
Yannis Manolopoulos
Goce Trajcevski
Margita Kon-Popovska (Eds.)

 123

LN
CS

 8
71

6

18th East European Conference, ADBIS 2014
Ohrid, Macedonia, September 7–10, 2014
Proceedings

Advances in Databases
and Information Systems

Lecture Notes in Computer Science 8716
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Yannis Manolopoulos Goce Trajcevski
Margita Kon-Popovska (Eds.)

Advances in Databases
and Information Systems

18th East European Conference, ADBIS 2014
Ohrid, Macedonia, September 7-10, 2014
Proceedings

13

Volume Editors

Yannis Manolopoulos
Aristotle University of Thessaloniki, Department of Informatics
Thessaloniki, Greece
E-mail: manolopo@csd.auth.gr

Goce Trajcevski
Northwestern University, EECS Department
Evanston, IL, USA
E-mail: goce@eecs.northwestern.edu

Margita Kon-Popovska
University Ss. Cyril and Methodius Skopje
Faculty of Computer Sciences and Engineering
Skopje, Macedonia
E-mail: margita.kon-popovska@finki.ukim.mk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10932-9 e-ISBN 978-3-319-10933-6
DOI 10.1007/978-3-319-10933-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946898

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains a selection of the papers presented at the 18th East
European Conference on Advances in Databases and Information Systems
(ADBIS 2014), held during September 7–10, 2014, in Ohrid, Republic of Mace-
donia.

The ADBIS series of conferences aims to provide a forum for the presenta-
tion and dissemination of research on database theory, development of advanced
DBMS technologies, and their advanced applications. ADBIS 2014 continued
the ADBIS series held every year in different countries of Europe, beginning
in St. Petersburg (1997), Poznan (1998), Maribor (1999), Prague (2000), Vil-
nius (2001), Bratislava (2002), Dresden (2003), Budapest (2004), Tallinn (2005),
Thessaloniki (2006), Varna (2007), Pori (2008), Riga (2009), Novi Sad (2010),
Vienna (2011), Poznan (2012), and Genoa (2013). The conferences are initiated
and supervised by an international Steering Committee consisting of representa-
tives from Armenia, Austria, Bulgaria, Czech Republic, Estonia, Finland, Ger-
many, Greece, Hungary, Israel, Italy, Latvia, Lithuania, Poland, Russia, Serbia,
Slovakia, Slovenia, and Ukraine.

The program of ADBIS 2014 included keynotes, research papers, a tutorial
session entitled “Online Social Networks Analytics - Communities and Sentiment
Detection” by Athena Vakali, a doctoral consortium, and thematic workshops.
The conference attracted 82 paper submissions from 34 different countries repre-
senting all the continents (Algeria, Australia, Austria, Bangladesh, Bosnia and
Herzegovina, Brazil, China, Croatia, Czech Republic, Estonia, France, Germany,
Greece, Hungary, Italy, Japan, Lebanon, Lithuania, Macedonia, Netherlands,
Poland, Romania, Russian Federation, Singapore, Slovakia, Slovenia, Spain,
Switzerland, Tunisia, Turkey, UK, USA, Vietnam) with 210 authors. After a
rigorous reviewing process by the members of the international Program Com-
mittee consisting of 115 reviewers from 34 countries, the 26 papers included in
this LNCS proceedings volume were accepted as full contributions.

Moreover, the Program Committee selected 15 more papers to be accepted
as short contributions which, in addition to the three selected papers from the
doctoral consortium, and eight papers from three workshops, are published in
a companion volume entitled New Trends in Databases and Information Sys-
tems 2 in the Springer series Advances in Intelligent Systems and Computing.
All papers were evaluated by at least three reviewers and most of them by
four to five reviewers. The selected papers span a wide spectrum of topics in
the database field and related technologies, tackling challenging problems and
presenting inventive and efficient solutions. In this volume, they are organized
in eight sections: (1) Data Models and Query Languages; (2) Data Warehous-
ing; (3) Query and Data-Flow Optimization; (4) Information Extraction and
Integration; (5) Spatial, Temporal and Streaming Data; (6) Data Mining and

VI Preface

Knowledge Discovery; (7) Data Organization and Physical Issues; (8) Data and
Business Processes.

Three keynote lecturers were invited and they gave talks on timely aspects
pertaining to the theme of the conference, namely, Maarten de Rijke (University
of Amsterdam, Netherlands), Minos Garofalakis (Technical University of Crete
in Chania, Greece), and João Gama (University of Porto, Portugal). The vol-
ume also includes an invited paper for the conference keynote talk from Minos
Garofalakis.

ADBIS 2014 strived to create conditions for more experienced researchers to
share their knowledge and expertise with the young researchers participating in
the doctoral consortium. In addition, the following three workshops associated
with the ADBIS conference were co-located with the main conference:

• Third Workshop on GPUs in Databases (GID), organized by Witold Andrze-
jewski (Poznan University of Technology), Krzysztof Kaczmarski (Warsaw
University of Technology), and Tobias Lauer (Jedox).

• Third Workshop on Ontologies Meet Advanced Information Systems (OAIS)
organized by Ladjel Bellatreche (LIAS/ENSMA, Poitiers) and Yamine Aı̈t
Ameur (IRIT/ENSEIHT, Toulouse).

• First Workshop on Technologies for Quality Management in Challenging Ap-
plications (TQMCA) organized by Isabelle Comyn-Wattiau (CNAM, Paris),
Ajantha Dahanayake (Prince Sultan University, Saudi Arabia), and Bern-
hard Thalheim (Christian Albrechts University).

Each workshop had its own international Program Committee. The accepted
papers were published by Springer in the Advances in Intelligent Systems and
Computing series.

The conference is supported by the President of the Republic of Macedo-
nia, H.E. Dr. Gjorge Ivanov. We would like to express our gratitude to every
individual who contributed to the success of ADBIS 2014. Firstly, we thank
all the authors who submitted papers to the conference. However, we are also
indebted to the members of the community who offered their time and exper-
tise in performing various roles ranging from organizational to reviewing ones –
their efforts, energy, and degree of professionalism deserve the highest commen-
dations. Special thanks go to the Program Committee members, as well as to
the external reviewers, for their support in evaluating the papers submitted to
ADBIS 2014, ensuring the quality of the scientific program. Thanks also to all
the colleagues involved in the conference organization, as well as the workshop
organizers. A special thank you is due to the members of the Steering Committee
and, in particular, its chair, Leonid Kalinichenko, for all their help and guidance.
Finally, we thank Springer for publishing the proceedings containing invited and
research papers in the LNCS series. The Program Committee work relied on
EasyChair, and we thank its development team for creating and maintaining it;
it offered great support throughout the different phases of the reviewing pro-
cess. The conference would not have been possible without our supporters and
sponsors: the Ministry of Information Society and Administration, Ss. Cyril and

Preface VII

Methodius University, Faculty of Computer Sciences and Engineering, ICT-ACT
Association, and Municipality of Ohrid.

Last, but not least, we thank the participants of ADBIS 2014 for sharing
their works and presenting their achievement, thus providing a lively, fruitful,
and constructive forum, and giving us the pleasure of knowing that our work
was purposeful.

September 2014 Margita Kon-Popovska
Yannis Manolopulos

Goce Trajcevski

Organization

General Chair

Margita Kon-Popovska Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Program Committee Co-chairs

Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Goce Trajcevski Northwestern University, USA

Workshop Co-chairs

Themis Palpanas Paris Descartes University, France
Athena Vakali Aristotle University of Thessaloniki, Greece

Doctoral Consortium Co-chairs

Nick Bassiliades Aristotle University of Thessaloniki, Greece
Mirjana Ivanovic University of Novi Sad, Serbia

Publicity Chair

Goran Velinov Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Website Chair

Vangel Ajanovski Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Proceedings Technical Editor

Ioannis Karydis Department of Informatics, Ionian University
Corfu, Greece

Local Organizing Committee Chair

Goran Velinov Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

X Organization

Local Organizing Committee

Anastas Mishev Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Boro Jakimovski Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Ivan Chorbev Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Supporters

Ministry of Information Society and Administration
Ss. Cyril and Methodius University in Skopje
Faculty of Computer Sciences and Engineering
ICT-ACT Association
Municipality of Ohrid

Steering Committee

Leonid Kalinichenko, Russian Academy of Science, Russia (Chair)

Paolo Atzeni, Italy
Andras Benczur, Hungary
Albertas Caplinskas, Lithuania
Barbara Catania, Italy
Johann Eder, Austria
Theo Haerder, Germany
Marite Kirikova, Latvia
Hele-Mai Haav, Estonia
Mirjana Ivanovic, Serbia
Hannu Jaakkola, Finland
Mikhail Kogalovsky, Russia
Yannis Manolopoulos, Greece
Rainer Manthey, Germany
Manuk Manukyan, Armenia

Joris Mihaeli, Israel
Tadeusz Morzy, Poland
Pavol Navrat, Slovakia
Boris Novikov, Russia
Mykola Nikitchenko, Ukraine
Jaroslav Pokornyv, Czech Republic
Boris Rachev, Bulgaria
Bernhard Thalheim, Germany
Gottfried Vossen, Germany
Tatjana Welzer, Slovenia
Viacheslav Wolfengagen, Russia
Robert Wrembel, Poland
Ester Zumpano, Italy

Program Committee

Marko Bajec University of Ljubljana, Slovenia
Mirta Baranovic University of Zagreb, Croatia
Guntis Barzdins University of Latvia, Latvia
Andreas Behrend University of Bonn, Germany

Organization XI

Ladjel Bellatreche Ecole Nationale Supérieure de Mécanique et
d’Aérotechnique, France

Maria Bielikova Slovak University of Technology in Bratislava,
Slovakia

Iovka Boneva University of Lille 1, France
Omar Boucelma LSIS, Aix-Marseille Université, France
Stephane Bressan National University of Singapore, Singapore
Davide Buscaldi LIPN, Université Paris 13, France
Albertas Caplinskas Vilnius University, Lithuania
Barbara Catania University of Genoa, Italy
Wojciech Cellary Poznan University of Economics, Poland
Richard Chbeir Université de Pau et des Pays de l’Adour,

France
Ricardo Ciferri Federal University of São Carlos, Brazil
Alfredo Cuzzocrea University of Calabria, Italy
Danco Davcev Ss. Cyril and Methodius University in Skopje,

Republic of Macedonia
Vladimir Dimitrov Sofia University, Bulgaria
Eduard Dragut Temple University, USA
Schahram Dustdar Vienna University of Technology, Austria
Todd Eavis Concordia University, Canada
Johann Eder University of Klagenfurt, Austria
Tobias Emrich Ludwig-Maximilians-Universität München,

Germany
Markus Endres University of Augsburg, Germany
Victor Felea Alexandru Ioan Cusa University, Iasi, Romania
Pedro Furtado University of Coimbra, Portugal
Zdravko Galic University of Zagreb, Croatia
Johann Gamper Free University of Bozen-Bolzano, Italy
Minos Garofalakis Technical University of Crete, Greece
Jan Genci Technical University of Kosice, Slovakia
Matteo Golfarelli University of Bologna, Italy
Katarina Grigorova Ruse University, Bulgaria
Giovanna Guerrini University of Genoa, Italy
Ralf Hartmut Güting Fernuniversität Hagen, Germany
Theo Härder Technical University of Kaiserslautern,

Germany
Stephen Hegner Ume̊a University, Sweden
Ali Inan Isik University, Turkey
Mirjana Ivanovic University of Novi Sad, Serbia
Hannu Jaakkola Tampere University of Technology, Finland
Manfred Jeusfeld Tilburg University, The Netherlands
Slobodan Kalajdziski Ss. Cyril and Methodius University in Skopje,

Republic of Macedonia
Leonid Kalinichenko Russian Academy of Science, Russia

XII Organization

Kalinka Kaloyanova Sofia University St. Kliment Ohridski, Bulgaria
Mehmed Kantardzic University of Louisville, USA
Marite Kirikova Riga Technical University, Latvia
Harald Kosch University of Passau, Germany
Georgia Koutrika HP Labs, USA
Andrea Kulakov Ss. Cyril and Methodius University in Skopje,

Republic of Macedonia
Lars Kulik The University of Melbourne, Australia
Wolfgang Lehner Technical University of Dresden, Germany
Jan Lindström IBM Helsinki, Finland
Yun Lu Florida International University, USA
Ivan Luković University of Novi Sad, Serbia
Federica Mandreoli University of Modena, Italy
Rainer Manthey University of Bonn, Germany
Manuk Manukyan Yerevan State University, Armenia
Giansalvatore Mecca University of Basilicata, Italy
Marco Mesiti University of Milan, Italy
Irena Mlynkova Charles University in Prague, Czech Republic
Alexandros Nanopoulos University of Eichstätt-Ingolstadt, Germany
Pavol Navrat Slovak University of Technology, Slovakia
Daniel C. Neagu University of Bradford, UK
Anisoara Nica SAP, Canada
Nikolaj Nikitchenko Kiev State University, Ukraine
Kjetil Nørv̊ag Norwegian University of Science and

Technology, Norway
Boris Novikov University of St. Petersburg, Russia
Gultekin Ozsoyoglu Case Western Reserve University, USA
Euthimios Panagos Applied Communication Sciences, USA
Gordana Pavlovic-Lazetic University of Belgrade, Serbia
Torben Bach Pedersen Aalborg University, Denmark
Dana Petcu West University of Timisoara, Romania
Evaggelia Pitoura University of Ioannina, Greece
Elisa Quintarelli Politecnico di Milano, Italy
Paolo Rosso Polytechnic University of Valencia, Spain
Viera Rozinajova Slovak University of Technology, Slovakia
Ismael Sanz Universitat Jaume I, Spain
Klaus-Dieter Schewe Software Competence Center, Austria
Marc H. Scholl University of Konstanz, Germany
Holger Schwarz Universität Stuttgart, Germany
Timos Sellis National Technical University of Athens,

Greece
Bela Stantic Griffith University, Australia
Predrag Stanisic University of Montenegro, Montenegro
Yannis Stavrakas Institute for the Management of Information

Systems, Greece

Organization XIII

Krzysztof Stencel University of Warsaw, Poland
Leonid Stoimenov University of Nis, Serbia
Panagiotis Symeonidis Aristotle University of Thessaloniki, Greece
Amirreza Tahamtan Vienna University of Technology, Austria
Ernest Teniente Universitat Politècnica de Catalunya, Spain
Manolis Terrovitis Institute for the Management of Information

Systems, Greece
Bernhard Thalheim Christian Albrechts University of Kiel,

Germany
A. Min Tjoa Vienna University of Technology, Austria
Ismail Toroslu Middle East Technical University, Turkey
Juan Trujillo University of Alicante, Spain
Traian Marius Truta Northern Kentucky University, USA
Ozgur Ulusoy Bilkent University, Turkey
Maurice Van Keulen University of Twente, The Netherlands
Olegas Vasilecas Vilnius Gediminas Technical University,

Lithuania
Panos Vassiliadis University of Ioannina, Greece
Jari Veijalainen University of Jyvaskyla, Finland
Goran Velinov Ss. Cyril and Methodius University in Skopje,

Republic of Macedonia
Gottfried Vossen Universität Münster, Germany
Boris Vrdoljak University of Zagreb, Croatia
Fan Wang Microsoft, USA
Gerhard Weikum Max Planck Institute for Informatics, Germany
Tatjana Welzer University of Maribor, Slovenia
Marek Wojciechowski Poznan University of Technology, Poland
Robert Wrembel Poznan University of Technology, Poland
Vladimir Zadorozhny University of Pittsburgh, USA
Jaroslav Zendulka Brno University of Technology, Czech Republic
Andreas Zuefle Ludwig-Maximilians-Universität München,

Germany

Additional Reviewers

Selma Bouarar LIAS/ISAE-ENSMA, France
Kamel Boukhalfa LSI/USTHB, Algiers
Ljiljana Brkić University of Zagreb, Croatia
Jacek Chmielewski Poznań University of Economics, Poland
Armin Felbermayr Catholic University of Eichstätt-Ingolstadt,

Germany
Flavio Ferrarotti Software Competence Center Hagenberg

(SCCH), Austria
Olga Gkountouna National Technical University of Athens,

Greece

XIV Organization

Tanzima Hashem Bangladesh University of Engineering and
Technology, Bangladesh

Pavlos Kefalas Aristotle University of Thessaloniki, Greece
Mohammadreza Khelghati University of Twente, The Netherlands
Michal Kompan Slovak University of Technology in Bratislava,

Slovakia
Christian Koncilia University of Klagenfurt, Austria
Krešimir Križanović University of Zagreb, Croatia
Jens Lechtenbörger University of Münster, Germany
Igor Mekterović University of Zagreb, Croatia
Anastasia Mochalova Catholic University of Eichstätt-Ingolstadt,

Germany
Christos Perentis Bruno Kessler Foundation, Trento, Italy
Sonja Ristic University of Novi Sad, Serbia
Miloš Savić University of Novi Sad, Serbia
Alexander Semenov University of Jyväskylä, Finland
Alessandro Solimando University of Genoa, Italy
Konstantinos Theocharidis IMS, Research Center Athena, Greece
Savo Tomovic University of Montenegro, Montenegro
Stefano Valtolina Università degli Studi di Milano, Italy
Qing Wang Australian National University, Australia
Lesley Wevers University of Twente, The Netherlands
Athanasios Zigomitros IMIS, Research Center Athena, Greece
Slavko Žitnik University of Ljubljana, Slovenia

Keynote Presentations

Querying Distributed Data Streams

Prof. Minos Garofalakis

Computer Science at the School of ECE

Technical University of Crete in Chania, Greec
Director of the Software Technology and Network Applications Laboratory

(SoftNet)
minos@softnet.tuc.gr

Effective big data analytics pose several difficult challenges for modern data
management architectures. One key such challenge arises from the naturally
streaming nature of big data, which mandates efficient algorithms for querying
and analyzing massive, continuous data streams (i.e., data that are seen only
once and in a fixed order) with limited memory and CPU-time resources. Such
streams arise naturally in emerging large-scale event-monitoring applications; for
instance, network-operations monitoring in large ISPs, where usage information
from numerous sites needs to be continuously collected and analyzed for interest-
ing trends. In addition to memory- and time-efficiency concerns, the inherently
distributed nature of such applications also raises important communication-
efficiency issues, making it critical to carefully optimize the use of the underlying
network infrastructure. In this talk, we introduce the distributed data stream-
ing model, and discuss recent work on tracking complex queries over massive
distributed streams as well as new research directions in this space.

Challenges in Learning from Streaming Data

Prof. João Gama

LIAAD-INESC TEC, University of Porto,
Faculty of Economics, University Porto,

jgama@fep.up.pt

Nowadays, there are applications in which the data are modeled best not as
persistent tables, but rather as transient data streams. In this article, we dis-
cuss the limitations of current machine learning and data mining algorithms.
We discuss the fundamental issues in learning in dynamic environments such
as continuously maintain learning models that evolve over time, learning and
forgetting, concept drift, and change detection. Data streams produce a huge
amount of data that introduce new constraints in the design of learning algo-
rithms: limited computational resources in terms of memory, CPU power, and
communication bandwidth. We present some illustrative algorithms, designed to
take these constrains into account, for decision-tree learning, hierarchical clus-
tering, and frequent pattern mining. We identify the main issues and current
challenges that emerge in learning from data streams that open research lines
for further developments.

Table of Contents

Invited Talk

Querying Distributed Data Streams (Invited Keynote Talk) 1
Minos Garofalakis

Data Models and Query Languages

Towards a Normal Form for Extended Relations Defined by Regular
Expressions . 11

András Benczúr and Gyula I. Szabó

Flexible Relational Data Model – A Common Ground for
Schema-Flexible Database Systems . 25

Hannes Voigt and Wolfgang Lehner

Defining Temporal Operators for Column Oriented NoSQL
Databases . 39

Yong Hu and Stefan Dessloch

Data Warehousing

Analyzing Sequential Data in Standard OLAP Architectures 56
Christian Koncilia, Johann Eder, and Tadeusz Morzy

Hybrid Fragmentation of XML Data Warehouse Using K-Means
Algorithm . 70

Mohamed Kechar and Safia Nait Bahloul

Do Rule-Based Approaches Still Make Sense in Logical Data Warehouse
Design? . 83

Selma Bouarar, Ladjel Bellatreche, Stéphane Jean, and
Mickaël Baron

Query and Data-Flow Optimization

High Parallel Skyline Computation over Low-Cardinality Domains 97
Markus Endres and Werner Kießling

Top-k Differential Queries in Graph Databases . 112
Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and
Wolfgang Lehner

XVIII Table of Contents

Static Integration of SQL Queries in C++ Programs 126
Maciej Sysak, Bartosz Zieliński, Piotr Kruszyński,
Ścibór Sobieski, and Pawe�l Maślanka

Information Extraction and Integration

A Demand-Driven Bulk Loading Scheme for Large-Scale Social
Graphs . 139

Weiping Qu and Stefan Dessloch

Open Source Is a Continual Bugfixing by a Few . 153
Miko�laj Fejzer, Micha�l Wojtyna, Marta Burzańska,
Piotr Wísniewski, and Krzysztof Stencel

Materialized View Selection Considering the Diversity of Semantic Web
Databases . 163

Bery Mbaiossoum, Ladjel Bellatreche, and Stéphane Jean

Spatial, Temporal and Streaming Data

A Robust Skip-Till-Next-Match Selection Strategy for Event Pattern
Matching . 177

Bruno Cadonna, Johann Gamper, and Michael H. Böhlen

CARDAP: A Scalable Energy-Efficient Context Aware Distributed
Mobile Data Analytics Platform for the Fog . 192

Prem Prakash Jayaraman, João Bártolo Gomes, Hai Long Nguyen,
Zahraa Said Abdallah, Shonali Krishnaswamy, and Arkady Zaslavsky

Representing Internal Varying Characteristics of Moving Objects 207
Ahmed Ibrahim, Ulanbek Turdukulov, and Menno-Jan Kraak

Data Mining and Knowledge Discovery

User Identification within a Shared Account: Improving IP-TV
Recommender Performance . 219

Zhijin Wang, Yan Yang, Liang He, and Junzhong Gu

P-TRIAR: Personalization Based on TRIadic Association Rules 234
Selmane Sid Ali, Omar Boussaid, and Fadila Bentayeb

An Event-Based Framework for the Semantic Annotation of
Locations . 248

Anh Le, Michael Gertz, and Christian Sengstock

Observing a Näıve Bayes Classifier’s Performance on Multiple
Datasets . 263

Boštjan Brumen, Ivan Rozman, and Aleš Černezel

Table of Contents XIX

Data Organization and Physical Issues

A Parallel Algorithm for Building iCPI-trees . 276
Witold Andrzejewski and Pawel Boinski

SemIndex : Semantic-Aware Inverted Index . 290
Richard Chbeir, Yi Luo, Joe Tekli, Kokou Yetongnon,
Carlos Raymundo Ibañez, Agma J.M. Traina,
Caetano Traina Jr., and Marc Al Assad

Entity Resolution with Weighted Constraints . 308
Zeyu Shen and Qing Wang

Analogical Prediction of Null Values: The Numerical Attribute Case 323
William Correa Beltran, Hélène Jaudoin, and Olivier Pivert

Observations on Fine-Grained Locking in XML DBMSs 337
Martin Hiller, Caetano Sauer, and Theo Härder

Data and Business Processes

Multi-dialect Workflows . 352
Leonid Kalinichenko, Sergey Stupnikov, Alexey Vovchenko, and
Dmitry Kovalev

Context-Aware Adaptive Process Information Systems: The
Context-BPMN4V Meta-Model . 366

Imen Ben Said, Mohamed Amine Chaabane, Eric Andonoff, and
Rafik Bouaziz

Author Index . 383

Querying Distributed Data Streams
(Invited Keynote Talk)

Minos Garofalakis

School of Electronic and Computer Engineering
Technical University of Crete
minos@softnet.tuc.gr

Abstract. Effective Big Data analytics pose several difficult challenges for
modern data management architectures. One key such challenge arises from the
naturally streaming nature of big data, which mandates efficient algorithms for
querying and analyzing massive, continuous data streams (that is, data that is
seen only once and in a fixed order) with limited memory and CPU-time re-
sources. Such streams arise naturally in emerging large-scale event monitoring
applications; for instance, network-operations monitoring in large ISPs, where
usage information from numerous sites needs to be continuously collected and
analyzed for interesting trends. In addition to memory- and time-efficiency con-
cerns, the inherently distributed nature of such applications also raises important
communication-efficiency issues, making it critical to carefully optimize the use
of the underlying network infrastructure. In this talk, we introduce the distributed
data streaming model, and discuss recent work on tracking complex queries over
massive distributed streams, as well as new research directions in this space.

1 Introduction

Traditional data-management systems are typically built on a pull-based paradigm,
where users issue one-shot queries to static data sets residing on disk, and the system
processes these queries and returns their results. Recent years, however, have witnessed
the emergence of a new class of large-scale event monitoring applications, that require
the ability to efficiently process continuous, high-volume streams of data in real time.
Examples include monitoring systems for IP and sensor networks, real-time analysis
tools for financial data streams, and event and operations monitoring applications for
enterprise clouds and data centers. As both the scale of today’s networked systems, and
the volumes and rates of the associated data streams continue to increase with no bound
in sight, algorithms and tools for effectively analyzing them are becoming an important
research mandate.

Large-scale stream processing applications rely on continuous, event-driven mon-
itoring, that is, real-time tracking of measurements and events, rather than one-shot
answers to sporadic queries. Furthermore, the vast majority of these applications are in-
herently distributed, with several remote monitor sites observing their local, high-speed
data streams and exchanging information through a communication network. This dis-
tribution of the data naturally implies critical communication constraints that typically
prohibit centralizing all the streaming data, due to either the huge volume of the data

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014

2 M. Garofalakis

(e.g., in IP-network monitoring, where the massive amounts of collected utilization and
traffic information can overwhelm the production IP network [11]), or power and band-
width restrictions (e.g., in wireless sensornets, where communication is the key determi-
nant of sensor battery life [25]). Finally, an important requirement of large-scale event
monitoring is the effective support for tracking complex, holistic queries that provide a
global view of the data by combining and correlating information across the collection
of remote monitor sites. For instance, tracking aggregates over the result of a distributed
join (the “workhorse” operator for combining tables in relational databases) can provide
unique, real-time insights into the workings of a large-scale distributed system, includ-
ing system-wide correlations and potential anomalies [6]. Monitoring the precise value
of such holistic queries without continuously centralizing all the data seems hopeless;
luckily, when tracking statistical behavior and patters in large scale systems, approx-
imate answers (with reasonable approximation error guarantees) are often sufficient.
This often allows algorithms to effectively tradeoff efficiency with approximation qual-
ity (e.g., using sketch-based stream approximations [6]).

Given the prohibitive cost of data centralization, it is clear that realizing sophisti-
cated, large-scale distributed data-stream analysis tools must rely on novel algorithmic
paradigms for processing local streams of data in situ (i.e., locally at the sites where
the data is observed). This, of course, implies the need for intelligently decomposing
a (possibly complex) global data-analysis and monitoring query into a collection of
“safe” local queries that can be tracked independently at each site (without communi-
cation), while guaranteeing correctness for the global monitoring operation. This de-
composition process can enable truly distributed, event-driven processing of real-time
streaming data, using a push-based paradigm, where sites monitor their local queries
and communicate only when some local query constraints are violated [6,29]. Never-
theless, effectively decomposing a complex, holistic query over the global collections
of streams into such local constraints is far from straightforward, especially in the case
of non-linear queries (e.g., joins) [29].

The bulk of early work on data-stream processing has focused on developing
space-efficient, one-pass algorithms for performing a wide range of centralized, one-
shot computations on massive data streams; examples include computing quantiles [21],
estimating distinct values [18], and set-expression cardinalities [14], counting frequent
elements (i.e., “heavy hitters”) [4,9,26], approximating large Haar-wavelet coefficients
[20], and estimating join sizes and stream norms [1,2,13]. Monitoring distributed data
streams has attracted substantial research interest in recent years [5,27], with early work
focusing on the monitoring of single values, and building appropriate models and fil-
ters to avoid propagating updates if these are insignificant compared to the value of
simple linear aggregates (e.g., to the SUM of the distributed values). For instance, [28]
proposes a scheme based on “adaptive filters” — that is, bounds around the value of
distributed variables, which shrink or grow in response to relative stability or variabil-
ity, while ensuring that the total uncertainty in the bounds is at most a user-specified
bound. Still, in the case of linear aggregate functions, deriving local filter bounds based
on a global monitoring condition is rather straightforward, with the key issue being how
to intelligently distribute the available aggregate “slack” across all sites [3,7,22].

Querying Distributed Data Streams 3

j

local update streams local update streams

Site 1 Site k
State−Update

Coordinator
Approximate Answer

Messages

vk1v

User Query Q(v)

for Q(v)

Global Streams

v= Σ λj v

Fig. 1. Distributed stream processing architecture

In this talk, we focus on recently-developed algorithmic tools for effectively track-
ing a broad class of complex queries over massive, distributed data streams. We start
by describing the key elements of a generic distributed stream-processing architecture
and define the class of distributed query-tracking problems addressed in this talk, along
with some necessary background material on randomized sketching techniques for data
streams. We then give an overview of the geometric method for distributed threshold
monitoring that lies at the core of our distributed query-tracking methodology, and dis-
cuss recent extensions to the basic geometric framework that incorporate sketches and
local prediction models. Finally, we conclude with a brief discussion of new research
directions in this space.

2 System Architecture

We consider a distributed-computing environment, comprising a collection of k remote
sites and a designated coordinator site. Streams of data updates arrive continuously
at remote sites, while the coordinator site is responsible for generating approximate an-
swers to (possibly, continuous) user queries posed over the unions of remotely-observed
streams (across all sites). Following earlier work in the area [3,6,7,12,28], our dis-
tributed stream-processing model does not allow direct communication between remote
sites; instead, as illustrated in Figure 1, a remote site exchanges messages only with the
coordinator, providing it with state information on its (locally-observed) streams. Note
that such a hierarchical processing model is, in fact, representative of a large class of
applications, including network monitoring where a central Network Operations Cen-
ter (NOC) is responsible for processing network traffic statistics (e.g., link bandwidth
utilization, IP source-destination byte counts) collected at switches, routers, and/or El-
ement Management Systems (EMSs) distributed across the network.

Each remote site j ∈ {1, . . . , k} observes (possibly, several) local update streams
that incrementally render a local statistics vector vj capturing the current local state
of the observed stream(s) at site j. As an example, in the case of IP routers moni-
toring the number of TCP connections and UDP packets exchanged between source
and destination IP addresses, the local statistics vector vj has 2 × 264 entries captur-
ing the up-to-date frequencies for specific (source, destination) pairs observed in TCP

4 M. Garofalakis

connections and UDP packets routed through router j. (For instance, the first (last) 264

entries of vj could be used for TCP-connection (respectively, UDP-packet) frequen-
cies.) All local statistics vectors vj in our distributed streaming architecture change dy-
namically over time — when necessary, we make this dependence explicit, using vj(t)
to denote the state of the vector at time t (assuming a consistent notion of “global time”
in our distributed system). The unqualified notation vj typically refers to the current
state of the local statistics vector.

We define the global statistics vector v of our distributed stream(s) as any weighted
average (i.e., convex combination) of the local statistics vectors {vj}; that is,

v =

k∑
j=1

λjvj , where
∑

j λj = 1 and λj ≥ 0 for all j.

(Again, to simplify notation, we typically omit the explicit dependence on time when
referring to the current global vector.) Our focus is on the problem of effectively an-
swering user queries (or, functions) over the global statistics vector at the coordinator
site. Rather than one-time query/function evaluation, we assume a continuous-querying
environment which implies that the coordinator needs to continuously maintain (or,
track) the answers to queries as the local update streams vj evolve at individual remote
sites. There are two defining characteristics of our problem setup that raise difficult
algorithmic challenges for our query tracking problems:

• The distributed nature and large volumes of local streaming data raise important com-
munication and space/time efficiency concerns. Naı̈ve schemes that accurately track
query answers by forcing remote sites to ship every remote stream update to the coor-
dinator are clearly impractical, since they can impose an inordinate burden on the un-
derlying communication infrastructure (especially, for high-rate data streams and large
numbers of remote sites). Furthermore, the voluminous nature of the local data streams
implies that effective streaming tools are needed at the remote sites in order to manage
the streaming local statistics vectors in sublinear space/time. Thus, a practical approach
is to adopt the paradigm of continuous tracking of approximate query answers at the
coordinator site with strong guarantees on the quality of the approximation. This al-
lows schemes that can effectively trade-off space/time/communication efficiency and
query-approximation accuracy in a precise, quantitative manner.

• General, non-linear queries/functions imply fundamental and difficult challenges for
distributed monitoring. For the case of linear functions, a number of approaches have
been proposed that rely on the key idea of allocating appropriate “slacks” to the remote
sites based on their locally-observed function values (e.g., [3,28,22]). Unfortunately, it
is not difficult to find examples of simple non-linear functions on one-dimensional data,
where it is basically impossible to make any assumptions about the value of the global
function based on the values observed locally at the sites [29]. This renders conventional
slack-allocation schemes inapplicable in this more general setting.

Querying Distributed Data Streams 5

3 Sketching Continuous Data Streams

Techniques based on small-space pseudo-random sketch summaries of the data have
proved to be very effective tools for dealing with massive, rapid-rate data streams in
centralized settings [1,2,10,13,20]. The key idea in such sketching techniques is to rep-
resent a streaming frequency vector v using a much smaller (typically, randomized)
sketch vector (denoted by sk(v)) that (1) can be easily maintained as the updates in-
crementally rendering v are streaming by, and (2) provide probabilistic guarantees for
the quality of the data approximation. The widely used AMS sketch (proposed by Alon,
Matias, and Szegedy in their seminal paper [2]) defines ith sketch entry sk(v)[i] as the
random variable

∑
k v[k] ·ξi[k], where {ξi} is a family of four-wise independent binary

random variables uniformly distributed in {−1,+1} (with mutually-independent fami-
lies used across different entries of the sketch). The key here is that, using appropriate
pseudo-random hash functions, each such family can be efficiently constructed on-line
in small (logarithmic) space [2]. Note that, by construction, each entry of sk(v) is es-
sentially a randomized linear projection (i.e., an inner product) of the v vector (using
the corresponding ξ family), that can be easily maintained (using a simple counter) over
the input update stream. Another important property is the linearity of AMS sketches:
Given two “parallel” sketches (built using the same ξ families) sk(v1) and sk(v2), the
sketch of the union of the two underlying streams (i.e., the streaming vector v1 + v2)
is simply the component-wise sum of their sketches; that is, sk(v1 + v2) = sk(v1)+
sk(v2). This linearity makes such sketches particularly useful in distributed streaming
settings [6].

The following theorem summarizes some of the basic estimation properties of AMS
sketches for (centralized) stream query processing. (Throughout, the notation x ∈ (y±
z) is equivalent to |x − y| ≤ |z|.) We use fAMS() to denote the standard AMS es-
timator function, involving both averaging and median-selection operations over the
components of the sketch-vector inner product [1,2]. Formally, each sketch vector can
be conceptually viewed as a two-dimensional n × m array, where n = O(1

ε2), m =
O(log(1/δ)) and ε, 1 − δ denote the desired bounds on error and probabilistic confi-
dence (respectively), and the AMS estimator function is defined as:

fAMS(sk(v), sk(u)) = median
i=1,...,m

{ 1
n

n∑
l=1

sk(v)[l, i] · sk(u)[l, i]}. (1)

Theorem 1 ([1,2]). Let sk(v) and sk(u) denote two parallel sketches comprising
O(1

ε2 log(1/δ)) counters, built over the streams v and u. Then, with probability at
least 1 − δ, fAMS(sk(v), sk(u)) ∈ (v · u± ε‖v‖‖u‖). The processing time required to
maintain each sketch is O(1

ε2 log(1/δ)) per update.

Thus, AMS sketch estimators can effectively approximate inner-product queries
v · u =

∑
i v[i] · u[i] over streaming data vectors and tensors. Such inner prod-

ucts naturally map to join and multi-join aggregates when the the vectors/tensors cap-
ture the frequency distribution of the underlying join attribute(s) [13]. Furthermore,
they can capture several other interesting query classes, including range and quan-
tile queries [19], heavy hitters and top-k queries [4], and approximate histogram and

6 M. Garofalakis

wavelet representations [8,20]. An interesting special case is that of the (squared) L2

norm (or, self-join) query (i.e., u = v): Theorem 1 implies that the AMS estimator
fAMS(sk(v), sk(v)) (or, simply fAMS(sk(v))) is within ε relative error of the true squared
L2 norm ‖v‖2 =

∑
k(v[k])

2; that is, fAMS(sk(v)) ∈ (1± ε)‖v‖2. To provide ε relative-
error guarantees for the general inner-product query v · u, Theorem 1 can be applied
with error bound ε′ = ε(v · u)/(‖v‖‖u‖), giving a total sketching space requirement

of O(‖v‖
2‖u‖2

ε2(v·u)2 log(1/δ)) counters [1].

4 The Geometric Method

Sharfman et al. [29] consider the fundamental problem of distributed threshold moni-
toring; that is, determine whether f(v) < τ or f(v) > τ , for a given (general) function
f() over the global statistics vector and a fixed threshold τ . Their key idea is that, since
it is generally impossible to connect the locally-observed values of f() to the global
value f(v), one can employ geometric arguments to monitor the domain (rather than
the range) of the monitored function f(). More specifically, assume that at any point
in time, each site j has informed the coordinator of some prior state of its local vector
vp
j ; thus, the coordinator has an estimated global vector e =

∑k
j=1 λjv

p
j . Clearly, the

updates arriving at sites can cause the local vectors vj to drift too far from their previ-
ously reported values vp

j , possibly leading to a violation of the τ threshold. Let Δvj =
vj − vp

j denote the local delta vector (due to updates) at site j, and let uj = e +Δvj

be the drift vector from the previously reported estimate at site j. We can then express
the current global statistics vector v in terms of the drift vectors:

v =

k∑
j=1

λj(v
p
j +Δvj) = e+

k∑
j=1

λjΔvj =

k∑
j=1

λj(e+Δvj).

That is, the current global vector is a convex combination of drift vectors and, thus,
guaranteed to lie somewhere within the convex hull of the delta vectors around e. Fig-
ure 2 depicts an example in d = 2 dimensions. The current value of the global statistics
vector lies somewhere within the shaded convex-hull region; thus, as long as the convex
hull does not overlap the inadmissible region (i.e., the region {v ∈ R2 : f(v) > τ} in
Figure 2), we can guarantee that the threshold has not been violated (i.e., f(v) ≤ τ)).

The problem, of course, is that the Δvj’s are spread across the sites and, thus, the
above condition cannot be checked locally. To transform the global condition into a
local constraint, we place a d-dimensional bounding ball B(c, r) around each local
delta vector, of radius r = 1

2‖Δvj‖ and centered at c = e + 1
2Δvj (see Figure 2).

It can be shown that the union of all these balls completely covers the convex hull of
the drift vectors [29]. This observation effectively reduces the problem of monitoring
the global statistics vector to the local problem of each remote site monitoring the ball
around its local delta vector.

More specifically, given the monitored function f() and threshold τ , we can partition
the d-dimensional space into two sets V = {v : f(v) > τ} and V = {v : f(v) ≤
τ}. (Note that these sets can be arbitrarily complex, e.g., they may comprise multiple
disjoint regions of Rd.) The basic protocol is now quite simple: Each site monitors its

Querying Distributed Data Streams 7

e

u1 u2

u3

u4 u5 Ar
ea

 w
he

re
 f(

v)
 �

 T

v

Fig. 2. Estimate vector e, delta vectors Δv(pi) (arrows out of e), convex hull enclosing the
current global vector v (dotted outline), and bounding balls B(e+ 1

2
Δvj ,

1
2
‖Δvj‖)

delta vector Δvj and, with each update, checks whether its bounding ball B(e+ 1
2Δvj ,

1
2‖Δvj‖) is monochromatic, i.e., all points in the ball lie within the same region (V or
V). If this is not the case, we have a local threshold violation, and the site communicates
its local Δvj to the coordinator. The coordinator then initiates a synchronization process
that typically tries to resolve the local violation by communicating with only a subset
of the sites in order to “balance out” the violating Δvj and ensure the monochromicity
of all local bounding balls [29]. In the worst case, the delta vectors from all k sites are
collected, leading to an accurate estimate of the current global statistics vector, which
is by definition monochromatic (since all bounding balls have 0 radius).

In more recent work, Sharfman et al. [23] demonstrate that their geometric monitor-
ing method can employ properties of the function and the data to guide the choice of a
global reference point and local bounding ellipsoids for defining the local constraints.
Furthermore, they show that the local bounding balls/ellipsoids defined by the geomet-
ric method are actually special cases of a more general theory of Safe Zones (SZs),
which can be broadly defined as convex subsets of the admissible region of a threshold
query. It is not difficult to see that, as long as the local drift vectors stay within such a
SZ, the global vector is guaranteed (by convexity) to be within the admissible region of
the query [23].

5 Extensions: Sketches and Prediction Models

In more recent work [15], we have proposed novel query-tracking protocols that exploit
the combination of the geometric method of Sharfman et al. [23,29] for monitoring gen-
eral threshold conditions over distributed streams and AMS sketch estimators for query-
ing massive streaming data [1,2,13]. The sketching idea offers an effective streaming

8 M. Garofalakis

dimensionality-reduction tool that significantly expands the scope of the original geo-
metric method [29], allowing it to handle massive, high-dimensional distributed data
streams in an efficient manner with approximation-quality guarantees. The key techni-
cal observation is that, by exploiting properties of the AMS estimator function, geo-
metric monitoring can now take place in a much lower-dimensional space, allowing for
communication-efficient monitoring. Another technical challenge that arises is how to
effectively test the monochromicity of bounding balls in this lower-dimensional space
with respect to threshold conditions involving the highly non-linear median operator in
the AMS estimator fAMS() (Equation (1)). We have proposed a number of novel algorith-
mic techniques to address these technical challenges, starting from the easier cases of
L2-norm (i.e., self-join) and range queries, and then extending them to the case of gen-
eral inner-product (i.e., binary-join) queries. Our experimental study with real-life data
sets demonstrates the practical benefits of our approach, showing consistent gains of up
to 35% in terms of total communication cost compared to the current state-of-the-art
method [6]; furthermore, our techniques demonstrate even more impressive benefits (of
over 100%) when focusing on the communication costs of data (i.e., sketch) shipping
in the system.

In other recent work [16,17], we have proposed a novel combination of the geometric
method with local prediction models for describing the temporal evolution of local data
streams. (The adoption of prediction models has already been proven beneficial in terms
of bandwidth preservation in distributed settings [6].) We demonstrate that prediction
models can be incorporated in a very natural way in the geometric method for tracking
general, non-linear functions; furthermore, we show that the initial geometric moni-
toring method of Sharfman et al. [23,29] is only a special case of our, more general,
prediction-based geometric monitoring framework. Interestingly, the mere utilization
of local predictions is not enough to guarantee lower communication overheads even
when predictors are quite capable of describing local stream distributions. We establish
a theoretically solid monitoring framework that incorporates conditions that can lead to
fewer contacts with the coordinator. We also develop a number of mechanisms, along
with extensive probabilistic models and analysis, that relax the previously introduced
framework, base their function on simpler criteria, and yield significant communication
benefits in practical scenarios.

6 Future Directions

We have discussed some basic, recently-proposed algorithmic tools for the difficult
problem of tracking complex queries over distributed data streams. Continuous dis-
tributed streaming is a vibrant, rapidly evolving field of research, and a community of
researchers has started forming around theoretical, algorithmic, and systems issues in
the area [27] Naturally, there are several promising directions for future research. First,
the single-level hierarchy model (depicted in Figure 1) is simplistic and also introduces
a single point of failure (i.e., the coordinator). Extending the model to general hierar-
chies is probably not that difficult (even though effectively distributing the error bounds
across the internal hierarchy nodes can be challenging [6]); however, extending the
ideas to general, scalable distributed architectures (e.g., P2P networks) raises several

Querying Distributed Data Streams 9

theoretical and practical challenges. Second, while most of the proposed algorithmic
tools have been prototyped and tested with real-life data streams, there is still a need
for real system implementations that also address some of the key systems questions
that arise (e.g., what functions and query language to support, how to interface to real
users and applications, and so on). We have already started implementing some of the
geometric monitoring ideas using Twitter’s Storm/λ-architecture, and exploiting these
ideas for large-scale, distributed Complex Event Processing (CEP) in the context of
the FERARI project (www.ferari-project.eu). Finally, from a more founda-
tional perspective, there is a need for developing new models and theories for studying
the complexity of such continuous distributed computations. These could build on the
models of communication complexity [24] that study the complexity of distributed one-
shot computations, perhaps combined with very relevant ideas from information theory
(such as distributed source coding).

Acknowledgements. This work was partially supported by the European Commis-
sion under ICT-FP7-FERARI (Flexible Event Processing for Big Data Architectures),
www.ferari-project.eu.

References

1. Alon, N., Gibbons, P.B., Matias, Y., Szegedy, M.: Tracking Join and Self-Join Sizes in Lim-
ited Storage. In: Proc. of the 18th ACM Symposium on Principles of Database Systems,
Philadeplphia, Pennsylvania (May 1999)

2. Alon, N., Matias, Y., Szegedy, M.: The Space Complexity of Approximating the Frequency
Moments. In: Proc. of the 28th Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, pp. 20–29 (May 1996)

3. Babcock, B., Olston, C.: Distributed Top-K Monitoring. In: Proc. of the 2003 ACM SIGMOD
Intl. Conference on Management of Data, San Diego, California (June 2003)

4. Charikar, M., Chen, K., Farach-Colton, M.: Finding Frequent Items in Data Streams. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

5. Cormode, G., Garofalakis, M.: Streaming in a connected world: querying and tracking dis-
tributed data streams. In: SIGMOD (2007)

6. Cormode, G., Garofalakis, M.: Approximate Continuous Querying of Distributed Streams.
ACM Transactions on Database Systems 33(2) (June 2008)

7. Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.: Holistic Aggregates in a Net-
worked World: Distributed Tracking of Approximate Quantiles. In: Proc. of the 2005 ACM
SIGMOD Intl. Conference on Management of Data, Baltimore, Maryland (June 2005)

8. Cormode, G., Garofalakis, M., Sacharidis, D.: Fast Approximate Wavelet Tracking on
Streams. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 4–22. Springer,
Heidelberg (2006)

9. Cormode, G., Muthukrishnan, S.: What’s Hot and What’s Not: Tracking Most Frequent Items
Dynamically. In: Proc. of the 22nd ACM Symposium on Principles of Database Systems, San
Diego, California, pp. 296–306 (June 2003)

10. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-min sketch
and its applications. In: Latin American Informatics, pp. 29–38 (2004)

11. Cranor, C., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: A Stream Database for
Network Applications. In: Proc. of the 2003 ACM SIGMOD Intl. Conference on Manage-
ment of Data, San Diego, California (June 2003)

10 M. Garofalakis

12. Das, A., Ganguly, S., Garofalakis, M., Rastogi, R.: Distributed Set-Expression Cardinality
Estimation. In: Proc. of the 30th Intl. Conference on Very Large Data Bases, Toronto, Canada
(September 2004)

13. Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing Complex Aggregate Queries
over Data Streams. In: Proc. of the 2002 ACM SIGMOD Intl. Conference on Management
of Data, Madison, Wisconsin, pp. 61–72 (June 2002)

14. Ganguly, S., Garofalakis, M., Rastogi, R.: Processing Set Expressions over Continuous Up-
date Streams. In: Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of Data,
San Diego, California (June 2003)

15. Garofalakis, M., Keren, D., Samoladas, V.: Sketch-based Geometric Monitoring of Dis-
tributed Stream Queries. In: Proc. of the 39th Intl. Conference on Very Large Data Bases,
Trento, Italy (August 2013)

16. Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I., Schuster, A.: Prediction-
based Geometric Monitoring over Distributed Data Streams. In: Proc. of the 2012 ACM
SIGMOD Intl. Conference on Management of Data (June 2012)

17. Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I., Schuster, A.: Distributed
Geometric Query Monitoring using Prediction Models. ACM Transactions on Database Sys-
tems 39(2) (2014)

18. Gibbons, P.B.: Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries
and Event Reports. In: Proc. of the 27th Intl. Conference on Very Large Data Bases, Roma,
Italy (September 2001)

19. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: How to Summarize the Universe:
Dynamic Maintenance of Quantiles. In: Proc. of the 28th Intl. Conference on Very Large Data
Bases, Hong Kong, China, pp. 454–465 (August 2002)

20. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: One-pass wavelet decomposition
of data streams. IEEE Transactions on Knowledge and Data Engineering 15(3), 541–554
(2003)

21. Greenwald, M.B., Khanna, S.: Space-Efficient Online Computation of Quantile Summaries.
In: Proc. of the 2001 ACM SIGMOD Intl. Conference on Management of Data, Santa Bar-
bara, California (May 2001)

22. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient distributed mon-
itoring of thresholded counts. In: Proc. of the 2006 ACM SIGMOD Intl. Conference on
Management of Data, Chicago, Illinois, pp. 289–300 (June 2006)

23. Keren, D., Sharfman, I., Schuster, A., Livne, A.: Shape-Sensitive Geometric Monitoring.
IEEE Transactions on Knowledge and Data Engineering 24(8) (August 2012)

24. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cam-
bridge (1997)

25. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: The Design of an Acquisitional
Query Processor for Sensor Networks. In: Proc. of the 2003 ACM SIGMOD Intl. Conference
on Management of Data, San Diego, California (June 2003)

26. Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: Proc.
of the 28th Intl. Conference on Very Large Data Bases, Hong Kong, China, pp. 346–357
(August 2002)

27. NII Shonan Workshop on Large-Scale Distributed Computation, Shonan Village, Japan
(January 2012), http://www.nii.ac.jp/shonan/seminar011/.

28. Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Distributed
Data Streams. In: Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of
Data, San Diego, California (June 2003)

29. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring threshold func-
tions over distributed data streams. In: Proc. of the 2006 ACM SIGMOD Intl. Conference on
Management of Data, Chicago, Illinois, pp. 301–312 (June 2006)

http://www.nii.ac.jp/shonan/seminar011/

Towards a Normal Form for Extended Relations

Defined by Regular Expressions

András Benczúr and Gyula I. Szabó

Eötvös Loránd University, Faculty of Informatics,
Pázmány Péter sétány, 1/C, Budapest, 1118 Hungary

abenczur@inf.elte.hu, gyula@szaboo.de

Abstract. XML elements are described by XML schema languages such
as a DTD or an XML Schema definition. The instances of these elements
are semi-structured tuples. We may think of a semi-structure tuple as a
sentence of a formal language, where the values are the terminal sym-
bols and the attribute names are the nonterminal symbols. In our former
work [13] we introduced the notion of the extended tuple as a sentence
from a regular language generated by a grammar where the nonterminal
symbols of the grammar are the attribute names of the tuple. Sets of
extended tuples are the extended relations. We then introduced the dual
language, which generates the tuple types allowed to occur in extended
relations. We defined functional dependencies (regular FD - RFD) over
extended relations. In this paper we rephrase the RFD concept by di-
rectly using regular expressions over attribute names to define extended
tuples. By the help of a special vertex labeled graph associated to regu-
lar expressions the specification of substring selection for the projection
operation can be defined. The normalization for regular schemas is more
complex than it is in the relational model, because the schema of an
extended relation can contain an infinite number of tuple types. How-
ever, we can define selection, projection and join operations on extended
relations too, so a lossless-join decomposition can be performed.

1 Introduction

XML has evolved to become the de-facto standard format for data exchange over
the World Wide Web. XML was originally developed to describe and present
individual documents, it has also been used to build databases. Our original mo-
tivation for the introduction of the regular relational data model [13] was to find
a good representation of the XML ELEMENT type declaration. The instances
of a given element type in an XML document can be considered as a collection
of data of complex row types. The set of attribute names in the row types are
the element names occurring in the DTD declaration of the element. In the case
of recursive regular expression in the element declaration, there are possibly infi-
nite number of different row types for the element instances. The same attribute
name may occur several times in a type instance. This leads to the problem of
finding a formal way to define the projection operator, similar to the relational

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 11–24, 2014.
c© Springer International Publishing Switzerland 2014

12 A. Benczúr and G.I. Szabó

algebra, on the syntactical structure of the data type. That is necessary to de-
fine the left and right side of a functional dependency. We defined the attribute
sequence by a traversal on the vertex labeled graph associated to the regular
expression of the DTD. This form is also good to define attribute subsequences
for the projection operator, for the selection operator and for equijoin operator.
Set operations can be extended in a straightforward way, so this leads to the full
extension of relational algebra operators. Using the extension of projection and
equijoin (or natural join) the join dependency can be defined in the same way
as in the relational model.

Motivation. Our previous model [13] could be effectively used for handling
functional dependencies (FD). In the relational model FDs offer the basis for nor-
malization (e.g. BCNF), to build non-redundant, well-defined database schema.
But our model cannot handle the join operation among instances (that is used to
secure lossless join decomposition) because the projection of a schema according
to a set of nodes or two joined schemas would not necessarily leads to a new,
valid schema. We need an improved model for regular data bases. To denote a
regular language we can use regular expressions, our actual model bases upon
a graph representation for regular expressions. This model is more redundant
than our last one, but it is capable for handling database schema normalization.

Contributions. The main contribution of this paper is the concept of extended
relations over the graph representation for regular expressions. We rephrase reg-
ular functional dependencies and also define regular join dependencies that con-
strain extended relations. We determine the schema of an extended relation as
(IN, . . . , OUT) traversals on the graph representation for a given regular ex-
pression. We apply the classical Chase algorithm to a counterexample built on
this graph. In this way, we show that the logical implication is decidable for this
class of functional dependencies.

2 Related Work

As far as we know, each XML functional dependency (XFD) concept involves
regular expressions or regular languages. Arenas and Libkin [2] prove different
complexities for logical implication concerning their tree tuples XFD model ac-
cording to the involved regular expressions. They prove quadratic time complex-
ity in case of simple regular expressions. Our new model represents all possible
instances of the regular expression at the same time and so it differs from theirs.

The notion data words has been introduced by Bouyer et al. in [4], based upon
finite automata of Kaminski et al. [8]. Data words are pairs of a letter from a
finite alphabet and a data from an infinite domain. Our concept differs substan-
tially from data words: we assign data values (selected from infinite domains)
to letters (from a finite alphabet) after generating a sentence by a regular ex-
pression. For data words letters and data values are processed together. Libkin
and Vrgo[9] define regular expression for data words. They analyze the complex-
ity of the main decision problems (nonemptiness, membership) for these regular

Towards a Normal Form for Extended Relations 13

expressions. Their model is similar to ours but our point of view is differs from
theirs: we view finite subsets of the set of data words and specify dependencies
over them.

3 Extended Relations

Let us start with the definition of extended relation given by a regular language.

Definition 1 (Extended Relation for Regular Types). Let L be a regular
language over the set of attribute names U . Let w = w1 . . . wn ∈ L a sentence,
then we say that w is a regular tuple type over U . Let domu;u ∈ U be sets of
data values, then {(w1 : a1, . . . , wn : an) |ai ∈ domwi} is the set of possible tuples
of type w. A finite subset of these tuples is an instance of the regular relation.
We say that the set of these tuple types for all w ∈ L compose the schema of a
regular relation based on L.

We have introduced the notion of the extended relation [13] for a regular
language associated with its dual language. The sentences of the dual language
are either the concatenated nonterminals used by generating a regular sentence
or the states of the accepting automaton, visited during the acception process.
Equivalently, the dual language can be given by a vertex labeled graph with a
unique IN and OUT node as start and end nodes. The vertex labels along each
traversal on this graph (from IN to OUT) represent a schema for the extended
relation (we get the sentences of the regular language by valuation). As said
in Sect. 1 the dual language model cannot handle the join operation among
instances because two joined schemas would not necessarily realize a new, valid
schema.

We need an improved model, based upon a suitable graph representation for
regular expressions. In our new model we use regular expressions over attribute
names to directly define regular relational schemes (e.g. DTD element descrip-
tions), and create the corresponding tuples by valuation (picking data values
from suitable domains) similarly to relational databases. In the next Section
we present a finite graph representation for the sentences denoted by a regu-
lar expression. This graph representation should support node-selection for the
projection operation.

4 Graph Representation for Regular Expressions

Definition 2 (Regular Expression Syntax). Let Σ be a finite set of symbols
(alphabet), then a regular expression RE over Σ (denoted by REΣ, or simply
RE, if Σ is understood from the context) is recursively defined as follows:
RE ::= 0|1|α|RE +RE|RE ◦ RE|RE∗|RE?

where α ∈ Σ

14 A. Benczúr and G.I. Szabó

For a given regular expression RE we denote the set of alphabet symbols
appearing in RE by [RE].

There are efficient constructions of finite state automaton from a regular ex-
pression [16,7,5]. The classical algorithm of Berry and Sethi [3] constructs effi-
ciently a DFA from a regular expression if all symbols are distinct.

Berry-Sethi’s algorithm constructs a deterministic automaton with at most a
quadratic number of transitions [11] and in quadratic computing time (inclusive
of marking and unmarking symbols) [6] with respect to the size of the input
regular expression (the number of its symbols).

Example 1. Let G ({S,A,B} , {a, b} , S, P) be a regular grammar, where
P = {S ⇒ aS, S ⇒ b S, S ⇒ aA,A ⇒ bB,B ⇒ a}.

The regular expression RE = (a+ b)
∗
a b a generates the regular language

L(G) too. Fig. 1 shows the graph of the non-deterministic FSA constructed by
the Berry-Sethi algorithm (BSA). The nodes represent the states of the au-
tomaton: they are distinct. Each node complies with a symbol in the regular
expression (small letters), they are not distinct after unmarking. We assign the
ingoing edge symbol to each node (capital letter) as vertex label. The language,
generated by the vertex labels of the visited nodes, is equivalent with the dual
language iff the symbols in the regular expression are distinct.

1

IN

2

3 4

RE = (a + b)*aba

OUT

A

B

A B A
a

a

b

a

b

b
a

b a

a

Fig. 1. Graph of the automaton for Example 1 constructed by BSA

As shown in Example 1, for a given regular expression RE we can construct a
vertex labeled connected digraph G(RE), with a unique source (IN) and a unique
sink (OUT) which represents RE so that that regular language denoted by RE
consists of the (IN, . . . , OUT) traversals on G(RE). This graph is not too large
(the number of its vertices equals to the number of symbols in RE), but it is not
optimal for our aims because the different (IN, . . . , OUT) traversals have mostly
common subpaths. We need another construction for the graph representation
of regular expressions with disjoint (IN, . . . , OUT) traversals (regardless of IN
and OUT). We will construct a graph from vertices picked from a suitably large
symbol set Γ . We assume that {IN,OUT } ⊆ Γ and by picking a node v ∈ Γ
we remove it from Γ . The vertices IN and OUT get the labels IN and OUT,
respectively. We denote the empty traversal (IN,OUT) by ��.

Towards a Normal Form for Extended Relations 15

Algorithm 1. Construction of the Graph-Representation for a regular expres-
sion.

Input: regular expression RE (built from the alphabet Σ),
Output: vertex labeled digraph G(RE)=(V,E) representing RE.

1. if RE = 0 or RE = 1, then V = {IN,OUT } and E = {(IN,OUT)}.

2. if RE = A,A ∈ Σ, then we pick a node v ∈ Γ , set V = {IN,OUT, v}, and
E = {(IN, v) , (v,OUT)}. We label the node v with A.

3. if RE1 and RE2 are regular expressions, then G (RE1 +RE2) will be formed
by uniting the IN and OUT nodes of G (RE1) and G (RE2), respectively.

4. if RE1 and RE2 are regular expressions, then in order to build the graph
G (RE1 ◦ RE2) we first rename the OUT node of G (RE1) and the IN node
of G (RE2) to JOIN (Fig. 2), then unite them and connect all ”left” paths
with all ”right” paths while eliminating the JOIN node (Fig. 3).

5. if RE is a regular expression, then G
(
RE?

)
= G (RE) ∪ (IN,OUT).

6. if RE is a regular expression, then in order to build the graph G (RE∗) we
first pick a node v ∈ Γ , then we create the graph G∗ (RE) = G (RE) ∪ {v}
(It means that V ∗ = V ∪ {v}, the node v gets the special label STAR).
Let us denote {a1, . . . , an} the nodes with ingoing edge from IN and
{z1, . . . , zn} the nodes with outgoing edge to OUT , respectively. Let
us create the graph GIN (RE,STAR) = ∪n

i=1 (v, ai) and the graph
GOUT (RE,STAR) = ∪n

i=1 (zi, v), respectively. Then G (RE∗) = G∗ (RE)∪
GIN (RE,STAR) ∪ GOUT (RE,STAR) ∪ (IN, STAR) ∪ (STAR,OUT).

Theorem 1. The (IN, . . . , OUT) traversals on the graph representation G (RE)
for the regular expression RE constructed by Alg. 1 generate exactly the regular
language L (RE).

Proof. Algorithm 1 constructs the representation graph so that each elementary
step of building a regular expression (Def. 2) will be covered. With induction by
the length of the expression and using the regular expression semantics we yield
the result.

Example 2. The graph representation for the regular expression RE = (a+ b)
∗

a b a constructed by the Alg. 1 may be seen on Fig. 4. This graph represents
the same regular language as its counterpart on Fig. 1 but it consists of disjoint
traversals.

16 A. Benczúr and G.I. Szabó

IN OUT

RE = (A + B + C) ˚ (D + E)

A

B

JOINA

B

IN OUT

D

E

E

D

C

C

E

D

Fig. 2. First joining step of concatenation for two RE graphs

IN

RE = (A + B + C) ˚ (D + E)

A

C

A

C

OUT

D

E

E

D

B

B

D

E

Fig. 3. Eliminating the JOIN node from the concatenation of two RE graphs

Regular expressions present a compact form for specifying regular languages.
We look at the sentences of this regular language as types (schemas) of complex
value tuples. We can represent these types as IN-OUT traversals on a graph
constructed from the symbols in the regular expression. We say that this graph
is the schemagraph for the regular expression.

Definition 3 (Schemagraph for Regular Expression). Let RE be a regular
expression built from the alphabet Σ. We say that the graph G is the schemagraph
for the regular expression RE (denoted by G (RE)) iff

1. is a directed, (not necessarily strongly) connected graph,
2. has a unique source (IN) and a unique sink (OUT),
3. fulfills OutDegree (IN) = InDegree (OUT),
4. for any two PA = (IN,A1, . . . , An, OUT), PB = (IN,B1, . . . , Bm, OUT) is

true that {IN,OUT } ⊆ PA ∩ PB , and if v ∈ PA ∩ PB, then label (v) ∈
{IN,OUT, STAR},

Towards a Normal Form for Extended Relations 17

STAR

B

RE = (A + B)*ABA

IN

A

A B A

OUT

Fig. 4. Vertex labeled RE representation graph for Example 2 constructed by Alg. 1

5. is vertex-labeled with a single symbol for each node,
6. each cycle of the graph involves a vertex with label STAR, this is the start

and end node of the cycle,
7. each vertex v with label STAR fulfills OutDegree (v) = InDegree (v),
8. the set of vertex-labels is the set [RE] ∪ {IN,OUT, STAR},
9. the labels of vertices visited by an (IN, . . . , OUT) walk on G (RE) set up a

string generated by RE (the labels IN,OUT, STAR will be ignored). Each
symbol string denoted by RE can be obtained in this way.

We say that an (IN, . . . , OUT) walk on G is a traversal on G. We denote the
set of traversals on G by T (G). The item (9) of Def. 3 states that for a regular
expression RE L (RE) = T (G (RE)).

Lemma 1. If RE is a regular expression, then the graph G (RE) generated by
Alg. 1 is a schemagraph for RE.

Proof. Starting with an empty regular expression a structural recursion by Alg.
1 gives the result. For instance, an empty RE fulfills (3) of Def. 3 and each step
of Alg. 1 preserves this attribute of the graph.

Definition 4 (Schema Foundation Graph). We say that a graph G comply-
ing with features 1-7 from Def. 3 is a schema foundation graph. We denote the
set of vertex-labels for G by Lab (G).

Lemma 2. If G is a schema foundation graph, then there exists a regular ex-
pression RE so that G (RE) = G and L (RE) = T (G) and [RE] = Lab (G).

5 Relational Algebra for Regular XRelation

Definition 5 (Regular XRelation for Regular Expressions). Let RE be
a regular expression and let G be a schemagraph for RE, moreover, let w =
(IN, v1, . . . , vn, OUT) ∈ T (G) be a traversal on G. Let domU ;U ∈ [RE] be sets
of data values, then {(v1 : a1, . . . , vn : an) |ai ∈ domvi} is a tuple of type w. We
say that a finite set of these tuples is a table instance of type w, and w is the type
(schema) of the table instance. A regular relational instance, e.g. I, is a finite

18 A. Benczúr and G.I. Szabó

set of table instances. The schema of a relational instance is the set of types of
its table instances. We say that the set of these tuple types for all w ∈ T (G)
compose the schema of a regular XRelation based on RE. We denote this regular
XRelation by XR (RE), so I is an instance of XR (RE).

It is well known that the class of regular languages is closed under union, inter-
section and complement. It follows that regular XRelations possess these closure
properties. That is, the set operations of relational databases are applicable for
XRelations.

Let RE1 and RE2 be regular expressions and let I1 and I2 be regular relational
instances for the regular XRelations XR (RE1) and XR (RE2), respectively.

Union. The union of the schemagraphs G (RE1) ∪ G (RE2) is a schemagraph
too (= G (RE1 +RE2)). That is, the union XR (RE1) ∪ XR (RE2) of regular
XRelations is again an XRelation and its regular instances have the form I1∪I2.

Intersection. The intersection XR (RE1)∩XR (RE2) of regular XRelations is
again an XRelation and its regular instances have the form I1 ∩ I2.

Difference. The set difference of two regular instances I1 and I2 for the regular
XRelation XR (RE1) is also a regular instance for it.

5.1 Projection

Definition 6 (Node-selection). Let RE be a regular expression and let
G (V,E) be a schemagraph for RE. We say that a subset X ⊂ V is a node-
selection over G iff IN ∈ X and OUT ∈ X. If X is a node-selection, then we
denote by X the complementer node-selection for X, defined by X = V \ X ∪
{IN,OUT }.

Remark 1. Definition 6 presents a rigid method for fixing the scope of the pro-
jecting window. If the selected nodes belong to a cycle, then the selection chooses
all occurrences from a given transversal. A more flexible selection method can
be realized on an extended graph. We may add a a given number of walks
(as new nodes and edges) for any (or all) cycles and select nodes on the new
graph. E.g., if the RE involves the (sub)expression (ABC)∗, the original graph
contains the nodes a, b, c (labeled with A,B,C, respectively), and the edges
(a, b) , (b, c) , (c, a). The node-selection of {a, b} selects the labels ABAB from
the traversal which repeats twice the cycle. The extended graph (with two cy-
cles) would give the new nodes and edges

(a1, b1) , (b1, c1) , (c1, a2)
(a2, b2) , (b2, c2)

The labels on vertices are ABCABC. We can select, for instance, the nodes
a1, b1, a2 which brings ABA. No selection on the original graph can produce this
result.

Towards a Normal Form for Extended Relations 19

Definition 7 (Projection). Let G (V,E) be a schemagraph and let X be a
node-selection over G. Let E [X] = {(a1, an) |a1, an ∈ X ; a2, . . . , an−1 /∈ X},
(a1, a2, . . . , an−1, an) ∈ P (G), where P (G) is the set of paths for G.

We say that G [X] = (V \ X ∪ {IN,OUT } , E [X]) is the projection graph of
G onto X.

Lemma 3. If G is a schemagraph for the regular expression RE and X a node-
selection over G, then G [X] is a schema foundation graph.

Proof. G [X] is the result of deleting the complement of the subgraph X from
the schemagraph G and re-connecting during the deletion disconnected vertices
of X . Clearly, the features 1-7 from Def. 3 of the schemagraph will be preserved.
For instance, a traversal (an (IN, . . . , OUT) walk) on G will be either deleted (it
contains no vertex from X) or preserved (perhaps reconnected), so the attribute
(3) of Def. 3 will be preserved.

Let RE [X] be a regular expression complying with the schema foundation
graphG [X], then we say thatRE [X] is the projection ofRE ontoX . (Lab (X) ⊆
[RE], but different vertices in X can have the same label).

Definition 8 (Projection of Schema). Let G be a schemagraph of the regular
expression RE and let X be a node-selection over G.
Let w = (v0, v1, . . . , vn, vn+1) ; v0 = IN, vn+1 = OUT be a traversal on G (w
is a type for RE). We denote by w [X] the projection of w to X, defined as
follows: w [X] = (v0, vi1 , . . . , vik , vn+1) ; vr ∈ X for r ∈ {i1, . . . , ik} and vr /∈ X
otherwise.

w [X] is either a traversal on G or its re-connected edges belong to G [X], so:

Lemma 4. If G is a schemagraph for the regular expression RE and X a node-
selection over G and w is schema for RE, then w [X] is a traversal on G [X].

Definition 9 (Projection of Instance). Let RE be a regular expression and
let XR be a regular XRelation based on RE and let I be a table instance for
XR with type (I) = w. The projection of I to X, denoted by πX (I), is the set
of tuples {t [X] |t ∈ I; type (t [X]) = w [X]} (that is, t [X] is the subsequence of
constants from t according to the subsequence w [X] in w).

Definition 10 (Functional Dependency). Let G be a schemagraph of the
regular expression RE and let X,Y be node-selections over G. The regular rela-
tional instance I satisfies the functional dependency (XRFD) X → Y if for
any to tuples t1, t2 ∈ I with type (t1) = w1 and type (t2) = w2, whenever
w1 [X] = w2 [X] and t1 [X] = t2 [X], then w1 [Y] = w2 [Y] and t1 [Y] = t2 [Y].

Example 3. Let R = (R1, . . . , Rn) be a relational database schema. The regular
expression RE = (R1|R2| . . . |Rn) (if Ri = (a, b, c, d, e) then for the regular ex-
pression we use the concatenation abcde of the attributes), then the schemagraph
forRE consists of parallel, linear (IN, . . . , OUT) traversals. Each relational func-
tional dependency over R can be defined on the schemagraph using Def. 10, with
the restriction that both participant node-selections will be located on the same
(IN, . . . , OUT) path.

20 A. Benczúr and G.I. Szabó

5.2 Natural Join

Definition 11 (Disjunctive Natural Join). Let G1, G2 be schemagraphs for
the regular expressions RE1, RE2 and let X1, X2 be node-selections over G1, G2,
respectively, so that G1 [X1] = G2 [X2] = G. Let w1 ∈ T (G1) and w2 ∈ T (G2)
so that w1 [X1] = w2 [X2] = w. Let (A,B) ∈ G, then (A, x,B) ∈ G1 and
(A, y,B) ∈ G2 for some paths x and y, respectively, so that AxB and AyB are
subsequences of w1 and w2, respectively. Let I1 and I2 be table instances for the
regular XRelations XR (RE1) and XR (RE2), respectively, so that type (I1) =
w1 and type (I2) = w2, then we say that w1 and w2 (and also I1 and I2) can
be joined. We define I = I1 �� I2 as a (disjunctive joined) regular relational
instance, for which if t ∈ I, then there exist t1 ∈ I1,t2 ∈ I2 so that t1 [X1] =
t2 [X2], then t [u] = t1 [u] |u ∈ (IN, . . . , A) and t [u] = t2 [u] |u ∈ (B, . . . , OUT).
Moreover, let t [A �� B] = {t [ApB] |ApB ∈ P (G1) ∪ P (G2)}, then t [A �� B] =
{t1 [AxB] ∪ t2 [AyB] |t1 [A] = t2 [A] , t1 [B] = t2 [B]}.

Remark 2. If w1 [X1] = w2 [X2] = ��, then the disjunctive join of the two table
instances I1 and I2 will be I = I1 �� I2 = I1 ∪ I2, moreover, schema (I) =
{w1, w2}. The same is true for the special case [X1] = [X2] = ∅ as well.

Remark 3. We have defined the join operator for two table instances joined on
two single attributes. We can extend this definition to joining two table instances
on any number (or a single one) of attributes. We can also extend this definition
to joining any (finite) number of table instances in a natural way.

Example 4. The disjunctive natural join of table instances means in fact union
for the background regular expressions. Let RE1 = A ◦ X ◦ Y ◦ B and RE2 =
A◦W ◦Z ◦B and let X1 = X2 = {A,B}, then the regular expression complying
with the on A,B joined instances will be A ◦ ((X ◦ Y) + (W ◦ Z)) ◦B.

Example 5. The XML documents on Fig. 5 conform to the DTD element decla-
rations
Courses1:

<!ELEMENT course (Cid,Cname,(Instid,Instn)+)>

and
Courses2:

<!ELEMENT course (Cid,(Stid,Stn)+)>

respectively. The disjunctive join of the two instances results in

JoinedCourses:

<!ELEMENT course (Cid,((Cname,(Instid,Instn)+))|((Stid,Stn)+))>

Towards a Normal Form for Extended Relations 21

Courses1

Course

Cid Cname Instid Instn

10 "DB" 112 "Reed"

Course

Cid Cname Instid Instn

30 "SQL" 120 "Keen"

v0

v1
v2

Instid Instn

113 "Shane"

Courses2

Course

Cid Stid Stn Stid

10 1111 "Mary" 1221

Course

Cid Stid Stn Stid Stn

30 1112 "John" 1122 "Abe"

v0

v1
v2

Stn

"Jake"

Fig. 5. Example XML documents for natural join

Definition 12 (ConcatenativeNatural Join).The concatenative natural join
will be defined similarly to its disjunctive counterpart, using concatenation instead
of disjunction. That is, we define the regular relational instance I = I1 �� I2
as two (concatenative) joined table instances. If t ∈ I, then there exist t1 ∈
I1,t2 ∈ I2 so that t1 [X1] = t2 [X2] and t [AxyB] = t1 �� t2 [AxyB] =
{t1 [Ax] ◦ t2 [yB] |t1 [A] = t2 [A] , t1 [B] = t2 [B]}. For the special case see Rem. 2.

Definition 13 (Natural Join of Regular Instances). The natural (disjunc-
tive or concatenative) join for two regular relational instances will be defined
as the set of joined member table instances. That is, if I1 and I2 are regular
relational instances, then I1 �� I2 = {J |J = J1 �� J2; J1 ∈ I1, J2 ∈ I2}.

Remark 4. We have defined the join operator for two regular relational instances.
We can extend this definition to joining any (finite) number of regular relational
instances in a natural way.

Remark 5. If w1 [X1] = w2 [X2] = ��, then the concatenative join of the two
table instances I1 and I2 will be I = I1 �� I2 = I1 ◦ I2, moreover, schema (I) =
(w1 ◦ w2).

Example 6. The concatenative natural join of table instances means in fact con-
catenation for the background regular expressions. Let RE1 = A◦X ◦Y ◦B and
RE2 = A ◦ W ◦ Z ◦ B and let X1 = X2 = {A,B}, then the regular expression
complying with the on A,B joined instances will be A◦ ((X ◦ Y) ◦ (W ◦ Z))◦B.

Example 7. The concatenative join of the two instances realized in the XML
documents on Fig. 5 will be

JoinedCourses:

<!ELEMENT course (Cid,((Cname,(Instid,Instn)+)),((Stid,Stn)+))>

22 A. Benczúr and G.I. Szabó

5.3 Join Dependencies, Implication Problems for Xrelations

Definition 14 (Join Dependency). Let G (V,E) be a schemagraph of the
regular expression RE and let X,Y be node-selections over G so that V = X∪Y ∪
{IN,OUT }. Let I be an instance for the XRelation over RE and πX (I) , πY (I)
the projections of I to X and Y , respectively. We say that an instance I for
the XRelation over RE satisfies the �� [X,Y] join dependency iff I = πX (I) ��
πY (I).

Using the Definitions of functional and join dependency we can define nor-
mal form for XRelation schemas (BCNF, 4NF etc.) and describe the lossless
decomposition for regular XRelations.

Definition 15 (Lossless Decomposition). Let G (V,E) be a schemagraph of
the regular expression RE and let X1, . . . , Xn node-selections with ∪n

i=1Xi ∪
{IN,OUT } = V . The set X1, . . . , Xn is a lossless decomposition of G if any
regular relational instance I for the XRelation over RE satisfies the join depen-
dency I = πX1 (I) �� πX2 (I) �� . . . �� πXn (I).

The logical implication of functional and join dependencies for XRelations
is decidable with a special form of the Chase algorithm. We present here an
algorithm to decide logical implication of functional dependencies for XRelations.

Definition 16. Let G be a schemagraph of the regular expression RE. Let Σ be
a set of XRFDs and let X → Y be an XRFD over G, then Σ implies X → Y
(denoted by Σ |= X → Y) if for each (finite) regular relational instance I that
satisfies Σ I |= X → Y will also be fulfilled.

Algorithm 2. Algorithm for checking implication of XRFDs.
Input: schemagraph G = (V,E) for an XRelation, a set Σ and σ : X → Y
functional dependencies over G
Output: true, if Σ |= σ, false otherwise

1. Initialization
Create a counter example from two copies of G (G1, G2), the nodes of X colored
green on both copies, the nodes of Y colored red on one copy and yellow on the
other one.
2. FDSET := Σ;
3. greene := X;
4. repeat until no more dependency is applicable:
if W → Z ∈ FDSET and W ⊆ greene, then
i. FDSET := FDSET − (W → Z);
ii. greene := greene ∪ Z;
iii. for all v ∈ Z set color(v) := green (on both copies)

5. if the number of yellow nodes and red nodes are both zero, then output is
true otherwise output is false.

Towards a Normal Form for Extended Relations 23

Proposition 1 (Functional Dependency Implication). Let G be a schema-
graph of the regular expression RE. Let Σ be a set of XRFDs and let X → Y be
an XRFD over G, then Σ |= X → Y if and only if the Alg. 2 with input G, Σ
and X → Y returns true.

6 Conclusion and Future Work

This paper presents regular expressions as compact database schemas and defines
functional and join dependencies over them, based on the graph representation
for the regular expressions. We defined extended relations on the graph represen-
tation for regular expressions and determined semantics for the dependencies on
instances of extended relations. The logical implication of this kind of functional
dependencies is decidable in quadratic time.

Our model offers the tools for a normal form of XRelation. We think that the
logical implication for the join dependency, defined here, is decidable similarly
to Alg. 2.

We would like to find the connection between our model and data words, that
is, to define a register automaton that accepts those data words that satisfy a
given functional dependency specified for the corresponding XRelation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transactions on
Database Systems 29(1), 195–232 (2004)

3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret-
ical Computer Science 48(3), 117–126 (1986)

4. Bouyer, P., Petit, A., Thrien, D.: An algebraic approach to data languages and
timed languages. Information and Computation 182(2), 137–162 (2003)

5. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4),
481–494 (1964)

6. Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoretical Computer Science 289(1), 137–163 (2002)

7. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16, 1–53 (1961)

8. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

9. Libkin, L., Vrgoč, D.: Regular expressions for data words. In: Bjørner, N., Voronkov,
A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 274–288. Springer, Heidelberg (2012)

10. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema lan-
guages using formal language theory. ACM Transactions on Internet Technol-
ogy 5(4), 660–704 (2005)

11. Nicaud, C., Pivoteau, C., Razet, B.: Average Analysis of Glushkov Automata under
a BST-Like Model. In: Proc. FSTTCS, pp. 388–399 (2010)

12. Sperberg-McQueen, C.M., Thompson, H.: XML Schema. Technical report, World
Wide Web Consortium (2005), http://www.w3.org/XML/Schema

http://www.w3.org/XML/Schema

24 A. Benczúr and G.I. Szabó

13. Szabó, G. I., Benczúr, A.: Functional Dependencies on Extended Relations Defined
by Regular Languages. Annals of Mathematics and Artificial Intelligence (2013),
doi: 10.1007/s10472-013-9352-z

14. Vincent, M.W., Liu, J., Liu, C.: Strong functional dependencies and their appli-
cation to normal forms in XML. ACM Transactions on Database Systems 29(3),
445–462 (2004)

15. Wang, J., Topor, R.W.: Removing XML Data Redundancies Using Functional and
Equality-Generating Dependencies. In: Proc. ADC, pp. 65–74 (2005)

16. Watson, B.W.: A taxonomy of finite automata construction algorithms. Computing
Science Note 93/43, Eindhoven University of Technology, The Netherlands (1994)

Flexible Relational Data Model – A Common

Ground for Schema-Flexible Database Systems

Hannes Voigt and Wolfgang Lehner

Database Technology Group,
Technische Universität Dresden,

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de

http://wwwdb.inf.tu-dresden.de/

Abstract. An increasing number of application fields represent dynamic
and open discourses characterized by high mutability, variety, and plu-
ralism in data. Data in dynamic and open discourses typically exhibits
an irregular schema. Such data cannot be directly represented in the tra-
ditional relational data model. Mapping strategies allow representation
but increase development and maintenance costs. Likewise, NoSQL sys-
tems offer the required schema flexibility but introduce new costs by not
being directly compatible with relational systems that still dominate en-
terprise information systems. With the Flexible Relational Data Model
(FRDM) we propose a third way. It allows the direct representation of
data with irregular schemas. It combines tuple-oriented data representa-
tion with relation-oriented data processing. So that, FRDM is still rela-
tional, in contrast to other flexible data models currently in vogue. It can
directly represent relational data and builds on the powerful, well-known,
and proven set of relational operations for data retrieval and manipula-
tion. In addition to FRDM, we present the flexible constraint framework
FRDM-C. It explicitly allows restricting the flexibility of FRDM when
and where needed. All this makes FRDM backward compatible to tra-
ditional relational applications and simplifies the interoperability with
existing pure relational databases.

Keywords: data model, flexibility, relational, irregular data.

1 Introduction

Today’s databases are deployed in diverse and changing ecosystems. An increas-
ing number of application fields is characterized by high mutability, variety, and
pluralism in the data. High mutability is caused by the persistent acceleration
of society [16] and technological development [19]. Variety appears in database
discourses because information systems extending their scope and strive to cover
every aspect of the real world. Pluralism is inevitable with the onging cross link-
ing of information systems and the consolidation of data from different stack-
holders in a single database. Particular drivers of these developments are end

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 25–38, 2014.
c© Springer International Publishing Switzerland 2014

{firstname.lastname}@tu-dresden.de
http://wwwdb.inf.tu-dresden.de/

26 H. Voigt and W. Lehner

user empowerment [20], agile software development methods [6], data integra-
tion [14,26], and multi-tenancy [17]. The once stable and closed discourses of
databases are rather dynamic and open today.

In such dynamic and open discourses, data often has a irregularly structured
schema. Data with an irregular schema exhibits four characteristic traits: (1)
multifaceted entities that cannot be clearly assigned to a single entity type,
(2) entities with varying sets of attributes regardless of their entity type, (3)
attributes occuring completely independent of particular entity types, and (4)
attribute-independent technical typing of values. All four traits cannot be di-
rectly represented in the relational data model. As a natural reaction, many
developers perceive traditional relational data management technologies as cum-
bersome and dated [18]. Various mapping strategies [15,1,4] allow a presentation
but they imply additional costs of implementation and maintenance. Further, the
inherent logical schema of the data is not complete visible on the resulting rela-
tional data. This schema incompleteness particularly is a problem in the likely
case that multiple applications access a database through different channels.

In recent years, the NoSQL movement has introduced a number of new data
models, query languages, and system architectures that exhibit more flexibility
regarding the schema. Many NoSQL systems allow the direct representation of
data with irregular schema as well as the gradual evolution of the schema. Hence,
NoSQL systems appear to be a very appealing choice for applications with a dy-
namic and open discourse. However, the introduction of new data models, query
languages, and system architectures is not for free. Particularly in enterprise en-
vironments where 90% of the databases are relational [9] new data models are
often a bad fit. They imply additional costs for mapping and transforming data
between different data models and require new database management and appli-
cation development skills. These costs multiply if applications store the different
parts of their data in the respectively ideal data model across different database
management systems – a scenario often referred to as polyglot persistency in the
NoSQL context.

With the Flexible Relational Data Model (FRDM) we propose a third way.
It allows the direct representation of data with irregular schemas from dynamic
and open discourses. This includes multifaceted entities, variable attributes sets,
independent attributes, as well as independent technical types. At the same
time FRDM remains 100% backward compatible to the traditional relational
data model. Purely relational data with regular schemas can also be represented
and relationally processed in FRDM directly. FRDM achieves this centering the
data representation around the individual tuples while maintaining the relation
as the primary means of data processing.

Additionally, we present the flexible constraint framework FRDM-C that pro-
vides explicit restrictions to the flexibility of FRDM. Scope and range of the
restriction can be tailored to any requirements ranging from the constraint-free,
descriptive nature of pure FRDM to the strictly prescriptive nature of the tradi-
tional relational data model. FRDM-C helps to introduce rigidity exactly when
and at which parts of data needed. FRDM-C constraints can vary in their effect

Flexible Relational Data Model 27

from simply informing to strictly prohibiting, so that they are not only a tool to
maintain data quality but also help achieving data quality.

The remainder of this paper is structured as follows. Section 2 presents the
FRDM data model, in particular how it represents data and how data is pro-
cessed in FRDM. The constraint framework FRDM-C is discussed in Section 3.
With both introduced, Section 4 shows how pure relational data can be repre-
sented directly in FRDM to demonstrate the backward compatibility of FRDM.
This is followed by considerations regarding the implementation of FRDM within
the architecture of relational database management systems in Section 5. In
Section 6, we compare FRDM with other data models regarding the provided
flexibility and backward compatibility. Finally, Section 7 concludes the paper.

2 FRDM

FRDM is a relational data model for structured data. It is free of the rela-
tional inflexibilities but remains directly compatible to the relational model. The
most prominent feature of FRDM is that it separates the functionality of data
representation, data processing, and constraints. Data representation and data
processing are realized in separate, dedicated concepts. We detail the data rep-
resentation of FRDM in Section 2.1 and discuss data processing in Section 2.2.
Schema constraints are realized as explicit constraints outside of the core data
model in the constraint framework FRDM-C, which is presented in Section 3.

2.1 Data Representation

The data representation of FRDM builds on four concepts. The central concept
is the tuple:

Tuple. A tuple is the central concept of the flexible relational data model and
represents an entity. It consists of values, each belonging to an attribute and
is encoded according to a technical type.

The concepts entity domain, attribute, and technical type describe data repre-
sented in tuples and provide logical data handles:

Entity Domain. Entity domains are logical data handles allowing to distin-
guish logical groups of tuples within a database. Tuples belong to at least
one entity domain and may belong to multiple entity domains, so that do-
mains can intersect each other.

Attribute. Attributes are logical data handles allowing to distinguish values
within a tuple. Each tuple can instantiate each attribute only once.

Technical Type. Technical types determine the physical representation of
values. Value operations such as comparisons and arithmetic are defined
on the level of technical types.

28 H. Voigt and W. Lehner

t1 : Camera

name : str = Sony DSC-RX10
resolution : float = 20.0
aperture : float = 2.8
weight : int = 813

t2 : Camera, GPS, Phone

name : str = Samsung Galaxy S4
resolution : int = 13
screen : double = 4.3
weight : int = 133

t3 : Camera, GPS

name : str = Canon EOS 6D
resolution : int = 20

t4 : TV

name : str = LG 60LA7408
resolution : str = Full HD
screen : int = 60

t5 : GPS

name : str = Garmin Dakota 20
weight : int = 150

Fig. 1. Example entities representing electronic devices

Tuples:

D =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 = [Sony DSC-RX10, 20.0, 2.8, 813] ,
t2 = [Samsung Galaxy S4, 13, 4.3, 133] ,
t3 = [Canon EOS 6D, 20] ,
t4 = [LG 60LA7408, Full HD, 60] ,
t5 = [Garmin Dakota 20, 150]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Description elements:

A = {aperture,name, resolution, screen,weight}

T = {float, int , str}

E = {Camera,GPS ,Player ,Phone,TV }
Schema function:

fs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 → [name, resolution, aperture,weight] ,
t2 → [name, resolution, screen,weight] ,
t3 → [name, resolution] ,
t4 → [name, resolution, screen] ,
t5 → [name,weight]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Membership function:

fm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 → {Camera} ,
t2 → {Camera,GPS,Phone} ,
t3 → {Camera,GPS} ,
t4 → {TV } ,
t5 → {GPS}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Typing function:

ft =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t1,name) → str , (t1, resolution) → float , (t1, aperture) → float, (t1,weight) → int ,
(t2,name) → str , (t2, resolution) → int , (t2, screen) → double, (t2,weight) → int ,
(t3,name) → str , (t3, resolution) → int ,
(t4,name) → str , (t4, resolution) → str , (t4, screen) → int ,
(t5,name) → str , (t5,weight) → int

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Fig. 2. Example entities in the flexible relational data model

Formally, a flexible relational database is a septuple (D,A,T,E, fs, ft, fm). The
payload dataD is a set of tuples. A tuple is an ordered set of values t = [v1, . . . , vm].
Let A be the set of all attributes available in the database. Then the tuple schema
function fs : D → P(A) \ ∅ denotes the schema of each tuple, i.e., the set of at-
tributes a tuple instantiates. fs(t) = [A1, . . . , Am] if t instantiates the attributes
A1, . . . , Am so that t ∈ A1 × · · · × Am. For convenience, we denote with t[A] = v
that tuple t instantiates attribute A with value v. T is the set of all available tech-
nical types T . The typing function ft : D × A → T shows the encoding of val-
ues, with ft(t, A) = T if the value t[A] is encoded according to the technical type
T . Finally, E is the set of all available entity domains E, while the membership
function fm : D → P(E) \ ∅ denotes which tuples belong to these domains.
fm(t) = {E1, . . . , Ek} if t belongs to the entity domains E1, . . . , Ek.

As an example, Figure 1 shows six entities in a UML object diagram like nota-
tion. The entities represent electronic devices as they could appear in a product
catalog. Note that this small example exploits all the flexibilities of FRDM.

Flexible Relational Data Model 29

Relation GPS

name resolution screen weight

Samsung Galaxy S4 13 4.3 133
Canon EOS 6D 20 � �
Garmin Dakota 20 � � 150

o

o

Fig. 3. Relation by entity domain

Relation Camera ∩ GPS

name resolution screen weight

Samsung Galaxy S4 13 4.3 133
Canon EOS 6D 20 � �

m

o

Fig. 4. Relation from relational operator

All six entities are self-descriptive and have their individual set of attribute. The
order of the attributes within an entity differs, too. Entities t2 and t3 belong to
multiple entity domains. Attributes, such as name, appear independently from
entity domains. The technical typing of values, for instance of the attribute
resolution, varies independently from the attribute. In the flexible relational
data model these six entities can be represented directly as shown in Figure 2.

2.2 Data Processing

For data processing, FRDM builds on the well-known concept of a relation. It
allows processing tuples in a relational manner:

Relation. Relations serve as central processing containers for tuples. FRDM
queries operate on relations; query operations have relations as input and
produce relations as output. The tuples in a relation determine the schema
of the relation. Each attribute instantiated by at least a single tuple in the
relation is part of the relation’s schema.

Let t be a tuple in relation R, then R has the schema SR =
⋃

t∈R fs(t) so that
SR ⊆ A. A relation R with schema SR does not have to instantiate each tuple

in every attribute, rather it is R ⊆ ⋃
Si∈P(SR)\∅

(×A∈Si
A
)
. In other words,

tuples may only instantiate a subset of a relation’s schema, except the empty
set. While t[A] = v denotes that tuple t instantiates attribute A with value v,
t[A] = � indicates that tuple t does not instantiate attribute A.

Mass operations address tuples by means of entity domains. Hence, each entity
domain denotes a relation containing all tuples that belong to this domain.
Specifically, an entity domain E denotes a relation R so that E ∈ fm(t) holds for
all t ∈ R. In the following, we refer to a relation representing tuples of domain E
simply as E where unambiguously possible. Figure 3 shows the relation denoted
by the entity domain GPS in the electronic device example.

The well-known relational operators are applicable directly to FRDM
relations. However, the descriptive nature of a FRDM relation requires two
minor modifications to their semantics. First, the logic of selection predicates
and projection expressions has to take into account that attributes may not be
instantiated by a tuple. An appropriate evaluation function for such predicates
and expressions is described in [28]. In a nutshell, tuples that do not instantiate
an attribute used in a selection predicate are not applicable to the predicate and

30 H. Voigt and W. Lehner

do not qualify. Tuples that do not instantiate an attribute used in a projection
expression do not instantiate the attribute newly defined by the expression.
Second, all operations have a strictly tuple-oriented semantics, i.e., the schema
of the relation resulting from an operation is solely determined by the qualifying
tuples. In consequence, the schema resulting from a selection can differ from
the schema of the input relation. More specifically, the resulting schema of a
selection is equal to or a subset of the input schema depending on which tuples
qualify, so that SσP (A) ⊆ SA. Likewise, the schemas of the operand relations
do not matter for set operations. Tuples are equal if they instantiate the same
attributes with equal values. For a union, the resulting schema is the union of
the schemas of the operands, so that SA∪B = SA ∪ SB. For set difference, the
resulting schema is equal to or a subset of the left operand’s schema, again,
depending on which tuples qualify, so that SA\B ⊆ SA. Derived operators, such
as join or intersection, are affected similarly. As an example, Figure 4 shows the
relation resulting from the intersection of the relation GPS (cf. Figure 3) and
the relation denoted by entity domain Camera .

3 FRDM-C

FRDM-C is a flexible constraint framework meant to accompany FRDM. The
flexibility of FRDM originates from its lack of implicit constraints. Nevertheless,
constraints are a powerful feature if their effect is desired by the user. For the
user, constraints are the primary means to obtain and maintain data quality.
Each constraint is a proposition about data in the database. Data either complies
to or violates this proposition, i.e., every constraint categorizes data into two
disjoint subsets. It is up to the user how to utilize this categorization. At least,
constraints inform about which data is compliant and which is violating. At
most, constraints prohibit data modifications that would result in violating data.
Constraints present themselves as additional schema objects, attached to the
schema elements of the data model. The user can add and remove constraints
any time.

Formally, constraints take the general form of a triple (q, c, o). q is the qualifier;
c is the condition compliant data has to fulfill; o is the effect (or the outcome)
the constraint will have. The qualifier determines to which tuples the constraint
applies. It is either an entity domain Eq ∈ E, a attribute Aq ∈ A, or a pair of both
(Eq, Aq). Correspondingly, a constraint applies to all tuples t with Eq ∈ fm(t),
with Aq ∈ fs(t), or with (Eq, Aq) ∈ fm(t)×fs(t), respectively. We denote the set
of tuples a constraint C applies to as DC . Conditions are either tuple conditions
or key conditions, depending on whether they affect individual tuples or groups
of tuples. The effect determines the result of the operations that lead to violating
data and what happens to the violating data itself. In the following, we will detail
conditions and effects.

Flexible Relational Data Model 31

3.1 Conditions

The first group of conditions is tuple conditions. Tuple conditions restrict data
on the level of individual tuples, e.g., by mandating to which entity domains a
tuple can belong. Formally, a tuple condition is a function c : D → {�,⊥}. Then,
D�

C = {t | t ∈ DC ∧ c(t)} are the complying tuples and D⊥
C = {t | t ∈ DC ∧ ¬c(t)}

are the violating tuples. Tuple conditions are:

Entity Domain Condition. An entity domain condition requires tuples t ∈
DC to belong to an entity domain Ec so that Ec ∈ fm(t). We denote a
specified entity domain condition as entity-domain(Ec).

Attribute Condition. A attribute condition requires tuples t ∈ DC to instan-
tiate a attribute Ac so that Ac ∈ fs(t). We denote a specified attribute
condition as value-domain(Ac).

Technical Type Condition. A technical type condition limits values of tuples
t ∈ DC in attribute Ac to a specified technical type Tc so that Tc = ft(t, Ac).
We denote a technical type condition as tech-type(Ac, Tc).

Value Condition. A value condition requires values of tuples t ∈ DC in at-
tribute Ac to fulfill a specified predicate p so that p(t[Ac]) holds. We denote
a value condition as value(Ac, p).

The second group of conditions is key conditions. Key conditions restrict data
on the level of tuple groups. Formally, a key condition is a function c : P(D) →
{�,⊥}. Key conditions are:

Unique Key Condition. A unique key condition requires tuples to instantiate
a set of attributes AK ⊆ A uniquely so that ti[AK] �= tj [AK] holds for all
ti, tj ∈ DC with ti �= tj . As a result, all complying tuples are unambiguously
identifiable on AK . We denote a unique key condition as unique-key(AK).

Foreign Key Condition. A foreign key condition requires tuples to instan-
tiate attributes AF ⊆ A with values referencing at least one tuple on at-
tributes AR ⊆ A so that for every tF ∈ DC there is one tR ∈ DR so that
tF [AF] = tR[AR]. Similarly to DC , the set of referenceable tuples DR ⊆ D is
identified by either an entity domain ER ∈ E, a attribute AR ∈ A, or a pair of
both (ER, AR). We denote a foreign key condition as foreign-key(AF ,AR, qR)
where qR is the qualifier of DR.

If a group of tuples does not fulfill a key condition, not all tuples of the group
are considered to be violating. We have to distinguish two cases. In the first
case, a constraint already exists in the database and a modification of tuples
results in a violation. Here, only the modified tuples become violating tuples. In
the second case, the constraint is added to the database and the tuples already
existing in the database violate this constraint. Here the smallest subset of tuples
that violates the condition becomes the set of violating tuples. For a unique key
constraint, these are all duplicates. For a foreign key constraint, these are all
tuples with a dead reference.

All conditions can be negated in a constraint. Negation swaps the set of vio-
lating tuples with the set of complying tuples. For instance, the negated entity

32 H. Voigt and W. Lehner

domain condition ¬entity-domain(Ec) prohibits the entity domain Ec instead of
requiring it. For two constraints C = (q, c, o) and C′ = (q,¬c, o), it holds that
D�

C′ = D⊥
C and D⊥

C′ = D�
C . Which tuples violate a constraint is crucial for the

effect of the constraint.

3.2 Effects

We distinguish four types of effects constraints can have. They vary in the rigor
the constraint will exhibit.

Informing. Allows all operations. The complying tuples and the violating tu-
ples can be queried by using the constraint as a query predicate.

Warning. Allows all operations and issues a warning upon operations that lead
to violating tuples. The creation of the constraint results in a warning about
already existing violating tuples.

Hiding. Allows all operations and issues a warning upon operations that lead
to violating tuples and hides violating tuples from all other operations. The
creation of the constraint results in hiding already existing violating tuples
except for operations that explicitly request to see violating tuples by using
the constraint as predicate.

Prohibiting. Prohibits operations that lead to violating tuples and issues an
error. The creation of the constraint is prohibited in case of already existing
violating tuples.

4 Presentation of Purely Relational Data

The presented flexible relational data model is a superset of the traditional
relational model. Traditional relations can be represented directly in the flexible
model. A relational database is a septuple (D,A,T,R, fσ, fθ, fμ), where R is the
set of relations, A is the set of domains, T is the set of technical types, D is the
set of tuples, fσ is the schema function R → P(A), fθ is the typing function
A → T, and fμ is the membership function D → R. The corresponding flexible
relational database is (D,A,T,E, fs, ft, fm) with

E = {name-of (R) | R ∈ R} ,
fs = {t → fσ(fμ(t)) | t ∈ D} ,
ft = {(t, A) → fθ(A) | A ∈ fσ(fμ(t)) ∧ t ∈ D} , and
fm = {t → {name-of (fμ(t))} | t ∈ D} .

To emulate the model-inhernt constraints of the relational model the flexible
relational database has to be supplemented with explicit constraints. For each
relation R ∈ R we add the following prohibitive (P =̂prohibiting) constraints:

– Entity domains have to mutually exclude each other, so that tuples can be
only part of one entity domain. This can be achieved with constraints of
the form (name-of (R),¬entity-domain(E),P) where name-of (R) �= E and
R ∈ R.

Flexible Relational Data Model 33

– Entity domains prescribe the attributes of their correspond-
ing relation. This can be achieved with constraints of the form
(name-of (R), value-domain(A),P) for A ∈ fσ(R) and R ∈ R.

– Entity domains forbid all other attributes. This can be achieved with con-
straints of the form (name-of (R),¬value-domain(A′),P) for A′ /∈ fσ(R) and
R ∈ R.

– Attributes prescribe the technical type as defined by the correspond-
ing relation. This can be achieved with constraints of the form
(A, tech-type(A, fθ(A)),P) for A ∈ fσ(R) and R ∈ R.

5 Implementation Consideration

The FRDM data model is positioned as a flexible descendant of the relational
model. Therefore it is suitable to be implemented within the existing and estab-
lished relational database system architecture. In this section, we briefly discuss
how this can be done. The characteristics of FRDM require four main changes
to existing relational database system code.

First, plan operators and query processing have to be adapted to handling
descriptive relations. More specifically, plan operators must reflect the adapted
semantics of their logical counterparts. Logically, operators have to remove at-
tributes from the schema of a relation if no tuple instantiates them. With a
tuple-at-a-time processing model, this orphaned attribute elimination is a block-
ing operation, since the system can determine the schema only after all tuples are
processed. Implicit duplicate elimination is similarly impractical and thus it was
not implemented in relational database systems. Likewise a practical solution
for the elimination of orphaned attributes is that plan operators determine the
schema of the resulting operation as narrow as they safely can before the actual
tuple processing and accept possible orphaned attributes in the result relation.
Similar to the DISTINCT clause, SQL can be extended with a, say, TRIM clause
that allows the user to explicitly request orphaned attribute elimination.

Second, the physical storage of tuples has to be adapted to the representation
of entity domains. For tuple storage, the existing base table functionality can be
reused but needs to be extended to handle uninstantiated attributes. Solutions
for such an extension are manifold in literature, e.g., interpreted record [7,11],
vertical partitioning [1], and pivot tables [3,13]. Another reasonable approach is
a bitmap as it is used for instance by PostgreSQL [24] to mark NULL values
in records. Tuples can appear in multiple entity domains. However, for storage
economy and update efficiency, tuples should only appear in a single physical
table. Replication should be left to explicit replication techniques. Consequently,
the database system has to assign each tuple to a single physical table and
maintain its logical entity domain membership somehow. In principle, there
are two ways how this can be done. One is to encode the domain membership
in the physical table assignment. Here, the system would create a physical
table for each combination of entity domains occurring in a tuple and store
tuples in the corresponding table. The mapping is simple and easy to implement.

34 H. Voigt and W. Lehner

The downside is that it may lead to a large number of potentially small physical
tables (at worst 2E tables where E is the number of entity domains in a database)
and tuples need to be physically moved if their domain membership is changed.
The other way is storing the domain membership, e.g., with a bitmap, directly
in a tuple itself. This gives liberty regarding the assignment of tuples to physical
tables, up to using a single (universal) table for all tuples. With many tuples
having the same domain membership, it comes to the price of storage overhead
– negligible in most cases, though.

Third, the physical tuple layout has to be extended to also represent the
technical type of values directly in the tuple. This is necessary for independent
technical types. To reduce storage needs and decrease interpretation overhead,
the system can omit the technical type in the tuple where explicit constraints
prescribe a technical type. However, creating and dropping such explicit con-
straints becomes expensive as the physical representation of the affected tuples
has to be changed.

Fourth, independent attributes require a modification of the system catalog.
In most system catalogs, attributes have a reference to the base table they belong
to. This reference has to be removed to make attributes available to all tuples
regardless of their entity domain membership.

6 Related Work

Over decades, research and development have created numerous data models
and approaches to represent data. Obviously, we can concentrate only on the
most prominent ones used for representing structured data. Data models worth
considering can be grouped in four main categories: (1) relational models, (2)
software models, (3) document models, (4) tabular models, (5) graph data mod-
els, and (6) models from the data modeling theory. In the following, we will
briefly discuss these categories with regard to the flexibility to directly represent
data of dynamic and open discourses.

Relational models are extensions of the traditional relational model [28,7,2,5].
These extensions intend to free the relational model from one or more implicit
constraints. Hence, these extended relational models allow additional flexibility
compared to the pure relational model. Specifically, reasonable extensions exist
to support variable attribute sets. Besides, all these extensions preserve 100%
compatibility with the relational model. To the best of our knowledge, there are
no extensions that add support for multifaceted entities, independent attributes,
and independent technical types to the relational model.

Software models originate from programming languages and other software de-
velopment technologies. Generally, software models consist of elements to struc-
ture operations and elements to structure data. The elements to structure data
resemble a data model. Two popular software models are object orientation and
role modeling [27]. Both build on the notion of an object and encompass a ded-
icated association element to represent relationships. Accordingly, they provide
no direct compatibility with the relational model, a fact also well known as

Flexible Relational Data Model 35

Table 1. Flexible Data Models vs. Requirements

Category Data Model M
u
lt
i-
fa
ce
te
d

en
ti
ti
es

V
a
ri
a
b
le

a
tt
ri
b
u
te

se
ts

In
d
ep

en
d
en
t

a
tt
ri
b
u
te
s

In
d
ep

en
d
en
t

te
ch
n
ic
a
l
ty
p
es

R
el
a
ti
o
n
a
l

re
p
re
se
n
ta
ti
o
n

a
n
d
p
ro
ce
ss
in
g

Relational Pure relational ✓

Extended NULL semantic [28] (✓)1 ✓

Interpreted column [2] (✓)2 ✓

Interpreted record [7] ✓ ✓

Polymorphic table [5] (✓)3 (✓)2 ✓

FRDM ✓ ✓ ✓ ✓ ✓

Programming Object orientation (✓)4 (–)6

Role modeling [27] (✓)5 (–)6

Document XML, well-formed [31] ✓ ✓ (✓)7

XML, valid [32] (✓)3 ✓

JSON [12] (✓)8 (✓)8 (✓)8 ✓

OEM [22] (✓)8 (✓)8 (✓)8 ✓

Tabular Bigtable [10] ✓ ✓ ✓

Graph Property graph [25] ✓ ✓ (–)6

Neo4J [21] ✓ ✓ ✓ ✓

Freebase [8] ✓ (✓)1

RDF [30] (✓)8 (✓)8 (✓)8 ✓

RDF w/ RDF Schema [29] ✓ ✓ ✓ ✓

Theory Intensional classification [23] ✓ ✓ ✓ (–)6

1 only generalization 2 only specialization 3 extensions 4 inheritance
5 roles 6 not specified 7 no technical types 8 no entity types

object-relational impedance mismatch. With inheritance and the notion of roles,
these two software models offer limited support for multifaceted entities. Partic-
ularly the role concept allows the dynamic leaving and joining of entity types.
Nevertheless, which combination of entity types an entity can join has to be
modeled upfront.

Document models [31,32,12,22] have been developed for representing docu-
ments, e.g., web pages. Typically, document models represent data as a hierarchy
of entities, where entities nest other entities. Nesting is the only or the primary
means of entity referencing. The identity of an entity solely or primarily depends
on the position of an entity within the hierarchy. In consequence, document mod-
els offer direct relational compatibility. Document models offer more flexibility
than most relational systems or software models. However, most of their flexibility
originates from completely omitting entity types. Where document models have
schema information, such as DTD or XML Schema, they are similarly strict.

36 H. Voigt and W. Lehner

A tabular data model also organizes data in tables like the relational data
model but in a significantly different way. The data model of Google’s Bigtable
system [10] defined the category of tabular data models. Because of its success, it
has also remained the only model of its kind that draws considerable attention.
Bigtable organizes data in large, distributed, sparse tables. The columns of such
a table are grouped in column families. Rows can stretch across multiple column
families and are free to instantiate any column in a column family, so that the
Bigtable data model supports multifaceted entities as well as variable attribute
sets. The Bigtable model also supports independent technical types. However,
the row identity is restricted to a user-given row key and the processing is limited
to put and get operations on row level. Hence, the Bigtable model cannot be
considered completely relational compatible.

Graph data models [25,21,8,30,29] build on the mathematical definition of
a graph. They represent data as vertices and edges, where vertices represent
entities and edges represent relationships, i.e., references to other entities. In
practice, graph models differ in how data is represented in a graph. Beside ver-
tices and edges, graphs can have labels and attribute–value pairs attached to
the vertices and even to the edges. [25] distinguishes nine types of graphs. Most
prominent are the property graph and the RDF graph. All graph models empha-
size the representation of data rather than modeling of schema. Graph models
have a descriptive nature and allow in most cases the direct representation of
data from dynamic and open discourses. In all graph models, however, entities
have an object identity and edges are an explicit representation of references.
Consequently, graph models are not directly compatible to relational data.

Finally in the theory of data modeling, intensional classification was pro-
posed to allow for more schema flexibility [23]. Here, entity domains are defined
intensionally, i.e., by a set of attributes. All entities that instantiate the set of
attributes defining an entity domain belong to that domain. Accordingly, the in-
tensional classification builds on independent attributes and allows multi-faceted
entities as well as variable attribute sets. Technical types are not considered in
the approach. While intensional classification is appling, it is less flexible than
extensional classification used in FRDM, since entities are required to instantiate
an defined attribute set to belong to a domain. They cannot be explicitly added
to a domain regardless their intension. In that sense, intensional classification is
a useful complement to extensional classification.

As a summary, Table 1 shows which flexibilities sample data models in the
discussed categories do allow. We can see that none of these models fulfills all
flexibility requirements. Graph models, particularly as in Neo4j, are free of im-
plicit constraints regarding entity domains, attributes and technical types, while
the relational approaches are the only ones to offer value-based identity and
value-based references. FRDM integrates the level of flexibility graph models
provide with value-based identity and value-based references, as indicated in
Table 1, in a super-relational fashion.

Flexible Relational Data Model 37

7 Conclusion

As an evolutionary approach to meet the need for more flexible database sys-
tems and to build on the still existing dominance of relational database systems
we proposed the flexible super-relational data model FRDM. FRDM is entity-
oriented instead of schema-oriented. It is designed around self-descriptive enti-
ties, where schema comes with the data and does not have to be defined up front.
Additionally, FRDM allows multi-faceted entities where entities can belong to
multiple entity domains. Attributes can exist independently from entity domains
in FRDM. Similarly, FRDM allows technically typing values independently from
their attributes. FRDM can express irregular data as well as regular relational
data. We demonstrated both by examples. For data retrieval, FRDM builds on
the powerful, well-known, and proven set of relational operations. Compared
to the relational data model, FRDM is free of implicit constraints. Neverthe-
less, where these constraints are needed and welcome, the presented constraint
framework FRDM-C allows formulating explicit restrictions to the flexibility of
FRDM. A lot of technological expertise, knowledge, and experience have accu-
mulated in and around relational database management systems over the last
three decades. We are convinced FRDM contributes to the use of that also in
the more flexibility-demanding areas of data management.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: VLDB 2007 (2007)

2. Acharya, S., Carlin, P., Galindo-Legaria, C.A., Kozielczyk, K., Terlecki, P.,
Zabback, P.: Relational support for flexible schema scenarios. The Proceedings
of the VLDB Endowment 1(2) (2008)

3. Agrawal, R., Somani, A., Xu, Y.: Storage and Querying of E-Commerce Data. In:
VLDB 2001 (2001)

4. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-Tenant
Databases for Software as a Service: Schema-Mapping Techniques. In: SIGMOD
2008 (2008)

5. Aulbach, S., Seibold, M., Jacobs, D., Kemper, A.: Extensibility and Data Sharing
in evolving multi-tenant databases. In: ICDE 2011 (2011)

6. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile
Software Development (2001), http://agilemanifesto.org/

7. Beckmann, J.L., Halverson, A., Krishnamurthy, R., Naughton, J.F.: Extending
RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage
Format. In: ICDE 2006 (2006)

8. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A Collabo-
ratively Created Graph Database For Structuring Human Knowledge. In: SIGMOD
2008 (2008)

9. Brodie, M.: OTM”10 Keynote. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.)
OTM 2010. LNCS, vol. 6426, pp. 2–3. Springer, Heidelberg (2010)

http://agilemanifesto.org/

38 H. Voigt and W. Lehner

10. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for
Structured Data. In: OSDI 2006 (2006)

11. Chu, E., Beckmann, J.L., Naughton, J.F.: The Case for a Wide-Table Approach
to Manage Sparse Relational Data Sets. In: SIGMOD 2007 (2007)

12. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON), RFC 4627 (July 2006), http://tools.ietf.org/html/rfc4627

13. Cunningham, C., Graefe, G., Galindo-Legaria, C.A.: PIVOT and UNPIVOT: Op-
timization and Execution Strategies in an RDBMS. In: VLDB 2004 (2004)

14. Franklin, M.J., Halevy, A.Y., Maier, D.: From Databases to Dataspaces: A New
Abstraction for Information Management. SIGMOD Record 34(4) (2005)

15. Friedman, C., Hripcsak, G., Johnson, S.B., Cimino, J.J., Clayton, P.D.: A Gener-
alized Relational Schema for an Integrated Clinical Patient Database. In: SCAMC
1990 (1990)

16. Gleick, J.: Faster: The Acceleration of Just About Everything. Pantheon Books,
New York (1999)

17. Jacobs, D.: Enterprise Software as Service. ACM Queue 3(6) (2005)
18. Kiely, G., Fitzgerald, B.: An Investigation of the Use of Methods within Information

Systems Development Projects. The Electronic Journal of Information Systems in
Developing Countries 22(4) (2005)

19. Kurzweil, R.: The Law of Accelerating Returns (March 2001),
http://www.kurzweilai.net/the-law-of-accelerating-returns

20. Nagarajan, S.: Guest Editor’s Introduction: Data Storage Evolution. Computing
Now, Special Issue (March 2011)

21. Neo Technology: Neo4j (2013), http://neo4j.org/
22. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange Across

Heterogeneous Information Sources. In: ICDE 1995 (1995)
23. Parsons, J., Wand, Y.: Emancipating Instances from the Tyranny of Classes in

Information Modeling. ACM Transactions on Database Systems 25(2) (2000)
24. PostgreSQL Global Development Group: PostgreSQL 9.2.4 Documentation, chap.

56.6: Database Page Layout (2013)
25. Rodriguez, M.A., Neubauer, P.: Constructions from Dots and Lines. Bulletin of the

American Society for Information Science and Technology 36(6) (August 2010)
26. Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping Pay-As-You-Go Data Inte-

gration Systems. In: SIGMOD 2008 (2008)
27. Steimann, F.: On the representation of roles in object-oriented and conceptual

modelling. Data & Knowledge Engineering 35(1) (2000)
28. Vassiliou, Y.: Null Values in Data Base Management: A Denotational Semantics

Approach. In: SIGMOD 1979 (1979)
29. W3C: RDF Vocabulary Description Language 1.0: RDF Schema (February 2004),

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

30. W3C: Resource Description Framework (RDF): Concepts and Abstract Syntax
(February 2004), http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

31. W3C: Extensible Markup Language (XML) 1.0 (Fifth Edition). (November 2008),
http://www.w3.org/TR/2008/REC-xml-20081126/

32. W3C: XML Schema Definition Language (XSD) 1.1 Part 1: Structures. (July 2011),
http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/

http://tools.ietf.org/html/rfc4627
http://www.kurzweilai.net/the-law-of-accelerating-returns
http://neo4j.org/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/

Defining Temporal Operators

for Column Oriented NoSQL Databases

Yong Hu and Stefan Dessloch

Heterogenous Information Systems Group,
University of Kaiserslautern, Kaiserslautern, Germany

{hu,dessloch}@informatik.uni-kl.de

Abstract. Different from traditional database systems (RDBMSs), each
column in Column-oriented NoSQL databases (CoNoSQLDBs) stores
multiple data versions with timestamp information. However, this im-
plicit temporal interval representation can cause wrong or misleading
results during query processing. To solve this problem, we transform the
original CoNoSQLDB tables into two alternative table representations,
i.e. explicit history representation (EHR) and tuple time-stamping rep-
resentation (TTR) in which each tuple (data version) has an explicit
temporal interval. For processing TTR, the temporal relational algebra
is extended to TTRO operator model with minor modifications. For pro-
cessing EHR, a novel temporal operator model called CTO is proposed.
Both TTRO and CTO contain seven temporal data processing opera-
tors, namely, Union, Difference, Intersection, Project, Filter, Cartesian
product and Theta-Join with additional table transformation operations.

Keywords: CoNoSQLDBs, temporal data and temporal operators.

1 Introduction

Recently, a new type of data storage system called “Column-oriented NoSQL”
database (CoNoSQLDB) has emerged. A CoNoSQLDB manages data in a struc-
tured way and stores the data which belongs to the same “column” continuously
on disk. Tuples in a CoNoSQLDB are delivered based on unique row keys. Differ-
ent from RDBMSs, each column in a CoNoSQLDB stores multiple data versions
sorted by their corresponding timestamps and each data version has an im-
plicit valid temporal interval (TI) (derived from the data versions). Well known
examples are “BigTable” [9], which was proposed by Google in 2004, and its
open-source counterpart “HBase” [10].

To consume data in CoNoSQLDBs, users can either write low-level programs
such as a MapReduce [8] procedure or utilize high-level languages such as Pig
Latin [11] or Hive [12]. MapReduce is a parallel data processing framework in
which users code the desired data processing tasks in Map and Reduce functions
and the framework takes the charge of parallel task execution and fault tolerance.
Although this approach gives users enough flexibility, it imposes programming
requirements and restricts optimization opportunity. Moreover, it forces manual
coding of query processing logic and reduces program reusability.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 39–55, 2014.
c© Springer International Publishing Switzerland 2014

40 Y. Hu and S. Dessloch

Pig Latin and Hive are two high-level languages built on top of the MapRe-
duce framework, where each includes various predefined operators. To analyze
the data in a CoNoSQLDB, clients utilize the default load function and denote
queries either by a set of high-level operators (Pig Latin) or SQL-like scripts
(Hive). However, the default load function will transform a CoNoSQLDB table
into a first-normal-form (1NF) relation [1] by purely loading the latest data val-
ues (without TSs) and discarding older versions. If users wish to load multiple
data versions, a customized load function has to be coded manually. Each col-
umn will then have a “set” type instead of atomic values. Generally, this type
of table is called non-first-normal-form (NF2) [2] or nested relations. To pro-
cess NF2 in Pig Latin or Hive, users need to first flatten the nested relation to
1NF, then apply the desired data processing based on the predefined high-level
operators and finally nest the 1NF relation to rebuild the nested relation. How-
ever, this approach has several pitfalls: 1) as the data volume of CoNoSQLDB
is usually massive, the table reconstructing operations can heavily decrease the
performance and exhaust the hardware resources; 2) the predefined high-level
operators are traditional relational operators which handle only the data values
without considering any temporal information.

In this paper, we study the issues of defining temporal operators for
CoNoSQLDBs and several significant aspects need to be taken into account:

– What is the meaning of TS in CoNoSQLDBs, i.e. should it be understood as
valid time or transaction time? This issue will be discussed in Section 4.1.

– The original CoNoSQLDB tables maintain the temporal interval for each
data version implicitly. This property can cause wrong or misleading results
during query processing. How can we avoid this? The suitable solutions will
be proposed in Section 4.2.

– The CoNoSQLDB tables must be closed under the temporal operators,
namely, the output of each operator must still be a CoNoSQLDB table.
For example, a traditional temporal Project operator will merely produce the
columns specified in the projection attributes. However, in the CoNoSQLDB
context, the row key column is mandatory for each CoNoSQLDB table.

The remainder of paper will address these issues and is organized as follows:
In Section 2, we discuss the related work. Section 3 describes the core properties
of CoNoSQLDBs. The formalization of the CoNoSQLDBs is given in Section 4.
Section 5 depicts the temporal operators and Section 6 makes the conclusions.

2 Related Work

Extensive research in the temporal relational database area was done over the
last decades, and finally database products as well as the SQL standard have
picked up capabilities for temporal data modeling [7]. To model temporal di-
mensions in a table, two main alternatives exist. The first approach is called
tuple time-stamping [3,6,7] (TTS) which appends two auxiliary columns to the
1NF table to indicate start and end time for the tuple’s valid TI. The second

Defining Temporal Operators for Column Oriented NoSQL Databases 41

approach is called attribute time-stamping [4,5] (ATS) in which each attribute
value consists of an atomic value with a valid TI. Generally, the ATS relation
is viewed as NF2 [4,5], as the domain of its attribute is not atomic anymore.
In ATS, a new concept “temporal atom” [5] is proposed. A temporal atom is
composed as a pair (Value, TI) which is treated as an atomic data unit for each
column (analogy to float, integer and etc. in RDBMS). Moreover, each column
in an ATS table usually stores multiple temporal atoms as it can reduce the
data redundancy and keep the entire history of an object in one tuple instead of
splitting it into multiple tuples.

For handling the TTS, traditional relational algebra is extended to the tem-
poral relational algebra (TRA) [3,6]. For the ATS, the relational algebra is ex-
tended to the historical relational algebra (HRA) [4,5] with two auxiliary table
reconstructing operators, i.e. Nest and Unnest.

CoNoSQLDBs fall into the ATS modeling, as each data version is attached
with a corresponding TS. However, the method adopted to process the ATS is
not suitable for CoNoSQLDBs. More discussions will be given in Section 4 and
Section 5.

In the context of CoNoSQLDBs, to our best knowledge, our temporal operator
models are the first proposals which address temporal data processing and are
consistent with the data model and data processing model of CoNoSQLDBs.

3 Characteristics of CoNoSQLDBs

As the temporal operators are applied to CoNoSQLDBs, in this section, we indi-
cate some important features of CoNoSQLDBs compared to RDBMSs, focusing
on the aspects that affect the design of our operator model:

– Data Model. In addition to the concepts of table, row and column,
CoNoSQLDBs introduce a new concept called “column family”. Columns
which belong to the same column family will be stored continuously on disk.
Each table in a CoNoSQLDB is partitioned and distributed based on the row
keys. For a given tuple, one column can store multiple data versions sorted
by the corresponding timestamps (TSs). Moreover, users can indicate the ttl
(time-to-live) property for each column family to denote the life time of data
items. When data items expire, CoNoSQLDBs will make them invisible and
eventually remove them in a cleanup operation. Note that only timestamps
(indicating at what time the value changed) and no explicit time intervals
(TIs) are stored!

– Operations. Different from RDBMSs, a CoNoSQLDB does not distinguish
update from insertion. A new data value for a specific column will be gen-
erated by the “Put” command without overwriting the existing ones. When
issuing a “Put” command, users need to denote the parameters such as row
key, column-family name, column name, value and TS (optional). If no TS
is specified in the “Put” operation, a system-generated TS is used as the
version-TS. Following the data model of CoNoSQLDB, data deletions are

42 Y. Hu and S. Dessloch

classified into various granularities, namely, data version, column and col-
umn family. A delete operation will not delete data right away but insert a
“tombstone” marker to mask the data values whose TSs are equal to or less
than the TS of the tombstone.

Web-surfing

Tom

Web: Page
ttl=10s

Web:Content
ttl=10s

Network:Supplier
ttl=∞

Spiegel.de : 4,
Yahoo.com : 1

Politics :4,
Sport :1 Telecom:1

Fig. 1. Example of CoNoSQLDBs

Figure 1 shows an example defined in “HBase” to illustrate the aforementioned
characteristics. The “Web-Surfing” table records the information when a user
browses the internet. It contains two column families and each column family
includes several columns. For row “Tom”, the “Web:Page” column contains two
data versions.

4 Formalization of CoNoSQLDBs

As timestamps (TSs) represent the temporal information for the data versions,
in this section, we first discuss their semantics and clarify the usages of TS
in CoNoSQLDBs. Then, we pursue the formalization of CoNoDSQLDB tables
and use an example to illustrate how the implicit TI strategy supported by
the original CoNoSQLDB tables can cause wrong or misleading results during
query processing. To overcome this problem, we propose two alternative table
representations in which each tuple (data version) has an explicit TI.

4.1 Understanding TS in CoNoSQLDBs

CoNoSQLDBs follow an attribute time-stamping (ATS) approach by attaching
a TS to each data version. However, in contrast to temporal databases, the
explicit TS just represents the start of a time interval. The TI is only implicitly
represented when we assume the end of the interval to be determined by the start-
TS of the subsequent version (or for the most recent version), which is consistent
with the semantics of version timestamps. This interpretation constrains the
derived TIs belonging to the same column to form a contiguous time interval,
e.g. the TIs of data versions “Yahoo.com:1” and “Spiegel.de:4” in Figure 1 are [1s,
4s) and [4s, 14s), respectively. In addition, the time interval for the most recent
version is limited by the ttl property. For example, although the “Spiegel.de:4”
is the latest data version, as the ttl is set to 10s, its TI is [4s, 14s) instead of [4s,
∞).

Furthermore, another question in terms of the semantics of TS in
CoNoSQLDBs arises. In the temporal database literature, there are two orthog-
onal time dimensions [3,4,6,7]: 1) valid time, which indicates the time interval
during which a data value reflects the state of the real world; 2) transaction time,

Defining Temporal Operators for Column Oriented NoSQL Databases 43

which denotes when a data item is recorded in the database. The valid time and
the transaction time are usually depicted as a time period [t1, t2) which denotes
a data value holds at time t where t1 ≤ t<t2. The valid time can be assigned
and modified by users, whereas the transaction time is generated and maintained
automatically by the database system.

CoNoSQLDBs, due to the different usages of the Put and Delete commands,
the TS can be either arbitrarily specified by users or automatically generated by
the system. If the TS is denoted by users, this implies that data versions can be
inserted or discarded at any point in time in the version history of a CoNoSQLDB
column. Consequently, the Put and Delete commands with the explicit TS as-
signments may cause TI modifications of existing data versions. For example, in
Figure 1, if a data version “Google.de:3” is inserted between “Yahoo.com:1” and
“Spiegel.de:4”, the TI for “Yahoo.com:1” is implicitly changed to [1s, 3s). In this
situation, the TS in the CoNoSQLDB has valid time semantics. However, when
TS is generated by the CoNoSQLDB, 1) for the Put command, the TS of the
new generated data version will be greater than all the existing data versions; 2)
for the Delete command, either the current (latest) data version will be deleted
(data version deletion) or the whole column/column family will be discarded
(column and column-family deletions). Hence, either only the current data ver-
sion will be changed (Put command and data version deletion) or all the data
versions will be eliminated (column and column-family deletions). For example,
if a data version “Google.de:6” (where 6 is generated by the CoNoSQLDB) is
inserted into “Web:Page” column, the TI of “Spiegel.de:4” is changed from [4s,
14s) to [4s, 6s) and the TI of “Yahoo.com:1” is still [1s, 4s). In this situation,
the TS in the CoNoSQLDB is close to transaction time.

Hence, the temporal semantics of TS in CoNoSQLDBs is ambiguous, namely,
it can be understood as either valid time or transaction time based on the usages
of Put and Delete commands. Consequently, the user or application has to make
consistent use of temporal concepts supported in CoNoSQLDBs. The TS for
a single column should have the semantics of either valid time or transaction
time but not both. Moreover, if bi-temporal data needs to be maintained (i.e.,
both transaction and valid time data is needed), additional columns need to
be added by the application to keep the time information. For this paper, we
assume that the application is aware of this. Since our operator model and the
additional representations we propose do not depend on the time semantics (valid
vs. transaction), our results are not impacted.

4.2 Representations of CoNoSQLDBs

A schema R for a CoNoSQLDB table is a collection of rules of the form R = (rk,
CF1:Col11,..., CFn:Colnn), where rk is shorthand for row key and the subscript
n denotes the number of column families (CFs). Each CFi is composed by a set
of columns (Coli1,..., Colij). The value of a column is a set of data versions in
which each data version Dm can be further decomposed as a pair (Value, TS).
Value denotes the content of Dm and TS has the semantics of either valid time
or transaction time. For each column, TS functionally determines the Value,

44 Y. Hu and S. Dessloch

i.e. TS→Value. The TI for each data version is implicitly represented among
columns and the deduced TIs which belong to the same column must form a
contiguous time interval.

A CoNoSQLDB table r is an instance of a CoNoSQLDB schema R. Dom()
is a function which maps an attribute name into its value domain. In the
CoNoSQLDB context, Dom(rk) has usually a string type. Dom(Value) can be
any set of atomic values, such as integer, float, string and etc. Dom(TS) is as-
signed as a discrete time domain which consists of a set of long nonnegative
integer with an ascending order. Dom(CF:Col) = Dom(Value)×Dom(TS) where
Dom(R) = Dom(rk) × Dom(CF1:Col11) ×... × Dom(CFn:Colnn), where × is
Cartesian product. Clearly, a CoNoSQLDB table does not satisfy 1NF, as the
attribute type of each tuple is not atomic. However, different from the general
NF2 relations, the nesting level of a CoNoSQLDB table is fixed, i.e. 1 (we view
the nesting level of 1NF as 0). In the following, we use t[S] to denote the value
of navigation path S and Attr(A) to indicate a set of attributes that belong to
A, where A can be a table name, a CF name or a Col name. As the TI for each
data version is implicitly represented inside the column, we call the original table
representation implicit history representation (IHR).

Although the IHR is suitable for data storage, it can cause wrong or misleading
results during query processing. Suppose we use the “Network-speed” table in
Figure 2 as an input and wish to choose the Tom’s internet suppliers whose speed
has ever been faster than 1000K. The filter operation will discard “1&1:3” in the
Supplier column and “920K:3” in “Speed” column. The right-hand side shows
the filter results. As the TI for each data version is implicit, directly discarding
data versions will cause TI changes of the remaining data versions, e.g. the valid
TI of “Telecom:1” is changed from [1s, 3s) to [1s ,4s). Obviously, this produces
incorrect results.

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Vordafone : 4
Telecom : 1

1270K : 4,
1855K : 2,
1115K : 1

Tom

Network-speed

Implicit History Representation

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Vodafone : 4
1&1: 3

Telecom : 1

1270K : 4,
920K : 3,

1855K : 2,
1115K : 1

Tom

Network-speed

Fig. 2. Select network supplier whose speed is faster than 1000K

The wrong query processing results can be avoided by adopting an explicit
TI representation. In contrast to the original data version definition, we model
a data version D in the CoNoSQLDBs as a pair (Val, TI) where:

– Val indicates the value of D;
– TI denotes how long D is temporally valid and has a form [Sta, End).

Using the new data version model, Figure 3 shows the equivalent represen-
tation of the “Network-speed” table on the left and the correct results of filter
processing on the right. We call this new table representation explicit history
representation (EHR).

As an alternative to grouping multiple data versions with explicit TIs in a
single column, we can also adopt the tuple time-stamping approach by splitting

Defining Temporal Operators for Column Oriented NoSQL Databases 45

each IHR tuple into several tuples in which each column contains only a single
data version and the row key includes the valid TI to guarantee its uniqueness.
We call this table representation tuple time-stamping representation (TTR). Fig-
ure 4 shows the TTR example derived from “Network-speed” on the left and the
correct results for filter processing on the right. For better readability, we specify
the row key rk in TTR as a pair (srk, TI). srk denotes the original row key value
extracted from the corresponding IHR table and TI indicates the valid time in-
terval which has the form [Sta, End). Clearly, ERH can also be transformed into
TTR.

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

(Vodafone,[4,)),
(Telecom,[1,3))

(1270K,[4,)),
(1855K,[2,3)),
(1115K,[1,2))

Tom

Network-speed-EHR

Explicit History Representation

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

(Vodafone,[4,)),
(1&1,[3,4)),

(Telecom,[1,3))

(1270K,[4,)),
(920K,[3,4)),

(1855K,[2,3)),
(1115K,[1,2))

Tom

Network-speed-EHR

Fig. 3. Select network supplier whose speed is faster than 1000K by using EHR

Tuple time-stamping representation

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Telecom : 1 1115K : 1Tom/1/2

Network-speed-TTR

Telecom : 2 1855K : 2Tom/2/3
1&1 : 3 920K : 3Tom/3/4

RK/Sta/End

Vodafone : 4 1270K : 4Tom/4/∞

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Telecom : 1 1115K : 1Tom/1/2

Network-speed-TTR

Telecom : 2 1855K : 2Tom/2/3
Vodafone : 4 1270K : 4Tom/4/∞

RK/Sta/End

Fig. 4. Select network supplier whose speed is faster than 1000K by using TTR

We define 4 table transformation operations which transform IHR to EHR
(TIE), IHR to TTR (TIT), EHR to TTR (TET) and TTR to EHR (TTE),
respectively:

– TIE takes an IHR table as an input and outputs its corresponding EHR
table. The explicit TI of a data version Dn in an EHR column is derived
from its corresponding data version Di in the IHR column and formed as
[Di.TS, Dj.TS), where Dj is the immediate successor of Di. When Di is the
current data version, its end point of TI is either denoted by ∞ or calculated
by using ttl.

– TET takes an EHR table as an input and outputs its corresponding TTR
table. For every tuple in EHR, TET will first collect the TIs of all data
versions, and then derive TI for each TTL tuple. Finally, the derived TI
will be utilized as a selection criterion to select the data versions from EHR
columns. We illustrate the TET operation in Figure 5. The TIs for row “Tom”
in EHR are denoted at the top right corner. The corresponding derived TIs
are indicated at the bottom right ([1s, 2s) and [2s, 3s)). TET then exploits
each derived TI ([1s, 2s) and [2s, 3s)) as a selection criterion to scan both
“Network:Supplier” and “Network:Speed” columns to find the matching data
versions. The resulting TTR is shown at the bottom left.

– TTE takes a TTR table as an input and outputs its corresponding EHR
table. TTE first groups the TTR tuples which share the same rk.srk together.
At the same time, the TI in the row key will be attached to each data version.

46 Y. Hu and S. Dessloch

At last, several data versions that have the same value will be coalesced into
a single data version when their TIs are overlapping or adjacent. Figure 6
shows an example of TTE . The two arrows indicate these two data processing
tasks, respectively.

– TIT takes an IHR table as an input and outputs its corresponding TTR
table. TIT can be represented as a TIE followed by a TET .

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

1&1 : 1 1115K : 1Tom/1/2

Network-speed-TTR

1&1 : 2 1855K : 2Tom/2/3

RK/Sta/End

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

(1&1,[1,3)) (1855K,[2,3)),
(1115K,[1,2))Tom

Network-speed-EHR

time

0 1 2 3

1&1

1115K

1855K

time

0 1 2 3

Fig. 5. TET example

Network:Supplier
ttl=∞

Telecom : 1Tom/1/2

Network-sup-TTR

Telecom : 2Tom/2/3
1&1 : 3Tom/3/4

RK/Sta/End

Vodafone : 4Tom/4/∞

Network:Supplier
ttl=∞

(Vodafone,[4,)),
(1&1,[3,4)),

(Telecom,[1,3))
Tom

Network-sup-EHR

Network:Supplier
ttl=∞

(Vodafone,[4,)),
(1&1,[3,4)),

(Telecom,[2,3))
(Telecom,[1,2))

Tom

Group
based on
Tom

Column
Coalescence
processing

Fig. 6. TTE example

Due to the table transformations, each IHR can be mapped to one EHR and
one TTR. Moreover, one EHR can be mapped to one TTR and vice versa. We
omit to define the EHR to IHR and TTR to IHR transformations, as not every
EHR or TTR can be transformed back to IHR. We can utilize the EHR table
at the right-hand side in Figure 3 as a counter-example, as the TIs of column
“Network:Supplier” do not form a contiguous time interval. It is impossible to
rebuild the corresponding IHR. The same counter-example for TTR can be found
at the right-hand side in Figure 4.

The reasons for inapplicable transformations (EHR or TTR to IHR) are the
characteristics of IHR, namely, 1) the valid temporal interval for each column
can only be [OSta, ∞), where OSta denotes the starting point of the oldest data
version in a column; 2) the TI for each data version among the same column has
to be contiguous, namely, for any two data versions D1 and D2 in an IHR column,

IHR EHR

TTR

Fig. 7. Transformation between IHR, EHR and TTR

Defining Temporal Operators for Column Oriented NoSQL Databases 47

if D2 is the immediate successor of D1, it denotes D2.TI.Sta = D1.TI.End. As
the EHR and TTR in Figure 3 and Figure 4 violate the condition 2, they cannot
be transformed to IHR.

We represent the table transformations between IHR, TTR and EHR in Figure
7. The dotted lines indicate the transformations may not be possible where the
solid lines denote the transformations are always possible.

As IHR is the default table representation supported by CoNoSQLDBs, it
is more natural for users to directly issue queries against IHR. However, as
we have already seen in Figure 2, the implicit TI representation strategy of
IHR can cause wrong or misleading results during query processing. Hence, to
guarantee the soundness of query processing, an IHR table has to be translated
into either a TTR table or an EHR table. The table transformation tasks could
be either automatically inserted by the query processing engine or explicitly
specified by users. The former would correspond to a model where users issue
the queries against IHR and the EHR and TTR are only used internally for
query processing. However, as not every EHR or TTR table can be transformed
back to an equivalent IHR, it is possible that users unexpectedly see the internal
table representation in the query result. If users are allowed to perform table
transformations explicitly, it implies that the users should also have the ability
to process the EHR or TTR tables and the corresponding algebra operators need
to be defined. As the first approach is not really transparent to the user, the
second approach is more preferable. However, both approaches may be worth
considering and are supported by the algebra we present in this paper. The
temporal operators of EHR and TTR will be introduced in Section 5.

Although both TTR and EHR can guarantee the soundness of query pro-
cessing, each of them has drawbacks. For storing TTR tables in CoNoSQLDBs,
the TI has to be encoded into the row key to guarantee its uniqueness, as com-
posite keys are not supported in CoNoSQLDBs. This strategy can also cause
significant data redundancy when splitting IHR or EHR tuples. For example,
in Figure 6, the strings “Tom” and “Telecom” appear 4 times and twice, re-
spectively. As CoNoSQLDBs usually manage a tremendous volume of data, the
volume of TTR tables may exhaust the disk capacity before any data processing.
EHR has an optimal structure for data storage, but its physical representation in
CoNoSQLDBs is very complicated. For example, in HBase, we have to “encode”
the pair (Val, TI) as the data value (e.g. JSON string) and TI.Sta as the TS
for each data version. Hence, the data processing tasks for EHR will need more
time to “extract” the actual data values compared to TTR. Choosing the ta-
ble representation for temporal query processing is therefore a trade-off between
data capacity (TTR) and data processing complexity (EHR), which we plan to
explore further in the future.

5 Temporal Operators for CoNoSQLDBs

As we have already described in Section 4.2, one IHR can be mapped to one
EHR and one TTR. Moreover, one EHR can be transformed into one TTR and

48 Y. Hu and S. Dessloch

vice versa. In this section, we first introduce a set of temporal operators (TTRO)
for TTR. Then, we define the temporal operators (CTO) for EHR.

5.1 TTRO Operator Model

If temporal relational data is modeled by exploiting tuple time-stamping (TTS),
the temporal relational algebra (TRA) [3,6], which is an extension of the rela-
tional algebra, can be used for data processing. In the context of CoNoSQLDBs,
TTR tables follow the TTS model. Intuitively, we can directly utilize the TRA
for processing TTR tables. However, different from the general TTS table, to
guarantee the uniqueness of row key in CoNoSQLDBs, each TTR table must
integrate the time interval into the row key rather than represents it as two sep-
arate columns. We model the row key in TTR as a pair (srk, TI). srk denotes
the row key value derived from its corresponding IHR table and TI indicates the
valid time interval which has the form [Sta, End). Moreover, as the row key is
mandatory for the CoNoSQLDB (TTR) tables, it still must be included in the
final results even it is not indicated in the desired attributes, e.g. projection.
Hence, to satisfy the characteristics of the TTR tables, we extend and customize
TRA to a temporal operator model called TTRO for the TTR relations. Before
presenting the details of TTRO operators, let us first adapt some concepts and
definitions from [3,6] to the TTR context.

Definition 1 (Value Equivalent). Let r be any TTR table. Two tuples t1 and
t2 on r are value equivalent (written t1 ∼=t 2) if and only if all families:columns
and rk.srk have the same values in both tuples.

Definition 2 (Coalesce operation). The functionality of the Coalesce opera-
tion (denoted by �) is to combine all the value-equivalent tuples of a TTR table
together, when their TIs are overlapping or adjacent.

To simplify the definition of the TTRO operators, we define a function over-
lap() which takes two tuples t1 and t2 as input and returns t1.rk.TI ∩ t2.rk.TI.

5.1.1 Union Operator ∪T

Let r1 and r2 be two TTR tables which share the same schema definitions. The
union of these two tables is defined as follows:

r1 ∪T r2 = �(r1 ∪ r2),where ∪ is the relational union operator.

In the definition, we first union the tuples from two tables together and then
apply coalesce operation to combine multiple tuples which are value equivalent
and their TIs are overlapping or adjacent. Figure 8 shows an example of ∪T .
Tuples “Tom/1/2” and “Tom/2/3” are value equivalent and hence are coalesced
into “Tom/1/3”.

Defining Temporal Operators for Column Oriented NoSQL Databases 49

T
Network:Supplier

ttl=∞
Network:Speed

ttl=∞
Telecom : 1 1115K : 1Tom/1/2

Network-speed

Telecom : 2 1115K : 2Tom/2/3

Vodafone : 4 1270K : 4Tom/4/∞

RK/Sta/End
Network:Supplier

ttl=∞
Network:Speed

ttl=∞

Network-speed‘
RK/Sta/End

= Telecom : 1 1115K : 1Tom/1/3

Vodafone : 4 1270K : 4Tom/4/∞

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Network-speed‘‘
RK/Sta/End

Fig. 8. Example of Union operation

5.1.2 Difference Operator −T

Let r1 and r2 be two TTR tables which share the same schema definitions. The
difference of these two tables is given as follows:

r1 −T r2 = {t|((t ∈ r1) ∧ (⇁ ∃t2 ∈ r2|(t ∼= t2) ∧ (overlap(t, t2) �= ∅)))∨
(∃t1 ∈ r1,∃t2 ∈ r2|(t1 ∼= t2) ∧ (t ∼= t2) ∧ (t.rk.T I ∈ (t1.rk.T I − overlap(t1, t2)))

∧ ((t1.rk.T I − overlap(t1, t2) �= ∅) ∧ (overlap(t1, t2) �= ∅))}.

In the difference definition, the tuples in r1 will be directly emitted, when
there does not exist any tuples in r2 in which they are value equivalent and their
TIs have overlaps (line 1). Otherwise, the TIs of tuples in r1 need to be modified.
Figure 9 displays 3 possible temporal relationships between r1 and r2 to denote
the values of (r1.rk.TI-overlap(r1,r2)):

1. {[t1.rk.TI.Sta, t2.rk.TI.Sta)};
2. {[t2.rk.TI.End, t1.rk.TI.End)};
3. {[t1.rk.TI.Sta, t2.rk.TI.Sta),[t2.rk.TI.End, t1.rk.TI.End)};
An example of −T is shown in Figure 10 where the TI of tuple “Tom/1/3” is

changed to [2s, 3s).

time

t1

t2

End EndStaSta

time

t2 t1

Sta Sta End End1 2

3

time

t1 t2

Sta Sta End End

Fig. 9. Various temporal relationships between t1 and t2

T Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Telecom : 1 1115K : 1Tom/1/2

Network-speed

Telecom : 2 1115K : 2Tom/2/3

Vodafone : 4 1270K : 4Tom/4/∞

RK/Sta/End

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Network-speed‘
RK/Sta/End

=Telecom : 1 1115K : 1Tom/1/3

Vodafone : 4 1270K : 4Tom/4/∞

Network:Supplier
ttl=∞

Network:Speed
ttl=∞

Network-speed‘‘
RK/Sta/End

Fig. 10. Example of Difference operation

5.1.3 Intersection Operator ∩T

r1 ∩T r2 = r1 −T (r1 −T r2).

Let r1 and r2 be two TTR tables which share the same schema definitions and
the definition of ∩T can be derived from −T .

50 Y. Hu and S. Dessloch

5.1.4 Project Operator πT

πT
A(r1) = {t|∃t1 ∈ r1|(t.rk = t1.rk) ∧ (t[A1] = t1[A1]) ∧ ... ∧ (t[An] = t1[An])

where A=(A1,...,An) and each Ai has a form of CFi or CFi.Coli}

In TRA, a project operation will only keep the columns indicated by the set
of desired projection attributes (in our definition, it is denoted by notation “A”).
However, in the TTR context, to guarantee that the output of projection is still
consistent with the data model of CoNoSQLDBs (TTR tables), the row key must
be “implicitly” included in each tuple. We say “implicitly” because the row key
may not be specified in A. As the row key already contains the TI, we can also
view πT as temporal projection [6] or slice operator [5].

5.1.5 Filter Operator σT
p

Let r1 be a TTR table. Let p denote a selection condition over the attributes of
r1, where the p is defined as follows:

1. p = ∅;
2. p = aθb, where θ ∈ {<,>,≤,≥, �=,=}, a and b can be atomic value constants,

rk.srk and D.V al;
3. p = aθb, where θ ∈ {<,>,≤,≥, �=,=}, a and b can be atomic value constants,

rk.T I.Sta and rk.T I.End;
4. p = pθp, where θ ∈ {∧,∨}.
For a better explanation, we classify p into four different categories, i.e. 1) no

predicates (line 1); 2) atomic value comparisons (line 2); 3) temporal conditions
(line 3); 4) predicates with logical connectives (line 4). σT

p is defined as follows:

σT
p (r1) = {t|∃t1 ∈ r1|(t = t1) ∧ (p(t1) = true)}.

Figure 4 shows a filter example. Please note that temporal comparison op-
erators such as Allens interval operators [13] or period predicates supported by
SQL 2011 [7] can be easily translated by temporal conditions (line 3) with logical
connectives (line 4) and therefore could be easily added as syntactic sugar.

5.1.6 Cartesian Product �T

r1 �T r2 = {t|∃t1 ∈ r1,∃t2 ∈ r2|(t[Attr(R1)− rk] = t1[Attr(R1)− rk])∧
(t[Attr(R2)− rk] = t2[Attr(R2)− rk])∧
(t.rk.srk = concat(t1.rk.srk, t2.rk.srk)) ∧ (t.rk.T I = overlap(t1, t2))∧
(t.rk.T I �= ∅)}.

Let r1 and r2 be two TTR tables. The Cartesian product of these tables is
defined as above. As each TTR (CoNoSQLDB) table can merely contain one
row key column, we define a “concat” function to concatenate the srk of both
tuples (line 2). Moreover, both tuples have to be temporally valid during the
same time period (line 2). Figure 11 shows an example of �T .

Defining Temporal Operators for Column Oriented NoSQL Databases 51

Network:Supplier
ttl=∞

Telecom : 1Tom/1/2

Network-speed

Vodafone : 4Tom/4/∞

RK/Sta/End Company:Name
ttl=∞

1&1 : 2Jim/2/3

Manager-infor

Vodafone : 7Green/7/9

RK/Sta/End
T

Vodafone : 7 Vodafone : 7Tom/
Green/7/9

Network:Supplier
ttl=∞

Company:Name
ttl=∞

Network-infor

RK/Sta/End
=

Fig. 11. Example of Cartesian product

5.1.7 Theta-Join ��T

The definition of ��T can be defined from �T and σT
p .

5.2 CTO Operator Model

We have already seen that each TTR table can be transformed to its corre-
sponding EHR table (the transformation task is defined by TTE). EHR falls
into the attribute time-stamping (ATS) model, as each EHR column maintains
multiple data versions attached with the explicit TIs. To process ATS relations
in the temporal database context, traditional relational algebra is extended to
the historical relational algebra (HRA) with two table restructuring operators
(Nest and Unnest) [4,5]. However, this strategy is not suitable for EHR table
processing, as 1) the quantity of EHR tables is always massive. Hence, the table
restructuring operators can become very expensive; 2) after an EHR table is
processed using the Unnest operator, its corresponding 1NF representation is
not closed under HRA. For example, the HRA projection will discard the row
key column if it is not specified in the projection attributes.

Hence, to process the temporal data in the EHR context, we propose a novel
temporal operator model called CTO. The CTO model is defined under the
following considerations: 1) each CTO operator can be directly applied to EHR
tables without first changing the table structure; 2) the class of EHR tables is
closed under the CTO model, namely, the output of each operator must still be
an EHR table. In the following, we utilize the TTRO operators together with
the table transformation operations (TET and TTE) to define the operational
semantics of CTO operators. Note that this is only for definitional purposes.
The CTO operator implementations do not perform transformations to TTR
and back.

5.2.1 Union Operator ∪C

Let r1 and r2 be two EHR tables which share the same schema definitions.
r1 ∪C r2 = TTE(TET (r1) ∪T TET (r2)). Figure 12 shows this example.

5.2.2 Difference Operator −C

Let r1 and r2 be two EHR tables which share the same schema definitions.
r1 −C r2 = TTE(TET (r1) −T TET (r2)). Figure 13 shows this example.

52 Y. Hu and S. Dessloch

Network:Supplier
ttl=∞

(Telecom,[1,3))Tom

Network_1

Network:Supplier
ttl=∞

(1&1,[6,)),
(Telecom,[2,4))

Tom

Network_2
Network:Supplier

ttl=∞
(1&1,[6,∞)),

(Telecom,[1,4))Tom

c =

Network_3

Fig. 12. ∪C Example

Network:Supplier
ttl=∞

(Vodafone,[3,∞)) ,
(Telecom,[1,3))Tom

Network_1
Network:Supplier

ttl=∞

(1&1,[4,)),
(Telecom,[2,4))

Tom

Network_2

Network:Supplier
ttl=∞

(Vodafone,[3,)),
(Telecom,[1,2))

Tom
=

Network_3

Fig. 13. −C Example

5.2.3 Intersect Operator ∩C

Let r1 and r2 be two EHR tables which share the same schema definitions. The
definition of ∩C is derived from −C : r1 ∩C r2 = (r1) −C (r1 −C r2).

5.2.4 Project Operator πC
A

Let r1 be an EHR table. πC
A(r1) = TTE(π

T
A(TET (r1))).

5.2.5 Filter Operator σC
p

Let r1 be an EHR table. σC
p (r1) = TTE(σ

T
p′(TET (r1))). The corresponding exam-

ple is shown in Figure 3. Please note that, the data version temporal comparisons
in p have to be translated to row key temporal comparisons in p’.

5.2.6 Cartesian Product �C

As the value of each column in EHR is non-atomic (multiple data versions), the
EHR tables satisfy NF2. This property implies that it is possible to do a Carte-
sian product at various nested levels. However, different than the general NF2,
the nested depth of any EHR table is fixed. This characteristic prohibits doing
Cartesian product at the arbitrary nested level. Figure 14 shows this situation.
Suppose we wish to do the product operation at the level of CF1:Col11 in R1

and the level of table R2. The desired schema is denoted at the right-hand side
(R3) which cannot be represented in CoNoSQLDBs.

R1
R1

RK1
RK1

CF1:Col11
CF1:Col11

Val11
Val11

Val12
Val12

R2
R2

RK2
RK2

CF3:Col31
CF3:Col31

Val31
Val31

TI11
TI11

TI12
TI12

TI31
TI31

CF1:Col12
CF1:Col12

R3
R3

RK1
RK1

CF1:Col11
CF1:Col11

Val11
Val11

Val12
Val12

TI11
TI11

TI12
TI12

CF1:Col12
CF1:Col12

RK2
RK2

CF3:Col31
CF3:Col31

Val31
Val31

TI31
TI31

Fig. 14. A desired product results which cannot be represented in EHR

Defining Temporal Operators for Column Oriented NoSQL Databases 53

R3
R3

RK1
RK1

CF1:Col11
CF1:Col11

Val11
Val11

Val12
Val12TI11

TI11
TI12

TI12
CF1:Col12

CF1:Col12
RK2

RK2
CF3:Col31

CF3:Col31

Val31
Val31

TI31
TI31

R3
R3

RK1/RK2
RK1/RK2

CF1:Col11
CF1:Col11

Val11
Val11

Val12
Val12TI11

TI11
TI12

TI12
CF1:Col12

CF1:Col12
CF3:Col31

CF3:Col31

Val31
Val31

TI31
TI31

Fig. 15. Solution of Figure 14

The only solution of this problem is to reduce the nested depth of R3. The
left-hand side in Figure 15 shows the new structure. Clearly, its schema represen-
tation looks the same as the outermost Cartesian product (table level). As each
CoNoSQLDB table can only has one row key column, we need to concatenate
rk1 and rk2 (shown at the right-hand side in Figure 15). Hence, we define the
Cartesian product for EHR as: r1 �C r2 = TTE(TET (r1)�T TET (r2)), where the
group key for TTE is composed by r1.rk and r2.rk.

5.2.7 Theta-Join ��C

The definition of ��C can be defined from �C and σC
p .

5.3 Query Examples

In this section, we show the query examples by using CTO and TTRO models.
The input table is “Network-speed” (NS) shown at the left in Figure 2.

Query: What is the name of internet suppliers whose speed has at any time
been faster than 1000K?

– CTO expression: πC
Network.Supplier(σ

C
Network.Speed.V al≥1000K(TIE(NS))).

– TTRO expression: πT
Network.Supplier(σ

T
Network.Speed.V al≥1000K (TIT (NS))).

– CTO⇒TTRO: TET (πC
Network.Supplier(σ

C
Network.Speed.V al≥1000K(TIE(NS)))).

– TTRO⇒CTO: TTE(πT
Network.Supplier(σ

T
Network.Speed.V al≥1000K(TI (NS)))).

Network:Supplier
ttl=∞

(Vodafone,[4,)),
(Telecom,[1,3))

Tom

Network-speed-EHR

Network:Supplier
ttl=∞

Telecom : 1Tom/1/2

Network-speed-TTR

Telecom : 2Tom/2/3
Vordafone : 4Tom/4/∞

RK/Sta/End

Fig. 16. Query results

As the IHR can cause misleading results during the filter processing, users
first issue the table transformation operation TIT or TIE . Then, either TTRO
operators or CTO operators can be exploited due to the table representations.
Figure 16 depicts the results of query processing. Please note that, although the
row key is not specified in the projection attributes, it is still included in the
final results.

54 Y. Hu and S. Dessloch

IHR IHR

EHR EHR

TTR TTRTTRO

CTO

Fig. 17. Data processing and table transformation stack

5.4 Summary

As we have seen the example in Section 4.2, IHR can cause wrong or misleading
results during query processing because of its implicit TI strategy. To overcome
this problem, we can either translate IHR to EHR or to TTR. TTR utilizes the
tuple time-stamping model and we extended the temporal relational algebra to
the TTRO model. As can be seen from the definitions, the class of TTR tables
is closed under the TTRO operators. EHR follows the attribute time-stamping
model. Simply using historical relational operators with two table restructuring
operations is not appropriate in the EHR context (See the discussion in 5.2). We
hence proposed a novel temporal operator model (CTO). Obviously the class of
EHR tables is closed under CTO operators.

Figure 17 shows an overview of the temporal data processing and table trans-
formation stack which is a refinement of Figure 7. To process the temporal data
in CoNoSQLDBs, users can either write a script using CTO or TTRO operators
as well as representation transformation operators (the same strategy as Pig
Latin) or a SQL-like language can be built on top of CTO or TTRO.

6 Conclusions and Further Work

To our knowledge, our work is the first proposal for defining temporal operators
based on the characteristics of CoNoSQLDBs. We first clarify the meaning of
TS and describe various table representations, such as implicit history repre-
sentation (IHR), explicit history representation (EHR) and tuple time-stamping
representation (TTR). IHR is the original CoNoSQLDB table representation
which utilizes attribute time-stamping (ATS) by attaching the TS to each data
version. As the temporal intervals (TIs) for data versions are implicitly included
among columns, it can cause wrong or misleading results for query processing
(See Figure 2). To overcome this problem, an IHR table can be translated to
either EHR or TTR table format with explicit TI representations. EHR uses the
ATS model where TTR falls into the tuple time-stamping model. For processing
TTR tables, we introduce the TTRO operator model as a minor extension of the
temporal relational algebra. For processing EHR tables directly, we propose a
novel temporal operator model called CTO which can be applied to EHR without
additional table restructuring. We showed that not every resulting EHR or TTR
table can be transformed back into IHR and pointed out in which situations
this is in fact possible. Both TTRO and CTO include seven temporal opera-
tors, such as Union, Difference, Intersection, Project, Filter, Cartesian product
and Theta-Join with auxiliary table transformation operators. Moreover, the

Defining Temporal Operators for Column Oriented NoSQL Databases 55

TTR and EHR tables are closed under the TTRO model and the CTO model,
respectively.

In further work, we plan to give more deliberate classifications of EHR and
TTR to denote when the transformations of EHR to IHR or TTR to IHR are
possible. Moreover, we consider extending the TTRO and CTO operators with
temporal aggregation functions and the ways to efficiently implement the TTRO
and CTO operators.

References

1. Codd, F.: A Relational Model of Data for Large Shared Data Banks. Community,
377–387

2. Makinouchi, A.: A Consideration on Normal Form of Not-necessarily-normalized
Relation in the Relational Data Model. In: VLDB 1977, pp. 447–453 (1977)

3. Richard, S.: The TSQL2 Temporal Query Language. Kluwer (1995) ISBN 0-7923-
9614-6

4. Clifford, J., et al.: On completeness of historical relational query languages. PACM
Transactions on Database Systems, 64–116 (March 1994)

5. Tansel, A.: Temporal Relational Data Model. IEEE Transactions on Knowledge
and Data Engineering, 464–479 (May 1997)

6. Dey, D., et al.: A complete temporal relational algebra. Journal the VLDB Jour-
nal 5(3) (May 1997)

7. Kulkarni, K., et al.: Temporal features in SQL: 2011. ACM SIGMOD, 34–43
(September 2012)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI, pp. 137–150 (2004)

9. Change, F., et al.: Bigtable: A Distributed Storage System for Structured Data.
In: OSDI, pp. 205–218 (2006)

10. Apache HBase, http://hbase.apache.org/
11. http://pig.apache.org/

12. http://hive.apache.org/

13. Allen, J.: Maintaining knowledge about temporal intervals. Communications of
ACM 26 (November 1983)

14. Hu, Y., Dessloch, S.: Extracting Deltas from Column Oriented NoSQL Databases
for Different Incremental Applications and Diverse Data Targets. In: Catania,
B., Guerrini, G., Pokorný, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 372–387.
Springer, Heidelberg (2013)

http://hbase.apache.org/
http://pig.apache.org/
http://hive.apache.org/

Analyzing Sequential Data

in Standard OLAP Architectures

Christian Koncilia1, Johann Eder1, and Tadeusz Morzy2

1 Alpen-Adria-Universität Klagenfurt
Dep. of Informatics-Systems

{eder,koncilia}@isys.uni-klu.ac.at
2 Poznan University of Technology
Institute of Computing Science

morzy@put.poznan.pl

Abstract. Although nearly all data warehouses store sequential data,
i.e. data with a logical or temporal ordering, traditional data warehouse
or OLAP approaches fail when it comes to analyze those sequences.
In this paper we will present a novel approach which generates query-
specific subcubes, i.e. subcubes that consist only of data which fulfill a
given sequential query pattern. These subcubes may then be analyzed us-
ing standard OLAP tools. Our approach consists of two functions which
both return such subcubes. Hence, the user can still use all the well-
known OLAP operations like drill-down, roll-up, slice, etc. to analyze
the cube. Furthermore, this approach may be applied to all data ware-
housing architectures.

1 Introduction

Business Intelligence (BI), Data Warehousing (DWH), and On-Line Analyical
Processing (OLAP) enable users to perfomantly analyze mass data by storing
data in No-SQL database systems, e.g. multidimensional database systems, or
by applying DWH specific logical schemas to relational database systems, e.g.
the Star Schema, Snowflake Schema, etc. [6].

Traditional business intelligence tools analyze facts along dimensions. Facts
describe what a user wants to analyze whereas dimensions describe how the user
analyses his data [6]. Typical examples for facts are Turnover, Profit, the Stock
of Inventory, etc. These facts may then be analyzed along a set of dimensions
like Time, Products or Geography.

This approach succeeded to proof its feasibility in innumerable implementa-
tions in many industrial sectors. However, this approach fails when it comes to
efficiently analyze sequential data, i.e. data with a logical or temporal ordering
[9].

Why does the traditional DWH approach fail when it comes to sequential data
analysis? Assume that we store data about treatment costs and diagnoses for
patients in a DWH. Traditional data warehouses are built to answer questions
like “what are the total costs for patients in 2010” or “what are the average costs

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 56–69, 2014.
c© Springer International Publishing Switzerland 2014

Analyzing Sequential Data in Standard OLAP Architectures 57

for all patients diagnosed cerebral infarction”. However, they are not prepared to
answer queries like “what are the follow-up costs of patients diagnosed cerebral
infarction within 12 months after the diagnose”. This even gets more compli-
cated, when analyzing data along several events, e.g. when analyzing follow-up
costs for patients with a certain diagnose who received a certain treatment within
a given time period after the diagnose.

Although sequential data representation is not a new research area, the fact
that most data sets in an OLAP system are sequential by nature has been ignored
until recently, e.g. in [1,9,8]. These approaches focus on developing novel data
warehouse / OLAP architectures. This allows to develop new operators, query
languages, indexing and caching strategies, etc. However, in our opinion there is
also an evident need to analyze sequential data in existing OLAP infrastructures.

Contribution: In this paper we will present a sophisticated approach which en-
ables the user to analyze simple atomic events and complex sequences of events.
In contrast to other approaches (which will be discussed in section 7), our ap-
proach smoothly integrates into a standard OLAP architecture. Basically, our
approach consists of the following steps:

1. The user defines the sequence she / he wants to analyze, e.g. all patients
who had a specific diagnose A after a diagnose B.

2. A subcube is generated which contains all relevant data, e.g. all patients
records for all patients who had a diagnose A after a diagnose B.

3. An additional dimension Relative Time Axis is created enabling the user to
analyze data in a very flexible way.

The result of a sequential query in our approach is itself a standard OLAP
(sub-)cube. Hence, the user can still use all the well-known OLAP operations
like drill-down, roll-up, slice, dice and so on to analyze this cube.

This paper is organized as follows: In section 2 we will briefly describe a
motivating example which we will use throughout the rest of this paper to depict
the application of our approach. Section 3 will provide a formal model of a data
warehouse which we will extend in section 4 with our sequential OLAP approach.
We will present the prototypical implementation of our approach in section 5. In
section 6, we are going to briefly discuss some application areas for a sequential
OLAP approach. Related work will be discussed in section 7. Finally, we will
conclude this paper in chapter 8.

2 Motivating Example

In this section, we will present our motivating example which we will use as
running example throughout the rest of the paper. Consider a database with
the following table storing information about patients, diagnoses and treatment
costs:

58 C. Koncilia, J. Eder, and T. Morzy

Patient Diag Date Costs

Tim I26 1-1 50
Tim C11 1-2 70
Walter I26 1-8 45
Tim I27 1-8 110
John B32 1-2 80
Walter C11 1-2 60

In this example the patient Tim went to a doctor on 1/1/10 and was diagnosed
with ICD (International Classification of Diseases) code I26 (the code for the
disease pulmonary embolism). The next day, he wanted to get a second opinion
and went to a different doctor who diagnosed a different disease encoded C11.
Then, a few days later, he went to a third doctor who diagnosed I27.

The star schema for a data warehouse to analyze this information consists of
a fact table storing the costs, and three dimension tables (Patient, Diagnose,
Date). Easily one can use this data warehouse to answer queries like “what are
the total costs for patient Tim in 2010” or “what are the average costs for all
patients diagnosed I26”. However, such a data warehouse structure would not
be suitable to answer queries where a dimension member depends on another
dimension member, i.e. where we have sequences.

As we will discuss in section 4.1, such a sequential OLAP query may be
based on Atomic Sequences or on Complex Sequences. Queries based on atomic
sequences are queries that make use of only one single event, e.g. “What are the
follow-up costs of patients during three month after she/he has been diagnosed
I26”. In this example, the single event would be the diagnose I26.

In contrast to such a query, a query based on complex sequences consists of
two or more events. An example for such a query would be: “How many patients
have been diagnosed H35 (Retinopathie, a disease often caused by diabetes which
can lead to blindness) within 12 months after they have been diagnosed E10
(diabetes).” This query would consist of two events, namely the diagnose E10
and the diagnose H35.

Of course, such a complex sequence query is not restricted to two events nor
is it restricted to events that stem from one dimension in the data warehouse.
For instance, if we would store prescriptions in our data warehouse we could also
state queries like: “What are the average follow-up costs of a diagnose I26 for
patients that have been prescribed Heparin within 6 months after the diagnose”.
This query would consist of two events stemming from two different dimensions.

3 Formal OLAP Model

In this section we will give a formal definition of a data warehouse based on the
model presented in [7]. Later on we will extend this data warehouse model such
that the user is able to state all kinds of sequential queries. Please note that our
approach for sequential OLAP simply extends the standard OLAP approach.

Analyzing Sequential Data in Standard OLAP Architectures 59

The result of a sequential query is itself a standard (sub-)cube, extended with a
set of relative time axes. Hence, the user can still use all the well-known OLAP
operations like drill-down, roll-up, slice, dice and so on to analyze her or his
cube.

Intuitively, we define the schema of a data warehouse as a set of cubes which
again are defined as a set of dimensions. The schema of each dimension is defined
by a set of categories, e.g., the dimension Date might consist of the categories
Year, Month and Day organized in a hierarchical relation Y ear → Month →
Day, where for example Y ear → Month means that a month rolls-up to a year.

Each category consists of a set of dimension members. Dimension members
define the instances of a data warehouse schema. For instance, January, February
and March are dimension members assigned to the category Month.

Formally, the schema of a data warehouse is defined by:

i.) A number of dimensions J .
ii.) A set of dimensions D = {D1, ..., DJ}, where Di =< ID,DKey >. ID is

a unique identifier of the dimension. DKey is a user defined key (e. g. , the
name of the dimension), which is unique within the data warehouse.

iii.) A number of categories K.
iv.) A set of categories C = {C1, ..., CK} where Ci =< ID,CKey >. ID is a

unique identifier of the category. CKey is a user defined key (e. g. , the name
of the category) which is unique within the data warehouse.

v.) A set of assignments between dimensions and categories ADC = {A1
DC ,

..., AN
DC}, where Ai

DC =< D.ID, C.ID >. D.ID represents the identi-
fier of the corresponding dimension. C.ID represents the identifier of the
corresponding category.

vi.) A number of hierarchical category assignments O.
vii.) A set of hierarchical category assignments HC = {HC1, ..., HCO} where

HCi =< ID,C.IDC , C.IDP >. ID is a unique identifier of the hierarchical
category assignment. C.IDC is the identifier of a category, C.IDP is the
category identifier of the parent of C.IDC or ∅ if the category is a top-level
category.

viii.) A number of cubes I.
ix.) A set of cubes B = {B1, ..., BI} where Bi =<ID, BKey, S >. ID is a

unique identifier of the cube (similar to Oid′s in object-oriented database
systems). BKey is a user defined key (e. g. , the name of the cube), which
is unique within the data warehouse.
S represents the schema of the cube. The tuple S consists of all dimensions
and hierarchical category assignments that are a part of this cube. There-
fore, S is defined as S = (D,A) where D = {D1.ID, ..., DN .ID} (N ≤ J)
and A = {HC1.ID, ..., HCM .ID} (M ≤ O).

The instances of a data warehouse are defined by:

i.) A number of dimension members P .
ii.) A set of dimension members M = {M1, ...,MP } where Mi =< ID, MKey,

CA, >. ID is a unique identifier of the dimension member. MKey is a user

60 C. Koncilia, J. Eder, and T. Morzy

defined key (e. g. , the name of the dimension member), which is unique
within the data warehouse. The set CA represents the set of categories, to
which the corresponding dimension member is assigned.

iii.) A set of hierarchical member assignments HM = { HM1, ..., HMO} where
HMi =< ID,M.IDC , M.IDP , f >. ID is a unique identifier of the hierar-
chical member assignment.M.IDC is the identifier of a dimension member,
M.IDP is the dimension member identifier of the parent of M.IDC or ∅
if the dimension member is at the top-level. f represents the consolidation
function between M.IDC and M.IDP , e. g. + for addition, − for subtrac-
tion, etc.

iv.) A function cval : (MD1 , ...,MDN) → measure, which uniquely assigns a
measure to each vector (MD1 , ..., MDN) where (MD1 , ..., MDN) ∈ MD1 ×
...×MDN . The domain of this function is the set of all cell references. The
range of this function are all measures of a cube.

4 Sequential OLAP Model

In this chapter, we will extend the OLAP model presented in section 3. The
extension basically consists of two items: 1) we will introduce the concept of
sequential OLAP functions and 2) we will enrich this model with the concept
and definition of a relative time axis.

Intuitively, a sequential OLAP function can be considered as an extended slice
operation and a relative time axis represents the time difference between a given
event and any other event.

4.1 Sequential OLAP Function and Events

Basically, a sequential OLAP function takes a cube, a grouping dimension, an
ordering dimension and a sequence of events as input and returns a subcube
as output. The terms grouping dimension, ordering dimension and sequence of
events will be defined in section 4.2. The query “fetch all patient records for
patients which have been diagnosed retinopathie after they have been diagnosed
diabetes” could be an example for a sequential OLAP function. This query would
result in a subcube that consists of all dimensions of the corresponding cube and
all dimension members and measures which belong to patients that have been
diagnosed retinopathie after a diagnose diabetes. This subcube may then serve as
basis for analysis which for instance easily enable the user to compute follow-up
costs.

The fundamental basis for our sequential OLAP function are sequences. We
distinguish between two different kinds of sequences:

1.) Complex Sequence: A complex sequence forms a path through a set of
events, e.g. a sequence E1 → E2 → . . . → En where Ei is an event.

2.) Atomic Sequence: An atomic sequence is a subset of complex sequence.
It represents a one stepped path, i.e. E1. For instance, E1 may be the event
“diagnosed diabetes”.

Analyzing Sequential Data in Standard OLAP Architectures 61

An event E is an appearance of an incident at a given point of time. In
our context, we can define an event E as the existence of a function cval with
cval(Mt,Me, . . .) �= null with a given dimension member Me that defines the
incident and a dimension member Mt that defines the point of time.

Ej → Ek means that the event Ek occurred directly after event Ej , i.e. there
exists no event El between Ej and Ek along an ordering dimension defined by the
user. Usually, this ordering dimension will be the time dimension.

4.2 Sequential OLAP Function for Atomic Sequences

As a complex sequence can be decomposed to a set of atomic sequences, we will
start by defining the sequential OLAP function for atomic events.

Pre-Conditions: The following pre-conditions for a sequential OLAP function
on atomic sequences have to be fulfilled:

1.) A cube Bi has to be defined as in section 3. This cube serves as input, i.e.
it defines the base for the sequential OLAP function.

2.) Bi has to contain at least one ordering dimension Do. An ordering dimen-
sion is a dimension on which an ordering function forder has been defined.
forder(Mj ,Mk) takes any two dimension members Mj and Mk and returns
−1 if Mj < Mk, 0 if Mj = Mk or +1 if Mj > Mk.

3.) The user has to define a grouping dimension Dg. This grouping dimension
defines the subject of the analysis. Hence, Dg defines which dimension the
event refers to, i.e. which dimension the order of the ordering dimension
refers to. Dg may be any dimension of Bi.

4.) Furthermore, the user has to define a single (atomic) event E with E = ME

where ME is a dimension member of DE and DE is a dimension in Bi.

Definition: Now, the function solap can be defined as follows: Given the input
Bi, Do, Dg and E the function solap(Bi, Do, Dg, E , Ep) returns a subcube Bo

which consists of all dimensions Di ∈ Bi and all dimension members Mi with
Mg ∈ Dg ∧ ∃cval(MD1 , . . . ,Mi,Mg,ME , . . . ,MDN) �= null ∧ ME = E .

Please note that Ep is not used in atomic sequences and will be discussed later
on in section 4.3.

Intuitively we can say that a solap(Bi, Do, Dg, E , Ep) returns a subcube which
consists of all the data of all dimension members in the grouping dimension for
which there exists at least one entry in the fact table that represents the given
event.

Example: Assume that Bi is the cube as defined in our running example in
section 2. The ordering dimension Do is the dimension Date. The grouping
dimension Dg, i.e. the subject of our analysis, is the dimension Patient. The
event E = I26.

Taking these input parameters, the function solap(Bi, Date, Patient, I26)
would return a subcube which consists of all the data of all patients who had a
diagnose I26, i.e. it would return a subcube which consists of the data represented
in the following table:

62 C. Koncilia, J. Eder, and T. Morzy

Patient Diag Date Costs

Tim I26 1-1 50
Tim C11 1-2 70
Walter I26 1-8 45
Tim I27 1-8 110
Walter C11 1-2 60

4.3 Sequential OLAP Function for Complex Sequences

In the previous section we defined the function solap for atomic events. We will
now extend this function to work on complex sequences.

Pre-Conditions: The pre-conditions are the same as defined in section 4.2 ex-
cept the fact that the user may define any sequence of events E =< E1, . . . , En >
with Ei = MEi where MEi is a dimension member of DEi andDEi is a dimension
in Bi.

Furthermore, as complex sequences have to consider the ordering of several
events, we have to extend the solap function with an additional parameter,
namely Ep. In an atomic sequence, Ep is always null. In a complex sequence, Ep

is the previous event in the sequence of events or null, if no previous event has
been defined, i.e. if applying solap to the first event in a sequence of events.

Definition: First, extending the definition given in 4.2 with the parameter Ep,
the function solap can be defined as follows: Given the input Bi, Do, Dg, E and
Ep the function solap(Bi, Do, Dg, E , Ep) returns a subcube Bo which consists
of all dimensions Di ∈ Bi and all dimension members Mi with Mg ∈ Dg ∧
∃cval(MD1 , . . . ,Mi,Mg,ME, . . . ,MDN) �= null ∧ ME = E ∧

∃cval(MD1 , . . . ,Mi,Mg,MEp , . . . ,MDN)�= null∧MEp =Ep∧forder(E , Ep) > 0.
Secondly, with the extended definition of the solap function, we can define

solap for complex sequences: Given the input Bi, Do, Dg and E the function
solap(Bi, Do, Dg, E, Ep) can now be defined as a composition of solap functions
on atomic sequences:

solap(Bi, Do, Dg,E) =

solap(solap(. . . solap(Bi, Do, Dg, E1, null) . . . ,
Do, Dg, En−1, En−2), Do, Dg, En, En−1)

(1)

Example: Again, let Bi be the cube as defined in our running example in section
2, Date be the ordering dimension Do and Patient be the grouping dimension
Dg. Now, the user would like to analyze all patient records about patients who
had a diagnose I26 and afterwards a diagnose I27. Hence, E =< I26, I27 >.

Taking these input parameters, the function solap(Bi, Date, Patient, <
I26, I27 >) would result in a function Bo1 = solap(Bi, Date, Patient, I26)
whose result Bo1 would serve as input parameter for Bo2 = solap(Bo1 , Date,

Analyzing Sequential Data in Standard OLAP Architectures 63

Patient, I27). Therefore, the resulting cube would consist of the data repre-
sented in the following table:

Patient Diag Date Costs

Tim I26 1-1 50
Tim C11 1-2 70
Tim I27 1-8 110

4.4 Relative Time Axis

The relative time axis function generates a new dimension in the cube which
stores the difference between a given event and any other event. We will use
the term relative time axis, although the concept of a relative time axis may be
applied to any ordering dimension which doesn’t necessarily have to be a time
or date dimension.

In contrast to other time dimensions in the cube, the relative time axis is
not a set of absolute timestamps like 12-30-2010 or 8-15-2010 10:42, but a set
of time intervals which are relative to the ordering dimension Do (as described
above, this ordering dimension is usually a time dimension). Thus, the relative
time axis could for instance be a dimension with a set of dimension members
{−n days, . . . ,−1 day, 0,+1 day, . . . ,+m days}.
Pre-Conditions: In order to compute a relative time axis, the following pre-
conditions have to be fulfilled:

1.) A cube Bi has to be defined. Usually, this cube will be the result of a solap()
function as defined in sections 4.2 and 4.3.

2.) As defined in section 4.2 this cube Bi has to contain at least one ordering
dimension Do. Furthermore, the user has to define a grouping dimension Dg

(the subject of the analysis) with Dg ∈ Bi.
3.) The user has to define a single event E with E = ME whereME is a dimenson

member of DE and DE is a dimension in Bi.
4.) As there might exist several cell values in the cube referred to by a function

cval(M1, . . . ,Mg, E , . . . ,Mn) with Mg being a dimension member assigned
to Dg, the user has to define which occurrence of E should serve as base. Cur-
rently, this can be done by applying a first() or last() function, which sets
the first or last occurrence E as base. Other functions could be implemented.

Definition: we define a function rta() (relative time axis) whish uses a function
diff() to compute the difference between any two event occurrences. diff()
takes two records, i.e. two cval() functions as defined in section 3, and the order-
ing dimension Do as input and computes the differences between the two entries.
The granularity of diff() is equal to the granularity of Do, e.g. if the granularity
of Do is a day, then diff() will return the difference in days.

The function diff() may be defined by the user. Usually, it simply computes
the difference between two dates:

64 C. Koncilia, J. Eder, and T. Morzy

diff(cval(Mo1,Mg,ME, . . .), cval(Mo2 ,Mg, . . .)) =

Mo1 − Mo2

withMo1 ,Mo2 ∈ Do ∧ Mg ∈ Dg ∧ME ∈ E . (2)

Using the defined function diff() we can formally define the rta() function.
rta(Bi, Do, E) returns a cube Bo where Bo consists of the same schema S as
Bi and all dimension members M, hierarchical member assignments HM and all
measures assigned to Bi. Furthermore, Bo consists of an additional dimension
DRTA with a set of dimension members MRTA = {M1, . . . ,Mn} assigned to
DRTA (via CA, C and ADC as defined in section 3). For each Mi ∈ MRTA

we can define that Mi.MKey = diff(x, y) where x = cval(MO1 , E , . . .) and
y = cval(MO2 , . . .) and x �= y.

Example: Assume that Bo is the resulting cube of the function solap(Bi, Date,
Patient, I26) as described in section 4.2. Again, the ordering dimension Do is
the dimension Date. The grouping dimension Dg, i.e. the subject of our analysis,
is the dimension Patient. The event E = I26.

Taking these input parameters, the function rta(Bo, Date, Patient, I26)
would return a subcube which consists of all the data of all patients who had
a diagnose I26. Furthermore, this subcube would consist of an additional di-
mension named RTA which stores the difference between the occurrence of a
diagnose I26 and any other event. The following table depicts the resulting cube:

Patient Diag Date Costs RTA

Tim I26 1-1 50 0
Tim C11 1-2 70 +1
Tim I27 1-8 110 +7
Walter C11 1-2 60 -6
Walter I26 1-8 45 0

4.5 Workflow Example

In this section we will discuss how a user may use SOLAP() and RTA() to state
sequential OLAP queries and how she may analyse the resulting cube.

Assume that a user would like to state a query like “what are the follow-up
costs for patients diagnosed I26 within 12 month after they have been diagnosed
I26”? To answer this query the user would select the Date dimension as order-
ing dimension and Patient as grouping dimension. Furthermore, he defines an
atomic sequence with one event “Diagnose = I26”. Now, the application would
use the functions SOLAP () and RTA() (with the corresponding parameters) to
generate a cube as depicted in Table 4.4.

This cube would enable the user to easily analyze the follow-up costs that oc-
curred within 12 month after the diagnose I26. This could be done by applying
standard OLAP functions to the cube. In this example, the user could simply

Analyzing Sequential Data in Standard OLAP Architectures 65

Fig. 1. Start Screen of our Prototype

select the dimension members 0 . . . 12 of the dimension RTA (which would cor-
respond to a slice and dice operation) and calculate the sum of the fact cost.
The same method could be applied to analyze which diagnoses occurred within
3 months before a diganose I26.

5 Proof of Concept

We implemented a prototype of our approach as proof of concept. This prototype
has been implemented as a web-client using a PostgreSQL 9.0.0 database, PHP
5.3.2 and jQuery 1.4.2. Technically, the data warehouse itself has been built
using the traditional Star Schema approach. Hence, we have one fact table and
several tables representing the dimensions of the cube. For our running example,
this results in a fact table that consists of the costs and foreign keys to the three
dimensions: Patient, Diagnose and Date.

Figure 1 shows a screenshot of the start screen of the prototype. For this
paper, we imported the data from our running example.

Using the prototype depicted in Fig. 2 the user may select an ordering dimen-
sion and a grouping dimension. Furthermore, she or he may define a sequence of
events, i.e. an atomic sequence or a complex sequence. Currently, the prototype
does not support using wildcards in sequences. In this example, the user selected
a single event, i.e. Diagnose I26.

Basically, the application takes the user inputs, extracts the sequence defined
by the user, and dynamically generates an SQL query for the first step in this

66 C. Koncilia, J. Eder, and T. Morzy

Fig. 2. Result Screen for an Atomic Sequence (Diagnose = I26)

sequence. This query serves as basis for a view created in the database. This
view represents the subcube returned by the function solap() as presented in
section 4.2. For all subsequently defined sequence steps we repeate this process
as defined in section 4.3. In contrast to the first step, all further steps work on
the view defined in the previous step. Finally, the implementation calls the rta()
function as defined in section 4.4 to compute the relative time axis.

The result of this query is being depicted in figure 2. As can be seen, a new
dimension “rta” has been created, representing the relative time axis.

6 Application Examples

In section 2 we discussed an application example originated in the health care
sector. Basically, such a sequential OLAP approach would enrich each data ware-
house that stores any kind of events, e.g. diagnoses, prescriptions, workflow tasks,
sensor values and so on.

In this section we would like to briefly discuss some application examples for
sequential OLAP are:

1.) Workflow Systems: Usually, a workflow system consists of several tasks.
These tasks are linked with control structures like conditional branches,
loops, joins and so on [13]. Analyzing worklow instances with OLAP or
data warehouse techniques is tedious and sometimes impossible because of
these control structures [5]. However, applying our sequential OLAP tech-
nique would enable us to reduce the complexity of an unlimited amount of
possible instance structures to a limited amount of instance structures which
follow a specific pattern, e.g. A → B → ∗ → D would select all instances

Analyzing Sequential Data in Standard OLAP Architectures 67

which used the task A followed by task B followed by any other set of tasks
followed by task D.

2.) Detecting Pharmacological Interactions: Another application exam-
ple would be a medical system to support doctors in avoiding dangerous
pharmacological interaction. For instance, if a patient has already been pre-
scribed Ciclosporin (an immunosuppressant drug usually used after organ
transplants) and now gets a prescription from a different doctor for a barbi-
turate (drugs that act as central nervous system depressants). Taking both
medicins at the same time may have dangerous interactions. To be more
precise, a barbiturate negatively influences the effective level of Ciclosporin
which may lead to organ repulsion. A sequential analysis would allow doctors
to avoid prescribing such combinations of drugs.

3.) Ticketing systems for light rail traffic, skiing resorts or multi-storey car
parks would be another application example. Here, a user could want to
analyze different sets of customers which for instance took a specific route
A → ∗ → X , which means that they entered the subway at station A,
changed trains at any station, and left the subway at station X .

4.) Sensor data warehouses would also be an interesting application area
for a sequential data warehousing approach. Consider a data warehouse that
stores information which stems from dozens sensors mounted at a power tur-
bine. Analyzing sequences in this data warehouse could provide very useful
information, e.g. to reduce down-times. For instance, we could want to ana-
lyze the allocation of heat of certain parts of the turbine within 30 seconds
after a specific sensor reported a defined temperature.

7 Related Work

While the support of sequential data in traditional database management sys-
tems in general and specifically on time-sequences isn’t a new topic (see [11],
[12], [10], [2]), the term of Sequence OLAP or S-OLAP has been coined recently
in [9]. In [9] the authors present an approach where a user defines a query based
on pattern templates to analyze sequence data. A pattern template consists of
a sequence of symbols where each symbol corresponds to a domain of values. In
contrast to a pattern template, e.g. (A, B, A) a pattern is an instantiation of
cell values corresponding to a pattern template. A prototypical implementation
of such an S-OLAP system has been presented in [3].

The approach presented in [9] has been extended by the same research group
in [4]. In [4] the authors focus on the efficient evaluation of ranking pattern based
aggregate queries. As in [9] the number of dimensions of the defined cube is equal
to the number of distinct values of the selected attribute in the source table.

In order to avoid an overwhelming amount of data to be presented to the user,
[4] introduces support for top-k queries.

Another interesting approach has been presented in [8]. The authors combine
two existing technologies, namely OLAP (Online Analytical Processing) and
CEP (Complex Event Processing) to analyze real-time event data streams. They

68 C. Koncilia, J. Eder, and T. Morzy

introduce patterns and pattern hierarchies. If a pattern A contains a subset of
event types compared to a pattern B, then A is at a coarser level then B in
the resulting pattern hierarchy. Based on these hierarchical relationships, the
authors present different strategies how to exploit these hierarchies for query
optimization.

The approach presented in [1] discusses a model to analyze time-point-based
sequential data. The authors introduce a formal model and define several op-
erators to create and analyze sequences. Furthermore, it formaly defines and
discusses the notion of facts, measures and dimensions in the context of sequen-
tial OLAP.

Our approach differs from the approaches discussed in this section as follows:
our approach is not a redefinition of the well know OLAP approach and archi-
tecture as for instance presented in [6], but an extension. To the best of our
knowledge, it is the first sequential OLAP approach that smoothly integrates
into existing OLAP systems.

8 Conclusion

Traditional data warehouse and OLAP approaches still fail when it comes to
efficiently analyze sequential data, i.e. data with a logical or temporal ordering
[9]. For instance, a query like “what are the follow-up costs of patients diagnosed
cerebral infarction within 12 months after the diagnose” cannot be answered
without a relative time axis defined in the data warehouse for the event defined
in the query (here: diagnose cerebral infarction). A naive approach to solve this
problem would be to create a relative time axis in advance for all combinations
of events. However, such a naive approach will fail as the number of possible
combinations will quickly blast the capacity of the cube.

In this paper we presented a novel and sophisticated approach that enables the
user to analyze sequential data in a standard OLAP environment. The user may
state simple queries that require only an atomic event or complex queries with a
defined sequence of events. The result of our approach is itself a standard OLAP
cube, extended with a new dimension representing the relative time axis. Thus, it
is easy to implement our approach into an existing OLAP solution. Furthermore,
the user may use her or his OLAP solution to analyze the resulting data.

We implemented this approach as a proof of concept. Basically, this imple-
mentation enables the user to define a sequence of events and automatically
apply the defined functions solap() and rta() to a given data warehouse.

Future work will focus on wildcard support in sequence definitions. A wild-
card may be a question mark “?”, represeting any single event, an asterisk “∗”,
representing any sequence of events or a plus “+”, representing any sequence of
events which consists of at least one event.

Analyzing Sequential Data in Standard OLAP Architectures 69

References

1. B ↪ebel, B., Morzy, M., Morzy, T., Królikowski, Z., Wrembel, R.: Olap-like analysis
of time point-based sequential data. In: Castano, S., Vassiliadis, P., Lakshmanan,
L.V., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 153–161.
Springer, Heidelberg (2012)

2. Chandra, R., Segev, A.: Managing Temporal Financial Data in an Extensible
Database. In: VLDB (1992)

3. Chui, C., Kao, B., Lo, E., Cheung, D.: S-OLAP: an OLAP System for Analyzing
Sequence Data. In: SIGMOD (June 2010)

4. Chui, C., Lo, E., Kao, B., Ho, W.: Supporting Ranking Pattern-Based Aggregate
Queries in Sequence Data Cubes. In: CIKM (2009)

5. Eder, J., Olivotto, G.E., Gruber, W.: A Data Warehouse for Workflow Logs. In:
Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 1–15.
Springer, Heidelberg (2002)

6. Kimball, R.: The Data Warehouse Toolkit, 2nd edn. John Wiley & Sons (1996)
7. Koncilia, C.: The COMET Temporal Data Warehouse (PhD). In: UMI (2002)
8. Liu, M., Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta, A.:

E-cube: Multi-dimensional event sequences processing using concept and pattern
hierarchies. In: ICDE (2010)

9. Lo, E., Kao, B., Ho, W., Lee, S., Chui, C., Cheung, D.: OLAP on Sequence Data.
In: SIGMOD (June 2008)

10. Segev, A., Shoshani, A.: Logical Modeling of Temporal Data. In: SIGMOD (1987)
11. Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence query processing. In: SIG-

MOD (1994)
12. Seshadri, P., Livny, M., Ramakrishnan, R.: The Design and Implementation of a

Sequence Database System. In: VLDB (1996)
13. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow

patterns. In: Distributed and Parallel Databases (2003)

Hybrid Fragmentation of XML Data Warehouse

Using K-Means Algorithm

Mohamed Kechar and Safia Nait Bahloul

University of Oran, LITIO Laboratory, BP 1524, El-M’Naouer, 31000 Oran, Algeria
{mkechar,nait1}@yahoo.fr

Abstract. The efficiency of the decision-making process in an XML
data warehouse environment, is in a narrow relation with the perfor-
mances of decision-support queries. Optimize these performances, auto-
matically contribute in improving decision making. One of the important
performances optimization techniques in XML data warehouse is frag-
mentation with its different variants (horizontal fragmentation and ver-
tical fragmentation). In this paper, we develop a hybrid fragmentation
algorithm combining a vertical fragmentation based on XPath expres-
sions and a horizontal fragmentation based on selection predicates. To
control the number of fragments, we use the K-Means algorithm. Finally,
we validate our approach under Oracle Berkeley DB XML by several ex-
periments done on XML data, derived from the XWB benchmark.

Keywords: XML Data Warehouse, Hybrid Fragmentation, XPath Ex-
pressions, Selection Predicates.

1 Introduction

With the emergence of XML, a large amount of heterogeneous XML data is ma-
nipulated by enterprises. Various works [11], [16], [26], and [27] have proposed
to integrate and store the XML data to exploit them in decision-making (the
birth of XML data warehouses). However, in a decision-making system, time
is considered as a major constraint. The managers of the company should take
appropriate decisions timely. Unfortunately, their decisions are based on analyz-
ing done on the results of several quite complex queries, called decision-support
queries. Characterized by join operations, selection operations and aggregation
operations, the response times of these queries is generally quite high. Optimize
the performances of such queries, contributes significantly to the improvement
of decision-making. In this context, several performance optimization techniques
have been proposed in the field of data warehouses, such as indexes, material-
ized views and data fragmentation. Among these techniques, fragmentation has
received much interest by the researcher’s community. Its efficiency has been
proven in the relational databases [1], [13], [25], the object-oriented databases
[5,6] and the relational data warehouses [3], [4], and [14]. However, few works
on fragmentation have been proposed in the XML data warehouses. To frag-
ment an XML data warehouse modeled by star schema [10], the authors in [22]

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 70–82, 2014.
c© Springer International Publishing Switzerland 2014

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 71

use the primary horizontal fragmentation and derived horizontal fragmentation.
They use the K-Means algorithm to group the selection predicates into disjoint
classes defining the horizontal XML fragments. In [23], the authors propose two
horizontal fragmentation techniques of an XML data warehouse. The first is
based on the concept of minterms [25] and the second is based on predicates
affinities[30]. The authors in [28], propose different models of partitioning of a
multi-version XML data warehouses. They propose the partitioning model of
XML documents, the partitioning model based on the XML schema of the XML
data warehouse and the mixed model that combines the first two models. The
approach proposed in [9], vertically fragment the XML data warehouse based
on all frequently paths used by queries. The authors use the association rules to
find the set of paths from which they derive the vertical fragmentation schema.
To the best of our knowledge, no hybrid fragmentation approach, combining the
vertical fragmentation and the horizontal fragmentation has been proposed to
date in the context of XML data warehouse. Although its efficiency has been
already proven in the relational databases [24], the Object Oriented databases
[2], and the relational data warehouses [15]. For this fact, we present in this pa-
per a hybrid fragmentation of an XML data warehouse. We partition vertically
the structure of the data warehouse into vertical fragments by a classification
of XPath expressions. Then we fragment horizontally the XML data of each
vertical fragment by a classification of selection predicates. We use in our clas-
sification the K-Means algorithm[18] with the euclidean distance. In addition to
its simplicity and its rapidity, it allows us to control the number of fragments.

The remainder of this paper is organized as follows. In Sect.2, we survey the
different multidimensional models and we focus on the flat model that we use
as a reference model. In Sect.3 we detail our hybrid fragmentation. Finally, we
present some experimental results of our evaluations in Sect.4.

2 Multidimensional Modeling of XML Data

In the literature, different XML data warehouse models have been proposed. In
[11] the XML dataWarehouse is represented by a collection of homogeneous XML
documents. Each XML document represents a fact with its measures and its di-
mensions. In [8], the authors propose the hierarchical model in which they use a
single XML document containing all facts and all dimensions. Each fact is rep-
resented by an XML element containing its measures and the references to the
XML elements containing its dimensions. In addition to the hierarchical model,
they define the flat model represented by a single XML document. Each fact in
this document is represented by a single XML element containing its measures
and its dimensions in the form of XML sub-elements. The XCube model proposed
by [17], uses an XML document named FaitsXCube to represent facts and another
XML document namedDimensionsXCube to represent dimensions. By analogy to
the relational star model [19], the authors in [10] and [27], model the XML data
warehouse by a central XML document containing all facts with their measures
surrounded by several XML documents representing the dimensions. These XML
documents are linked by primary keys and foreign keys.

72 M. Kechar and S.N. Bahloul

Performance evaluations of these different models of XML data warehouses
have been conducted in several works. For example in [8], the authors have con-
ducted evaluations and comparisons of performances between the hierarchical
model, the flat model, and XCube model. They noticed that the flat model pro-
vides better performance compared with the other two models, except that it
introduces redundancy of the dimensions. A performance comparison between
the star model, the flat model, and the model proposed in [11] has been car-
ried out in [10]. The authors have shown that the star model provides improved
performance for queries that use two joins. However, from three joins, the per-
formances decrease in favour of the flat model. In order to improve the response
time of XQuery queries, a join index has been proposed in [20]. By carefully
inspecting this index, we found that his representation is in compliance with a
flat model (a single XML document containing all the facts with their measures
and dimensions). Based on these performance evaluations, we use the flat model
depicted in Fig.1) as a reference model to represent the XML data warehouse.

In the following sections, we describe our hybrid fragmentation approach.

Fig. 1. Reference Model of the XML Data Warehouse

3 Hybrid Fragmentation of the XML Data Warehouse

In this section, we detail the three main phases of our hybrid fragmentation
approach. For the remaining sections, letters E, T and D refer respectively to,
the set of the names of distinct XML elements, the set of names of distinct
XML attributes and the set of distinct data values. Δ represents the XML data
warehouse modeled by the flat model and W is the workload executed on Δ.
We use in our approach the two concepts of the XPath expression (Definition 1)
and the selection predicate (Definition 2).

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 73

Definition 1. A path expression EC is a sequence root/e1/.../ {en|@ak}, with
{e1, ..., en} ∈ E and @ak ∈ T . The expression EC may contain the symbol ’*’
which indicates an arbitrary element of E, the symbol ’//’ indicating a sequence
of elements ei/.../ej such as i < j and the symbol ’[i]’ which indicates the position
of the element ei in the XML tree [7].

Definition 2. A selection predicate is defined by the expression Predj := P
θ value | φv(P) θ value | φb(P) | Q, with P a terminal XPath expression,
θ ∈ {=, <,>,≤,≥, �=}, value ∈ D, φv is an XPath function, that returns values
in D, φb is a Boolean function and Q denotes an arbitrary XPath expression [7].

3.1 Vertical Fragmentation Based on XPath Expressions

We define the vertical fragmentation of XML data warehouse Δ, by partitioning
its structure into K vertical fragments V F1, ..., V FK . Each fragment is a projec-
tion of a set of XPath expressions frequently accessed by the workload. In this
phase we proceed by:

Extraction of XPath Expressions. Each XQuery query belonging to W
is in conformity with the basic syntax of the FLWOR expression (For, Let,
Where, Order by, Return) [29]. For each query, we perform a syntactic analysis
by clause and we extract all its XPath expressions. Thus we identify the overall
set of XPath expressions EC used by the workload W .

XPath Expressions-Queries Usage Matrix (XPQUM). Defines the use
of each XPath expression by the set of queries. We create in XPQUM , a line i
for each XPath expression ECi ∈ EC and a column j for each query Qj ∈ W .
If the query Qj use ECi, then XPQUM(i, j) = 1, else XPQUM(i, j) = 0.

Vertical Fragmentation. In this step, we use the K-Means classification algo-
rithm [18] (the choice of K-Means is justified by its simplicity and rapidity) to
partition the set of XPath expressions into subsets (classes) that present a usage
similarity by queries. With the XPQUM matrix as classification context and an
integer K indicating the number of vertical fragments, the K-Means algorithm
generates K disjoint classes of XPath expressions. The XPath expressions of the
class Ci describe the structure of the vertical fragment V Fi and the set of frag-
ments V Fi (i = 1...K) defines our vertical fragmentation schema noted V FS.
After this partitioning (fragmentation), we assign every query to the vertical
fragments needed to its processing. We formalize this assignment as following:
Let:

– C1, C2, ..., Ck the sets of XPath expressions defining respectively the vertical
fragments V F1, V F2, ..., V Fk,

– SQi is the set of query assigned to V Fi,
– d is the number of queries requiring join operations in V FS schema,
– A the set of XPath expressions used by the query Qj,

74 M. Kechar and S.N. Bahloul

Then

1. If A ⊆ Ci then SQi ← SQi ∪ {Qj}.
2. If A ⊆ (Cx ∪ ...∪Cy) then SQx ← SQx ∪ {Qj},...,SQy ← SQy ∪ {Qj} and

d ← d+ 1.

In case (2), the processing of the queryQj , requires a join operations between the
vertical fragments V Fx, ..., V Fy . These join operations are among the causes of
performance deterioration. For this fact, we minimize the number of join queries
(the d number) appearing in the vertical fragmentation schema V FS. We vary
N times the value of the number K of vertical fragments (N is random integer)
and for each value, we generate a vertical fragmentation schema. Among these
N schemas, we select the optimal according to the following rule:

Rule.1. A vertical fragmentation schema is optimal if and only if it contains
a minimum of queries requiring join operations between the vertical fragments.
Formally:

V FSi is optimal ≡ ∀j ∈ [1..N] , ∃i ∈ [1..N] / (di < dj) with i �= j . (1)

di is the number of join queries in the fragmentation schema V FSi.
Then for each vertical fragment V Fi ∈ V FSi, we create a vertical script

V Si represented by a XQuery query. The execution context (the clause for)
of this query is the XML data warehouse Δ and its clause return represents
the projection of all XPath expressions belonging to Ci. The selected vertical
fragmentation schema is the final result of this first phase as represented by the
Fig.2.

In the next section we detail the horizontal fragmentation of each vertical
fragment belonging to this schema.

3.2 Horizontal Fragmentation Based on Selection Predicates

In the second phase of our hybrid fragmentation, we fragment horizontally
the XML data of each vertical fragment V Fi into L horizontal fragments
FHi1,...,FHiL. The following steps are executed for each vertical fragment as
represented by the Fig.3.

Extraction of Selection Predicates. We perform a syntactical parsing of
the where clause of each query belonging to the set SQi (the set of queries
assigned to the vertical fragment V Fi). This parsing allows us to extract the set
of selection predicates noted PSi.

Selection Predicates-Queries Usage Matrix (SPQUM). It defines the
use of selection predicates of PSi by the queries of SQi. The SPQUM lines
correspond to the selection predicates and its columns represent queries. if the
predicate px exists in the where clause of the query Qy then SPQUM(x, y) = 1,
else SPQUM(x, y) = 0.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 75

Fig. 2. Vertical fragmentation of the XML data warehouse

Horizontal Fragmentation. Using the K-Means algorithm, we group into
classes the selection predicates that present a usage similarity by queries. Speci-
fying the number L of the horizontal fragments, the algorithm partitions the set
of the selection predicates of the MUPSR matrix in L disjoint classes represent-
ing the horizontal fragmentation schema noted HFSi. The selection predicates
of each class Cij (i the index of the vertical fragment and j = 1..L) define the
XML data of the horizontal fragment FHij . According to this partitioning, we
assign each query belonging to SQi to the horizontal fragments needed to its
processing as follows:
Let:

– Qh ∈ SQi,
– Ci1, Ci2, ..., CiL are the sets of selection predicates corresponding to the hor-

izontal fragments FHi1, FHi2, ..., FHiL.
– PSQh the set of the selection predicates used by the query Qh,
– d

′
the number of queries requiring union operations between FHij ,

– SQij the set of queries assigned to the fragment FHij

Then

1. If PSQh ⊆ Cij then SQij ← SQij ∪Qh.
2. if PSQh ⊆ (Cix ∪ ... ∪ Ciy) then SQix ← SQij ∪ {Qh},...,SQiy. ← SQiy ∪

{Qh} and d
′ ← d

′
+ 1.

In the case (2), the processing of the query Qh, requires the union of the horizon-
tal fragments FHix, ..., FHiy. In order to reduce these union operations, we vary

N
′
times the value of the number of horizontal fragments L and we generate a

horizontal fragmentation schema for each value. Among these N
′
fragmentation

schemas, we select the best according to the following rule:

76 M. Kechar and S.N. Bahloul

Rule.2. An horizontal fragmentation schema noted HFS is optimal if and only if
it contains a minimum of queries requiring union operations between horizontal
fragments

HFSi is optimal ≡ ∀j ∈
[
1..N

′]
, ∃i ∈

[
1..N

′]
/

(
d

′
i < d

′
j

)
with i �= j. (2)

d
′
i is the number of union queries in the fragmentation schema HFSi.
For each horizontal fragment HFij ∈ HFSi, we create a horizontal script

HSij represented by a XQuery query. The execution context (the clause for) of
this query is the vertical fragment V Fi and its where clause is the disjunction
between the selection predicates belonging to Cij .

At the end of these two phases, we generate an XML document containing
the hybrid fragmentation schema noted HDFS. For this, we merge each vertical
fragment V Fi ∈ V FS with its horizontal fragments belonging to HFSi.

Fig. 3. Horizontal fragmentation of each vertical fragment

3.3 Query Processing on the Fragmented Data Warehouse

The access to the XML data, after fragmentation, should be transparent to
the users of the warehouse. To ensure transparency, query processing must be
performed on fragmented XML data warehouse. For this, we rewrite the queries
according to their assignments carried out during the previous two phases. For
each query of the workload:

1. We run through the hybrid fragmentation schema (the XML document) and
we identify all fragments needed to its processing.

2. In its execution context, we replace the unfragmented data warehouse by the
already identified fragments.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 77

3. If it requires join operations between fragments, we adjust its where clause
by adding a join qualifications.

4. If it requires union operations between hybrid fragments, we add to its clause
for the XQuery function distinct-deep which removes the duplicate XML
data from its result.

In order to prove the effectiveness of the hybrid fragmentation detailed in the
previous sections, we have conducted various evaluations that we present in the
following section.

4 Experimental Studies

4.1 Experimental Conditions

We have conducted our evaluations under Oracle Berkeley DB XML[12] (an
XML native database allowing the storage of voluminous XML documents and
implements the XQuery1.0 queries execution engine). We have used the XML
dataset from the XML Data Warehouse Benchmark (XWB) proposed in [21].
Modeled with a star schema, the XML data warehouse of the XWB contains
the sales facts characterized by the measures: quantity of purchased product
and amount of purchased product. These facts are analyzed by the dimensions:
products, consumers, suppliers and time. While respecting the definition of flat
model (Sect.2), we have merged the facts and dimensions into a single XML
document representing our data warehouse. As a programming language, we
have used the Java language to implement our hybrid fragmentation algorithm in
which we have used the K-Means1 library. The machine used for our experiments
is equipped with a Intel Pentium processor and 02 GB of main memory.

4.2 Experimental Assessment and Analysis

In order to prove the effectiveness of our hybrid fragmentation algorithm, we have
performed various experiments. In the first, we have used a XML data warehouse
composed of 2000 facts and we have (i) calculated the global response time of 19
queries executed on the original XML data warehouse, (ii) fragmented this data
warehouse into 02 vertical fragments V F1 and V F2, (iii) calculated the global
response time of the same queries on the vertically fragmented data warehouse.
In the second experiment, we have (i) fragmented respectively V F1 and V F2

into 04 and 06 horizontal fragments (ii) calculated the global response time of
the 19 queries on the new hybrid fragments. Figure 4, summarizes the results
of this two experiments, and the Fig.5 shows the details of the queries response
time before fragmentation, after the vertical fragmentation, and after the hybrid
fragmentation.

According to the results shown in Fig.4, and compared to the unfragmented
XML data warehouse, we observe that the vertical fragmentation improves the

1 https://www.hepforge.org/downloads/jminhep/

https://www.hepforge.org/downloads/jminhep/

78 M. Kechar and S.N. Bahloul

global response time of the workload to 30%. As against, the global response
time of the same workload is improved to 82% after applying the hybrid frag-
mentation on the XML data warehouse. The detailed results shown by the Fig.5,
allows us to see clearly the effect of the hybrid fragmentation on queries response
times. Indeed, after a vertical fragmentation of the data warehouse, the process-
ing of the queries Q3, Q5, Q7, Q9, Q11,Q14, and Q15, requires a join operation
between the two vertical fragments V F1 and V F2. Their response time have not
been improved, on the contrary we notice a significant deterioration in the per-
formances of the queries Q7, Q14, and Q15. However, only the response times of
the queries requiring a single vertical fragment V F1 or V F2, have benefited from
some improvement. But after the hybrid fragmentation, we observe a meaning-
fully enhancement in the response time of each query, in particularly join queries,
that which proves the effectiveness of our hybrid fragmentation algorithm.

Fig. 4. Global response time of the workload on 2000 facts

In the Third experiment, we have applied our hybrid fragmentation algorithm
on three XML data warehouses of different sizes: 2000, 4000, and 8000 facts. We
have fragmented each data warehouse according to the same previous hybrid
fragmentation schema and we have calculated the global response time of 19
queries before and after fragmentation on each data warehouse. The obtained
results shown by the Fig.6, confirm that our hybrid fragmentation always guar-
antee an improvement of the performances even after the increase of the size of
the XML data warehouse.

Indeed, fragmenting XML data warehouse by our algorithm allows us to:

1. Group in hybrid fragments (XML documents) the XPath expressions (verti-
cal fragmentation) and the XML data (horizontal fragmentation) needed in
processing queries.

2. Generate fragments of small sizes compared to the size of the unfragmented
data warehouse.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 79

Fig. 5. Response time by query

Fig. 6. Response time of the workload on different sizes of data warehouses

The first point, allows us to improve the search time of the XML data to satisfy
a query. On the other side, the second point, allows us to improve the time needed
to browse the XML structure of the unfragmented data warehouse to search
data. According to these two points, we justify the performances improvement
provided by our hybrid fragmentation algorithm.

5 Conclusion

The processing time of the decision-support queries on an XML data warehouse
is quite high especially on a large volume of XML data. However, minimizing this

80 M. Kechar and S.N. Bahloul

processing time significantly contributes to the improvement of decision-making
process. In this context, we proposed a new fragmentation approach of XML data
warehouse called hybrid fragmentation. Firstly, we introduced the different mul-
tidimensional models of XML data. Based on several evaluations conducted be-
tween these models, we have chosen the flat model as a reference model to repre-
sent the XML data warehouse. Then, we detailed our hybrid fragmentation algo-
rithm in which we combined a vertical fragmentation based on XPath expressions
with a horizontal fragmentation based on the selection predicates. In our approach
we used the K-Means algorithm to control the number of fragments and generate
a fragmentation schema offering more improvement of performance. Finally, we
conducted various experiments to prove the validity of our algorithm. The results
obtained allowed us to confirm the effectiveness of our proposed hybrid fragmenta-
tion. In future work, we plan to conduct an experimental comparison between the
fragmentation algorithms proposed in [9] and [22], and our hybrid fragmentation
algorithm.

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal par-
titioning into automated physical database design. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, SIGMOD 2004,
pp. 359–370. ACM, New York (2004),
http://doi.acm.org/10.1145/1007568.1007609

2. Baio, F., Mattoso, M.: A mixed fragmentation algorithm for distributed object
oriented databases. In: Proc. of the 9th Int. Conf. on Computing Information,
pp. 141–148 (1998)

3. Bellatreche, L., Bouchakri, R., Cuzzocrea, A., Maabout, S.: Horizontal partitioning
of very-large data warehouses under dynamically-changing query workloads via
incremental algorithms. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC 2013, pp. 208–210. ACM, New York (2013),
http://doi.acm.org/10.1145/2480362.2480406

4. Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data ware-
houses: Hardness study, heuristics and ORACLE validation. In: Song, I.-Y., Eder,
J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87–96. Springer,
Heidelberg (2008)

5. Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal class partitioning in
object-oriented databases. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308,
pp. 58–67. Springer, Heidelberg (1997),
http://dl.acm.org/citation.cfm?id=648310.754717

6. Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and support for horizontal
class partitioning in object-oriented databases. Distrib. Parallel Databases 8(2),
155–179 (2000), http://dx.doi.org/10.1023/A:1008745624048

7. Berglund, A., Boag, S., Chamberlin, D.: andez, M.F.F.: Xml path language (xpath)
2.0, 2nd edn. (December 2010)

8. Boucher, S., Verhaegen, B., Zimányi, E.: XML Multidimensional Modelling and
Querying. CoRR abs/0912.1110 (2009)

http://doi.acm.org/10.1145/1007568.1007609
http://doi.acm.org/10.1145/2480362.2480406
http://dl.acm.org/citation.cfm?id=648310.754717
http://dx.doi.org/10.1023/A:1008745624048

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 81

9. Boukraâ, D., Boussäıd, O., Bentayeb, F.: Vertical fragmentation of XML data ware-
houses using frequent path sets. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011.
LNCS, vol. 6862, pp. 196–207. Springer, Heidelberg (2011),
http://dblp.uni-trier.de/db/conf/dawak/dawak2011.html#BoukraaBB11

10. Boukraa, D., Riadh Ben, M., Omar, B.: Proposition d’un modèle physique pour
les entrepôts XML. In: Premier Atelier des Systèmes Décisionnels (ASD 2006),
Agadir, Maroc (2006)

11. Boussaid, O., BenMessaoud, R., Choquet, R., Anthoard, S.: Conception et con-
struction d’entrepôts XML. In: 2ème journée francophone sur les Entrepôts de
Données et l’Analyse en ligne (EDA 2006), Versailles. RNTI, vol. B-2, pp. 3–22.
Cépaduès, Toulouse (Juin 2006)

12. Brian, D.: The Definitive Guide to Berkeley DB XML (Definitive Guide). Apress,
Berkely (2006)

13. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.
In: Proceedings of the 1982 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 1982, pp. 128–136. ACM, New York (1982),
http://doi.acm.org/10.1145/582353.582376

14. Dimovski, A., Velinov, G., Sahpaski, D.: Horizontal partitioning by predicate ab-
straction and its application to data warehouse design. In: Catania, B., Ivanović,
M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 164–175. Springer,
Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1885872.1885888

15. Elhoussaine, Z., Aboutajdine, D., Abderrahim, E.Q.: Algorithms for data ware-
house design to enhance decision-making. WSEAS Trans. Comp. Res. 3(3), 111–120
(2008), http://dl.acm.org/citation.cfm?id=1466884.1466885

16. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources.
In: Proceedings of the 4th ACM international workshop on Data warehousing and
OLAP, DOLAP 2001, pp. 40–47. ACM, New York (2001),
http://doi.acm.org/10.1145/512236.512242

17. Hümmer, W., 0004, A.B., Harde, G.: XCube: XML for Data Warehouses. In:
DOLAP, pp. 33–40 (2003)

18. MacQueen, J.: Some Methods for Classifcation and Analysis of Multivariate Ob-
servations. In: Proceeding of Fifth Berkley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–296 (1967)

19. Kimball, R.: A dimensional modeling manifesto. DBMS 10, 58–70 (1997),
http://portal.acm.org/citation.cfm?id=261018.261025

20. Mahboubi, H., Aouiche, K., Darmont, J.: Un index de jointure pour les entrepôts
de données xml. In: 6émes Journées Francophones Extraction et Gestion des Con-
naissances (EGC 2006), Lille. Revue des Nouvelles Technologies de l’Information,
vol. E-6, pp. 89–94. Cépadués, Toulouse (2006)

21. Mahboubi, H., Darmont, J.: Benchmarking xml data warehouses. In: Atelier Syst
emes Décisionnels (ASD 2006), 9th Maghrebian Conference on Information Tech-
nologies (MCSEAI 2006), Agadir, Maroc (December 2006)

22. Mahboubi, H., Darmont, J.: Data mining-based fragmentation of xml data ware-
houses. In: DOLAP, pp. 9–16 (2008)

23. Mahboubi, H., Darmont, J.: Enhancing xml data warehouse query performance by
fragmentation. In: Proceedings of the 2009 ACM Symposium on Applied Comput-
ing, SAC 2009, pp. 1555–1562. ACM, New York (2009),
http://doi.acm.org/10.1145/1529282.1529630

24. Navathe, S.B., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for
initial distributed database design. Journal of Computer and Software Engineer-
ing 3(4), 395–426 (1995)

http://dblp.uni-trier.de/db/conf/dawak/dawak2011.html#BoukraaBB11
http://doi.acm.org/10.1145/582353.582376
http://dl.acm.org/citation.cfm?id=1885872.1885888
http://dl.acm.org/citation.cfm?id=1466884.1466885
http://doi.acm.org/10.1145/512236.512242
http://portal.acm.org/citation.cfm?id=261018.261025
http://doi.acm.org/10.1145/1529282.1529630

82 M. Kechar and S.N. Bahloul

25. Ozsu, M.T.: Principles of Distributed Database Systems, 3rd edn. Prentice Hall
Press, Upper Saddle River (2007)

26. Pokorný, J.: XML DataWarehouse: Modelling and Querying. In: Proceedings of the
Baltic Conference, BalticDB&IS 2002, vol. 1, pp. 267–280. Institute of Cybernetics
at Tallin Technical University (2002),
http://portal.acm.org/citation.cfm?id=648170.750672

27. Rusu, L.I., Rahayu, J.W., Taniar, D.: A methodology for building xml data ware-
houses. IJDWM 1(2), 23–48 (2005)

28. Rusu, L.I., Rahayu, W., Taniar, D.: Partitioning methods for multi-version xml
data warehouses. Distrib. Parallel Databases 25(1-2), 47–69 (2009),
http://dx.doi.org/10.1007/s10619-009-7034-y

29. Walmsley, P.: XQuery. O’Reilly Media, Inc. (2007)
30. Zhang, Y., Orlowska, M.E.: On fragmentation approaches for distributed database

design. Information Sciences - Applications 1(3), 117–132 (1994),
http://www.sciencedirect.com/science/article/pii/1069011594900051

http://portal.acm.org/citation.cfm?id=648170.750672
http://dx.doi.org/10.1007/s10619-009-7034-y
http://www.sciencedirect.com/science/article/pii/1069011594900051

Do Rule-Based Approaches Still Make Sense

in Logical Data Warehouse Design?

Selma Bouarar, Ladjel Bellatreche, Stéphane Jean, and Mickaël Baron

LIAS/ISAE-ENSMA, Poitiers University, France
{selma.bouarar,bellatreche,jean,baron}@ensma.fr

Abstract. As any product design, data warehouse applications follow
a well-known life-cycle. Historically, it included only the physical phase,
and had been gradually extended to include the conceptual and the log-
ical phases. The management of phases either internally or intranally
is dominated by rule-based approaches. More recently, a cost-based ap-
proach has been proposed to substitute rule-based approaches in the
physical design phase in order to optimize queries. Unlike the traditional
rule-based approach, it explores a huge search space of solutions (e.g.,
query execution plans), and then based on a cost-model, it selects the
most suitable one(s). On the other hand, the logical design phase is still
managed by rule-based approaches applied on the conceptual schema. In
this paper, we propose to propagate the cost-based vision on the logical
phase. As a consequence, the selection of a logical design of a given data
warehouse schema becomes an optimization problem with a huge space
search generated thanks to correlations (e.g. hierarchies) between data
warehouse concepts. By the means of a cost model estimating the over-
all query processing cost, the best logical schema is selected. Finally, a
case study using the Star Schema Benchmark is presented to show the
effectiveness of our proposal.

1 Introduction

Over the last four decades, databases (DB) technology has evolved constantly to
satisfy the growing needs of applications built around it, whether in terms of data
volume or technology trends. Once the DB technology became mature, a design
life-cycle of DB-based applications, has emerged. The definition of this life-cycle
has undergone several evolutionary stages before being accepted as it stands
actually. In fact, the first generations of DB systems can be summarized in one
phase: the physical design. Physical data independence has become thereafter a
necessity because a DB-based application is never written in stone from the first
draft, but requires several updates. To do so, the need of a much more thorough
analysis arises, which leads to insulate the analysis task from the physical design,
so that it becomes a step of its own: the conceptual design. It consists of a model-
based data representation while ensuring what we call the data abstraction. This
latter evolution resulted in the three-tier architecture ANSI/SPARC [19] that
clearly distinguishes the conceptual schema from the internal (physical) one.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 83–96, 2014.
c© Springer International Publishing Switzerland 2014

84 S. Bouarar et al.

This schema-insulation has implied a mapping phase between the two abstraction
levels, named the logical design. Pioneer in this Field, Codd [8] has proposed the
relational model, a mathematical abstraction ofDB content in the 70s. Since then
several models have been introduced namely Object-oriented, multi-dimensional,
XML etc.

By examining the current DB design life-cycle, we found out that either the
inter- or intra- phases tasks is managed by means of rules. At the conceptual
level, for instance, business rules have been applied to generate the conceptual
schema [10,16]. In the logical phase, some fixed rules like the type of applied
normal forms, grouping or not dimensional hierarchies in a single dimensional
table (star schema), etc. are applied. Rule-based optimization has been largely
used in the physical design to optimize queries. It has been supported by most
of commercial database systems [11,4]. This optimization applies a set of rules
on a query tree in order to optimize it. Pushing down selections and projections
is one of the most popular used rules. Rule-based approaches are also applied
to pass from one phase to another. For instance a logical model is obtained by
translating a conceptual model using child and parent relationships.

The rule-based approach has shown its limitations in the physical phase since
it ignores the parameters of database tables (size, length of instances, etc.), se-
lectivity factors of selection and join operations, the size of intermediate results,
etc. These parameters have a great impact on the query evaluation cost. As
a consequence, it has been substituted by a cost-based approach. At first, the
cost approach considers a wide search space of solutions (e.g. query plans), then
based on a cost-model, the most suitable one(s) is/are selected using advanced
algorithms (e.g. dynamic programming). Driven by the success of cost-based
physical design, and the modest attention paid to the logical [13], we propose
to transpose the cost-based aspect into the logical modelling and to change the
one-logical model vision. To achieve that, we propose to exploit the correla-
tions between life-cycle objects (entities, attributes, instances, etc.). In this vein,
several recent research efforts have focused on exploiting these correlation to
improve performance, to name but a few, Agrawal et al. [2] have exploited the
similarity interaction between materialized views (MV) and indexes to improve
the physical phase. Kimura et al. [12] have implemented the project CORADD,
where they exploited the correlations linking the attributes to define MV and
indexes. This latter project has motivated us to exploit the correlations in favor
of DB logical design.

In this paper, we focus on how to exploit the correlations in the definition
of a cost-based logical model in the context of data-warehouses (DW). A cost-
based approach has a sense if the logical phase is associated to research space
representing a large number of logical model schemes. To do so, we fix three
main objectives: (i) identification the concepts and properties sensitive to cor-
relations. To satisfy this objective, we propose to use ontologies due to their
strong similarities with conceptual models and their capability of represent-
ing the correlations (availability of formal languages such as description logic)
and their ability of reasoning on them. (ii) The definition of a cost model that

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 85

corresponds to a predefined metric to select the best logical model schema. We
consider the query processing cost as a metric. (iii) The development of a query
rewriting process to support the change of the logical schema.

The paper is organized as follows: Section 2 shows a thorough analysis of
the correlations. In Section 3, we focus on how to choose (theoretically and
empirically) the appropriate DW logical schema. As for Section 4, a case study
validating our proposal is detailed, to finally conclude in Section 5.

2 Exploration of Correlations

The purpose of this section is to highlight what we believe to be the key concepts
in the design process of any information system: correlations (A.K.A: integrity
constraints, dependencies, relationships) linking classes, properties.

2.1 Types of Correlations

Fig.1 provides an overview of an ontology covering the domain of the Star Schema
Benchmark SSB, which is used further down for our experiments, and right be-
low to illustrate the different types of existing correlations that we have identified
and classified that way:

– Definition/equivalence relations or Generalization (DEF): when concepts/r-
oles are defined in terms of other concepts/roles. E.g. a Supplier is a
TradeAgent that Supplies a LineItem.

– Inclusion dependencies or Specialization (ID) Also called is-a relation or sub-
sumption: it occurs when a concept/role is subsumed by another concept/role.
E.g. Customer subsumes TradeAgent. When it concerns attributes, there is
another application of this type: the notion of foreign keys, which states that
the domain of one attribute must be a subset of the other correlated attribute.

Fig. 1. SSB ontology

86 S. Bouarar et al.

– Functional dependencies (CD/FD): CD stands for functional dependencies
between concepts and FD between attributes. They figure when a set of con-
cepts/roles (or their instances) determine an other set of the same type. E.g.
custKey determines the name of Customer.

– Multi-valued dependencies (MD) or soft dependencies : specific to attributes,
it is a generalization of the functional dependencies. Formally, the difference
between the two is the abolition of the determination criterion, in other words,
to a value set, we can associate more than one value set of the same type.
Examples are given in §. 3.3.

– Conditional Integrity constraints (CIC): specific to attributes, they denote
the DB integrity constraints (algebraic or semantic)1 involving more than one
attribute [17] and holding on instances of the relations. Note that definitions
and dependencies are considered as simple integrity constraints which are
valid on entire relations, contrary to conditional ones where the correlation
is accompanied with condition(s) that must be respected. This latter aspect
moves the application level from attribute range level to attribute values level.
In other words, only a subset of the member attributes domain is involved (re-
duced range). E.g. Customer.City=Paris→LineItem.discount� 20%. We dis-
tinguish two main categories: (i) conditional functional dependencies (CFD)
[6] whereby the (FD) has to hold on a subset of the relation (a set of tuples)
that satisfies a specific attribute pattern ([Customer.city=London,Customer.
name]→ [Customer.phone]), rather than on the entire relation Customer, and
(ii) more specifically, association rules that apply for particular values of some
attributes [1] (Part.color=‘red’→ Part.size=50).

– Hierarchies (H): specific to attributes, and more present in DWs, where a
set of attributes makes up a dimension hierarchy (e.g. Industry, category,
product). They can be assimilated to the part-whole relationships. The par-
ticularity of this type, is that we could plan the construction of a new class
for each hierarchy level.

2.2 The Role of Correlations throughout the Design Life-Cycle of DB
From the former classification, we can infer the results achieved by exploiting
these correlations throughout the design life-cycle of DB. Those results belong
to either conceptual, logical or physical SDB levels. In more detail:

– Conceptual level: the correlations having impact on the definition of concep-
tual schema are of type: DEF or ID. This impact consists of creating new
concepts/roles (non canonical) when using DEF , or creating subsumption
relationships linking the concepts/roles when using ID.

– Logical level: exploiting correlations of type CD, FD orH , has a direct impact
on logical level: data normalization when using FD or CD, multidimensional
OLAP annotation, hierarchical OLAP normalization when using H .

– Physical level: a lot of studies have exploited correlations of type MD, ID or
CIC in the definition of the Physical Design Structures (PDS).

1 IC specify conditions/propositions that must be maintained as true (Part.size>0).

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 87

Table 1. Related work on correlations exploitation over the design life-cycle of DW

Studies \ Phases MC ML MP OLAP Other

Anderlik & al. [3] DEF/ID

Roll-up

Stohr & al. [18] H

Fragmentation

Kimura & al. [12] FD/MD

MV/indexes

Brown & al. [7] CIC

Query optimizer

Agrawal & al. [1] CIC

Data-mining

Petit & al. [15] ID/FD ID/FD ID/FD

ER schema Relational schema Reverse engineering

In the light of the foregoing, we believe that any evolution/transition throughout
the design life-cycle of DB can be controlled by correlations. Table 1 shows dif-
ferent studies in this field. In fact, thanks to the formal power of ontologies, and
their strong similarity with conceptual models, we can store correlations (iden-
tified by the DB users notably the designer) right from the conceptual phase.
Afterwards, the transition to the logical level is henceforth based on correlations:
namely the dependencies (CD, FD) for DB, and hierarchies for DW , as for the
transition to the physical, it becomes controlled by either MD, ID or CIC. In-
deed, several studies have shown that DB performance can be vastly improved
by using PDS defined upon correlations, and even more when exploiting the
interaction - generated upon correlations - between these PDS, as is the case
concerning MV and indexes in CORADD[12](see Table 1).

3 Proposed DW Design Methodology

Readers are reminded that our objective is to take advantage of correlations so
as to set up a cost-based transition from the DW conceptual phase to the logical
one. Actually, the big interest of DW community is given to the physical design,
yet while most problems can be solved by fine-tuning the physical schema, some
performance problems are caused by a non-optimized logical schema [9]. In this
vein, design process for DW is based on the multidimensional annotation of the
conceptual model. Currently, the designer selects one logical schema among a
wide variety (star or the snowflake). To ensure a more efficient selection task, we
suppose that we have the DW semantic multidimensional model in its simple
form, that definitely includes the hierarchies correlations in the form of stored
axioms. These latter will be exploited in defining the different possible logical
schemas (one star and various snowflakes), on which we will apply a cost model,
to choose the most suitable one i.e. the best possible compromise between nor-
malization to ensure space savings and efficient updates, and de-normalization
to improve performance by minimizing and simplifying query joins.

88 S. Bouarar et al.

It is important to highlight the fact that, contrary to what is usually thought,
sometimes a pure star schemamight suffer serious performance problems. This can
occur when a de-normalized dimension table becomes very large and penalizes the
star join operation.Conversely, sometimes a small outer-level dimension table does
not incur a significant join cost because it can be permanently stored in a memory
buffer. Furthermore, because a star structure exists at the center of a snowflake, an
efficient star join can be used to satisfy part of a query. Finally, some queries will
not access data fromouter-level dimension tables. These queries effectively execute
against a star schema that contains smaller dimension tables. Not to mention the
normalization benefits, and the space gain. Therefore, under some circumstances,
a snowflake schema is more efficient than a star schema[14].

3.1 Explanation of our DW Design Methodology

Our approach can be described through Algorithm 1. It is processed while tran-
siting to the logical phase, hence, real deployment information not available.
Instead, we exploit the conceptual knowledge: (i) semantics associated with
data (correlations, in our context hierarchies), (ii) semantics associated with
the DB content (table sizes, attribute domains, etc), (iii) semantics associated
with future queries workload. The latter two information are the input of our
cost-model, and they can be deduced while analyzing users’ requirements. In-
deed, we can always have an idea about the load of frequent queries (considering
Pareto principle), and estimate sizes. These information are generally useful to
the assessment of DB processes.

3.2 Generating the Different Possible Logical Schemas

We assume that the input semantic multi-dimensional schema: IS = {F,D1, D2,-
..., Dn}, such as F for ”fact table”, and Di, for dimension tables, and which defi-
nitely include hierarchies between Di attributes (thanks to the semantic aspect),
then:

– each dimensionDi having h hierarchical levels, can be decomposed 2h−1 times.
e.g. Dim(location) = {Country, Region, Department} ⇒ 23−1 = 4 possibilities
of normalization: (i) each hierarchical attribute in a separate sub-dimension,
(ii) both Country and Region in a separate sub-dimension, and Department
in another, and so on...

– For the whole set of dimensions (D1, D2, ..., Dn), there will be
∏n

{d=1} 2
hd−1

possible schemas. For example, considering 4 dimensions with 3 levels to each
one, there will be 256 alternatives.

This process is accomplished by Algorithm 2. Note that evaluating all possible
combinations seems to be naive, but (i) this evaluation is done once, before
deploying the DW , and optionally with evolution occurrences. Both cases are
long-term tasks, (ii) our algorithm gives results in reasonable time since it would
make non-sense if the granularity of hierarchies is too long (4 max).

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 89

Algorithm 1. The general algorithm of our theoretical approach

Input: DW semantic multidimensional model (de-normalized form):
IS = {F,D1, D2, ..., Dn}; the query workloads Q = {Q1, Q2, ..., Qm}

Output: DW most suitable logical schema
Generate the different possible logical schemas;
for each generated schema do

Calculate the new sizes of the pre-existing dimensions and the new
sub-dimensions (hierarchical levels);
for each query in the workload do

Rewrite the query conforming to the target schema;
Calculate the query cost using a cost model;

Choose the most suitable schemas i.e. the ones having minimum costs (top-k
set);
Load this latter top-k set into a DW (empirical evaluation), and select the most
adequate schema, i.e. the one having minimum execution times;

Algorithm 2. Algorithm for generating the different possible DW logical
schemas
Input: DW semantic multidimensional model
Output: A set of the different DW logical schemas
for each dimension table in the input schema do

Generate the tree of the different combinations of hierarchy levels;
for each combination do

Create the new sub-dimension table;
Update the attributes;
Add the current combination into the list corresponding to the current
dimension;

Calculate the Cartesian product of the different hierarchical combinations of
each dimension;
Model-building of the corresponding DW for each element belonging to the
resulting Cartesian product;

3.3 Calculating the New Table Sizes

After each creation of new dimension/sub-dimension tables during the normal-
ization process, the sizes change systematically. This new information is crucial
to calculate the cost model.

In our approach we deal with two table types: (i) the original dimension
table, and (ii) the newly created sub-dimension tables, knowing that the size
of any table is calculated according to two parameters as follows: Size(Ti) =
rowSize ∗ nbRows. Below, we will explore how these parameters will change for
the two table types within every generated logical schema. We distinguish the
following two scenarios:

90 S. Bouarar et al.

The Tables Are at Least in the Second Normal Form (2NF): For the original
dimension table: the number of rows does not change, because we suppose that
the original table is in 2NF, unlike the size of the row, which does indeed, because
there are less attributes than before. So the new size of the concerned dimension
is:

Size(D′i) = Size(Di) − ∑
(Size(Hk)) + Size(aFK) = nbRows ∗ (rowSize −∑

(Size(Hk)) + size(aFK)), such that (Hk) denotes the attributes (levels) of
the hierarchy, and aFK denotes the foreign key attribute, which will relate the
dimension table to its sub-dimension tables.

For the sub-dimension tables newly created: firstly, the size of the row is the
sum of the attributes’ sizes in the concerned sub-dimension in addition to the
foreign key size (if present):

rowSize =
∑

(Size(levelAttributei)) + Size(aFK). The computation of rows
is more complicated because it depends on the type of correlation between the
attributes forming the hierarchy. We distinguish three main scenarios:

(i) Apart from the hierarchy correlation (H), There is no dependency between
these attributes. In other words, for each value of the higher level attribute
(the whole), there exists uniformly the same values’ domain to the attribute
from the lesser level (the part). A concrete example of such category, is the
simple date hierarchy {year, month, day of week}, where whatever the year
is (respectively, the month), the cardinal of the month values domain is al-
ways equal to 12 (respectively, the cardinal of the day values domain is always
equal to 7). In this case, the number of rows becomes the Cartesian product
of the domain cardinality of every hierarchical attribute of the current level:
nbRows = (

∏ |domain(levelAttributei)|). Considering just two years, the nu-
merical application gives (2 ∗ 12 ∗ 7) possible combinations.

(ii) Besides the hierarchy correlation (H), there is a functional dependency
(FD)2 between attributes. i.e, to one value of the higher level attribute, we
can match values from only a determined set of values of the lesser level at-
tribute. In line with the previous example, we take the more sophisticated date
hierarchy {year, season, month, day}. We notice that the season attribute share
a FD correlation with the month attribute. Indeed, every season value can be
linked to only three specific month’s values. Let us consider a more concrete
example, where the dependency correlation is fully applied: the location hierar-
chy {continent, country, city} example, in which, to each higher level attribute
value, only a specific set of lesser level attribute values can be associated (e.g.
the continent value: Europe, has it specific set of values of country such as
France, Spain, Germany, etc. different from the values set which can be asso-
ciated for instance to the continent value: America. In this case, the number
of rows is: nbRows = max(|domain(levelAttributei)|). Considering 2 values
of continent, 4 of country and 8 of city, the number of possible rows of this
level is equal to nbRows = max(|domain(levelAttributei)|) = max(2, 4, 8) = 8.

2 The sets of values of the lesser level attribute, which can be associated to the values
of the higher level attribute, are pairwise disjoint.

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 91

It should be noted that numerical application of the sophisticated date hi-
erarchy {year, season, month, day}, gives considering just 2 years as above:
(2∗max(|domain(levelAttributei)|)∗7 = 2∗max(|domain(season,month)|)∗7 =
2 ∗ 12 ∗ 7) possible combinations instead of (2 ∗ 4 ∗ 12 ∗ 7).

(iii) As for the last scenario, there exists in addition to the H correlation, a
MD correlation3 between those attributes. For example, the following simple
nationality hierarchy: {nationality, spoken languages}, in which two different
nationalities can share the same languages. Thus, the number of rows is approx-
imatively equal to:

nbRows � |domain(levelAttributedominant)| ∗ δ(MD). If we consider a MD
correlation between two attributes A and B, such that A is the dominant at-
tribute and B is the dependent one, then δ(MD) is the average number of values
that B can have for a value of A(δ(MD) < |domain(levelAttributedependant)|).
E.g. we know that: (i) there is a MD correlation between the attributes na-
tionality (A) and spoken language (B), (ii) and we know that generally each
nationality can have on average three possible spoken languages so δ(MD) = 3.

It is worth mentioning that this case can be reduced to the first scenario in
extreme cases, where δ(MD) is as large as the cardinal of the concerned attribute
domain, in other words, the lesser level attribute sets are completely non-disjoint
(the same).

The Tables are at Least in the First Normal Form (1NF): As compared to the
previous case, the original dimension tables, and more precisely, the number
of rows will be affected. Indeed, a given instance of a relation (object) might
need to appear more than once (an attribute is dependent of only a part of
the candidate key) causing a redundancy, which may extend to the cardinal of
the responsible attribute. We can get inspired from the previous scenario, and
define δ(Attribute) as the maximal number of values belonging to this attribute
domain, and can be associated to one instance (individual) of the concerned
relation. Or simply suggest that δ(Attribute) is equal to the average (half) of
its domain cardinal. In both cases, it is about an overestimated approximation,
where the number of rows becomes: nbRows′ = �nbRows/δ(Attribute)�

It emerges from the foregoing that the designer knowledge of the domain is
fundamental in the determination of table sizes. However, this knowledge is easy
to acquire since it concerns the following parameters: Attribute size (implies
tuple size), attribute domain size, number of tuples of the original tables, cor-
relation type linking the hierarchical attributes and possibly the delta measure.
When conceiving any information system, the designer must have at least an
approximate idea about these values.

3.4 Rewriting the Query Conforming to the Target Schema

The query workloadQ = {Q1, Q2, ..., Qm} is the set of the more recurrent/intere-
sting queries (any form) to-be/being submitted about the domain in question

3 Where the sets of values of the lesser level attribute are non-disjoint.

92 S. Bouarar et al.

represented by the DW semantic multidimensional model. These queries will
obviously change according to the underlying schema, for the sheer fact that the
attributes being referenced by the query, can move to another table while break-
ing down the dimensions into hierarchical levels (sub-dimensions). Algorithm
3 describes the query rewriting process. It is important not to confuse this

Algorithm 3. Algorithm for rewriting queries according to the logical
schema
Input: The DW logical schema and Q = {Q1, Q2, ..., Qm}
Output: Q = {Q′1, Q′2, ..., Q′m}
for each query in the workload do

Extract the attributes from the ”Select” clause;
Find in which new tables of the new DW logical schema (the input), those
attributes are;
Set the new query (Q′) ”Select” and ”from” clauses;
Extract the attributes from the ”Where” clause;
Find in which new tables of the new DW logical schema (the input), those
attributes are;
Set the new query (Q′) ”Where” clause, and update its ”from” clause;
Manage the extra-joins resulting from the addition of hierarchies;

rewriting process with query translation problem. In fact, based on a query-
model, we rewrite input queries into the same language, while considering the
same (local) environment.

3.5 Calculating the Query Cost Using a Cost Model

After the rewriting process of queries, we will obtain a set of logical schemas,
and to each schema, a corresponding set of queries. The next step consists in
generating the best execution plan for each query, i.e. the best order of the
relational algebra operators in the query tree, to finally apply the cost model.
This latter is a tool designed to quantify the efficiency of a solution. Such a
tool is useful to evaluate the performance of a solution without having to deploy
it on a DBMS (Simulation), and then to compare different solutions. Our cost
model is based upon the one described in [5], adapted to the context of snowflake
join queries. It estimates the number of inputs/outputs between disk and main
memory while executing each query. It is worth noting that it is about a logical
cost model which may differ from physical ones (DBMS cost optimizers) which,
moreover, are not usually available.

4 Case Study

In order to instantiate the design approach described above, some experiments
are conducted on Oracle DBMS with 8192 as block size, hosted on a server

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 93

machine with 32GB of RAM. We have used the SSB Benchmark with a scale
factor of 100. We have at first proposed its ontology to move up to ontolog-
ical level (Fig.1), where correlation will be saved. There are: H(Customer) ∗
H(Part) ∗ H(Supplier) ∗ H(Date) = 23−1 ∗ 22−1 ∗ 23−1 ∗ 24−1 = 256 possible
logical schemas. Every schema would have 13 characteristics: a size, and 12 costs
values (one for each submitted query). The users’ requirements can intervene at
this stage by possibly indicating which queries are more important than others.
Then according to this information and the sets of results, schemas having the
lower size/execution costs ratio (better compromise) will be chosen.

4.1 Theoretical Evaluation

The SSB load of queries is composed of 4 query flights, each one has on average
3 queries. In order to overcome the large number of studied parameters (what
is generally done by skyline algorithms) that yielded to a pretty complicated
analysis (multi-parameters solutions: 13 parameters for each one), we begin by
analyzing the costs of every query, according to which we pick up the best
schema, then we compare this latter with the star schema and schemas having
the minimum size.

1. Query Flight 1. It has selections on merely one dimension involving the date
hierarchy (year attribute), therefore, minimum costs belong to schemas whose
date dimension is not normalized including the initial one. Otherwise, the cost
is maximum, reporting an average increase of 40% with reference to the star
schema. Note that we mean by average increase (↗) of cost values: the ratio
between the cost of queries execution in the current schema, and their cost
execution in the initial star schema.

2. Query Flight 2. This query type has selections on two dimensions: Supplier
and Part, involving their hierarchies (respectively Location, and category).
Contrary to expectations, we notice that the minimum cost does not belong
to the Star schema, it rather does to every schema whose Part dimension is
normalized using the category hierarchy, such that i′ = i+5 and i /∈ 0, 1, 2, 3).
This can be explained by the large size gained through this normalization (the
new loaded table is about only 0.01% of the original size, compared to 0.5%
concerning the date normalization), and we can also relate this to the fact
that the hierarchy granularity is small.

3. Query Flight 3. The selections are placed on three dimensions: Date, Customer
and Supplier, involving their hierarchies as well (respectively Customer Lo-
cation, Supplier Location and category). The minimum costs belong to the
original schema, and to the 4th one, where only the Part dimension is nor-
malized. The next nearest cost with an average increase of only 2% belong to
schemas normalized on Customer dimension. Same as previous explanation,
this is due to the size gained by this latter normalization (The new loaded Cus-
tomer Location hierarchy tables are about only 0.006% of the original size),
compared with the size gained through the Supplier normalization (0.12% of
the initial size), or the date one (0.5%).

94 S. Bouarar et al.

4. All dimensions are involved. The costs are significantly different from a query
to another as detailed below:
– The first query (Q4.1) uses mainly Date, Customer and Supplier hierar-

chies. The minimum costs belong to schemas where either Part or Date or
both, are normalized, and the next nearest cost having an average increase
of 15% comes with the normalization of Customer dimension. Unlike the
previous case (where Date and Customer are requested by the two main
operations: join, and selection) Date gets ahead of Customer because here,
it is not used in the selections (used only in the join) contrary to Customer
which is used in both operations.

– The second query (Q4.2) uses mainly Date, Customer and Supplier hierar-
chies in both operations. The minimum costs belong to the original schema,
and to the 4th one, where only the Part dimension is normalized. As ex-
pected, the next nearest cost having an average increase of 9% is when
the Customer is normalized, and then comes the Supplier normalization
with an increase of 39%, and finally the date normalization with entirely a
double cost value.

– The third query (Q4.3) uses all possible hierarchies in both operations,
which explains the fact that the star schema is the unique schema which
owns the minimum cost. Then, logically, comes the schema where the Part
dimension is normalized with an increase of 0.4%, and right after the
schema where Customer dimension is normalized (1% ↗), and then when
the Supplier is normalized too (49% ↗), and finally the Date (92% ↗).

We have noticed that the 4th schema (where only Part dimension is normalized)
is providing almost the best costs to all queries as illustrated in Fig. 2.

4.2 Empirical Evaluation and Results Analysis

After the theoretical pass, we pick up the schemas selected as the best ones dur-
ing the later step, and we deploy them on Oracle DBMS (Empirical pass). The
deployment consists in distributing the original real data over the tables of the
current normalized schema while loading them into the DW . Fig. 3 illustrates
a comparison of the execution times of SSB queries submitted to the original
schema with those submitted to the 4h schema. The results depicted in Fig. 3
are expected to be similar to those depicted in Fig. 2. Although the results are
not broadly identical, they still are coherent. Coherent in that they keep which
schema is better than the other in execution of queries: the queries Q2, Q4 are
executed faster when submitted to the 4th schema, the same goes for Q3 which is
executed slightly faster. As for Q1, it is quickly executed when submitted to the
original schema. These facts are true to some extent, no matter what evaluation
type we have used (theoretical based on the cost model, or empirical using the
real DBMS). However, the results are not identical due to the overstatement of
some queries costs Q2, Q3, Q4. That difference may be explained by the number

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 95

Fig. 2. Queries costs in the 4thschema Fig. 3. Execution Time on Oracle11G
(4th schema)

of joins contained in the concerned queries. Indeed, Q2, Q3, Q4 queries have
several joins, which must be ordered. We justify this costs overstatement by our
chosen scheduling technique which is based on dimensions’ share value [5].

The schemas generation and their cost-based evaluation has been executed in
less than 4 seconds. The reader may consider the results obtained by the SSB
case study not convincing enough, because of the modest gain, obtained from
hierarchies exploitation when generating the DW logical schema, in terms of
size and execution times of SSB queries. We remind that this methodology is
context-dependent. In fact, the small sizes of the dimension tables of SSB
were not in favor of our methodology. On the other hand, snowflake queries can
be optimized. However, there are definitely a lot of cases where the gain could
be much more important.

5 Conclusion

In this paper, we showed how to exploit the different relationships between on-
tological concepts and properties such as functional dependencies, hierarchy re-
lationships between properties, etc along DB life-cycle. To do so, we proposed
to integrate these correlations in domain ontologies that recently contribute
in designing semantic data warehouses. Through this paper, we want to start a
debate to give more importance to the logical phase as we did for the physical
phase. To perform a good logical phase, we proposed a mathematical cost model
that evaluates the execution cost of queries workload. Extensive experiments
have been conducted using this cost model and the obtained results are imple-
mented on Oracle11G to show the efficiency and effectiveness of our proposal.

Currently, we are studying the process of selecting physical optimization struc-
tures by varying the logical models. Another important direction consists in
proposing a generic approach which starts from fully denormalized schema (one
flat table) to fully normalized one, even splitting wide fact tables.

96 S. Bouarar et al.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

2. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in sql databases. In: VLDB, pp. 496–505 (2000)

3. Anderlik, S., Neumayr, B., Schrefl, M.: Using domain ontologies as semantic di-
mensions in data warehouses. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012.
LNCS, vol. 7532, pp. 88–101. Springer, Heidelberg (2012)

4. Becker, L., Güting, R.H.: Rule-based optimization and query processing in an
extensible geometric database system. ACM Trans. Database Syst. 17(2), 247–303
(1992)

5. Bellatreche, L., Boukhalfa, K., Richard, P., Woameno, K.Y.: Referential horizontal
partitioning selection problem in data warehouses: Hardness study and selection
algorithms. IJDWM 5(4), 1–23 (2009)

6. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: ICDE, pp. 746–755 (2007)

7. Brown, P.G., Hass, P.J.: Bhunt: Automatic discovery of fuzzy algebraic constraints
in relational data. In: VLDB, pp. 668–679 (2003)

8. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

9. Golfarelli, M., Rizzi, S.: Data warehouse testing: A prototype-based methodology.
Information and Software Technology 53(11), 1183–1198 (2011)

10. Herbst, H.: Business Rule-Oriented Conceptual Modeling. Contributions to Man-
agement Science. Physica-Verlag HD (1997)

11. Hong, M., Riedewald, M., Koch, C., Gehrke, J., Demers, A.: Rule-based multi-
query optimization. In: EDBT, pp. 120–131. ACM, New York (2009)

12. Kimura, H., Huo, G., Rasin, A., Madden, S., Zdonik, S.: Coradd: Correlation aware
database designer for materialized views and indexes. PVLDB 3(1), 1103–1113
(2010)

13. Marchi, F.D., Hacid, M.-S., Petit, J.-M.: Some remarks on self-tuning logical
database design. In: ICDE Workshops, p. 1219 (2005)

14. Martyn, T.: Reconsidering multi-dimensional schemas. SIGMOD Rec. 33(1), 83–88
(2004)

15. Petit, J.-M., Toumani, F., Boulicaut, J.-F., Kouloumdjian, J.: Towards the reverse
engineering of denormalized relational databases. In: ICDE, pp. 218–227 (1996)

16. Ram, S., Khatri, V.: A comprehensive framework for modeling set-based business
rules during conceptual database design. Inf. Syst. 30(2), 89–118 (2005)

17. Rasdorf, W., Ulberg, K., Baugh Jr., J.: A structure-based model of semantic in-
tegrity constraints for relational data bases. In: Proc. of Engineering with Com-
puters, vol. 2, pp. 31–39 (1987)

18. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for par-
allel data warehouses. In: VLDB, pp. 273–284 (2000)

19. Tsichritzis, D., Klug, A.C.: The ansi/x3/sparc dbms framework report of the study
group on dabatase management systems. Inf. Syst. 3(3), 173–191 (1978)

High Parallel Skyline Computation

over Low-Cardinality Domains

Markus Endres and Werner Kießling

Department of Computer Science, University of Augsburg,
86135 Augsburg, Germany

{endres,kiessling}@informatik.uni-augsburg.de
http://www.informatik.uni-augsburg.de/dbis

Abstract. A Skyline query retrieves all objects in a dataset that are not
dominated by other objects according to some given criteria. Although
there are a few parallel Skyline algorithms on multicore processors, it is
still a challenging task to fully exploit the advantages of such modern
hardware architectures for efficient Skyline computation. In this paper
we present high-performance parallel Skyline algorithms based on the
lattice structure generated by a Skyline query. We compare our meth-
ods with the state-of-the-art algorithms for multicore Skyline processing.
Experimental results on synthetic and real datasets show that our new
algorithms outperform state-of-the-art multicore Skyline techniques for
low-cardinality domains. Our algorithms have linear runtime complexity
and fully play on modern hardware architectures.

Keywords: Skyline, Parallelization, Multicore.

1 Introduction

The Skyline operator [1] has emerged as an important and very popular summa-
rization technique for multi-dimensional datasets. A Skyline query selects those
objects from a dataset D that are not dominated by any others. An object p
having d attributes (dimensions) dominates an object q, if p is better than q in
at least one dimension and not worse than q in all other dimensions, for a defined
comparison function. This dominance criteria defines a partial order and there-
fore transitivity holds. The Skyline is the set of points which are not dominated
by any other point of D. Without loss of generality, we consider the Skyline with
the min function for all attributes.

Most of the previous work on Skyline computation has focused on the develop-
ment of efficient sequential algorithms [2]. However, the datasets to be processed
in real-world applications are of considerable size, i.e., there is the need for im-
proved query performance, and parallel computing is a natural choice to achieve
this performance improvement, since multicore processors are going mainstream
[3]. This is due to the fact that Moore’s law of doubling the density of transistors
on a CPU every two years – and hence also doubling algorithm’s performance –
may come to an end in the next decade due to thermal problems. Thus, the chip

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 97–111, 2014.
© Springer International Publishing Switzerland 2014

http://www.informatik.uni-augsburg.de/dbis

98 M. Endres and W. Kießling

manufactures tend to integrate multiple cores into a single processor instead of
increasing the clock frequency. In upcoming years, we will see processors with
more than 100 cores, but not with much higher clock rates. However, since most
applications are build on using sequential algorithms, software developers must
rethink their algorithms to take full advantage of modern multicore CPUs [3].
The potential of parallel computing is best described by Amdahl’s law [4]: the
speedup of any algorithm using multiple processors is strictly limited by the
time needed to run its sequential fraction. Thus, only high parallel algorithms
can benefit from modern multicore processors.

Typically an efficient Skyline computation depends heavily on the number
of comparisons between tuples, called dominance tests. Since a large number of
dominance tests can often be performed independently, Skyline computation has
a good potential to exploit multicore architectures as described in [5–7]. In this
paper we present algorithms for high-performance parallel Skyline computation
which do not depend on tuple comparisons, but on the lattice structure con-
structed by a Skyline query over low-cardinality domains. Following [8, 2] many
Skyline applications involve domains with small cardinalities – these cardinali-
ties are either inherently small (such as star ratings for hotels), or can naturally
be mapped to low-cardinality domains (such as price ranges on hotels).

The remainder of this paper is organized as follows: In Section 2 we discuss
some related work. In Section 3 we revisit the Hexagon algorithm [9], since it is
the basic idea behind our parallel algorithms. Based on this background we will
present our parallel Skyline algorithms in Section 4. We conduct an extensive
performance evaluation on synthetic and real datasets in Section 5. Section 6
contains our concluding remarks.

2 Related Work

Algorithms of the block-nested-loop class (BNL) [1] are the most prominent algo-
rithms for computing Skylines. In fact the basic operation of collecting maxima
during a single scan of the input data can be found at the core of several Sky-
line algorithms, cp. [10, 2]. Another class of Skyline algorithms is based on a
straightforward divide-and-conquer (D&C) strategy. D&C uses a recursive split-
and-merge scheme, which is definitely applicable in parallel scenarios [11].

There is also a growing interest in distributed Skyline computation, e.g., [12–
16], where data is partitioned and distributed over net databases. Also there
are several approaches based on the MapReduce framework, e.g., [17]. All ap-
proaches have in common that they share the idea of partitioning the input
data for parallel shared-nothing architectures communicating only by exchang-
ing messages. The nodes locally process the partitions in parallel, and finally
merge the local Skylines. The main difference of such a parallel Skyline compu-
tation resides in the partitioning schemes of the data. The most used partitioning
scheme is grid-based partitioning [14]. Recent work [18] focus on an angle-based
space partitioning scheme using hyperspherical coordinates of the data points.
In [19], the authors partition the space using hyperplane projections to obtain
useful partitions of the dataset for parallel processing.

High Parallel Skyline Computation over Low-Cardinality Domains 99

Im et al. [6] focuses on exploiting properties specific to multicore architectures
in which participating cores inside a processor share everything and communicate
simply by updating the main memory. They propose a parallel Skyline algorithm
called pSkyline. pSkyline divides the dataset linearly into N equal sized parti-
tions. The local Skyline is then computed for each partition in parallel using
sSkyline [6]. Afterwards the local Skyline results have to be merged. Liknes et
al. [7] present the APSkyline algorithm for efficient multicore computation of
Skyline sets. They focus on the partitioning of the data and use the angle-based
partitioning from [18] to reduce the number of candidate points that need to be
checked in the final merging phase. The authors of [5] modified the well-known
BNL algorithm to develop parallel variants based on a shared linked list for the
Skyline window. In their evaluation, the lazy locking scheme [20] is shown to be
most efficient in comparison to continuous locking or lock-free synchronization.
There is also recent work on computing Skylines using specialized parallel hard-
ware, e.g., GPU [21] and FPGA [22]. In contrast to previous works, our approach
is based on the parallel traversal of the lattice structure of a Skyline query.

3 Skyline Computation Using the Lattice Revisited

Our parallel algorithms are based on the algorithms Hexagon [9] and LS-B [8],
which follow the same idea: the partial order imposed by a Skyline query over a
low-cardinality domain constitutes a lattice. This means if a, b ∈ D, the set {a, b}
has a least upper bound and a greatest lower bound in D. Visualization of such
lattices is often done using Better-Than-Graphs (BTG) (Hasse diagrams), graphs
in which edges state dominance. The nodes in the BTG represent equivalence
classes. Each equivalence class contains the objects mapped to the same feature
vector. All values in the same class are considered substitutable.

An example of a BTG over a 2-dimensional space is shown in Figure 1a. We
write [2, 4] to describe a two-dimensional domain where the first attribute A1

is an element of {0,1,2} and attribute A2 an element of {0,1,2,3,4}. The arrows
show the dominance relationship between elements of the lattice.

2(0, 2)

3(0, 3)

4(0, 4)

1(0, 1)

9(1, 4)

0(0, 0)

6(1, 1)

7(1, 2)

8(1, 3)

14(2, 4)

5(1, 0)

13(2, 3)

10(2, 0)

11(2, 1)

12(2, 2)

[level = 6]

[level = 5]

[level = 4]

[level = 3]

[level = 2]

[level = 1]

[level = 0]

(a) 2d Skyline over [2,4]

2(0, 2)

3(0, 3)

4(0, 4)

1(0, 1)

9(1, 4)

0(0, 0)

6(1, 1)

7(1, 2)

8(1, 3)

14(2, 4)

5(1, 0)

13(2, 3)

10(2, 0)

11(2, 1)

12(2, 2)

[level = 6]

[level = 5]

[level = 4]

[level = 3]

[level = 2]

[level = 1]

[level = 0]

(b) BFT and DFT in Hexagon

Fig. 1. The Hexagon algorithm revisited [9]

100 M. Endres and W. Kießling

The node (0, 0) presents the best node, i.e., the least upper bound for two
arbitrary nodes a and b in the lattice. The node (2, 4) is the worst node and
serves as the greatest lower bound. The bold numbers next to each node are
unique identifiers (ID) for each node in the lattice, cp. [9]. Nodes having the
same level are incomparable. That means for example, that neither the objects
in the node (0, 4) are better than the objects in (2, 2) nor vice versa. They have
the same overall level 4. A dataset D does not necessarily contain representatives
for each lattice node. In Figure 1a the gray nodes are occupied (non-empty) with
real elements from the dataset whereas the white nodes have no element (empty).

The method to obtain the Skyline can be visualized using the BTG. The
elements of the dataset D that compose the Skyline are those in the BTG that
have no path leading to them from another non-empty node in D. In Figure 1a
these are the nodes (0, 1) and (2, 0). All other nodes have direct or transitive
edges from these both nodes, and therefore are dominated. The algorithms in
[9, 8] exploit these observations and in general consist of three phases:

1) Phase 1: The Construction Phase initializes the data structures. The lattice
is represented by an array in main memory with the size of the lattice, i.e.,
the number of nodes. Each position in the array stands for one node ID in
the lattice. Initially, all nodes of the lattice are marked as empty.

2) Phase 2: In the Adding Phase the algorithm iterates through each element
t of the dataset D. For each element t the unique ID and the node of the
lattice that corresponds to t is determined. This node is marked non-empty.

3) Phase 3: After all tuples have been processed, the nodes of the lattice that
are marked as non-empty and which are not reachable by the transitive dom-
inance relationship from any other non-empty node of the lattice represent
the Skyline values. Nodes that are non-empty but are reachable by the dom-
inance relationship, and hence are not Skyline values, are marked dominated
to distinguish them from present Skyline values.

From an algorithmic point of view this is done by a combination of breadth-
first traversal (BFT) and depth-first traversal (DFT). The nodes of the lattice
are visited level-by-level in a breadth-first order (the blue dashed line in
Figure 1b). When an empty node is reached, it is removed from the BFT
relation. Each time a non-empty and not dominated node is found, a DFT
is done marking all dominated nodes as dominated. For example, the node
(0, 1) in Figure 1b is not empty. The DFT walks down to the nodes (1, 1) and
(0, 2). Which one will be visited first is controlled by a so called edge weight,
cp. [9]. Here, (1, 1) will be marked as dominated and the DFT will continue
with (2, 1), etc. (the red solid arrows in Figure 1b). If the DFT reaches the
bottom node (2, 4) (or an already dominated node) it will recursively follow
the other edge weights, i.e. the red dashed arrows, and afterwards the red
dotted arrows. Afterwards the BFT will continue with node (1, 0), which will
be removed because it is empty. The next non-empty node is (1, 1), which is
already dominated and therefore we will continue with (2, 0). Since all other
nodes are marked as dominated, the algorithm will stop and the remaining
nodes (0, 1) and (2, 0) present the Skyline.

High Parallel Skyline Computation over Low-Cardinality Domains 101

4 Parallel Skyline Algorithms

In this section we describe our parallel algorithms, the used data structures,
discuss some implementation issues, and have a look at the complexity and
memory requirements of our algorithms.

4.1 Parallel Skyline Computation

For the development of our parallel Skyline algorithms we combine a split ap-
proach of the input dataset with a shared data structure supporting fine grained
locking and apply them to the Hexagon algorithm described in Section 3.

The general idea of parallelizing the Hexagon algorithm is to parallelize the
adding phase (Phase 2) and the removal phase (Phase 3). Phase 1 is not worth
to parallelize because of its simple structure and minor time and effort for the
initialization. Parallelizing Phase 2 can be done using a simple partitioning ap-
proach of the input dataset, whereas for Phase 3 two different approaches can be
used: In the first variant the parallel Phase 3 starts after all elements were added
to the BTG. We call this algorithm ARL-Skyline (Adding-Removal-Lattice-
Skyline). The second approach runs the adding and removal simultaneously.
This algorithm is called HPL-Skyline (High-Parallel-Lattice-Skyline).

The ARL-Skyline Algorithm (ARL-S) is designed as follows:

– Phase 1: Initialize all data structures.

– Phase 2: Split the input dataset into c partitions, where c is the number
of used threads. For each partition a worker thread iterates through the
partition, determines the IDs for the elements and marks the corresponding
entries in the BTG as non-empty.

– Phase 3: After adding all elements to the BTG a breadth-first walk begin-
ning at the top starts (blue line in Figure 2a). For each non-empty and not
dominated node run tasks1 for the depth-first walk with the dominance test.
In parallel continue with the breadth-first walk.

For example, if the node (0, 1) is reached in Figure 2a, two further tasks can
be started in parallel to run a DFT down to (0, 2) and (1, 1) (red solid ar-
rows). Continuing with the BFT we reach the already dominated node (1, 1)
and afterwards (2, 0). A new DFT task follows the red dashed arrows to mark
nodes as dominated. Note that the BFT task might be slower or faster than
the DFT from node (0, 1) and therefore the DFT could follow different paths
in the depth-first dominance search. The pseudocode for ARL-S reduced to
its essence is decpicted in Figure 2b; the fork/join task for the DFT can be
found in Figure 3b.

1 We use the ForkJoinPool from Java 7 to manage the recursive DFT tasks.

102 M. Endres and W. Kießling

2(0, 2)

3(0, 3)

4(0, 4)

1(0, 1)

9(1, 4)

0(0, 0)

6(1, 1)

7(1, 2)

8(1, 3)

14(2, 4)

5(1, 0)

13(2, 3)

10(2, 0)

11(2, 1)

12(2, 2)

(a) BTG for ARL-S (b) Pseudocode

Fig. 2. The ARL-Skyline algorithm

The HPL-S algorithm combines Phase 2 and 3 of ARL-S to one phase.

The HPL-Skyline Algorithm (HPL-S) is designed as:

– Phase 1: Initialize all data structures.
– Phase 2+3: Similar to Phase 2 in ARL-S we split the dataset into c par-

titions, for each partition a worker thread ci. If one of the worker threads
marks a node in the BTG as non-empty, it immediately starts a task for the
DFT dominance test (if not done yet) and continues with adding elements,
cp. Figure 3a. The simplified pseudocode is shown in Figure 3b.

For example, thread c1 adds an element to (0, 3) and immediately starts
additional tasks for the DFT (red arrows). Simultaneously another thread
c2 adds an element to the node (0, 1) and starts tasks for the DFT and
dominance tests (red dotted arrows). After thread c1 has finished, it wants to
add an element to (1, 1). However, since it is already marked as dominated,
thread c1 can continue with adding elements to other nodes in the BTG
without performing a DFT dominance test.

After all threads have finished, a breadth-first traversal is done on the
remaining nodes (blue line in Figure 3a). Again, the non-empty and not
dominated nodes present the Skyline.

The advantage of the HPL-S in comparison to ARL-S is that the DFT search
will mark dominated nodes as dominated and other parallel running threads do
not have to add possible elements to these already dominated nodes. This saves
memory and runtime.

High Parallel Skyline Computation over Low-Cardinality Domains 103

2(0, 2)

3(0, 3)

4(0, 4)

1(0, 1)

9(1, 4)

0(0, 0)

6(1, 1)

7(1, 2)

8(1, 3)

14(2, 4)

5(1, 0)

13(2, 3)

10(2, 0)

11(2, 1)

12(2, 2)

(a) BTG for HPL-S (b) Pseudocode

Fig. 3. The HPL-Skyline algorithm

4.2 Data Partitioning and Choosing the Right Data Structure

Data Partitioning. The performance of known parallel and distributed BNL
and D&C style algorithms (and many variants) are heavily influenced by the un-
derlying partitioning of the input dataset. [13] suggests a grid-based partitioning,
[18, 7] uses an angle-based partitioning, and [19] uses hyperplane projections to
divide the dataset into disjoint sets. The lattice algorithms are independent from
the partitioning, because the dominance tests are done on the lattice structure
instead of relying on a tuple-to-tuple comparison. This is also the reason why the
underlying data distribution (i.e., whether the dataset attributes are correlated,
independent, or anti-correlated) does not influence performance.

Choosing the Right Data Structure. In general concurrency on a shared
data structure requires a fine grained locking amongst all running threads to
avoid unnecessary locks. In addition, one has to ensure that no data is read or
written which has just been accessed by another thread (dirty reads or writes)
in order to avoid data inconsistency. When considering for example the parallel
removal phase in HPL-S (Figure 3b), a critical situation may occur if two threads
try to append (line 10 in HPL-S) or delete an element (line 6 in DFT) on the
same node simultaneously. This problem can be tackled by synchronization and
locking protocols, cp. [5]. The lazy locking approach uses as few locks as possi-
ble. Locks are only acquired when they are really needed, i.e., when modifying
nodes. Reading can be done in parallel without inconsistency problems. From a
performance point of view lazy locking is definitely superior to all other locking
protocols like continuous locking, full, or lock-free synchronization.

104 M. Endres and W. Kießling

For the lattice implementation we used three different data structures: Ar-
rays, HashMaps, and SkipLists [23]. Using an array means that each index in
the array represents an ID in the lattice. The entries of the array are nodes hold-
ing the different states empty, non-empty, and dominated. Each node follows the
lazy locking synchronization2. For the HashMap and SkipList implementation3

we used the approach of a level-based storage, cp. Figure 4. An array models
the levels of the BTG. Then the nodes are stored in a HashMap or SkipList.
Adding an element to the BTG means computing the ID and the level it belongs
to and marking the node at the right position as non-empty or dominated. The
advantage of the level-based storage using SkipLists in contrast to HashMaps
lies in the reduced memory requirements, because we do not have to initialize
the whole data structure in main memory. A node is initialized on-the-fly if it
is marked as non-empty or dominated. Additionally, if each node in a level is
dominated, we can remove all nodes from the corresponding SkipList, mark the
level-entry in the array as dominated and free memory.

[level = 6]

[level = 5]

[level = 4]

[level = 3]

[level = 2]

[level = 1]

[level = 0]

NIL

NIL

4 12

3

6 10

1

NIL

Fig. 4. Level-based storage of the BTG using SkipLists

In [20, 5] a LazyList with some advantages against the concurrent SkipList
implementation was proposed to use for concurrent programming. Nevertheless,
we decided to use SkipLists instead of LazyLists, because the traversal of a
SkipList is faster than that of a LazyList due to the additional pointers which
skip some irrelevant elements. Since not all nodes in the lattice are present and
we have to find some nodes in the lattice during the DFT search quickly, the
concurrent SkipList is the better choice.

4.3 Complexity Analysis and Memory Requirements

Complexity Analysis. The original lattice based algorithms [9, 8] have linear
runtime complexity. More precisely, the complexity is O(dV + dn), where d is
the dimensionality, n is the number of input tuples, and V is the product of
the cardinalities of the d low-cardinality domains from which the attributes are
drawn. Since there are V total entries in the lattice, each compared with at most
d entries, this step is O(dV), cp. [8]. In the original version of Hexagon all entries
in the lattice are positioned in an array. Since array accesses are O(1), the pass
through the data to mark an entry as non-empty is O(dn).

2 Implemented with ReentrantReadWriteLock in Java 7.
3 We use ConcurrentHashMap and ConcurrentSkipListMap from Java 7.

High Parallel Skyline Computation over Low-Cardinality Domains 105

The ARL-S and HPL-S algorithms with an array as BTG representation
follow the original implementation of [9, 8] and therefore have a complexity of
O(dV + dn). Using a level-based representation of the BTG with a HashMap
for each level, we have a constant access for each level and O(1) for the look-up
in the HashMap, since we can use a perfect hash function due the known width
of the BTG in each level, cp. [24]. In summary this leads to O(dV + dn), too.
For the SkipList based BTG implementation we have O(dV + dn logw), since
operations on SkipLists are O(logw) [23], where w is the number of elements in
the SkipList, i.e., the width of the BTG in the worst case.

Memory Requirements. Given a discrete low-cardinality domain dom(A1)×
. . . × dom(Am) on attributes Ai, the number of nodes in the BTG is given by∏m

i=1(max(Ai) + 1) [9]. Each node of the BTG has one of three different states:
empty, non-empty, and dominated. The easiest way to encode these three states
is by using two bits with 0x00 standing for empty, 0x01 for non-empty and 0x10
for dominated. This enables us to use the extremely fast bit functions to check
and change node states. Since one byte can hold four nodes using two bits each,
we have in summary that the BTG for a Skyline query may require the following
maximal amount of memory, i.e, it is linear w.r.t. the size of the BTG.

mem(BTG) :=

⌈
1

4

m∏
i=1

(max(Ai) + 1)

⌉

4.4 Remarks

Concurrent programming usually increases performance when the number of
used threads is equal or less than the number of available processor cores and
idling of threads can be prevented. Otherwise it can decrease performance due
to waiting or mutual locking program codes. Our algorithms use high parallelism
to complete the running tasks. This might be a performance problem for very
small BTGs, if many threads work on a lattice where the size is much smaller
than the number of threads. In this case there could be a lot of synchronization
necessary. However, in practical Skyline problems this should not occur.

Another question concerns the speedup of concurrently programmed algo-
rithms with larger input data. A good description of potentially benefits is given
by Gustafson’s Law [4], which says that computations involving arbitrarily large
datasets can be efficiently parallelized. Our algorithms depend on the lattice
size and the dominance tests on the lattice nodes, but not on a tuple-to-tuple
comparison. Therefore, for larger datasets only the adding phase influences the
performance, but not the removal phase, because the BTG size is independent
from the input size. In addition, the HPL-S algorithms have the advantage of an
“premature domination” of nodes, i.e., we filter out unnecessary elements early.

Due to Amdahl’s law the sequential part of concurrent programs must be
reduced to a minimum. In our algorithms only the initialization of the data
structure (Phase 1), and the last tuple scanning is sequential, because initializing
an array, a SkipList or HashMap is just instantiating these objects.

106 M. Endres and W. Kießling

The reader will notice that the lattice based algorithms require two scans
of the dataset to output the Skyline, the first to mark positions in the lattice
structure and a second to output Skyline elements from values derived from the
lattice. Another approach used in [9] is to mark the nodes in the lattice as non-
empty and additionally hold pointers to the elements in the dataset. Obviously,
this requires more memory, but avoids the second linear scan of the dataset.

In summary that means that we have high parallel algorithms with a minimal
sequential part and therefore expect an enormous speed-up in Skyline evaluation.

5 Experiments

This section provides our comprehensive benchmarks on synthetic and real data
to reveal the performance of the outlined algorithms. Due to the restricted space
of the paper we only present some selected characteristic tests. However, all
results show the same trends as those presented here.

5.1 Benchmark Framework

For our synthetic datasets we used the data generator commonly used in Skyline
research [1]. We generated anti-correlated (anti), correlated (corr), and indepen-
dent (ind) distributions and varied three parameters: (1) the data cardinality
n, (2) the data dimensionality d, and (3) the number of distinct values for each
attribute domain. For real data we used the entries from www.zillow.com. This
dataset contains more than 2M entries about real estate in the United States.
Each entry includes number of bedrooms and bathrooms, living area in sqm, and
age of the building. The Zillow dataset also serves as a real-world application
which requires finding the Skyline on data with a low-cardinality domain.

Our algorithms have been implemented using Java 7 using only built-in tech-
niques for locking, compare-and-swap operations, and thread management. All
experiments are performed on a single node running Debian Linux 7.1. The
machine is equipped with two Intel Xeon 2.53 GHz quad-core processors using
Hyper-Threading, that means a total of 16 cores.

5.2 Experimental Results

Comparison of ARL-S and HPL-S. For our algorithmsARL-S andHPL-S
we used different data structures, i.e. A (Array),HM (HashMap), SL (SkipList)
as described in Section 4. For comparison we used synthetic datasets, because
they allow us to carefully explore the effect of various data characteristics.

Figure 5a presents the runtime performance of our algorithms on different data
cardinality n. We used n = 1 · 106 to 10 · 106 tuples and 5 dimensions, since this
is realistic in practical cases. We fixed the number of threads to c = 8 and used a
domain derived from [1, 2, 5, 100, 100]. In this case the lattice has 367236 nodes.
The array based implementations ARL-S A and HPL-S A perform best, whereas
the level-based versions with non-linear time complexity are worser, cp. Section

High Parallel Skyline Computation over Low-Cardinality Domains 107

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 5 10

R
un

tim
e

(s
ec

)

Input size x 106

ARL-S HM
ARL-S SL
ARL-S A

HPL-S HM
HPL-S SL
HPL-S A

(a) anti, d=5, c=8

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14 16
R

un
tim

e
(s

ec
)

Thread count

ARL-S SL
ARL-S A

HPL-S SL
HPL-S A

(b) corr, n = 106, d=4

 0

 1

 2

 3

 4

 5

 6

ARL-S HM

ARL-S SL

ARL-S A

HPL-S HM

HPL-S SL

HPL-S A

R
un

tim
e

(s
ec

)

Construction
Adding phase

Removal phase

(c) anti, n = 106, d=5, c=16

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
-u

p

Thread count

linear
d = 3
d = 5
d = 7

(d) ind, n = 106, HPL-S A

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 64 128 256 512

R
un

tim
e

(s
ec

)

Thread count

pSkyline
pBNL

APSkyline
ARL-S A
HPL-S A

(e) anti, n = 5 · 106, d=5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 32 64 128 256 512

S
pe

ed
-u

p

Thread count

pSkyline
pBNL

APSkyline
ARL-S A
HPL-S A

(f) anti, n = 5 · 106, d=5

 0

 50

 100

 150

 200

 250

 300

 350

1 5 10

R
un

tim
e

(s
ec

)

Input size x 106

pSkyline
pBNL

APSkyline
ARL-S A
HPL-S A

(g) anti, d=5, c=16

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

pBNL
pSkyline

APSkyline

ARL-S A

HPL-S A

R
un

tim
e

(s
ec

)

d=3
d=5
d=7

(h) anti, n = 106, c=16

 0

 50

 100

 150

 200

 250

pBNL
pSkyline

APSkyline

ARL-S A

HPL-S A

R
un

tim
e

(s
ec

)

Total

Construction
Adding phase

Removal phase

(i) Zillow dataset

Fig. 5. Experimental results

4.3. Interestingly, the HashMap implementation of the BTG is not as good as
the SkipList based version. Maybe this is due to the additional computation of
the hash function. The Skyline size ranges from 392 (n = 106) to 3791 objects
(n = 10 · 106).

In Figure 5b we compared the SkipList and Array variants of ARL-S and
HPL-S. We used correlated data on 4 dimensions and varied the number of
threads up to 16 (’one thread per core’). As expected, ARL-S A and HPL-S A

108 M. Endres and W. Kießling

are the best algorithms exploiting a high parallelism on a data structure having
constant access time.

Figure 5c shows the segmented runtime for our algorithms, i.e., the time for the
construction phase, the adding phase, and the removal phase. In all algorithms
the time for the construction phase is negligible. The adding phase is the most
time consuming part. The HashMap based implementations are worser than the
SkipList implementations, since the adding phase takes much longer Thereby,
the removal phase is nearly the same. The both array based implementations are
significantly faster than the competitors. HPL-S A is slightly better than ARL-S
A, in particular in the removal phase. Note that we separated the time for adding
and removal in the HPL-S algorithms, since this two phases are combined to one
phase in HPL-S.

We also considered the memory usage of our algorithms in this experiment.
We measured the most memory consuming part, i.e., the adding phase, because
in that phase all objects must fit into memory (we associated the BTG nodes
with the input objects). ARL-S HM uses more than 70 MB of memory, whereas
ARL-S SL using a SkipList can reduce the memory usage to 45 MB due to
the fact of dynamic adding and removal of single nodes of the BTG. ARL-S A
using an array needs about 50 MB of memory. In contrast, all HPL-S algorithms
need much less memory due to the combined adding and removal phase. HPL-S
HM using 35 MB still needs the most memory, whereas HPL-S SL uses a total
memory of 5 MB. HPL-S A takes 25 MB. In summary, the HPL-S algorithm
using a SkipList is the most memory saving algorithm.

For speed-up experiments we used independent data, fixed n = 106 and used
d = 3, 5 and 7 dimensions. We executed our HPL-S A algorithm using up to 16
threads. The results are shown in Figure 5d. Our HPL-S A algorithm achieves su-
perlinear speed-up until 6 threads, which we believe to be the result of a relative
small BTG size (about 3000 nodes for d = 7). In the case of 3 and 5 dimen-
sions the BTG is much smaller, but in these cases much more synchronization
is necessary, because threads may try to lock the same node.

Comparison of Multi-core Skyline Algorithms. We compared our algo-
rithms against the state-of-the-art multicore algorithms APSkyline [7] using
equi-volume angle-based partitioning, pSkyline [11], and the lazy locking par-
allel BNL (pBNL) [5]. For a better overview we skipped the Parallel Divide-
and-Conquer approach, because it is outperformed by pBNL [5]. Note that all
our results are in line with the results presented in [5] and [7].

In Figure 5e we show the results in the case of an anti-correlated dataset as
we increase the number of threads from 1 to 512. We expected to reach peak
performance at 16 threads, which is the maximum number of hardware threads
(two quad-core processors using Hyper-Threading). As the number of threads
increase beyond 16, the performance gain moderately ceases for all algorithms
due to the increased synchronization costs without additional parallel computing
power. For the used low-cardinality domain [2, 2, 2, 2, 100] we observed that our
algorithms ARL-S A and HPL-S A outperform the competitors until 128 threads.
Beyond that, the parallel computing power decreases and ARL-S A and HPL-S

High Parallel Skyline Computation over Low-Cardinality Domains 109

A become worser. This is due to the fact of the high number of locks on the BTG
nodes, in particular when using 512 threads. The Skyline has 37971 objects.

In Figure 5f we measure the speed-up of each algorithm on anti-correlated
data using n = 5 · 106 and 5 dimensions ([2, 3, 5, 10, 100]). We observed that all
algorithms have nearly linear speed-up up to 8 threads. From the ninth thread
on, the performance only marginally increases and beyond 16 thread it gradually
decreases. This can be explained with decreasing cache locality and increasing
communication costs as our test systems uses two quad-core processors with
Hyper-Threading (8 cores per CPU). Starting with the ninth core, the second
processor must constantly communicate with the first.

Figure 5g presents the behavior of the algorithms for increased data size.
APSkyline is better than pBNL and pSkyline as mentioned in [7]. However, the
domain derived from [2, 3, 5, 10, 100], which is typical for Skyline computation
(a few small attributes together with a large attribute) [8], is best suited for our
algorithms, which significantly outperform all others.

Figure 5h shows the obtained results when increasing the number of dimen-
sions: d = 3 ([2,2,100]) to d = 7 ([2,2,2,2,2,2,100]). The number of input tuples
(anti) was fixed to n = 106 and c = 16. pSkyline and APSkyline are quiet similar
for all dimensions, whereas pBNL is better for d = 3. It should be mentioned that
the size of the Skyline set normally increases on anti-correlated data with the
dimensionality of the dataset [25] (138 Skyline objects for d = 3, 4125 objects
for d = 7). This makes Skyline processing for algorithms relying on tuple-to-
tuple comparison more demanding. This experiments verifies the advantage of
our algorithms based on the lattice structure and not on a tuple comparison, in
particular for higher values of dimensionality.

Real Dataset. In Figure 5i we show the obtained results for the real-world
Zillow dataset. The parallel BNL algorithm is outperformed in an order of mag-
nitude by all other algorithms. APSkyline is outperformed by pSkyline because
of an unfair data partitioning as mentioned in [7]. Our lattice based algorithms
do not rely on any partitioning scheme and are independent from data distri-
bution. Therefore, the best performing algorithms are ARL-S A and HPL-S A.
Thereby the latter one slightly performs better. For both algorithms the adding
phase is the most time consuming part. Note that we skipped the HashMap and
SkipList implementations for an better overview. They are also outperformed by
ARL-S A and HPL-S A. There are 95 objects in the Skyline.

6 Conclusion

In this paper we presented two algorithms for high-performance parallel Skyline
computation on shared-memory multi-processor systems. Both algorithms are
based on the lattice structure constructed by a Skyline query over low-cardinality
domains, and do not rely on any data partitioning. Our algorithms have linear
runtime complexity and a memory requirement which is linear w.r.t. the size of
the lattice. In our extensive experiments on synthetic and real data, we showed
the superior characteristics of these algorithms in different settings. Exploiting

110 M. Endres and W. Kießling

the parallelization on the lattice structure we are able to outperform state-of-
the-art approaches for Skyline computation on modern hardware architectures.
As future work we want to extend our algorithms to handle high-cardinality
domains, which could be a challenging task.

Acknowledgement. We want to thank Selke et al. [5] for providing us with the
source code of the parallel BNL and pSkyline. The implementation of APSkyline
is based on the source code made available by Liknes et al. [7].

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proc. of ICDE
2001, pp. 421–430. IEEE, Washington, DC (2001)

2. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline Queries, Front and Back. SIG-
MOD Rec. 42(3), 6–18 (2013)

3. Mattson, T., Wrinn, M.: Parallel Programming: Can we PLEASE get it right this
time? In: Fix, L. (ed.) DAC, pp. 7–11. ACM (2008)

4. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533 (1988)
5. Selke, J., Lofi, C., Balke, W.-T.: Highly Scalable Multiprocessing Algorithms

for Preference-Based Database Retrieval. In: Kitagawa, H., Ishikawa, Y., Li, Q.,
Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 246–260. Springer, Hei-
delberg (2010)

6. Im, H., Park, J., Park, S.: Parallel Skyline Computation on Multicore Architec-
tures. Inf. Syst. 36(4), 808–823 (2011)

7. Liknes, S., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: APSkyline: Improved Sky-
line Computation for Multicore Architectures. In: Bhowmick, S.S., Dyreson, C.E.,
Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part
I. LNCS, vol. 8421, pp. 312–326. Springer, Heidelberg (2014)

8. Morse, M., Patel, J.M., Jagadish, H.V.: Efficient Skyline Computation over Low-
Cardinality Domains. In: Proc. of VLDB 2007, pp. 267–278. (2007)

9. Preisinger, T., Kießling, W.: The Hexagon Algorithm for Evaluating Pareto Pref-
erence Queries. In: Proc. of MPref 2007 (2007)

10. Godfrey, P., Shipley, R., Gryz, J.: Algorithms and Analyses for Maximal Vector
Computation. The VLDB Journal 16(1), 5–28 (2007)

11. Park, S., Kim, T., Park, J., Kim, J., Im, H.: Parallel Skyline Computation on
Multicore Architectures. In: Proc. of ICDE 2009, pp. 760–771 (2009)

12. Lo, E., Yip, K.Y., Lin, K.-I., Cheung, D.W.: Progressive Skylining over Web-
accessible Databases. IEEE TKDE 57(2), 122–147 (2006)

13. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D.P., El Abbadi, A.: Parallelizing
Skyline Queries for Scalable Distribution. In: Ioannidis, Y., et al. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006)

14. Hose, K., Vlachou, A.: A Survey of Skyline Processing in Highly Distributed En-
vironments. The VLDB Journal 21(3), 359–384 (2012)

15. Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel Skyline Queries. In:
Proc. of ICDT 2012, pp. 274–284. ACM, New York (2012)

16. Cosgaya-Lozano, A., Rau-Chaplin, A., Zeh, N.: Parallel Computation of Skyline
Queries. In: Proc. of HPCS 2007, p. 12 (2007)

17. Park, Y., Min, J.-K., Shim, K.: Parallel Computation of Skyline and Reverse Sky-
line Queries Using MapReduce. PVLDB 6(14), 2002–(2013)

High Parallel Skyline Computation over Low-Cardinality Domains 111

18. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based Space Partitioning for Ef-
ficient Parallel Skyline Computation. In: Proc. of SIGMOD 2008, pp. 227–238
(2008)

19. Köhler, H., Yang, J., Zhou, X.: Efficient Parallel Skyline Processing using Hyper-
plane Projections. In: Proc. of SIGMOD 2011, pp. 85–96. ACM (2011)

20. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A
Lazy Concurrent List-Based Set Algorithm. In: Anderson, J.H., Prencipe, G., Wat-
tenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg
(2006)

21. Bøgh, K.S., Assent, I., Magnani, M.: Efficient GPU-based Skyline computation.
In: Proc. of DaMoN, pp. 5:1–5:6. ACM, New York (2013)

22. Woods, L., Alonso, G., Teubner, J.: Parallel Computation of Skyline Queries. In:
Proc. of the FCCM, pp. 1–8. IEEE, Washington, DC (2013)

23. Pugh, W.: Skip Lists: A Probabilistic Alternative to Balanced Trees. Commun.
ACM 33(6), 668–676 (1990)

24. Glück, R., Köppl, D., Wirsching, G.: Computational Aspects of Ordered Inte-
ger Partition with Upper Bounds. In: Bonifaci, V., Demetrescu, C., Marchetti-
Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 79–90. Springer, Heidelberg
(2013)

25. Shang, H., Kitsuregawa, M.: Skyline Operator on Anti-correlated Distributions.
In: Proc. of VLDB 2013 (2013)

Top-k Differential Queries in Graph Databases

Elena Vasilyeva1, Maik Thiele2, Christof Bornhövd3, and Wolfgang Lehner2

1 SAP AG, Chemnitzer Str. 48, 01187 Dresden, Germany
elena.vasilyeva@sap.com

2 Technische Universität Dresden, Database Technology Group
Nöthnitzer Str. 46, 01187 Dresden, Germany

{maik.thiele,wolfgang.lehner}@tu-dresden.de
3 SAP Labs, LLC, Palo Alto, USA

christof.bornhoevd@sap.com

Abstract. The sheer volume as well as the schema complexity of today’s
graph databases impede the users in formulating queries against these
databases and often cause queries to “fail” by delivering empty answers.
To support users in such situations, the concept of differential queries can
be used to bridge the gap between an unexpected result (e.g. an empty
result set) and the query intention of users. These queries deliver missing
parts of a query graph and, therefore, work with such scenarios that re-
quire users to specify a query graph. Based on the discovered information
about a missing query subgraph, users may understand which vertices
and edges are the reasons for queries that unexpectedly return empty
answers, and thus can reformulate the queries if needed. A study showed
that the result sets of differential queries are often too large to be manu-
ally introspected by users and thus a reduction of the number of results
and their ranking is required. To address these issues, we extend the con-
cept of differential queries and introduce top-k differential queries that
calculate the ranking based on users’ preferences and therefore signifi-
cantly support the users’ understanding of query database management
systems. The idea consists of assigning relevance weights to vertices or
edges of a query graph by users that steer the graph search and are used
in the scoring function for top-k differential results. Along with the novel
concept of the top-k differential queries, we further propose a strategy for
propagating relevance weights and we model the search along the most
relevant paths.

Keywords: Graph databases, Top-k Differential Queries, Flooding.

1 Introduction

Following the principle “data comes first, schema comes second”, graph databases
allow to store data without having a predefined, rigid schema and enable a gra-
dual evolution of data together with its schema. Unfortunately, schema flexibility
impedes the formulation of queries. Due to the agile flavor of integration and
interpretation processes, users very often do not possess deep knowledge of the
data and its evolving schema. As a consequence, issued queries might return

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 112–125, 2014.
c© Springer International Publishing Switzerland 2014

Top-k Differential Queries in Graph Databases 113

unexpected result sets, especially empty results. To support users to understand
the reasons of an empty answer, we already proposed the notion of a differential
query [15]; a graph query (for example see Figure 1(a)) that has a result con-
sisting of two parts: (1) a discovered subgraph that is a part of a data graph
isomorphic to a query subgraph like in Figure 1(b), and (2) a difference graph
reflecting the remaining part of a query like in Figure 1(c). Differential queries
work in scenarios, where users need to specify a query in the form of a graph,
such as subgraph matching queries. Although the approach in [15] already sup-
ports users in the query answering process, it still has some limitations: the
number of intermediate results can be very large, e.g. it can reach up to 150K
subgraphs for a data graph consisting of 100K edges and a query graph with
10 edges. Optimization strategies reducing the number of traversals for a query
based on cardinality and degree of a query’s vertices could prune intermediate
results, but, as a side effect, they also could remove important subgraphs, since
these strategies do not consider the users’ intention.

Contributions

To cope with this issue, we extend the concept of differential queries with a
top-k semantic, resulting in so-called top-k differential queries that are the main
contribution of this paper. These queries allow the user to mark vertices, edges,
or entire subgraphs of a query graph with relevance weights showing how im-
portant specified graph elements are within a query. To make the search of a
top-k differential query with multiple relevance weights possible, we present an
algorithm for the propagation of relevance weights: relevance flooding. Based on
the propagated weights, the system decides automatically how to conduct the
search in order to deliver only the most relevant subgraphs to a user as an alter-
native result set of the original query. The initial weights are used to rank the
results. The concept of top-k differential queries allows us to reduce processing
efforts on the one side and allows to rank individual answers according to the
user’s interest on the other side.

The rest of the paper is structured as follows. In Section 2 we present the state
of the art related work. The property graph model and differential queries are
introduced in Section 3. Section 4 describes the relevance-based search and its
application to top-k differential queries. We evaluate our approach in Section 5.

2 Related Work

In this section we present solutions for “Why Not?” queries and for the empty-
answer problem, ranking of query results, and flexible query answering.

“Why Not?” Queries and Empty-Answer Problem

The problem of unexpected answers is generally addressed by “Why Not?” que-
ries [3] determining why items of interest are not in the result set. It is assumed

114 E. Vasilyeva et al.

that the size and complexity of data prevent a user from manually studying the
reasons in a feasible way. A user specifies the items of interest with attributes or
key values and conducts a “Why Not?” query. The answers to such a query can
be (1) an operator of a query tree, removing the item from processing [3], (2) a
data source in provenance-based “Why Not?” queries like for example in [6], or
(3) a refined query that contains the items of interest in the result set like in [14].
In contrast to approaches tailored for relational databases, we do not operate on
a query tree constructed for a query execution plan, but we deal with a query
graph, for which we search corresponding data subgraphs by a breadth-first or
depth-first traversal considering user-defined restrictions with respect to vertices
and edges based on their attribute values. It is important to understand, which
query edges and vertices are responsible for the delivery of an empty result set.

Query rewriting for the empty-answer problem can also be enhanced by user
interaction [10]. This interactive query relaxation framework for conjunctive
queries [10] constructs a query relaxation tree from all possible combinations
of attributes’ relaxations. Following the tree top-down, a user receives proposals
for query relaxations and selects preferred ones. This approach [10] has only a
single objective function. In our settings, it would be only a single vertex of
interest. To model multiple relevant elements and to detect the optimal path
between them cannot be achieved by this approach proposed in [10].

Ranking of Query Results

The concept of top-k queries derives from relational database management sys-
tems, where the results are calculated and sorted according to a scoring func-
tion. In graph databases top-k queries are used for ranking (sub)graph match-
ers [16,17]. These ranking strategies differ in regard to how a data graph is
stored in a graph database. If a database maintains multiple data graphs, for
example chemical structures, then a similarity measure based on a maximum
common subgraph between a query and an individual data graph can be used as
a scoring function [16]. If a database maintains a single large data graph, then
the approach of top-k subgraph matchers [17] can be applied. In this context,
it is assumed that a data graph has naturally a hierarchical structure that can
be used for index construction and clustering of data subgraphs enabling effec-
tive pruning. These solutions do not consider any relevance function for a query
graph which is paramount in our setup.

To rank the results, an “interesting” function [5], relevance and distance func-
tions [4], or estimation of confidence, informativeness, and compactness [7] can
be used. In the first case [5], such an “interesting” function is defined in advance
by a use case, for example, it can be a data transfer rate between computers
in a network. Up front, we do not have any “interesting” function in a data
graph. In the second case [4], the matching problem is revised by the concept of
“output node”, which presents the main part of a query answer to be delivered
to a user. In our settings, this approach could be compared to a single vertex
with a user-specified relevance weight. In the third case [7], additional semantic
information is used to estimate scoring functions. In contrast, we assume that

Top-k Differential Queries in Graph Databases 115

the data graph has the maximal confidence, our user is interested in subgraph
matching queries without accounting for additional semantic information. The
compactness of answers is not considered in our work, because we deal with
exact matching, and the answers containing more relevant parts matching to
the initial query are ranked higher. Our approach can be further improved by
estimating the informativeness, which should be based on a user’s preferences.
This question is left for future work.

In [1] the top-k processing for XML repositories is presented. The authors
relax the original query, calculate the score of a new query based on its content-
and structure-based modifications, and search for the matches. While Amer-
Yahia et al. relax the query and search for a matching document, we process a
data graph without any changes to the original query. Instead we do search for
exact subgraph matches. Subgraphs can also be matched and ranked by approxi-
mate matching and simulation-based algorithms, which can result in inaccurate
answers with a wrong graph shape or non matching vertices. Since we provide
exact matches, the class of inexact algorithms is not considered in our work.

Flexible Query Answering

A different approach tackling the problem of overspecified queries can be modeled
by the SPARQL language [11]. SPARQL provides the OPTIONAL clause, which
allows to process a query graph if a statement or an entire subgraph is missing in
a data graph. The UNION clause allows to specify alternative patterns. Defining
a flexible query is not straight-forward: a user has to produce all possible com-
binations of missing edges and vertices in a query graph to derive results, this
requires good knowledge of SPARQL. Moreover, this language does not support
relevance weights on a query graph directly, and a user cannot have a direct
impact on the search within the database. Furthermore, it does not support the
calculation of difference graphs.

3 Preliminaries

In this section we present a general overview on the used graph model and
differential queries in graph databases.

Property Graph

A graph database stores data as vertices and edges. Any query to a graph
database and corresponding results may be understood as graphs themselves.
As an underlying graph model we use the property graph model [12], a very ge-
neral model, describing a graph as a directed multigraph. It models entities via
vertices and relationships between them via edges. Each graph element can be
characterized by attributes and their values, allowing the combination of data
with different structures and semantics. The mathematical definition and the
comparison of this model with other graph models are provided in [12,15].

116 E. Vasilyeva et al.

� �

� �

�

������� 	

���	��� ��

�����	��� 	
 �����

�	��	

(a) Differential query

� �

�

�

��������� �	
���

������	

��� �����	
�	����������

�������������

(b) Discovered subgraph

� �
������� 	

���	��� ��

���������	
��

�

�����

(c) Difference graph

Fig. 1. Differential query and its results

Differential Queries

If a user receives an empty result set from a graph database, a differential query
can be launched that investigates the reasons of an empty result [15]. The dif-
ferential query is the initial graph query delivering an empty answer, marked
by a specified keyword. In order to provide some insights into the “failure” of
a query, a user receives intermediate results of the query processing consisting
of two parts: a data subgraph and a missing part of the original query graph.
The first part consists of a maximum common subgraph between a data graph
and the query graph that was discovered by any maximum common subgraph
algorithm suitable for property graphs. This can be for example the McGregor
maximum common subgraph algorithm [8]. The second part reflects a difference
graph - a “difference” between a query graph and a discovered maximum common
subgraph. It shows the part of a differential query that is missing from a data
graph and therefore displays the reason why the original query “failed”. The
difference graph is also annotated with additional constraints at the vertices,
which are adjacent to the discovered subgraph as connecting points.

As an example, imagine a data graph derived from text documents that con-
tains information about patients, their diagnoses, and medical institutions. We
store the data graph together with a source description in a graph database to
allow its collaborative use by several doctors. Assume a doctor is interested in
names of all patients (P), their diseases (I), their cities of residence (C), medical
institutions (O), and information documents (D) like in Figure 1(a). If the query
does not deliver any answer, the doctor launches the query as a differential query
and receives the following results:

– The discovered subgraph in Figure 1(b): A person, called Bob, living in
San Francisco, whose information was described in “Report”, which is about
osteosclerosis.

– The difference graph in Figure 1(c): There is no information about any me-
dical institution located in San Francisco, which provided the “Report”.

Differential Query Processing

The processing of a differential query is based on the discovery of maximum
common subgraphs between a query and a data graph as well as on the com-
putation of difference graphs. Firstly, the system selects a starting vertex and

Top-k Differential Queries in Graph Databases 117

edge from a query graph. Secondly, it searches a corresponding data subgraph in
a breadth-first or depth-first manner. If a maximum possible data subgraph for
a chosen starting vertex is found, then the system stores this intermediate re-
sult, chooses a next starting vertex, and searches again. This process is repeated
with every vertex as a starting point. If the search is done only from a single
starting vertex, then the largest maximum common subgraph might be missing,
because not all edges exist in a data graph. In a final step, the system selects
the maximum common subgraphs from all intermediate results, computes the
corresponding difference graphs, and returns them to a user.

Due to the nature of the differential queries, redundant intermediate sub-
graphs and their multiple processing create a potentially significant processing
overhead. The number of intermediate results can reach up to 150K subgraphs
(Figure 5(d)) for a data graph of 100K edges. In order to cope with this issue, we
already proposed different strategies for the selection of a starting vertex [15]:
based on cardinality or degree of vertices. Although the number of answers is
reduced, it can still remain large to be processed manually. As a side effect,
some subgraphs, which are potentially relevant for a user, might be excluded
from a search, because the strategies do not take a user’s intention into account.
To avoid this, we propose an extended concept of differential queries – top-k
differential queries, which process a query graph and rank results according to
user-defined relevance weights.

4 Top-k Differential Query Processing

In this section we describe the core of our approach – the relevance-based search
with relevance flooding and the detection of an optimal traversal path through
a differential query, and ranking of results.

4.1 Top-k Differential Queries

We define a top-k differential query as a directed graph Gk
q = (V,E, u, f, g, k)

over attribute space A = AV ∪̇AE , where: (1) V,E are finite sets of N vertices and
M edges, respectively; (2) u : E → V 2 is a mapping between edges and vertices;
(3) f(V) and g(E) are attribute functions for vertices and edges; (4) AV and
AE are their attribute space, and (5) k is a number of required results.

The goal of a top-k differential query is to search subgraphs based on rele-
vance weights and to rank the discovered subgraphs according to a relevance-
based scoring function. For this, we introduce so-called relevance weights for
vertices ω(vi) and edges ω(ej) in a query graph, which annotate graph elements,
vertices and/or edges, in a query graph with float numbers ∈ [0; 1]. A weight
ω = 0 denotes low relevance and thus reflects the default of a vertex and an
edge. In our work we do not concern negative evidence, because if a graph ele-
ment is not interesting to a user, then it would not be included in the query.
Graph elements with higher relevance weights in a query are more important to
a user than those with lower values. The introduction of relevance weights does

118 E. Vasilyeva et al.

���������	
����������

������

�		
����
	
�����
�����	�

������	���

��

��	�

���������

����
����

�����
�����	�

��	��	��

���������
	

Fig. 2. Top-k differential query processing

not affect the definition of top-k differential queries, this is just an additional
property for edges and vertices: ω(V) ⊆ f(V) and ω(E) ⊆ g(E).

The relevance weights are used for several purposes, e.g. (1) for steering our
search in a more relevant direction, (2) for earlier processing of elements with
higher relevance, and most importantly (3) in a scoring function for the rank-
ing itself. The values facilitate the discovery of such subgraphs that are more
interesting to a user, and the elimination of less relevant subgraphs.

The processing of top-k differential queries is performed as depicted in Figu-
re 2. After a user has annotated a query with the relevance weights, a relevance-
based search is started. When no new data subgraphs can be found, the system
stops the search, calculates the rank of discovered subgraphs, and returns results
to a user. In the following, we describe all these processing steps in more detail.

4.2 User and Application Origin of Relevance Weights

Relevance weights described in the previous paragraph can be determined based
on a user’s preferences or based on a particular use case. If relevance weights are
assigned by a user, then the more important graph elements get higher weights.
With reference to our running example (Figure 1(a)), if a doctor is more inte-
rested in the names of patients and their diseases, then he provides the highest
relevance to corresponding vertices: ω(vP) = 1 and ω(vI) = 1.

If relevance weights are determined by a particular use case, then they are
defined considering specific features of the use case – an objective function, which
the use case tries to minimize or maximize. Some examples of objective functions
would be the data transfer rate in networks of hubs or traffic in the road networks.
If a user aims to maximize the objective function, then graph elements with
higher values of the objective function are annotated by higher relevance weights.
In our approach, we do not assume any specific use case and expect that relevance
weights are defined by a user.

4.3 Relevance-Based Search

After a user has annotated the query graph, the relevance-based search is con-
ducted, which is outlined in the dashed box in Figure 2. At the stage of pre-
processing, the relevance weights are transformed into the format required by
the relevance flooding: edge relevance weights are converted into the relevance
weights of incident vertices. Afterwards, the relevance flooding propagates the

Top-k Differential Queries in Graph Databases 119

weights along the query graph, if at least one vertex does not have a user-defined
relevance weight. Then, relevant subgraphs are searched in a data graph. After
the search the post-processing is executed over relevance weights to prepare them
for the further ranking.

Pre-processing and Post-processing of Relevance Weights. Relevance
flooding considers relevance weights only on vertices. To account for the relevance
weights on edges, we transform them into the weights of incident vertices before
the flooding. The pre-processing consists of two steps: assignment of missing
relevance weights and transformation of relevance weights. If a graph element
is not annotated by a relevance weight, then the default value is assigned to
it. Afterwards, the system distributes the relevance weights of edges to their
incident vertices as follows: (1) The user-defined relevance weight of an edge is
distributed equally across its ends: the source and target vertices. (2) Given a set
of K incident edges to a vertex vi, the relevance weight of a vertex ω(vi) is the
sum of the square root of edges’ relevance weights ω(ej), which are incident to
the vertex vi, and its initial relevance weight ωinit(vi) (if any) like in Equation 1.

The post-processing is conducted after the subgraph search; it prepares the
weights for the ranking. By default, the user-defined weights are used in the
ranking, therefore, the weights changed during the relevance flooding have to be
reset to values derived at the pre-processing step. Non-annotated graph elements
are specified by the minimal weights (see Equations 2 – 4). If we want to use
the relevance flooding weights for the ranking, we have to derive the weights for
edges by multiplying the weights of their sources and targets (Equation 3).

ω(vi) =

K∑
j=1

√
ω(ej) + ωinit(vi) (1) ωmin(ej) = 1/M (2)

ω(ei) = ω(esourcei) ∗ ω(etargeti) (3) ωmin(vi) = 1/N (4)

Relevance Flooding. The goal of relevance flooding is to annotate all vertices
in a query graph by relevance weights. It takes place if not all vertices of a
query graph have user-defined relevance weights. This is necessary to allow the
subgraph search based on relevance weights and to facilitate the early detection
of the most relevant parts of a query graph, which are specified by relevance
weights. The algorithm for relevance flooding is based on similarity flooding [9],
where two schemes are matched by comparing the similarity of their vertices.
We extend this algorithm to propagate the relevance weights to all vertices in a
query graph and to keep the initial user-defined relevance weights.

The relevance flooding takes several observations into account: locality and
stability of relevance. The locality assigns higher relevance weights to the direct
neighbors and lower relevance weights to remote vertices. The stability keeps
the relevance weights provided by a user and prevents the system from reducing
them during the flooding.

120 E. Vasilyeva et al.

Algorithm 1. Relevance Flooding
1: for all vertex vi in query graph Gq do
2: if vi.getWeight() > 0 then � if a vertex has a weight
3: ω = vi.getWeight() � store a weight in ω
4: neighbors = getNeighbors(vi) � take all direct neighbors
5: Δω = ω/neighbors.size() � calculate a propagation weight
6: for all neighborsj in neighbors do
7: neighborsj .addPropWeight(Δω) � store a propagation weight
8: for all vertex vi in query graph Gq do
9: vi.increaseWeight() � increase all weights with propagation weights

10: max(ω) = 0
11: for all vertex vi in query graph Gq do
12: if max(ω) < vi.getWeight() then
13: max(ω) = vi.getWeight() � find a vertex with the maximal weight
14: for all vertex vi in query graph Gq do
15: if vi.getInitWeight() > 0 then � if a vertex has a user-defined weight
16: vi.setWeight(vi.getInitWeight()) � reset to an initial weight
17: else
18: vi.setWeight(vi.getWeight()/max(ω)) � normalize a weight
19: sum = 0
20: for all vertices vi in Gq do � calculate a difference between iterations
21: sum = sum+ (vi.getPrevWeight()− vi.getWeight())2

22: if sum <= ε OR κ >= longestPath then
23: terminateF looding() � check termination conditions

Relevance flooding works as described in Algorithm 1. In the main part at
lines 1- 9, each vertex broadcasts its value to direct neighbors according to the
locality property. Afterwards, the values are normalized to the highest value at
line 18 and user-defined relevance weights are set back to ensure the stability
of given relevance weights at line 16. If a termination condition is satisfied, the
propagation is interrupted at line 23. As the termination condition we can use
a threshold ε for the difference of relevance weights of two subsequent iterations
or the number of iterations κ, which corresponds to the size of the longest path
between two vertices in a query graph.

Following our example in Figure 1(a) and assigned relevance weights ω(vP) =
ω(vI) = 1, at each iteration we propagate the equal relevance weights to all
direct neighbors (an exemplary weight propagation during the second iteration
is shown in Figure 3(b)). During the flooding we do not consider the direction
of edges, because the processing of a graph can easily be done in both directions
without any additional efforts. After the first iteration, vertices D,C get the
propagated relevance weights from P, I according to the locality property (Figu-
re 3(a)). Vertex O still remains without relevance weight. After each iteration,
we normalize the relevance weights to the highest value and set those of them

Top-k Differential Queries in Graph Databases 121

� �

� �

� ��	������� � ��	�������

� ����

� ��	

(a) The first iteration

�

�

�
�
�
��
��

�
�
�
��
��
	

�

�� �����

�� ����		

(b) Distribution

��������	

����� �	����� �� �� �� ���

� � � � � �

� � � � � �

� � � � � �

� � ���� ���� ���� ����

� � � ���� ���� ���

(c) Flooding

Fig. 3. Relevance flooding: gray relevance weights show the case, where the initial
relevance weights are not set back

back to initial values that have weights defined by the user. The gray relevance
weights in brackets for vertices P, I show the weights without reset. We repeat
the process, until it converges according to the specified threshold ε or when
the number of iterations κ has exceeded the longest path between two vertices
(κ = 4). The results of relevance flooding are presented in Figure 3(c).

MaximumCommonSubgraph DiscoverywithRelevanceWeights. User-
defined relevance weights represent an interest of a user in dedicated graph ele-
ments: such elements have to be processed first. We treat a traversal path between
all relevant elements in a query graph as a cost-based optimization, where we max-
imize the relevance of a path.

The search of subgraphs is modeled by the GraphMCS algorithm [15], a depth-
first search for property graphs, discovering maximum common subgraphs bet-
ween a query and a data graph. First, we choose the first vertex to process.
The vertices with highest relevance weights are prioritized and processed first.
Second, we process such an incident edge of the selected starting vertex that
has a target vertex defined by the highest relevance weight. Finally, this process
continues till all vertices and edges in a query graph are processed. If a query
edge is missing in a data graph, then the system adjusts the search dynamically:
it selects the incident edge with the next highest relevance weight or revises the
search from all possible target vertices.

The relevance-based search chooses a next edge to process dynamically based
on relevance weights of edges’ ends. If several vertices have the same weight, then
the edge that has a vertex with minimal cardinality or minimal degree is chosen
to be processed. The proposed strategy steers the search in the most relevant
direction first, guaranteeing the early discovery of the most relevant parts.

4.4 Rank Calculation

The ranking is based only on the discovered subgraphs, the difference graph
does not influence the rating score. The answers with higher relevance weights
are ranked higher. A rating score is calculated based on the values of edges and
vertices a result comprises. After ratings of all results are computed, they are
normalized to the highest discovered rating score. Given N vertices and M edges
in a query graph Gq, the rating of discovered subgraph G′

d is calculated as follows

122 E. Vasilyeva et al.

rating(G′
d) =

i=N∑
i=1

{
ω(vi) , if vi ∈ G′

d

0 , otherwise
+

j=M∑
j=1

{
ω(ej) , if ei ∈ G′

d

0 , otherwise
(5)

Following our example in Figure 1, the rating of the discovered subgraph in Figu-
re 1(b) before normalization equals to rating = 3 by default or rating = 5.68 by
using the relevance flooding weights from the fourth iteration (see Figure 3(c)).

5 Evaluation

In this section, we compare top-k differential queries and unranked differential
queries. We describe the evaluation setup in Section 5.1 and compare both ap-
proaches in Section 5.2. Then, we present and interpret the scalability of the
top-k differential queries in Section 5.3.

5.1 Evaluation Setup

We implemented a property graph model on the top of an in-memory column
database system with separate tables for vertices and edges, where vertices are
represented by a set of columns for their attributes, and edges are simplified
adjacency lists with attributes in a table. Both edges and vertices have unique
identifiers. To enable efficient graph processing, the database provides optimized
flexible tables (new attributes can efficiently be added and removed) and com-
pression for sparsely populated columns like in [2,13]. This enables schema-
flexible storage of data without a predefined rigid schema. Our prototypical
graph database supports insert, delete, update, filter based on attribute values,
aggregation, and graph traversal in a breadth-first manner in backward and
forward directions with the same performance.

Data and queries are specified as property graphs. In a query, each graph
element can be described with predicates for attribute values. To specify a dedi-
cated vertex, we use its unique identifier.

As a data set, we use a property graph constructed from DBpedia RDF triples,
where labels represent attribute values of entities. This graph consists of about
20K vertices and 100K edges. We have tested each case for each query ten times
and have taken the average runtime as a measure.

5.2 General Comparison

We constructed an exemplary query shown in Figure 4(a) and marked three edges
of the type “deathPlace” with relevance weight ω = 1. The unranked differential
query delivers results with a lower maximal rating and exhibits longer response
times than the top-k differential query (Figure 4(b)). The top-k differential query
discovers more subgraphs of higher ratings than the unranked differential query
(Figure 4(c)). The unranked query also discovers the graphs with low ratings.

Top-k Differential Queries in Graph Databases 123

��������	�

 ��

��������	�

 ��

��������	�

 ��

������ ������

�������	� �������	�

(a) Query graph

�

���

�

���

���	�
�� ���

�

��

��

��

��

�
��

�
��
�
	

������� �	���

�
�
�
��
�
�
�
	

(b) Performance

�

��

��

��

��

���

���	�
 �	����	
 �	
���	�
 �	����

������ �����

�������

�
��
�
�
��
�
�
�	

��

�

(c) Ranking

Fig. 4. Evaluation of unranked and top-k differential queries

5.3 Performance Evaluation

We evaluate two kinds of query graphs, one for the path topology and one for
the zigzag topology. The query for the path topology consists of edges of the
same type “successor”, and the first edge is marked by a relevance weight. The

�

��

��

��

��

���

���	�
 �	����	
 �	
���	�
 �	����

������ �����

�������

�
��
�
�
��
�
�
�	

��

�

(a) Ranking for the path (10 edges)

�

��

��

��

��

���

���	�
 �	����	
 �	
���	�
 �	����

������ �����

�������

�
��
�
�
��
�
�
�	

��

�

(b) Ranking for the zigzag (10 edges)

�

���

���

���

���

���

� � � � � � 	
 � ��

�
��
��
��
�
	�

�
�

��
�

���� ��������

��������	�
������	���������������

(c) Intermediate results for the path

�

��

��

��

���

���

�	�

� � �
 � � � 	 � ��

�
��
��
��
��
	

�
�
�

�
�	

���� ��������

��������	�
������	���������������

(d) Intermediate results for the zigzag

�

��

��

��

���

� � � � � 	 �
 � ��

�
��

�
��
�
	

���� ��������

��������	�
������	���������������

(e) Response time for the path

�

��

��

���

���

� � � � 	 �
 � � ��

�
��

�
��
�
	

���� ��������

��������	�
������	���������������

(f) Response time for the zigzag

Fig. 5. Performance evaluation for the differential query and top-k differential query

124 E. Vasilyeva et al.

query for the zigzag topology consists of edges of two types “birthPlace” and
“deathPlace”. It starts with “birthPlace” marked by a relevance weight and is
extended incrementally by a new edge for “deathPlace”, then “birthPlace” etc.

We compare rating distributions for the largest query (ten edges in a query
graph) in Figures 5(a)-5(b). The most of the results delivered by the unranked
differential query have low ratings, while the proposed solution provides at least
60% of its results with the highest ratings. We increase the size of a query graph
from one edge up to ten edges and evaluate the scalability of the proposed solu-
tion. The size of intermediate results grows linearly with the number of edges in
a query graph (Figures 5(c)-5(d)), and it is lower than at least one order of mag-
nitude for the top-k differential query. This can be explained by the elimination
of low-rated subgraphs from the search. The response time evaluation exhibits the
steep decrease for the top-k differential query (Figures 5(e)-5(f)). From this we can
conclude, the top-k differential query is more efficient than the unranked differen-
tial query: it delivers results with a higher rating score, omits low-rated subgraphs,
and consumes less processing time.

6 Conclusion

Heterogeneous, evolving data requires a new kind of storage supporting evol-
ving data schema and complex queries over diverse data. This requirement can
be implemented by graph databases offering the property graph model [12]. To
express graph queries correctly over diverse data without any deep knowledge
of the underlying data schema is a cumbersome task. As a consequence, many
queries might return unexpected or even empty results. To support a user in such
cases, we proposed differential queries [15] that provide intermediate results of
a query processing and difference graphs as the reasons of an empty answer.

In [15] we showed that the result of a differential query can be too large to be
manually studied by a user. Therefore, the number of results has to be reduced,
and the differential queries have to provide a ranking of their results based on
a user’s intention. To address these issues, we extend the concept of differential
queries and introduce top-k differential queries that rank answers based on a
user’s preferences. These preferences are provided by a user in a form of rele-
vance weights to vertices or edges of a query graph. Top-k differential queries (1)
allow marking more relevant graph elements with relevance weights, (2) steer the
search so that more relevant parts of a query graph are discovered first, (3) adjust
the search dynamically in case of missing edges based on relevance weights, and
(4) rank results according to the relevance weights of discovered elements. The
evaluation results showed that more meaningful results are discovered first ac-
cording to a user’s preferences. Our proposed solution delivers results only with
high rating scores and omits the graphs with low ratings. Our approach also
shows good scalability results with an increasing number of edges in a query
graph. In the future, we would like to speedup top-k differential queries with
database techniques like indexing and pre-sorting to allow even faster process-
ing. We also want to enhance the system with an online adaptive propagation
of relevance weights based on a user’s feedback.

Top-k Differential Queries in Graph Databases 125

Acknowledgment. This work has been supported by the FP7 EU project
LinkedDesign (grant agreement no. 284613).

References

1. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and
Content Scoring for XML. Proc. of VLDB Endow., 361–372 (2005)

2. Bornhövd, C., Kubis, R., Lehner, W., Voigt, H., Werner, H.: Flexible Informa-
tion Management, Exploration and Analysis in SAP HANA. In: DATA, pp. 15–28
(2012)

3. Chapman, A., Jagadish, H.V.: Why not? In: Proc. of ACM SIGMOD, pp. 523–534.
ACM, New York (2009)

4. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching. Proc. of
VLDB Endow. 6, 1510–1521 (2013)

5. Gupta, M., Gao, J., Yan, X., Cam, H., Han, J.: Top-k interesting subgraph discov-
ery in information networks. In: Proc. of ICDE, pp. 820–831. IEEE (2014)

6. Huang, J., Chen, T., Doan, A., Naughton, J.F.: On the provenance of non-answers
to queries over extracted data. Proc. of VLDB Endow. 1, 736–747 (2008)

7. Kasneci, G., Suchanek, F., Ifrim, G., Ramanath, M., Weikum, G.: Naga: Searching
and ranking knowledge. In: Proc. of ICDE, pp. 953–962. IEEE (2008)

8. McGregor, J.J.: Backtrack search algorithms and the maximal common subgraph
problem. Software: Practice and Experience 12(1), 23–34 (1982)

9. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proc. of ICDE,
pp. 117–128. IEEE (2002)

10. Mottin, D., Marascu, A., Roy, S.B., Das, G., Palpanas, T., Velegrakis, Y.: A prob-
abilistic optimization framework for the empty-answer problem. Proc. of VLDB
Endow. 6, 1762–1773 (2013)

11. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (2008)

12. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the
American Society for Inf. Science and Technology 36(6), 35–41 (2010)

13. Rudolf, M., Paradies, M., Bornhövd, C., Lehner, W.: The Graph Story of the SAP
HANA Database. In: BTW, pp. 403–420 (2013)

14. Tran, Q.T., Chan, C.Y.: How to conquer why-not questions. In: Proc of ACM
SIGMOD, pp. 15–26. ACM, New York (2010)

15. Vasilyeva, E., Thiele, M., Bornhövd, C., Lehner, W.: GraphMCS: Discover the
Unknown in Large Data Graphs. In: EDBT/ICDT Workshops, pp. 200–207 (2014)

16. Zhu, Y., Qin, L., Yu, J.X., Cheng, H.: Finding top-k similar graphs in graph
databases. In: Proc. of EDBT, pp. 456–467. ACM (2012)

17. Zou, L., Chen, L., Lu, Y.: Top-k subgraph matching query in a large graph. In:
Proc. of the ACM First Ph.D. Workshop in CIKM, pp. 139–146. ACM (2007)

Static Integration of SQL Queries

in C++ Programs

Maciej Sysak, Bartosz Zieliński, Piotr Kruszyński, Ścibór Sobieski,
and Pawe�l Maślanka

Department of Computer Science,
Faculty of Physics and Applied Informatics,

University of �Lódź,
ul. Pomorska nr 149/153, 90-236 �Lódź, Poland

{maciej.sysak,bzielinski,piotr,scibor,pmaslan}@uni.lodz.pl

Abstract. Contemporary frameworks offer essentially two methods of
accessing data in relational databases. The one using plain SQL requires
writing a lot of boilerplate code and storing the SQL in a string, which
is error prone and denies the benefits of static query analysis. The other
one enforces the use of an additional (usually object oriented) abstrac-
tion layer which incurs additional runtime costs and hinders the use of
advanced SQL capabilities. In this paper we present a working imple-
mentation of a radically different approach. Our tool uses the database
engine to analyze the native SQL queries prepared by the user, and gen-
erates all the necessary classes representing query responses, single result
rows and database connections. The use of native queries allows to uti-
lize advanced and highly optimized SQL features. On the other hand,
the use of the generated classes ensures that data access happens in a
statically checked, type-safe way.

1 Introduction

There are well known difficulties in accessing data stored in relational databases
from application programs, especially if good object orientation is required:

1. A query is formulated in SQL, which is stored in the program code as string.
Such strings are opaque to the compiler, which defers the error discovery
until the query is actually sent to database during program execution. In
case of C/C++ this situation is further aggravated by the low quality of
runtime exception mechanisms. Also, writing the query as a string requires
the programmer to properly escape all the special characters which might
appear in the query (such as quotes). This garbles the query string stored
in the program code and increases the error rate even more.

2. Iteration through the query result and binding prepared statements param-
eters requires a lot of unpleasant boilerplate code which is not type-safe —
the number of columns in the result set, their types and names cannot be

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 126–138, 2014.
c© Springer International Publishing Switzerland 2014

Static Integration of SQL Queries in C++ Programs 127

checked by the compiler. It is also the task of a programmer to perform all
the necessary type conversions between SQL and host language types.

A number of solutions is known and used in practice. Those fond of SQL can use
the embedded SQL precompilers supplied for all major databases and languages.
Unfortunately this solution has some disadvantages. For one thing, it mixes the
SQL code with host language code and some auxiliary glue syntax. This confuses
the syntax coloring tools — a seemingly minor inconvenience, which nevertheless
might negatively influence the programmer’s productivity. Also, it requires the
coder to learn the aforementioned glue syntax and the actual implementations
do not handle the type conversions as smoothly as one might expect. Finally,
the precompilation stage introduces issues with some compilers.

A more common approach is to use ORM frameworks such as Hibernate or
Java Persistence Api. The obvious advantages are that they are fully object-
oriented. In particular, queries return objects, which can be made persistent in
order to simplify the data modification management in program code. The frame-
works often decrease the amount of boilerplate code development by advanced
code generation features which makes the programmer task less error prone. As
an additional boon the use of their own object oriented query language (such as
HQL or JPQL) permits developing database vendor agnostic code. Additionally,
many of the ORM frameworks (like JPA or Hibernate) allow the transparent
data caching where the updates and inserts can be collected locally and actually
sent to database as the single batch at the end of transaction. Similarly, the
queries can first examine the cache for the presence of requested data.

Unfortunately the ORM frameworks have also well known drawbacks. A com-
mon and not entirely unjustified charge against ORM’s is that the quality of
generated SQL statements sent to database is very low and it is hard to get the
performance right (see e.g. [17]). Less obviously, the same features mentioned
above as beneficial can also be considered as a downsides from another point of
view. Special query language isolates the developer from the particulars of the
given SQL dialect so much that it precludes the use of advantageous features
of the dialect. Moreover, some more advanced elements of SQL standard might
not be implemented in the custom query language of the framework (consider
e.g. window clauses of analytic functions). Finally, the developer is required to
learn one more query language only superficially resembling SQL. Let us add
that the OQL (HQL, JPQL, etc.) queries are passed to the library functions
as strings, which, just like in case of SQL queries, delays the query syntax and
semantics checking to the time of program execution. This is why many ORM
frameworks include query building DSL’s (Domain Specific Languages) utilizing
the host language syntax — well known examples include LINQ and Java EE
Criteria API. This takes care of compile time syntax checking but still leaves
semantics checking to the run time.

More generally, ORM’s often impose an active, object oriented view of the
data in which objects representing entities manage their own updates leading
to an impedance mismatch with the relational model ([13], see eg. [18] for a
mathematical treatment of this mismatch). This object oriented view, despite

128 M. Sysak et al.

the claims to the contrary [9] the authors (like some others [8]) do not perceive
as the most natural way of conceptualizing the database application.

Another fundamental flaw of most of the existing ORM frameworks is that
they perform during runtime many of the activities, such as translating OQL
to SQL, which can be done during compilation as well. The impact on the
performance is hard to assess, but might be significant in some applications.
More important, however, is the loss of the benefits of static code analysis.

The dbQcc framework presented in this paper takes a completely different
approach. We start with the plain, native SQL query as the source of all needed
information. The external tool we created uses the analyzed query to generate
classes representing the result row, and the query response. The application
code uses the generated classes together with the featured database connection
library to access data in a statically checked, type-safe way. The only query used
in program runtime is the native one explicitly specified by the programmer
in the beginning — we do not modify the query. Note that this is the opposite
approach to the one taken by the ORM frameworks, which produces SQL queries
from the annotated class definitions. Also it is worthy to emphasize that the class
generating tool checks both the syntactic and semantic correctness of the query
as well. Hence the successful class creation guarantees the lack of query syntax
and data model mismatch errors in the runtime.

1.1 Comparison with Previous Work

Most of the existing approaches to supporting compile time verification of cor-
rectness of SQL statements involves introducing special syntax (often an internal
DSL [10]) instead of using the native SQL like in our approach — see e.g. [11]
for a native C++ example making use of template metaprogramming. An in-
teresting exception is [12] in which a verifier of dynamically constructed SQL
is presented. Another example of internal DSL is [14] in which a C# library
is introduced which allows to construct SQL strings correct by construction
(similarly as XML libraries construct correct XML files). Both ([11] and [14])
utilize an external tool, which examines the database schema and generates the
appropriate access classes from table metadata. Note that in our approach we
generate the access classes for each statement, rather than for each table. Also
note that unlike our framework, which is meant to support the execution of ver-
ified queries, the tool presented in [12] only verifies the SQL statements, and
does not include any provisions for type safe interface between SQL and the
host program. Similarly, neither of the frameworks [11] or [14] supports actual
execution of the queries generated.

The ORM frameworks utilize their own query languages for more complicated
tasks. This introduces the same problems as dynamic SQL statements. Safe
Query Objects framework [7] allows to construct compile time checked JDOQL
queries (for Java Data Objects [1]). The framework is interesting, because unlike
e.g., JDO’s own JDO Typesafe, it allows to specify filter conditions not with
special objects which represent them, but with native Java boolean expressions.
The actual queries are generated by the external tool from the bytecode.

Static Integration of SQL Queries in C++ Programs 129

A somewhat different approach to generation of SQL queries correct by con-
struction was taken by the authors of [16], in which the SQL queries are created
from the specification in term rewriting system [6]. The language of specification
includes a base sublanguage, which is made to resemble SQL — modulo some
quirks imposed by the Maude’s own syntax. The system allows to extend the
SQL-like base with the ability to factorize common SQL fragments or to intro-
duce some higher level features like named joins. In effect it can be seen as an
SQL metaprogramming system. The framework outputs actual vendor specific
queries, which can then be fed to a system like the one developed in this paper.

A system which partially inspired our framework and the approach of which
bears the most similarity to ours is Web4j Java Web Application Framework [5].
Web4j uses a custom file format containing specially tagged SQL statements. At
runtime the statements can be fetched by identifier and then processed, after
supplying, if applicable, the parameter values. The iteration through the query
result is enabled through the method which accepts the list of arguments con-
sisting of the SomeType.class object of the desired class of rows, the identifier
of the query, and the query parameters if any. The method returns a list of
SomeType objects. The object construction process utilizes reflection to deter-
mine which constructor to use, matching the constructor with the same number
of arguments that there are columns in the rows returned by the query. Note
that, while the framework allows, as an option, to check the validity of the query
at application startup by preparing the query (for the databases that support
it), but, similarly as the matching of row columns to constructor arguments, it
happens during runtime, and does not, unlike our solution, offer the compile
time type safety for the queries.

When speaking about SQL metaprogramming it is worthwhile to mention
Metagen [15] — a tool for generating database schemas from vendor independent
descriptions in a special language.

Let us note that while object relational mappers isolate the user from some
vendor specific database capabilities, presenting instead the generic interface, the
support for advanced features in this generic interface is already considerable and
is rising fast, see eg. [19], which enriches Hibernates HQL with recursive queries.

Finally, note that our framework strongly supports implementing the domain
logic using the transaction script pattern [9], whereas most of the higher level,
object oriented frameworks are geared towards either the domain model [9] —
e.g., the Hibernate framework, or the table model [9] — e.g. ADO Net.

2 System Architecture and Internals

This section provides a detailed account of our system. The data flow diagram
in Figure 1 presents the overview of the system architecture. In particular:

– The sql statements used in the application utilizing the DbQcc framework
ought to be placed in the separate uqf file(s) (for each database used) which
are essentially SQL files with some metadata placed in specially formatted
comments. Subsection 2.1 contains a detailed description of the file format.

130 M. Sysak et al.

Fig. 1. Data flow in the system

– We use a C++ database access abstraction layer responsible for database
connection management and the actual query execution at runtime. This
abstraction level is not meant to be visible to the user but to serve as an
implementation layer for the classes actually used by the programmer. A
transparent support for standard database operations in different database
engines is provided through the driver mechanism. Currently, only the driver
for the PostgreSQL database (based on libpq [2]) is available. In order to
furnish the required functionalities in an efficient way we use some of the
new features introduced in C++11 like shared pointers and move semantics.

– Moving data from the database into the application necessitates converting
data from the representation used by the DBMS to the native C++ types.
In Subsection 2.2 we describe the mechanisms supporting the conversions.

– The uqf file is processed by the separate tool which can be integrated into
compilation toolchain, and which generates for each statement classes repre-
senting: query record and query response. Additionally, for each uqf file the
database access class is generated. The Subsection 2.3 contains the account
of various stages of processing of user queries extracted from uqf file(s).

2.1 User Query File

Database queries used by the application ought to be placed in the separate .sql
file (see Figure 2), which we will refer to as an uqf (user query) file, collecting
all queries referring to the particular database. The file employs the special key-
value format of comments, which permits adding some auxiliary information
necessary for the correct execution of the class generating tool. The project may
contain many uqf files, each one associated with a different database.

Static Integration of SQL Queries in C++ Programs 131

/* DBEngine = PostgreSQL

DBName = dbqcc

DBHost = ***.uni.lodz.pl

DBUser = dbqcc_tester

DBPassword = SQLorNothing

DBFileName = Blog */

-- PREPARABLE_SELECT = ClientRanking

SELECT c.email, s.name, r.client_rank

FROM (

SELECT pcnt.*, rank() OVER(

PARTITION BY pcnt.section_id ORDER BY pcnt.cnt DESC

) AS client_rank

FROM (SELECT count(*) AS cnt, p1.owner_id, p1.section_id

FROM page p1 GROUP BY p1.owner_id, p1.section_id) pcnt

) r JOIN client c ON (r.owner_id = c.id)

JOIN section s ON (r.section_id = s.id)

WHERE r.client_rank <= $1 ORDER BY s.name, r.client_rank

Fig. 2. User query SQL file sample containing parametrized query

The uqf file starts with the information about the database engine vendor
which is used by the class generator to choose the appropriate driver (if avail-
able). Next, the file contains the connection data — it is utilized by the generator
to connect to the database server during query analysis phase. For security rea-
sons one may omit some of the authorization information — the missing data
can be supplied at the generator’s execution time. In addition, the authorization
data provide default values in the generated database connection class.

The last section of uqf file contains a sequence of SQL statements present in
the application (intended to be executed in the database the uqf file is associ-
ated with). Queries are to be separated with empty lines. Each statement should
start with a specially formatted SQL comment specifying exact statement type
(PREPARABLE_SELECT in the query in Figure 2) and assigning a unique (within
the file) statement identifier (ClientRanking in the query in Figure 2), which
must be a valid C++ type name. This identifier will be utilized as the statement
class name. The statement type declares whether it is a SELECT query, DML
statement or a stored subprogram as well as whether the statement should be
prepared prior to the first execution, and thus stored in prepared form in the
database server for the duration of the session. Preparing statements may bring
significant performance benefits, specifically for frequently executed and partic-
ularly complex statements [4] — their parsing, rewriting and creation of their
execution plans happen only once, when they are prepared.

After the statement header follows the statement in the native form. There is
no need to escape special characters, the statement will be converted to a valid
C++ string placed in the query class body during class generation. The query
may be parametrized, where the parameters are denoted by consecutive numbers
prefixed with the dollar character (see Figure 2). Note that the uqf file is a valid

132 M. Sysak et al.

template <typename T> class ValueConverter{};

template <> class ValueConverter<uint32_t> {

public:

static bool fromDB(char * rawValue, uint32_t & value) {

uint32_t tmp;

memcpy(&tmp, rawValue, sizeof(tmp));

value = ntohl(tmp);

return true;

}

static bool toDB(const uint32_t & value, std::vector<char> & rawValue,

int & rawValueFormat) {

rawValue.resize(sizeof(uint32_t));

uint32_t tmp = htonl(value);

memcpy(&rawValue[0], &tmp, rawValue.size());

rawValueFormat = DBManagerBase::BINARY_FORMAT;

return true;

}

};

Fig. 3. Value converters for uint32 t (PostgreSQL oid)

SQL file and any editor with SQL syntax coloring capabilities can be used for
simple editing.

2.2 Data Conversion Mechanism

Data access layers for C++ of some of the databases (PostgreSQL in particular)
allow to exchange data both in binary and text formats. Using the text format is
not applicable for all types and clearly less efficient (both computationally and in
terms of compactness of representation) than binary format. Data conversion to
C++ types is necessary for performing operations on data regardless of format
used for communication with database. To facilitate data conversion we provide
a mechanism based on C++ templates. The ValueConverter class template (see
Figure 3) has its specializations for all supported data types. For an unsupported
data type (one not having a template specialization) compilation time error
occurs. Note that the libpq library representations of database integer types
are not completely determined, e.g, oid type employs C/C++ unsigned int

which has no strict definition of size and endianness in language standards.
Therefore, our conversion mechanism provides converters (template specializa-
tions) for all C++11 standard fixed size integer types (e.g., uint32_t) and the
compiler matches the specialization for an appropriate type (e.g, uint32_t for
unsigned int on the majority of 32-bit platforms). The endianness problem is
solved in a platform-specific way, taking into account that PostgreSQL DBMS
provides binary data (for integer representations) in network byte order.

Static Integration of SQL Queries in C++ Programs 133

2.3 Query Analysis and Processing

The operation of the query analyzer module is based on using the existing
database to verify both the query syntax and the validity of references to schema
objects, and, when the query is valid, to obtain the metadata associated with the
query. The metadata is used later to generate appropriate classes representing
the SQL statement, and, if applicable, the result rows. Hence, the statement anal-
ysis stage starts with the query analyzer module connecting with the database
server on which the analyzed statements are supposed to be eventually executed.

The present system implementation provides a prototype plugin for the Post-
greSQL database engine based on the native libpq [2] database access library for
C which provides advanced functionalities to obtain rich metadata describing
the SQL statement and its parameters. Query analyzing module operation, de-
scribed in detail below, is largely depending on those libpq metadata capabilities.

class ClientRankingRecord: public QueryRecord {

public:

DBValue<std::string> client_email, section_name;

DBValue<long long int> client_rank;

ClientRankingRecord(QueryResult * queryResult, int rowNumber) :

QueryRecord(queryResult, rowNumber),

client_email(queryResult, rowNumber, 0),

section_name(queryResult, rowNumber, 1),

client_rank(queryResult, rowNumber, 2) {}

};

Fig. 4. Generated query row class example

The SQL statement extracted from uqf file is not executed on the database
server. Instead, it is sent to the database as a prepared statement. In the majority
of relational database engines (and in particular in PostgreSQL) the prepared
statement is parsed, and the query plan is generated (with some slots reserved
for filling by parameters, if any) and stored in the database, ready for execution
(perhaps multiple times) until explicitly closed. Most relevant for our purpose is
that one does not need to execute the prepared statement nor supply the values of
the parameters in order to be able to receive all the available statement metadata
(in particular we can work with the database containing empty tables). After
preparing the statement, such as the one depicted in Figure 2, it suffices to send
the request describe prepared. In reply we receive the information about:

– names and types of columns of the result set (in case of queries). For columns
defined by simple table column reference we also get the source table name,

– types of parameters, in case the statement was parametrized.

The query analyzer module uses this metadata together with the statement it-
self and the statement identifier extracted from the query header in the uqf file to

134 M. Sysak et al.

class ClientRanking: public QueryResult{

static constexpr const char * queryName = "ClientRanking";

static constexpr const char * query = "SELECT [...]";

static bool prepared;

public:

long long int param1;

ClientRanking(DBManagerBase * dbManager,

const long long int & _param1): param1(_param1){

const char * paramValues[1];

int paramLengths[1]; int paramFormats[1];

std::vector<char> param1RawValue;

ValueConverter<long long int>::toDB(

param1, param1RawValue, paramFormats[0]);

paramValues[0] = ¶m1RawValue[0];

paramLengths[0] = param1RawValue.size();

if(!prepared){

auto result = dbManager->prepareStatement(

queryName,query,1,nullptr);

if(result->bad()) throw std::runtime_error(dbManager->getError());

prepared = true;

}

dbResult = dbManager->executePreparedStatement(

queryName,1,paramValues,paramLengths,paramFormats,

DBManagerBase::BINARY_FORMAT);

if(dbResult->bad()) throw std::runtime_error(dbManager->getError());

}

std::shared_ptr<ClientRankingRecord> operator[](int rowNumber){

if(rowNumber >= dbResult->getRowsNumber()) return nullptr;

return std::make_shared<ClientRankingRecord>(this,rowNumber);

}//[...]

};

Fig. 5. Generated query response class example

assemble, using the class builder internal tool, header files holding definitions of
the classes associated with the statement, such as:

– (In case of SELECT statement) the class representing a single result set
row, with a field (and possibly accessor methods) of appropriate type for
each result set column (e.g., see Figure 4). The field and accessor names
are based on column names, qualified with table name, if applicable (with
some necessary conversions, like substituting underscores for spaces). Fields
are constructed using the DBValue class template which uses the mechanism
described in Subsection 2.2 to convert data received from the database. Be-
cause DBValue<T> overloads the conversion operator to type T it follows that
it preserves the const T& semantics. The class provides also conversion op-
erators supporting structural type equivalence of database records with the
same types of columns (c.f. [11]). In our approach the type of a query re-
sult set row class identifies the query, but the conversion operators permit

Static Integration of SQL Queries in C++ Programs 135

transparent combination or substitution of rows from different queries, pro-
vided that they have the same number and types of columns.

– The class representing the query result, which also encapsulates the state-
ment itself (e.g., see Figure 5). This class also provides the functionality to
execute the statement (and supply the arguments if applicable), and in the
case of the SELECT statement also to iterate through the result rows. The
statement, if declared as preparable, is prepared during the construction of
the first object of a given class. In this case, executions refer to the parsed
statement stored in the database server.

class DBManagerBlog : public DBManagerBase {

DBManagerBlog(){};

public:

typedef const std::string & csr;

static std::shared_ptr<DBManagerBlog> create(csr host, csr dbName,

csr user, csr password, csr errorMessage) {/* [...] */}

// [...]

std::shared_ptr<ClientRanking>

SELECT_ClientRanking(const long long & param1) {

return std::make_shared<ClientRanking>(this, param1);

}

};

Fig. 6. Generated database connection class

The last stage of query analysis module operation is the generation of special-
ized database connection classes (for each database server application connects
to). The classes inherit from the generic database access driver for the particular
DBMS. It extends the driver with methods for executing SQL statements and
stored procedures specified in the processed uqf file (see, e.g., Figure 6).

After all the queries are analyzed and all necessary classes are generated,
the query analyzer module cleans up the database, removing all prepared state-
ments (in case of PostgreSQL it suffices to close the connection, as the prepared
statements are associated with the session and die with it).

3 Simple Example of DbQcc Usage

The following code presents basic example usage of our framework:

std::string error;

auto dbManager = DBManagerBlog::create("***.uni.lodz.pl",

"dbqcc", "dbqcc_tester", "SQLorNothing", error);

if(!dbManager) {throw std::runtime_error(error);}

auto ranking = dbManager->SELECT_ClientRanking(10);

for(auto i = 0; i < ranking->getRowCount(); i++) {

auto row = ranking->getRow(i);

// [...]

}

136 M. Sysak et al.

Classes generated by dbQcc provide simple API for programmer to establish
database connection, execute queries described in user queries file and access
response data. Our example schema may be treated as an extremely simplified
blog’s database. It consists of three tables: PAGE, CLIENT and SECTION con-
nected with referential constraints. PAGE stores the title and content of blog
pages. Each page is authored by the unique client and belongs to the unique sec-
tion. In our sample UQF we placed the ClientRanking query (Figure 2) defined
as preparable, containing one parameter. This select is supposed to return, for
each section, n most prolific authors ranked with respect to the number of the
authored pages, where n is passed as a parameter. Note that ClientRanking,
in addition to being a complex query with joins and multiply nested subqueries,
makes use of a window (or analytic) functions (the rank()), which, despite being
in the standard, are not widely supported by ORM’s.

We have performed tests to compare our framework with the directly used
PostgreSQL API (libpq). The blog schema described above was filled with ran-
dom data: 100000 rows in the CLIENT table, 200000 rows in the PAGE table,
and, finally, 10 rows in the SECTION table. We prepared two equivalent im-
plementations of the same application which executes the query from Figure 2
one hundred times with the sole parameter set to 7500 and collects the result
rows, performing all the necessary data conversions. The two implementations,
compiled with the same (default) optimization level, utilize, respectively:

– The dbQcc framework (dbQcc),
– Directly used PostgreSQL API (libpq).

Both implementations utilize statement preparation. Note that statement is pre-
pared only once. The durations of each query execution and data conversion
were measured separately, and for each implementation averages and standard
deviations were computed. The results are presented in Table 1. Note that the
differences in times between query executions in both implementations are less
than the standard deviation, and hence it follows that our framework does not
add any significant overhead.

Table 1. Execution times for the two alternative implementations of the same appli-
cation executing query from Figure 2

dbQcc libpq

Query execution 6.8± 0.2 6.7± 0.2

Row parsing 0.058 ± 0.007 0.005 ± 0.002

4 Conclusion

In the paper we presented an alternative approach to programming database
applications, which is more natural and effective for SQL oriented people (and,
potentially, also leads to a better performance). We developed a working tool gen-
erating C++ classes from plain native SQL statements. Those generated classes
allow us to execute the statements in the application program and to iterate in

Static Integration of SQL Queries in C++ Programs 137

a semantically correct way through the result sets (in case the statement was a
query). Thus, we effectively couple native SQL with a C++ code in a way which
is statically checked for correctness, excluding, in particular, the possibility of
runtime type mismatch errors. Unlike in the case of embedded SQL, the queries
and application program is kept separate, which simplifies application develop-
ment by programmers with specialized skills — the C++ programmer has no
need to see the SQL queries developed by database wizards, and conversely,
database specialists are happily separated from C++.

Using plain SQL in its native form makes it possible to write specialized and
highly optimized queries even with DBMS vendor specific features. For a simple
example see Section 3, which presents a non trivial SQL query, hardly supported
by typical approaches, but potentially useful and non-artificial.

Because we utilize mechanisms such as a lazy evaluation of values, the current
implementation of dbQcc is not thread safe. This means that the use of generated
code in threaded application requires protecting all database operationswith amu-
tex associated with a given database session. Presently we work on effective syn-
chronization of generated code using atomic types and non-blocking algorithms.

The present implementation supports only PostgreSQL, and it will be worth-
while to develop drivers for some other database engines. Despite a well-layered
architecture of our system, it might not be entirely trivial, as we assume the
availability of certain PostgreSQL features which are not required by the stan-
dard and might not be available from other vendors.

Moreover, using the database server to parse SQL statements, while not with-
out merit (it is simple to implement and, if the database is the same as the target
one, we can be sure that the query will be accepted also during the application
runtime), it has some downsides as well. For one thing, sometimes the database
might not exist (even in the form of a schema with empty tables) at program
design time. Arguably, it might be better (and more elegant) to parse the state-
ment directly in the tool with the option of supplying the schema description in
the specialized format. Moreover, once the tool does the parsing, and hence un-
derstands the SQL statement syntax, new possibilities appear, e.g., of extending
the SQL syntax, introducing, in particular, special annotations for automated
BLOB conversion into specified class objects during query execution.

Finally, as we can create connection objects to many databases and database
servers in the same application, it is only natural for the need for the distributed
commit mechanisms to appear. Therefore the support for two-phase commit is
currently under active development.

Acknowledgements. We would like to thank the reviewers for their helpful
remarks and to �Lukasz Krawczyk for his help in implementing the tests.

References

1. Java Data Objects, http://db.apache.org/jdo/
2. Libpq — C Library, http://www.postgresql.org/docs/9.3/static/libpq.html,

chapter in [3]

http://db.apache.org/jdo/
http://www.postgresql.org/docs/9.3/static/libpq.html

138 M. Sysak et al.

3. PostgreSQL 9.3.2 Documentation, http://www.postgresql.org/docs/9.3
4. PREPARE command,

http://www.postgresql.org/docs/9.3/static/sql-prepare.html

5. Web4j java web application framework,
http://www.web4j.com/Java_Web_Application_Framework.jsp

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

7. Cook, W., Rai, S.: Safe query objects: statically typed objects as remotely ex-
ecutable queries. In: Proceedings of 27th International Conference on Software
Engineering, ICSE 2005, pp. 97–106 (May 2005)

8. Date, C.: An Introduction to Database Systems. Addison-Wesley (2003)
9. Fowler, M.: Patterns of Enterprise Application Architecture. A Martin Fowler sig-

nature book. Addison-Wesley (2003)
10. Fowler, M.: Domain-Specific Languages. Addison-Wesley Signature Series (Fowler).

Pearson Education (2010)
11. Gil, J.Y., Lenz, K.: Simple and safe SQL queries with C++ templates. In: Proceed-

ings of the 6th International Conference on Generative Programming and Compo-
nent Engineering, GPCE 2007, pp. 13–24. ACM, New York (2007)

12. Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically generated queries
in database applications. In: Proceedings of 26th International Conference on Soft-
ware Engineering, ICSE 2004, pp. 645–654. IEEE (2004)

13. Maier, D.: Representing Database Programs As Objects. In: Advances in Database
Programming Languages, pp. 377–386. ACM, New York (1990)

14. McClure, R., Kruger, I.: Sql dom: compile time checking of dynamic sql state-
ments. In: Proceedings of 27th International Conference on Software Engineering,
ICSE 2005, pp. 88–96 (May 2005)

15. Pustelnik, J., Sobieski, Ś.: Metagen — the text tool for generating sql database
descriptions from ER diagrams (in polish). In: Bazy Danych - Modele, Technologie,
Narzȩdzia, pp. 309–314. WKL Gliwice (2005)

16. Sobieski, S., Zieliński, B.: Using maude rewriting system to modularize and extend
sql. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC 2013, pp. 853–858. ACM, New York (2013)

17. Wegrzynowicz, P.: Performance antipatterns of one to many association in hiber-
nate. In: 2013 Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 1475–1481 (September 2013)

18. Wísniewski, P., Burzańska, M., Stencel, K.: The impedance mismatch in light of
the unified state model. Fundamenta Informaticae 120(3), 359–374 (2012)

19. Wísniewski, P., Szumowska, A., Burzańska, M., Boniewicz, A.: Hibernate the re-
cursive queries - defining the recursive queries using hibernate orm. In: ADBIS (2),
pp. 190–199 (2011)

http://www.postgresql.org/docs/9.3
http://www.postgresql.org/docs/9.3/static/sql-prepare.html
http://www.web4j.com/Java_Web_Application_Framework.jsp

A Demand-Driven Bulk Loading Scheme

for Large-Scale Social Graphs

Weiping Qu and Stefan Dessloch

University of Kaiserslautern
Heterogeneous Information Systems Group

Kaiserslautern, Germany
{qu,dessloch}@informatik.uni-kl.de

Abstract. Migrating large-scale data sets (e.g. social graphs) from clus-
ter to cluster and meanwhile providing high system uptime is a chal-
lenge task. It requires fast bulk import speed. We address this problem
by introducing our “Demand-driven Bulk Loading” scheme based on the
data/query distributions tracked from Facebook’s social graphs. A client-
side coordinator and a hybrid store which consists of both MySQL and
HBase engines work together to deliver fast availability to small, “hot”
data in MySQL and incremental availability to massive, “cold” data in
HBase on demand. The experimental results show that our approach en-
ables the fastest system’s starting time while guaranteeing high query
throughputs.

Keywords: Bulk loading, HBase, MySQL.

1 Introduction

As the biggest social network company, Facebook’s social graph system nowadays
serves tens of billions of nodes and trillions of links at scale [1]. Billions of daily
queries demand low-latency response times. Recently, a social graph benchmark
called LinkBench [2] was presented by Facebook which traces distributions on
both data and queries on Facebook’s social graph stores.

Two main tables node(id, type, data) and link(id1, link type, id2, data)
are used to build the social graph at Facebook (primary keys are underlined).
Nodes represent objects like user, photo, video, etc. while links are connec-
tions between the objects and have types like “post”, “like” and “friend of”.
We learned several interesting facts from LinkBench, for example, one observa-
tion on access patterns and distributions states that there is always some “hot”
data that is frequently accessed while massive amounts of “cold” data is seldom
used. With a 6-day trace, 91.3% of the data is cold. In addition, hot data often
exists around social graph nodes with high outdegrees, which means the access
likelihood grows along with the node outdegrees. As an example, a video with
high like rates will be recommended more widely than others. Based on another
observation on social graph operations, an operation called get link list occurs
frequently and constitutes 50.7% of the overall workload. The signature of this

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 139–152, 2014.
c© Springer International Publishing Switzerland 2014

140 W. Qu and S. Dessloch

operation is get link list(link type, id1, max time, limit, ...) where id1 is
the starting node id of this link. Given the type of a link (e.g. like) and the
id of the starting node (e.g. a user id1), get link list returns a list of links to
answer certain types of queries like “what objects have been recently liked by
user id1”. This get link list performs a short range scan in massive amounts of
rows in graph stores based on (link type and id1), a subset of the composite
key.

As more and more applications are added to Facebook, like Facebook Messag-
ing and Facebook Insights [3], and workloads evolve on graph stores, the change
of the underlying data infrastructure or software requires migrating existing data
from cluster to cluster while high data availability must be guaranteed. To pro-
vide 24-h system uptime, normally hot-standby clusters are used to store replicas
of source data and serve query workloads during data migration. This incurs high
data redundancy and the new system still cannot start until a long-running bulk
import is finished.

Our work investigates the problem of migrating large-scale social graphs
based on their data distributions and access patterns introduced above. To guar-
antee high system uptime, a trade-off between data availability and query la-
tency is utilized in this work. The “hotness and coldness” of migrated data is
balanced by a hybrid graph store which is composed of a traditional index-based
relational MySQL (http://www.mysql.com) database and an Apache HBase
(http://hbase.apache.org) cluster. Both systems have received high attention
as a backend storage system for realtime operations on big data. The debate on
MySQL and HBase began in 2010 in terms of multiple metrics like read/write
throughput, I/O, etc. In this work, we will first compare these two systems re-
garding their bulk load speed and short range scan latency and then introduce
our “demand-driven bulk loading” scheme.

The comparison of MySQL and HBases’ load and scan performance is given
in Section 2 and the motivation of this work is explained there. In Section 3,
we introduce the architecture of our “demand-driven bulk loading” scheme. The
experimental results are analyzed in Section 4. We discuss related work in Section
5, and Section 6 concludes our work.

2 Bulk Loading in MySQL and HBase

In [4,5], the performance of sequential/random read/write access has been com-
pared among Cassandra, HBase and (sharded) MySQL. The results show that,
due to their different architectures, HBase has the highest write throughput when
the insertions fit in memory, while MySQL is best for read access. Both engines
provide extra bulk load utilities in addition to the interfaces for individual, row-
level writes/updates. In this section, we compare their bulk load mechanisms
by analyzing their architectural differences. Based on the comparison result, we
describe our motivation of providing incremental availability to external queries
during bulk loading large-scale social graphs.

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 141

2.1 MySQL

Like other traditional databases, MySQL uses B-trees as an index structure for
fast read and write on large tables. One crucial step of generic bulk loading in
traditional databases is an index construction process. Using a classical sort-
based bulk loading approach, the entire data set is pre-sorted (O(nlog(n))) and
grouped in file blocks as index leaf nodes. A B-tree index can be easily built from
this set of sorted leaf nodes in a bottom-up fashion from scratch. In contrast,
inserting the tuples from the same data sets once at a time in a top-down fashion
without pre-sorting incurs overhead i.e. a lot of splits on index’s internal nodes
and a large number of disk seeks with random I/O. There are other approaches
for building indices during bulk loading, like buffer-based/sample-based bulk
loading [6] which will not be detailed here.

To import large amounts of data in MySQL, there are two primitive ap-
proaches: batch insert and bulk loading. By including multiple tuples in one
INSERT statement and inserting these tuples in batch, batch insert results in
fewer operations and less locking/commit overhead. Yet the bulk load command
LOAD DATA INFILE is usually 20 times faster than using the INSERT statement
because of its less overhead for parsing [7]. However, the user has to ensure that
the tuples to be inserted won’t violate integrity constraints. Before bulk loading,
the use of indices is normally disabled to avoid disk seeks for updating on-disk in-
dex blocks at load time. After bulk loading, indices are enabled again and created
in memory before writing them to disk. However, when bulk-loading non-empty
tables where indices are already in use, a performance impact of bulk-loading on
concurrent reads occurs.

As mentioned in Section 1, the frequently used get link list operation per-
forms a short range scan on a subset of the composite key. Therefore, using
MySQL as the graph storage backend, very low scan latency can be achieved
by traversing the leaf nodes of primary key index sequentially after the starting
block has been found.

2.2 HBase

Apache HBaseTM is the Hadoop database built directly on the Hadoop Dis-
tributed File System (HDFS) [8]. HDFS is an open-source version of Google File
Systems (GFS), which inherently provides batch processing on large distributed
files using MapReduce jobs. HBase was modeled after Google’s Bigtable [9] and
provides random, realtime read/write access to HDFS. This is done by directing
client requests to specific region, with each server handling only a fraction of
large files within a certain key range.

Both Bigtable and HBase use an “append-only” log-structured merge tree
(LSM-tree) [10] structure. In HBase, inserted tuples are first buffered in an in-
memory structure called MemStore and sorted very fast in memory. Once the size
of the MemStore exceeds a certain threshold, it is transformed to an immutable
structure called HFile and flushed onto disk. A new MemStore is then created
to further buffer new incoming rows. Updates on existing rows are treated as

142 W. Qu and S. Dessloch

new insertions appended to existing files instead of in-place modification, which
needs random disk seeks for reading updated blocks. In addition, no auxiliary
index structure needs to be maintained. In this way, high write throughput can
be achieved in HBase. However, a single row can appear many times in multiple
HFiles or MemStore. To retrieve a single row, HBase has to scan those HFiles
or MemStore that contain the copies of this row and merge them to return the
final results. Sequential scans are carried out on sorted HFiles. Thus the read
speed is dominated by the number of files in a region server. In order to improve
read performance, a compaction process runs periodically to merge HFiles and
reduce the number of row copies. Furthermore, Bloom filters can be used to skip
a large number of HFiles during reading.

To insert large amounts of files into HBase, an efficient MapReduce-based
bulk loading approach can be used to directly transform HDFS files into HFiles
without going through the write path introduced above. Each row appears only
once in all HFiles. The map tasks will transform each text line to a Put object (a
HBase-specific insert object) and send it to a specific region server. The reduce
tasks sort these Put objects and generate final HFiles. This process is much faster
than HBase writes as it exploits batch processing on HDFS. The get link list
operation can benefit from this bulk loading approach as well since the number
of HFiles to read is small. By setting up Bloom filters, target HFiles can be
found very fast.

2.3 Motivation

As introduced in Section 1, 91.3% of the social graph is rarely used while 8.7%
of the data sets are frequently accessed. When migrating such a social graph to
new clusters, the availability of hot data is delayed since the system downtime
will only end when all data has been loaded. For frequently emerging queries,
system uptime could start earlier if there was a mechanism that can tell whether
all the relevant data is already available before the remaining data is loaded.
As data is loaded chunk by chunk, it would be enough to have a global view of
the key ranges of all the chunks before starting loading. This can be seen as an
index construction process. In this way, a query can identify its relevant chunks
by comparing its queried key with the key ranges of all the chunks. Once its
relevant chunks have been loaded, this query can start to run over the current
storage state. In addition, as the small amount of hot data can be arbitrarily
distributed among all the chunks, faster availability to frequent queries can be
achieved by prioritizing the loading of the chunks which contain hot data.

MySQL’s bulk loading builds indices either during data loading or after load-
ing. Building indices upfront is impossible. Using HBase’s bulk loading, source
files must be first copied to HDFS and then transformed to HFiles. Comparing
the bulk loading techniques in both systems, similar performance can be ex-
pected, since both techniques have to sort files either to build B-tree index in
MySQL or to generate HFiles in HBase. But HDFS’s batch processing feature
can be exploited in HBase’s two-phase bulk loading approach to build indices on

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 143

copied chunks in batch upfront before going to the second transformation phase,
which is more desirable.

However, according to the experimental results in [2], MySQL slightly out-
performs HBase in latency and MySQL executes get link list operations 2x faster
than HBase. We see a trade-off between fast availability and low query latency
here. Loading all data in HBase can have fast availability by creating indices
upfront. Loading all data in MySQL leads to low query latency after long-time
bulk loading ends. It makes sense to load only a small amount of hot data into
MySQL in a smaller time window for fast processing while copying massive
amounts of cold data into HBase where its query latency is still acceptable for
cold data. But the cost of identifying the hotness and coldness of tuples could
be a large overhead for bulk loading. Hence, we introduce our “demand-driven
bulk loading” scheme to address these considerations.

3 Demand-Driven Bulk Loading

In this section, we introduce the architecture of our demand-driven bulk loading
scheme. According to the modification timestamps of files, the whole input data
set is separated into two parts: small number of recent files and large, histori-
cal files. Recently changed files are imported into a MySQL table called “link
table” using MySQL’s own fast bulk load utility. These files are used for an-
swering queries on hot data and providing partial results for all other queries.
Meanwhile, massive amounts of historical files are first split to chunks with
pre-defined size and then copied into HDFS in batch. With parallel loading of
recent and historical files into MySQL and HDFS, respectively, the latency of
loading HDFS is normally higher than that of MySQL’s bulk load due to the
input size, thus dominating the overall load speed. After loading in MySQL
completes, hot data is available for querying. The HDFS files will be gradu-
ally loaded into HBase to complement the MySQL query results for answering
queries that involve cold/historical data. Figure 1 illustrates the architecture of
our hybrid-storage approach.

Two main processes are involved in this hybrid-storage architecture: offline
index building and online bulk load coordination. In contrast to traditional bulk
load approaches, client requests are allowed to query link data before the histor-
ical data sets are completely available in HBase. To determine the completeness
of query results on the client side, a so-called bucket index table is used. At the
HBase layer (left) side of this architecture, an offline MapReduce job called dis-
tribute chunk (dist ch) job is batch processed on each file chunk in HDFS once
copied from the remote server by a HDFS loader. The implementation of this
job is based on a hash function that maps and writes each text line in a chunk
to a specific “bucket” (HDFS file) with a unique id and a key range disjoint
from others. A new bucket will be created if needed and its bucket index and
key range will be captured by the bucket index table at the (right-side) MySQL
layer. These steps form the offline index building process. More details will be
provided in Subsection 3.1. With the completion of the last dist ch job, all cold

144 W. Qu and S. Dessloch

HDFS loader

“Generate HFile“ job

“Distribute chunk“ job

Coordinator

Client

HBase layer MySQL layer

Input Files

Recent files Historical files

Bucket index table

Job status table

HDFS

Table bulk loader

job priorities

job done

bucket index
Data Table

job status

query results

Fig. 1. Architecture of Demand-driven Bulk Loading

files have been copied into HDFS and clustered into multiple buckets with dis-
joint key ranges. The key ranges and index information of all the buckets are
contained in the bucket index table in MySQL.

At this time, system uptime begins and query requests are allowed to run on
our hybrid link data storages through a client-side coordinator component. At
the same time, another online MapReduce job called generate HFiles (gen HF)
job is triggered to continuously transform buckets in HDFS to HFiles so that
they can be randomly read from HBase. The transformed HFiles incrementally
build a “link table” in HBase which can be seen as an external “table partition”
of the “link table” in MySQL. Tuples stored in both engines share the same
logical table schema. With a given key (the id1 of the starting node of a link)
specified in a query, the coordinator checks whether the HBase layer should take
part in this query execution by asking the MySQL-side bucket index table. If so,
another job status table tracks the availability of the required tuples in HBase.
For tuples available in HBase, the query request is offloaded to HBase by the
coordinator. In case there are tuples that are not available yet because they reside
in buckets that wait in the gen HF queue, the query is marked as “incomplete”
and buffered by the coordinator. As more and more incomplete queries occur at
the coordinator side, the coordinator makes the online MapReduce job prioritize
the job execution sequence for specific buckets, delivering fast availability on
demand. Once the buckets are transformed to the portions of HBase’s “link
table”, corresponding buffered queries are released. This process is called online
bulk load coordination. The implementation of this process will be detailed in
Subsection 3.2.

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 145

3.1 Offline HDFS Load and Index Construction

We use a dedicated Hadoop cluster to take over the job of loading massive
amounts of cold/historical link data from remote servers to MySQL. HDFS’s
free copy/load speed and batch processing (using MapReduce) natures are ex-
ploited here to provide only indices on clustered file groups (buckets) using the
dist ch jobs, as introduced above. A dist ch job writes text lines in each chunk
in HDFS to different buckets (HDFS directories) and outputs indices of new
buckets to MySQL’s bucket index table (Hadoop’s MultipleOutputs is used here
to include TextOutputFormat and DBOutputFormat for writing lines to buckets
and writing indices to MySQL, respectively).

Load
Chunk(1)

M/R job:
Chunk(1)

to Buckets

Load
Chunk(2)

Load
Chunk(3)

Load
Chunk(N) … …

… …
M/R job:
Chunk(2)

to Buckets

M/R job:
Chunk(N-1)
to Buckets

M/R job:
Chunk(N)
to Buckets

Batch jobs in consecutive time slots 0 1 2 N

Fig. 2. Execution Pipelines in the HDFS loader

Instead of running one big MapReduce-based dist ch job after all files have
been completely copied from a remote server, large historical files are split to
several chunks and multiple small dist ch jobs are executed in parallel with
copying small file chunks to HDFS. As shown in Figure 2, chunk copying and
dist ch job run simultaneously in each time slot except the first and the last one
which copies the first chunk and builds the indices for the last chunk, respectively.
The resource contention is low since chunk copying does not use any MapReduce
job and each dist ch job runs individually. As the chunk copying pipeline overlaps
the dist ch job pipeline, the overall latency is derived from loading all chunks
plus running the last dist ch job. The chunk size is selected in a way that the
latency of loading a chunk of this size is higher than running one dist ch job
on that chunk. If this requirement can be guaranteed, the chunk size should
be defined as small as possible so that the time running the last dist ch job is
the shortest. Therefore, the overall system downtime is similar to the latency of
copying massive amounts of cold data from a remote server to HDFS.

As tuples belonging to a specific key might be arbitrarily distributed in all
chunks, we introduce a simple hash function to cluster tuples into buckets ac-
cording to disjoint key ranges. If we have numeric keys (e.g. id1 for links) and a
key range of 1K (0..1K; 1K..2K; ...), the bucket index for each tuple is derived
from b index=round(id1/1K). With bucket index and key range, the coordina-
tor can tell exactly which bucket should be available in HBase to complete the
results for an incomplete query. As shown on the left side of Figure 3, dist ch
jobs take fix-sized chunks as inputs and generate a set of buckets of dynamic

146 W. Qu and S. Dessloch

…
 …

 …

…
 …

2

1

3

4

1

2

3

4
5

chunks
in HDFS

buckets
in HDFS

bucket indices

HBase link table

‘‘prioritize´´ Coordinator

q1 q3 q8 … qn

q1 q2 … qn

q1 q3 … qn

distribute chunk job generate HFiles job

Fig. 3. Offline & Online MapReduce Jobs

sizes based on id1. This can be explained by the LinkBench’s observation on the
distribution of nodes’ outdegrees described in Section 1. Here, a bucket might
contain a large number of links which belong to a node with very high outdegree.

3.2 Online HBase Bulk Load and Query Coordination

Once the remote files are copied to local HDFS, our system starts to accept
queries from the client side and a gen HF job runs continuously to finish the
remaining bulk load work. Three components are involved here: the client-side
coordinator, two tables in MySQL (bucket index table and job status table) and
the online gen HF job in HBase layer (see Figure 1).

A gen HF job is a MapReduce-based bulk loading job that is executed in
several runs in the HBase layer. In each run, it takes HDFS files in “bucket”
directories (directed by bucket indices) as input and generates HFiles as results
(see Subsection 2.2). Tuples in HFiles can be randomly read without batch pro-
cessing. The cost of the gen HF job is dominated by sorting. When the local
memory on each region server cannot hold the entire set of Put objects for in-
memory sorting, expensive disk-based external sorting occurs. Hence, a gen HF
job each time will take only the top two buckets (included in the red rectangle
in Figure 3) as input to avoid external sorting on local region servers.

The coordinator plays an important role in our demand-driven bulk loading
scheme. It maintains a set of four-element tuples (b index, j stat, k range,
q list) at runtime. The b index is the bucket index which directs the gen HF

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 147

job to the input files in this bucket. The k range represents the key range of
these input files which will be further checked by an incoming query whether this
bucket can contain required tuples. The b index and k range of all the buckets
are initially read from the MySQL-side bucket index table at once. Note that,
after the hot link data has been bulk loaded into MySQL, a special bucket will
be created to contain the k range of MySQL-side “link table”.

Furthermore, before the gen HF job starts a run, it registers its two input
bucket indices in the job status table in MySQL. When the job is done, it updates
its status in the job status table, whose content will be periodically pulled by the
coordinator to maintain the j stat elements for all buckets. At the beginning of
system uptime, files in most of the buckets have not been transformed to HFiles
and thus are not available in HBase. It’s much likely that the incoming queries
at that moment cannot be completely executed and are further pushed into the
query list q list of certain buckets. The coordinator will release the queries
in a q list once the j stat states that this bucket is readable. Moreover, the
coordinator will also sort the four-element tuples according to the size of q list

due to emergency so that the gen HF job will always work on transforming the
top two buckets with the largest number of waiting queries.

As an example of demand-driven bulk loading shown in Figure 3, three client-
side threads keep sending queries to the coordinator. Most of them contain
queries that would access tuples in the key ranges of bucket 1 and 3. The coor-
dinator checks the size of the query waiting list and prioritizes the gen HF job
execution sequence for bucket 1 and 3. Hence, after the next run, query q1 and
q3 will be released by the coordinator since the required tuples now can be found
in the HBase “link table”.

4 Experiments

In Section 2, we mentioned our motivation of partitioning and loading large-scale
link sets of a social graph to a hybrid storage system (consisting of a MySQL
database and a HBase cluster) based on the observation that only a fraction of
links is frequently accessed while most of the data is seldom used. To enable fast
availability (i.e. fast load speed) of the entire social graph system, we introduced
our “Demand-driven Bulk Loading (DeBL)” scheme in Section 3. In this section,
we validate our approach by analyzing the experimental results. The performance
difference in terms of load speed and query latency is shown by comparing the
results using a single MySQL database, using a single HBase cluster or using
our DeBL approach. Our approach serves as a compromise between these two
systems and outperforms both of them when loading large-scale social graphs.

We used a logical link table with its schema (id1, link type, id2, ..., data)
to represent links stored in MySQL, HBase or both systems (as links occupy
the largest portion in a graph, we ignored loading graph nodes in our test).
The test query is the get link list operation which performs a short range
scan to fetch links with given id1s and link types and constitutes 50% of
the whole workload. We think that this test setup is general and representative.

148 W. Qu and S. Dessloch

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

fileCopy DeBL (no
mysql)

DeBL (2g
mysql)

bulkLoad
(HBase)

bulkLoad
(MySQL)

batchPut
(HBase)

tim
e (sec)

Fig. 4. Loading Time of Different Approaches

(For write operations, both MySQL and HBase can provide fast random write
facility. However, we excluded these operations to simplify our test.)

We extended the LinkBench [2] program for our test purpose which is based
on a client/server architecture. In the original LinkBench implementation, mul-
tiple threads run on the client side to either load links (load phase) or send
requests (query phase) to a server-side “link table” (using MySQL INNODB en-
gine) in a MySQL database. To compare the load performance of different ap-
proaches, we first recorded the latency of bulk loading a CSV input file (100M
links, 10GB) from a remote client (through 100Mb/s Ethernet) into a link ta-
ble in a MySQL instance running on a single-node machine (2 Quad-Core Intel
Xeon Processor E5335, 4×2.00 GHz, 8GB RAM, 1TB SATA-II disk) using LOAD

DATA INFILE command (the primary key index was first disabled and re-enabled
after the file was loaded) [bulkLoad (MySQL)]. Since we were only comparing
short range scan performance in the query phase later, a faster “link table” using
MySQL MYISAM engine instead was used which is optimized for heavy read op-
erations (MySQL’s batch insert was excluded in this test as MYISAM engine uses
table-level locking on tables which is very slow for massive, concurrent inserts).

In the second case, we tested the bulk load performance on a HBase cluster
- a 6-node HBase cluster (version 0.94.4) with a master running on the same
node as the MySQL instance and 5 region servers (2 Quad-Core Intel Xeon
Processor X3440, 4×2.53GHz, 4GB RAM, 1TB SATA-II disk) connected by Gi-
gabit Ethernet. A big MapReduce job (the gen HF job) was implemented to
generate HFiles and populate a HBase link table after the same input file was
copied from remote to local HDFS [bulkLoad (HBase)]. Since HBase also pro-
vides high write throughput, we also tested the performance of writing links
to HBase in batch using HBase’s Put method [batchPut (HBase)]. To improve

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 149

performance, the link table was first pre-split evenly in the cluster according to
its key distribution to avoid “hotspots” during loading and querying.

Two variants of the load phases were tested using our DeBL approach. The
first variant was composed of bulk loading 2GB, recently changed, remote link
subsets into the MySQL table, copying the rest 8GB link files in batch from
remote client to HDFS (in our HBase cluster) and meanwhile running multiple
small MapReduce jobs (the dist ch jobs) in parallel [DeBL (2g mysql)]. Another
extreme case was shown by the second variant where no files were loaded into
MySQL and the entire input file was copied to HDFS [DeBL (no mysql)]. In this
case, the “‘hotness and coldness” in input data was not pre-defined manually but
was captured automatically by our coordinator during gen HF phase according
to incoming query distribution. To indicate fast availability of DeBL approach,
we attached the time taken to simply copy the test input file to server’s local
file system [fileCopy] to the final results as the bottom line as well.

Table 1. Detailed Latencies (sec) in Load Phase

DeBL (no mysql) DeBL (2g mysql) bulkLoad (MySQL) bulkLoad (HBase)

chunk load: 24.33 mysql load: 463.26 bulk load: 1674.76 HDFS copy: 895.31

dist ch job: 24.95 hbase load: 793.98 gen. index: 890.57 gen. HFiles: 1082.81

total: 952.17 total: 1257.23 total: 2565.34 total: 1978.12

The results of load latencies are shown in Figure 4 and detailed in Table 1.
The latency of fileCopy is the bottom line which is 893 seconds and cannot be
improved anymore. The result of DeBL (no mysql) is 952.17s and very closed
to fileCopy’s latency. The input file was transferred chunk by chunk and each
chunk has 256MB size. With this chunk size, both chunk load job and dist ch job
took similar time (24∼25s). As both jobs ran in parallel, the result of DeBL (no

mysql) could be derived from the sum of fileCopy’s time and the latency of
the last dist ch job. It provides the fastest starting time of system uptime with
near wire-speed. However, incoming queries still have to wait until their files are
available in HBase. Another variant DeBL (2g mysql) took a little bit longer for
bulk loading 2GB hot data into MySQL (including index construction) which is
463.26s and its total latency is 1257.23s.

Latency gets higher when using traditional bulk loading approaches. Using
bulkLoad (MySQL), the LOAD DATA INFILE command took 1674.76s while re-
enabling primary key index spent 890.57s. Using bulkLoad (HBase), copying
remote files to HDFS had the same latency as fileCopy and generating HFiles
reached similar cost (1082.81s) as MySQL’s index construction since both pro-
cesses required sorting on large input files. However, bulkLoad (HBase) is faster
than bulkLoad (MySQL) since HBase is a distributed system where MapReduce’s
batch processing feature can be exploited. Apart from this difference, both bulk
loading approaches still outperforms HBase’s fast writes where some overheads
like compaction occurred due to HBase’s implementation as mentioned in Sub-
section 2.2.

150 W. Qu and S. Dessloch

0

200

400

600

800

1000

1200

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100 2250 2400 2550 2700 2850 3000 3150 3300 3450 3600 3750 3900 4050

DeBL (2g mysql)

bulk load (MySQL)

bulk load (HBase)

DeBL (no mysql)

time (sec)

throughput (op/sec)

Fig. 5. System Uptime & Query Throughput in four Approaches

The end of load phase indicates the start of system uptime and lower load
latency means faster data availability. After the load phase, we ran 50 threads on
the client side to continuously send 500,000 get link list requests to the server.
Both MySQL and HBases’ bulk loading approaches led to complete data avail-
ability and we tracked the query throughputs starting from their system uptime.
In this case, the difference of the query throughputs represents the difference of
query latencies on MySQL and HBase as well. We tried our best to tune our
HBase cluster for example, by enabling block caching, setting up Bloom filters
and pre-splitting regions. For 10GB test data, our in-house HBase cluster yet
could not cope with a single-node MySQL engine in terms of query throughput
as shown in Figure 5. However, as HBase cluster took less time to ingest the in-
put data, its throughput curve started earlier (from 1978.12s, the end of its load
phase) to rise and converged at 278.7 op/sec throughput and 3.6 ms query la-
tency in average for each get link list request. The bulkLoad (MySQL) approach
took the longest time until all links are available in link table. Its throughput
was rising rapidly (till 521.8 op/sec, 1.9 ms) and all the queries were finished in
a small time window.

In contrast to traditional bulk loading approaches, our DeBL approach trades
complete data availability for fast system uptime. It provides incremental avail-
ability to files stored in HDFS on demand. It can be seen in the DeBL (no

mysql) variant that the system started the earliest at 952.17s but the query
throughputs occurred intermittently as relevant file partitions continuously got
available in HBase. The throughputs were higher than bulkLoad (HBase) at the
beginning since less available files needed to be scanned in HBase. Along with
growing data size, the throughputs kept close to the highest value in bulkLoad

A Demand-Driven Bulk Loading Scheme for Large-Scale Social Graphs 151

(HBase) (332 op/sec). Using DeBL (2g mysql), the system uptime had 300s de-
lay whereas its throughput curve first climbed up drastically and reached its peak
1092.7 op/sec. After that, it began to fall and finally converged with bulkLoad

(HBase)’s curve. The reason is that a big portion of frequently emerging queries
were immediately answered by the 2GB hot data in MySQL at first. As the size
of data in MySQL was much smaller, their query latencies were also faster than
those on 10GB data in bulkLoad (MySQL). The rest of the queries that could not
be answered by MySQL were buffered by the coordinator and released as soon
as the data was available in HBase. Important to mention, both DeBL variants
were able to digest the entire 500,000 requests before the system uptime began
in bulkLoad (MySQL).

5 Related Work

Bulk loading techniques normally serve the loading phase in Extract-Transform-
Load (ETL) processes which handle massive data volumes at regular time in-
tervals. A middleware system called “Right-Time ETL (RiTE)” [11] provides
ETL processes with INSERT-like data availability, but with bulk-load speeds.
Instead of loading entire input data directly into the target table on a server,
a server-side, in-memory buffer is used to hold partial rows of this table before
they are materialized on disk. Since loading data in memory is much faster, the
time window of data loading is shrunk. A logical view is defined to enable query
execution on rows stored in both locations. However, problems will occur when
large-scale social graphs cannot fit into memory. In our case, we let a distributed
file system take over partial load/query jobs on large files from databases.

In [12], Goetz Graefe proposed his idea of fast loads and online B-tree index
optimization as a side-effect of query processing. Instead of building complete
indexes during data loading, a small, auxiliary structure called partition filters
(similar to small materialized aggregates [14]) is created for each new loaded
partition. With this information, the indexes are optimized incrementally and
efficiently on demand according to queries’ predicates. This inspired us to use a
bucket index table as auxiliary information to identify required file buckets to
be available in HBase for incoming queries.

With the advent of “Big Data” and its emerging Hadoop/MapReduce tech-
niques, database vendors now have lots of solutions that integrate open-source
Hadoop with their products. IBM’s InfoSphere BigInsights and Big SQL [13]
is one of them. Big SQL provides a SQL interface to files stored in Hadoop,
BigInsights distributed file systems or external relational databases. It allows
companies with existing large relational data warehouses to offload “cold” data
to cheap Hadoop clusters in a manner that still allows for query access. In this
context, our approach exploits the features of underlying MySQL and HBase
engines to balance the availability between “hot” and “cold” data.

152 W. Qu and S. Dessloch

6 Conclusion

In this work, we first introduced the bulk loading techniques used for MySQL and
HBase and then proposed our demand-driven bulk loading scheme. This scheme
utilizes a hybrid storage platform consisting of a fast-load/slow-query HBase and
a slow-load/fast-query MySQL to accommodate large-scale social graphs, which
is a compromise as fast available “hot” graph data and slowly accessible “cold”
data. Our experimental results show that our approach provides fast system
uptime and incremental availability to “cold” data on demand.

We do not assume that the data partition stored in MySQL is always hot
since the “hotness” of files that resides in HBase can still be discovered in our
approach. The limitation is that the query latency of HBase is not satisfactory
if the data partition stored in HBase gets frequently accessed in the future. Our
future work is to remove this limitation by online data re-balancing in the hybrid
storage cluster.

References

1. Curtiss, M., Becker, I., Bosman, T., Doroshenko, S., Grijincu, L., Jackson, T.,
Zhang, N.: Unicorn: a system for searching the social graph. VLDB, 1150–1161
(2013)

2. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a
database benchmark based on the facebook social graph, pp. 1185–1196. ACM
(2013)

3. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N.,
Kuang, H., Aiyer, A.: Apache Hadoop goes realtime at Facebook. In: SIGMOD,
pp. 1071–1080 (2011)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB, pp. 143–154. ACM (2010)

5. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.A.,
Mankovskii, S.: Solving big data challenges for enterprise application performance
management. VLDB, 1724–1735 (2012)

6. Bercken, J., Seeger, B.: An evaluation of generic bulk loading techniques. VLDB,
461–470 (2001)

7. https://dev.mysql.com/doc/refman/5.0/en/insert-speed.html

8. White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc. (2012)
9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Gruber, R.E.: Bigtable: A distributed storage system for structured data. In: TOCS
(2008)

10. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured merge-tree (LSM-
tree). Acta Informatica, 351–385 (1996)

11. Thomsen, C., Pedersen, T.B., Lehner, W.: RiTE: Providing on-demand data for
right-time data warehousing. In: ICDE, pp. 456–465 (2008)

12. Graefe, G., Kuno, H.: Fast loads and queries. Transactions on Large-Scale Data-and
Knowledge-Centered Systems II, 31–72 (2010)

13. http://www.ibm.com/developerworks/library/bd-bigsql/

14. Moerkotte, G.: Small materialized aggregates: A light weight index structure for
data warehousing. VLDB, 476–487 (1998)

https://dev.mysql.com/doc/refman/5.0/en/insert-speed.html
http://www.ibm.com/developerworks/library/bd-bigsql/

Open Source Is a Continual Bugfixing by a Few

Miko�laj Fejzer, Micha�l Wojtyna, Marta Burzańska, Piotr Wísniewski,
and Krzysztof Stencel

Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University,

Toruń, Poland
{mfejzer,goobar,quintria,pikonrad,stencel}@mat.umk.pl

Abstract. Github is one of the most popular repository sites. It is a
place where contributors come together to share code, ideas, thoughts
and report issues. By using topic modelling applied to comments we are
able to mine plentiful interesting information. Three aspects of an open
source project mostly attracted our attention: the existence of a ”Core
Team”’ - small number of developers that have the most contributions,
the prevailing popularity of topics related to bug fixing and the contin-
uous development of project without significant iteration phases.

Keywords: Bug fixing, Developers behavioural patterns, Development
phases, Github, LDA, Topic analysis, Team work.

1 Introduction

Today, the the most popular code repository sites for open source projects are
Github and Sourceforge. They gather massive data on users, their activities and
the code they produce. From 2014 MSR Mining Challenge [1] we have obtained
a portion of repositories stored in Github. After a careful analysis of the pro-
vided data structure, we have decided to study the influence of committers on
their projects. We focused our attention on mining the information from commit
messages and issue comments.

In order to generalize information about each of the studied commits and is-
sues and to gather statistics, we used topic modelling [2]. Each comment has been
treated as a single document. To obtain topics we applied the Latent Dirichlet
allocation [3] using the Mallet topic modelling toolkit [4]. We trained our topic
model per project, to capture each project’s unique history and the context of
programmers interaction. As a next step we have aggregated the data by a num-
ber of attributes - among which the most helpful aggregations were by date and
by author.

Based on the series of empirical tests of training Mallet with different param-
eters, we have finally decided that 50 topics and 1000 iterations gives us the
best generalization without losing too many specific details about the studied
data. We have also added custom stop words that matches the Github context to
clean up committers’ messages. Mostly we had to deal with numerous comments

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 153–162, 2014.
c© Springer International Publishing Switzerland 2014

154 M. Fejzer et al.

containing ”thank you”, ”good job” and other such praising that fell out of our
scope of interest.

Unfortunately for our approach, out of 92 projects provided, only 52 had a
sufficient number of commit messages allowing to extract reliable topic, and of
those 52 only 43 projects had enough issue comments to be studied. We have
examined the resulting data to verify a number of hypotheses, sometimes dis-
covering new ones worth investigating. The first thing we have noticed was that
repeatedly the bug fixing topic was always either the most popular topic, or
among the top 5. We shall address this issue in Section 2. Also our initial ob-
servations indicated that most of the projects have a small hard working ”core
developers” group comprising of specialists in one or two topics and people who
contribute to almost every topic. More detailed information about the corre-
sponding hypothesis, gathered data and results can be found in Section 3.

Of course among many interesting questions some remained unanswered, while
some turned out with a negative answer although our initial intuition suggested
that they should validate positively. Two most noteworthy of such hypotheses are
the close correlation between issue topics and following commit topics and that
the open source projects are created iteratively. Those hypotheses are addressed
in the Section 4.

This report deals mostly with three hypotheses:

– In most of the projects the contributors can be divided into two main groups:
a great number of contributors is responsible for only a small portion of code,
since their input is minor. On the other hand - a small group of contributors,
let us call them the ”Core team”, is responsible for substantial developments
through majority of commits to the code.

– Despite advancements of software engineering open source projects are not
developed according to a methodology based on any form of cycles. In fact,
in general the development process is iterative.

In following section we take a closer look at the aforementioned hypotheses.

2 “The Core Team”

Our goal was to check how do people involved with a project contribute to
its development. Do they mostly assume a role of a specialists - local domain
specific experts - or perhaps they are generalists who contribute to different parts
of their project? Or maybe there are other who fall out of those two categories.
Furthermore, how big (in percentages) are those groups and can we find some
universal trends on this matter?

In our terminology a specialist is a committer, whose number of commits
matching specific topic is larger than half of the maximum number of commits
to the most popular topic of a project. A generalist is a committer whose number
of commits matching multiple topics is larger than average number of topics per
committer.

Open Source Is a Continual Bugfixing by a Few 155

After analysing the data of the chosen 43 projects we found out that in each
project the majority of committers behave like partisans, using hit and run
tactics. They create only one commit matching specific topic and disappear,
never to be seen again. The average number of committers per project is 35.9
contributors which is equal to 70.93% of average project’s committers. Specialists
usually concentrate on the most significant topics. Our calculations show that
they constitute average 2.07 (12.06%) committers per project. They are also
competent or willing enough to create numerous commits matching other topics,
so many of them are also counted among generalists, whose average is 9.59
(28.12%) of committers per project.

In order to illustrate the issue we have selected two charts generated from
data aggregated by comments’ author. Figures 1 and 2 visualize the number of
contributions to a topic by an author. For a project 3583 presented in Figure 1
the global number of committers is 84 and there are 5 specialists and 27 multi-
topic generalists. The project 107534 from Figure 2 has 34 contributors in total,
among which there are 3 specialists and 10 generalists.

Similar research has been conducted by the author of [5]. They have studied
the Apache and Mozilla projects and their contributors. Despite slight differences
in percentages (their results were closer to 20%-80% ratio of the number of core
team developers to others), they came to a similar conclusion. A minority of
contributors is responsible for the majority of work.

Table 1. Statistics of committers groups

Specialists Generalists Other Definition

12,06% 28,12% 70,93% Average percent-
age per project

2,07 9,59 35,9 Average number
per project

5,77% 26,70% 72,96% Percentage of all

85 393 1074 Number of all

3 Bugfixes

The analysis of the charts containing popularity of topics has lead us to our
second hypothesis: bug fix commits are notably popular in open source projects.
Our first intuition was that bug fixing related topics should have significant
popularity. We analysed data fetched from Github database using our generic
solution based on Mallet as follows. We took all comments of each commit and
created a list of topics describing it. Every topic consists of top 10 words with
frequencies. We classified a topic as bug fix related if it contained at least 2 words
from the list of bug fix keywords, such as: fix, bug, solve. We took all commits
of a project and generated a reduced list of 10 topics. In a 50 topic list we have
often seen a number of bug fix related topics, thus the need for reduction.

156 M. Fejzer et al.

Fig. 1. Topic aggregation by committer’s name on project 3583

Open Source Is a Continual Bugfixing by a Few 157

Fig. 2. Topic aggregation by committer’s name on project 107534

158 M. Fejzer et al.

Now, we have assumed that developers’ work is focused mainly around fixing
bugs if a project contains at least one bug fix related topic within top 5 topics
list. We have found out that most of the chosen projects share topics which we
can classify as related to bugs fixing. Only one of 44 projects did not have a bug
fixing related topic. Also, bug fix topics are often equally distributed over time.
Bug fix commits usually span over many months or even years. Moreover, these
topics are very popular. Naturally, this does not mean that in every project the
most popular topic is related to bugs fixing. Usually, the most popular topic in
a project represents specific project-related problems. Actually, nearly half of
the projects could be classified as ”bug-fix” project as 20 out of 44 had bug-fix
topic among their top 5. This might seem reflecting open source model of work.
There are copious contributors and testers. Thus, issues are reported/proposed
more often and faster than in commercial projects. That is why developers might
have a clear vision of what to do and they can just focus on solving reported
problems. At the same time open source projects tend to have less formal work
organization. This might be another source of potential bugs. Investigation of
the reasons behind the popularity of bug fixing is a very interesting research
subject, however it would require access to a lot more data, e.g. both source
code and user interactions like comments or mailing lists.

Fig. 3. Topic aggregation by commit date on project 12

Figures 3 and 4 present two example charts showing distribution of commit
topics over time in two projects. The first chart (project id 12) represents top-
ics of TrinityCore Open Source MMO Framework. The second chart (project

Open Source Is a Continual Bugfixing by a Few 159

Fig. 4. Topic aggregation by commit date on project 289

id 289) concerns MaNGOS, a MMO server suite. Both of them have plentiful
contributors and commits over time. Therefore they are suitable to show some
tendencies. Both projects have also rich histories (unlike many other projects),
ranging from 2008 to 2013 (project 289) and from 2010 to 2013 (project 12). We
can see that in both projects bug fix commits are not only notably popular, but
also spanned across the entire chart. This leads us to conclusion that in both
projects developers’ main efforts are focused on solving issues/bugs reported by
the community or other developers.

4 Project’s Development Phases

Before we began to study the data provided by the 2014 MSR Mining Challenge
[1] we strongly believed that the majority of open source projects is being devel-
oped in cycles loosely corresponding to either classical prototype methodologies,
or sprints used in Scrum. To verify this hypothesis we have studied topics of issue
comments and commit messages separately, in both cases with and without the
most significant topics among. We have also tried reducing the initial number of
50 topics and then eliminating the most significant one. However, much to our
surprise, in most projects we were unable to detect cycles of topics (of either
issues or commits), such as a regular increase and decrease of interest in par-
ticular topic in specific months. Only one project (51669) had a form of topics’
cycle between 2012-07 and 2013-03. Numerous projects probably spanned over
a too small period of time, or had too few contributions to detect cycles even if
committers worked according to them.

160 M. Fejzer et al.

We have revealed that in almost all projects there exist major topics (often a
single topic) that are generally popular and prevalent during whole development
process. And yet, even after excluding those (usually top 3) topics, the only topics
remaining are those which have a very small number of commits (for example
only one commit) or few issues gathered around a specific date or occasion.
In case of commits those situations may be caused by merging work of those
committers who behave like partisans. While investigating this hypothesis we
came across two other questions. Are commits related to issues? Or at least do
bug fixing topics in commits indicate some correlation to issues? Unfortunately
the answers we have found are both ”no”.

Topics of issues are generally not similar to those of commits. Issue topics
concentrate more on how something can be achieved and are more broad dis-
cussions, e.g. on the architectural context of a project or the usage of a selected
library. Commit topics usually describe a specific situation such as not merged
commit, a failed compilation or specific reasons why commit should be changed.
Issue topics generally do not seem influencing commit topics to appear. It is true
it least in the Github projects chosen for the Challenge.

5 Research Limitations

Our results are subject to a number of limitations threatening the accuracy or
even the correctness of our assumptions. Our biggest concern is that we did
not have access to the source code. Therefore, we were unable to verify if the
specialists actually produce a majority of code, or they simply make lots of
small corrections - possibly even insignificant. The same concerns generalists.
Their work may additionally be triggered not by the desire to improve their
projects but more by the reputation and contribution score. On the other hand
”partisans” may contribute to a project not by Github itself but through other
means like forums - where they may post helpful code, hints or suggestions.

Another problem that should be clearly stated here is that we analysed a
very small number of projects. As mentioned earlier only 92 projects were pro-
vided, out of which only 43 were subjected to our method of investigation. And
even those projects usually had a very small number of committers and com-
ments making it difficult to generalize based on them. In general people tend to
leave commit messages empty or they include a short, nearly meaningless sen-
tence.Thus, without looking at the source code it is impossible to say anything
about such commit. One of our concerns here is that we were unable to distin-
guish between commits that are meaningful to a project and commits that were
cancelled or overwritten.

Our approach itself left a space for additional work. The fact, that we have
eliminated topics related to praising and thanking others for their work might
have negatively influenced our results. The same goes for parameters we used
when training the LDA. For topics generated in some other way for example
there may exist software development cycles.

Open Source Is a Continual Bugfixing by a Few 161

6 Conclusions

In this paper we have shown that the majority of open source projects have a
strong ”Core Team”, i.e. a group of developers that are either strongly involved
in the development of a chosen topic, or they browse through the project bringing
together committers and their contributions. The work of open source developers,
no matter what is their role in a project, usually involves a notable amount bug
fixing. Moreover, while investigating this problem we have found no correlation
between bug fixing and Test Driven Development, or even simple testing phases.
This leads to our third main conclusion that in most open source projects the
work is continuous and cannot be clearly divided into stages or phases.

There are still numerous interesting hypotheses to be researched. As we have
mentioned earlier, as we dug down the data, more and more questions arose. For
example, is a project’s popularity related somehow to the main technology? Or
what are the trends behind the open source development? One of the hypotheses
that we were unable to verify due to the small sample of projects is connected
with the existence of the Core Team. Specifically, how big should be the leading
team for a project to succeed? Or is a small core team a guarantee of a failure?
This questions have been also formed within the research paper on Apache and
Mozilla projects [5]. But we may also try to analyse means of interaction between
the ”Core Team” and other members, bearing in mind the research in [6]. How
open are the core team members to other participants, and does it corelate to the
amount of bug-reports or commits done by them. Going further on this subject
we may want to ask what other project’s features are directly linked to the
project’s success or failure. The authors of [7] have attempted to assess the main
bug-types and quality of bug reports for selected Android Apps. This research
could be also expanded with our findings and lead to more in-depth analysis of
general trends in bug-reporting for open-source projects. In particular, the work
on identifying key bug-fixing patches for Linux kernel [8] could be enhanced with
our approach for more general topic classification.

Last but not least, we have to remember that more work should also address
the limitations described in Section 5.

References

1. Gousios, G.: The GHTorrent dataset and tool suite. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR 2013, pp. 233–236
(2013)

2. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 50–57. ACM (1999)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. The Journal of
Machine Learning Research 3, 993–1022 (2003)

4. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit (2002),
http://mallet.cs.umass.edu

http://mallet.cs.umass.edu

162 M. Fejzer et al.

5. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM) 11, 309–346 (2002)

6. Scialdone, M.J., Li, N., Heckman, R., Crowston, K.: Group maintenance behav-
iors of core and peripherial members of free/Libre open source software teams. In:
Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIP
AICT, vol. 299, pp. 298–309. Springer, Heidelberg (2009)

7. Bhattacharya, P., Ulanova, L., Neamtiu, I., Koduru, S.C.: An empirical analysis of
bug reports and bug fixing in open source android apps. In: Proceedings of the 2013
17th European Conference on Software Maintenance and Reengineering, CSMR
2013, pp. 133–143. IEEE Computer Society, Washington, DC (2013)

8. Tian, Y., Lawall, J., Lo, D.: Identifying linux bug fixing patches. In: Proceedings of
the 34th International Conference on Software Engineering, ICSE 2012, pp. 386–396.
IEEE Press, Piscataway (2012)

Materialized View Selection Considering

the Diversity of Semantic Web Databases

Bery Mbaiossoum1,2, Ladjel Bellatreche1, and Stéphane Jean1

1 LIAS/ENSMA, University of Poitiers 86960, Futuroscope Cedex, France
{mbaiossb,bellatreche,jean}@ensma.fr
2 University of N’Djamena, Chad Republic

Abstract. With the extensive use of ontologies in various domains,
Semantic Web Databases (SWDBs) have appeared in the database land-
scape. Materialized views are one of the most popular optimization struc-
tures in advanced databases. Queries represent the most important input
of the problem of selecting materialized views. In the context of SWDB,
queries are expressed using the SPARQL language. A SPARQL query
consists of a set of triple patterns executed on a set of triples repre-
senting the logical level of the SWDB. But a SWDB may have several
deployments according to the used storage layout (vertical, horizontal,
binary). As a consequence the process of selecting materialized views has
to consider this diversity. In this paper, we first present the difficulty of
the process of materializing views in the context of SWDB considering
the diversity of storage layouts. Secondly, we define two approaches to
select materialized views. The first approach hides the implementation
aspects and views are selected at the ontological level using a rule-based
approach. In the second approach, views are selected at the logical level
and the view selection is guided by a cost model which considers the
diverse storage layouts that can be used. Finally, intensive experiments
are conducted by the means of the Lehigh University Benchmark and we
empirically compare our finding with state-of-the-art algorithms.

1 Introduction

Materialized views (MV) are one of the most popular optimization structures
used in many fields such as data warehousing [1], data mining [2], XML databases
[3], caching in mediator databases [4], cloud computing [5], etc. MVs are used to
pre-compute and store aggregated data, which is particularly the case of big data
analytical workload. Once materialized views are selected, queries are rewritten
using materialized views (query rewriting). Two major problems related to ma-
terialized views are: (a) the view selection problem and (b) the view maintenance
problem.

View Selection Problem. The database administrator (DBA) can not materialize
all possible views, as he/she is constrained by limited resources such as disk
space, computation time, maintenance overhead and cost required for the query
rewriting process [1]. Hence, the DBA needs to select an appropriate set of

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 163–176, 2014.
© Springer International Publishing Switzerland 2014

164 B. Mbaiossoum, L. Bellatreche, and S. Jean

views to materialize under some resource constraints. Formally, the view selection
problem (VSP) is defined as follows. Given a set of most frequently used queries
Q = {Q1, Q2, ..., Qn}, where each queryQi has an access frequency fi (1 ≤ i ≤ n)
and a set of resource constraints M . The VSP consists in selecting a set of
materialized views that minimizes one or more objectives, possibly subject to one
or more constraints. Many variants of this problem have been studied considering
several objective functions and resource constraints: (i) minimizing the query
processing cost subject to storage size constraint [1], (ii) minimizing query cost
and maintenance cost subject to storage space constraint [6], (iii) minimizing
query cost under a maintenance constraint [1], etc. This problem is known to
be NP-hard [1]. For more details, the interested reader can refer to the survey
papers [6, 7].

View Maintenance Problem. Materialized views store data from base tables. In
order to keep the views in the database up to date, it is necessary to maintain
the materialized views in response to the modifications of the base tables. This
process of updating views is called view maintenance which has been of great
interest in the past years. Views can either be recomputed from scratch, or incre-
mentally maintained by propagating the base data changes onto the views. As
re-computing the views can be prohibitively expensive, the incremental mainte-
nance of views is of significant value [1].

The above description shows the great interest that the database community
gives to materialized views. In the last two decades, a new type of databases has
emerged: the Semantic Web Databases (or ontology-based databases) (SWDB).
Contrary to traditional databases, a SWDB brings new dimensions [8]:

(a) the diversity of ontology formalism: each SWDB uses a particular formalism
to define its ontologies (e.g., OWL [9], RDFS [10] or PLIB [11]),
(b) the diversity of storage layouts : in a SWDB, several storage layouts (hori-
zontal, vertical, binary) are used to store ontologies and their data,
(c) the diversity of architectures : three main architectures of database manage-
ment system (DBMS) managing SWDB are distinguished. In the first type (that
we called Type1), the traditional database architecture was reused to store both
the data and the ontologies referencing them. The ontology and its associated
data are stored in a unique part. To separate the ontology from the data, a sec-
ond type (Type2) was proposed, where the ontology and its ontological data are
stored independently into two different schemes. Therefore, the management of
ontology and data parts is different. The Type1 and Type2 architectures hard-
coded the ontology model (OWL or RDFS, etc.). To enable the evolution of
ontology models, a third architecture (Type3) extends the second one by adding
a new part called the meta-schema.
(d) the most popular query language for SWDB is SPARQL. Its particularity is
that it is defined at the logical level of the SWDB where ontologies and their
instances are considered as a set of triples and thus, it hides the deployment
structure. Therefore, it can be applied to any type of SWDB.

Portable Materialized Views in SWDB 165

The problem of selecting materialized views in the context of SWDB is formal-
ized as follows [12]: given a SPARQL query workload Q and a storage constraint
S, it consists in selecting a set of views that minimizes the SPARQL queries
processing cost and the total size of materialized views must not exceed the
imposed storage constraint S. Several recent studies have proposed algorithms
for selecting views to optimize SPARQL queries [12–14]. These studies focused
mainly on the vertical storage layout which consists in storing the triples in a
three-column table (subject, predicate, object).

To abstract the storage layout used by a SWDB, the data can be seen either
as a set of triples (logical level) or as instances of ontologies (conceptual level).
As a consequence, we present in this paper two approaches to select materialized
views in the context of the diversity of SWDB (Fig. 1): (i) the first approach,
defined at the conceptual level, hides the implementation aspects of the triples
storage. Consequently, materialized views are selected according to the usage of
ontology classes by SPARQL queries. The second approach, defined at the logical
level, is similar to the one used in relational data warehouses [15], where plans of
individual queries are merged into one unified global query plan that captures the
interaction between queries. The intermediate nodes of this plan are candidates
to be materialized. The quality of the selected views is guided by a cost model
estimating the number of inputs/outputs and considering the deployment of
the SWDB. These two approaches allow DBAs to select materialized views to
optimize SPARQL queries without wondering about the storage layout of their
databases. The interest of our approach is evaluated on the Lehigh University
Benchmark with SWDBs that use different storage layouts. Moreover, we show
that our second approach is competitive with the the state-of-the-art approach
for the vertical storage layout [12].

This paper is organized as follows. In Section 2, our first approach for ma-
terializing views at the conceptual level is described. Section 3 details our second

Student
name

String email

u1

Course
follows

c1
followsPeter

p@...

name

email

Conceptual level

(ontology/instances)

(Student, type, class) (Course, type class) (name type property)

(email, type, property) (follows, type, property) (u1, name, Peter)

(u1, email, p@...) (u1, follows, c1) (c1 type Course) …

Logical level

(set of triples)

Physical level

(storage layouts)

Student

rid name email
p1 Peter p@

Course

rid … …
c1 … …

Triples

s p o
Student Type Class
Course Type Class
Name Type Property
Email Type Property

Follows Type property

email

s o
u1 p@

name

s o
u1 Peter

Horizontal layout Binary layout Vertical layout

Approach 1 :

Approach 2 :

Generic
Cost Model

Rules-based

Fig. 1. Our Two Approaches

166 B. Mbaiossoum, L. Bellatreche, and S. Jean

approach in which a genetic algorithm is presented to perform the selection at
the logical level. Section 4 exposes our validations tests. Section 5 discusses the
related work. Finally we conclude this work with a summary and outlook in
section 6.

2 Materialized View Selection at Ontological Level

Before describing our first algorithm to materialize views at the conceptual level,
some concepts and definitions are needed.

Definition 1. An RDF triple is a 3-tuple (subject, predicate, object) ∈ (U ∪
B)× U × (U ∪ B ∪ L) where U is a set of URIs, B is a set of blank nodes and L
is a set of literals.

Three main storage layouts are used:

– vertical : a triple table (subject, predicate, object);
– binary: a two-columns table (subject, object) for each property;
– horizontal : a table per class C(p1, . . . , pn) where p1,..., pn are the single-

valued properties used at least by one instance of the class. Multi-valued
properties are represented by a two-columns table (subject, object).

Definition 2. A SWDB is said to be saturated if it contains initial instances
and inferred instances, otherwise it is called unsaturated.

For this work, we use saturated SWDB, which means that we do not need
to perform inference mechanism at querying processing time. An RDF triple
pattern t is a triple (subject, predicate, object) ∈ (U∪V)× (U∪V)× (U∪V∪L),
where V is a set of variables disjoint from the sets U, B and L.

We consider RDF queries defined as a conjunction of triple patterns t ∈ (U ∪
V)× U × (U ∪ V ∪ L). We use the symbol “̂ ” to denote joins.

Our first approach requires the presence of an ontology schema composed by
classes and their properties. Note that SPARQL queries often involve several
attributes related to the same entity. This situation is quite similar to star join
queries defined in the context of relational data warehouses [16].

It is true that SPARQL queries do not clearly describe classes as SQL queries
do for the tables, but we can identify these classes through the properties in the
triple patterns. Indeed, any triple or triple pattern ti is lying on at least one
class: the class of the domain of its property.

The basic idea is that when one variable x appears as a subject in several triple
patterns, by materializing the class of x, these triple patterns will be executed
on this class, and the number of joins is reduced. Intuitively, this materialization
approach speeds up the execution cost of some queries. In the next section, we
present the process of identifying the relevant classes to be materialized.

Portable Materialized Views in SWDB 167

Identification of View Candidates. We begin with the algebraic tree of each
query. For each triple pattern, we consider the domain of its property (it is the
class of its subject). It is obvious that if this class is materialized, the branch
of the query tree built on this triple pattern will have this class as leaf. So, by
replacing each triple pattern by the class of its property, and merging the same
classes, a class-based query tree is obtained. Merging the classes is performed
by computing the union of their properties. In other words, we group all triple
patterns with the same domain. Let ti and tj be two triple patterns and C(p)
a class derived from a triple pattern t with p as property. If ti and tj have
the same domain, the combination of ti and tj is translated by creating a class
with properties pi and pj (C(pi,pj)). Figures 2 and 3 present an illustration of
class-based query trees for the query q = t1̂ t2.

Fig. 2. t1 and t2 on a same domain Fig. 3. t1 and t2 on different domains

Note that a property can have many classes as domain. We denote Dom(p),
the set of these classes for a property p. During the identification process, for
each query, all triple patterns must be considered. For each variable, the selected
classes are those that are common to the sets of classes obtained for each triple
pattern. But to avoid having a large number of these classes, a predominance is
granted to the ”rdf:type” property. If in a given query, a variable x is involved in
several triple patterns as subject, and if among these triple patterns properties,
the ”rdf:type” predicate is present, then the class of x is the one specified by
”rdf:type”. During the classes identification, we keep only the properties which
are present in the query.

Usage Matrices. By using the ontology schema, query workload and identifica-
tion of classes, two usage matrices are defined: class usage matrix (MUC) and
property usage matrix (MUP). MUC rows represent queries, whereas MUC
columns represent classes. MUC[i][j] = 1, with 1 ≤ i ≤ n and 1 ≤ j ≤ m, if the
query qi uses the class Cj , otherwise MUC[i][j] = 0. MUP is filled using the
same principle, where properties replace classes.

These two matrices are exploited to select materialized views. If a class is used
by a query, then it is considered as a view and the properties used by at least
one query are associated to the view.

168 B. Mbaiossoum, L. Bellatreche, and S. Jean

3 Materialized View Selection at the Logical Level

This approach is based on triple patterns of queries and exploits the interaction
between queries that we describe in the next sections.

3.1 Generic Global Query Plan

A SPARQL query can be represented by an algebraic expression tree [17, 18]. The
root corresponds to the query (i.e., the query result). Intermediate nodes corre-
spond to algebraic operations such as selection, join or cross product. The leaves
correspond to the entities used by a given query. For instance, in a SWDB which
uses a vertical storage layout, leaves are the triples table. In binary and horizon-
tal storage layout, leaves represent property tables and class tables, respectively.
In our study and to hide the implementation aspects of a given SWDB, the leaf
nodes represent only triple patterns. Due to the star-shaped nature of SPARQL
queries merging their individual query plans is possible. This merging process
gives raise to a unified query plan which is similar to Multiple Views Processing
Plan (MVPP) defined in [15].

Example 1. Let q0 = t1, q1 = t1ˆt2ˆt3 and q2 = t1ˆt2ˆt4 be three queries. The
branch t1ˆt2 is identical in queries Q1 and Q2. Pooling the plans of these two
queries can be done by merging these two branches. The unified plan of these
queries is depicted in Fig. 4.

As in [15], we consider each intermediate node as a potential view. We consider
the unified plan as a search space for the views selection problem. The leaves
of our graph which represent triple patterns result from the selection operation
made on the underlying storage layout of the SWDB. The selection nodes (σ(.))
which clearly express the meaning of triple patterns execution results are in-
cluded in the unified plan (see Fig.5). For a triple pattern t, a selection node is
defined as follows according to the used storage layout:

σ(t) =

⎧⎨⎩
select * from TT where condV if vertical SWDB
select * from TabProp(t) where condB if binary SWDB
select * from TabClass(t) where condH if horizontal SWDB

(1)

where TT, TabProp(t) and TabClass(t) represent respectively the triples ta-
ble, the property table and the class table corresponding to the triple pattern t.
condV, condB and condH represent respectively the selection predicates corre-
sponding to the triple pattern t in vertical, binary and horizontal layout. In our
work, we discard the projection operation, as a consequence it is not represented
in our graph. The unified graph of the queries in example 1 is shown in Fig.5.

Due to the properties of algebraic operations [19], there exists a multitude
of unified query plans. As a consequence, we propose the following procedure
to build our plan. First we begin by optimizing each query individually. Sev-
eral techniques are available for this task, we used the selectivity triple patterns

Portable Materialized Views in SWDB 169

Fig. 4. MVPP of SPARQL queries Fig. 5. Global Query Plan with selection
nodes

[20, 21]. The triple patterns are ordered according to their selectivity increas-
ingly. For the workload, queries are ordered according to their cost*frequency
decreasingly.

The construction of the global plan involves the following steps:

– Extraction of the Triple Patterns : for each query of the workload, all triple
patterns are extracted and kept in a set. Each triple pattern is stored only
once. Variables can have different names but they can refer to the same
triples, so we define a mapping that aligns variables on the whole workload.

– Extraction of the Selection Nodes : this is the first operation on the data.
It represents the execution triple pattern on a SWDB (equation 1). The
corresponding nodes are a set of triples corresponding to the triple patterns.

– Extraction of the Join Nodes : for each query, we identify the join nodes and
extract them. We recall that a join is a combination of two triple patterns
sharing at least one variable. These nodes are created on selection nodes of
the triple patterns involved.

– Definition of the Projection Nodes : we consider these nodes as the results of
queries.

Our approach for building a global plan follows the one proposed by [15]. Since
our global plan depends on query order, then we propose to order the queries
according to the cost*frequency criterion. The unified plan is created by a circular
permutation until the first query of the list returns to the head of the list, and
finally one global graph that has a minimum cost is chosen.

Once the optimal global plan is obtained, we proceed to the selection of views.
This step takes into account the cost of construction and the cost of access of
each node, the frequency of each query, the frequency of updating tables. These
different costs are defined in the cost model below.

Cost Model. Each intermediate node is characterized by two costs: the cost of
construction and the cost of access.

170 B. Mbaiossoum, L. Bellatreche, and S. Jean

Construction Cost. It is the computational cost of the node. For a selection
node, it is equal to the number of tuples of the selection table. For a join node,
it depends on the join algorithm. Only the cost of hash join is presented in
this paper. We denote C cout(v), the construction cost of a node v. For a node
v = TP1ˆTP2.

C cost(v) = 3 ∗ (||T1|| + ||T2||) (2)

where ||T || is the number of tuples of the table T ; and T1 and T2 are the un-
derlying tables of TP1 and TP2 (i.e., triples tables, property table or class table
according to the type of SWDB). This cost is also called maintenance cost (as-
suming that updates are performed by dropping and (re)creating the nodes).

Access Cost. The access cost of a node is defined as the node size. For simplic-
ity, we consider it as the number of tuples of the node. We denote A cost(v)
the access cost of a node v. Computing this cost depends on the type of node
(selection node or join node).
Selection Node

A cost(v) =

⎧⎨⎩
sel(TP) ∗ nbrTuple(TT) if vertical SWDB
nbrTuple(TabProp(TP)) if binary SWDB
sel(TP) ∗ nbrTuple(TabClass(TP) if horizontal SWDB

(3)

sel(TP) is the selectivity of the triple pattern TP when the vertical storage layout
is defined as in [20]. In the case of horizontal storage layout, the selectivity of the
predicate is computed by translating triple pattern TP into the SQL language.

Join Node

A cout(v) = jsel ∗ nbrtuple(TP1) ∗ nbrTuple(TP2) (4)

where nbrTuple (TP1) and nbrTuple (TP2) are the number of tuples in each
relation corresponding to the results of processing triple patterns TP1 and TP2

and jsel is their join selectivity. Stocker et al. [20] have defined the selectivity
of two conjunctive triple patterns TP1 and TP2 as the number of triples result-
ing from the join of TP1 and TP2 normalized by the total number of triples
square. To take into account the diversity of storage layouts, we have adapted
the classical method of relational databases [19]. Let’s suppose that R1 and R2

are relations resulting from processing triple patterns TP1 and TP2 separately.
Let card(R1 �� R2) be the size of join node of R1 and R2.

card(R1 �� R2) =
nbrTuple(TP1) ∗ nbrTuple(TP2)

max(V (R1, ?x), V (R2, ?x))
(5)

where nbrTuple (TP1) and nbrTuple (TP2) are numbers of tuples of R1 and R2

respectively, ?x is a variable shared by TP1 and TP2, and V(Ri, ?x) is the size of
the domain of the attribute ?x in the relation Ri. In other words, nbrTuple(TPi)
is the number of triples which are solutions of the triple pattern TPi and V(Ri,
?x) is the number of distinct values that the variable ?x can take in the solutions
of TPi. For more details on these sizes computing, the interested reader can refer
to [21].

Portable Materialized Views in SWDB 171

Query Cost. The query cost is based on materialized views. If the views are
used, the query cost is the construction cost of the query root node. Else it is
equal to the sum of access costs of the used views. We denote it cost(q,M) for
a query q, where M is a materialized views set.

Total Cost of Workload. The total cost of a query workload is the sum of the
cost of each query multiplied by the frequency of the query.

cost total =
∑
q∈Q

freq(q) ∗ cost(q,M) (6)

where freq(q) is the frequency of the query q.

Materialized Views Selection. Recall that each node is a potential view.
Therefore, we can define our selection algorithm that minimizes the total cost
of the query workload and meets the storage constraint.

If the storage constraint does not exist, the algorithm for views selection used
in [15] can be used to have the set of optimal views. Since we are constrained by
the storage capacity, we propose the use of genetic algorithm that has shown its
efficiency in the context of relational data warehouses [22].

Genetic Algorithm. Our genetic algorithm is based on the API JeneGA [23]. We
consider for each view, the space it occupies and the profit obtained if it is the
only view that is materialized. The occupied space is equal to the access cost
as mentioned in section 3.1. The profit of a view v is defined as the difference
between the total cost of the workload without views and the total cost of the
workload if the view v is only materialized.

profit(v) =
∑
q∈Q

freq(q) ∗ cost(q, ∅) −
∑
q∈Q

freq(q) ∗ cost(q,M) (7)

where freq(q) is the frequency of the query q and M = {v} is a materialized
view set.

The problem is to find a set of views whose the sum of the occupied space is
less than or equal to the storage constraint S and which maximizes profits.

We define our chromosome as an array of bits (0 or 1). All intermediate nodes
of the global plan are mapped into the bit array. If a bit at a position is 1, it
means that the mapped node is selected to be materialized. A random solution is
initially generated and improved to be a good one. Our fitness function is based
on the maximum profit of chromosome. Indeed, for each chromosome (solution),
the sum of its nodes benefit and the sum of the occupied space are calculated. If
the sum of the occupied space is less than the storage constraint, the chromosome
is declared valid and can be improved to be a solution else it is not interesting.
We used the following parameters because they are often used in view selection:
crossover probability: 0.8, mutation probability: 0.02, population size 1000 and
maximum generation number 200. This algorithm provides us some interesting
results seeing the experimental results presented in the next section.

172 B. Mbaiossoum, L. Bellatreche, and S. Jean

4 Experimentations

4.1 Tests Datasets

We have performed several experiments to test our approaches on a 3.10 GHZ
Intel Xeon DELL personal computer with 4GB of RAM and 500GB of hard disk.
We used the benchmark of Lehigh University named LUBM [24] that creates
instances of an university domain ontology. We generated ontology-based data
for 100 universities denoted Lubm100 with 12.674.100 triples. We used the 14
queries provided by the benchmark. For each query, we made four measures of
processing time and we took the average. We did this for the initial queries
without views and for the queries with views. We used PostgreSQL 8.2 as the
underlying DBMS for all used SWDBs.

4.2 Different Tests

We call TBA (Triple-Based Approach), our approach defined at the logical level
which is based on triple patterns, and CBA the Class-Based Approach defined
at the conceptual (ontological) level. Our experiments are performed on existing
SWDBs (Jena and Sesame) and on a SWDB created especially for comparing
our approach with the one of [12] that we call native SWDB.

Experimentations on Existing SWDBs. In order to evaluate the generic
aspect of our approaches, we have used the Jena SWDB which uses a vertical
storage layout and Sesame SWDB (binary layout). We have also made experi-
ments on OntoDB which uses an horizontal storage layout. But for conciseness,
we only report experiments made on Jena and Sesame. The considered workload
of queries is the set of the 14 LUBM benchmark queries. Our approaches were
used to choose a set of views to optimize this workload. Then we measured the
query processing time of the queries with the created views and without them
(denoted Sparql).

Results are presented in Fig.6 for Jena SWDB and Fig.7 for Sesame binary
SWDB.

Interpretation of the Results. TBA provides good results for all queries using
views. Queries that can not be rewritten with appropriate views are executed on
the native storage layout. Otherwise, their results would be worse than if they
were performed with a SPARQL engine. Indeed, the SPARQL engine uses some
optimization techniques and is faster than a flat SQL engine. Castillo and Leser
[13] used SPARQL-SQL rewriting and made the same remark. CBA comes after
TBA. Some of its results are worse than the one of the SPARQL engine mainly
when the views are very large. This is the case of queries 1 and 3 which target
the GraduateStudent and Publication classes. However, the CBA approach gives
an acceptable cumulative time despite the fact that for individual queries, the
results are mitigated.

Portable Materialized Views in SWDB 173

Queries times on Jena

0

10

20

30

40

50

60

70

1 2 3 4 7 8 9 11 12 14

Queries

T
im

e
(s

e
c
)

sparql

CBA

TBA

Fig. 6. Queries times on vertical SWDB

Queries times on Sesame

0

5

10

15

20

25

1 2 3 4 7 8 9 11 12 14

Queries

T
im

e
 (

s
e

c
)

SPARQL

CBA

TBA

Fig. 7. Queries times on binary SWDB

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 7 8 9 11 12 14
Queries

T
im

e
(s

e
c
)

ViewLess TBA InriaID InriaText CBA

Fig. 8. Queries times on Native SWDB

0

50

100

150

200

250

300

350

400

1 2 3 4 7 8 9 11 12 14

Queries

T
im

e
(s

e
c
)

1%V 10*V 25%V ViewLess

Fig. 9. Influence of storage constraint

0

10

20

30

40

50

60

1Approaches

Time(s)

SPARQL

CBA

TBA

Fig. 10. Query workload times on binary
SWDB

Workload processing time on Vertical SWDB(Native SWDB)

View Less

TBA

InriaID
InriaText CBA

0

1000

2000

3000

4000

5000

6000

Approches

Time(sec,)

View Less

TBA

InriaID

InriaText

CBA

Fig. 11. Query workload times on vertical
SWDB

174 B. Mbaiossoum, L. Bellatreche, and S. Jean

Experimentations on a Native SWDB. Experiments on existing SWDB
could be influenced by optimization techniques used in these systems, for exam-
ple the existence of some index or cluster, the use of dictionaries, etc. To avoid
these influences and to compare our work with [12] which also uses a native
SWDB, we have created a vertical SWDB in PostgreSQL. It must be noted
that the approach in [12] uses a dictionary and provides results in the form
of identifiers (ID). We call Inria ID this approach and Inria Text the same
approach with text results. The queries processing time measurements in the
different approaches give the results presented in Fig.8.

Interpretation of the Results. Most of our queries using views run faster in
Inria ID and TBA approaches. The difference between TBA and the approach
Inria ID could be explained by the fact that the latter handles only integer val-
ues, so its operations are faster than those of other approaches that manipulate
strings.

INRIA1 approach with textual results (Inria T ext) gives a worse processing
time compared to the TBA approach. Indeed, all queries require one or more
joins with the dictionary table to return the textual values. It requires more time
when the list of exported variables is long and when there are enough tuples as
results (case of queries 5 and 7).

Considering the whole workload, Inria ID provides a good overall processing
time followed by CBA. The overall processing time of TBA increased because of
queries that do not use views. We can improve the TBA approach by using the
SPARQL engine for such queries. It should be noted that all tested approaches
have a substantial gain in terms of processing time for the whole workload as
shown in Fig.10 and 11.

Influence of Storage Constraint. To study the influence of the size of the
storage space for MV on the view selection process, we set the constraint at 1%,
10% and 25% of the size of all views. Then we make the selection of views and
created them for each case. Finally, we ran and measured the processing time of
our queries for each case. We only used the TBA approach.

The obtained results are shown in Fig.9. When the storage constraint is im-
portant (i.e., the space size is small, 1% of the space of all views), the selection
focuses on selection nodes. And the results are also mitigated because these
views do not bring much to the processing times of queries. From 25% of all
views space, we get good results in terms of global optimization.

5 Related Work

In the context of SWDBs, three main studies exist [12–14]. Goasdoué et al. [12]
propose an approach for selecting views in databases in the Semantic Web. Their
approach uses a vertical SWDB, where RDF data stored in a triples table and
based on the concept of state inspired by [25]. A state is a pair (V, R) where V

1 Institut National de Recherche en Informatique et en Automatique.

Portable Materialized Views in SWDB 175

is a set of views and a set R of rewriting queries on these views. The objective
is to find a state that minimizes the cost of executing queries, the storage space
and the maintenance cost views.

In [13], the authors propose an approach for selecting views on RDF data for
a given workload of SPARQL queries. The RDF data used are stored in a triples
table. The idea is to discover shared patterns to be used as indexes to improve
queries processing times. They consider the given set of queries as the initial
space of views, extend this space by analyzing each query of the workload and
identifying all combinations of connected triples patterns of some length and add
them to the space of view candidates.

Dritsou et al. [14] proposed a materialization of paths frequently accessed
(called shortcut) as a solution to reduce the RDF queries processing cost. The
basic idea is that given the prevalence of the path expression in RDF data,
they can be materialized to reduce the time of queries processing. A shortcut is
a query fragment with at least two triples patterns. Having defined the set of
candidate nodes, they develop the set of candidate shortcuts by considering all
valid combinations between candidate shortcut nodes.

Unlike these approacheswhichwere defined for verticalSWDB, our approaches
have been defined and evaluated for different storage layouts used by SWDBs

6 Conclusion

In this paper, we identify a fundamental aspect related to the process of selecting
materialized views in the context of SWDBs which is the diversity of storage
layouts. By exploring the main important state-of-art approaches, we figured
out the existence of algorithms and approaches for selecting materialized views
considering a unique storage layout: the triple table. To cover different types of
SWDB, we have proposed in this paper two approaches: one hides the imple-
mentation aspects of SWDBs in which materialized views are selected at the
conceptual level by exploiting the usage of classes by the SPARQL queries. The
second approach proposes a selection of materialized views at the logical level
and takes into account the storage layout of the target database. This flexibility
is offered thanks to a cost model defined to quantify the quality of the final solu-
tion. Intensive experiments were conducted to show the interest of our approach
using SWDBs that use different storage layouts. Moreover, our experiments on
the vertical storage layout show that our second approach is competitive with
the main approach defined for this type of SWDB. Currently, we are conducting
other experiments by considering other benchmarks involving interactive queries.

References

1. Gupta,H.: Selection andmaintenanceofviews in adatawarehouse.PhDthesis (1999)
2. Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Materialized data mining views. In:

Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 65–74. Springer, Heidelberg (2000)

3. Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y.: Structured materi-
alized views for xml queries. In: VLDB, pp. 87–98 (2007)

176 B. Mbaiossoum, L. Bellatreche, and S. Jean

4. Adali, S., Candan, K.S., Papakonstantinou, Y., Subrahmanian, V.S.: Query
caching and optimization in distributed mediator systems. ACM SIGMOD,
137–148 (1996)

5. Upadhyaya, P., Balazinska, M., Suciu, D.: How to price shared optimizations in
the cloud. VLDB 5(6), 562–573 (2012)

6. Mami, I., Bellahsene, Z.: A survey of view selection methods. SIGMOD
Record 41(1), 20–29 (2012)

7. Dhote, C., Ali, M.: Materialized view selection in data warehousing: A survey.
Journal of Applied Sciences 9(1), 401–414 (2009)

8. Mbaiossoum, B., Bellatreche, L., Jean, S.: Towards performance evaluation of
semantic databases management systems. In: Gottlob, G., Grasso, G., Olteanu,
D., Schallhart, C. (eds.) BNCOD 2013. LNCS, vol. 7968, pp. 107–120. Springer,
Heidelberg (2013)

9. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L.: Owl web ontology language reference. W3C (2004),
http://www.w3.org/TR/owl-ref/

10. Brickley, D., Guha, R.: Rdf vocabulary description language 1.0: Rdf schema. W3C
(2002), http://www.w3.org/TR/rdf-schema/

11. Pierra, G.: Context representation in domain ontologies and its use for semantic
integration of data. Journal of Data Semantics (JoDS) 10, 174–211 (2008)

12. Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View selection in semantic
web databases. VLDB 5(2), 97–108 (2011)

13. Castillo, R., Leser, U.: Selecting materialized views for RDF data. In: Daniel, F.,
Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 126–137. Springer, Heidelberg
(2010)

14. Dritsou, V., Constantopoulos, P., Deligiannakis, A., Kotidis, Y.: Optimizing query
shortcuts in RDF databases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia,
B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS,
vol. 6644, pp. 77–92. Springer, Heidelberg (2011)

15. Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data
warehousing environment. In: VLDB, pp. 136–145 (1997)

16. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world sparql queries. CoRR abs/1103.5043 (2011)

17. Frasincar, F., Houben, G.J., Vdovjak, R., Barna, P.: Ral: An algebra for querying
RDF. World Wide Web 7(1), 83–109 (2004)

18. Cyganiak, R.: A relational algebra for SPARQL. Technical report, Digital Media
Systems Laboratory, HP Laboratories Bristol (2005)

19. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)

20. Stocker,M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds,D.: Sparql basic graph
pattern optimization using selectivity estimation. In: WWW, pp. 595–604 (2008)

21. Kaoudi, Z., Kyzirakos, K., Koubarakis, M.: SPARQL query optimization on top of
DHTs. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 418–435.
Springer, Heidelberg (2010)

22. Hylock, R., Currim, F.: A maintenance centric approach to the view selection
problem. Information Systems 38(7), 971–987 (2013)

23. Troiano, L., Pasquale, D.D.: A java library for genetic algorithms addressing mem-
ory and time issues. In: NaBIC, pp. 642–647 (2009)

24. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on theWorld Wide Web 3(2-3) (2011)

25. Theodoratos, D., Sellis, T.: Designing data warehouses (1999)

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-schema/

A Robust Skip-Till-Next-Match Selection Strategy
for Event Pattern Matching

Bruno Cadonna1, Johann Gamper2, and Michael H. Böhlen3

1 Humboldt-Universität zu Berlin, Germany
cadonna@informatik.hu-berlin.de

2 Free University of Bozen-Bolzano, Italy
gamper@inf.unibz.it

3 University of Zurich, Switzerland
boehlen@ifi.uzh.ch

Abstract. In event pattern matching, various selection strategies have been pro-
posed to impose additional constraints on the events that participate in a match.
The skip-till-next-match selection strategy is used in scenarios where some in-
coming events are noise and therefore should be ignored. Skip-till-next-match
is prone to blocking noise, i.e., noise that prevents the detection of matches. In
this paper, we propose the robust skip-till-next-match selection strategy, which
is robust against noise and finds matches that are missed by skip-till-next-match
when blocking noise occurs in the input stream. To implement the new strategy in
automaton-based pattern matching algorithms, we propose a backtracking mech-
anism. Extensive experiments using real-world data and different event pattern
matching algorithms show that with skip-till-next-match the number of matches
not detected due to blocking noise can be substantial, and that our backtracking
mechanism outperforms alternative solutions that first produce a superset of the
result followed by a post processing step to filter out non-compliant matches.

1 Introduction

Event pattern matching finds matches of a pattern in an incoming stream of events,
where a pattern specifies constraints on extent, order, values, and quantification of
matching events. The result is a set of matches. Besides the pattern, a selection strat-
egy [2] (or selection policy [4]) imposes additional constraints on the events that partici-
pate in a match. Various selection strategies have been proposed to adapt to application-
specific needs. The strategies range from finding matches whose events need to be
strictly contiguous in the stream [2, 6, 10, 12] to finding all possible matches by not
imposing any additional constraints [2, 7–9].

In many applications for event pattern matching some incoming events are noise to a
match, i.e., they occur between events that participate in a match but are not themselves
part of the match. In such scenarios, the skip-till-next-match (STNM) [2] selection strat-
egy has been used [2, 3, 5, 11]. STNM ignores all events that do not match with the
pattern until the next matching event is read. As the following example reveals, STNM
distinguishes two types of noise: noise that is ignored and does not affect the detection
of matches, and noise that is ignored but blocks the detection of some matches.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 177–191, 2014.
© Springer International Publishing Switzerland 2014

178 B. Cadonna, J. Gamper, and M.H. Böhlen

Stocks
S P V T

e1 GOOG 615 100 9:32:344
e2 IBM 620 200 9:32:357
e3 GOOG 610 400 9:32:368
e4 GOOG 618 100 9:32:380
e5 GOOG 620 300 9:32:396
e6 GOOG 628 200 9:32:401
e7 GOOG 628 700 9:32:421
e8 GOOG 632 100 9:32:450
...

...
...

...
...

e71 GOOG 629 200 14:15:555
e72 GOOG 645 300 14:15:572
e73 MSFT 621 100 14:15:581
e74 GOOG 632 100 14:15:592
e75 GOOG 638 100 14:15:613
e76 GOOG 642 600 14:15:628
e77 GOOG 635 500 14:15:640

(a) Event Stream Stocks

Price

Time

e1

e2

e3

e4
e5

e6 e7

e8

(GOOG, 615, 100)

(IBM, 620, 200)

(GOOG, 610, 400)

(GOOG, 618, 100)

(GOOG, 620, 300)

(GOOG, 628, 200)

(GOOG, 628, 700)

(GOOG, 632, 100)

Price

Time

e71

e72

e73

e74

e75
e76

e77(GOOG, 629, 200)

(GOOG, 645, 300)

(MSFT, 621, 100)

(GOOG, 632, 100)
(GOOG, 638, 100)

(GOOG, 642, 600)

(GOOG, 635, 500)

(b) Stock Trades (Symbol, Price, Volume) and Two Matches for Q1

Fig. 1. Stock Trade Events

Consider the event stream Stocks in Fig. 1(a) that records stock trades (stock sym-
bol (S), price per stock (P), volume of the trade (V), and occurrence time (T)). For
instance, event e1 represents the trade of 100 Google stocks at a price of $615 at time
9:32:344. To analyze Google stock trades, consider the following pattern query Q1:
Within a period of 100 ms, find three or more Google (GOOG) stock trades with strictly
monotonic increasing prices, followed by one Google stock trade with volume larger
than each of the price-increasing trades. Figure 1(b) shows two matches for query Q1
plotted over time. Events are represented as circles and labeled with stock symbol, stock
price and trade volume; noise events are marked in gray. The first match consists of the
events e1, e4, e5, e6, and e7. Event e1 starts the match, e4, e5, e6 are subsequent events
with strictly increasing prices ($615 < $618 < $620 < $628), and e7 is the final event
that has a larger trade volume than e1, e4, e5, e6 (100 < 700, 100 < 700, 300 < 700,
200 < 700). The events e2, e3, and e8 are not part of the match since e2 is an IBM
stock trade, e3 has a lower price than e1, and e8 exceeds the 100 ms period. The second
match consists of e71, e74, e75, and e76. Events e72 and e73 are noise and therefore
ignored: though e72 has a higher price than e71, there are no other Google events that
continue this trend in order to complete the match; and e73 is a Microsoft stock trade.

STNM finds the first match, but misses the second since only the current partial
match is considered to decide whether an event is matched or ignored as noise. After
matching event e71, STNM reads and matches e72, since e72 is the next Google stock
trade with a price greater than e71. The Microsoft stock trade e73 is ignored as noise
as well as the subsequent Google stock trades, e74, e75, and e76, since none of them
continues the positive price trend of e71 and e72. If e72 were ignored, e74, e75, and
e76 would continue the positive trend, and the second match would be detected. STNM
implicitly distinguishes between two types of noise. Noise events e2, e3 and e73 are
ignored, and we would get exactly the same match if these events were not present in
the stream. In contrast, noise event e72 blocks the detection of the second match. If e72
were not present in the stream, the second match would be found. We call e72 blocking
noise. The result set detected with STNM depends on the presence of blocking noise.

Robust Skip-Till-Next-Match 179

In this paper, we propose a selection strategy, called robust skip-till-next-match
(RSTNM), that ignores noise events and does not allow them to block the detection
of matches, i.e., RSTNM is robust against any noise. With RSTNM, the result set does
not depend on noise. RSTNM considers all constraints in the pattern together with a
complete match to determine whether events participate in a match or are noise. It finds
all matches that are found with STNM plus those matches that are not found by STNM
due to blocking noise. The matches found with RSTNM are a subset of all possible
matches of the pattern in the stream, namely the matches that contain the events oc-
curring earliest after the start of the match. We argue that RSTNM is safer to use than
STNM because the presence of blocking noise in the stream cannot be foreseen. To
compute pattern queries using RSTNM, we propose an efficient backtracking mecha-
nism that can be integrated into automaton-based pattern matching algorithms. The key
idea of our solution is to identify blocking noise events and to avoid the blockage. To
summarize, the technical contributions are as follows:

– We formally define STNM and RSTNM and compare them.
– We present a backtracking mechanism that can be integrated into automaton-based

event pattern matching algorithms to support RSTNM.
– We experimentally show that the difference in the amount of matches between

STNM and RSTNM in real-world data can be substantial and that our backtracking
solution clearly outperforms two alternative solutions.

The rest of the paper is organized as follows. Section 2 discusses related work. In
Section 3, we define event pattern matching. In Section 4, we formally define RSTNM
and STNM. Section 5 presents the backtracking mechanism for automaton-based event
pattern matching algorithms. In Section 6 we report experimental results. Section 7
concludes the paper and points to future work.

2 Related Work

SASE+ [2] is an automaton-based event pattern matching algorithm. It introduces vari-
ous selection strategies including STNM. However, the selection strategies are defined
through the automaton-based evaluation model rather than in a formal declarative way.
Other event pattern matching approaches that find matches using STNM are sequenced
event set (SES) pattern matching [3], Cayuga [5], and the NEXT CEP system [11]. All
three approaches are based on automata.

T-REX [4] is a middleware for event pattern matching. It provides the selection strat-
egy first-within that finds the earliest matching event in a stream and can be in-
dividually applied to each event specified in the pattern. If first-within is applied
to all events specified in a pattern, T-REX, similar to RSTNM, treats all noise events
equally and ignores them. The presence of noise in the stream does not affect the de-
tection of a match. Though the set of matches found with T-REX overlaps with the
set of matches that comply with RSTNM, they are generally not equal. The reason for
the inequality is that T-REX, unlike other event pattern matching algorithms, specifies
matches starting from the latest event in the match, whereas RSTNM is defined for pat-
terns that specify matches starting from the earliest event in the match. The evaluation

180 B. Cadonna, J. Gamper, and M.H. Böhlen

of T-REX, which is based on automata, first computes a superset of the matches that
conform to first-within and then discards the non-compliant matches.

The Amit [1] middleware detects matches of patterns in a stream by evaluating a
combination of specialized operators. Similar to T-REX, it defines a selection strat-
egy first that can be individually applied to each event specified in the pattern. If
first is applied to all events in the sequence operator, Amit finds the matches that
comply with RSTNM. However, Amit does not support trends over unbounded num-
bers of events, such as the price trend in our example. Such trends represent a particular
challenge for event pattern matching with RSTNM as shown in Sect. 5.2.

ZStream [9], NEEL [8], and Event Analyzer [7] find all possible matches of a pat-
tern in a stream. ZStream is a cost-based query processor using join trees. NEEL is a
pattern matching engine for nested patterns with an automaton-based evaluation. Event
Analyzer is a data warehouse component to analyze event sequences.

DejaVu [6] and SQL-TS [10] find only contiguous matches, i.e., no noise events are
allowed between events in a match. DejaVu is based on automata. SQL-TS adopts a
solution based on the Knuth-Morris-Pratt string matching algorithm.

3 Background

In this section, we give a definition of event pattern matching that incorporates common
properties of existing event pattern matching algorithms.

An event is represented as a tuple with schema E = (A1, . . . , Ak, T), where T is a
temporal attribute that stores the occurrence time of an event. For T we assume a totally
ordered discrete time domain. An event stream, E, is a set of events with a total order
given by attribute T . A chronologically ordered sequence of events is represented as
�e = 〈e1, . . . , en〉, where e1 and en specify the first and the last event in �e, respectively.

Definition 1. (Pattern) A pattern, P , is a triple P = (〈B1, . . . , Bm〉, Θ, τ), where
〈B1, . . . , Bm〉 is a sequence of pairwise disjoint sets of variables v or v+, Θ =
{θ1, . . . , θk} is a set of constraints over variables in B1, . . . , Bm, and τ is a duration.

A variable, v, binds a sequence containing a single event, 〈e1〉. A quantified vari-
able, v+, binds a sequence of one or more events, 〈e1, . . . , en〉. Whenever it is clear
from the context, we use v to refer to both v and v+. Set Θ contains constraints over
variables that must be satisfied by matching events. Constraints have the form v.A φ C,
vi.Ak φ vj .Al, or prev(v.A) φ v.A, where v.A refers to an attribute of a matching
event, C is a constant, and φ ∈ {=, �=, <,≤, >,≥, } is a comparison operator. Finally,
τ is the maximal time span within which all matching events must occur.

Query Q1 is formulated as pattern P = (〈{s1}, {s2}, {s+3 }, {s4}〉, Θ, 100ms).
The sets, B1 = {s1}, B2 = {s2}, B4 = {s4}, contain one variable each, whereas
B3 = {s+3 } contains one quantified variable. The constraints over the variables are
Θ = {s1.S=’GOOG’, s2.S=’GOOG’, s3.S=’GOOG’, s4.S=’GOOG’, s1.P<s2.P ,
s2.P<s3.P , prev (s3.P)<s3.P , s1.V<s4.V , s2.V<s4.V , s3.V<s4.V }. Each of the
variables s1, s2, and s4 binds a single Google stock trade, and s3 binds one or more
Google stock trades. The constraints over attribute P force the price to increase, and the
constraints over V specify that the trade volume of an event that matches s4 is larger
than the trade volume of all other matched events. The maximal time span is 100 ms.

Robust Skip-Till-Next-Match 181

To define the matching of a pattern P over an event stream E, we use a substitution
γ = {v1/�e1, . . . , vn/�en}. Each pair vi/�ei represents a binding of a variable vi to a se-
quence �ei = 〈ei1 , . . . , eik〉, |�ei| > 0, of events in E. A substitution contains exactly one
binding for each variable in P , and an event can appear in at most one of the bindings.
Substitution γ satisfies a constraint of the form vi.AφC, if each event e ∈ �ei from bind-
ing vi/�ei satisfies e.A φC. Similarly, γ satisfies a constraint of the form vi.Ai φ vj .Aj ,
if each pair of events, (ei, ej), with ei ∈ �ei and ej ∈ �ej from vi/�ei and vj/�ej satisfies
ei.Ai φ ej.Aj . Finally, γ satisfies a constraint of the form prev (vi.A) φ vi.A, if each
pair of consecutive events, (ei, ei+1), with ei ∈ �ei and ei+1 ∈ �ei from vi/�ei satisfies
ei.A φ ei+1.A or |�ei| < 2.

Definition 2. (Match) Let P = (〈B1, . . . , Bm〉, Θ, τ) be a pattern and E be an event
stream. A substitution γ = {v1/�e1, . . . , vk/�ek} is a match of P in E iff

∀θ ∈ Θ (γ satisfies θ), (1)

∀vi/
ei, vj/
ej ∈ γ (vi ∈ Bi ∧ vj ∈ Bi+1→ ein .T <ej1 .T), (2)

∀vi/
ei, vj/
ej ∈ γ (|ei1 .T − ejn .T | ≤ τ). (3)

Condition 1 requires a match to satisfy all constraints in Θ. Condition 2 ensures that
all events in a match that are bound to a variable in Bi must occur before all events
that are bound to any variable in Bi+1. No order is imposed on events that are bound to
variables in the same set. Condition 3 constrains all events in a match to occur within
duration τ .

Figure 2(a) illustrates a match of pattern P in stream Stocks. The variables s1, s2,
and s4 bind a single event each, whereas s3 binds two events. All conditions of Def. 2
are satisfied. Condition 1: events e1, e4, e5, e6, and e7 are Google stock trades, e.g.,
e1.S = ’GOOG’; the price of e1 is less than the price of e4, i.e., e1.P < e4.P ; the price
of e4 is less than each of the prices of e5 and e6; the price of e5 is less than the price of
e6, i.e., prev (e5.P) < e6.P ; the volumes of e1, e4, e5, and e6 are less than the volume
of e7, e.g., e1.V < e7.V . Condition 2: event e1 that matches s1 occurs before e4 that
matches s2, e4 occurs before e5 and e6 that match s+3 , and e5 and e6 occur before e7
that matches s4. Condition 3: the time span between e1 (first event) and e7 (last event) is
less than 100 ms. The complete list of all possible matches for P is shown in Fig. 2(b).

Stocks = 〈 e1, e2, e3, e4, e5, e6, e7, . . . 〉

P = (〈 {s1}, {s2}, {s+3 } {s4} 〉, Θ, 100ms)

γ = { s1 /〈e1〉, s2 /〈e4〉, s3 /〈e5, e6〉, s4 /〈e7〉 }

77 ms ≤ 100ms

(a) Match for Query Q1

{s1/〈e1〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉} �, †
{s1/〈e1〉, s2/〈e4〉, s3/〈e5〉, s4/〈e7〉}
{s1/〈e1〉, s2/〈e4〉, s3/〈e6〉, s4/〈e7〉}
{s1/〈e3〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉} �, †
{s1/〈e3〉, s2/〈e4〉, s3/〈e5〉, s4/〈e7〉}
{s1/〈e3〉, s2/〈e4〉, s3/〈e6〉, s4/〈e7〉}
{s1/〈e4〉, s2/〈e5〉, s3/〈e6〉, s4/〈e7〉} �, †
{s1/〈e71〉, s2/〈e74〉, s3/〈e75〉, s4/〈e76〉} �
{s1/〈e71〉, s2/〈e74〉, s3/〈e75〉, s4/〈e77〉}

(b) All possible matches for Query Q1

Fig. 2. Examples of Matches for Query Q1

182 B. Cadonna, J. Gamper, and M.H. Böhlen

4 Robust Skip-Till-Next-Match

In this section, we introduce RSTNM and compare it to STNM. To facilitate the discus-
sion, we first introduce a few auxiliary concepts.

Consider a pattern P = (〈B1, . . . , Bm〉, Θ, τ). A prefix of a pattern P is a pattern
P̂ = (〈B̂1, . . . , B̂k〉, Θ̂, τ), k ≤ m, where B̂j = Bj for all j < k, B̂k ⊆ Bk with B̂k �=
∅, and Θ̂ is the set of constraints in Θ that only involve variables from B̂1 ∪ · · · ∪ B̂k.
For example, pattern P = (〈{s1}, {s2}, {s+3 }, {s4}〉, Θ, 100ms) has four prefixes:
(〈{s1}〉, Θ̂1, 100ms), (〈{s1}, {s2}〉, Θ̂2, 100ms), (〈{s1}, {s2}, {s+3 }〉, Θ̂3, 100ms),
(〈{s1}, {s2}, {s+3 }, {s4}〉, Θ, 100ms), where Θ̂1 = {s1.S=’GOOG’}, Θ̂2 =

Θ̂1 ∪ {s2.S=’GOOG’, s1.P<s2.P}, Θ̂3 = Θ̂2 ∪ {s3.S=’GOOG’, s2.P<s3.P ,
prev(s3.P)<s3.P}.

Next, consider a match γ = {v1/�e1, . . . , vk/�ek} that satisfies P and binds events
〈e1, . . . , ei, . . . ,en〉. A prefix of a match γ is a set of bindings γ̂ = {v1/�̂e1, . . . , vl/�̂el},
l ≤ k, that binds events 〈e1, . . . , ei〉, and where �̂ej ⊆ �ej for all j ≤ l with �̂ej �= ∅. For
example, match γ = {s1/〈e71〉, s2/〈e74〉, s3/〈e75〉, s4/〈e76〉} has the following pre-
fixes: {s1/〈e71〉}, {s1/〈e71〉, s2/〈e74〉}, {s1/〈e71〉, s2/〈e74〉, s3/〈e75〉}, {s1/〈e71〉,
s2/〈e74〉, s3/〈e75〉, s4/〈e76〉}.

The union of two sets of bindings is denoted with the symbol " and has the following
semantics: {vi/�ei, vj/�ej} " {vi/�el, vk/�ek} = {vi/〈�ei ∪ �el〉, vj/�ej , vk/�ek}.

Definition 3. (Skip-till-next-match [2]) Let P = (〈B1, . . . , Bm〉, Θ, τ) be a pattern, E
be an event stream, γ be a match of P in E that binds events 〈e1, . . . , ei, ei+1, . . . , en〉.
Furthermore, let γ̂ be a prefix of γ that binds events 〈e1, . . . , ei〉, γp be a match of a
prefix of P in E, and v/〈e〉 be a binding. A match γ complies with the skip-till-next-
match selection strategy iff

� γp, γ̂, v/〈e〉 (γp = γ̂ � {v/〈e〉} ∧ ei.T < e.T < ei+1.T).

Definition 3 implies two conditions that must hold for a match to comply with
STNM. First, since a prefix of a match is also a match γp of a prefix of P , no match
exists that shares a prefix γ̂ with γ and that has an earlier chronologically next event
after prefix γ̂ than γ. This condition ensures that γ contains the earliest events after the
start of the match. Second, since a match γp of a prefix of P is not necessarily a prefix
of a match, no event e exists that: (1) does not participate in any match that shares a
prefix γ̂ with γ, (2) occurs after a prefix γ̂ in γ but before the chronologically next event
in γ, and (3) satisfies together with prefix γ̂ the prefix of P . This condition ensures that
no blocking noise occurs between events in γ. From a procedural point of view, STNM
specifies to skip events in E until the next event is found that along with the events
bound so far matches a prefix of P .

Consider the match γ = {s1/〈e1〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉} that binds the
events 〈e1, e4, e5, e6, e7〉. The only prefix of γ that can be extended with an event oc-
curring after the prefix and before the chronologically next event is γ̂ = {s1/〈e1〉}.
However, neither the binding s2/〈e2〉 nor s2/〈e3〉 extends γ̂ in order to become a match
γp of any prefix of example pattern P (i.e., P̂ = (〈{s1}, {s2}〉, Θ̂, 100ms)). Thus,
γ complies with STNM. In contrast, the match γ = {s1/〈e71〉, s2/〈e74〉, s3/〈e75〉,

Robust Skip-Till-Next-Match 183

s4/〈e76〉} does not comply with STNM, because e72 is blocking noise. Event e72 does
not participate in any match with prefix {s1/〈e71〉}, it occurs between e71 and e74, and
γp = {s1/〈e71〉, s2/〈e72〉}, satisfies the prefix (〈{s1}, {s2}〉, Θ̂2, 100ms) of P . If e72
were not present in the stream, match γ would be found. In Fig. 2(b), the matches that
comply with STNM are marked with †.

Definition 4. (Robust Skip-till-next-match) Let P = (〈B1, . . . , Bm〉, Θ, τ) be a
pattern, E be an event stream, γ be a match of P in E that binds events
〈e1, . . . , ei, ei+1, . . . , en〉. Furthermore, let γ̂ be a prefix of γ that binds events
〈e1, . . . , ei〉, γ̂m be a prefix of a match of P in E, and v/〈e〉 be a binding. A match
γ complies with the robust skip-till-next-match selection strategy iff

� γ̂m, γ̂, v/〈e〉 (γ̂m = γ̂ � {v/〈e〉} ∧ ei.T < e.T < ei+1.T).

A match complies with RSTNM if no match exists in E that shares a prefix γ̂ with
γ and that has an earlier chronologically next event after prefix γ̂ than γ. In contrast to
STNM, a match γ already complies with RSTNM if it contains the earliest events after
the start of the match. Noise events cannot block the detection of γ. From a procedural
point of view, RSTNM specifies to skip events in E until the next event is found which
satisfies P along with the events matched so far and the events that will be matched to
complete the match.

For instance, the match γ1 = {s1/〈e71〉, s2/〈e74〉, s3/〈e75〉, s4/〈e76〉} complies
with RSTNM since the prefix γ̂ = {s1/〈e71〉} extended by s2/〈e72〉 or s2/〈e73〉 does
not yield any prefix γ̂m of any match in Fig. 2(b). Other extensions of prefixes of γ1
are not possible. In contrast, the match γ2 = {s1/〈e71〉, s2/〈e74〉, s3/〈e75〉, s4/〈e77〉}
does not comply with RSTNM, because the prefix γ̂ = {s1/〈e71〉, s2/〈e74〉, s3/〈e75〉}
can be extended by s4/〈e76〉, resulting in the match γ1, which is a prefix γ̂m of itself.
In Fig. 2(b), the matches that comply with RSTNM are marked with #.

RSTNM finds all matches found with STNM plus those that STNM does not detect
due to the occurrence of blocking noise in the stream. This follows from two facts. First,
a match γ that does not comply with RSTNM cannot comply with STNM, since if there
exists a match that shares a prefix with γ and contains an earlier chronologically next
event than γ the match disqualifies γ from complying with both, RSTNM and STNM.
Second, a match that does not comply with STNM may still comply with RSTNM since
the detection of matches that comply with RSTNM cannot be blocked by noise.

5 Automaton-Based Evaluation

In this section, we present an automaton-based solution for the evaluation of event pat-
tern matching with RSTNM. We begin with a basic automaton as used in automaton-
based event pattern matching algorithms that use STNM. Then we propose a back-
tracking mechanism that extends the basic automaton to find all matches complying
with RSTNM.

5.1 Basic Automaton

We define a nondeterministic finite state automaton enriched with a match buffer, β,
which collects the bindings during the execution of the automaton.

184 B. Cadonna, J. Gamper, and M.H. Böhlen

Definition 5. (Automaton) Let (〈B1, . . . , Bm〉, Θ, τ) be a pattern with variables {v1,
. . . , vk}. An automaton, N , is a five-tuple N = (Q,Δ, qs, qf , τ), where Q = {q1, . . . ,
qn}, qi ⊆ {v1, . . . , vk} is a finite set of states, Δ = {δ1, . . . , δl} is a finite set of
transitions δ = (q, v, Θδ), qs ∈ Q is the start state, qf ∈ Q is the accepting state, and
τ is a duration.

Each state is defined as the subset of the variables in P that have been matched so
far. A transition, δ = (q, v, Θδ), leads from a source state, q, to a target state, q ∪ {v},
if the input event satisfies the transition condition Θδ . The condition Θδ contains all
constraints from Θ that have the form v.A φ C or vi.Ai φ vj .Aj and involve only vari-
able v and variables in q. If a transition loops at a state q (i.e., v+ ∈ q), Θδ contains
also constraints of the form prev(v.A) φ v.A. If an input event satisfies the condition
of multiple transitions, nondeterminism occurs, and the automaton branches into mul-
tiple automata. If no transition conditions are satisfied, the input event is skipped. Each
transition adds a binding v/〈ei〉 of a variable to an input event to the match buffer β.
The execution of an automaton begins in the start state, qs = ∅. The accepting state,
qf , marks the acceptance of the bindings in β as a match. Duration τ is the maximal
duration of the time interval that can be spanned by the events in β.

Figure 3 shows the automaton for example pattern (〈{s1}, {s2}, {s+3 }, {s4}〉, Θ,
100ms) represented as a directed graph. Nodes represent states. Edges represent transi-
tions and are labeled with a variable and a transition condition. The start state is marked
with an incoming arrow, the accepting state is doubly circled. To facilitate reading,
states are labeled by the concatenation of the corresponding variables, e.g., the node
with label s1s2 represents state {s1, s2}. The duration τ of the automaton is 100ms.

∅ s1 s1s2
s1s2
s3

s1s2
s3s4

s1, Θ1 s2, Θ2 s3, Θ3 s4, Θ5

s3, Θ4 Θ1 = {s1.S = ’GOOG’}
Θ2 = {s2.S = ’GOOG’, s1.P < s2.P}
Θ3 = {s3.S = ’GOOG’, s2.P < s3.P}
Θ4 = {s3.S = ’GOOG’, prev(s3.P) < s3.P}
Θ5 = {s4.S=’GOOG’, s1.V<s4.V , s2.V<s4.V , s3.V<s4.V }

Fig. 3. Automaton for (〈{s1}, {s2}, {s+3 }, {s4}〉, Θ, 100ms)

The automaton in Fig. 3 misses matches that comply with RSTNM. Assume the
input events e71, . . . , e77 in Fig. 1. The automaton starts in state ∅, binds e71 to s1, and
changes to state {s1}. Then, e72 matches s2 since the price of the Google trade is greater
than in e71; the automaton changes to state {s1, s2}. None of the following events e73,
e74, e75, e76, and e77 satisfies Θ3, since e73 is not a Google trade and the other events do
not continue the upward trend of the price. The automaton expires without producing a
match. However, {s1/〈e71〉, s2/〈e74〉, s3/〈e75〉, s4/〈e76〉} complies with RSTNM. The
reason for the missed match is that s2 binds noise event e72 which indeed represents an
increase in the price with respect to the events matched so far. Only later on when the
next Google trades are read, it turns out that the partial match cannot be completed and
the match is blocked. If blocking noise e72 were skipped, the match would be found.

Robust Skip-Till-Next-Match 185

5.2 Automaton with Backtracking

In order to find all matches that comply with RSTNM, we extend the basic automaton
with a backtracking mechanism that identifies blocking noise and avoids the blockage
of a match. We start by introducing the match window that buffers incoming events.

Given an automaton N with duration τ , a match window is a maximal subsequence
of the stream E that starts at an event and includes all events that are within distance τ .
The match window starting at event ei is W = 〈e ∈ E | 0 ≤ e.T − ei.T ≤ τ〉. For
instance, for the automaton in Fig. 3 and the event stream Stocks, the match windows
starting at e1 and e2 are, respectively, W1 = 〈e1, e2, e3, e4, e5, e6, e7〉 and W2 = 〈e2,
e3, e4, e5, e6, e7, e8〉.

An automaton starts at the first event in the match window W . If it does not reach
the accepting state after reading all events in W , backtracking applies and the last tran-
sition is reverted. The automaton returns to the previous state and removes from the
match buffer β the event ei that has been bound by the reverted transition. Event ei is
skipped and the automaton resumes reading at event ei+1 in the match window. Hence,
backtracking reclassifies ei from matched to skipped.

To enable backtracking, the automaton needs to keep track of the transitions taken
and the events that triggered these transitions. We propose a so-called execution tree
to record transitions and positions in the match window. The tree stores dependencies
between different automaton instances that branched due to nondeterminism during the
execution. Such information allows to stop backtracking before producing matches that
do not comply with RSTNM.

Definition 6. (Execution Tree) Let N = (Q,Δ, qs, qf , τ) be an automaton and W be a
corresponding match window over an event stream. An execution tree, X , is a directed,
acyclic graph with nodes V and edges D, where each node has at most one incoming
edge. A node represents a pair (δ, c) with δ ∈ Δ, 1 ≤ c ≤ |W |. Special node (◦) is the
root of X . An edge is a pair (δi, ci) → (δj , cj) with (δi, ci), (δj , cj) ∈ V .

A node, (δ, c), in an execution tree records that the event at position c in the match
window W triggered transition δ. The direction of the edges represents the chronology
of the transitions taken. Hence, a path from the root to a leaf node in the execution tree
represents the sequence of transitions taken so far. If an event triggers multiple tran-
sitions (i.e., nondeterminism occurs), X branches into multiple nodes, called siblings.
Each match window has exactly one corresponding execution tree.

Figure 4(c) shows the execution tree for the automaton in Fig. 3 and the match
window W = 〈e71, e72, e73, e74, e75, e76, e77〉. The execution tree specifies that event
W [1] = e71 triggered transition δ1 = (∅, s1, Θ1), W [4] = e74 triggered δ2 =
({s1}, s2, Θ2), and W [5] = e75 triggered transition δ3 = ({s1, s2}, s3, Θ3). At
node (δ3, 5), the tree branches into sibling nodes (δ4, 6) and (δ5, 6), which is due
to event W [6] = e76 that triggered two transitions, δ4 = ({s1, s2, s3}, s3, Θ4) and
δ5 = ({s1, s2, s3}, s4, Θ5).

An automaton with backtracking executes as follows. For each match window, W ,
an execution tree X that contains only the root node ◦ is created. The automaton reads
the events in W one-by-one, starting at the head W [1]. If an input event e at position c
in W triggers a transition δ = (q, v, Θδ), a binding v/〈e〉 is added to match buffer β,

186 B. Cadonna, J. Gamper, and M.H. Böhlen

the automaton instance changes from state q to state q ∪ {v}, and a new leaf node (δ, c)
is added to X . The automaton instance keeps a pointer to the new leaf node. If e triggers
multiple transitions, nondeterminism arises. For each transition but one, an automaton
instance branches from the original automaton instance. Each instance takes a transition
and appends a leaf node to the execution tree X . Since X is shared among all instances,
the appended nodes, (δ1, c), . . . , (δn, c), are siblings with distinct transitions, δi �= δj ,
but equal position c. If e does not trigger any transition and the automaton is not in the
start state, it stays in its current state without updating β and X .

When all events in W are processed, automaton instances that reached the accepting
state contain a match in the match buffer β. The match is added to the result and the
instance terminates. For an automaton instance that is not in the accepting state, back-
tracking applies. First, transition δ = (q, v, Θδ) and position c is retrieved from the leaf
node of the execution tree X . Then the automaton instance steps back to state q and
removes event W [c] from the binding of variable v in β. The leaf node is removed from
X and the instance points to the parent of the removed node. Finally, the instance re-
sumes reading events at W [c+1]. If the instance does not lead to a match after reading
all events from W [c+ 1] to the end of W , backtracking applies again, etc.

Uncontrolled backtracking without an additional stop condition would lead to
matches that do not comply with RSTNM, as stated in the following lemma.

Lemma 1. An execution tree X leads to matches that comply with RSTNM iff for all
pairs of siblings, (δi, ci), (δj , cj), the following holds: ci = cj .

Proof. Assume that the positions ci and cj of two sibling nodes are different, and con-
sider two matches, where one corresponds to a path through node (δi, ci) and one to a
path through node (δj , cj). The two matches have a common prefix up to their parent
node. The subsequent events in the two matches (i.e., the events at position ci and cj ,
respectively) are different, and one event occurs before the other. Without loss of gener-
ality, assume that the event at ci occurs before the event at cj . The match with the event
at cj would not satisfy Def. 4 of RSTNM because it contains a prefix that, if extended
by the event at ci, is a prefix of the match through tree node (δi, ci).

According to Lemma 1, backtracking must be stopped when it reaches a leaf node,
(δi, ci), which has siblings. Backtracking at this point would replace (δi, ci) with
(δj , cj), where ci < cj (i.e., the event at position ci is skipped), and the siblings would
store different positions which contradicts the lemma. Hence, backtracking stops and
node (δi, ci) is removed from the tree. If backtracking reaches the last node of a set of
sibling nodes, backtracking is allowed, since all other sibling nodes have already been
removed and Lemma 1 is not violated. Another stop condition for backtracking is when
the child of the root node is reached. Further backtracking at this point would revert the
automaton into the start state and restart the execution at the second event of the match
window not considering all events in the stream within a time span of duration τ . To
summarize: if backtracking reaches a node in X with siblings or the child of the root
node, the automaton instance removes the node from the tree and terminates.

Robust Skip-Till-Next-Match 187

Figure 4 illustrates a few steps of executing the automaton in Fig. 3. Each step
shows the triggered transitions δi together with the transition graph, the current state
q, the match buffer β, and the execution tree X after the transition is taken. For in-
stance, in Fig. 4(a) the automaton instance is in state {s1}, and e72 triggers the tran-
sition ({s1}, s2, Θ2). The instance moves to state {s1, s2}, adds the binding s2/〈e72〉
to β, and appends node (δ2, 2) to node (δ1, 1) in X . In Fig. 4(b) backtracking ap-
plies, since the automaton instance is not in the accepting state after processing the last
event e77 in W . Node (δ2, 2) is removed from X , the binding s2/〈e72〉 is removed
from β, and the current state is reset to {s1}. The execution resumes at W [3] = e73.

Match Window W : 〈 e71 e72 e73 e74 e75 e76 e77 〉
1 2 3 4 5 6 7

Transition Automaton instance

δ2 = ({s1}, s2, Θ2) q

{s1, s2}
β

s1/〈e71〉
s2/〈e72〉

X

◦

δ1, 1

δ2, 2

(a) Match e72

q

{s1}
β

s1/〈e71〉
X

◦

δ1, 1

δ2, 2

(b) Reached end of W , no acceptance, backtracking applies

δ4 = ({s1, s2, s3},
s3, Θ4)

δ5 = ({s1, s2, s3},
s4, Θ5)

q

{s1, s2, s3}
β

s1/〈e71〉
s2/〈e74〉
s3/〈e75,

e76〉
q

{s1, s2, s3, s4}
β

s1/〈e71〉
s2/〈e74〉
s3/〈e75〉
s4/〈e76〉

X

◦

δ1, 1

δ2, 4

δ3, 5

δ4, 6 δ5, 6

(c) Match e76, nondeterminism

q

{s1, s2, s3, s4}
β

s1/〈e71〉
s2/〈e74〉
s3/〈e75〉
s4/〈e76〉

X

◦

δ1, 1

δ2, 4

δ3, 5

δ4, 6 δ5, 6

(d) Reached end of W , leaf node has sibling, backtracking stops

Fig. 4. Execution of Automaton in Fig. 3

In Fig. 4(c), e76 is read again
and triggers two transitions, i.e.,
nondeterminism arises. Two
automaton instances exist and
the execution tree branches. In
Fig. 4(d), e77 is read and W
reaches its end. The automaton
instance in state {s1, s2, s3, s4}
is accepted and produces match
{s1/〈e71〉, s2/〈e74〉, s3/〈e75〉,
s4/〈e76〉}, whereas the one in
state {s1, s2, s3} is not accepted.
Backtracking cannot be applied
to the automaton instance, since
the corresponding node (δ4, 6)
in the execution tree X has a
sibling. If backtracking were ap-
plied to the instance, node (δ4, 6)
would be replaced with (δ5, 7)
which contradicts Lemma 1. The
instance would reach the accept-
ing state with match {s1/〈e71〉,
s2/〈e74〉, s3/〈e75〉, s4/〈e77〉}
which does not conform to
RSTNM as explained in Def. 4.

6 Experiments

In this section, we report the
results of an empirical evalua-
tion using various event pattern
matching algorithms and real-
world data. The aim is to com-
pare STNM to RSTNM and to
show the advantages of our backtracking mechanism over alternative solutions.

188 B. Cadonna, J. Gamper, and M.H. Böhlen

Setup and Data. We implemented in C the automaton-based SES algorithm [3]
with and without backtracking as well as the join-tree-based ZStream algo-
rithm [9]. Since ZStream finds all possible matches, we added a post processing
step to eliminate matches that do not comply with RSTNM. Furthermore, we
used the Esper CEP system 4.9.0 (http://esper.codehaus.org) and
SASE+ (http://code.google.com/p/sase-umass), both implemented
in Java, as well as Cayuga (http://sourceforge.net/projects/cayuga) and T-REX
(http://www.inf.usi.ch/postdoc/margara), both implemented in C++.
The experiments were performed on a PC with eight Intel Core i7 processors with
3.4 GHz and 16 GB memory, on which a 64-bit Linux 3.2.0 is installed. Only Cayuga
run within Visual Studio 2010 on a 64-bit Windows 2008 R2 Terminal Server with
two Intel Core 2 processors with 2.9 GHz and 16 GB memory.

We use two different real-world data sets. The NYSE data set contains 1M share
trades in stock markets of 34 hours (http://www.nyxdata.com). The Onco data
set contains 341055 chemotherapy events from the Hospital of Meran-Merano.

We use different types of patterns. For the experiments with varying number of vari-
ables, we use patterns Pvars = (〈{v1}, {v2}, . . . , {vk}〉, Θ, τ), where the number of
variables varies from k = 3, . . . , 12. The duration is τ = 30ms with the NYSE data
and τ = 462 days with the Onco data. For the experiments with varying length of τ ,
we use patterns Pτ = (〈{v1}, . . . , {v8}〉, Θ, τ), where τ varies from 10–45 ms in steps
of 5 ms with the NYSE data and from 231–308 days in steps of 11 days with the Onco
data. The variables in both patterns specify events with a downwards trend in one at-
tribute (Google stock trade prices and white blood cell counts per patient, respectively).

0

20

40

60

80

100

3 4 5 6 7 8 9 101112

M
is

se
d

M
at

ch
es

 [%
]

of Variables

Onco
NYSE

(a) Varying # of Variables.

0

20

40

60

80

100

231
10

253
20

275
30

297
40

M
is

se
d

M
at

ch
es

 [%
]

τ [days|ms]

Onco
NYSE

(b) Varying Max. Duration.

Fig. 5. STNM vs. RSTNM

Skip-Till-Next-Match vs. Robust Skip-Till-Next-Match. The
goal of this experiment is to show whether the studied al-
gorithms use STNM or RSTNM and to compare these two
selection strategies. We use SASE+ and ZStream with post
processing as baseline for STNM and RSTNM, respectively.
SASE+ produces matches that comply with STNM by defi-
nition. ZStream with post processing selects the matches that
comply with RSTNM from the set of all possible matches.
SES without backtracking, Esper and Cayuga return exactly
the same matches as SASE+. Thus, they use STNM. SES
with backtracking yields exactly the same result as ZStream
with post processing. This confirms our claim that SES with
backtracking produces matches compliant with RSTNM.
Since the result of STNM is a subset of the result of RSTNM,
we analyze the difference between these two result sets in
terms of number of matches. The amount of missed matches with STNM due to block-
ing noise with respect to RSTNM (y-axis) can be substantial as shown by Figure 5.

SES + Backtracking vs. T-REX. We compare SES with backtracking (SES + bt), which
applies RSTNM, to T-REX with the first-within selection strategy applied to all
variables in the pattern. Though T-REX does not exactly produce matches complying
with RSTNM, it is the algorithm closest to RSTNM among all algorithms we analyzed.

http://esper.codehaus.org
http://code.google.com/p/sase-umass
http://www.inf.usi.ch/postdoc/margara
http://www.nyxdata.com

Robust Skip-Till-Next-Match 189

NYSE ONCO NYSE ONCO

0
2
4
6
8

10
12
14
16

3 4 5 6 7 8 9 10 11 12

R
un

tim
e

[s
]

of Variables

T-REX
SES+bt

0
5

10
15
20
25
30
35

3 4 5 6 7 8 9 10 11 12

R
un

tim
e

[s
]

of Variables

T-REX
SES+bt

0
2
4
6
8

10
12
14
16

10 20 30 40

R
un

tim
e

[s
]

τ [ms]

T-REX
SES+bt

0
2
4
6
8

10
12
14

231 253 275 297

R
un

tim
e

[s
]

τ [days]

T-REX
SES+bt

Fig. 6. SES + bt vs. T-REX, Depending on # of Variables and Max. Duration

T-REX differs from SES because it specifies matches starting from the last variable
in the pattern, whereas SES specifies matches starting from the first variable in the
pattern. Furthermore, T-REX requires a maximal duration for each pair of consecutively
matching events rather than a maximal duration for all matching events, as in SES. Due
to these differences, it is generally not possible to specify patterns with T-REX and SES
that produce identical result sets. To compare the runtime of the two algorithms, we
set the maximal duration between two consecutive matching events in T-REX to the
maximal duration τ of the pattern divided by the number of variables in the pattern. Of
all the settings we tried, this approximation led to the least runtimes for T-REX.

We execute SES with backtracking and T-REX using the patterns Pvars and Pτ on the
NYSE and the Onco data set and measure the average runtime over three runs. Figure 6
shows the results. The first observation is that SES with backtracking clearly outper-
forms T-REX for all patterns and data sets. For some patterns SES is by more than an
order of magnitude faster than T-REX. The reason is that T-REX first computes a super-
set of the result set and then selects compliant matches from it. The second observation
is that the runtime of SES with backtracking increases with the number of variables and
maximal time interval τ . The more variables in the pattern, the more backtracking steps
are computed. The larger τ , the more events need to be considered in the match win-
dow. The third observation is that the runtime for T-REX is constant for NYSE whereas
for Onco the runtime decreases with increasing number of variables k. With increasing
k the maximal duration between two consecutive matching events decreases. Partial
matches that exceed this maximal duration do not need to be further considered and are
discarded. This mechanism affects Onco more than NYSE because Onco contains much
less matches than NYSE with respect to the number of discarded partial matches. With
increasing maximal duration τ , the runtime of T-REX increases with Onco because the
maximal duration between consecutive matching events increases.

SES + Backtracking vs. ZStream + Post Processing. We compare SES with backtrack-
ing (SES + bt) to ZStream with post processing (ZStream + pp). Both algorithms pro-
duce exactly the same result set. ZStream has shown to outperform automaton-based
algorithms at finding all possible matches of a pattern [9].

We execute both algorithms with the patterns Pvars and Pτ on the NYSE and the
Onco data set and measure the average runtime over three runs. Figure 7 shows the
results. The first observation is that, again, SES with backtracking clearly outperforms
ZStream with post processing in all experiments. The difference in performance is sig-
nificant with NYSE, with up to one order of magnitude when varying the number of
variables and more than two orders of magnitude when varying the maximum duration.

190 B. Cadonna, J. Gamper, and M.H. Böhlen

The reason is that ZStream first computes all possible matches, which is followed by
a post processing step. In contrast, in SES with backtracking the first match found in
the match window is the correct one; no redundant matches are computed. The second
observation is that with NYSE the runtimes of both algorithms differ much more than
with Onco. While SES with backtracking has runtimes of the same magnitude for both
data sets, ZStream needs to find and post process many (in the worst case more than
5000 times) more matches with NYSE than with Onco.

NYSE ONCO NYSE ONCO

0

20

40

60

80

100

120

3 4 5 6 7 8 9 101112

R
un

tim
e

[s
]

of Variables

ZStream+pp
SES+bt

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

3 4 5 6 7 8 9 101112

R
un

tim
e

[s
]

of Variables

ZStream+pp
SES+bt

0
100
200
300
400
500
600
700

10 20 30 40

R
un

tim
e

[s
]

τ [ms]

ZStream+pp
SES+bt

0.0

0.4

0.8

1.2

1.6

2.0

231 253 275 297

R
un

tim
e

[s
]

τ [days]

ZStream+pp
SES+bt

Fig. 7. SES + bt vs. ZStream + pp, Depending on # of Variables and Max. Duration

7 Conclusion

In this paper, we proposed the robust skip-till-next-match selection strategy for event
pattern matching. In contrast to the skip-till-next-match selection strategy, robust skip-
till-next-match does not allow noise events to block the detection of matches. Robust
skip-till-next-match is robust against noise in the event stream. To achieve this, all con-
straints in the pattern together with a complete match are considered during the match-
ing process. We proposed a backtracking mechanism that extends automaton-based
event pattern matching to find all matches complying with robust skip-till-next-match.
We conducted extensive experiments using real-world data to show the effectiveness of
our approach. The results show that the amount of matches not detected due to blocking
noise using skip-till-next-match can be quite substantial with respect to robust skip-till-
next-match. In terms of runtime, our approach outperforms alternative solutions. Future
work will mainly concentrate on the study of runtime optimizations for the backtracking
mechanism.

References

1. Adi, A., Etzion, O.: Amit - the situation manager. The VLDB Journal 13(2), 177–203 (2004)
2. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event

streams. In: SIGMOD, pp. 147–160 (2008)
3. Cadonna, B., Gamper, J., Böhlen, M.H.: Sequenced event set pattern matching. In: EDBT,

pp. 33–44 (2011)
4. Cugola, G., Margara, A.: Complex event processing with T-REX. J. Syst. Softw. 85(8),

1709–1728 (2012)
5. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive pub-

lish/Subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896,
pp. 627–644. Springer, Heidelberg (2006)

Robust Skip-Till-Next-Match 191

6. Dindar, N., Güç, B., Lau, P., Ozal, A., Soner, M., Tatbul, N.: Dejavu: declarative pattern
matching over live and archived streams of events. In: SIGMOD, pp. 1023–1026 (2009)

7. Harada, L., Hotta, Y.: Order checking in a CPOE using event analyzer. In: CIKM,
pp. 549–555 (2005)

8. Liu, M., Rundensteiner, E., Dougherty, D., Gupta, C., Wang, S., Ari, I., Mehta, A.: High-
performance nested cep query processing over event streams. In: ICDE, pp. 123–134 (2011)

9. Mei, Y., Madden, S.: Zstream: A cost-based query processor for adaptively detecting com-
posite events. In: SIGMOD, pp. 193–206 (2009)

10. Sadri, R., Zaniolo, C., Zarkesh, A., Adibi, J.: Expressing and optimizing sequence queries in
database systems. ACM Trans. Database Syst. 29(2), 282–318 (2004)

11. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event processing
with query rewriting. In: DEBS, pp. 4:1–4:12 (2009)

12. Zemke, F., Witkowski, A., Cherniak, M., Colby, L.: Pattern matching in sequences of rows.
Tech. rep. (2007)

CARDAP: A Scalable Energy-Efficient Context

Aware Distributed Mobile Data Analytics
Platform for the Fog

Prem Prakash Jayaraman1, João Bártolo Gomes2, Hai Long Nguyen2,
Zahraa Said Abdallah1, Shonali Krishnaswamy2, and Arkady Zaslavsky1,�

1 CSIRO Computational Informatics, Canberra, Australia
{prem.jayaraman,arkady.zaslavsky}@csiro.au

2 Institute for Infocomm Research (I2R), A*STAR, Singapore
{bartologjp,nguyenhl,spkrishna}@i2r.a-star.edu.sg

3 Monash University, Melbourne, Australia
zahraa.said.abdallah@monash.edu

Abstract. Distributed online data analytics has attracted significant
research interest in recent years with the advent of Fog and Cloud comput-
ing. The popularity of novel distributed applications such as crowdsourc-
ing and crowdsensing have fostered the need for scalable energy-efficient
platforms that can enable distributed data analytics. In this paper, we
propose CARDAP, a (C)ontext (A)ware (R)eal-time (D)ata (A)nalytics
(P)latform. CARDAP is a generic, flexible and extensible, component-
based platform that can be deployed in complex distributed mobile analyt-
ics applications e.g. sensing activity of citizens in smart cities. CARDAP
incorporates a number of energy efficient data delivery strategies using
real-time mobile data stream mining for data reduction and thus less data
transmission. Extensive experimental evaluations indicate the CARDAP
platform can deliver significant benefits in energy efficiency over naive ap-
proaches. Lessons learnt and future work conclude the paper.

1 Introduction

Big Data analytics in the Fog has created tremendous opportunities to gain
new and exciting value from big data. Fog computing or briefly Fog is a term
recently embraced by Cisco Systems [4]. Fog computing extends Cloud Comput-
ing paradigm to the edge of the network. A recent vision paper from Intel [1],
clearly highlights the value of the data that resides in the Fog and the need for
distributed data analytics and techniques that can work in the Fog (closer to the
source of data), where some of the biggest big data is generated. Further, this
approach is also considered as an alternative to alleviate the current big data
challenge of processing massive amounts of data in remote Cloud environments.

Fig. 1 presents the big picture of big data in the Fog. The intelligent systems
and sensors (Internet of Things), smart city infrastructure, mobile smart phones

� Prof. Zaslavsky is a visiting Professor at StPetersburg National Research University
of IT, Mechanics and Optics, Russia.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 192–206, 2014.
c© Springer International Publishing Switzerland 2014

CARDAP 193

Fig. 1. Smart Devices and Human Entities in the Fog stream data to Cloud

etc., coupled with information from humans are some of the largest volume
of streaming complex big data. The data sources as shown in the figure are
heterogeneous and distributed. The ubiquitous connectivity available in the Fog
(e.g. 2G, 3G, 4G, Internet, Network, WiFi etc) has created new opportunities
that can take advantage of these massive data storehouses.

One of the key arguments driving the notion of Fog computing is the emerg-
ing wave of Internet deployments, most notably the Internet of Things (IoT)
[4]. Although the definition of ”Things” has evolved with rapid advancements
in technologies, the key notion of enabling ”Things” to sense without human
intervention has remained the same. IoT is a major generator of live sensor
data. The International Data Corporation estimates an installed based of 220
billion ”things” by 2020 [2] coupled by the ever increasing growth in mobile
smart phone devices. The smart mobile devices can sense the environment and
situation around human entities. The enormous increase in data (in petabytes)
[1] being generated by the smart devices render the need to move data analytics
close to where the data resides/originates. To achieve this, the compute and stor-
age capabilities must be moved to the Fog. To achieve the goal of a distributed
analytics infrastructure between the Fog and the Cloud needs addressing of a set
of unique challenges including: 1) Smart devices in the Fog need to have a plat-
form to run local analytics in a cost-efficient manner (e.g. energy, visualisation,
resources and data transmission); 2) Analytics are very domain dependent e.g.
pre-processing of noisy data is different for each domain and 3) Not all applica-
tion require data in real-time as instant insights are not required. Hence, local
data storage and retrieval must be possible.

To this end, in this paper, we propose (C)ontext (A)ware (R)eal-time (D)ata
(A)nalytics (P)latform, a context aware distributed mobile data analytics plat-
form for the Fog. The key driving factor behind the development of CARDAP
is the ability to efficiently and effectively perform distributed data analytics in
Fog/Cloud environments. The proposed CARDAP framework is application do-
main analytics agnostic i.e. a generic platform that can be extended to suit any
application analytics requirement. The CARDAP platform breaks monolithic ap-
plication silos that are in most cases very difficult and expensive to extend/adapt.

194 P.P. Jayaraman et al.

This is achieved by separating the data from application analytics (application
logic). CARDAP follows a component based software development model en-
abling dynamic integration of application-specific analytics. The CARDAP plat-
form reduces the efforts required to develop applications that need distributed
mobile analytics. CARDAP addresses the previously identified challenges by pro-
viding a unique way for smart devices in the Fog to perform data analytics with
features such as component based analytics integration, local storage, query and
task processing. We envision the CARDAP approach as a novel way to address
the big data challenge by moving analytics closer to the source of data. The
following are the key contribution of this paper.

– We propose CARDAP, a context aware distributed mobile data analytics
platform. CARDAP enabled efficient data analytics in the Fog by providing
a standardised component oriented approach to incorporate the required
application-specific analytics. CARDAP also addresses the need for local
storage and query processing for application that does not require instant
insights.

– We propose a cost model for distributed data analytics in Fog/Cloud envi-
ronments.

– We conduct experimental evaluations using CARDAP platform to evaluate
three distributed data analytics strategies.

The rest of the paper is organised as follows. Section 3 presents the recent work
in the area of mobile distributed data analytics platforms for the Fog. Section
2 presents the motivations behind the proposed CARDAP approach. Section 4
provides in-depth details on the proposed CARDAP platform architecture. Sec-
tion 5 presents a cost model for mobile distributed data analytics. Section 6
provides implementation details of the CARDAP platform followed by discus-
sions on experimental evaluations. Section 7 concludes the paper with remarks
on future work.

2 Motivation

A typical example of a IoT big data application in the Fog is a mobile crowdsens-
ing application in smart cities. Mobile crowdsensing popularly called community
sensing [9,15] is an autonomous collaborative sensing approach that requires
minimal user involvement (e.g. continuous processing of noise level around users’
location). Mobile crowdsensing applications takes advantage of a population of
individuals to measure large-scale phenomenon that cannot be measured using
single individual. In most cases, the population of individuals participating in
crowdsensing applications share a common goal.

Let us consider an example scenario monitoring citizen activity in a smart
city. This example scenario is depicted in Fig. 2. The aim of such an application
in a smart city environment is to determine the activity of users in an outdoor
park (as highlighted by the red polygon in the Fig. 2). The key requirements
to satisfy this scenario includes 1) ability to perform a task on demand, in this

CARDAP 195

Fig. 2. Scenario: Monitoring Citizen Activity in Smart Cities

example capturing data within a given location from users who are involved in
some activity; 2) ability to perform local data analytics, in this example activity
recognition on-the-fly [11,10]; 3) ability to store analysed data locally in the Fog
that can be queried later by the Cloud (for applications that does not require
instantaneous insights) and 4) use an energy-efficient strategy for continuous
monitoring and data upload to the Cloud. This scenario can be extended to may
such typical smart city example such as monitoring air pollution by mounting
sensing component on buses, cars and trams.

As identified by the motivating scenario, there is a need for an efficient mobile
data analytics platform that can satisfy the aforementioned requirements to
facilitate easy development of IoT applications in the Fog. CSIRO and I2R carry
out industry-focussed research and the proposed CARDAP platform has the
potential to form the basis for social networking and smart grid applications
which have become very popular and have clear commercial advantage.

3 Related Work

Nowadays, with the advent of technology, mobile devices have significantly sens-
ing abilities, computing power, communication and storage resources. They are
commonly equipped with various sensors, such as GPS, accelerometer, micro-
phone and camera. Consequently, mobile crowd-sensing (MCS), which analyses
crowd behaviour by monitoring large-scale environmental information generated
from individual devices, has emerged as a important research topic. Several MCS
applications have been successfully developed to discover individual and commu-
nity trends, such as transportation activities in urban spaces [22], traffic moni-
toring [23], and collaborative searching [19].

In MCS, mobile devices continuously sense information about the environ-
ment and upload the sensed data to the Cloud/remote servers. These processes
are obviously energy expensive and may cause battery drain in some cases. More-
over, the raw data generated by physical sensors is usually huge (big data) and
can not be used directly as application inputs. Usually, mobile devices need to

196 P.P. Jayaraman et al.

pre-process the data, perform primitive local processing and only upload inter-
mediate results to the backend servers for further analytics. This approach not
only helps to reduce energy and network bandwidth consumption, but also avoid
overwhelming of raw data at the backend. Therefore, distributed mobile analyt-
ics play an important role to the success of many crowd-sensing applications. A
taxonomy of distributed mobile data analytics approaches is presented [21].

In distributed data analytics, a key challenge is to design scalable, ease-to-use
frameworks that supports to perform local analytics (mobile device) and global
analytics (server) effectively [6]. Mobile devices with limited resources can per-
form local analytics, such as, converting raw sensed data into application consum-
able data (e.g. analog-to-digital converter), remove noise, aggregate/summarise
sensed data from many sensors and perform light-weight mining tasks [8]. Mean-
while, the aim of global analytics is to discover overall patterns of the environ-
ment. Furthermore, the system should understand common information needs
of similar procedures in an application or different applications in the same do-
mains to avoid duplicate efforts. Another challenge in distributed data analytics
is to understand contexts for proper problem-solving in the right circumstances.
For example, mobile devices are configured to upload processed data with 3G
connection and raw sensed data with wifi connection. Or, in order to save band-
width usage, mobile devices only update new data when there are significant
changes in the sensed data.

In literature, there are several efforts ondesigning scalable frameworks for crowd-
sensing applications, including high-level abstraction for sensing information [20],
task description [16], and a component-based design for quick sensing application
deployments [12]. Ye et al. proposed MECA [20] (Mobile Edge Capture and Ana-
lytics)middle-ware for crowd-sensing.The framework has three logical layers: data,
edge, andphenomena/application.After receivingphenomenon specifications from
applications,MECA configures edge nodes and devices for corresponding rawdata
collection and edge analytics processing. Thereby, users focus on implementing
their applications’ logic without concern with device interaction.

Ravindranath et al. [16] introduced CITA, a system that eases the develop-
ment and running of tasking applications on smart phones. End users create task
by writing only on server-side code in form of “condition/action” rules. CITA
automatically partitions the code, deals with device coordination, and efficiently
executes code on the devices. The framework is currently under developing with
their own activity context-aware applications and has not been published yet.

Recently, Jayaraman et al. [12] proposed component-based platform for op-
portunistic sensing applications, named MOSDEN. In this approach, each smart-
phone occupies a MOSDEN instance in order to run applications with minimal
user interaction. Sensors communicate with MOSDEN platform via the concept
of plug-in; thereby, a new sensor can be easily added or removed from the sys-
tem at running time. A conceptual description of the plugin is in XML format.
MOSDEN provides a true zero programming middleware, where users do not
need to write program code and supports both push and pull data streaming
mechanisms.

CARDAP 197

Context-aware in mobile crowd-sensing has recently attracted a lot of research
work. By understanding the context, mobile devices are not simply data collec-
tors, but they can act dynamically according its sensed data and users’ needs.
Thereby, context-aware crowd-sensing applications can provide more elegant and
meaningful solutions, for example, minimise user intervention and optimise the
consumption of resources of mobile devices.

The OPPORTUNITY project has been developed to build a ready-to-use
middleware and prototypical implementation for evaluating and testing for ap-
plications on opportunistic human activity and context recognition [17]. Some
preliminary results have been reported, such as, signal conditioning and feature
abstraction, autonomous evowhich can lution and adaptation. Carresra et al. [5]
proposed an adaptive sampling algorithm for user localisation. The key idea is to
trade off the accuracy of the location estimation with the battery consumption
by varying the type the localisation methods. The application switch to GPS
localisation when there is uncertainty on the user location due to the coarse of
network localisation.

Sherchan et al. [18] developed Context-Aware Real-time Open Mobile Miner
(CAROMM) to facilitate data collection from mobile users for crowdsensing ap-
plications. CAROMM aims to reduce energy and bandwidth consumption related
to continuous sensing and uploading in crowd-sensing applications. Cooperating
with resource-aware clustering, CAROMM send only analysed information from
each device when it identifies significant changes in the situation. This approach
not only reduces the frequency and amount of transferred data, but also guaran-
tee that no important information will be lost. Based on CAROMM framework,
Jayaraman et al. [13] later demonstrated another context-aware crowd-sensing
application that collect sensory data and activity data from a large number of
mobile users. It classifies places into different types of contexts as lively, busy
and quiet based on light levels, noise levels, crowd intensity, and user activity
levels. The application is able to provide real-time reasoning about different
situations/ambience of the locations.

4 CARDAP – Distributed Mobile Data Analytics
Platform

In this section, we present the system architecture of CARDAP. The proposed
CARDAP system is an outcome of our previous works namely Context-aware
open mobile miner (CAROMM) [18] and Mobile Sensor Data Engine (MOSDEN)
[12]. We first present a big picture view of the proposed CARDAP concept. We
then present architectural details of the CARDAP system.

4.1 A Model for Distributed Mobile Data Analytics

As mentioned in Section 3, a key challenge facing distributed data analytics is
to design scalable, ease-to-use frameworks that supports local analytics (mobile
device) and global analytics (server) effectively. The focus of this paper is on the

198 P.P. Jayaraman et al.

local analytics area in the Fog. But to provide a big picture, we first present our
model for a distributed mobile data analytics system. The big picture illustrated
in Fig. 3 captures our vision. In our model, the smart devices in the Fog can
include any Internet connected device such as individual to group of smart mo-
bile devices capturing situational context information from the user and his/her
environment, micro-sized processing platforms (e.g. raspberry pi mounted on
buses).

We model a request from users/other smart devices/data agencies as a set of
tasks ta1,ta2 ... tan. Each task tai where 1 < i < n has an associated deadline dl1,
dl2, ... dln. Each task is also associated with a set of minimum capabilities (Cta

min)
c1,c2 ... cm that is required to accomplish the task. Examples of capability include
specific sensor requirements, data analytic model requirements, etc. sd1,sd2 ...
sdk represents the set of mobile smart devices that are in the Fog. Each mobile
smart device sdj where 1 < j < k also has the set of associated capabilities Csd.
At any given time t, a mobile smart device can perform a task tai if and only if
task minimum capability Cta

min ⊆ mobile device capabilities Csd.
We note, this paper focuses on CARDAP’s architecture and experimental

evaluations validating its energy-efficiency. The task assignment functionality of
the scheduler as depicted Fig 3 based on capabilities and deadlines is outside
the scope of this paper.

4.2 System Architecture

As stated earlier, the CARDAP architecture is developed from our previous
works namely CAROMM and MOSDEN. CAROMM is a context-aware open
mobile miner platform that is underpinned by continuous mobile data stream

Fig. 3. Distributed Mobile Data Analytics - Big Picture

CARDAP 199

Fig. 4. CARDAP - System Architecture

mining. The mobile data stream mining is used to determine change in con-
textual information being monitored thus reducing the amount of data being
transmitted to the Cloud from the mobile device. The MOSDEN platform is
a generic mobile crowdsensing application development platform that breaks
the tight coupling between data and application specific processing. MOSDEN
framework enables local storage of sensed data. The limitation of CAROMM
was its inability to store and query data on-demand and separate analytics and
sensing. The limitation of MOSDEN was unavailability of smart processing tech-
niques to reduce bandwidth usage (i.e. data upload). CARDAP was developed to
address these limitation of the respective systems. The architecture of CARDAP
is presented in Fig. 4.

The five key components of the CARDAP architecture is the data stream
capture component, the analytics component, the open mobile miner component,
the data sink component and the storage and query processor component.

Data Stream Capture Component : The data stream capture component of CAR-
DAP uses a component-based approach namely plugins and virtual sensors to
interface with data sources. The data sources could range from on-board sen-
sors for mobile devices to externally sensors in-case of systems like raspberry pi.
The plugin and virtual sensors together enable integration of heterogeneous data
sources to the CARDAP platform. The virtual sensor is an abstract representa-
tion of a physical/logical sensors in the CARDAP system.

Analytics Component : The analytics component feature allows developers and
users to implement application-specific data analytics algorithms. CARDAP, in-
corporates an mobile activity recognition algorithm namely StreamAR [3]. The
StreamAR algorithm is a personalised and adaptive framework for activity recog-
nition that incrementally learns from evolving data stream. The developed frame-
work deals with high speed, multi-dimensional streaming data to learn, model,
recognise personalised user’s activities. StreamAR system is divided into four
phases. A supervised learning phase, where a learning model is built from a set
of examples that describe the data domain. An unsupervised learning phase, that
employs windowing technique on data stream in order to break down the unla-
belled data. A recognition phase handled by an ensemble prediction technique
based on a hybrid similarity measures algorithm and finally an incremental and

200 P.P. Jayaraman et al.

continuous learning phase where the learning model is refined and updated in
real time to reflect recent changes.

Open Mobile Miner : The open mobile miner component is the outcome of our
CAROMM platform [18]. The CAROMM platform incorporates a data analysis
and clustering engine. The engine employs the Light Weight Clustering algorithm
[7]. The LWC algorithm uses data adaptation techniques to match high-speed
data streams and achieves optimum accuracy based on available resources. CAR-
OMM incorporates a change detect techniques that employs the LWC algorithm
to continually monitor significant change in data. This approach has been effec-
tively used by CAROMM for efficient data reduction (reduce number of data
transmission) while maintaining a high level of data accuracy [18].

Data Sink Component : The data sink component depicted as Sink in Fig. 4
allows application to push data to any external sink. For e.g. push data to a
publish/subscribe bus. This feature is an extension to MOSDEN as MOSDEN
only allows local storage and querying of data. Combining the open mobile miner
component and the sink, data reduction while transmitting data to a Cloud
server can be achieved. The CARDAP platform incorporates sink functionality
to upload data to Amazon Web Service (AWS)1.

Storage and Query Component : The storage and query components of CAR-
DAP perform the functions of storing processed data locally that can be later
queried using a RESTful API over HTTP. This feature of CARDAP allows the
platform to work independent of a global coordinator (scheduler) thus allowing
autonomous task execution. On demand, the global scheduler can perform selec-
tive querying of captured and processed data. The query manager uses SQL to
resolve incoming requests. The CARDAP platform supports both push and pull
approaches to query data from the smart device.

The key feature of the CARDAP platform is its ability to facilitate devel-
opment of new distributed data analytics applications by wiring the required
components using XML configuration files.

5 Cost Model for Mobile Distributed Data Analytics

In this section, we develop cost models for the different distributed mobile data
analytic approaches possible in the CARDAP . The cost models proposed for
the different data collection approaches are:

5.1 Data Transmission Cost Model

The cost of data transmission from n devices to m servers for a considered time
period t. The data transmission cost for each device i is defined:

Costdti = totaldata(bytes) (1)

1 http://aws.amazon.com/

http://aws.amazon.com/

CARDAP 201

When multiple devices are considered the cost becomes:

Costdtn∗m =

n∑
i=1

Costdti ∗ m (2)

Let us define the cost of sending all the raw data to the server(s) as
Raw.Costdtn∗m and the strategy k (for data collection) data transmission cost
as Sk.Costdtn∗m. We calculate the bandwidth gain Gaindt

Sk
of a strategy k in

relation to the full raw data sending strategy as:

Gaindt
Sk

=
Raw.Costdtn∗m
Sk.Costdtn∗m

(3)

5.2 Energy Usage Cost Model

The cost of performing data analytics on the local device, in terms of resource
consumption (e.g., energy). The energy drainage (%) on the battery of a single
device for a time period t is modelled by Costeu. This value can be assessed for
the different strategies used in CARDAP and can be decomposed into Costeus
that is the impact that sensing plays on the drain, Costeupr that is the energy cost
of processing the data and the energy cost of transferring the data Costeudt .

Costeu = Costeus + Costeupr + Costeudt (4)

The Costeus = freqs∗α can be described as a function of the sensing frequency
freqs, where α is a constant for each device. The Costeupr = CPU%∗β component
can be described as a function of the CPU% usage and β is another constant
defined for each device. The Costeudt of transferring the data is a function of
the number of (bytes) that need to be transferred. For each different strategy
k each of the components of the energy usage cost model will be different. For
the particular strategy of sending all the raw data Raw.Costeu the Costeupr ≈ 0,
the Costeudt is the maximum possible value and the Costeupr takes the value of β
since it represents the minimum CPU processing value. We evaluate the energy
gain Gaineu

Sk
of a strategy k Sk.Costeu in relation to the full raw data sending

strategy Raw.Costeu as:

Gaineu
Sk

=
Raw.Costeu

Sk.Costeu
(5)

6 Implementation and Evaluation of CARDAP

6.1 Implementation

In this section, we present implementation details and experimental evaluation
outcomes of CARDAP platform. For proof-of-concept implementation purposes,
we consider a mobile crowdsensing scenario as described in the motivation sec-
tion (Section 2). The CARDAP platform has been developed for the Android 2

2 http://www.android.com/

http://www.android.com/

202 P.P. Jayaraman et al.

platform using the Android SDK v4.2.2. For experimentation, we used a Google
Nexus 7 tablet (CPU: Quad-core 1.2 GHz Cortex-A9, Memory: 1GB). We imple-
mented interface to sensors as discoverable plugins using the Android interface
definition language (AIDL)3. This allows CARDAP platform to independently
discover interfaces to on-board and external sensors.

The activity recognition engine namely StreamAR was implemented as a data
analytics component on CARDAP. To test activity recognition, we wired the
accelerometer sensor plugin with the StreamAR component. For experimentation
purposes, we used accelerometer dataset from the WISDM lab work on activity
recognition [14]. The dataset has 1.1 million data points with activities including
walking, jogging, sitting, standing etc.

The LWC algorithm implemented as a part of the CAROMM [18] component
in CARDAP detects significant changes in streaming data continuously. Since
the activity recognition is state based i.e. either walking or sitting, for evalua-
tion purposes, we use the on-board light sensor to detect significant change in
environmental light.

6.2 Evaluation

We evaluate and validate CARDAP’s resource and energy efficient performance
against the following typical distributed mobile data analytics strategies:

– Naive approach(baseline/raw data upload). All data is collected and sent to
the Cloud for further processing (mobile does data collection based on a
given time window)

– Local Analytics (LA): Smart mobile device does local analytics and stores
data locally which can be queried on demand. For experimentation, we in-
corporate mobile activity recognition as the local analytics.

– Local Analytics + Smart data reduction + On-demand sensing (LA-DR-OS):
Smart mobile device does local analytics, stores data locally and sends data
when significant change in the processed data is detected and a pre-defined
condition for upload is satisfied. E.g. Record the profile of users who are
running within a given location from 5 PM to 8 PM and upload data only
when significant change in light value is detected.

We note, the LA and the LA-DR-OS strategies are native features of the
proposed CARDAP platform. Depending on application requirements, either of
these strategies can be employed for a distributed mobile data analytics appli-
cation like crowdsensing. The experimental evaluations also validate the per-
formance gain achieved by employing the proposed CARDAP-based strategies
namely Local Analytics - LA and Local Analytics + Smart data reduction +
On-demand sensing - LA-DR-OS.

The resource consumption experiment compute the amount of memory and
CPU consumed by the CARDAP platform when working under each of the

3 http://developer.android.com/guide/components/aidl.html

http://developer.android.com/guide/components/aidl.html

CARDAP 203

aforementioned strategies. The memory consumption is measured in MB and
the CPU consumption in jiffy4. The energy consumed by each strategy is com-
puted in milli Watts(mW). To compute the energy and resource consumption, we
implemented a modified version of the PowerTutor5 open source android power
monitoring application.

The results of the experimental evaluations are presented in Fig. 5a, 5b, 6a
and 6b. We compute the gain for strategies LA and LA-DR-OS over the naive
approach using equation (5). An experimental round consisted of replaying the
WISDM dataset for each strategy and computing the average CPU, memory
and power consumed by CARDAP platform for a time period of 1 hour. The
sampling rate for activity recognition was 1 every minute. This resulted in 60
data uploads when experimenting CARDAP using the naive approach.

Fig. 5a and Fig. 5b presents the memory consumption of the CARDAP plat-
form when evaluated under each strategy. It is to be noted that the memory
and CPU allocation is controlled by Android operating system. Depending on
the process workload, android may allocate more memory and CPU cores to
maintain system stability. The CPU consumption of LA-DR-OS is lesser than
LA as observed in Fig. 5a. Whereas, the memory consumption is vice-versa i.e.
LA approach is lesser than LA-DR-OS as noted in Fig 5b. As stated earlier,
since memory and CPU allocation is managed by android, the higher memory
consumption trend can be attributed to the overheads involved in managing
and maintaining the cluster i.e. continuous data stream clustering to monitor
significant change in data streams.

A similar trend is observed with the average power consumption experiment
presented in Fig. 6a. LA-DR-OS consumes more power when compared to LA ap-
proach due to the following factors 1) overhead to maintain and manage clusters
and 2) network consumption due to upload of data when significant change in
data is detected and satisfies a pre-defined condition. As indicated by the exper-
imental outcomes, the CARADAP native approach namely LA and LA-DR-OS
performs significantly better than the baseline approach of uploading raw data.
This observation is supported by the energy gain outcome presented in Fig.6b.

Overall, experimental evaluations clearly validate the resource and energy ef-
ficiency of the proposed CARDAP platform irrespective of the strategy. Further,
CARDAP’s native approaches perform significantly better than the baseline ap-
proach making CARDAP strategies an efficient and effective technique to realise
the development of energy and resource-efficient distributed mobile data analyt-
ics applications (e.g. crowdsensing). The proposed CARDAP platform is the first
step in the development of a complete distributed mobile data analytics platform
as presented in our big picture in Fig. 3.

4 In computing, a jiffy is the duration of one tick of the system timer interrupt. It is
not an absolute time interval unit, since its duration depends on the clock interrupt
frequency of the particular hardware platform.

5 http://powertutor.org/

http://powertutor.org/

204 P.P. Jayaraman et al.

(a) CPU (b) Memory

Fig. 5. Average CPU and Memory Consumption

(a) Power (b) Computed Gain

Fig. 6. Power Consumption and Gain

7 Conclusion

In this paper we have presented CARDAP, a context aware real-time data an-
alytics platform for the Fog. CARDAP is a generic, flexible and extensible,
component-based platform capable to deploy complex distributed mobile ana-
lytics applications such as on-demand distributed mobile crowdsensing. In addi-
tion, we discussed different real-world scenarios where using CARDAP can be
significantly beneficial. CARDAP incorporates a number of energy efficient data
delivery strategies employing real-time mobile data stream mining for data re-
duction. Our experimental evaluations indicate that the CARDAP platform can
deliver significant benefits in terms of CPU, memory and energy efficiency over
baseline approaches. In our future work, we aim to investigate the Cloud part
of the proposed distributed data analytics model developing cost-efficient task
scheduling and smart device selection approaches.

Acknowledgement. Part of this work has been carried out in the scope of the
ICT OpenIoT Project which is co-funded by the European Commission under
seventh framework program, contract number FP7-ICT-2011-7-287305-OpenIoT.
The authors acknowledge help and support from CSIRO Sensors and Sensor
Networks Transformational Capability Platform (SSN TCP).

CARDAP 205

References

1. Vision paper - distributed data mining and big data (August 2012)

2. The internet of things is poised to change everything, says idc (October 03, 2013)

3. Abdallah, Z., Gaber, M., Srinivasan, B., Krishnaswamy, S.: Streamar: Incremental
and active learning with evolving sensory data for activity recognition. In: 2012
IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI),
vol. 1, pp. 1163–1170 (November 2012)

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: em Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012)

5. Carreras, I., Miorandi, D., Tamilin, A., Ssebaggala, E.R., Conci, N.: Crowd-sensing:
Why context matters. In: 2013 IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PERCOM Workshops), pp. 368–371.
IEEE (2013)

6. Gaber, M.M., Gama, J., Krishnaswamy, S., Gomes, J.B., Stahl, F.: Data stream
mining in ubiquitous environments: state-of-the-art and current directions. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4(2), 116–138
(2014)

7. Gaber, M.M., Krishnaswamy, S., Zaslavsky, A.: Cost-efficient mining techniques for
data streams. In: Proceedings of the Second Workshop on Australasian Information
Security, Data Mining and Web Intelligence, and Software Internationalisation,
ACSW Frontiers 2004, vol. 32, pp. 109–114. Australian Computer Society, Inc.,
Darlinghurst (2004)

8. Gaber, M.M., Stahl, F., Gomes, J.B.: Pocket Data Mining: Big Data on Small
Devices, vol. 2. Springer (2014)

9. K., R., Ye, F., Ganti, H.L.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Communications Magazine 49(11), 32–39 (2011)

10. Gomes, J.B., Krishnaswamy, S., Gaber, M.M., Sousa, P.A., Menasalvas, E.: Mars: a
personalised mobile activity recognition system. In: 2012 IEEE 13th International
Conference on Mobile Data Management (MDM), pp. 316–319. IEEE (2012)

11. Gomes, J.B., Krishnaswamy, S., Gaber, M.M., Sousa, P.A.C., Menasalvas, E.: Mo-
bile activity recognition using ubiquitous data stream mining. In: Cuzzocrea, A.,
Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 130–141. Springer, Heidelberg
(2012)

12. Jayaraman, P.P., Perera, C., Georgakopoulos, D., Zaslavsky, A.: Efficient oppor-
tunistic sensing using mobile collaborative platform mosden. In: 2013 9th Interna-
tional Conference Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing (Collaboratecom), pp. 77–86 (October 2013)

13. Jayaraman, P.P., Sinha, A., Sherchan, W., Krishnaswamy, S., Zaslavsky, A.,
Haghighi, P.D., Loke, S., Do, M.T.: Here-n-now: A framework for context-aware
mobile crowdsensing. In: Proc. of the Tenth International Conference on Pervasive
Computing (2012)

14. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

15. Le, V.-D., Scholten, H., Havinga, P.: Towards opportunistic data dissemination in
mobile phone sensor networks. In: Eleventh International Conference on Networks,
ICN 2012, pp. 139–146. International Academy, Research and Industry Association
(IARIA), France (2012)

206 P.P. Jayaraman et al.

16. Ravindranath, L., Thiagarajan, A., Balakrishnan, H., Madden, S.: Code in the
air: simplifying sensing and coordination tasks on smartphones. In: Proceedings of
the Twelfth Workshop on Mobile Computing Systems & Applications, p. 4. ACM
(2012)

17. Roggen, D., Forster, K., Calatroni, A., Holleczek, T., Fang, Y., Troster, G., Lukow-
icz, P., Pirkl, G., Bannach, D., Kunze, K.: Opportunity: Towards opportunistic
activity and context recognition systems. In: IEEE International Symposium on
World of Wireless, Mobile and Multimedia Networks & Workshops, WoWMoM
2009, pp. 1–6. IEEE (2009)

18. Sherchan, W., Jayaraman, P., Krishnaswamy, S., Zaslavsky, A., Loke, S., Sinha,
A.: Using on-the-move mining for mobile crowdsensing. In: 2012 IEEE 13th In-
ternational Conference on Mobile Data Management (MDM), pp. 115–124 (July
2012)

19. Yan, T., Kumar, V., Ganesan, D.: Crowdsearch: exploiting crowds for accurate
real-time image search on mobile phones. In: Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services, pp. 77–90. ACM (2010)

20. Ye, F., Ganti, R., Dimaghani, R., Grueneberg, K., Calo, S.: Meca: mobile edge
capture and analysis middleware for social sensing applications. In: Proceedings of
the 21st International Conference Companion on World Wide Web, pp. 699–702.
ACM (2012)

21. Zaslavsky, A., Jayaraman, P.P., Krishnaswamy, S.: Sharelikescrowd: Mobile analyt-
ics for participatory sensing and crowd-sourcing applications. In: 2013 IEEE 29th
International Conference on Data Engineering Workshops (ICDEW), pp. 128–135.
IEEE (2013)

22. Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel
sequences from gps trajectories. In: Proceedings of the 18th International Confer-
ence on World Wide Web, pp. 791–800. ACM (2009)

23. Zhou, P., Zheng, Y., Li, M.: How long to wait?: predicting bus arrival time with
mobile phone based participatory sensing. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, pp. 379–392. ACM
(2012)

Representing Internal Varying Characteristics

of Moving Objects

Ahmed Ibrahim1, Ulanbek Turdukulov2, and Menno-Jan Kraak1

1 Faculty of Geoinformation Science and Earth Observation (ITC),
University of Twente, The Netherlands

2 Western Australian School of Mines, Curtin University, Australia

Abstract. Recent data acquisition tools have resulted in huge amounts
of data that have spatial and temporal components. The movement rep-
resents an important category of such data. Some phenomena may have
attributes that vary continuously over space, such as wildfires and storms.
Nevertheless, for simplification purpose, most applications represent such
phenomena as objects by neglecting their internal continuous structure.
Moreover, little consideration has been given to such characteristics in
moving objects database. At this end, this paper presents a data model
for managing raster data and internal heterogenous attributes in moving
objects. The data model utilizes the abstract data types. We add two
abstractions (moving raster, and combined type) to describe the change
of the raster data and internal varying characteristics of the moving ob-
jects along with specific operations that permit to analyse them. Query
examples are provided to demonstrate the application of these opera-
tions.

Keywords: Spatiotemporal data model, moving objects, internal vary-
ing characteristics, moving objects databases.

1 Introduction

Recent data acquisition tools have resulted in huge amounts of data that have
spatial and temporal components. The movement represents an important cate-
gory of such data. Moving objects can be human, animals, cars, and maybe also
hurricanes, wildfire, or storm. Movement data are collected as discrete recordings
of position and timestamp. In some applications, these moving objects may need
to be coupled with other continuous dynamic phenomena such as temperature
and wind; for example, bird movement might be influenced by temperature, or
car movement can be affected by wind. Moreover, some moving objects could
be inhomogeneous; they might have internally varying characteristics concep-
tualized as a field. These fields are usually represented as rasters that change
over time, such as storms, wildfires, and hurricanes [1]. These values are usually
clipped from a larger raster coverages. For example, the wind speed continu-
ously varies within the wind storm extent and this variation changes during
the movement and is clipped from larger raster coverage representing the wind

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 207–218, 2014.
c© Springer International Publishing Switzerland 2014

208 A. Ibrahim, U. Turdukulov, and M.-J. Kraak

speed. Nevertheless, for simplification purpose, most applications represent such
phenomena movement as objects by neglecting their continuous characteristics.
Gaining insight into these complex phenomena requires answers to queries that
include the object movement and the raster representation. Consequently, there
is a need to represent the movement of objects, the dynamics of raster data, as
well as the internal structure of the moving objects.

Today, moving objects databases provides a comprehensive framework using a
set of data types and operations to handle the continuous movement. The term
moving in this technology does not only refer to the position change, but to
the change in general. This database technology allows the user to model, store,
retrieve, and query the objects change over time. Two main spatial abstractions,
moving point and moving region, are used to represent the change of the location
and shape/extent, respectively. They can represent the changes of homogenous
attributes. However, this technology does not provide the enough support for
either the raster representations or the internal heterogeneity of the moving
objects. Therefore, it is needed to add new abstractions to provide such support.

This work focuses on the design and implementation of such abstractions in
moving object database. The proposed model utilizes the abstract data types,
adopted the sliced representation defined by Forlizzi et al. [2], and developed
in PostGIS. First, we present a general moving data type to represent different
types of temporal data. Our moving data types are based on observations with
evolution function to describe the movement to the next observation. The spatial
observations store a geometry or raster to represent the location/shape of an
object or a continuous field. Second, we provide two data types: Moving Raster
(or mraster in short) to model the change in raster data, then combined type
(or CType in short) to represent the internal structure of moving objects. CType
combines a moving geometry and moving raster by referencing them. The moving
geometry defines the temporal and spatial extent of the moving object and the
reference to the moving raster defines the internal structure of the objects within
that extent. Finally, we extend the existing query language with new operations
that are necessary in managing the new data types.

The remainder of this paper is organized as follows: in the Section 2, we
provide the fundamentals of phenomena representation and the need to represent
the internal structure of the moving objects. Section 3 summarizes the related
work. Section 4 describes the proposed data model. It presents the new moving
data types and some operations and demonstrates their use by expressing some
query examples. Finally, we present our conclusions and guidelines for future
work.

2 Phenomena Representation

Humans perceive the geographic phenomena in two main conceptual views either
as object-based (discrete objects that occupy the real world) or field-based (con-
tinuously varying fields) [1, 3–5]. Field-based model conceptualizes the space
as a set of locations related to each other and a set of attributes where each

Representing Internal Varying Characteristics of Moving Objects 209

location is mapped to a value for each attribute [6]. Field-based model is used
to describe the continuous variation across the space such as elevation, and tem-
perature. This model is usually represented in tessalation or raster form. Object
model conceptualizes the real world as a set of discrete entities called objects as
schools, towns, cities, seas, or etc., with a set of attributes including the location
are associated with each object such as for building, building name, number of
people, owner. The objects are represented in vector form as point, line, and
polygon. Perceiving the phenomena as either object-based or field-based is not
sufficient to represent some phenomena such as wildfire and hurricane. These
phenomena contain object-like and field-like characteristics and called complex
phenomena[5] or multi-representations phenomena [7], or evolving moving ob-
jects [1]. These phenomena need to integrate both of object-based and field-based
view into one model.

Goodchild et al. [1] defined three dimensions to describe the object changes
that occur over time: movement, geometry, and internal structure. Each dimen-
sion differentiates between static and dynamic object behaviours. Movement
dimension represents the object location and distinguishes between stationary
and moving objects. Geometry represents the object shape and distinguishes be-
tween the rigid and elastic objects. Internal structure distinguishes between the
uniform and evolving objects. Evolving objects describe the objects with internal
heterogeneity. In other words, they have attributes that varies from one location
to another within the spatial extent. According to these dimensions, two types
of evolving moving objects can be distinguished: (1) Evolving Moving Rigid and
(2) Evolving Moving Elastic. They have conceived as discrete objects that move,
but also have internal variables within their spatial extent, which changes over
time too (Fig. 1). For example, storm moves and its shape and severity changes
over time. It can be represented as a moving object to define its boundary, but
this representation does not describe the wind speed change along the storm
lifetime. Given such objects, it is easy to realize the need to design a database

Fig. 1. Moving object with internal characteristics

210 A. Ibrahim, U. Turdukulov, and M.-J. Kraak

model combining their continuous movement and varying internal structure. We
consider the following motivating queries to illustrate this need throughout the
paper:

– Query1: What are the regions with the maximum wind speed within a given
storm?

– Query2: When did the maximum, minimum wind speed of a given storm
enter/leave a given city?

– Query3: What is the minimum and maximum wind speed of a given storm
within a given city?

– Query4: What is the maximum wind speed during each car movement within
a given storm?

While the abstractions defined in moving objects databases are capable of rep-
resenting the geometry movement, they are not suitable for the above queries.
Indeed, the wind speed is represented in raster that associates a value to each
location within the spatial extent of the storm and are part of a larger region
of interest. Therefore, besides the representation of moving geometries, we need
to represent the dynamics in raster data within moving object database tech-
nology. Then the integration of both representations to reflect the relationship
between the internal structure and movement. This can be done by extending
the existing model with new data types and operations for the continuous data.

3 Related Work

Different spatiotemporal data models have been proposed to represent the
continuous characteristics of the objects. Three-domain model [8] consists of
semantics, time, and space domains to represent the spatio-temporality of wild-
fire. Yuan [9] presented the logical structure for this model as semantic objects,
temporal objects, spatial objects, and domain links as relational tables. EDGIS
[10] abstracts the real world as set of atoms that can be used to represent both
object-like and field-like characteristics of geographic phenomena. It uses the
space-time point (STP) data structure that is based on geo-atom primitives of
Goodchild et al. [1]. EDGIS represents the geographic phenomena in three con-
cepts: STPs, features, themes. STPs are used to represent both discrete and
continuous phenomena, along with their changes through time. Each STP is de-
fined as <x; Z; z(x)> where x is a vector that defines a point in space-time; Z
is a set of attributes or properties; and z(x) is the set of specific attribute values
at that point in space-time for the associated attribute Z.

Nowadays, Abstract Data Types (ADT) are a common way to represent the
spatial data in database management systems. Several database providers sup-
port spatial data types, such as Oracle, DB2, PostgreSQL, and Microsoft SQL
Server. They can be used to represent both vector data (such as point, line, and
polygon) and raster data (such as SDO.Raster in Oracle and WKTraster in Post-
GIS). Erwig et al. [11] and Güting et al. [12] proposed a data model for moving
objects that is able to define the continuous movement using a set of abstract

Representing Internal Varying Characteristics of Moving Objects 211

data types and a collection of operations. They introduced a type constructor
moving that transforms static types into moving types. The sliced representation
decomposes movement into a set of slices, where the movement within each slice
can be described by a simple function. A set of operations is defined on these
data types to manage the movement data. Using the temporal lifting process on
the operation of static types, these operations can be applied over the moving
data types. Since then, ADTs have received a growing attention for representing
the movement in databases. Kim and Kiyoki [13] presented a moving data type
to model the continuous fields of moving objects by decomposing the coverage
into geometric features and dealing with each part as moving geometry with
value.

4 Proposed Data Model

This paper focuses on the representation of evolving moving objects, i.e., moving
objects that have internal variables changing continuously over time. The aim is
to propose a data model to represent those objects. To this end, we introduce a
new data type (moving raster) to model raster data changing over time, then a
new data type to combine the movement and raster data. The idea is to apply
the movement concept of moving geometry for raster data. As a consequence,
we can provide the continuous movement (change) in field data. The proposed
model, developed in PostGIS, adopted the discrete model defined by Forlizzi et
al. [2] that decomposes movement into a finite set of units as a pair of a period
and a function that maps the time to a value. Indeed, the movement data are
usually collected as a set of observations at discrete times (t1, .., tn). Therefore,
the movement can be represented by storing the observations at each of these
times, together with an interpolation method to be used for the period [ti, ti+1].

We informally define an observation as the state of thematic or spatial at-
tribute of the phenomenon under study at a time. The observations can be
viewed from different perspectives, depending on the type of attributes under
interest. The observation can be thematic, geometric, or raster. The thematic
observations define the thematic (non spatial) attributes, where each can be
represented as base types such as a real, integer, bool, or string. Geometric ob-
servations are used to describe spatial attributes represented as point, line, or
polygon. The raster observations represent regular tessellation-based data, where
each value is represented as a raster. For example, the raster observations can
represent the wind speed variation, whereas in the car movement, the geometric
observations represent the positions of the car and base observations represent
the number of occupants.

Definition 1. An observation is a pair of value (V) and instant (T).

Observation := { (V, T) | V ∈ Base ∪ Geometry ∪ Raster ∧ T ∈ Instant }

Where V represents the state of the attribute and T is the observation time.
Base types and Instant are mapped into the corresponding data types defined

212 A. Ibrahim, U. Turdukulov, and M.-J. Kraak

in Postgres. Geometry, Raster are mapped into the corresponding data types
defined in PostGIS. We consider that the observation is a unified unit to represent
movement.

Definition 2. A moving type is an ordered collection (n) of observations with
an evolution function (F) to describe the change over the observation to the
next observation.

Moving := { ([O] , F) |O ∈ Observation ∧
F ∈ {LINEAR,CONSTANT,NEARESTNEIGHBOR},

i. (Oi.T < Oi+1.T) ∧
ii. (n ≥ 2) }

The first condition does not allow the temporal overlay. The second condition
ensures that at least two known observations exist in the moving type. Three
evolution functions are available: Linear, Constant, and NearestNeighbor. Differ-
ent moving types can be defined based on the observation type, where the type
is described by its modifier. The evolution function and the spatial reference
identifier (SRID) can be given by the modifier of the moving data type.

4.1 Raster and Movement

mraster models the evolution of regular tessellation-based data. We define
mraster as an ordered collection of raster observations with an evolution func-
tion. This function describes the change from the value of each pixel in an ob-
servation to the value of the corresponding pixel in the consequent observation.
This means that we can retrieve the raster coverage at any instant in the tempo-
ral extent of mraster by estimating the value of each pixel within the coverage at
this time using the evolution function. In this work, we assume that the coverage
width, height, and pixel size do not change over the time.

Three modes are available for representing the change in a raster coverage
using this abstraction: two observations per row (whole table describes change
in one raster coverage), all observations within one row (one row represents the
whole change of this raster coverage), or hybrid (set of observations per row).
Each mode has its advantages and disadvantages, and the selection of mode is
based on different criteria, particularly the raster size, lifetime, and computer
memory. The third mode is selected in the current prototype.

Several operations are needed to manipulate the moving raster. Those include
the extension of static raster operations supported by PostGIS, such as Resam-
pling and Union. The new versions apply the procedure to every observation in
the moving raster. In addition, we defined a set of new operations to: (1) deal
with temporal data, such as ST TemporalAggregate to compute a temporal raster
at a given granularity; (2) deal with integration with moving geometries, such
as ST Integrate to aggregate the raster cells that intersect the moving geome-
tries; (3) restrict the raster data to specific parameters such as ST AtMax and
ST AtMin; and (4) summarize the pixel values, such as ST Max and ST Min.

Representing Internal Varying Characteristics of Moving Objects 213

4.2 Representation of Evolving Moving Objects

Evolving moving objects combines two types of attributes: (1) discrete attributes
that describe the object-based characteristics such as position and spatial extent;
(2) continuous attributes describe the internal varying characteristics within
their spatial extent such as wind speed of the storm. However, the latter is not a
mere separated coverage. This may be the case for some phenomena, but more
often, these attributes are part of larger region of interest. The proposed ap-
proach uses the above desribed moving types to represent these both attributes.
The object-based attributes are represented as moving base and moving geome-
try. The main raster coverage is represented as moving raster in different table.
Consequently, a new moving data type CType is defined to store a reference to
the main moving raster table as an internal structure and moving geometry as
spatial extent. To formally define CType, we need to define two auxiliary types:

Definition 3. Let mrasterId be uniquely identified mraster defined as:

mrasterId := { (Id, mrast) | Id ∈ int ∧ mrast ∈ mraster }
Definition 4. let mrasterIdSet be a set of identified mraster defined as:

mrasterIdSet := { [mrastId] |mrastId ∈ mrasterId ,

(∀i �= j ⇒ mrastIdi �= mrastIdj)}
Definition 5. CType is a a pair of moving polygon and identified mraster set
as:

CType := { (mgeom, mrastset) | mgeom ∈ mpolygon ∧
mrastset ∈ mrasterIdSet, (mrasterset.mrast ∩ mgeom) }

The condition ensures that the moving raster spatiotemporaly intersect the mov-
ing geometry within CType. The continuous spatial component of this type is
identified using the references to the moving raster by spatiatemporal overlay
with the moving geometry data. Fig. 2 shows how CType is perceived and repre-
sented. CType attempts to represent the internal structure of a moving object.
Therefore, the operations on this type contain: movement operations and raster
operations. Movement operations presented in Lema et al. [14] are overloaded to
accept moving raster and CType as one of their inputs, such as diftime, at, atpe-
riod. In addition, some functions, defined for moving raster, are extended to deal
with the raster part referenced by this type, such as ST Integrate, ST ATMIN,
and ST ATMAX. The spatial part of those are implemented on the moving poly-
gon that represents the spatial extent within CType. In the next paragraphs, we
present the algorithm to return the snapshot of CType at a given time.

ST Snap. This operation maps the time to the raster part in CType. It returns
a raster type that represents the projection of the moving raster component at a
given time instant or null if it does not exist. This operation is done in three main

214 A. Ibrahim, U. Turdukulov, and M.-J. Kraak

Fig. 2. CType representation

steps: retrieve the spatial extent at a given time, spatially overlay the resulting
extent with the raster coverage; and compute the pixel values using the defined
evolution function. This operation first checks for the existence of the given time
during the temporal extent of the combined type. If true, it retrieves the spatial
extent using St AtInstant function of the moving geometry component within
CType. Then, it finds the observation index of the given time instant. If it is
equal to the observation time, it simply returns the result of a spatial overlay of
spatial extent with the raster data of this observation. If not, it creates an empty
raster with an initial value for the pixels that spatially overlay the spatial extent,
then it invokes another sub-algorithm to calculate the values at this time, based
on the evolution function defined for the moving raster component. The result
of this operation is a new raster with values for the pixels in the spatial extent
and nodata for others.

Algorithm: ST_Snap

Input: ctype: Combined Type, gt:Instant.

Output: raster at this time or null if unknown

Begin

If (gt is not between ctype.TemporalExtent) then

Return NULL;

//use the St_AtInstant function for moving geomtery to

get the spatial extent t this time.

Geom := St_AtInstant(ctype.Mgeomtery, gt)

//Get the Observation index

// to check if the index is equal to observation Instant

InstEqualInd := False

Index := GetInstantIndex(ctype, gt, InstEqualInd)

// if the given instant is equal to one of the

observations time, then Overlay with the observation

snapshot, and return the result

If (InstEqualInd) then

Representing Internal Varying Characteristics of Moving Objects 215

Begin

Temp_rast := ctype.Mraster.Observations[Index].Value

Return GetpixelOverlay(Temp_rast, Geom)

EndIf

// Get Empty raster with an initial value for pixels that

overlay the geometry and nodata for others.

Rast := IntialpixelOverlay(ctype.Mraster, Geom, 0)

//Interpolate to fill the value of the required pixels

Obs0 := ctype.mraster.observations[i-1]

Obs1 := ctype.mraster.observations[i]

Return raster_Interpolate(rast, Obs0, Obs1, gt,

ctype.mraster.Evolfunction)

End

Algorithm: raster_ Interpolate

Input: raster: Raster, Observation0: Raster_Observation,

Observation1: Raster_Observation, gt: Instant, efunc:

Evolution Function

Output: raster at this time or null if unknown

Begin

Tstart := Observation0.ts

Tend := Observation1.ts

Rast0 := Observation0.value

Rast1 := Observation1.value

//iterate for the pixel that have initial value and

compute the new value.

Foreach (IntializedPixel pixel in raster)

New_val := linear_interpolate (val(Rast0,pixel),

val(Rast1,pixel), Tstart, Tend, t)

Setvalue (raster , pixel, New_val);

Loop;

Return raster;

End

4.3 Query Samples

To demonstrate the capabilities of the data types defined above, we present
answers to a set of queries related to a storm movement analysis. These data
types are integrated in a DBMS data model and the operations are invoked
through SQL queries. We will present the query examples using a relational
schema with three tables, that contain geometry information on storms, cities,
and car trips, and one table stores information on wind as moving raster data
as follows:

216 A. Ibrahim, U. Turdukulov, and M.-J. Kraak

City: (CityID :Int, CityName:varchar, CityGeom: Geometry(Polygon))

Car_Trip: (TripID:Int, CarID:Int, OwnerID:Int,

Trip:Moving(Point,4236,Linear))

Wind: (RID:Int, Winddata: Moving(Raster,4236,Linear))

Storm: (StormID:Int, Geom: Moving(Point,4236, polygon),

Intensity: Ctype)

City relation contains a set of polygon geometries describing the territories of
several cities. Car Trip relation stores the cars movement within cities where Trip
attribute is a moving point representing the trajectory within the city. Wind re-
lation stores the change in the wind of over specific region and as moving moving
raster. Storm relation stores the storm events that pass the cities where Geom is
a moving polygon representing its shape and Intensity is a CType representing
the internal varying wind speed within the storm by referring to Wind relation.
The Intensity attribute has a moving polygon as Geom attribute to represent
the geometric component of CType.

– Query1: What are the regions with the maximum wind speed within a given
storm?

SELECT (ST_DumpAsPolygons (ST_ATMax (Intensity))).geom

AS Areas

FROM Storm

WHERE stormID=sid;

– Query2: When did the maximum wind speed of a given storm enter and
leave a given city?

SELECT ST_Deftime (WindInCity.MaxWind).TStart

AS Start Time, ST_Deftime (WindInCity.MaxWind).End

AS Leave Time

FROM

(SELECT ST_ATMax (ST_Clip (intensity, CityGeom)) AS

MaxWind FROM Storm, City WHERE StormID = id and

ST_Intersects (Intensity, CityGeometry)) AS WindInCity

– Query3: What is the maximum wind speed during each car movement within
storm id?

SELECT ST_Integrate(Intensity, Trip,Max)

FROM

FROM Storm, Car_Trip

WHERE StormID = id

– Query 4: What are the minimum and maximum wind speeds of storms that
pass a given city?

SELECT ST_Max(Intensity), ST_Min (Intensity),

FROM

FROM Storm, City

WHERE CityID = cid And ST_Passes(Intensity, CityGeom)

Representing Internal Varying Characteristics of Moving Objects 217

5 Conclusion and Future Work

Early works on moving objects databases have focused on the definition of
data models and query languages for dealing with objects where their geom-
etry change over time. However, those geomteries are usually related to other
geographic phenomena represented in raster form. In addition, some phenomena
have an internal varying structure that changes during the movement. These
objects such as storms, are often modelled as moving polygon, neglecting their
internal structure. The main focus of this work was to design and implement a
data model for representing the change in raster data of such moving objects.
The proposed data model is based on abstract data types and implemented on
the top of PostgreSQL DBMS and PostGIS.

The model follows the basic movement concepts used in sliced representations
and introduces new data types that allow representing the change in raster data
as well as the internal structure of moving objects. Observation is used to build
the moving types as a collection of observations and an evolution function. This
function describes the change to the next observation in the collection. The
value of raster observations is stored as Raster type defined by PostGIS. Moving
raster is defined as an ordered collection of raster observations with an evolution
function to describe the change of pixel values to the next observation. Several
operations are defined to manipulate the moving raster, dealing with temporal
data, integration with moving geometries, restricting the raster data to specific
parameters, and summarizing the pixel values.

CType is defined to represent the internal varying attributes in the moving
objects. It stores the references to the a set of moving raster records as the in-
ternal structure and moving geometry as the spatial extent. The temporal and
spatial data are identified using the moving geometries, and the raster data are
identified using the spatiotemporal overlay with the referenced moving rasters.
Several operations for this type need to deal with both its raster and movement
components. These operations are defined by overloading those of moving ge-
ometry and moving raster. Storing only the reference to moving raster records
creates some challenges related to the performance because they need to imple-
ment the overlay when this part is acquired. On the other hand, this eliminates
storing the raster data many times.

The future research will include the following three phases: (1) implement
an interactive tool for querying, mining and visualizing and this type of data;
(2) test the current data types with different case studies to meet the needs of
different query types; and (3) evaluate the performance of such data types, since
they are currently used for small raster datasets.

References

1. Goodchild, M.F., Yuan, M., Cova, T.J.: Towards a general theory of geographic
representation in GIS. International Journal of Geographical Information Sci-
ence 21(3), 239–260 (2007)

218 A. Ibrahim, U. Turdukulov, and M.-J. Kraak

2. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data model and data
structures for moving objects databases. SIGMOD Rec. 29(2), 319–330 (2000)

3. Cova, T.J., Goodchild, M.F.: Extending geographical representation to include
fields of spatial objects. International Journal of Geographical Information Sci-
ence 16(6), 509–532 (2002)

4. McIntosh, J., Yuan, M.: A framework to enhance semantic flexibility for analy-
sis of distributed phenomena. International Journal of Geographical Information
Science 19(10), 999–1018 (2005)

5. Yuan, M.: Representing Complex Geographic Phenomena in GIS. Cartography and
Geographic Information Science 28(2), 83–96 (2001)

6. Galton, A.: Space, Time, and the Representation of Geographical Reality.
Topoi 20(2), 173–187 (2001)

7. Galton, A.: Fields and Objects in Space, Time, and Space-time. Spatial Cognition
& Computation: An Interdisciplinary Journal 4(1), 39–68 (2004)

8. Yuan, M.: Wildfire conceptual modeling for building GIS space-time models. In:
GIS/LIS, pp. 860–869 (1994)

9. Yuan, M.: Use of a Three-Domain Repesentation to Enhance GIS Support for
Complex Spatiotemporal Queries. Transactions in GIS 3(2), 137–159 (1999)

10. Pultar, E., Cova, T.J., Yuan, M., Goodchild, M.F.: EDGIS: a dynamic GIS based
on space time points. International Journal of Geographical Information Sci-
ence 24(3), 329–346 (2010)

11. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-temporal data
types: An approach to modeling and querying moving objects in databases. GeoIn-
formatica 3(3), 269–296 (1999)

12. Güting, R.H., Bhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider,
M., Vazirgiannis, M.: A foundation for representing and querying moving objects.
ACM Transactions on Database Systems 25(1), 1–42 (2000)

13. Kim, K.-S., Kiyoki, Y.: An Object-Field Perspective Data Model for Moving Ge-
ographic Phenomena. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun,
L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 410–421. Springer,
Heidelberg (2010)

14. Lema, C., Antonio, J., Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: Al-
gorithms for Moving Objects Databases. The Computer Journal 46(6), 680–712
(2003)

User Identification within a Shared Account:

Improving IP-TV Recommender Performance

Zhijin Wang, Yan Yang, Liang He, and Junzhong Gu

Department of Computer Science and Technology,
East China Normal University,

Shanghai, China
zhijin@ecnu.cn, {yangyan,lhe,jzgu}@cs.ecnu.edu.cn

Abstract. Multiple users share a common account in Internet Protocol
Television (IP-TV) services. Can such shared accounts be identified solely
on the basis of logs recorded by set top boxes (STBs)? Once a shared
account is identified, can the different users sharing it be identified as
well? We suppose different users within a shared account not only have
different preferences for TV programs, but also get used to consuming
services in different periods (e.g., after dinner or at weekend). We propose
an algorithm to decompose users in composite accounts based on mining
different preferences over different periods from consumption logs. In our
experiments, the proposed algorithm outperforms traditional user-based
collaborative filtering method 3-8 times when leveraging the decomposed
users for personalized recommendation.

Keywords: User identification, Shared account, IP-TV recommenda-
tion, Experimentation.

1 Introduction

Internet Protocol Television (IP-TV) [10,16] services have been widely consumed
in our daily life. It’s a common phenomenon that families or roommates share
television programs after they get back home or dormitory from work. With the
development of IP-TV technologies, more and more multimedia resources (e.g.,
channels, programs and videos) are integrated into the services. In order to re-
trieve the preferred programs efficiently, recommender systems [1] are introduced
into the services for IP-TV recommendations.

User experience can be improved when recommender systems are introduced
into the IP-TV services. However, user identification is one of the most chal-
lengeable problems which degrades recommender performance [4]. The use of a
single account by multiple users poses a challenge in providing accurate person-
alized recommendations. Informally, the recommendations provided to a shared
account, comprising the ratings of two dissimilar users, may not match the in-
terests of either of these users [21].

We aim to improve recommender performance by addressing the challenge of
user identification in IP-TV services. According to a log recorded by a STB,
a log contains: account id, program id, start time, end time, and genre(s).

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 219–233, 2014.
c© Springer International Publishing Switzerland 2014

220 Z. Wang et al.

The user information is unavailable since the services are indistinctly shared by
the users in a shared account. What’s more, the interaction between user and set
top box (STB) is very weak. Therefore, none of individual user informationcan
be directly used for recommendation.

We suppose users within a shared account not only have different preferences
for programs, but also get used to consuming services in different periods (e.g.,
after dinner or at weekend). There are two questions: (1) How to capture user
preference over period accurately? (2) How to identify users based on the cap-
tured user preference over period?

To address these questions, we define: (1) a period which consists of non-
overlapping sub-period(s); (2) a user who consumes services during these sub-
periods. Based on these definitions, we propose an algorithm to carry out
identification task.

To summarize, our contributions are as follows:

1. To the best of our knowledge, we are the first to study user identification as
a problem of identifying preference and consumption time within a shared
account.

2. We consider that user consuming behavior is periodic in IP-TV services, and a
continuous period consists of non-overlapping sub-periods. Hence, the account
preference over period can be captured by leveraging the designed implicit rat-
ing technique in the {account× item× time} 3-dimensional space [2].

3. Based on the captured preferences, we design a user identification algorithm
to identify users which mainly includes virtual user split stage and virtual
user merge stage.

4. Finally, we demonstrate how the methods above can be applied to improve
recommendation. We also study the effects of user splitting and user merging
on recommendation.

The rest of the paper is organized as follows. Section 2 provides a brief review
of related work on user identification and IP-TV recommendation. Section 3 de-
scribes our proposed approach to carry out identification task. Section 4 shows
the settings in our experiments. Section 5 presents the experimental results. Sec-
tion 6 analyses the users identification and recommender performance. Finally,
we conclude in Section 7.

Table 1. Symbols

Symbol Description

A, I, U account set, item set, identified user set

P the continuous period

pk the sub-period within P

vak the virtual user within account a in sub-period k

sh several sub-periods within P

uah the h-th identified user within account a

ua· the identified users within account a

|A| number of all accounts

|I| number of all items

|U| number of all identified users

|P | number of all sub-periods

G similarity graph of virtual users

dait the duration of item i consumed by account a in sub-period t

rait the implicit rating of account a to item i in sub-period t

Saij the preference similarity between virtual user i and j within account a

ρ the threshold of preference similarity between two virtual users

User Identification within a Shared Account 221

Table 1 gives the main symbols used in this paper.

2 Related Work

In this section, we introduce related work on user behavior in IP-TV services
at first, and then describe the current research on user identification for recom-
mendation which related to our proposed algorithms.

2.1 User Behavior in IP-TV Services

User behavior data can be categorized into implicit feedback [14], explicit feed-
back [5], and their combination [15]. Unlike searching webs with strong intentions
[3,7] (e.g., click links, type text or speech input in search bars), user behavior in
IP-TV services is often implicit or unconscious.

One of the most common used implicit rating technique in IP-TV services
is binary rating rui ∈ {0, 1}(e.g., [8,20]). But it can’t capture the difference
of duration within a shared account, hence, the percentage of play time the
account has watched is exploited to capture account preference which we will
further discuss in 3.2.

In the aspect of temporal features, user consuming behavior can be divided
into long-term & short-term behavior [6] and periodic [12] behavior. We suppose
that user consuming behavior (temporal feature) in IP-TV services is periodic,
and the preferences for programs may change as time goes by.

2.2 User Identification for Recommendation

It’s still a challenge to identify users of a STB since the STB is typically used by
multiple users, e.g. family members or roommates. The issue of user identification
within a shared account has received attention only recently.

Zhang et al. studied the user identification as a subspace clustering problem
at [21], a composite account was regarded as a union of linear subspaces and
used subspace clustering for carrying out identification task. They applied EM,
GPCA and other clustering algorithms to identify users who belong to the same
account on CAMRa2011 [18] dataset and Netflix [5] dataset. Their target was
to label accounts to users. In contrast, we are trying to decompose users within
a shared account.

Said et al. at [19] regarded time as a type of contextual information, and used
it to split account into sub-profiles which is a method of recommending movies to
specified users. A single user profile was split into several, possibly overlapping,
contextual sub-profile (home and cinema sub-profiles as presented) in contex-
tual pre-filtering stage. The split sub-profiles were integrated into recommenders
in contextual post-filtering stage. However, they didn’t consider incorporating
overlapping contextual sub-profile into one that often decreases recommendation
performance somehow which we will discuss in section 5.

222 Z. Wang et al.

3 Our Proposed Approach

In this section, we illustrate our proposed approach. The approach contains
problem definition, notations and user identification algorithm named VUI.

3.1 Problem Definition and Notations

To start with, let us consider a common scene that multiple users share a common
account in IP-TV services. As figure 1 shows, an account corresponding to a STB
shared by 3 kinds of family members: senior, younger and kids. The senior get
used to demanding history series in the morning or afternoon, kids would like
to play the sort of cartoon programs after school or dinner, and younger might
prefer films after kids go to the bed.

Senior

Younger

Kids

Period: day

 Midnight
0:00-6:00

Morning
6:00-12:00

Afternoon
12:00-18:00

Evening
18:00-24:00

s1

s3

s2

Fig. 1. An example of users sharing an account

From the common scene above we can find: (1) the consuming behavior is pe-
riodic; (2) different users get used to consuming the services in different part(s)
of a period; (3) different users often have different preferences for programs (gen-
res) provided by the services. Based on this common phenomenon, the problem
of identifying users sharing a common STB can be regarded as distinguishing
preference over period.

We introduce period P to describe periodic behavior. The period is defined
as:

P :=

|P |⋃
k=1

pk, ∅ :=

|P |⋂
k=1

pk (1)

this definition means that a continuous period P (e.g., week) consists of several,
non-overlapping sub-periods pk (e.g., day of week). A user consumes services in
more than one sub-periods, therefore the user is defined as:

uah := {a, sh|a ∈ A ∩ sh ⊆ P ∩ sh �= ∅} (2)

User Identification within a Shared Account 223

where uah is the h-th user within account a who consumes services at sh (e.g.,
Saturday and Sunday) in period P , A denotes all accounts in the system. As
figure 1 provides, the senior consume services at s1, the younger consume services
at s2, and kids s3. Hence, all users U in system can be defined as:

U :=
⋃
a∈A

⋃
sh⊆P

uah (3)

Our goal is to identify U , and providing accurate recommendations for A by
means of U . We are trying to reach the goal by addressing the two questions:
(1) How to capture the preferences of user uah (h-th user within account a)? (2)
How to determine the consuming time sh of h-th user within each account?

In order to capture the preferences of user uah, we introduce virtual user vak
to present activities of an account in a sub-period. The virtual user is defined
as:

vak := {a, pk|a ∈ A ∩ pk ∈ P ∩ pk �= ∅} (4)

where vak means the activities of account a in sub-period k, and an identified user
is a composite of virtual user(s). Therefore, the user preference can be composed
by the preferences of corresponding virtual users. The problem of determining
the consuming time sh of h-th user within account a is equivalent to assigning
virtual users to identified users within an account.

We suppose that users in reality have different preference for both programs
(or genres) and periods. Hence, the users in an account can be identified by
combinations of virtual users. In order to study how the combinations affect
identified users and recommendation performance, we introduce the similarity
graph G, which uses vertexes to denote virtual users, and uses edges to denote
the similarity between virtual users. The similarity graph G is defined as:

G := G(va·, sa··) (5)

where va· presents all virtual users within account a, sa·· presents similarities
among all virtual users.

3.2 Algorithm for User Identification

In this section, we illustrate the algorithm for identifying users within a shared
account. Detail steps of Virtual user based User Identification algorithm (VUI)
are given in Algorithm 1.

Implicit Rating Technique in 3d Space. We adopt time concerned 3-
dimensional space {account × item × time} to present account preference over
period (or sub-periods). As figure 2 shows, the coordinates denote accounts A,
items I and period P , the symbols (e.g., triangle, square, and star) in it means
the corresponding programs consumed over period. And items present programs
or genres. We formulate the implicit rating as follows:

rait =
exp(dait)∑
t∈P exp(dait)

(6)

224 Z. Wang et al.

Algorithm 1. Pseudo code of VUI to identify users within shared accounts.

Input:
A, All accounts; I , All items; P , All sub-periods;
D, Duration of accounts to items.

Output:
U , All identified users.

1: // Implicit ratings R
2: for each account a, item i, sub-period t in A, I , P do
3: rait ← calculate implicit rating by means of dait.
4: end for
5: for each account a in A do
6: // Split
7: VirtualUsers V ;
8: for each sub-period pk in P do
9: V.append(vak);
10: end for
11: SimilarityGraph G;
12: for each virtual user i in V do
13: for each virtual user j in V do
14: Saij ← calculate preference similarity between i and j by means of implicit

rating R;
15: saij ← Saij , ρ // Threshold ρ
16: if saij == 1 then
17: G.insert(vertex(i), vertex(j), saij);
18: end if
19: end for
20: end for
21: // Merge
22: for each vertex v in G.vertexes do
23: if v.visited == false then
24: v.visited = true;
25: uah.add(v); // Add v to h-th user;
26: Get list of vertexes that connect to v as L;
27: Visit each vertex in L and add to uah recursively;
28: h = h+ 1;
29: end if
30: end for
31: U.add(ua·); // Add identified users within account a
32: end for
33: return U ;

User Identification within a Shared Account 225

p1

item

account

tim
e

p2

pk

...

Fig. 2. {A× I × P} 3d space

where dait is the duration of item i consumed by account a in sub-period t.
Note that an account may demand an item more than one time, therefore, we
do not choose the binary implicit rating techniques [8,20] or percentage of a
program watched to the length of it [17]. The reasons are: (1) Accuracy. The
binary implicit rating technique can describe a user has scanned a video, but it
can’t describe the degree of how the program is preferred. (2) Without length
of programs. The provided dataset does not have the length of a file in terms of
showing time of programs.

Split of Virtual Users. The split of virtual users is the process of determining
sub-periods. We try two different methods to determine sub-periods. One is
(1) empirical split method. In this method, the sub-periods are assigned by
experience. The other is (2) average split method. The method split P in k
equal length sub-periods. The split of virtual users is described at line 7-10,
Algorithm 1.

Similarity Measurement between Virtual Users. Once virtual users in an
account are obtained, the similarities among them can be measured, we adopt
cosine method to measure the similarity between two virtual users since it’s
widely used. The similarity between virtual user vai and virtual user vaj is defined
as:

Saij = cos(vai, vaj)

=

∑
k∈I(vai)∩I(vaj)

raki · rakj√∑
k∈I(vai)

raki ·∑k∈I(vaj)
rakj

(7)

where raki denotes items k consumed by account a in sub-period i, and I(vai)
denotes items set consumed by virtual user vai. The similarity measurement is
used at line 14, Algorithm 1.

Similarity Threshold ρ. In order to control the process of combinations of
virtual users in the similarity graph, we use parameter ρ ∈ [0, 1] to threshold

226 Z. Wang et al.

the similarities of virtual users, and introduce saij ∈ {0, 1} to present similarity.
The binary similarity saij is defined as:

saij =

{
1, Saij � ρ

0, otherwise
(8)

where Saij means the similarity of virtual users measured by cosine method, and
ρ denotes the similarity threshold. This means if the similarity of two virtual
users is greater than ρ, the virtual users are regarded as similar, otherwise not
similar.

We add similar virtual users to similarity graph if their binary similarity is
equal to 1. The thresholding process is described at line 15-18, Algorithm 1.

Merging of Similar Virtual Users. According to steps above, the similarity
graph can be obtained. Once a similarity graph is generated, the users can be
identified by merging similar virtual user.

Merge

va1

va2

va3va4
ua2

ua1

Fig. 3. An example of merging virtual users

As figure 3 shows, an example of merging similar users on similarity graph, the
connected vertexes are merged to one as an identified user. In a word, we adopt
deep-first-search (DFS) algorithm to carry out the merging task. An alternative
way to carry out the task is bread-first-search (BFS) algorithm. The merge
operation is described at line 22-31, Algorithm 1.

4 Experimental Setup

In this section, we illustrate dataset collection, evaluation metrics and algorithms
for recommendation. We evaluate algorithm VUI on the dataset collected from
the content provider SMG1 in Shanghai, China. It should be noted that we focus
on the evaluation of recommender performance by means of identified users,
rather than the accuracy evaluation of algorithm VUI.

1 http://www.smg.cn/

http://www.smg.cn/

User Identification within a Shared Account 227

4.1 Dataset Collection

The logs in the services from SMG are during the period between March 1, 2011
till March 31, 2011. A log describes an account consumed a movie as well as
genre, also the start time and end time of the services. We filter out logs of play
time (calculated by start time and end time) less than 10 minutes. It contains
376,038 records, 5,933 videos categorized into 66 genres consumed by 14,856
accounts after being filtered. The records before March 25, 2011 are used for
training, and the rest are as test set.

In order to avoid problems related to cold start, for both accounts and items,
we decide that accounts in the evaluation sets have to consume at least 100
programs. We evaluate our results on a subset of 100 randomly selected accounts
due to the long running time of the experiments when the full dataset is used.

4.2 Evaluation Metrics

We use Precision and Recall metrics to measure the performance of all the men-
tioned algorithm, since they often attract lots of attention in a running system
and are well known. The Precision metric is defined as:

Precision@N =

∑
u∈U |R(u,N) ∩ T (u)|∑

u∈U |T (u)| (9)

where N denotes the length of a recommendation list, R(u,N) denotes the rec-
ommendation list to user u with length N , T (u) means items has been consumed
by identified user u in test set. The Recall metric is defined as:

Recall@N =

∑
u∈U |R(u,N) ∩ T (u)|∑

u∈U |R(u,N)| (10)

From these definitions, we can see that a larger Precision@N or Recall@N
indicates a better performance.

4.3 Recommendation Algorithms

We adopt, one of the most famous collaborative filtering methods, K-Nearest
Neighbor (KNN) method to provide recommendations, since it performs very
well in practice (e.g., [9,11,13]), and we can also learn the benefit from identified
users by comparing with recommendations without identification.

The Cosine method is used to measure the similarity among accounts in al-
gorithm KNN. For convenience, we name recommendations for accounts as Ac-
countKNN, and recommendations for identified users as VUI-KNN, respectively.

The Contextual User Profile (CUP) method [19] is implemented and used to
compare with VUI-KNN, since (a) the method regards an account consists of
two contextual user profiles (home and cinema) by consuming time, which is
similar to identify users but not, and (b) the authors also use KNN method to
provide recommendations. We name recommendations according to contextual
user profiles as CUPs.

228 Z. Wang et al.

5 Experimental Results

In this section, we conduct several experiments to compare different parameters
of VUI and different methods. Our experiments are intended to address the
following questions:

– How the parameters (|P | and ρ) affect recommendations? In other words,
how the assignment of sub-periods and combinations of virtual users affect
recommendations?

– How the split methods affect recommendations?
– Can the KNN method take the advantage of VUI? Can the performance of

VUI outperform that of CUPs?

5.1 Effects on Parameters |P | and ρ

To study how the assignment of sub-periods and the process of combinations in
similarity graph affect user identification and recommendations, we measure the
performance in terms of precision and recall as |P | or ρ change while holding
other parameter. Here, we use average split method to assign equal length sub-
periods. Note that, when |P | = 1 or ρ = 0, the VUI regards an account as a
user, the AccountKNN algorithm is obtained.

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12

Pr
ec

is
io

n@
1

(%
)

Number of sub-periods |P|

Precision@1 as |P| changes (ρ = 0.7)

AccountKNN

(a) Precision@1, change |P |

1

2

3

4

5

6

7

0 2 4 6 8 10 12

R
ec

al
l@

1
(%

)

Number of sub-periods |P|

Recall@1 as |P| changes (ρ = 0.7)

AccountKNN

(b) Recall@1, change |P |

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n@
1

(%
)

Similarity threshold ρ

Precision@1 as ρ changes (|P| = 3)

AccountKNN

(c) Precision@1, change ρ

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

R
ec

al
l@

1
(%

)

Similarity threshold ρ

Recall@1 as ρ changes (|P| = 3)

AccountKNN

(d) Recall@1, change ρ

Fig. 4. The effect of |P | and ρ on results

We fix ρ at 0.7 and change |P | to measure precision and recall when mak-
ing only one genre recommendation. As shown in figure 4(a) and 4(b), (1) the

User Identification within a Shared Account 229

precision and recall value is significantly improved, when comparing with Ac-
countKNN (|P | = 1, Precision: 1%, Recall: ¡1%); (2) the two optimal values are
obtained at |P | = 4 and |P | = 5, and the precision value is slight over 17%; (3)
the performance starts degrading when |P | > 5.

To study effects on similarity threshold ρ, we hold |P | at 3 (according to ex-
perience), and measure the performance of making one genre recommendations.
Figure 4(a) and 4(b) reveals, (1) the recall value is still increasing as ρ increases;
(2) the optimal precision is 13%, ρ corresponding to 0.9;

5.2 Empirical Split versus Average Split

To study how split methods affect recommendations, we compare the designed
sub-periods with the equal length sub-periods in terms of recommender perfor-
mance.

According to the conducted experiments above, the optimal values are ob-
tained at |P | = 4 and |P | = 5 (a slight better). We set |P | = 4 to compare
the split methods, since it’s more easier to empirically split up sub-periods than
|P | = 5. The split sub-periods are shown in table 2, the differences are the end
edge of afternoon and evening.

Table 2. The split up sub-periods (|P | = 4)

Midnight Morning Afternoon Evening
Average 0:00-6:00 6:00-12:00 12:00-18:00 18:00-24:00
Empirical 23:50-6:00 6:00-12:00 12:00-19:00 19:00-23:50

Recommendations are provided according to VUI-KNN, we compare the re-
sults on top-N recommendation as the length of recommendation list N changes.

4

8

12

16

20

0 5 10 15 20

Pr
ec

is
io

n@
N

(%
)

Length N

Empirical split Average split

(a) Comparison of Precision@N

10

20

30

40

50

60

0 5 10 15 20

R
ec

al
l@

N
(%

)

Length N

Empirical split Average split

(b) Comparison of Recall@N

Fig. 5. Comparison of empirical split method and average split method

As figure 5(a) and 5(b) states, the empirical split method gains a slight im-
provement when comparing with the average split method, but the improvement
is not stable. A possible reason for the improvement is that users are off work
after 18:00, they need to spend time on the way and can’t receive programs

230 Z. Wang et al.

immediately. The benefit of average split method is its simpleness and can be
applied automatically. Actually, we used the average split method to carry out
the split mission when |P | is greater than 4.

5.3 Comparing with CUPs

The CUPs is configured as: (1) Each account is regarded as two context user
profiles (Morning and Afternoon) by means of start time, context users are
recognized as ‘Morning’ user if they consume items before 12:00, and ‘Afternoon’
user if after 12:00; (2) Recommendations are obtained by KNN method as well
as our proposed VUI-KNN. Note that, we implement CUPs on SMG, instead of
Moviepilot2 dataset.

1.00 0.60
2.00 1.70

4.50 4.50
5.30

4.10

17.71

11.66

8.80

6.37

0

2

4

6

8

10

12

14

16

18

20

1 5 10 20

Pr
ec

is
io

n@
N

(%
)

Length N

AccountKNN

CUPs

VUI-KNN

(a) Precision@N

0.22 0.66
4.42

7.51

1.99

9.93

23.40

36.20

6.84

22.52

34.00

49.23

0

10

20

30

40

50

60

1 5 10 20

R
ec

al
l@

N
(%

)

Length N

AccountKNN

CUPs

VUI-KNN

(b) Recall@N

Fig. 6. Comparison of methods in terms of Precison@N and Recall@N with N =
{1, 5, 10, 20}

As stated in figure 6(a) and 6(b), the effects of 3 comparable methods men-
tioned in section 4.3, (1) VUI-KNN outperform CUPs by about 1.5-3 times,
the increase becomes slow when N grows; (2) CUPs runs better than Accoun-
tKNN by about 2-3 times, this improvement is closed to [19] as well; (3) for
AccountKNN, the effects of precision with N = {1, 5} are worse than that with
N = {10, 20}, but the recall is still increasing, a possible reason is the recom-
mendations provided to the accounts not match the interests of either of these
users, the mismatch is decreasing when N increases to a proper value which is
between 5 and 10.

6 Analysis and Discussion

In this section, we analyze how the parameters affect the number of identi-
fied users, and also how the identified users affects recommender performance.
According to these analyses, we discuss about the limitations of the proposed
algorithm VUI.

2 http://www.moviepilot.de

http://www.moviepilot.de

User Identification within a Shared Account 231

0

2

4

6

8

10

12

14

16

18

20

50

100

150

200

250

0 2 4 6 8 10 12

Pr
ec

is
io

n@
1

(%
)

N
um

be
r o

f i
de

nt
ifi

ed
 u

se
rs

 |U
|

Number of sub-periods |P|

|P| versus |U| (ρ = 0.7)

|U| Precision@1

(a) |U| versus |P |

0

2

4

6

8

10

12

14

16

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n@
1

(%
)

N
um

be
r o

f i
de

nt
ifi

ed
 u

se
rs

 |U
|

Similarity threshold ρ

ρ versus |U| (|P| = 3)

|U| Precision@1

(b) |U| versus ρ

Fig. 7. Number of identified users |U | and Precision@1 as parameters change

6.1 Identification and Performance Analysis

We try to discover the relationship between the number of identified users and
the recommender performance. The experimental results are plotted in figure 7,
and the performance is in terms of precision.

As figure 7(a) reveals, (1) the precision value increases when users are iden-
tified; (2) the two optimal precision values are found at |U | = {165, 169}; (3)
the precision starts decreasing when |U | > 165. The optimal precision value is
found at |U | = 294 in figure 7(b). According to figure 7(a) and 7(b), the optimal
precision value is between |U | = {165, 169}.

The following summarizes the key conclusions we observe from the results:
(1) The recommender performance is improved when users within accounts are
identified for personalized recommendations. A reason for the improvement is
that recommendations based on identified users alleviate the problem of recom-
mending given item to wrong users within a shared account. (2) There exists a
pair of P and ρ leading to the best performance of recommendations. In other
words, less or more identified users (|U | is too small or too large) will degrade
the performance.

1. Less users identified, when P is split into few sub-periods and ρ is set very
close to 1, which may regard two (or more than two) real users as one. Hence,
a possible reason for the performance degrading is recommending items to
who unlike them.

2. More users identified, when P is split into too many sub-periods and ρ is
set very close to 0, which may regard a real user as two (or more than two)
identified users, and the preferences of the real user are divided into several
parts by the identified users. Hence, the opportunity of recommending right
items to the real user may decrease since the KNN recommends items other
users also preferred.

The best pair of P and ρ found in the pervious section reflects user con-
suming behavior in IP-TV services. when |P | is set to 4, P consists of the
four sub-periods: Midnight (0:00-6:00), Morning (6:00-12:00), Afternoon (12:00-
18:00) and Evening (18:00-24:00), and ρ = 0.7, we get the best performance.

232 Z. Wang et al.

It also means that, a user has his/her own preference in sub-periods when con-
suming the services.

6.2 Discussion

Multiple users share a common account in IP-TV services, in order to recommend
right items to right users within these shared accounts, we try to identify users
for personalized recommendations.

We suppose that users have different tastes, thus different recommendations
are required for them. The algorithm VUI is proposed to distinguish users by
time and preference patterns. The recommendation performance is significantly
improved by the identified users.

The performance of VUI is affected or decided by the parameters. We learn the
parameters by cross-validation method in our experiments. But the parameters
(e.g., P and ρ) can’t be obtained automatically. The potential work is to learn
the parameters, which can be regarded as learning user consuming behavior in
terms of time and preference.

7 Conclusion and Future Work

In this paper, we define the problem of user identification as mining different
preferences over different periods from consumption logs. According to this def-
inition, an algorithm for user identification is proposed to predict users within a
shared account in IP-TV services. The process of user identification consists of
two phases. The first is to partition a day and identify behavior specific to dif-
ferent periods. Secondly, periods for which discovered usage patterns are similar
are regarded as associated with the same actual user. The association process is
carried out by leveraging DFS algorithm in a similarity graph.

The predicted users are able to improve recommender performance in terms
of precision and recall. The optimal precision value and recall value are obtained
when |P | = 4 and ρ = 0.7, |P | = 4 also reflects the kinds of user consuming
preferences in terms of periods, and the number of identified users corresponding
to the optimal performance can also be found by the cross-validation method in
the conducted experiments.

The evaluation of such methods is a potential future direction of this work.

Acknowledgments. We would like to thank SMG for sharing the IP-TV con-
sumption logs, and the anonymous reviewers for their valuable comments and
suggestions to improve the quality of this paper. This work is supported by the
Shanghai Science and Technology Commission Foundation (No.12dz1500205 and
No.13430710100).

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

User Identification within a Shared Account 233

2. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recom-
mender Systems Handbook, pp. 217–253 (2011)

3. Ageev, M., Lagun, D., Agichtein, E.: Improving search result summaries by using
searcher behavior data. In: SIGIR 2013, pp. 13–22 (2013)

4. Bambini, R., Cremonesi, P., Turrin, R.: A recommender system for an iptv service
provider: a real large-scale production environment. In: Recommender Systems
Handbook, pp. 299–331 (2011)

5. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In: ICMD 2007, pp. 43–52 (2007)

6. Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui,
X.: Modeling the impact of short- and long-term behavior on search personaliza-
tion. In: SIGIR 2012, pp. 185–194 (2012)

7. Grasch, P., Felfernig, A., Reinfrank, F.: Recomment: towards critiquing-based rec-
ommendation with speech interaction. In: Recsys 2013, pp. 157–164 (2013)

8. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: ICDM 2008, pp. 263–272 (2008)

9. Katz, G., Ofek, N., Shapira, B., Rokach, L., Shani, G.: Using wikipedia to boost
collaborative filtering techniques. In: Recsys 2011, pp. 285–288 (2011)

10. Kim, E., Pyo, S., Park, E., Kim, M.: An automatic recommendation scheme of tv
program contents for (ip)tv personalization. TBC 57(3), 674–684 (2011)

11. Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD 2009,
pp. 447–456 (2009)

12. Li, Z., Wang, J., Han, J.: Mining event periodicity from incomplete observations.
In: KDD 2012, pp. 444–452 (2012)

13. Liu, N.N., Zhao, M., Xiang, E.W., Yang, Q.: Online evolutionary collaborative
filtering. In: Recsys 2010, pp. 95–102 (2010)

14. Ma, H.: An experimental study on implicit social recommendation. In: SIGIR 2013,
pp. 73–82 (2013)

15. Pero, Š., Horváth, T.: Opinion-driven matrix factorization for rating prediction.
In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013.
LNCS, vol. 7899, pp. 1–13. Springer, Heidelberg (2013)

16. Pyo, S., Kim, E., Kim, M.: Automatic and personalized recommendation of tv
program contents using sequential pattern mining for smart tv user interaction.
Multimedia Syst. 19(6), 527–542 (2013)

17. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook.
Springer (2011)

18. Said, A., Berkovsky, S., Luca, E.W.D., Hermanns, J.: Challenge on context-aware
movie recommendation: Camra2011. In: Recsys 2011, pp. 385–386 (2011)

19. Said, A., Luca, E.W.D., Albayrak, S.: Inferring contextual user profiles - improving
recommender performance. In: Proceedings of the 3rd Workshop on Context-Aware
Recommender Systems. IEEE (2011)

20. Xu, M., Berkovsky, S., Ardon, S., Triukose, S., Mahanti, A., Koprinska, I.: Catch-
up tv recommendations: show old favourites and find new ones. In: Recsys 2013,
pp. 285–294 (2013)

21. Zhang, A., Fawaz, N., Ioannidis, S., Montanari, A.: Guess who rated this movie:
Identifying users through subspace clustering. In: UAI 2012, pp. 944–953 (2012)

P-TRIAR: Personalization Based on TRIadic

Association Rules

Selmane Sid Ali, Omar Boussaid, and Fadila Bentayeb

Laboratoire ERIC, Université Lyon 2, Bron, France

Abstract. This article describes a new personalization process on deci-
sional queries through a new approach of triadic association rules mining.
This process uses the query log files of users and models them in new way
by taking into account their triadic aspect. To validate our approach, we
developed a personalization software prototype P-TRIAR (Personaliza-
tion based on TRIadic Association Rules) which extracts two types of
rules from query log files. The first one will serve to query recommenda-
tion by taking into account the collaborative aspect of users during their
decisional analysis. The second type of rules will enrich user queries.
The approach is tested on a real data warehouse to show the compact-
ness of triadic association rules and the refined personalization which we
propose.

1 Introduction

OLAP 1 systems users formulate decisional queries to meet their needs of spe-
cific analysis for decision support. OLAP tools are known to be intuitive as their
end users are not necessarily computer scientists. However, the large volume of
data and the complexity of analytical queries which involve a lot of aggregations
make this task of analysis more difficult to users. So it seems necessary to provide
them solutions best suited to their way of thinking through methods of recom-
mendation and enrichment of their analytical queries. These methods are called
personalization. In this paper, we propose a new personalization process of an-
alytical queries. We are particularly interested in collaborative recommendation
and enrichment of decisional queries based on log files.

The personalization works which exploit query log files use in most cases
frequent itemsets [11] and association rules [20]. However, the large number of
frequent itemsets and association rules obtained makes the task of personaliza-
tion more difficult. Contrary to these approaches, the work we propose is based
on another type of more compact rules called triadic association rules. These
rules convey a richer semantic than conventional rules as they are formed in
addition to the premise and the conclusion of a condition which enrich the rule.
Our personalization process consists of five steps:

1. Modeling data of OLAP servers query log files by a triadic context. This
triadic context will consist of the set of users, the set of queries, the set of

1 On-line Analytical Processing abr. OLAP.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 234–247, 2014.
c© Springer International Publishing Switzerland 2014

P-TRIAR: Personalization Based on TRIadic Association Rules 235

attributes (descriptors and measures) in the SELECT clause and a ternary
relation between these three sets.

2. The mapping of a triadic (tridimensional) context into a dyadic (bidimen-
sionnel) one will be done by flattening the set of users over the set of at-
tributes.

3. The computation of dyadic association rules (premise → conclusion).
4. The generation of triadic association rules (premise→ conclusion)(condition))

through a factorization of dyadic ones.
5. The exploitation of these triadic association rules for personalization. To

validate our approach we developed a personalization software prototype P-
TRIAR (Personalization based on TRIadic Association Rules) to extract two
types of rules from query log files. The first one will serve query recommen-
dation by taking into account the collaborative aspect of users during their
analysis. This recommendation will be carried out by the user communities
discovered across multiple links between them. The second type of rules aims
to enrich user queries by recommending attributes to add to his query.

The rest of the paper is organized as follows. Section 2 presents the modeling
of log data with Formal Concept Analysis (FCA) and Triadic Concept Analysis
(TCA) while recalling their basic concepts. Section 3 describes the proposed
approach and algorithms for producing triadic association rules. Then in Section
4 we detail P-TRIAR and our process of personalization. Section 5 sheds light
on works in personalization and association rules mining from multidimensional
data. Experiments are performed in Section 6 to illustrate the compactness of
triadic rules compared to dyadic rules and their contribution to personalization.
Finally, some perspectives for future work are presented in Section 7.

2 Modeling Data Log Based on Formal Concept Analysis

In this section, we develop the data modeling process based on FCA. These data
are implicitly collected from query log files of OLAP servers. We are interested
in this work, especially on three data contained in a SQL server query log files2,
namely MSOLAP User which identifies users, Dataset which contains the query
and their attributes and StartTime which indicates the date and launch time of
the query. This last is used to determine the date from which the log file could
be exploited. These three data are easily accessible in data warehouses query
log unlike data on user profiles, which are often hidden because of their private
aspect. Our following definitions of a triadic context and its equivalent are based
on those introduced in [13].

Definition 2.1. (Triadic context) a triadic context is a quadruplet of the form
K := (R,U,A, Y) where:

– R,U,A respectively define queRies, Users and Attributes (descriptors and
measures) of the query SELECT clause.

2 http://technet.microsoft.com/en-US/library/cc917676.aspx

http://technet.microsoft.com/en-US/library/cc917676.aspx

236 S.S. Ali, O. Boussaid, and F. Bentayeb

Table 1. (a) Triadic context K := (R,U,A, Y), formed from R = {R1, R2, R3, R4, R5}
(queries), U = {U1, U2, U3, U4} (users) and A = {a1, a2, a3, a4, a5} (attributes). (b)
Equivalent dyadic context K(1) obtained from K.

– Y ⊆ R × U × A represents a ternary relation where each y ⊆ Y represents
a triple: y = {(r, u, a)|r ∈ R, u ∈ U, a ∈ A}. In other words, query q is
launched by user u and which involves the attribute a.

We illustrate through an example (Table 1.a), the transition from log data to a
triadic context. Each user in U =(U1, U2,..., U4) performs analysis by launching
a sequence of queries denoted R =(R1, R2,..., R5) where each query is composed
of a set A =(a1, a2,...,a5) of attributes from different facts and dimensions of
the data warehouse.

For example, the value a1a2a4 located at the intersection of the first column
and the first row means that the user U1 launched the query R1 composed of
the attributes a1, a2 and a4.

Definition 2.2. (Dyadic context) In Formal Concept Analysis a dyadic formal
context is a triplet
K(1) := (G,M, I) where G is a set of objects, M a set of proprieties and I a
binary relation between G and M . Our equivalent dyadic context is formed by
flattening of the triadic context we defined (see Definition 2.1). The objects in
G are the queries in R and proprieties in M are pairs (aj , ak) in the projection
of set users into set of attributes U × A. The table 1.b represents the dyadic
context K(1) obtained from the triadic context K, thus:
K(1) := (R,U × A, Y (1)) with ((ai, (aj , ak)) ∈ Y (1) ⇐⇒ (ai, aj, ak) ∈ Y). The
value 1 of the first row and the first column means that the user U1 launches the
queryR1 which implies the attribute a1. In what follows, the pair (aj , ak) ∈ U×A
will be noted in a simplified manner by aj-ak.

Definition 2.3: (Derivation) For X ⊆ G and Z ⊆ M , two subsets X ′ ⊆ M and
Z ′ ⊆ G are respectively defined as a set of proprieties common to the objects
in X and a set of proprieties which share all attributes in Z. Formally, the
derivation denoted ′ is defined as follows:

X ′ := {a ∈ M | oIa ∀o ∈ X} and Z ′ := {o ∈ G | oIa ∀a ∈ Z}.
This proposal defines a pair of correspondence (′,′) between the set of parts of

G and the set of parts of M representing a Galois correspondence. The closure
operators in G and M are denoted by ′′. For example, the closure of U2 − a4 is
given by:

P-TRIAR: Personalization Based on TRIadic Association Rules 237

(U2 − a4)
′′ = ((U2 − a4)

′)′ = {R1, R2, R3, R4, R5}′ = {U1 − a1, U1 − a4, U2 −
a4, U3 − a1, U4 − a5}.
Definition 2.4: (formal concept) A formal concept (cf) is a pair (X,Z) with
X ⊆ G, Z ⊆ M , X = Z ′ and Z = X ′. The set X is called extension of cf
while Z is its intention. A formal concept (dyadic) corresponds to a maximum
rectangle in a dyadic context.

Example. As {R1, R2, R3, R4, R5}′= {U1−a1, U1−a4, U2−a4, U3−a1, U4−a5}
and {U1 − a1, U1 − a4, U2 − a4, U3 − a1, U4 − a5}′ = {R1, R2, R3, R4, R5}, then
the pair({R1, R2, R3 , R4, R5},{U1 − a1, U1 − a4, U2 − a4, U3 − a1, U4 − a5}) form
a formal concept.

Definition 2.5: (Dyadic association rule) Let (G,M, I) a formal dyadic context.
An association rule (R) [2] has the following format R : B → C (s, c) where
B,C ⊆ M with B ∩ C = ∅. The support s of a rule R is calculated by the for-

mula: Supp(R) = |B′∩C′|
|G| . The confidence c is given by: Conf(R) = |B′∩C′|

|B′| . We

speak of implication when the confidence of the association rule is equal to 1.
In the following section, we will show how to exploit the dyadic association

rules for generating triadic ones. The dyadic rules are produced from our context
(K(1)) by applying Pasquier algorithms [16].

3 Triadic Association Rules Extraction

3.1 Definitions

It is apparent from the literature study so far that [4] is the first to study the
implications extraction problem in triadic contexts. A triadic implication has the
following form: (A → D)C . This implication is true if “whenever A is true un-
der all conditions in C, then D is also true under all conditions”. Afterwards,
[7] have extended the work of Biedermann and defined three types of impli-
cations: attribute - condition implications, conditional attribute implications,
attributional condition implications. [14] extended these definitions to associ-
ation rules and proposed three types: Attributes-Conditions Association Rules
(A-CARs); Conditional Attribute Association Rules (CAARs); Attributional
Condition Association Rules (ACARs). In what follows, we consider our exam-
ple (Table 1) of a triadic context K := (R,U,A, Y) and its equivalent dyadic one
K(1) := (R,U × A, Y (1)) to define the different types of association rules.

Definition 3.1.1: An Attribute-Condition Association Rule (A-CAR) is a
dyadic association rule in the form A → D (s, c), where A and D are subsets of
U×A, s and c represent respectively the support and confidence. These dyadic
association rules are extracted from the dyadic context K(1).

Example: U2 − a1 → U2 − a5, U2 − a4, U3 − a1, U1 − a1, U1 − a4, U4 − a1, U4 − a5
(0.4, 1) is an A-CAR with support equal to 40% and a confidence equal to 100%.

Definition 3.1.2. A Conditional Attribute Association Rules according to Bie-
dermann formalism (BCAAR) is a triadic association rule with the following

238 S.S. Ali, O. Boussaid, and F. Bentayeb

notation: (A → D)C (s, c), where A and D are subsets of U , and C a subset of
A and means that A implies D under all conditions in C with a support s and
a confidence c.

Example. the rule (U2 → U1)a1a2(0.2, 1) is a BCAAR with a support 20% and
a confidence 100%.

Definition 3.1.3. An Attributional Condition Association Rules according to
Biedermann formalism (BACAR) is a triadic association rule the following
notation (A → D)C (s, c), where A and D are subsets of A, and C are subsets of
U and means that A implies D under all conditions in C with a support s and
a confidence c .

Example. the rule (a2 → a4)U2U1(0.4, 1) is a BACAR with a support 40% and
a confidence 100%.

These two types of triadic association rules (i.e.,BCAAR andBACAR) have the
same notation but the sets of their premises, conclusions and conditions differ.

3.2 Proposed Approach

In what follows, we present our approach based on formal definitions and illustra-
tive examples. Several approaches for researching and analysing triadic concepts
have emerged in the literature [19], [15] and [5] for n = 3. [14], propose an effec-
tive approach based on the triadic context analysis for the extraction of triadic
association rules. It consists of taking as input a formal triadic context which
is flattened to produce a dyadic one. Then dyadic concepts and dyadic genera-
tors are extracted. After that, triadic concepts are then generated from dyadic
concepts and triadic generators from dyadic ones. Once these two sets gathered,
it is then possible to extract the triadic association rules. These operations give
good results but can be avoided by our alternative which does not calculate
these two sets. Our approach is based on the same theoretical basis that the one
proposed by [14]. Nevertheless, our extraction process is different in terms of
input data and our algorithms are applied rather on a set of dyadic association
rules of type RAA-C. To extract these RAA-C we apply the algorithms of
[16] on the dyadic context K(1) := (R,U ×A, Y (1)) obtained from the projection
of the set of properties U on the set of conditions A of the formal triadic con-
text K := (R,U,A, Y). Then, from these latter and the definitions recalled in
section 3.1.1, we apply the algorithms which we have proposed to search for tri-
adic association rules in their various forms: Biedermann Conditional Attribute
Association Rules (BCAAR) and Biedermann Attributional Condition Associa-
tion Rules (BACAR).

3.3 Proposed Algorithms

The transition from dyadic association rules to the set of all triadic one, in their
various forms, is performed using a main procedure called TRIAR. It permit to
produce the triadic association rule through the two sub procedures BCAAR and

P-TRIAR: Personalization Based on TRIadic Association Rules 239

BACAR. This choice of decomposition is motivated by the parallelization of these
two procedures during implementation to have two types of personalization.

The main procedure TRIAR (Algorithm 1) consists of three parts. The first
one (lines 4-8) corresponds to a sorting procedure which identifies whether a
dyadic association rule is eligible to become a triadic one or not. This step is
justified by the mapping of the definition of triadic generator in [14] to a triadic
rule. So as we collect the distinct values of attributes on the set AL (line 6) of the
rule premise LHS, the distinct values of conditions within the set ML (line 7) of
the rule premise LHS; and we check if their product corresponds to the size of
LHS (line 8). The other two parts (lines 9 and 10) correspond to the procedures
BCAAR and BACAR (Algorithms 2 and 3) which allow us to produce the set
of triadic association rules.

Algorithm 1. Computation of Triadic Association Rule

1: Procedure TRIAR(D)
2: In: D = {(LHS,RHS, s, c)}
3: Out: Σ = {(L,R,C, t, s, c)}
4: Σ ← ∅;
5: for RL = (LHS, RHS, s, c) in D do
6: AL ←Distinct A(LHS)
7: ML ←Distinct M(LHS)
8: if Size(AL)× Size(ML) = Size(LHS) then
9: Σ ← Σ ∪ {(BCAARs(AL,ML, RHS), 1, s, c)}
10: Σ ← Σ ∪ {(BACARs(AL,ML, RHS), 2, s, c)}
11: out Σ

We have as input TRIAR a set (D) of dyadic association rules (RAA-C)
where each rule has the following form (LHS,RHS, s, c) representing respec-
tively (the premise, the conclusion, the support and the confidence of the rule).

Example. the rule U3 − a4, U4 − a4 → U2 − a3, U2 − a2, U2 − a4, U3 − a1, U3 −
a5, U3 − a2, U1 − a1, U1 − a5, U1 − a4, U4 − a5(sup = 0.20; conf = 1.00) is written
as follows ({U3 − a4, U4 − a4}, {U2 − a3, U2 − a2, U2 − a4, U3 − a1, U3 − a5, U3 −
a2, U1 − a1, U1 − a5, U1 − a4, U4 − a5}, 0.20,1).

The output of the procedure TRIAR, we have a set of triadic association
rule (Σ), where each rule is presented in the following form (L,R,C, t, s, c),
representing the premise, the conclusion, the condition, the type respectively (1:
BCAAR; 2: BACAR), the support and the confidence.

Example. the BCAAR (U3U4
a4−−→ U2U1 (sup = 0.20; conf = 1.0)) is written as

follows (U3U4, U2U1, a4, 1, 0.20, 1.0).
To expand TRIAR algorithm, we take as an example the dyadic rule ({U3 −

a4, U4−a4}, {U2−a3, U2−a2, U2−a4, U3−a1, U3−a5, U3−a2, U1−a1, U1−a5, U1−
a4, U4−a5}, 0.20, 1).Lines 5-7 ofAlgorithm1,we create two setsAL andML which
respectively contain the distinct attributes and distinct conditions of the premise
of the rule LHS {U3 − a4, U4 − a4}. Accordingly, AL= {U3, U4},ML={a4}. This
entails that the product Size(AL)×Size(ML) = 2 (line 8) is equal to Size(LHS),

240 S.S. Ali, O. Boussaid, and F. Bentayeb

as the portion ML will become a condition for the constructed rules. All the ele-
ments of AL must verify this condition thus this rule is eligible to become a triadic
association rule. Lines 9 and 10 of Algorithm 1 involve both procedures BCAAR
and BACAR to produce both types of triadic rules.

The procedure BCAARs (algorithm 2) takes as input three sets AL, ML and
RHS. The set ML represents the conditions which apply to all attributes in
the set AL and we want to find in RHS other attributes which are affected by
the same conditions, from where the search of the conditions 5-7 lines. These
attributes are isolated within line 9 (group by on attributes), to see whether their
conditions meet the conditions of ML (line 11), if they are identical to those of
ML we can build a rule.

Algorithm 2. Computation of BCAAR (type =1)

1: Procedure BCAARs(AL,ML, RHS)
2: In: AL,ML, RHS
3: Out: BCAAR = (AL, AR,ML)
4: AR ← ∅; Temp ← ∅
5: for e ∈ RHS do
6: if Modus(e) ∈ ML then
7: Temp ← Temp ∪ {e}
8: if Temp �= ∅ then
9: Creates containers B = b1, ..., bn by grouping elements of Temp having the

same part of attributes in common
10: for elem ∈ B do
11: if Size(elem) = Size(ML) then
12: AR ← AR ∪ {Attr(elem)}
13: if AR �= ∅ then
14: out (AL, AR,ML)

The sequence of the algorithm is performed as follows: after the initialization
of the parameters (lines 2-4), we take the conclusion of the rule RHS (line 5)
which corresponds to {U2 − a3, U2 − a2, U2 − a4, U3 − a1, U3 − a5, U3 − a2, U1 −
a1, U1 − a5, U1 − a4, U4 − a5} in the example, and calculate the Modus of each
element which corresponds the condition. For the first component, Modus(U2 −
a3)={a3} The test shows that it is not included in the set ML = {a4} the
condition is not satisfied, the loop move to the next item. For the fourth element,
Modus(U2−a4)={a4} it is included inML the condition is satisfied. The variable
Temp gets this item (U2 −a4), then in line 9, we group in a container denoted B
the elements which have the same part attribute, in our example (U2−a4), (U1−
a4) will be contained in (B). The algorithm 2 checks in line 10-12, for each
element contained in (B), if the size of the element is equal to the size of ML. In
our example, these two entities are equal for the two elements because they have
a size equal to 1. The rule formed of triplet (AL, AR,ML) is then constituted
({U3, U4}, {U2, U1}, a4) to which it is added type, support and confidence. The
result is: BCAAR (U3U4 → U2U1)a4 , type = 1, Sup = 0.20 and Conf= 1.00. This
is the exit point of the algorithm 2 and the rule is added to the set of BCAAR.

P-TRIAR: Personalization Based on TRIadic Association Rules 241

In the procedure BACARs (algorithm 3), we input three sets AL, ML and
RHS. The set AL represents the attributes which apply to all conditions in the
set ML and we want to find in RHS other attributes which are affected by
the same conditions, from where the search of the conditions 5-7 lines. These
attributes will be isolated from line 9 (group by on conditions), to permit viewing
if their attributes meet the attributes of ML (line 11), if the attributes are
identical to those of ML we can build a rule. The others steps of the algorithm
3 are unrolled in the same way of algorithm 2.

Algorithm 3. Computation of BACAR (type = 2)

1: Procedure BACARs(AL,ML, RHS)
2: In: AL,ML, RHS
3: Out: BACAR = (ML,MR, AL)
4: MR ← ∅; Temp ← ∅
5: for e ∈ RHS do
6: if Attrib(e) ∈ AL then
7: Temp ← Temp ∪ {e}
8: if Temp �= ∅ then
9: Creates containers B = b1, ..., bn by grouping elements of Temp having the

same part of attributes in common
10: for elem ∈ B do
11: if Size(elem) = Size(AL) then
12: MR ← MR ∪ {Cond(elem)}
13: if MR �= ∅ then
14: out (ML,MR, AL)

3.4 Complexity Study

In what follows, we present the study of the complexity of our main algorithm
TRIAR. It uses the procedures BCAARs and BACARs. It takes as input D a
set of dyadic association rules. Latter is obtained from a dyadic formal context
K(1) := (R,U ×A, Y). The maximum size of dyadic association rule is given by
|U |∗|A|. The overall complexity of the algorithm is linear in |D| and is performed
in O(|D| ∗ 2(|U |+ |A|)). This complexity is obtained by studying the loop ”for”
(line 5), which iterates through one time all the rules in D, it is given by: line 5
is performed in O(|U |) because at worst, we have rules in all context properties,
line 8 is performed in O(|A|) because in the worst case we can have a rule in all
properties of the context. The test in line 8 is performed O(|D|) because this is
the set of rules which is driven to test their eligibility to become triadic rules;
Instructions 9 and 10, respectively, call the procedure BCAARs and BACARs.
Such appeals are made in the worst case O(|D| ∗ |U | + |A|), where all dyadic
association rules are eligible to become triadic ones.

4 Architecture of P-TRIAR

P-TRIAR involves five steps (seeFigure 1). In Section 2,we described the first three
stages, namely: Modeling a triadic context data from query log of OLAP analysis

242 S.S. Ali, O. Boussaid, and F. Bentayeb

Fig. 1. Architecture of P-TRIAR

server; the transition of this triadic context to a dyadic one and finally the produc-
tion of conventional dyadic association rules type premise → conclusion. Then, in
section 3, we detailed the approach we propose to generate a set of triadic associa-
tion rules type (premise → conclusion)(condition) by factorization of dyadic rules.
In what follows, we describe the fifth stage of P-TRIAR regard to the exploitation
of triadic association rules (BCAAR and BACAR) obtained by our algorithms.

4.1 Query Recommendation by BCAAR

The BCAAR determine the associations which exist between users that have as
a condition attributes. In other words, this type of rules allows us to discover the
relationship between users through the attributes involved in their queries. For ex-
ample, the BCAAR (U4 → U3U1)a1 (0.60,1) states that whenever a query is sub-
mitted by the user U4 and contains the attribute a1, the users U3 and U1 submit
a query which contains the same attribute, with a support 60% and a confidence
100%. This rule highlights the similarity between user U4 and users U3 and U1 but
on condition to query the attribute a1. Through this rule, we find the collaborative
aspect because it allows forming a community link between three users. This com-
munity connection is conditioned by the involvement of the attribute a1 in their
queries and the degree of this link has a specific support and confidence.

The first personalization scenario, the user connects to P-TRIAR defines the
initial parameters (the date from which he wants to explore the log, the thresh-
old of support and confidence) and wants to know the links that he entertains with
other users.P-TRIAR shows him the rules which satisfy these parameters.Assum-
ing that U4 choose the rule of our example, P-TRIAR will recommend a number
of decisional queries that U4 desires. These queries will be filtered and sorted: by
frequencies, by users (U3 andU1) and by attributes (a1). So as the usermay choose

P-TRIAR: Personalization Based on TRIadic Association Rules 243

the queries which are suitable for its analysis needs. If the user wants to directly ac-
cess to queries,P-TRIAR recommendhim a set of querieswithout having to choose
amongBCAAR, P-TRIAR detects which user is logged on and it offers a number
of queries filtered by number of users and number of attributes, i.e., based on rules
which have the largest number of users in the conclusion part rule and the largest
number of attributes in the condition part.

4.2 Query Enrichment by BACAR

The BACAR determine the associations which exist between attributes which
have users as a condition. This type of rules allows us to discover the relationships
between attributes (descriptors and measures) involved in a query through users
making it. For example the, BACAR (a2 → a4)U2U1(0.4, 1) is true when each
time a request is submitted and which involves the attribute a2, the attribute
a4 is also involved in the query on condition that users U2 and U1 formulate it.

The second scenario of personalization is based on BACAR. In this scenario,
the user sets the same parameters of the first scenario and wishes to make a re-
quest for analysis taking inspiration the links which exist between the attributes
of the warehouse. Assuming the user U2 is connected and chooses the BACAR
(a2 → a4)U2U1 which means that each time a query is submitted and which
contains the attribute a2, the attribute a4 is also involved in the query as long
as users who formulates it are U2 and/or U1, with a support 40% and a confi-
dence 100%. This rule highlights the similarity existing between the attributes
a2 and a4 but under the condition that the users U1 or U2 formulate the query.
P-TRIAR relies upon such rule to enrich the user U2 query by recommendation
of the attribute a4 as element of its query.

5 Related Works

The personalization of queries has been the subject of several studies [3], [1], [12],
[17]. It aims to help the user generally based on its behavior and its previous
queries or those of other users. In the areas of databases and data warehouses the
different personalization techniques have been classified into three categories [1],
[17]: collaborative techniques [6]and [9] which exploits the similarity between
users profiles and one for which the recommendation is determined; based on
the content techniques [10] intended to recommend to a user attributes that
frequently seeks; and finally hybrid techniques [18] which combine the two pre-
vious techniques. In literature, the recommender systems have as sources user
data profiles, log files which are structured historization of queries for each user,
or external sources such as ontologies, web pages, etc..

Several studies have exploited the idea of pattern extraction [11] and association
rules [20], from log files, for the recommendation. However, their work was limited
to a bi-dimensional framework. They represent the data log files across matching
matrices (users× query) or (attributes× query) for association rules or patterns
extraction. This modeling does not take into account the three-dimensionality of

244 S.S. Ali, O. Boussaid, and F. Bentayeb

these data. In data warehouses, the association rules and the patterns they get are
numerous and of dyadic type. This very large number of patterns and association
rules makes more complicated the recommendation task and does not take into
account at the same time the three sets of users, attributes and queries.

In addition, FCA [22], [8] and Galois lattices constitute a theoretical basis for
solving many problems in the fields of artificial intelligence, software engineering
and databases. The TCA was originally introduced by [23] and [13]. Their work
focuses on the analysis of triadic contexts, concepts and lattices concepts called
trilattices. They define the way, the theoretical basis for ATC. In this way, they
defined the theoretical basis for theTCA. [4] provides awriting formalismof triadic
implications and [21] defines polyadic concepts analysis and generalizes the work of
[23] to polyadic formal contexts to produce polyadic formal concepts and n-lattice.

More recent work related to the TCA exist, [7] consider different types of
triadic implications which he calls strong relying formalism stated by [4]. [15]
propose an approach for mining rules applied to dynamic relational graphs which
can be encoded in n-ary relationships (n ≥ 3). The work of [14] offer not only an
approach to triadic association rules production but also procedures to extract
triadic concepts and generators from dyadic ones.

In [19], the authors deal with the calculation of generators and triadic asso-
ciation rules. However, the author provided a new definition of the latter which
is different from that of [14] which, in turn, is based on the definition of Bie-
dermann. In [15] and [5], the authors propose the generalization of the concept
of association rules in a multidimensional context by working either on boolean
matrices but on boolean tensors of arbitrary arity. They also provide measures
of frequency and confidence to define the semantics of such rules.

Based on the literature review we conducted, our work is the first to model the
log data through a triadic context. The proposed approach provides a personal-
ization from triadic association rules. We show through our process, how to get
triadic association rules from these triadic contexts, using only the dyadic asso-
ciation rules without calculating the triadic concepts and generators as proposed
by the authors mentioned above.

6 Experiments

The tests we performed on the warehouse PUBS 3(Figure 2) focused on five
users and 100 decisional queries, by user, composed of 34 distinct attributes
that contains PUBS. It concerns the analysis of the turnover (CA) and quantity
(Qty) of books sold. These measures are observed over the following dimensions:
Titles, Publishers, Stores, Times and Authors.

Five users (U1, U2, U3, U4, U5) logged on PUBS and submitted their different
sequences of decisional queries denoted (R1,..., Rn). Each query is formed in the
SELECT clause of attributes (descriptors and measures) noted (a1, ...,an).

Example. User U4 launches a set of queries on the warehouse PUBS :

3 Data warehouse constructed from the database PUBS provided by Microsoft :
http://technet.microsoft.com/fr-fr/library/ms143221(v=sql.105).aspx

http://technet.microsoft.com/fr-fr/library/ms143221(v=sql.105).aspx

P-TRIAR: Personalization Based on TRIadic Association Rules 245

– R1 = What is the turnover of the store store 400 for the year 2013. PUBS
attributes involved in the SELECT clause of R1 are (CA, Stores.stor id,
Times.year).

– R2= Turnover realized on sales of books type Computer Science sold at
stores in Paris during 2013. (CA, Titles.type, Stores.stor id, Times.year).

– R3= the number of books written by Parisian authors and published by
Springer in 2013. (Qty, Authors.city, Publishers.pub name, Times.year).

In this way, other users formulate other sequences of analytical queries which
involve attributes already expressed in U4 queries. Let us take for example, the
user U5 query:

– R1 = What is the turnover (CA) of the store store 500 in Washington by
month. R1 (CA, Stores.stor id, Stores.city, Times.month).

An example of triadic association rules extracted from of users U4 and U5 are:

– BCAAR: (U4 −→ U5)(CA,Stores.stor id) supp= 60%, conf= 80%.
– BACAR: (CA −→ Stores.stor id)(U4,U5) supp= 75%, conf= 100%.

Fig. 2. PUBS data warehouse

In this paper, we propose a personalization based on these two types of rules.
The user will interact with the interface P-TRIAR in two scenarios. According
to the first scenario described in 4.1, the user U4 wants to make new analysis on
the data warehouse. He asks P-TRIAR and interrogates the log file from a spe-
cific date and requests all triadic association rules between him and other users
with a condition on attributes, before setting a minimum threshold for the sup-
port and confidence. P-TRIAR will return him all the rules which satisfy these
parameters. Then U4 will choose according to the attributes he wants query the
rules which suit him. Assuming he chooses the rule (U4 −→ U5)(CA,Stores.stor id),
P-TRIAR will recommend him analysis queries the most frequent made by the
user U5 and having among their attributes CA and Stores.stor id. Unlike the
dyadic rule (U4 −→ U5) which would recommend all queries made by U5, we
add a condition on query attributes, so the rule is enriched and the number of
queries to recommend is reduced considerably. So U4 could choose from these
queries which suits his analysis or by modifying it in part.

246 S.S. Ali, O. Boussaid, and F. Bentayeb

According to the second scenario described in 4.2, U4 wants to make a new
query on the attributes of the warehouse by exploiting BACAR (rules between
query attributes which have as a condition users). U4 sets the initial parame-
ters such as date, minimum support and confidence. Then U4 will choose at-
tributes he wants to involve in its query and P-TRIAR will propose him triadic
association rules associated with them. Assuming he chooses CA attribute P-
TRIAR would recommend him the attribute Stores.stor id based on the rule
(CA −→ Stores.stor id)(U4,U5). Contrary to the rule (CA −→ Stores.stor id)
will be proposed to all users, this rule will only be recommended to U4 and U5.

We obtained with a threshold of support and minimum confidence 50%, a
total of 123 BCAAR and 95 BACAR from 42,638 AR dyadic. This result shows
the triadic association rules compactness compared to dyadic ones. Then for
personalisation, we take the example of user U3, we obtain 14 BCAAR and 12
BACAR which would recommend queries and enrich its own ones according to
his choices of analysis.

7 Conclusion

In this article, we described a new personalization process, particularly collab-
orative recommendation and query enrichment, based on the query log files of
users. We have, at first, modelled data from log files with formal concept analysis
to build triadic contexts. Then, we proposed a new alternative which exploits
ideas from the triadic concept analysis to generate triadic association rules from
triadic contexts, and produce them by exploiting only dyadic association rules
without having to manipulate concepts and triadic generators which are unnec-
essary in our process. Through the proposed approach, we have shown how to
obtain triadic association rule (BCAAR and BACAR) less numerous and more
compact than dyadic rules, while also conveying a richer semantics. We validated
our personalization approach by developing P-TRIAR to extract these two types
of rules from log files and personalize user queries according to each type.

This work opens up many opportunities for research. We plan in the short
term to provide a system which collects user preferences through their choice
of different personalization rules and queries recommended. Thus, they would
be taken into account in their future choices. In the medium term, we plan to
generalize the algorithms offered to polyadic association rules to deal with n-ary
relationships to propose new methods for community detection in heterogeneous
social networks.

Acknowledgement. We thank Rokia Missaoui for her collaboration in the
work concerning the extraction of triadic associaton rules.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734–749 (2005)

P-TRIAR: Personalization Based on TRIadic Association Rules 247

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

3. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A person-
alization framework for olap queries. In: DOLAP, pp. 9–18 (2005)

4. Biedermann, K.: How triadic diagrams represent conceptual structures. In: ICCS,
pp. 304–317 (1997)

5. Cerf, L., Besson, J., Nguyen, T.K.N., Boulicaut, J.-F.: Closed and Noise-Tolerant
Patterrns in N-ary Relations. Data Mining and Knowledge Discovery 26(3),
574–619 (2013)

6. Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for inter-
active database exploration. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566,
pp. 3–18. Springer, Heidelberg (2009)

7. Ganter, B., Obiedkov, S.A.: Implications in triadic formal contexts. In: ICCS,
pp. 186–195 (2004)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc. (1999), Franzke, C. (trans.)

9. Golfarelli, M., Rizzi, S., Biondi, P.: myolap: An approach to express and evaluate
olap preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050–1064 (2011)

10. Khemiri, R., Bentayeb, F.: Interactive query recommendation assistant. In: 2012
23rd International Workshop on Database and Expert Systems Applications
(DEXA), pp. 93–97. IEEE (2012)

11. Khemiri, R., Bentayeb, F.: Fimioqr: Frequent itemsets mining for interactive olap
query recommendation. In: DBKDA 2013, pp. 9–14 (2013)

12. Koutrika, G., Ioannidis, Y.: Personalized queries under a generalized preference
model. In: Proceedings of 21st International Conference on Data Engineering,
ICDE 2005, pp. 841–852. IEEE (2005)

13. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: ICCS,
pp. 32–43 (1995)

14. Missaoui, R., Kwuida, L.: Mining triadic association rules from ternary relations.
In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS, vol. 6628, pp. 204–218.
Springer, Heidelberg (2011)

15. Nguyen, T.K.N.: Generalizing Association Rules in N-ary Relations: Application
to Dynamic Graph Analysis. Phd thesis, INSA de Lyon (October 2012)

16. Pasquier, N.: Data Mining: algorithmes d’extraction et de réduction des règles
d’association dans les bases de données. PhD thesis (January 2000)

17. Patrick, M., Elsa, N., et al.: A survey of query recommendation techniques for
datawarehouse exploration. In: EDA 2011 (2011)

18. Stefanidis, K., Drosou, M., Pitoura, E.: You may also like results in relational
databases. In: PersDB 2009, pp. 37–42 (2009)

19. Trabelsi, C., Jelassi, N., Yahia, S.B.: Bgrt: une nouvelle base générique de règles
d’association triadiques. application à l’autocomplétion de requêtes dans les folk-
sonomies. Document Numérique 15(1), 101–124 (2012)

20. Veloso, A., de Almeida, H.M., Gonçalves, M.A., Meira Jr., W.: Learning to rank
at query-time using association rules. In: SIGIR, pp. 267–274 (2008)

21. Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002)
22. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-

cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)
23. Wille, R.: The basic theorem of triadic concept analysis. Order 12(2), 149–158

(1995)

An Event-Based Framework

for the Semantic Annotation of Locations

Anh Le, Michael Gertz, and Christian Sengstock

Database Systems Research Group, Heidelberg University, Germany
{anh.le.van.quoc,gertz,sengstock}@informatik.uni-heidelberg.de

Abstract. There is an increasing number of Linked Open Data sources
that provide information about geographic locations, e.g., GeoNames or
LinkedGeoData. There are also numerous data sources managing infor-
mation about events, such as concerts or festivals. Suitably combining
such sources would allow to answer queries such as ‘When and where do
live-concerts most likely occur in Munich? ’ or ‘Are two locations simi-
lar in terms of their events? ’. Deriving correlations between geographic
locations and event data, at different levels of abstraction, provides a se-
mantically rich basis for location search, topic-based location clustering
or recommendation services. However, little work has been done yet to
extract such correlations from event datasets to annotate locations.

In this paper, we present an approach to the discovery of semantic
annotations for locations from event data. We demonstrate the utility of
extracted annotations in hierarchical clustering for locations, where the
similarity between two locations is defined on the basis of their common
event topics. To deal with periodic updates of event datasets, we fur-
thermore give a scalable and efficient approach to incrementally update
location annotations. To demonstrate the performance of our approach,
we use real event datasets crawled from the Website eventful.com.

1 Introduction

The main difference between a ‘place’ and a position is that a place is represented
as a human-readable description of a geographic location rather than just a ge-
ographic coordinate. Such descriptive information about locations is essential
for location-based services (LBS), for instance, location recommendation or so-
cial event recommendation [5,6]. Typically, a data source managing information
about locations provides various attributes of a location for an LBS application,
including the name, address, description, and metadata such as tags. From a se-
mantic perspective, such description or tags associated with a location are useful
in semantic location search.

Unfortunately, such descriptive attributes detailing location information tend
to be poor in many data sources. For example, based on our analysis, there are
about one million locations in a dataset of events crawled for the years 2011 and
2012 from the Website eventful.com, but only 10% of them contain descriptions
or tags. Moreover, querying based on simple text matching of descriptions and

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 248–262, 2014.
c© Springer International Publishing Switzerland 2014

An Event-Based Framework for the Semantic Annotation of Locations 249

tags cannot take into account concept hierarchies that might exist for locations,
time, or event topics. For example, using suitable concept hierarchies ‘live jazz
on Saturdays ’ may be considered a match for ‘live music on weekends ’. There-
fore, enriching information about events at different levels of granularity and
abstraction is necessary and useful.

Several methods have been proposed to extract semantic annotations for lo-
cations. However, some of them highly depend on the location data provided
by external sources such as Wikipedia or the Google Maps API [2]. Other ap-
proaches exploit either user-tags (e.g., in the context of Flickr data) [11,12] or
the user behavior (e.g., check-in data or user-interest-profiles) extracted from on-
line social networks [6,15]. Such types of user generated content are often sparse,
noisy and sometimes even inaccurate.

On the other hand, numerous data sources managing information about events
are available on the Internet. This includes popular Websites such as last.fm,
eventim.de, or eventful.com. Although in these sources the event data are less
noisy (and more accurate) than in other georeferenced social media, there are
still challenges in fully exploiting such information, as concept hierarchies, either
explicitly or implicitly, exist for event topics, locations, and time.

Intuitively, some events occur more likely at some place/time than at other
places/times. For example, events related to the topics ‘live music’ or ‘dance’
likely occur at a bar or club at weekends, whereas events related to ‘conference’
or ‘talk ’ likely occur at a university on working days. Following this, we aim at
extracting semantic annotations for locations from event data on the basis of
exploiting correlations among geographic locations, time and event topics.

In this paper, we propose a framework to extract location annotations from
event data. Our framework is based on the concept of a Location-Time-pair
Class (LTC) to describe a group of location-time pairs that have the same lo-
cation and time concepts, e.g., [‘Stadium’,‘Weekend ’]. We define a measure to
identify significant event topics with respect to an LTC, based on Pointwise
Mutual Information [14]. A set of significant topics with respect to an LTC is
called a Location-Time-pair Profile (LTP). LTPs are utilized to derive semantic
annotations for locations, where an annotation is a pair of an event topic and
a time concept, e.g., [‘Live-music’,‘Weekend ’]. Figure 1 shows the components
of our framework. The LTProfile-Miner component extracts LTPs from event
datasets. To efficiently deal with (periodic) updates to event data, the compo-
nent LTProfile-Updater updates the current set of location annotations. With
the latter component, we provide a scalable and efficient approach to deal with
large datasets that do not fit in main memory.

Based on external sources such as Wikipedia, extracted annotations of famous
locations, e.g., stadiums or theatres, can be manually validated. Since there is no
pre-existing ground-truth to validate all results obtained from a given dataset,
we indirectly measure how good the extracted annotations are with location
clustering. In summary, the contributions of this paper are as follows:

– We model semantic annotations for locations based on the concepts of events
and event topics.

250 A. Le, M. Gertz, and C. Sengstock

Fig. 1. Conceptual framework for annotating event locations

– We propose a measure based on Pointwise Mutual Information to identify
significant event topics from a dataset of events.

– We develop two approaches: LTProfile-Miner to derive location annotations
from an event dataset, and LTProfile-Updater to deal with periodic updates
of that dataset.

– We demonstrate the utility of extracted annotations in semantic location
search and clustering by using real event data.

In the following section, we discuss related work. In Section 3, we introduce
the basic concepts and notations. We describe our method to extract semantic
annotations for locations in Section 4. After presenting some experimental results
in Section 5, we summarize the paper in Section 6.

2 Related Work

Basically, the term ‘annotation’ means to attach information (metadata) to ex-
isting data. An example is that Flickr users add tags to photos to describe the
photos. Since such human effort-based annotation systems are often noisy and
incomplete, there have been many approaches to automatically annotate objects
in different formats such as textual documents or photos, e.g., [4,7]. However,
extracting annotations from spatio-temporal data like event data raises many
challenges, e.g., annotations might differ among regions as well as over time, as
discussed in [5]. Thus, such approaches cannot be directly applied to extract
location annotations from event datasets. Nevertheless, the idea of word-context
matrices and a statistical measure successfully used in annotating textual docu-
ments, called Pointwise Mutual Information [10,14], can be utilized to estimate
correlations among locations, time, and event topics. This will be described in
more detail in Section 3.2.

Several approaches are similar to our work in extracting annotations from
spatio-temporal data. One direction of research relies on location information
from external sources, such as the Google Maps API to annotate locations [2,3].
These approaches first extract points of interest (e.g., stops from trajectory
data), and then annotate them with place categories (e.g., ‘hotel ’ or ‘museum’)
using external sources. Different from these approaches, we aim at extracting
not only place categories but also relevant event topics w.r.t. a given location,
important information that cannot be obtained from the above data sources.

An Event-Based Framework for the Semantic Annotation of Locations 251

Another direction of research aims at exploiting georeferenced social media
to describe and annotate geographic space. Rattenbury and colleagues proposed
several spatial clustering methods to identify Flickr tags corresponding to places
and/or events [11,12]. Such tags can then be used to annotate geographic space
on the basis of discovered clusters. Similarly, the approach in [13] aims at ex-
tracting latent geographic place semantics from Flickr data. Geographic space
can then be annotated using spatial distributions and coefficients of extracted
features. Although the above approaches focus on extracting annotations from
spatio-temporal data, they are only able to annotate geographic space in gen-
eral and not specific locations. Furthermore, these approaches do not explicitly
model locations, in particular, they do not consider location hierarchies.

To the best of our knowledge, little work has been done yet to annotate lo-
cations with semantic tags. The most related work is [15], where a technique is
proposed to annotate places with categorical tags such as ‘restaurant ’ or ‘cinema’
by utilizing user check-in data. Similarly, the approach in [6] exploits check-in
data to enrich places with semantic tags that are extracted from user interest-
profiles on social networks. These approaches rely on characteristics of check-in
data consisting of hidden user behaviors. Thus, they cannot be applied for event
datasets for the following reasons. First, these approaches require a significant
number of check-in records at a particular location and time to derive user be-
haviors. However, only few events occur at a particular location and time in
an event dataset. Moreover, a check-in record as described in these approaches
is a triple 〈user id, time, location〉 that does not contain semantic tags like an
event description. Thus, in their approaches, a candidate set of tags for loca-
tions needs to be either predefined or obtained from an external source (user
interest-profiles). Such a predefined set of tags is often small and only contains
general, categorical tags. Rather than focusing on categorical tags like the above
approaches, we aim at extracting more informative tags that can be used to
discriminate one location from another. We also take concept hierarchies for
time, locations and event topics into account, an important and useful piece of
information not considered by the above approaches.

3 Basic Concepts and Notations

In the two following sections, we describe the concepts of events and event com-
ponents to model semantic annotations for locations.

3.1 Events and Event Components

In this paper, an event is specified as a tuple 〈eid, C, T, L〉, where the first
component (eid) is the event identifier and the last three are the event topic
(context), time, and location, respectively, of that event. For example, a tuple e =
〈‘#10202 ’,‘Borussia Dortmund vs Bayern Munich’, ‘2013-06-27’, ‘Signal Iduna
Park’〉 describes a football match. The topic, time, and location components of
an event can be generalized to higher levels of abstraction and granularity, based
on hierarchies, as detailed below.

252 A. Le, M. Gertz, and C. Sengstock

(a) For event topics related to football (b) For time (c) For locations

Fig. 2. Example of hierarchies for concepts (event topics), time, and locations

In data sources managing information about public activities (e.g., festivals
or sports), an event topic (ET) is typically provided as a textual description,
e.g., ‘Borussia Dortmund vs Bayern Munich’ for a football game. An ET can
be generalized to higher levels of abstraction, based on a concept hierarchy. For
example, Figure 2(a) shows a simple hierarchy related to football, where the ET
‘Borussia Dortmund vs Bayern Munich’ can be generalized to ‘DFL Supercup’,
‘National Game’, and then ‘Football Game’. Such a hierarchy might be explicitly
provided, or it can be built using a learning approach.

We employ the operator ⇑ to compute the set of all generalizations for an ET
in a given hierarchy. For example, ‘DFL Supercup’⇑ is the set {‘National Game’,
‘Football Game’} based on the hierarchy shown in Figure 2(a). Event topics and
their generalizations are key ingredients of semantic annotations for locations.

The time component of an event is typically specified as a time point. Since
we focus on events such as festivals or sports, we assume that the time of an
event is of granularity Day. Based on a predefined time hierarchy, an event time
can be generalized to time concepts, e.g., a time point ‘2013-06-27 ’ can be gen-
eralized to ‘Friday’→‘BusinessDay’→‘All Time’, based on the time hierarchy in
Figure 2(b). We also use the operator ⇑ to compute the set of all generalizations
of a time point, e.g., ‘2013-06-27′⇑={‘Friday’, ‘BusinessDay’, ‘All Time’}.

Finally, the location component of an event is specified at a location granu-
larity. Since an event like a concert or a football game takes place at a particular
location, we assume that locations of events are of granularity Address. They
can be generalized to a coarser granularity like City or to a location concept
(place category) like ‘Stadium’, again based on a predefined hierarchy. Also here
we use the ⇑ operator to specify the generalizations of a location. For example,
‘Signal Iduna Park ’⇑ is the set {‘Dortmund ’, ‘Germany ’, ‘Stadium’, ‘All Loc’},
based on the hierarchy in Figure 2(c).

Given an event topic f1, a time concept T , and a location L, one might find
some events whose respective components are related to f , T , and L from a
given event dataset. The more such events are found, the more significant the
association of f , T , and L is. In reality, some associations are more significant
than others. For example, it is more likely to find events related to ice skating in

1 In this paper, we often use ‘e’ to denote an event and ‘f ’ to denote an event topic.

An Event-Based Framework for the Semantic Annotation of Locations 253

Winter than in Summer, or it is more likely to find a rock festival in some cities
than in other cities. To model such associations, we introduce the concepts of
Location-Time-pair Instance and Location-Time-pair Class.

3.2 Location-Time-Pair Instances and Classes

Let D be a dataset of events as 〈eid, C, T, L〉 tuples, where the time and location
components of each event are of granularityDay and Address, respectively. To for-
mulate the probability to find an event topic (ET) at a given location and time later
on, we define a Location-Time-pair Instance (LTI) as a pair [l, t], where l and t are
the location and time of some event in D. We use D[l, t] to denote a subset of D
consisting of events whose location and time components are l and t, respectively.
The set of LTIs with respect to a given dataset D of events is defined as

I(D) := {[l, t] | ∃e ∈ D, e.L = l ∧ e.T = t}. (1)

As mentioned before, a location l can be generalized to a concept L based
on a given location hierarchy. Similarly, a time point t can be generalized to a
time concept T , based on a time hierarchy. The pair [L, T] is called a Location-
Time-pair Class (LTC) and the LTI [l, t] is called an instance of that LTC. For
example, one can infer that [‘Signal Iduna Park ’, ‘2013-07-28 ’] is an instance of
[‘Stadium’, ‘Weekend ’]. The LTC set of a given event dataset D is defined as

C(D) := {[L, T] | ∃[l, t] ∈ I(D), L ∈ l⇑ ∧ T ∈ t⇑}. (2)

Given an LTC, it is straightforward to retrieve the set of its instances (LTIs).
For example, {[‘Signal Iduna Park ’, ‘2012-05-01 ’], [‘Signal Iduna Park ’, ‘2013-
07-28 ’], [‘Allianz Arena’, ‘2013-07-28 ’],...} is the set of instances for [‘Stadium’,
‘Weekend ’]. For eachLTI, event topics can then be derived from events in that LTI.
Therefore, it is reasonable to determine the correlationbetween a givenLTCandan
ET based on the occurrences of that ET in the LTC. Clearly, ETs that are strongly
related to an LTC are important to represent the characteristics of that LTC. For
example, topics such as ‘football ’ or ‘sport ’ are expected for [‘Stadium’, ‘Weekend’],
whereas ‘drink ’ or ‘live music’ are expected for [‘Bar/Club’,‘Weekend ’].

To formulate correlations as the ones mentioned above, we employ the Point-
wise Mutual Information (pmi) [14], commonly used in Computational Linguis-
tics. The pmi value for an ET f with respect to an LTC Ω is computed based on
the two following probabilities: (1) the probability to find f at any instance (LTI)
of Ω, i.e., the conditional probability P(f |Ω), and (2) the probability to find f
at any LTI in the dataset, i.e., P(f). More precisely, the measure is computed

as: pmi(f ;Ω) = log
(

P (f |Ω)
P (f)

)
= log

(
P (f,Ω)

P (f)P (Ω)

)
.

The pmi value of an ET f with respect to an LTCΩ represents the logarithmic
difference between the two probabilities P(f |Ω) and P(f). Thus, the pmi can
be zero, positive or negative. If it is zero, i.e., P(f |Ω) = P(f), f and Ω are
independent. If the value is positive, i.e., P(f |Ω) > P(f), the events related to f
occur more likely at Ω than at other LTCs. If the value is negative, i.e., P(f |Ω)

254 A. Le, M. Gertz, and C. Sengstock

< P(f), the events related to f more rarely occur at Ω than at other LTCs.
The pmi measure can be normalized to a value between [-1,+1], where -1 means
negatively correlated, 0 for independence, and +1 for perfectly correlated [1].

Definition 1. (Normalized Pmi) Given an event topic f and an LTC Ω, the
normalized pointwise mutual information (npmi) of f and Ω is defined
as:

npmi(f ;Ω) :=
pmi(f ;Ω)

− log (P (f,Ω))
=

log
(

P (f,Ω)
P (f)P (Ω)

)
− log (P (f,Ω))

∈ [−1, 1]. (3)

Since the npmi represents the difference between the probabilities P(f |Ω) and
P(f), it typically gives an ET a high score with respect to a given LTC if the ET
frequently occurs at that LTC but rarely at other LTCs. For example, with sport
events crawled from the Website eventful.com, the topics ‘borussia’, ‘dormund ’,
or ‘bundesliga’ get higher npmi scores than the topics ‘football ’ or ‘soccer ’ with
respect to an LTC [‘Signal Iduna Park ’, ‘Weekend ’]2. One can see that the first
three topics are better to identify that LTC, and thus, they have priority over
the last two topics to annotate the location ‘Signal Iduna Park ’.

Another advantage of the npmi measure is as follows. Since a frequency-based
measure like tf-idf always gives a non-negative value, it is not trivial for the user
to pick a good threshold in order to filter out irrelevant ETs. On the other hand,
a non-positive npmi value indicates an insignificant correlation between an ET
and an LTC. Thus, one can use any positive threshold δ to filter out irrelevant
ETs (whose npmi values are zero or negative). Based on a positive threshold δ,
one can select only ETs that have significant correlations to a given LTC. A set
of such event topics is called a Location-Time-Profile.

Definition 2. (Location-Time-Profile) Let D be a dataset of events and Ω
be an LTC in C(D). The profile of Ω with respect to a given threshold δ > 0 is
a set of ETs, defined as Profile(Ω) := {f ∈ e.C⇑| e ∈ D ∧ npmi(f ;Ω) ≥ δ}.

For a particular purpose such as location clustering where feature selection
can be viewed as a form of weighting, both npmi and tf-idf can be used. However,
as shown in our experiments later on, the npmi measure performs better than
tf-idf when considering semantic similarity between locations.

We now present our method to compute the npmi for a given ET f with
respect to an LTC Ω, based on a given event dataset D. For this, we count
the LTIs that support f , where an LTI [l, t] supports f iff there exists an event
e ∈ D[l, t] such that e is an instance of f . Based on that, we estimate the
probabilities P(f ,Ω), P(f), and P(Ω) as follows.

Let N be the size of the LTI set (i.e., I(D)), Nf the number of LTIs in
I(D) that support f , NΩ the number of LTIs in I(D) that are instances of Ω,

2 Signal Iduna Park is the home stadium of the Borussia Dortmund football team
playing in the German Bundesliga.

An Event-Based Framework for the Semantic Annotation of Locations 255

and Nf,Ω the number of instances of Ω that support f . The above probabilities

are estimated as: P (f,Ω) =
Nf,Ω

N , P (f) =
Nf

N , and P (Ω) = NΩ

N . Thus,

npmi(f ;Ω) =
log

(
P (f,Ω)

P (f)P (Ω)

)
− log(P (f,Ω))

=
log

(
Nf,ΩN
NfNΩ

)
− log

(
Nf,Ω

N

) =
log

(
Nf,ΩN
NfNΩ

)
log

(
N

Nf,Ω

) . (4)

4 LT-Profiles and Applications

In this section, we first introduce a novel algorithm to generate LT-Profiles from
an event dataset, and a scalable and efficient method to deal with periodic
updates of the input data. We then show how to convert such profiles into
location annotations. Finally, we describe how to exploit such information in
semantic location search and clustering.

4.1 Generating Location-Time-Profiles

Given a dataset D of events, a set H of hierarchies for generating ETs from
events and for generating location and time concepts, and a npmi threshold
δ, this section describes a procedure called LTProfile-Miner to determine all
profiles as defined in Definition 2.

Based on the Formulas (1) and (2), generating the set of LTIs (I(D)) and the
set of LTCs (C(D)) is straightforward. For each LTC Ω ∈ C(D), the set of ETs
belonging to Ω is generated from all events that belong to any instance (LTI) of
Ω. For each ET f in this set, the value of npmi(f ;Ω) needs to be computed and
compared with respect to the threshold δ. This can easily be done by counting
LTIs in the set I(D) and then applying Formula (4). However, such a method
is inefficient since the set I(D) will be scanned multiple times for all LTC-ET
pairs. Thus, we propose a more efficient method as follows.

We utilize two data structures, called Support ET and Support LTC, where
each one is a hash table mapping keys to LTI sets. Given an ET f , the set of
LTIs that support f is retrieved by using the hash table Support ET . This set is
denoted Support ET [f]. Let nf , ni, and nei be the number of ETs, the number
of LTIs (|I(D)|), and the average number of events of an LTI, respectively.
The runtime complexity to build Support ET is O(nfninei), since each element
(with respect to an ET) is computed by scanning through all the LTIs and
considering all events inside each LTI. Similarly, the hash table Support LTC
is used to retrieve the set of LTIs that are instances of a given LTC Ω, denoted
Support LTC[Ω]. The complexity to build Support LTC is O(ncni), where nc

is the number of LTCs (|C(D)|) and ni is the number of LTIs (|I(D)|).
Utilizing hash tables allows the values Nf , NΩ, and Nf,Ω in Equation (4)

to be computed with several set operations: Nf = |Support ET [f]|, NΩ =
|Support LTC[Ω]|, and Nf,Ω = |Support ET [f]

⋂
Support LTC[Ω]|. Thus, the

value of npmi(f ;Ω) for each pair of an LTC Ω and ET f can easily be computed.
Finally, the profile of each LTC Ω in C(D) is obtained based on Definition 2.

256 A. Le, M. Gertz, and C. Sengstock

4.2 Updating Location-Time-Profiles

In the previous section, we presented an approach to extract all LTProfiles from a
given dataset of events. Such a dataset consists of events in a certain time-interval
(e.g., [2011,2012]). Thus, the extracted profiles are only valid in this interval. In
reality, datasets are incrementally updated. For example, events in 2013 are
added to a dataset of events in [2011,2012]. Running again that procedure for
the merged dataset is a possible solution, which, however, is neither efficient
nor scalable. To adapt to periodic updates of event data, we propose another
procedure, called LTProfile-Updater.

Assume that after executing LTProfile-Miner, the following intermediate val-
ues are stored on a secondary storage: N , Nf (as an element of a list), NΩ (as an
element of a list), Nf,Ω (as an element of a matrix). Such data, called support-
data, contain sufficient information to extract profiles without considering the
original (previous) dataset D.

Let D∗ be the dataset of new events to update. It is reasonable to assume
that each event in D∗ occurred after all events in D, i.e., events in D∗ are newer
than events in D. Therefore, there is no overlap between the LTI sets of the two
datasets. Thus, the values of N , Nf , NΩ and Nf,Ω can be updated as: N = N
+ |I(D∗)|, Nf = Nf + |Support ET ∗[f]|, NΩ = NΩ + |Support LTC∗[Ω]|, and
Nf,Ω = Nf,Ω + |Support ET ∗[f]

⋂
Support LTC∗[Ω]|. Note that Support ET ∗

and Support LTC∗ are two hash tables computed from the update (D∗) with
the method described in the previous section.

Summing up, LTProfile-Updater first loads the support-data and then com-
bines it with the update (D∗) to update the current location profiles. Since this
procedure utilizes the support-data, only the update D∗ is scanned.

Based on LTProfile-Updater, an anytime approach to deal with very large
datasets works as follows. First, the events in a (large) dataset D are sorted
by the time attribute and distributed in increasing order into sub-datasets D0,
D1,. . . such that each Di fits into main memory. LTProfile-Miner is then called
to compute the support-data from D0. Finally, LTProfile-Updater is iteratively
called for each Di (i ≥ 1). If the mining process is interrupted after processing
Di, the results are valid until the latest time in Di.

4.3 Location Annotations

Location-Time-Profiles, each consisting of significant ETs at an LTC, can be
exploited to annotate locations. Here, we define a location annotation as a set,
where each element is a pair of an event topic and a time concept. For exam-
ple, annotation elements for a specific bar/club might be [‘jazz ’, ‘Tuesday’] or
[‘dancing’, ‘Weekend ’]. The formal definition is given as follows.

Definition 3. (Location Annotation) Let D be an event dataset. The anno-
tation of a location (or location concept) L is a set defined as:

Annotation(L) := {[f, T] | Ω = [L, T] ∈ C(D), f ∈ Profile(Ω)}.

An Event-Based Framework for the Semantic Annotation of Locations 257

4.4 Similarity Measure for Location Search and Clustering

To determine how similar two locations are, we define a similarity measure for
locations based on events. Basically, the more common event topics two loca-
tions have, the more similar they are. Given two locations L1 and L2, and their
annotations AL1 and AL2, respectively, the similarity between the two locations

is computed based on the Jaccard Index as: sim(L1, L2) =
|AL1∩AL2|
|AL1∪AL2| ∈ [0, 1].

This measure can be used to find locations that are similar to a given location
or just to rank the results, for example, in the query ‘Find all cities in the US
like Munich (in Germany) in terms of beer festivals ’.

To apply clustering, the dissimilarity distance between two locations L1, L2 is
computed as dist(L1, L2)=1-sim(L1, L2). Based on that, locations can be clus-
tered with one of the various clustering algorithms, e.g., hierarchical clustering.

5 Experimental Evaluation

We demonstrate the utility and efficiency of our approach using datasets crawled
from the Website eventful.com for different topics from 2011 to 2012. Our frame-
work is implemented in Java and runs with 24GB heap size. All experiments were
run on an Intel Xeon 2.27GHz with 48GB RAM, running Ubuntu 64bit. Before
presenting the results, we first describe the experimental setup.

5.1 Datasets and Experimental Setup

We crawled from the Website eventful.com for events in Germany and only
festivals in Europe to easily validate the results later on. As raw data, each event
consists of an event identifier, title, time, location, and a list of tags. Based on
tags, one can select events for a particular topic, e.g., ‘sports ’ or ‘music’.

As mentioned in Section 4.1, the runtime complexity of our algorithm de-
pends on not only the number of events but also the numbers of locations (more
precisely, LTIs). Hence, for evaluation purpose, we select different datasets in
various topics and sizes in terms of the number of events and locations. Table 1
shows five datasets used in our experiments, where the first two datasets (DE-
Festival and DE-Sports) are smaller than the last three. All events took place in
Germany (‘DE-’) or Europe (‘EU-’) in the years 2011 and 2012.

Table 1. Properties of datasets used in experiments

Dataset Topic Area
Number of Events Number of
2011 2012 Total Locations

DE-Sports sports Germany 1,335 1,673 3,008 960
DE-Festival festival Germany 1,278 1,654 2,932 1,515
EU-Festival festival Europe 13,592 20,561 34,143 18,018
DE-Music music Germany 24,756 32,398 57,154 12,591
DE-All all topics Germany 72,672 85,995 158,667 20,141

First, the raw data of events are transformed into the form 〈eid, C, T, L〉,
where eid is the event identifier, and the last three components are the following
attributes: the event identifier, start-time, and venue identifier, respectively. Note
that here the event identifiers are utilized for two purposes: to distinguish an

258 A. Le, M. Gertz, and C. Sengstock

event from others and to link event contexts to tags. We built a hierarchy for
tags based on the method described in [9]. The event location is of granularity
Address and can be generalized to City or Place Category. The time component
of an event in Day is generalized to Day of the Week (Mon, Tue, etc.), then
Businessday/Weekend (BD/WE), and finally All Time(AT).

With the above settings, we conducted a series of experiments to evaluate
our framework. In the following section, we present the results obtained from
extracting location annotations for the five datasets. We then demonstrate the
utility of these annotations in location clustering in Section 5.3. Finally, we show
the efficiency of LTProfile-Miner and LTProfile-Updater in Section 5.4.

5.2 Annotation Extraction

We run LTProfile-Miner to obtain LT-Profiles for the five datasets for the two
years (2011-2012). Then, annotations for locations are obtained using the method
described in Section 4.3. For each dataset, we tried different npmi thresholds
(δ). Basically, the larger the threshold δ, the less locations are annotated, but
the more confident the annotations are. For example, when δ = 0.1, about 70-
90% of the locations were annotated, whereas less than 30% of the locations
were annotated when δ > 0.5. Table 2 shows typical annotations we obtained.
Note that the words describing topics are stemmed, and an item of a location
annotation is followed by its npmi value, e.g., socc WE:0.39.

Based on these annotations, one can easily find locations related to some
given event topics. For example, NürnbergMesse (Germany) will be found when
we search for places related to ‘technology’ and ‘exhibition’, as shown in Table 2.
This can be explained by annual events related to computer software/hardware
or electronic systems that are located there, such as ‘embedded world ’.

From the extracted annotations, one can see that some annotations are obvi-
ous, for instance, the annotation of a cinema (e.g., Kino Babylon Mitte) contains
event topics related to film and movie festivals; or an exhibition center (e.g.,
Messe Essen) contains event topics related to ‘expo’, ‘industry’, or ‘tradeshow ’.
We also found some interesting relationships, such as a relationship between the
exhibition center Messe Essen and the topic ‘fashion’. This relationship is ex-
plained by a series of Modatex Fashion Fair events frequently occurring at that
location. From the dataset EU-Festival, we also discovered some cities in Europe
that are famous for their annual festivals . For instance, Torre del Lago, Peraso
(Italy), and Montpelier (France) are famous for opera festivals.

5.3 Location Clustering

We exploit the extracted annotations to cluster locations. Such clusters will
be utilized further to assign higher level semantic tags to locations or to build
taxonomies of locations, as described in Section 4.4. For this purpose, we employ
hierarchical clustering. The performance of location clustering is evaluated based
on the F-score measure, commonly used in document clustering [8]. First, we
describe how to obtain datasets with ground-truth for clustering evaluation.

An Event-Based Framework for the Semantic Annotation of Locations 259

Table 2. Example annotations extracted from the experimental datasets. Items in
each annotation are sorted by their npmi values.

Location/Granularity Annotation
DE-Sports

Signal Iduna Park -
Dortmund (Address)

{borussia Sat:0.66, borussia WE:0.61, borussia AT:0.56, bun-
desliga Sat:0.46, bundesliga WE:0.42, football WE:0.32, socc WE:0.29,...}

Oschersleben Sachsen-
Anhalt (City)

{circuitracing AT:0.81, circuitracing WE:0.77, motorsport AT:0.71, au-
tosport AT:0.70, racing AT:0.69, motorsport WE:0.68,...}

DE-Festival
Kino Babylon Mitte -
Berlin (Address)

{filmfestival BD:0.63, filmfestival Thu:0.63, movi BD:0.59, movi Thu:0.59,
film BD:0.55, film Thu:0.55, filmfestival AT:0.54, movi AT:0.50,...}

Messe Essen GmbH
(Address)

{expo Thu:0.66, fashion Sat:0.66, convention Thu:0.66, fashion WE:0.64,
homeexhibition Fri:0.58, industry AT:0.49, expo BD:0.48,...}

DE-Music
Bar/Night Club (Place
category)

{elektronic WE:0.55, hardstyl WE:0.55, nightlif WE:0.52, tranc WE:0.45,
rhythmnblu BD:0.43, elektronic AT:0.42, hardstyl AT:0.42,...}

Concert Hall (Place
category)

{philharmonieess AT:0.67, doommetal Tue:0.49, epic Tue:0.49, jamses-
sion Mon:0.48, monstrosity Wed:0.46, greatesthit Mon:0.46,...}

DE-ALL
Nürnberg Messe (Ad-
dress)

{softwar AT:0.62,expopromot AT:0.53,school&alumni AT:0.52,
tool AT:0.42, tradeshow AT:0.41,scienc AT:0.41, business AT:0.41,...}

Philharmonie Berlin
(Address)

{klassischekonzert AT:0.64, cultur AT:0.54, klassisch AT:0.54, classi-
cal AT:0.53, cultur WE:0.49, symphony WE:0.44, violin Mon:0.42,...}

EU-Festival
Torre del Lago - Tus-
cany - Italy (City)

{art&theatr AT:0.87, art&theatr BD:0.84, art&theatr WE:0.73,
opera AT:0.27, opera BD:0.26, opera Fri:0.24, opera WE:0.22,...}

LilianBaylisTheatre -
London (Address)

{ballet AT:0.80, ballet BD:0.77, ballet WE:0.69, clubbing WE:0.47,
nightlif WE:0.47, danc AT:0.40, theatr Wed:0.32, art Wed:0.28,...}

Since a location in our dataset can be generalized to a place category (e.g.,
‘Hotel ’, ‘Restaurant ’), we used such categories as ground-truth labels to eval-
uate location clustering, that is, locations of the same label are expected to
be in the same cluster. We also removed locations with blank labels or non-
categorical labels (e.g., ‘postal code’ or ‘named place’) because they produce
meaningless results in that clustering evaluation method. Since the number of
locations of different categories varies a lot (e.g., more than 100 for ‘Concert
Hall ’, ‘Bar/Club’, but less than 10 for ‘Hospital ’, ‘Library’), we finally selected
only the top 7 categories (each category contains more than 10 locations) and
generated datasets for clustering evaluation with a method as described below.

Let Lk
{C1,C2,...,Ck} be a dataset consisting of locations of k categories C1,

C2,..., Ck. Such a dataset is generated by choosing k categories from the top
categories, e.g., L2

{Stadium,Theater}. Let Gk be a group of generated datasets

containing the same number of categories (i.e., k categories). For example, G2

is a group of (72) = 21 datasets created by choosing 2 from the 7 categories, e.g.,
L2
{Stadium,Museum}, L

2
{Hotel,Museum} . Instead of presenting the F-score for each

individual dataset, we will show the mean F-score for each group Gk.
As mentioned in Section 3.2, an alternative to npmi is tf-idf that can be

employed to weight event topics for location clustering. Here, we compare the
performance of the npmi measure to the following versions of tf-idf that are
widely used. Given an event topic f and an LTC Ω, two versions of tf-idf, called
tf-idf1 and tf-idf2, are defined as tf-idf1(f,Ω) = Nf,Ω∗log(N

Nf
) and tf-idf2(f,Ω) =

(1+ log(Nf,Ω))∗ log(N
Nf

). The values N , Nf , and Nf,Ω are the number of LTCs,

the number of LTCs that contain ET f , and the number of instances of the LTC

260 A. Le, M. Gertz, and C. Sengstock

Ω that support f , respectively. Similar to the npmi measure, profiles of LTCs
can be computed with Definition 2, where npmi is replaced by either tf-idf1
or tf-idf2. For a particular dataset and a particular measure, the threshold δ
is selected so that the F-score is the largest. We use locations of the datasets
DE-All and EU-Festival to assess the performance of location clustering since
they covers all locations of the other datasets.

G2 G3 G4 G5

Complete-Link

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

G2 G3 G4 G5

Group-Average
F-

S
co

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

(a) Dataset DE-All

G2 G3 G4 G5

Complete-Link

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

G2 G3 G4 G5

Group-Average

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

(b) Dataset EU-Festival

Fig. 3. Comparison of the measures tf-idf1, tf-idf2, and npmi in hierarchical clustering.
The best result is achieved with the npmi measure.

DE-Sports DE-Festival EU-Festival DE-Music DE-All

M
in

ut
es

0
5

15
25

t1: mine-[2011]
t2: mine-[2011-2012]
t3: update-[2012]

Fig. 4. Runtime of LTP-Miner and LTP-Updater

Figure 3 shows the comparison of the npmi measure with tf-idf1 and tf-idf2 in
location clustering. Although different merging methods of hierarchical cluster-
ing were tried, due to space constraints, we present only results of two among
the best methods: complete-link and group-average. In general, using the npmi
measure gives the best result. A closer look at the generated profiles shows that a
profile generated by the npmi measure contains more event topics presenting the
characteristics of the corresponding location, as discussed in Section 3.2. In addi-
tion, one can see from Figure 3 that clustering on locations of the dataset DE-All
gives better results than clustering on locations of the dataset EU-Festival. This
is reasonable since it is more difficult to categorize locations of the latter dataset
consisting of narrow topics, i.e., event topics related to ‘festival ’.

We found many interesting clusters from the datasets. For example, we found
clusters of bars/clubs regarding their music genres (e.g., jazz or r&b/soul); or a
cluster of cities in Europe famous for opera festivals like Montpellier (France),
Torre del Lago (Italy), or Pesaro (Italy).

5.4 Runtime and LTP-Updater Efficiency

We show the runtime of LTProfile-Miner for each dataset and also demon-
strate the utility and efficiency of LTProfile-Updater. To do so, we split each

An Event-Based Framework for the Semantic Annotation of Locations 261

dataset in Table 1 into two parts, each corresponding to one year. For exam-
ple, from the dataset DE-Sports, we create two subdatasets DE-Sports[2011] and
DE-Sports[2012], where the first one consists of events in 2011 and the latter one
consists of events in 2012 of the dataset DE-Sports. From Table 1, one can see
that the number of events in 2012 is larger than in 2011 (about 20 to 50%).

For each triple of datasets (D, D[2011] and D[2012]), we measure the runtime
t1 for LTProfile-Miner on D[2011], the runtime t2 for LTProfile-Miner on D, and
the runtime t3 for LTProfile-Updater on D[2012] (with support-data extracted
from D[2011]). One can see the results in Figure 4. The first two datasets take
only a few seconds to process. The cases of EU-Festival and DE-Music illustrate
that the number of LTIs also affects the runtime. Although the number of events
of the dataset EU-Festival is smaller than the dataset DE-Music, the number of
locations of the dataset EU-Festival is larger, as shown in Table 1. In all cases,
the runtime t3 is larger than t1, because the number of events in 2012 is larger
than in 2011. However, in comparison to t2, the runtime t3 is much smaller for
both datasets. This shows that using the LTProfile-Updater is an efficient and
scalable approach to update the current location profiles with new data.

6 Conclusions and Ongoing Work

Event-based annotations of locations describe the event topics that are most
related to a location, together with the time when the events of such topics
most likely occur. We presented a comprehensive framework to extract such
annotations from event datasets. Our approach is based on Location-Time-pair
to associate a set of the most related event topics with a pair of a location
and time. We also showed a scalable and efficient method to deal with periodic
updates of event data. Our experimental results give a very good indication that
the extracted annotations can be utilized well for semantic location search as
well as clustering.

Using hierarchical clustering, taxonomies of locations can be built from anno-
tated locations. We are currently developing a method to encode such taxonomies
in RDF, and also to automatically link them to Linked Open Data sources. An-
other direction of current research focuses on exploiting negative npmi values
in outlier detection. Such a method is important to detect errors or inaccurate
information in event datasets.

References

1. Bouma, G.: Normalized (Pointwise) Mutual Information in Collocation Extraction.
In: Proceedings of the Biennial GSCL Conference (2009)

2. Cao, X., Cong, G., Jensen, C.S.: Mining Significant Semantic Locations From GPS
Data. Proceedings of the VLDB Endowment 3, 1009–1020 (2010)

3. Chakraborty, D., Spaccapietra, S., Parent, C.: SeMiTri: A Framework for Semantic
Annotation of Heterogeneous Trajectories. In: EDBT, pp. 259–270 (2011)

4. Wang, C., Blei, D., Fei-Fei, L.: Simultaneous image classification and annotation.
In: CVPR, pp. 1903–1910. IEEE (2009)

262 A. Le, M. Gertz, and C. Sengstock

5. Derczynski, L.R.A., Yang, B., Jensen, C.S.: Towards context-aware search and
analysis on social media data. In: EDBT, pp. 137–142. ACM Press (2013)

6. Hegde, V., Parreira, J.X., Hauswirth, M.: Semantic Tagging of Places Based on
User Interest Profiles from Online Social Networks. In: Serdyukov, P., Braslavski,
P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E.
(eds.) ECIR 2013. LNCS, vol. 7814, pp. 218–229. Springer, Heidelberg (2013)

7. Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annotation
of Wikipedia entities in web text. In: KDD. ACM Press (2009)

8. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document
clustering. In: KDD, pp. 16–22. ACM Press (1999)

9. Le, A., Gertz, M.: Mining Spatio-temporal Patterns in the Presence of Concept
Hierarchies. In: ICDM Workshops, pp. 765–772 (2012)

10. Pantel, P., Lin, D., Canada, A.T.H.: Discovering Word Senses from Text. In: KDD,
pp. 613–619. ACM Press (2002)

11. Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event
and place semantics from Flickr tags. In: SIGIR, pp. 103–110. ACM Press (2007)

12. Rattenbury, T., Naaman, M.: Methods for extracting place semantics from Flickr
tags. ACM Transactions on the Web 3, 1–30 (2009)

13. Sengstock, C., Gertz, M.: Latent Geographic Feature Extraction from Social Media.
In: SIGSPATIAL, pp. 149–158. ACM Press (2012)

14. Turney, P.D., Pantel, P.: From Frequency to Meaning: Vector Space Models of
Semantics. Journal of Artificial Intelligence Research 37, 141–188 (2010)

15. Ye, M., Shou, D., Lee, W.-C., Yin, P., Janowicz, K.: On the semantic annotation
of places in location-based social networks. In: KDD. ACM Press (2011)

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 263–275, 2014.
© Springer International Publishing Switzerland 2014

Observing a Naïve Bayes Classifier’s Performance
on Multiple Datasets

Boštjan Brumen, Ivan Rozman, and Aleš Černezel

University of Maribor, Faculty of Electrical Engineering and Computer science,
Smetanova 17, Si-2000 Maribor, Slovenia

(bostjan.brumen,i.rozman,ales.cernezel)@uni-mb.si

Abstract. General theories describing the performance of artificial learners are
of little help when a user is confronted with a selection of datasets and a given
artificial classifier. The objective of this paper is to find out the best description
of the learning curves produced by a Naïve Bayes classification. The perfor-
mance of Naïve Bayes was measured on 121 datasets using k-fold cross-
validation. Power, linear, logarithmic and exponential functions were fit to the
data. The exponential function was a better descriptor of the error rate in 44 of
60 useful cases. Average mean squared error is significantly different at
P=0,000 from power and linear and at P=0,001 from logarithmic function. The
exponential function’s rank is significantly different from the ranks of other
models (P=0,000). The results can be used to forecast the future performance of
the learner, or to check where on the learning curve the current measurement
lies.

Keywords: Machine Learning, Power Law, Naïve Bayes, Error rate, Learning
curve.

1 Introduction

Human cognitive performance was given quite a lot of attention in the research: the
power function is generally accepted as an appropriate description in psychophysics,
in skill acquisition, and in retention. Power curves have been observed so frequently,
and in such varied contexts, that the term “power law” is now commonplace [1, 2].

The power law best describes the data in quite many real situations [3]. Neverthe-
less, recently some arguments arose against the power law [4]: the main argument is
that it holds only on the aggregate level; on a specific learner’s level the exponential
law is much better. Thus, in human performance, the power law is a common descrip-
tion when describing a population of learners, and the exponential law when it comes
to a single person.

In the area of artificial intelligence generally, and in the area of learning outcomes
specifically, not much research is available [5]. Firstly, since the artificial learners are
finite automata, a description of a learning problem could be a functional dependency
between the data, the learning algorithm’s internal specifics and its performance (e.g.
error). The output (error rate) based on the input (data, selected learner) and learner’s

264 B. Brumen, I. Rozman, and A. Černezel

internal properties could have been determined analytically. Unfortunately, there is no
such method yet developed, and this holds true for every single artificial learner so far
devised. Secondly, standard numerical (and other statistical) methods become unsta-
ble when using large data sets [6]. Finally, estimates for the size of the confidence
interval on the training error under various settings of the problem of learning from
examples have been devised, i.e. the Vapnik-Chervonenkis theory [7] is the most
appropriate for describing the artificial learners. Due to its limitations (the most ob-
vious is that the oracle is never wrong) it cannot be used efficiently in the real life
situations [8]. The literature displays some findings for a specific learner and for spe-
cific data can (e.g. [9]). All in all, there is no general analytical solution, nor is there a
general estimative method available.

On the other hand, a learner’s performance can be measured on as many tasks (data
sets) as possible and the conclusion can be synthetized. However, not much research
was conducted on the description of performance of Naïve Bayes on a large scale
comparison using several different data sets. The classification trees were shown to be
predicted by a power law [10-12], but these studies were not using a large number of
datasets, nor were the results statistically significant. Due to the weaknesses of the
mentioned studies Singh found the evidence against the power law [13]. Which law
describes the performance of a selected artificial learner, in general, is thus generally
unknown, although such knowledge would help in optimization within knowledge
acquisition tasks [14].

In the paper we address the following research question: which of the following
functions, the power, exponential, linear, or logarithmic, is best describing the per-
formance of a selected artificial learner (in our case, the one based on the Naïve
Bayes)? Our null hypotheses are as follows:

• The mean difference between the function’s and function’s average
mean squared error equals 0.

• The median of differences between the function’s and function’s aver-
age rank equals 0.

Alternative hypotheses are that the mean squared error / median of differences are
different.

The main contribution of this paper is the answer to the question: “Which mathe-
matical function fits best a Naïve Bayes artificial classifier?”

2 Method

We have chosen a Naïve Bayes classifier [15] implemented in the Waikato Environ-
ment for Knowledge Analysis (WEKA) project toolkit [16, 17] version 3.6.8, with
standard built-in settings and initial values.

For statistical analyses we used IBM SPSS version 21.
In the following we describe the methods for data collection, data processing, and

measurements of the target values.

 Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets 265

2.1 Data Collection

We used publicly available datasets from University of California at Irvine (UCI)
Machine Learning Repository [18]. We selected the datasets where the problem task
is classification; the number of records in a dataset was larger than 200 and the num-
ber of instances exceeded the number of attributes (i.e. the task was classification, not
feature selection).

The UCI repository contains datasets in “.data” and “.names” format while Weka’s
native format is ARFF. Therefore we used files available from various sources, such
as TunedIT [19], Håkan Kjellerstrand’ weka page [20, 21] and Kevin Chai’s page
[22]. We gathered 121 datasets, listed in Table 1.

We used only the original or larger datasets where several ones were available and
ignored any separate training or test set, or any associated cost model.

2.2 Data Pre-processing

We followed the following steps for obtaining the error rate curve (i.e. learning curve)
[23]:

1. Data items in a data set are randomly shuffled
2. First, ni=1=50 items are chosen
3. Build decision trees using k-fold cross-validation on sample size of ni [24, 25]; k

was set to 10 [12, 24-26];
4. Measure the error rate for each tree in 10-fold run and average the result over 10

runs
5. Store the pair (ni=sample size, ei=error)
6. The number of items in a data set is increased by 10; ni+1:=ni+10
7. Repeat steps 3-6 until all data items in a dataset are used.

2.3 Fitting a Curve Model to the Measured Data

The next step in our research was to fit a model to the error rate curves. We used four
different functions, as in Equations (1)-(4):

 power (POW): (1)

 linear (LIN): (2)

 logarithm (LOG): log (3)

 exponential (EXP): (4)

The functions do not have the same number of parameters (). They all include

the constant 1 and coefficient 2, in addition to potent for the power and the
exponential function. Based on the specifics of the problem and the speed of conver-
gence we limited the parameters to the following intervals:

266 B. Brumen, I. Rozman, and A. Černezel

• to interval [0, 1] (error rate cannot be less than 0 and more than 1)
• to interval [0, 100] for power function and to [-100, 0] for the others, and
• to interval [-100, 0] (error rate is decreasing hence needs to be negative)

We used the open-source GNU Octave software [27] and the built-in Levenberg-
Marquardt’s algorithm [28, 29], also known as the damped least-squares (DLS) me-
thod, for fitting the function parameters to the data.

The inputs to the algorithm were vector (sample sizes n), vector (error rates
e), initial values of parameters ([0,01; 1; -0,1] for POW, [0,1; -0,001] for LIN,
[0,1; -0,01] for LOG and [0,01; 0,1; -0,01] for EXP), function to be fit to vectors ,
(power, linear, logarithm, or exponential), partial derivatives of functions with respect
to parameters , and limits of parameters (as described above).

The algorithm’s output were vector of functional values of fitted function for
put , vector of parameters , where minimum mean squared error was obtained, and
a flag whether the convergence was reached or not.

3 Results

For each dataset we tested the claim that the underlying data can be modeled by the
probability density functions POW, LIN, LOG and EXP, respectively. We used the
Pearson's chi-squared test (χ2), also known as the chi-squared goodness-of-fit test or
chi-squared test for independence, where the null hypothesis was H0: rμ = 0 or there is
no correlation between the population and the model [30], at α=0,05. Table 1 lists the
results: the values in bold are P values indicating that the null hypothesis is rejected,
the number of degrees of freedom (df), and the coefficient of determination R2 (indi-
cation how well a regression line fits a set of data). N/A indicates that the model was
not calculated because the Levenberg-Marquardt’s algorithm suggested a constant
model and hence χ2 cannot be computed.

Table 1. Datasets and respective P-values and r2 values for goodness of fit of a model to data

Dataset df
POW

P
POW

R2
LIN

P
LIN

R2
LOG

P
LOG

R2
EXP

P
EXP

R2
ada_agnostic 449 0,000 0,74 0,000 0,31 0,000 0,63 0,000 0,80
ada_prior 449 1,000 0,00 1,000 0,00 1,000 0,00 0,000 0,22
analcatdata_authorship 77 0,000 0,85 0,000 0,47 0,000 0,74 0,000 0,92
analcatdata_braziltourism 34 0,000 0,85 0,000 0,81 0,000 0,87 0,000 0,89
analcat
data_broadwaymult 21 0,008 0,27 0,017 0,22 0,008 0,27 0,006 0,29
analcatdata_dmft 72 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
analcatdata_halloffame 126 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
analcatdata_marketing 29 0,000 0,35 0,000 0,34 0,000 0,35 0,000 0,35
analcatdata_reviewer 30 0,000 0,33 0,000 0,42 0,000 0,34 0,000 0,42
anneal 82 1,000 0,00 0,721 0,00 1,000 0,00 0,152 0,02
anneal.ORIG 82 0,000 0,32 0,022 0,06 0,000 0,21 0,000 0,39
audiology 15 0,000 0,81 0,000 0,88 0,000 0,84 0,000 0,87
australian 61 0,000 0,38 0,013 0,09 0,002 0,15 0,000 0,46
autos 13 0,003 0,45 0,000 0,61 0,002 0,47 0,000 0,58

 Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets 267

Table 1. (Continued)

Dataset df
POW

P
POW

R2
LIN

P
LIN
R2

LOG
P

LOG
R2

EXP
P

EXP
R2

badges_plain 22 0,000 0,93 0,000 0,73 0,000 0,87 0,000 0,92
balance-scale 55 0,000 0,80 0,000 0,52 0,000 0,73 0,000 0,84
baseball-hitter 25 0,000 0,47 0,000 0,63 0,000 0,34 0,000 0,62
baseball-pitcher 13 0,119 0,15 0,641 0,01 0,428 0,04 0,034 0,27
BC 21 0,827 0,00 0,277 0,05 0,822 0,00 0,289 0,05
Billionaires92 16 0,832 0,00 0,446 0,03 0,830 0,00 0,450 0,03
biomed 13 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
breast-cancer 21 0,000 0,78 0,000 0,60 0,000 0,73 0,000 0,79
breast-w 62 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
car 165 0,000 0,88 0,000 0,73 0,000 0,90 0,000 0,93
cars_with_names 33 0,000 0,60 0,000 0,68 0,000 0,62 0,000 0,68
CH 312 0,000 0,86 0,000 0,26 0,000 0,60 0,000 0,92
cmc 140 0,000 0,59 0,000 0,17 0,000 0,31 0,000 0,66
colic 29 0,000 0,65 0,000 0,46 0,000 0,60 0,000 0,68
colic.ORIG 29 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
cps_85_wages 46 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
credit-a 61 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
credit-g 92 0,000 0,48 0,000 0,38 0,000 0,44 0,000 0,40
credit 41 0,000 0,86 0,000 0,79 0,000 0,87 0,000 0,88
csb_ch12 153 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
csb_ch9 316 0,000 0,56 0,000 0,26 0,000 0,40 0,000 0,57
cylinder-bands 46 0,000 0,78 0,000 0,55 0,000 0,69 0,000 0,73
db3-bf 39 0,000 0,75 0,000 0,73 0,000 0,76 0,000 0,78
dermatology 29 0,000 0,81 0,000 0,59 0,000 0,73 0,000 0,80
diabetes 69 0,000 0,42 0,000 0,30 0,000 0,42 0,000 0,49
ecoli 26 0,000 0,66 0,000 0,47 0,000 0,59 0,000 0,68
eucalyptus 66 0,000 0,54 0,000 0,48 0,000 0,54 0,000 0,53
eye_movements 1086 0,000 0,22 0,000 0,11 0,000 0,16 0,000 0,14
genresTrain 1242 1,000 0,00 0,001 0,01 0,000 0,02 0,000 0,55
gina_agnostic 339 0,000 0,69 0,000 0,47 0,000 0,66 0,000 0,67
gina_prior 339 0,834 0,00 0,073 0,01 0,831 0,00 1,000 0,00
gina_prior2 339 0,000 0,70 0,000 0,07 0,000 0,20 0,000 0,74
GL 14 N/A 0,00 1,000 0,00 N/A 0,00 1,000 0,00
glass 14 1,000 0,00 N/A 0,00 N/A 0,00 1,000 0,00
haberman 23 N/A 0,00 1,000 0,00 1,000 0,00 1,000 0,00
HD 23 0,580 0,01 0,583 0,01 0,580 0,01 0,582 0,01
heart-c 23 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
heart-h 22 0,242 0,06 0,078 0,12 0,229 0,06 0,082 0,12
heart-statlog 19 0,000 0,69 0,010 0,27 0,001 0,44 0,000 0,74
HO 29 1,000 0,00 N/A 0,00 1,000 0,00 1,000 0,00
HY 309 0,000 -0,12 0,000 0,10 0,000 0,25 0,000 0,81
hypothyroid 370 0,992 0,00 0,996 0,00 1,000 0,00 0,000 0,50
ionosphere 28 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
irish 42 0,000 0,77 0,000 0,86 0,000 0,85 0,000 0,89
jEdit_4.0_4.2 20 1,000 0,00 N/A 0,00 1,000 0,00 N/A 0,00
jEdit_4.2_4.3 29 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
jm1 1081 0,000 0,48 0,000 0,12 0,000 0,35 0,000 0,66
kc1 203 0,045 0,02 0,088 0,01 0,043 0,02 0,001 0,06
kc2 45 0,001 0,00 1,000 0,00 1,000 0,00 1,000 -0,01
kc3 38 0,098 0,07 0,137 0,05 0,098 0,07 0,072 0,08

268 B. Brumen, I. Rozman, and A. Černezel

Table 1. (Continued)

Dataset df
POW

P
POW

R2
LIN

 P
LIN
R2

LOG
P

LOG
R2

EXP
P

EXP
R2

kdd_ipums_la_97-small 694 0,000 0,47 1,000 0,00 0,001 0,02 1,000 0,00
kdd_ipums_la_98-small 741 0,000 0,26 1,000 0,00 1,000 0,00 0,000 0,32
kdd_ipums_la_99-small 877 1,000 0,00 1,000 0,00 1,000 0,00 0,216 0,00
kdd_synthetic_control 52 0,000 0,70 0,000 0,53 0,000 0,67 0,000 0,69
kr-vs-kp 312 0,000 0,79 0,000 0,19 0,000 0,44 0,000 0,78
kropt 2798 0,000 0,90 0,000 0,41 0,000 0,83 0,000 0,95
landsat 636 1,000 0,00 1,000 0,00 1,000 0,00 0,004 0,01
letter 1992 0,000 0,94 0,000 0,09 0,000 0,39 0,000 0,82
liver-disorders 27 1,000 0,00 N/A 0,00 1,000 0,00 1,000 0,00
mc1 939 1,000 0,00 0,999 0,00 0,998 0,00 1,000 0,00
mfeat-factors 192 0,000 0,93 0,000 0,28 0,000 0,53 0,000 0,91
mfeat-fourier 192 0,000 0,70 0,000 0,18 0,000 0,31 0,000 0,74
mfeat-karhunen 192 0,995 -0,81 0,000 0,18 0,000 0,45 0,000 0,97
mfeat-morphological 192 0,187 0,01 0,235 0,01 0,190 0,01 0,000 0,08
mfeat-pixel 192 0,000 0,96 0,000 0,28 0,000 0,60 0,000 0,98
mfeat-zernike 192 0,000 0,78 0,000 0,12 0,000 0,32 0,000 0,84
monks-problems-1_test 36 N/A 0,00 1,000 0,00 1,000 0,00 1,000 0,00
monks-problems-2_test 36 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
monks-problems-3_test 36 1,000 0,00 1,000 0,00 0,429 0,00 1,000 0,00
mozilla4 1547 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
MU 805 0,000 0,94 0,000 0,74 0,000 0,95 0,000 0,92
mushroom 805 0,000 0,94 0,000 0,64 0,000 0,92 0,000 0,90
mw1 33 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
nursery 1288 0,000 0,51 0,000 0,21 0,000 0,44 0,000 0,54
optdigits 554 0,000 0,98 0,000 0,21 0,000 0,52 0,000 0,93
page-blocks 540 N/A -0,77 1,000 0,00 0,005 0,01 0,985 0,00
pc1 103 0,000 0,94 0,000 0,44 0,000 0,74 0,000 0,92
pc3 149 1,000 0,00 0,000 0,00 0,994 0,00 0,934 0,00
pc4 138 0,000 0,09 0,000 0,25 0,000 0,10 0,000 0,24
pendigits 1092 0,000 0,88 0,000 0,22 0,000 0,57 0,000 0,79
primary-tumor 26 0,000 0,40 0,006 0,24 0,003 0,28 0,000 0,65
prnn_fglass 14 1,000 0,00 N/A 0,00 N/A 0,00 1,000 0,00
prnn_synth 17 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
rmftsa_propores 21 0,001 0,38 0,000 0,49 0,001 0,39 0,000 0,48
schizo 26 0,907 0,00 1,000 0,00 1,000 0,00 1,000 0,00
scopes-bf 55 0,916 0,00 0,944 0,00 0,962 0,00 0,042 0,07
SE 309 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
segment 223 1,000 0,00 1,000 0,00 0,947 0,00 1,000 0,00
sick 370 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
sonar 13 0,045 0,24 0,364 0,06 0,164 0,12 0,028 0,28
soybean 61 0,000 0,95 0,000 0,71 0,000 0,90 0,000 0,92
spambase 453 0,000 0,51 0,000 0,47 0,000 0,52 0,000 0,52
splice 311 0,000 0,96 0,000 0,47 0,000 0,81 0,000 0,90
sylva_agnostic 1432 0,996 0,00 0,999 0,00 1,000 0,00 0,000 0,46
sylva_prior 1432 1,000 0,00 1,000 0,00 1,000 0,00 0,000 0,20
tic-tac-toe 88 0,130 0,03 0,002 0,10 0,123 0,03 0,002 0,10
ticdata_categ 575 1,000 0,00 1,000 0,00 1,000 0,00 0,998 0,00
titanic 213 0,000 0,76 0,000 0,16 0,000 0,46 0,000 0,87
train 492 0,000 0,78 0,000 0,40 0,000 0,71 0,000 0,82
usp05 13 0,000 0,84 0,000 0,82 0,000 0,84 0,000 0,85

 Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets 269

Table 1. (Continued)

Dataset df
POW

P
POW

R2
LIN

 P
LIN
R2

LOG
P

LOG
R2

EXP
P

EXP
R2

V1 36 1,000 0,00 1,000 0,00 N/A 0,00 0,206 0,04
vehicle 77 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
visualizing_fly 75 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
VO 36 1,000 0,00 0,775 0,00 1,000 0,00 N/A 0,00
vote 36 1,000 0,00 1,000 0,00 1,000 0,00 1,000 0,00
vowel 91 0,000 0,63 0,000 0,56 0,000 0,63 0,000 0,59
waveform-5000 492 0,000 0,35 0,000 0,20 0,000 0,28 0,000 0,31

It can be observed that out of 121 datasets, (only) 60 are such that all the models

can be used to describe the data. The remaining datasets are such that the model does
not describe the classifier’s performance adequately, so we eliminated those from our
further study because they cannot be compared. These datasets are such that the Naïve
Bayes algorithm cannot be used, i.e. the algorithm is inappropriate for the problem
domain. In these cases other algorithms and/or approaches need to be used [31].

From the vector of fitted function’s values () and from the vector we calculated
the mean squared error (MSE) of jth dataset (DS), using Equation 5:

 ∑
 (5)

where n is the number of input points, i.e. the size of a vector, for each individual data
set DSj. MSE describes how well the observed points fit to the modeled function. The
average MSEs for each dataset are listed in Table 2, together with the rank of func-
tion’s model. The model with lowest average MSE gets assigned rank 1. It can be
seen that EXP is the best fit for the data in 44 of 60 cases, POW is best in 9 out of 60
times, LOG in 7 out of 60 cases, and LIN in none out of 60 cases. Average MSEs
across all datasets were 0,000437 for EXP, 0,000501 for POW, 0,000692 for LOG,
and 0,000806 for LIN.

Table 2. Datasets and the average MSE across function models, and the model’s rank (bold
values indicate rank #1)

Dataset

Average
MSE

(power)
POW
rank

Average
MSE

(linear)
LIN

rank

Average
MSE

(loga-
rithm)

LOG
rank

Average
MSE

(exponent)
EXP
rank

ada_agnostic 0,000216 2 0,000315 4 0,000230 3 0,000193 1
analcatda-
ta_authorship 0,000178 3 0,000229 4 0,000151 2 0,000113 1
analcatda-
ta_braziltourism 0,000514 4 0,000409 2 0,000466 3 0,000375 1
analcatda-
ta_broadwaymult 0,002259 4 0,002217 2 0,002250 3 0,002186 1
analcatda-
ta_marketing 0,000513 2 0,000507 1 0,000526 3 0,000539 4
analcatda-
ta_reviewer 0,001129 4 0,001043 1 0,001123 3 0,001048 2
anneal.ORIG 0,000649 2 0,000690 4 0,000656 3 0,000619 1

270 B. Brumen, I. Rozman, and A. Černezel

Table 2. (Continued)

Dataset

Average
MSE

(power)
POW
rank

Average
MSE

(linear)
LIN

rank

Average
MSE

(loga-
rithm)

LOG
rank

Average
MSE

(exponent)
EXP
rank

audiology 0,000615 2 0,000688 3 0,000725 4 0,000399 1
australian 0,000383 2 0,000604 4 0,000529 3 0,000331 1
autos 0,002046 4 0,001892 1 0,002026 3 0,001909 2
badges_plain 0,000066 2 0,000142 4 0,000089 3 0,000064 1
balance-scale 0,000325 3 0,000405 4 0,000324 2 0,000271 1
baseball-hitter 0,000801 3 0,000716 1 0,000838 4 0,000720 2
breast-cancer 0,001188 2 0,001410 4 0,001270 3 0,001080 1
car 0,000710 3 0,000740 4 0,000634 2 0,000537 1
cars_with_names 0,001191 4 0,001098 2 0,001177 3 0,001095 1
CH 0,000238 2 0,000655 4 0,000354 3 0,000162 1
cmc 0,002193 2 0,003457 4 0,003272 3 0,001845 1
colic 0,000318 3 0,000344 4 0,000312 2 0,000274 1
credit-g 0,000413 2 0,000589 4 0,000526 3 0,000388 1
credit 0,000258 4 0,000248 2 0,000250 3 0,000221 1
csb_ch9 0,000371 2 0,000600 4 0,000475 3 0,000353 1
cylinder-bands 0,001191 2 0,002058 4 0,001884 3 0,001026 1
db3-bf 0,000948 4 0,000845 2 0,000921 3 0,000818 1
dermatology 0,000128 2 0,000158 4 0,000129 3 0,000111 1
diabetes 0,000322 4 0,000308 2 0,000319 3 0,000295 1
ecoli 0,000326 2 0,000413 4 0,000354 3 0,000284 1
eucalyptus 0,000522 2 0,000575 4 0,000537 3 0,000512 1
eye_movements 0,000344 1 0,000384 4 0,000368 3 0,000359 2
gina_agnostic 0,000343 2 0,000409 4 0,000350 3 0,000327 1
gina_prior2 0,000228 2 0,000917 4 0,000678 3 0,000201 1
heart-statlog 0,000217 2 0,000367 4 0,000291 3 0,000186 1
HY 0,000125 4 0,000045 3 0,000033 2 0,000011 1
irish 0,000095 4 0,000062 1 0,000079 3 0,000064 2
jm1 0,000083 2 0,000104 4 0,000087 3 0,000069 1
kdd_synthetic_co
ntrol 0,000308 4 0,000142 3 0,000125 2 0,000097 1
kr-vs-kp 0,000274 1 0,000649 4 0,000447 3 0,000283 2
kropt 0,000198 2 0,000512 4 0,000212 3 0,000144 1
letter 0,000080 1 0,001079 4 0,000675 3 0,000179 2
mfeat-factors 0,000536 2 0,002423 4 0,001696 3 0,000296 1
mfeat-fourier 0,000396 2 0,001417 4 0,001052 3 0,000337 1
mfeat-pixel 0,000081 2 0,000885 4 0,000399 3 0,000042 1
mfeat-zernike 0,000386 2 0,001299 4 0,001056 3 0,000209 1
MU 0,000010 1 0,000022 4 0,000010 2 0,000011 3
mushroom 0,000018 1 0,000043 4 0,000019 2 0,000019 3
nursery 0,000073 1 0,000082 3 0,000073 2 0,000125 4
optdigits 0,000292 2 0,001637 4 0,000891 3 0,000161 1
pc1 0,002179 1 0,006821 4 0,005871 3 0,002217 2
pc4 0,000561 4 0,000523 1 0,000542 2 0,000547 3
pendigits 0,000100 1 0,000404 4 0,000212 3 0,000125 2
primary-tumor 0,001002 2 0,001437 3 0,001546 4 0,000425 1
rmftsa_propores 0,000420 4 0,000400 1 0,000419 3 0,000401 2
soybean 0,000145 2 0,000467 4 0,000220 3 0,000143 1
spambase 0,000301 2 0,000325 4 0,000318 3 0,000282 1
splice 0,000095 1 0,000471 4 0,000193 3 0,000114 2

 Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets 271

Table 2. (Continued)

Dataset

Average
MSE

(power)
POW
rank

Average
MSE

(linear)
LIN

rank

Average
MSE

(loga-
rithm)

LOG
rank

Average
MSE

(exponent)
EXP
rank

titanic 0,000228 2 0,000503 4 0,000319 3 0,000157 1
train 0,000113 2 0,000182 4 0,000123 3 0,000105 1
usp05 0,000205 4 0,000203 3 0,000200 2 0,000195 1
vowel 0,000516 2 0,000653 4 0,000559 3 0,000497 1
waveform-5000 0,000096 2 0,000118 4 0,000108 3 0,000094 1
AVERAGE MSE 0,000501 0,000806 0,000692 0,000437
RANK SUM 144 201 172 83

As can be observed, the EXP had rank-sum of 83 and an average MSE of

0,000437. Please note that the rank is an ordinal value and hence calculating its mean
value is inappropriate [30, p.472].

Finally, the main research question was tested: which model was best? To reph-
rase, was EXP with the rank-sum of 83 and average MSE of 0,000437 significantly
better than second-best POW with rank-sum of 144 and average MSE of 0,000501?

To test the significance of difference in MSE we used paired samples t-test for all
combinations of models. The null hypotheses, the mean of differences between and equals 0, were as follows: H10:μMSE/power=μMSE/linear;
H20:μMSE/power=μMSE/logarithmic; H30:μMSE/power=μMSE/exponential; H40:μMSE/linear=μMSE/logarithm;
H50:μMSE/linear=μMSE/exponential; and H60:μMSE/logaritmic=μMSE/exponential.

Because we conducted six interrelated comparisons, we used the Bonferroni cor-
rection to counteract the problem of multiple comparisons [32]. The correction is
based on the idea that if an experimenter is testing n dependent or independent hypo-
theses on a set of data, then one way of maintaining the family-wise error rate is to
test each individual hypothesis at a statistical significance level of 1/n times what it
would be if only one hypothesis were tested. We would normally reject the null hypo-
thesis if P<0.05. However, Bonferroni correction requires a modified rejection thre-
shold for P, α=(0,05/6)=0,008. Table 3 lists the results of statistical analysis for all six
comparisons, with values in bold indicating significance at modified α level.

The results show that exponential function’s average mean squared error is signifi-
cantly different at any reasonable threshold from average MSE power (P=0,000) li-
near (P=0,000) and logarithmic function (P=0,001), regardless if using the Bonferroni
correction or not. Thus, all hypotheses H10 - H60 need to be rejected.

Additionally, we tested whether the ranks of functions are statistically significantly
different from each other. We used related samples Wilcoxon’s signed rank test. The
null hypotheses, the median of differences between and equals
0, were as follows: H70:μ½RANK / power = μ

½RANK / linear; H80:μ ½RANK / power = μ
½RANK / loga-

rithmic; H90:μ ½RANK / power = μ
½RANK / exponential; H100:μ ½RANK / linear = μ

½RANK / logarithm;

H110:μ ½RANK / linear = μ
½RANK / exponential and H120:μ ½RANK / logarithmic = μ

½RANK / exponential.

272 B. Brumen, I. Rozman, and A. Černezel

Table 3. Paired samples t-test for MSE

Paired Samples Test
 Paired Differences t df Sig.

(2-
tailed)

Mean Std.
Deviation

Std.
Error
Mean

95% Confidence Interval
of the Difference

Lower Upper

Pair
1

POW (avg.
MSE):
LIN (avg. MSE)

-,0003047 ,0007021 ,0000906 -,0004861 -,0001233 -3,36 59 ,001

Pair
2

POW (avg.
MSE):
LOG (avg. MSE)

-,0001910 ,0005340 ,0000689 -,0003289 -,0000530 -2,77 59 ,007

Pair
3

POW (avg.
MSE):
EXP (avg. MSE)

,0000645 ,0001028 ,0000133 ,0000379 ,0000910 4,85 59 ,000

Pair
4

LIN (avg. MSE):
LOG (avg. MSE)

,0001137 ,0002073 ,0000268 ,0000602 ,0001673 4,24 59 ,000

Pair
5

LIN (avg. MSE):
EXP (avg. MSE)

,0003691 ,0007168 ,0000925 ,0001840 ,0005543 3,98 59 ,000

Pair
6

LOG (avg. MSE):
EXP (avg. MSE)

,0002554 ,0005558 ,0000718 ,0001118 ,0003990 3,56 59 ,001

Table 4 lists the results of Wilcoxon’s signed rank test analysis for all six compari-

sons, with values in bold indicating significance at the Bonferroni-modified α=0,008
level.

Table 4. Wilcoxon signed rank test for different function models

Pair # Pair Sig. (2-tailed)
Pair 1 POW (rank) – LIN (rank) 0,001
Pair 2 POW (rank) – LOG (rank) 0,005
Pair 3 POW (rank) – EXP (rank) 0,000
Pair 4 LIN (rank) – LOG (rank) 0,004
Pair 5 LIN (rank) – EXP (rank) 0,000
Pair 6 LOG (rank) – EXP (rank) 0,000

The results show that exponential function’s average rank is significantly different
at any reasonable threshold from average rank of any other model (for all such cases
P=0,000). Thus, all the above mentioned hypotheses H70 to H120 need to be rejected.

4 Conclusion

In this paper we conducted an analysis of an error rate curve produced by a selected
Naïve Bayes classifier. The results show that, in average, the best mathematical de-
scription of a Naïve Bayes learner is the exponential function. The results were con-
sistent when using the mean squared error measure (P=0,000 to 0,001 for t-test) and
the rank assignment (P=0,000 for Wilcoxon’s test). Logarithmic and power functions
can, however, be superior in a limited number of specific cases whereas linear model
cannot be considered as appropriate at all. We observed the learner on 60 different
tasks and the exponential function was superior in 44 cases. Of the remaining 16

 Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets 273

cases, its average mean squared error was within 95 % of the winner’s in 9 cases and
within 90 % in additional 3 cases. In only 4 cases out of 60 (6,6 %) the other func-
tions performed much better. These findings are in line with outcomes observed by
Heathcote et al. [4] in the measurements of human cognitive performance.

The contribution of the presented work is important in many respects: firstly, the
exponential model can be used to forecast the future performance of a Naïve Bayes
learner based on a small training sample. Sometimes it is prohibitive expensive to
conduct a full scale analysis due to limited resources [33], e.g. in measuring the losses
in synchronous motor [34-38]. Secondly, the findings are important in an on-line
learning scenario where algorithms should act in dynamic environments with conti-
nuous data flow; the actual decision model must first make a prediction and then up-
date the current model with new data. When to update depends on optimizing the cost
of updating of the model [39, 40]. The drift detection in the learning process [41] can
be additionally verified by checking a deviation from the appropriate model. Thirdly,
the results can help the operator to check where on the learning curve the current
measurement lies (steeply sloping portion early in the curve, a more gently sloping
middle portion, and a plateau late in the curve), thus enabling her to get an early in-
sight in the possible future data needs [42, 43].

Fourthly, early in the learning phase one can fit the model’s parameters and estimate
the final error rate. In case the estimated final performance is lower than required, one
can modify the learner’s parameters early in the process. Lastly, the results of our expe-
riment show that some datasets exist where modelling of the artificial learner’s perfor-
mance is not successful due to the inability of a learner to properly capture the data
interrelations. This too could be detected early in the learning process to avoid unneces-
sary algorithm runs, involving sometimes expensive additional data collection.

Acknowledgements. This work was partially supported by the Slovenian Research
Agency under grant number 1000-11-310138.

References

1. Anderson, J.R., Schooler, L.J.: Reflections of the Environment in Memory. Psychological
Science 2(6), 396–408 (1991)

2. Anderson, R.B.: The power law as an emergent property. Memory & Cognition 29(7),
1061–1068 (2001)

3. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data.
SIAM Review 51(4), 661–703 (2009), doi:10.1137/070710111

4. Heathcote, A., Brown, S., Mewhort, D.J.K.: The power law repealed: The case for an ex-
ponential law of practice. Psychonomic Bulletin & Review 7(2), 185–207 (2000),
doi:10.3758/bf03212979

5. Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Techniques.
Informatica (Ljubljana) 31(3), 249–268 (2007)

6. Dzemyda, G., Sakalauskas, L.: Large-Scale Data Analysis Using Heuristic Methods. In-
formatica (Lithuan.) 22(1), 1–10 (2011)

7. Vapnik, V.N.: Estimation of Dependences Based on Empirical Data. Springer, NY (1982)
8. Brumen, B., Jurič, M.B., Welzer, T., Rozman, I., Jaakkola, H., Papadopoulos, A.: Assess-

ment of classification models with small amounts of data. Informatica (Lithuan.) 18(3),
343–362 (2007)

274 B. Brumen, I. Rozman, and A. Černezel

9. Dučinskas, K., Stabingiene, L.: Expected Bayes Error Rate in Supervised Classification of
Spatial Gaussian Data. Informatica (Lithuan.) 22(3), 371–381 (2011)

10. Frey, L.J., Fisher, D.H.: Modeling decision tree performance with the power law. In: Se-
venth International Workshop on Artificial Intelligence and Statistics. Morgan Kaufmann,
Ft. Lauderdale (1999)

11. Last, M.: Predicting and Optimizing Classifier Utility with the Power Law. In: 7th IEEE
International Conference on Data Mining, ICDM Workshops 2007. IEEE, Omaha (2007),
doi:10.1109/icdmw.2007.31

12. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Fifth International
Conference on Knowledge Discovery and Data Mining. ACM, San Diego (1999)

13. Singh, S.: Modeling Performance of Different Classification Methods: Deviation from
the Power Law. Project Report. Vanderbilt University, Nashville, Tennessee, USA,
Department of Computer Science (2005)

14. Dzemyda, G., Sakalauskas, L.: Optimization and Knowledge-Based Technologies. Infor-
matica (Lithuan.) 20(2), 165–172 (2009)

15. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In:
Eleventh Conference on Uncertainty in Artificial Intelligence, August 18-20. Morgan
Kaufmann, San Francisco (1995)

16. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005) ISBN: 0120884070

17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18
(2009)

18. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2010),
http://archive.ics.uci.edu/ml/datasets.html (Archived by WebCite®
at http://www.webcitation.org/6C2hgsRrX)

19. TunedIT. TunedIT research repository (2012),
http://tunedit.org/search?q=arff&qt=Repository (accessed: December
12, 2012) (Archived by WebCite® at
http://www.webcitation.org/6CqplN6Xr)

20. Kjellerstrand H.: My Weka page (2012), http://www.hakank.org/weka/
(accessed: December 12, 2012) (Archived by WebCite® at
http://www.webcitation.org/6Cqq5pQtZ)

21. Kjellerstrand, H.: My Weka page/DASL (2012),
http://www.hakank.org/weka/DASL/ (accessed: December 12, 2012) (Archived
by WebCite® at http://www.webcitation.org/6CqqCwPmy)

22. Chai, K.: Kevin Chai Datasets (2012), http://kevinchai.net/datasets
(accessed: December 12, 2012) (Archived by WebCite® at
http://www.webcitation.org/6CqqWlQEp)

23. Brumen, B., Hölbl, M., Harej Pulko, K., Welzer, T., Heričko, M., Jurič, M.B., Jaakkola,
H.: Learning Process Termination Criteria. Informatica (Lithuan.) 23(4), 521–536 (2012)

24. Cohen, P.R.: Empirical methods for artificial intelligence. MIT Press, Cambridge (1995)
ISBN: 9780262032254

25. Weiss, S.M., Kulikowski, C.A.: Computer systems that learn: classification and prediction
methods from statistics, neural nets, machine learning, and expert systems. Morgan Kauf-
mann, San Mateo (1991) ISBN: 978-1558600652

26. McLachlan, G.J., Do, K.-A., Ambroise, C.: Analyzing microarray gene expression data.
Wiley, Hoboken (2004) ISBN: 0471226165

 Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets 275

27. Eaton, J.W.: GNU Octave (2012), http://www.gnu.org/software/octave/
(accessed: December 12, 2012) (Archived by WebCite® at
http://www.webcitation.org/6CqyEvDKU)

28. Marquardt, D.W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters.
Journal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963),
doi:10.2307/2098941

29. Levenberg, K.: A Method for the Solution of Certain Non-Linear Problems in Least
Squares. Quarterly of Applied Mathematics 2, 164–168 (1944)

30. Argyrous, G.: Statistics for research: With a guide to SPSS, 3rd edn. SAGE Publications
Ltd., Thousand Oaks (2011) ISBN: 1849205957

31. Medvedev, V., Dzemyda, G., Kurasova, O., Marcinkevicijus, V.: Efficient Data Projection
for Visual Analysis of Large Data Sets Using Neural Networks. Informatica (Lithuan.)
22(4), 507–520 (2011)

32. Abdi, H.: The Bonferonni and Šidák Corrections for Multiple Comparisons. In: Salkind,
N.J. (ed.) Encyclopedia of Measurement and Statistics. SAGE Publications, Inc., Thousand
Oaks (2007) ISBN: 9781412916110

33. Pragarauskaite, J., Dzemyda, G.: Markov Models in the Analysis of Frequent Patterns in
Financial Data. Informatica (Lithuan.) 24(1), 87–102 (2014)

34. Pišek, P., Štumberger, B., Marčič, T., Virtič, P.: Design analysis and experimental valida-
tion of a double rotor synchronous PM machine used for HEV. IEEE Transactions on
Magnetics 49(1), 152–155 (2013), doi:10.1109/TMAG.2012.2220338

35. Virtič, P.: Determining losses and efficiency of axial flux permanent magnet synchronous
motor. Przeglęad Elektrotechniczny 89(2b), 13–16 (2013)

36. Virtič, P., Pišek, P., Hadžiselimović, M., Marčič, T., Štumberger, B.: Torque analysis of an
axial flux permanent magnet synchronous machine by using analytical magnetic field cal-
culation. IEEE Transactions on Magnetics 45(3), 1036–1039 (2009),
doi:10.1109/TMAG.2009.2012566

37. Virtič, P., Pišek, P., Marčič, T., Hadžiselimović, M., Štumberger, B.: Analytical analysis
of magnetic field and back electromotive force calculation of an axial-flux permanent
magnet synchronous generator with coreless stator. IEEE Transactions on Magnet-
ics 44(11), 4333–4336 (2008)

38. Hadžiselimović, M., Virtič, P., Štumberger, G., Marčič, T., Štumberger, B.: Determining
force characteristics of an electromagnetic brake using co-energy. Journal of Magnetism
and Magnetic Materials 320(20), e556-e561 (2008), doi: 10.1016/j.jmmm.2008.04.013

39. Castillo, G., Gama, J.: Adaptive Bayesian network classifiers. Intelligent Data Analy-
sis 13(1), 39–59 (2009), doi:10.3233/IDA-2009-0355

40. Castillo, G., Gama, J.: An adaptive prequential learning framework for Bayesian network
classifiers. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 67–78. Springer, Heidelberg (2006)

41. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan,
A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer,
Heidelberg (2004)

42. Cipresso, P., Carelli, L., Solca, F., Meazzi, D., Meriggi, P., Poletti, B., Lulé, D., Ludolph,
A.C., Silani, V., Riva, G.: The use of P300-based BCIs in amyotrophic lateral sclerosis:
from augmentative and alternative communication to cognitive assessment. Brain and
Behavior 2(4), 479–498 (2012), doi:10.1002/brb3.57

43. Cipresso, P., Paglia, F., Cascia, C., Riva, G., Albani, G., La Barbera, D.: Break in volition:
a virtual reality study in patients with obsessive-compulsive disorder. Experimental Brain
Research 229(3), 443–449 (2013), doi:10.1007/s00221-013-3471-y

A Parallel Algorithm for Building iCPI-trees�

Witold Andrzejewski and Pawel Boinski

Poznan University of Technology, Institute of Computing Science,
Piotrowo 2, 60-965 Poznan, Poland

{witold.andrzejewski,pawel.boinski}@cs.put.poznan.pl

Abstract. In spatial databases collocation pattern discovery is one of
the most interesting fields of data mining. It consists in searching for
types of spatial objects that are frequently located together in a spatial
neighborhood. With the advent of data gathering techniques, huge vol-
umes of spatial data are being collected. To cope with processing of such
datasets a GPU accelerated version of the collocation pattern mining
algorithm has been proposed recently [3]. However, the method assumes
that a supporting structure that contains information about neighbor-
hoods (called iCPI-tree) is given in advance. In this paper we present a
GPU-based version of iCPI-tree generation algorithm for the collocation
pattern discovery problem. In an experimental evaluation we compare
our GPU implementation with a parallel implementation of iCPI-tree
generation method for CPU. Collected results show that proposed solu-
tion is multiple times faster than the CPU version of the algorithm.

1 Introduction

Huge volumes of spatial data result from advances in sensing technologies and
mass storage devices. For example, weather and climate monitoring based on
satellite observations can produce terabytes of spatial data each day. As hu-
man abilities to interpret such data are limited, automatic methods known as
Knowledge discovery in databases (KDD) are required. KDD has been defined
as a non-trivial process of discovering valid, novel, and potentially useful, and
ultimately understandable patterns in large data volumes [9]. A crucial step in
this process is called data mining. It consists in application of specially designed
algorithms to find particular patterns in data.

In spatial data mining, i.e., mining data with spatial components, one of the
most popular types of patterns is called a spatial collocation pattern or in short
a collocation. Shekhar and Huang defined a collocation [16] as a set of spatial
features that are frequently located together in a spatial proximity. A spatial
feature is a class of a spatial object and can be interpreted as a characteristic of
space in a given location. Typical examples of spatial features include species,
business types or points of interest (e.g., hospitals, schools, airports etc.). As the
concept of the spatial feature is not limited to variables measured using sensors
� This work was partially supported from the Polish National Science Center (NCN),

grant No. 2011/01/B/ST6/05169.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 276–289, 2014.
c© Springer International Publishing Switzerland 2014

A Parallel Algorithm for Building iCPI-trees 277

(i.e., raster images can be used) a collocation pattern discovery can be applied in
a wide range of domains, e.g., marketing, ecology and public health, meteorology,
mobile advertising, astronomy etc.

In recent years many algorithms have been developed to improve the effi-
ciency of the collocation pattern mining. One of the popular and viable means
to achieve better performance is to utilize parallel processing capabilities of mod-
ern processors. In [3] GPU-CM algorithm has been proposed. It is designed to
exploit the power of graphics processing units (GPUs). GPU-CM is based on
the state of the art solution in the field of collocation pattern mining [17] that
takes advantage of the specially designed structure, called iCPI-tree, to store
neighborhood information. The authors of GPU-CM assume that this support-
ing structure is given in advance, i.e., precomputed before the execution of the
collocation pattern mining algorithm on the GPU.

In this paper we propose a method for building iCPI-tree structure directly
on the GPU, which complements the work from [3]. The advantages of such
approach are twofold: (1) massive parallel processing offered by GPUs can be
utilized, (2) data transfers between CPU and GPU are reduced as the iCPI-tree
structure, that can be multiple time larger than an input dataset, is built in the
GPU memory from which it is accessed during the execution of the collocation
pattern mining algorithm. To the best of authors’ knowledge, no alternative
solutions for building of iCPI-trees on GPUs have been developed.

The structure of this paper is as follows. In Section 2, we present the current
solution used for generating iCPI-tree structure and introduce basics of general
processing on GPUs. Section 3 presents our contribution - the GPU-based version
of method for iCPI-tree construction. Section 4 contains the results of performed
experiments. Summary and plans for future work are presented in Section 5.

2 Related Work

2.1 Collocation Pattern Mining

Let f be a spatial feature. An object x is an instance of the feature f , if x is a
type of f and is described by a location and unique identifier. Let F be a set
of spatial features and S be a set of their instances. Given a neighbor relation
R, we say that the collocation C is a subset of spatial features C ⊆ F whose
instances I ⊆ S form a clique w.r.t. the relation R.

The most popular overall schema for collocation pattern mining has been
introduced in [16] and consists of three steps: (1) generate candidates for col-
locations, (2) search for instances of candidates, (3) remove candidates without
required prevalence threshold. These steps are repeated as long as there are can-
didates for the next iteration. Candidates can be generated using Apriori [1]
approach as well as other algorithms (e.g., [18]). The second step of this over-
all approach is the most computationally demanding as it requires to find all
instances of collocations, i.e., sets of objects that are neighbors and simultane-
ously have appropriate spatial features. Consequently, many optimizations and
techniques to execute this task were presented in the literature (e.g., [5,17,19]).

278 W. Andrzejewski and P. Boinski

Particularly noteworthy are [19] and [17]. In [19] the authors introduced a
structure to efficiently generate all possible instances of candidates. For each
feature instance a list of its neighbors with a spatial feature greater than a spa-
tial feature of this particular instance is stored. Such an entry is called a star
neighborhood. During the execution of the algorithm, instances of candidates
are generated from star neighborhoods, however some of these instances might
violate the definition, i.e., some pairs of objects are not neighbors. In an addi-
tional step such incorrect instances are removed. In [17] the authors improved
the aforementioned solution. A tree structure to hold star neighborhoods as well
as a new method for generating instances has been proposed. This new structure,
called improved Candidate Pattern Instance tree (iCPI-tree), is an index to an-
swer the question regarding neighbors with a required feature of a given object.
For example, in Fig. 1 a sample dataset is presented. There are seven instances
of features A, B and C. Assuming a user defined neighborhood threshold we can
build an iCPI-tree presented in Fig. 2. The iCPI-tree structure can easily provide
an answer to the following question: what are the neighbors of object A2 that
are instances of feature C? The answer is C1 and C2. Such information is used
to generate all clique instances of candidates. For details please refer to [17].

Although the structure is called a tree, in a practical implementation [5] it is
sufficient to store it as a hashmap where keys consist of feature instance identi-
fiers and features of neighbors whereas neighbors are stored as the corresponding
values. We will refer to this structure as the iCPI-hashmap. For the mentioned
example, for object A2 there are two entries in the map: key A2,B maps to B1,
B2 and key A2,C maps to C1 and C2.

To build iCPI-hashmap it is necessary to detect all neighbors. An efficient
method is based on a plane sweep technique [7]. The aim is to avoid testing all
pairs of objects as there is no need to test objects that are far apart. Let us
assume that r is the neighborhood distance threshold. We can imagine a vertical
line sweeping over the plane starting from the left most position. During the
sweep, we maintain a tracking list of all objects that are in the distance not
greater than r from the sweeping line. Only objects that are on tracking list
must be checked for neighborhood relationship.

2.2 General Processing on Graphics Processing Units

Modern graphics cards can work as co-processors performing highly parallel sin-
gle instruction multiple data computations. APIs such as NVIDIA CUDA [13]
and OpenCL [12] facilitate development of programs utilizing graphics process-
ing units (GPUs) of graphics cards for acceleration of their operations. In our
solutions we utilize NVIDIA CUDA, though some of the solutions presented in
this paper are also applicable to OpenCL API. Below we give a short description
of NVIDIA CUDA API and its capabilities.

Computation tasks for GPUs are implemented in a form of kernels. A kernel
is a function which is performed concurrently in multiple threads. Threads are
grouped into blocks - arrays of at most 1024 threads, where each thread can be
uniquely identified by its position in this array. The set of blocks forms a com-

A Parallel Algorithm for Building iCPI-trees 279

Fig. 1. Running example dataset Fig. 2. Exemplary iCPI-tree

Fig. 3. Illustration of finding neighbor pairs Fig. 4. Processing of obtained pairs

putation grid. Threads in a single block may communicate via a very fast shared
memory. Threads running in different blocks may communicate via a slow global
memory of the graphics card. Synchronization capabilities of the threads are
limited. Threads in a single block may be synchronized via a barrier synchro-
nization primitive, however global synchronization of threads is achievable only
by means of a costly workaround. Threads in a block are executed in 32 thread
SIMD groups called warps.

To simplify implementation of programs performing parallel computations,
parallel primitives have been developed. Such primitives include: sort and sort
by key for sorting data, reduce and reduce by key for aggregating data, exclusive
scan for computing agregations of prefixes of an array and compact for removing
of chosen entries from arrays. Our solution uses parallel primitives implemented
in the Thrust library [4]. Moreover, we also had to implement special versions
of exclusive scan, reduce and compact primitives which work on small shared
memory arrays and perform their operations in each warp independently.

Recently, graphics cards started receiving recognition from the database sci-
entific community. Graphics cards are utilized as co-processors for performing
typical database [6,10,14] and data mining [8,11] operations.

3 GPU-Based Algorithm for iCPI-hashmap Construction

3.1 Main Algorithm

The algorithm is based on the following observations. Due to specificity of pro-
cessing data on GPUs (no hard disk access), all input data must be stored in the

280 W. Andrzejewski and P. Boinski

global memory. Consequently there is no need to utilize a tracking list as in the
base plane sweep algorithm. If the input arrays are sorted according to one of the
coordinates, it is sufficient to compare current feature instance with consecutive
previous feature instances in the input arrays until a termination condition is
reached (the distance along the "sorting" coordinate is greater than r). More-
over, all of input feature instances can be processed in parallel this way.

Another observation, which allows to leverage the SIMD capabilities of GPUs,
is as follows. Assume we utilize a group of N threads to find neighbors of a single
feature instance. Each of these threads can find distance between the processed
feature instance and one of the previous N feature instances. If the termination
condition is not reached, subsequent previous N feature instances can be checked.

Both of the above ideas can be used simultanously. We divide the input feature
instances into subsets. Each subset is processed by a single warp. Each warp
processes feature instances sequentially in a loop, but all threads within a warp
cooperate to compute distances to potential neighbors. Such a solution is very
cache friendly and allows to achieve good coalescing of memory accesses, as well
as allows to utilize implicit synchronization of warps. The exemplary execution of
this approach is shown in Fig. 3 for the dataset shown in Fig. 1. In this example
two warps process two subsets of feature instances. For the sake of clarity, warps
in Fig. 3 consist of only 2 threads (normally 32 threads).

Algorithm 1 presents the main steps required to build an iCPI-hashmap. The
input of the algorithm is composed of: (1) arrays X , Y storing x and y coordi-
nates respectively and an array F with corresponding feature instance identifiers,
(2) a neighborhood distance threshold r and (3) a grid configuration which is
used to start appropriate number of warps in the neighbor finding step. As a
result, the algorithm produces a hashmap H (via open addresing hashing scheme
[2]) which maps pairs of feature instance identifiers and feature numbers (called
extended feature instance identifiers) to lists of neighbors of the instances which
have the specified feature numbers. The lists of neighbors are concatenated and
stored in an array V . Each list is described in H by a starting index and a
number of neighbors.

For the sake of clarity, we introduce the term: a neighbor pair. By a neigh-
bor pair we understand a pair of feature instance identifiers (a, b) such that the
distance between these feature instances is less than the neighborhood distance
threshold. Moreover, the feature instance identifier a should store a feature num-
ber smaller than the feature number stored in the feature instance identifier b.
Finally, the feature instance identifier a should be extended with the feature
number of the feature instance b.

The first step of the algorithm (line 1) performs sorting of the input arrays by
a chosen coordinate. Without the loss of generality, we assume x is the chosen
sorting coordinate. This stage is performed via sort by key primitive. Sorted
input arrays can be now used to find neighbor pairs. As mentioned earlier, to find
neighbor pairs, we start an arbitrary number of warps and each warp is assigned
a subset of input feature instances. Threads within each warp cooperate to find
neighbor pairs, where at least one of the neighbors is in the assigned subset.

A Parallel Algorithm for Building iCPI-trees 281

The finding of neighbor pairs is split into two phases. In the first phase each
warp only counts the number of neighbor pairs it is able to find and stores the
appropriate number in an array C. The first phase is performed by the kernel
CountNeighbors. This kernel is detailed in Algorithm 2 and will be described in
Section 3.2. First phase allows to determine the amount of memory required to
store all of the neighbor pairs, as well as positions in the output arrays where
these pairs should be stored by each of the warps. Total number of the neighbor
pairs is equal to the sum of all values in the array C, whereas the starting
positions can be computed by an exclusive scan of this array. The number of
pairs (variable total) and starting positions are computed in lines 4-6.

Next, arrays K and V are allocated. These arrays will be used to store neigh-
bor pairs found by the kernel FindNeighbors (line 9). This kernel is detailed
in Algorithm 3 and described in Section 3.2. Exemplary K and V arrays are
shown in Fig. 3. The obtained arrays K and V are sorted lexicographically via
sort parallel primitive. Note that after sorting, the sets of consecutive entries
in array V form neighbor lists of the corresponding extended feature instance
identifiers in the array K. The array V is one of the output structures, whereas
the array K is the basis for building the hashmap H . In order to build the hash
map, we need to find a set of unique entries in the array K and, for each of these
unique entries: (1) the first index in the array K at which they appear and (2)
the number of times they appear in the array K. This is performed in line 11.
As a result we obtain arrays: U, I and A, which store unique feature instance
identifiers, positions and counts respectively. This step can be performed via re-
duce by key parallel primitive. Reduction of an auxiliary array filled with ones,
by keys from the array K by using sum operator allows to obtain the arrays U
and A. Reduction of an auxiliary array filled with consecutive numbers, by keys
from the array K by using the min operator allows to obtain the arrays U and I.
Thrust implementation of reduce by key parallel primitive used in our solution,
allows to perform both of the aforementioned operations in one step via usage
of zip iterators. Moreover, materialization of auxiliary arrays can be omitted via
usage of constant and counting iterators. Results of sorting and reduction of
exemplary arrays K and V are shown in Fig. 4.

Values from the array U form hash map keys, whereas pairs of corresponding
values from arrays I and A form hash map values (list positions and list sizes
respectively). Such key value pairs are inserted into a hash map in parallel via
open addressing hashing scheme [2]. The obtained hash map H as well as the
array V form the result of the algorithm. Exemplary result is shown in Fig. 4.

3.2 Neighbor Finding Kernels

In this section we provide a detailed description of the kernels CountNeighbors
(see Algorithm 2) and FindNeighbors (see Algorithm 3) used in Algorithm 1.
The kernel CountNeighbors computes the number of neighbors each warp can
find in the assigned input data subset. The kernel FindNeighbors materializes
these neighbors into output arrays. Both of these kernels are very similar. Con-
sequently, we will first describe the CountNeighbors kernel in detail and then

282 W. Andrzejewski and P. Boinski

Algorithm 1. Main algorithm
Require:

Input arrays X, Y and F � see Section 3.1

Neighborhood distance threshold r
Size of block bs and number of blocks nb

Ensure:
An iCPI-hashmap H and an array with neighbor lists V � see Section 3.1

1: Sort arrays X, Y and F according to values of X array
2: C ← empty array of size bs ∗ nb/32 � # of neighbor pairs found by each warp

3: CountNeighbors <<< nb, bs >>> (X, Y, F, r, C) � see Algorithm 2

4: total ← C[|C| − 1] � Get the number of pairs found by the last warp

5: C ← exclusiveScan(C) � Obtain starting output positions for each warp

6: total ← total + C[|C| − 1] � Add the number of pairs found by other warps

7: K ← new array of size total � Array storing future hash map keys

8: V ← new array of size total � Array storing neighbor lists

9: F indNeighbors <<< nb, bs >>> (X, Y, F, r, C,K,V) � see Algorithm 3

10: Lexicographically sort arrays K and V
11: (U, I,A) ← ReduceByKey(K) � Find unique keys, positions and sizes of neighbor lists

12: H ← new hash map able to store |U| key-value pairs � Build a resulting hash map

13: Insert into H pairs (U [j], (I[j],A[j])) for j = 0, . . . , |U | − 1 (in parallel)
14: Hashmap H as well as array V form a result

Algorithm 2. Kernel used for computing how much neighbor pairs are found
by each warp
1: kernel CountNeighbors(X,Y,F,r,C)
2: (gtid, gwid,wtid, btid, bwid, start, stop) ← ThreadNumbersAndSubsets()
3: flags ← shared memory array of size [blockDim.x/32] � A flag per warp

4: found ← shared memory array of size [blockDim.x] � A counter per thread

5: found[btid] ← 0 � Clear array found in parallel

6: for i ∈ start, . . . , stop do � Sequentially find neighbors of every assigned feature instance

7: if wtid = 0 then flags[bwid] ← false � Initialize flags array

8: j ← i− 32 � j is a base index for all threads within a warp

9: while j >= −32 do � Dont read beyond start of the input array

10: if wtid+ j >= 0 then � If the thread can access an existing array entry...

11: if X[i]−X[wtid+ j] > r flags[bwid] ← true � Check for stop condition

12: if d(i, wtid+ j) ≤ r and F [i] �= F [wtid+ j] then � Detect neighbor

13: found[btid] ← found[btid] + 1 � Increase counter if it was found

14: end if
15: end if
16: if flags[bwid] break � If any thread reached stop condition, abort the loop

17: j ← j − 32 � Otherwise move warp to next set of feature instances in array

18: end while
19: end for
20: reduceWithinWarp(found) � Find total number of neighbors found by the warp

21: if wtid=0 then � First thread in a warp should...

22: C[gwid] ← reduction result � ...store computed number into array C

23: end if
24: end kernel

A Parallel Algorithm for Building iCPI-trees 283

Algorithm 3. Kernel used for finding neighbor pairs
1: kernel FindNeighbors(X,Y,F,r,C,K,V)
2: (gtid, gwid,wtid, btid, bwid, start, stop) ← ThreadNumbersAndSubsets()
3: flags ← shared memory array of size [blockDim.x/32] � A flag per warp

4: found ← shared memory array of size [blockDim.x] � A counter per thread

5: scanBuf ← shared memory array of size [blockDim.x] � A temporary array

6: found[btid] ← 0 � Clear array found in parallel

7: for i ∈ start, . . . , stop do � Sequentially find neighbors of every assigned feature instance

8: if wtid = 0 then flags[bwid] ← false � Initialize flags array

9: j ← i− 32 � j is a base index for all threads within a warp

10: while j >= −32 do � Dont read beyond start of the input array

11: found[btid] ← 0 � Clear array found in parallel

12: if wtid+ j >= 0 then � If the thread can access an existing array entry...

13: if X[i]−X[wtid+ j] > r flags[bwid] ← true � Check for stop condition

14: if d(i, wtid+ j) ≤ r and F [i] �= F [wtid+ j] then � Detect neighbor

15: found[btid] ← 1 � Mark that it was found

16: if F [i].f < F [wtid+ j].f then � Store neighbor pair into a and b

17: a ← ((F [i].f, F [i].id), F [wtid+ j].f)
18: b ← (F [wtid+ j].f, F [wtid+ j].id)
19: else
20: a ← ((F [wtid+ j].f, F [wtid+ j].id), F [i].f)
21: b ← (F [i].f, F [i].id)
22: end if
23: end if
24: end if
25: scanBuf [btid] ← found[btid] � Copy array found in parallel

26: intraWarpExclusiveScan(scanBuf) � Find output position for each thread

27: if found[btid] = 1 then � Store found neighbor pair in the output arrays

28: K[scanBuf [btid] +C[gwid]] ← a � C stores base output indices for warps

29: V [scanBuf [btid] + C[gwid]] ← b
30: end if
31: if gtid = gwid ∗ 32 then � Update base indices in C

32: C[gwid] ← C[gwid]+scanBuf [bwid∗32+31]+found[bwid∗32+31]
33: end if
34: if flags[bwid] break � If any thread reached stop condition, abort the loop

35: j ← j − 32 � Otherwise move warp to next set of feature instances in array

36: end while
37: end for
38: end kernel

just introduce the differences between this kernel and the FindNeighbors kernel.
Please also note, that we take advantage of the fact that all threads within a
single warp are implicitly synchronized. Consequently, no synchronization primi-
tives need to be used in these algorithms. The presented algorithms also use such
identifiers as: blockDim, blockIdx and threadIdx, which represent size of blocks,
block position within a grid and thread position within a block respectively.

284 W. Andrzejewski and P. Boinski

Algorithm 4. A function for computing thread numbers and the work subset
assigned to the thread’s warp
1: function ThreadNumbersAndSubsets

2: warpCount ← blockDim.x ∗ blockSize.x
3: gtid ← blockIdx.x ∗ blockDim.x + threadIdx.x � Global thread number

4: gwid ← �gtid/32� � Global warp number

5: wtid ← gtid mod 32 � Warp thread number

6: btid ← threadIdx.x � Block thread number

7: bwid ← �btid/32� � Block warp number

8: start ← round((|X| − 1) ∗ gwid/warpCount) + 1 � Start of subset

9: stop ← round((|X| − 1) ∗ (gwid+ 1)/warpCount) � End of subset

10: return (gtid, gwid, wtid, btid, bwid, start, stop)
11: end function

CountNeighbors kernel starts with the execution of the ThreadNumbersAnd-
Subsets function. This function (shown in Algorithm 4) computes for each
thread such values as: global thread number (gtid), global number of the warp
the thread is in (gwid), number of the thread within the warp (wtid), number of
the thread within a block (btid) and number of the warp within the block (bwid).
Moreover, based on the global warp number, this function computes indices start
and stop which point to the input data subset associated with the warp. Next,
two shared memory arrays are allocated. The array flags stores a single value
for each warp within the current block, and is used to pass information among
all of the threads within a warp that the stop condition was detected. The array
found stores a single value for each thread within the current block. Each such
value is a counter of all of the neighbors found by the corresponding thread.
These counters are initialized in line 5. Next, each thread iterates in a loop over
all of input feature instances in the assigned input data subset. Each such iter-
ation compares a feature instance number i with consecutive previous feature
instances until a stop condition is reached. In line 7, first thread of each warp
initializes the flags array entry to mark that the warp has not reached the stop
condition. Next, the j index is introduced. This index is equal to the position,
the first thread within a warp should compare to the feature instance number
i. Based on this index, each thread in the warp computes its corresponding in-
dex in the input arrays: j + wtid. The subsequent while loop in each iteration
decrements the j index by 32 until either stop condition is reached, or start of
the input array is reached (see lines 9 and 16). In the while loop each thread
determines whether j + wtid is a valid index (line 10). If it is valid each thread
checks for the stop condition (line 11). If the stop condition is reached, this fact
is saved in the flags array. Next, the distance between the two compared feature
instances is computed. If the computed distance is less than the neighborhood
distance threshold r then a neighbor pair is found and appropriate counter is
incremented (lines 12-14). After the loop is finished, each warp performs a re-
duction (sum) of all of the computed counters (line 20). Finally, the first thread
of each warp stores the computed sum in the appropriate position in the output
array C (line 22).

A Parallel Algorithm for Building iCPI-trees 285

Basic structure of the FindNeighbors kernel is similar. The first difference
is that an additional shared memory array called scanBuf is allocated (line
5). This is an auxiliary array which is used for computing positions of found
neighbor pairs in the output arrays K and V . The next difference is the addition
of the line 11, which zeroes counters of the found neighbor pairs. Consequently,
this changes the meaning of the array found which now stores only the number
of found neighbor pairs in each iteration of the while loop (either 0 or 1). The
most important difference however is in the processing of the found neighbor
pairs (lines 15-22). The fact that a neighbor pair is found is denoted in the array
found as in CountNeighbors kernel, but assignment is used instead of increment.
After this, the extended feature instance identifier and feature instance identifier,
which will be eventually stored in the arrays K and V respectively, are computed
and stored in local variables a and b. The obtained neighbor pairs now need to
be stored into the result arrays K and V . To store found neighbor pairs without
gaps, a compact step is needed. This is performed in lines 25-30. First, the array
found is copied into scanBuf . Next, every warp performs an exclusive scan
over its corresponding part of the array scanBuf . The resulting array stores, for
every thread within a warp, the number of neighbor pairs found by the previous
threads within a warp (scanBuf [btid]). This is used in lines 27-30 to store the
found neighbor pairs in the appropriate locations in the output arrays. Let us
now recall the arrayC that stores for every warp the location in the output arrays
at which the warp should start storing the found neighbor pairs. As each warp
can find more than one neighbor pair in each iteration, the output index here is
computed as scanBuf [btid] +C[gwid]. After results are stored, the positions in
array C are updated in lines 31-33 so that next iterations of the while loop do
not overwrite the previously saved neighbor pairs.

4 Experiments

4.1 Implementation and Testing Environment

To evaluate the performance of our new method we have compared it with a CPU
implementation. The CPU version uses a similar approach as the one described
in Section 3 and utilizes Intel R© Threading Building Blocks technology [15] to
parallelize computations on a multi-core CPU. Due to divergent code paths
encountered while finding neighbor pairs, SIMD extensions could not be used in
the CPU version. Consequently, potential neighbors of processed instances are
checked sequentially, not in batches. The implementation starts a user specified
number of threads to detect neighbors and build a hashmap. In experiments we
have used 1, 2, 4 and 8 threads.

In the GPU-based method a user has to specify the number of warps. Basi-
cally it is a hardware dependent parameter, which should be at least equal to
the maximal number of active warps on a graphics card. However, to achieve
better balancing of workload this value should be even larger. Our experiments
have shown that for sufficiently large number of warps further increase of this

286 W. Andrzejewski and P. Boinski

parameter does not affect the performance as long as it is less than the number
of feature instances in the input dataset.

All experiments were performed on an Intel Core i7 930@2.8Ghz CPU (4 core
CPU with Hyperthreading) with 24GB of RAM and NVIDIA Geforce GTX
TITAN graphics card (2688 CUDA Cores) with 6GB of RAM working under
Microsoft Windows 7 operation system.

4.2 Data Sets

To evaluate our GPU-based method we have used synthetic and real world
datasets. To prepare synthetic datasets we have used a synthetic generator for
collocation pattern mining similar to the one described in [19]. The desired neigh-
borhood distance threshold was set to 5 units. We have generated 60 datasets
that contain up to one million of feature instances per dataset. The number
of spatial features ranges from 30 to 200. Up to 80 percent of instances are in-
stances of noise. Additionally we have prepared one dataset DS11 with 11 million
of feature instances and 252 features to examine scalability of our solution.

We have also performed experiments on real world dataset based on the spatial
data acquired from the OpenStreetMap project. We have processed the data and
extracted potentially interesting locations based on the user-provided tags, which
after categorization and filtering became spatial features. Then we have chosen a
point on the map corresponding to the location of the Central Park in New York
and selected 1.5 million of nearest neighbors representing 241 different spatial
features.

In the next subsection we present results from performed experiments. We
measured a speedup, i.e., the ratio of the execution time of CPU version of the
algorithm to the execution time of GPU implementation. In the first series of
experiments we have examined how the size of input dataset affects performance.
We also present measured absolute processing times. In the second series we
compared results for different neighbor distance thresholds as well as for varying
number of spatial features. Finally, in the last series we have tested influence of
the size of real world datasets on the algorithm performance.

Processing times of GPU version are denoted by TGPU while processing times
of 1, 2, 4 and 8-threaded CPU versions are denoted by TCPU1, TCPU2, TCPU4
and TCPU8 respectively.

4.3 Results of Experiments

Figure 5 presents the results of the first experiment in which we tested how the
performance of our new method is affected by the increasing size of the input
dataset. The experiment was conducted on the DS11 dataset. Using sliding win-
dow, with variable size and constant position of the left border we selected from
1000 up to 10 million of feature instances. On such datasets we have compared
GPU-based version of the algorithm with a CPU implementation using 1, 2, 4
and 8 threads. Please note that logarithmic scale on x axis is used. Although it
is not clearly visible in the chart the speedup, in comparison with eight-threaded

A Parallel Algorithm for Building iCPI-trees 287

CPU version, surpasses the value of 1 when the size of the input dataset reaches
5000 of feature instances. The highest speedup (∼ 9) is for input datasets with
sizes exceeding 1 million of feature instances, however even for 100K feature in-
stances the speedup is approx. 8. It is important that our solution scales very
well and the speedup is preserved even for 10 million of feature instances. In
Fig. 6 we present the results of the same experiment, but rather than a speedup
we visualize absolute processing times. It is clearly visible that in all cases pro-
cessing times increase linearly with the increasing size of the input dataset. For
the biggest dataset we used, the time required by single-threaded CPU version
is equal to 397 seconds, eight-threaded CPU version needed 112 seconds while
GPU implementation required only 12.5 seconds.

Figure 7 shows the results of the second experiment which tested the influence
of the neighborhood distance threshold on the algorithm performance. This time
we performed the experiment on the 60 synthetic datasets. Most of them are
datasets with sizes not exceeding 200K of feature instances. Presented speedups
are average values gathered for all tested datasets. We have examined speedups
for values of neighborhood distance threshold r ranging from 1 to 14 units.
Recall that all input datasets were generated using the value of r equal to 5 as
an assumed distance for discovered collocation patterns. We can observe that
for values of r higher than 5, the performance of the GPU version is very stable.
For lower values of r the performance gap between CPU and GPU version is
reduced. It is a result of significant reduction of the number of neighbors and
from our sidetrack tests we know that the neighbor finding step is the most time
consuming part of the algorithm. Therefore the speedup, especially versus single-
threaded CPU version, for small values of r is quite low as there is a very low
number of neighbors. This causes warps to perform unnecessary computations.

We have also tested how the speedups are affected by the varying number of
spatial features. To perform this test we took a dataset that contained one million
feature instances. Then we counted the number of instances per feature and we
merged two features with the least number of instances into one feature. We
repeated this step to obtain datasets with 50, 90, 130, 170, 210 and 250 features.
The speedups are almost perfectly consistent across the whole experiment (due
to the limited space we omit the chart for this experiment). This can be explained
as follows. The number of neighbor checks does not change with respect to the
number of features, as both: the number of points and neighborhood distance
threshold are constant. The only difference is in the step of sorting and building
hashmap, however the participation of these steps in the overall processing time
is very low in comparison to the neighbor detection step.

Finally, we have performed experiement on the real world dataset. From the
acquired 1.5 million points from OpenStreetMap, we prepared 15 datasets such
that the n-th dataset contains n∗100000 feature instances nearest to the Central
Park. The results, presented in Fig. 8, are very similar to the results of exper-
iments on the synthetic datasets and the highest speedup (more than 7) is for
input datasets with sizes exceeding approximately 1 million of feature instances.

288 W. Andrzejewski and P. Boinski

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1⋅103 1⋅104 1⋅105 1⋅106 1⋅107

S
pe

ed
up

Number of feature instances

TCPU1/TGPU
TCPU2/TGPU

TCPU4/TGPU
 TCPU8/TGPU

Fig. 5. Speedup w.r.t. size (synthetic data)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0⋅100 2⋅106 4⋅106 6⋅106 8⋅106 1⋅107

P
ro

ce
ss

in
g

tim
e

[s
]

Number of feature instances

TCPU1
TCPU2
TCPU4
TCPU8
TGPU

Fig. 6. Processing time w.r.t. size

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
pe

ed
up

Neighborhood distance threshold

TCPU1/TGPU
TCPU2/TGPU

TCPU4/TGPU
 TCPU8/TGPU

Fig. 7. Speedup w.r.t distance threshold

 0

 5

 10

 15

 20

 25

 30

 35

 40

2.0⋅105 4.0⋅105 6.0⋅105 8.0⋅105 1.0⋅106 1.2⋅106 1.4⋅106

S
pe

ed
up

Number of feature instances

TCPU1/TGPU
TCPU2/TGPU

TCPU4/TGPU
 TCPU8/TGPU

Fig. 8. Speedup w.r.t. size (real world data)

5 Summary and Future Work

In this paper we present an efficient GPU based algorithm for construction of
iCPI-hashmaps. We have performed numerous experiments and have achieved
speedups of up to 9 times w.r.t. the multithreaded CPU implementation. The
obtained speedups are stable and mostly independent on input data parame-
ters. Our solution was able to process datasets composed of milions of feature
instances in times measured in tens of seconds.

While the proposed solution already offers very high performance, there are
still more interesting things to be done. We plan on extending the algorithm
to process datasets that require more memory than available on graphics card.
Moreover, we also plan on designing methods of distributing the workload to
multiple graphics cards.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

2. Alcantara, D.A.F.: Efficient Hash Tables on the GPU. PhD thesis, University of
California, Davis (2011)

A Parallel Algorithm for Building iCPI-trees 289

3. Andrzejewski, W., Boinski, P.: GPU-accelerated collocation pattern discovery.
In: Catania, B., Guerrini, G., Pokorný, J. (eds.) ADBIS 2013. LNCS, vol. 8133,
pp. 302–315. Springer, Heidelberg (2013)

4. Bell, N., Hoberock, J.: GPU Computing Gems: Jade edition, chapter Thrust: A
Productivity-Oriented Library for CUDA, pp. 359–371. Morgan-Kauffman (2011)

5. Boinski, P., Zakrzewicz, M.: Collocation Pattern Mining in a Limited Memory
Environment Using Materialized iCPI-Tree. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2012. LNCS, vol. 7448, pp. 279–290. Springer, Heidelberg (2012)

6. Bress, S., Beier, F., Rauhe, H., Sattler, K.-U., Schallehn, E., Saake, G.: Efficient
co-processor utilization in database query processing. Information Systems 38(8),
1084–1096 (2013)

7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer-Verlag New York, Inc., Secaucus
(1997)

8. Fang, W., Lu, M., Xiao, X., He, B., Luo, Q.: Frequent itemset mining on graphics
processors. In: Proceedings of the Fifth International Workshop on Data Manage-
ment on New Hardware, DaMoN 2009, pp. 34–42. ACM, New York (2009)

9. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge
Discovery in Databases. AI Magazine 17, 37–54 (1996)

10. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.:
Relational query coprocessing on graphics processors. ACM Trans. Database
Syst. 34(4), 21:1–21:39(2009)

11. Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., Shi, Y.: Parallel data mining tech-
niques on graphics processing unit with compute unified device architecture (cuda).
The Journal of Supercomputing 64(3), 942–967 (2013)

12. Khronos Group. The OpenCL Specification Version: 1.2 (2012),
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf/

13. NVIDIA Corporation. Nvidia cuda programming guide (2014),
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

14. Przymus, P., Kaczmarski, K.: Dynamic compression strategy for time series
database using GPU. In: Catania, B., Cerquitelli, T., Chiusano, S., Guerrini,
G., Kämpf, M., Kemper, A., Novikov, B., Palpanas, T., Pokorny, J., Vakali, A.
(eds.) New Trends in Databases and Information Systems. Advances in Intelligent
Systems and Computing, vol. 241, pp. 235–244. Springer, Heidelberg (2014)

15. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates, Inc.,
Sebastopol (2007)

16. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: A summary of
results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001.
LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001)

17. Wang, L., Bao, Y., Lu, J.: Efficient Discovery of Spatial Co-Location Patterns
Using the iCPI-tree. The Open Information Systems Journal 3(2), 69–80 (2009)

18. Yoo, J.S., Bow, M.: Mining Maximal Co-located Event Sets. In: Huang, J.Z., Cao,
L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 351–362.
Springer, Heidelberg (2011)

19. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns.
IEEE Transactions on Knowledge and Data Engineering 18(10), 1323–1337 (2006)

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

SemIndex: Semantic-Aware Inverted Index

Richard Chbeir1, Yi Luo2, Joe Tekli3,�, Kokou Yetongnon2,
Carlos Raymundo Ibañez4, Agma J. M. Traina5, Caetano Traina Jr.5,

and Marc Al Assad3

1 University of Pau and Adour Countries, Anglet, France
2 University of Bourgogne, Dijon, France

3 Lebanese American University, Byblos, Lebanon
joe.tekli@lau.edu.lb, jtekli@gmail.com

4 Universidad Peruana de Ciencias Aplicadas, Lima, Peru
5 University of São Paulo, São Carlos-SP, Brazil

Abstract. This paper focuses on the important problem of semantic-
aware search in textual (structured, semi-structured, NoSQL) databases.
This problem has emerged as a required extension of the standard con-
tainment keyword based query to meet user needs in textual databases
and IR applications. We provide here a new approach, called SemIndex,
that extends the standard inverted index by constructing a tight cou-
pling inverted index graph that combines two main resources: a general
purpose semantic network, and a standard inverted index on a collection
of textual data. We also provide an extended query model and related
processing algorithms with the help of SemIndex. To investigate its ef-
fectiveness, we set up experiments to test the performance of SemIndex.
Preliminary results have demonstrated the effectiveness, scalability and
optimality of our approach.

Keywords: Semantic Queries, Inverted lndex, NoSQL indexing, Seman-
tic Network, Ontologies.

1 Introduction

Processing keyword-based queries is a fundamental problem in the domain of
Information Retrieval (IR). Several studies have been done in the literature
to provide effective IR techniques [10,9,6]. A standard containment keyword-
based query, which retrieves textual identities that contain a set of keywords,
is generally supported by a full-text index. Inverted index is considered as one
of the most useful full-text indexing techniques for very large textual collections
[10], supported by many relational DBMSs, and recently extended toward semi-
structured [9] and unstructured data [6] to support keyword-based queries.

Besides the standard containment keyword-based query, semantic-aware or
knowledge-aware (keyword) query has emerged as a natural extension encour-
aged by real user demand. In semantic-aware queries, some knowledge1 needs

� Corresponding author.
1 Also called domain, collaborative, collective knowledge or semantic network

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 290–307, 2014.
c© Springer International Publishing Switzerland 2014

SemIndex: Semantic-Aware Inverted Index 291

to be taken into consideration while processing. Let’s assume having a movie
database, as shown in Table 1. Each movie, identified with an id, is described
with some (semi-structured) text, including movie title , year and plot. For
queries ”sound of music”, ”Maria nun” and ”sound Maria”, the query result is
movie O3. However, if the user wants to search for a movie but cannot recall
the exact movie title, it is natural to assume that (s)he may modify the query
terms to some semantically similar terms, for example, ”voice of music”. Also,
it is common that the terms provided by users are not exactly the same, but are
semantically relevant to terms that the plot providers use. Clearly, the standard
inverted index which only supports exact matching cannot deal with these cases.

Table 1. A Sample Movie Data Collection

ID Textual Contents

O1 When a Stranger Calls (2006): A young high school student babysits for a very rich family. She
begins to receive strange phone calls threatening the children...

O2 Code R (1977): This CBS adventure series managed to combine elements of ”Adam-12”, ”Emer-
gency” and ”Baywatch” at the same time...

O3 Sound of Music, The (1965): Maria had longed to be a nun since she was a young girl, yet when
she became old enough discovered that it wasn’t at all what she thought...

· · · · · ·

Various approaches combining different types of data and semantic knowl-
edge have been propose to enhance query processing (cf. Related Works). In this
paper, we present a new approach integrating knowledge into a semantic-aware
inverted index called SemIndex to support semantic-aware querying. Major dif-
ferences between our work and existing methods include:

– Pre-processing the Index: Existing works use semantic knowledge to pre-
process queries, such as query rewriting/relaxation and query suggestion
[2,5], or to post-process the query results, such as semantic result clustering
[16,17,25]. Our work can be seen as another alternative to consider the se-
mantic gap by enclosing semantic knowledge directly into an inverted index,
so that main tasks can be done before query processing,

– User Involvement: Most existing works introduce some predefined pa-
rameters (heuristics) to rewrite queries such that users are only involved in
the query refinement (expansion, filtering, etc.) process after providing the
first round of results [3,4,14,20]. In our work, we aim at allowing end-users
to write, using the same framework, classical queries but also semantically
enriched queries according to their needs. They are involved in the whole
process (during initial query writing and then query rewriting).

– Providing More Results: Most existing works focus on understanding the
meaning of dat/queries through semantic disambiguation [2,13,16], which:
i) is usually a complex process requiring substantial processing time [15],
and ii) depends on the query/data context which is not always sufficiently
available, and thus does not guarantee correct results [7,23]. The goal of
our work is, with the help of semantic knowledge, to find more semantically
relevant results than what a traditional inverted index could provide, while
doing it more efficiently than existing disambiguation techniques.

292 R. Chbeir et al.

In order to build SemIndex , we create connections between two data re-
sources,a textual data collection and a semantic knowledge base, and map them
into a single data structure. An extended query model with different levels of
semantic awareness is defined, so that both semantic-aware queries and standard
containment queries are processed within the same framework. Figure 1 depicts
the overall framework of our approach and its main components. The Indexer
manages SemIndex , while the Query Processor accepts semantic-aware queries
from the user and processes the queries with SemIndex .

User

Query
+

params

Result Result

QQQuery

Fig. 1. SemIndex Framework

The rest of this paper is organized as follows. Designing and building Se-
mIndex will be presented in Section 2. Section 3 will introduce our query model
for semantic-aware queries. We will also present the algorithms for processing
semantic-aware queries using SemIndex . We provide preliminary experimental
results of executing different queries on a set of textual data collections in Sec-
tion 4. Related works are discussed in Section 5 before concluding the paper and
providing some future works.

2 Index Design

In the following, we analyze the (textual and semantic) input resources required
to build our index structure, titled SemIndex . We also show how to create con-
nections between the input resources and how to design the logical structure of
SemIndex . The physical structure will be detailed in a dedicated paper.

2.1 Representation and Definitions

Textual Data Collection: In our study, a textual data collection could be a set
of documents, XML fragments, or tuples in a relational or NoSQL
database.

SemIndex: Semantic-Aware Inverted Index 293

Definition 1. A Textual Data Collection Δ is represented as a table defined
over a set of attributes A = {A1, . . . , Ap} where each Ai is associated with a set
of values (such as strings, numbers, BLOB, etc.) called the domain of Ai and
denoted by dom(Ai). A semantic knowledge base (KB) can be associated to one
or several attribute domains dom(Ai). Thus, given a table Δ defined over A,
objects t in Δ are denoted as 〈a1, . . . , ap〉, where ai ∈ dom(Ai). Each ai from t
is denoted as t.ai.

Semantic Knowledge-Base:We adopt graph structures for modeling semantic
knowledge. Thus, entities are represented as vertices, and semantic relationship
between entities are modeled as directed edges 2. In this work, we will illustrate
the design process of SemIndex using WordNet version 3.0 [8] as the semantic
knowledge resource. Part of the WordNet ontology is shown in Figure 2. Each
synset represents a distinct concept, and is linked to other synsets with semantic
relations (including hypernymy, hyponymy, holonymy, etc.). Note that multiple
edges may exist between each ordered pair of vertices, and thus the knowledge
graph is a multi-graph.

Definition 2. A Semantic Knowledge Base KB, such as WordNet, is a graph
Gkb(Vkb, Skb, Ekb, Lkb) such that:

– Vkb is a set of vertices/nodes, denoting entities in the given knowledge base.
For WordNet, Vkb includes synsets and words

– Skb is a function defined on Vkb, representing the string value of each entity

– Ekb is a set of directed edges; each has a label in Lkb and is between a pair
of vertices in Vkb

– Lkb is a set of edge labels. For WordNet, Lkb includes hyponymy, meronymy,
hypernymy, holonymy, has-sense and has-sense-inverse, etc.

In Figure 2, W4, W6, W7, W8 and W9 represent words, and their string values
(lemma of the words) are shown aside of the nodes. S1, S3 and S4 are synsets,
and their string values are their definitions. If one sense of a word belongs to a
synset, it is represented with two edges between the synset node and word node
with opposite directions, labeled has-sense and has-word, that we represent here
with only one left-right arrow.

SemIndex Graph: To combine our resources, we define a SemIndex graph.

2 We use the terms “edge” and “directed edge” interchangeably in this paper.

294 R. Chbeir et al.

S1

W4

W6

"window pane"

"zen"

street name
for lysergic acid
diethylamide

W7

"pane"

S3

a powerful hallucinogenic
drug manufactured from
lysergic acid

hypernymy

W8

"lsd"

S4

a Buddhist doctrine that
enlightenment can be attained
through direct intuitive insight

W9derivation "zen buddhist"

hyponymy

Fig. 2. Part of the Semantic Knowledge Graph of WordNet

Definition 3. A SemIndex graph G̃ is a directed graph (Vi, Vd, L, E, Sv, Se,W):

– Vi is a set of index nodes (denoting entities in a knowledge-base, index or
searchable terms in a textual collection) represented visually as circles �

– Vd is the set of data nodes (belonging to the textual collection) represented
visually as squares �

– L is a set of labels

– E is a set of ordered pairs of vertices in Vi

⋃
Vd called edges. Edges between

index nodes are called index edges (represented visually as →), while edges
between index nodes and data nodes are called data edges (represented visu-
ally as ���)

– Sv is a function defined on Vi

⋃
Vd, representing the value of each node

– Se is a function defined on E, assigning a label ∈ L to an edge

– W is a weighting function defined on nodes in Vi

⋃
Vd and edges in E.

2.2 Logical Design

In this part, we introduce the logical design techniques in building SemIndex .

Building SemIndex : SemIndex adapts tight coupling techniques to index a
textual data collection and a semantic knowledge base in the same framework,
and directly create a posting list for all searchable contents. In the following, we
describe how to construct SemIndex .

1- Indexing Input Resources: Given a textual data collectionΔ, a multi-attributed
inverted index (associated to one or several attributes A) is a mapping ii : V s

A →
V t, where V s

A is a set of values for attributes A, which we also call a searchable
terms, and V t is the set of textual data objects. A multi-attributed inverted index
of a set of textual data objects Δ is represented as a SemIndex graph G̃A such
that:

SemIndex: Semantic-Aware Inverted Index 295

– Vi is a set of index nodes, representing all searchable terms which appear in
the attribute set A of the collection

– Vd is the set of textual data objects in Δ

– L includes contained label indicating the containment relationship from a
searchable term in Vi to a data object in Vd

– E is a set of ordered pairs of vertices in Vi

⋃
Vd

– Sv assigns a term to an index node, and its text contents to a data node

– Se assigns the contained label to each edge

– W assigns a weight (according to the importance/frequency of the term
within the text content) to an edge E.

An example of a SemIndex graph inverted index G̃A based on the textual
collection provided in Table 1 is shown in Figure 3 (upper part).

Alice, 1976
(plot omitted)

When a stranger calls, 2006
(plot omitted)

The Sound of Music, 1965
(plot omitted)

Contained (5) Contained (1) Contained (2)
Contained (2) Contained (1)

Data Node

Index Node

sound

SemIndex Graph
of the textual collection

SemIndex Graph
of the semantic knowledge

“car” “zen” “sound”

“light”

“dark” “clean” “pane” “window” “window
pane”

“lsd”

(of sound or color)
Free from anything
that dulls or dims

Street name for
Lysergic acid
diethylamide

a powerful hallucinogenic
Drug manufactured from

lysergic acid

Fig. 3. Part of the SemIndex Graph of the textual collection

Similarly, indexing the semantic knowledge base Gkb is also represented as a
SemIndex graph G̃kb that inherits the properties of Gkb where:

– Vd is an empty set
– Vi is a set of vertices/nodes, denoting entities in the given knowledge base

and all other searchable terms. For WordNet, Vi includes synsets and words
as well as other terms that appear in the string value in Gkb. Thus, Vi is a
superset of vertices in the knowledge graph Gkb

– L is a set of edge labels, including those inherited from Gkb (e.g., hyponymy,
meronymy, etc.), and a special label meronymy* indicating the containment
relation from a searchable term to an entity in Vi

296 R. Chbeir et al.

– Se assigns, in addition to previous edges of Gkb, the meronymy* label from
a searchable term to an entity in Vi

– W is the weighting function assigning a weight (default weight is 1) to all
nodes and edges.

We assume that connections between searchable terms and entities in Vi can be
found by the same Natural Language Processing techniques used when indexing
the textual collection. For example, in Figure 3 (lower part), we find that word
“window” (W2) is contained in the word “window pane” (W6). Thus, an extra
edge labeled meronymy* from W2 to W6 is inserted into the graph as shown
in Figure 3. Note that the NLP algorithms run only on synsets and multi-term
words, in order to prevent duplicated nodes to be produced.

2- Coupling Resources: When coupling both indexes, we get one SemIndex graph
called G̃SemIndex. In G̃SemIndex, only searchable terms have (mainly string) val-
ues (which will be defined in Step 3 in the construction procedure). Weights are
assigned to all edges and data nodes in the graph. To summarize:

– Vi is a set of index nodes of G̃A ∪ G̃kb

– Vd is the set of data nodes of G̃A

– L is a set of labels in the G̃kb and a special label contained, indicating the
containment relationship from a searchable term in Vi to an entity in Vd

– E is a set of ordered pairs of nodes in Vi (index edges) and Vd (data edges)

– Sv is a function of string values defined on searchable terms : a subset of Vi

– Se assigns G̃kb relationship labels to index edges and contained label to
index/data edges

– W is the weighting function defined on all nodes in Vi

⋃
Vd and edges in E.

The pseudo-code of constructing G̃SemIndex is composed of 7 steps as shown
in Algorithm 1. Each step is detailed as follows.

– Step 1: It builds the multi-attributed inverted index on the contents of the
textual data collection as a graph G̃A as defined and illustrated previously.

– Step 2: Given a semantic knowledge graph Gkb representing the semantic
knowledge base KB given as input, it builds an inverted index for string
values of each knowledge base entity, and construct the graph G̃kb.

– Step 3: it combines the two SemIndex graphs. Data nodes in the result graph
G̃SemIndex are the set Vd in G̃A (denoted as V A

d), while all other nodes are

index nodes. This step denotes the searchable terms of G̃kb as V
kb
i (which are

vertices with one or more outgoing edges labeled contained) and then merges
the two sets of searchable terms V kb

i and V A
i (representing the index nodes of

G̃A) as follows: if string values of two vertices are equal, remove one of them
and merge all the connected edges. We use V +

i to denote the conjunctive
set V kb

i

⋃
V A
i , which is the set of all searchable terms in SemIndex . Figure

4 shows the result of combining the two SemIndex graphs of the sample
textual collection and the WordNet extract provided here.

SemIndex: Semantic-Aware Inverted Index 297

Algorithm 1 G̃SemIndex Construction

Input:
KB: a semantic knowledge base;
Δ: a textual data collection;
ω: a weighting schema;
c1: a constant (used in Step 4) to delimit the co-occurrence window
c2: a constant (used in Step 4) to select top terms
Output:
G̃SemIndex: a SemIndex graph instance

1: Build inverted index for Δ to construct G̃A

2: Build inverted index for Gkb to construct G̃kb

3: Merge G̃A and G̃kb into G̃SemIndex and find searchable terms
4: For each missing term, find the most relevant terms in G̃kb

5: Assign weights to all edges in G̃SemIndex and all data nodes according to ω
6: Aggregate edges between each ordered pair of nodes
7: Remove from G̃SemIndex all edge labels, and string values of all nodes except search-

able terms

– Step 4: For the missing term problem, we create links from each missing
term to one or more closely related terms, with a new edge label refers-to,
using a distributional thesaurus3 based on the textual collection to mine
relativeness between missing terms and used index. We cover the missing
term problem in more detail in a dedicated paper.

– Step 5: It assigns weights to edges and textual objects, according to ω. The
weight will be used to rank query results. Different weighting schemes can
be adopted in our approach. We propose below the principles of a simple
weighting schema for computing edge and node weights:

• Containment edges : For a (data) edge from a term to a textual object, its
weight is an IR score, such as term frequency. If the textual collection is
formatted, this IR score could also be assigned to reflect the importance
of a term, e.g., in large font size, in capitalized form, etc. When the
textual collection is structured, higher weights are given to terms which
appear in important places, e.g., title, author’s name, etc.

• Structural edges : The weight of a structural (index) edge is determined
by edge label and by the number of edges with the same label from its
starting node [21]. Please note that if the knowledge base is hierarchical
(which is not the case for WordNet), the level of the edge in the hierarchy
can also be taken into consideration [19].

• Nodes : Assign “object rank” to all object nodes, based on metadata of
objects, including text length, importance or reliability of data source,
its publishing date, query logs, and so on. A PageRank-style weighting
schema could also be adapted for Web documents.

3 A distributional thesaurus is a thesaurus generated automatically from a corpus by
finding words that occur in similar contexts to each other [11,24].

298 R. Chbeir et al.

– Step 6: If an ordered pair of vertices is connected with two or more edges,
it merges the edges and aggregates the weights. This means that G̃SemIndex

becomes a graph rather than a multi-graph, which simplifies processing.
– Step7: It removes edge labels and string values of all nodes exceptV +

i (search-
able terms), since they are not required for processing semantic queries, which
helps improve SemIdex ’s scalability.

Figure 4 illustrates an instance of G̃SemIndex (without edge and node weights)
which is based on the knowledge graph depicted in Figure 2.

3 Executing queries with SemIndex

In this section, we define our query model and present a processing algorithm
to perform semantic-aware search with the help of SemIndex .

3.1 Queries

The semantic-aware queries considered in our approachare conjunctive projection-
selection queries overΔ of the form πXσP �(Δ) where X is a non empty subset of
A, �∈N is a query-type threshold, andP is a selection projection predicate defined
as follows.

“car” “zen” “sound”

“light”

“dark” “clean” “pane” “window” “window
pane”

“lsd”

Alice, 1976
(plot omitted)

When a stranger calls, 2006
(plot omitted)

The Sound of Music, 1965
(plot omitted)

(of sound or color)
Free from anything
that dulls or dims

Street name for
Lysergic acid
diethylamide

a powerful hallucinogenic
Drug manufactured from

lysergic acid

Data Node

Index Node

Fig. 4. SemIndex graph integrating the textual collection and semantic knowledge

SemIndex: Semantic-Aware Inverted Index 299

Definition 4. A selection projection predicate P is an expression, defined on
a string-based attribute A in A, of the following forms: (Aθ a), where a is a
user-given value (e.g., keyword), and θ ∈ {=, like} whose evaluation against
values in dom(A) is defined. A conjunctive selection projection query is made of

a conjunction of selection projection predicates.

Following the value of �, we consider four semantic-aware query types:

– Standard Query: When � = 1, the query is a standard containment query
and no semantic information is involved.

– Lexical Query: When � = 2, besides from the previous case, lexical con-
nections, i.e., links between terms, may be involved in the result.

– Synonym-based Query: When � = 3, synsets are also involved. Note that
there is no direct edge between textual object and synset node.

– Extended Semantic Query: When � � 4, the data graph of SemIndex
can be explored in all possible ways. When � grows larger, the data graph is
explored further to reach even more results.

3.2 Query Answer

The answer to q in Δ, denoted as q(Δ), is defined as follows.

Definition 5. Given a SemIndex graph G̃, the query answer q(Δ) is the set of
distinct root nodes of all answer trees. We define an answer tree as a connected
graph T satisfying the following conditions:

– (tree structure) T is a subgraph of G̃. For each node in T , there exists exactly
one directed path from the node to the root object.

– (root object) The tree root is a data node, and it is the only data node in T ,
which corresponds to the textual object returned to the user.

– (conjunctive selection) For each query term in S, its corresponding index
node is in the answer tree.

– (height boundary) Height of the tree, i.e., the maximal number of edges be-
tween root and each leaf, is no greater than the threshold �.

– (minimal tree) No node can be removed from T without violating some of the
above conditions.

It can be proven that all leaves in the answer tree are query terms, and the
number of leaves in T is smaller or equal to k, where k is the number of query
terms. Also, the maximal in-degree of all nodes in T is at most k.

According to the value of � which serves as an interval radius in theSemIndex
graph, various answer trees can be generated for a number of query types:

300 R. Chbeir et al.

A: Answer Tree of a Standard Query (l=1) B: Answer Tree of a Lexical Query (l=2)

C: Answer Tree of a Synonym-base Query (l=3) D: Answer Tree of an Extended Semantic Query (l=4)

Fig. 5. Sample query answer trees

– Standard Query: When � = 1, the root of the answer tree is linked directly
to all leaves, representing the fact that the result data object contains all
query selection terms directly. An example answer tree is shown in Figure
5-A for the query q: πAσA∈(“car”,“light”)�=1(Δ).

– Lexical Query: When � = 2, the answer tree contains also lexical connec-
tions between selection terms. Figure 5-B is an example answer tree of q:
πAσA∈(“car”,“dark”)�=2(Δ).

– Synonym-based Query: When � = 3, the answer tree contains, in addition
to the two previous cases, the synsets. Note that due to the “minimal tree”
restriction, a synset cannot be a leaf node of an answer tree. Thus, if an
answer tree contains a synset, the height of the tree is no less than 3. A
sample answer tree is shown in Figure 5-C for q: πAσA∈(“pane”,“clean”)�=3(Δ).
Synonyms of the two query terms, “zen” and “light”, are also contained in
the result object O1.

– Extended Semantic Query: When � � 4, the answer tree contained ad-
ditional nodes according to the provided value. An example answer tree is
shown in Figure 5-D for q: πAσA∈(“lsd”,“clean”)�=4(Δ).

3.3 Query Processing

Algorithm 2 is the procedure to process semantic-aware queries, given a set of
query terms, terms, and a query-type threshold �. Function expandNode(n,�)
performs the expansion of a node n. Basically, it explores the SemIndex graph

SemIndex: Semantic-Aware Inverted Index 301

with Dijkstra’s algorithm from multiple starting points (multiple query terms).
For each visited node n, we store its shortest distances from all starting points
(query terms). The path score of a node n to a query term t is the sum of
all weights on index edges along the path between t and n, thus the shortest
distances of n are also the minimal path scores of n to all query terms.

Algorithm 2 SemSearch(terms[], �)

Input:
terms: a set of selection terms
� : a query-type threshold
Output:
out: a set of data nodes

1: for each i ∈ terms do
2: rs = Selecting nodeid from SemIndex with value = i); //selecting index nodes

from the knowledge base as well as missing terms from the textual collection
3: for each nodeid ∈ rs do
4: n = nodes.cget(nodeid); //retrieve or create a node with given id
5: n.initPathScores(); //initialize the path scores of n
6: todo.insert(n); //insert n into todo list
7: end for
8: end for
9: while todo.isNotEmpty() do
10: n = todo.pop(); //retrieve node with minimal structural score
11: expandNode(n,�);
12: end while
13: return out;

For example in Figure 5-C, the query terms are “pane” and “clean”, and the
algorithm starts to expand from two nodes W7 and W3. Path scores of W7 are
initialized to be a vector < 0,∞ >, since the shortest distance fromW7 to “pane”
is 0, but the node is not reachable from “clean”. Similarly, the path scores of W3

are initially < ∞, 0 >. The minimal path scores must be updated when an edge
is explored in the graph. For example, before finding the tree in Figure 5-B, the
path scores of node O1 is < 2,∞ > (assume all edge weights are equal to 1),
and the path scores of W5 are < ∞, 2 >. After exploring the edge from W5 to
O1, the path scores value of O1 becomes < 1, 2 >, and O1 is reachable from all
query terms. The algorithm also keeps a todo list, which contains all nodes to
be further expanded. The todo list is ordered on structural scores of the nodes.
We define the structural score of a node n to be the maximal path score in the
tree rooted on n, as shown in the following formula.

sscoren = max
t∈rterms

pathscoren(t) (1)

302 R. Chbeir et al.

where rterms is the set of reachable query terms of n. It can be proven that if n
is reachable from every term and all path scores of n are minimal, the structural
score of n must be minimal among all trees rooted on n. For each result textual
object, the algorithm always returns the answer tree with minimal structural
score, thus it is not necessary to prune duplicated query results.

4 Experiments

We conducted a set of preliminary experiments to observe the behavior of Se-
mIndex in weighting, scoring, and retrieving results. In this paper, we only
present results related to processing time. We are currently working on experi-
mentally comparing our approach with existing methods.

4.1 Experimental Setup

We ran our experiments on a PC with Intel 2GHz Dual CPU and 2GB memory.
SemIndex was physically implemented in a MySQL 5.1 database with the query
processor written in Java. We downloaded 90,091 movie plots from the IMDB
database4, and used WordNet 3.0 as our semantic knowledge base. We build
SemIndex on plot contents and movie titles, which means that each textual
object is a movie title combined with its plot (cf. Table 2).

Table 2. SemIndex Database Size

Database Name Table Name Table Size Table Cardinality (#Row)

IMDB Data IMDB 56 M 90K

WordNet

Data Adjective 3,2M 18K
Data Verb 2,8M 13K
Data Noun 15,3M 82K

Data Adverb 0,5K 3K
Index Verb 0,5M 11k

Index Adverb 0,2M 3,6K
Index Noun 4,8M 117K

Index Adjective 0,8M 21k
Index Sense 7,3M 207K

SemIndex
Lexicon 5.8M 146K

Neighbors 116M 230K
PostingList 340M 740K

4.2 Query Processing

In order to test the performance of SemIndex , we manually picked two groups of
queries, shown in Table 3. In the first query group Q1, from Q1−1 to Q1−8, the
height of the answer trees is bounded, the number of returned results is limited
to 10, and each query contains from 2 to 5 selection terms. In the second group
Q2 group, from Q2 − 1 to Q2 − 4, queries share the same query terms with
different levels of tree height boundary and with an unlimited number of query

4 http://imdb.com

http://imdb.com

SemIndex: Semantic-Aware Inverted Index 303

Table 3. Sample Queries

Query Height Max. N# Selection
Id Boundary of Results Terms

Q1-1 4 10 car window
Q1-2 4 10 reason father
Q1-3 4 10 car window clean
Q1-4 4 10 apple pure creative
Q1-5 4 10 car window clean music
Q1-6 4 10 death piano radio war
Q1-7 4 10 car window clean music Tom
Q1-8 4 10 sound singer stop wait water
Q2-1 1 unlimited car window clean
Q2-2 2 unlimited car window clean
Q2-3 3 unlimited car window clean
Q2-4 4 unlimited car window clean

0

10

20

30

40

 1 10 100 1000 10000

T
im

e
(s

)

of Retrieved Results

Total Time
CPU Time
SQL Time

Fig. 6. Processing Time (Q2-4)

results. All queries were processed 5 times, retaining average processing time.
Detailed statistics are shown in Table 4.

Figure 6 shows query processing time to retrieve the 10000 results of Q2− 4.
Initial response time is the processing time to output the first result. We break
the latter into CPU and I/O time in order to better evaluate the processing costs
of the algorithm. Minimal height is the height of the first returned answer tree
while the maximal one is the height of the last answer tree allowing to reach the
number of expected results. k, NE and NO are respectively the number of query
terms, visited entity nodes, and object nodes during query processing.

From Table 4, we see that most queries are processed within 2 seconds, which
is positively encouraging, except for Q2-4, since it is of an extended semantic
type, which retrieves 16830 results in about a half minute. In fact, while the total
number of textual objects in our plot dataset is around 90K, Q2-4 visits about
80K of object nodes which explains the significant increase in time. Also, we
realize that the initial response times of Q1-5 and Q1-6 are quite different. Both
of them contain 4 terms and all statistics of the two queries are similar except the
minimal tree height. We also observe that for the second query group, the CPU
time is dominated by the SQL time, while for the first query group, CPU cost
is dominant. We analyzed the difference and found that, for the second query
group, the algorithm cannot stop until all visited entity nodes are queried and

304 R. Chbeir et al.

the whole search space is examined. However for the first query group, since the
number of query results is limited, the algorithm stops whenever it has found
enough answer trees. Thus, for the first group of queries, although large NE

and NO suggest large CPU time to create those nodes in memory, yet most
of the nodes are not revisited for expansion before the algorithm stops, which
significantly reduces overall query processing time.

Table 4. Processing Statistics

Initial Total Min. Max. # of SQL CPU k NE NO
Queryid Response Process Height Height Results Time (ms) Time (ms)

Time (ms) Time (ms) Returned

Q1-1 26 27 1 1 10 15 12 2 399 3346
Q1-2 39 40 1 1 10 21 19 2 252 9386
Q1-3 25 148 1 3 10 87 60 3 2528 7646
Q1-4 90 315 4 4 10 236 79 3 2812 11543
Q1-5 694 700 4 4 10 224 475 4 7849 32776
Q1-6 175 511 3 4 10 193 318 4 5071 38988
Q1-7 1223 1371 4 4 10 643 728 5 9505 50747
Q1-8 1469 1555 4 4 10 467 1076 5 12449 45715
Q2-1 18 18 1 1 2 11 7 3 3 3803
Q2-2 25 208 1 2 6 191 16 3 533 4394
Q2-3 21 842 1 3 515 678 164 3 1564 34564
Q2-4 200 31991 1 4 16830 27793 4198 3 19007 79997

5 Related Work

Including semantic processing in inverted indexes to enhance data search ca-
pabilities has been investigated in different approaches: i) including semantic
knowledge into an inverted index, ii) including full-text information into the
semantic knowledge base, and iii) building an integrated hybrid structure.

The first approach consists in adding additional entries in the index structure
to designate semantic information. Here, the authors in [12] suggest extending
the traditional (term, docIDs) inverted index toward a (term, context, docIDs)
structure where contexts designate synsets extracted from WordNet, associated
to each term in the index taking into account the statistical occurrences of
concepts in Web document [1]. An approach in [26] extends the inverted index
structure by adding additional pointers linking each entry of the index to seman-
tically related terms, (term, docIDs, relatedTerms). Yet, the authors in [12,26]
do not provide the details on how concepts are selected from WordNet and how
they are associated to each term in the index.

Another approach to semantic indexing is to add words as entities in the
ontology [1,18,22]. For instance, adding triples of the form word occurs-in-context
concept, such that each word can be related to a certain ontological concept,
when used in a certain context. Following such an approach: i) the number of
triples would naturally explode, given that ii) query processing would require
reaching over the entire left and the right hand sides of this occurs-in-context
index, which would be more time consuming [1] than reading on indexed entry
such as with the inverted index.

SemIndex: Semantic-Aware Inverted Index 305

A third approach to semantic indexing consists in building an integrated hy-
brid structure: combining the powerful functionalities of inverted indexing with
semantic processing capabilities. To our knowledge, one existing method in [1]
has investigated this approach, introducing a joint index over ontologies and
text. The authors consider two input lists: containing text postings (for words
or occurrences), and lists containing data from ontological relations (for concept
relations). The authors tailor their method toward incremental query construc-
tion with context-sensitive suggestions. They introduce the notion of context
lists instead of usual inverted lists, where a prefix contains one index item per
occurrence of a word starting with that prefix, adding an entry item for each
occurrence of an ontological concept in the same context as one of these words,
producing an integrated 4-tuples index structure (prefix, terms) ↔ (term, con-
text, concepts). The method in [1] is arguably the most related to our study,
with one major difference: the authors in [1] target semantic full-text search
and indexing with special emphasis on IR-style incremental query construction,
whereas we target semantic search in textual databases: building a hybrid se-
mantic inverted index to process DB-style queries in a textual DB.

6 Conclusions and Future Work

In this paper, we introduce a new semantic indexing approach called SemIndex ,
creating a hybrid structure using a tight coupling between two resources: a
general purpose semantic network, and a standard inverted index defined on
a collection of textual data, represented as (multi)graphs. We also provide an
extended query model and related processing algorithms, using SemIndex to al-
low semantic-aware querying. Preliminary experimental results are promising,
demonstrating the scalability of the approach in querying a large textual data
collection (IMBD) coined with a full-fledge semantic knowledge base (Word-
Net). We are currently completing an extensive experimental study to evaluate
SemIndex ’s properties in terms of: i) genericity: to support different types of
textual (structured, semi-structured, NoSQL) databases, ranking schema, and
knowledge-bases, ii) effectiveness: evaluating the interestingness of semantic-
aware answers from the user’s perspective, and iii) efficiency: to reduce index’s
building and updating costs as well as query processing cost. The system’s phys-
ical structure (in addition to the logical designs provided in this paper) will also
be detailed in an upcoming study.

Acknowledgements. This study is partly funded by: Bourgogne Region pro-
gram, CNRS, and STIC AmSud project Geo-Climate XMine, and LAU grant
SOERC-1314T012.

References

1. Bast, H., Buchhold, B.: An index for efficient semantic full-text search. In: 22nd
ACM Int. Conf. on CIKM, pp. 369–378 (2013)

306 R. Chbeir et al.

2. Burton-Jones, A., Storey, V.C., Sugumaran, V., Purao, S.: A heuristic-based
methodology for semantic augmentation of user queries on the web. In: Song, I.-
Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813,
pp. 476–489. Springer, Heidelberg (2003)

3. Carpineto, C., et al.: Improving retrieval feedback with multiple term-ranking func-
tion combination. ACM Trans. Inf. Syst. 20(3), 259–290 (2002)

4. Chandramouli, K., et al.: Query refinement and user relevance feedback for con-
textualized image retrieval. In: 5th International Conference on Visual Information
Engineering, pp. 453–458 (2008)

5. Cimiano, P., et al.: Towards the self-annotating web. In: 13th Int. Conf. on WWW,
pp. 462–471 (2004)

6. Das, S., et al.: Making unstructured data sparql using semantic indexing in oracle
database. In: IEEE 29th ICDE, pp. 1405–1416 (2012)

7. de Limaand, E.F., Pedersen, J.O.: Phrase recognition and expansion for short,
precision-biased queries based on a query log. In: 22nd Int. Conf. ACM SIGIR, pp.
145–152 (1999)

8. Fellbaum, C.: Wordnet an electronic lexical database. MIT Press (May 1998)
9. Florescu, D., et al.: Integrating keyword search into xml query processing. Comput.

Netw. 33(1-6), 119–135 (2000)
10. Frakes, W.B., Baeza-Yates, R.A. (eds.): Information retrieval: Data structures and

algorithms. Prentice-Hall (1992)
11. Grefenstette, G.: Explorations in automatic thesaurus discovery. Kluwer Pub.

(1994)
12. Kumar, S., et al.: Ontology based semantic indexing approach for information

retrieval system. Int. J. of Comp. App. 49(12), 14–18 (2012)
13. Li, Y., Yang, H., Jagadish, H.V.: Term disambiguation in natural language query

for XML. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen,
H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 133–146. Springer, Heidelberg
(2006)

14. Mishra, C., Koudas, N.: Interactive query refinement. In: 12th Int. Conf. on EDBT,
pp. 862–873 (2009)

15. Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2),
10:1–10:69 (2009)

16. Navigli, R., Crisafulli, G.: Inducing word senses to improve web search result
clustering. In: Int. Conf. on Empirical Methods in Natural Language Processing,
pp. 116–126 (2010)

17. Nguyen, S.H., Świeboda, W., Jaśkiewicz, G.: Semantic evaluation of search result
clustering methods. In: Bembenik, R., Skonieczny, �L., Rybiński, H., Kryszkiewicz,
M., Niezgódka, M. (eds.) Intell. Tools for Building a Scientific Information. Studies
in Computational Intelligence, vol. 467, pp. 393–414. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-35647-6_24

18. Navigli Paola, R., et al.: Extending and enriching wordnet with ontolearn. In: Int.
Conf. on GWC 2004, pp. 279–284 (2004)

19. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: 14th Int. Conf. on Artificial intelligence, pp. 448–453 (1995)

20. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback.
In: Readings in Information Retrieval, pp. 355–364 (1997)

21. Sussna, M.: Word sense disambiguation for free-text indexing using a massive
semantic network. In: 2nd Int. ACM Conf. on CIKM, pp. 67–74 (1993)

22. Velardi, P., et al.: Ontolearn reloaded: A graph-based algorithm for taxonomy
induction. Computational Linguistics 39, 665–707 (2013)

http://dx.doi.org/10.1007/978-3-642-35647-6_24

SemIndex: Semantic-Aware Inverted Index 307

23. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: 17th Int.
ACM Conf. on SIGIR, pp. 61–69 (1994)

24. Weeds, J., et al.: Characterising measures of lexical distributional similarity. In:
20th Int. Conf. on Computational Linguistics (2004)

25. Wen, H., et al.: Clustering web search results using semantic information. In: 2009
Int. Conf. on Machine Learning and Cybernetics, vol. 3, pp. 1504–1509 (2009)

26. Zhong, S., et al.: A design of the inverted index based on web document compre-
hending. JCP 6(4), 664–670 (2011)

Entity Resolution with Weighted Constraints

Zeyu Shen and Qing Wang

Research School of Computer Science, The Australian National University, Australia
errand2901@163.com, qing.wang@anu.edu.au

Abstract. Constraints ubiquitously exist in many real-life applications
for entity resolution (ER). However, it is always challenging to effec-
tively specify and efficiently use constraints when performing ER tasks.
In particular, not every constraint is equally effective or robust, and using
weights to express the “confidences” on constraints becomes a natural
choice. In this paper, we study entity resolution (ER) (i.e., the problem
of determining which records in a database refer to the same entities)
in the presence of weighted constraints. We propose a unified framework
that can interweave positive and negative constraints into the ER pro-
cess, and investigate how effectively and efficiently weighted constraints
can be used for generating ER clustering results. Our experimental study
shows that using weighted constraints can lead to improved ER quality
and scalability.

1 Introduction

Constraints ubiquitously exist in many real-life applications for entity resolution
(ER), which can be obtained from a variety of sources: background knowledge
[20], external data sources [21], domain experts, etc. Some constraints may be
captured at the instance level [19,20], e.g., “PVLDB” refers to “VLDB Endow-
ment” and vice versa, and some can be specified at the schema level [2,8,17],
e.g., two paper records refer to different papers if they do not have the same
page numbers. In general, constraints allow us to leverage rich domain seman-
tics for improved ER quality. Nevertheless, not all constraints can be completely
satisfied due to the existence of dirty data, missing data, exceptions, etc. In such
cases, common approaches are to conduct manual reviews of conflicts, or relax
the satisfaction requirement of constraints by allowing some constraints to be vi-
olated in terms of a predefined cost model. This helps to produce a solution, but
often also requires additional (and often expensive) computational resources for
finding an optimal solution. Such burden has prevented constraints from being
widely applied to solve the ER problem in the past.

In this paper, we study two questions on ER constraints: (1) How to specify
constraints that can effectively improve the quality of ER solutions? (2) How
to use such constraints efficiently in the ER process? We attempt to establish a
uniform framework that can incorporate semantic capabilities (in form of con-
straints) into existing ER algorithms to improve the quality of ER, while still
being computationally efficient. A key ingredient in achieving this is to associate

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 308–322, 2014.
c© Springer International Publishing Switzerland 2014

Entity Resolution with Weighted Constraints 309

A database schema

paper := {pid, authors, title, journal, volume, pages, tech, booktitle, year}
author := {aid, pid, name, order}
venue := {vid, pid, name}

Views

title := πpid,titlepaper hasvenue := πpid,vidvenue

pages := πpid,pagespaper vname := πvid,namevenue

publish := πaid,pid,orderauthor aname := πaid,nameauthor

Constraints Weights

r1 : paper
∗(x, y) ← title(x, t),title(y, t′), t ≈0.8 t′ 0.88

r2 : paper
∗(x, y) ← title(x, t),title(y, t′), t ≈0.6 t′, sameauthors(x, y) 0.85

r3 : paper
∗(x, y) ← title(x, t),title(y, t′), t ≈0.7 t′,hasvenue(x, z),

hasvenue(y, z′),venue∗(z, z′) 0.95
r4 : ¬paper∗(x, y) ← pages(x, z),pages(y, z′),¬z ≈0.5 z′ 1.00
r5 : venue

∗(x, y) ← hasvenue(z, x),hasvenue(z′, y),paper∗(z, z′) 0.75
r6 : venue

∗(x, y) ← vname(x, n1),vname(y, n2), n1 ≈0.8 n2 0.70
r7 : ¬author∗(x, y) ← publish(x, z, o), publish(y, z′, o′), paper∗(z, z′), o �= o′ 0.90
r8 : author

∗(x, y) ← coauthorML(x, y),¬cannot(x, y) 0.80

Fig. 1. An ER model with weighted constraints

each constraint with a weight that indicates the confidence on the robustness of
semantic knowledge it represents.

Recently, a good number of works have studied constraints in ER [2,8,11,12].
However, little work has been carried out on how to efficiently and effectively
deal with weighted constraints. Our work was motivated by Dedupalog [2], a
declarative framework for resolving entities using constraints without weights.
The authors of Dedupalog defined the ER clustering as the correlation clustering
problem over clustering graphs [4], and discussed computational difficulties of
adding weights to constraints. Nevertheless, their study has some limitations:
(1) Their clustering graphs are complete, which is often not the case in real-life
applications, and the inference rules based on complete graphs for solving clus-
tering conflicts do not scale well to very large data sets. (2) Their constraints are
unweighted, which makes it difficult to fine-tune the confidences on constraints in
order to resolve knowledge uncertainty in reality. For instance, when two records
u and v are both identified as a match by a constraint r1 and as a non-match by
a constraint r2, how can we decide whether (u, v) is a match or non-match? If
r1 and r2 have the weights 0.9 and 0.6 respectively, one may decide that (u, v)
should be a match since r1 has a higher weight than r2. Therefore, weights can
provide us with useful insights concerning ambiguity or conflicting information.

In Figure 1 we present: (a) an example database schema that consists of three
relation schemas: paper, author and venue, (b) some views that are defined
using relational algebra [1], and (c) several weighted constraints r1−r8 in an ER
model built on this database schema. We adopt the notation in [2] to use paper∗,
venue

∗ and author
∗ as the equivalence relations storing the records that are

310 Z. Shen and Q. Wang

resolved for entities of the entity types paper, venue and author, respectively.
Among these constraints, r4 and r7 are negative; while the others are positive.
Each constraint is associated with a weight in the range [0,1]. More specifically,
r1−r3 describe that two paper records likely refer to the same paper if they have
similar titles (with varied similarity thresholds) plus some additional conditions
required in r2 and r3, i.e., they must have the same authors in r2 or the same
venue in r3; r4 describes that two paper records do not likely refer to the same
paper if their pages are not similar; r5 is defined across two different entity types
author and paper, describing that if two paper records refer to the same paper,
then their venue records must also refer to the same venue; r6 describes that
two venue records likely refer to the same venue if they have similar names; r7
describes that two author records do not likely refer to the same author if they
appear in the same paper but are placed at different orders.

In this framework, constraints can be defined broadly to include existing ER-
related algorithms. For example, we may define a relation coauthorML to store
the result returned by a machine-learning based ER algorithm, which resolves
authors based on the similarity of their attributes and the number of same
authors with whom they have co-authorships. We can also use constraints to
capture how such results from ER algorithms are combined with other knowledge
in resolving entities. r8 in Figure 1 describes that the effects of coauthorML is
restricted by another relation cannot that contains a set of cannot-be-matched
authors identified by the domain expert.

Outline. The remainder of the paper is structured as follows. We introduce ER
constraints and models in Section 2. Then we discuss how to learn constraints in
Section 3, and how to use constraints in Section 4. Our experimental results are
presented in Section 5. We present the related works in Section 6 and conclude
the paper in Section 7.

2 ER Constraints and Models

A database schema R consists of a finite, non-empty set of relation schemas.
A relation schema contains a set of attributes. Re ⊆ R is a set of equivalence
relation schemas, each R∗ ∈ Re corresponding to an entity type R ∈ R−Re. A
database instance is a finite, non-empty set of relations, each having a finite set
of records. Each record is uniquely identifiable by an identifier. A cluster c is a
set of records, denoted by their identifiers in the form of 〈k1, . . . , kn〉. We may
also have a set Rv of views defined by relational algebra, SQL or other database
languages [1] over R.

ER Constraints. We specify constraints as rules using a declarative Datalog-
style language [1]. There are two types of atoms: a relation atom R(x1, . . . , xn)
for a n-ary R ∈ R ∪ Rv, and a similarity atom x ≈a y for a fixed similarity
threshold a ∈ [0, 1], and two variables x and y. The higher the similarity threshold
a is, the greater the similarity between x and y is required. For instance, x ≈1 y
means that x ≈1 y is true if x and y are exactly the same, and it can also be

Entity Resolution with Weighted Constraints 311

referred as an equality atom x = y. A negated atom is an expression of the form
¬A where A is an atom. A rule r has the form of

head(r) ← body(r),

where the head of r, denoted as head(r), is a relation atom or a negated re-
lation atom over Re, and the body of r, denoted as body(r), is a conjunction
of atoms and negated similarity atoms. We do not allow any negated relation
atoms occurring in body(r). This restriction is important for guaranteeing the
termination of computation and improving efficiency of using rules. Each vari-
able in head(r) must also occur in body(r) to ensure the safety of evaluation
as in Datalog programs [1]. A rule r is positive if head(r) is an atom, and is
negative if head(r) is a negated atom.

Let I be a database instance and r be a rule over the same database schema,
and ζ be a valuation over variables of body(r) in I. Then a relation atom
R(x1, . . . , xn) is true under ζ if (ζ(x1), . . . , ζ(xn)) is a record in I, and a similarity
atom x ≈a y is true if fsim(ζ(x), ζ(y)) > a, where fsim is a string-similarly
function defined for measuring the similarity of x and y, otherwise false. A
negated atom ¬A is true under ζ if A is false under ζ. The body of r is true
under ζ if the conjunction of atoms and negated atoms in body(r) are true
under ζ. The interpretation of r with head(r) = R∗(x, y) is a set of matches of
R∗:

{(u, v)= |u = ζ(x), v = ζ(y), ζ is a valuation over variables

of body(r) in I, and body(r) is true under ζ}.

The interpretation of r with head(r) = ¬R∗(x, y) is a set of non-matches of R∗:

{(u, v)�= |u = ζ(x), v = ζ(y), ζ is a valuation over variables

of body(r) in I, and body(r) is true under ζ}.

We use r(I) to denote the matches or non-matches identified by r over I, and
r(I) is assumed to be symmetric, e.g., if (u, v)= ∈ r(I), then (v, u)= ∈ r(I).

Different similarity functions [9] may be used for evaluating different simi-
larity atoms, depending on specific data characteristics of attributes, e.g., using
edit distance for computing the similarity of names in author, and Jaccard for
computing the similarity of pages in paper. This kind of flexibility is impor-
tant for developing a built-in library that can incorporate various ER-related
algorithms in a declarative manner.

In practice, not all constraints are equally important. For example, a con-
straint ra stating that two paper records refer to the same paper if they have
same title and same authors is usually more “robust” than a constraint rb stating
that two paper records refer to the same paper if they have same title. Therefore,
we associate each rule r with a real-valued weight ω(r) ∈ [0, 1] to express the
confidence of its robustness. A rule with ω(r) = 1 is a hard rule that must be
satisfied and a rule with ω(r) < 1 is a soft rule that can be violated.

312 Z. Shen and Q. Wang

ER Models. Given a database schema R, an ER model M over R consists
of a non-empty finite set of weighted rules. Let M(I) =

⋃
r∈M

r(I), M+
s and

M−
s be the sets of positive and negative soft rules in M which yield (u, v)=

and (u, v)�= of the same entity type R∗, respectively, w1 = 1
|M+

s |
∑

r∈M+
s

ω(r) and

w2 = 1
|M−

s |
∑

r∈M−
s

ω(r). Then the matching result 〈π, �, τ〉 of applying M over I

is a set π of matches and non-matches, each e ∈ π being associated with a weight
�(e) and an entity type τ(e) = R∗. That is, for each (u, v) ∈ π, (1) if (u, v) ∈ r(I)
(resp. (u, v)�= ∈ r(I)) for some hard rule r ∈ M with head(r) = R∗(x, y), then
�(u, v) = � (resp. �(u, v) = ⊥); (2) otherwise �(u, v) is defined as w1−w2 if both
|M+

s | > 0 and |M−
s | > 0, as w1 if |M+

s | > 0 and |M−
s | = 0, as −w2 if |M+

s | = 0
and |M−

s | > 0, or as 0 if both |M+
s | = 0 and |M−

s | = 0.
Given a matching result, a set of clusters can be generated by applying clus-

tering algorithms such that each cluster corresponds to a distinct entity. With
such clusters, each equivalence relation is updated, i.e., (k1, k2) ∈ R∗ iff two
records k1 and k2 of R are in the same cluster. The updates on these equivalence
relations iteratively lead to discovering new matches or non-matches, and as a
result the clustering result is expanded. This process repeats until no more up-
dates on the equivalent relations. To ensure the termination of computation, the
rules in an ER model are interpreted in the similar way as a Datalog program
under the inflationary semantics [1].

3 Learning Constraints

In this section we discuss how to learn an ER model by leveraging domain
knowledge into the “best-fit” constraints for specific applications.

In practice, constraints are commonly used to capture domain knowledge,
e.g., “if two paper records have similar titles, then they likely represent the same
paper” can be expressed as:

g1 : paper
∗(x, y) ← title(x, t),title(y, t′), t ≈λ t′,

where λ is a threshold variable indicating that the similarity between t and t′ is
undefined yet. We call such a constraint, in which the threshold of each similar-
ity atom (if any) is undefined, a ground rule. Intuitively, a ground rule provides
the generic description for a family of rules that capture the same semantic re-
lationship among elements of a database but may differ in the interpretation of
similarity atoms, e.g., the interpretation of “to which extent the titles of two
publication records are considered as being similar”. Let λ denote a vector of
threshold variables, and g[λ (→ a] denote a rule obtained by substituting λ in
a ground rule g with the vector a of real numbers in the range [0.1]. The following

Entity Resolution with Weighted Constraints 313

Table 1. Metrics α and β

Positive rules Negative rules

α
tp

tp+ fp
tn

tn+ fn

β
tp

tp+ fn
tn

fp+ tn

two rules g1[λ (→ 0.8] and g1[λ (→ 0.7] are in the same family because they both
associate with g1:

– paper
∗(x, y) ← title(x, t),title(y, t′), t ≈0.8 t′;

– paper
∗(x, y) ← title(x, t),title(y, t′), t ≈0.7 t′.

A ground ER model is constituted by a set of ground rules provided by domain
experts. As different applications may have different data requirements, we need
to refine a ground ER model into the one that is the most effective for solving
the ER problem in a specific application. This requires a learning mechanism
to be incorporated into the specification process of an ER model. There are
many aspects to consider when developing an effective learning mechanism for
ER models, including: (1) the availability of training data; (2) the suitability of
learning measure; (3) the complexity of learning model. In our study, we assume
that the user provides some (positive and negative) labeled examples as training
data, and identifies a number of potential options for similarity functions and
thresholds. Then an ER model is learned by finding the optimal combination
of similarity functions and thresholds for each ground rule. In order to measure
the goodness of a rule, we develop learning metrics for both positive and neg-
ative rules. Conceptually, positive rules should be measured by their “positive
effects”, while negative rules be measured by their “negative effects”. We thus
use two different criteria for the metrics α and β shown in Table 1, where tp,
fp, tn and fn refer to true positives, false positives, true negatives and false
negatives, respectively. These metrics are widely used in binary classification [3].
We define an objective function ξ for learning constraints, which takes two input
parameters: α and β, and returns a real number. Then, given a ground rule g,
a soft rule g[λ (→ a] can be learned with the “best” similarity thresholds a in
terms of

maxλξ(α, β) subject to α ≥ αmin and β ≥ βmin,

where λ is the vector of threshold variables in g, and αmin and βmin are the
minimal requirements on the input parameters. Note that, not every ground
rule can lead to a meaningful rule, e.g., when all rules in the family fail to
meet a minimum precision requirement due to dirty data or incomplete infor-
mation. In such cases, although ground rules capture domain knowledge, they
are not suitable for being used in specific applications. The weights of rules can be

314 Z. Shen and Q. Wang

learned over training data using various methods [16,18]. Nonetheless, a simple
but effective way is to define the weight of a rule as a linear function of the
learning measure ξ. Once such a function for learning weights is determined,
hard rules can be learned in terms of

maxλξ(α, β) subject to w ≥ 1 − ε,

where ε is a fault tolerant rate, e.g., 0.005, and w is the weight of the rule
g[λ (→ a]. To improve the efficiency of learning, the learning measure ξ should
also process certain properties:

– ξ is deterministic, i.e., given a pair α and β, ξ always returns the same value;
– ξ is monotonic on α and β, i.e., ξ(α1, β1) ≤ ξ(α2, β2) iff α1 ≤ α2 and β1 ≤ β2.

4 Using Constraints

Now we discuss how to use weighted constraints to deal with the ER problem.
Given an ER model M, and the matching result 〈π, �, τ〉 of applying M over

a database instance I, we use ER graphs to describe the correlation between
records. An ER graph w.r.t. M and I is a triple G = (V,E, �) consisting of a set
V of vertices, each representing a record, and a set E ⊆ V ×V of edges, each (u, v)
being assigned a label �(u, v). Moreover, E is the subset of π, which contains all
the matches and non-matches of the same entity type, and accordingly, one ER
graph corresponds to one entity type. There are two types of edges in an ER
graph: a soft edge labelled by a real number in (−1, 1), or a hard edge labelled by
one of the symbols {�,⊥}. Intuitively, a soft edge (u, v) represents a match or
non-match, and �(u, v) indicates the degree of confidence, i.e., if �(u, v) is closer
to 1, then (u, v) is likely a match; and if �(u, v) is closer to −1, then (u, v) is
likely a non-match.

A clustering over G = (V,E, �), denoted as CG, is a partition of V such that
CG = {V1, . . . , Vn}, where each Vi(i ∈ [1, n]) is a non-empty cluster,

⋃
1≤i≤n

Vi =

V and
⋃

1≤i�=j≤n

Vi ∩ Vj = ∅. Given an ER graph G, there are many possible

clusterings over G. We are, however, only interested in valid ones. That is, a
clustering CG is valid iff each edge in G labelled by � is in the same cluster, and
each edge in G labelled by ⊥ are across two different clusters. As a convention,
we use C(v) to denote the cluster that a vertex v belongs to.

Given an ER graph G = (V,E, �), the ER clustering problem over G is to
find a valid clustering over G such that vertices are grouped into one cluster
iff their records represent the same real-world entity. The number of clusters in
such a clustering is unknown, i.e., do not know how many real-world entities the
records represent.

A natural way of handling the ER clustering problem is to use existing tech-
niques for correlation clustering [2,4,10]. In such cases, clustering objectives are

Entity Resolution with Weighted Constraints 315

often defined as minimizing disagreements, such as the weights of negative edges
within clusters and the weights of positive edges across clusters, or maximizing
agreements, which can be defined analogously. It is known that correlation clus-
tering is a NP-hard problem [4]. For general weighted graphs, Demaine et al. and
Charikar et al. [7,10] give an O(log n)-approximation algorithm w.r.t. minimizing
disagreements, and Charikar et al. [7] also give a factor 0.7664 approximation
w.r.t. maximizing agreements. Since our ER graphs generalize general weighted
graphs by allowing negative weights and hard edges, the ER clustering prob-
lem from the viewpoint of correlation clustering is also NP-hard and finding an
optimal clustering is computationally intractable.

Therefore, instead of minimizing disagreements or maximizing agreements,
we propose two methods for finding ER clusterings in an ER graph: One is a
variant of pairwise nearest neighbour (PNN) [13], and the other is called relative
constrained neighbour (RCN). The key idea in PNN is that, given a set C of
initial clusters, the pair of clusters in C which has the strongest positive evidence
should be merged, unless this merge is forbidden by some hard negative evidence.
Each merge would change the clustering structure. Iteratively, the next pair of
two clusters that have the strongest positive evidence is picked and merged
if possible, until the total weight of edges within clusters is maximized under
certain specified conditions. The key idea in RCN is to consider the weights of
relative constraints [15]. Given two vertices v1 and v2 that needs to be split.
Then for another vertex v3, if �(v3, v1) > �(v3, v2), then v3 should be clustered
with v1; otherwise v3 should be clustered with v2. If there is no edge between
v3 and v2, then �(v3, v1) > �(v3, v2) holds for any �(v3, v1) > 0. If both �(v3, v1)
and �(v3, v2) do not exist, then v3 can be clustered with either v1 or v2.

Both the PNN and RCN algorithms have three parts: Main, CutHardEdges
and CutSoftEdges. The main part Main is depicted in Algorithm 1, which takes
as input an ER graph G and produces as output a clustering over G. If there
is no conflict in the ER graph, only Step (1) is needed, i.e., generating a clus-
ter for each connected component in the subgraph containing only soft posi-
tive edges. Step (2) eliminates the conflicts involved hard negative edges using
CutHardEdges, while Step (3) deals with the conflicts involved soft negative
edges using CutSoftEdges. In a nutshell, the PNN and RCN algorithms only
differ in the CutHardEdges part, i.e., the removal of hard negative edges, as
presented in Algorithm 2 and Algorithm 3. To keep the discussion simple, we
assume (w.l.o.g.) that ER graphs have no hard positive edges. This is because
two vertices connected by a hard positive edge can always be merged into the
same cluster and thus treated as one vertex.

Let �(v, u) ∈ (−1, 1). We consider that �(v, u) + ⊥ = ⊥ and �(v, u) + � = �,
i.e., � is higher than any real number, and ⊥ is lower than any real number.
We use G>a to denote the subgraph of G that contains vertices of G but only
soft edges whose labels are greater than a, and G[c] to denote the subgraph of
G that is induced by vertices in a cluster c.

316 Z. Shen and Q. Wang

Input: an ER graph G = (V,E, �)
Output: a clustering C over G

(1) Take the subgraph G>0 and generate one cluster cg containing all vertices
in each connected component g ∈ G>0, i.e., C := {cg |g ∈ G>0};

(2) Check G[cg] for each cg ∈ C iteratively, and if there is an edge (u, v) with
�(u, v) =⊥:

(a) C0 := {〈v〉|v is a vertex in G[cg]}.
(b) Ctmp := CutHardEdges(G[cg], C0);
(c) C := C ∪ Ctmp − {cg}.

(3) Check G[cg] for each cg ∈ C, and if there is an edge (u, v) with �(u, v) < 0:

(a) Ctmp := CutSoftEdges(G[cg]);
(b) C := C ∪ Ctmp − {cg}.

(4) Return C.

Algorithm 1. Main

Input: an ER graph G = (V,E, �), and an initial
clustering C0 over G.

Output: a clustering C over G

(1) C := C0.
(2) Perform the following iteratively until no more changes can be made on

C:

(2.1) Find two clusters c1, c2 ∈ C s.t.
∑

u∈c1,v∈c2

�(u, v) > 0 and is maximal

among all cluster pairs in C;
(2.2) C := C − {c1, c2} ∪ {c1 ∪ c2}.

(3) Return C.

Algorithm 2. CutHardEdges for PNN

Input: an ER graph G = (V,E, �), and an initial
clustering C0 over G.

Output: a clustering C over G

(1) C := C0.
(2) Select a hard negative edge (u, v) ∈ E where C0(u) �= C0(v) (It can be

obtained from Step (2) in Algorithm 1 in implementation).
(3) Compare Wu :=

∑
u′∈c,v′∈C0(u)

�(u′, v′) and Wv :=
∑

u′∈c,v′∈C0(v)

�(u′, v′) for

each cluster c in C0 − {C0(u), C0(v)}, and iteratively do the following:

(2.1) If Wu ≥ Wv, C := C − {c, C(u)} ∪ {c ∪ C(u)};
(2.2) Otherwise, C := C − {c, C(v)} ∪ {c ∪ C(v)}.

(3) Return C.

Algorithm 3. CutHardEdges for RCN

Entity Resolution with Weighted Constraints 317

Input: an ER graph G = (V,E, �)
Output: a clustering C over G

(1) Sort the soft negative edges in G s.t. L := [(u1, v1), . . . , (un, vn)] where
|�(ui, vi)| ≥ |�(u(i+1), v(i+1))|.

(2) i := 1 and C := {V }.
(3) Do the following iteratively until i = n+ 1:

(3.1) If there is c ∈ C s.t. (ui, vi) ∈ G[c], then

– Take G>a[c] where a := |�(ui, vi)|, and C0 := {cg |g ∈ G>a[c]};
– If C0(ui) �= C0(vi), then harden �(ui, vi) to be ⊥ in G[c], and C :=

C ∪ CutHardEdges(G[c], C0)− {c}.
(3.2) i := i+ 1.

(4) Return C.

Algorithm 4. CutSoftEdges

5 Experimental Study

We evaluated the efficiency and effectiveness of weighted constraints for ER in
three aspects. (1) ER models : how effectively can constraints and their weights
be learned from domain knowledge for an ER model? (2) ER clustering: how
useful can weighted constraints be for improving the ER quality, in particular,
comparing with previous works on unweighted constraints such as Dedupalog
[2]? (3) ER scalability: how scalable can our method be over large data sets?

We used two data sets in our experiments. The first one is Cora1, which is
publicly available together with its “gold standard”. There are three tables in
Cora, corresponding to three entity types: (a) paper with 1,878 records, (b) au-
thor with 4,571 records, and (c) venue with 1,536 records. The second data set
was taken from Scopus2, which contains 10,784 publication records and 47,333
author records. We manually established the “gold standard” for 4,865 publi-
cation records and 19,527 author records with the help of domain experts. Our
experiments were all performed on a Windows 8 (64 bit) machine with an Intel
Core i5-3470 at 3.2 Ghz and 8GB RAM. The data sets and compuation results
were stored in a PostgreSQL 9.2 database. We implemented ER constraints and
algorithms using Java with JDBC access to the PostgeSQL database.

ER Models. Our first set of experiments evaluated how effectively weighted
constraints can be learned from domain knowledge over the Cora and Scopus
data sets. We chose ξ(α, β) = (2∗α∗β)/(α+β) as the learning measure for both
data sets (i.e., α is precision, β is recall and ξ(α, β) is F1-measure for positive
rules) and Jaccard for measuring string similarity. In the following, we use rg to
refer to the rule learned from a ground rule g. Due to the space limitation, we
will focus on discussing the ER model of the Cora data set, while omitting the
one of the Scopus data set.

1 http://www.cs.umass.edu/~mccallum/
2 http://www.scopus.com/home.url

http://www.cs.umass.edu/~mccallum/
http://www.scopus.com/home.url

318 Z. Shen and Q. Wang

Table 2. Ground positive rules in Cora

g1: paper
∗(x, y) ← title(x, t), title(y, t′),

t ≈λ1
t′

No λ1 Precision Recall F1-measure

1 0.8 0.879 0.815 0.846
2 0.7 0.818 0.926 0.869
3 0.6 0.725 0.985 0.835

g2: paper
∗(x, y) ← title(x, t), title(y, t′), t ≈λ1

t′,

authors(x, z), authors(y, z′), z ≈λ2
z′, year(x, u),

year(y, u′), u ≈λ3
u′

No λ1 λ2 λ3 Precision Recall F1-measure

1 0.5 0.5 0.5 0.990 0.640 0.778
2 0.4 0.4 0.4 0.991 0.672 0.801
3 0.3 0.3 0.3 0.978 0.677 0.800

g3: paper
∗(x, y) ← title(x, t), title(y, t′), t

≈λ1
t′, authors(x, z), authors(y, z′), z ≈λ2

z′

No λ1 λ2 Precision Recall F1-measure

1 0.7 0.7 0.849 0.741 0.792
2 0.6 0.6 0.773 0.916 0.838
3 0.5 0.5 0.711 0.944 0.811

g4: paper
∗(x, y) ← authors(x, z), authors(y, z′),

z ≈λ1
z′, pages(x, t), pages(y, t′), t ≈λ2

t′

No λ1 λ2 Precision Recall F1-measure

1 0.6 0.6 1.000 0.650 0.788
2 0.5 0.5 1.000 0.663 0.797
3 0.4 0.4 0.965 0.700 0.811

g5: author
∗(x, y) ← aname(x, n), aname(y, n′),

n ≈λ1
n′

No λ1 Precision Recall F1-measure

1 0.8 0.947 0.292 0.447
2 0.7 0.806 0.321 0.459
3 0.6 0.441 0.476 0.458

g6: venue
∗(x, y) ← vname(x, n), vname(y, n′),

n ≈λ1
n′

No λ1 Precision Recall F1-measure

1 0.8 0.339 0.720 0.461
2 0.7 0.336 0.767 0.468
3 0.6 0.281 0.786 0.414

Table 3. Ground negative rules in Cora

Data sets Constraints Weights

Cora g7: ¬paper∗(x, y) ← pages(x, z), pages(y, z′),¬z ≈0.2 z′ 1.00
Cora g8: ¬paper∗(x, y) ← title(x, t),title(y, t′),different(t, t′) 1.00
Cora g9: ¬paper∗(x, y) ← hastech(x, t),¬hastech(y, t′) 0.96
Cora g10: ¬paper∗(x, y) ← hasJournal(x, t),¬hasJournal(y, t′) 0.98

We have studied 10 ground rules g1−g10 over the Cora data set for three entity
types: (1) g1 − g6 are positive as shown in Table 2; (2) g7 − g10 are negative as
shown in Table 3. In general, g1−g4 describe that two paper records are likely to
represent the same paper if some of their attributes are similar, and g5 (resp. g6)
describes that two author (resp. venue) records are likely to represent the same
author (resp. venue) if their names are similar. We conducted a range of tests to
learn rg1 − rg6 from g1 − g6 over training data. Table 2 presents some of these
tests. In accordance to our learning measure ξ(α, β), the “most suitable” set of
similarity thresholds for each ground rule is highlighted in Table 2. For instance,
the similarity threshold for title in rg1 is 0.8 because it leads to the highest F1
score. The weight of each rule is determined by its precision, representing how
accurately the rule can be used for ER. That is, ω(rg1) = 0.82, ω(rg2) = 0.99,
ω(rg3) = 0.77, ω(rg4) = 1, ω(rg5) = 0.81 and ω(rg6) = 0.34. rg4 is a hard rule,
while the others are soft. For negative ground rules g7 - g10, they describe that
two paper records likely refer to different papers in the following cases: (1) the

Entity Resolution with Weighted Constraints 319

pages of two paper records are not similar; (2) the titles of two paper records
are different; (3) one paper record is a technical report but the other is not;
(3) one paper record is a journal but the other is not. Among these rules, only
g7 contains a similarity threshold variable λ1, which, according to our learning
measure, is selected to be 0.2 in rg7 . The weights of these rules are: ω(rg7) = 1,
ω(rg8) = 1, ω(rg9) = 0.96 and ω(rg10) = 0.98. We consider rg6 and rg7 as hard
rules.

ER Clustering. We compared the quality of ER over our data sets when using
three different matching and clustering methods: (1) Dedupalog [2], (2) ER-
PNN, and (3) ER-RCN, where ER-PNN and ER-RCN refer to the matching
and clustering methods we discussed in Section 4, and they only differ in the
clustering algorithms, i.e, we used the PNN algorithm in ER-PNN, and the RCN
algorithm in ER-RCN.

All the experiments used the same set of rules. However, rather than using
weights for soft rules, Dedupalog distinguished two kinds of soft rules: one is
called soft-incomplete rules that provide only positive information, and the other
is called soft-complete rules that require a cost penalty when being violated.
In our experiments using the Dedupalog method, the weighted soft rules are
treated as soft-incomplete rules, and conflicts were solved by using their voting,
election and hardening algorithms (see Figure 4-6 in [2]). In this setting, Table
4 shows that our methods ER-RCN and ER-PNN performed equally well, and
also considerably outperformed the Dedupalog method over the Cora data set.
A detailed analysis over the Cora data set reveals that using the weighted rules
leads to a significant improvement in precision. This is because negative rules can
eliminate many false positives without increasing the number of false negatives
in the matching stage. Then the clustering process resolved potential clustering
conflicts, which resulted in a higher precision for both ER-RCN and ER-PNN,
but a small drop in recall for ER-PNN. Our analysis over the Scopus data set
indicated a similar trend. Nevertheless, because the negative rule in Scopus does
not produce many conflicts with the positive rules, the effects are not obvious
in this case.

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

1.E+8

1.E+9

10% 40% 60% 80% 100%

Ru
nt

im
e

(m
s)

 Size of data sets

ER-RCN

ER-PNN

Dedupalog

Fig. 2. Scalability tests over Scopus

ER Scalability. In order to evaluate
the scalability of our methods and un-
derstand how well they compare with
Dedupalog, we created four test data
sets of different sizes which contain
10%, 40%, 60%, 80% and 100% of the
records in the full scopus data set.
Then we run the same set of rules,
as previously described, three times
for each test data set, and took their
average runtime used in the cluster-
ing process. Table 5 presents the data
characteristics of the test data sets
used in our scalability tests. Figure

320 Z. Shen and Q. Wang

Table 4. ER quality comparison

Types of rules Methods
Cora Scopus

Precision Recall F1-measure Precision Recall F1-measure

Positive All 0.7324 0.9923 0.8428 0.9265 0.9195 0.9230

Both positive
and negative

Dedupalog 0.7921 0.9845 0.8779 0.9266 0.9196 0.9231
ER-RCN 0.9752 0.9685 0.9719 0.9271 0.9192 0.9231
ER-PNN 0.9749 0.9660 0.9705 0.9271 0.9193 0.9232

Table 5. Data characteristics in scalability tests

Size of
data sets

#Records
#Matches and
non-matches

#Clusters #Records in
maximal clustersDedupalog ER-RCN ER-PNN

10% 4,733 4,294 3,412 3,417 3,417 18
40% 19,527 76,984 8,804 8,813 8,810 101
60% 28,400 142,865 12,973 13,030 13,018 119
80% 37,866 250,576 15,742 15,819 15,804 213
100% 47,333 387,277 18,424 18,524 18,502 264

2.(c) presents our experimental results, in which the vertical axis indicates the
runtime at a logarithmic scale, and the horizontal axis indicates the sizes of data
sets. From the figure, we can see that the time required by the Dedupalog method
is much longer than our methods, i.e., for the test data set at 10%, the average
runtime taken by ER-PNN is roughly 3% of the average runtime taken by the
Dedupalog method, while for the test data set at 100%, the average runtime
taken by ER-PNN is roughly 0.1% of the average runtime taken by the Dedupa-
log method. The reason for such inefficiency is mainly because Dedupalog treats
clustering graphs as being complete, and the edge label (positive or negative)
between every two vertices thus needs to be considered when solving conflicts.
As a result, the computation may become very expensive, especially when a data
set has large clusters. Note that, three optimization strategies were discussed for
Dedupalog [2], and one of them can make Dedupalog being executed much more
efficiently in the case of having no hard rules. In order to keep the consistency
of comparison, we implement all methods natively except for using implicit rep-
resentation of negative edges. ER-RCN also outperforms ER-PNN over smaller
data sets (i.e., 10% and 40%), but falls behind over larger data sets (i.e., 60%,
80% and 100%).

6 Related Works

Entity resolution has long been recognized as being significant to many areas
of computer science [9]. Numerous works have been done in this area from dif-
ferent perspectives. Although many works did not discuss constraints explicitly
in their ER models, constraints are implicitly used in certain form or the other.
For example, the ER models in [5,6,11,12,22] can be specified by a set of soft

Entity Resolution with Weighted Constraints 321

positive constraints in our framework, together with some negative constraints
to reduce certain errors. In previous studies, a variety of constraints have also
been explicitly investigated in relating to ER [2,8,11,12,14,19,20]. In particu-
lar, constraints may be pairwise or groupwise. Pairwise constraints [12,11] are
concerned about matching or non-matching relationships between two records,
while groupwise constraints focus on aggregate properties of a group of records
[8,19]. Some ER techniques handle both of them [17]. In this paper our focus is
on pairwise constraints.

Dedupalog developed by Arasu et al. [2] is the closest work to ours. Dis-
tinguished from Dedupalog, our framework has the following features: (1) We
generalized clustering graphs used in Dedupalog to be graphs that may not be
complete, and provided efficient clustering algorithms over such graphs; (2) We
considered weights for constraints, which can not only improve the ER quality
but also provide a nice tool to solve conflicts among positive and negative con-
straints; (3) We proposed to use pairwise nearest neighbour (PNN) and relative
constrained neighbour (RCN) for handling the ER clustering, departing from
the traditional correlation clustering viewpoint.

7 Conclusions

In this paper, we studied weighted constraints in relation to the questions of
how to properly specify and how to efficiently use weighted constraints for per-
forming ER tasks. We developed a learning mechanism to “guide” the learning
of constraints and their weights from domain knowledge. Since our framework
supports both positive and negative constraints, conflicts may arise in the ER
process. Our experiments showed that adding weights into constraints is helpful
for conducting ER tasks, and particularly, weights allow us to leverage domain
knowledge to build efficient and effective algorithms for resolving conflicts. For
the future work, we plan to compare our method with other existing ER tech-
niques in terms of quality and scalability.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Arasu, A., Ré, C., Suciu, D.: Large-scale deduplication with constraints using dedu-
palog. In: ICDE, pp. 952–963 (2009)

3. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the accu-
racy of prediction algorithms for classification: an overview. Bioinformatics 16(5),
412–424 (2000)

4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-
3), 89–113 (2004)

5. Bhattacharya, I., Getoor, L.: Relational clustering for multi-type entity resolution.
In: MRDM, pp. 3–12 (2005)

6. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data.
TKDD 1(1), 5 (2007)

322 Z. Shen and Q. Wang

7. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences 71(3), 360–383 (2005)

8. Chaudhuri, S., Das Sarma, A., Ganti, V., Kaushik, R.: Leveraging aggregate con-
straints for deduplication. In: SIGMOD, pp. 437–448 (2007)

9. Christen, P.: Data Matching. Springer (2012)
10. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in

general weighted graphs. TCS 361(2), 172–187 (2006)
11. Doan, A., Lu, Y., Lee, Y., Han, J.: Profile-based object matching for information

integration. Intelligent Systems 18(5), 54–59 (2003)
12. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-

tion spaces. In: ACM SIGMOD, pp. 85–96 (2005)
13. Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Trans. Acous-

tics, Speech and Signal Processing 37(10), 1568–1575 (1989)
14. Lee, T., Wang, Z., Wang, H., Hwang, S.-W.: Web scale taxonomy cleansing.

PVLDB 4(12) (2011)
15. Liu, E.Y., Zhang, Z., Wang, W.: Clustering with relative constraints. In: KDD,

pp. 947–955 (2011)
16. Lowd, D., Domingos, P.: Efficient weight learning for markov logic networks.

In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D.,
Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 200–211. Springer,
Heidelberg (2007)

17. Shen, W., Li, X., Doan, A.: Constraint-based entity matching. In: AAAI, pp. 862–
867 (2005)

18. Singla, P., Domingos, P.: Discriminative training of Markov logic networks.
In: AAAI, pp. 868–873 (2005)

19. Tung, A.K., Han, J., Lakshmanan, L.V., Ng, R.T.: Constraint-based clustering in
large databases. In: ICDT, pp. 405–419 (2001)

20. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: ICML
(2000)

21. Wang, F., Wang, H., Li, J., Gao, H.: Graph-based reference table construction to
facilitate entity matching. Journal of Systems and Software (2013)

22. Whang, S.E., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with
negative rules. The VLDB Journal 18(6), 1261–1277 (2009)

Analogical Prediction of Null Values:

The Numerical Attribute Case

William Correa Beltran, Hélène Jaudoin, and Olivier Pivert

University of Rennes 1 – Irisa
Technopole Anticipa 22305 Lannion Cedex France

william.correa beltran@irisa.fr, {jaudoin,pivert}@enssat.fr

Abstract. This paper presents a novel approach to the prediction of
null values in relational databases, based on the notion of analogical
proportion. We show in particular how an algorithm initially proposed in
a classification context can be adapted to this purpose. In this paper, we
focus on the situation where the relation considered may involve missing
values of a numerical type. The experimental results reported here, even
though preliminary, are encouraging as they show that the approach
yields a better precision than the classical nearest neighbors technique.

1 Introduction

In this paper, we propose a novel solution to a classical database problem that
consists in estimating null (in the sense “currently missing but existing”) val-
ues in incomplete relational databases. Many approaches have been proposed to
tackle this issue, both in the database community and in the machine learning
community (based on functional dependencies [2,6], association rules [20,21,3,9],
decision trees [19], classification rules [10], clustering techniques [8], partial or-
dering comparison [1], etc). See also [13,14].

Here, we investigate a new idea, that comes from artificial intelligence and
consists in exploiting analogical proportions [17]. An analogical proportion is a
statement of the form “A is to B as C is to D”. As emphasized in [18], analogy is
not a mere question of similarity between two objects (or situations) but rather
a matter of proportion or relation between objects. An analogical proportion
equates a relation between two objects with the relation between two other
objects. These relations can be considered as a symbolic counterpart to the case
where the ratio or the difference between two similar things is a matter of degree
or number. As such, an analogical proportion of the form “A is to B as C is to
D” poses an analogy of proportionality by (implicitly) stating that the way two
objects A and B, otherwise similar, differ is the same way as the two objects C
and D, which are similar in some respects, differ.

Up to now, the notion of analogical proportion has been studied mainly in
artificial intelligence, notably for classification purposes (see, e.g., [4]). Our ob-
jective is to exploit it in a database context in order to predict the null values
in a tuple t by finding quadruples of items (including t) that are linked by an

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 323–336, 2014.
c© Springer International Publishing Switzerland 2014

324 W.C. Beltran, H. Jaudoin, and O. Pivert

analogical proportion. In [7], we presented a first approach that was limited to
the prediction of Boolean attributes (case of a transactional database). Here,
we deal with the situation where the attribute values to be estimated are of a
numerical type.

The remainder of the paper is organized as follows. In Section 2, we provide a
refresher on the notion of analogical proportion. Section 3 presents the general
principle of the approach that we propose for estimating null values, inspired by
the classification method proposed in [4,11]. Two views of the analogical pre-
diction of numerical attributes are discussed in Section 4. Section 5 reports on
an experimentation aimed at assessing the performances of the approach and at
comparing its results with those obtained using other types of estimation tech-
niques. Finally, Section 6 recalls the main contributions and outlines perspectives
for future work.

2 Refresher on Analogical Proportions

The following presentation is mainly drawn from [12]. An analogical proportion
is a statement of the form “A is to B as C is to D”. This will be denoted by
(A : B :: C : D). In this particular form of analogy, the objects A, B, C, and D
may correspond to descriptions of items under the form of objects such as sets,
multisets, vectors, strings or trees. In the following, if the objects A, B, C, and D
are tuples having n attribute values, i.e., A = 〈a1, . . . , an〉, . . . , D = 〈d1, . . . , dn〉,
we shall say that A, B, C, and D are in analogical proportion if and only if for
each component i an analogical proportion “ai is to bi as ci is to di” holds.

We now have to specify what kind of relation an analogical proportion may
mean. Intuitively speaking, we have to understand how to interpret “is to” and
“as” in “A is to B as C is to D”. A may be similar (or identical) to B in some
respects (i.e., on some features), and differ in other respects. The way C differs
from D should be the same as A differs from B, while C and D may be similar
in some other respects, if we want the analogical proportion to hold. This view
is enough for justifying three postulates that date back to Aristotle’s time:

– (ID) (A : B :: A : B)
– (S) (A : B :: C : D) ⇔ (C : D :: A : B)
– (CP) (A : B :: C : D) ⇔ (A : C :: B : D).

(ID) and (S) express reflexivity and symmetry for the comparison “as”, while
(CP) allows for a central permutation.

A logical proportion [16] is a particular type of Boolean expression T (a, b, c, d)
involving four variables a, b, c, d, whose truth values belong to B = {0, 1}. It is
made of the conjunction of two distinct equivalences, involving a conjunction of
variables a, b on one side, and a conjunction of variables c, d on the other side of
≡, where each variable may be negated. Analogical proportion is a special case
of a logical proportion, and its expression is [12]: (ab ≡ cd) ∧ (ab ≡ cd). The six
valuations leading to truth value 1 are thus (0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1),
(1, 1, 0, 0), (0, 1, 0, 1) and (1, 0, 1, 0).

Analogical Prediction of Null Values: The Numerical Attribute Case 325

As noted in [18], the idea of proportion is closely related to the idea of ex-
trapolation, i.e., to guess/compute a new value on the ground of existing values,
which is precisely what we intend to do. In other words, if for whatever reason,
it is assumed or known that a logical proportion holds between four binary el-
ements, three being known, then one may try to infer the value of the fourth
one.

3 General Principle of the Approach

3.1 Starting with a Classification-by-Analogy Algorithm

The approach we propose is inspired by a method of “classification by analogy”
introduced in [4] where the authors describe an algorithm named Fadana. This
algorithm uses a measure of analogical dissimilarity between four objects, which
estimates how far these objects are from being in analogical proportion. Roughly
speaking, the analogical dissimilarity ad between four Boolean values is the min-
imum number of bits that have to be switched to get a proper analogy. For in-
stance ad(1, 0, 1, 0) = 0, ad(1, 0, 1, 1) = 1 and ad(1, 0, 0, 1) = 2. Thus, denoting by
A the relation of analogical proportion, we haveA(a, b, c, d) ⇔ ad(a, b, c, d) = 0.

When dealing with four Boolean vectors in Bm, we add the ad evaluations
componentwise, which leads to an integer in the interval [0, 2m]. This principle
has been used in [4] to implement a classification algorithm that takes as an
input a training set S of classified items, a new item x to be classified, and an
integer k. The algorithm proceeds as follows:

1. For every triple (a, b, c) of S3, compute ad(a, b, c, x).
2. Sort these n triples by increasing value of their ad when associated with x.
3. If the k-th triple has the integer value p for ad, then let k′ be the greatest

integer such that the k′-th triple has the value p.
4. Solve the k′ analogical equations on the label of the class1. Take the winner

of the k′ votes and allocate this winner as the class of x.

Example 1. Let S be a training set composed of four labelled objects. The set
of objects in S are showed in Table 1 (left), where the first column indicates
their number or id, the columns A1, A2, and A3 their attribute values, and the
column cl gives the class they belong to.
Now, let x /∈ S be an object to be classified, defined as A1 = 1, A2 = 0, A3 = 0.

One first has to compute the ad value between x and every possible triple of
objects from S. Table 1 (right) shows the ad value obtained with the triple (1,
2, 3). Table 2 shows the list of the first seven triples (ranked according to ad).

Let k = 5; all the triples such that their associated ad value equals at most
that of the 5th tuple (here, 1), are chosen. The triples 1 to 6 are then used to
find the class of x. The six corresponding analogical equations are then solved.
For instance, combination 2) yields the equation 1 : 1 :: 0 : cl, leading to cl=0.
Finally, the class that gets the most votes is retained for d. #
1 The analogical equation a : b :: c : x is solvable iff (a ≡ b) ∨ (a ≡ c) holds true. In
this case, the unique solution is given by x = (a ≡ (b ≡ c))

326 W.C. Beltran, H. Jaudoin, and O. Pivert

Table 1. Training set (left). Computation of ad (right).

id A1 A2 A3 cl

1 0 0 0 0
2 0 1 0 1
3 0 1 1 1
4 1 1 1 1

id A1 A2 A3

1 0 0 0
2 0 1 0
3 0 1 1
x 1 0 0

ad 1 2 1 = 4

Table 2. Triples ranked according to ad

Combination a b c d ad

1) 3 1 4 x 0
2) 2 3 4 x 1
3) 3 4 2 x 1
4) 2 4 1 x 1
5) 3 1 2 x 2
6) 2 1 3 x 2
7) 4 1 3 x 2

3.2 Application to the Prediction of Missing Values

Case of Boolean Attributes. This method may be adapted to the case of
null value prediction in a transactional database as follows. Let r be a relation of
schema (A1, . . . , Am) and t a tuple of r involving a missing value for attribute Ai:
t[Ai] = null. In order to estimate the value of t[Ai] — that is 0 or 1 in the case of
a transactional database —, one applies the previous algorithm considering that
Ai corresponds to the class cl to be determined. The training set S corresponds
to a sample (of a predefined size) of tuples from r (minus attribute Ai that
does not intervene in the calculus of ad but represents the “class”) involving
no missing values. Besides, the attributes Ah, h �= i such that t[Ah] = null are
ignored during the computation aimed at predicting t[Ai].

Case of Numerical Attributes. In the case of numerical attributes, a first
solution consists in coming back to the Boolean case: a numerical attribute
A is then derived into as many Boolean attributes as there are values in the
domain of A. However, this solution is debatable inasmuch as binarization leads
to considering cases of analogy that are rather limited (equality or non-equality).
Two alternative solutions consist respectively in

1. relaxing the concept of analogical proportion by considering a gradual ana-
logical dissimilarity measure;

2. introducing some tolerance in the comparison of values, i.e., replacing equal-
ity by an approximate equality relation.

These two approaches are presented and discussed in the following section.

Analogical Prediction of Null Values: The Numerical Attribute Case 327

4 Analogical Prediction of Numerical Attributes

In this section, we describe different aspects of the prediction of numerical at-
tributes. The first step consists in normalizing the numerical values present in
the relation so as to be able to use domain-independent measures in the next
steps. A value a from domain(A) is transformed into (a−minA)/(maxA−minA)
where minA (resp. maxA) is the minimal (resp. maximal) value in the active
domain of A. Hereafter, we discuss two points of view for relaxing the notion of
an analogical proportion in this context (Subsections 4.1 and 4.2).

4.1 Use of a Gradual Analogical Dissimilarity Measure

We look for analogies of the type

(a : b :: c : d) ⇔ (a− b = c− d) (1)

or

(a : b :: c : d) ⇔ (ad = bc), (2)

the first one being called arithmetic proportion and the second one geometric
proportion. These expressions may be relaxed by introducing some tolerance in
analogical relations, so as to cover more cases. For instance, one may consider
that (100 : 50 :: 80 : 39) is almost true from a geometric proportion viewpoint.

A way of doing, which obviates the introduction of thresholds, is to adopt a
gradual view. Then, the value of ad is not an integer anymore but a real number.
In the case of an arithmetic proportion, one uses the formula proposed by Prade
et al. in [15] and ad is then defined as:

w1 = |(a− b)− (c − d)|. (3)

In the case of a geometric proportion, we propose the following formula which
is consistent with the three basic properties of analogical proportion mentioned
in section 2, i.e., reflexivity, symmetry, and central permutation:

w2 =
min(ad, bc)

max(ad, bc)
. (4)

Notice that if max(ad, bc) = 0, this formula is inapplicable and one can then
only search for an arithmetic proportion.

Notice also that Formulas (3) and (4) do not make it possible to know whether
the variation between a and b is of the same sign as that between c et d. Now,
it seems reasonable to say that if, for instance, a > b and c < d, there cannot
exist any analogical relation of the form a : b :: c : d.

The analogical dissimilarity for a quadruple (a, b, c, d) of numerical values is
computed by means of Algorithm 1.

328 W.C. Beltran, H. Jaudoin, and O. Pivert

Input: four numerical values a, b, c, d;
type a : type of analogy (1: arithmetic or 2: geometric) considered

Output: the value of the analogical dissimilarity ad
begin

if (a ≥ b and c ≥ d) or (a ≤ b and c ≤ d) then
if type a = 1 then

compute ad with Formula (3) : ad ← w1

end
else

compute ad with Formula (4) : ad ← w2

end

end
else

ad ← 1; /* the maximal dissimilarity value */
end

end
return ad;

Algorithm 1: Algorithm that computes ad for a numerical attribute

Computation of a Candidate Value. For a triple (a, b, c) in the top-k′ list
built by Fadana, the prediction of d is as follows:

– arithmetic proportion:
d = b+ c− a; (5)

– geometric proportion:
d = (bc)/a; (6)

If the computed value d is smaller than 0 or greater than 1 (which corresponds
to a predicted value that would be outside the active domain of the attribute
considered), no candidate value d is produced and the triple (a, b, c) does not
take part in the vote.

An important difficulty is that one does not know a priori which type of
analogical proportion — geometric or arithmetic —, if any, is the most relevant
for a given attribute Ai (or a set of attributes). Now, one needs to have this
information for estimating the missing value in the last step of the algorithm
(see Subsection 3.1). In order to overcome this difficulty, we tried two strategies.

The first one performs a preprocessing by taking a set of tuples where the sole
missing values (artificially introduced) concern attribute Ai. This preprocessing
consists in

1. applying Fadana using Formula (1) for predicting the values of Ai (for the
other numerical attributes, the computation of ad is done by taking the
minimum of w1 and w2), then

2. computing the proportion of missing values that are correctly estimated.

One does the same using Formula (2), and checks which expression yields the
best precision.

Analogical Prediction of Null Values: The Numerical Attribute Case 329

The second strategy involves a dataset where null values have been artificially
introduced for every attribute (scattered over the different tuples). We perfom
steps 1-3 of Fadana for each missing value and we count, for each attribute Ai,
the overall number of times (ni,1) that w1 is smaller than w2 and the overall
number of times (ni,2) that the opposite is true when computing the ad values.
For a given attribute Ai, if ni,1 > ni,2 then we decide that arithmetic proportion
will be the most suited to predict the missing values for Ai, otherwise we conclude
that geometric proportion will be the most appropriate.

Unfortunately, none of these strategies appeared conclusive. In each case, and
for each dataset considered, we observed that it was always either the arithmetic
analogy or the geometric one that won for all attributes. In other terms, as
surprising as this may be, it seems that the type of analogical proportion that
yields the best result depends on the dataset, not on the attributes considered
individually. This, of course, makes the choice easier, but raises some questions.
What makes one kind of analogy perform better than the other is still unclear
and must be investigated further. In the following section, we define another way
to relax the notion of an analogical proportion, which does not imply to make a
choice between two types of relations.

4.2 Use of an Approximate Equality Relation

The idea here is to introduce some tolerance in the comparison of the values
involved in an analogical proportion:

a : b :: c : d ⇔ (((a ≈ b) ∧ (c ≈ d)) ∨ ((a ≈ c) ∧ (b ≈ d))). (7)

We interpret x ≈ y as |x− y| ≤ λ where λ ∈ [0, 1] (λ = 0, λ = 0.05, and λ = 0.1
have been used in the experimentation).

Computation of a Candidate Value. For a triple (a, b, c) in the top-k′ list
built by Fadana, the prediction of d is as follows:

if |a− b| ≤ λ then d ← c else if |a− c| ≤ λ then d ← b. (8)

If one has neither |a− b| ≤ λ nor |a− c| ≤ λ, then the triple (a, b, c) cannot be
used to predict any candidate value d and it does not take part in the vote.

4.3 Computation of the Final Value

Let us denote by v1, . . . , vn the number of votes obtained respectively by the
different predicted candidate values di in the Fadana algorithm (

∑n
i=1 vi = k′

and n ≤ k′ since different predicted values may be equal). Let us assume that
a ranking has been performed so that v1 ≥ v2 ≥ . . . ≥ vn. There are of course
many different ways to compute the final value d, among which:

– by an arithmetic mean:

d = (

n∑
i=1

di)/n (9)

330 W.C. Beltran, H. Jaudoin, and O. Pivert

– by a weighted mean:

d = (

n∑
i=1

vi × di)/k
′ (10)

– by keeping only the candidate value with the most votes:

d = di such that vi = max
j=1..n

vj

(but then, ties are problematic).

However, it is somewhat risky to predict a precise value whereas the prediction
process is fundamentally uncertain. A more cautious solution is to return a
probability distribution of the form:

{v1
k′

/d1, . . . ,
vn
k′

/dn}, (11)

Example 2. Let us assume that k′ = 10 and that the pairs (vi, di) obtained are:

(4, 17), (4, 12), (1, 8), (1, 15).

Using the arithmetic mean, one gets d = 13. With the weighted mean, the
result is: d = 14 (rounding 13.9). On the other hand, the associated probability
distribution is {0.4/17, 0.4/12, 0.1/8, 0.1/15}. #
Note that Equation (11) implicitely assumes that all the other values that could
be predicted using a larger k′ are considered totally unlikely (their probability
degree is set to zero).

4.4 Evaluating the Precision of the Method

So as to evaluate the precision of the prediction method m for a dataset D, one
may use, in the three first cases considered above, the measure:

prec(m, D) =

∑
null values x in D 1 − |xactual − xpredicted|

|null values in D| (12)

where xpredicted is the value estimated for x using m. It is of course assumed
that the null values have been artificially introduced in D, i.e., one replaced by
null some values that were initially precisely known (the precise value of x is
denoted by xactual in the formula).

Let us now consider the case where xpredicted is a probability distribution. Let
us denote by cand(xpredicted) the crisp set of candidate values c appearing in the
distribution, and by pr(c) the probability degree associated with candidate c in
xpredicted. The precision measure is defined as:

prec(m, D) = 1 −
∑

null values x in D penalty(x)

|null values in D| (13)

where penalty(x) =
∑

di∈cand(xpredicted)
|xactual − di| × pr(di).

Analogical Prediction of Null Values: The Numerical Attribute Case 331

5 Preliminary Experimentation

The main objective of the experimentation was to compare the results obtained
using this technique with those produced by other approaches (in particular
the “nearest neighbors” technique), thus to estimate its relative effectiveness in
terms of precision (i.e., of percentage of values correctly predicted).

Let us first emphasize that the performance aspect (in terms of execution
time) is not so crucial here, provided of course that the class of complexity
remains reasonable. Indeed, the prediction of missing values is to be performed
offline. However, this aspect will be tackled in the conclusion of this section, and
we will see that different optimization techniques make it possible to significantly
improve the efficiency of the algorithm.

5.1 Experimental Results

In order to assess the effectiveness of the approach, four datasets from the UCI
machine learning repository2, namely adult, blood, cancer, and energy have been
used. For each dataset, a sample M of 50 tuples has been modified, i.e., a 40% of
values of its tuples has been replaced by null. Then, the Fadana algorithm has
been run so as to predict the missing values: for each tuple d involving at least
a missing value, a random sample D of E − M (thus made of complete tuples)
has been chosen. This sample D is used for running the algorithm inspired from
Fadana, detailed in Section 3. Each time, we tested the following approaches:

– arithmetic

• aritmean: Formulas 5 and 9
• aritweight: Formulas 5 and 10
• aritprob: Formulas 5 and 11

– geometric

• geomean: Formulas 6 and 9
• geoweight: Formulas 6 and 10
• geoprob: Formulas 6 and 11

– tolerant with λ = 0, λ = 0.05, λ = 0.1

• t0mean, t005mean, t01mean: Formulas 8 and 9
• t0weight, t005weight, t01weight: Formulas 8 and 10
• t0prob, t005prob, t01prob: Formulas 8 and 11

– kNN

• knnmean: kNN technique and Formula 5
• knnweight: kNN technique and Formula 6
• knnprob: kNN technique and Formula 11.

Tables 3 and 4 show how precision evolves with the value of k, using a train-
ing set made of 40 tuples. A remarkable result is that the value of k does not
have a strong impact on the precision of each approach. The best performances

2 http://http://archive.ics.uci.edu/ml/datasets.html

http://http://archive.ics.uci.edu/ml/datasets.html

332 W.C. Beltran, H. Jaudoin, and O. Pivert

were obtained with geoweight (84.5%), geoprob (90.8%), knnmean (86.9%), and
t005mean (89.6%) for the datasets adult, blood, cancer, and energy respectively.

Table 5 shows how precision evolves with the size of the training set, using
k = 40. The best performances were obtained with geoweight (84%), aritmean
(88.9%), t01mean (85.6%), and aritmean (88.2%) for adult, blood, cancer, and
energy respectively. Notice that all of the approaches have a poor precision
when the size of the training set is around 10, but as soon as this size gets
around 20, the precision of the analogical approaches considerably increases,
which is not the case of kNN.

Table 3. Results with ts = 40 and k ∈ [10-40] (datasets adult and blood)

adult blood
k value 10 20 30 40 10 20 30 40

aritmean 70.17 73 73.07 70.69 87.76 88.69 88.8 88.09

aritweight 69.75 71.97 72.08 70.38 85.95 84.71 84.95 83.62

aritprob 70.39 71.67 71.72 69.4 86.32 86 86.15 85.36

geomean 81.53 83.71 83.71 83.14 84.7 85 86.45 83.35

geoweight 82.14 84.3 84.5 84.18 83.14 80.35 82.5 77.5

geoprob 70.51 72.2 71.6 69.22 90.8 86.22 84.69 82.3

t0mean 67.19 68.35 68.48 66.14 85.09 87.38 87.6 86.9

t0weight 72.29 74.3 74.25 71.63 86.46 84.8 86.1 84.5

t0prob 73.38 75.3 75 72.3 86.82 86.2 86.6 85.4

t005mean 72.17 75.8 75.75 72.3 88.21 88.22 88.12 88

t005weight 72 75.6 75.6 76.2 88.2 85.3 85.8 85.3

t005prob 71.63 74.8 74.7 71.6 86.3 86.7 86 86

t01mean 71.3 74.2 74.5 71.1 87.3 87.47 88 88

t01weight 71.2 73.9 74.2 71 87.3 84.8 86.2 85.8

t01prob 70.9 73.2 73.5 70.4 84.8 84.7 85.3 86

knnmean 72.5 74.8 73.8 68.6 87.8 87 87.4 86.2

knnweight 72.3 74.7 73.8 68.6 87.7 86.1 87 86

knnprob 71.3 73.6 72.6 67.5 86 84.3 85 83

An interesting result is that, even though the analogical approach based on
approximate equality (Formula 7) is usually outranked by either the arithmetic
or the geometric proportion-based one, it is in general better than the worst
among these two and than kNN. We thus can consider it a good compromise.
From these experimental results, it seems that λ = 0.05 is a good choice for the
threshold, and that the best way to determine the final predicted values with
this method is either the arithmetic mean (Formula 5) or the use of a probability
distribution (Formula 11).

However, it appears that the best method overall is either the arithmetic or
the geometric proportion-based analogical approach (depending on the dataset)
and let us recall that a preprocessing such as that described at the end of Sub-
section 4.1 makes it possible to determine which one among the two is the most

Analogical Prediction of Null Values: The Numerical Attribute Case 333

Table 4. Results with ts = 40 and k ∈ [10-40] (datasets cancer and energy)

cancer energy
k value 10 20 30 40 10 20 30 40

aritmean 84.98 85.23 85.29 84.38 89.29 89.12 89.05 89.04

aritweight 84.98 85.23 85.29 84.38 89.29 89.12 89.05 89.04

aritprob 82.97 82.57 82.7 81.9 86.95 86 85.6 85.7

geomean 85.57 86.12 85.5 84.5 88.1 87.4 88.1 87.5

geoweight 85.6 86.12 85.5 84.5 88.1 87.38 88.1 87.5

geoprob 83 83.22 82.77 81.22 85.84 84.26 84.91 84.3

t0mean 78 81.3 83.5 83.32 72.71 71.5 70.4 74

t0weight 75.2 74.9 75.13 74.46 66.3 64.74 68.2 66.2

t0prob 84.25 84 84.25 83.36 86.2 85 86.86 85.09

t005mean 85 85.6 85.6 85.11 89.12 87.9 89.6 88.7

t005weight 75.72 75.2 75.2 74.5 72.6 71.3 75.7 72

t005prob 83.8 83.8 84 83.2 87.2 86 87.4 86.5

t01mean 85.1 85.6 85.6 85.1 88.6 87.5 88.6 87.6

t01weight 75.8 75.3 75.25 74.6 72.3 71 75 71

t01prob 83.8 83.9 84 83.3 86.12 85 86 85

knnmean 86.9 86 82.4 75.4 84.9 81.7 75.2 69.6

knnweight 86.9 86 82.4 75.4 84.9 82 75 69.6

knnprob 84 82.7 78.6 70 81.26 76.8 69 64.2

suitable for a given dataset. For the arithmetic (resp. geometric) proportion-
based analogical method, the experimental measures reported here tend to show
that the best way to compute the final values is to use an arithmetic (resp.
weighted) mean. Of course, these are just preliminary results that need to be
confirmed on larger and more diverse datasets, but they are very encouraging as
to the relevance of applying analogy in this context.

5.2 Optimization Aspects

As mentioned in the preamble, temporal performances of the approach are not
so crucial since the prediction process is to be executed offline. However, it
is interesting to study the extent to which the calculus could be optimized.
With the base algorithm presented in Section 3, complexity is in θ(N3) for the
prediction of a missing value, where N denotes the size of the training set TS
(indeed, an incomplete tuple has to be associated with every triple that can be
built from this set, the analogical relation being quaternary). An interesting idea
consists in detecting a priori the triples from TS that are the most “useful” for
the considered task, i.e., those the most likely to take part in a sufficiently valid
analogical relation. For doing so, one just has to run the algorithm on a small
subset of the database containing artificially introduced missing values, and to
count, for each triple of the training set, the number of k-lists in which it appears
as well as the average number of cases in which the prediction is correct. One can

334 W.C. Beltran, H. Jaudoin, and O. Pivert

Table 5. Results with k=40 and ts ∈ [10-40]

adult blood cancer energy

ts size 10 20 30 10 20 30 10 20 30 10 20 30
aritmean 68.24 71.54 71.3 84.7 88.4 88.9 79 84.2 85 82.17 86.5 88.2

aritweight 67.2 70.8 71 82.5 83.7 84.5 79.2 84.3 85 82.17 86.5 88.2

aritprob 66.7 69.9 69.7 82.4 86 86 76 80.8 82.3 77.2 82.2 84.1

geomean 80.4 83 83 75.6 84 85.9 80.4 83.2 85 80.4 84.44 86.5

geoweight 81.95 84 83.9 70 79 79.2 80.3 83.2 85 80.4 84.4 86.5

geoprob 66.7 70.5 69.8 76 81.8 83.2 77.6 79.8 82.2 75.3 80 82.6

t0mean 61.5 67 67 84.5 86.56 87 74 76.6 80 60.1 66.5 74

t0weight 69.3 73.2 72 84.5 85.6 85.9 71 69 69 61.2 64.8 65.8

t0prob 71.58 74.1 72.8 82.86 85.7 85.3 77.6 81.2 83.58 75.8 82.5 83.4

t005mean 70.3 74.2 73 82.2 87 86.7 79.8 83.5 85 78.8 85.3 87.6

t005weight 70.1 73.86 73.34 80.9 85.4 84.8 71.3 68.7 69.3 68.5 72 71

bt005prob 69.8 73.1 72.2 80.7 85 84.8 77 79.7 83.2 74.7 82 85

t01mean 69.5 72.5 72.2 83.6 86.4 87.4 79.7 82.5 85.6 80.5 86.2 87

t01weight 69 721 72.2 81.7 84.8 86 71.2 67.3 69.2 69 72.3 70.9

t01prob 69 71.3 71.2 81.4 84.1 84.5 77 80 83.4 76.6 82.5 84.5

knnmean 68 70.8 68.8 85.7 86 86.6 76.5 74.8 77 69.2 70.2 70

knnweight 68 70.8 68.8 85.7 86 86.6 76.5 74.8 77 69.2 70.2 70

knnprob 67.3 69.6 67.7 83.6 83.8 84 72.9 69.9 72.5 64.3 63.8 63.9

then keep the sole N ′ triples that appear the most frequently with a good rate
of success, and use them to predict the missing values in the entire database.
Complexity is then in θ(N ′) for estimating a given missing value.

We ran this optimized algorithm on several Boolean datasets, with k varying
between 20 and 40, the size of the training set between 20 and 40, andN ′ between
100 and 1000. For a total of 3000 incomplete tuples, the basic algorithm was run
over the first 500, treating the others with the optimized method.

While the precision of the regularFadana algorithm was 91% on average, that
of the optimized method was about 84%, i.e., there was a difference of about 7
percents (whereas the precision of the kNN method over the same dataset was
about 85%). On the other hand, the optimized method is much more efficient:
it is 1300 times faster than the regular Fadana algorithm when the size of the
training set equals 40, and 25 times faster when it equals 20.

These results show that this method does not imply a huge loss of precision,
but leads to a very significant reduction of the overall processing time. Fur-
ther experiments and analyses are needed, though, in order to determine which
properties make a triple more “effective” than others.

Let us mention that another optimization axis would consist in parallelizing
the calculus on the basis of a vertical partitioning of the relation involved, which
would make it possible to assign a subset of attributes to each processor, the
intermediate results being summed in order to obtain the final value of the
analogical dissimilarity ad.

Analogical Prediction of Null Values: The Numerical Attribute Case 335

6 Conclusion

In this paper, we have presented a novel approach to the estimation of missing
values in relational databases, that exploits the notion of analogical proportion.
This study is a follow-up to a previous work which showed that analogical pre-
diction is an effective technique in the case of Boolean values. The main aim
of the present work was to extend it to the numerical attribute case. We have
investigated different ways to relax the notion of an analogical proportion in the
context of numerical values, and we have evaluated their pros and cons. Then,
we have shown how an algorithm proposed in the context of classification could
be adapted to a prediction purpose. The experimental results obtained, even
though preliminary, appear very encouraging since the different variants of the
analogical-proportion-based approach always yield a better precision than the
classical nearest neighbors technique as soon as the training set is not too small.

Among the many perspectives opened by this work, let us mention the follow-
ing ones. Future work should notably i) investigate how to deal in a sophisticated
way with categorical attributes by taking into account notions such as synonymy,
hyponymy/hypernymy, etc. ii) study the way predicted values must be handled,
in particular during the database querying process. This will imply using an un-
certain database model (see e.g. [22] for a survey of probabilistic database models
and [5] about a model based on the notion of possibilistic certainty) inasmuch
as an estimated value remains tainted with uncertainty, even if the prediction
process has a good level of reliability.

References

1. Abraham, M., Gabbay, D.M., Schild, U.J.: Analysis of the talmudic argumentum a
fortiori inference rule (kal vachomer) using matrix abduction. Studia Logica 92(3),
281–364 (2009)

2. Atzeni, P., Morfuni, N.M.: Functional dependencies and constraints on null values
in database relations. Information and Control 70(1), 1–31 (1986)

3. Bashir, S., Razzaq, S., Maqbool, U., Tahir, S., Baig, A.R.: Using association rules
for better treatment of missing values. CoRR abs/0904.3320 (2009)

4. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: A classification rule for
binary and nominal data. In: Veloso, M.M. (ed.) IJCAI, pp. 678–683 (2007)

5. Bosc, P., Pivert, O., Prade, H.: A model based on possibilistic certainty levels for
incomplete databases. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785,
pp. 80–94. Springer, Heidelberg (2009)

6. Chen, S.M., Chang, S.T.: Estimating null values in relational database systems
having negative dependency relationships between attributes. Cybernetics and
Systems 40(2), 146–159 (2009)

7. Correa Beltran, W., Jaudoin, H., Pivert, O.: Estimating null values in re-
lational databases using analogical proportions. In: Laurent, A., Strauss, O.,
Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part III. CCIS, vol. 444,
pp. 110–119. Springer, Heidelberg (2014)

8. Fujikawa, Y., Ho, T.-B.: Cluster-based algorithms for dealing with missing values.
In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336,
pp. 549–554. Springer, Heidelberg (2002)

336 W.C. Beltran, H. Jaudoin, and O. Pivert

9. Kaiser, J.: Algorithm for missing values imputation in categorical data with use of
association rules. CoRR abs/1211.1799 (2012)

10. Liu, W.Z., White, A.P., Thompson, S.G., Bramer, M.A.: Techniques for dealing
with missing values in classification. In: Liu, X., Cohen, P., Berthold, M. (eds.)
IDA 1997. LNCS, vol. 1280, pp. 527–536. Springer, Heidelberg (1997)

11. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: Definition, algorithms
and two experiments in machine learning. J. Artif. Intell. Res. (JAIR) 32, 793–824
(2008)

12. Miclet, L., Prade, H.: Handling analogical proportions in classical logic and
fuzzy logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS,
vol. 5590, pp. 638–650. Springer, Heidelberg (2009)

13. Myrtveit, I., Stensrud, E., Olsson, U.H.: Analyzing data sets with missing data: An
empirical evaluation of imputation methods and likelihood-based methods. IEEE
Trans. Software Eng. 27(11), 999–1013 (2001)

14. Nogueira, B.M., Santos, T.R.A., Zárate, L.E.: Comparison of classifiers efficiency
on missing values recovering: Application in a marketing database with massive
missing data. In: CIDM, pp. 66–72. IEEE (2007)

15. Prade, H., Richard, G., Yao, B.: Enforcing regularity by means of analogy-related
proportions — a new approach to classification. International Journal of Computer
Information Systems and Industrial Management Applications 4, 648–658 (2012)

16. Prade, H., Richard, G.: Reasoning with logical proportions. In: Lin, F., Sattler, U.,
Truszczynski, M. (eds.) KR. AAAI Press (2010)

17. Prade, H., Richard, G.: Homogeneous logical proportions: Their uniqueness and
their role in similarity-based prediction. In: Brewka, G., Eiter, T., McIlraith, S.A.
(eds.) KR. AAAI Press (2012)

18. Prade, H., Richard, G.: Analogical proportions and multiple-valued logics. In: van
der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 497–509. Springer,
Heidelberg (2013)

19. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
20. Ragel, A.: Preprocessing of missing values using robust association rules.

In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 414–422. Springer,
Heidelberg (1998)

21. Shen, J.J., Chen, M.T.: A recycle technique of association rule for missing value
completion. In: AINA, pp. 526–529. IEEE Computer Society (2003)

22. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers (2011)

Observations on Fine-Grained Locking

in XML DBMSs

Martin Hiller, Caetano Sauer, and Theo Härder

University of Kaiserslautern, Germany
{hiller,csauer,haerder}@cs.uni-kl.de

Abstract. Based on XTC, we have redesigned, reimplemented, and
reoptimized BrackitDB, a native XML DBMS (XDBMS). Inspired by
“optimal” concurrency gained on XTC using the taDOM protocol, we
applied an XML benchmark on BrackitDB running now on a substan-
tially different computer platform. We evaluated important concurrency
control scenarios again using taDOM and compared them against an
MGL-protocol. We report on experiments and discuss important obser-
vations w.r.t. fine-grained parallelism on XML documents.

1 Introduction

In the past, we have addressed—by designing, implementing, analyzing, opti-
mizing, and adjusting an XDBMS prototype system called XTC (XML Trans-
actional Coordinator)—all these issues indispensable for a full-fledged DBMS.
To guarantee broad acceptance for our research, we provided a general solution
that is even applicable for a spectrum of XML language models (e. g., XPath,
XQuery, SAX, or DOM) in a multi-lingual XDBMS environment [5]. At that
time, all vendors of XML(-enabled) DBMSs supported updates only at docu-
ment granularity and, thus, could not manage highly dynamic XML documents,
let alone achieve ambitious performance goals. For this reason, we primarily fo-
cused on locking mechanisms which could support fine-grained, concurrent, and
transaction-safe document modifications in an efficient and effective way.

The outcome of this research was the taDOM family of complex lock protocols
[7] tailor-made for fine-grained concurrency in XML structures and guarantee-
ing ACID-quality transaction serializability. Correctness of taDOM [13] and its
superiority against about a dozen of competitor protocols were already experi-
mentally verified using our (disk-based) XTC (XML Transaction Coordinator)
[6]. Changes and developments of computer and processing architectures (e.g.,
multi-core processors or use of SSDs) also impact the efficacy of concurrency
control mechanisms. Therefore, we want to review taDOM in a—compared to
the study in [6]—substantially changed environment. Because computer archi-
tectures provided fast-growing memories in recent years, we want to emphasize
this aspect—up to main-memory DBMS—in our experimental study. Further-
more, based on XTC, we have redeveloped our testbed system, called BrackitDB
as a disk-based XDBMS [1,3]. To gain some insight into the concurrency control

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 337–351, 2014.
c© Springer International Publishing Switzerland 2014

338 M. Hiller, C. Sauer, and T. Härder

behavior of these reimplemented and improved system, we run an XML bench-
mark under various system configurations and parameter settings [8]. Because
the conceivable parameter space is so huge, we can only provide observations on
the behavior of important XML operations.

To build the discussion environment, we sketch the system architecture of
BrackitDB, the efficacy of important taDOM concepts, and critical implemen-
tation issues in Sect. 2. In the following section, we describe the test database
and the XML benchmark used for our evaluation, before we report on our mea-
surements obtained and, in particular, the most important observations made in
Sect. 4. Finally we summarize our results and conclude the study.

2 Environment of the Experimental Study

To facilitate the understanding of our study, we need at least some insight into
the most important components influencing the concurrency control results.

2.1 Hierarchical DBMS Architecture

Container Log Metadata

read
blocks

write
blocks

sync

sequence
evaluate
XQuery

expression

fix
page

unfix
page

allocate
page

insert,
delete,
update
subtreenavigate

node
e.g.

retrieve element
by name

node

Auxiliary
Data Structures

S
to

ra
ge

 L
ay

er

access access

based on

acquire locks
on demand

Fig. 1. Architecture of BrackitDB

Using a hierarchical architecture model,
we have implemented BrackitDB as a
native XDBMS aiming at efficient and
transaction-safe collaboration on shared
documents or collection of documents.
Hence, it provides fine-grained isolation
and full crash recovery based on a native
XML store and advanced indexing capa-
bilities.

Fig. 1 gives a simplified overview of its
architecture where its layers describe the
major steps of dynamic abstraction from
the storage up to the user interface.

File Layer, Buffer Management, and
the file formats (Container, Log, Meta-
data)—taken from XTC— are not XML-
specific and similar to their counterparts
in relational DBMSs. The components of
the Storage Layer are more important for
our study. They manage XML documents
and related index structures and provide
node-oriented access which has to be iso-
lated in close cooperation with the Lock
Manager (see Sect. 2.3). The document index—a B*-tree where each individ-
ual XML node is stored as a data record in one of the tree’s leaf pages—is the
core structure. To identify nodes, a prefix-based labeling scheme is applied1.

1 The node labeling scheme is the key to efficient and fine-grained XML processing [5].

Observations on Fine-Grained Locking in XML DBMSs 339

A DeweyID, for example, 1.5.7 identifies a node at level 2, where its parent has
DeweyID 1.5 at level 1 and its grandparent DeweyID 1 at level 0. The DeweyIDs
serve as keys in the document index and easily allow to derive sibling and ances-
tor relations among the nodes. The latter is particularly important for locking;
if, e.g., a node is accessed via an index, intention locks have to be acquired on
the ancestor nodes first. Because DeweyIDs also serve as index references, they
contain the ancestor path and, hence, intention locks can be set automatically.

Efficient XML processing requires the Path Synopsis which represents in a
tiny memory-resident repository all different path classes of a document. Using
a path synopsis, each existing path in the document can be indexed by the so-
called Path Class Reference (or PCR). By storing the DeweyID together with
the PCR as an index reference, the entire path of the indexed node to the
document root can be reconstructed without document access. This technique
also enables virtualization of the inner nodes, i.e., it is sufficient to store only
the leaf nodes of an XML document [11]. Moreover, name index, content index,
path index, and CAS index (content and structure)—all using the B*-tree as
base structure—contribute to the efficiency of XML query processing.

The top layer in Fig. 1 is embodied by BrackitDB’s XQuery engine which
compiles and executes high-level XQuery expressions. Because we circumvent
here the query engine to have more precise control over node operations and
locking aspects, we do not need to discuss this engine.

2.2 Lock Concepts of taDOM

Due to its complexity (with 20 lock modes and sophisticated lock conversion
rules [7]), taDOM cannot even be sketched here completely for comprehension.
Based on some examples, we try to convince the reader of taDOM’s concepts
and their potential. For this reason, we visualize its very fine granularity and
compare it to the well-known MGL-protocol (Multi-Granularity Locking) [4].

taDOM uses the MGL intention locks IR and IX, renames R, U, and X to SR,
SU, and SX (subtree read, update, and exclusive). Furthermore, it introduces
new lock modes for single nodes called NR (node read), NU (node update), and
NX (node exclusive), and for all siblings under a parent called LR (level read).
NR and LR allow, in contrast to MGL, to read-lock only a node or all nodes at
a level (under the same parent), but not the corresponding subtrees.

To enable transactions to traverse paths in a tree having (levels of) nodes
already read-locked by other transactions and to modify subtrees of such nodes, a
new intention mode CX (child exclusive) had to be defined for a context (parent)
node. It indicates the existence of an SX or NX lock on some direct child nodes
and prohibits inconsistent locking states by preventing LR and SR locks. It does
not prohibit other CX locks on a context node cn, because separate child nodes
of cn may be exclusively locked by other transactions (compatibility is then
decided on the child nodes). Altogether these new lock modes enable serializable
schedules with read operations on inner tree nodes, while concurrent updates
may occur in their subtrees. An important and unique feature is the optional
variation of the lock depth which can be dynamically controlled by a parameter.

340 M. Hiller, C. Sauer, and T. Härder

Lock depth n determines that, while navigating in documents, individual locks
are acquired for existing nodes down to level n. If necessary, nodes below level
n are locked by a subtree lock (SR, SX) at level n. Fig. 2 summarizes the lock
compatibilities among taDOM’s core modes.

NR + + + - - + + +

LR + + + - - + + -

CX + + - - - + - +

IR
IR

IX SR SU SX
+ + + - -

IX + + - - -

SR + - + - -

SU + - + - -

SX - - - - -

+ + +

+ + +

+ + -

+ + -

- - -

NR LR CX

Fig. 2. Core modes of taDOM

Fig. 3 highlights taDOM’s flexibility and
tailor-made adaptations to XML docu-
ments as compared MGL. Assume trans-
action T1—after having set appropriate
intention locks on the path from the root—
wants to read-lock context node cn. In-
dependently of whether or not T1 needs
subtree access, MGL only offers an R lock
on cn, which forces a concurrent writer (T2
in Fig. 3(a)) to wait for lock release in a
lock request queue (LRQ). In the same sit-
uation, node locks (NR and NX) would al-
low greatly enhance permeability in cn’s subtree (Fig. 3(b, c)). As the only lock
granule, however, node locks would result in excessive lock management cost and
catastrophic performance behavior, especially for subtree deletion [6]. Scanning
of cn and all its children could be done node by node in a navigational fash-
ion (Fig. 3(b)). A special taDOM optimization—using a tailor-made LR lock
for this frequent read scenario—enables stream-based processing and drastically
reduces locking overhead; in huge trees, e.g., the DBLP document, a node may
have millions of children. As sketched in Fig. 3(c), LR also supports write access
to deeper levels in the tree. The combined use of node, level, and subtree locks
gives taDOM its unique capability to tailor and minimize lock granules.

Document entry from any secondary index [4] involves the risk of phantoms.
For instance, retrieving a list of element nodes from the name index [11] causes
every returned node to be NR-locked. While this protects the elements from
being renamed or deleted, other transactions might still insert new elements with
matching names. Hence, opening the name index again at a later time with the
same query parameters (i.e., given element name), might fetch an extended list of
element nodes, including phantom elements that have been inserted concurrently.
To prevent this kind of anomalies, BrackitDB implements Key-Value Locking
(or KVL [12]) for all B*-trees employed as secondary indexes. In a nutshell,

NR1NR1 IX2

NX2

a)

CX2

LRQ: IX2

IR1 IX2
level
i-1

i

i+1

i+2

...

R1

b) ...

. . .
...

cn

c)

NR1

SX2

.........

. . .

...... ...

...

. . .
...

cn

.........

. . .

...... ...

IR1

IR1

...

. . .
...

cn

.........

. . .

...... ...

IX2

IX2

IR1

LR1

IX2

IX2

Fig. 3. Locking flexibility and effectivity: MGL (a) vs. taDOM (b, c)

Observations on Fine-Grained Locking in XML DBMSs 341

KVL aims not only for locking single index entries but also protects key ranges
traversed by index scans. Therefore, KVL effectively prevents phantoms.

2.3 Lock Management

Additional flexibility comes from dynamic lock-depth variations and lock escala-
tion, which help to find an adequate balance between lock overhead (number of
locks managed) and parallelism achieved (concurrency-enabling effects of cho-
sen lock granules). An illustrative example for this locking trade-off is given
above: T1 started to navigate the child set of node cn in a low-traffic subtree
(Fig. 3(b)). If no interfering transaction is present, lock escalation could be per-
formed (Fig. 3(c)) to reduce lock management cost. In BrackitDB, two kinds
of lock escalation are distinguished. Using static lock depth, locks are acquired
only up to a pre-specified level n in the document tree. If a node is accessed at
a deeper level, its corresponding ancestor will be locked instead. Keep in mind
that escalating a lock request to an ancestor potentially widens the lock mode as
well. Dynamic lock escalation works at runtime to overcome the inflexibility of
the static approach which handles each subtree in the same way. Some parts of
the document might not even be accessed at level 1, while others might accom-
modate hotspot regions deeper than level n. Tracking locality of nodes to collect
“escalation” information is cheap, because ancestor locks have to be acquired
anyway. While performing intention locking, an internal lock request counter is
incremented for the parent of requested nodes, indicating that one of its children
is accessed. The following heuristics determines the escalation threshold:

threshold =
maxEscalationCount

2level ∗ escalationGain

The deeper a node is located in the document, the lower is the threshold for
performing lock escalation. The parameter from the numerator, maxEscalation-
Count, constitutes an absolute basis for the number of locks that need to be
held at most before escalation is applied. This value is not changed throughout
different escalation strategies, whereas the denominator parameter, escalation-
Gain, affects how the threshold changes from one level to the next, i.e., the higher
this value is set, the more aggressive is the escalation policy for deeper nodes.
Throughout the benchmark runs, the following escalation policies are applied:

maxEscalationCount escalationGain

moderate 1920 1.0
eager 1920 1.4

aggressive 1920 2.0

The concept of meta-locking realized in BrackitDB provides the flexibility to
exchange lock protocols at runtime. Hence, such dynamic adaptations are a pre-
requisite to achieve workload-dependent optimization of concurrency control and
to finally reach autonomic tuning of multi-user transaction processing [6]. This
concept enables us to execute all benchmark runs under differing lock protocols
in an identical system environment.

342 M. Hiller, C. Sauer, and T. Härder

site

regions

africa

item

...

item

...

...

asia

...

...

categories

...

catgraph

...

people

...

open_auctions

...

closed_auctions

...category

...

edge

...

person

...

open_auction

...

closed_auction

...

Fig. 4. Fragment of the XML document used in the benchmark

Lock management internals are encapsulated in so-called lock services with a
lock table as their most important data structure. Lock services provide a tai-
lored interface to various system components, e.g., for DB buffer management
[7]. A lock table must not be a bottleneck for performance and scalability rea-
sons. Therefore, it has to be traversed and modified by a multitude of transaction
threads at a time. Hence, preservation of its physical consistency becomes a ma-
jor challenge for an implementation viewpoint. Furthermore, frequent blocking
situations must be avoided when lock table operations (look-up, insertion of en-
tries) or house-keeping operations are performed. Therefore, the use of latches
on individual entries of a hash table is mandatory for lock table access. As com-
pared to a single monitor for a hash table, such a solution avoids hot spots and
guarantees physical consistency under concurrent thread access [4].

Another major component of BrackitDB’s lock management is the deadlock
detector (DD). Our DD component runs periodically in a separate thread so
that deadlock resolution is still possible, even when all transaction workers are
already blocked. Every time the DD thread wakes up, its task is to crawl through
the lock table and to construct a wait-for graph on its way. While building the
wait-for graph, the DD thread has to comply with the same latching protocol
as every other thread accessing the lock table. If a cycle is detected, one of the
participating transactions is to be aborted. The decision heuristics for a suitable
abort candidate is based on the minimal number of locks obtained.

3 Benchmark Document and Workload

The benchmark data (see Fig. 4) was created by the XMark Benchmark Data
Generator. Its command line tool xmlgen produces documents that model auc-
tion data in a typical e-commerce scenario. Words for text paragraphs are ran-
domly picked from Shakespeare’s plays so that character distribution is fairly
representative for the English language. Further, the XML output includes ref-
erential constraints across the document through respective ID/IDREF pairs,
thus providing a basis for secondary index scenarios.

Observations on Fine-Grained Locking in XML DBMSs 343

Fig. 5. Cardinalities

But the most outstanding feature is arguably the
scaling factor. Varying this factor allows for generat-
ing documents from the KB range up to several GBs.
The documents still preserve their characteristics
under scaling so that bottlenecks found on smaller
documents would apply for larger documents propor-
tionally. It is worth noting that scaling works only
horizontally, where document depth and complexity
remains untouched, while scaling appends new ele-
ments of different types w.r.t. a probability distribution. The benchmark is based
on an XMark document with a scaling factor of 10, resulting in a file of approxi-
mately 1.1 GB in size (stored on HDD) and specific document cardinalities (see
Fig. 5).

The XMark document models an auction application where items coming from
a certain region are put up for auction. Each item is thereby associated with one
or more categories, which is realized by a sequence of child elements referring
to category elements by their respective ID. Furthermore, every item contains a
mailbox element surrounding a list of mails. Following on the item declarations,
the categories element accumulates the available item categories in the system
which are simply characterized by a name and a description text. The catgraph
element defines a graph structure on top of the categories, whereas each edge ties
two categories together. The person elements gathered under the people element
act as users of the virtual auction platform. A few personal information like the
name or the email address are exposed at this place, but their main usage is to
be referenced by auction elements as bidders or sellers, respectively. In terms of
auctions, XMark distinguishes between open and closed auctions and store them
separately as either open auction or closed auction element in the corresponding
subtree. But in fact, their XML structure is quite similar. Both kinds of auctions
contain a description, a reference to the traded item and its seller.

The workload that is putting stress on BrackitDB is a mix of eight different
transactions. Some of these are read-only, others perform both read and write
accesses. Moreover, transactions are picked randomly from this pool according
to predefined weights (see Table 1), which are supposed to reflect a distribution
we might find in a realistic auction-based application where the focus of activity
is certainly on placing bids. Here, we can sketch the workload transactions (TX)
only by their names to give some flavor of the benchmark evaluated.

The transactions need a way to randomly jump into the document to begin
their processing. For instance, placing a bid requires the transaction to pick
a random auction element, while another operation might start on a random
person element as context node. Another feature needed by some operations
is the possibility to follow ID references within the document, e.g., jump from
the auction to the corresponding item element. Although both requirements
(random entry and navigation via references) could be met without utilizing any
secondary indexes by accessing the root node and scanning for the desired node,

344 M. Hiller, C. Sauer, and T. Härder

Table 1. Mix of transactions with their types and weights

Transaction Type Weight Transaction Type Weight

Place Bid r-w 9 Check Mails r-o 7
Read Seller Info r-o 4 Read Item r-o 5
Register r-w 1 Add Mail r-w 4
Change User Info r-w 4 Add Item r-w 1

system performance could drastically suffer from this unfavorable access plan.
For that reason, we provide two secondary indexes:

– A name index maps element names to a set of DeweyIDs enabling node
reconstructions or direct document access to the name occurrences.

– A CAS index [11] allows for content-based node look-ups, i.e., attribute and
text nodes can be retrieved based on their string value.

When fetching random elements from the name index, the elements are se-
lected w.r.t. some predefined skew. Locking-related contention must also be arti-
ficially enforced. Higher skew implies denser access patterns and increased con-
tention. Skew is defined as 1−σ, while σ denotes the relative standard deviation
of the normal distributions. Hence, a skew of 99% (or a relative σ of 1%) im-
plies that only 1% of the records in the page are picked with a probability of
approximately 68%, effectively producing a hotspot.

Note, we report numbers (tpm, ms) for each experiment averaged over > 10
runs. Transaction order varied from run to run due to random elements fetched
and, more influential, randomly picked transactions. Hence, distribution of locks
and, in turn, blocking delays might have strongly differed from run to run.

4 Measurements

All benchmark runs performed were executed in the following runtime environ-
ment. Note that benchmark suite (BenchSuite) as well as BrackitDB server were
both running concurrently on the same node during the measurements.

CPU: 2x Intel Xeon E5420 @ 2.5 GHz, totaling in 8 cores
Memory: 16 GB DDR2 @ 667 MHz
Storage: RAID-5 with 3 disks (WD1002FBYS), 1 TB each, 7200 rpm (HDD)
Log: Samsung SSD 840 PRO, 256 GB (SSD)
Operating System: Ubuntu 13.04 (GNU/Linux 3.8.0-35 x86-64)
JVM: Java version 1.7.0 51, OpenJDK Runtime Environment (IcedTea 2.4.4)

4.1 System Parameters

We need to sketch the system parameters (not discussed so far) which strongly
influence the benchmark results. As buffer size, we distinguish two corner cases:
A small buffer keeps 1% of the XMark document incl. secondary indexes, thereby
provoking lots of page replacements to HDD. In turn, a large buffer holds the

Observations on Fine-Grained Locking in XML DBMSs 345

(a) TX throughput (tpm) (b) TX abort rate

Fig. 6. Baseline experiments for X- and MGL-protocols

entire document in main memory; hence, I/O is only needed for logging. Every
experiment starts on a warm buffer.

We run ACID transactions, where BrackitDB has to perform ARIES-style
logging and recovery [4] based on HDD or SSD. To reveal special effects, logging
(and, in turn, ACID) may be disabled. The skew parameter was set to 50% (low)
or 99% (high). The number of threads was always 8. Scheduling is insofar optimal
that a transaction is only initiated, if a worker thread is available. Hence, no
queuing effects occur, apart from blocking delays in front of the Lock Manager.
Note, the assignment of threads to processing cores is encapsulated by the OS,
such that applications (e.g., DBMS) cannot exert influence.

4.2 Baseline Experiments

We started running the same XMark workload under pure X- andMGL-protocols
to reveal especially the influence of buffer size or I/O activity and lock manage-
ment overhead. To obtain the largest spread of transaction throughput, con-
figurations with small buffer/low skew/log on HDD (Intensive I/O) and large
buffer/high skew/log on SSD (Reduced I/O) were chosen (Fig. 6). Reducing
I/O to the minimum necessary more than doubled throughput in case of the X-
locking. It always exclusively locked the entire document—only a single worker
thread was accessing the document at a time, while all others waited for the
global X-lock to be released—and thereby prevented lock conflicts (no aborts),
whereas MGL handled 8 threads concurrently. Lock conflicts together with multi-
threading [14] obviously led to substantial throughput loss. For Reduced I/O,
MGL only achieved one third of the X-lock throughput, i.e., throughput of se-
rial workload executions profits much more from a larger DB buffer than that
of parallel executions. Further, up to 3% of the transactions had to be aborted.

The result of Fig. 6 is seductive and points to degree of parallelism = 1 as the
seemingly best case. But Fig. 7 reveals the downside of this approach. The re-
sponse times dramatically grow even in case of very short transactions, although
optimal scheduling was provided. A mix of long and short transactions would
make parallelism = 1 definitely unacceptable for most applications.

TX timings in Fig. 7 are avg. times over the benchmark—all runs of all trans-
action types. Block time is the aggregated wait time for a transaction in front of
the Lock Manager for lock releases. Lock request time containing the block time

346 M. Hiller, C. Sauer, and T. Härder

summarizes all requests for document and index locks including latch and lock
table processing.

Fig. 7. TX timings (ms)

The difference between both
timings (right and middle bars
in Fig. 7 confirms that the Lock
Manager overhead is very low
(∼ 0.1 ms)—an indication of its
salient implementation. Fig. 7 fur-
ther reveals the critical role of
I/O on the total runtime—even
in the case of MGL. Analyzing
the deviation between the total
transaction runtime (left bar) and
the accumulated lock request time
(middle bar) makes clear that the non-locking-related overhead is strongly de-
pendent on I/O. This overhead includes TCP interaction between BenchSuite
and BrackitDB, look-ups in meta-data, , accessing storage and evaluating nav-
igation steps, logging every modification, fixing pages at buffer level and much
more—these fixed costs make up a major portion of the total query runtime. In
case of X-locking, only (parts of) communication and look-ups can be done in
parallel leaving the major share of non-locking-related work for serial execution,
whereas, in case of MGL, all work (except latch synchronization) could be con-
currently done in all threads making the I/O dependency even stronger. Based
on X-locking (mostly serial execution), we can approximately calculate the the
total query runtime from Fig. 6(a): Intensive I/O: ∼ 33, 000 tpm = ∼ 550 tps)
≡ 1.9 ms/TX and Reduced I/O: ∼ 62, 000 tpm = ∼ 1, 030 tps) ≡ 0.97 ms/TX.
These values are confirmed by the corresponding TX timings in Fig. 7. In con-
trast, waits for I/O can be partially masked in MGL runtimes, however, latch
waits (for buffer pages and lock table), lock conflicts, and multi-threading loss
cannot be fully amortized.

Note, due to our “optimal” BenchSuite scheduling, queuing delays before TX
initiation are not considered in the given TX timings. For user-perceived response
times, we have to add a variable time component for queuing, which is depen-
dent on traffic density of TX requests and TX execution time variance. Similar
TX timings as shown for the MGL-protocol were obtained in the subsequent
experiments, such that we will not repeat this kind of figure.

4.3 Lock Depth and Lock Escalation

Because taDOM acts as an extension to MGL, providing the same set of core
lock modes plus some new taDOM-specific locks, we can expect this protocol
to behave similar to MGL. Because we want to focus on lock conflicts, we have
chosen a configuration with large buffer and high skew.

The first observation we can make from examining Fig. 8(a) is the huge impact
on the transaction throughput when varying the lock depth in the range between
0 and 3. While a lock depth of 0 basically escalates every lock request to the

Observations on Fine-Grained Locking in XML DBMSs 347

(a) TX throughput (tpm) (b) TX abort rate

Fig. 8. taDOM with variation of lock depth and lock escalation policy

root node and thereby achieves a dreadful result in terms of system performance,
taDOM seems to reach its climax when restricting the lock depth to 3. In fact,
this pattern could be well explained by the XMark document structure and the
workload. Increasing throughput values for lock depths up to 3 indicate that
most transactions clash at the fourth level of the XML tree, where most of
the document modifications take place. If the focus of transaction contention is
not deeper in the XML tree, higher (static) lock depths only increase the lock
management overhead. Fig. 8(b) is somewhat complementary to Fig. 8(a). High
locking contention poses a higher risk of deadlocks which again leads to high
abort rates and eventually a drastically reduced transaction throughput.

As compared to MGL (with ∼ 20, 000 tpm in Fig. 6(a)), taDOM variations
are constantly superior and achieve an throughput gain of up to 20%. In this
benchmark, the lock escalation policy applied seems to have only limited effect
on throughput or abort rate whatsoever. A lock escalation count essentially tells
us that only escalation “Aggressive” leads to actually performed lock escalations
and exhibits some throughput gain of ∼ 10% at lock depth 3. In this experiment,
the conditions it takes for escalating were hardly satisfied for weaker escalation
policies. Hence, No escalation, Moderate and Eager are not only coincidentally
producing similar results, but they literally constitute the same scenario. On
the other hand, scenarios with varying high-traffic contention in subtrees could
certainly profit from a well-chosen escalation policy. Because escalation checking
did hardly increase lock management overhead, the proposed policies should be
offered as valuable optimization options for fine-grained XML lock protocols.

Although not comparable one-to-one, we obtained throughput values (tpm)
for BrackitDB’s SSD-based benchmarks that are up to 100% higher than the
former HDD-based benchmarks using XTC ([6,2]. Due to space limits, we abstain
from reporting our experiment using a small DB buffer, i.e., enforcing Intensive
I/O with a small buffer, because it did not exhibit new aspects.

4.4 Workload Variants

To figure out whether there are still optimizations for taDOM left, we prepared
different implementations of the same XMark transactions. Semantically, these
workload variants are equivalent, but they utilize slightly different node oper-
ations to fulfill their task, or explicitly acquire locks here and there to reduce

348 M. Hiller, C. Sauer, and T. Härder

the risk of deadlocks caused by lock conversions. The following experiment is
centered around XML processing options sketched in Fig. 3(b and c). We run
BrackitDB with basic taDOM (infinite lock depth and lock escalation disabled),
where a large buffer/high skew configuration is used to challenge the lock proto-
col (as in Sect. 4.3). The study includes four different workload variants:

Navigation: Navigational child access and no preventive locking
Stream: Stream-based child access and no preventive locking
Navigation+Preventive: Navigational child access with preventive locking
Stream+Preventive: Stream-based child access with preventive locking.

The first workload variant, where the transactions always perform navigation
steps like First-Child and Next-Sibling whenever child traversal is necessary,
is the same as used in the experiment in Sect. 4.3. The other alternative is to
call getChildren() to retrieve a child stream using a single LR lock on the
parent node. Although stream-based access might sound like the clear winner,
there are situations where single navigation steps make more sense, e.g., when
only a few of the first children are actually accessed. If indeed deadlocks were the
limiting factors for transaction throughput in the previous benchmark, we should
also notice a difference when applying preventive locking, since this strategy
should drastically reduce deadlocks or even prevent them altogether. Preventive
locking is a strategy where the strongest necessary lock mode is obtained before
any particular node is accessed for the first time; thus, lock upgrades as the
major source of deadlocks are avoided. It is clear that such a proceeding needs
substantial application knowledge. Because automatic conversion is currently out
of reach, we did it manually per transaction type. Hence, the results obtained
are somewhat “fictitious”, marking future optimization potential.

The navigational workload achieves a throughput of slightly more than 20,000
tpm. Modifying the workload implementation by substituting single navigation
steps by child streams (stream-based) does not have a striking impact on perfor-
mance either (see Fig. 9). The results for the non-preventive variants are pretty
stable. In fact, the stream-based strategy consistently exposes lower lock request
times throughout all benchmark repetitions. Also the total query runtime turns
out to be lower if child streams are utilized instead of navigation steps, which
might indicate a slight performance benefit resulting from storage-related aspects
(e.g., more efficient sibling traversal).

Fig. 9. Different workload variants

What improves the throughput sig-
nificantly, however, is reducing the risk
of deadlocks, achieved by application-
specific locking optimizations in the
workload variants with preventive lock-
ing. As a result, the abort rate could
be brought down from 2.8% (non-
preventive variants) to literally 0%.
In case of the navigational approach,
the preventive locking strategy roughly
doubles the throughput, while it also improves the stream-based implementation

Observations on Fine-Grained Locking in XML DBMSs 349

Fig. 10. TX throughput (tpm) for the I/O edge cases and I/O counts for Full I/O

considerably, yet not to the same extent. The higher throughput of Navigation
+ Preventive might result from frequent, incomplete child-set traversals. The
reason why this diagram displays an additional error bar is to emphasize the
high standard deviation for the two measurements involving preventive locking.
No matter how often the experiment was repeated, these high fluctuations in
the transaction throughput remain.

4.5 I/O Edge Cases

Eventually, due to the strong throughput dependency on the available I/O con-
figuration, we want to review the four different workload variants employing
taDOM under extreme I/O setups. So far, we gained the high-skew throughput
results in Fig. 9 for “Reduced I/O” (I/O only for log flushes to SSD). Now, we
look at the two edge cases concerning I/O activity. Full I/O is obtained by a
tiny buffer covering only 0.1% of the document—enforcing very frequent page
replacements to HDD—, rather slow log flushes to HDD, and low-skew access
of the benchmark transactions. No I/O, in contrast, uses a large buffer (no re-
placements needed) and disables log flushes completely. Note, this edge case
is achievable in the near future, when persistent non-volatile RAM (NVRAM)
(enabling log writes in the sub-μsec range [10]) can replace part of DRAM.

With a minimum of DB buffer size, the avg. number of I/O events per trans-
action for Full I/O is similar in all experiments. Note, No I/O has neither read-
nor write-I/O. The X-case with its throughput spectrum from ∼23,000 tpm to
>100,000 tpm is only present in Fig. 10 to highlight again the critical role of I/O,
at least for serial execution. In the other experiments, based on multi-threaded
processing under taDOM, the I/O impact is obvious, but far less critical. Ob-
viously, the only moderate throughput gain by reduced I/O is a consequence of
processing frictions caused by multi-threading and latch/lock/deadlock conflicts.
Hence, there is future optimization potential for multi-core scheduling in the OS
domain and for adjusted concurrency control in the DBMS domain.

350 M. Hiller, C. Sauer, and T. Härder

5 Conclusions

Although seductive and dramatically simplifying DB work, we don’t believe that
parallelism = 1 is generally acceptable in DBMSs, because of potentially long and
unpredictable response times. Stonebraker et al. [14] claim that 90% of the run-
time resources are consumed by four sources of overhead, namely buffer pool,
multi-threading, record-level locking, and an ARIES-style [4] write-ahead log.
Even if this is correct, most applications cannot tolerate the consequences. Re-
finements of the underlying idea postulate partition-wise serial execution. Again,
Larson et al. [9] showed that most transactions would frequently need expensive
partition-crossing operations, making such an approach obsolete.

As a general remark, frequency of I/O events and their duration is critical for
high-performance transaction processing. Large main memories and use of SSDs
(in near future also NVRAM)—at least for logging tasks—help to substantially
increase the level of concurrency and throughput. Yet, multi-threading and lock
conflicts diminish this gain considerably, as all result figures confirm. Because
scheduling and multi-core mapping are OS tasks, improvements can not be ob-
tained by the DBMS alone—an application program from the OS perspective.

With appropriately chosen taDOMoptions, we observed in our study a through-
put gain of∼ 20% compared to the widely usedMGL-protocol.Optimal lock depth
values strongly depend on document and workload; if wrongly chosen, they may
have a suboptimal impact on concurrency. Well-chosen (or unlimited) lock depth
combined with lock escalation may be a better solution with acceptable costs, be-
cause it dynamically cares for a balance of appropriate concurrency-enabling lock
granules and lockmanagement overhead.As a rule of thumb, setting the lock depth
value too high is much better than too low.

Using application knowledge, processing XML documents could be signifi-
cantly improved thereby reducing the risk of deadlocks. Scanning the child set
of a node is a frequent operation, where—as a kind of context knowledge—
preventive locking can be applied. As a result, it brought the abort rate down
to 0% and, in turn, substantially enhanced the transaction throughput.

References

1. Bächle, S., Sauer, C.: Unleashing XQuery for Data-Independent Programming.
Datenbank-Spektrum 14(2), 135–150 (2014)

2. Bächle, S., Härder, T.: The Real Performance Drivers Behind XML Lock Protocols.
In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690,
pp. 38–52. Springer, Heidelberg (2009)

3. BrackitDB – Google Project Hosting (2014),
http://code.google.com/p/brackit/wiki/BrackitDB

4. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann (1993)

5. Haustein, M.P., Härder, T.: An Efficient Infrastructure for Native Transactional
XML Processing. Data & Knowl. Eng. 65(1), 147–173 (2008)

6. Haustein, M.P., Härder, T., Luttenberger, K.: Contest of XML Lock Protocols.
In: Proc. VLDB, pp. 1069–1080 (2006)

http://code.google.com/p/brackit/wiki/BrackitDB

Observations on Fine-Grained Locking in XML DBMSs 351

7. Haustein, M.P., Härder, T.: Optimizing Lock Protocols for Native XML Processing.
Data & Knowl. Eng. 65(1), 147–173 (2008)

8. Hiller, M.: Evaluation of Fine-grained Locking in XML Databases. Master Thesis,
University of Kaiserslautern (2014)

9. Larson, P.-A., et al.: High-Performance Concurrency Control Mechanisms for Main-
Memory Databases. PVLDB 5(4), 298–309 (2011)

10. Pelley, S., et al.: Storage Management in the NVRAM Era. PVLDB 7(2), 121–132
(2013)

11. Mathis, C., Härder, T., Schmidt, K.: Storing and Indexing XML Documents Upside
Down. Computer Science - R&D 24(1-2), 51–68 (2009)

12. Mohan, C.: ARIES/KVL: A Key-Value Locking Method for Concurrency Con-
trol of Multiaction Transactions Operating on B-Tree Indexes. In: Proc. VLDB,
pp. 392–405 (1990)

13. Siirtola, A., Valenta, M.: Verifying Parameterized taDOM+ Lock Managers.
In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 460–472. Springer, Heidelberg (2008)

14. Stonebraker, M., Weisberg, A.: The VoltDB Main Memory DBMS. IEEE Data
Eng. Bull. 36(2), 21–27 (2013)

Multi-dialect Workflows�

Leonid Kalinichenko, Sergey Stupnikov,
Alexey Vovchenko, and Dmitry Kovalev

Institute of Informatics Problems, Russian Academy of Sciences, Moscow, Russia
{leonidandk,itsnein,dm.kovalev}@gmail.com, ssa@ipi.ac.ru

Abstract. The results presented in this paper contribute to the tech-
niques for conceptual representation of data analysis algorithms as well
as processes to specify data and behavior semantics in one paradigm. An
investigation of a novel approach for applying a combination of semanti-
cally different platform independent rule-based languages (dialects) for
interoperable conceptual specifications over various rule-based systems
(RSs) relying on the rule-based program transformation technique rec-
ommended by the W3C Rule Interchange Format (RIF) is extended here.
The approach is coupled also with the facilities for heterogeneous infor-
mation resources mediation. This paper extends a previous research of
the authors [1] in the direction of workflow modeling for definition of
compositions of algorithmic modules in a process structure. A capability
of the multi-dialect workflow support specifying the tasks in semantically
different languages mostly suited to the task orientation is presented. A
practical workflow use case, the interoperating tasks of which are speci-
fied in several rule-based languages (RIF-CASPD, RIF-BLD, RIF-PRD)
is introduced. In addition, OWL 2 is used for the conceptual schema
definition, RIF-PRD is used also for the workflow orchestration. The
use case implementation infrastructure includes a production rule-based
system (IBM ILOG), a logic rule-based system (DLV) and a mediation
system.

Keywords: conceptual specification, workflow, RIF, production rule
languages, database integration, mediators, PRD, multi-dialect infras-
tructure.

1 Introduction

This work keeps on the intention of developing the facilities for conceptual declar-
ative problem specification and solving in data intensive domains (DID). In [1] it
was claimed that conceptual data semantics alone (e.g., formalized in ontology
languages based on description logic) are insufficient, so that conceptual repre-
sentation of data analysis algorithms as well as processes for problem solving are
required to specify data and behavior semantics in one paradigm.

� This research has been done under the support of the RFBR (projects 13-07-00579,
14-07-00548) and the Program for Basic Research of the Presidium of RAS.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 352–365, 2014.
c© Springer International Publishing Switzerland 2014

Rule-Based Multi-dialect Infrastructure for Conceptual Problem Solving 353

The results presented in this paper extend the research [1] aimed at the def-
inition and implementation of the facilities for conceptually-driven problems
specification and solving in DID aiming at ensuring eventually the following
capabilities for expressing the specifications:

1. an ability to provide complete and precise specification of the abstract struc-
ture and behavior of the domain entities, their consistency, relationship and
interaction;

2. well-grounded diversity of semantics of the modeling facilities providing for
the best attainable expressiveness, compactness and precision of the defini-
tion of the problem solving algorithm specifications;

3. arrangements for the extensions of the modeling facilities satisfying the
changing technological and practical needs;

4. specification independence from implementation platforms (languages, sys-
tems);

5. specification independence from concrete information resources (databases,
services, ontologies and others) combined with facilities for their semantic
integration and interoperability;

6. built-in methodologies for creation of unifying specification languages pro-
viding for construction of semantics-preserving mappings of conceptual spec-
ifications into their implementations in specific platforms.

The research reported in [1] investigated the conceptual modeling facilities for
DID applying rule-based declarative logic languages possessing different, comple-
mentary semantics and capabilities combined with the methods and languages
for heterogeneous data mediation and integration. Two fundamental techniques
were combined: (1) constructing of the unifying extensible language providing
for semantics-preserving mapping into it of various information resource (IR)
specification languages (e.g., such as DDL and DML for databases); (2) creation
of the unified extensible family of rule-based languages (dialects) and a model
of interoperability of the programs expressed in such dialects.

The first technique is based on the experience obtained in course of the SYN-
THESIS language development [2]. The kernel of the SYNTHESIS language is
based on the object-frame data model used together with the declarative rule-
based facilities in the logic language similar to a stratified Datalog with functions
and negation. The extensions of the kernel are constructed in such a way that
each extension together with the kernel is a result of semantic preserving map-
ping of some IR language into the SYNTHESIS [2]. The canonical information
model is constructed as a union of the kernel with such extensions defined for
various resource languages. Canonical model is used for development of media-
tors positioned between the users, conceptually formulating problems in terms
of the mediators, and distributed resources. A schema of a subject mediator for
a class of problems includes the specification of the domain concepts defined by
the respective ontologies.

Another, multi-dialect technique for rule-based programs interoperability ap-
plied is based on the RIF standard [3] of W3C. RIF introduces a unified family

354 L. Kalinichenko et al.

of rule-based languages together with a methodology for constructing of se-
mantic preserving mappings of specific languages used in various Rule-based
Systems (RS) into RIF dialects. Examples of RS include SILK, OntoBroker,
DLV, IBM Websphere ILOG JRules, and others (more examples can be found
at http://www.w3.org/2005/rules/wiki/Implementations). From the RIF
point of view an IR is a program developed in a specific language of some RS.

In [1] the first results obtained were presented including the description of an
approach and an infrastructure supporting:

– application domain conceptual specification and problem solving algorithms
definitions based on the combination of the heterogeneous database media-
tion technique and the rule-based multi-dialect facilities;

– interoperability of distributed multi-dialect rule-based programs and medi-
ators integrating heterogeneous databases;

– rule delegation approach for the peer interactions in the multi-dialect envi-
ronment.

The proof-of-concept prototype of the infrastructure based on the SYNTHE-
SIS environment and RIF standards has been implemented. The approach for
multi-dialect conceptualization of a problem domain, rule delegation, rule-based
programs and mediators interoperability were explained in detail and illustrated
on an use-case in the finance domain [1]. For the conceptual definition of the
use-case problem the OWL was used for the domain concepts definition and
two RIF logic dialects RIF-BLD [4] and RIF-CASPD [5] were used and mapped
for implementation into the SYNTHESIS formula language and the ASP-based
DLV [6] language respectively.

The results obtained so far are quite encouraging for future work: they show
that the mentioned in the beginning capabilities (1-6) sought for conceptual
modeling become feasible. This paper reports the results of extending the re-
search in the direction of modeling of the processes for the problem solving
following the approach briefly outlined above. These results include extensions
of the infrastructure and specification languages considered in [1] to the work-
flow level keeping the same approach and paradigm as well as aiming at the
capabilities of the conceptualization (1-6) that were stated in [1] and mentioned
in the beginning of the introduction.

For investigation of such extension w.r.t. the choice of rule-based languages
it was decided not to go outside the limits of the existing set of the published
RIF dialects. Such decision would allow to retain well-defined semantics of the
conceptual rule-based languages with a possibility to check preservation of their
semantics by various languages of the implementing systems.

The production rule dialect RIF PRD [7] has been chosen as the language for
the workflow modeling in such a way that the tasks of the workflow can have
multi-dialect rule-based representation (as defined in [1]). This paper reporting
the results of such investigation is structured as follows. To make the paper
self-contained, the next section provides a brief overview of the infrastructure
supporting multi-dialect programming defined in details in [1]. Here we stress

http://www.w3.org/2005/rules/wiki/Implementations

Rule-Based Multi-dialect Infrastructure for Conceptual Problem Solving 355

that this infrastructure is suitable for the workflow tasks specification. Workflow-
oriented extension of the multi-dialect infrastructure is considered in the section
3. Use case implementation in the proof-of-concept prototype is given in the
section 4. Related works are reviewed in the section 5. Conclusion summarizes
contributions of the research.

2 Basic Principles of the Workflow Tasks Representation
in the Multi-dialect Infrastructure

Every workflow task (besides those that for pragmatic reasons are defined as
externally specified functions) is assumed to be represented in the novel infras-
tructure defined in details in [1]. Conceptual programming of tasks is performed
using the RIF dialects (now not only logic but also production rule dialects can
be used). Conceptual tasks are implemented by their transformation into the
rule-based programs of the respective RSs and mediation systems (MSs). Con-
ceptual specification of a task is defined in the context of a subject domain and
consists of a set of RIF-documents (document is a specification unit of RIF). The
conceptual schema of the domain is defined using OWL 2 [8] ontologies. Such
usage of ontology is analogous to [9], however it is specifically important in the
multidialect environment due to the formally defined compatibility between RIF
and OWL. The ontologies contain entities of the domain and their relationships
(Fig. 1, right-hand part). Conceptual specification of a task is defined over con-
ceptual schema. Ontologies are imported into the RIF-documents specifying an
import profile, for instance, OWL Direct. Documents import other documents
having the same semantics (the Import directive), link documents defined using
other dialects and having different semantics (remote module directive Module)
or refer to entities contained in other documents using external terms.

Semantics of a conceptual task definition in such setting become a multi-
dialect one. The specification modules of a task are treated as peers. Mediation
modules are assumed to be defined in RIF-BLD for representation of the medi-
ator rules (to be interpreted in SYNTHESIS) supporting schema mapping and
semantic integration of the information resources. Multi-dialect task is imple-
mented by means of transformation of conceptual specifications into modular,
component-based P2P program represented in the languages of the mediation
(MSs) and rule-based systems (RSs) with the respective semantics. Interoper-
ability of logic rule components of such distributed program is carried out by
means of the delegation technique ([1] section 3.3). Production rule components
are considered as external functions, interoperability is achieved through the
mechanism of external terms.

A schema SR of a peer R is a set of entities (classes or relations and their
attributes) corresponding to extensional and intensional predicates of the re-
source implementing the peer R. The RS or the mediation system (MS) of every
peer R should be a conformant DR consumer, where DR is a respective RIF
dialect (Fig. 1, left-hand part). Conformance is formally defined using formula
entailment and language mappings [3].

356 L. Kalinichenko et al.

Fig. 1. Conceptual schema and peer specifications

The peer R is relevant to a RIF-document d of a conceptual specification of
a problem (Fig. 1, right-hand part) if (a) DR is a subdialect of the document d
dialect (subdialect is a language obtained from some dialect by removing certain
syntactic constructs and imposing respective restrictions on its semantics [4];
every program that conforms with the subdialect also conforms with the dialect)
and (b) entities of the peer schema SR (if they exist) are ontologically relevant to
entities of the conceptual schema the names of which are used in d for extensional
predicates.

The schema of a relevant peer is mapped into the conceptual schema. The
mapping establishes the correspondence of the conceptual entities referred in
the document d to their expressions in terms of entities of the schema SR using
rules of the DR dialect. These schema mapping rules constitute separate RIF-
document (Fig. 1, middle part).

Peers communicate using a technique for distributed execution of the rule-
based programs. The basic notion of the technique is delegation – transferring
facts and rules from one peer to another. A peer is installed on a node of the
multi-dialect infrastructure. A node is a combination of a wrapper, an RS or an
MS, and a peer (to save space, we refer a reader for the details to the paper [1],
Fig. 3). A wrapper transforms programs and facts from the specific RIF dialect
into the language of the RS or MS and vice versa. A wrapper also implements the
delegation mechanism. Transferring facts and rules among peers is performed in
the RIF dialects.

A special component (Supervisor) of the architecture defined in [1] stores
shared information of the environment, i.e. conceptual specifications related to
the domain and to the problem, a list of the relevant resources, RIF-documents
combining rules for the conceptual specification and a resource schema mapping.

Implementation of the conceptual specification includes the following steps:

– Rewriting of the conceptual documents into the RIF-programs of the peers
performed by the Supervisor. The rewriting includes also (1) replacing the
document identifiers (used to mark predicates) by peer identifiers and (2)
adding schema mapping rules to programs (Fig. 1, middle part).

Rule-Based Multi-dialect Infrastructure for Conceptual Problem Solving 357

– A transfer of the rewritten programs to nodes containing peers relevant to
the respective conceptual documents. The transfer is performed by the Su-
pervisor by calling the method loadRules of the respective node wrappers.

– A transformation of the RIF-programs into the concrete RS or MS languages.
The transformation is performed by the NodeWrapper or by the RS or MS
itself (if the RS or MS supports the respective RIF dialect).

– An execution of the produced programs in P2P environment.

During the process of rewriting of the conceptual schema into the resource pro-
grams the relationships between RIF-documents of the conceptual schema de-
fined by remote or imported terms are replaced by relationships between peers
also defined by remote or imported terms. To implement remote and imported
terms a rule delegation mechanism is used to transfer facts and rules from one
peer to another. The details of rule delegation approach including description of
the related algorithms are provided in [1].

3 Workflow-Oriented Extension of the Multi-dialect
Infrastructure

The aim of the infrastructure proposed is a conceptual programming of problems
in the RIF-dialects and an implementation of conceptual specifications using
rule-based languages of the RSs and MSs. One of the objectives of this particular
paper is to introduce an extension of the existing multi-dialect infrastructure [1]
aiming at the conceptual specification of rule-based workflows.

Conceptual specification of a problem (class of problems) is defined in the
context of a subject domain and consists of a set of RIF-documents. Besides
the documents expressed in the logic dialects of RIF, the documents expressed
in the production rule dialect (RIF-PRD) also can be a part of conceptual spec-
ification of a problem. In particular, these documents are aimed to express a
process of solving the problem as the production rule-based workflow.

A workflow consists of a set of tasks orchestrated by specific constructs (work-
flow patterns [10], for instance sequence, split, join) defining the order of tasks
execution. The specification of such orchestration is called here a workflow skele-
ton. A skeleton is defined using RIF-PRD production rules. Workflows and work-
flow patterns can be represented using production rules in various ways, e.g. as in
[10][19]. The approach applied in this paper to represent workflows requires the
extension of RIF-PRD dialect by several built-in predicates (they are considered
to be a part of wkfl namespace referenced by http://www.w3.org/2014/rif-

workflow-predicate# URI similarly to func and pred namespaces defined in
[23] for built-in functions and predicates of RIF).

Predicates wkfl:variable-definition and wkfl:variable-value allow to specify
workflow variables and their values and thus to organize the data flow within a
workflow. Predicates wkfl:parameter-definition and wkfl:parameter-value allow to
specify workflow parameters and their values and thus to define the interface of a
workflow in terms of input and output parameters. Using of workflow parameters
and variables is illustrated in the next section.

http://www.w3.org/2014/rif-workflow-predicate
http://www.w3.org/2014/rif-workflow-predicate

358 L. Kalinichenko et al.

Fig. 2. Extended multi-dialect infrastructure

Predicate wkfl:end-of-task(?arg), where ?arg is an identifier of a task, turns
into true if a task ?arg has been completed. The predicate allows to orchestrate
the order of execution of workflows tasks using conditions and actions of produc-
tion rules. For instance, AND-Split workflow pattern is represented in RIF-PRD
by the following production rule template using wkfl:end-of-task predicate:

If Not(External(wkfl:end-of-task(A)))

Then Do (Act(A) Assert(External(wkfl:end-of-task(A))))

If And(Not(External(wkfl:end-of-task(B))) External(wkfl:end-of-task(A)))

Then Do (Act(B) Assert(External(wkfl:end-of-task(B))))

If And(Not(External(wkfl:end-of-task(C))) External(wkfl:end-of-task(A)))

Then Do (Act(C) Assert(External(wkfl:end-of-task(C))))

The template includes three rules for tasks A,B and C respectively. Act(A),
Act(B) and Act(C) denotes actions associated with tasks A,B and C. Orches-
tration (tasks B and C are executed concurrently right after task A is completed)
is specified using wkfl:end-of-task predicate in conditions and Assert actions of
rules. More complicated patterns like OR-, XOR- splits and joins, structured
loops, subflows and others are represented in RIF-PRD similarly.

Workflow tasks can be specified as:

– separate RIF-documents in various logic RIF-dialects (this is the way how
multi-dialect infrastructure [1] is extended with workflow capabilities);

– separate RIF-documents in the RIF-PRD dialect;
– set of production rules embedded into the workflow skeleton;
– external functions treated as “black boxes”.

Semantics of tasks specified as multi-dialect logic programs are defined in
accordance with the RIF-FLD [3] standard and standards for the respective RIF-
dialects. Semantics of tasks specified as production rule programs are defined in
accordance with the RIF-PRD standard. Semantics of external functions “are
assumed to be specified externally in some document” [3].

All kinds of tasks (except those that are embedded into a workflow skeleton)
are referenced in the workflow skeleton as external terms [3] like External(t)

Rule-Based Multi-dialect Infrastructure for Conceptual Problem Solving 359

where term t is defined by an external resource identified by internationalized
resource identifier (IRI) [3].

Workflows defined in the conceptual specification are implemented in the en-
vironment shown on Fig. 2. P2P environment [1] intended to implement logic
programs is extended with a production rule-based system — PRS in short
(for instance, a production system compliant with the OMG Production Rule
Representation [18]) and with external functions, implemented as web-services.
Implementation of the conceptual specification includes the following steps:

– Transfer of the conceptual RIF-documents constituting a workflow skele-
ton to the production rule-based system node (performed by the Supervisor
component).

– Transformation of the conceptual RIF-documents constituting a workflow
skeleton into the language of the production rule-based system (performed
by the PRS Wrapper component).

– Transferring RIF logic programs related to tasks to the relevant nodes of the
environment and transformation of the RIF-programs into the concrete RS
or MS languages [1].

– Execution of the workflow.

The interface of the Supervisor includes methods for submitting and executing
a workflow represented as a set of RIF-documents, and for getting the result of
the workflow execution.

4 Multi-dialect Workflow Use-Case

Motivation of the use case that illustrates the proposed approach comes from
the finance area. The use case extends the investment portfolio diversification
problem defined in ([1], Appendix) by adding workflow orchestration applying
the production rules dialect RIF-PRD. The idea of the portfolio diversification
problem is as follows. The portfolio is a collection of securities of companies,
and its size is the number of securities in the portfolio. The problem is to build
a diversified portfolio of maximum size. Diversification means that the prices
of the securities in portfolio should be almost independent of each other. If the
price of one security falls, it will not significantly affect the prices of other. Thus
the risk of a portfolio sharp decrease is reduced.

The input data for the problem is a set of securities and respective time
series of indicators of the security price for each security. Time series for each
security is a set of pairs (d, v) where d is a date and v is an indicator of the
security price (for instance, closing price). The financial services Google Finance
(https://www.google.com/finance) and Yahoo! Finance (http://finance.
yahoo.com/) are considered. They include various indicators of the security
price for all trading days of the last decades. For the diversified portfolio the
securities having non-correlated time series should be used. Non-correlation of
the time series means that their correlation is less than some predetermined
price correlation value. The output data for the problem is a set of subsets of

https://www.google.com/finance
http://finance.yahoo.com/
http://finance.yahoo.com/

360 L. Kalinichenko et al.

securities of the maximum size, for which the pairwise correlation will be less
than the predetermined one.

The maximum satisfying subset of securities is calculated in the following
way. Let G be a graph where the vertices are the securities. An edge between
two securities exists if absolute value of their correlation is less than a specified
number. So any two securities connected by an edge are considered as non-
correlated. In such case, the problem of finding the portfolio of the maximum
size is exactly the problem of finding a maximum clique in an undirected graph.
A maximal clique is a maximal portfolio. Note that several different maximal
portfolios can be found.

The conceptual specification of the use case [1] used two RIF-dialects: RIF-
BLD and RIF-CASPD. The use case was implemented in the environment con-
taining a mediation system used as a platform for RIF-BLD [4] and ASP-based
DLV system [6] – a platform for RIF-CASPD. The RIF-BLD was used to spec-
ify the problem of data integration, and RIF-CASPD – the problem of finding
a maximum clique in an undirected graph.

The portfolio use case is extended in this work in the following way. The goal
is not only to build a set of diversified portfolios, but to choose the “best” of
them according to some criteria. There are several approaches to choose the most
appropriate portfolio.

The most recognized one is based on the Markovitz portfolio theory [11].
The idea is to choose the portfolio, which has the maximum risk/return ratio.
The most well-known metric to operate with risk/return is Sharpe-ratio [12]:
(rp − rf)/σ

2. Here rp denotes the expected return of the portfolio, rf denotes
a risk free rate, σ2 denotes a portfolio standard deviation (risk). The more the
Sharpe-ratio, the better the investment is.

Another approach is based on an idea that with the advent of social networks,
it became possible to monitor ideas, sentiments, actions of people and lots of
available information has to do with the markets and investments. In [13] Bollen
et al. draw the connection between the mood of investor tweets and the move
of Dow Jones Index, stating that correlation between them is more that 80%.
The idea of using tweets to assess market movements has been implemented in
several hedge funds.

Combining these two strategies could provide benefits of both of them, which
leads to the following problem statement: having S&P500 (a stock market in-
dex maintained by the Standard & Poor’s, comprising 500 large-cap American
companies) list of companies, compute the diversified portfolio of maximum size
with the best riskreturn and sentiment ratios. Fig. 3 demonstrates the workflow
of the extended portfolio problem. It contains six tasks:

– getPortfolios. A set of diversified portfolio candidates is computed. The
multi-dialect task specification consists of two RIF-documents in BLD and
CASPD dialects ([1], Appendix). Portfolios received as a result contain only
security tickers, they have to be augmented by financial and sentiments ra-
tios.

Rule-Based Multi-dialect Infrastructure for Conceptual Problem Solving 361

Fig. 3. Portfolio workflow

– getPositiveTweetRatio. This task is responsible for computing a sentiment
ratio of tweets for every security. Every tweet is assessed to be positive,
negative or neutral. The task is specified as a call of external function.

– computePortfolioTwitterMetrics. The portfolio sentiment ratio is computed
as the average of its securities sentiment ratio. The task is specified using
RIF-PRD.

– getSecurityFinancialMetrics. For every security in a portfolio the financial
rates (the expected return and the standard deviation) are calculated on the
basis of historical rates of securities specified as an OWL 2 class of the
ontology of the application domain. The task is specified using RIF-BLD
dialect.

– computePortfolioFinancialMetrics. The computation of the portfolio expected
return, risk, and Sharpe-ratio is done within this task. The task is specified us-
ing RIF-PRD dialect.

– choosePortfolio. The best portfolio is chosen according to maximizing the
(Sharpe ratio ∗ sentiment ratio) product. The task is specified using RIF-
PRD dialect.

Workflow skeleton is specified as a RIF-PRD document importing the ontology
of the application domain. To save space we provide below the orchestration
rules only for the task getPortfolios:

Document(Dialect(RIF-PRD)

Import(<http://synthesis.ipi.ac.ru/portfolio/ontology#>

<http://www.w3.org/ns/entailment/OWL-Direct>)

Prefix(ont <http://synthesis.ipi.ac.ru/portfolio/ontology#>)

Prefix(svc <http://synthesis.ipi.ac.ru/portfolio/services#>)

Group 2 (Do(

Assert(External(wkfl:parameter-definition(startDate xsd:string IN)))

Assert(External(wkfl:parameter-definition(endDate xsd:string IN)))

Assert(External(wkfl:variable-definition(ps List<ont:Portfolio> IN))))

Group 1 (

Forall ?sd ?ed such that(External(wkfl:parameter-value(startDate ?sd))

External(wkfl:parameter-value(endDate ?ed)))

(If Not(External(wkfl:end-of-task(getPortfolios)))

Then

Do(Modify(External(

wkfl:variable-value(ps External(svc:getPortfolios(?sd ?ed))))

Assert(External(wkfl:end-of-task(getPortfolios))))))

362 L. Kalinichenko et al.

Fig. 4. Portfolio problem implementation structure

Production rules of the document are divided into two groups. The first group
with priority 2 contains rules defining workflow parameters and variable. Param-
eters are start date and end date of historical rates used for calculation of portfolio
metrics. Workflow variable ps denotes a set containing portfolio candidates.

The second group with priority 1 contains the orchestration rules – work-
flow skeleton. The only orchestration rule provided in the example above corre-
sponds to the task getPortfolios. The external function getPortfolios encapsulates
a multi-dialect logic program calculating portfolio candidates ([1], Appendix). A
Modify action is used to call the function and to put the returned result into the
ps variable.

The implementation structure of the use case is shown on Fig. 4.
The RIF-PRD workflow skeleton was transformed into a program in the ILOG

[14] language combining production rules and workflow facilities (like fork and
sequence). The ILOG program was executed in the IBM Operational Decision
Manager tool.

The computePortfolioTwitterMetrics, computePortfolioFinancialMetrics, and
choosePortfolio tasks are implemented as production rules in ILOG.

The getSecurityFinancialMetrics task uses the same instance of the mediation
system as the getPortfolios task. The reason is that financial metrics are calcu-
lated using the historical rates of the securities. This is exactly the information
that is extracted by the mediation system from Google Finance and Yahoo! Fi-
nance. The difference between two tasks is that the getPortfolios is implemented
as a submission of a query to the DLV node, but the getSecurityFinancialMetrics
is implemented as a submission of a different query to the Mediation Node.

The getPositiveTweetRatio task is implemented as a Java-program wrapped
by a web service. First it collects tweets using the Twitter Streaming API. After
that a sentiment analysis is done by the Polarity Classifier of the OpinionFinder
tool [15] which assesses if tweet is positive, negative or neutral. Finally the
sentiment ratio for every security in a portfolio is calculated.

Rule-Based Multi-dialect Infrastructure for Conceptual Problem Solving 363

Detailed specifications of the use case including ontologies, logic programs,
production rules, workflow specification and implementation are provided in Ap-
pendix of [1] and in a technical report [16]. The technical report includes also
results obtained by one of the workflow runs.

5 Related Work

Two types of workflow models, namely abstract and concrete were identified
[17]. In the abstract model, a workflow is described in an abstract form, without
referring to specific resources. In this paper we propose workflow representation
in abstract and platform independent (PIM) form.

A classification model for scientific workflow characteristics [10] contributes to
better understanding of scientific workflow requirements. The list of structural
patterns discovered during this analysis (including sequential, parallel, parallel-
split, parallel-merge, mesh) influenced our choice of the workflow patterns.

The OMG standard [18] reflects an attitude to production rules from the
industrial side providing an OMG MDA PIM model with a high probability
of support at the PSM (Platform-Specific Model) level from the rule engine
vendors. Similar capabilities though formally defined are used as the basis for
the production rule dialect RIF-PRD [7].

Some vendors of such production rule engines have extended their languages
with the workflow specification capabilities. IBM has extended ILOG to provide
the ruleflow capability. Microsoft supports Windows Workflow Foundation as
a platform providing the workflow and rules capabilities. Examples of specific
formalisms for PIM rule-based process specifications are provided also in [19].

Comparing to the known variants of the PIM production rule representations,
selection of the RIF-PRD production rule dialect we consider well-grounded: (1)
the RIF-PRD is formally defined; (2) RIF ensures support of interoperability
of modules written in different rule-based dialects with different semantics; (3)
RIF provides foundations for PIM to PSM semantic preserving transformation;
(4) RIF also provides an ability for specification of the concepts in application
domain terms combining rule-based specifications with the OWL ontologies.

Importance of providing the inter-dialect interoperation is advocated in [20] for
combining the functionalities of production systems and logic programs for ab-
ductive logic programming (ALP). The ALP framework gives a model-theoretic
semantics to both kinds of rules and provides themwith powerful proof procedures,
combining backward and forward reasoning.

Papers related to RIF-PRD experimentations are focused mainly on the issue
of the PRD programs transformation to an implementation system. In [21] a case
study of bridging the ILOG Rule Language (IRL) to RIF-PRD and vice versa
is considered. In [22] implementation of RIF-PRD in three different paradigms:
Answer Set Programming, Production Rules and Logic Programming (XSB) is
investigated.

The contribution of this paper w.r.t. previous works of the authors [1] consists
in extensions of the infrastructure and specification languages considered in [1]
to the workflow level.

364 L. Kalinichenko et al.

6 Conclusion

Progress in the investigation of the infrastructure [1] for the conceptual multi-
dialect interoperable programming in the abstract, rule-based, platform indepen-
dent notations is reported. We present an extension of the coherent combination
of the multi-dialect rule-based programming technique recommended by the
W3C RIF with the approach for unifying modeling of heterogeneous data bases
for their semantic mediation. The extension of the infrastructure and specifi-
cation languages considered in [1] in the direction of the workflow modeling is
presented.

Sticking to the limits of the existing set of the published RIF dialects, we
present a capability of the multi-dialect workflow support with the tasks speci-
fied in semantically different languages mostly suited to the task orientation. We
present a realistic problem solving use case containing the interoperating tasks
specified in several platform independent rule-based languages: RIF-CASPD,
RIF-BLD, RIF-PRD. In addition, OWL 2 is used for the conceptual schema
definition, RIF-PRD is applied for the workflow orchestration. The platforms se-
lected for implementation of the tasks include: DLV, SYNTHESIS, IBM ILOG.
Such approach retains well-defined semantics of the platform independent rule-
based languages with a possibility to check preservation of their semantics by
various languages of the implementing systems. The principle of independence
of tasks from the specific IRs is carried out by the heterogeneous database me-
diation facilitates contributing to the re-use of tasks and workflows. Alongside
with the further extension of the approach, in the future work we plan to apply
the conceptual multi-dialect programming philosophy for support of the experi-
ments in data intensive sciences. In particular, we plan to investigate modeling
hypotheses in astronomy representing them as a set of rules applying the multi-
plicity of the dialects required.

References

1. Kalinichenko, L.A., Stupnikov, S.A., Vovchenko, A.E., Kovalev, D.Y.: Conceptual
Declarative Problem Specification and Solving in Data Intensive Domains. Infor-
matics and Applications 7(4), 112–139 (2013),
http://synthesis.ipi.ac.ru/synthesis/publications/13ia-multidialect

2. Kalinichenko, L.A., Stupnikov, S.A., Martynov, D.O.: SYNTHESIS: A language
for canonical information modeling and mediator definition for problem solving
in heterogeneous information resource environments, p. 171. IPI RAN, Moscow
(2007)

3. Boley, H., Kifer, M. (eds.): RIF Framework for Logic Dialects. W3C Recommen-
dation, 2nd edn. (February 5, 2013)

4. Boley, H., Kifer, M. (eds.): RIF Basic Logic Dialect. W3C Recommendation, 2nd
edn. (February 5, 2013)

5. Heymans, S., Kifer, M. (eds.): RIF Core Answer Set Programming Dialect (2009),
http://ruleml.org/rif/RIF-CASPD.html

6. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7(3), 499–562 (2006)

http://synthesis.ipi.ac.ru/synthesis/publications/13ia-multidialect
http://ruleml.org/rif/RIF-CASPD.html

Rule-Based Multi-dialect Infrastructure for Conceptual Problem Solving 365

7. de Sante Marie, C., Hallmark, G., Paschke, A. (eds.): RIF Production Rule Dialect.
W3C Recommendation, 2nd edn. (February 5, 2013)

8. Bock, C., et al. (eds.): OWL 2Web Ontology Language Structural Specification and
Functional-Style Syntax. W3C Recommendation, 2nd edn. (December 11, 2012)

9. Calvanese, D., et al.: Ontology-based database access. In: Proceedings of the Fif-
teenth Italian Symposium on Advanced Database Systems, pp. 324–331 (2007)

10. Ramakrishnan, L., Plale, B.: A Multi-Dimensional Classification Model for Scien-
tific Workfow Characteristics. In: Proceedings of the 1st International Workshop
on Workflow Approaches to New Data-centric Science. ACM, New York (2010)

11. Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments.
Wiley (1991)

12. Sharpe, W.F.: Mutual Fund Performance. J. Business 39(S1), 119–138 (1966)
13. Bollen, J., Maoa, H., Zeng, X.: Twitter mood predicts the stock market. J. Comp.

Sci. 2(1) (2011)
14. IBM WebSphere ILOG JRules Version 7.0. Online documentation,

http://pic.dhe.ibm.com/infocenter/brjrules/v7r0/index.jsp

15. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-
Level Sentiment Analysis. In: Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Language Processing, pp. 347–354.
Association for Computational Linguistics, Stroudsburg (2005)

16. Kalinichenko, L.A., Stupnikov, S.A., Vovchenko, A.E., Kovalev, D.Y.: Multi-
Dialect Workflows: A Use Case. Technical Report. IPI RAN, Moscow (2014),
http://synthesis.ipi.ac.ru/synthesis/projects/RuleInt/Multidialect-

Workflows-Use-Case.pdf

17. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.
ACM SIGMOD Records 34(3), 44–49 (2005)

18. Production Rule Representation (PRR), Version 1.0. OMG Document Number:
formal/2009-12-01 (2009), http://www.omg.org/spec/PRR/1.0

19. Boukhebouze, M., Amghar, Y., Benharkat, A.-N., Maamar, Z.: A rule-based
approach to model and verify flexible business processes. Int. J. Business Process
Integration and Management 5(4), 287–307 (2011)

20. Kowalski, R., Sadri, F.: Integrating Logic Programming and Production Systems in
Abductive Logic Programming Agents. In: Polleres, A., Swift, T. (eds.) RR 2009.
LNCS, vol. 5837, pp. 1–23. Springer, Heidelberg (2009)

21. Cosentino, V., Del Fabro, M.D., El Ghali, A.: A model driven approach for bridging
ILOG Rule Language and RIF. In: Proceedings of the 6th International Symposium
on Rules, RuleML 2012. CEUR-WS.org, vol. 874, pp. 96-102 (2012)

22. Veiga, F.D.J.: Implementation of the RIF-PRD. Master thesis. Universidade Nova
de Lisboa (2011)

23. Polleres, A., Boley, H., Kifer, M. (eds.): RIF Datatypes and Built-Ins 1.0 W3C
Recommendation, 2nd edn. (February 5, 2013)

http://pic.dhe.ibm.com/infocenter/brjrules/v7r0/index.jsp
http://synthesis.ipi.ac.ru/synthesis/projects/RuleInt/Multidialect-Workflows-Use-Case.pdf
http://synthesis.ipi.ac.ru/synthesis/projects/RuleInt/Multidialect-Workflows-Use-Case.pdf
http://www.omg.org/spec/PRR/1.0

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 366–382, 2014.
© Springer International Publishing Switzerland 2014

Context-Aware Adaptive Process Information Systems:
The Context-BPMN4V Meta-Model

Imen Ben Said1, Mohamed Amine Chaabane1, Eric Andonoff2, and Rafik Bouaziz1

1 MIRACL/FSEG, Route de l’aéroport, BP 1088, 3018 Sfax, Tunisia
{Imen.Bensaid,MA.Chaabane,Raf.Bouaziz}@fsegs.rnu.tn

2 IRIT/UT1-Capitole, 2 rue du doyen Gabriel Marty, 31042 Toulouse, France
andonoff@univ-tlse1.fr

Abstract. This paper introduces Context-BPMN4V, an extension of BPMN for
modeling variability of processes using versions and also considering their
contextual dimension. More precisely, it shows how we extend BPMN meta-
models to support version modeling to deal with process adaptation, along with
context modeling to characterize the situations in which instances of processes
are executed. Because of space limitation, this paper only focuses on intra-
organizational processes.

Keywords: Context, Adaption, Process Information Systems, Versions, BPMN.

1 Introduction

In the last two decades, there has been a shift from data-aware information systems to
Process-Aware Information Systems [1]: processes play now a fundamental role in
Enterprise Information Systems (EIS) and they are the support of the alignment
between EIS and business strategies of enterprise actors [2,3]. A Process (aware)
Information System (PIS) is a software system that manages and executes operational
processes involving people, applications, and/or information sources on the basis of
process schemas (models). Examples of PISs are workflow management systems (e.g.
YAWL), case-handling systems (e.g. Flowers), enterprise resource planning systems,
Business Process Management (BPM) suites (e.g. BizAgi) and service oriented
architecture-based process implementation [1].

Adaptation is a major challenge for PIS, before their definitive acceptance and use
in enterprises [4]. This issue is fundamental, as the economic environment in which
enterprises are involved is more and more dynamic, competitive, and open [5,6]:
enterprises frequently change their processes in order to meet, as quickly and
efficiency as possible, new operational, organizational or customer requirements, or
new law regulations. Thus, the economic success of enterprises is closely related to
their ability to integrate changes happening in their environment and to make evolve
their processes accordingly [7].

This need for adaptive PIS has led BPM researchers to intensively investigate
process adaptation issue. Several typologies have been introduced to classify process

 Context-Aware Adaptive Process Information Systems 367

adaptation, and even if they are different, they all agree to distinguish two different
times for process adaptation (design-time and run-time), two abstraction levels for
process adaptation (the schema –model– level and the instance –case– level), and
three types of process adaptation [8–11]: (i) adaptation by design, for handling
foreseen changes in processes where strategies are not necessarily defined at design-
time to face these changes and must be specified at run-time by process users (e.g.
late modelling and late biding [12]), (ii) adaptation by deviation, for handling
occasional unforeseen changes and where the differences with initial process are
minimal, and (iii) adaptation by evolution, for handling unforeseen changes in
processes, which require occasional or permanent modifications in process schemas.

We distinguish several approaches to deal with process adaptation issue: activity-
driven approach [13–21], constraint-driven approach [22,23], data-driven approach
[24,25], case-driven approach (case handling) [26], and more recently, social-driven
approach [27]. Activity-driven approach is based on the explicit representation of
process schemas (models): the activities of the process and the way there are
synchronized are modelled along with information handled and resources involved in
it. On the other hand, constraint-driven, case-driven, social-driven and even date-
driven approaches avoid describing the way activities are synchronized: in these
approaches, process schemas are not explicitly and a priori defined. Even if these
approaches are promising, this paper focuses on activity-driven adaptive PIS, as
activity-oriented models are used in the majority of (service-oriented) process
management systems. Consequently, BPM community has to provide solutions to
deal with activity-oriented process adaptation [7].

When dealing with adaptation in activity-driven PIS, in addition to the behavioural,
organisational and informational dimensions usually considered for processes and
which respectively define the activities of the process and their synchronization, the
involved resources in the realization of these activities and the data they produce or
consume, we also have to consider the contextual dimension of processes in order to
characterize the situations in which instances of processes are executed [7,28–30].

This paper focuses on context-aware adaptation in activity-driven PIS. More
precisely, it presents Context-BPMN4V, an extension of BPMN to model context of
versions of processes. Versions have been introduced in activity-driven PIS to deal
with adaptation issue as they facilitate adaptation by design, by deviation and by
evolution [7]. They also facilitate the migration of process instances from an initial
schema to a final one, allowing cases in which this migration is impossible and
enabling the execution of a same process according to different schemas [11,13–16].
BPMN4V (BPMN for Versions) is an extension of BPMN to model process
variability using versions. Basic concepts for process versions have been introduced
in [7,21] and BPMN4V has been presented in [31]. In this paper, we extend BPMN4V
in order to consider context of process versions. Because of space limitation, we
particularly focus on intra-organizational processes [32].

This paper is organized as follows. Section 2 focuses on related works about
adaptation in activity-driven PIS and context in BPM area. Section 3 presents BPMN4V
to deal with process adaptation using version of processes. Section 4 shows how we
extend BPMN4V in order to take into account the contextual dimension of processes.
Finally, section 5 concludes the paper and gives some directions for future works.

368 I.B. Said et al.

2 Related Works

Adaptation in activity-driven PIS is a highly investigated issue since the end of the
nineties. Even if existing contributions are significant [12–21], considering run-time
and design-time adaptation, both at the schema and the instance level, we can observe
that they mainly focus on adaptation of process behavior, leaving aside the
organizational, informational and contextual dimensions of processes. Moreover,
proposed notations are not standards and are unlikely to be used by process designers,
who are in charge of modeling variability of processes.

In order to take into account the second previous remark, some contributions have
extended BPMN, which is now known as the standard notation for processes, to deal
with adaptation issue. For instance, [33] has extended BPMN including concepts of a
generic meta-model to support process goals and process performance. [34] has
investigated more deeply this issue, proposing goals models, depicted as tree-graphs,
to represent process goals and their possible variations. However, these works did not
adopt a comprehensive approach, considering all the dimensions of processes at the
same time, i.e. the behavioral, organizational, informational and contextual
dimensions of processes.

The notion version has been recognized as a key notion to deal with adaptation
issue. On the one hand, handling version of processes facilitate the migration of
instances from an initial schema to a final one, allowing if the migration is not
possible, two different instances of a same process to run according to two different
schemas [7,13–16,21]. On the other hand, as defended in [7], versions are appropriate
to deal with the three types of adaptations identified in the main topologies of the
literature ([8–11]), i.e. adaptation by design, adaptation by deviation and adaptation
by evolution. Consequently, in a previous proposition, and with respect to the
concepts of [21], we introduced BPMN4V (BPMN for Versions), an extension of
BPMN to support intra-organizational and inter-organizational process version
modeling, both considering behavioral (what, how), organizational (who) and
informational (when) dimensions of processes [31]. Thus, we extended in this
proposition the main contributions about versions in BPM [13–18,20]. We continue
our effort in adaptive in activity-driven PIS area extending BPMN4V to integrate the
contextual dimension of processes in order to characterize the situations in which
instances of processes are executed and thus to define why version of processes are
defined/used instead another according to the context.

Context-awareness has been investigated in several domains of computer science
(e.g. natural language, human computer interaction, mobile application, or web
system engineering). BPM area has also taken advantages from context-awareness. A
process context is defined in [28] as the minimum set of variables containing all
relevant information that impact the design and execution of a process. This
contribution also introduced a taxonomy for contextual information by distinguishing
four natures of context: (i) immediate context, which covers information on process
components, i.e. context of activities, events, control flow, data and organization, (ii)
internal context, which covers information on the internal environment of an
organization that impacts the process (e.g. process goals, organization strategies and

 Context-Aware Adaptive Process Information Systems 369

policies), (iii) external context, which covers information related to external
stakeholders (e.g. customers, suppliers, government) of the organization, and finally
(iv) environmental context, which covers information related to external factors (e.g.,
weather, time, workforce, economic data). Other works (e.g. [21], [34]) only
distinguish two types of information to represent process context: functional
information related to process components (activities, events, resources…) and non-
functional information related to quality of process (safety, security, cost, time…). In
this work, we rather adopt the taxonomy introduced in [28], which is more
comprehensive.

In addition to these taxonomies, several contributions have been done to support
context awareness in process modeling. For instance, [29,30,35] proposed a rule-
based approach to define contextual information used to configure process instances
to particular situations. On the other hand, [34,36] proposed goals models, depicted as
tree-graph, to represent process goals and their possible variations. In these works, a
goal model is used to adapt process definition according to the context. But only
considering goal is not enough to describe context of processes. Finally, [21] also
investigated the contextual dimension of processes, but as indicated in the previous
section, the underlying context taxonomy is rather incomplete, and the proposed
notation is unlikely to be used by process designers.

To sum up, in this paper we advocate the modeling of process versions using
BPMN4V (BPMN for Versions) to deal with adaptation in activity-driven PIS [31].
We also define Context-BPMN4V, an extension of BPMN4V in order to take into
account context for (process) versions and considering the taxonomy introduced in
[28]. This contextual dimension is fundamental to help PIS users (i) at design-time, to
indicate why a process version is defined (different variables and conditions are
specified for the considered process version), and (ii) at run-time, to instantiate a
particular version of a process according to a concrete situation, i.e. a set of values
given to the different variables specified in the context of the considered process
version.

3 Modeling Process Versions: The BPMN4V Meta-Model

As indicated before, this paper focuses on intra-organizational processes. Such
processes are modelled in BPMN2.0 through private processes, which are internal to a
specific organization.

This section first introduces the notion of version and then present BPMN4V, an
extension of BPMN for modeling versions of private process.

3.1 Notion of Version

As illustrated in Fig. 1 below, a version corresponds to one of the significant states a
process may have during its life cycle. So, it is possible to describe the changes of a
process through its different versions. These versions are linked by a derivation link;
they form a version derivation hierarchy. When created, a process is described by

370 I.B. Said et al.

only one version. The definition of every new version is done by derivation from a
previous one: such versions are called derived versions. Of course, several versions
may be derived from the same previous one: they are called alternatives or variants.
The derivation hierarchy looks like a tree if only one version is directly created from a
process entity, and it looks like a forest if several versions are directly created from
the considered process entity.

Fig. 1. Versions to Model Process Variability

We defend that this version notion subsumes the notion of variant as it is defined in
[17,19,20,29] as, when considering versions, we both model process evolution and
process alternative (i.e. variant) to describe process variability and deal with
adaptation by design, adaptation by deviation and adaptation by evolution [7].

3.2 BPMN4V: BPMN2.0 for Versions

BPMN4V meta-model for private processes results from the merging of BPMN2.0
meta-model for private processes and a versioning pattern used to make classes of
BPMN2.0 meta-model versionnable, i.e. able to handle versions. We present briefly
these two layers.

Versioning Pattern. The versioning pattern is very simple: it includes only two
classes: Versionable class and Version of Versionable class, and two relationships:
Is_version_of and Derived_From as illustrated in Fig. 2. A versionable class is a class
for which we would like to handle versions. In addition we define a new class which
contains versions, called Version of Versionable.

Fig. 2. Versioning Pattern

 Context-Aware Adaptive Process Information Systems 371

The Is_version_of relationship links a class to its corresponding versions. The
Derived_From relationship allows for building version derivation hierarchies (cf. Fig.
1). This latter relationship is reflexive and the semantic of both relationship sides is
the following: (i) a version (SV) succeeds another one in the derivation hierarchy, and
(ii) a version (PV) precedes another one in the derivation hierarchy. Regarding
properties of a Version of Versionable class, we introduce the classical version
properties, i.e. version number, creator name, creation date and status.

Main Concepts of BPMN 2.0 Meta-Model [37]. These concepts are presented in
Fig. 3 hereafter. The three main dimensions of processes are considered in BPMN2.0
meta-model.

The behavioral dimension of processes supports the description of process
activities and their synchronization along with events happening during process
execution through the notions of FlowElementContainer which contains
SequenceFlow, FlowNode (Gateway, Event, and Activity), and Data Object. A
SequenceFlow is used to show the order of FlowNode in a process. A SequenceFlow
may refer to an Expression that acts as a gating condition. The Expression class is
used to specify a condition using natural-language text. A Gateway is used to control
how SequenceFlow interact within a process. An Event is something that happens
during the course of a process. It can correspond to a trigger, which means it reacts to
something (catchEvent), or it can throw a result (throwEvent). An Event can be
composed of one or more EventDefinitions. There are many types of Event
Definitions: ConditionalEventDefinition, TimerEventDefinition… An Activity is a
work performed within a process. An Activity can be a Task (i.e. an atomic activity) or
a Sub Process (i.e. a non-atomic activity). A Task is used when the work is
elementary (i.e. it cannot be more refined). BPMN2.0 identifies different types of
tasks: Service Task, User Task, Manual Task, Send Task and Receive Task.

Regarding the organizational dimension of processes, an activity is accomplished
by a ResourceRole. A ResourceRole can refer to a Resource. A Resource can define a
set of parameters called ResourceParameters. A ResourceRole can be a Performer,
which can be a HumanPerformer, which can be in turn a PotentialOwner.

Regarding the informational dimension of processes, an ItemAwareElement
references element used to model the items (physical or information items) that are
created, manipulated and used during a process execution. An ItemAwareElement can
be a DataObject, a DataObjectReference, a Property, a DataStore, a DataInput or a
DataOutput.

BPMN4V Meta-Model. The idea is to use the versioning pattern introduced before
(cf. Fig. 2) to make some classes of the BPMN2.0 meta-model versionable, i.e. able to
handle versions. Fig. 3 below presents the resulting meta-model. White rectangles and
relationships correspond to classes and relationships of BPMN2.0, while grey
rectangles and blue relationships correspond to classes and relationships involving
versions, and resulting from the introduction of the versioning pattern.

We propose to handle versions for seven classes: Process, Sub Process, Event,
Activity, ItemAwareElement, Resource, and ResourceRole in order to support adaptive

372 I.B. Said et al.

activity-driven PIS. Different instances (versions) of these classes can be created,
each one representing a significant state (alternative or derived) of the considered
element (e.g. a process). A new version of an element (e.g. a process or a resource) is
defined according to the changes occurring to it: these changes may correspond to the
adding of new information (property or relationship) or to the modification or the
deletion of an existing one. Actually, these changes can affect all the dimensions of a
process. The general idea is to keep track of changes occurring to components
participating to the description of the way business is carried out.

v

vv vv

v

v

v

Fig. 3. BPMN4V Meta-model for Modeling Process Versions

Regarding the organizational dimension of a process, we create a new version of
Resource when we change its parameters. For instance, a Manager resource may be
defined using two parameters: name and experience. A new version of Manager may
be defined if it becomes necessary to consider another parameter (e.g. region of the
manager) and this definition can lead to the definition of a new process in which this
resource is involved [21]. We also propose to create versions of ResourceRole when
there is a change in its privileges. For instance, an Employee is a HumanPerformer
resource that performs three activities. Because some activities of the process in
which this employee is involved become automatic, the employee can perform
anymore only two activities. A new version of the ResourceRole employee has then to
be defined.

Regarding the informational dimension of processes, and more particularly
ItemAwareElement, we consider that changes in the structure and/or the type of an
ItemDefinition results in the creation of a new version. For example, if Report is an
ItemAwareElement corresponding to a paper data (Itemkind is a Physical data), and if
after technical changes it becomes an electronic data (Itemkind becomes an
Information data), then a new version of Report has to be created.

Regarding the behavioral dimension of processes, several classes are versionable:
Event, Activity, Sub-Process and, of course, Process. More precisely regarding

 Context-Aware Adaptive Process Information Systems 373

activities, we create a new version of an activity when there are changes in the type of
the activity (a manual activity becomes a service one), in the involved resources, or in
the required or produced data. Regarding events, we create a new version of an event
when there is change in the associated EventDefinition. For instance, if an Alert is a
signal event (i.e. it has a SignalEventDefinition), and if, after technical changes, it
becomes a message event (i.e. it has a MessageEventDefinition), then a new version
of Alert has to be created. Regarding sub processes and processes, we create new
versions when there are changes in the involved activities and events or in the way
they are linked together (used patterns, i.e. gateways, are changed).

3.3 Example

We illustrate in Fig. 5 the instantiation of BPMN4V meta-model according to the
damage compensation process of an insurance company. This process is shown in
Fig. 4 below. Basically, it contains five activities: Receive Request, Review Request,
Send reject letter, Calculate claim amount, and Financial settlement. For
simplification reasons, we only focus on the behavioral dimension of this process.

Fig. 4. Versions of the Damage Compensation Process

Two versions of this process are described in Fig. 4. The first one is given in Fig.
4(a). This version starts when the client files a claim. After checking the claim, a
reject letter is sent, by mail, if the request is not accepted. Otherwise, the claim
amount is calculated by the insurance manager using GridCalculator, and the
financial service prepares and sends the financial settlement. On the other hand,
further to an increase in the number of its customers, the insurance agency has
modeled a second version of this process. Fig. 4(b) illustrates this version introducing
an Expertise activity (a new activity, used when the damage amount exceeds 1000$)
and both modifying the start ClaimReceived event and the ReceiveRequest and
CalculateClaimAmount activities (their type have changed). To sum up, regarding the
damage compensation process we have two versions of the process itself, two
versions of ClaimReceived event and two versions of the ReceiveRequest and
CalculateClaimAmount activities: the first version of both ReceiveRequest and
CalculateClaimAmount activity hold for the first version of the process while the

374 I.B. Said et al.

second ones hold for the second version of the process. In addition, the sequence
flows and patterns have been modified in the second version of the process. Finally,
regarding the ClaimReceived event, in the first version of the process, it is a None
Event, used to indicate that this version starts when the client presents its ClaimFile (a
paper data). However, in the second process version, it becomes a Message Event,
indicating that the client sends the ClaimFile (an electronic data) as a message via the
insurance web site.

P1: Process
Name : Damage compensation

VP1-1: Version of Process

VP1-2: Version of Process

:FlowElementContainer

Is_version_of

SV

PV

:FlowElement

:FlowElementContainer

A1: Activity
Name: Receive Request

A2: Activity
Name: Review Claim

A3: Activity
Name: Send Reject Letter

A5: Activity
Name: Financial settlement

A4: Activity
Name: Calculate claim

amount

VA1-1: Version of Activity

:Sub Process
VA2-1: Version of Activity

:Send Task

VA3-1: Version of Activity

:Send Task
VA5-1: Version of Activity

:Manual Task
VA4-1: Version of Activity

:User Task
VA4-2: Version of Activity

A6: Activity
Name: Expertise:Manual Task

VA6-1: Version of ActivityE1: Event
Name: claim

received

:catch Event

:Message EventDefinition
:

catch Event

:FlowNode Is_version_of

Is_version_of

Is_version_of

Is_version_of

Derived_From
PV

SV

Is_version_ofPV
SV

Derived_From

VE1-1: Version of Event

VE1-2: Version of Event

VA1-2: Version of Activity

User Task

Receive Task

Derived_From
PV

SV
:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement

:FlowNode :FlowElement

:FlowNode

Is_version_of

Is_version_of
Derived_From

Fig. 5. BPMN4V Instantiation for the Damage Compensation Process

4 Considering Context in BPMN4V: The Context-BPMN4V
Meta-Model

We advocate using the version notion to support adaptation in activity-driven PIS.
Thus, several versions can be defined for a process: versions of the process itself, but
also versions of activities, sub-processes, events, data produced or consumed by
activities (i.e. ItemAwareElement) and versions for the organizational dimension of
processes (i.e. Resource and ResourceRole). Each of the defined versions is required
in a specific context, i.e. has to be used in a given situation. Therefore, it becomes
crucial to consider the contextual dimension of versions in order to characterize the
situations in which these versions have to be used. Indeed, this contextual dimension
is fundamental to help PIS users (i) at design-time, to indicate why a (process) version
is defined –different variables and conditions are specified for the considered
(process) version–, and (ii) at run-time, to instantiate a particular version of a process
according to a concrete situation, i.e. a set of values given to the different variables
specified in the context of the considered process version.

We present below Context-BPMN4V, an extension of BPMN4V considering the
contextual dimension of processes. We first introduce a Context meta-model for
context description in PIS. Then, we present Context-BPMN4V which results from

 Context-Aware Adaptive Process Information Systems 375

the merging of this Context meta-model and BPMN4V to model context for (process)
versions. Finally, we illustrate context definition for process versions using the
damage compensation process introduced previously.

4.1 Context Modeling

The Context meta-model given in Fig. 6 below allows the definition of a Context
Model as the aggregation of a set of context parameters. A Context Parameter
corresponds to a variable characterizing a situation, and to which a condition will be
defined. A context parameter has a Context Nature, which can be immediate, internal,
external or environmental, according to the taxonomy given in [28]. This taxonomy is
used to specify the source of each parameter that composes a Context Model. In
addition to this taxonomy, we also consider the type of a Context Parameter, which
refers to the dimension to which it belongs to. Thus, we consider Behavioral
Parameters, i.e. variables related to the behavioral dimension of processes (e.g.
activity execution mode, activity duration), Role Parameters, i.e. variables related to
the organizational dimension of processes (e.g. availability of a resource, experience
of a human performer), and Data Parameters, i.e. variables related to the
informational dimension of processes (e.g. data type, data structure). We finally
consider Goal Parameters, i.e. variables describing objectives to be achieved (e.g.
quality, cost, quantity); such type of context parameters belongs to the intentional
dimension of processes [35,38].

Fig. 6. Context Meta-model

4.2 Extending BPMN4V Meta-Model to Consider Context for (Process)
Versions: The Context-BPMN4V Meta-Model

Context-BPMN4V, visualized in Fig. 7, results from the merging of BPMN4V and
Context meta-models. It defines the necessary concepts for modeling context of
process versions. Of course, context can be defined for each versionable component
of the process; thus, in addition to process versions, contexts can be defined for
versions of activities, sub processes, events, resource roles, resources and
ItemAwareElements.

The proposed meta-model links a process to a context model aggregating a set of
context parameters, corresponding to variables from the different dimensions of the
considered process: goal parameters from the intentional dimension of the process,
behavior parameters from the behavioral dimension of the process, resource

376 I.B. Said et al.

parameters from the organizational dimension of the process, and data parameters
from the informational dimension of the process. Thus, each versionable component
of the process can be linked to one or several context parameters of its corresponding
context model, in order to define conditions on these parameters.

More precisely, goal parameters specify objectives of versionable concepts through
goal conditions. A Goal Condition is a boolean expression defining why a version is
created (cf. section 4.3 for an goal condition example). As indicated before, each
versionable component of a process can be linked to a parameter of its corresponding
context model. As a consequence, a goal parameter, used in the definition of goals of
a versionable component of a process, has to be part of the set of context parameters
that form the context model of this process. In the proposed meta-model, we also use
OCL constraints to define restrictions. We give a textual definition of these
restrictions in Fig. 7.

Regarding behavioral, data and role parameters, we specify conditions, called
Assignment conditions that allow the assignment of versionable components. These
conditions, described as boolean expressions, define for a specific version of process,
the situation in which versions of activities, of events, of resource role and of
ItemAwareElement involved in this process have to be used.

v

v

vv

v

Fig. 7. Context-BPMN4V Meta-model

Context-BPMN4V extends BPMN4V adding three classes used to define
assignment conditions within relationships between BPMN components:

• Context of FlowNode Assignment attached to the relationship between
FlowElementContainer and FlowElement, defines conditions indicating in which
situation a version of activity (or a version of event) has to be used in a version of
process or a version of sub-process.

 Context-Aware Adaptive Process Information Systems 377

• In the same vein, Context of Resource Assignment, attached to the relationship
between Version of Activity and Version of ResourceRole, defines conditions
indicating in which situation a version of activity is performed by a version of
ResourceRole.

• Finally, Context of Data Assignment, attached to the relationship between Version
of Activity and InputOutputSpecification, defines conditions indicating in which
situation a version of activity consumes or produces versions of
ItemAwareElement.

Finally, a context parameter used in the definition of an assignment condition must
belong to the set of context parameters that form the context model of the
corresponding process. Constraints CI2, CI3 and CI4 express these restrictions with
respect to Context of FlowNode Assignment, Context of Resource Assignment and
Context of Data Assignment classes.

4.3 Defining Context in the Damage Compensation Process

To better illustrate our proposition, we refer to the damage compensation process
previously presented (cf. section 3.3), and gives the context of each version of this
process. Even if this example is rather simple, it illustrates suitably this context notion
for processes. Table1 below summarizes context parameters involved in the first and
the second version context definition of this process.

Table 1. Context Parameters and Conditions in the Damage Compensation Process

Context
Nature

Parameter/ (Parameter type) Context of the first
version

Context of the second
version

External
Context

NumberofDailyClaims /
 (Goal parameter)

<50 ≥50

Immediate
Context

ClaimFile / (Data parameter) is-a paperData is-a ElectronicData
GridCalculator / (Data
parameter)

is-a paperData is-a ElectronicData

CalculateClaimAmount /
(Behavioral parameter)

is-a ManualActivity

is-a ElectronicActivity

CalculateClaimAmountRole
/ (Role parameter)

is-performed-by
Human

is-performed-by ACA

 Expertise / (Behavioral
parameter)

 is-a ManualActivity

The first version of the damage compensation process is defined at the beginning,

i.e. when insurance agency is created: only few clients and thus only few daily claims,
rather simple, to deal with, and only few IT investments. In this process version, the
insurance manager calculates the claim amount using a grid calculator. Parameters

378 I.B. Said et al.

that characterize this situation are the number of daily claims to deal with, the claim
file modeled as a paper data, and the way the claim amount is calculated: manually
from a grid calculator. The second version of the process is defined to face the
increasing number of clients, and thus the increasing number of daily claims to deal
with. The insurance agency invested in IT software: clients no longer fill in claim files
manually but rather declare their claims via the website of the insurance agency, and
specific software is used to calculate claim amounts. In addition, a new role and a new
activity are introduced in the process when specific claim require expertise.
Parameters that characterize this second version of the damage compensation process
are the number of daily claims, the claim file which is modeled as an electronic data,
the presence of the expertise activity, and the way claim amounts are calculated:
automatically using specific software, or manually using grid calculator.

More precisely, NumberofDailyClaims is a goal parameter whose nature is external:
the two conditions NumberofDailyClaims<50 and NumberofDailyClaims>=50 define
the possible values for this parameter in the two versions of the damage compensation
process. ClaimFile and GridCalculator are immediate data parameters. The conditions,
is-a paperData and is-a ElectronicData, define the possible values for these parameters
in the two process versions. Note that ClaimFile and GridCalculator refer to data
handled by the process activities. In the same vein, we refer to existing activities with the
immediate behavioral parameters CalculateClaimAmount and Expertise. Regarding this
latter, it is not involved in the first version of the process but it is a manual activity in the
second version of the process (is-a ManualActivity condition). Regarding
CalculateClaimAmount parameter, two conditions are defined, respectively in the context
of the first and the second process versions: it is a manual activity in the first version (is-a
ManualActivity) while it is an electronic activity in the second version (is-a
ElectronicActivity). Finally, immediate resource parameters are defined for both
CalculateClaimAmount and Expertise activities in order to define how these activities are
performed. Thus, CalculateClaimAmountRole is performed by a human in the first
process version (is-performed-by Human), while it is performed by a software
application in the second process version (is-performed-by ACASoftwareApplication). In
the same way, ExpertiseRole is performed by a human in the second process version.
Note that classical and specific operators are used to specify these conditions (e.g. is-a, is-
performed-by, has-experience) [21]. Fig. 8 below gives an extract of the instantiation of
damage compensation process context.

In this figure, CG1 and CG2 are context goals (i.e. instances of the ContextGoal
class) of the first and the second version of this process (VP1-1 and VP1-2). These goals
are defined using NumberofDailyClaims context parameter and <50 (Gc1) and >=50
(Gc2) goal conditions. In addition, CFA1, CFA2, CDA1, CDA2, CRA1 and CRA2 define
why a version of the calculate claim amount activity is used in the two damage
compensation process versions. Actually, two versions of this activity are created: VA4-1
and VA4-2, each involved in one of the two process versions. VA4-1 holds for the first
version of this process: in this version, CalculateClaimAmount is a ManualActivity,
CalculateClaimAmountRole is performed by Human, and GridCalculator is a
paperData. Regarding VA4-2, it holds for the second version of the damage
compensation process: in this case, CalculateClaimAmount is a ElectronicActivity,
CalculateClaimAmountRole is performed by ACA, and GridCalculator is an
electonicData.

 Context-Aware Adaptive Process Information Systems 379

v
v

v

Fig. 8. Extract of the damage compensation process context instantiation

5 Conclusion

This paper has presented Context-BPMN4V, an extended BPMN meta-model to
support context-aware process variability modeling in activity-driven PIS. It results
from the merging of BPMN4V and a Context meta-model. Context-BPMN4V
supports the modeling of adaptive processes using versions. Indeed, versions are a
powerful mechanism to model process variability: (i) they facilitate the migration of
process instances from an initial schema to a final one, allowing cases in which this
migration is impossible and enabling the execution of a same process according to
different schemas, and (ii) they are appropriate to deal with the three types of
adaptation identified in the different typologies of literature: adaptation by design,
adaptation by deviation and adaptation by evolution.

In addition, Context-BPMN4V also considers the contextual dimension of
processes, which rather focuses on the why dimension of a process. This dimension is
considered for each versionable component of Context-BPMN4V: thus, context can
be defined for versions of processes of course, but also for versions of activities, sub-
processes, events, resource roles, and data consumed and produced by activities or
sub-processes. This contextual dimension is fundamental to help PIS users (i) at
design-time, to indicate why a process version is defined (different variables and
conditions are specified for the considered process version), and (ii) at run-time, to
instantiate a particular version of a process according to a concrete situation, i.e. a set
of values given to the different variables specified in the context of the considered
process version.

380 I.B. Said et al.

The advantages of our contribution are the following. First, it extends BPMN
which is a standard notation: it makes our proposition potentially to be used by
process designers. Second, regarding versions, it extends the different contributions of
literature considering the notion of version for both dimensions of processes:
behavioral, organizational, informational, and contextual in order to define in which
situation a given (process) version has to be used.

Our future works will take two directions. First, we will define a language to help
PIS users at run-time, to instantiate a particular version of a process according to a
concrete situation: this language must support the matching between current concrete
situations and contexts defined for process versions. Second, we will implement
Context-BPMN4V in order to provide PIS users with a specific tool for context-aware
and adaptive intra and inter organizational processes. The consequence will be the
introduction of a specific graphical notation for versions and their context.

References

1. Dumas, M., van der Aalst, W., ter Hofstede, A.: Process-Aware Information Systems:
Bridging People and Software through Process Technology. Wiley (2005)

2. Rolland, C.: Fitting System Functionality to Business Needs: Alignment Issues and
Challenges. In: International Conference on Software Methodologies, Tools and
Techniques, Yokohama City, Japan, pp. 137–147 (September 2010)

3. Simonin, J., Nurcan, S., Barrios, J.: Evolution organisationnelle fondée sur la cohérence
des relations entre acteurs avec les buts métier. In: National Conference on Informatique
des Organisations et des Systèmes d’Information et de Décision, Paris, pp. 225–240 (May
2013)

4. Smith, H., Fingar, P.: Business Process Management: the Third Wave. Megan-Kiffer Press
(2003)

5. Reijers, H.: Workflow Flexibility: the Forlon promise International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Manchester, United Kingdom,
pp. 271–272 (June 2006)

6. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer
(2007)

7. Chaâbane, M.A., Andonoff, E., Bouaziz, R., Bouzguenda, L.: Versions to Address
Business Process Flexibility Issue. In: Grundspenkis, J., Morzy, T., Vossen, G. (eds.)
ADBIS 2009. LNCS, vol. 5739, pp. 2–14. Springer, Heidelberg (2009)

8. Nurcan, S.: A Survey on the flexibility Requirements related to Business Process and
Modelling Artifacts. In: International Conference on System Sciences, Waikoloa, Big
island, Hawaii, USA, pp. 378–387 (January 2008)

9. Schonenberg, H., Mans, R., Russel, N., Mulyar, N., van der Aalst, W.: Process Flexibility:
a Survey of Contemporary Approaches. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.)
CIAO! 2008 and EOMAS 2008. LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg (2008)

10. Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity – Dynamic Process Lifecycle Support:
a Survey on Dynamic Changes in Process-Aware Information Systems. International
Journal on Computer Science, Research and Development 23(2), 47–65 (2009)

11. Andonoff, E., Nurcan, S., Hanachi, C.: Adaptation des processus d’entreprise. In:
Lopisteguy, P., Rieu, D., Roose, P. (eds.) L’adaptation dans tous ses états, ch. 3, Cepadues
(2012)

 Context-Aware Adaptive Process Information Systems 381

12. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: a
Service-Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R.,
Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

13. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. In: Thalheim, B. (ed.) ER
1996. LNCS, vol. 1157, pp. 438–455. Springer, Heidelberg (1996)

14. Kammer, P., Bolcer, G., Taylor, R., Bergman, R.: Techniques for supporting dynamic and
adaptive workflow. International Journal on Computer Supported Cooperative
Work 9(3/4), 269–292 (1999)

15. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow type
versioning and workflow migration. In: International Conference on Cooperative
Information Systems, Edinburgh, Scotland, pp. 104–114 (September 1999)

16. Reichert, M., Rinderle, S., Dadam, P.: ADEPT workflow management system: flexible
support for enterprise-wide business processes. In: van der Aalst, W.M.P., ter Hofstede,
A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 370–379. Springer,
Heidelberg (2003)

17. Lu, R., Sadiq, S.K.: Managing process variants as an information resource. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 426–431. Springer,
Heidelberg (2006)

18. Zhao, X., Liu, C.: Version Management in the Business Change Context. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 198–213. Springer,
Heidelberg (2007)

19. Lu, R., Sadiq, S., Governatori, G., Yang, X.: Defining adaptation constraints for business
process variants. In: Abramowicz, W. (ed.) BIS 2009. LNBIP, vol. 21, pp. 145–156.
Springer, Heidelberg (2009)

20. Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in Business Process Models:
the Provop Approach. Journal of Software Maintenance 22(6-7), 519–546 (2010)

21. Chaâbane, M., Andonoff, E., Bouaziz, R., Bouzguenda, L.: Modélisation
multidimensionnelle des versions de processus. Journal on Ingénierie des Systèmes
d’Information 15(5), 89–114 (2010)

22. Pesic, M., Schonenberg, H., Sidorova, N., van der Aalst, W.: DECLARE: full support for
Loosely-Structured Processes. In: International Conference on Enterprise Distributed
Object Computing, Annapolis, Maryland, USA, pp. 287–300 (October 2007)

23. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-based
workflow models: Change made easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

24. Müller, D., Reichert, M., Herbst, J.: Data-driven Modeling and Coordination of Large
Process Structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 131–149. Springer, Heidelberg (2007)

25. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and Dynamic
Adaptation of Data-Driven Process Structures. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 48–63. Springer, Heidelberg (2008)

26. van der Aalst, W., Weske, M., Grünbaur, D.: Case Handling: a New Paradigm for Business
Process Support. International Journal on Data Knowledge Engineering 53(2), 129–162
(2005)

27. Bruno, G., Dengler, F., Jennings, B., Khalaf, R., Nurcan, S., Prilla, M., Sarini, M.,
Schmidt, R., Silva, R.: Key challenges for enabling agile BPM with social software.
Journal of Software Maintenance and Evolution: Research and Practice 23(4), 297–326
(2011)

382 I.B. Said et al.

28. Rosemann, M., Recker, J.: Context-aware Process Design Exploring the Extrinsic Drivers
for Process Flexibility. In: CAiSE Conference on Business Process Modeling,
Development and Support, Luxembourg (June 2006)

29. Hallerbach, A., Bauer, T., Reichert, M.: Context-based Configuration of Process
Variants.In: ICEIS Workshop on Technologies for Context-Aware Business Process
Management, Barcelona, Spain (June 2008)

30. Saidani, O., Nurcan, S.: Context-Awareness for Adequate Business Process Modelling. In:
International Conference on Research Challenges in Information Science, Fés, Morocco,
pp. 177–186 (May 2009)

31. Ben Said, I., Chaabane, M., Andonoff, E., Bouaziz, R.: Extending BPMN 2.0 meta-models
for Process Version Modelling. In: International Conference on Enterprise Information
Systems, Lisbon, Portugal (April 2014)

32. Divitini, M., Hanachi, C., Sibertin-Blanc, C.: Inter Organizational Workflows for
Enterprise Coordination. In: Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.)
Coordination of Internet Agents, pp. 46–77. Springer (2001)

33. Korherr, B., List, B.: Extending the EPC and the BPMN with Business Process Goals and
Performance Measures. In: International Conference on Enterprise Information Systems,
Funchal, Madeira, Portugal (June 2007)

34. Santos, E., Pimentel, J., Castro, J., Sánchez, J., Pastor, O.: Configuring the variability of
business process models using non-functional requirements. In: Bider, I., Halpin, T.,
Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and
EMMSAD 2010. LNBIP, vol. 50, pp. 274–286. Springer, Heidelberg (2010)

35. Saidani, O., Nurcan, S.: Towards Situational Business Process Modelling. In: CAiSE
Forum, Montpellier, France, pp. 93–96 (June 2008)

36. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On Goal-based Variability
Acquisition and Analysis. In: International Conference on Requirements Engineering,
Minneapolis/St.Paul, Minnesota, USA, pp. 76–85 (September 2006)

37. OMG,. Business Process Model and Notation (BPMN) Version 2.0. OMG Document
Number: formal/2011-01-03 (2011), http://www.omg.org/spec/BPMN/2.0 .

38. Nurcan, S., Edme, M.: Intention Driven Modelling for Flexible Workflow Applications.
International Journal on Software Process: Improvement and Practice 10(4), 363–377
(2005)

Author Index

Abdallah, Zahraa Said 192
Al Assad, Marc 290
Ali, Selmane Sid 234
Andonoff, Eric 366
Andrzejewski, Witold 276

Bahloul, Safia Nait 70
Baron, Mickaël 83
Bellatreche, Ladjel 83, 163
Beltran, William Correa 323
Benczúr, András 11
Ben Said, Imen 366
Bentayeb, Fadila 234
Böhlen, Michael H. 177
Boinski, Pawel 276
Bornhövd, Christof 112
Bouarar, Selma 83
Bouaziz, Rafik 366
Boussaid, Omar 234
Brumen, Boštjan 263
Burzańska, Marta 153

Cadonna, Bruno 177
Černezel, Aleš 263
Chaabane, Mohamed Amine 366
Chbeir, Richard 290

Dessloch, Stefan 39, 139

Eder, Johann 56
Endres, Markus 97

Fejzer, Miko�laj 153

Gamper, Johann 177
Garofalakis, Minos 1
Gertz, Michael 248
Gomes, João Bártolo 192
Gu, Junzhong 219

Härder, Theo 337
He, Liang 219
Hiller, Martin 337
Hu, Yong 39

Ibañez, Carlos Raymundo 290
Ibrahim, Ahmed 207

Jaudoin, Hélène 323
Jayaraman, Prem Prakash 192
Jean, Stéphane 83, 163

Kalinichenko, Leonid 352
Kechar, Mohamed 70
Kießling, Werner 97
Koncilia, Christian 56
Kovalev, Dmitry 352
Kraak, Menno-Jan 207
Krishnaswamy, Shonali 192
Kruszyński, Piotr 126

Le, Anh 248
Lehner, Wolfgang 25, 112
Luo, Yi 290

Maślanka, Pawe�l 126
Mbaiossoum, Bery 163
Morzy, Tadeusz 56

Nguyen, Hai Long 192

Pivert, Olivier 323

Qu, Weiping 139

Rozman, Ivan 263

Sauer, Caetano 337
Sengstock, Christian 248
Shen, Zeyu 308
Sobieski, Ścibór 126
Stencel, Krzysztof 153
Stupnikov, Sergey 352
Sysak, Maciej 126
Szabó, Gyula I. 11

Tekli, Joe 290
Thiele, Maik 112
Traina, Agma J.M. 290

384 Author Index

Traina Jr., Caetano 290
Turdukulov, Ulanbek 207

Vasilyeva, Elena 112
Voigt, Hannes 25
Vovchenko, Alexey 352

Wang, Qing 308
Wang, Zhijin 219

Wísniewski, Piotr 153
Wojtyna, Micha�l 153

Yang, Yan 219
Yetongnon, Kokou 290

Zaslavsky, Arkady 192
Zieliński, Bartosz 126

	Preface
	Organization
	Keynote Presentations
	Table of Contents
	Invited Talk
	Querying Distributed Data Streams
	1 Introduction
	2 System Architecture
	3 Sketching Continuous Data Streams
	4 The Geometric Method
	5 Extensions: Sketches and Prediction Models
	6 Future Directions
	References

	Data Models and Query Languages
	Towards a Normal Form for Extended RelationsDefined by Regular Expressions
	1 Introduction
	2 Related Work
	3 Extended Relations
	4 Graph Representation for Regular Expressions
	5 Relational Algebra for Regular XRelation
	5.1 Projection
	5.2 Natural Join
	5.3 Join Dependencies, Implication Problems for Xrelations

	6 Conclusion and Future Work
	References

	Flexible Relational Data Model – A CommonGround for Schema-Flexible Database Systems
	1 Introduction
	2 FRDM
	2.1 Data Representation
	2.2 Data Processing

	3 FRDM-C
	3.1 Conditions
	3.2 Effects

	4 Presentation of Purely Relational Data
	5 Implementation Consideration
	6 Related Work
	7 Conclusion
	References

	Defining Temporal Operatorsfor Column Oriented NoSQL Databases
	1 Introduction
	2 Related Work
	3 Characteristics of CoNoSQLDBs
	4 Formalization of CoNoSQLDBs
	4.1 Understanding TS in CoNoSQLDBs
	4.2 Representations of CoNoSQLDBs

	5 Temporal Operators for CoNoSQLDBs
	5.1 TTRO Operator Model
	5.2 CTO Operator Model
	5.3 Query Examples
	5.4 Summary

	6 Conclusions and Further Work
	References

	Data Warehousing
	Analyzing Sequential Datain Standard OLAP Architectures
	1 Introduction
	2 Motivating Example
	3 Formal OLAPModel
	4 Sequential OLAP Model
	4.1 Sequential OLAP Function and Events
	4.2 Sequential OLAP Function for Atomic Sequences
	4.3 Sequential OLAP Function for Complex Sequences
	4.4 Relative Time Axis
	4.5 Workflow Example

	5 Proof of Concept
	6 Application Examples
	7 Related Work
	8 Conclusion
	References

	Hybrid Fragmentation of XML Data WarehouseUsing K-Means Algorithm
	1 Introduction
	2 Multidimensional Modeling of XML Data
	3 Hybrid Fragmentation of the XML Data Warehouse
	3.1 Vertical Fragmentation Based on XPath Expressions
	3.2 Horizontal Fragmentation Based on Selection Predicates
	3.3 Query Processing on the Fragmented Data Warehouse

	4 Experimental Studies
	4.1 Experimental Conditions
	4.2 Experimental Assessment and Analysis

	5 Conclusion
	References

	Do Rule-Based Approaches Still Make Sensein Logical Data Warehouse Design?
	1 Introduction
	2 Exploration of Correlations
	2.1 Types of Correlations
	2.2 The Role of Correlations throughout the Design Life-Cycle of DB

	3 ProposedDW Design Methodology
	3.1 Explanation of our DW Design Methodology
	3.2 Generating the Different Possible Logical Schemas
	3.3 Calculating the New Table Sizes
	3.4 Rewriting the Query Conforming to the Target Schema
	3.5 Calculating the Query Cost Using a Cost Model

	4 Case Study
	4.1 Theoretical Evaluation
	4.2 Empirical Evaluation and Results Analysis

	5 Conclusion
	References

	Query and Data-Flow Optimization
	High Parallel Skyline Computationover Low-Cardinality Domains
	1 Introduction
	2 Related Work
	3 Skyline Computation Using the Lattice Revisited
	4 Parallel Skyline Algorithms
	4.1 Parallel Skyline Computation
	4.2 Data Partitioning and Choosing the Right Data Structure
	4.3 Complexity Analysis and Memory Requirements
	4.4 Remarks

	5 Experiments
	5.1 Benchmark Framework
	5.2 Experimental Results

	6 Conclusion
	References

	Top-k Differential Queries in Graph Databases
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Top-k Differential Query Processing
	4.1 Top-k Differential Queries
	4.2 User and Application Origin of Relevance Weights
	4.3 Relevance-Based Search
	4.4 Rank Calculation

	5 Evaluation
	5.1 Evaluation Setup
	5.2 General Comparison
	5.3 Performance Evaluation

	6 Conclusion
	References

	Static Integration of SQL Queriesin C++ Programs
	1 Introduction
	1.1 Comparison with Previous Work

	2 System Architecture and Internals
	2.1 User Query File
	2.2 Data Conversion Mechanism
	2.3 Query Analysis and Processing

	3 Simple Example of DbQcc Usage
	4 Conclusion
	References

	Information Extraction and Integration
	A Demand-Driven Bulk Loading Schemefor Large-Scale Social Graphs
	1 Introduction
	2 Bulk Loading in MySQL and HBase
	2.1 MySQL
	2.2 HBase
	2.3 Motivation

	3 Demand-Driven Bulk Loading
	3.1 Offline HDFS Load and Index Construction
	3.2 Online HBase Bulk Load and Query Coordination

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Open Source Is a Continual Bugfixing by a Few
	1 Introduction
	2 “The CoreTeam”
	3 Bugfixes
	4 Project’s Development Phases
	5 Research Limitations
	6 Conclusions
	References

	Materialized View Selection Consideringthe Diversity of Semantic Web Databases
	1 Introduction
	2 Materialized View Selection at Ontological Level
	3 Materialized View Selection at the Logical Level
	3.1 Generic Global Query Plan

	4 Experimentations
	4.1 Tests Datasets
	4.2 Different Tests

	5 Related Work
	6 Conclusion
	References

	Spatial, Temporal and Streaming Data
	A Robust Skip-Till-Next-Match Selection Strategy for Event Pattern Matching
	1 Introduction
	2 Related Work
	3 Background
	4 Robust Skip-Till-Next-Match
	5 Automaton-Based Evaluation
	5.1 Basic Automaton
	5.2 Automaton with Backtracking

	6 Experiments
	7 Conclusion
	References

	CARDAP: A Scalable Energy-Efficient ContextAware Distributed Mobile Data AnalyticsPlatform for the Fog
	1 Introduction
	2 Motivation
	3 Related Work
	4 CARDAP – Distributed Mobile Data Analytics Platform
	4.1 A Model for Distributed Mobile Data Analytics
	4.2 System Architecture

	5 Cost Model for Mobile Distributed Data Analytics
	5.1 Data Transmission Cost Model
	5.2 Energy Usage Cost Model

	6 Implementation and Evaluation of CARDAP
	6.1 Implementation
	6.2 Evaluation

	7 Conclusion
	References

	Representing Internal Varying Characteristicsof Moving Objects
	1 Introduction
	2 Phenomena Representation
	3 Related Work
	4 Proposed DataModel
	4.1 Raster and Movement
	4.2 Representation of Evolving Moving Objects
	4.3 Query Samples

	5 Conclusion and Future Work
	References

	Data Mining and Knowledge Discovery
	User Identification within a Shared Account:Improving IP-TV Recommender Performance
	1 Introduction
	2 Related Work
	2.1 User Behavior in IP-TV Services
	2.2 User Identification for Recommendation

	3 Our Proposed Approach
	3.1 Problem Definition and Notations
	3.2 Algorithm for User Identification

	4 Experimental Setup
	4.1 Dataset Collection
	4.2 Evaluation Metrics
	4.3 Recommendation Algorithms

	5 Experimental Results
	5.1 Effects on Parameters |P| and ρ
	5.2 Empirical Split versus Average Split
	5.3 Comparing with CUPs

	6 Analysis and Discussion
	6.1 Identification and Performance Analysis
	6.2 Discussion

	7 Conclusion and Future Work
	References

	P-TRIAR: Personalization Based on TRIadicAssociation Rules
	1 Introduction
	2 Modeling Data Log Based on Formal Concept Analysis
	3 Triadic Association Rules Extraction
	3.1 Definitions
	3.2 Proposed Approach
	3.3 Proposed Algorithms
	3.4 Complexity Study

	4 Architecture of P-TRIAR
	4.1 Query Recommendation by BCAAR
	4.2 Query Enrichment by BACAR

	5 Related Works
	6 Experiments
	7 Conclusion
	References

	An Event-Based Frameworkfor the Semantic Annotation of Locations
	1 Introduction
	2 Related Work
	3 Basic Concepts and Notations
	3.1 Events and Event Components
	3.2 Location-Time-Pair Instances and Classes

	4 LT-Profiles and Applications
	4.1 Generating Location-Time-Profiles
	4.2 Updating Location-Time-Profiles
	4.3 Location Annotations
	4.4 Similarity Measure for Location Search and Clustering

	5 Experimental Evaluation
	5.1 Datasets and Experimental Setup
	5.2 Annotation Extraction
	5.3 Location Clustering
	5.4 Runtime and LTP-Updater Efficiency

	6 Conclusions and Ongoing Work
	References

	Observing a Naïve Bayes Classifier’s Performanceon Multiple Datasets
	1 Introduction
	2 Method
	2.1 Data Collection
	2.2 Data Pre-processing
	2.3 Fitting a Curve Model to the Measured Data

	3 Results
	4 Conclusion
	References

	Data Organization and Physical Issues
	A Parallel Algorithm for Building iCPI-trees
	1 Introduction
	2 Related Work
	2.1 Collocation Pattern Mining
	2.2 General Processing on Graphics Processing Units

	3 GPU-Based Algorithm for iCPI-hashmap Construction
	3.1 Main Algorithm
	3.2 Neighbor Finding Kernels

	4 Experiments
	4.1 Implementation and Testing Environment
	4.2 Data Sets
	4.3 Results of Experiments

	5 Summary and Future Work
	References

	SemIndex:Semantic-Aware Inverted Index
	1 Introduction
	2 Index Design
	2.1 Representation and Definitions
	2.2 Logical Design

	3 Executing queries with SemIndex
	3.1 Queries
	3.2 Query Answer
	3.3 Query Processing

	4 Experiments
	4.1 Experimental Setup
	4.2 Query Processing

	5 Related Work
	6 Conclusions and Future Work
	References

	Entity Resolution with Weighted Constraints
	1 Introduction
	2 ER Constraints andModels
	3 Learning Constraints
	4 Using Constraints
	5 Experimental Study
	6 Related Works
	7 Conclusions
	References

	Analogical Prediction of Null Values:The Numerical Attribute Case
	1 Introduction
	2 Refresher on Analogical Proportions
	3 General Principle of the Approach
	3.1 Starting with a Classification-by-Analogy Algorithm
	3.2 Application to the Prediction of Missing Values

	4 Analogical Prediction of Numerical Attributes
	4.1 Use of a Gradual Analogical Dissimilarity Measure
	4.2 Use of an Approximate Equality Relation
	4.3 Computation of the Final Value
	4.4 Evaluating the Precision of the Method

	5 Preliminary Experimentation
	5.1 Experimental Results
	5.2 Optimization Aspects

	6 Conclusion
	References

	Observations on Fine-Grained Lockingin XML DBMSs
	1 Introduction
	2 Environment of the Experimental Study
	2.1 Hierarchical DBMS Architecture
	2.2 Lock Concepts of taDOM
	2.3 Lock Management

	3 Benchmark Document and Workload
	4 Measurements
	4.1 System Parameters
	4.2 Baseline Experiments
	4.3 Lock Depth and Lock Escalation
	4.4 Workload Variants
	4.5 I/O Edge Cases

	5 Conclusions
	References

	Data and Business Processes
	Multi-dialect Workflows
	1 Introduction
	2 Basic Principles of the Workflow Tasks Representation in the Multi-dialect Infrastructure
	3 Workflow-Oriented Extension of the Multi-dialect Infrastructure
	4 Multi-dialect Workflow Use-Case
	5 Related Work
	6 Conclusion
	References

	Context-Aware Adaptive Process Information Systems:The Context-BPMN4V Meta-Model
	1 Introduction
	2 Related Works
	3 Modeling Process Versions: The BPMN4V Meta-Model
	3.1 Notion of Version
	3.2 BPMN4V: BPMN2.0 for Versions
	3.3 Example

	4 Considering Context in BPMN4V: The Context-BPMN4VMeta-Model
	4.1 Context Modeling
	4.2 Extending BPMN4V Meta-Model to Consider Context for (Process)Versions: The Context-BPMN4V Meta-Model
	4.3 Defining Context in the Damage Compensation Process

	5 Conclusion
	References

	Author Index

