
A Demand-Driven Bulk Loading Scheme

for Large-Scale Social Graphs

Weiping Qu and Stefan Dessloch

University of Kaiserslautern
Heterogeneous Information Systems Group

Kaiserslautern, Germany
{qu,dessloch}@informatik.uni-kl.de

Abstract. Migrating large-scale data sets (e.g. social graphs) from clus-
ter to cluster and meanwhile providing high system uptime is a chal-
lenge task. It requires fast bulk import speed. We address this problem
by introducing our “Demand-driven Bulk Loading” scheme based on the
data/query distributions tracked from Facebook’s social graphs. A client-
side coordinator and a hybrid store which consists of both MySQL and
HBase engines work together to deliver fast availability to small, “hot”
data in MySQL and incremental availability to massive, “cold” data in
HBase on demand. The experimental results show that our approach en-
ables the fastest system’s starting time while guaranteeing high query
throughputs.

Keywords: Bulk loading, HBase, MySQL.

1 Introduction

As the biggest social network company, Facebook’s social graph system nowadays
serves tens of billions of nodes and trillions of links at scale [1]. Billions of daily
queries demand low-latency response times. Recently, a social graph benchmark
called LinkBench [2] was presented by Facebook which traces distributions on
both data and queries on Facebook’s social graph stores.

Two main tables node(id, type, data) and link(id1, link type, id2, data)
are used to build the social graph at Facebook (primary keys are underlined).
Nodes represent objects like user, photo, video, etc. while links are connec-
tions between the objects and have types like “post”, “like” and “friend of”.
We learned several interesting facts from LinkBench, for example, one observa-
tion on access patterns and distributions states that there is always some “hot”
data that is frequently accessed while massive amounts of “cold” data is seldom
used. With a 6-day trace, 91.3% of the data is cold. In addition, hot data often
exists around social graph nodes with high outdegrees, which means the access
likelihood grows along with the node outdegrees. As an example, a video with
high like rates will be recommended more widely than others. Based on another
observation on social graph operations, an operation called get link list occurs
frequently and constitutes 50.7% of the overall workload. The signature of this

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 139–152, 2014.
c© Springer International Publishing Switzerland 2014

140 W. Qu and S. Dessloch

operation is get link list(link type, id1, max time, limit, ...) where id1 is
the starting node id of this link. Given the type of a link (e.g. like) and the
id of the starting node (e.g. a user id1), get link list returns a list of links to
answer certain types of queries like “what objects have been recently liked by
user id1”. This get link list performs a short range scan in massive amounts of
rows in graph stores based on (link type and id1), a subset of the composite
key.

As more and more applications are added to Facebook, like Facebook Messag-
ing and Facebook Insights [3], and workloads evolve on graph stores, the change
of the underlying data infrastructure or software requires migrating existing data
from cluster to cluster while high data availability must be guaranteed. To pro-
vide 24-h system uptime, normally hot-standby clusters are used to store replicas
of source data and serve query workloads during data migration. This incurs high
data redundancy and the new system still cannot start until a long-running bulk
import is finished.

Our work investigates the problem of migrating large-scale social graphs
based on their data distributions and access patterns introduced above. To guar-
antee high system uptime, a trade-off between data availability and query la-
tency is utilized in this work. The “hotness and coldness” of migrated data is
balanced by a hybrid graph store which is composed of a traditional index-based
relational MySQL (http://www.mysql.com) database and an Apache HBase
(http://hbase.apache.org) cluster. Both systems have received high attention
as a backend storage system for realtime operations on big data. The debate on
MySQL and HBase began in 2010 in terms of multiple metrics like read/write
throughput, I/O, etc. In this work, we will first compare these two systems re-
garding their bulk load speed and short range scan latency and then introduce
our “demand-driven bulk loading” scheme.

The comparison of MySQL and HBases’ load and scan performance is given
in Section 2 and the motivation of this work is explained there. In Section 3,
we introduce the architecture of our “demand-driven bulk loading” scheme. The
experimental results are analyzed in Section 4. We discuss related work in Section
5, and Section 6 concludes our work.

2 Bulk Loading in MySQL and HBase

In [4,5], the performance of sequential/random read/write access has been com-
pared among Cassandra, HBase and (sharded) MySQL. The results show that,
due to their different architectures, HBase has the highest write throughput when
the insertions fit in memory, while MySQL is best for read access. Both engines
provide extra bulk load utilities in addition to the interfaces for individual, row-
level writes/updates. In this section, we compare their bulk load mechanisms
by analyzing their architectural differences. Based on the comparison result, we
describe our motivation of providing incremental availability to external queries
during bulk loading large-scale social graphs.

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 141

2.1 MySQL

Like other traditional databases, MySQL uses B-trees as an index structure for
fast read and write on large tables. One crucial step of generic bulk loading in
traditional databases is an index construction process. Using a classical sort-
based bulk loading approach, the entire data set is pre-sorted (O(nlog(n))) and
grouped in file blocks as index leaf nodes. A B-tree index can be easily built from
this set of sorted leaf nodes in a bottom-up fashion from scratch. In contrast,
inserting the tuples from the same data sets once at a time in a top-down fashion
without pre-sorting incurs overhead i.e. a lot of splits on index’s internal nodes
and a large number of disk seeks with random I/O. There are other approaches
for building indices during bulk loading, like buffer-based/sample-based bulk
loading [6] which will not be detailed here.

To import large amounts of data in MySQL, there are two primitive ap-
proaches: batch insert and bulk loading. By including multiple tuples in one
INSERT statement and inserting these tuples in batch, batch insert results in
fewer operations and less locking/commit overhead. Yet the bulk load command
LOAD DATA INFILE is usually 20 times faster than using the INSERT statement
because of its less overhead for parsing [7]. However, the user has to ensure that
the tuples to be inserted won’t violate integrity constraints. Before bulk loading,
the use of indices is normally disabled to avoid disk seeks for updating on-disk in-
dex blocks at load time. After bulk loading, indices are enabled again and created
in memory before writing them to disk. However, when bulk-loading non-empty
tables where indices are already in use, a performance impact of bulk-loading on
concurrent reads occurs.

As mentioned in Section 1, the frequently used get link list operation per-
forms a short range scan on a subset of the composite key. Therefore, using
MySQL as the graph storage backend, very low scan latency can be achieved
by traversing the leaf nodes of primary key index sequentially after the starting
block has been found.

2.2 HBase

Apache HBaseTM is the Hadoop database built directly on the Hadoop Dis-
tributed File System (HDFS) [8]. HDFS is an open-source version of Google File
Systems (GFS), which inherently provides batch processing on large distributed
files using MapReduce jobs. HBase was modeled after Google’s Bigtable [9] and
provides random, realtime read/write access to HDFS. This is done by directing
client requests to specific region, with each server handling only a fraction of
large files within a certain key range.

Both Bigtable and HBase use an “append-only” log-structured merge tree
(LSM-tree) [10] structure. In HBase, inserted tuples are first buffered in an in-
memory structure called MemStore and sorted very fast in memory. Once the size
of the MemStore exceeds a certain threshold, it is transformed to an immutable
structure called HFile and flushed onto disk. A new MemStore is then created
to further buffer new incoming rows. Updates on existing rows are treated as

142 W. Qu and S. Dessloch

new insertions appended to existing files instead of in-place modification, which
needs random disk seeks for reading updated blocks. In addition, no auxiliary
index structure needs to be maintained. In this way, high write throughput can
be achieved in HBase. However, a single row can appear many times in multiple
HFiles or MemStore. To retrieve a single row, HBase has to scan those HFiles
or MemStore that contain the copies of this row and merge them to return the
final results. Sequential scans are carried out on sorted HFiles. Thus the read
speed is dominated by the number of files in a region server. In order to improve
read performance, a compaction process runs periodically to merge HFiles and
reduce the number of row copies. Furthermore, Bloom filters can be used to skip
a large number of HFiles during reading.

To insert large amounts of files into HBase, an efficient MapReduce-based
bulk loading approach can be used to directly transform HDFS files into HFiles
without going through the write path introduced above. Each row appears only
once in all HFiles. The map tasks will transform each text line to a Put object (a
HBase-specific insert object) and send it to a specific region server. The reduce
tasks sort these Put objects and generate final HFiles. This process is much faster
than HBase writes as it exploits batch processing on HDFS. The get link list
operation can benefit from this bulk loading approach as well since the number
of HFiles to read is small. By setting up Bloom filters, target HFiles can be
found very fast.

2.3 Motivation

As introduced in Section 1, 91.3% of the social graph is rarely used while 8.7%
of the data sets are frequently accessed. When migrating such a social graph to
new clusters, the availability of hot data is delayed since the system downtime
will only end when all data has been loaded. For frequently emerging queries,
system uptime could start earlier if there was a mechanism that can tell whether
all the relevant data is already available before the remaining data is loaded.
As data is loaded chunk by chunk, it would be enough to have a global view of
the key ranges of all the chunks before starting loading. This can be seen as an
index construction process. In this way, a query can identify its relevant chunks
by comparing its queried key with the key ranges of all the chunks. Once its
relevant chunks have been loaded, this query can start to run over the current
storage state. In addition, as the small amount of hot data can be arbitrarily
distributed among all the chunks, faster availability to frequent queries can be
achieved by prioritizing the loading of the chunks which contain hot data.

MySQL’s bulk loading builds indices either during data loading or after load-
ing. Building indices upfront is impossible. Using HBase’s bulk loading, source
files must be first copied to HDFS and then transformed to HFiles. Comparing
the bulk loading techniques in both systems, similar performance can be ex-
pected, since both techniques have to sort files either to build B-tree index in
MySQL or to generate HFiles in HBase. But HDFS’s batch processing feature
can be exploited in HBase’s two-phase bulk loading approach to build indices on

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 143

copied chunks in batch upfront before going to the second transformation phase,
which is more desirable.

However, according to the experimental results in [2], MySQL slightly out-
performs HBase in latency and MySQL executes get link list operations 2x faster
than HBase. We see a trade-off between fast availability and low query latency
here. Loading all data in HBase can have fast availability by creating indices
upfront. Loading all data in MySQL leads to low query latency after long-time
bulk loading ends. It makes sense to load only a small amount of hot data into
MySQL in a smaller time window for fast processing while copying massive
amounts of cold data into HBase where its query latency is still acceptable for
cold data. But the cost of identifying the hotness and coldness of tuples could
be a large overhead for bulk loading. Hence, we introduce our “demand-driven
bulk loading” scheme to address these considerations.

3 Demand-Driven Bulk Loading

In this section, we introduce the architecture of our demand-driven bulk loading
scheme. According to the modification timestamps of files, the whole input data
set is separated into two parts: small number of recent files and large, histori-
cal files. Recently changed files are imported into a MySQL table called “link
table” using MySQL’s own fast bulk load utility. These files are used for an-
swering queries on hot data and providing partial results for all other queries.
Meanwhile, massive amounts of historical files are first split to chunks with
pre-defined size and then copied into HDFS in batch. With parallel loading of
recent and historical files into MySQL and HDFS, respectively, the latency of
loading HDFS is normally higher than that of MySQL’s bulk load due to the
input size, thus dominating the overall load speed. After loading in MySQL
completes, hot data is available for querying. The HDFS files will be gradu-
ally loaded into HBase to complement the MySQL query results for answering
queries that involve cold/historical data. Figure 1 illustrates the architecture of
our hybrid-storage approach.

Two main processes are involved in this hybrid-storage architecture: offline
index building and online bulk load coordination. In contrast to traditional bulk
load approaches, client requests are allowed to query link data before the histor-
ical data sets are completely available in HBase. To determine the completeness
of query results on the client side, a so-called bucket index table is used. At the
HBase layer (left) side of this architecture, an offline MapReduce job called dis-
tribute chunk (dist ch) job is batch processed on each file chunk in HDFS once
copied from the remote server by a HDFS loader. The implementation of this
job is based on a hash function that maps and writes each text line in a chunk
to a specific “bucket” (HDFS file) with a unique id and a key range disjoint
from others. A new bucket will be created if needed and its bucket index and
key range will be captured by the bucket index table at the (right-side) MySQL
layer. These steps form the offline index building process. More details will be
provided in Subsection 3.1. With the completion of the last dist ch job, all cold

144 W. Qu and S. Dessloch

HDFS loader

“Generate HFile“ job

“Distribute chunk“ job

Coordinator

Client

HBase layer MySQL layer

Input Files

Recent files Historical files

Bucket index table

Job status table

HDFS

Table bulk loader

job priorities

job done

bucket index
Data Table

job status

query results

Fig. 1. Architecture of Demand-driven Bulk Loading

files have been copied into HDFS and clustered into multiple buckets with dis-
joint key ranges. The key ranges and index information of all the buckets are
contained in the bucket index table in MySQL.

At this time, system uptime begins and query requests are allowed to run on
our hybrid link data storages through a client-side coordinator component. At
the same time, another online MapReduce job called generate HFiles (gen HF)
job is triggered to continuously transform buckets in HDFS to HFiles so that
they can be randomly read from HBase. The transformed HFiles incrementally
build a “link table” in HBase which can be seen as an external “table partition”
of the “link table” in MySQL. Tuples stored in both engines share the same
logical table schema. With a given key (the id1 of the starting node of a link)
specified in a query, the coordinator checks whether the HBase layer should take
part in this query execution by asking the MySQL-side bucket index table. If so,
another job status table tracks the availability of the required tuples in HBase.
For tuples available in HBase, the query request is offloaded to HBase by the
coordinator. In case there are tuples that are not available yet because they reside
in buckets that wait in the gen HF queue, the query is marked as “incomplete”
and buffered by the coordinator. As more and more incomplete queries occur at
the coordinator side, the coordinator makes the online MapReduce job prioritize
the job execution sequence for specific buckets, delivering fast availability on
demand. Once the buckets are transformed to the portions of HBase’s “link
table”, corresponding buffered queries are released. This process is called online
bulk load coordination. The implementation of this process will be detailed in
Subsection 3.2.

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 145

3.1 Offline HDFS Load and Index Construction

We use a dedicated Hadoop cluster to take over the job of loading massive
amounts of cold/historical link data from remote servers to MySQL. HDFS’s
free copy/load speed and batch processing (using MapReduce) natures are ex-
ploited here to provide only indices on clustered file groups (buckets) using the
dist ch jobs, as introduced above. A dist ch job writes text lines in each chunk
in HDFS to different buckets (HDFS directories) and outputs indices of new
buckets to MySQL’s bucket index table (Hadoop’s MultipleOutputs is used here
to include TextOutputFormat and DBOutputFormat for writing lines to buckets
and writing indices to MySQL, respectively).

Load
Chunk(1)

M/R job:
Chunk(1)

to Buckets

Load
Chunk(2)

Load
Chunk(3)

Load
Chunk(N) … …

… …
M/R job:
Chunk(2)

to Buckets

M/R job:
Chunk(N-1)
to Buckets

M/R job:
Chunk(N)
to Buckets

Batch jobs in consecutive time slots 0 1 2 N

Fig. 2. Execution Pipelines in the HDFS loader

Instead of running one big MapReduce-based dist ch job after all files have
been completely copied from a remote server, large historical files are split to
several chunks and multiple small dist ch jobs are executed in parallel with
copying small file chunks to HDFS. As shown in Figure 2, chunk copying and
dist ch job run simultaneously in each time slot except the first and the last one
which copies the first chunk and builds the indices for the last chunk, respectively.
The resource contention is low since chunk copying does not use any MapReduce
job and each dist ch job runs individually. As the chunk copying pipeline overlaps
the dist ch job pipeline, the overall latency is derived from loading all chunks
plus running the last dist ch job. The chunk size is selected in a way that the
latency of loading a chunk of this size is higher than running one dist ch job
on that chunk. If this requirement can be guaranteed, the chunk size should
be defined as small as possible so that the time running the last dist ch job is
the shortest. Therefore, the overall system downtime is similar to the latency of
copying massive amounts of cold data from a remote server to HDFS.

As tuples belonging to a specific key might be arbitrarily distributed in all
chunks, we introduce a simple hash function to cluster tuples into buckets ac-
cording to disjoint key ranges. If we have numeric keys (e.g. id1 for links) and a
key range of 1K (0..1K; 1K..2K; ...), the bucket index for each tuple is derived
from b index=round(id1/1K). With bucket index and key range, the coordina-
tor can tell exactly which bucket should be available in HBase to complete the
results for an incomplete query. As shown on the left side of Figure 3, dist ch
jobs take fix-sized chunks as inputs and generate a set of buckets of dynamic

146 W. Qu and S. Dessloch

…
 …

 …

…
 …

2

1

3

4

1

2

3

4
5

chunks
in HDFS

buckets
in HDFS

bucket indices

HBase link table

‘‘prioritize´´ Coordinator

q1 q3 q8 … qn

q1 q2 … qn

q1 q3 … qn

distribute chunk job generate HFiles job

Fig. 3. Offline & Online MapReduce Jobs

sizes based on id1. This can be explained by the LinkBench’s observation on the
distribution of nodes’ outdegrees described in Section 1. Here, a bucket might
contain a large number of links which belong to a node with very high outdegree.

3.2 Online HBase Bulk Load and Query Coordination

Once the remote files are copied to local HDFS, our system starts to accept
queries from the client side and a gen HF job runs continuously to finish the
remaining bulk load work. Three components are involved here: the client-side
coordinator, two tables in MySQL (bucket index table and job status table) and
the online gen HF job in HBase layer (see Figure 1).

A gen HF job is a MapReduce-based bulk loading job that is executed in
several runs in the HBase layer. In each run, it takes HDFS files in “bucket”
directories (directed by bucket indices) as input and generates HFiles as results
(see Subsection 2.2). Tuples in HFiles can be randomly read without batch pro-
cessing. The cost of the gen HF job is dominated by sorting. When the local
memory on each region server cannot hold the entire set of Put objects for in-
memory sorting, expensive disk-based external sorting occurs. Hence, a gen HF
job each time will take only the top two buckets (included in the red rectangle
in Figure 3) as input to avoid external sorting on local region servers.

The coordinator plays an important role in our demand-driven bulk loading
scheme. It maintains a set of four-element tuples (b index, j stat, k range,
q list) at runtime. The b index is the bucket index which directs the gen HF

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 147

job to the input files in this bucket. The k range represents the key range of
these input files which will be further checked by an incoming query whether this
bucket can contain required tuples. The b index and k range of all the buckets
are initially read from the MySQL-side bucket index table at once. Note that,
after the hot link data has been bulk loaded into MySQL, a special bucket will
be created to contain the k range of MySQL-side “link table”.

Furthermore, before the gen HF job starts a run, it registers its two input
bucket indices in the job status table in MySQL. When the job is done, it updates
its status in the job status table, whose content will be periodically pulled by the
coordinator to maintain the j stat elements for all buckets. At the beginning of
system uptime, files in most of the buckets have not been transformed to HFiles
and thus are not available in HBase. It’s much likely that the incoming queries
at that moment cannot be completely executed and are further pushed into the
query list q list of certain buckets. The coordinator will release the queries
in a q list once the j stat states that this bucket is readable. Moreover, the
coordinator will also sort the four-element tuples according to the size of q list

due to emergency so that the gen HF job will always work on transforming the
top two buckets with the largest number of waiting queries.

As an example of demand-driven bulk loading shown in Figure 3, three client-
side threads keep sending queries to the coordinator. Most of them contain
queries that would access tuples in the key ranges of bucket 1 and 3. The coor-
dinator checks the size of the query waiting list and prioritizes the gen HF job
execution sequence for bucket 1 and 3. Hence, after the next run, query q1 and
q3 will be released by the coordinator since the required tuples now can be found
in the HBase “link table”.

4 Experiments

In Section 2, we mentioned our motivation of partitioning and loading large-scale
link sets of a social graph to a hybrid storage system (consisting of a MySQL
database and a HBase cluster) based on the observation that only a fraction of
links is frequently accessed while most of the data is seldom used. To enable fast
availability (i.e. fast load speed) of the entire social graph system, we introduced
our “Demand-driven Bulk Loading (DeBL)” scheme in Section 3. In this section,
we validate our approach by analyzing the experimental results. The performance
difference in terms of load speed and query latency is shown by comparing the
results using a single MySQL database, using a single HBase cluster or using
our DeBL approach. Our approach serves as a compromise between these two
systems and outperforms both of them when loading large-scale social graphs.

We used a logical link table with its schema (id1, link type, id2, ..., data)
to represent links stored in MySQL, HBase or both systems (as links occupy
the largest portion in a graph, we ignored loading graph nodes in our test).
The test query is the get link list operation which performs a short range
scan to fetch links with given id1s and link types and constitutes 50% of
the whole workload. We think that this test setup is general and representative.

148 W. Qu and S. Dessloch

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

fileCopy DeBL (no
mysql)

DeBL (2g
mysql)

bulkLoad
(HBase)

bulkLoad
(MySQL)

batchPut
(HBase)

tim
e (sec)

Fig. 4. Loading Time of Different Approaches

(For write operations, both MySQL and HBase can provide fast random write
facility. However, we excluded these operations to simplify our test.)

We extended the LinkBench [2] program for our test purpose which is based
on a client/server architecture. In the original LinkBench implementation, mul-
tiple threads run on the client side to either load links (load phase) or send
requests (query phase) to a server-side “link table” (using MySQL INNODB en-
gine) in a MySQL database. To compare the load performance of different ap-
proaches, we first recorded the latency of bulk loading a CSV input file (100M
links, 10GB) from a remote client (through 100Mb/s Ethernet) into a link ta-
ble in a MySQL instance running on a single-node machine (2 Quad-Core Intel
Xeon Processor E5335, 4×2.00 GHz, 8GB RAM, 1TB SATA-II disk) using LOAD

DATA INFILE command (the primary key index was first disabled and re-enabled
after the file was loaded) [bulkLoad (MySQL)]. Since we were only comparing
short range scan performance in the query phase later, a faster “link table” using
MySQL MYISAM engine instead was used which is optimized for heavy read op-
erations (MySQL’s batch insert was excluded in this test as MYISAM engine uses
table-level locking on tables which is very slow for massive, concurrent inserts).

In the second case, we tested the bulk load performance on a HBase cluster
- a 6-node HBase cluster (version 0.94.4) with a master running on the same
node as the MySQL instance and 5 region servers (2 Quad-Core Intel Xeon
Processor X3440, 4×2.53GHz, 4GB RAM, 1TB SATA-II disk) connected by Gi-
gabit Ethernet. A big MapReduce job (the gen HF job) was implemented to
generate HFiles and populate a HBase link table after the same input file was
copied from remote to local HDFS [bulkLoad (HBase)]. Since HBase also pro-
vides high write throughput, we also tested the performance of writing links
to HBase in batch using HBase’s Put method [batchPut (HBase)]. To improve

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 149

performance, the link table was first pre-split evenly in the cluster according to
its key distribution to avoid “hotspots” during loading and querying.

Two variants of the load phases were tested using our DeBL approach. The
first variant was composed of bulk loading 2GB, recently changed, remote link
subsets into the MySQL table, copying the rest 8GB link files in batch from
remote client to HDFS (in our HBase cluster) and meanwhile running multiple
small MapReduce jobs (the dist ch jobs) in parallel [DeBL (2g mysql)]. Another
extreme case was shown by the second variant where no files were loaded into
MySQL and the entire input file was copied to HDFS [DeBL (no mysql)]. In this
case, the “‘hotness and coldness” in input data was not pre-defined manually but
was captured automatically by our coordinator during gen HF phase according
to incoming query distribution. To indicate fast availability of DeBL approach,
we attached the time taken to simply copy the test input file to server’s local
file system [fileCopy] to the final results as the bottom line as well.

Table 1. Detailed Latencies (sec) in Load Phase

DeBL (no mysql) DeBL (2g mysql) bulkLoad (MySQL) bulkLoad (HBase)

chunk load: 24.33 mysql load: 463.26 bulk load: 1674.76 HDFS copy: 895.31

dist ch job: 24.95 hbase load: 793.98 gen. index: 890.57 gen. HFiles: 1082.81

total: 952.17 total: 1257.23 total: 2565.34 total: 1978.12

The results of load latencies are shown in Figure 4 and detailed in Table 1.
The latency of fileCopy is the bottom line which is 893 seconds and cannot be
improved anymore. The result of DeBL (no mysql) is 952.17s and very closed
to fileCopy’s latency. The input file was transferred chunk by chunk and each
chunk has 256MB size. With this chunk size, both chunk load job and dist ch job
took similar time (24∼25s). As both jobs ran in parallel, the result of DeBL (no

mysql) could be derived from the sum of fileCopy’s time and the latency of
the last dist ch job. It provides the fastest starting time of system uptime with
near wire-speed. However, incoming queries still have to wait until their files are
available in HBase. Another variant DeBL (2g mysql) took a little bit longer for
bulk loading 2GB hot data into MySQL (including index construction) which is
463.26s and its total latency is 1257.23s.

Latency gets higher when using traditional bulk loading approaches. Using
bulkLoad (MySQL), the LOAD DATA INFILE command took 1674.76s while re-
enabling primary key index spent 890.57s. Using bulkLoad (HBase), copying
remote files to HDFS had the same latency as fileCopy and generating HFiles
reached similar cost (1082.81s) as MySQL’s index construction since both pro-
cesses required sorting on large input files. However, bulkLoad (HBase) is faster
than bulkLoad (MySQL) since HBase is a distributed system where MapReduce’s
batch processing feature can be exploited. Apart from this difference, both bulk
loading approaches still outperforms HBase’s fast writes where some overheads
like compaction occurred due to HBase’s implementation as mentioned in Sub-
section 2.2.

150 W. Qu and S. Dessloch

0

200

400

600

800

1000

1200

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100 2250 2400 2550 2700 2850 3000 3150 3300 3450 3600 3750 3900 4050

DeBL (2g mysql)

bulk load (MySQL)

bulk load (HBase)

DeBL (no mysql)

time (sec)

throughput (op/sec)

Fig. 5. System Uptime & Query Throughput in four Approaches

The end of load phase indicates the start of system uptime and lower load
latency means faster data availability. After the load phase, we ran 50 threads on
the client side to continuously send 500,000 get link list requests to the server.
Both MySQL and HBases’ bulk loading approaches led to complete data avail-
ability and we tracked the query throughputs starting from their system uptime.
In this case, the difference of the query throughputs represents the difference of
query latencies on MySQL and HBase as well. We tried our best to tune our
HBase cluster for example, by enabling block caching, setting up Bloom filters
and pre-splitting regions. For 10GB test data, our in-house HBase cluster yet
could not cope with a single-node MySQL engine in terms of query throughput
as shown in Figure 5. However, as HBase cluster took less time to ingest the in-
put data, its throughput curve started earlier (from 1978.12s, the end of its load
phase) to rise and converged at 278.7 op/sec throughput and 3.6 ms query la-
tency in average for each get link list request. The bulkLoad (MySQL) approach
took the longest time until all links are available in link table. Its throughput
was rising rapidly (till 521.8 op/sec, 1.9 ms) and all the queries were finished in
a small time window.

In contrast to traditional bulk loading approaches, our DeBL approach trades
complete data availability for fast system uptime. It provides incremental avail-
ability to files stored in HDFS on demand. It can be seen in the DeBL (no

mysql) variant that the system started the earliest at 952.17s but the query
throughputs occurred intermittently as relevant file partitions continuously got
available in HBase. The throughputs were higher than bulkLoad (HBase) at the
beginning since less available files needed to be scanned in HBase. Along with
growing data size, the throughputs kept close to the highest value in bulkLoad

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 151

(HBase) (332 op/sec). Using DeBL (2g mysql), the system uptime had 300s de-
lay whereas its throughput curve first climbed up drastically and reached its peak
1092.7 op/sec. After that, it began to fall and finally converged with bulkLoad

(HBase)’s curve. The reason is that a big portion of frequently emerging queries
were immediately answered by the 2GB hot data in MySQL at first. As the size
of data in MySQL was much smaller, their query latencies were also faster than
those on 10GB data in bulkLoad (MySQL). The rest of the queries that could not
be answered by MySQL were buffered by the coordinator and released as soon
as the data was available in HBase. Important to mention, both DeBL variants
were able to digest the entire 500,000 requests before the system uptime began
in bulkLoad (MySQL).

5 Related Work

Bulk loading techniques normally serve the loading phase in Extract-Transform-
Load (ETL) processes which handle massive data volumes at regular time in-
tervals. A middleware system called “Right-Time ETL (RiTE)” [11] provides
ETL processes with INSERT-like data availability, but with bulk-load speeds.
Instead of loading entire input data directly into the target table on a server,
a server-side, in-memory buffer is used to hold partial rows of this table before
they are materialized on disk. Since loading data in memory is much faster, the
time window of data loading is shrunk. A logical view is defined to enable query
execution on rows stored in both locations. However, problems will occur when
large-scale social graphs cannot fit into memory. In our case, we let a distributed
file system take over partial load/query jobs on large files from databases.

In [12], Goetz Graefe proposed his idea of fast loads and online B-tree index
optimization as a side-effect of query processing. Instead of building complete
indexes during data loading, a small, auxiliary structure called partition filters
(similar to small materialized aggregates [14]) is created for each new loaded
partition. With this information, the indexes are optimized incrementally and
efficiently on demand according to queries’ predicates. This inspired us to use a
bucket index table as auxiliary information to identify required file buckets to
be available in HBase for incoming queries.

With the advent of “Big Data” and its emerging Hadoop/MapReduce tech-
niques, database vendors now have lots of solutions that integrate open-source
Hadoop with their products. IBM’s InfoSphere BigInsights and Big SQL [13]
is one of them. Big SQL provides a SQL interface to files stored in Hadoop,
BigInsights distributed file systems or external relational databases. It allows
companies with existing large relational data warehouses to offload “cold” data
to cheap Hadoop clusters in a manner that still allows for query access. In this
context, our approach exploits the features of underlying MySQL and HBase
engines to balance the availability between “hot” and “cold” data.

152 W. Qu and S. Dessloch

6 Conclusion

In this work, we first introduced the bulk loading techniques used for MySQL and
HBase and then proposed our demand-driven bulk loading scheme. This scheme
utilizes a hybrid storage platform consisting of a fast-load/slow-query HBase and
a slow-load/fast-query MySQL to accommodate large-scale social graphs, which
is a compromise as fast available “hot” graph data and slowly accessible “cold”
data. Our experimental results show that our approach provides fast system
uptime and incremental availability to “cold” data on demand.

We do not assume that the data partition stored in MySQL is always hot
since the “hotness” of files that resides in HBase can still be discovered in our
approach. The limitation is that the query latency of HBase is not satisfactory
if the data partition stored in HBase gets frequently accessed in the future. Our
future work is to remove this limitation by online data re-balancing in the hybrid
storage cluster.

References

1. Curtiss, M., Becker, I., Bosman, T., Doroshenko, S., Grijincu, L., Jackson, T.,
Zhang, N.: Unicorn: a system for searching the social graph. VLDB, 1150–1161
(2013)

2. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a
database benchmark based on the facebook social graph, pp. 1185–1196. ACM
(2013)

3. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N.,
Kuang, H., Aiyer, A.: Apache Hadoop goes realtime at Facebook. In: SIGMOD,
pp. 1071–1080 (2011)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB, pp. 143–154. ACM (2010)

5. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.A.,
Mankovskii, S.: Solving big data challenges for enterprise application performance
management. VLDB, 1724–1735 (2012)

6. Bercken, J., Seeger, B.: An evaluation of generic bulk loading techniques. VLDB,
461–470 (2001)

7. https://dev.mysql.com/doc/refman/5.0/en/insert-speed.html

8. White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc. (2012)
9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Gruber, R.E.: Bigtable: A distributed storage system for structured data. In: TOCS
(2008)

10. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured merge-tree (LSM-
tree). Acta Informatica, 351–385 (1996)

11. Thomsen, C., Pedersen, T.B., Lehner, W.: RiTE: Providing on-demand data for
right-time data warehousing. In: ICDE, pp. 456–465 (2008)

12. Graefe, G., Kuno, H.: Fast loads and queries. Transactions on Large-Scale Data-and
Knowledge-Centered Systems II, 31–72 (2010)

13. http://www.ibm.com/developerworks/library/bd-bigsql/

14. Moerkotte, G.: Small materialized aggregates: A light weight index structure for
data warehousing. VLDB, 476–487 (1998)

https://dev.mysql.com/doc/refman/5.0/en/insert-speed.html
http://www.ibm.com/developerworks/library/bd-bigsql/

	A Demand-Driven Bulk Loading Schemefor Large-Scale Social Graphs
	1 Introduction
	2 Bulk Loading in MySQL and HBase
	2.1 MySQL
	2.2 HBase
	2.3 Motivation

	3 Demand-Driven Bulk Loading
	3.1 Offline HDFS Load and Index Construction
	3.2 Online HBase Bulk Load and Query Coordination

	4 Experiments
	5 Related Work
	6 Conclusion
	References

