Open Source Is a Continual Bugfixing by a Few

Mikolaj Fejzer, Michal Wojtyna, Marta Burzanska, Piotr Wisniewski,
and Krzysztof Stencel

Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University,
Torun, Poland
{mfejzer,goobar,quintria,pikonrad,stencel}@mat.umk.pl

Abstract. Github is one of the most popular repository sites. It is a
place where contributors come together to share code, ideas, thoughts
and report issues. By using topic modelling applied to comments we are
able to mine plentiful interesting information. Three aspects of an open
source project mostly attracted our attention: the existence of a ”Core
Team”’ - small number of developers that have the most contributions,
the prevailing popularity of topics related to bug fixing and the contin-
uous development of project without significant iteration phases.

Keywords: Bug fixing, Developers behavioural patterns, Development
phases, Github, LDA, Topic analysis, Team work.

1 Introduction

Today, the the most popular code repository sites for open source projects are
Github and Sourceforge. They gather massive data on users, their activities and
the code they produce. From 2014 MSR Mining Challenge [1] we have obtained
a portion of repositories stored in Github. After a careful analysis of the pro-
vided data structure, we have decided to study the influence of committers on
their projects. We focused our attention on mining the information from commit
messages and issue comments.

In order to generalize information about each of the studied commits and is-
sues and to gather statistics, we used topic modelling [2]. Each comment has been
treated as a single document. To obtain topics we applied the Latent Dirichlet
allocation [3] using the Mallet topic modelling toolkit [4]. We trained our topic
model per project, to capture each project’s unique history and the context of
programmers interaction. As a next step we have aggregated the data by a num-
ber of attributes - among which the most helpful aggregations were by date and
by author.

Based on the series of empirical tests of training Mallet with different param-
eters, we have finally decided that 50 topics and 1000 iterations gives us the
best generalization without losing too many specific details about the studied
data. We have also added custom stop words that matches the Github context to
clean up committers’ messages. Mostly we had to deal with numerous comments

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 153-162, 2014.
© Springer International Publishing Switzerland 2014

154 M. Fejzer et al.
containing ”thank you”, ”good job” and other such praising that fell out of our
scope of interest.

Unfortunately for our approach, out of 92 projects provided, only 52 had a
sufficient number of commit messages allowing to extract reliable topic, and of
those 52 only 43 projects had enough issue comments to be studied. We have
examined the resulting data to verify a number of hypotheses, sometimes dis-
covering new ones worth investigating. The first thing we have noticed was that
repeatedly the bug fixing topic was always either the most popular topic, or
among the top 5. We shall address this issue in Section 2. Also our initial ob-
servations indicated that most of the projects have a small hard working ”core
developers” group comprising of specialists in one or two topics and people who
contribute to almost every topic. More detailed information about the corre-
sponding hypothesis, gathered data and results can be found in Section 3.

Of course among many interesting questions some remained unanswered, while
some turned out with a negative answer although our initial intuition suggested
that they should validate positively. Two most noteworthy of such hypotheses are
the close correlation between issue topics and following commit topics and that
the open source projects are created iteratively. Those hypotheses are addressed
in the Section 4.

This report deals mostly with three hypotheses:

— In most of the projects the contributors can be divided into two main groups:
a great number of contributors is responsible for only a small portion of code,
since their input is minor. On the other hand - a small group of contributors,
let us call them the ”Core team”, is responsible for substantial developments
through majority of commits to the code.

— Despite advancements of software engineering open source projects are not
developed according to a methodology based on any form of cycles. In fact,
in general the development process is iterative.

In following section we take a closer look at the aforementioned hypotheses.

2 “The Core Team”

Our goal was to check how do people involved with a project contribute to
its development. Do they mostly assume a role of a specialists - local domain
specific experts - or perhaps they are generalists who contribute to different parts
of their project? Or maybe there are other who fall out of those two categories.
Furthermore, how big (in percentages) are those groups and can we find some
universal trends on this matter?

In our terminology a specialist is a committer, whose number of commits
matching specific topic is larger than half of the maximum number of commits
to the most popular topic of a project. A generalist is a committer whose number
of commits matching multiple topics is larger than average number of topics per
committer.

Open Source Is a Continual Bugfixing by a Few 155

After analysing the data of the chosen 43 projects we found out that in each
project the majority of committers behave like partisans, using hit and run
tactics. They create only one commit matching specific topic and disappear,
never to be seen again. The average number of committers per project is 35.9
contributors which is equal to 70.93% of average project’s committers. Specialists
usually concentrate on the most significant topics. Our calculations show that
they constitute average 2.07 (12.06%) committers per project. They are also
competent or willing enough to create numerous commits matching other topics,
so many of them are also counted among generalists, whose average is 9.59
(28.12%) of committers per project.

In order to illustrate the issue we have selected two charts generated from
data aggregated by comments’ author. Figures 1 and 2 visualize the number of
contributions to a topic by an author. For a project 3583 presented in Figure 1
the global number of committers is 84 and there are 5 specialists and 27 multi-
topic generalists. The project 107534 from Figure 2 has 34 contributors in total,
among which there are 3 specialists and 10 generalists.

Similar research has been conducted by the author of [5]. They have studied
the Apache and Mozilla projects and their contributors. Despite slight differences
in percentages (their results were closer to 20%-80% ratio of the number of core
team developers to others), they came to a similar conclusion. A minority of
contributors is responsible for the majority of work.

Table 1. Statistics of committers groups

Specialists Generalists Other Definition
12,06% 28,12% 70,93% Average percent-
age per project
2,07 9,59 35,9 Average number
per project
5,77% 26,70% 72,96% Percentage of all
85 393 1074 Number of all

3 Bugfixes

The analysis of the charts containing popularity of topics has lead us to our
second hypothesis: bug fix commits are notably popular in open source projects.
Our first intuition was that bug fixing related topics should have significant
popularity. We analysed data fetched from Github database using our generic
solution based on Mallet as follows. We took all comments of each commit and
created a list of topics describing it. Every topic consists of top 10 words with
frequencies. We classified a topic as bug fix related if it contained at least 2 words
from the list of bug fix keywords, such as: fix, bug, solve. We took all commits
of a project and generated a reduced list of 10 topics. In a 50 topic list we have
often seen a number of bug fix related topics, thus the need for reduction.

156 M. Fejzer et al.

Damian Huckle E - -
Alexis Ballier .
Cory Fields ——
Rawk]
Marius T .
Tobias Hieta n

amova e e—

emptyname =
Scott Johns =
taxigps =
CrystalP —
Fice]
McGeagh =
Lars Op den Kamp
ulion o
Chris Lance s
vdrfan .— o — ——
Stephan Raue .
jmarshallnz f—
Alasdair Campbel| _ s
Matthias Kortstiege == B 7 |
N . e - = -
Geoffrey McRae ===
Memphiz E
Schischu __
Ame Morten Kvarving e s———
Zeljko Ametovic
sfontes
Jim Carroll
Franz Koch
Fneufneu
Trent Nelson
Fred Hoogduin
lan Fims
John Rennie
GreenOnyx
Chris Browet
Karlson2k
bobo1on1
Millencolin
MaestroDD
Tobias Arrskog
midripps

gyt
’

l|'|-ll

-
|]

o
-
o
[
o

30 40 50 60 70 80 90
number of commits

Fig. 1. Topic aggregation by committer’s name on project 3583

Paul Phillips

Som Snytt

Miguel Garcia
Adriaan Moors
Viktor Klang (\)
emptyname
Aleksandar Prokopec
Eugene Burmako
kenji yoshida

Den Shabalin
Evgeny Kotelnikov
Hubert Plociniczak
Luke Cycon

Josh Suereth
Raphael Jolly
Prashant Sharma
aleksandar

Stefan Zeiger
Heather Miller
Christoffer Sawicki
Jean-Remi Desjardins
Martin Odersky
George Leontiev
Lukas Rytz

Jason Zaugg
lulian Dragos
Grzegorz Kossakowski
James Iry

Eugene Vigdorchik
Vlad Ureche
Philipp Haller
James Roper

Open Source Is a Continual Bugfixing by a Few 157

[Il Il I N H EEN"TEE o
| .

| |

H 1 I | |

| |

' n | |

NN .

||

| |

| |

|

l

| B

| |

]

m

]

| |

En

un

R8s il

| |

FEE°

]

| |

R

| |

| |
0 10 20 30 40 50 60 70

number of commits

Fig. 2. Topic aggregation by committer’s name on project 107534

158 M. Fejzer et al.

Now, we have assumed that developers’ work is focused mainly around fixing
bugs if a project contains at least one bug fix related topic within top 5 topics
list. We have found out that most of the chosen projects share topics which we
can classify as related to bugs fixing. Only one of 44 projects did not have a bug
fixing related topic. Also, bug fix topics are often equally distributed over time.
Bug fix commits usually span over many months or even years. Moreover, these
topics are very popular. Naturally, this does not mean that in every project the
most popular topic is related to bugs fixing. Usually, the most popular topic in
a project represents specific project-related problems. Actually, nearly half of
the projects could be classified as ”bug-fix” project as 20 out of 44 had bug-fix
topic among their top 5. This might seem reflecting open source model of work.
There are copious contributors and testers. Thus, issues are reported/proposed
more often and faster than in commercial projects. That is why developers might
have a clear vision of what to do and they can just focus on solving reported
problems. At the same time open source projects tend to have less formal work
organization. This might be another source of potential bugs. Investigation of
the reasons behind the popularity of bug fixing is a very interesting research
subject, however it would require access to a lot more data, e.g. both source
code and user interactions like comments or mailing lists.

Project id
12

=

|
/ \ Bugfix topic

|)

Fig. 3. Topic aggregation by commit date on project 12

Figures 3 and 4 present two example charts showing distribution of commit
topics over time in two projects. The first chart (project id 12) represents top-
ics of TrinityCore Open Source MMO Framework. The second chart (project

Open Source Is a Continual Bugfixing by a Few 159

Project id
289

Bugfix topic

HNow e o

Z008-10

Fig. 4. Topic aggregation by commit date on project 289

id 289) concerns MaNGOS, a MMO server suite. Both of them have plentiful
contributors and commits over time. Therefore they are suitable to show some
tendencies. Both projects have also rich histories (unlike many other projects),
ranging from 2008 to 2013 (project 289) and from 2010 to 2013 (project 12). We
can see that in both projects bug fix commits are not only notably popular, but
also spanned across the entire chart. This leads us to conclusion that in both
projects developers’ main efforts are focused on solving issues/bugs reported by
the community or other developers.

4 Project’s Development Phases

Before we began to study the data provided by the 2014 MSR Mining Challenge
[1] we strongly believed that the majority of open source projects is being devel-
oped in cycles loosely corresponding to either classical prototype methodologies,
or sprints used in Scrum. To verify this hypothesis we have studied topics of issue
comments and commit messages separately, in both cases with and without the
most significant topics among. We have also tried reducing the initial number of
50 topics and then eliminating the most significant one. However, much to our
surprise, in most projects we were unable to detect cycles of topics (of either
issues or commits), such as a regular increase and decrease of interest in par-
ticular topic in specific months. Only one project (51669) had a form of topics’
cycle between 2012-07 and 2013-03. Numerous projects probably spanned over
a too small period of time, or had too few contributions to detect cycles even if
committers worked according to them.

160 M. Fejzer et al.

We have revealed that in almost all projects there exist major topics (often a
single topic) that are generally popular and prevalent during whole development
process. And yet, even after excluding those (usually top 3) topics, the only topics
remaining are those which have a very small number of commits (for example
only one commit) or few issues gathered around a specific date or occasion.
In case of commits those situations may be caused by merging work of those
committers who behave like partisans. While investigating this hypothesis we
came across two other questions. Are commits related to issues? Or at least do
bug fixing topics in commits indicate some correlation to issues? Unfortunately
the answers we have found are both "no”.

Topics of issues are generally not similar to those of commits. Issue topics
concentrate more on how something can be achieved and are more broad dis-
cussions, e.g. on the architectural context of a project or the usage of a selected
library. Commit topics usually describe a specific situation such as not merged
commit, a failed compilation or specific reasons why commit should be changed.
Issue topics generally do not seem influencing commit topics to appear. It is true
it least in the Github projects chosen for the Challenge.

5 Research Limitations

Our results are subject to a number of limitations threatening the accuracy or
even the correctness of our assumptions. Our biggest concern is that we did
not have access to the source code. Therefore, we were unable to verify if the
specialists actually produce a majority of code, or they simply make lots of
small corrections - possibly even insignificant. The same concerns generalists.
Their work may additionally be triggered not by the desire to improve their
projects but more by the reputation and contribution score. On the other hand
”partisans” may contribute to a project not by Github itself but through other
means like forums - where they may post helpful code, hints or suggestions.

Another problem that should be clearly stated here is that we analysed a
very small number of projects. As mentioned earlier only 92 projects were pro-
vided, out of which only 43 were subjected to our method of investigation. And
even those projects usually had a very small number of committers and com-
ments making it difficult to generalize based on them. In general people tend to
leave commit messages empty or they include a short, nearly meaningless sen-
tence.Thus, without looking at the source code it is impossible to say anything
about such commit. One of our concerns here is that we were unable to distin-
guish between commits that are meaningful to a project and commits that were
cancelled or overwritten.

Our approach itself left a space for additional work. The fact, that we have
eliminated topics related to praising and thanking others for their work might
have negatively influenced our results. The same goes for parameters we used
when training the LDA. For topics generated in some other way for example
there may exist software development cycles.

Open Source Is a Continual Bugfixing by a Few 161
6 Conclusions

In this paper we have shown that the majority of open source projects have a
strong ”Core Team”, i.e. a group of developers that are either strongly involved
in the development of a chosen topic, or they browse through the project bringing
together committers and their contributions. The work of open source developers,
no matter what is their role in a project, usually involves a notable amount bug
fixing. Moreover, while investigating this problem we have found no correlation
between bug fixing and Test Driven Development, or even simple testing phases.
This leads to our third main conclusion that in most open source projects the
work is continuous and cannot be clearly divided into stages or phases.

There are still numerous interesting hypotheses to be researched. As we have
mentioned earlier, as we dug down the data, more and more questions arose. For
example, is a project’s popularity related somehow to the main technology? Or
what are the trends behind the open source development? One of the hypotheses
that we were unable to verify due to the small sample of projects is connected
with the existence of the Core Team. Specifically, how big should be the leading
team for a project to succeed? Or is a small core team a guarantee of a failure?
This questions have been also formed within the research paper on Apache and
Mozilla projects [5]. But we may also try to analyse means of interaction between
the ”Core Team” and other members, bearing in mind the research in [6]. How
open are the core team members to other participants, and does it corelate to the
amount of bug-reports or commits done by them. Going further on this subject
we may want to ask what other project’s features are directly linked to the
project’s success or failure. The authors of [7] have attempted to assess the main
bug-types and quality of bug reports for selected Android Apps. This research
could be also expanded with our findings and lead to more in-depth analysis of
general trends in bug-reporting for open-source projects. In particular, the work
on identifying key bug-fixing patches for Linux kernel [8] could be enhanced with
our approach for more general topic classification.

Last but not least, we have to remember that more work should also address
the limitations described in Section 5.

References

1. Gousios, G.: The GHTorrent dataset and tool suite. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR 2013, pp. 233-236
(2013)

2. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 50-57. ACM (1999)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. The Journal of
Machine Learning Research 3, 993-1022 (2003)

4. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit (2002),
http://mallet.cs.umass.edu

http://mallet.cs.umass.edu

162 M. Fejzer et al.

5. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM) 11, 309-346 (2002)

6. Scialdone, M.J., Li, N., Heckman, R., Crowston, K.: Group maintenance behav-
iors of core and peripherial members of free/Libre open source software teams. In:
Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIP
AICT, vol. 299, pp. 298-309. Springer, Heidelberg (2009)

7. Bhattacharya, P., Ulanova, L., Neamtiu, I., Koduru, S.C.: An empirical analysis of
bug reports and bug fixing in open source android apps. In: Proceedings of the 2013
17th European Conference on Software Maintenance and Reengineering, CSMR
2013, pp. 133-143. IEEE Computer Society, Washington, DC (2013)

8. Tian, Y., Lawall, J., Lo, D.: Identifying linux bug fixing patches. In: Proceedings of
the 34th International Conference on Software Engineering, ICSE 2012, pp. 386—-396.
IEEE Press, Piscataway (2012)

	Open Source Is a Continual Bugfixing by a Few
	1 Introduction
	2 “The
CoreTeam”
	3 Bugfixes
	4 Project’s Development Phases
	5 Research Limitations
	6 Conclusions
	References

