
Static Integration of SQL Queries

in C++ Programs

Maciej Sysak, Bartosz Zieliński, Piotr Kruszyński, Ścibór Sobieski,
and Pawe�l Maślanka

Department of Computer Science,
Faculty of Physics and Applied Informatics,

University of �Lódź,
ul. Pomorska nr 149/153, 90-236 �Lódź, Poland

{maciej.sysak,bzielinski,piotr,scibor,pmaslan}@uni.lodz.pl

Abstract. Contemporary frameworks offer essentially two methods of
accessing data in relational databases. The one using plain SQL requires
writing a lot of boilerplate code and storing the SQL in a string, which
is error prone and denies the benefits of static query analysis. The other
one enforces the use of an additional (usually object oriented) abstrac-
tion layer which incurs additional runtime costs and hinders the use of
advanced SQL capabilities. In this paper we present a working imple-
mentation of a radically different approach. Our tool uses the database
engine to analyze the native SQL queries prepared by the user, and gen-
erates all the necessary classes representing query responses, single result
rows and database connections. The use of native queries allows to uti-
lize advanced and highly optimized SQL features. On the other hand,
the use of the generated classes ensures that data access happens in a
statically checked, type-safe way.

1 Introduction

There are well known difficulties in accessing data stored in relational databases
from application programs, especially if good object orientation is required:

1. A query is formulated in SQL, which is stored in the program code as string.
Such strings are opaque to the compiler, which defers the error discovery
until the query is actually sent to database during program execution. In
case of C/C++ this situation is further aggravated by the low quality of
runtime exception mechanisms. Also, writing the query as a string requires
the programmer to properly escape all the special characters which might
appear in the query (such as quotes). This garbles the query string stored
in the program code and increases the error rate even more.

2. Iteration through the query result and binding prepared statements param-
eters requires a lot of unpleasant boilerplate code which is not type-safe —
the number of columns in the result set, their types and names cannot be

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 126–138, 2014.
c© Springer International Publishing Switzerland 2014

Static Integration of SQL Queries in C++ Programs 127

checked by the compiler. It is also the task of a programmer to perform all
the necessary type conversions between SQL and host language types.

A number of solutions is known and used in practice. Those fond of SQL can use
the embedded SQL precompilers supplied for all major databases and languages.
Unfortunately this solution has some disadvantages. For one thing, it mixes the
SQL code with host language code and some auxiliary glue syntax. This confuses
the syntax coloring tools — a seemingly minor inconvenience, which nevertheless
might negatively influence the programmer’s productivity. Also, it requires the
coder to learn the aforementioned glue syntax and the actual implementations
do not handle the type conversions as smoothly as one might expect. Finally,
the precompilation stage introduces issues with some compilers.

A more common approach is to use ORM frameworks such as Hibernate or
Java Persistence Api. The obvious advantages are that they are fully object-
oriented. In particular, queries return objects, which can be made persistent in
order to simplify the data modification management in program code. The frame-
works often decrease the amount of boilerplate code development by advanced
code generation features which makes the programmer task less error prone. As
an additional boon the use of their own object oriented query language (such as
HQL or JPQL) permits developing database vendor agnostic code. Additionally,
many of the ORM frameworks (like JPA or Hibernate) allow the transparent
data caching where the updates and inserts can be collected locally and actually
sent to database as the single batch at the end of transaction. Similarly, the
queries can first examine the cache for the presence of requested data.

Unfortunately the ORM frameworks have also well known drawbacks. A com-
mon and not entirely unjustified charge against ORM’s is that the quality of
generated SQL statements sent to database is very low and it is hard to get the
performance right (see e.g. [17]). Less obviously, the same features mentioned
above as beneficial can also be considered as a downsides from another point of
view. Special query language isolates the developer from the particulars of the
given SQL dialect so much that it precludes the use of advantageous features
of the dialect. Moreover, some more advanced elements of SQL standard might
not be implemented in the custom query language of the framework (consider
e.g. window clauses of analytic functions). Finally, the developer is required to
learn one more query language only superficially resembling SQL. Let us add
that the OQL (HQL, JPQL, etc.) queries are passed to the library functions
as strings, which, just like in case of SQL queries, delays the query syntax and
semantics checking to the time of program execution. This is why many ORM
frameworks include query building DSL’s (Domain Specific Languages) utilizing
the host language syntax — well known examples include LINQ and Java EE
Criteria API. This takes care of compile time syntax checking but still leaves
semantics checking to the run time.

More generally, ORM’s often impose an active, object oriented view of the
data in which objects representing entities manage their own updates leading
to an impedance mismatch with the relational model ([13], see eg. [18] for a
mathematical treatment of this mismatch). This object oriented view, despite

128 M. Sysak et al.

the claims to the contrary [9] the authors (like some others [8]) do not perceive
as the most natural way of conceptualizing the database application.

Another fundamental flaw of most of the existing ORM frameworks is that
they perform during runtime many of the activities, such as translating OQL
to SQL, which can be done during compilation as well. The impact on the
performance is hard to assess, but might be significant in some applications.
More important, however, is the loss of the benefits of static code analysis.

The dbQcc framework presented in this paper takes a completely different
approach. We start with the plain, native SQL query as the source of all needed
information. The external tool we created uses the analyzed query to generate
classes representing the result row, and the query response. The application
code uses the generated classes together with the featured database connection
library to access data in a statically checked, type-safe way. The only query used
in program runtime is the native one explicitly specified by the programmer
in the beginning — we do not modify the query. Note that this is the opposite
approach to the one taken by the ORM frameworks, which produces SQL queries
from the annotated class definitions. Also it is worthy to emphasize that the class
generating tool checks both the syntactic and semantic correctness of the query
as well. Hence the successful class creation guarantees the lack of query syntax
and data model mismatch errors in the runtime.

1.1 Comparison with Previous Work

Most of the existing approaches to supporting compile time verification of cor-
rectness of SQL statements involves introducing special syntax (often an internal
DSL [10]) instead of using the native SQL like in our approach — see e.g. [11]
for a native C++ example making use of template metaprogramming. An in-
teresting exception is [12] in which a verifier of dynamically constructed SQL
is presented. Another example of internal DSL is [14] in which a C# library
is introduced which allows to construct SQL strings correct by construction
(similarly as XML libraries construct correct XML files). Both ([11] and [14])
utilize an external tool, which examines the database schema and generates the
appropriate access classes from table metadata. Note that in our approach we
generate the access classes for each statement, rather than for each table. Also
note that unlike our framework, which is meant to support the execution of ver-
ified queries, the tool presented in [12] only verifies the SQL statements, and
does not include any provisions for type safe interface between SQL and the
host program. Similarly, neither of the frameworks [11] or [14] supports actual
execution of the queries generated.

The ORM frameworks utilize their own query languages for more complicated
tasks. This introduces the same problems as dynamic SQL statements. Safe
Query Objects framework [7] allows to construct compile time checked JDOQL
queries (for Java Data Objects [1]). The framework is interesting, because unlike
e.g., JDO’s own JDO Typesafe, it allows to specify filter conditions not with
special objects which represent them, but with native Java boolean expressions.
The actual queries are generated by the external tool from the bytecode.

Static Integration of SQL Queries in C++ Programs 129

A somewhat different approach to generation of SQL queries correct by con-
struction was taken by the authors of [16], in which the SQL queries are created
from the specification in term rewriting system [6]. The language of specification
includes a base sublanguage, which is made to resemble SQL — modulo some
quirks imposed by the Maude’s own syntax. The system allows to extend the
SQL-like base with the ability to factorize common SQL fragments or to intro-
duce some higher level features like named joins. In effect it can be seen as an
SQL metaprogramming system. The framework outputs actual vendor specific
queries, which can then be fed to a system like the one developed in this paper.

A system which partially inspired our framework and the approach of which
bears the most similarity to ours is Web4j Java Web Application Framework [5].
Web4j uses a custom file format containing specially tagged SQL statements. At
runtime the statements can be fetched by identifier and then processed, after
supplying, if applicable, the parameter values. The iteration through the query
result is enabled through the method which accepts the list of arguments con-
sisting of the SomeType.class object of the desired class of rows, the identifier
of the query, and the query parameters if any. The method returns a list of
SomeType objects. The object construction process utilizes reflection to deter-
mine which constructor to use, matching the constructor with the same number
of arguments that there are columns in the rows returned by the query. Note
that, while the framework allows, as an option, to check the validity of the query
at application startup by preparing the query (for the databases that support
it), but, similarly as the matching of row columns to constructor arguments, it
happens during runtime, and does not, unlike our solution, offer the compile
time type safety for the queries.

When speaking about SQL metaprogramming it is worthwhile to mention
Metagen [15] — a tool for generating database schemas from vendor independent
descriptions in a special language.

Let us note that while object relational mappers isolate the user from some
vendor specific database capabilities, presenting instead the generic interface, the
support for advanced features in this generic interface is already considerable and
is rising fast, see eg. [19], which enriches Hibernates HQL with recursive queries.

Finally, note that our framework strongly supports implementing the domain
logic using the transaction script pattern [9], whereas most of the higher level,
object oriented frameworks are geared towards either the domain model [9] —
e.g., the Hibernate framework, or the table model [9] — e.g. ADO Net.

2 System Architecture and Internals

This section provides a detailed account of our system. The data flow diagram
in Figure 1 presents the overview of the system architecture. In particular:

– The sql statements used in the application utilizing the DbQcc framework
ought to be placed in the separate uqf file(s) (for each database used) which
are essentially SQL files with some metadata placed in specially formatted
comments. Subsection 2.1 contains a detailed description of the file format.

130 M. Sysak et al.

Fig. 1. Data flow in the system

– We use a C++ database access abstraction layer responsible for database
connection management and the actual query execution at runtime. This
abstraction level is not meant to be visible to the user but to serve as an
implementation layer for the classes actually used by the programmer. A
transparent support for standard database operations in different database
engines is provided through the driver mechanism. Currently, only the driver
for the PostgreSQL database (based on libpq [2]) is available. In order to
furnish the required functionalities in an efficient way we use some of the
new features introduced in C++11 like shared pointers and move semantics.

– Moving data from the database into the application necessitates converting
data from the representation used by the DBMS to the native C++ types.
In Subsection 2.2 we describe the mechanisms supporting the conversions.

– The uqf file is processed by the separate tool which can be integrated into
compilation toolchain, and which generates for each statement classes repre-
senting: query record and query response. Additionally, for each uqf file the
database access class is generated. The Subsection 2.3 contains the account
of various stages of processing of user queries extracted from uqf file(s).

2.1 User Query File

Database queries used by the application ought to be placed in the separate .sql
file (see Figure 2), which we will refer to as an uqf (user query) file, collecting
all queries referring to the particular database. The file employs the special key-
value format of comments, which permits adding some auxiliary information
necessary for the correct execution of the class generating tool. The project may
contain many uqf files, each one associated with a different database.

Static Integration of SQL Queries in C++ Programs 131

/* DBEngine = PostgreSQL

DBName = dbqcc

DBHost = ***.uni.lodz.pl

DBUser = dbqcc_tester

DBPassword = SQLorNothing

DBFileName = Blog */

-- PREPARABLE_SELECT = ClientRanking

SELECT c.email, s.name, r.client_rank

FROM (

SELECT pcnt.*, rank() OVER(

PARTITION BY pcnt.section_id ORDER BY pcnt.cnt DESC

) AS client_rank

FROM (SELECT count(*) AS cnt, p1.owner_id, p1.section_id

FROM page p1 GROUP BY p1.owner_id, p1.section_id) pcnt

) r JOIN client c ON (r.owner_id = c.id)

JOIN section s ON (r.section_id = s.id)

WHERE r.client_rank <= $1 ORDER BY s.name, r.client_rank

Fig. 2. User query SQL file sample containing parametrized query

The uqf file starts with the information about the database engine vendor
which is used by the class generator to choose the appropriate driver (if avail-
able). Next, the file contains the connection data — it is utilized by the generator
to connect to the database server during query analysis phase. For security rea-
sons one may omit some of the authorization information — the missing data
can be supplied at the generator’s execution time. In addition, the authorization
data provide default values in the generated database connection class.

The last section of uqf file contains a sequence of SQL statements present in
the application (intended to be executed in the database the uqf file is associ-
ated with). Queries are to be separated with empty lines. Each statement should
start with a specially formatted SQL comment specifying exact statement type
(PREPARABLE_SELECT in the query in Figure 2) and assigning a unique (within
the file) statement identifier (ClientRanking in the query in Figure 2), which
must be a valid C++ type name. This identifier will be utilized as the statement
class name. The statement type declares whether it is a SELECT query, DML
statement or a stored subprogram as well as whether the statement should be
prepared prior to the first execution, and thus stored in prepared form in the
database server for the duration of the session. Preparing statements may bring
significant performance benefits, specifically for frequently executed and partic-
ularly complex statements [4] — their parsing, rewriting and creation of their
execution plans happen only once, when they are prepared.

After the statement header follows the statement in the native form. There is
no need to escape special characters, the statement will be converted to a valid
C++ string placed in the query class body during class generation. The query
may be parametrized, where the parameters are denoted by consecutive numbers
prefixed with the dollar character (see Figure 2). Note that the uqf file is a valid

132 M. Sysak et al.

template <typename T> class ValueConverter{};

template <> class ValueConverter<uint32_t> {

public:

static bool fromDB(char * rawValue, uint32_t & value) {

uint32_t tmp;

memcpy(&tmp, rawValue, sizeof(tmp));

value = ntohl(tmp);

return true;

}

static bool toDB(const uint32_t & value, std::vector<char> & rawValue,

int & rawValueFormat) {

rawValue.resize(sizeof(uint32_t));

uint32_t tmp = htonl(value);

memcpy(&rawValue[0], &tmp, rawValue.size());

rawValueFormat = DBManagerBase::BINARY_FORMAT;

return true;

}

};

Fig. 3. Value converters for uint32 t (PostgreSQL oid)

SQL file and any editor with SQL syntax coloring capabilities can be used for
simple editing.

2.2 Data Conversion Mechanism

Data access layers for C++ of some of the databases (PostgreSQL in particular)
allow to exchange data both in binary and text formats. Using the text format is
not applicable for all types and clearly less efficient (both computationally and in
terms of compactness of representation) than binary format. Data conversion to
C++ types is necessary for performing operations on data regardless of format
used for communication with database. To facilitate data conversion we provide
a mechanism based on C++ templates. The ValueConverter class template (see
Figure 3) has its specializations for all supported data types. For an unsupported
data type (one not having a template specialization) compilation time error
occurs. Note that the libpq library representations of database integer types
are not completely determined, e.g, oid type employs C/C++ unsigned int

which has no strict definition of size and endianness in language standards.
Therefore, our conversion mechanism provides converters (template specializa-
tions) for all C++11 standard fixed size integer types (e.g., uint32_t) and the
compiler matches the specialization for an appropriate type (e.g, uint32_t for
unsigned int on the majority of 32-bit platforms). The endianness problem is
solved in a platform-specific way, taking into account that PostgreSQL DBMS
provides binary data (for integer representations) in network byte order.

Static Integration of SQL Queries in C++ Programs 133

2.3 Query Analysis and Processing

The operation of the query analyzer module is based on using the existing
database to verify both the query syntax and the validity of references to schema
objects, and, when the query is valid, to obtain the metadata associated with the
query. The metadata is used later to generate appropriate classes representing
the SQL statement, and, if applicable, the result rows. Hence, the statement anal-
ysis stage starts with the query analyzer module connecting with the database
server on which the analyzed statements are supposed to be eventually executed.

The present system implementation provides a prototype plugin for the Post-
greSQL database engine based on the native libpq [2] database access library for
C which provides advanced functionalities to obtain rich metadata describing
the SQL statement and its parameters. Query analyzing module operation, de-
scribed in detail below, is largely depending on those libpq metadata capabilities.

class ClientRankingRecord: public QueryRecord {

public:

DBValue<std::string> client_email, section_name;

DBValue<long long int> client_rank;

ClientRankingRecord(QueryResult * queryResult, int rowNumber) :

QueryRecord(queryResult, rowNumber),

client_email(queryResult, rowNumber, 0),

section_name(queryResult, rowNumber, 1),

client_rank(queryResult, rowNumber, 2) {}

};

Fig. 4. Generated query row class example

The SQL statement extracted from uqf file is not executed on the database
server. Instead, it is sent to the database as a prepared statement. In the majority
of relational database engines (and in particular in PostgreSQL) the prepared
statement is parsed, and the query plan is generated (with some slots reserved
for filling by parameters, if any) and stored in the database, ready for execution
(perhaps multiple times) until explicitly closed. Most relevant for our purpose is
that one does not need to execute the prepared statement nor supply the values of
the parameters in order to be able to receive all the available statement metadata
(in particular we can work with the database containing empty tables). After
preparing the statement, such as the one depicted in Figure 2, it suffices to send
the request describe prepared. In reply we receive the information about:

– names and types of columns of the result set (in case of queries). For columns
defined by simple table column reference we also get the source table name,

– types of parameters, in case the statement was parametrized.

The query analyzer module uses this metadata together with the statement it-
self and the statement identifier extracted from the query header in the uqf file to

134 M. Sysak et al.

class ClientRanking: public QueryResult{

static constexpr const char * queryName = "ClientRanking";

static constexpr const char * query = "SELECT [...]";

static bool prepared;

public:

long long int param1;

ClientRanking(DBManagerBase * dbManager,

const long long int & _param1): param1(_param1){

const char * paramValues[1];

int paramLengths[1]; int paramFormats[1];

std::vector<char> param1RawValue;

ValueConverter<long long int>::toDB(

param1, param1RawValue, paramFormats[0]);

paramValues[0] = ¶m1RawValue[0];

paramLengths[0] = param1RawValue.size();

if(!prepared){

auto result = dbManager->prepareStatement(

queryName,query,1,nullptr);

if(result->bad()) throw std::runtime_error(dbManager->getError());

prepared = true;

}

dbResult = dbManager->executePreparedStatement(

queryName,1,paramValues,paramLengths,paramFormats,

DBManagerBase::BINARY_FORMAT);

if(dbResult->bad()) throw std::runtime_error(dbManager->getError());

}

std::shared_ptr<ClientRankingRecord> operator[](int rowNumber){

if(rowNumber >= dbResult->getRowsNumber()) return nullptr;

return std::make_shared<ClientRankingRecord>(this,rowNumber);

}//[...]

};

Fig. 5. Generated query response class example

assemble, using the class builder internal tool, header files holding definitions of
the classes associated with the statement, such as:

– (In case of SELECT statement) the class representing a single result set
row, with a field (and possibly accessor methods) of appropriate type for
each result set column (e.g., see Figure 4). The field and accessor names
are based on column names, qualified with table name, if applicable (with
some necessary conversions, like substituting underscores for spaces). Fields
are constructed using the DBValue class template which uses the mechanism
described in Subsection 2.2 to convert data received from the database. Be-
cause DBValue<T> overloads the conversion operator to type T it follows that
it preserves the const T& semantics. The class provides also conversion op-
erators supporting structural type equivalence of database records with the
same types of columns (c.f. [11]). In our approach the type of a query re-
sult set row class identifies the query, but the conversion operators permit

Static Integration of SQL Queries in C++ Programs 135

transparent combination or substitution of rows from different queries, pro-
vided that they have the same number and types of columns.

– The class representing the query result, which also encapsulates the state-
ment itself (e.g., see Figure 5). This class also provides the functionality to
execute the statement (and supply the arguments if applicable), and in the
case of the SELECT statement also to iterate through the result rows. The
statement, if declared as preparable, is prepared during the construction of
the first object of a given class. In this case, executions refer to the parsed
statement stored in the database server.

class DBManagerBlog : public DBManagerBase {

DBManagerBlog(){};

public:

typedef const std::string & csr;

static std::shared_ptr<DBManagerBlog> create(csr host, csr dbName,

csr user, csr password, csr errorMessage) {/* [...] */}

// [...]

std::shared_ptr<ClientRanking>

SELECT_ClientRanking(const long long & param1) {

return std::make_shared<ClientRanking>(this, param1);

}

};

Fig. 6. Generated database connection class

The last stage of query analysis module operation is the generation of special-
ized database connection classes (for each database server application connects
to). The classes inherit from the generic database access driver for the particular
DBMS. It extends the driver with methods for executing SQL statements and
stored procedures specified in the processed uqf file (see, e.g., Figure 6).

After all the queries are analyzed and all necessary classes are generated,
the query analyzer module cleans up the database, removing all prepared state-
ments (in case of PostgreSQL it suffices to close the connection, as the prepared
statements are associated with the session and die with it).

3 Simple Example of DbQcc Usage

The following code presents basic example usage of our framework:

std::string error;

auto dbManager = DBManagerBlog::create("***.uni.lodz.pl",

"dbqcc", "dbqcc_tester", "SQLorNothing", error);

if(!dbManager) {throw std::runtime_error(error);}

auto ranking = dbManager->SELECT_ClientRanking(10);

for(auto i = 0; i < ranking->getRowCount(); i++) {

auto row = ranking->getRow(i);

// [...]

}

136 M. Sysak et al.

Classes generated by dbQcc provide simple API for programmer to establish
database connection, execute queries described in user queries file and access
response data. Our example schema may be treated as an extremely simplified
blog’s database. It consists of three tables: PAGE, CLIENT and SECTION con-
nected with referential constraints. PAGE stores the title and content of blog
pages. Each page is authored by the unique client and belongs to the unique sec-
tion. In our sample UQF we placed the ClientRanking query (Figure 2) defined
as preparable, containing one parameter. This select is supposed to return, for
each section, n most prolific authors ranked with respect to the number of the
authored pages, where n is passed as a parameter. Note that ClientRanking,
in addition to being a complex query with joins and multiply nested subqueries,
makes use of a window (or analytic) functions (the rank()), which, despite being
in the standard, are not widely supported by ORM’s.

We have performed tests to compare our framework with the directly used
PostgreSQL API (libpq). The blog schema described above was filled with ran-
dom data: 100000 rows in the CLIENT table, 200000 rows in the PAGE table,
and, finally, 10 rows in the SECTION table. We prepared two equivalent im-
plementations of the same application which executes the query from Figure 2
one hundred times with the sole parameter set to 7500 and collects the result
rows, performing all the necessary data conversions. The two implementations,
compiled with the same (default) optimization level, utilize, respectively:

– The dbQcc framework (dbQcc),
– Directly used PostgreSQL API (libpq).

Both implementations utilize statement preparation. Note that statement is pre-
pared only once. The durations of each query execution and data conversion
were measured separately, and for each implementation averages and standard
deviations were computed. The results are presented in Table 1. Note that the
differences in times between query executions in both implementations are less
than the standard deviation, and hence it follows that our framework does not
add any significant overhead.

Table 1. Execution times for the two alternative implementations of the same appli-
cation executing query from Figure 2

dbQcc libpq

Query execution 6.8 ± 0.2 6.7 ± 0.2

Row parsing 0.058 ± 0.007 0.005 ± 0.002

4 Conclusion

In the paper we presented an alternative approach to programming database
applications, which is more natural and effective for SQL oriented people (and,
potentially, also leads to a better performance). We developed a working tool gen-
erating C++ classes from plain native SQL statements. Those generated classes
allow us to execute the statements in the application program and to iterate in

Static Integration of SQL Queries in C++ Programs 137

a semantically correct way through the result sets (in case the statement was a
query). Thus, we effectively couple native SQL with a C++ code in a way which
is statically checked for correctness, excluding, in particular, the possibility of
runtime type mismatch errors. Unlike in the case of embedded SQL, the queries
and application program is kept separate, which simplifies application develop-
ment by programmers with specialized skills — the C++ programmer has no
need to see the SQL queries developed by database wizards, and conversely,
database specialists are happily separated from C++.

Using plain SQL in its native form makes it possible to write specialized and
highly optimized queries even with DBMS vendor specific features. For a simple
example see Section 3, which presents a non trivial SQL query, hardly supported
by typical approaches, but potentially useful and non-artificial.

Because we utilize mechanisms such as a lazy evaluation of values, the current
implementation of dbQcc is not thread safe. This means that the use of generated
code in threaded application requires protecting all database operations with a mu-
tex associated with a given database session. Presently we work on effective syn-
chronization of generated code using atomic types and non-blocking algorithms.

The present implementation supports only PostgreSQL, and it will be worth-
while to develop drivers for some other database engines. Despite a well-layered
architecture of our system, it might not be entirely trivial, as we assume the
availability of certain PostgreSQL features which are not required by the stan-
dard and might not be available from other vendors.

Moreover, using the database server to parse SQL statements, while not with-
out merit (it is simple to implement and, if the database is the same as the target
one, we can be sure that the query will be accepted also during the application
runtime), it has some downsides as well. For one thing, sometimes the database
might not exist (even in the form of a schema with empty tables) at program
design time. Arguably, it might be better (and more elegant) to parse the state-
ment directly in the tool with the option of supplying the schema description in
the specialized format. Moreover, once the tool does the parsing, and hence un-
derstands the SQL statement syntax, new possibilities appear, e.g., of extending
the SQL syntax, introducing, in particular, special annotations for automated
BLOB conversion into specified class objects during query execution.

Finally, as we can create connection objects to many databases and database
servers in the same application, it is only natural for the need for the distributed
commit mechanisms to appear. Therefore the support for two-phase commit is
currently under active development.

Acknowledgements. We would like to thank the reviewers for their helpful
remarks and to �Lukasz Krawczyk for his help in implementing the tests.

References

1. Java Data Objects, http://db.apache.org/jdo/
2. Libpq — C Library, http://www.postgresql.org/docs/9.3/static/libpq.html,

chapter in [3]

http://db.apache.org/jdo/
http://www.postgresql.org/docs/9.3/static/libpq.html

138 M. Sysak et al.

3. PostgreSQL 9.3.2 Documentation, http://www.postgresql.org/docs/9.3
4. PREPARE command,

http://www.postgresql.org/docs/9.3/static/sql-prepare.html

5. Web4j java web application framework,
http://www.web4j.com/Java_Web_Application_Framework.jsp

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

7. Cook, W., Rai, S.: Safe query objects: statically typed objects as remotely ex-
ecutable queries. In: Proceedings of 27th International Conference on Software
Engineering, ICSE 2005, pp. 97–106 (May 2005)

8. Date, C.: An Introduction to Database Systems. Addison-Wesley (2003)
9. Fowler, M.: Patterns of Enterprise Application Architecture. A Martin Fowler sig-

nature book. Addison-Wesley (2003)
10. Fowler, M.: Domain-Specific Languages. Addison-Wesley Signature Series (Fowler).

Pearson Education (2010)
11. Gil, J.Y., Lenz, K.: Simple and safe SQL queries with C++ templates. In: Proceed-

ings of the 6th International Conference on Generative Programming and Compo-
nent Engineering, GPCE 2007, pp. 13–24. ACM, New York (2007)

12. Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically generated queries
in database applications. In: Proceedings of 26th International Conference on Soft-
ware Engineering, ICSE 2004, pp. 645–654. IEEE (2004)

13. Maier, D.: Representing Database Programs As Objects. In: Advances in Database
Programming Languages, pp. 377–386. ACM, New York (1990)

14. McClure, R., Kruger, I.: Sql dom: compile time checking of dynamic sql state-
ments. In: Proceedings of 27th International Conference on Software Engineering,
ICSE 2005, pp. 88–96 (May 2005)

15. Pustelnik, J., Sobieski, Ś.: Metagen — the text tool for generating sql database
descriptions from ER diagrams (in polish). In: Bazy Danych - Modele, Technologie,
Narzȩdzia, pp. 309–314. WKL Gliwice (2005)

16. Sobieski, S., Zieliński, B.: Using maude rewriting system to modularize and extend
sql. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC 2013, pp. 853–858. ACM, New York (2013)

17. Wegrzynowicz, P.: Performance antipatterns of one to many association in hiber-
nate. In: 2013 Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 1475–1481 (September 2013)

18. Wísniewski, P., Burzańska, M., Stencel, K.: The impedance mismatch in light of
the unified state model. Fundamenta Informaticae 120(3), 359–374 (2012)

19. Wísniewski, P., Szumowska, A., Burzańska, M., Boniewicz, A.: Hibernate the re-
cursive queries - defining the recursive queries using hibernate orm. In: ADBIS (2),
pp. 190–199 (2011)

http://www.postgresql.org/docs/9.3
http://www.postgresql.org/docs/9.3/static/sql-prepare.html
http://www.web4j.com/Java_Web_Application_Framework.jsp

	Static Integration of SQL Queries
in C++ Programs

	1 Introduction
	1.1 Comparison with Previous Work

	2 System Architecture and Internals
	2.1 User Query File
	2.2 Data Conversion Mechanism
	2.3 Query Analysis and Processing

	3 Simple Example of DbQcc Usage
	4 Conclusion
	References

