Yannis Manolopoulos
Goce Trajcevski
Margita Kon-Popovska (Eds.)

Advances in Databases
and Information Systems

18th East European Conference, ADBIS 2014
Ohrid, Macedonia, September 7-10, 2014
Proceedings

LNCS 8716

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

8716

Yannis Manolopoulos Goce Trajcevski
Margita Kon-Popovska (Eds.)

Advances 1n Databases
and Information Systems

18th East European Conference, ADBIS 2014
Ohrid, Macedonia, September 7-10, 2014
Proceedings

@ Springer

Volume Editors

Yannis Manolopoulos

Aristotle University of Thessaloniki, Department of Informatics
Thessaloniki, Greece

E-mail: manolopo@csd.auth.gr

Goce Trajcevski

Northwestern University, EECS Department
Evanston, IL, USA

E-mail: goce@eecs.northwestern.edu

Margita Kon-Popovska

University Ss. Cyril and Methodius Skopje
Faculty of Computer Sciences and Engineering
Skopje, Macedonia

E-mail: margita.kon-popovska@finki.ukim.mk

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-319-10932-9 e-ISBN 978-3-319-10933-6
DOI 10.1007/978-3-319-10933-6

Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946898

LNCS Sublibrary: SL 3 — Information Systems and Application,
incl. Internet/Web and HCI

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains a selection of the papers presented at the 18th East
European Conference on Advances in Databases and Information Systems
(ADBIS 2014), held during September 7-10, 2014, in Ohrid, Republic of Mace-
donia.

The ADBIS series of conferences aims to provide a forum for the presenta-
tion and dissemination of research on database theory, development of advanced
DBMS technologies, and their advanced applications. ADBIS 2014 continued
the ADBIS series held every year in different countries of Europe, beginning
in St. Petersburg (1997), Poznan (1998), Maribor (1999), Prague (2000), Vil-
nius (2001), Bratislava (2002), Dresden (2003), Budapest (2004), Tallinn (2005),
Thessaloniki (2006), Varna (2007), Pori (2008), Riga (2009), Novi Sad (2010),
Vienna (2011), Poznan (2012), and Genoa (2013). The conferences are initiated
and supervised by an international Steering Committee consisting of representa-
tives from Armenia, Austria, Bulgaria, Czech Republic, Estonia, Finland, Ger-
many, Greece, Hungary, Israel, Italy, Latvia, Lithuania, Poland, Russia, Serbia,
Slovakia, Slovenia, and Ukraine.

The program of ADBIS 2014 included keynotes, research papers, a tutorial
session entitled “Online Social Networks Analytics - Communities and Sentiment
Detection” by Athena Vakali, a doctoral consortium, and thematic workshops.
The conference attracted 82 paper submissions from 34 different countries repre-
senting all the continents (Algeria, Australia, Austria, Bangladesh, Bosnia and
Herzegovina, Brazil, China, Croatia, Czech Republic, Estonia, France, Germany,
Greece, Hungary, Italy, Japan, Lebanon, Lithuania, Macedonia, Netherlands,
Poland, Romania, Russian Federation, Singapore, Slovakia, Slovenia, Spain,
Switzerland, Tunisia, Turkey, UK, USA, Vietnam) with 210 authors. After a
rigorous reviewing process by the members of the international Program Com-
mittee consisting of 115 reviewers from 34 countries, the 26 papers included in
this LNCS proceedings volume were accepted as full contributions.

Moreover, the Program Committee selected 15 more papers to be accepted
as short contributions which, in addition to the three selected papers from the
doctoral consortium, and eight papers from three workshops, are published in
a companion volume entitled New Trends in Databases and Information Sys-
tems 2 in the Springer series Advances in Intelligent Systems and Computing.
All papers were evaluated by at least three reviewers and most of them by
four to five reviewers. The selected papers span a wide spectrum of topics in
the database field and related technologies, tackling challenging problems and
presenting inventive and efficient solutions. In this volume, they are organized
in eight sections: (1) Data Models and Query Languages; (2) Data Warehous-
ing; (3) Query and Data-Flow Optimization; (4) Information Extraction and
Integration; (5) Spatial, Temporal and Streaming Data; (6) Data Mining and

VI Preface

Knowledge Discovery; (7) Data Organization and Physical Issues; (8) Data and
Business Processes.

Three keynote lecturers were invited and they gave talks on timely aspects
pertaining to the theme of the conference, namely, Maarten de Rijke (University
of Amsterdam, Netherlands), Minos Garofalakis (Technical University of Crete
in Chania, Greece), and Jodo Gama (University of Porto, Portugal). The vol-
ume also includes an invited paper for the conference keynote talk from Minos
Garofalakis.

ADBIS 2014 strived to create conditions for more experienced researchers to
share their knowledge and expertise with the young researchers participating in
the doctoral consortium. In addition, the following three workshops associated
with the ADBIS conference were co-located with the main conference:

e Third Workshop on GPUs in Databases (GID), organized by Witold Andrze-
jewski (Poznan University of Technology), Krzysztof Kaczmarski (Warsaw
University of Technology), and Tobias Lauer (Jedox).

e Third Workshop on Ontologies Meet Advanced Information Systems (OAIS)
organized by Ladjel Bellatreche (LIAS/ENSMA, Poitiers) and Yamine Ait
Ameur (IRIT/ENSEIHT, Toulouse).

e First Workshop on Technologies for Quality Management in Challenging Ap-
plications (TQMCA) organized by Isabelle Comyn-Wattiau (CNAM, Paris),
Ajantha Dahanayake (Prince Sultan University, Saudi Arabia), and Bern-
hard Thalheim (Christian Albrechts University).

Each workshop had its own international Program Committee. The accepted
papers were published by Springer in the Advances in Intelligent Systems and
Computing series.

The conference is supported by the President of the Republic of Macedo-
nia, H.E. Dr. Gjorge Ivanov. We would like to express our gratitude to every
individual who contributed to the success of ADBIS 2014. Firstly, we thank
all the authors who submitted papers to the conference. However, we are also
indebted to the members of the community who offered their time and exper-
tise in performing various roles ranging from organizational to reviewing ones —
their efforts, energy, and degree of professionalism deserve the highest commen-
dations. Special thanks go to the Program Committee members, as well as to
the external reviewers, for their support in evaluating the papers submitted to
ADBIS 2014, ensuring the quality of the scientific program. Thanks also to all
the colleagues involved in the conference organization, as well as the workshop
organizers. A special thank you is due to the members of the Steering Committee
and, in particular, its chair, Leonid Kalinichenko, for all their help and guidance.
Finally, we thank Springer for publishing the proceedings containing invited and
research papers in the LNCS series. The Program Committee work relied on
EasyChair, and we thank its development team for creating and maintaining it;
it offered great support throughout the different phases of the reviewing pro-
cess. The conference would not have been possible without our supporters and
sponsors: the Ministry of Information Society and Administration, Ss. Cyril and

Preface VII

Methodius University, Faculty of Computer Sciences and Engineering, ICT-ACT
Association, and Municipality of Ohrid.

Last, but not least, we thank the participants of ADBIS 2014 for sharing
their works and presenting their achievement, thus providing a lively, fruitful,
and constructive forum, and giving us the pleasure of knowing that our work
was purposeful.

September 2014 Margita Kon-Popovska
Yannis Manolopulos
Goce Trajcevski

Organization

General Chair

Margita Kon-Popovska Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Program Committee Co-chairs

Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Goce Trajcevski Northwestern University, USA

Workshop Co-chairs

Themis Palpanas Paris Descartes University, France
Athena Vakali Aristotle University of Thessaloniki, Greece

Doctoral Consortium Co-chairs

Nick Bassiliades Aristotle University of Thessaloniki, Greece
Mirjana Ivanovic University of Novi Sad, Serbia

Publicity Chair

Goran Velinov Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Website Chair

Vangel Ajanovski Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Proceedings Technical Editor

Toannis Karydis Department of Informatics, Ionian University
Corfu, Greece

Local Organizing Committee Chair

Goran Velinov Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

X Organization

Local Organizing Committee

Anastas Mishev Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Ss. Cyril and Methodius University in Skopje,

Republic of Macedonia

Boro Jakimovski

Ivan Chorbev

Supporters

Ministry of Information Society and Administration
Ss. Cyril and Methodius University in Skopje
Faculty of Computer Sciences and Engineering
ICT-ACT Association

Municipality of Ohrid

Steering Committee

Leonid Kalinichenko, Russian Academy of Science, Russia (Chair)

Joris Mihaeli, Israel
Tadeusz Morzy, Poland
Pavol Navrat, Slovakia
Boris Novikov, Russia

Paolo Atzeni, Italy

Andras Benczur, Hungary
Albertas Caplinskas, Lithuania
Barbara Catania, Italy

Johann Eder, Austria

Theo Haerder, Germany
Marite Kirikova, Latvia
Hele-Mai Haav, Estonia
Mirjana Ivanovic, Serbia
Hannu Jaakkola, Finland
Mikhail Kogalovsky, Russia
Yannis Manolopoulos, Greece
Rainer Manthey, Germany
Manuk Manukyan, Armenia

Program Committee

Mykola Nikitchenko, Ukraine
Jaroslav Pokornyv, Czech Republic
Boris Rachev, Bulgaria

Bernhard Thalheim, Germany
Gottfried Vossen, Germany
Tatjana Welzer, Slovenia
Viacheslav Wolfengagen, Russia
Robert Wrembel, Poland

Ester Zumpano, Italy

Marko Bajec
Mirta Baranovic
Guntis Barzdins
Andreas Behrend

University of Ljubljana, Slovenia
University of Zagreb, Croatia
University of Latvia, Latvia
University of Bonn, Germany

Ladjel Bellatreche
Maria Bielikova

Tovka Boneva

Omar Boucelma
Stephane Bressan
Davide Buscaldi
Albertas Caplinskas
Barbara Catania
Wojciech Cellary
Richard Chbeir

Ricardo Ciferri
Alfredo Cuzzocrea
Danco Davcev

Vladimir Dimitrov
Eduard Dragut
Schahram Dustdar
Todd Eavis
Johann Eder
Tobias Emrich

Markus Endres
Victor Felea

Pedro Furtado
Zdravko Galic
Johann Gamper
Minos Garofalakis
Jan Genci

Matteo Golfarelli
Katarina Grigorova
Giovanna Guerrini
Ralf Hartmut Giiting
Theo Héarder

Stephen Hegner

Ali Inan

Mirjana Ivanovic
Hannu Jaakkola
Manfred Jeusfeld
Slobodan Kalajdziski

Leonid Kalinichenko

Organization XI

Ecole Nationale Supérieure de Mécanique et
d’Aérotechnique, France

Slovak University of Technology in Bratislava,
Slovakia

University of Lille 1, France

LSIS, Aix-Marseille Université, France

National University of Singapore, Singapore

LIPN, Université Paris 13, France

Vilnius University, Lithuania

University of Genoa, Italy

Poznan University of Economics, Poland

Université de Pau et des Pays de I’Adour,
France

Federal University of Sao Carlos, Brazil

University of Calabria, Italy

Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Sofia University, Bulgaria

Temple University, USA

Vienna University of Technology, Austria

Concordia University, Canada

University of Klagenfurt, Austria

Ludwig-Maximilians-Universitat Miinchen,
Germany

University of Augsburg, Germany

Alexandru Ioan Cusa University, Iasi, Romania

University of Coimbra, Portugal

University of Zagreb, Croatia

Free University of Bozen-Bolzano, Italy

Technical University of Crete, Greece

Technical University of Kosice, Slovakia

University of Bologna, Italy

Ruse University, Bulgaria

University of Genoa, Italy

Fernuniversitat Hagen, Germany

Technical University of Kaiserslautern,
Germany

Umea University, Sweden

Isik University, Turkey

University of Novi Sad, Serbia

Tampere University of Technology, Finland

Tilburg University, The Netherlands

Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Russian Academy of Science, Russia

XII Organization

Kalinka Kaloyanova
Mehmed Kantardzic
Marite Kirikova
Harald Kosch
Georgia Koutrika
Andrea Kulakov

Lars Kulik
Wolfgang Lehner
Jan Lindstrém

Yun Lu

Ivan Lukovié¢
Federica Mandreoli
Rainer Manthey
Manuk Manukyan
Giansalvatore Mecca
Marco Mesiti

Irena Mlynkova
Alexandros Nanopoulos
Pavol Navrat

Daniel C. Neagu
Anisoara Nica
Nikolaj Nikitchenko
Kjetil Ngrvag

Boris Novikov
Gultekin Ozsoyoglu
Euthimios Panagos

Gordana Pavlovic-Lazetic

Torben Bach Pedersen
Dana Petcu
Evaggelia Pitoura
Elisa Quintarelli
Paolo Rosso

Viera Rozinajova
Ismael Sanz
Klaus-Dieter Schewe
Marc H. Scholl
Holger Schwarz
Timos Sellis

Bela Stantic
Predrag Stanisic
Yannis Stavrakas

Sofia University St. Kliment Ohridski, Bulgaria

University of Louisville, USA

Riga Technical University, Latvia

University of Passau, Germany

HP Labs, USA

Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

The University of Melbourne, Australia

Technical University of Dresden, Germany

IBM Helsinki, Finland

Florida International University, USA

University of Novi Sad, Serbia

University of Modena, Italy

University of Bonn, Germany

Yerevan State University, Armenia

University of Basilicata, Italy

University of Milan, Italy

Charles University in Prague, Czech Republic

University of Eichstatt-Ingolstadt, Germany

Slovak University of Technology, Slovakia

University of Bradford, UK

SAP, Canada

Kiev State University, Ukraine

Norwegian University of Science and
Technology, Norway

University of St. Petersburg, Russia

Case Western Reserve University, USA

Applied Communication Sciences, USA

University of Belgrade, Serbia

Aalborg University, Denmark

West University of Timisoara, Romania

University of Ioannina, Greece

Politecnico di Milano, Italy

Polytechnic University of Valencia, Spain

Slovak University of Technology, Slovakia

Universitat Jaume I, Spain

Software Competence Center, Austria

University of Konstanz, Germany

Universitat Stuttgart, Germany

National Technical University of Athens,
Greece

Griffith University, Australia

University of Montenegro, Montenegro

Institute for the Management of Information
Systems, Greece

Krzysztof Stencel
Leonid Stoimenov
Panagiotis Symeonidis
Amirreza Tahamtan
Ernest Teniente
Manolis Terrovitis

Bernhard Thalheim

A. Min Tjoa

Ismail Toroslu

Juan Trujillo

Traian Marius Truta
Ozgur Ulusoy
Maurice Van Keulen
Olegas Vasilecas

Panos Vassiliadis
Jari Veijalainen
Goran Velinov

Gottfried Vossen
Boris Vrdoljak

Fan Wang

Gerhard Weikum
Tatjana Welzer
Marek Wojciechowski
Robert Wrembel
Vladimir Zadorozhny
Jaroslav Zendulka
Andreas Zuefle

Additional Reviewers

Selma Bouarar
Kamel Boukhalfa
Ljiljana Brkié¢
Jacek Chmielewski
Armin Felbermayr

Flavio Ferrarotti

Olga Gkountouna

Organization XIII

University of Warsaw, Poland

University of Nis, Serbia

Aristotle University of Thessaloniki, Greece

Vienna University of Technology, Austria

Universitat Politecnica de Catalunya, Spain

Institute for the Management of Information
Systems, Greece

Christian Albrechts University of Kiel,
Germany

Vienna University of Technology, Austria

Middle East Technical University, Turkey

University of Alicante, Spain

Northern Kentucky University, USA

Bilkent University, Turkey

University of Twente, The Netherlands

Vilnius Gediminas Technical University,
Lithuania

University of Ioannina, Greece

University of Jyvaskyla, Finland

Ss. Cyril and Methodius University in Skopje,
Republic of Macedonia

Universitat Miinster, Germany

University of Zagreb, Croatia

Microsoft, USA

Max Planck Institute for Informatics, Germany

University of Maribor, Slovenia

Poznan University of Technology, Poland

Poznan University of Technology, Poland

University of Pittsburgh, USA

Brno University of Technology, Czech Republic

Ludwig-Maximilians-Universitdt Miinchen,
Germany

LTIAS/ISAE-ENSMA, France

LSI/USTHB, Algiers

University of Zagreb, Croatia

Poznan University of Economics, Poland

Catholic University of Eichstatt-Ingolstadt,
Germany

Software Competence Center Hagenberg
(SCCH), Austria

National Technical University of Athens,
Greece

X1V Organization
Tanzima Hashem

Pavlos Kefalas
Mohammadreza Khelghati
Michal Kompan

Christian Koncilia
Kresimir Krizanovié
Jens Lechtenborger
Igor Mekterovic¢
Anastasia Mochalova

Christos Perentis
Sonja Ristic

Milos Savié

Alexander Semenov
Alessandro Solimando
Konstantinos Theocharidis
Savo Tomovic

Stefano Valtolina
Qing Wang

Lesley Wevers
Athanasios Zigomitros
Slavko Zitnik

Bangladesh University of Engineering and
Technology, Bangladesh

Aristotle University of Thessaloniki, Greece

University of Twente, The Netherlands

Slovak University of Technology in Bratislava,
Slovakia

University of Klagenfurt, Austria

University of Zagreb, Croatia

University of Miinster, Germany

University of Zagreb, Croatia

Catholic University of Eichstéatt-Ingolstadt,
Germany

Bruno Kessler Foundation, Trento, Italy

University of Novi Sad, Serbia

University of Novi Sad, Serbia

University of Jyvaskyld, Finland

University of Genoa, Italy

IMS, Research Center Athena, Greece

University of Montenegro, Montenegro

Universita degli Studi di Milano, Italy

Australian National University, Australia

University of Twente, The Netherlands

IMIS, Research Center Athena, Greece

University of Ljubljana, Slovenia

Keynote Presentations

Querying Distributed Data Streams
Prof. Minos Garofalakis

Computer Science at the School of ECE
Technical University of Crete in Chania, Greec
Director of the Software Technology and Network Applications Laboratory
(SoftNet)
minos@softnet.tuc.gr

Effective big data analytics pose several difficult challenges for modern data
management architectures. One key such challenge arises from the naturally
streaming nature of big data, which mandates efficient algorithms for querying
and analyzing massive, continuous data streams (i.e., data that are seen only
once and in a fixed order) with limited memory and CPU-time resources. Such
streams arise naturally in emerging large-scale event-monitoring applications; for
instance, network-operations monitoring in large ISPs, where usage information
from numerous sites needs to be continuously collected and analyzed for interest-
ing trends. In addition to memory- and time-efficiency concerns, the inherently
distributed nature of such applications also raises important communication-
efficiency issues, making it critical to carefully optimize the use of the underlying
network infrastructure. In this talk, we introduce the distributed data stream-
ing model, and discuss recent work on tracking complex queries over massive
distributed streams as well as new research directions in this space.

Challenges in Learning from Streaming Data

Prof. Joao Gama

LIAAD-INESC TEC, University of Porto,
Faculty of Economics, University Porto,
jgama@fep.up.pt

Nowadays, there are applications in which the data are modeled best not as
persistent tables, but rather as transient data streams. In this article, we dis-
cuss the limitations of current machine learning and data mining algorithms.
We discuss the fundamental issues in learning in dynamic environments such
as continuously maintain learning models that evolve over time, learning and
forgetting, concept drift, and change detection. Data streams produce a huge
amount of data that introduce new constraints in the design of learning algo-
rithms: limited computational resources in terms of memory, CPU power, and
communication bandwidth. We present some illustrative algorithms, designed to
take these constrains into account, for decision-tree learning, hierarchical clus-
tering, and frequent pattern mining. We identify the main issues and current
challenges that emerge in learning from data streams that open research lines
for further developments.

Table of Contents

Invited Talk

Querying Distributed Data Streams (Invited Keynote Talk)
Minos Garofalakis

Data Models and Query Languages

Towards a Normal Form for Extended Relations Defined by Regular
EXPressions
Andrds Benczur and Gyula I. Szabo

Flexible Relational Data Model — A Common Ground for
Schema-Flexible Database Systems
Hannes Voigt and Wolfgang Lehner

Defining Temporal Operators for Column Oriented NoSQL
Databases.o
Yong Hu and Stefan Dessloch

Data Warehousing

Analyzing Sequential Data in Standard OLAP Architectures
Christian Koncilia, Johann Eder, and Tadeusz Morzy

Hybrid Fragmentation of XML Data Warehouse Using K-Means
Algorithmo
Mohamed Kechar and Safia Nait Bahloul

Do Rule-Based Approaches Still Make Sense in Logical Data Warehouse
DesignT .
Selma Bouarar, Ladjel Bellatreche, Stéphane Jean, and
Mickaél Baron

Query and Data-Flow Optimization

High Parallel Skyline Computation over Low-Cardinality Domains
Markus Endres and Werner Kiefsling

Top-k Differential Queries in Graph Databases.......................
Elena Vasilyeva, Maik Thiele, Christof Bornhovd, and
Wolfgang Lehner

11

25

39

56

70

83

XVIII Table of Contents

Static Integration of SQL Queries in C++ Programs 126
Maciej Sysak, Bartosz Zieliniski, Piotr Kruszynski,
Scibor Sobieski, and Pawet Maslanka

Information Extraction and Integration

A Demand-Driven Bulk Loading Scheme for Large-Scale Social
Graphs . .o 139
Weiping Qu and Stefan Dessloch

Open Source Is a Continual Bugfixing by a Few................... ... 153
Mikolaj Fejzer, Michat Wojtyna, Marta Burzanska,
Piotr Wisniewski, and Krzysztof Stencel

Materialized View Selection Considering the Diversity of Semantic Web
Databases.o 163
Bery Mbaiossoum, Ladjel Bellatreche, and Stéphane Jean

Spatial, Temporal and Streaming Data

A Robust Skip-Till-Next-Match Selection Strategy for Event Pattern
Matchingo 177
Bruno Cadonna, Johann Gamper, and Michael H. Béhlen

CARDAP: A Scalable Energy-Efficient Context Aware Distributed

Mobile Data Analytics Platform for the Fog 192
Prem Prakash Jayaraman, Joao Bdrtolo Gomes, Hai Long Nguyen,
Zahraa Said Abdallah, Shonali Krishnaswamy, and Arkady Zaslavsky

Representing Internal Varying Characteristics of Moving Objects. 207
Ahmed Ibrahim, Ulanbek Turdukulov, and Menno-Jan Kraak

Data Mining and Knowledge Discovery

User Identification within a Shared Account: Improving IP-TV
Recommender Performance.......... i, 219
Zhijin Wang, Yan Yang, Liang He, and Junzhong Gu

P-TRIAR: Personalization Based on TRIadic Association Rules........ 234
Selmane Sid Ali, Omar Boussaid, and Fadila Bentayeb

An Event-Based Framework for the Semantic Annotation of
Locations ... e 248
Anh Le, Michael Gertz, and Christian Sengstock

Observing a Naive Bayes Classifier’s Performance on Multiple
Datasets . ..o 263
Bostjan Brumen, Ivan Rozman, and Ales Cernezel

Table of Contents XIX

Data Organization and Physical Issues

A Parallel Algorithm for Building iCPI-trees 276
Witold Andrzejewski and Pawel Boinski

SemlIndex: Semantic-Aware Inverted Index 290
Richard Chbeir, Yi Luo, Joe Tekli, Kokou Yetongnon,
Carlos Raymundo Ibariez, Agma J.M. Traina,
Caetano Traina Jr., and Marc Al Assad

Entity Resolution with Weighted Constraints 308
Zeyu Shen and Qing Wang

Analogical Prediction of Null Values: The Numerical Attribute Case.... 323
William Correa Beltran, Héléne Jaudoin, and Olivier Pivert

Observations on Fine-Grained Locking in XML DBMSs............... 337
Martin Hiller, Caetano Sauer, and Theo Harder

Data and Business Processes

Multi-dialect Workflows. 352
Leonid Kalinichenko, Sergey Stupnikov, Alexey Vouchenko, and
Dmitry Kovalev

Context-Aware Adaptive Process Information Systems: The
Context-BPMN4V Meta-Model 366
Imen Ben Said, Mohamed Amine Chaabane, Eric Andonoff, and
Rafik Bouaziz

Author Index 383

Querying Distributed Data Streams
(Invited Keynote Talk)

Minos Garofalakis

School of Electronic and Computer Engineering
Technical University of Crete
minos@softnet.tuc.gr

Abstract. Effective Big Data analytics pose several difficult challenges for
modern data management architectures. One key such challenge arises from the
naturally streaming nature of big data, which mandates efficient algorithms for
querying and analyzing massive, continuous data streams (that is, data that is
seen only once and in a fixed order) with limited memory and CPU-time re-
sources. Such streams arise naturally in emerging large-scale event monitoring
applications; for instance, network-operations monitoring in large ISPs, where
usage information from numerous sites needs to be continuously collected and
analyzed for interesting trends. In addition to memory- and time-efficiency con-
cerns, the inherently distributed nature of such applications also raises important
communication-efficiency issues, making it critical to carefully optimize the use
of the underlying network infrastructure. In this talk, we introduce the distributed
data streaming model, and discuss recent work on tracking complex queries over
massive distributed streams, as well as new research directions in this space.

1 Introduction

Traditional data-management systems are typically built on a pull-based paradigm,
where users issue one-shot queries to static data sets residing on disk, and the system
processes these queries and returns their results. Recent years, however, have witnessed
the emergence of a new class of large-scale event monitoring applications, that require
the ability to efficiently process continuous, high-volume streams of data in real time.
Examples include monitoring systems for IP and sensor networks, real-time analysis
tools for financial data streams, and event and operations monitoring applications for
enterprise clouds and data centers. As both the scale of today’s networked systems, and
the volumes and rates of the associated data streams continue to increase with no bound
in sight, algorithms and tools for effectively analyzing them are becoming an important
research mandate.

Large-scale stream processing applications rely on continuous, event-driven mon-
itoring, that is, real-time tracking of measurements and events, rather than one-shot
answers to sporadic queries. Furthermore, the vast majority of these applications are in-
herently distributed, with several remote monitor sites observing their local, high-speed
data streams and exchanging information through a communication network. This dis-
tribution of the data naturally implies critical communication constraints that typically
prohibit centralizing all the streaming data, due to either the huge volume of the data

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 1-10, 2014.
(© Springer International Publishing Switzerland 2014

2 M. Garofalakis

(e.g., in IP-network monitoring, where the massive amounts of collected utilization and
traffic information can overwhelm the production IP network [11]), or power and band-
width restrictions (e.g., in wireless sensornets, where communication is the key determi-
nant of sensor battery life [25]). Finally, an important requirement of large-scale event
monitoring is the effective support for tracking complex, holistic queries that provide a
global view of the data by combining and correlating information across the collection
of remote monitor sites. For instance, tracking aggregates over the result of a distributed
join (the “workhorse” operator for combining tables in relational databases) can provide
unique, real-time insights into the workings of a large-scale distributed system, includ-
ing system-wide correlations and potential anomalies [6]. Monitoring the precise value
of such holistic queries without continuously centralizing all the data seems hopeless;
luckily, when tracking statistical behavior and patters in large scale systems, approx-
imate answers (with reasonable approximation error guarantees) are often sufficient.
This often allows algorithms to effectively tradeoff efficiency with approximation qual-
ity (e.g., using sketch-based stream approximations [6]).

Given the prohibitive cost of data centralization, it is clear that realizing sophisti-
cated, large-scale distributed data-stream analysis tools must rely on novel algorithmic
paradigms for processing local streams of data in situ (i.e., locally at the sites where
the data is observed). This, of course, implies the need for intelligently decomposing
a (possibly complex) global data-analysis and monitoring query into a collection of
“safe” local queries that can be tracked independently at each site (without communi-
cation), while guaranteeing correctness for the global monitoring operation. This de-
composition process can enable truly distributed, event-driven processing of real-time
streaming data, using a push-based paradigm, where sites monitor their local queries
and communicate only when some local query constraints are violated [6,29]. Never-
theless, effectively decomposing a complex, holistic query over the global collections
of streams into such local constraints is far from straightforward, especially in the case
of non-linear queries (e.g., joins) [29].

The bulk of early work on data-stream processing has focused on developing
space-efficient, one-pass algorithms for performing a wide range of centralized, one-
shot computations on massive data streams; examples include computing quantiles [21],
estimating distinct values [18], and set-expression cardinalities [14], counting frequent
elements (i.e., “heavy hitters”) [4,9,26], approximating large Haar-wavelet coefficients
[20], and estimating join sizes and stream norms [1,2,13]. Monitoring distributed data
streams has attracted substantial research interest in recent years [5,27], with early work
focusing on the monitoring of single values, and building appropriate models and fil-
ters to avoid propagating updates if these are insignificant compared to the value of
simple linear aggregates (e.g., to the SUM of the distributed values). For instance, [28]
proposes a scheme based on “adaptive filters” — that is, bounds around the value of
distributed variables, which shrink or grow in response to relative stability or variabil-
ity, while ensuring that the total uncertainty in the bounds is at most a user-specified
bound. Still, in the case of linear aggregate functions, deriving local filter bounds based
on a global monitoring condition is rather straightforward, with the key issue being how
to intelligently distribute the available aggregate “slack” across all sites [3,7,22].

Querying Distributed Data Streams 3

User Query Q(v) Global Streams| . =~
Approximate Answer V= -V
for Q(v) ‘ Z 7\’J J

State—Update
Site 1 Messages Site k

local update streams local update streams

Fig. 1. Distributed stream processing architecture

In this talk, we focus on recently-developed algorithmic tools for effectively track-
ing a broad class of complex queries over massive, distributed data streams. We start
by describing the key elements of a generic distributed stream-processing architecture
and define the class of distributed query-tracking problems addressed in this talk, along
with some necessary background material on randomized sketching techniques for data
streams. We then give an overview of the geometric method for distributed threshold
monitoring that lies at the core of our distributed query-tracking methodology, and dis-
cuss recent extensions to the basic geometric framework that incorporate sketches and
local prediction models. Finally, we conclude with a brief discussion of new research
directions in this space.

2 System Architecture

We consider a distributed-computing environment, comprising a collection of k remote
sites and a designated coordinator site. Streams of data updates arrive continuously
at remote sites, while the coordinator site is responsible for generating approximate an-
swers to (possibly, continuous) user queries posed over the unions of remotely-observed
streams (across all sites). Following earlier work in the area [3,6,7,12,28], our dis-
tributed stream-processing model does not allow direct communication between remote
sites; instead, as illustrated in Figure 1, a remote site exchanges messages only with the
coordinator, providing it with state information on its (locally-observed) streams. Note
that such a hierarchical processing model is, in fact, representative of a large class of
applications, including network monitoring where a central Network Operations Cen-
ter (NOC) is responsible for processing network traffic statistics (e.g., link bandwidth
utilization, IP source-destination byte counts) collected at switches, routers, and/or El-
ement Management Systems (EMSs) distributed across the network.

Each remote site j € {1,..., k} observes (possibly, several) local update streams
that incrementally render a local statistics vector v, capturing the current local state
of the observed stream(s) at site j. As an example, in the case of IP routers moni-
toring the number of TCP connections and UDP packets exchanged between source
and destination IP addresses, the local statistics vector v; has 2 x 264 entries captur-
ing the up-to-date frequencies for specific (source, destination) pairs observed in TCP

4 M. Garofalakis

connections and UDP packets routed through router 5. (For instance, the first (last) 264
entries of v; could be used for TCP-connection (respectively, UDP-packet) frequen-
cies.) All local statistics vectors v; in our distributed streaming architecture change dy-
namically over time — when necessary, we make this dependence explicit, using v (¢)
to denote the state of the vector at time ¢ (assuming a consistent notion of “global time”
in our distributed system). The unqualified notation v; typically refers to the current
state of the local statistics vector.

We define the global statistics vector v of our distributed stream(s) as any weighted
average (i.e., convex combination) of the local statistics vectors {v j}; that is,

k
v = Z)\jvj, where 3 7, A; = land A; > 0 forall j.

Jj=1

(Again, to simplify notation, we typically omit the explicit dependence on time when
referring to the current global vector.) Our focus is on the problem of effectively an-
swering user queries (or, functions) over the global statistics vector at the coordinator
site. Rather than one-time query/function evaluation, we assume a continuous-querying
environment which implies that the coordinator needs to continuously maintain (or,
track) the answers to queries as the local update streams v; evolve at individual remote
sites. There are two defining characteristics of our problem setup that raise difficult
algorithmic challenges for our query tracking problems:

o The distributed nature and large volumes of local streaming data raise important com-
munication and space/time efficiency concerns. Naive schemes that accurately track
query answers by forcing remote sites to ship every remote stream update to the coor-
dinator are clearly impractical, since they can impose an inordinate burden on the un-
derlying communication infrastructure (especially, for high-rate data streams and large
numbers of remote sites). Furthermore, the voluminous nature of the local data streams
implies that effective streaming tools are needed at the remote sites in order to manage
the streaming local statistics vectors in sublinear space/time. Thus, a practical approach
is to adopt the paradigm of continuous tracking of approximate query answers at the
coordinator site with strong guarantees on the quality of the approximation. This al-
lows schemes that can effectively trade-off space/time/communication efficiency and
query-approximation accuracy in a precise, quantitative manner.

e General, non-linear queries/functions imply fundamental and difficult challenges for
distributed monitoring. For the case of linear functions, a number of approaches have
been proposed that rely on the key idea of allocating appropriate “slacks” to the remote
sites based on their locally-observed function values (e.g., [3,28,22]). Unfortunately, it
is not difficult to find examples of simple non-linear functions on one-dimensional data,
where it is basically impossible to make any assumptions about the value of the global
function based on the values observed locally at the sites [29]. This renders conventional
slack-allocation schemes inapplicable in this more general setting.

Querying Distributed Data Streams 5
3 Sketching Continuous Data Streams

Techniques based on small-space pseudo-random sketch summaries of the data have
proved to be very effective tools for dealing with massive, rapid-rate data streams in
centralized settings [1,2,10,13,20]. The key idea in such sketching techniques is to rep-
resent a streaming frequency vector v using a much smaller (typically, randomized)
sketch vector (denoted by sk(v)) that (1) can be easily maintained as the updates in-
crementally rendering v are streaming by, and (2) provide probabilistic guarantees for
the quality of the data approximation. The widely used AMS sketch (proposed by Alon,
Matias, and Szegedy in their seminal paper [2]) defines i*" sketch entry sk(v)]i] as the
random variable) |, v[k]-&;[k], where {¢;} is a family of four-wise independent binary
random variables uniformly distributed in {—1, +1} (with mutually-independent fami-
lies used across different entries of the sketch). The key here is that, using appropriate
pseudo-random hash functions, each such family can be efficiently constructed on-line
in small (logarithmic) space [2]. Note that, by construction, each entry of sk(v) is es-
sentially a randomized linear projection (i.e., an inner product) of the v vector (using
the corresponding ¢ family), that can be easily maintained (using a simple counter) over
the input update stream. Another important property is the linearity of AMS sketches:
Given two “parallel” sketches (built using the same £ families) sk(v1) and sk(v2), the
sketch of the union of the two underlying streams (i.e., the streaming vector v + v2)
is simply the component-wise sum of their sketches; that is, sk(vy + v2) = sk(vi)+
sk(vz). This linearity makes such sketches particularly useful in distributed streaming
settings [6].

The following theorem summarizes some of the basic estimation properties of AMS
sketches for (centralized) stream query processing. (Throughout, the notation € (y +
z) is equivalent to |z — y| < |z|.) We use faus() to denote the standard AMS es-
timator function, involving both averaging and median-selection operations over the
components of the sketch-vector inner product [1,2]. Formally, each sketch vector can
be conceptually viewed as a two-dimensional n X m array, where n = O(el2), m =
O(log(1/6)) and €, 1 — ¢ denote the desired bounds on error and probabilistic confi-
dence (respectively), and the AMS estimator function is defined as:

Frs(sk(v), sk(uw)) = g?g_i%{izsk(v)u,ﬂ-sk(u)[z,i]}. (1)

=1

Theorem 1 ([1,2]). Let sk(v) and sk(u) denote two parallel sketches comprising
O(5 1og(1/6)) counters, built over the streams v and w. Then, with probability at
least 1 — 6, fius(sk(v), sk(u)) € (v - u=L €||v]||||ul|). The processing time required to
maintain each sketch is O(} log(1/68)) per update.

Thus, AMS sketch estimators can effectively approximate inner-product queries
v-u =) . v[i] - ufi] over streaming data vectors and tensors. Such inner prod-
ucts naturally map to join and multi-join aggregates when the the vectors/tensors cap-
ture the frequency distribution of the underlying join attribute(s) [13]. Furthermore,
they can capture several other interesting query classes, including range and quan-
tile queries [19], heavy hitters and top-k queries [4], and approximate histogram and

6 M. Garofalakis

wavelet representations [8,20]. An interesting special case is that of the (squared) Lo
norm (or, self-join) query (i.e., u = v): Theorem 1 implies that the AMS estimator
fams(sk(v), sk(v)) (or, simply f.us(sk(v))) is within e relative error of the true squared
Ly norm |jv]|? =37, (v[k])?; that is, fuus(sk(v)) € (1£€)||v]|. To provide € relative-
error guarantees for the general inner-product query v - u, Theorem 1 can be applied
with error bound €’ = €(v - u)/(]|v]|||u]|), giving a total sketching space requirement

of O(llo)? || log(1/6)) counters [1].

e2(v-u)?

4 The Geometric Method

Sharfman et al. [29] consider the fundamental problem of distributed threshold moni-
toring; that is, determine whether f(v) < 7 or f(v) > 7, for a given (general) function
f() over the global statistics vector and a fixed threshold 7. Their key idea is that, since
it is generally impossible to connect the locally-observed values of f() to the global
value f(v), one can employ geometric arguments to monitor the domain (rather than
the range) of the monitored function f(). More specifically, assume that at any point
in time, each site j has informed the coordinator of some prior state of its local vector
vf ; thus, the coordinator has an estimated global vector e = 25:1 Aj 'ué-’ . Clearly, the
updates arriving at sites can cause the local vectors v to drift too far from their previ-
ously reported values v? , possibly leading to a violation of the 7 threshold. Let Av; =
v — vf denote the local delta vector (due to updates) at site j, and let u; = e + Av;
be the drift vector from the previously reported estimate at site j. We can then express
the current global statistics vector v in terms of the drift vectors:

k k

k
v= Z)\j(vﬁ + Av;)=e+ Z)\jA'vj = Z)\j(e + Avj).
j=1

j=1 j=1

That is, the current global vector is a convex combination of drift vectors and, thus,
guaranteed to lie somewhere within the convex hull of the delta vectors around e. Fig-
ure 2 depicts an example in d = 2 dimensions. The current value of the global statistics
vector lies somewhere within the shaded convex-hull region; thus, as long as the convex
hull does not overlap the inadmissible region (i.e., the region {v € R? : f(v) > 7} in
Figure 2), we can guarantee that the threshold has not been violated (i.e., f(v) < 7)).

The problem, of course, is that the Awv;’s are spread across the sites and, thus, the
above condition cannot be checked locally. To transform the global condition into a
local constraint, we place a d-dimensional bounding ball B(c, r) around each local
delta vector, of radius 7 = 1||Av,|| and centered at ¢ = e + 3 Av; (see Figure 2).
It can be shown that the union of all these balls completely covers the convex hull of
the drift vectors [29]. This observation effectively reduces the problem of monitoring
the global statistics vector to the local problem of each remote site monitoring the ball
around its local delta vector.

More specifically, given the monitored function f () and threshold 7, we can partition
the d-dimensional space into two sets V = {v : f(v) > 7} and V = {v : f(v) <
7}. (Note that these sets can be arbitrarily complex, e.g., they may comprise multiple
disjoint regions of R%.) The basic protocol is now quite simple: Each site monitors its

Querying Distributed Data Streams 7

Fig. 2. Estimate vector e, delta vectors Av(p;) (arrows out of e), convex hull enclosing the
current global vector v (dotted outline), and bounding balls B(e + 1 Av;, 1| Av;]|)

delta vector Av; and, with each update, checks whether its bounding ball B(e+ ;A'u i
1 Av;||) is monochromatic, i.e., all points in the ball lie within the same region (V or
V). If this is not the case, we have a local threshold violation, and the site communicates
its local Aw; to the coordinator. The coordinator then initiates a synchronization process
that typically tries to resolve the local violation by communicating with only a subset
of the sites in order to “balance out” the violating Av; and ensure the monochromicity
of all local bounding balls [29]. In the worst case, the delta vectors from all k sites are
collected, leading to an accurate estimate of the current global statistics vector, which
is by definition monochromatic (since all bounding balls have 0 radius).

In more recent work, Sharfman et al. [23] demonstrate that their geometric monitor-
ing method can employ properties of the function and the data to guide the choice of a
global reference point and local bounding ellipsoids for defining the local constraints.
Furthermore, they show that the local bounding balls/ellipsoids defined by the geomet-
ric method are actually special cases of a more general theory of Safe Zones (SZs),
which can be broadly defined as convex subsets of the admissible region of a threshold
query. It is not difficult to see that, as long as the local drift vectors stay within such a
SZ, the global vector is guaranteed (by convexity) to be within the admissible region of
the query [23].

5 Extensions: Sketches and Prediction Models

In more recent work [15], we have proposed novel query-tracking protocols that exploit
the combination of the geometric method of Sharfman et al. [23,29] for monitoring gen-
eral threshold conditions over distributed streams and AMS sketch estimators for query-
ing massive streaming data [1,2,13]. The sketching idea offers an effective streaming

8 M. Garofalakis

dimensionality-reduction tool that significantly expands the scope of the original geo-
metric method [29], allowing it to handle massive, high-dimensional distributed data
streams in an efficient manner with approximation-quality guarantees. The key techni-
cal observation is that, by exploiting properties of the AMS estimator function, geo-
metric monitoring can now take place in a much lower-dimensional space, allowing for
communication-efficient monitoring. Another technical challenge that arises is how to
effectively test the monochromicity of bounding balls in this lower-dimensional space
with respect to threshold conditions involving the highly non-linear median operator in
the AMS estimator f,s() (Equation (1)). We have proposed a number of novel algorith-
mic techniques to address these technical challenges, starting from the easier cases of
Lo-norm (i.e., self-join) and range queries, and then extending them to the case of gen-
eral inner-product (i.e., binary-join) queries. Our experimental study with real-life data
sets demonstrates the practical benefits of our approach, showing consistent gains of up
to 35% in terms of total communication cost compared to the current state-of-the-art
method [6]; furthermore, our techniques demonstrate even more impressive benefits (of
over 100%) when focusing on the communication costs of data (i.e., sketch) shipping
in the system.

In other recent work [16,17], we have proposed a novel combination of the geometric
method with local prediction models for describing the temporal evolution of local data
streams. (The adoption of prediction models has already been proven beneficial in terms
of bandwidth preservation in distributed settings [6].) We demonstrate that prediction
models can be incorporated in a very natural way in the geometric method for tracking
general, non-linear functions; furthermore, we show that the initial geometric moni-
toring method of Sharfman et al. [23,29] is only a special case of our, more general,
prediction-based geometric monitoring framework. Interestingly, the mere utilization
of local predictions is not enough to guarantee lower communication overheads even
when predictors are quite capable of describing local stream distributions. We establish
a theoretically solid monitoring framework that incorporates conditions that can lead to
fewer contacts with the coordinator. We also develop a number of mechanisms, along
with extensive probabilistic models and analysis, that relax the previously introduced
framework, base their function on simpler criteria, and yield significant communication
benefits in practical scenarios.

6 Future Directions

We have discussed some basic, recently-proposed algorithmic tools for the difficult
problem of tracking complex queries over distributed data streams. Continuous dis-
tributed streaming is a vibrant, rapidly evolving field of research, and a community of
researchers has started forming around theoretical, algorithmic, and systems issues in
the area [27] Naturally, there are several promising directions for future research. First,
the single-level hierarchy model (depicted in Figure 1) is simplistic and also introduces
a single point of failure (i.e., the coordinator). Extending the model to general hierar-
chies is probably not that difficult (even though effectively distributing the error bounds
across the internal hierarchy nodes can be challenging [6]); however, extending the
ideas to general, scalable distributed architectures (e.g., P2P networks) raises several

Querying Distributed Data Streams 9

theoretical and practical challenges. Second, while most of the proposed algorithmic
tools have been prototyped and tested with real-life data streams, there is still a need
for real system implementations that also address some of the key systems questions
that arise (e.g., what functions and query language to support, how to interface to real
users and applications, and so on). We have already started implementing some of the
geometric monitoring ideas using Twitter’s Storm/\-architecture, and exploiting these
ideas for large-scale, distributed Complex Event Processing (CEP) in the context of
the FERARI project (www.ferari-project.eu). Finally, from a more founda-
tional perspective, there is a need for developing new models and theories for studying
the complexity of such continuous distributed computations. These could build on the
models of communication complexity [24] that study the complexity of distributed one-
shot computations, perhaps combined with very relevant ideas from information theory
(such as distributed source coding).

Acknowledgements. This work was partially supported by the European Commis-
sion under ICT-FP7-FERARI (Flexible Event Processing for Big Data Architectures),
www. ferari-project.eu.

References

1. Alon, N., Gibbons, P.B., Matias, Y., Szegedy, M.: Tracking Join and Self-Join Sizes in Lim-
ited Storage. In: Proc. of the 18th ACM Symposium on Principles of Database Systems,
Philadeplphia, Pennsylvania (May 1999)

2. Alon, N., Matias, Y., Szegedy, M.: The Space Complexity of Approximating the Frequency
Moments. In: Proc. of the 28th Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, pp. 20-29 (May 1996)

3. Babcock, B., Olston, C.: Distributed Top-K Monitoring. In: Proc. of the 2003 ACM SIGMOD
Intl. Conference on Management of Data, San Diego, California (June 2003)

4. Charikar, M., Chen, K., Farach-Colton, M.: Finding Frequent Items in Data Streams. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 693-703. Springer, Heidelberg (2002)

5. Cormode, G., Garofalakis, M.: Streaming in a connected world: querying and tracking dis-
tributed data streams. In: SIGMOD (2007)

6. Cormode, G., Garofalakis, M.: Approximate Continuous Querying of Distributed Streams.
ACM Transactions on Database Systems 33(2) (June 2008)

7. Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.: Holistic Aggregates in a Net-
worked World: Distributed Tracking of Approximate Quantiles. In: Proc. of the 2005 ACM
SIGMOD Intl. Conference on Management of Data, Baltimore, Maryland (June 2005)

8. Cormode, G., Garofalakis, M., Sacharidis, D.: Fast Approximate Wavelet Tracking on
Streams. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 4-22. Springer,
Heidelberg (2006)

9. Cormode, G., Muthukrishnan, S.: What’s Hot and What’s Not: Tracking Most Frequent Items
Dynamically. In: Proc. of the 22nd ACM Symposium on Principles of Database Systems, San
Diego, California, pp. 296-306 (June 2003)

10. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-min sketch
and its applications. In: Latin American Informatics, pp. 29-38 (2004)

11. Cranor, C., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: A Stream Database for
Network Applications. In: Proc. of the 2003 ACM SIGMOD Intl. Conference on Manage-
ment of Data, San Diego, California (June 2003)

10

12.

13.

16.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Garofalakis

Das, A., Ganguly, S., Garofalakis, M., Rastogi, R.: Distributed Set-Expression Cardinality
Estimation. In: Proc. of the 30th Intl. Conference on Very Large Data Bases, Toronto, Canada
(September 2004)

Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing Complex Aggregate Queries
over Data Streams. In: Proc. of the 2002 ACM SIGMOD Intl. Conference on Management
of Data, Madison, Wisconsin, pp. 61-72 (June 2002)

. Ganguly, S., Garofalakis, M., Rastogi, R.: Processing Set Expressions over Continuous Up-

date Streams. In: Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of Data,
San Diego, California (June 2003)

. Garofalakis, M., Keren, D., Samoladas, V.: Sketch-based Geometric Monitoring of Dis-

tributed Stream Queries. In: Proc. of the 39th Intl. Conference on Very Large Data Bases,
Trento, Italy (August 2013)

Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, 1., Schuster, A.: Prediction-
based Geometric Monitoring over Distributed Data Streams. In: Proc. of the 2012 ACM
SIGMOD Intl. Conference on Management of Data (June 2012)

. Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I., Schuster, A.: Distributed

Geometric Query Monitoring using Prediction Models. ACM Transactions on Database Sys-
tems 39(2) (2014)

. Gibbons, P.B.: Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries

and Event Reports. In: Proc. of the 27th Intl. Conference on Very Large Data Bases, Roma,
Italy (September 2001)

Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: How to Summarize the Universe:
Dynamic Maintenance of Quantiles. In: Proc. of the 28th Intl. Conference on Very Large Data
Bases, Hong Kong, China, pp. 454465 (August 2002)

Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: One-pass wavelet decomposition
of data streams. IEEE Transactions on Knowledge and Data Engineering 15(3), 541-554
(2003)

Greenwald, M.B., Khanna, S.: Space-Efficient Online Computation of Quantile Summaries.
In: Proc. of the 2001 ACM SIGMOD Intl. Conference on Management of Data, Santa Bar-
bara, California (May 2001)

Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient distributed mon-
itoring of thresholded counts. In: Proc. of the 2006 ACM SIGMOD Intl. Conference on
Management of Data, Chicago, Illinois, pp. 289-300 (June 2006)

Keren, D., Sharfman, I., Schuster, A., Livne, A.: Shape-Sensitive Geometric Monitoring.
IEEE Transactions on Knowledge and Data Engineering 24(8) (August 2012)

Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cam-
bridge (1997)

Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: The Design of an Acquisitional
Query Processor for Sensor Networks. In: Proc. of the 2003 ACM SIGMOD Intl. Conference
on Management of Data, San Diego, California (June 2003)

Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: Proc.
of the 28th Intl. Conference on Very Large Data Bases, Hong Kong, China, pp. 346-357
(August 2002)

NII Shonan Workshop on Large-Scale Distributed Computation, Shonan Village, Japan
(January 2012), http://www.nii.ac.jp/shonan/seminar011/.

Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Distributed
Data Streams. In: Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of
Data, San Diego, California (June 2003)

Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring threshold func-
tions over distributed data streams. In: Proc. of the 2006 ACM SIGMOD Intl. Conference on
Management of Data, Chicago, Illinois, pp. 301-312 (June 2006)

http://www.nii.ac.jp/shonan/seminar011/

Towards a Normal Form for Extended Relations
Defined by Regular Expressions

Andréas Benczur and Gyula I. Szabd

Eo6tvos Lordand University, Faculty of Informatics,
Pdzmény Péter sétdny, 1/C, Budapest, 1118 Hungary
abenczur@inf.elte.hu, gyula@szaboo.de

Abstract. XML elements are described by XML schema languages such
as a DTD or an XML Schema definition. The instances of these elements
are semi-structured tuples. We may think of a semi-structure tuple as a
sentence of a formal language, where the values are the terminal sym-
bols and the attribute names are the nonterminal symbols. In our former
work [13] we introduced the notion of the extended tuple as a sentence
from a regular language generated by a grammar where the nonterminal
symbols of the grammar are the attribute names of the tuple. Sets of
extended tuples are the extended relations. We then introduced the dual
language, which generates the tuple types allowed to occur in extended
relations. We defined functional dependencies (regular FD - RFD) over
extended relations. In this paper we rephrase the RFD concept by di-
rectly using regular expressions over attribute names to define extended
tuples. By the help of a special vertex labeled graph associated to regu-
lar expressions the specification of substring selection for the projection
operation can be defined. The normalization for regular schemas is more
complex than it is in the relational model, because the schema of an
extended relation can contain an infinite number of tuple types. How-
ever, we can define selection, projection and join operations on extended
relations too, so a lossless-join decomposition can be performed.

1 Introduction

XML has evolved to become the de-facto standard format for data exchange over
the World Wide Web. XML was originally developed to describe and present
individual documents, it has also been used to build databases. Our original mo-
tivation for the introduction of the regular relational data model [13] was to find
a good representation of the XML ELEMENT type declaration. The instances
of a given element type in an XML document can be considered as a collection
of data of complex row types. The set of attribute names in the row types are
the element names occurring in the DTD declaration of the element. In the case
of recursive regular expression in the element declaration, there are possibly infi-
nite number of different row types for the element instances. The same attribute
name may occur several times in a type instance. This leads to the problem of
finding a formal way to define the projection operator, similar to the relational

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 11-24, 2014.
© Springer International Publishing Switzerland 2014

12 A. Benczur and G.I. Szabd

algebra, on the syntactical structure of the data type. That is necessary to de-
fine the left and right side of a functional dependency. We defined the attribute
sequence by a traversal on the vertex labeled graph associated to the regular
expression of the DTD. This form is also good to define attribute subsequences
for the projection operator, for the selection operator and for equijoin operator.
Set operations can be extended in a straightforward way, so this leads to the full
extension of relational algebra operators. Using the extension of projection and
equijoin (or natural join) the join dependency can be defined in the same way
as in the relational model.

Motivation. Our previous model [13] could be effectively used for handling
functional dependencies (FD). In the relational model FDs offer the basis for nor-
malization (e.g. BCNF), to build non-redundant, well-defined database schema.
But our model cannot handle the join operation among instances (that is used to
secure lossless join decomposition) because the projection of a schema according
to a set of nodes or two joined schemas would not necessarily leads to a new,
valid schema. We need an improved model for regular data bases. To denote a
regular language we can use regular expressions, our actual model bases upon
a graph representation for regular expressions. This model is more redundant
than our last one, but it is capable for handling database schema normalization.

Contributions. The main contribution of this paper is the concept of extended
relations over the graph representation for regular expressions. We rephrase reg-
ular functional dependencies and also define regular join dependencies that con-
strain extended relations. We determine the schema of an extended relation as
(IN,...,OUT) traversals on the graph representation for a given regular ex-
pression. We apply the classical Chase algorithm to a counterexample built on
this graph. In this way, we show that the logical implication is decidable for this
class of functional dependencies.

2 Related Work

As far as we know, each XML functional dependency (XFD) concept involves
regular expressions or regular languages. Arenas and Libkin [2] prove different
complexities for logical implication concerning their tree tuples XFD model ac-
cording to the involved regular expressions. They prove quadratic time complex-
ity in case of simple regular expressions. Our new model represents all possible
instances of the regular expression at the same time and so it differs from theirs.

The notion data words has been introduced by Bouyer et al. in [4], based upon
finite automata of Kaminski et al. [8]. Data words are pairs of a letter from a
finite alphabet and a data from an infinite domain. Our concept differs substan-
tially from data words: we assign data values (selected from infinite domains)
to letters (from a finite alphabet) after generating a sentence by a regular ex-
pression. For data words letters and data values are processed together. Libkin
and Vrgo[9] define regular expression for data words. They analyze the complex-
ity of the main decision problems (nonemptiness, membership) for these regular

Towards a Normal Form for Extended Relations 13

expressions. Their model is similar to ours but our point of view is differs from
theirs: we view finite subsets of the set of data words and specify dependencies
over them.

3 Extended Relations

Let us start with the definition of extended relation given by a regular language.

Definition 1 (Extended Relation for Regular Types). Let L be a regular
language over the set of attribute names U. Let w = w1y ... w, € L a sentence,
then we say that w is a regular tuple type over U. Let domy;u € U be sets of
data values, then {(wy : a1,...,wy : ay) |a; € domy, } is the set of possible tuples
of type w. A finite subset of these tuples is an instance of the reqular relation.
We say that the set of these tuple types for all w € L compose the schema of a
regular relation based on L.

We have introduced the notion of the extended relation [13] for a regular
language associated with its dual language. The sentences of the dual language
are either the concatenated nonterminals used by generating a regular sentence
or the states of the accepting automaton, visited during the acception process.
Equivalently, the dual language can be given by a vertex labeled graph with a
unique IN and OUT node as start and end nodes. The vertex labels along each
traversal on this graph (from IN to OUT) represent a schema for the extended
relation (we get the sentences of the regular language by valuation). As said
in Sect. 1 the dual language model cannot handle the join operation among
instances because two joined schemas would not necessarily realize a new, valid
schema.

We need an improved model, based upon a suitable graph representation for
regular expressions. In our new model we use regular expressions over attribute
names to directly define regular relational schemes (e.g. DTD element descrip-
tions), and create the corresponding tuples by valuation (picking data values
from suitable domains) similarly to relational databases. In the next Section
we present a finite graph representation for the sentences denoted by a regu-
lar expression. This graph representation should support node-selection for the
projection operation.

4 Graph Representation for Regular Expressions

Definition 2 (Regular Expression Syntax). Let X' be a finite set of symbols
(alphabet), then a regular expression RE over X (denoted by REx, or simply
RE, if ¥ is understood from the context) is recursively defined as follows:

RE ::=0|1|a|RE + RE|RE o RE|RE*|RE"

where a € X

14 A. Benczur and G.I. Szabd

For a given regular expression RE we denote the set of alphabet symbols
appearing in RE by [RE].

There are efficient constructions of finite state automaton from a regular ex-
pression [16,7,5]. The classical algorithm of Berry and Sethi [3] constructs effi-
ciently a DFA from a regular expression if all symbols are distinct.

Berry-Sethi’s algorithm constructs a deterministic automaton with at most a
quadratic number of transitions [11] and in quadratic computing time (inclusive
of marking and unmarking symbols) [6] with respect to the size of the input
regular expression (the number of its symbols).

Ezample 1. Let G ({S, A, B}, {a,b}, S, P) be a regular grammar, where
P={5=aS5S=055=aA A= bB,B=a}.

The regular expression RE = (a + b)* a b a generates the regular language
L(G) too. Fig. 1 shows the graph of the non-deterministic FSA constructed by
the Berry-Sethi algorithm (BSA). The nodes represent the states of the au-
tomaton: they are distinct. Each node complies with a symbol in the regular
expression (small letters), they are not distinct after unmarking. We assign the
ingoing edge symbol to each node (capital letter) as vertex label. The language,
generated by the vertex labels of the visited nodes, is equivalent with the dual
language iff the symbols in the regular expression are distinct.

RE = (a + b)*aba

Fig. 1. Graph of the automaton for Example 1 constructed by BSA

As shown in Example 1, for a given regular expression RE we can construct a
vertex labeled connected digraph G(RE), with a unique source (IN) and a unique
sink (OUT) which represents RE so that that regular language denoted by RE
consists of the (IN,...,OUT) traversals on G(RE). This graph is not too large
(the number of its vertices equals to the number of symbols in RE), but it is not
optimal for our aims because the different (IN, ..., OUT) traversals have mostly
common subpaths. We need another construction for the graph representation
of regular expressions with disjoint (IN,...,OUT) traversals (regardless of IN
and OUT). We will construct a graph from vertices picked from a suitably large
symbol set I'. We assume that {IN,OUT} C I' and by picking a node v € I
we remove it from I'. The vertices IN and OUT get the labels IN and OUT,
respectively. We denote the empty traversal (IN,OUT) by p<.

Towards a Normal Form for Extended Relations 15

Algorithm 1. Construction of the Graph-Representation for a regular expres-
sion.

Input: regular expression RE (built from the alphabet X),
Output: vertex labeled digraph G(RE)=(V,E) representing RE.

1. if RE=0or RE=1, then V ={IN,OUT} and E = {(IN,OUT)}.

2. if RE=A,A € X, then we pick a node v € I', set V = {IN,OUT,v}, and
E ={(IN,v),(v,0UT)}. We label the node v with A.

3. if REy and REs are regular expressions, then G (RE1 + RE>) will be formed
by uniting the IN and OUT nodes of G (RE1) and G (RE>), respectively.

4. if REy and RE> are reqular expressions, then in order to build the graph
G (RE1 o RE») we first rename the OUT node of G (RE1) and the IN node
of G(REs) to JOIN (Fig. 2), then unite them and connect all "left” paths
with all ”right” paths while eliminating the JOIN node (Fig. 3).

5. if RE 1is a regular expression, then G (RE?) =G (RE)U(IN,O0UT).

6. if RE is a regular expression, then in order to build the graph G (RE*) we
first pick a node v € I, then we create the graph G* (RE) = G (RE) U {v}
(It means that V* = V U {v}, the node v gets the special label STAR).
Let us denote {ai,...,an} the nodes with ingoing edge from IN and
{z1,...,2n} the nodes with outgoing edge to OUT, respectively. Let
us create the graph Gy (RE,STAR) = U, (v,a;) and the graph
Gour (RE,STAR) = U, (#i,v), respectively. Then G (RE*) = G* (RE) U
Gin (RE,STAR)U Gour (RE,STAR)U (IN,STAR)U (STAR,OUT).

Theorem 1. The (IN,...,OUT) traversals on the graph representation G (RE)
for the regular expression RE constructed by Alg. 1 generate exactly the regular
language L (RE).

Proof. Algorithm 1 constructs the representation graph so that each elementary
step of building a regular expression (Def. 2) will be covered. With induction by
the length of the expression and using the regular expression semantics we yield
the result.

Ezample 2. The graph representation for the regular expression RE = (a + b)"
a b a constructed by the Alg. 1 may be seen on Fig. 4. This graph represents
the same regular language as its counterpart on Fig. 1 but it consists of disjoint
traversals.

16 A. Benczur and G.I. Szabd

RE=(A+B+C).(D+E)

QUT JOIN IN ouT

Fig. 2. First joining step of concatenation for two RE graphs

RE=(A+B+C)-(D+E)

Fig. 3. Eliminating the JOIN node from the concatenation of two RE graphs

Regular expressions present a compact form for specifying regular languages.
We look at the sentences of this regular language as types (schemas) of complex
value tuples. We can represent these types as IN-OUT traversals on a graph
constructed from the symbols in the regular expression. We say that this graph
is the schemagraph for the regular expression.

Definition 3 (Schemagraph for Regular Expression). Let RE be a regular
expression built from the alphabet X. We say that the graph G is the schemagraph
for the regular expression RE (denoted by G (RE)) iff

is a directed, (not necessarily strongly) connected graph,

has a unique source (IN) and a unique sink (OUT),

fulfills OutDegree (IN) = InDegree (OUT),

for any two Py = (IN,Aq,...,A,,OUT), Pg = (IN,By,...,B,,,OUT) is
true that {IN,OUT} C P4 N Pg, and if v € P4 N Pp, then label (v) €
{IN,OUT, ST AR},

oo~

Towards a Normal Form for Extended Relations 17

RE = (A + B)*ABA

Fig. 4. Vertex labeled RE representation graph for Example 2 constructed by Alg. 1

5. is vertez-labeled with a single symbol for each node,

6. each cycle of the graph involves a vertex with label ST AR, this is the start

and end node of the cycle,

each vertex v with label ST AR fulfills OutDegree (v) = InDegree (v),

the set of vertez-labels is the set [RE]U{IN,OUT,STAR},

9. the labels of vertices visited by an (IN,...,OUT) walk on G (RE) set up a
string generated by RE (the labels IN,OUT, ST AR will be ignored). Each
symbol string denoted by RE can be obtained in this way.

=R

We say that an (IN,...,OUT) walk on G is a traversal on G. We denote the
set of traversals on G by T (G). The item (9) of Def. 3 states that for a regular
expression RE L (RE) =T (G (RE)).

Lemma 1. If RE is a reqular expression, then the graph G (RE) generated by
Alg. 1 is a schemagraph for RE.

Proof. Starting with an empty regular expression a structural recursion by Alg.
1 gives the result. For instance, an empty RF fulfills (3) of Def. 3 and each step
of Alg. 1 preserves this attribute of the graph.

Definition 4 (Schema Foundation Graph). We say that a graph G comply-
ing with features 1-7 from Def. 3 is a schema foundation graph. We denote the
set of vertex-labels for G by Lab (G).

Lemma 2. If G is a schema foundation graph, then there exists a regular ex-
pression RE so that G (RE) = G and L (RE) =T (G) and [RE] = Lab (G).

5 Relational Algebra for Regular XRelation

Definition 5 (Regular XRelation for Regular Expressions). Let RE be
a regqular expression and let G be a schemagraph for RE, moreover, let w =
(IN,v1,...,v,,0UT) € T (G) be a traversal on G. Let domy;U € [RE] be sets
of data values, then {(v1 : a1,...,v, : an) |a; € dom,,} is a tuple of type w. We
say that a finite set of these tuples is a table instance of type w, and w is the type
(schema) of the table instance. A regular relational instance, e.g. I, is a finite

18 A. Benczur and G.I. Szabd

set of table instances. The schema of a relational instance is the set of types of
its table instances. We say that the set of these tuple types for all w € T (G)
compose the schema of a reqular XRelation based on RE. We denote this regular
XRelation by XR(RE), so I is an instance of XR (RE).

It is well known that the class of regular languages is closed under union, inter-
section and complement. It follows that regular XRelations possess these closure
properties. That is, the set operations of relational databases are applicable for
XRelations.

Let RE; and RFEs be regular expressions and let I; and I be regular relational
instances for the regular XRelations X R (RE;) and X R (RE>), respectively.

Union. The union of the schemagraphs G (RE;) U G (RE2) is a schemagraph
too (= G(RE; + REs)). That is, the union X R (RE,) U XR (RE3) of regular
XRelations is again an XRelation and its regular instances have the form I UIs.

Intersection. The intersection X R (RE;) N X R (RE>) of regular XRelations is
again an XRelation and its regular instances have the form I; N I5.

Difference. The set difference of two regular instances I; and I for the regular
XRelation X R (RE}) is also a regular instance for it.

5.1 Projection

Definition 6 (Node-selection). Let RE be a regular expression and let
G (V,E) be a schemagraph for RE. We say that a subset X C V is a node-
selection over G iff IN € X and OUT € X. If X is a node-selection, then we
denote by X the complementer node-selection for X, defined by X =V \ X U
{IN,OUT}.

Remark 1. Definition 6 presents a rigid method for fixing the scope of the pro-
jecting window. If the selected nodes belong to a cycle, then the selection chooses
all occurrences from a given transversal. A more flexible selection method can
be realized on an extended graph. We may add a a given number of walks
(as new nodes and edges) for any (or all) cycles and select nodes on the new
graph. E.g., if the RE involves the (sub)expression (ABC)", the original graph
contains the nodes a,b,c (labeled with A, B,C, respectively), and the edges
(a,b),(b,c),(c,a). The node-selection of {a,b} selects the labels ABAB from
the traversal which repeats twice the cycle. The extended graph (with two cy-
cles) would give the new nodes and edges

(ah bl)) (bh 61)) (017a2)
(az,b2), (b2, c2)

The labels on vertices are ABCABC. We can select, for instance, the nodes
a1, b1, az which brings ABA. No selection on the original graph can produce this
result.

Towards a Normal Form for Extended Relations 19

Definition 7 (Projection). Let G (V,E) be a schemagraph and let X be a
node-selection over G. Let E [X] = {(a1,an) a1, an € X;aa,...,an-1 ¢ X},
(a1,a2,...,an-1,a,) € P(G), where P(G) is the set of paths for G.

We say that G[X] = (V\ X U{IN,OUT}, E[X]) is the projection graph of
G onto X.

Lemma 3. If G is a schemagraph for the reqular expression RE and X a node-
selection over G, then G [X] is a schema foundation graph.

Proof. G[X] is the result of deleting the complement of the subgraph X from
the schemagraph G and re-connecting during the deletion disconnected vertices
of X. Clearly, the features 1-7 from Def. 3 of the schemagraph will be preserved.
For instance, a traversal (an (IN,...,OUT) walk) on G will be either deleted (it
contains no vertex from X) or preserved (perhaps reconnected), so the attribute
(3) of Def. 3 will be preserved.

Let RE[X] be a regular expression complying with the schema foundation
graph G [X], then we say that RE [X] is the projection of RE onto X . (Lab (X) C
[RE], but different vertices in X can have the same label).

Definition 8 (Projection of Schema). Let G be a schemagraph of the regular
expression RE and let X be a node-selection over G.

Let w = (vo,v1,. .., UnyUnt1) ;00 = IN,v,41 = OUT be a traversal on G (w
is a type for RE). We denote by w[X] the projection of w to X, defined as
follows: w[X] = (V0,Viyy- -y VipyUny1);0r € X forr € {iy,...,ix} and v, ¢ X
otherwise.

w [X] is either a traversal on G or its re-connected edges belong to G [X], so:

Lemma 4. If G is a schemagraph for the reqular expression RE and X a node-
selection over G and w is schema for RE, then w[X] is a traversal on G [X].

Definition 9 (Projection of Instance). Let RE be a regular expression and
let XR be a regular XRelation based on RE and let I be a table instance for
X R with type (I) = w. The projection of I to X, denoted by wx (I), is the set
of tuples {t[X]|t € I;type (t[X]) = w[X]} (that is, t[X] is the subsequence of
constants from t according to the subsequence w [X] in w).

Definition 10 (Functional Dependency). Let G be a schemagraph of the
reqular expression RE and let X,Y be node-selections over G. The reqular rela-
tional instance I satisfies the functional dependency (XRFD) X — Y if for
any to tuples ti,ta € I with type (t1) = wi and type (t2) = wa, whenever
wy [X] = we [X] and t1 [X] = t2 [X], then w1 [Y] = w2 [Y] and t1 [Y] = t2 [Y].

Ezample 3. Let R = (Ry,..., R,) be a relational database schema. The regular
expression RE = (Ry|Rz|...|Ry) (if R; = (a,b,c,d,e) then for the regular ex-
pression we use the concatenation abede of the attributes), then the schemagraph
for RE consists of parallel, linear (IN, ..., OUT) traversals. Each relational func-
tional dependency over R can be defined on the schemagraph using Def. 10, with
the restriction that both participant node-selections will be located on the same
(IN,...,OUT) path.

20 A. Benczur and G.I. Szabd

5.2 Natural Join

Definition 11 (Disjunctive Natural Join). Let Gy, G2 be schemagraphs for
the regular expressions REq, RFEo and let X1, Xo be node-selections over G1,Ga,
respectively, so that G1[X1] = G2 [X2] = G. Let wy € T (G1) and we € T (G2)
so that wy [X1] = we[X2] = w. Let (A,B) € G, then (A,z,B) € Gy and
(A,y, B) € Go for some paths x and y, respectively, so that AxB and AyB are
subsequences of w1 and ws, respectively. Let Iy and Iy be table instances for the
reqular XRelations X R(RE) and X R(RE>), respectively, so that type (I) =
wy and type (I3) = wa, then we say that wy and wy (and also Iy and Iz) can
be joined. We define I = I, w Iy as a (disjunctive joined) regular relational
instance, for which if t € I, then there exist t1 € I1,ta € Iz so that t1[X;] =
to [Xo], then tu] = t1 [u]|lu € (IN,...,A) and t[u] =tz [u]|lu € (B,...,0UT).
Moreover, let t [A x B] = {t[ApB] |ApB € P (G1) U P (G2)}, then t[A x B] =
{t1 [AxB] U ts [AyB] |t1 [A] = t2 [A],t1 [B] = t2 [B]}.

Remark 2. If wy [X4] = wy [X2] = g, then the disjunctive join of the two table
instances I and Iy will be I = I} wx Iy = I} U Iz, moreover, schema (I) =
{w1,ws}. The same is true for the special case [X1] = [X2] = 0 as well.

Remark 3. We have defined the join operator for two table instances joined on
two single attributes. We can extend this definition to joining two table instances
on any number (or a single one) of attributes. We can also extend this definition
to joining any (finite) number of table instances in a natural way.

Example 4. The disjunctive natural join of table instances means in fact union
for the background regular expressions. Let RE; = Ao X oY o B and RE; =
AoWoZoB and let X; = Xo = {A, B}, then the regular expression complying
with the on A, B joined instances will be Ao ((X oY) + (W o Z)) o B.

Example 5. The XML documents on Fig. 5 conform to the DTD element decla-
rations
Coursesl:

<IELEMENT course (Cid,Cname, (Instid,Instn)+)>

and
Courses2:

<IELEMENT course (Cid, (Stid,Stn)+)>

respectively. The disjunctive join of the two instances results in

JoinedCourses:

<!ELEMENT course (Cid, ((Cname, (Instid,Instn)+))|((Stid,Stn)+))>

Towards a Normal Form for Extended Relations 21

Coursesl

30 "saL" 120 "Keen"

10 1111 "Mary" 1221 “Jake" 30 1112 "John" 1122 "Abe"

Fig. 5. Example XML documents for natural join

Definition 12 (Concatenative Natural Join). The concatenative natural join
will be defined similarly to its disjunctive counterpart, using concatenation instead

of disjunction. That is, we define the reqular relational instance I = I; X Iy
as two (concatenative) joined table instances. If t € I, then there exist t; €
Lijta € Iz so that t1[X1] = t2[X2] and t[AzyB] = t1 X to[AzyB] =

{t1[Az] o ta [yB]|t1 [A] = t2 [A],t1 [B] = t2 [B]}. For the special case see Rem. 2.

Definition 13 (Natural Join of Regular Instances). The natural (disjunc-
tive or concatenative) join for two regular relational instances will be defined
as the set of joined member table instances. That is, if Iy and I are regular
relational instances, then Iy) Iy = {J|J = J1) Jo; J1 € I, Jo € I1}.

Remark 4. We have defined the join operator for two regular relational instances.
We can extend this definition to joining any (finite) number of regular relational
instances in a natural way.

Remark 5. If wy [X1] = we [X3] = <, then the concatenative join of the two
table instances I; and Iy will be I = I1 x Iy = I; o Is, moreover, schema (I) =
(wy 0 ws).

Example 6. The concatenative natural join of table instances means in fact con-
catenation for the background regular expressions. Let RE; = Ao XoY o B and
RE; = AoW o Zo B and let X; = Xy = {A, B}, then the regular expression
complying with the on A, B joined instances will be Ao ((X oY) o (W o Z))oB.

Example 7. The concatenative join of the two instances realized in the XML
documents on Fig. 5 will be

JoinedCourses:

<IELEMENT course (Cid, ((Cname, (Instid,Instn)+)), ((Stid,Stn)+))>

22 A. Benczur and G.I. Szabd

5.3 Join Dependencies, Implication Problems for Xrelations

Definition 14 (Join Dependency). Let G (V,E) be a schemagraph of the
reqular expression RE and let X,Y be node-selections over G so that V = XUY U
{IN,OUT}. Let I be an instance for the XRelation over RE and wx (I),my (I)
the projections of I to X and Y, respectively. We say that an instance I for
the XRelation over RE satisfies the X [X,Y] join dependency iff I = wx (I) X
Ty (I)

Using the Definitions of functional and join dependency we can define nor-
mal form for XRelation schemas (BCNF, 4NF etc.) and describe the lossless
decomposition for regular XRelations.

Definition 15 (Lossless Decomposition). Let G (V, E) be a schemagraph of
the regular expression RE and let X1,...,X, node-selections with Uj_; X; U
{IN,OUT} = V. The set X1,...,X, is a lossless decomposition of G if any
reqular relational instance I for the XRelation over RE satisfies the join depen-
dency I =7x, (I) x wx, (I) x ... x7x, (I).

The logical implication of functional and join dependencies for XRelations
is decidable with a special form of the Chase algorithm. We present here an
algorithm to decide logical implication of functional dependencies for XRelations.

Definition 16. Let G be a schemagraph of the regular expression RE. Let X be
a set of XRFDs and let X —'Y be an XRFD over G, then X implies X — Y
(denoted by ¥ = X — Y) if for each (finite) reqular relational instance I that
satisfies X 1= X =Y will also be fulfilled.

Algorithm 2. Algorithm for checking implication of XRFDs.

Input: schemagraph G = (V, E) for an XRelation, a set ¥ and 0 : X — Y
functional dependencies over G

Output: true, if ¥ |= o, false otherwise

1. Initialization
Create a counter example from two copies of G (G1,G2), the nodes of X colored
green on both copies, the nodes of Y colored red on one copy and yellow on the
other one.
2. FDSET := X%,
3. greene := X;
4. repeat until no more dependency is applicable:
ifW = Z e FDSET and W C greene, then
i. FDSET := FDSET — (W — Z);
1. greene := greeneU Z;
iii. for all v € Z set color(v) := green (on both copies)

5. if the number of yellow nodes and red nodes are both zero, then output is
true otherwise output is false.

Towards a Normal Form for Extended Relations 23

Proposition 1 (Functional Dependency Implication). Let G be a schema-
graph of the reqular expression RE. Let X be a set of XRFDs and let X —'Y be
an XRFD over G, then X = X — Y if and only if the Alg. 2 with input G, ¥
and X —'Y returns true.

6 Conclusion and Future Work

This paper presents regular expressions as compact database schemas and defines
functional and join dependencies over them, based on the graph representation
for the regular expressions. We defined extended relations on the graph represen-
tation for regular expressions and determined semantics for the dependencies on
instances of extended relations. The logical implication of this kind of functional
dependencies is decidable in quadratic time.

Our model offers the tools for a normal form of XRelation. We think that the
logical implication for the join dependency, defined here, is decidable similarly
to Alg. 2.

We would like to find the connection between our model and data words, that
is, to define a register automaton that accepts those data words that satisfy a
given functional dependency specified for the corresponding XRelation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transactions on
Database Systems 29(1), 195-232 (2004)

3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret-
ical Computer Science 48(3), 117-126 (1986)

4. Bouyer, P., Petit, A., Thrien, D.: An algebraic approach to data languages and
timed languages. Information and Computation 182(2), 137-162 (2003)

5. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4),
481-494 (1964)

6. Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoretical Computer Science 289(1), 137-163 (2002)

7. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16, 1-53 (1961)

8. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329-363 (1994)

9. Libkin, L., Vrgo¢, D.: Regular expressions for data words. In: Bjgrner, N., Voronkov,
A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 274-288. Springer, Heidelberg (2012)

10. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema lan-
guages using formal language theory. ACM Transactions on Internet Technol-
ogy 5(4), 660-704 (2005)

11. Nicaud, C., Pivoteau, C., Razet, B.: Average Analysis of Glushkov Automata under
a BST-Like Model. In: Proc. FSTTCS, pp. 388-399 (2010)

12. Sperberg-McQueen, C.M., Thompson, H.: XML Schema. Technical report, World
Wide Web Consortium (2005), http://www.w3.org/XML/Schema

http://www.w3.org/XML/Schema

24

13.

14.

15.

16.

A. Benczur and G.I. Szabd

Szabd, G. 1., Benczir, A.: Functional Dependencies on Extended Relations Defined
by Regular Languages. Annals of Mathematics and Artificial Intelligence (2013),
doi: 10.1007/s10472-013-9352-z

Vincent, M.W., Liu, J., Liu, C.: Strong functional dependencies and their appli-
cation to normal forms in XML. ACM Transactions on Database Systems 29(3),
445-462 (2004)

Wang, J., Topor, R.W.: Removing XML Data Redundancies Using Functional and
Equality-Generating Dependencies. In: Proc. ADC, pp. 65-74 (2005)

Watson, B.W.: A taxonomy of finite automata construction algorithms. Computing
Science Note 93/43, Eindhoven University of Technology, The Netherlands (1994)

Flexible Relational Data Model — A Common
Ground for Schema-Flexible Database Systems

Hannes Voigt and Wolfgang Lehner

Database Technology Group,
Technische Universitat Dresden,
01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de
http://wwwdb.inf.tu-dresden.de/

Abstract. An increasing number of application fields represent dynamic
and open discourses characterized by high mutability, variety, and plu-
ralism in data. Data in dynamic and open discourses typically exhibits
an irregular schema. Such data cannot be directly represented in the tra-
ditional relational data model. Mapping strategies allow representation
but increase development and maintenance costs. Likewise, NoSQL sys-
tems offer the required schema flexibility but introduce new costs by not
being directly compatible with relational systems that still dominate en-
terprise information systems. With the Flexible Relational Data Model
(FRDM) we propose a third way. It allows the direct representation of
data with irregular schemas. It combines tuple-oriented data representa-
tion with relation-oriented data processing. So that, FRDM is still rela-
tional, in contrast to other flexible data models currently in vogue. It can
directly represent relational data and builds on the powerful, well-known,
and proven set of relational operations for data retrieval and manipula-
tion. In addition to FRDM, we present the flexible constraint framework
FRDM-C. It explicitly allows restricting the flexibility of FRDM when
and where needed. All this makes FRDM backward compatible to tra-
ditional relational applications and simplifies the interoperability with
existing pure relational databases.

Keywords: data model, flexibility, relational, irregular data.

1 Introduction

Today’s databases are deployed in diverse and changing ecosystems. An increas-
ing number of application fields is characterized by high mutability, variety, and
pluralism in the data. High mutability is caused by the persistent acceleration
of society [16] and technological development [19]. Variety appears in database
discourses because information systems extending their scope and strive to cover
every aspect of the real world. Pluralism is inevitable with the onging cross link-
ing of information systems and the consolidation of data from different stack-
holders in a single database. Particular drivers of these developments are end

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 25-38, 2014.
© Springer International Publishing Switzerland 2014

{firstname.lastname}@tu-dresden.de
http://wwwdb.inf.tu-dresden.de/

26 H. Voigt and W. Lehner

user empowerment [20], agile software development methods [6], data integra-
tion [14,26], and multi-tenancy [17]. The once stable and closed discourses of
databases are rather dynamic and open today.

In such dynamic and open discourses, data often has a irregularly structured
schema. Data with an irregular schema exhibits four characteristic traits: (1)
multifaceted entities that cannot be clearly assigned to a single entity type,
(2) entities with varying sets of attributes regardless of their entity type, (3)
attributes occuring completely independent of particular entity types, and (4)
attribute-independent technical typing of values. All four traits cannot be di-
rectly represented in the relational data model. As a natural reaction, many
developers perceive traditional relational data management technologies as cum-
bersome and dated [18]. Various mapping strategies [15,1,4] allow a presentation
but they imply additional costs of implementation and maintenance. Further, the
inherent logical schema of the data is not complete visible on the resulting rela-
tional data. This schema incompleteness particularly is a problem in the likely
case that multiple applications access a database through different channels.

In recent years, the NoSQL movement has introduced a number of new data
models, query languages, and system architectures that exhibit more flexibility
regarding the schema. Many NoSQL systems allow the direct representation of
data with irregular schema as well as the gradual evolution of the schema. Hence,
NoSQL systems appear to be a very appealing choice for applications with a dy-
namic and open discourse. However, the introduction of new data models, query
languages, and system architectures is not for free. Particularly in enterprise en-
vironments where 90 % of the databases are relational [9] new data models are
often a bad fit. They imply additional costs for mapping and transforming data
between different data models and require new database management and appli-
cation development skills. These costs multiply if applications store the different
parts of their data in the respectively ideal data model across different database
management systems — a scenario often referred to as polyglot persistency in the
NoSQL context.

With the Flexible Relational Data Model (FRDM) we propose a third way.
It allows the direct representation of data with irregular schemas from dynamic
and open discourses. This includes multifaceted entities, variable attributes sets,
independent attributes, as well as independent technical types. At the same
time FRDM remains 100 % backward compatible to the traditional relational
data model. Purely relational data with regular schemas can also be represented
and relationally processed in FRDM directly. FRDM achieves this centering the
data representation around the individual tuples while maintaining the relation
as the primary means of data processing.

Additionally, we present the flexible constraint framework FRDM-C that pro-
vides explicit restrictions to the flexibility of FRDM. Scope and range of the
restriction can be tailored to any requirements ranging from the constraint-free,
descriptive nature of pure FRDM to the strictly prescriptive nature of the tradi-
tional relational data model. FRDM-C helps to introduce rigidity exactly when
and at which parts of data needed. FRDM-C constraints can vary in their effect

Flexible Relational Data Model 27

from simply informing to strictly prohibiting, so that they are not only a tool to
maintain data quality but also help achieving data quality.

The remainder of this paper is structured as follows. Section 2 presents the
FRDM data model, in particular how it represents data and how data is pro-
cessed in FRDM. The constraint framework FRDM-C is discussed in Section 3.
With both introduced, Section 4 shows how pure relational data can be repre-
sented directly in FRDM to demonstrate the backward compatibility of FRDM.
This is followed by considerations regarding the implementation of FRDM within
the architecture of relational database management systems in Section 5. In
Section 6, we compare FRDM with other data models regarding the provided
flexibility and backward compatibility. Finally, Section 7 concludes the paper.

2 FRDM

FRDM is a relational data model for structured data. It is free of the rela-
tional inflexibilities but remains directly compatible to the relational model. The
most prominent feature of FRDM is that it separates the functionality of data
representation, data processing, and constraints. Data representation and data
processing are realized in separate, dedicated concepts. We detail the data rep-
resentation of FRDM in Section 2.1 and discuss data processing in Section 2.2.
Schema constraints are realized as explicit constraints outside of the core data
model in the constraint framework FRDM-C, which is presented in Section 3.

2.1 Data Representation

The data representation of FRDM builds on four concepts. The central concept
is the tuple:

Tuple. A tuple is the central concept of the flexible relational data model and
represents an entity. It consists of values, each belonging to an attribute and
is encoded according to a technical type.

The concepts entity domain, attribute, and technical type describe data repre-
sented in tuples and provide logical data handles:

Entity Domain. Entity domains are logical data handles allowing to distin-
guish logical groups of tuples within a database. Tuples belong to at least
one entity domain and may belong to multiple entity domains, so that do-
mains can intersect each other.

Attribute. Attributes are logical data handles allowing to distinguish values
within a tuple. Each tuple can instantiate each attribute only once.

Technical Type. Technical types determine the physical representation of
values. Value operations such as comparisons and arithmetic are defined
on the level of technical types.

28 H. Voigt and W. Lehner

t1 : Camera ty : Camera, GPS, Phone

name : str = Sony DSC-RX10 name : str = Samsung Galaxy S4

resolution : float = 20.0 resolution : int = 13

aperture : float = 2.8 screen : double = 4.3

weight : int = 813 weight : int = 133

ts : Camera, GPS ta s TV ts : GPS
name : str = Canon EOS 6D namle ;_Str ':tLG_ﬁ?:L’lAI?:gS name : str = Garmin Dakota 20
resolution : int = 20 resofution : S_r =y weight : int = 150
screen : int = 60

Fig. 1. Example entities representing electronic devices

Tuples: Description elements:

t1 = [Sony DSC-RX10, 20.0, 2.8, 813], A = {aperture, name, resolution, screen, weight }

to = [Samsung Galaxy S4,13,4.3,133],
D = { t3 = [Canon EOS 6D, 20] , T = {float, int, str}

t4 = [LG 60LA7408, Full HD, 60] ,

ts = [Garmin Dakota 20, 150] E = {Camera, GPS, Player, Phone, TV }
Schema function: Membership function:

t1 — [name, resolution, aperture, weight] , t1 — {Camera},

to — [name, resolution, screen, weight] , to — {Camera, GPS, Phone} ,
fs = § ts = [name, resolution], fm =< ts = {Camera, GPS},

ts — [name, resolution, screen] , ta - {TV},

ts — [name, weight] ts — {GPS}

Typing function:

(t1, name) — str, (t1, resolution) — float, (t1, aperture) — float, (¢t1, weight) — int,

(t2, name) — str, (t2, resolution) — int, (t2, screen) — double, (t2, weight) — int,
ft = < (ts, name) — str, (t3, resolution) — int,

(ta, name) — str, (ta, resolution) — str, (ta, screen) — int,

(ts, name) — str, (ts, weight) — int

Fig. 2. Example entities in the flexible relational data model

Formally, a flexible relational database is a septuple (D, A, T, E, fs, ft, fm). The
payload data D is a set of tuples. A tuple is an ordered set of valuest = [v1, ..., V).
Let A be the set of all attributes available in the database. Then the tuple schema
function fs : D — P(A) \ 0 denotes the schema of each tuple, i.e., the set of at-
tributes a tuple instantiates. fs(t) = [A1,..., An] if t instantiates the attributes
Aq,...,Apm sothatt € A; X -+ x Ap,. For convenience, we denote with t[A] = v
that tuple ¢ instantiates attribute A with value v. T is the set of all available tech-
nical types T'. The typing function f; : D x A — T shows the encoding of val-
ues, with f;(t, A) = T if the value t[A] is encoded according to the technical type
T. Finally, E is the set of all available entity domains E, while the membership
function f,, : D — P(E) \ 0 denotes which tuples belong to these domains.
fm(t) ={En,..., Ex} if t belongs to the entity domains Ey, ..., Ek.

As an example, Figure 1 shows six entities in a UML object diagram like nota-
tion. The entities represent electronic devices as they could appear in a product
catalog. Note that this small example exploits all the flexibilities of FRDM.

Flexible Relational Data Model 29

Relation GPS
Relation Camera N GPS

name resolution screen weight

name resolution screen weight
Samsung Galaxy S4 13 4.3 133
Canon EOS 6D 20 E: A Samsung Galaxy S4 13 4.3 133
Garmin Dakota 20 7 4 150 Canon EOS 6D 20 A
Fig. 3. Relation by entity domain Fig. 4. Relation from relational operator

All six entities are self-descriptive and have their individual set of attribute. The
order of the attributes within an entity differs, too. Entities t; and ¢3 belong to
multiple entity domains. Attributes, such as name, appear independently from
entity domains. The technical typing of values, for instance of the attribute
resolution, varies independently from the attribute. In the flexible relational
data model these six entities can be represented directly as shown in Figure 2.

2.2 Data Processing

For data processing, FRDM builds on the well-known concept of a relation. It
allows processing tuples in a relational manner:

Relation. Relations serve as central processing containers for tuples. FRDM
queries operate on relations; query operations have relations as input and
produce relations as output. The tuples in a relation determine the schema
of the relation. Each attribute instantiated by at least a single tuple in the
relation is part of the relation’s schema.

Let ¢ be a tuple in relation R, then R has the schema Sg = J,c p fs(t) so that
Sr C A. A relation R with schema Sgi does not have to instantiate each tuple
in every attribute, rather it is R C UsieP(SR)\(Z) <><Aesi A). In other words,
tuples may only instantiate a subset of a relation’s schema, except the empty
set. While t[A] = v denotes that tuple ¢ instantiates attribute A with value v,
t[A] = # indicates that tuple ¢ does not instantiate attribute A.

Mass operations address tuples by means of entity domains. Hence, each entity
domain denotes a relation containing all tuples that belong to this domain.
Specifically, an entity domain F denotes a relation R so that E € f,,(¢) holds for
all t € R. In the following, we refer to a relation representing tuples of domain F
simply as F where unambiguously possible. Figure 3 shows the relation denoted
by the entity domain GPS in the electronic device example.

The well-known relational operators are applicable directly to FRDM
relations. However, the descriptive nature of a FRDM relation requires two
minor modifications to their semantics. First, the logic of selection predicates
and projection expressions has to take into account that attributes may not be
instantiated by a tuple. An appropriate evaluation function for such predicates
and expressions is described in [28]. In a nutshell, tuples that do not instantiate
an attribute used in a selection predicate are not applicable to the predicate and

30 H. Voigt and W. Lehner

do not qualify. Tuples that do not instantiate an attribute used in a projection
expression do not instantiate the attribute newly defined by the expression.
Second, all operations have a strictly tuple-oriented semantics, i.e., the schema
of the relation resulting from an operation is solely determined by the qualifying
tuples. In consequence, the schema resulting from a selection can differ from
the schema of the input relation. More specifically, the resulting schema of a
selection is equal to or a subset of the input schema depending on which tuples
qualify, so that S;,4) € Sa. Likewise, the schemas of the operand relations
do not matter for set operations. Tuples are equal if they instantiate the same
attributes with equal values. For a union, the resulting schema is the union of
the schemas of the operands, so that Saup = Sa U Sp. For set difference, the
resulting schema is equal to or a subset of the left operand’s schema, again,
depending on which tuples qualify, so that Sq\p C Sa. Derived operators, such
as join or intersection, are affected similarly. As an example, Figure 4 shows the
relation resulting from the intersection of the relation GPS (cf. Figure 3) and
the relation denoted by entity domain Camera.

3 FRDM-C

FRDM-C is a flexible constraint framework meant to accompany FRDM. The
flexibility of FRDM originates from its lack of implicit constraints. Nevertheless,
constraints are a powerful feature if their effect is desired by the user. For the
user, constraints are the primary means to obtain and maintain data quality.
Each constraint is a proposition about data in the database. Data either complies
to or violates this proposition, i.e., every constraint categorizes data into two
disjoint subsets. It is up to the user how to utilize this categorization. At least,
constraints inform about which data is compliant and which is violating. At
most, constraints prohibit data modifications that would result in violating data.
Constraints present themselves as additional schema objects, attached to the
schema elements of the data model. The user can add and remove constraints
any time.

Formally, constraints take the general form of a triple (g, ¢, 0). ¢ is the qualifier;
¢ is the condition compliant data has to fulfill; o is the effect (or the outcome)
the constraint will have. The qualifier determines to which tuples the constraint
applies. It is either an entity domain F, € E, a attribute A, € A, or a pair of both
(Eq,Aq). Correspondingly, a constraint applies to all tuples ¢ with E, € fp,(¢),
with Ay € fs(t), or with (Ey, Ag) € fin(t) X fs(t), respectively. We denote the set
of tuples a constraint C applies to as D¢. Conditions are either tuple conditions
or key conditions, depending on whether they affect individual tuples or groups
of tuples. The effect determines the result of the operations that lead to violating
data and what happens to the violating data itself. In the following, we will detail
conditions and effects.

Flexible Relational Data Model 31

3.1 Conditions

The first group of conditions is tuple conditions. Tuple conditions restrict data
on the level of individual tuples, e.g., by mandating to which entity domains a
tuple can belong. Formally, a tuple condition is a function ¢ : D — {T, L}. Then,
DL = {t|t € D¢ A c(t)} are the complying tuples and D5 = {t | t € Do A —c(t)}
are the violating tuples. Tuple conditions are:

Entity Domain Condition. An entity domain condition requires tuples ¢ €
D¢ to belong to an entity domain E. so that E. € f,,(t). We denote a
specified entity domain condition as entity-domain(E.).

Attribute Condition. A attribute condition requires tuples t € D¢ to instan-
tiate a attribute A, so that A, € f,(t). We denote a specified attribute
condition as value-domain(A.).

Technical Type Condition. A technical type condition limits values of tuples
t € D¢ in attribute A. to a specified technical type T so that T. = fi(t, A.).
We denote a technical type condition as tech-type(Ac, T:).

Value Condition. A value condition requires values of tuples ¢ € D¢ in at-
tribute A, to fulfill a specified predicate p so that p(t[A.]) holds. We denote
a value condition as value(A.,p).

The second group of conditions is key conditions. Key conditions restrict data
on the level of tuple groups. Formally, a key condition is a function ¢ : P(D) —
{T,L}. Key conditions are:

Unique Key Condition. A unique key condition requires tuples to instantiate
a set of attributes Ax C A uniquely so that ¢;[Ax]| # t;[Ak] holds for all
ti,t; € Do with t; # t;. As a result, all complying tuples are unambiguously
identifiable on A . We denote a unique key condition as unique-key(A).

Foreign Key Condition. A foreign key condition requires tuples to instan-
tiate attributes Ap C A with values referencing at least one tuple on at-
tributes Ag C A so that for every tp € D¢ there is one tp € Dg so that
tr[Ar] = tg[ARg]. Similarly to D¢, the set of referenceable tuples D C D is
identified by either an entity domain Er € E, a attribute Ar € A, or a pair of
both (Egr, Ar). We denote a foreign key condition as foreign-key(Ap, Agr, qr)
where qg is the qualifier of Dg.

If a group of tuples does not fulfill a key condition, not all tuples of the group
are considered to be violating. We have to distinguish two cases. In the first
case, a constraint already exists in the database and a modification of tuples
results in a violation. Here, only the modified tuples become violating tuples. In
the second case, the constraint is added to the database and the tuples already
existing in the database violate this constraint. Here the smallest subset of tuples
that violates the condition becomes the set of violating tuples. For a unique key
constraint, these are all duplicates. For a foreign key constraint, these are all
tuples with a dead reference.

All conditions can be negated in a constraint. Negation swaps the set of vio-
lating tuples with the set of complying tuples. For instance, the negated entity

32 H. Voigt and W. Lehner

domain condition —entity-domain(E.) prohibits the entity domain E. instead of
requiring it. For two constraints C' = (¢, ¢, 0) and C' = (g, ¢, 0), it holds that
]D)g, =]D)é and D&, = Dg. Which tuples violate a constraint is crucial for the
effect of the constraint.

3.2 Effects

We distinguish four types of effects constraints can have. They vary in the rigor
the constraint will exhibit.

Informing. Allows all operations. The complying tuples and the violating tu-
ples can be queried by using the constraint as a query predicate.

Warning. Allows all operations and issues a warning upon operations that lead
to violating tuples. The creation of the constraint results in a warning about
already existing violating tuples.

Hiding. Allows all operations and issues a warning upon operations that lead
to violating tuples and hides violating tuples from all other operations. The
creation of the constraint results in hiding already existing violating tuples
except for operations that explicitly request to see violating tuples by using
the constraint as predicate.

Prohibiting. Prohibits operations that lead to violating tuples and issues an
error. The creation of the constraint is prohibited in case of already existing
violating tuples.

4 Presentation of Purely Relational Data

The presented flexible relational data model is a superset of the traditional
relational model. Traditional relations can be represented directly in the flexible
model. A relational database is a septuple (D, A, T, R, f,, fo, fu), where R is the
set of relations, A is the set of domains, T is the set of technical types, D is the
set of tuples, f, is the schema function R — P(A), fp is the typing function
A — T, and f, is the membership function D — R. The corresponding flexible
relational database is (D, A, T, E, f, ft, fm) with

E = {name-of (R) | R € R},
fo={t = fo(fu(t)) | t € D},
fe={t,A) = fo(A) | A€ fo(fu(t)) Nt € D}, and
fm ={t = {name-of (fu(t))} | t € D}.
To emulate the model-inhernt constraints of the relational model the flexible

relational database has to be supplemented with explicit constraints. For each
relation R € R we add the following prohibitive (P=prohibiting) constraints:

— Entity domains have to mutually exclude each other, so that tuples can be
only part of one entity domain. This can be achieved with constraints of
the form (name-of (R), —entity-domain(E), P) where name-of (R) # E and
R eR.

Flexible Relational Data Model 33

— Entity domains prescribe the attributes of their correspond-
ing relation. This can be achieved with constraints of the form
(name-of (R), value-domain(A), P) for A € f,(R) and R € R.

— Entity domains forbid all other attributes. This can be achieved with con-
straints of the form (name-of (R), —value-domain(A’), P) for A’ ¢ f,(R) and
ReR.

— Attributes prescribe the technical type as defined by the correspond-
ing relation. This can be achieved with constraints of the form
(A, tech-type(A, fo(A)), P) for A € f,(R) and R € R.

5 Implementation Consideration

The FRDM data model is positioned as a flexible descendant of the relational
model. Therefore it is suitable to be implemented within the existing and estab-
lished relational database system architecture. In this section, we briefly discuss
how this can be done. The characteristics of FRDM require four main changes
to existing relational database system code.

First, plan operators and query processing have to be adapted to handling
descriptive relations. More specifically, plan operators must reflect the adapted
semantics of their logical counterparts. Logically, operators have to remove at-
tributes from the schema of a relation if no tuple instantiates them. With a
tuple-at-a-time processing model, this orphaned attribute elimination is a block-
ing operation, since the system can determine the schema only after all tuples are
processed. Implicit duplicate elimination is similarly impractical and thus it was
not implemented in relational database systems. Likewise a practical solution
for the elimination of orphaned attributes is that plan operators determine the
schema of the resulting operation as narrow as they safely can before the actual
tuple processing and accept possible orphaned attributes in the result relation.
Similar to the DISTINCT clause, SQL can be extended with a, say, TRIM clause
that allows the user to explicitly request orphaned attribute elimination.

Second, the physical storage of tuples has to be adapted to the representation
of entity domains. For tuple storage, the existing base table functionality can be
reused but needs to be extended to handle uninstantiated attributes. Solutions
for such an extension are manifold in literature, e.g., interpreted record [7,11],
vertical partitioning [1], and pivot tables [3,13]. Another reasonable approach is
a bitmap as it is used for instance by PostgreSQL [24] to mark NULL values
in records. Tuples can appear in multiple entity domains. However, for storage
economy and update efficiency, tuples should only appear in a single physical
table. Replication should be left to explicit replication techniques. Consequently,
the database system has to assign each tuple to a single physical table and
maintain its logical entity domain membership somehow. In principle, there
are two ways how this can be done. One is to encode the domain membership
in the physical table assignment. Here, the system would create a physical
table for each combination of entity domains occurring in a tuple and store
tuples in the corresponding table. The mapping is simple and easy to implement.

34 H. Voigt and W. Lehner

The downside is that it may lead to a large number of potentially small physical
tables (at worst 2F tables where E is the number of entity domains in a database)
and tuples need to be physically moved if their domain membership is changed.
The other way is storing the domain membership, e.g., with a bitmap, directly
in a tuple itself. This gives liberty regarding the assignment of tuples to physical
tables, up to using a single (universal) table for all tuples. With many tuples
having the same domain membership, it comes to the price of storage overhead
— negligible in most cases, though.

Third, the physical tuple layout has to be extended to also represent the
technical type of values directly in the tuple. This is necessary for independent
technical types. To reduce storage needs and decrease interpretation overhead,
the system can omit the technical type in the tuple where explicit constraints
prescribe a technical type. However, creating and dropping such explicit con-
straints becomes expensive as the physical representation of the affected tuples
has to be changed.

Fourth, independent attributes require a modification of the system catalog.
In most system catalogs, attributes have a reference to the base table they belong
to. This reference has to be removed to make attributes available to all tuples
regardless of their entity domain membership.

6 Related Work

Over decades, research and development have created numerous data models
and approaches to represent data. Obviously, we can concentrate only on the
most prominent ones used for representing structured data. Data models worth
considering can be grouped in four main categories: (1) relational models, (2)
software models, (3) document models, (4) tabular models, (5) graph data mod-
els, and (6) models from the data modeling theory. In the following, we will
briefly discuss these categories with regard to the flexibility to directly represent
data of dynamic and open discourses.

Relational models are extensions of the traditional relational model [28,7,2,5].
These extensions intend to free the relational model from one or more implicit
constraints. Hence, these extended relational models allow additional flexibility
compared to the pure relational model. Specifically, reasonable extensions exist
to support variable attribute sets. Besides, all these extensions preserve 100 %
compatibility with the relational model. To the best of our knowledge, there are
no extensions that add support for multifaceted entities, independent attributes,
and independent technical types to the relational model.

Software models originate from programming languages and other software de-
velopment technologies. Generally, software models consist of elements to struc-
ture operations and elements to structure data. The elements to structure data
resemble a data model. Two popular software models are object orientation and
role modeling [27]. Both build on the notion of an object and encompass a ded-
icated association element to represent relationships. Accordingly, they provide
no direct compatibility with the relational model, a fact also well known as

Flexible Relational Data Model 35

Table 1. Flexible Data Models vs. Requirements

T £. .5 22
2 2 7 g = g7
S o 8= S8
Sp 25 55 £F 588
T8 22 o 3.9 99 =
EE Ef 8% 88 £ 5
S fEEE 2T 25%
Category Data Model 28 -8 ER A58 w25
Relational Pure relational v
Extended NULL semantic [28] () v
Interpreted column [2] (vV)? v
Interpreted record [7] v 4
Polymorphic table [5])2 (V)2 4
FRDM v v/ v v
Programming Object orientation v)* ()"
Role modeling [27] v)? ()°
Document XML, well-formed [31] v v)
XML, valid [32] V)3 v
JSON [12])BEW)E()E v
OEM [22] WV)E V)E (vV)® v
Tabular Bigtable [10] v / v
Graph Property graph [25] v o/ ()f
NeodJ [21] v v/ v
Freebase [8] v W)
RDF [30] W)E W)E V)E v
RDF w/ RDF Schema [29] v v/ v
Theory Intensional classification [23] v v v (7)6

!only generalization 2 only specialization ®extensions % inheritance
®roles ®mot specified 7 no technical types ®no entity types

object-relational impedance mismatch. With inheritance and the notion of roles,
these two software models offer limited support for multifaceted entities. Partic-
ularly the role concept allows the dynamic leaving and joining of entity types.
Nevertheless, which combination of entity types an entity can join has to be
modeled upfront.

Document models [31,32,12,22] have been developed for representing docu-
ments, e.g., web pages. Typically, document models represent data as a hierarchy
of entities, where entities nest other entities. Nesting is the only or the primary
means of entity referencing. The identity of an entity solely or primarily depends
on the position of an entity within the hierarchy. In consequence, document mod-
els offer direct relational compatibility. Document models offer more flexibility
than most relational systems or software models. However, most of their flexibility
originates from completely omitting entity types. Where document models have
schema information, such as DTD or XML Schema, they are similarly strict.

36 H. Voigt and W. Lehner

A tabular data model also organizes data in tables like the relational data
model but in a significantly different way. The data model of Google’s Bigtable
system [10] defined the category of tabular data models. Because of its success, it
has also remained the only model of its kind that draws considerable attention.
Bigtable organizes data in large, distributed, sparse tables. The columns of such
a table are grouped in column families. Rows can stretch across multiple column
families and are free to instantiate any column in a column family, so that the
Bigtable data model supports multifaceted entities as well as variable attribute
sets. The Bigtable model also supports independent technical types. However,
the row identity is restricted to a user-given row key and the processing is limited
to put and get operations on row level. Hence, the Bigtable model cannot be
considered completely relational compatible.

Graph data models [25,21,8,30,29] build on the mathematical definition of
a graph. They represent data as vertices and edges, where vertices represent
entities and edges represent relationships, i.e., references to other entities. In
practice, graph models differ in how data is represented in a graph. Beside ver-
tices and edges, graphs can have labels and attribute—value pairs attached to
the vertices and even to the edges. [25] distinguishes nine types of graphs. Most
prominent are the property graph and the RDF graph. All graph models empha-
size the representation of data rather than modeling of schema. Graph models
have a descriptive nature and allow in most cases the direct representation of
data from dynamic and open discourses. In all graph models, however, entities
have an object identity and edges are an explicit representation of references.
Consequently, graph models are not directly compatible to relational data.

Finally in the theory of data modeling, intensional classification was pro-
posed to allow for more schema flexibility [23]. Here, entity domains are defined
intensionally, i.e., by a set of attributes. All entities that instantiate the set of
attributes defining an entity domain belong to that domain. Accordingly, the in-
tensional classification builds on independent attributes and allows multi-faceted
entities as well as variable attribute sets. Technical types are not considered in
the approach. While intensional classification is appling, it is less flexible than
extensional classification used in FRDM, since entities are required to instantiate
an defined attribute set to belong to a domain. They cannot be explicitly added
to a domain regardless their intension. In that sense, intensional classification is
a useful complement to extensional classification.

As a summary, Table 1 shows which flexibilities sample data models in the
discussed categories do allow. We can see that none of these models fulfills all
flexibility requirements. Graph models, particularly as in Neod4j, are free of im-
plicit constraints regarding entity domains, attributes and technical types, while
the relational approaches are the only ones to offer value-based identity and
value-based references. FRDM integrates the level of flexibility graph models
provide with value-based identity and value-based references, as indicated in
Table 1, in a super-relational fashion.

Flexible Relational Data Model 37

7 Conclusion

As an evolutionary approach to meet the need for more flexible database sys-
tems and to build on the still existing dominance of relational database systems
we proposed the flexible super-relational data model FRDM. FRDM is entity-
oriented instead of schema-oriented. It is designed around self-descriptive enti-
ties, where schema comes with the data and does not have to be defined up front.
Additionally, FRDM allows multi-faceted entities where entities can belong to
multiple entity domains. Attributes can exist independently from entity domains
in FRDM. Similarly, FRDM allows technically typing values independently from
their attributes. FRDM can express irregular data as well as regular relational
data. We demonstrated both by examples. For data retrieval, FRDM builds on
the powerful, well-known, and proven set of relational operations. Compared
to the relational data model, FRDM is free of implicit constraints. Neverthe-
less, where these constraints are needed and welcome, the presented constraint
framework FRDM-C allows formulating explicit restrictions to the flexibility of
FRDM. A lot of technological expertise, knowledge, and experience have accu-
mulated in and around relational database management systems over the last
three decades. We are convinced FRDM contributes to the use of that also in
the more flexibility-demanding areas of data management.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: VLDB 2007 (2007)

2. Acharya, S., Carlin, P., Galindo-Legaria, C.A., Kozielczyk, K., Terlecki, P.,
Zabback, P.: Relational support for flexible schema scenarios. The Proceedings
of the VLDB Endowment 1(2) (2008)

3. Agrawal, R., Somani, A., Xu, Y.: Storage and Querying of E-Commerce Data. In:
VLDB 2001 (2001)

4. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-Tenant
Databases for Software as a Service: Schema-Mapping Techniques. In: SIGMOD
2008 (2008)

5. Aulbach, S., Seibold, M., Jacobs, D., Kemper, A.: Extensibility and Data Sharing
in evolving multi-tenant databases. In: ICDE 2011 (2011)

6. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile
Software Development (2001), http://agilemanifesto.org/

7. Beckmann, J.L., Halverson, A., Krishnamurthy, R., Naughton, J.F.: Extending
RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage
Format. In: ICDE 2006 (2006)

8. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A Collabo-
ratively Created Graph Database For Structuring Human Knowledge. In: SIGMOD
2008 (2008)

9. Brodie, M.: OTM”10 Keynote. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.)
OTM 2010. LNCS, vol. 6426, pp. 2-3. Springer, Heidelberg (2010)

http://agilemanifesto.org/

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

H. Voigt and W. Lehner

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for
Structured Data. In: OSDI 2006 (2006)

Chu, E., Beckmann, J.L., Naughton, J.F.: The Case for a Wide-Table Approach
to Manage Sparse Relational Data Sets. In: SIGMOD 2007 (2007)

Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON), RFC 4627 (July 2006), http://tools.ietf.org/html/rfc4627
Cunningham, C., Graefe, G., Galindo-Legaria, C.A.: PIVOT and UNPIVOT: Op-
timization and Execution Strategies in an RDBMS. In: VLDB 2004 (2004)
Franklin, M.J., Halevy, A.Y., Maier, D.: From Databases to Dataspaces: A New
Abstraction for Information Management. SIGMOD Record 34(4) (2005)
Friedman, C., Hripcsak, G., Johnson, S.B., Cimino, J.J., Clayton, P.D.: A Gener-
alized Relational Schema for an Integrated Clinical Patient Database. In: SCAMC
1990 (1990)

Gleick, J.: Faster: The Acceleration of Just About Everything. Pantheon Books,
New York (1999)

Jacobs, D.: Enterprise Software as Service. ACM Queue 3(6) (2005)

Kiely, G., Fitzgerald, B.: An Investigation of the Use of Methods within Information
Systems Development Projects. The Electronic Journal of Information Systems in
Developing Countries 22(4) (2005)

Kurzweil, R.: The Law of Accelerating Returns (March 2001),
http://www.kurzweilai.net/the-law-of-accelerating-returns

Nagarajan, S.: Guest Editor’s Introduction: Data Storage Evolution. Computing
Now, Special Issue (March 2011)

Neo Technology: Neodj (2013), http://neodj.org/

Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange Across
Heterogeneous Information Sources. In: ICDE 1995 (1995)

Parsons, J., Wand, Y.: Emancipating Instances from the Tyranny of Classes in
Information Modeling. ACM Transactions on Database Systems 25(2) (2000)
PostgreSQL Global Development Group: PostgreSQL 9.2.4 Documentation, chap.
56.6: Database Page Layout (2013)

Rodriguez, M.A., Neubauer, P.: Constructions from Dots and Lines. Bulletin of the
American Society for Information Science and Technology 36(6) (August 2010)
Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping Pay-As-You-Go Data Inte-
gration Systems. In: SIGMOD 2008 (2008)

Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering 35(1) (2000)

Vassiliou, Y.: Null Values in Data Base Management: A Denotational Semantics
Approach. In: SIGMOD 1979 (1979)

W3C: RDF Vocabulary Description Language 1.0: RDF Schema (February 2004),
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

W3C: Resource Description Framework (RDF): Concepts and Abstract Syntax
(February 2004), http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
W3C: Extensible Markup Language (XML) 1.0 (Fifth Edition). (November 2008),
http://www.w3.org/TR/2008/REC-xm1-20081126/

W3C: XML Schema Definition Language (XSD) 1.1 Part 1: Structures. (July 2011),
http://www.w3.org/TR/2011/CR-xmlschemall-1-20110721/

http://tools.ietf.org/html/rfc4627
http://www.kurzweilai.net/the-law-of-accelerating-returns
http://neo4j.org/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/

Defining Temporal Operators
for Column Oriented NoSQL Databases

Yong Hu and Stefan Dessloch

Heterogenous Information Systems Group,
University of Kaiserslautern, Kaiserslautern, Germany
{hu,dessloch}@informatik.uni-kl.de

Abstract. Different from traditional database systems (RDBMSs), each
column in Column-oriented NoSQL databases (CoNoSQLDBs) stores
multiple data versions with timestamp information. However, this im-
plicit temporal interval representation can cause wrong or misleading
results during query processing. To solve this problem, we transform the
original CoNoSQLDB tables into two alternative table representations,
i.e. explicit history representation (EHR) and tuple time-stamping rep-
resentation (TTR) in which each tuple (data version) has an explicit
temporal interval. For processing TTR, the temporal relational algebra
is extended to TTRO operator model with minor modifications. For pro-
cessing EHR, a novel temporal operator model called CTO is proposed.
Both TTRO and CTO contain seven temporal data processing opera-
tors, namely, Union, Difference, Intersection, Project, Filter, Cartesian
product and Theta-Join with additional table transformation operations.

Keywords: CoNoSQLDBSs, temporal data and temporal operators.

1 Introduction

Recently, a new type of data storage system called “Column-oriented NoSQL”
database (CoNoSQLDB) has emerged. A CoNoSQLDB manages data in a struc-
tured way and stores the data which belongs to the same “column” continuously
on disk. Tuples in a CoNoSQLDB are delivered based on unique row keys. Differ-
ent from RDBMSs, each column in a CoNoSQLDB stores multiple data versions
sorted by their corresponding timestamps and each data version has an im-
plicit valid temporal interval (TT) (derived from the data versions). Well known
examples are “BigTable” [9], which was proposed by Google in 2004, and its
open-source counterpart “HBase” [10].

To consume data in CoNoSQLDBs, users can either write low-level programs
such as a MapReduce [8] procedure or utilize high-level languages such as Pig
Latin [11] or Hive [12]. MapReduce is a parallel data processing framework in
which users code the desired data processing tasks in Map and Reduce functions
and the framework takes the charge of parallel task execution and fault tolerance.
Although this approach gives users enough flexibility, it imposes programming
requirements and restricts optimization opportunity. Moreover, it forces manual
coding of query processing logic and reduces program reusability.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 39-55, 2014.
© Springer International Publishing Switzerland 2014

40 Y. Hu and S. Dessloch

Pig Latin and Hive are two high-level languages built on top of the MapRe-
duce framework, where each includes various predefined operators. To analyze
the data in a CoNoSQLDB, clients utilize the default load function and denote
queries either by a set of high-level operators (Pig Latin) or SQL-like scripts
(Hive). However, the default load function will transform a CoNoSQLDB table
into a first-normal-form (1NF) relation [1] by purely loading the latest data val-
ues (without TSs) and discarding older versions. If users wish to load multiple
data versions, a customized load function has to be coded manually. Each col-
umn will then have a “set” type instead of atomic values. Generally, this type
of table is called non-first-normal-form (NF2) [2] or nested relations. To pro-
cess NF2 in Pig Latin or Hive, users need to first flatten the nested relation to
1INF, then apply the desired data processing based on the predefined high-level
operators and finally nest the 1NF relation to rebuild the nested relation. How-
ever, this approach has several pitfalls: 1) as the data volume of CoNoSQLDB
is usually massive, the table reconstructing operations can heavily decrease the
performance and exhaust the hardware resources; 2) the predefined high-level
operators are traditional relational operators which handle only the data values
without considering any temporal information.

In this paper, we study the issues of defining temporal operators for
CoNoSQLDBs and several significant aspects need to be taken into account:

— What is the meaning of TS in CoNoSQLDBs, i.e. should it be understood as
valid time or transaction time? This issue will be discussed in Section 4.1.

— The original CoNoSQLDB tables maintain the temporal interval for each
data version implicitly. This property can cause wrong or misleading results
during query processing. How can we avoid this? The suitable solutions will
be proposed in Section 4.2.

— The CoNoSQLDB tables must be closed under the temporal operators,
namely, the output of each operator must still be a CoNoSQLDB table.
For example, a traditional temporal Project operator will merely produce the
columns specified in the projection attributes. However, in the CoNoSQLDB
context, the row key column is mandatory for each CoNoSQLDB table.

The remainder of paper will address these issues and is organized as follows:
In Section 2, we discuss the related work. Section 3 describes the core properties
of CoNoSQLDBs. The formalization of the CoNoSQLDBs is given in Section 4.
Section 5 depicts the temporal operators and Section 6 makes the conclusions.

2 Related Work

Extensive research in the temporal relational database area was done over the
last decades, and finally database products as well as the SQL standard have
picked up capabilities for temporal data modeling [7]. To model temporal di-
mensions in a table, two main alternatives exist. The first approach is called
tuple time-stamping [3,6,7] (T'TS) which appends two auxiliary columns to the
INF table to indicate start and end time for the tuple’s valid TI. The second

Defining Temporal Operators for Column Oriented NoSQL Databases 41

approach is called attribute time-stamping [4,5] (ATS) in which each attribute
value consists of an atomic value with a valid TI. Generally, the ATS relation
is viewed as NF? [4,5], as the domain of its attribute is not atomic anymore.
In ATS, a new concept “temporal atom” [5] is proposed. A temporal atom is
composed as a pair (Value, TI) which is treated as an atomic data unit for each
column (analogy to float, integer and etc. in RDBMS). Moreover, each column
in an ATS table usually stores multiple temporal atoms as it can reduce the
data redundancy and keep the entire history of an object in one tuple instead of
splitting it into multiple tuples.

For handling the TTS, traditional relational algebra is extended to the tem-
poral relational algebra (TRA) [3,6]. For the ATS, the relational algebra is ex-
tended to the historical relational algebra (HRA) [4,5] with two auxiliary table
reconstructing operators, i.e. Nest and Unnest.

CoNoSQLDBs fall into the ATS modeling, as each data version is attached
with a corresponding TS. However, the method adopted to process the ATS is
not suitable for CoNoSQLDBs. More discussions will be given in Section 4 and
Section 5.

In the context of CoNoSQLDBES, to our best knowledge, our temporal operator
models are the first proposals which address temporal data processing and are
consistent with the data model and data processing model of CoNoSQLDBs.

3 Characteristics of CoNoSQLDBs

As the temporal operators are applied to CoNoSQLDBS, in this section, we indi-
cate some important features of CoNoSQLDBs compared to RDBMSs, focusing
on the aspects that affect the design of our operator model:

— Data Model. In addition to the concepts of table, row and column,
CoNoSQLDBs introduce a new concept called “column family’. Columns
which belong to the same column family will be stored continuously on disk.
Each table in a CoNoSQLDB is partitioned and distributed based on the row
keys. For a given tuple, one column can store multiple data versions sorted
by the corresponding timestamps (TSs). Moreover, users can indicate the ttl
(time-to-live) property for each column family to denote the life time of data
items. When data items expire, CoNoSQLDBs will make them invisible and
eventually remove them in a cleanup operation. Note that only timestamps
(indicating at what time the value changed) and no explicit time intervals
(TIs) are stored!

— Operations. Different from RDBMSs, a CoNoSQLDB does not distinguish
update from insertion. A new data value for a specific column will be gen-
erated by the “Put” command without overwriting the existing ones. When
issuing a “Put” command, users need to denote the parameters such as row
key, column-family name, column name, value and TS (optional). If no TS
is specified in the “Put” operation, a system-generated TS is used as the
version-TS. Following the data model of CoNoSQLDB, data deletions are

42 Y. Hu and S. Dessloch

classified into various granularities, namely, data version, column and col-
umn family. A delete operation will not delete data right away but insert a
“tombstone” marker to mask the data values whose TSs are equal to or less
than the TS of the tombstone.

Web-surfing
Web: Page Web:Content Network:Supplier
ttl=10s ttl=10s ttl=oo
Spiegel.de : 4, Politics :4,)
Tom Yahoo.com: 1 Sport :1 Telecom:1

Fig. 1. Example of CoNoSQLDBs

Figure 1 shows an example defined in “HBase” to illustrate the aforementioned
characteristics. The “Web-Surfing” table records the information when a user
browses the internet. It contains two column families and each column family
includes several columns. For row “Tom”, the “Web:Page” column contains two
data versions.

4 Formalization of CoNoSQLDBs

As timestamps (TSs) represent the temporal information for the data versions,
in this section, we first discuss their semantics and clarify the usages of TS
in CoNoSQLDBs. Then, we pursue the formalization of CoNoDSQLDB tables
and use an example to illustrate how the implicit TI strategy supported by
the original CoNoSQLDB tables can cause wrong or misleading results during
query processing. To overcome this problem, we propose two alternative table
representations in which each tuple (data version) has an explicit TI.

4.1 Understanding TS in CoNoSQLDBs

CoNoSQLDBs follow an attribute time-stamping (ATS) approach by attaching
a TS to each data version. However, in contrast to temporal databases, the
explicit T'S just represents the start of a time interval. The TT is only implicitly
represented when we assume the end of the interval to be determined by the start-
TS of the subsequent version (or for the most recent version), which is consistent
with the semantics of version timestamps. This interpretation constrains the
derived TIs belonging to the same column to form a contiguous time interval,
e.g. the TTs of data versions “Yahoo.com:1” and “Spiegel.de:4” in Figure 1 are [1s,
4s) and [4s, 14s), respectively. In addition, the time interval for the most recent
version is limited by the ttl property. For example, although the “Spiegel.de:4”
is the latest data version, as the ttl is set to 10s, its TI is [4s, 14s) instead of [4s,
00).

Furthermore, another question in terms of the semantics of TS in
CoNoSQLDBEs arises. In the temporal database literature, there are two orthog-
onal time dimensions [3,4,6,7]: 1) wvalid time, which indicates the time interval
during which a data value reflects the state of the real world; 2) transaction time,

Defining Temporal Operators for Column Oriented NoSQL Databases 43

which denotes when a data item is recorded in the database. The valid time and
the transaction time are usually depicted as a time period [t1, t2) which denotes
a data value holds at time t where t; < t<t,. The valid time can be assigned
and modified by users, whereas the transaction time is generated and maintained
automatically by the database system.

CoNoSQLDBEs, due to the different usages of the Put and Delete commands,
the TS can be either arbitrarily specified by users or automatically generated by
the system. If the TS is denoted by users, this implies that data versions can be
inserted or discarded at any point in time in the version history of a CoNoSQLDB
column. Consequently, the Put and Delete commands with the explicit TS as-
signments may cause TT modifications of existing data versions. For example, in
Figure 1, if a data version “Google.de:3” is inserted between “Yahoo.com:1” and
“Spiegel.de:4”, the TI for “Yahoo.com:1” is implicitly changed to [1s, 3s). In this
situation, the TS in the CoNoSQLDB has wvalid time semantics. However, when
TS is generated by the CoNoSQLDB, 1) for the Put command, the TS of the
new generated data version will be greater than all the existing data versions; 2)
for the Delete command, either the current (latest) data version will be deleted
(data version deletion) or the whole column/column family will be discarded
(column and column-family deletions). Hence, either only the current data ver-
sion will be changed (Put command and data version deletion) or all the data
versions will be eliminated (column and column-family deletions). For example,
if a data version “Google.de:6” (where 6 is generated by the CoNoSQLDB) is
inserted into “Web:Page” column, the TT of “Spiegel.de:4” is changed from [4s,
14s) to [4s, 6s) and the TT of “Yahoo.com:1” is still [1s, 4s). In this situation,
the TS in the CoNoSQLDB is close to transaction time.

Hence, the temporal semantics of T'S in CoNoSQLDBs is ambiguous, namely,
it can be understood as either valid time or transaction time based on the usages
of Put and Delete commands. Consequently, the user or application has to make
consistent use of temporal concepts supported in CoNoSQLDBs. The TS for
a single column should have the semantics of either valid time or transaction
time but not both. Moreover, if bi-temporal data needs to be maintained (i.e.,
both transaction and valid time data is needed), additional columns need to
be added by the application to keep the time information. For this paper, we
assume that the application is aware of this. Since our operator model and the
additional representations we propose do not depend on the time semantics (valid
vs. transaction), our results are not impacted.

4.2 Representations of CoNoSQLDBs

A schema R for a CoNoSQLDB table is a collection of rules of the form R = (r#,
CFy:Colyy,..., CF,:Colyy,), where rk is shorthand for row key and the subscript
n denotes the number of column families (CFs). Each CF; is composed by a set
of columns (Col;1,..., Col;;). The value of a column is a set of data versions in
which each data version D,,, can be further decomposed as a pair (Value, TS).
Value denotes the content of D,,, and TS has the semantics of either valid time
or transaction time. For each column, TS functionally determines the Value,

44 Y. Hu and S. Dessloch

i.e. TS—Value. The TI for each data version is implicitly represented among
columns and the deduced TIs which belong to the same column must form a
contiguous time interval.

A CoNoSQLDB table r is an instance of a CoNoSQLDB schema R. Dom()
is a function which maps an attribute name into its value domain. In the
CoNoSQLDB context, Dom(rk) has usually a string type. Dom(Value) can be
any set of atomic values, such as integer, float, string and etc. Dom(TS) is as-
signed as a discrete time domain which consists of a set of long nonnegative
integer with an ascending order. Dom(CF:Col) = Dom(Value)x Dom(TS) where
Dom(R) = Dom(rk) x Dom(CFy:Coli1) X... X Dom(CF,:Col,y,), where x is
Cartesian product. Clearly, a CoNoSQLDB table does not satisfy 1NF, as the
attribute type of each tuple is not atomic. However, different from the general
NF? relations, the nesting level of a CoNoSQLDB table is fixed, i.e. 1 (we view
the nesting level of INF as 0). In the following, we use t[S] to denote the value
of navigation path S and Attr(A) to indicate a set of attributes that belong to
A, where A can be a table name, a CF name or a Col name. As the TT for each
data version is implicitly represented inside the column, we call the original table
representation implicit history representation (IHR).

Although the THR is suitable for data storage, it can cause wrong or misleading
results during query processing. Suppose we use the “Network-speed” table in
Figure 2 as an input and wish to choose the Tom’s internet suppliers whose speed
has ever been faster than 1000K. The filter operation will discard “1&1:3” in the
Supplier column and “920K:3” in “Speed” column. The right-hand side shows
the filter results. As the TT for each data version is implicit, directly discarding
data versions will cause T1 changes of the remaining data versions, e.g. the valid
TT of “Telecom:1” is changed from [1s, 3s) to [1s ,4s). Obviously, this produces
incorrect results.

Network-speed
Network:Supplier | Network:Speed
ttl=oo ttl=eo

T270K : 4,

Network-speed
Network:Supplier Network:Speed
1= =

Vodafone : 4 A [y N 1270K : 4,
Tom 181:3 920K : 3, Y7 | Tom Vordafone : 4 1855K : 2,

Telocom: 1 1855K : 2, Telecom : 1 PR
: 1115K : 1 =

plicit History Repr

Fig. 2. Select network supplier whose speed is faster than 1000K

The wrong query processing results can be avoided by adopting an explicit
TT representation. In contrast to the original data version definition, we model
a data version D in the CoNoSQLDBSs as a pair (Val, TI) where:

— Val indicates the value of D;
— T1I denotes how long D is temporally valid and has a form [Sta, End).

Using the new data version model, Figure 3 shows the equivalent represen-
tation of the “Network-speed” table on the left and the correct results of filter
processing on the right. We call this new table representation explicit history
representation (EHR).

As an alternative to grouping multiple data versions with explicit TIs in a
single column, we can also adopt the tuple time-stamping approach by splitting

Defining Temporal Operators for Column Oriented NoSQL Databases 45

each THR tuple into several tuples in which each column contains only a single
data version and the row key includes the valid TI to guarantee its uniqueness.
We call this table representation tuple time-stamping representation (TTR). Fig-
ure 4 shows the TTR example derived from “Network-speed” on the left and the
correct results for filter processing on the right. For better readability, we specify
the row key rk in TTR as a pair (srk, TI). srk denotes the original row key value
extracted from the corresponding IHR table and 7T indicates the valid time in-
terval which has the form [Sta, End). Clearly, ERH can also be transformed into
TTR.

Network-speed-EHR

Network:Supplier | Network:Speed Network-speed-EHR
ttl=== ttl=o= Network:Supplier | Network:Speed
(Vodafone,[4,=>)), (tgzgz,{g,:))), . ttl=oo ttl=oo
Tom (1&1,[3,4)), (1855@[2"3);, 1 Tom | (vodafone,ta, <y, ((1128750;';[?2,:))),
(Telecom,[1,3)) (1115K,[1,2)) (Telecom,[1,3)) (1115K.[1.2)).

it History Repr

Fig. 3. Select network supplier whose speed is faster than 1000K by using EHR

Network-speed-TTR

Network:Supplier | Networ - -
RK/Sta/End bty ttl=eo NZtev:\gr?kr:‘éjsgﬁgrﬂmetworkﬁpeed
Tom/1/2 Telecom : 1 1115K: 1 . RK/sta/End ttl=eo tl=oo
Tom/2/3 Telecom : 2 1855K : 2 i ps Tom/1/2 Telecom : 1 1115K:1
Tom/3/4 1&1:3 920K : 3 v Tom/2/3 Telecom : 2 1855K : 2
Tom/4/>= Vodafone : 4 1270K : 4 Tom/4/== Vodafone : 4 1270K : 4
Tuple ti i p i

Fig. 4. Select network supplier whose speed is faster than 1000K by using TTR

We define 4 table transformation operations which transform IHR to EHR
(Trg), ITHR to TTR (Tyr), EHR to TTR (Tgr) and TTR to EHR (Trg),
respectively:

— T;g takes an THR table as an input and outputs its corresponding EHR
table. The explicit TI of a data version D,, in an EHR column is derived
from its corresponding data version D; in the IHR column and formed as
[D;. TS, D;.TS), where D, is the immediate successor of D;. When D; is the
current data version, its end point of T1T is either denoted by oo or calculated
by using ttl.

— Tpgr takes an EHR table as an input and outputs its corresponding TTR
table. For every tuple in EHR, Ty will first collect the TIs of all data
versions, and then derive TI for each TTL tuple. Finally, the derived TI
will be utilized as a selection criterion to select the data versions from EHR
columns. We illustrate the T gp operation in Figure 5. The TTs for row “Tom”
in EHR are denoted at the top right corner. The corresponding derived TIs
are indicated at the bottom right ([1s, 2s) and [2s, 3s)). Tgr then exploits
each derived TT ([1s, 2s) and [2s, 3s)) as a selection criterion to scan both
“Network:Supplier” and “Network:Speed” columns to find the matching data
versions. The resulting TTR is shown at the bottom left.

— Trg takes a TTR table as an input and outputs its corresponding EHR
table. T first groups the TTR tuples which share the same rk.srk together.
At the same time, the TI in the row key will be attached to each data version.

46 Y. Hu and S. Dessloch

At last, several data versions that have the same value will be coalesced into
a single data version when their TIs are overlapping or adjacent. Figure 6
shows an example of T . The two arrows indicate these two data processing
tasks, respectively.

— Tyr takes an IHR table as an input and outputs its corresponding TTR
table. T;p can be represented as a Tp followed by a Tgp.

Network-speed-EHR | — 181 {
Network:Supplier | Network:Speed F--1115K---|
ttl=e= ttl=e= |--1855K-]

(1855K,(2,3)),

Tom (1&1,[1,3) Giask oy | | |

{ RK/Sta/End |
[Tom/i/z
[Fom//3

Fig. 5. Tgr example

Network-sup-TTR Network-sup-EHR
Network:Supplier ¥ " Column - -
RK/Sta/End tHlmeo me:p Netwotn;:aSuppller Coalescence Networr.Suppller
ased on =00 : ttl=oo

Tom/1/2 Telecom : 1 Tom | Wodatone[a =T PFOCQSS'f:E . -
Tom/2/3 Telecom : 2 ; - . (181,3,4)), 3 (Vodafone, [4,)),
Tom/3/4 1&81:3 VoL TOM™ 1 (Telecom,[2,3)) Y| Tom (1&1,[3,4),
Tom/4/> Vodafone : 4 (Telecom,[1.2)) (Telecom,[1,3))

Fig.6. Trr example

Due to the table transformations, each IHR can be mapped to one EHR and
one TTR. Moreover, one EHR can be mapped to one TTR and vice versa. We
omit to define the EHR to IHR and TTR to IHR transformations, as not every
EHR or TTR can be transformed back to IHR. We can utilize the EHR table
at the right-hand side in Figure 3 as a counter-example, as the TIs of column
“Network:Supplier” do not form a contiguous time interval. It is impossible to
rebuild the corresponding ITHR. The same counter-example for TTR can be found
at the right-hand side in Figure 4.

The reasons for inapplicable transformations (EHR or TTR to IHR) are the
characteristics of THR, namely, 1) the valid temporal interval for each column
can only be [OSta, o), where OSta denotes the starting point of the oldest data
version in a column; 2) the TI for each data version among the same column has
to be contiguous, namely, for any two data versions D; and Dy in an THR column,

Fig. 7. Transformation between IHR, EHR and TTR

Defining Temporal Operators for Column Oriented NoSQL Databases 47

if Dy is the immediate successor of D1, it denotes Do.TI1.Sta = D,.TI.End. As
the EHR and TTR in Figure 3 and Figure 4 violate the condition 2, they cannot
be transformed to IHR.

We represent the table transformations between IHR, TTR and EHR in Figure
7. The dotted lines indicate the transformations may not be possible where the
solid lines denote the transformations are always possible.

As THR is the default table representation supported by CoNoSQLDBEs, it
is more natural for users to directly issue queries against THR. However, as
we have already seen in Figure 2, the implicit TT representation strategy of
THR can cause wrong or misleading results during query processing. Hence, to
guarantee the soundness of query processing, an IHR table has to be translated
into either a TTR table or an EHR table. The table transformation tasks could
be either automatically inserted by the query processing engine or explicitly
specified by users. The former would correspond to a model where users issue
the queries against IHR and the EHR and TTR are only used internally for
query processing. However, as not every EHR or TTR table can be transformed
back to an equivalent IHR, it is possible that users unexpectedly see the internal
table representation in the query result. If users are allowed to perform table
transformations explicitly, it implies that the users should also have the ability
to process the EHR or TTR tables and the corresponding algebra operators need
to be defined. As the first approach is not really transparent to the user, the
second approach is more preferable. However, both approaches may be worth
considering and are supported by the algebra we present in this paper. The
temporal operators of EHR and TTR will be introduced in Section 5.

Although both TTR and EHR can guarantee the soundness of query pro-
cessing, each of them has drawbacks. For storing TTR tables in CoNoSQLDBs,
the TT has to be encoded into the row key to guarantee its uniqueness, as com-
posite keys are not supported in CoNoSQLDBs. This strategy can also cause
significant data redundancy when splitting IHR or EHR, tuples. For example,
in Figure 6, the strings “Tom” and “Telecom” appear 4 times and twice, re-
spectively. As CoNoSQLDBs usually manage a tremendous volume of data, the
volume of TTR tables may exhaust the disk capacity before any data processing.
EHR has an optimal structure for data storage, but its physical representation in
CoNoSQLDBEs is very complicated. For example, in HBase, we have to “encode”
the pair (Val, TI) as the data value (e.g. JSON string) and TIL.Sta as the TS
for each data version. Hence, the data processing tasks for EHR will need more
time to “extract” the actual data values compared to TTR. Choosing the ta-
ble representation for temporal query processing is therefore a trade-off between
data capacity (TTR) and data processing complexity (EHR), which we plan to
explore further in the future.

5 Temporal Operators for CoNoSQLDBs

As we have already described in Section 4.2, one THR can be mapped to one
EHR and one TTR. Moreover, one EHR can be transformed into one TTR and

48 Y. Hu and S. Dessloch

vice versa. In this section, we first introduce a set of temporal operators (TTRO)
for TTR. Then, we define the temporal operators (CTO) for EHR.

5.1 TTRO Operator Model

If temporal relational data is modeled by exploiting tuple time-stamping (TTS),
the temporal relational algebra (TRA) [3,6], which is an extension of the rela-
tional algebra, can be used for data processing. In the context of CoNoSQLDBs,
TTR tables follow the TTS model. Intuitively, we can directly utilize the TRA
for processing TTR tables. However, different from the general TTS table, to
guarantee the uniqueness of row key in CoNoSQLDBs, each TTR table must
integrate the time interval into the row key rather than represents it as two sep-
arate columns. We model the row key in TTR as a pair (srk, TI). srk denotes
the row key value derived from its corresponding IHR table and TT indicates the
valid time interval which has the form [Sta, End). Moreover, as the row key is
mandatory for the CoNoSQLDB (TTR) tables, it still must be included in the
final results even it is not indicated in the desired attributes, e.g. projection.
Hence, to satisfy the characteristics of the TTR tables, we extend and customize
TRA to a temporal operator model called TTRO for the TTR relations. Before
presenting the details of TTRO operators, let us first adapt some concepts and
definitions from [3,6] to the TTR context.

Definition 1 (Value Equivalent). Let r be any TTR table. Two tuples t; and
t2 on r are value equivalent (written t; =t o) if and only if all families:columns
and rk.srk have the same values in both tuples.

Definition 2 (Coalesce operation). The functionality of the Coalesce opera-
tion (denoted by B) is to combine all the value-equivalent tuples of a TTR table
together, when their TIs are overlapping or adjacent.

To simplify the definition of the TTRO operators, we define a function over-
lap() which takes two tuples t1 and to as input and returns .7k T1 N to.7k. TL

5.1.1 Union Operator UT
Let r; and ro be two TTR tables which share the same schema definitions. The
union of these two tables is defined as follows:

rm Ul ry = B(r1 U r2), where U is the relational union operator.

In the definition, we first union the tuples from two tables together and then
apply coalesce operation to combine multiple tuples which are value equivalent
and their TIs are overlapping or adjacent. Figure 8 shows an example of UT.
Tuples “Tom/1/2” and “Tom/2/3” are value equivalent and hence are coalesced
into “Tom/1/3”.

Defining Temporal Operators for Column Oriented NoSQL Databases 49

Network-speed Network speed. Networkspeed”
:Suppli ! RK/Sta/End) " Network:Supplier | Network:Speed
Risaing | "ML | Nevrtpes i o o R | " s
Tomjtlt | Teeeom:1 | tskr | YT OB | Teewm:2 | WIK2 | =) toms | Teeom:i | skl
Tomfdfo= | Vodafone:4 | 1270K:4 Tom/dfes | Vodsfone:d | 1270K:4

Fig. 8. Example of Union operation

5.1.2 Difference Operator —T
Let r; and ro be two TTR tables which share the same schema definitions. The
difference of these two tables is given as follows:

=" ro = {t|((t € r1) A (= Ttz € r2|(t = t2) A (overlap(t, t2) # 0)))V
(ﬂtl [SESW Tty € 7”2|(t1 = tz) N (t = tz) A (t.’l‘k:.TI € (tlﬂ”k‘T] — overlap(tl,tg)))
A ((t1.7k.TI — overlap(ti,t2) # 0) A (overlap(ti,t2) # 0))}.

In the difference definition, the tuples in r; will be directly emitted, when
there does not exist any tuples in ry in which they are value equivalent and their
TTs have overlaps (line 1). Otherwise, the TTs of tuples in r; need to be modified.
Figure 9 displays 3 possible temporal relationships between r; and ro to denote
the values of (r;.rk.TI-overlap(ri,re2)):

1. {[ta.rk. TLSta, to.7k. T1.Sta)};
2. {[ta.rk. TL.End, t,.rk.TI.End)};
3. {[t1.7k.T1.Sta, ta.rk.TI1.Sta),[ts.rk. TL.End, t,.rk.TI.End)};

An example of —7 is shown in Figure 10 where the TT of tuple “Tom/1/3” is
changed to [2s, 3s).

Sta Sta End Eng sta sta End End
B time time
-
= . -
t1 = - F=y ~— %1 ™
Sta Sta End End
< e
t2
-

Fig. 9. Various temporal relationships between t; and to

Netw‘ork-spged“ - Network-speed
RK/Sta/End NetorkSupper [TetorkSpeed Network-speed Network SuppTier | Network Speed
tizoo tizoo i RK/Sta/End
T | pisafed Network Suppfier | Network Speed ttl=o0 ttl=o0
Tomftf3 | Telecom:1 11151 e zee o | o | Teban2 152
Tom/deo | Vodafone:4 270K:4 Tom/12 | Telecom:1 1151 Tl | Voddmerd o

Fig. 10. Example of Difference operation

5.1.3 Intersection Operator N7
1 ﬁT T2 =171 _T (7‘1 _T 7‘2).

Let r; and ry be two TTR tables which share the same schema definitions and

the definition of NT can be derived from —7.

50 Y. Hu and S. Dessloch

5.1.4 Project Operator 7”7

TI'Z«:(T'l) = {t\EItl € T’1|(t.7‘k = tl.T’k) A (t[Aﬂ = tl[Al]) A A (t[An} = tl[An])
where A=(A1,...,A,) and each A; has a form of CF; or CF;.Col;}

In TRA, a project operation will only keep the columns indicated by the set
of desired projection attributes (in our definition, it is denoted by notation “A”).
However, in the TTR context, to guarantee that the output of projection is still
consistent with the data model of CoNoSQLDBs (TTR tables), the row key must
be “implicitly” included in each tuple. We say “implicitly” because the row key
may not be specified in A. As the row key already contains the TI, we can also
view 71 as temporal projection [6] or slice operator [5].

5.1.5 Filter Operator 0'17;
Let r; be a TTR table. Let p denote a selection condition over the attributes of
r1, where the p is defined as follows:

1. p=10;

2. p = abb, where 0 € {<,>, <, >,#,=},aand b can be atomic value constants,
rk.srk and D.Val;

3. p=abb, where § € {<,>,<,>,#, =} aand b can be atomic value constants,
rk.T1.Sta and rk.T1.End;

4. p = pOp, where 6 € {A,V}.

For a better explanation, we classify p into four different categories, i.e. 1) no
predicates (line 1); 2) atomic value comparisons (line 2); 3) temporal conditions
(line 3); 4) predicates with logical connectives (line 4). ¢ is defined as follows:

op (r1) = {t[3t1 € m1|(t = t1) A (p(t1) = true)}.

Figure 4 shows a filter example. Please note that temporal comparison op-
erators such as Allens interval operators [13] or period predicates supported by
SQL 2011 [7] can be easily translated by temporal conditions (line 3) with logical
connectives (line 4) and therefore could be easily added as syntactic sugar.

5.1.6 Cartesian Product X7
r1 X7 1y = {t]3t1 € r1, 3o € ro|(t[Attr(Ry) — k] = t1[Attr(Ry) — rk])A
(t[Attr(R2) — Tk] = t2[Attr(Rz) — rk])A
(t.rk.srk = concat(ty.rk.srk,ta.rk.srk)) A (t.rk.TI = overlap(ti, t2))A
(t.rk.TI #0)}.

Let r; and ry be two TTR tables. The Cartesian product of these tables is
defined as above. As each TTR (CoNoSQLDB) table can merely contain one
row key column, we define a “concat’ function to concatenate the srk of both
tuples (line 2). Moreover, both tuples have to be temporally valid during the
same time period (line 2). Figure 11 shows an example of X7

Defining Temporal Operators for Column Oriented NoSQL Databases 51

Network-infor

Network-speed Manager-infor
Company:Name - i 0
. RK/Sta/End pm:V R/Sta/End Network:Supplier | Company:Name

R | SR
& = ttl=oo ttl=oo

Tom/1/2 Telecom : 1 lim/2/3 181:2 Tom/
Tom/4/ee Vodafone : 4 Green/7/9 | Vodafone:7 Green/7/9

Vodafone : 7 Vodafone : 7

Fig. 11. Example of Cartesian product

5.1.7 Theta-Join x7T
The definition of xT can be defined from X7 and 05.

5.2 CTO Operator Model

We have already seen that each TTR table can be transformed to its corre-
sponding EHR table (the transformation task is defined by Trg). EHR falls
into the attribute time-stamping (ATS) model, as each EHR column maintains
multiple data versions attached with the explicit TIs. To process ATS relations
in the temporal database context, traditional relational algebra is extended to
the historical relational algebra (HRA) with two table restructuring operators
(Nest and Unnest) [4,5]. However, this strategy is not suitable for EHR table
processing, as 1) the quantity of EHR tables is always massive. Hence, the table
restructuring operators can become very expensive; 2) after an EHR table is
processed using the Unnest operator, its corresponding 1NF representation is
not closed under HRA. For example, the HRA projection will discard the row
key column if it is not specified in the projection attributes.

Hence, to process the temporal data in the EHR context, we propose a novel
temporal operator model called CTO. The CTO model is defined under the
following considerations: 1) each CTO operator can be directly applied to EHR
tables without first changing the table structure; 2) the class of EHR tables is
closed under the CTO model, namely, the output of each operator must still be
an EHR table. In the following, we utilize the TTRO operators together with
the table transformation operations (Tgr and Trg) to define the operational
semantics of CTO operators. Note that this is only for definitional purposes.
The CTO operator implementations do not perform transformations to TTR
and back.

5.2.1 Union Operator U®
Let r; and ro be two EHR tables which share the same schema definitions.
r1 UC 1y = Trp(Ter(r1) UT Tpr(ry)). Figure 12 shows this example.

5.2.2 Difference Operator —€

Let r1 and ro be two EHR tables which share the same schema definitions.
r1 =% 1y = Trp(Ter(r1) =T Ter(rz)). Figure 13 shows this example.

52 Y. Hu and S. Dessloch

Network_1

Network_2 Network_3
Network:Supplier Network:Supplier Network:Supplier
ttl=oo Uc i oo
Tom (Telecom,[1,3)) (1&1,[6,°°)) = Tom (1&1,[6,°)),
Tom | (Telecom, [2,4)) (Telecom,[1,4))
Fi °E 1
ig.12. U xample
Network_2 Network_3
Network_1
Network:Supplier c Network:Supplier Network:Supplier
ttl=oo - ttl=co _ ttl=co
T (Vodafone,(3,°)), Tom | (1&LI,e), | T | g (Vodafone,[3,%2)),
om (Telecom,[1,3)) (Telecom,[2,4)) (Telecom,[1,2))

Fig.13. —¢ Example

5.2.3 Intersect Operator N
Let r; and ro be two EHR tables which share the same schema definitions. The
definition of N® is derived from —€: r N® ry = (r1) = (r1 = 1y).

5.2.4 Project Operator 7§
Let r1 be an EHR table. 7§ (r1) = Tre(ri(Ter(r1))).

5.2.5 Filter Operator 0'1?

Let r1 be an EHR table. 0§/ (r1) = Tre(o), (Ter(r1))). The corresponding exam-
ple is shown in Figure 3. Please note that, the data version temporal comparisons
in p have to be translated to row key temporal comparisons in p’.

5.2.6 Cartesian Product X¢

As the value of each column in EHR is non-atomic (multiple data versions), the
EHR tables satisfy NF2. This property implies that it is possible to do a Carte-
sian product at various nested levels. However, different than the general NF2,
the nested depth of any EHR table is fixed. This characteristic prohibits doing
Cartesian product at the arbitrary nested level. Figure 14 shows this situation.
Suppose we wish to do the product operation at the level of CF;:Coly; in Ry
and the level of table Ry. The desired schema is denoted at the right-hand side
(R3) which cannot be represented in CoNoSQLDBs.

R:
[RK: | [CFuColii] [CFi:.Col: | \ R \
[Vl } [T] [RK: | [CFiCoht] [CFiColi: |
R: [Vahi] [T N
RKz CF3:.Cols1 [RKz |[CFs:Colsu |
Vali2
Vals

Fig. 14. A desired product results which cannot be represented in EHR

Defining Temporal Operators for Column Oriented NoSQL Databases 53

[CFaCol | [R ‘CF3C0|31 ‘CF1C0|12‘ R/RK: | | CColu

o) (]

Fig. 15. Solution of Figure 14

CFsColx

MM

The only solution of this problem is to reduce the nested depth of R3. The
left-hand side in Figure 15 shows the new structure. Clearly, its schema represen-
tation looks the same as the outermost Cartesian product (table level). As each
CoNoSQLDB table can only has one row key column, we need to concatenate
rk; and rk2 (shown at the right-hand side in Figure 15). Hence, we define the
Cartesian product for EHR as: 1 K¢ 79 = Trp(Ter(r1) ®¥ Tgpr(re)), where the
group key for Trg is composed by r1.rk and ro.rk.

5.2.7 Theta-Join x€
The definition of x€ can be defined from X and ag .

5.3 Query Examples

In this section, we show the query examples by using CTO and TTRO models.
The input table is “Network-speed” (NS) shown at the left in Figure 2.

Query: What is the name of internet suppliers whose speed has at any time
been faster than 1000K?

— CTO expression: Tr]?]etwork.Suppl,ier(Ugetwnrk.Speed.ValZ1000K(TIE(NS)))‘
— TTRO expression: Trlq\;etﬂlJnrk.Supplier(Ugetwork‘.Speed.ValZlOOOK(TIT(NS)))'
— CTO=TTRO: TET(ﬂ-lc\;etwo'r'k.Supplie'r'(U]%etwo‘r'k.Speed.Vu.lZIOOOK(TIE(NS))))‘
— TTRO=CTO: TTE(”zjcretrworr»k.sruppzie7-(Ugetwm-k.speed.vdzzwoox(TI(NS))))-

Network-speed-EHR

Network:Supplier Network-speed-"k_rR -
ttl=o= RK/Sta/End Net""‘;;[_‘i‘pp ier
Tom (Vodafone,[4,==)), Tom/1/2 Telecom 1
(Telecom,[1,3)) Tom/2/3 Telecom : 2
Tom/4/== Vordafone : 4

Fig. 16. Query results

As the THR can cause misleading results during the filter processing, users
first issue the table transformation operation T;r or T;g. Then, either TTRO
operators or CTO operators can be exploited due to the table representations.
Figure 16 depicts the results of query processing. Please note that, although the
row key is not specified in the projection attributes, it is still included in the
final results.

54 Y. Hu and S. Dessloch

CFTRO [TTR

Fig. 17. Data processing and table transformation stack
5.4 Summary

As we have seen the example in Section 4.2, IHR can cause wrong or misleading
results during query processing because of its implicit TI strategy. To overcome
this problem, we can either translate IHR to EHR or to TTR. TTR utilizes the
tuple time-stamping model and we extended the temporal relational algebra to
the TTRO model. As can be seen from the definitions, the class of TTR tables
is closed under the TTRO operators. EHR follows the attribute time-stamping
model. Simply using historical relational operators with two table restructuring
operations is not appropriate in the EHR context (See the discussion in 5.2). We
hence proposed a novel temporal operator model (CTO). Obviously the class of
EHR tables is closed under CTO operators.

Figure 17 shows an overview of the temporal data processing and table trans-
formation stack which is a refinement of Figure 7. To process the temporal data
in CoNoSQLDBS, users can either write a script using CTO or TTRO operators
as well as representation transformation operators (the same strategy as Pig
Latin) or a SQL-like language can be built on top of CTO or TTRO.

6 Conclusions and Further Work

To our knowledge, our work is the first proposal for defining temporal operators
based on the characteristics of CoNoSQLDBs. We first clarify the meaning of
TS and describe various table representations, such as implicit history repre-
sentation (THR), explicit history representation (EHR) and tuple time-stamping
representation (TTR). THR is the original CoNoSQLDB table representation
which utilizes attribute time-stamping (ATS) by attaching the TS to each data
version. As the temporal intervals (TIs) for data versions are implicitly included
among columns, it can cause wrong or misleading results for query processing
(See Figure 2). To overcome this problem, an THR table can be translated to
either EHR or TTR table format with explicit TI representations. EHR uses the
ATS model where TTR falls into the tuple time-stamping model. For processing
TTR tables, we introduce the TTRO operator model as a minor extension of the
temporal relational algebra. For processing EHR tables directly, we propose a
novel temporal operator model called CTO which can be applied to EHR without
additional table restructuring. We showed that not every resulting EHR or TTR
table can be transformed back into IHR and pointed out in which situations
this is in fact possible. Both TTRO and CTO include seven temporal opera-
tors, such as Union, Difference, Intersection, Project, Filter, Cartesian product
and Theta-Join with auxiliary table transformation operators. Moreover, the

Defining Temporal Operators for Column Oriented NoSQL Databases 55

TTR and EHR tables are closed under the TTRO model and the CTO model,
respectively.

In further work, we plan to give more deliberate classifications of EHR and

TTR to denote when the transformations of EHR to IHR or TTR to IHR are
possible. Moreover, we consider extending the TTRO and CTO operators with
temporal aggregation functions and the ways to efficiently implement the TTRO
and CTO operators.

References

10.
11.
12.
13.

14.

Codd, F.: A Relational Model of Data for Large Shared Data Banks. Community,
377-387

Makinouchi, A.: A Consideration on Normal Form of Not-necessarily-normalized
Relation in the Relational Data Model. In: VLDB 1977, pp. 447453 (1977)
Richard, S.: The TSQL2 Temporal Query Language. Kluwer (1995) ISBN 0-7923-
9614-6

Clifford, J., et al.: On completeness of historical relational query languages. PACM
Transactions on Database Systems, 64-116 (March 1994)

Tansel, A.: Temporal Relational Data Model. IEEE Transactions on Knowledge
and Data Engineering, 464-479 (May 1997)

Dey, D., et al.: A complete temporal relational algebra. Journal the VLDB Jour-
nal 5(3) (May 1997)

Kulkarni, K., et al.: Temporal features in SQL: 2011. ACM SIGMOD, 34-43
(September 2012)

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI, pp. 137150 (2004)

Change, F., et al.: Bigtable: A Distributed Storage System for Structured Data.
In: OSDI, pp. 205-218 (2006)

Apache HBase, http://hbase.apache.org/

http://pig.apache.org/

http://hive.apache.org/

Allen, J.: Maintaining knowledge about temporal intervals. Communications of
ACM 26 (November 1983)

Hu, Y., Dessloch, S.: Extracting Deltas from Column Oriented NoSQL Databases
for Different Incremental Applications and Diverse Data Targets. In: Catania,
B., Guerrini, G., Pokorny, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 372-387.
Springer, Heidelberg (2013)

http://hbase.apache.org/
http://pig.apache.org/
http://hive.apache.org/

Analyzing Sequential Data
in Standard OLAP Architectures

Christian Koncilia!, Johann Eder!, and Tadeusz Morzy>

! Alpen-Adria-Universitit Klagenfurt
Dep. of Informatics-Systems
{eder,koncilia}@isys.uni-klu.ac.at
2 Poznan University of Technology

Institute of Computing Science
morzy@put.poznan.pl

Abstract. Although nearly all data warehouses store sequential data,
i.e. data with a logical or temporal ordering, traditional data warehouse
or OLAP approaches fail when it comes to analyze those sequences.
In this paper we will present a novel approach which generates query-
specific subcubes, i.e. subcubes that consist only of data which fulfill a
given sequential query pattern. These subcubes may then be analyzed us-
ing standard OLAP tools. Our approach consists of two functions which
both return such subcubes. Hence, the user can still use all the well-
known OLAP operations like drill-down, roll-up, slice, etc. to analyze
the cube. Furthermore, this approach may be applied to all data ware-
housing architectures.

1 Introduction

Business Intelligence (BI), Data Warehousing (DWH), and On-Line Analyical
Processing (OLAP) enable users to perfomantly analyze mass data by storing
data in No-SQL database systems, e.g. multidimensional database systems, or
by applying DWH specific logical schemas to relational database systems, e.g.
the Star Schema, Snowflake Schema, etc. [6].

Traditional business intelligence tools analyze facts along dimensions. Facts
describe what a user wants to analyze whereas dimensions describe how the user
analyses his data [6]. Typical examples for facts are Turnover, Profit, the Stock
of Inventory, etc. These facts may then be analyzed along a set of dimensions
like Time, Products or Geography.

This approach succeeded to proof its feasibility in innumerable implementa-
tions in many industrial sectors. However, this approach fails when it comes to
efficiently analyze sequential data, i.e. data with a logical or temporal ordering
[9].

Why does the traditional DWH approach fail when it comes to sequential data
analysis? Assume that we store data about treatment costs and diagnoses for
patients in a DWH. Traditional data warehouses are built to answer questions
like “what are the total costs for patients in 2010” or “what are the average costs

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 56-69, 2014.
© Springer International Publishing Switzerland 2014

Analyzing Sequential Data in Standard OLAP Architectures 57

for all patients diagnosed cerebral infarction”. However, they are not prepared to
answer queries like “what are the follow-up costs of patients diagnosed cerebral
infarction within 12 months after the diagnose”. This even gets more compli-
cated, when analyzing data along several events, e.g. when analyzing follow-up
costs for patients with a certain diagnose who received a certain treatment within
a given time period after the diagnose.

Although sequential data representation is not a new research area, the fact
that most data sets in an OLAP system are sequential by nature has been ignored
until recently, e.g. in [1,9,8]. These approaches focus on developing novel data
warehouse / OLAP architectures. This allows to develop new operators, query
languages, indexing and caching strategies, etc. However, in our opinion there is
also an evident need to analyze sequential data in existing OLAP infrastructures.

Contribution: In this paper we will present a sophisticated approach which en-
ables the user to analyze simple atomic events and complex sequences of events.
In contrast to other approaches (which will be discussed in section 7), our ap-
proach smoothly integrates into a standard OLAP architecture. Basically, our
approach consists of the following steps:

1. The user defines the sequence she / he wants to analyze, e.g. all patients
who had a specific diagnose A after a diagnose B.

2. A subcube is generated which contains all relevant data, e.g. all patients
records for all patients who had a diagnose A after a diagnose B.

3. An additional dimension Relative Time Axis is created enabling the user to
analyze data in a very flexible way.

The result of a sequential query in our approach is itself a standard OLAP
(sub-)cube. Hence, the user can still use all the well-known OLAP operations
like drill-down, roll-up, slice, dice and so on to analyze this cube.

This paper is organized as follows: In section 2 we will briefly describe a
motivating example which we will use throughout the rest of this paper to depict
the application of our approach. Section 3 will provide a formal model of a data
warehouse which we will extend in section 4 with our sequential OLAP approach.
We will present the prototypical implementation of our approach in section 5. In
section 6, we are going to briefly discuss some application areas for a sequential
OLAP approach. Related work will be discussed in section 7. Finally, we will
conclude this paper in chapter 8.

2 DMotivating Example

In this section, we will present our motivating example which we will use as
running example throughout the rest of the paper. Consider a database with
the following table storing information about patients, diagnoses and treatment
costs:

58 C. Koncilia, J. Eder, and T. Morzy

Patient Diag Date Costs

Tim 126 1-1 50
Tim C11 1-2 70
Walter 126 1-8 45
Tim 127 1-8 110
John B32 1-2 80
Walter C11 1-2 60

In this example the patient Tim went to a doctor on 1/1/10 and was diagnosed
with ICD (International Classification of Diseases) code 126 (the code for the
disease pulmonary embolism). The next day, he wanted to get a second opinion
and went to a different doctor who diagnosed a different disease encoded C11.
Then, a few days later, he went to a third doctor who diagnosed 127.

The star schema for a data warehouse to analyze this information consists of
a fact table storing the costs, and three dimension tables (Patient, Diagnose,
Date). Easily one can use this data warehouse to answer queries like “what are
the total costs for patient Tim in 2010” or “what are the average costs for all
patients diagnosed 126”. However, such a data warehouse structure would not
be suitable to answer queries where a dimension member depends on another
dimension member, i.e. where we have sequences.

As we will discuss in section 4.1, such a sequential OLAP query may be
based on Atomic Sequences or on Complex Sequences. Queries based on atomic
sequences are queries that make use of only one single event, e.g. “What are the
follow-up costs of patients during three month after she/he has been diagnosed
126”. In this example, the single event would be the diagnose 126.

In contrast to such a query, a query based on complex sequences consists of
two or more events. An example for such a query would be: “How many patients
have been diagnosed H35 (Retinopathie, a disease often caused by diabetes which
can lead to blindness) within 12 months after they have been diagnosed E10
(diabetes).” This query would consist of two events, namely the diagnose E10
and the diagnose H35.

Of course, such a complex sequence query is not restricted to two events nor
is it restricted to events that stem from one dimension in the data warehouse.
For instance, if we would store prescriptions in our data warehouse we could also
state queries like: “What are the average follow-up costs of a diagnose 126 for
patients that have been prescribed Heparin within 6 months after the diagnose”.
This query would consist of two events stemming from two different dimensions.

3 Formal OLAP Model

In this section we will give a formal definition of a data warehouse based on the
model presented in [7]. Later on we will extend this data warehouse model such
that the user is able to state all kinds of sequential queries. Please note that our
approach for sequential OLAP simply extends the standard OLAP approach.

Analyzing Sequential Data in Standard OLAP Architectures 59

The result of a sequential query is itself a standard (sub-)cube, extended with a
set of relative time axes. Hence, the user can still use all the well-known OLAP
operations like drill-down, roll-up, slice, dice and so on to analyze her or his
cube.

Intuitively, we define the schema of a data warehouse as a set of cubes which
again are defined as a set of dimensions. The schema of each dimension is defined
by a set of categories, e.g., the dimension Date might consist of the categories
Year, Month and Day organized in a hierarchical relation Year — Month —
Day, where for example Year — Month means that a month rolls-up to a year.

Each category consists of a set of dimension members. Dimension members
define the instances of a data warehouse schema. For instance, January, February
and March are dimension members assigned to the category Month.

Formally, the schema of a data warehouse is defined by:

i.) A number of dimensions J.

ii.) A set of dimensions D = {D;,...,D;}, where D; =< ID, Dgey >. ID is
a unique identifier of the dimension. Dg., is a user defined key (e. g., the
name of the dimension), which is unique within the data warehouse.

iii.) A number of categories K.

iv.) A set of categories C = {C1,...,Ck} where C; =< ID,Ckey >. ID is a
unique identifier of the category. Cke, is a user defined key (e. g., the name
of the category) which is unique within the data warehouse.

v.) A set of assignments between dimensions and categories Apc = {AL,,
ey AN}, where AL, =< D.ID, C.ID >. D.ID represents the identi-
fier of the corresponding dimension. C.ID represents the identifier of the
corresponding category.

vi.) A number of hierarchical category assignments O.

vii.) A set of hierarchical category assignments HC = {HC4, ..., HCp} where
HC; =< ID,C.ID¢c,C.IDp >. ID is a unique identifier of the hierarchical
category assignment. C.I D¢ is the identifier of a category, C.IDp is the
category identifier of the parent of C.ID¢ or) if the category is a top-level
category.

viii.) A number of cubes I.

ix.) A set of cubes B = {By, ..., Br} where B; =<ID, Bgey, S >. ID is a

unique identifier of the cube (similar to O;q4 s in object-oriented database
systems). By is a user defined key (e.g., the name of the cube), which
is unique within the data warehouse.
S represents the schema of the cube. The tuple S consists of all dimensions
and hierarchical category assignments that are a part of this cube. There-
fore, S is defined as S = (D, A) where D = {D1.ID, ..., Dy.ID} (N < J)
and A ={HC,.ID,..,HCy.ID} (M < O).

The instances of a data warehouse are defined by:

i.) A number of dimension members P.
ii.) A set of dimension members M = {M;, ..., Mp} where M; =< ID, Mgy,
CA, >. ID is a unique identifier of the dimension member. M., is a user

60 C. Koncilia, J. Eder, and T. Morzy

defined key (e.g., the name of the dimension member), which is unique
within the data warehouse. The set CA represents the set of categories, to
which the corresponding dimension member is assigned.

iii.) A set of hierarchical member assignments HM = { HM;, ..., HMo} where
HM; =<ID,M.ID¢g, M.IDp, f >. ID is a unique identifier of the hierar-
chical member assignment. M.I D¢ is the identifier of a dimension member,
M.IDp is the dimension member identifier of the parent of M.ID¢ or (8
if the dimension member is at the top-level. f represents the consolidation
function between M.ID¢c and M.IDp, e.g. + for addition, — for subtrac-

tion, etc.
iv.) A function cval : (Mp,,...,Mp,) — measure, which uniquely assigns a
measure to each vector (Mp,, ..., Mp,) where (Mp,, ..., Mp,) € Mp, x

... X Mp,. The domain of this function is the set of all cell references. The
range of this function are all measures of a cube.

4 Sequential OLAP Model

In this chapter, we will extend the OLAP model presented in section 3. The
extension basically consists of two items: 1) we will introduce the concept of
sequential OLAP functions and 2) we will enrich this model with the concept
and definition of a relative time axis.

Intuitively, a sequential OLAP function can be considered as an extended slice
operation and a relative time axis represents the time difference between a given
event and any other event.

4.1 Sequential OLAP Function and Events

Basically, a sequential OLAP function takes a cube, a grouping dimension, an
ordering dimension and a sequence of events as input and returns a subcube
as output. The terms grouping dimension, ordering dimension and sequence of
events will be defined in section 4.2. The query “fetch all patient records for
patients which have been diagnosed retinopathie after they have been diagnosed
diabetes” could be an example for a sequential OLAP function. This query would
result in a subcube that consists of all dimensions of the corresponding cube and
all dimension members and measures which belong to patients that have been
diagnosed retinopathie after a diagnose diabetes. This subcube may then serve as
basis for analysis which for instance easily enable the user to compute follow-up
costs.

The fundamental basis for our sequential OLAP function are sequences. We
distinguish between two different kinds of sequences:

1.) Complex Sequence: A complex sequence forms a path through a set of
events, e.g. a sequence & — & — ... — &, where &; is an event.

2.) Atomic Sequence: An atomic sequence is a subset of complex sequence.
It represents a one stepped path, i.e. £1. For instance, £& may be the event
“diagnosed diabetes”.

Analyzing Sequential Data in Standard OLAP Architectures 61

An event £ is an appearance of an incident at a given point of time. In
our context, we can define an event £ as the existence of a function cval with
cval(My, M, ...) # null with a given dimension member M, that defines the
incident and a dimension member M; that defines the point of time.

&; — &, means that the event &£, occurred directly after event &;, i.e. there
exists no event & between &£; and &, along an ordering dimension defined by the
user. Usually, this ordering dimension will be the time dimension.

4.2 Sequential OLAP Function for Atomic Sequences

As a complex sequence can be decomposed to a set of atomic sequences, we will
start by defining the sequential OLAP function for atomic events.

Pre-Conditions: The following pre-conditions for a sequential OLAP function
on atomic sequences have to be fulfilled:

1.) A cube B; has to be defined as in section 3. This cube serves as input, i.e.
it defines the base for the sequential OLAP function.

2.) B; has to contain at least one ordering dimension D,. An ordering dimen-
sion is a dimension on which an ordering function f,.q4. has been defined.
forder(Mj, My) takes any two dimension members M; and M}, and returns
-1 lfMj < My, OlfMj = M} or +1 lfMj > My.

3.) The user has to define a grouping dimension D,. This grouping dimension
defines the subject of the analysis. Hence, D, defines which dimension the
event refers to, i.e. which dimension the order of the ordering dimension
refers to. Dy, may be any dimension of B;.

4.) Furthermore, the user has to define a single (atomic) event £ with £ = Mg
where MEg is a dimension member of Dg and Dg is a dimension in B;.

Definition: Now, the function solap can be defined as follows: Given the input
Bi, D,, Dy and & the function solap(B;, Do, Dy, €, Ep) returns a subcube B,
which consists of all dimensions D; € B; and all dimension members M; with
M, € Dy A Jeval(Mp,,...,M;, Mg, Mg, ...,Mp,) # null AN Mg = €.

Please note that &, is not used in atomic sequences and will be discussed later
on in section 4.3.

Intuitively we can say that a solap(B;, D,, Dy, £, E,) returns a subcube which
consists of all the data of all dimension members in the grouping dimension for
which there exists at least one entry in the fact table that represents the given
event.

Example: Assume that B; is the cube as defined in our running example in
section 2. The ordering dimension D, is the dimension Date. The grouping
dimension Dy, i.e. the subject of our analysis, is the dimension Patient. The
event F = 126.

Taking these input parameters, the function solap(B;, Date, Patient, 126)
would return a subcube which consists of all the data of all patients who had a
diagnose 126, i.e. it would return a subcube which consists of the data represented
in the following table:

62 C. Koncilia, J. Eder, and T. Morzy

Patient Diag Date Costs

Tim 126 1-1 50
Tim Cl11 1-2 70
Walter 126 1-8 45
Tim 127 1-8 110
Walter C11 1-2 60

4.3 Sequential OLAP Function for Complex Sequences

In the previous section we defined the function solap for atomic events. We will
now extend this function to work on complex sequences.

Pre-Conditions: The pre-conditions are the same as defined in section 4.2 ex-
cept the fact that the user may define any sequence of events E =< &,...,&, >
with & = Mg, where Mg, is a dimension member of Dg, and Dg, is a dimension
in Bl

Furthermore, as complex sequences have to consider the ordering of several
events, we have to extend the solap function with an additional parameter,
namely E,. In an atomic sequence, [, is always null. In a complex sequence, E,
is the previous event in the sequence of events or null, if no previous event has
been defined, i.e. if applying solap to the first event in a sequence of events.

Definition: First, extending the definition given in 4.2 with the parameter &,
the function solap can be defined as follows: Given the input B;, D,, Dy, £ and
&p the function solap(B;, Do, Dy, E,Ep) returns a subcube B, which consists
of all dimensions D; € B; and all dimension members M; with My, € Dy A
deval(Mp,, ..., My, Mg, Mg,....Mpy) #null AN Mg =& A

Jeval(Mp,, ..., M, My, ME,, ..., Mpy)# null\ Mg, =E, A forder(E,Ep) > 0.

Secondly, with the extended definition of the solap function, we can define
solap for complex sequences: Given the input B;, D,, D, and E the function
solap(B;, Do, Dy, E, E,) can now be defined as a composition of solap functions
on atomic sequences:

solap(Bi, Dy, Dy, E) =
solap(solap(. .. solap(B;, Do, Dy, E1,null) . . ., (1)
-Doa Dga gnfla 577,72), Doa Dga Ena gnfl)

Example: Again, let B; be the cube as defined in our running example in section
2, Date be the ordering dimension D, and Patient be the grouping dimension
D,. Now, the user would like to analyze all patient records about patients who
had a diagnose 126 and afterwards a diagnose 127. Hence, E =< 126, 127 >.
Taking these input parameters, the function solap(B;, Date, Patient, <
126,127 >) would result in a function B,, = solap(B;, Date, Patient, 126)
whose result B,, would serve as input parameter for B,, = solap(B,,, Date,

Analyzing Sequential Data in Standard OLAP Architectures 63

Patient, 127). Therefore, the resulting cube would consist of the data repre-
sented in the following table:

Patient Diag Date Costs

Tim 126 1-1 50
Tim C11 1-2 70
Tim 127 1-8 110

4.4 Relative Time Axis

The relative time axis function generates a new dimension in the cube which
stores the difference between a given event and any other event. We will use
the term relative time axis, although the concept of a relative time axis may be
applied to any ordering dimension which doesn’t necessarily have to be a time
or date dimension.

In contrast to other time dimensions in the cube, the relative time axis is
not a set of absolute timestamps like 12-30-2010 or 8-15-2010 10:42, but a set
of time intervals which are relative to the ordering dimension D, (as described
above, this ordering dimension is usually a time dimension). Thus, the relative
time axis could for instance be a dimension with a set of dimension members
{—n days,...,—1 day,0,+1 day, ..., +m days}.

Pre-Conditions: In order to compute a relative time axis, the following pre-
conditions have to be fulfilled:

1.) A cube B; has to be defined. Usually, this cube will be the result of a solap()
function as defined in sections 4.2 and 4.3.

2.) As defined in section 4.2 this cube B; has to contain at least one ordering
dimension D,. Furthermore, the user has to define a grouping dimension D,
(the subject of the analysis) with D, € B;.

3.) The user has to define a single event £ with &€ = Mg where Mg is a dimenson
member of Dg and Dg is a dimension in B;.

4.) As there might exist several cell values in the cube referred to by a function
cval(My, ..., Mg, E, ..., M,) with M, being a dimension member assigned
to Dy, the user has to define which occurrence of £ should serve as base. Cur-
rently, this can be done by applying a first() or last() function, which sets
the first or last occurrence £ as base. Other functions could be implemented.

Definition: we define a function rta() (relative time axis) whish uses a function
dif f() to compute the difference between any two event occurrences. dif f()
takes two records, i.e. two cval() functions as defined in section 3, and the order-
ing dimension D, as input and computes the differences between the two entries.
The granularity of di f f() is equal to the granularity of D,, e.g. if the granularity
of D, is a day, then dif f() will return the difference in days.

The function dif f() may be defined by the user. Usually, it simply computes
the difference between two dates:

64 C. Koncilia, J. Eder, and T. Morzy

dif f(cval(Mo,, Mg, Mg, ...),cval(My,, My, ...)) =
My, — M,
withMy,, My, € Dy A M, € Dy A Mg € £. 2)

Using the defined function dif f() we can formally define the rta() function.
rta(B;, D,,E) returns a cube B, where B, consists of the same schema S as
B; and all dimension members M, hierarchical member assignments HM and all
measures assigned to B;. Furthermore, B, consists of an additional dimension
Dprra with a set of dimension members Mprra = {Mi,..., M,} assigned to
Dpra (via CA, C and Apc as defined in section 3). For each M; € Mpra
we can define that M; Mke, = dif f(z,y) where © = cval(Mo,,&,...) and
y = cval(Mo,,...) and © # y.

Example: Assume that B, is the resulting cube of the function solap(B;, Date,
Patient, I126) as described in section 4.2. Again, the ordering dimension D, is
the dimension Date. The grouping dimension Dy, i.e. the subject of our analysis,
is the dimension Patient. The event E = 126.

Taking these input parameters, the function rta(B,, Date, Patient, 126)
would return a subcube which consists of all the data of all patients who had
a diagnose 126. Furthermore, this subcube would consist of an additional di-
mension named RT'A which stores the difference between the occurrence of a
diagnose 126 and any other event. The following table depicts the resulting cube:

Patient Diag Date Costs RTA

Tim 126 1-1 50 0
Tim Cl11 1-2 70 +1
Tim 127 1-8 110 +7
Walter C11 1-2 60 -6
Walter 126 1-8 45 0

4.5 Workflow Example

In this section we will discuss how a user may use SOLAP() and RTA() to state
sequential OLAP queries and how she may analyse the resulting cube.

Assume that a user would like to state a query like “what are the follow-up
costs for patients diagnosed 126 within 12 month after they have been diagnosed
126”7 To answer this query the user would select the Date dimension as order-
ing dimension and Patient as grouping dimension. Furthermore, he defines an
atomic sequence with one event “Diagnose = 126”. Now, the application would
use the functions SOLAP() and RT A() (with the corresponding parameters) to
generate a cube as depicted in Table 4.4.

This cube would enable the user to easily analyze the follow-up costs that oc-
curred within 12 month after the diagnose 126. This could be done by applying
standard OLAP functions to the cube. In this example, the user could simply

Analyzing Sequential Data in Standard OLAP Architectures 65

o el é}
« A \
m/soquerybuilder. hp > -3~ Googte 3 »
) A
SOLAP INTERFACE
Query Builder:

Ordering Dimension: dim_time

Grouping Dimension: dim_patient ~

Event Dimension: dim_diag - Event Dimension-Member: 126 ~

Currently set sequence: 126 —

‘ Start Query ‘

No Query defined - Showing Original Cube:

dm_name dm_icd10 dm_date f_name value
Tim 126 2010-01-01[costs 50
Tim Ci1 2010-02-01|/costs |70
Walter 126 2010-08-01 |costs 45
Tim 127 2010-08-01 |costs 110
John B32 2010-02-01 costs 80
Walter Ci1 2010-02-01 [costs 60

Fig. 1. Start Screen of our Prototype

select the dimension members 0...12 of the dimension RTA (which would cor-
respond to a slice and dice operation) and calculate the sum of the fact cost.
The same method could be applied to analyze which diagnoses occurred within
3 months before a diganose 126.

5 Proof of Concept

We implemented a prototype of our approach as proof of concept. This prototype
has been implemented as a web-client using a PostgreSQL 9.0.0 database, PHP
5.3.2 and jQuery 1.4.2. Technically, the data warehouse itself has been built
using the traditional Star Schema approach. Hence, we have one fact table and
several tables representing the dimensions of the cube. For our running example,
this results in a fact table that consists of the costs and foreign keys to the three
dimensions: Patient, Diagnose and Date.

Figure 1 shows a screenshot of the start screen of the prototype. For this
paper, we imported the data from our running example.

Using the prototype depicted in Fig. 2 the user may select an ordering dimen-
sion and a grouping dimension. Furthermore, she or he may define a sequence of
events, i.e. an atomic sequence or a complex sequence. Currently, the prototype
does not support using wildcards in sequences. In this example, the user selected
a single event, i.e. Diagnose 126.

Basically, the application takes the user inputs, extracts the sequence defined
by the user, and dynamically generates an SQL query for the first step in this

66 C. Koncilia, J. Eder, and T. Morzy

@ SOLAP - Mzl Freiox . - P=rey)
[Eebeten st G Lessechen, Egiee Eife "N
2 C X i hitp://dev.solap.com/soquerybuilder.php > - - Goog! 3
Y
L souap. y

SOLAP INTERFACE
Query Builder:

Ordering Dimension: dim_time ~

Grouping Dimension: dim_patient ~

Event Dimension: dim_dizg - Event Di ber: 126 -]

Currently set sequence: 126 — ‘

(e |

Query Result:

dm_name dm_icd10 dm_date f_name value rta]
Tim 126 2010-01-01]/costs |50 o
Tim ci1 2010-02-01]/costs |70 +1
Tim 127 2010-08-01costs [110 +7
Walter |[C11 2010-02-01]/costs |60 -6
Walter [126 2010-08-01]/costs |45 0

i : . £

Fig. 2. Result Screen for an Atomic Sequence (Diagnose = 126)

sequence. This query serves as basis for a view created in the database. This
view represents the subcube returned by the function solap() as presented in
section 4.2. For all subsequently defined sequence steps we repeate this process
as defined in section 4.3. In contrast to the first step, all further steps work on
the view defined in the previous step. Finally, the implementation calls the rta()
function as defined in section 4.4 to compute the relative time axis.

The result of this query is being depicted in figure 2. As can be seen, a new
dimension “rta” has been created, representing the relative time axis.

6 Application Examples

In section 2 we discussed an application example originated in the health care
sector. Basically, such a sequential OLAP approach would enrich each data ware-
house that stores any kind of events, e.g. diagnoses, prescriptions, workflow tasks,
sensor values and so on.

In this section we would like to briefly discuss some application examples for
sequential OLAP are:

1.) Workflow Systems: Usually, a workflow system consists of several tasks.
These tasks are linked with control structures like conditional branches,
loops, joins and so on [13]. Analyzing worklow instances with OLAP or
data warehouse techniques is tedious and sometimes impossible because of
these control structures [5]. However, applying our sequential OLAP tech-
nique would enable us to reduce the complexity of an unlimited amount of
possible instance structures to a limited amount of instance structures which
follow a specific pattern, e.g. A — B — % — D would select all instances

Analyzing Sequential Data in Standard OLAP Architectures 67

which used the task A followed by task B followed by any other set of tasks
followed by task D.

2.) Detecting Pharmacological Interactions: Another application exam-
ple would be a medical system to support doctors in avoiding dangerous
pharmacological interaction. For instance, if a patient has already been pre-
scribed Ciclosporin (an immunosuppressant drug usually used after organ
transplants) and now gets a prescription from a different doctor for a barbi-
turate (drugs that act as central nervous system depressants). Taking both
medicins at the same time may have dangerous interactions. To be more
precise, a barbiturate negatively influences the effective level of Ciclosporin
which may lead to organ repulsion. A sequential analysis would allow doctors
to avoid prescribing such combinations of drugs.

3.) Ticketing systems for light rail traffic, skiing resorts or multi-storey car
parks would be another application example. Here, a user could want to
analyze different sets of customers which for instance took a specific route
A — x — X, which means that they entered the subway at station A,
changed trains at any station, and left the subway at station X.

4.) Sensor data warehouses would also be an interesting application area
for a sequential data warehousing approach. Consider a data warehouse that
stores information which stems from dozens sensors mounted at a power tur-
bine. Analyzing sequences in this data warehouse could provide very useful
information, e.g. to reduce down-times. For instance, we could want to ana-
lyze the allocation of heat of certain parts of the turbine within 30 seconds
after a specific sensor reported a defined temperature.

7 Related Work

While the support of sequential data in traditional database management sys-
tems in general and specifically on time-sequences isn’t a new topic (see [11],
[12], [10], [2]), the term of Sequence OLAP or S-OLAP has been coined recently
in [9]. In [9] the authors present an approach where a user defines a query based
on pattern templates to analyze sequence data. A pattern template consists of
a sequence of symbols where each symbol corresponds to a domain of values. In
contrast to a pattern template, e.g. (A, B, A) a pattern is an instantiation of
cell values corresponding to a pattern template. A prototypical implementation
of such an S-OLAP system has been presented in [3].

The approach presented in [9] has been extended by the same research group
in [4]. In [4] the authors focus on the efficient evaluation of ranking pattern based
aggregate queries. As in [9] the number of dimensions of the defined cube is equal
to the number of distinct values of the selected attribute in the source table.

In order to avoid an overwhelming amount of data to be presented to the user,
[4] introduces support for top-k queries.

Another interesting approach has been presented in [8]. The authors combine
two existing technologies, namely OLAP (Online Analytical Processing) and
CEP (Complex Event Processing) to analyze real-time event data streams. They

68 C. Koncilia, J. Eder, and T. Morzy

introduce patterns and pattern hierarchies. If a pattern A contains a subset of
event types compared to a pattern B, then A is at a coarser level then B in
the resulting pattern hierarchy. Based on these hierarchical relationships, the
authors present different strategies how to exploit these hierarchies for query
optimization.

The approach presented in [1] discusses a model to analyze time-point-based
sequential data. The authors introduce a formal model and define several op-
erators to create and analyze sequences. Furthermore, it formaly defines and
discusses the notion of facts, measures and dimensions in the context of sequen-
tial OLAP.

Our approach differs from the approaches discussed in this section as follows:
our approach is not a redefinition of the well know OLAP approach and archi-
tecture as for instance presented in [6], but an extension. To the best of our
knowledge, it is the first sequential OLAP approach that smoothly integrates
into existing OLAP systems.

8 Conclusion

Traditional data warehouse and OLAP approaches still fail when it comes to
efficiently analyze sequential data, i.e. data with a logical or temporal ordering
[9]. For instance, a query like “what are the follow-up costs of patients diagnosed
cerebral infarction within 12 months after the diagnose” cannot be answered
without a relative time axis defined in the data warehouse for the event defined
in the query (here: diagnose cerebral infarction). A naive approach to solve this
problem would be to create a relative time axis in advance for all combinations
of events. However, such a naive approach will fail as the number of possible
combinations will quickly blast the capacity of the cube.

In this paper we presented a novel and sophisticated approach that enables the
user to analyze sequential data in a standard OLAP environment. The user may
state simple queries that require only an atomic event or complex queries with a
defined sequence of events. The result of our approach is itself a standard OLAP
cube, extended with a new dimension representing the relative time axis. Thus, it
is easy to implement our approach into an existing OLAP solution. Furthermore,
the user may use her or his OLAP solution to analyze the resulting data.

We implemented this approach as a proof of concept. Basically, this imple-
mentation enables the user to define a sequence of events and automatically
apply the defined functions solap() and rta() to a given data warehouse.

Future work will focus on wildcard support in sequence definitions. A wild-
card may be a question mark “?”, represeting any single event, an asterisk “x”,
representing any sequence of events or a plus “+”, representing any sequence of
events which consists of at least one event.

Analyzing Sequential Data in Standard OLAP Architectures 69

References

10.
11.

12.

13.

Bebel, B., Morzy, M., Morzy, T., Krélikowski, Z., Wrembel, R.: Olap-like analysis
of time point-based sequential data. In: Castano, S., Vassiliadis, P., Lakshmanan,
L.V., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 153-161.
Springer, Heidelberg (2012)

Chandra, R., Segev, A.: Managing Temporal Financial Data in an Extensible
Database. In: VLDB (1992)

Chui, C., Kao, B., Lo, E., Cheung, D.: S-OLAP: an OLAP System for Analyzing
Sequence Data. In: SIGMOD (June 2010)

Chui, C., Lo, E., Kao, B., Ho, W.: Supporting Ranking Pattern-Based Aggregate
Queries in Sequence Data Cubes. In: CIKM (2009)

Eder, J., Olivotto, G.E., Gruber, W.: A Data Warehouse for Workflow Logs. In:
Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 1-15.
Springer, Heidelberg (2002)

Kimball, R.: The Data Warehouse Toolkit, 2nd edn. John Wiley & Sons (1996)
Koncilia, C.: The COMET Temporal Data Warehouse (PhD). In: UMI (2002)
Liu, M., Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta, A.:
E-cube: Multi-dimensional event sequences processing using concept and pattern
hierarchies. In: ICDE (2010)

Lo, E., Kao, B., Ho, W., Lee, S., Chui, C., Cheung, D.: OLAP on Sequence Data.
In: SIGMOD (June 2008)

Segev, A., Shoshani, A.: Logical Modeling of Temporal Data. In: SIGMOD (1987)
Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence query processing. In: SIG-
MOD (1994)

Seshadri, P., Livny, M., Ramakrishnan, R.: The Design and Implementation of a
Sequence Database System. In: VLDB (1996)

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow
patterns. In: Distributed and Parallel Databases (2003)

Hybrid Fragmentation of XML Data Warehouse
Using K-Means Algorithm

Mohamed Kechar and Safia Nait Bahloul

University of Oran, LITIO Laboratory, BP 1524, El-M’Naouer, 31000 Oran, Algeria
{mkechar,nait1}@yahoo.fr

Abstract. The efficiency of the decision-making process in an XML
data warehouse environment, is in a narrow relation with the perfor-
mances of decision-support queries. Optimize these performances, auto-
matically contribute in improving decision making. One of the important
performances optimization techniques in XML data warehouse is frag-
mentation with its different variants (horizontal fragmentation and ver-
tical fragmentation). In this paper, we develop a hybrid fragmentation
algorithm combining a vertical fragmentation based on XPath expres-
sions and a horizontal fragmentation based on selection predicates. To
control the number of fragments, we use the K-Means algorithm. Finally,
we validate our approach under Oracle Berkeley DB XML by several ex-
periments done on XML data, derived from the XWB benchmark.

Keywords: XML Data Warehouse, Hybrid Fragmentation, XPath Ex-
pressions, Selection Predicates.

1 Introduction

With the emergence of XML, a large amount of heterogeneous XML data is ma-
nipulated by enterprises. Various works [11], [16], [26], and [27] have proposed
to integrate and store the XML data to exploit them in decision-making (the
birth of XML data warehouses). However, in a decision-making system, time
is considered as a major constraint. The managers of the company should take
appropriate decisions timely. Unfortunately, their decisions are based on analyz-
ing done on the results of several quite complex queries, called decision-support
queries. Characterized by join operations, selection operations and aggregation
operations, the response times of these queries is generally quite high. Optimize
the performances of such queries, contributes significantly to the improvement
of decision-making. In this context, several performance optimization techniques
have been proposed in the field of data warehouses, such as indexes, material-
ized views and data fragmentation. Among these techniques, fragmentation has
received much interest by the researcher’s community. Its efficiency has been
proven in the relational databases [1], [13], [25], the object-oriented databases
[5,6] and the relational data warehouses [3], [4], and [14]. However, few works
on fragmentation have been proposed in the XML data warehouses. To frag-
ment an XML data warehouse modeled by star schema [10], the authors in [22]

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 70-82, 2014.
© Springer International Publishing Switzerland 2014

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 71

use the primary horizontal fragmentation and derived horizontal fragmentation.
They use the K-Means algorithm to group the selection predicates into disjoint
classes defining the horizontal XML fragments. In [23], the authors propose two
horizontal fragmentation techniques of an XML data warehouse. The first is
based on the concept of minterms [25] and the second is based on predicates
affinities[30]. The authors in [28], propose different models of partitioning of a
multi-version XML data warehouses. They propose the partitioning model of
XML documents, the partitioning model based on the XML schema of the XML
data warehouse and the mixed model that combines the first two models. The
approach proposed in [9], vertically fragment the XML data warehouse based
on all frequently paths used by queries. The authors use the association rules to
find the set of paths from which they derive the vertical fragmentation schema.
To the best of our knowledge, no hybrid fragmentation approach, combining the
vertical fragmentation and the horizontal fragmentation has been proposed to
date in the context of XML data warehouse. Although its efficiency has been
already proven in the relational databases [24], the Object Oriented databases
[2], and the relational data warehouses [15]. For this fact, we present in this pa-
per a hybrid fragmentation of an XML data warehouse. We partition vertically
the structure of the data warehouse into vertical fragments by a classification
of XPath expressions. Then we fragment horizontally the XML data of each
vertical fragment by a classification of selection predicates. We use in our clas-
sification the K-Means algorithm[18] with the euclidean distance. In addition to
its simplicity and its rapidity, it allows us to control the number of fragments.

The remainder of this paper is organized as follows. In Sect.2, we survey the
different multidimensional models and we focus on the flat model that we use
as a reference model. In Sect.3 we detail our hybrid fragmentation. Finally, we
present some experimental results of our evaluations in Sect.4.

2 Multidimensional Modeling of XML Data

In the literature, different XML data warehouse models have been proposed. In
[11] the XML data Warchouse is represented by a collection of homogeneous XML
documents. Each XML document represents a fact with its measures and its di-
mensions. In [§], the authors propose the hierarchical model in which they use a
single XML document containing all facts and all dimensions. Each fact is rep-
resented by an XML element containing its measures and the references to the
XML elements containing its dimensions. In addition to the hierarchical model,
they define the flat model represented by a single XML document. Each fact in
this document is represented by a single XML element containing its measures
and its dimensions in the form of XML sub-elements. The XCube model proposed
by [17], uses an XML document named FaitsXCube to represent facts and another
XML document named DimensionsXCube to represent dimensions. By analogy to
the relational star model [19], the authors in [10] and [27], model the XML data
warehouse by a central XML document containing all facts with their measures
surrounded by several XML documents representing the dimensions. These XML
documents are linked by primary keys and foreign keys.

72 M. Kechar and S.N. Bahloul

Performance evaluations of these different models of XML data warehouses
have been conducted in several works. For example in [8], the authors have con-
ducted evaluations and comparisons of performances between the hierarchical
model, the flat model, and XCube model. They noticed that the flat model pro-
vides better performance compared with the other two models, except that it
introduces redundancy of the dimensions. A performance comparison between
the star model, the flat model, and the model proposed in [11] has been car-
ried out in [10]. The authors have shown that the star model provides improved
performance for queries that use two joins. However, from three joins, the per-
formances decrease in favour of the flat model. In order to improve the response
time of XQuery queries, a join index has been proposed in [20]. By carefully
inspecting this index, we found that his representation is in compliance with a
flat model (a single XML document containing all the facts with their measures
and dimensions). Based on these performance evaluations, we use the flat model
depicted in Fig.1) as a reference model to represent the XML data warehouse.

In the following sections, we describe our hybrid fragmentation approach.

FactDoc

dimensions
measures

dimension

measu,
dimension measure

@value

attributs

attribut attribut

@id @ fi @value

Fig. 1. Reference Model of the XML Data Warehouse

3 Hybrid Fragmentation of the XML Data Warehouse

In this section, we detail the three main phases of our hybrid fragmentation
approach. For the remaining sections, letters E, T and D refer respectively to,
the set of the names of distinct XML elements, the set of names of distinct
XML attributes and the set of distinct data values. A represents the XML data
warehouse modeled by the flat model and W is the workload executed on A.
We use in our approach the two concepts of the XPath expression (Definition 1)
and the selection predicate (Definition 2).

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 73

Definition 1. A path expression EC is a sequence root/e1/.../ {en|Qak}, with
{e1,...,en} € E and Qay, € T. The expression EC may contain the symbol '*’
which indicates an arbitrary element of E, the symbol ’//” indicating a sequence
of elements e;/.../e; such asi < j and the symbol ’[i]’ which indicates the position
of the element e; in the XML tree [7].

Definition 2. A selection predicate is defined by the expression Pred; := P
0 value | ¢, (P) 0 value | ¢p(P) | Q, with P a terminal XPath expression,
0e{=<,><,2>#}, value € D, ¢, is an XPath function, that returns values
in D, ¢y is a Boolean function and Q denotes an arbitrary XPath expression [7].

3.1 Vertical Fragmentation Based on XPath Expressions

We define the vertical fragmentation of XML data warehouse A, by partitioning
its structure into K vertical fragments V Fy, ...,V F. Each fragment is a projec-
tion of a set of XPath expressions frequently accessed by the workload. In this
phase we proceed by:

Extraction of XPath Expressions. Each XQuery query belonging to W
is in conformity with the basic syntax of the FLWOR expression (For, Let,
Where, Order by, Return) [29]. For each query, we perform a syntactic analysis
by clause and we extract all its XPath expressions. Thus we identify the overall
set of XPath expressions FC used by the workload W.

XPath Expressions-Queries Usage Matrix (XPQUM). Defines the use
of each XPath expression by the set of queries. We create in X PQU M , a line @
for each XPath expression EC; € EC' and a column j for each query Qj € W.
If the query Q; use EC;, then XPQUM (i,j) =1, else XPQUM (¢,5) = 0.

Vertical Fragmentation. In this step, we use the K-Means classification algo-
rithm [18] (the choice of K-Means is justified by its simplicity and rapidity) to
partition the set of XPath expressions into subsets (classes) that present a usage
similarity by queries. With the X PQU M matrix as classification context and an
integer K indicating the number of vertical fragments, the K-Means algorithm
generates K disjoint classes of XPath expressions. The XPath expressions of the
class C; describe the structure of the vertical fragment V F; and the set of frag-
ments VF; (i = 1...K) defines our vertical fragmentation schema noted VFS.
After this partitioning (fragmentation), we assign every query to the vertical
fragments needed to its processing. We formalize this assignment as following:
Let:

— C1,Cs, ..., Cf the sets of XPath expressions defining respectively the vertical
fragments VF, V Fy, ...,V F},

— SQ; is the set of query assigned to V Fj,

— d is the number of queries requiring join operations in V F'S schema,

— A the set of XPath expressions used by the query @,

74 M. Kechar and S.N. Bahloul

Then

1. If A C C; then SQ; + SQ; U {Q]}
2. I AC (CoU...UC,) then SQu « 5Qu U {Q;},.,5Q, « 5Q, U {Q;} and
d<d—+1.

In case (2), the processing of the query @, requires a join operations between the
vertical fragments V Fy, ..., VF,. These join operations are among the causes of
performance deterioration. For this fact, we minimize the number of join queries
(the d number) appearing in the vertical fragmentation schema V F'S. We vary
N times the value of the number K of vertical fragments (N is random integer)
and for each value, we generate a vertical fragmentation schema. Among these
N schemas, we select the optimal according to the following rule:

Rule.1. A vertical fragmentation schema is optimal if and only if it contains
a minimum of queries requiring join operations between the vertical fragments.
Formally:

VFS; is optimal =Vj € [1.N],3i € [1.N] / (di <dj) with i#j . (1)

d; is the number of join queries in the fragmentation schema V F'S;.

Then for each vertical fragment VF; € VIES;, we create a vertical script
V'S; represented by a XQuery query. The execution context (the clause for)
of this query is the XML data warehouse A and its clause return represents
the projection of all XPath expressions belonging to C;. The selected vertical
fragmentation schema is the final result of this first phase as represented by the
Fig.2.

In the next section we detail the horizontal fragmentation of each vertical
fragment belonging to this schema.

3.2 Horizontal Fragmentation Based on Selection Predicates

In the second phase of our hybrid fragmentation, we fragment horizontally
the XML data of each vertical fragment VF; into L horizontal fragments
FH;,....FH;;,. The following steps are executed for each vertical fragment as
represented by the Fig.3.

Extraction of Selection Predicates. We perform a syntactical parsing of
the where clause of each query belonging to the set SQ; (the set of queries
assigned to the vertical fragment V F;). This parsing allows us to extract the set
of selection predicates noted PS;.

Selection Predicates-Queries Usage Matrix (SPQUM). It defines the
use of selection predicates of PS; by the queries of SQ;. The SPQUM lines
correspond to the selection predicates and its columns represent queries. if the
predicate p,, exists in the where clause of the query @, then SPQUM (z,y) = 1,
else SPQUM (x,y) = 0.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 75

Data Warehouse
model

Wotkload
W={Q102,....Ch}

O O ECE T O C O OCETOCETOCETCET T
LSS SIS SIS SIS SIS SIS

2 - ;
1 Extraction of XPath expressions from W oo
e e s e
9 AR

///////////////////////////////////é E//
O PSP OO SO PO SOOI
S E S EE S S E S EE S,

. - ; .
«| HPath Expressions-COuenes Usage Matrix [reoveravenacnine
% et 0 A I SOOI I8 000

OO

B
n

”
/////////////////////////////////ﬁ 5///////////////////////////////////// Z
e veveer] Numberof .
i : - 5 e . .
) Vertical Fragmentation Using K-Means vertical .
i P Praments ()
s S Age: vy
.

B, | P PP PP O OO OO OO

B
1
1
1
1
1

Fig. 2. Vertical fragmentation of the XML data warehouse

Horizontal Fragmentation. Using the K-Means algorithm, we group into
classes the selection predicates that present a usage similarity by queries. Speci-
fying the number L of the horizontal fragments, the algorithm partitions the set
of the selection predicates of the MU PSR matrix in L disjoint classes represent-
ing the horizontal fragmentation schema noted HF'S;. The selection predicates
of each class Cj; (¢ the index of the vertical fragment and j = 1..L) define the
XML data of the horizontal fragment F H;;. According to this partitioning, we
assign each query belonging to S@Q; to the horizontal fragments needed to its
processing as follows:

Let:

— Qn € SQq,

— Ci1,Cio, ..., C;p, are the sets of selection predicates corresponding to the hor-
izontal fragments FH;1, FH;o, ..., FH;p.

— PSQyp, the set of the selection predicates used by the query @y,

d" the number of queries requiring union operations between F H,;,

— SQ;; the set of queries assigned to the fragment F H;;

Then
1. If PSQ;L - Cij then SQU — SQZ] @] Q}L.

2. if PSQh - (Cm U..u Czy) then SQW — SQ” U {Qh},,Ssz — Ssz U
{Qnyand d «—d +1.

In the case (2), the processing of the query Q},, requires the union of the horizon-
tal fragments F'H;y, ..., F'H;y. In order to reduce these union operations, we vary
N’ times the value of the number of horizontal fragments L and we generate a
horizontal fragmentation schema for each value. Among these N ' fragmentation
schemas, we select the best according to the following rule:

76 M. Kechar and S.N. Bahloul

Rule.2. An horizontal fragmentation schema noted H F'S is optimal if and only if
it contains a minimum of queries requiring union operations between horizontal
fragments

HFS; is optimal =Vj € [1..N’] ie {1..N’} / (d; < d;.) with i % j. (2)

d; is the number of union queries in the fragmentation schema HF'S;.

For each horizontal fragment HF;; € HF'S;, we create a horizontal script
HS;; represented by a XQuery query. The execution context (the clause for) of
this query is the vertical fragment V' F; and its where clause is the disjunction
between the selection predicates belonging to Cj;.

At the end of these two phases, we generate an XML document containing
the hybrid fragmentation schema noted HDF'S. For this, we merge each vertical
fragment V' F; € VFS with its horizontal fragments belonging to HF'S;.

V[CLB0

¥

K

o1 of Select 4 & R
= AR Q L R e
S E ac tl on g S clec t 100 P Te ¢ at £3 o S] S R
e PNV
] [

\\\

R e

.'/

N N . . A
SRR] Q i St
Wy Selection Predicates-Quenes Usage Ma e
i AR
P) ["
A A A n] Hirberof e
e B "
1 Horizontal Fragmentation Using K-Means horimetal e
e o "
s woarosy] fragments (L) Lo
] ["
EPUTTVAR I \

"

BA

4

Fepeat foreach VFiE VEF S, (1=l

T T TR T T T T T TR T T T T T B T T T S e T
e B

Fig. 3. Horizontal fragmentation of each vertical fragment

3.3 Query Processing on the Fragmented Data Warehouse

The access to the XML data, after fragmentation, should be transparent to
the users of the warehouse. To ensure transparency, query processing must be
performed on fragmented XML data warehouse. For this, we rewrite the queries
according to their assignments carried out during the previous two phases. For
each query of the workload:

1. We run through the hybrid fragmentation schema (the XML document) and
we identify all fragments needed to its processing.

2. In its execution context, we replace the unfragmented data warehouse by the
already identified fragments.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 7

3. If it requires join operations between fragments, we adjust its where clause
by adding a join qualifications.

4. If it requires union operations between hybrid fragments, we add to its clause
for the XQuery function distinct-deep which removes the duplicate XML
data from its result.

In order to prove the effectiveness of the hybrid fragmentation detailed in the
previous sections, we have conducted various evaluations that we present in the
following section.

4 Experimental Studies

4.1 Experimental Conditions

We have conducted our evaluations under Oracle Berkeley DB XML[12] (an
XML native database allowing the storage of voluminous XML documents and
implements the XQueryl.0 queries execution engine). We have used the XML
dataset from the XML Data Warehouse Benchmark (XWB) proposed in [21].
Modeled with a star schema, the XML data warehouse of the XWB contains
the sales facts characterized by the measures: quantity of purchased product
and amount of purchased product. These facts are analyzed by the dimensions:
products, consumers, suppliers and time. While respecting the definition of flat
model (Sect.2), we have merged the facts and dimensions into a single XML
document representing our data warehouse. As a programming language, we
have used the Java language to implement our hybrid fragmentation algorithm in
which we have used the K-Means' library. The machine used for our experiments
is equipped with a Intel Pentium processor and 02 GB of main memory.

4.2 Experimental Assessment and Analysis

In order to prove the effectiveness of our hybrid fragmentation algorithm, we have
performed various experiments. In the first, we have used a XML data warehouse
composed of 2000 facts and we have (i) calculated the global response time of 19
queries executed on the original XML data warehouse, (ii) fragmented this data
warehouse into 02 vertical fragments V F; and V Fy, (iii) calculated the global
response time of the same queries on the vertically fragmented data warehouse.
In the second experiment, we have (i) fragmented respectively VF; and V Fy
into 04 and 06 horizontal fragments (ii) calculated the global response time of
the 19 queries on the new hybrid fragments. Figure 4, summarizes the results
of this two experiments, and the Fig.5 shows the details of the queries response
time before fragmentation, after the vertical fragmentation, and after the hybrid
fragmentation.

According to the results shown in Fig.4, and compared to the unfragmented
XML data warehouse, we observe that the vertical fragmentation improves the

! https://www.hepforge.org/downloads/jminhep/

https://www.hepforge.org/downloads/jminhep/

78 M. Kechar and S.N. Bahloul

global response time of the workload to 30%. As against, the global response
time of the same workload is improved to 82% after applying the hybrid frag-
mentation on the XML data warehouse. The detailed results shown by the Fig.5,
allows us to see clearly the effect of the hybrid fragmentation on queries response
times. Indeed, after a vertical fragmentation of the data warehouse, the process-
ing of the queries Q3, @5, Q7, Qo, Q11,Q14, and @15, requires a join operation
between the two vertical fragments V F; and V F,. Their response time have not
been improved, on the contrary we notice a significant deterioration in the per-
formances of the queries 7, Q14, and Q15. However, only the response times of
the queries requiring a single vertical fragment V F; or V Fy, have benefited from
some improvement. But after the hybrid fragmentation, we observe a meaning-
fully enhancement in the response time of each query, in particularly join queries,
that which proves the effectiveness of our hybrid fragmentation algorithm.

[MBforeFragmentation @ After Vertical Fragmentation @ After Hybrid Fragmentation

3000000
100%

2500000

69,78%

2000000

1500000

1000000

Global response Time (V5)

500000

Workload

Fig. 4. Global response time of the workload on 2000 facts

In the Third experiment, we have applied our hybrid fragmentation algorithm
on three XML data warehouses of different sizes: 2000, 4000, and 8000 facts. We
have fragmented each data warehouse according to the same previous hybrid
fragmentation schema and we have calculated the global response time of 19
queries before and after fragmentation on each data warehouse. The obtained
results shown by the Fig.6, confirm that our hybrid fragmentation always guar-
antee an improvement of the performances even after the increase of the size of
the XML data warehouse.

Indeed, fragmenting XML data warehouse by our algorithm allows us to:

1. Group in hybrid fragments (XML documents) the XPath expressions (verti-
cal fragmentation) and the XML data (horizontal fragmentation) needed in
processing queries.

2. Generate fragments of small sizes compared to the size of the unfragmented
data warehouse.

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm

79

— # —Before Fragmentation -~

800000

--0--+ After Vertical Fragmentation

——#-- After Hybrid Fragmentation

700000

600000

300000

400000

300000

Response times (Ms)

200000

100000

04

9 10

Queries

Fig. 5. Response time by query

10000000

MBefore Fragmentation BAfter Fragmentation

8000000

8000 Facts

& 8000000

7000000

6000000

5000000

4000 Facts

4DD0DOD0

Response time (M:

3000000

2000 Facts

2000000

1000000

]

=

‘Workload

Fig. 6. Response time of the workload on different sizes of data warehouses

The first point, allows us to improve the search time of the XML data to satisfy
a query. On the other side, the second point, allows us to improve the time needed
to browse the XML structure of the unfragmented data warehouse to search
data. According to these two points, we justify the performances improvement

provided by our hybrid fragmentation algorithm.

5 Conclusion

The processing time of the decision-support queries on an XML data warehouse
is quite high especially on a large volume of XML data. However, minimizing this

80 M. Kechar and S.N. Bahloul

processing time significantly contributes to the improvement of decision-making
process. In this context, we proposed a new fragmentation approach of XML data
warehouse called hybrid fragmentation. Firstly, we introduced the different mul-
tidimensional models of XML data. Based on several evaluations conducted be-
tween these models, we have chosen the flat model as a reference model to repre-
sent the XML data warehouse. Then, we detailed our hybrid fragmentation algo-
rithm in which we combined a vertical fragmentation based on XPath expressions
with a horizontal fragmentation based on the selection predicates. In our approach
we used the K-Means algorithm to control the number of fragments and generate
a fragmentation schema offering more improvement of performance. Finally, we
conducted various experiments to prove the validity of our algorithm. The results
obtained allowed us to confirm the effectiveness of our proposed hybrid fragmenta-
tion. In future work, we plan to conduct an experimental comparison between the
fragmentation algorithms proposed in [9] and [22], and our hybrid fragmentation
algorithm.

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal par-
titioning into automated physical database design. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, SIGMOD 2004,
pp. 359-370. ACM, New York (2004),
http://doi.acm.org/10.1145/1007568.1007609

2. Baio, F., Mattoso, M.: A mixed fragmentation algorithm for distributed object
oriented databases. In: Proc. of the 9th Int. Conf. on Computing Information,
pp. 141-148 (1998)

3. Bellatreche, L., Bouchakri, R., Cuzzocrea, A., Maabout, S.: Horizontal partitioning
of very-large data warehouses under dynamically-changing query workloads via
incremental algorithms. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC 2013, pp. 208-210. ACM, New York (2013),
http://doi.acm.org/10.1145/2480362.2480406

4. Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data ware-
houses: Hardness study, heuristics and ORACLE validation. In: Song, I.-Y., Eder,
J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87-96. Springer,
Heidelberg (2008)

5. Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal class partitioning in
object-oriented databases. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308,
pp. 58—67. Springer, Heidelberg (1997),
http://dl.acm.org/citation.cfm?id=648310.754717

6. Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and support for horizontal
class partitioning in object-oriented databases. Distrib. Parallel Databases 8(2),
155-179 (2000), http://dx.doi.org/10.1023/A: 1008745624048

7. Berglund, A., Boag, S., Chamberlin, D.: andez, M.F.F.: Xml path language (xpath)
2.0, 2nd edn. (December 2010)

8. Boucher, S., Verhaegen, B., Zimanyi, E.: XML Multidimensional Modelling and
Querying. CoRR abs/0912.1110 (2009)

http://doi.acm.org/10.1145/1007568.1007609
http://doi.acm.org/10.1145/2480362.2480406
http://dl.acm.org/citation.cfm?id=648310.754717
http://dx.doi.org/10.1023/A:1008745624048

Hybrid Fragmentation of XML Data Warehouse Using K-Means Algorithm 81

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Boukraa, D., Boussaid, O., Bentayeb, F.: Vertical fragmentation of XML data ware-
houses using frequent path sets. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011.
LNCS, vol. 6862, pp. 196-207. Springer, Heidelberg (2011),
http://dblp.uni-trier.de/db/conf/dawak/dawak2011.html#BoukraaBB11
Boukraa, D., Riadh Ben, M., Omar, B.: Proposition d’'un modeéle physique pour
les entrepots XML. In: Premier Atelier des Systémes Décisionnels (ASD 2006),
Agadir, Maroc (2006)

Boussaid, O., BenMessaoud, R., Choquet, R., Anthoard, S.: Conception et con-
struction d’entrepéts XML. In: 2éme journée francophone sur les Entrepots de
Données et I’Analyse en ligne (EDA 2006), Versailles. RNTI, vol. B-2, pp. 3-22.
Cépadues, Toulouse (Juin 2006)

Brian, D.: The Definitive Guide to Berkeley DB XML (Definitive Guide). Apress,
Berkely (2006)

Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.
In: Proceedings of the 1982 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 1982, pp. 128-136. ACM, New York (1982),
http://doi.acm.org/10.1145/582353.582376

Dimovski, A., Velinov, G., Sahpaski, D.: Horizontal partitioning by predicate ab-
straction and its application to data warehouse design. In: Catania, B., Ivanovi¢,
M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 164-175. Springer,
Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1885872.1885888
Elhoussaine, Z., Aboutajdine, D., Abderrahim, E.Q.: Algorithms for data ware-
house design to enhance decision-making. WSEAS Trans. Comp. Res. 3(3), 111-120
(2008), http://dl.acm.org/citation.cfm?id=1466884.1466885

Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources.
In: Proceedings of the 4th ACM international workshop on Data warehousing and
OLAP, DOLAP 2001, pp. 40-47. ACM, New York (2001),
http://doi.acm.org/10.1145/512236.512242

Hiimmer, W., 0004, A.B., Harde, G.: XCube: XML for Data Warehouses. In:
DOLAP, pp. 33-40 (2003)

MacQueen, J.: Some Methods for Classifcation and Analysis of Multivariate Ob-
servations. In: Proceeding of Fifth Berkley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281-296 (1967)

Kimball, R.: A dimensional modeling manifesto. DBMS 10, 58-70 (1997),
http://portal.acm.org/citation.cfm?id=261018.261025

Mahboubi, H., Aouiche, K., Darmont, J.: Un index de jointure pour les entrepdts
de données xml. In: 6émes Journées Francophones Extraction et Gestion des Con-
naissances (EGC 2006), Lille. Revue des Nouvelles Technologies de I'Information,
vol. E-6, pp. 89-94. Cépadués, Toulouse (2006)

Mahboubi, H., Darmont, J.: Benchmarking xml data warehouses. In: Atelier Syst
emes Décisionnels (ASD 2006), 9th Maghrebian Conference on Information Tech-
nologies (MCSEAI 2006), Agadir, Maroc (December 2006)

Mahboubi, H., Darmont, J.: Data mining-based fragmentation of xml data ware-
houses. In: DOLAP, pp. 9-16 (2008)

Mahboubi, H., Darmont, J.: Enhancing xml data warehouse query performance by
fragmentation. In: Proceedings of the 2009 ACM Symposium on Applied Comput-
ing, SAC 2009, pp. 1555-1562. ACM, New York (2009),
http://doi.acm.org/10.1145/1529282.1529630

Navathe, S.B., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for
initial distributed database design. Journal of Computer and Software Engineer-
ing 3(4), 395426 (1995)

http://dblp.uni-trier.de/db/conf/dawak/dawak2011.html#BoukraaBB11
http://doi.acm.org/10.1145/582353.582376
http://dl.acm.org/citation.cfm?id=1885872.1885888
http://dl.acm.org/citation.cfm?id=1466884.1466885
http://doi.acm.org/10.1145/512236.512242
http://portal.acm.org/citation.cfm?id=261018.261025
http://doi.acm.org/10.1145/1529282.1529630

82

25.

26.

27.

28.

29.
30.

M. Kechar and S.N. Bahloul

Ozsu, M.T.: Principles of Distributed Database Systems, 3rd edn. Prentice Hall
Press, Upper Saddle River (2007)

Pokorny, J.: XML Data Warehouse: Modelling and Querying. In: Proceedings of the
Baltic Conference, BalticDB&IS 2002, vol. 1, pp. 267—280. Institute of Cybernetics
at Tallin Technical University (2002),
http://portal.acm.org/citation.cfm?id=648170.750672

Rusu, L.I., Rahayu, J.W., Taniar, D.: A methodology for building xml data ware-
houses. IJDWM 1(2), 23-48 (2005)

Rusu, L.I., Rahayu, W., Taniar, D.: Partitioning methods for multi-version xml
data warehouses. Distrib. Parallel Databases 25(1-2), 47-69 (2009),
http://dx.doi.org/10.1007/s10619-009-7034-y

Walmsley, P.: XQuery. O’Reilly Media, Inc. (2007)

Zhang, Y., Orlowska, M.E.: On fragmentation approaches for distributed database
design. Information Sciences - Applications 1(3), 117-132 (1994),
http://www.sciencedirect.com/science/article/pii/1069011594900051

http://portal.acm.org/citation.cfm?id=648170.750672
http://dx.doi.org/10.1007/s10619-009-7034-y
http://www.sciencedirect.com/science/article/pii/1069011594900051

Do Rule-Based Approaches Still Make Sense
in Logical Data Warehouse Design?

Selma Bouarar, Ladjel Bellatreche, Stéphane Jean, and Mickaél Baron

LIAS/ISAE-ENSMA, Poitiers University, France
{selma.bouarar ,bellatreche, j ean,baron}@ensma fr

Abstract. As any product design, data warehouse applications follow
a well-known life-cycle. Historically, it included only the physical phase,
and had been gradually extended to include the conceptual and the log-
ical phases. The management of phases either internally or intranally
is dominated by rule-based approaches. More recently, a cost-based ap-
proach has been proposed to substitute rule-based approaches in the
physical design phase in order to optimize queries. Unlike the traditional
rule-based approach, it explores a huge search space of solutions (e.g.,
query execution plans), and then based on a cost-model, it selects the
most suitable one(s). On the other hand, the logical design phase is still
managed by rule-based approaches applied on the conceptual schema. In
this paper, we propose to propagate the cost-based vision on the logical
phase. As a consequence, the selection of a logical design of a given data
warehouse schema becomes an optimization problem with a huge space
search generated thanks to correlations (e.g. hierarchies) between data
warehouse concepts. By the means of a cost model estimating the over-
all query processing cost, the best logical schema is selected. Finally, a
case study using the Star Schema Benchmark is presented to show the
effectiveness of our proposal.

1 Introduction

Over the last four decades, databases (DB) technology has evolved constantly to
satisfy the growing needs of applications built around it, whether in terms of data
volume or technology trends. Once the DB technology became mature, a design
life-cycle of DB-based applications, has emerged. The definition of this life-cycle
has undergone several evolutionary stages before being accepted as it stands
actually. In fact, the first generations of DB systems can be summarized in one
phase: the physical design. Physical data independence has become thereafter a
necessity because a DB-based application is never written in stone from the first
draft, but requires several updates. To do so, the need of a much more thorough
analysis arises, which leads to insulate the analysis task from the physical design,
so that it becomes a step of its own: the conceptual design. It consists of a model-
based data representation while ensuring what we call the data abstraction. This
latter evolution resulted in the three-tier architecture ANSI/SPARC [19] that
clearly distinguishes the conceptual schema from the internal (physical) one.

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 83-96, 2014.
© Springer International Publishing Switzerland 2014

84 S. Bouarar et al.

This schema-insulation has implied a mapping phase between the two abstraction
levels, named the logical design. Pioneer in this Field, Codd [8] has proposed the
relational model, a mathematical abstraction of DB content in the 70s. Since then
several models have been introduced namely Object-oriented, multi-dimensional,
XML etc.

By examining the current DB design life-cycle, we found out that either the
inter- or intra- phases tasks is managed by means of rules. At the conceptual
level, for instance, business rules have been applied to generate the conceptual
schema [10,16]. In the logical phase, some fixed rules like the type of applied
normal forms, grouping or not dimensional hierarchies in a single dimensional
table (star schema), etc. are applied. Rule-based optimization has been largely
used in the physical design to optimize queries. It has been supported by most
of commercial database systems [11,4]. This optimization applies a set of rules
on a query tree in order to optimize it. Pushing down selections and projections
is one of the most popular used rules. Rule-based approaches are also applied
to pass from one phase to another. For instance a logical model is obtained by
translating a conceptual model using child and parent relationships.

The rule-based approach has shown its limitations in the physical phase since
it ignores the parameters of database tables (size, length of instances, etc.), se-
lectivity factors of selection and join operations, the size of intermediate results,
etc. These parameters have a great impact on the query evaluation cost. As
a consequence, it has been substituted by a cost-based approach. At first, the
cost approach considers a wide search space of solutions (e.g. query plans), then
based on a cost-model, the most suitable one(s) is/are selected using advanced
algorithms (e.g. dynamic programming). Driven by the success of cost-based
physical design, and the modest attention paid to the logical [13], we propose
to transpose the cost-based aspect into the logical modelling and to change the
one-logical model vision. To achieve that, we propose to exploit the correla-
tions between life-cycle objects (entities, attributes, instances, etc.). In this vein,
several recent research efforts have focused on exploiting these correlation to
improve performance, to name but a few, Agrawal et al. [2] have exploited the
similarity interaction between materialized views (M) and indexes to improve
the physical phase. Kimura et al. [12] have implemented the project CORADD,
where they exploited the correlations linking the attributes to define M) and
indexes. This latter project has motivated us to exploit the correlations in favor
of DB logical design.

In this paper, we focus on how to exploit the correlations in the definition
of a cost-based logical model in the context of data-warehouses (DW). A cost-
based approach has a sense if the logical phase is associated to research space
representing a large number of logical model schemes. To do so, we fix three
main objectives: (i) identification the concepts and properties sensitive to cor-
relations. To satisfy this objective, we propose to use ontologies due to their
strong similarities with conceptual models and their capability of represent-
ing the correlations (availability of formal languages such as description logic)
and their ability of reasoning on them. (ii) The definition of a cost model that

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 85

corresponds to a predefined metric to select the best logical model schema. We
consider the query processing cost as a metric. (iii) The development of a query
rewriting process to support the change of the logical schema.

The paper is organized as follows: Section 2 shows a thorough analysis of
the correlations. In Section 3, we focus on how to choose (theoretically and
empirically) the appropriate DW logical schema. As for Section 4, a case study
validating our proposal is detailed, to finally conclude in Section 5.

2 Exploration of Correlations

The purpose of this section is to highlight what we believe to be the key concepts
in the design process of any information system: correlations (A.K.A: integrity
constraints, dependencies, relationships) linking classes, properties.

2.1 Types of Correlations

Fig.1 provides an overview of an ontology covering the domain of the Star Schema
Benchmark SSB, which is used further down for our experiments, and right be-
low to illustrate the different types of existing correlations that we have identified
and classified that way:

— Definition/equivalence relations or Generalization (DEF'): when concepts/r-
oles are defined in terms of other concepts/roles. E.g. a Supplier is a
TradeAgent that Supplies a Lineltem.

— Inclusion dependencies or Specialization (ID) Also called is-a relation or sub-
sumption: it occurs when a concept/role is subsumed by another concept /role.
E.g. Customer subsumes TradeAgent. When it concerns attributes, there is
another application of this type: the notion of foreign keys, which states that
the domain of one attribute must be a subset of the other correlated attribute.

phccias H Order H Lineltem
= orderkey = orderkey
i oLUE Lt = lineNumber H Date
[| = totalPrice concern & ity = DATEKEY
_ = date = Rt = DAYOFWEEK
= pricrity 1.7 | = discount = MONTH
= clerck I i = SELLINGSEASON
3 customer H supplier = ship-priority \ belangs = returnFlag = YEAR
= custKey = suppKey = COmImEn: ——] = lineStatus = AT
= Mame = name = shipDate = DAYNUMINYEAR
= Addre = address = commitDate = LASTDAYINMONTHFL
= ity =y supply ST = comment = HOLIDAYFL
= Mation = nation = shipmode = WEEKDAYFL
= Region = region © YEARMONTHNUM
=TS e ay = YEARMONTH
= MKTSEGMENT & = DAYNUMINWEEK
1
5 Part [Hservice |[E statement |
':El Locstion |g.1 stockedin 5 panikey } 1 }
= pame
— = migr
= category
o brandl
= color
= type
= sze
© container

Fig. 1. SSB ontology

86 S. Bouarar et al.

— Functional dependencies (CD/FD): CD stands for functional dependencies
between concepts and F'D between attributes. They figure when a set of con-
cepts/roles (or their instances) determine an other set of the same type. E.g.
custKey determines the name of Customer.

— Multi-valued dependencies (M D) or soft dependencies: specific to attributes,
it is a generalization of the functional dependencies. Formally, the difference
between the two is the abolition of the determination criterion, in other words,
to a value set, we can associate more than one value set of the same type.
Examples are given in §. 3.3.

— Conditional Integrity constraints (CIC): specific to attributes, they denote
the DB integrity constraints (algebraic or semantic)® involving more than one
attribute [17] and holding on instances of the relations. Note that definitions
and dependencies are considered as simple integrity constraints which are
valid on entire relations, contrary to conditional ones where the correlation
is accompanied with condition(s) that must be respected. This latter aspect
moves the application level from attribute range level to attribute values level.
In other words, only a subset of the member attributes domain is involved (re-
duced range). E.g. Customer. City=Paris— Lineltem.discount > 20%. We dis-
tinguish two main categories: (i) conditional functional dependencies (C'F D)
[6] whereby the (F'D) has to hold on a subset of the relation (a set of tuples)
that satisfies a specific attribute pattern ([Customer.city=London,Customer.
name]— [Customer.phone]), rather than on the entire relation Customer, and
(i) more specifically, association rules that apply for particular values of some
attributes [1] (Part.color="‘red’— Part.size=50).

— Hierarchies (H): specific to attributes, and more present in DWs, where a
set of attributes makes up a dimension hierarchy (e.g. Industry, category,
product). They can be assimilated to the part-whole relationships. The par-
ticularity of this type, is that we could plan the construction of a new class
for each hierarchy level.

2.2 The Role of Correlations throughout the Design Life-Cycle of DB

From the former classification, we can infer the results achieved by exploiting
these correlations throughout the design life-cycle of DB. Those results belong
to either conceptual, logical or physical SDB levels. In more detail:

— Conceptual level: the correlations having impact on the definition of concep-
tual schema are of type: DEF or ID. This impact consists of creating new
concepts/roles (non canonical) when using DEF', or creating subsumption
relationships linking the concepts/roles when using ID.

— Logical level: exploiting correlations of type C' D, F'D or H, has a direct impact
on logical level: data normalization when using F'D or C'D, multidimensional
OLAP annotation, hierarchical OLAP normalization when using H.

— Physical level: a lot of studies have exploited correlations of type M D, ID or
CIC in the definition of the Physical Design Structures (PDS).

1 1C specify conditions/propositions that must be maintained as true (Part.size>0).

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 87

Table 1. Related work on correlations exploitation over the design life-cycle of DW

Studies \ Phases MC ML MP OLAP Other
Anderlik & al. [3] DEF/ID

Roll-up
Stohr & al. [18] H

Fragmentation
Kimura & al. [12] FD/MD
MYV /indexes
Brown & al. [7] cIc
Query optimizer
Agrawal & al. [1] cic
Data-mining
Petit & al. [15] ID/FD ID/FD ID/FD
ER schema Relational schema Reverse engineering

In the light of the foregoing, we believe that any evolution/transition throughout
the design life-cycle of DB can be controlled by correlations. Table 1 shows dif-
ferent studies in this field. In fact, thanks to the formal power of ontologies, and
their strong similarity with conceptual models, we can store correlations (iden-
tified by the DB users notably the designer) right from the conceptual phase.
Afterwards, the transition to the logical level is henceforth based on correlations:
namely the dependencies (C'D, F'D) for DB, and hierarchies for DW, as for the
transition to the physical, it becomes controlled by either M D, ID or CIC'. In-
deed, several studies have shown that DB performance can be vastly improved
by using PDS defined upon correlations, and even more when exploiting the
interaction - generated upon correlations - between these PDS, as is the case
concerning MV and indexes in CORADD[12](see Table 1).

3 Proposed DWW Design Methodology

Readers are reminded that our objective is to take advantage of correlations so
as to set up a cost-based transition from the DWW conceptual phase to the logical
one. Actually, the big interest of DYV community is given to the physical design,
yet while most problems can be solved by fine-tuning the physical schema, some
performance problems are caused by a non-optimized logical schema [9]. In this
vein, design process for DV is based on the multidimensional annotation of the
conceptual model. Currently, the designer selects one logical schema among a
wide variety (star or the snowflake). To ensure a more efficient selection task, we
suppose that we have the DWW semantic multidimensional model in its simple
form, that definitely includes the hierarchies correlations in the form of stored
axioms. These latter will be exploited in defining the different possible logical
schemas (one star and various snowflakes), on which we will apply a cost model,
to choose the most suitable one i.e. the best possible compromise between nor-
malization to ensure space savings and efficient updates, and de-normalization
to improve performance by minimizing and simplifying query joins.

88 S. Bouarar et al.

It is important to highlight the fact that, contrary to what is usually thought,
sometimes a pure star schema might suffer serious performance problems. This can
occur when a de-normalized dimension table becomes very large and penalizes the
star join operation. Conversely, sometimes a small outer-level dimension table does
not incur a significant join cost because it can be permanently stored in a memory
buffer. Furthermore, because a star structure exists at the center of a snowflake, an
efficient star join can be used to satisfy part of a query. Finally, some queries will
not access data from outer-level dimension tables. These queries effectively execute
against a star schema that contains smaller dimension tables. Not to mention the
normalization benefits, and the space gain. Therefore, under some circumstances,
a snowflake schema is more efficient than a star schema[14].

3.1 Explanation of our DWW Design Methodology

Our approach can be described through Algorithm 1. It is processed while tran-
siting to the logical phase, hence, real deployment information not available.
Instead, we exploit the conceptual knowledge: (i) semantics associated with
data (correlations, in our context hierarchies), (ii) semantics associated with
the DB content (table sizes, attribute domains, etc), (iii) semantics associated
with future queries workload. The latter two information are the input of our
cost-model, and they can be deduced while analyzing users’ requirements. In-
deed, we can always have an idea about the load of frequent queries (considering
Pareto principle), and estimate sizes. These information are generally useful to
the assessment of DB processes.

3.2 Generating the Different Possible Logical Schemas

We assume that the input semantic multi-dimensional schema: ZS = {F, D1, Do -
...y Dp}, such as F for ”fact table”, and D;, for dimension tables, and which defi-
nitely include hierarchies between D; attributes (thanks to the semantic aspect),
then:

— each dimension D; having h hierarchical levels, can be decomposed 2"~ times.
e.g. Dim(location) = { Country, Region, Department} = 23! = 4 possibilities
of normalization: (i) each hierarchical attribute in a separate sub-dimension,
(ii) both Country and Region in a separate sub-dimension, and Department
in another, and so on...

— For the whole set of dimensions (D1, Ds, ..., D,,), there will be ?d:l Qha—1
possible schemas. For example, considering 4 dimensions with 3 levels to each
one, there will be 256 alternatives.

This process is accomplished by Algorithm 2. Note that evaluating all possible
combinations seems to be naive, but (i) this evaluation is done once, before
deploying the DW, and optionally with evolution occurrences. Both cases are
long-term tasks, (ii) our algorithm gives results in reasonable time since it would
make non-sense if the granularity of hierarchies is too long (4 max).

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 89

Algorithm 1. The general algorithm of our theoretical approach

Input: DWW semantic multidimensional model (de-normalized form):

IS = {F, D1, D3, ..., Dy }; the query workloads Q = {Q1,Q2, ..., Qm }
Output: DW most suitable logical schema
Generate the different possible logical schemas;

for each generated schema do
Calculate the new sizes of the pre-existing dimensions and the new

sub-dimensions (hierarchical levels);

for each query in the workload do
Rewrite the query conforming to the target schema;
Calculate the query cost using a cost model;

Choose the most suitable schemas i.e. the ones having minimum costs (top-k
set);

Load this latter top-k set into a DW (empirical evaluation), and select the most
adequate schema, i.e. the one having minimum execution times;

Algorithm 2. Algorithm for generating the different possible DW logical
schemas
Input: DWW semantic multidimensional model
Output: A set of the different DW logical schemas
for each dimension table in the input schema do
Generate the tree of the different combinations of hierarchy levels;
for each combination do
Create the new sub-dimension table;
Update the attributes;
Add the current combination into the list corresponding to the current
dimension;

Calculate the Cartesian product of the different hierarchical combinations of
each dimension;

Model-building of the corresponding DWW for each element belonging to the
resulting Cartesian product;

3.3 Calculating the New Table Sizes

After each creation of new dimension/sub-dimension tables during the normal-
ization process, the sizes change systematically. This new information is crucial
to calculate the cost model.

In our approach we deal with two table types: (i) the original dimension
table, and (ii) the newly created sub-dimension tables, knowing that the size
of any table is calculated according to two parameters as follows: Size(T;) =
rowSize x nbRows. Below, we will explore how these parameters will change for
the two table types within every generated logical schema. We distinguish the
following two scenarios:

90 S. Bouarar et al.

The Tables Are at Least in the Second Normal Form (2NF): For the original
dimension table: the number of rows does not change, because we suppose that
the original table is in 2NF, unlike the size of the row, which does indeed, because
there are less attributes than before. So the new size of the concerned dimension
is:

Size(D1;) = Size(D;) — > (Size(Hy)) + Size(arpkx) = nbRows * (rowSize —
> (Size(Hy)) + size(apk)), such that (Hy) denotes the attributes (levels) of
the hierarchy, and apx denotes the foreign key attribute, which will relate the
dimension table to its sub-dimension tables.

For the sub-dimension tables newly created: firstly, the size of the row is the
sum of the attributes’ sizes in the concerned sub-dimension in addition to the
foreign key size (if present):

rowSize =Y (Size(level Attribute;)) + Size(apk). The computation of rows
is more complicated because it depends on the type of correlation between the
attributes forming the hierarchy. We distinguish three main scenarios:

(i) Apart from the hierarchy correlation (H), There is no dependency between
these attributes. In other words, for each value of the higher level attribute
(the whole), there exists uniformly the same values’ domain to the attribute
from the lesser level (the part). A concrete example of such category, is the
simple date hierarchy {year, month, day of week}, where whatever the year
is (respectively, the month), the cardinal of the month values domain is al-
ways equal to 12 (respectively, the cardinal of the day values domain is always
equal to 7). In this case, the number of rows becomes the Cartesian product
of the domain cardinality of every hierarchical attribute of the current level:
nbRows = ([] |domain(level Attribute;)|). Considering just two years, the nu-
merical application gives (2 % 12 % 7) possible combinations.

(ii) Besides the hierarchy correlation (H), there is a functional dependency
(FD)? between attributes. i.e, to one value of the higher level attribute, we
can match values from only a determined set of values of the lesser level at-
tribute. In line with the previous example, we take the more sophisticated date
hierarchy {year, season, month, day}. We notice that the season attribute share
a F'D correlation with the month attribute. Indeed, every season value can be
linked to only three specific month’s values. Let us consider a more concrete
example, where the dependency correlation is fully applied: the location hierar-
chy {continent, country, city} example, in which, to each higher level attribute
value, only a specific set of lesser level attribute values can be associated (e.g.
the continent value: Furope, has it specific set of values of country such as
France, Spain, Germany, etc. different from the values set which can be asso-
ciated for instance to the continent value: America. In this case, the number
of rows is: nbRows = max(|domain(level Attribute;)|). Considering 2 values
of continent, 4 of country and 8 of city, the number of possible rows of this
level is equal to nbRows = max(|domain(level Attribute;)|) = max(2,4,8) = 8.

2 The sets of values of the lesser level attribute, which can be associated to the values
of the higher level attribute, are pairwise disjoint.

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 91

It should be noted that numerical application of the sophisticated date hi-
erarchy {year, season, month, day}, gives considering just 2 years as above:
(2xmax(|domain(level Attribute;)|)*7 = 2+max(|domain(season, month)|)*7 =
2% 12 % 7) possible combinations instead of (2 x4 % 12 % 7).

(iii) As for the last scenario, there exists in addition to the H correlation, a
MD correlation® between those attributes. For example, the following simple
nationality hierarchy: {nationality, spoken languages}, in which two different
nationalities can share the same languages. Thus, the number of rows is approx-
imatively equal to:

nbRows ~ |domain(level Attributegominant)| * (M D). If we consider a M D
correlation between two attributes A and B, such that A is the dominant at-
tribute and B is the dependent one, then §(M D) is the average number of values
that B can have for a value of A(§(M D) < |domain(level Attributedependant)|)-
E.g. we know that: (i) there is a M D correlation between the attributes na-
tionality (A) and spoken language (B), (ii) and we know that generally each
nationality can have on average three possible spoken languages so §(M D) = 3.

It is worth mentioning that this case can be reduced to the first scenario in
extreme cases, where §(M D) is as large as the cardinal of the concerned attribute
domain, in other words, the lesser level attribute sets are completely non-disjoint
(the same).

The Tables are at Least in the First Normal Form (INF): As compared to the
previous case, the original dimension tables, and more precisely, the number
of rows will be affected. Indeed, a given instance of a relation (object) might
need to appear more than once (an attribute is dependent of only a part of
the candidate key) causing a redundancy, which may extend to the cardinal of
the responsible attribute. We can get inspired from the previous scenario, and
define §(Attribute) as the maximal number of values belonging to this attribute
domain, and can be associated to one instance (individual) of the concerned
relation. Or simply suggest that §(Attribute) is equal to the average (half) of
its domain cardinal. In both cases, it is about an overestimated approximation,
where the number of rows becomes: nbRows! = [nbRows/(Attribute)|

It emerges from the foregoing that the designer knowledge of the domain is
fundamental in the determination of table sizes. However, this knowledge is easy
to acquire since it concerns the following parameters: Attribute size (implies
tuple size), attribute domain size, number of tuples of the original tables, cor-
relation type linking the hierarchical attributes and possibly the delta measure.
When conceiving any information system, the designer must have at least an
approximate idea about these values.

3.4 Rewriting the Query Conforming to the Target Schema

The query workload Q@ = {Q1, Qa, ..., Q. } is the set of the more recurrent/intere-
sting queries (any form) to-be/being submitted about the domain in question

3 Where the sets of values of the lesser level attribute are non-disjoint.

92 S. Bouarar et al.

represented by the DWW semantic multidimensional model. These queries will
obviously change according to the underlying schema, for the sheer fact that the
attributes being referenced by the query, can move to another table while break-
ing down the dimensions into hierarchical levels (sub-dimensions). Algorithm
3 describes the query rewriting process. It is important not to confuse this

Algorithm 3. Algorithm for rewriting queries according to the logical
schema
Input: The DWW logical schema and Q = {Q1,Q2, ..., Q@m }
Output: Q = {Q/1,Q/2, ..., QIm }
for each query in the workload do
Extract the attributes from the ”Select” clause;
Find in which new tables of the new DW logical schema (the input), those
attributes are;
Set the new query (Q) ”Select” and ”from” clauses;
Extract the attributes from the ”Where” clause;
Find in which new tables of the new DW logical schema (the input), those
attributes are;
Set the new query (Q/) ”Where” clause, and update its ”from” clause;
Manage the extra-joins resulting from the addition of hierarchies;

rewriting process with query translation problem. In fact, based on a query-
model, we rewrite input queries into the same language, while considering the
same (local) environment.

3.5 Calculating the Query Cost Using a Cost Model

After the rewriting process of queries, we will obtain a set of logical schemas,
and to each schema, a corresponding set of queries. The next step consists in
generating the best execution plan for each query, i.e. the best order of the
relational algebra operators in the query tree, to finally apply the cost model.
This latter is a tool designed to quantify the efficiency of a solution. Such a
tool is useful to evaluate the performance of a solution without having to deploy
it on a DBMS (Simulation), and then to compare different solutions. Our cost
model is based upon the one described in [5], adapted to the context of snowflake
join queries. It estimates the number of inputs/outputs between disk and main
memory while executing each query. It is worth noting that it is about a logical
cost model which may differ from physical ones (DBMS cost optimizers) which,
moreover, are not usually available.

4 Case Study

In order to instantiate the design approach described above, some experiments
are conducted on Oracle DBMS with 8192 as block size, hosted on a server

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 93

machine with 32GB of RAM. We have used the S§B Benchmark with a scale
factor of 100. We have at first proposed its ontology to move up to ontolog-
ical level (Fig.1), where correlation will be saved. There are: H(Customer)
H(Part) * H(Supplier) x H(Date) = 2371 % 2271 % 2371 x 24=1 = 256 possible
logical schemas. Every schema would have 13 characteristics: a size, and 12 costs
values (one for each submitted query). The users’ requirements can intervene at
this stage by possibly indicating which queries are more important than others.
Then according to this information and the sets of results, schemas having the
lower size/execution costs ratio (better compromise) will be chosen.

4.1 Theoretical Evaluation

The SSB load of queries is composed of 4 query flights, each one has on average
3 queries. In order to overcome the large number of studied parameters (what
is generally done by skyline algorithms) that yielded to a pretty complicated
analysis (multi-parameters solutions: 13 parameters for each one), we begin by
analyzing the costs of every query, according to which we pick up the best
schema, then we compare this latter with the star schema and schemas having
the minimum size.

1. Query Flight 1. It has selections on merely one dimension involving the date
hierarchy (year attribute), therefore, minimum costs belong to schemas whose
date dimension is not normalized including the initial one. Otherwise, the cost
is maximum, reporting an average increase of 40% with reference to the star
schema. Note that we mean by average increase () of cost values: the ratio
between the cost of queries execution in the current schema, and their cost
execution in the initial star schema.

2. Query Flight 2. This query type has selections on two dimensions: Supplier
and Part, involving their hierarchies (respectively Location, and category).
Contrary to expectations, we notice that the minimum cost does not belong
to the Star schema, it rather does to every schema whose Part dimension is
normalized using the category hierarchy, such that i/ = i+5and i ¢ 0,1, 2, 3).
This can be explained by the large size gained through this normalization (the
new loaded table is about only 0.01% of the original size, compared to 0.5%
concerning the date normalization), and we can also relate this to the fact
that the hierarchy granularity is small.

3. Query Flight 3. The selections are placed on three dimensions: Date, Customer
and Supplier, involving their hierarchies as well (respectively Customer Lo-
cation, Supplier Location and category). The minimum costs belong to the
original schema, and to the 4th one, where only the Part dimension is nor-
malized. The next nearest cost with an average increase of only 2% belong to
schemas normalized on Customer dimension. Same as previous explanation,
this is due to the size gained by this latter normalization (The new loaded Cus-
tomer Location hierarchy tables are about only 0.006% of the original size),
compared with the size gained through the Supplier normalization (0.12% of
the initial size), or the date one (0.5%).

94 S. Bouarar et al.

4. All dimensions are involved. The costs are significantly different from a query
to another as detailed below:

— The first query (Q4.1) uses mainly Date, Customer and Supplier hierar-
chies. The minimum costs belong to schemas where either Part or Date or
both, are normalized, and the next nearest cost having an average increase
of 15% comes with the normalization of Customer dimension. Unlike the
previous case (where Date and Customer are requested by the two main
operations: join, and selection) Date gets ahead of Customer because here,
it is not used in the selections (used only in the join) contrary to Customer
which is used in both operations.

— The second query (Q4.2) uses mainly Date, Customer and Supplier hierar-
chies in both operations. The minimum costs belong to the original schema,
and to the 4th one, where only the Part dimension is normalized. As ex-
pected, the next nearest cost having an average increase of 9% is when
the Customer is normalized, and then comes the Supplier normalization
with an increase of 39%, and finally the date normalization with entirely a
double cost value.

— The third query (Q4.3) uses all possible hierarchies in both operations,
which explains the fact that the star schema is the unique schema which
owns the minimum cost. Then, logically, comes the schema where the Part
dimension is normalized with an increase of 0.4%, and right after the
schema where Customer dimension is normalized (1%), and then when
the Supplier is normalized too (49%), and finally the Date (92%).

We have noticed that the 4th schema (where only Part dimension is normalized)
is providing almost the best costs to all queries as illustrated in Fig. 2.

4.2 Empirical Evaluation and Results Analysis

After the theoretical pass, we pick up the schemas selected as the best ones dur-
ing the later step, and we deploy them on Oracle DBMS (Empirical pass). The
deployment consists in distributing the original real data over the tables of the
current normalized schema while loading them into the DW. Fig. 3 illustrates
a comparison of the execution times of SSB queries submitted to the original
schema with those submitted to the 4h schema. The results depicted in Fig. 3
are expected to be similar to those depicted in Fig. 2. Although the results are
not broadly identical, they still are coherent. Coherent in that they keep which
schema is better than the other in execution of queries: the queries)2, Q4 are
executed faster when submitted to the 4th schema, the same goes for Q3 which is
executed slightly faster. As for 1, it is quickly executed when submitted to the
original schema. These facts are true to some extent, no matter what evaluation
type we have used (theoretical based on the cost model, or empirical using the
real DBM S). However, the results are not identical due to the overstatement of
some queries costs 2, @3, Q4. That difference may be explained by the number

Do Rule-Based Approaches Still Make Sense in Logical DW Design? 95

Vo

il
|

Qi1 Q12 @21 Q22 Q23 Q31 Q32 QI3 QI4 Qa1 Q42 Q43

Fig. 2. Queries costs in the 4thschema Fig. 3. Execution Time on Oraclel1G
(4th schema)

of joins contained in the concerned queries. Indeed, @2, Q3, Q4 queries have
several joins, which must be ordered. We justify this costs overstatement by our
chosen scheduling technique which is based on dimensions’ share value [5].

The schemas generation and their cost-based evaluation has been executed in
less than 4 seconds. The reader may consider the results obtained by the SSB
case study not convincing enough, because of the modest gain, obtained from
hierarchies exploitation when generating the DW logical schema, in terms of
size and execution times of SSB queries. We remind that this methodology is
context-dependent. In fact, the small sizes of the dimension tables of SSB
were not in favor of our methodology. On the other hand, snowflake queries can
be optimized. However, there are definitely a lot of cases where the gain could
be much more important.

5 Conclusion

In this paper, we showed how to exploit the different relationships between on-
tological concepts and properties such as functional dependencies, hierarchy re-
lationships between properties, etc along DB life-cycle. To do so, we proposed
to integrate these correlations in domain ontologies that recently contribute
in designing semantic data warehouses. Through this paper, we want to start a
debate to give more importance to the logical phase as we did for the physical
phase. To perform a good logical phase, we proposed a mathematical cost model
that evaluates the execution cost of queries workload. Extensive experiments
have been conducted using this cost model and the obtained results are imple-
mented on Oraclel1G to show the efficiency and effectiveness of our proposal.

Currently, we are studying the process of selecting physical optimization struc-
tures by varying the logical models. Another important direction comnsists in
proposing a generic approach which starts from fully denormalized schema (one
flat table) to fully normalized one, even splitting wide fact tables.

96 S. Bouarar et al.
References
1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

databases. In: VLDB, pp. 487499 (1994)

Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in sql databases. In: VLDB, pp. 496-505 (2000)

Anderlik, S., Neumayr, B., Schrefl, M.: Using domain ontologies as semantic di-
mensions in data warehouses. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012.
LNCS, vol. 7532, pp. 88-101. Springer, Heidelberg (2012)

Becker, L., Giiting, R.H.: Rule-based optimization and query processing in an
extensible geometric database system. ACM Trans. Database Syst. 17(2), 247-303
(1992)

Bellatreche, L., Boukhalfa, K., Richard, P., Woameno, K.Y.: Referential horizontal
partitioning selection problem in data warehouses: Hardness study and selection
algorithms. IJDWM 5(4), 1-23 (2009)

Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: ICDE, pp. 746-755 (2007)

Brown, P.G., Hass, P.J.: Bhunt: Automatic discovery of fuzzy algebraic constraints
in relational data. In: VLDB, pp. 668-679 (2003)

Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377-387 (1970)

Golfarelli, M., Rizzi, S.: Data warehouse testing: A prototype-based methodology.
Information and Software Technology 53(11), 1183-1198 (2011)

Herbst, H.: Business Rule-Oriented Conceptual Modeling. Contributions to Man-
agement Science. Physica-Verlag HD (1997)

Hong, M., Riedewald, M., Koch, C., Gehrke, J., Demers, A.: Rule-based multi-
query optimization. In: EDBT, pp. 120-131. ACM, New York (2009)

Kimura, H., Huo, G., Rasin, A., Madden, S., Zdonik, S.: Coradd: Correlation aware
database designer for materialized views and indexes. PVLDB 3(1), 1103-1113
(2010)

Marchi, F.D., Hacid, M.-S., Petit, J.-M.: Some remarks on self-tuning logical
database design. In: ICDE Workshops, p. 1219 (2005)

Martyn, T.: Reconsidering multi-dimensional schemas. SIGMOD Rec. 33(1), 83-88
(2004)

Petit, J.-M., Toumani, F., Boulicaut, J.-F., Kouloumdjian, J.: Towards the reverse
engineering of denormalized relational databases. In: ICDE, pp. 218-227 (1996)
Ram, S., Khatri, V.: A comprehensive framework for modeling set-based business
rules during conceptual database design. Inf. Syst. 30(2), 89-118 (2005)

Rasdorf, W., Ulberg, K., Baugh Jr., J.: A structure-based model of semantic in-
tegrity constraints for relational data bases. In: Proc. of Engineering with Com-
puters, vol. 2, pp. 31-39 (1987)

Stohr, T., Martens, H., Rahm, E.: Multi-dimensional database allocation for par-
allel data warehouses. In: VLDB, pp. 273-284 (2000)

Tsichritzis, D., Klug, A.C.: The ansi/x3/sparc dbms framework report of the study
group on dabatase management systems. Inf. Syst. 3(3), 173-191 (1978)

High Parallel Skyline Computation
over Low-Cardinality Domains

Markus Endres and Werner KiefSling

Department of Computer Science, University of Augsburg,
86135 Augsburg, Germany
{endres, kiessling}@informatik.uni-augsburg.de
http://www.informatik.uni-augsburg.de/dbis

Abstract. A Skyline query retrieves all objects in a dataset that are not
dominated by other objects according to some given criteria. Although
there are a few parallel Skyline algorithms on multicore processors, it is
still a challenging task to fully exploit the advantages of such modern
hardware architectures for efficient Skyline computation. In this paper
we present high-performance parallel Skyline algorithms based on the
lattice structure generated by a Skyline query. We compare our meth-
ods with the state-of-the-art algorithms for multicore Skyline processing.
Experimental results on synthetic and real datasets show that our new
algorithms outperform state-of-the-art multicore Skyline techniques for
low-cardinality domains. Our algorithms have linear runtime complexity
and fully play on modern hardware architectures.

Keywords: Skyline, Parallelization, Multicore.

1 Introduction

The Skyline operator [1] has emerged as an important and very popular summa-
rization technique for multi-dimensional datasets. A Skyline query selects those
objects from a dataset D that are not dominated by any others. An object p
having d attributes (dimensions) dominates an object g, if p is better than ¢ in
at least one dimension and not worse than ¢ in all other dimensions, for a defined
comparison function. This dominance criteria defines a partial order and there-
fore transitivity holds. The Skyline is the set of points which are not dominated
by any other point of D. Without loss of generality, we consider the Skyline with
the min function for all attributes.

Most of the previous work on Skyline computation has focused on the develop-
ment of efficient sequential algorithms [2]. However, the datasets to be processed
in real-world applications are of considerable size, i.e., there is the need for im-
proved query performance, and parallel computing is a natural choice to achieve
this performance improvement, since multicore processors are going mainstream
[3]. This is due to the fact that Moore’s law of doubling the density of transistors
on a CPU every two years — and hence also doubling algorithm’s performance —
may come to an end in the next decade due to thermal problems. Thus, the chip

Y. Manolopoulos et al. (Eds.): ADBIS 2014, LNCS 8716, pp. 97-111, 2014.
© Springer International Publishing Switzerland 2014

http://www.informatik.uni-augsburg.de/dbis

98 M. Endres and W. Kieflling

manufactures tend to integrate multiple cores into a single processor instead of
increasing the clock frequency. In upcoming years, we will see processors with
more than 100 cores, but not with much higher clock rates. However, since most
applications are build on using sequential algorithms, software developers must
rethink their algorithms to take full advantage of modern multicore CPUs [3].
The potential of parallel computing is best described by Amdahl’s law [4]: the
speedup of any algorithm using multiple processors is strictly limited by the
time needed to run its sequential fraction. Thus, only high parallel algorithms
can benefit from modern multicore processors.

Typically an efficient Skyline computation depends heavily on the number
of comparisons between tuples, called dominance tests. Since a large number of
dominance tests can often be performed independently, Skyline computation has
a good potential to exploit multicore architectures as described in [5-7]. In this
paper we present algorithms for high-performance parallel Skyline computation
which do not depend on tuple comparisons, but on the lattice structure con-
structed by a Skyline query over low-cardinality domains. Following [8, 2] many
Skyline applications involve domains with small cardinalities — these cardinali-
ties are either inherently small (such as star ratings for hotels), or can naturally
be mapped to low-cardinality domains (such as price ranges on hotels).

The remainder of this paper is organized as follows: In Section 2 we discuss
some related work. In Section 3 we revisit the Hexagon algorithm [9], since it is
the basic idea behind our parallel algorithms. Based on this background we will
present our parallel Skyline algorithms in Section 4. We conduct an extensive
performance evaluation on synthetic and real datasets in Section 5. Section 6
contains our concluding remarks.

2 Related Work

Algorithms of the block-nested-loop class (BNL) [1] are the most prominent algo-
rithms for computing Skylines. In fact the basic operation of collecting maxima
during a single scan of the input data can be found at the core of several Sky-
line algorithms, cp. [10, 2]. Another class of Skyline algorithms is based on a
straightforward divide-and-conquer (D&C) strategy. D&C uses a recursive split-
and-merge scheme, which is definitely applicable in parallel scenarios [11].

There is also a growing interest in distributed Skyline computation, e.g., [12—
16], where data is partitioned and distributed over net databases. Also there
are several approaches based on the MapReduce framework, e.g., [17]. All ap-
proaches have in common that they share the idea of partitioning the input
data for parallel shared-nothing architectures communicating only by exchang-
ing messages. The nodes locally process the partitions in parallel, and finally
merge the local Skylines. The main difference of such a parallel Skyline compu-
tation resides in the partitioning schemes of the data. The most used partitioning
scheme is grid-based partitioning [14]. Recent work [18] focus on an angle-based
space partitioning scheme using hyperspherical coordinates of the data points.
In [19], the authors partition the space using hyperplane projections to obtain
useful partitions of the dataset for parallel processing.

High Parallel Skyline Computation over Low-Cardinality Domains 99

Im et al. [6] focuses on exploiting properties specific to multicore architectures
in which participating cores inside a processor share everything and communicate
simply by updating the main memory. They propose a parallel Skyline algorithm
called pSkyline. pSkyline divides the dataset linearly into N equal sized parti-
tions. The local Skyline is then computed for each partition in parallel using
sSkyline [6]. Afterwards the local Skyline results have to be merged. Liknes et
al. [7] present the APSkyline algorithm for efficient multicore computation of
Skyline sets. They focus on the partitioning of the data and use the angle-based
partitioning from [18] to reduce the number of candidate points that need to be
checked in the final merging phase. The authors of [5] modified the well-known
BNL algorithm to develop parallel variants based on a shared linked list for the
Skyline window. In their evaluation, the lazy locking scheme [20] is shown to be
most efficient in comparison to continuous locking or lock-free synchronization.
There is also recent work on computing Skylines using specialized parallel hard-
ware, e.g., GPU [21] and FPGA [22]. In contrast to previous works, our approach
is based on the parallel traversal of the lattice structure of a Skyline query.

3 Skyline Computation Using the Lattice Revisited

Our parallel algorithms are based on the algorithms Hezagon [9] and LS-B [§],
which follow the same idea: the partial order imposed by a Skyline query over a
low-cardinality domain constitutes a lattice. This means if a,b € D, the set {a, b}
has a least upper bound and a greatest lower bound in D. Visualization of such
lattices is often done using Better- Than-Graphs (BTG) (Hasse diagrams), graphs
in which edges state dominance. The nodes in the BTG represent equivalence
classes. Each equivalence class contains the objects mapped to the same feature
vector. All values in the same class are considered substitutable.

An example of a BTG over a 2-dimensional space is shown in Figure la. We
write [2,4] to describe a two-dimensional domain where the first attribute A;
is an element of {0,1,2} and attribute A2 an element of {0,1,2,3,4}. The arrows
show the dominance relationship between elements of the lattice.

0(0,0) [level =0] mmmeee 0(0;0) ----------==, [level = 0]

1(0,1) 5(1,0) [level = 1] I - ig_{)_,_l)::::-;;l;@-_-_-_-_-_;;\ [tevel =1]
2(0,2) 6(1.1) 10(2,0) [level = 2] i’-'-i@fg'i-_--;e(—l-,l)- - >10(2,0) [level = 2]
3(0,3) 7(1,2) 1121 [level = 3] 3((%, 3) 7(1;, 2) 11(2,1) [level = 3]
4(0,4) 8(1,3) 12(22) [level = 4] 4(0;, 4) 8E1l, 3 12(22) [level = 4]
9(1f4/)/\1§?2, 3) [level = 5] \9(*1'4)’ ' ’}(*2{ [level = 5]
14(2,4) [level = 6] 14(2,4) [level = 6]

(a) 2d Skyline over [2,4] (b) BFT and DFT in Hexagon

Fig.1. The Hexagon algorithm revisited [9]

100 M. Endres and W. Kieflling

The node (0,0) presents the best node, i.e., the least upper bound for two
arbitrary nodes a and b in the lattice. The node (2,4) is the worst node and
serves as the greatest lower bound. The bold numbers next to each node are
unique identifiers (ID) for each node in the lattice, cp. [9]. Nodes having the
same level are incomparable. That means for example, that neither the objects
in the node (0,4) are better than the objects in (2,2) nor vice versa. They have
the same overall level 4. A dataset D does not necessarily contain representatives
for each lattice node. In Figure 1la the gray nodes are occupied (non-empty) with
real elements from the dataset whereas the white nodes have no element (empty).

The method to obtain the Skyline can be visualized using the BTG. The
elements of the dataset D that compose the Skyline are those in the BTG that
have no path leading to them from another non-empty node in D. In Figure la
these are the nodes (0,1) and (2,0). All other nodes have direct or transitive
edges from these both nodes, and therefore are dominated. The algorithms in
[9, 8] exploit these observations and in general consist of three phases:

1) Phase 1: The Construction Phase initializes the data structures. The lattice
is represented by an array in main memory with the size of the lattice, i.e.,
the number of nodes. Each position in the array stands for one node ID in
the lattice. Initially, all nodes of the lattice are marked as empty.

2) Phase 2: In the Adding Phase the algorithm iterates through each element
t of the dataset D. For each element ¢ the unique ID and the node of the
lattice that corresponds to t is determined. This node is marked non-empty.

3) Phase 3: After all tuples have been processed, the nodes of the lattice that
are marked as non-empty and which are not reachable by the transitive dom-
inance relationship from any other non-empty node of the lattice represent
the Skyline values. Nodes that are non-empty but are reachable by the dom-
inance relationship, and hence are not Skyline values, are marked dominated
to distinguish them from present Skyline values.

From an algorithmic point of view this is done by a combination of breadth-
first traversal (BFT) and depth-first traversal (DFT). The nodes of the lattice
are visited level-by-level in a breadth-first order (the blue dashed line in
Figure 1b). When an empty node is reached, it is removed from the BFT
relation. Each time a non-empty and not dominated node is found, a DFT
is done marking all dominated nodes as dominated. For example, the node
(0,1) in Figure 1b is not empty. The DFT walks down to the nodes (1, 1) and
(0,2). Which one will be visited first is controlled by a so called edge weight,
cp. [9]. Here, (1,1) will be marked as dominated and the DFT will continue
with (2,1), etc. (the red solid arrows in Figure 1b). If the DFT reaches the
bottom node (2,4) (or an already dominated node) it will recursively follow
the other edge weights, i.e. the red dashed arrows, and afterwards the red
dotted arrows. Afterwards the BFT will continue with node (1,0), which will
be removed because it is empty. The next non-empty node is (1, 1), which is
already dominated and therefore we will continue with (2, 0). Since all other
nodes are marked as dominated, the algorithm will stop and the remaining
nodes (0,1) and (2,0) present the Skyline.

High Parallel Skyline Computation over Low-Cardinality Domains 101

4 Parallel Skyline Algorithms

In this section we describe our parallel algorithms, the used data structures,
discuss some implementation issues, and have a look at the complexity and
memory requirements of our algorithms.

4.1 Parallel Skyline Computation

For the development of our parallel Skyline algorithms we combine a split ap-
proach of the input dataset with a shared data structure supporting fine grained
locking and apply them to the Hexagon algorithm described in Section 3.

The general idea of parallelizing the Hexagon algorithm is to parallelize the
adding phase (Phase 2) and the removal phase (Phase 3). Phase 1 is not worth
to parallelize because of its simple structure and minor time and effort for the
initialization. Parallelizing Phase 2 can be done using a simple partitioning ap-
proach of the input dataset, whereas for Phase 3 two different approaches can be
used: In the first variant the parallel Phase 3 starts after all elements were added
to the BTG. We call this algorithm ARL-Skyline (Adding-Removal-Lattice-
Skyline). The second approach runs the adding and removal simultaneously.
This algorithm is called HPL-Skyline (High-Parallel-Lattice-Skyline).

The ARL-Skyline Algorithm (ARL-S) is designed as follows:

— Phase 1: Initialize all data structures.

— Phase 2: Split the input dataset into ¢ partitions, where ¢ is the number
of used threads. For each partition a worker thread iterates through the
partition, determines the IDs for the elements and marks the corresponding
entries in the BTG as non-empty.

— Phase 3: After adding all elements to the BTG a breadth-first walk begin-

ning at the top starts (blue line in Figure 2a). For each non-empty and not
dominated node run tasks! for the depth-first walk with the dominance test.
In parallel continue with the breadth-first walk.
For example, if the node (0,1) is reached in Figure 2a, two further tasks can
be started in parallel to run a DFT down to (0,2) and (1,1) (red solid ar-
rows). Continuing with the BFT we reach the already dominated node (1,1)
and afterwards (2,0). A new DFT task follows the red dashed arrows to mark
nodes as dominated. Note that the BFT task might be slower or faster than
the DFT from node (0, 1) and therefore the DFT could follow different paths
in the depth-first dominance search. The pseudocode for ARL-S reduced to
its essence is decpicted in Figure 2b; the fork/join task for the DFT can be
found in Figure 3b.

! We use the ForkJoinPool from Java 7 to manage the recursive DFT tasks.

102 M. Endres and W. Kieflling

: ARL-S A =
// Phase 1, initialize data structures
BTG := array with nodes based on lazy locking
// Phase 2, Parallel Adding Phase
split D into ¢ disjoint sets D;
parallel for each D; do
for each t in D; do
ID := compute ID for t
BTG[ID].setNonEmpty()
end for each
end parallel for
// Phase 3, Parallel Removal Phase
do a BFT beginning at the top

o ==
—
—
= o=
e w®

“‘(.--
=
W N

4(0,4) 8(1,3) 1 (' 12) 14; for each nodeID in BFT do
Jites 15: if “BTG[nodelD].isDominated ()
9(1,4) 1 (2‘ 3) 16: &8f ?BTG[nodeID].isEmpty()
JRAd 17: fork/join task for DFT(nodelID)
~° 18: end if
14(2,4) 19: end for
(a) BTG for ARL-S (b) Pseudocode

Fig. 2. The ARL-Skyline algorithm

The HPL-S algorithm combines Phase 2 and 3 of ARL-S to one phase.

The HPL-Skyline Algorithm (HPL-S) is designed as:

— Phase 1: Initialize all data structures.

— Phase 2+3: Similar to Phase 2 in ARL-S we split the dataset into ¢ par-
titions, for each partition a worker thread c¢;. If one of the worker threads
marks a node in the BTG as non-empty, it immediately starts a task for the
DFT dominance test (if not done yet) and continues with adding elements,
cp. Figure 3a. The simplified pseudocode is shown in Figure 3b.

For example, thread ¢; adds an element to (0,3) and immediately starts
additional tasks for the DFT (red arrows). Simultaneously another thread
¢z adds an element to the node (0,1) and starts tasks for the DFT and
dominance tests (red dotted arrows). After thread c; has finished, it wants to
add an element to (1,1). However, since it is already marked as dominated,
thread c¢; can continue with adding elements to other nodes in the BTG
without performing a DFT dominance test.

After all threads have finished, a breadth-first traversal is done on the
remaining nodes (blue line in Figure 3a). Again, the non-empty and not
dominated nodes present the Skyline.

The advantage of the HPL-S in comparison to ARL-S is that the DFT search
will mark dominated nodes as dominated and other parallel running threads do
not have to add possible elements to these already dominated nodes. This saves
memory and runtime.

High Parallel Skyline Computation over Low-Cardinality Domains 103

: HPL-S A =
// Phase 1, initialize data structures
BTG := array with nodes based on lazy locking
// Phase 243, Parallel Adding and Removal
split D into c disjoint sets D;
parallel for each D; do
for each ¢ in D; do
________ ID := compute ID for t
__________ ot NG 9: atomic if ~BTG[ID].isDominated()
[>1(0,1)----- B{EA)------- . 10: BTG/ID].setNonEmpty()
R 11: fork/join task for DFT(ID)
_____ P 12: end atomic if
C--2(0,2)----- 6(L1§--->10(2,0) 13: end for
H 14: end parallel for

: DFT(ID) =

parallel for each successor sID of ID do

if BTG[sID].isDominated()
return

end if
BTG/sID].setDominated()
fork/join task for DFT(sID)

end parallel for

00 1 O U WN

14(2.4)
(a) BTG for HPL-S (b) Pseudocode

Fig. 3. The HPL-Skyline algorithm

4.2 Data Partitioning and Choosing the Right Data Structure

Data Partitioning. The performance of known parallel and distributed BNL
and D&C style algorithms (and many variants) are heavily influenced by the un-
derlying partitioning of the input dataset. [13] suggests a grid-based partitioning,
[18, 7] uses an angle-based partitioning, and [19] uses hyperplane projections to
divide the dataset into disjoint sets. The lattice algorithms are independent from
the partitioning, because the dominance tests are done on the lattice structure
instead of relying on a tuple-to-tuple comparison. This is also the reason why the
underlying data distribution (i.e., whether the dataset attributes are correlated,
independent, or anti-correlated) does not influence performance.

Choosing the Right Data Structure. In general concurrency on a shared
data structure requires a fine grained locking amongst all running threads to
avoid unnecessary locks. In addition, one has to ensure that no data is read or
written which has just been accessed by another thread (dirty reads or writes)
in order to avoid data inconsistency. When considering for example the parallel
removal phase in HPL-S (Figure 3b), a critical situation may occur if two threads
try to append (line 10 in HPL-S) or delete an element (line 6 in DFT) on the
same node simultaneously. This problem can be tackled by synchronization and
locking protocols, cp. [5]. The lazy locking approach uses as few locks as possi-
ble. Locks are only acquired when they are really needed, i.e., when modifying
nodes. Reading can be done in parallel without inconsistency problems. From a
performance point of view lazy locking is definitely superior to all other locking
protocols like continuous locking, full, or lock-free synchronization.

104 M. Endres and W. Kieflling

For the lattice implementation we used three different data structures: Ar-
rays, HashMaps, and SkipLists [23]. Using an array means that each index in
the array represents an ID in the lattice. The entries of the array are nodes hold-
ing the different states empty, non-empty, and dominated. Each node follows the
lazy locking synchronization®. For the HashMap and SkipList implementation?
we used the approach of a level-based storage, cp. Figure 4. An array models
the levels of the BTG. Then the nodes are stored in a HashMap or SkipList.
Adding an element to the BTG means computing the ID and the level it belongs
to and marking the node at the right position as non-empty or dominated. The
advantage of the level-based storage using SkipLists in contrast to HashMaps
lies in the reduced memory requirements, because we do not have to initialize
the whole data structure in main memory. A node is initialized on-the-fly if it
is marked as mon-empty or dominated. Additionally, if each node in a level is
dominated, we can remove all nodes from the corresponding SkipList, mark the
level-entry in the array as dominated and free memory.

ltevel = 0] & |— NIL
[level =1]| —
[level = 2]| o |—[6 —[007]
[level =3]| o —[37]
ltevel = 4]| o |—[T1-[12]
[level = 5]| e |—— NIL
[level = 6]| o |—— NIL

Fig. 4. Level-based storage of the BTG using SkipLists

In [20, 5] a LazyList with some advantages against the concurrent SkipList
implementation was proposed to use for concurrent programming. Nevertheless,
we decided to use SkipLists instead of LazyLists, because the traversal of a
SkipList is faster than that of a LazyList due to the additional pointers which
skip some irrelevant elements. Since not all nodes in the lattice are present and
we have to find some nodes in the lattice during the DFT search quickly, the
concurrent SkipList is the better choice.

4.3 Complexity Analysis and Memory Requirements

Complexity Analysis. The original lattice based algorithms [9, 8] have linear
runtime complexity. More precisely, the complexity is O(dV + dn), where d is
the dimensionality, n is the number of input tuples, and V is the product of
the cardinalities of the d low-cardinality domains from which the attributes are
drawn. Since there are V' total entries in the lattice, each compared with at most
d entries, this step is O(dV), cp. [8]. In the original version of Hexagon all entries
in the lattice are positioned in an array. Since array accesses are O(1), the pass
through the data to mark an entry as non-empty is O(dn).

2 Implemented with ReentrantReadwriteLock in Java 7.
3 We use ConcurrentHashMap and ConcurrentSkipListMap from Java 7.

High Parallel Skyline Computation over Low-Cardinality Domains 105

The ARL-S and HPL-S algorithms with an array as BTG representation
follow the original implementation of [9, 8] and therefore have a complexity of
O(dV + dn). Using a level-based representation of the BTG with a HashMap
for each level, we have a constant access for each level and O(1) for the look-up
in the HashMap, since we can use a perfect hash function due the known width
of the BTG in each level, cp. [24]. In summary this leads to O(dV + dn), too.
For the SkipList based BTG implementation we have O(dV + dnlogw), since
operations on SkipLists are O(log w) [23], where w is the number of elements in
the SkipList, i.e., the width of the BTG in the worst case.

Memory Requirements. Given a discrete low-cardinality domain dom(A;) x
... x dom(A4,,) on attributes A;, the number of nodes in the BTG is given by
[T, (max(A;) 4+ 1) [9]. Each node of the BTG has one of three different states:
empty, non-empty, and dominated. The easiest way to encode these three states
is by using two bits with 0x00 standing for empty, 0x01 for non-empty and 0x10
for dominated. This enables us to use the extremely fast bit functions to check
and change node states. Since one byte can hold four nodes using two bits each,
we have in summary that the BTG for a Skyline query may require the following
maximal amount of memory, i.e, it is linear w.r.t. the size of the BTG.

mem(BTQG) := Lll H (max(A4;) + 1)—‘

i=1

4.4 Remarks

Concurrent programming usually increases performance when the number of
used threads is equal or less than the number of available processor cores and
idling of threads can be prevented. Otherwise it can decrease performance due
to waiting or mutual locking program codes. Our algorithms use high parallelism
to complete the running tasks. This might be a performance problem for very
small BTGs, if many threads work on a lattice where the size is