Towards a Normal Form for Extended Relations
Defined by Regular Expressions

Andréas Benczur and Gyula I. Szabd

Eo6tvos Lordand University, Faculty of Informatics,
Pdzmény Péter sétdny, 1/C, Budapest, 1118 Hungary
abenczur@inf.elte.hu, gyula@szaboo.de

Abstract. XML elements are described by XML schema languages such
as a DTD or an XML Schema definition. The instances of these elements
are semi-structured tuples. We may think of a semi-structure tuple as a
sentence of a formal language, where the values are the terminal sym-
bols and the attribute names are the nonterminal symbols. In our former
work [13] we introduced the notion of the extended tuple as a sentence
from a regular language generated by a grammar where the nonterminal
symbols of the grammar are the attribute names of the tuple. Sets of
extended tuples are the extended relations. We then introduced the dual
language, which generates the tuple types allowed to occur in extended
relations. We defined functional dependencies (regular FD - RFD) over
extended relations. In this paper we rephrase the RFD concept by di-
rectly using regular expressions over attribute names to define extended
tuples. By the help of a special vertex labeled graph associated to regu-
lar expressions the specification of substring selection for the projection
operation can be defined. The normalization for regular schemas is more
complex than it is in the relational model, because the schema of an
extended relation can contain an infinite number of tuple types. How-
ever, we can define selection, projection and join operations on extended
relations too, so a lossless-join decomposition can be performed.

1 Introduction

XML has evolved to become the de-facto standard format for data exchange over
the World Wide Web. XML was originally developed to describe and present
individual documents, it has also been used to build databases. Our original mo-
tivation for the introduction of the regular relational data model [13] was to find
a good representation of the XML ELEMENT type declaration. The instances
of a given element type in an XML document can be considered as a collection
of data of complex row types. The set of attribute names in the row types are
the element names occurring in the DTD declaration of the element. In the case
of recursive regular expression in the element declaration, there are possibly infi-
nite number of different row types for the element instances. The same attribute
name may occur several times in a type instance. This leads to the problem of
finding a formal way to define the projection operator, similar to the relational

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 11-24, 2014.
© Springer International Publishing Switzerland 2014

12 A. Benczur and G.I. Szabd

algebra, on the syntactical structure of the data type. That is necessary to de-
fine the left and right side of a functional dependency. We defined the attribute
sequence by a traversal on the vertex labeled graph associated to the regular
expression of the DTD. This form is also good to define attribute subsequences
for the projection operator, for the selection operator and for equijoin operator.
Set operations can be extended in a straightforward way, so this leads to the full
extension of relational algebra operators. Using the extension of projection and
equijoin (or natural join) the join dependency can be defined in the same way
as in the relational model.

Motivation. Our previous model [13] could be effectively used for handling
functional dependencies (FD). In the relational model FDs offer the basis for nor-
malization (e.g. BCNF), to build non-redundant, well-defined database schema.
But our model cannot handle the join operation among instances (that is used to
secure lossless join decomposition) because the projection of a schema according
to a set of nodes or two joined schemas would not necessarily leads to a new,
valid schema. We need an improved model for regular data bases. To denote a
regular language we can use regular expressions, our actual model bases upon
a graph representation for regular expressions. This model is more redundant
than our last one, but it is capable for handling database schema normalization.

Contributions. The main contribution of this paper is the concept of extended
relations over the graph representation for regular expressions. We rephrase reg-
ular functional dependencies and also define regular join dependencies that con-
strain extended relations. We determine the schema of an extended relation as
(IN,...,OUT) traversals on the graph representation for a given regular ex-
pression. We apply the classical Chase algorithm to a counterexample built on
this graph. In this way, we show that the logical implication is decidable for this
class of functional dependencies.

2 Related Work

As far as we know, each XML functional dependency (XFD) concept involves
regular expressions or regular languages. Arenas and Libkin [2] prove different
complexities for logical implication concerning their tree tuples XFD model ac-
cording to the involved regular expressions. They prove quadratic time complex-
ity in case of simple regular expressions. Our new model represents all possible
instances of the regular expression at the same time and so it differs from theirs.

The notion data words has been introduced by Bouyer et al. in [4], based upon
finite automata of Kaminski et al. [8]. Data words are pairs of a letter from a
finite alphabet and a data from an infinite domain. Our concept differs substan-
tially from data words: we assign data values (selected from infinite domains)
to letters (from a finite alphabet) after generating a sentence by a regular ex-
pression. For data words letters and data values are processed together. Libkin
and Vrgo[9] define regular expression for data words. They analyze the complex-
ity of the main decision problems (nonemptiness, membership) for these regular

Towards a Normal Form for Extended Relations 13

expressions. Their model is similar to ours but our point of view is differs from
theirs: we view finite subsets of the set of data words and specify dependencies
over them.

3 Extended Relations

Let us start with the definition of extended relation given by a regular language.

Definition 1 (Extended Relation for Regular Types). Let L be a regular
language over the set of attribute names U. Let w = w1y ... w, € L a sentence,
then we say that w is a regular tuple type over U. Let domy;u € U be sets of
data values, then {(wy : a1,...,wy : ay) |a; € domy, } is the set of possible tuples
of type w. A finite subset of these tuples is an instance of the reqular relation.
We say that the set of these tuple types for all w € L compose the schema of a
regular relation based on L.

We have introduced the notion of the extended relation [13] for a regular
language associated with its dual language. The sentences of the dual language
are either the concatenated nonterminals used by generating a regular sentence
or the states of the accepting automaton, visited during the acception process.
Equivalently, the dual language can be given by a vertex labeled graph with a
unique IN and OUT node as start and end nodes. The vertex labels along each
traversal on this graph (from IN to OUT) represent a schema for the extended
relation (we get the sentences of the regular language by valuation). As said
in Sect. 1 the dual language model cannot handle the join operation among
instances because two joined schemas would not necessarily realize a new, valid
schema.

We need an improved model, based upon a suitable graph representation for
regular expressions. In our new model we use regular expressions over attribute
names to directly define regular relational schemes (e.g. DTD element descrip-
tions), and create the corresponding tuples by valuation (picking data values
from suitable domains) similarly to relational databases. In the next Section
we present a finite graph representation for the sentences denoted by a regu-
lar expression. This graph representation should support node-selection for the
projection operation.

4 Graph Representation for Regular Expressions

Definition 2 (Regular Expression Syntax). Let X' be a finite set of symbols
(alphabet), then a regular expression RE over X (denoted by REx, or simply
RE, if ¥ is understood from the context) is recursively defined as follows:

RE ::=0|1|a|RE + RE|RE o RE|RE*|RE"

where a € X

14 A. Benczur and G.I. Szabd

For a given regular expression RE we denote the set of alphabet symbols
appearing in RE by [RE].

There are efficient constructions of finite state automaton from a regular ex-
pression [16,7,5]. The classical algorithm of Berry and Sethi [3] constructs effi-
ciently a DFA from a regular expression if all symbols are distinct.

Berry-Sethi’s algorithm constructs a deterministic automaton with at most a
quadratic number of transitions [11] and in quadratic computing time (inclusive
of marking and unmarking symbols) [6] with respect to the size of the input
regular expression (the number of its symbols).

Ezample 1. Let G ({S, A, B}, {a,b}, S, P) be a regular grammar, where
P={5=aS5S=055=aA A= bB,B=a}.

The regular expression RE = (a + b)* a b a generates the regular language
L(G) too. Fig. 1 shows the graph of the non-deterministic FSA constructed by
the Berry-Sethi algorithm (BSA). The nodes represent the states of the au-
tomaton: they are distinct. Each node complies with a symbol in the regular
expression (small letters), they are not distinct after unmarking. We assign the
ingoing edge symbol to each node (capital letter) as vertex label. The language,
generated by the vertex labels of the visited nodes, is equivalent with the dual
language iff the symbols in the regular expression are distinct.

RE = (a + b)*aba

Fig. 1. Graph of the automaton for Example 1 constructed by BSA

As shown in Example 1, for a given regular expression RE we can construct a
vertex labeled connected digraph G(RE), with a unique source (IN) and a unique
sink (OUT) which represents RE so that that regular language denoted by RE
consists of the (IN,...,OUT) traversals on G(RE). This graph is not too large
(the number of its vertices equals to the number of symbols in RE), but it is not
optimal for our aims because the different (IN, ..., OUT) traversals have mostly
common subpaths. We need another construction for the graph representation
of regular expressions with disjoint (IN,...,OUT) traversals (regardless of IN
and OUT). We will construct a graph from vertices picked from a suitably large
symbol set I'. We assume that {IN,OUT} C I' and by picking a node v € I
we remove it from I'. The vertices IN and OUT get the labels IN and OUT,
respectively. We denote the empty traversal (IN,OUT) by p<.

Towards a Normal Form for Extended Relations 15

Algorithm 1. Construction of the Graph-Representation for a regular expres-
sion.

Input: regular expression RE (built from the alphabet X),
Output: vertex labeled digraph G(RE)=(V,E) representing RE.

1. if RE=0or RE=1, then V ={IN,OUT} and E = {(IN,OUT)}.

2. if RE=A,A € X, then we pick a node v € I', set V = {IN,OUT,v}, and
E ={(IN,v),(v,0UT)}. We label the node v with A.

3. if REy and REs are regular expressions, then G (RE1 + RE>) will be formed
by uniting the IN and OUT nodes of G (RE1) and G (RE>), respectively.

4. if REy and RE> are reqular expressions, then in order to build the graph
G (RE1 o RE») we first rename the OUT node of G (RE1) and the IN node
of G(REs) to JOIN (Fig. 2), then unite them and connect all "left” paths
with all ”right” paths while eliminating the JOIN node (Fig. 3).

5. if RE 1is a regular expression, then G (RE?) =G (RE)U(IN,O0UT).

6. if RE is a regular expression, then in order to build the graph G (RE*) we
first pick a node v € I, then we create the graph G* (RE) = G (RE) U {v}
(It means that V* = V U {v}, the node v gets the special label STAR).
Let us denote {ai,...,an} the nodes with ingoing edge from IN and
{z1,...,2n} the nodes with outgoing edge to OUT, respectively. Let
us create the graph Gy (RE,STAR) = U, (v,a;) and the graph
Gour (RE,STAR) = U, (#i,v), respectively. Then G (RE*) = G* (RE) U
Gin (RE,STAR)U Gour (RE,STAR)U (IN,STAR)U (STAR,OUT).

Theorem 1. The (IN,...,OUT) traversals on the graph representation G (RE)
for the regular expression RE constructed by Alg. 1 generate exactly the regular
language L (RE).

Proof. Algorithm 1 constructs the representation graph so that each elementary
step of building a regular expression (Def. 2) will be covered. With induction by
the length of the expression and using the regular expression semantics we yield
the result.

Ezample 2. The graph representation for the regular expression RE = (a + b)"
a b a constructed by the Alg. 1 may be seen on Fig. 4. This graph represents
the same regular language as its counterpart on Fig. 1 but it consists of disjoint
traversals.

16 A. Benczur and G.I. Szabd

RE=(A+B+C).(D+E)

QUT JOIN IN ouT

Fig. 2. First joining step of concatenation for two RE graphs

RE=(A+B+C)-(D+E)

Fig. 3. Eliminating the JOIN node from the concatenation of two RE graphs

Regular expressions present a compact form for specifying regular languages.
We look at the sentences of this regular language as types (schemas) of complex
value tuples. We can represent these types as IN-OUT traversals on a graph
constructed from the symbols in the regular expression. We say that this graph
is the schemagraph for the regular expression.

Definition 3 (Schemagraph for Regular Expression). Let RE be a regular
expression built from the alphabet X. We say that the graph G is the schemagraph
for the regular expression RE (denoted by G (RE)) iff

is a directed, (not necessarily strongly) connected graph,

has a unique source (IN) and a unique sink (OUT),

fulfills OutDegree (IN) = InDegree (OUT),

for any two Py = (IN,Aq,...,A,,OUT), Pg = (IN,By,...,B,,,OUT) is
true that {IN,OUT} C P4 N Pg, and if v € P4 N Pp, then label (v) €
{IN,OUT, ST AR},

oo~

Towards a Normal Form for Extended Relations 17

RE = (A + B)*ABA

Fig. 4. Vertex labeled RE representation graph for Example 2 constructed by Alg. 1

5. is vertez-labeled with a single symbol for each node,

6. each cycle of the graph involves a vertex with label ST AR, this is the start

and end node of the cycle,

each vertex v with label ST AR fulfills OutDegree (v) = InDegree (v),

the set of vertez-labels is the set [RE]U{IN,OUT,STAR},

9. the labels of vertices visited by an (IN,...,OUT) walk on G (RE) set up a
string generated by RE (the labels IN,OUT, ST AR will be ignored). Each
symbol string denoted by RE can be obtained in this way.

=R

We say that an (IN,...,OUT) walk on G is a traversal on G. We denote the
set of traversals on G by T (G). The item (9) of Def. 3 states that for a regular
expression RE L (RE) =T (G (RE)).

Lemma 1. If RE is a reqular expression, then the graph G (RE) generated by
Alg. 1 is a schemagraph for RE.

Proof. Starting with an empty regular expression a structural recursion by Alg.
1 gives the result. For instance, an empty RF fulfills (3) of Def. 3 and each step
of Alg. 1 preserves this attribute of the graph.

Definition 4 (Schema Foundation Graph). We say that a graph G comply-
ing with features 1-7 from Def. 3 is a schema foundation graph. We denote the
set of vertex-labels for G by Lab (G).

Lemma 2. If G is a schema foundation graph, then there exists a regular ex-
pression RE so that G (RE) = G and L (RE) =T (G) and [RE] = Lab (G).

5 Relational Algebra for Regular XRelation

Definition 5 (Regular XRelation for Regular Expressions). Let RE be
a regqular expression and let G be a schemagraph for RE, moreover, let w =
(IN,v1,...,v,,0UT) € T (G) be a traversal on G. Let domy;U € [RE] be sets
of data values, then {(v1 : a1,...,v, : an) |a; € dom,,} is a tuple of type w. We
say that a finite set of these tuples is a table instance of type w, and w is the type
(schema) of the table instance. A regular relational instance, e.g. I, is a finite

18 A. Benczur and G.I. Szabd

set of table instances. The schema of a relational instance is the set of types of
its table instances. We say that the set of these tuple types for all w € T (G)
compose the schema of a reqular XRelation based on RE. We denote this regular
XRelation by XR(RE), so I is an instance of XR (RE).

It is well known that the class of regular languages is closed under union, inter-
section and complement. It follows that regular XRelations possess these closure
properties. That is, the set operations of relational databases are applicable for
XRelations.

Let RE; and RFEs be regular expressions and let I; and I be regular relational
instances for the regular XRelations X R (RE;) and X R (RE>), respectively.

Union. The union of the schemagraphs G (RE;) U G (RE2) is a schemagraph
too (= G(RE; + REs)). That is, the union X R (RE,) U XR (RE3) of regular
XRelations is again an XRelation and its regular instances have the form I UIs.

Intersection. The intersection X R (RE;) N X R (RE>) of regular XRelations is
again an XRelation and its regular instances have the form I; N I5.

Difference. The set difference of two regular instances I; and I for the regular
XRelation X R (RE}) is also a regular instance for it.

5.1 Projection

Definition 6 (Node-selection). Let RE be a regular expression and let
G (V,E) be a schemagraph for RE. We say that a subset X C V is a node-
selection over G iff IN € X and OUT € X. If X is a node-selection, then we
denote by X the complementer node-selection for X, defined by X =V \ X U
{IN,OUT}.

Remark 1. Definition 6 presents a rigid method for fixing the scope of the pro-
jecting window. If the selected nodes belong to a cycle, then the selection chooses
all occurrences from a given transversal. A more flexible selection method can
be realized on an extended graph. We may add a a given number of walks
(as new nodes and edges) for any (or all) cycles and select nodes on the new
graph. E.g., if the RE involves the (sub)expression (ABC)", the original graph
contains the nodes a,b,c (labeled with A, B,C, respectively), and the edges
(a,b),(b,c),(c,a). The node-selection of {a,b} selects the labels ABAB from
the traversal which repeats twice the cycle. The extended graph (with two cy-
cles) would give the new nodes and edges

(ah bl)) (bh 61)) (017a2)
(az,b2), (b2, c2)

The labels on vertices are ABCABC. We can select, for instance, the nodes
a1, b1, az which brings ABA. No selection on the original graph can produce this
result.

Towards a Normal Form for Extended Relations 19

Definition 7 (Projection). Let G (V,E) be a schemagraph and let X be a
node-selection over G. Let E [X] = {(a1,an) a1, an € X;aa,...,an-1 ¢ X},
(a1,a2,...,an-1,a,) € P(G), where P(G) is the set of paths for G.

We say that G[X] = (V\ X U{IN,OUT}, E[X]) is the projection graph of
G onto X.

Lemma 3. If G is a schemagraph for the reqular expression RE and X a node-
selection over G, then G [X] is a schema foundation graph.

Proof. G[X] is the result of deleting the complement of the subgraph X from
the schemagraph G and re-connecting during the deletion disconnected vertices
of X. Clearly, the features 1-7 from Def. 3 of the schemagraph will be preserved.
For instance, a traversal (an (IN,...,OUT) walk) on G will be either deleted (it
contains no vertex from X) or preserved (perhaps reconnected), so the attribute
(3) of Def. 3 will be preserved.

Let RE[X] be a regular expression complying with the schema foundation
graph G [X], then we say that RE [X] is the projection of RE onto X . (Lab (X) C
[RE], but different vertices in X can have the same label).

Definition 8 (Projection of Schema). Let G be a schemagraph of the regular
expression RE and let X be a node-selection over G.

Let w = (vo,v1,. .., UnyUnt1) ;00 = IN,v,41 = OUT be a traversal on G (w
is a type for RE). We denote by w[X] the projection of w to X, defined as
follows: w[X] = (V0,Viyy- -y VipyUny1);0r € X forr € {iy,...,ix} and v, ¢ X
otherwise.

w [X] is either a traversal on G or its re-connected edges belong to G [X], so:

Lemma 4. If G is a schemagraph for the reqular expression RE and X a node-
selection over G and w is schema for RE, then w[X] is a traversal on G [X].

Definition 9 (Projection of Instance). Let RE be a regular expression and
let XR be a regular XRelation based on RE and let I be a table instance for
X R with type (I) = w. The projection of I to X, denoted by wx (I), is the set
of tuples {t[X]|t € I;type (t[X]) = w[X]} (that is, t[X] is the subsequence of
constants from t according to the subsequence w [X] in w).

Definition 10 (Functional Dependency). Let G be a schemagraph of the
reqular expression RE and let X,Y be node-selections over G. The reqular rela-
tional instance I satisfies the functional dependency (XRFD) X — Y if for
any to tuples ti,ta € I with type (t1) = wi and type (t2) = wa, whenever
wy [X] = we [X] and t1 [X] = t2 [X], then w1 [Y] = w2 [Y] and t1 [Y] = t2 [Y].

Ezample 3. Let R = (Ry,..., R,) be a relational database schema. The regular
expression RE = (Ry|Rz|...|Ry) (if R; = (a,b,c,d,e) then for the regular ex-
pression we use the concatenation abede of the attributes), then the schemagraph
for RE consists of parallel, linear (IN, ..., OUT) traversals. Each relational func-
tional dependency over R can be defined on the schemagraph using Def. 10, with
the restriction that both participant node-selections will be located on the same
(IN,...,OUT) path.

20 A. Benczur and G.I. Szabd

5.2 Natural Join

Definition 11 (Disjunctive Natural Join). Let Gy, G2 be schemagraphs for
the regular expressions REq, RFEo and let X1, Xo be node-selections over G1,Ga,
respectively, so that G1[X1] = G2 [X2] = G. Let wy € T (G1) and we € T (G2)
so that wy [X1] = we[X2] = w. Let (A,B) € G, then (A,z,B) € Gy and
(A,y, B) € Go for some paths x and y, respectively, so that AxB and AyB are
subsequences of w1 and ws, respectively. Let Iy and Iy be table instances for the
reqular XRelations X R(RE) and X R(RE>), respectively, so that type (I) =
wy and type (I3) = wa, then we say that wy and wy (and also Iy and Iz) can
be joined. We define I = I, w Iy as a (disjunctive joined) regular relational
instance, for which if t € I, then there exist t1 € I1,ta € Iz so that t1[X;] =
to [Xo], then tu] = t1 [u]|lu € (IN,...,A) and t[u] =tz [u]|lu € (B,...,0UT).
Moreover, let t [A x B] = {t[ApB] |ApB € P (G1) U P (G2)}, then t[A x B] =
{t1 [AxB] U ts [AyB] |t1 [A] = t2 [A],t1 [B] = t2 [B]}.

Remark 2. If wy [X4] = wy [X2] = g, then the disjunctive join of the two table
instances I and Iy will be I = I} wx Iy = I} U Iz, moreover, schema (I) =
{w1,ws}. The same is true for the special case [X1] = [X2] = 0 as well.

Remark 3. We have defined the join operator for two table instances joined on
two single attributes. We can extend this definition to joining two table instances
on any number (or a single one) of attributes. We can also extend this definition
to joining any (finite) number of table instances in a natural way.

Example 4. The disjunctive natural join of table instances means in fact union
for the background regular expressions. Let RE; = Ao X oY o B and RE; =
AoWoZoB and let X; = Xo = {A, B}, then the regular expression complying
with the on A, B joined instances will be Ao ((X oY) + (W o Z)) o B.

Example 5. The XML documents on Fig. 5 conform to the DTD element decla-
rations
Coursesl:

<IELEMENT course (Cid,Cname, (Instid,Instn)+)>

and
Courses2:

<IELEMENT course (Cid, (Stid,Stn)+)>

respectively. The disjunctive join of the two instances results in

JoinedCourses:

<!ELEMENT course (Cid, ((Cname, (Instid,Instn)+))|((Stid,Stn)+))>

Towards a Normal Form for Extended Relations 21

Coursesl

30 "saL" 120 "Keen"

10 1111 "Mary" 1221 “Jake" 30 1112 "John" 1122 "Abe"

Fig. 5. Example XML documents for natural join

Definition 12 (Concatenative Natural Join). The concatenative natural join
will be defined similarly to its disjunctive counterpart, using concatenation instead

of disjunction. That is, we define the reqular relational instance I = I; X Iy
as two (concatenative) joined table instances. If t € I, then there exist t; €
Lijta € Iz so that t1[X1] = t2[X2] and t[AzyB] = t1 X to[AzyB] =

{t1[Az] o ta [yB]|t1 [A] = t2 [A],t1 [B] = t2 [B]}. For the special case see Rem. 2.

Definition 13 (Natural Join of Regular Instances). The natural (disjunc-
tive or concatenative) join for two regular relational instances will be defined
as the set of joined member table instances. That is, if Iy and I are regular
relational instances, then Iy) Iy = {J|J = J1) Jo; J1 € I, Jo € I1}.

Remark 4. We have defined the join operator for two regular relational instances.
We can extend this definition to joining any (finite) number of regular relational
instances in a natural way.

Remark 5. If wy [X1] = we [X3] = <, then the concatenative join of the two
table instances I; and Iy will be I = I1 x Iy = I; o Is, moreover, schema (I) =
(wy 0 ws).

Example 6. The concatenative natural join of table instances means in fact con-
catenation for the background regular expressions. Let RE; = Ao XoY o B and
RE; = AoW o Zo B and let X; = Xy = {A, B}, then the regular expression
complying with the on A, B joined instances will be Ao ((X oY) o (W o Z))oB.

Example 7. The concatenative join of the two instances realized in the XML
documents on Fig. 5 will be

JoinedCourses:

<IELEMENT course (Cid, ((Cname, (Instid,Instn)+)), ((Stid,Stn)+))>

22 A. Benczur and G.I. Szabd

5.3 Join Dependencies, Implication Problems for Xrelations

Definition 14 (Join Dependency). Let G (V,E) be a schemagraph of the
reqular expression RE and let X,Y be node-selections over G so that V = XUY U
{IN,OUT}. Let I be an instance for the XRelation over RE and wx (I),my (I)
the projections of I to X and Y, respectively. We say that an instance I for
the XRelation over RE satisfies the X [X,Y] join dependency iff I = wx (I) X
Ty (I)

Using the Definitions of functional and join dependency we can define nor-
mal form for XRelation schemas (BCNF, 4NF etc.) and describe the lossless
decomposition for regular XRelations.

Definition 15 (Lossless Decomposition). Let G (V, E) be a schemagraph of
the regular expression RE and let X1,...,X, node-selections with Uj_; X; U
{IN,OUT} = V. The set X1,...,X, is a lossless decomposition of G if any
reqular relational instance I for the XRelation over RE satisfies the join depen-
dency I =7x, (I) x wx, (I) x ... x7x, (I).

The logical implication of functional and join dependencies for XRelations
is decidable with a special form of the Chase algorithm. We present here an
algorithm to decide logical implication of functional dependencies for XRelations.

Definition 16. Let G be a schemagraph of the regular expression RE. Let X be
a set of XRFDs and let X —'Y be an XRFD over G, then X implies X — Y
(denoted by ¥ = X — Y) if for each (finite) reqular relational instance I that
satisfies X 1= X =Y will also be fulfilled.

Algorithm 2. Algorithm for checking implication of XRFDs.

Input: schemagraph G = (V, E) for an XRelation, a set ¥ and 0 : X — Y
functional dependencies over G

Output: true, if ¥ |= o, false otherwise

1. Initialization
Create a counter example from two copies of G (G1,G2), the nodes of X colored
green on both copies, the nodes of Y colored red on one copy and yellow on the
other one.
2. FDSET := X%,
3. greene := X;
4. repeat until no more dependency is applicable:
ifW = Z e FDSET and W C greene, then
i. FDSET := FDSET — (W — Z);
1. greene := greeneU Z;
iii. for all v € Z set color(v) := green (on both copies)

5. if the number of yellow nodes and red nodes are both zero, then output is
true otherwise output is false.

Towards a Normal Form for Extended Relations 23

Proposition 1 (Functional Dependency Implication). Let G be a schema-
graph of the reqular expression RE. Let X be a set of XRFDs and let X —'Y be
an XRFD over G, then X = X — Y if and only if the Alg. 2 with input G, ¥
and X —'Y returns true.

6 Conclusion and Future Work

This paper presents regular expressions as compact database schemas and defines
functional and join dependencies over them, based on the graph representation
for the regular expressions. We defined extended relations on the graph represen-
tation for regular expressions and determined semantics for the dependencies on
instances of extended relations. The logical implication of this kind of functional
dependencies is decidable in quadratic time.

Our model offers the tools for a normal form of XRelation. We think that the
logical implication for the join dependency, defined here, is decidable similarly
to Alg. 2.

We would like to find the connection between our model and data words, that
is, to define a register automaton that accepts those data words that satisfy a
given functional dependency specified for the corresponding XRelation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transactions on
Database Systems 29(1), 195-232 (2004)

3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret-
ical Computer Science 48(3), 117-126 (1986)

4. Bouyer, P., Petit, A., Thrien, D.: An algebraic approach to data languages and
timed languages. Information and Computation 182(2), 137-162 (2003)

5. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4),
481-494 (1964)

6. Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoretical Computer Science 289(1), 137-163 (2002)

7. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16, 1-53 (1961)

8. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329-363 (1994)

9. Libkin, L., Vrgo¢, D.: Regular expressions for data words. In: Bjgrner, N., Voronkov,
A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 274-288. Springer, Heidelberg (2012)

10. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema lan-
guages using formal language theory. ACM Transactions on Internet Technol-
ogy 5(4), 660-704 (2005)

11. Nicaud, C., Pivoteau, C., Razet, B.: Average Analysis of Glushkov Automata under
a BST-Like Model. In: Proc. FSTTCS, pp. 388-399 (2010)

12. Sperberg-McQueen, C.M., Thompson, H.: XML Schema. Technical report, World
Wide Web Consortium (2005), http://www.w3.org/XML/Schema

http://www.w3.org/XML/Schema

24

13.

14.

15.

16.

A. Benczur and G.I. Szabd

Szabd, G. 1., Benczir, A.: Functional Dependencies on Extended Relations Defined
by Regular Languages. Annals of Mathematics and Artificial Intelligence (2013),
doi: 10.1007/s10472-013-9352-z

Vincent, M.W., Liu, J., Liu, C.: Strong functional dependencies and their appli-
cation to normal forms in XML. ACM Transactions on Database Systems 29(3),
445-462 (2004)

Wang, J., Topor, R.W.: Removing XML Data Redundancies Using Functional and
Equality-Generating Dependencies. In: Proc. ADC, pp. 65-74 (2005)

Watson, B.W.: A taxonomy of finite automata construction algorithms. Computing
Science Note 93/43, Eindhoven University of Technology, The Netherlands (1994)

	Towards a Normal Form for Extended Relations
Defined by Regular Expressions

	1 Introduction
	2 Related Work
	3 Extended Relations
	4 Graph Representation for Regular Expressions
	5 Relational Algebra for Regular XRelation
	5.1 Projection
	5.2 Natural Join
	5.3 Join Dependencies, Implication Problems for Xrelations

	6 Conclusion and Future Work
	References

