
Analyzing Sequential Data

in Standard OLAP Architectures

Christian Koncilia1, Johann Eder1, and Tadeusz Morzy2

1 Alpen-Adria-Universität Klagenfurt
Dep. of Informatics-Systems

{eder,koncilia}@isys.uni-klu.ac.at
2 Poznan University of Technology
Institute of Computing Science

morzy@put.poznan.pl

Abstract. Although nearly all data warehouses store sequential data,
i.e. data with a logical or temporal ordering, traditional data warehouse
or OLAP approaches fail when it comes to analyze those sequences.
In this paper we will present a novel approach which generates query-
specific subcubes, i.e. subcubes that consist only of data which fulfill a
given sequential query pattern. These subcubes may then be analyzed us-
ing standard OLAP tools. Our approach consists of two functions which
both return such subcubes. Hence, the user can still use all the well-
known OLAP operations like drill-down, roll-up, slice, etc. to analyze
the cube. Furthermore, this approach may be applied to all data ware-
housing architectures.

1 Introduction

Business Intelligence (BI), Data Warehousing (DWH), and On-Line Analyical
Processing (OLAP) enable users to perfomantly analyze mass data by storing
data in No-SQL database systems, e.g. multidimensional database systems, or
by applying DWH specific logical schemas to relational database systems, e.g.
the Star Schema, Snowflake Schema, etc. [6].

Traditional business intelligence tools analyze facts along dimensions. Facts
describe what a user wants to analyze whereas dimensions describe how the user
analyses his data [6]. Typical examples for facts are Turnover, Profit, the Stock
of Inventory, etc. These facts may then be analyzed along a set of dimensions
like Time, Products or Geography.

This approach succeeded to proof its feasibility in innumerable implementa-
tions in many industrial sectors. However, this approach fails when it comes to
efficiently analyze sequential data, i.e. data with a logical or temporal ordering
[9].

Why does the traditional DWH approach fail when it comes to sequential data
analysis? Assume that we store data about treatment costs and diagnoses for
patients in a DWH. Traditional data warehouses are built to answer questions
like “what are the total costs for patients in 2010” or “what are the average costs

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 56–69, 2014.
c© Springer International Publishing Switzerland 2014



Analyzing Sequential Data in Standard OLAP Architectures 57

for all patients diagnosed cerebral infarction”. However, they are not prepared to
answer queries like “what are the follow-up costs of patients diagnosed cerebral
infarction within 12 months after the diagnose”. This even gets more compli-
cated, when analyzing data along several events, e.g. when analyzing follow-up
costs for patients with a certain diagnose who received a certain treatment within
a given time period after the diagnose.

Although sequential data representation is not a new research area, the fact
that most data sets in an OLAP system are sequential by nature has been ignored
until recently, e.g. in [1,9,8]. These approaches focus on developing novel data
warehouse / OLAP architectures. This allows to develop new operators, query
languages, indexing and caching strategies, etc. However, in our opinion there is
also an evident need to analyze sequential data in existing OLAP infrastructures.

Contribution: In this paper we will present a sophisticated approach which en-
ables the user to analyze simple atomic events and complex sequences of events.
In contrast to other approaches (which will be discussed in section 7), our ap-
proach smoothly integrates into a standard OLAP architecture. Basically, our
approach consists of the following steps:

1. The user defines the sequence she / he wants to analyze, e.g. all patients
who had a specific diagnose A after a diagnose B.

2. A subcube is generated which contains all relevant data, e.g. all patients
records for all patients who had a diagnose A after a diagnose B.

3. An additional dimension Relative Time Axis is created enabling the user to
analyze data in a very flexible way.

The result of a sequential query in our approach is itself a standard OLAP
(sub-)cube. Hence, the user can still use all the well-known OLAP operations
like drill-down, roll-up, slice, dice and so on to analyze this cube.

This paper is organized as follows: In section 2 we will briefly describe a
motivating example which we will use throughout the rest of this paper to depict
the application of our approach. Section 3 will provide a formal model of a data
warehouse which we will extend in section 4 with our sequential OLAP approach.
We will present the prototypical implementation of our approach in section 5. In
section 6, we are going to briefly discuss some application areas for a sequential
OLAP approach. Related work will be discussed in section 7. Finally, we will
conclude this paper in chapter 8.

2 Motivating Example

In this section, we will present our motivating example which we will use as
running example throughout the rest of the paper. Consider a database with
the following table storing information about patients, diagnoses and treatment
costs:



58 C. Koncilia, J. Eder, and T. Morzy

Patient Diag Date Costs

Tim I26 1-1 50
Tim C11 1-2 70
Walter I26 1-8 45
Tim I27 1-8 110
John B32 1-2 80
Walter C11 1-2 60

In this example the patient Tim went to a doctor on 1/1/10 and was diagnosed
with ICD (International Classification of Diseases) code I26 (the code for the
disease pulmonary embolism). The next day, he wanted to get a second opinion
and went to a different doctor who diagnosed a different disease encoded C11.
Then, a few days later, he went to a third doctor who diagnosed I27.

The star schema for a data warehouse to analyze this information consists of
a fact table storing the costs, and three dimension tables (Patient, Diagnose,
Date). Easily one can use this data warehouse to answer queries like “what are
the total costs for patient Tim in 2010” or “what are the average costs for all
patients diagnosed I26”. However, such a data warehouse structure would not
be suitable to answer queries where a dimension member depends on another
dimension member, i.e. where we have sequences.

As we will discuss in section 4.1, such a sequential OLAP query may be
based on Atomic Sequences or on Complex Sequences. Queries based on atomic
sequences are queries that make use of only one single event, e.g. “What are the
follow-up costs of patients during three month after she/he has been diagnosed
I26”. In this example, the single event would be the diagnose I26.

In contrast to such a query, a query based on complex sequences consists of
two or more events. An example for such a query would be: “How many patients
have been diagnosed H35 (Retinopathie, a disease often caused by diabetes which
can lead to blindness) within 12 months after they have been diagnosed E10
(diabetes).” This query would consist of two events, namely the diagnose E10
and the diagnose H35.

Of course, such a complex sequence query is not restricted to two events nor
is it restricted to events that stem from one dimension in the data warehouse.
For instance, if we would store prescriptions in our data warehouse we could also
state queries like: “What are the average follow-up costs of a diagnose I26 for
patients that have been prescribed Heparin within 6 months after the diagnose”.
This query would consist of two events stemming from two different dimensions.

3 Formal OLAP Model

In this section we will give a formal definition of a data warehouse based on the
model presented in [7]. Later on we will extend this data warehouse model such
that the user is able to state all kinds of sequential queries. Please note that our
approach for sequential OLAP simply extends the standard OLAP approach.



Analyzing Sequential Data in Standard OLAP Architectures 59

The result of a sequential query is itself a standard (sub-)cube, extended with a
set of relative time axes. Hence, the user can still use all the well-known OLAP
operations like drill-down, roll-up, slice, dice and so on to analyze her or his
cube.

Intuitively, we define the schema of a data warehouse as a set of cubes which
again are defined as a set of dimensions. The schema of each dimension is defined
by a set of categories, e.g., the dimension Date might consist of the categories
Year, Month and Day organized in a hierarchical relation Y ear → Month →
Day, where for example Y ear → Month means that a month rolls-up to a year.

Each category consists of a set of dimension members. Dimension members
define the instances of a data warehouse schema. For instance, January, February
and March are dimension members assigned to the category Month.

Formally, the schema of a data warehouse is defined by:

i.) A number of dimensions J .
ii.) A set of dimensions D = {D1, ..., DJ}, where Di =< ID,DKey >. ID is

a unique identifier of the dimension. DKey is a user defined key (e. g. , the
name of the dimension), which is unique within the data warehouse.

iii.) A number of categories K.
iv.) A set of categories C = {C1, ..., CK} where Ci =< ID,CKey >. ID is a

unique identifier of the category. CKey is a user defined key (e. g. , the name
of the category) which is unique within the data warehouse.

v.) A set of assignments between dimensions and categories ADC = {A1
DC ,

..., AN
DC}, where Ai

DC =< D.ID, C.ID >. D.ID represents the identi-
fier of the corresponding dimension. C.ID represents the identifier of the
corresponding category.

vi.) A number of hierarchical category assignments O.
vii.) A set of hierarchical category assignments HC = {HC1, ..., HCO} where

HCi =< ID,C.IDC , C.IDP >. ID is a unique identifier of the hierarchical
category assignment. C.IDC is the identifier of a category, C.IDP is the
category identifier of the parent of C.IDC or ∅ if the category is a top-level
category.

viii.) A number of cubes I.
ix.) A set of cubes B = {B1, ..., BI} where Bi =<ID, BKey, S >. ID is a

unique identifier of the cube (similar to Oid′s in object-oriented database
systems). BKey is a user defined key (e. g. , the name of the cube), which
is unique within the data warehouse.
S represents the schema of the cube. The tuple S consists of all dimensions
and hierarchical category assignments that are a part of this cube. There-
fore, S is defined as S = (D,A) where D = {D1.ID, ..., DN .ID} (N ≤ J)
and A = {HC1.ID, ..., HCM .ID} (M ≤ O).

The instances of a data warehouse are defined by:

i.) A number of dimension members P .
ii.) A set of dimension members M = {M1, ...,MP } where Mi =< ID, MKey,

CA, >. ID is a unique identifier of the dimension member. MKey is a user



60 C. Koncilia, J. Eder, and T. Morzy

defined key (e. g. , the name of the dimension member), which is unique
within the data warehouse. The set CA represents the set of categories, to
which the corresponding dimension member is assigned.

iii.) A set of hierarchical member assignments HM = { HM1, ..., HMO} where
HMi =< ID,M.IDC , M.IDP , f >. ID is a unique identifier of the hierar-
chical member assignment.M.IDC is the identifier of a dimension member,
M.IDP is the dimension member identifier of the parent of M.IDC or ∅
if the dimension member is at the top-level. f represents the consolidation
function between M.IDC and M.IDP , e. g. + for addition, − for subtrac-
tion, etc.

iv.) A function cval : (MD1 , ...,MDN ) → measure, which uniquely assigns a
measure to each vector (MD1 , ..., MDN ) where (MD1 , ..., MDN ) ∈ MD1 ×
...×MDN . The domain of this function is the set of all cell references. The
range of this function are all measures of a cube.

4 Sequential OLAP Model

In this chapter, we will extend the OLAP model presented in section 3. The
extension basically consists of two items: 1) we will introduce the concept of
sequential OLAP functions and 2) we will enrich this model with the concept
and definition of a relative time axis.

Intuitively, a sequential OLAP function can be considered as an extended slice
operation and a relative time axis represents the time difference between a given
event and any other event.

4.1 Sequential OLAP Function and Events

Basically, a sequential OLAP function takes a cube, a grouping dimension, an
ordering dimension and a sequence of events as input and returns a subcube
as output. The terms grouping dimension, ordering dimension and sequence of
events will be defined in section 4.2. The query “fetch all patient records for
patients which have been diagnosed retinopathie after they have been diagnosed
diabetes” could be an example for a sequential OLAP function. This query would
result in a subcube that consists of all dimensions of the corresponding cube and
all dimension members and measures which belong to patients that have been
diagnosed retinopathie after a diagnose diabetes. This subcube may then serve as
basis for analysis which for instance easily enable the user to compute follow-up
costs.

The fundamental basis for our sequential OLAP function are sequences. We
distinguish between two different kinds of sequences:

1.) Complex Sequence: A complex sequence forms a path through a set of
events, e.g. a sequence E1 → E2 → . . . → En where Ei is an event.

2.) Atomic Sequence: An atomic sequence is a subset of complex sequence.
It represents a one stepped path, i.e. E1. For instance, E1 may be the event
“diagnosed diabetes”.



Analyzing Sequential Data in Standard OLAP Architectures 61

An event E is an appearance of an incident at a given point of time. In
our context, we can define an event E as the existence of a function cval with
cval(Mt,Me, . . .) �= null with a given dimension member Me that defines the
incident and a dimension member Mt that defines the point of time.

Ej → Ek means that the event Ek occurred directly after event Ej , i.e. there
exists no event El between Ej and Ek along an ordering dimension defined by the
user. Usually, this ordering dimension will be the time dimension.

4.2 Sequential OLAP Function for Atomic Sequences

As a complex sequence can be decomposed to a set of atomic sequences, we will
start by defining the sequential OLAP function for atomic events.

Pre-Conditions: The following pre-conditions for a sequential OLAP function
on atomic sequences have to be fulfilled:

1.) A cube Bi has to be defined as in section 3. This cube serves as input, i.e.
it defines the base for the sequential OLAP function.

2.) Bi has to contain at least one ordering dimension Do. An ordering dimen-
sion is a dimension on which an ordering function forder has been defined.
forder(Mj ,Mk) takes any two dimension members Mj and Mk and returns
−1 if Mj < Mk, 0 if Mj = Mk or +1 if Mj > Mk.

3.) The user has to define a grouping dimension Dg. This grouping dimension
defines the subject of the analysis. Hence, Dg defines which dimension the
event refers to, i.e. which dimension the order of the ordering dimension
refers to. Dg may be any dimension of Bi.

4.) Furthermore, the user has to define a single (atomic) event E with E = ME

where ME is a dimension member of DE and DE is a dimension in Bi.

Definition: Now, the function solap can be defined as follows: Given the input
Bi, Do, Dg and E the function solap(Bi, Do, Dg, E , Ep) returns a subcube Bo

which consists of all dimensions Di ∈ Bi and all dimension members Mi with
Mg ∈ Dg ∧ ∃cval(MD1 , . . . ,Mi,Mg,ME , . . . ,MDN ) �= null ∧ME = E .

Please note that Ep is not used in atomic sequences and will be discussed later
on in section 4.3.

Intuitively we can say that a solap(Bi, Do, Dg, E , Ep) returns a subcube which
consists of all the data of all dimension members in the grouping dimension for
which there exists at least one entry in the fact table that represents the given
event.

Example: Assume that Bi is the cube as defined in our running example in
section 2. The ordering dimension Do is the dimension Date. The grouping
dimension Dg, i.e. the subject of our analysis, is the dimension Patient. The
event E = I26.

Taking these input parameters, the function solap(Bi, Date, Patient, I26)
would return a subcube which consists of all the data of all patients who had a
diagnose I26, i.e. it would return a subcube which consists of the data represented
in the following table:



62 C. Koncilia, J. Eder, and T. Morzy

Patient Diag Date Costs

Tim I26 1-1 50
Tim C11 1-2 70
Walter I26 1-8 45
Tim I27 1-8 110
Walter C11 1-2 60

4.3 Sequential OLAP Function for Complex Sequences

In the previous section we defined the function solap for atomic events. We will
now extend this function to work on complex sequences.

Pre-Conditions: The pre-conditions are the same as defined in section 4.2 ex-
cept the fact that the user may define any sequence of events E =< E1, . . . , En >
with Ei = MEi where MEi is a dimension member of DEi andDEi is a dimension
in Bi.

Furthermore, as complex sequences have to consider the ordering of several
events, we have to extend the solap function with an additional parameter,
namely Ep. In an atomic sequence, Ep is always null. In a complex sequence, Ep

is the previous event in the sequence of events or null, if no previous event has
been defined, i.e. if applying solap to the first event in a sequence of events.

Definition: First, extending the definition given in 4.2 with the parameter Ep,
the function solap can be defined as follows: Given the input Bi, Do, Dg, E and
Ep the function solap(Bi, Do, Dg, E , Ep) returns a subcube Bo which consists
of all dimensions Di ∈ Bi and all dimension members Mi with Mg ∈ Dg ∧
∃cval(MD1 , . . . ,Mi,Mg,ME, . . . ,MDN ) �= null ∧ ME = E ∧

∃cval(MD1 , . . . ,Mi,Mg,MEp , . . . ,MDN )�= null∧MEp =Ep∧forder(E , Ep) > 0.
Secondly, with the extended definition of the solap function, we can define

solap for complex sequences: Given the input Bi, Do, Dg and E the function
solap(Bi, Do, Dg, E, Ep) can now be defined as a composition of solap functions
on atomic sequences:

solap(Bi, Do, Dg,E) =

solap(solap(. . . solap(Bi, Do, Dg, E1, null) . . . ,
Do, Dg, En−1, En−2), Do, Dg, En, En−1)

(1)

Example: Again, let Bi be the cube as defined in our running example in section
2, Date be the ordering dimension Do and Patient be the grouping dimension
Dg. Now, the user would like to analyze all patient records about patients who
had a diagnose I26 and afterwards a diagnose I27. Hence, E =< I26, I27 >.

Taking these input parameters, the function solap(Bi, Date, Patient, <
I26, I27 >) would result in a function Bo1 = solap(Bi, Date, Patient, I26)
whose result Bo1 would serve as input parameter for Bo2 = solap(Bo1 , Date,



Analyzing Sequential Data in Standard OLAP Architectures 63

Patient, I27). Therefore, the resulting cube would consist of the data repre-
sented in the following table:

Patient Diag Date Costs

Tim I26 1-1 50
Tim C11 1-2 70
Tim I27 1-8 110

4.4 Relative Time Axis

The relative time axis function generates a new dimension in the cube which
stores the difference between a given event and any other event. We will use
the term relative time axis, although the concept of a relative time axis may be
applied to any ordering dimension which doesn’t necessarily have to be a time
or date dimension.

In contrast to other time dimensions in the cube, the relative time axis is
not a set of absolute timestamps like 12-30-2010 or 8-15-2010 10:42, but a set
of time intervals which are relative to the ordering dimension Do (as described
above, this ordering dimension is usually a time dimension). Thus, the relative
time axis could for instance be a dimension with a set of dimension members
{−n days, . . . ,−1 day, 0,+1 day, . . . ,+m days}.
Pre-Conditions: In order to compute a relative time axis, the following pre-
conditions have to be fulfilled:

1.) A cube Bi has to be defined. Usually, this cube will be the result of a solap()
function as defined in sections 4.2 and 4.3.

2.) As defined in section 4.2 this cube Bi has to contain at least one ordering
dimension Do. Furthermore, the user has to define a grouping dimension Dg

(the subject of the analysis) with Dg ∈ Bi.
3.) The user has to define a single event E with E = ME whereME is a dimenson

member of DE and DE is a dimension in Bi.
4.) As there might exist several cell values in the cube referred to by a function

cval(M1, . . . ,Mg, E , . . . ,Mn) with Mg being a dimension member assigned
to Dg, the user has to define which occurrence of E should serve as base. Cur-
rently, this can be done by applying a first() or last() function, which sets
the first or last occurrence E as base. Other functions could be implemented.

Definition: we define a function rta() (relative time axis) whish uses a function
diff() to compute the difference between any two event occurrences. diff()
takes two records, i.e. two cval() functions as defined in section 3, and the order-
ing dimension Do as input and computes the differences between the two entries.
The granularity of diff() is equal to the granularity of Do, e.g. if the granularity
of Do is a day, then diff() will return the difference in days.

The function diff() may be defined by the user. Usually, it simply computes
the difference between two dates:



64 C. Koncilia, J. Eder, and T. Morzy

diff(cval(Mo1,Mg,ME, . . .), cval(Mo2 ,Mg, . . .)) =

Mo1 −Mo2

withMo1 ,Mo2 ∈ Do ∧Mg ∈ Dg ∧ME ∈ E . (2)

Using the defined function diff() we can formally define the rta() function.
rta(Bi, Do, E) returns a cube Bo where Bo consists of the same schema S as
Bi and all dimension members M, hierarchical member assignments HM and all
measures assigned to Bi. Furthermore, Bo consists of an additional dimension
DRTA with a set of dimension members MRTA = {M1, . . . ,Mn} assigned to
DRTA (via CA, C and ADC as defined in section 3). For each Mi ∈ MRTA

we can define that Mi.MKey = diff(x, y) where x = cval(MO1 , E , . . .) and
y = cval(MO2 , . . .) and x �= y.

Example: Assume that Bo is the resulting cube of the function solap(Bi, Date,
Patient, I26) as described in section 4.2. Again, the ordering dimension Do is
the dimension Date. The grouping dimension Dg, i.e. the subject of our analysis,
is the dimension Patient. The event E = I26.

Taking these input parameters, the function rta(Bo, Date, Patient, I26)
would return a subcube which consists of all the data of all patients who had
a diagnose I26. Furthermore, this subcube would consist of an additional di-
mension named RTA which stores the difference between the occurrence of a
diagnose I26 and any other event. The following table depicts the resulting cube:

Patient Diag Date Costs RTA

Tim I26 1-1 50 0
Tim C11 1-2 70 +1
Tim I27 1-8 110 +7
Walter C11 1-2 60 -6
Walter I26 1-8 45 0

4.5 Workflow Example

In this section we will discuss how a user may use SOLAP() and RTA() to state
sequential OLAP queries and how she may analyse the resulting cube.

Assume that a user would like to state a query like “what are the follow-up
costs for patients diagnosed I26 within 12 month after they have been diagnosed
I26”? To answer this query the user would select the Date dimension as order-
ing dimension and Patient as grouping dimension. Furthermore, he defines an
atomic sequence with one event “Diagnose = I26”. Now, the application would
use the functions SOLAP () and RTA() (with the corresponding parameters) to
generate a cube as depicted in Table 4.4.

This cube would enable the user to easily analyze the follow-up costs that oc-
curred within 12 month after the diagnose I26. This could be done by applying
standard OLAP functions to the cube. In this example, the user could simply



Analyzing Sequential Data in Standard OLAP Architectures 65

Fig. 1. Start Screen of our Prototype

select the dimension members 0 . . . 12 of the dimension RTA (which would cor-
respond to a slice and dice operation) and calculate the sum of the fact cost.
The same method could be applied to analyze which diagnoses occurred within
3 months before a diganose I26.

5 Proof of Concept

We implemented a prototype of our approach as proof of concept. This prototype
has been implemented as a web-client using a PostgreSQL 9.0.0 database, PHP
5.3.2 and jQuery 1.4.2. Technically, the data warehouse itself has been built
using the traditional Star Schema approach. Hence, we have one fact table and
several tables representing the dimensions of the cube. For our running example,
this results in a fact table that consists of the costs and foreign keys to the three
dimensions: Patient, Diagnose and Date.

Figure 1 shows a screenshot of the start screen of the prototype. For this
paper, we imported the data from our running example.

Using the prototype depicted in Fig. 2 the user may select an ordering dimen-
sion and a grouping dimension. Furthermore, she or he may define a sequence of
events, i.e. an atomic sequence or a complex sequence. Currently, the prototype
does not support using wildcards in sequences. In this example, the user selected
a single event, i.e. Diagnose I26.

Basically, the application takes the user inputs, extracts the sequence defined
by the user, and dynamically generates an SQL query for the first step in this



66 C. Koncilia, J. Eder, and T. Morzy

Fig. 2. Result Screen for an Atomic Sequence (Diagnose = I26)

sequence. This query serves as basis for a view created in the database. This
view represents the subcube returned by the function solap() as presented in
section 4.2. For all subsequently defined sequence steps we repeate this process
as defined in section 4.3. In contrast to the first step, all further steps work on
the view defined in the previous step. Finally, the implementation calls the rta()
function as defined in section 4.4 to compute the relative time axis.

The result of this query is being depicted in figure 2. As can be seen, a new
dimension “rta” has been created, representing the relative time axis.

6 Application Examples

In section 2 we discussed an application example originated in the health care
sector. Basically, such a sequential OLAP approach would enrich each data ware-
house that stores any kind of events, e.g. diagnoses, prescriptions, workflow tasks,
sensor values and so on.

In this section we would like to briefly discuss some application examples for
sequential OLAP are:

1.) Workflow Systems: Usually, a workflow system consists of several tasks.
These tasks are linked with control structures like conditional branches,
loops, joins and so on [13]. Analyzing worklow instances with OLAP or
data warehouse techniques is tedious and sometimes impossible because of
these control structures [5]. However, applying our sequential OLAP tech-
nique would enable us to reduce the complexity of an unlimited amount of
possible instance structures to a limited amount of instance structures which
follow a specific pattern, e.g. A → B → ∗ → D would select all instances



Analyzing Sequential Data in Standard OLAP Architectures 67

which used the task A followed by task B followed by any other set of tasks
followed by task D.

2.) Detecting Pharmacological Interactions: Another application exam-
ple would be a medical system to support doctors in avoiding dangerous
pharmacological interaction. For instance, if a patient has already been pre-
scribed Ciclosporin (an immunosuppressant drug usually used after organ
transplants) and now gets a prescription from a different doctor for a barbi-
turate (drugs that act as central nervous system depressants). Taking both
medicins at the same time may have dangerous interactions. To be more
precise, a barbiturate negatively influences the effective level of Ciclosporin
which may lead to organ repulsion. A sequential analysis would allow doctors
to avoid prescribing such combinations of drugs.

3.) Ticketing systems for light rail traffic, skiing resorts or multi-storey car
parks would be another application example. Here, a user could want to
analyze different sets of customers which for instance took a specific route
A → ∗ → X , which means that they entered the subway at station A,
changed trains at any station, and left the subway at station X .

4.) Sensor data warehouses would also be an interesting application area
for a sequential data warehousing approach. Consider a data warehouse that
stores information which stems from dozens sensors mounted at a power tur-
bine. Analyzing sequences in this data warehouse could provide very useful
information, e.g. to reduce down-times. For instance, we could want to ana-
lyze the allocation of heat of certain parts of the turbine within 30 seconds
after a specific sensor reported a defined temperature.

7 Related Work

While the support of sequential data in traditional database management sys-
tems in general and specifically on time-sequences isn’t a new topic (see [11],
[12], [10], [2]), the term of Sequence OLAP or S-OLAP has been coined recently
in [9]. In [9] the authors present an approach where a user defines a query based
on pattern templates to analyze sequence data. A pattern template consists of
a sequence of symbols where each symbol corresponds to a domain of values. In
contrast to a pattern template, e.g. (A, B, A) a pattern is an instantiation of
cell values corresponding to a pattern template. A prototypical implementation
of such an S-OLAP system has been presented in [3].

The approach presented in [9] has been extended by the same research group
in [4]. In [4] the authors focus on the efficient evaluation of ranking pattern based
aggregate queries. As in [9] the number of dimensions of the defined cube is equal
to the number of distinct values of the selected attribute in the source table.

In order to avoid an overwhelming amount of data to be presented to the user,
[4] introduces support for top-k queries.

Another interesting approach has been presented in [8]. The authors combine
two existing technologies, namely OLAP (Online Analytical Processing) and
CEP (Complex Event Processing) to analyze real-time event data streams. They



68 C. Koncilia, J. Eder, and T. Morzy

introduce patterns and pattern hierarchies. If a pattern A contains a subset of
event types compared to a pattern B, then A is at a coarser level then B in
the resulting pattern hierarchy. Based on these hierarchical relationships, the
authors present different strategies how to exploit these hierarchies for query
optimization.

The approach presented in [1] discusses a model to analyze time-point-based
sequential data. The authors introduce a formal model and define several op-
erators to create and analyze sequences. Furthermore, it formaly defines and
discusses the notion of facts, measures and dimensions in the context of sequen-
tial OLAP.

Our approach differs from the approaches discussed in this section as follows:
our approach is not a redefinition of the well know OLAP approach and archi-
tecture as for instance presented in [6], but an extension. To the best of our
knowledge, it is the first sequential OLAP approach that smoothly integrates
into existing OLAP systems.

8 Conclusion

Traditional data warehouse and OLAP approaches still fail when it comes to
efficiently analyze sequential data, i.e. data with a logical or temporal ordering
[9]. For instance, a query like “what are the follow-up costs of patients diagnosed
cerebral infarction within 12 months after the diagnose” cannot be answered
without a relative time axis defined in the data warehouse for the event defined
in the query (here: diagnose cerebral infarction). A naive approach to solve this
problem would be to create a relative time axis in advance for all combinations
of events. However, such a naive approach will fail as the number of possible
combinations will quickly blast the capacity of the cube.

In this paper we presented a novel and sophisticated approach that enables the
user to analyze sequential data in a standard OLAP environment. The user may
state simple queries that require only an atomic event or complex queries with a
defined sequence of events. The result of our approach is itself a standard OLAP
cube, extended with a new dimension representing the relative time axis. Thus, it
is easy to implement our approach into an existing OLAP solution. Furthermore,
the user may use her or his OLAP solution to analyze the resulting data.

We implemented this approach as a proof of concept. Basically, this imple-
mentation enables the user to define a sequence of events and automatically
apply the defined functions solap() and rta() to a given data warehouse.

Future work will focus on wildcard support in sequence definitions. A wild-
card may be a question mark “?”, represeting any single event, an asterisk “∗”,
representing any sequence of events or a plus “+”, representing any sequence of
events which consists of at least one event.



Analyzing Sequential Data in Standard OLAP Architectures 69

References

1. B ↪ebel, B., Morzy, M., Morzy, T., Królikowski, Z., Wrembel, R.: Olap-like analysis
of time point-based sequential data. In: Castano, S., Vassiliadis, P., Lakshmanan,
L.V., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 153–161.
Springer, Heidelberg (2012)

2. Chandra, R., Segev, A.: Managing Temporal Financial Data in an Extensible
Database. In: VLDB (1992)

3. Chui, C., Kao, B., Lo, E., Cheung, D.: S-OLAP: an OLAP System for Analyzing
Sequence Data. In: SIGMOD (June 2010)

4. Chui, C., Lo, E., Kao, B., Ho, W.: Supporting Ranking Pattern-Based Aggregate
Queries in Sequence Data Cubes. In: CIKM (2009)

5. Eder, J., Olivotto, G.E., Gruber, W.: A Data Warehouse for Workflow Logs. In:
Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 1–15.
Springer, Heidelberg (2002)

6. Kimball, R.: The Data Warehouse Toolkit, 2nd edn. John Wiley & Sons (1996)
7. Koncilia, C.: The COMET Temporal Data Warehouse (PhD). In: UMI (2002)
8. Liu, M., Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta, A.:

E-cube: Multi-dimensional event sequences processing using concept and pattern
hierarchies. In: ICDE (2010)

9. Lo, E., Kao, B., Ho, W., Lee, S., Chui, C., Cheung, D.: OLAP on Sequence Data.
In: SIGMOD (June 2008)

10. Segev, A., Shoshani, A.: Logical Modeling of Temporal Data. In: SIGMOD (1987)
11. Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence query processing. In: SIG-

MOD (1994)
12. Seshadri, P., Livny, M., Ramakrishnan, R.: The Design and Implementation of a

Sequence Database System. In: VLDB (1996)
13. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow

patterns. In: Distributed and Parallel Databases (2003)


	Analyzing Sequential Datain Standard OLAP Architectures
	1 Introduction
	2 Motivating Example
	3 Formal OLAPModel
	4 Sequential OLAP Model
	4.1 Sequential OLAP Function and Events
	4.2 Sequential OLAP Function for Atomic Sequences
	4.3 Sequential OLAP Function for Complex Sequences
	4.4 Relative Time Axis
	4.5 Workflow Example

	5 Proof of Concept
	6 Application Examples
	7 Related Work
	8 Conclusion
	References




