, M.T.: Principles of Distributed Database Systems, 3rd edn. Prentice Hall
Press, Upper Saddle River (2007)

26. Pokorný, J.: XML DataWarehouse: Modelling and Querying. In: Proceedings of the
Baltic Conference, BalticDB&IS 2002, vol. 1, pp. 267–280. Institute of Cybernetics
at Tallin Technical University (2002),
http://portal.acm.org/citation.cfm?id=648170.750672

27. Rusu, L.I., Rahayu, J.W., Taniar, D.: A methodology for building xml data ware-
houses. IJDWM 1(2), 23–48 (2005)

28. Rusu, L.I., Rahayu, W., Taniar, D.: Partitioning methods for multi-version xml
data warehouses. Distrib. Parallel Databases 25(1-2), 47–69 (2009),
http://dx.doi.org/10.1007/s10619-009-7034-y

29. Walmsley, P.: XQuery. O’Reilly Media, Inc. (2007)
30. Zhang, Y., Orlowska, M.E.: On fragmentation approaches for distributed database

design. Information Sciences - Applications 1(3), 117–132 (1994),
http://www.sciencedirect.com/science/article/pii/1069011594900051

http://portal.acm.org/citation.cfm?id=648170.750672
http://dx.doi.org/10.1007/s10619-009-7034-y
http://www.sciencedirect.com/science/article/pii/1069011594900051

	Hybrid Fragmentation of XML Data WarehouseUsing K-Means Algorithm
	1 Introduction
	2 Multidimensional Modeling of XML Data
	3 Hybrid Fragmentation of the XML Data Warehouse
	3.1 Vertical Fragmentation Based on XPath Expressions
	3.2 Horizontal Fragmentation Based on Selection Predicates
	3.3 Query Processing on the Fragmented Data Warehouse

	4 Experimental Studies
	4.1 Experimental Conditions
	4.2 Experimental Assessment and Analysis

	5 Conclusion
	References

