
Chapter 9
Cellular Robotic Ants Synergy
Coordination for Path Planning

Konstantinos Ioannidis, Georgios Ch. Sirakoulis and Ioannis Andreadis

Abstract In this chapter, a unified architecture is proposed for a robot team in
order to accomplish several tasks based on the application of an enhanced Cellu-
lar Automata (CA) path planner. The presented path planner can produce adequate
collision-free pathways with minimum hardware resources and low complexity lev-
els. During the course of a robot team to its final destination, dynamic obstacles are
detected and avoided in real time as well as coordinated movements are executed by
applying cooperations in order to maintain the team’s initial formation. The inherit
parallelism and simplicity of CA result in a path planner that requires low computa-
tional resources and thus, its implementation in miniature robots is straightforward.
Cooperations are limited to a minimum so that further resource reduction can be
achieved. For this purpose, the basic fundamentals of another artificial intelligence
method, namely Ant Colonies Optimization (ACO) technique, were applied. The
entire robot team is divided into equally numbered subgroups and an ACO algorithm
is applied to reduce the complexity. As each robot moves towards to its final position,
it creates a trail of an evaporated substance, called “pheromone”. The “pheromone”
and its quantity are detected by the following robots and thus, every robot is absolved
by the necessity of continuous communication with its neighbors. The total complex-
ity of the presented architecture results to a possible implementation using a team of
miniature robots where all available resources are exploited.
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9.1 Introduction

Robot navigation is perhaps the most significant and active research field on the area
of mobile robotics due to its applicability to a wide variety of tasks such as industry
and human-supported works. The development of a rapid and efficient procedure
which deals with the path planning problem is considered to be a key step for the
motion of a mobile robot [68]. Path planning typically refers to the design of geo-
metric specifications of the positions and orientations of robots in the presence of
obstacles. An efficient path planner aims for the creation of a continuous motion
that connects a starting point and a goal point in the configuration area of a mobile
robot with the presence of obstacles (Fig. 9.1). The complexity of the problem is
significantly increased when the developed framework is required to create collision
free trajectories for every robot of a cooperative team. Cooperative robotic teams are
extensively used in systems for accomplishing tasks where single robots fail to com-
plete successfully their goals [46]. A variety of practical and potential applications
can benefit from the use of a cooperative robot team, such as exploration of unknown
areas [10], search and rescue [53] and formation control [25].

In general, the most widely known classification for path planning solution algo-
rithms relies on the discrimination of the environments between static and dynamic.
In the static case, all necessary information relative to the position of obstacles is
known a priori while in dynamic planning, robots display a complete unawareness
of their configuration area. For example, Tzionas et al. proposed in [63] an approach
based on a retraction of free space onto the Voronoi diagram, which is constructed
through the time evolution of Cellular Automata (CA) after an initial phase, during
which the boundaries of obstacles are identified and coded with respect to their ori-
entation. Despite its rapid execution, the approach suffers from a constraint of the

Fig. 9.1 An example of path planning that connects a starting point and a goal point in the config-
uration area of a mobile robot with the presence of obstacles



9 Cellular Robotic Ants Synergy Coordination for Path Planning 199

workspace, which is restricted in the sense that a generally shaped robot is enclosed
within a diamond-shaped figure. A similar CA-based technique was proposed by
Marchese in [47] where an anisotropic propagation of attracting potential values in
a 4-D space-time using a multilayered cellular automaton (MCA) architecture was
exploited. The algorithm executes a search for all the optimal collision-free trajec-
tories following the minimum valley of a potential hypersurface embedded in a five
dimensional space. However, efficiency cannot be obtained due to the uncompleted
priority planning and thus, collisions between robots may occur. A cell basedmethod
was also proposed in [70] where a known environment was assumed. The configu-
ration area was represented by occupancy grids and it was separated into a grid of
equally spaced cells. The problem is converted to a graph-search problem and so, an
A-star algorithm was applied [17]. Due to its features, the A-star approach increases
the complexity of the system and thus, more processing resources are required in
a real system. Dubins’ theorem was also exploited for increased efficiency in [66]
in order to deal with static environments. A genetic algorithm as well as a hierar-
chical structure of chromosomes to denote a possible path were used to identify the
most optimal route. The method requires significant amounts of time rendering its
implementation in real-time systems constrained.

Despite their efficiency, static environment approaches restrict their applicability
in non-real world scenarios since most of the environments include dynamic obsta-
cles. Path planners for dynamic environments may properly modify the path of a
robot in cases of unexpected changes of its immediate environment. For example,
the approach in [5] extracts a path from a static environment for a robot which is
equipped with proximity sensors. Based on the sensors’ readings, the robot bypasses
possible obstacles that unexpectedly may block its route. The method requires part
of information related to the status of the environment in order to be functional.
A similar approach was proposed in [55] where a mobile robot modifies its path
in the presence of semi-dynamic obstacles. The navigational planning is achieved
with the application of a genetic algorithm until the robot reaches its final desti-
nation. In addition, a fuzzy-logic sensor fusion system was developed in [61] for
target recognition, wherein the proposed path planning solver is based on a grid-
map-oriented system that permits path revision through interactions with dynamical
environments. An efficient dynamic system algorithm, using a neural dynamicmodel
and a distance transform model was proposed in [67]. The approach develops effi-
cient collision-free trajectories for a robot, and although dynamic programming is
employed, computational cost remains in high levels. The A-star approach was also
used in [24] as a global path planner to produce a series of sub-goal points to the
target point. A potential field method was embedded as a local path planner in order
to smooth the path between the preplanned sub-goal points. Thus, the method fails
to cope with a real-time robot systems since global information of the entire config-
uration area is required. In order to produce smooth paths and reduce the complexity
of the solution, a series of waypoints are interpolated in [2] with the use of a B-spline
which is altered only in the area local to the obstacle. B-splines are piecewise series
of polynomials and, therefore, the solution remains complex despite their low order.
Finally, in [71], an improved Hopfield type neural network model was applied in
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order to propagate the target activity among neurons, in the manner of physical heat
conduction. The motion of a robot is defined through the dynamic neural network
activity. In general, the method creates efficient paths for a robot, nonetheless, the
exploitation of the neural network leads to high computational burden.

The discrimination of the path planning algorithms into either static or dynamic
provides a base categorization without, nonetheless, any reference to the solution
itself. A more proper differentiation is relied on the nature of the problem and the
manner that an algorithm approaches its solution. Thus, research in path planning
could also be classified into four basic categories: visibility graphs, potential fields,
cell decomposition and heuristic algorithms [63]. Visibility graphs include the deter-
mination of a line collection in free space such that a connection of features of an
object to those of another is accomplished [42]. A visibility graph can produce O(n2)

edges for (n) features and so it is characterized by high complexity. On the contrary,
potential field approaches exploit potential functions that are developed for obstacle
avoidance in static environments. These approaches treat a robot’s configuration as a
point in a potential field that combines attraction to the goal and repulsion from obsta-
cles. For example, the method proposed in [3] relies on the generation of a potential
field by sigmoid and normal functions which eventually create the vector fields that
control the velocity and heading of robot swarms. Similarly, relative headings to the
goal and to obstacles, the distance to the goal and the angular width of obstacles
were used in [36] to compute a potential field over the robot heading. The com-
puted potential field controls the angular acceleration of the robot, steering towards
the goal and far from the obstacles. In general, potential field approaches produce
efficient trajectories however; higher accuracy can only be achieved by using higher
order potentials, increasing the computational complexity. Heuristic approaches have
been proposed as alternative solutions in order to simplify the problem. Ferguson
proposed in [20] an extended version of a D-star algorithm [60] by using linear
interpolation during each vertex expansion. Heuristic methods are characterized by
their high time complexity which depends on the applied heuristic. On the contrary,
cell decomposition methods were proposed to reduce the total complexity of the
problem. Their main concept includes partitioning the free space into regions and
identifying possible contacts between a single robot and obstacles in each region. For
example, in [16], a variant of the A-star algorithm, namely Theta-star, propagates
information along grid edges without constraining the paths to grid edges. As A-star
based algorithms, the method requires a complete knowledge of the configuration
area to produce the desired paths, thus, its implementation to a real system would
be intricate. Nevertheless, Charalampous et al. in [12] combined the A-star with
CA, and tested successfully the resulting method in real world planar environments.
More specifically, the finite properties of the A-star algorithm were amalgamated
with the CA rules to built up a substantial search strategy [11]. The corresponding
algorithm’s main attribute is that it expands the map state space with respect to time
using adaptive time intervals to predict the potential expansion of obstacles.

Additionally, during the past few years, many artificial intelligence algorithms
were employed as possible solutions to the problem so that the main drawbacks of
the above solutions could be eliminated. In [43], a fuzzybased approachwas proposed
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Fig. 9.2 Several formations of cooperative robotic teams

to navigate a mobile robot in an unknown dynamic environment filled with obstacles.
The method requires for the robot to be equipped with a variety and highly accurate
sensors to produce the desired pathways increasing the total cost of the system.
More efficient paths were produced by the neural network in [69] nonetheless; in
static environments and with high computational cost. A cell decomposition method
along with an artificial intelligence method was used as a possible solution to the
problem in [48]. Multilayered Cellular Automata (MCA) were applied where the
configuration area is presented as a lattice of cells and four layers of identical grids
are exploited for solving the path planning problem.

The majority of the above approaches deals with systems which include one
robot and so only a single path should be extracted. The complexity of the solution is
significantly increased in systems of multiple robots and is proportional to the total
number of its members (Fig. 9.2). Such systems must complete further goals beyond
the coverage of the desired distance. In case of a cooperative robot team, tracing
paths for every robot becomes even more complex. The coordinated motion of a
robotic team comprises one of the most widely studied research field in cooperative
robotics and is known as formation control. Fredslund et al. in [26] achieved a
collective behavior in a group of distributed robots using local sensing and minimal
communication. Each robot references itself locally to one neighboring robot and
keeps a certain bearing and distance by using an appropriate sensor. Moreover, a
novel approach was proposed in [30] where formation structures are represented in
terms of queues and formation vertices and formation control is accomplished using
artificial potential trenches. A feedback law using Lyapunov type analysis was also
exploited for a single robot and so collision avoidance and tracking of a reference
trajectory was achieved [50]. Then, the method extends the resulted pathway to the
case of multiple non-holonomic robots. Finally, a coordinated control scheme based
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on a leader-follower approach was proposed in [18] so that formation maneuvers
could be achieved. First and second order sliding mode controllers were used for
asymptotically stabilizing the vehicles to a time varying desired formation.

The aforementioned methods for formation control and collision avoidance dis-
play high levels of computational complexity cost, despite their efficiency in both
trajectory accuracy and formation immutability. Thus, their implementation in real
systems could be either exclusionary or restricted. A minority of these methods
could be potential for possible real system implementation nonetheless; robots must
be equipped with farfetched sensors and high technical specifications which eventu-
ally increases the total cost of the system. On the other hand, their implementation
in low cost robots restrict the number of tasks that could be executed leading to
single purpose systems. For example, most of the commercial robots are equipped
with digital cameras which are unable to be exploited since all the computational
resources are occupied by the path planner. A low computational cost path planning
approach could provide spare resources that are beneficial for exploiting the digital
cameras to accomplish further tasks. However, these cameras capture low resolution
images since higher resolution cameras requiremore processing power to analyze and
manipulate a digital image. Instead, low resolution images are frequently inappro-
priate to achieve specific goals. Low resolution images can lead to false results when
they are used to accomplish tasks like panoramic images or simultaneous localiza-
tion and mapping (SLAM). Consequently, spare processing amounts could be used
to increase the captured images’ resolution with the application of image resizing
methods. Several commonly used interpolation methods have been used for resizing
images, such as nearest neighbor [38], bilinear [38] and bicubic interpolation [39]. In
addition, a quadratic image interpolation method was proposed in [52] with adequate
visual results nonetheless; its high computational cost prohibits its implementation.
The preservation of the edges of a low resolution image comprises a crucial task
and thus, a fuzzy decision system was developed in [45] to classify all the pixels
of the input image into sensitive and non-sensitive class. Bilinear interpolation was
applied to the non-sensitive regions while a neural network was used to interpolate
the sensitive regions along the edges of the images. In order to decrease the com-
putational complexity and preserve the satisfying image results, an edge-oriented
method was proposed in [13] where the processed image is discriminated in non-
edge and edge areas and each region is processed by a different type of interpolation
method. The method achieves real-time image enlargement, despite the two stages
of processing, nevertheless, the classification of the areas depends on a predefined
threshold. Finally, the method in [44] initially estimates local covariance coefficients
from the low resolution image which are sequentially used to adapt the interpolation
at a higher resolution based on the geometric duality between the low-resolution
and the high-resolution covariance. Despite its visually accurate resulted images,
the method displays high levels of computational cost and thus, its application in
real-time systems is restricted.

In this chapter, a unified architecture is presented for a robot team in order to
accomplish several tasks and includes the application of an enhancedCApath planner
combined with Ant Colonies Optimization (ACO) technique resulting to “Cellular
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Robotic Ants”. The presented path planner can produce adequate collision-free
pathways with minimum hardware resources and low complexity levels. During
the course of a robot team to its final destination, dynamic obstacles are detected
and avoided in real time as well as coordinated movements are executed by applying
cooperations in order to maintain the team’s initial formation. The inherit paral-
lelism and simplicity of CA result in a path planner that requires low computational
resources and thus, its implementation in miniature robots is straightforward. The
significant cooperations are limited to a minimum so that further resource reduction
can be achieved. For this purpose, the basic fundamentals of ACO technique were
applied. The entire robot team is divided into equally numbered subgroups and an
ACO algorithm is applied to reduce the complexity. As each robot moves towards to
its final position, it creates a trail of an evaporated substance, called “pheromone” .
The “pheromone” and its quantity are detected by the following robots and thus, every
robot is absolved by the necessity of continuous communication with its neighbors.
The total complexity of the presented architecture results to a possible implemen-
tation using a team of miniature robots where all available resources are exploited.
More specifically, the method was implemented in a cooperative robot team using
a 3-D simulator, called Webots [51]. For testing purposes, the under study robot
team was constituted of two subgroups with five robots each. All essential sensors,
that all robots must be equipped, and their direct relations with the cell length and
pheromone were introduced. The accuracy of the method was tested by using two
different types of objects, rectangular and circular shaped. In both cases, the method
created successfully collision free paths and the corresponding results exhibit the
effectiveness and the robustness of the method.

The rest of the chapter is organized as follows. All the theoretical background
for the CA and ACO algorithms is presented in Sect. 9.2 while the path planner,
derived from the combination of CA and ACO, is presented in Sect. 9.3. Simulation
results and the implementation of the architecture are presented in Sect. 9.4. Finally,
conclusions are drawn in Sect. 9.5.

9.2 Cellular Automata and Ant Colony Optimization Principles

Cellular Automata (CA) were originally introduced by John Von Neumann [65] and
his colleague Stanislaw Ulam [64]. CA can be considered as dynamical systems in
which space and time are discrete and interactions are local. In general, a CA is
consisted of a large number of identical entities with local connectivity arranged on
a regular array. A finite Cellular Automaton could be defined by the quadruple:

{d, q, N , F} (9.1)

From Eq.9.1, variable d is a vector of two elements, m and n, denoting the vertical
and horizontal CA dimensions, respectively. Both of these variables are expressed
in number of cells. At each time step, the state of each cell is updated using a value
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from the set Q = 1, 2, . . . , q − 1, called set of states. The neighborhood of each cell
is defined by the variable N . For a 2-D CA, two neighborhoods are often considered,
Von Neumann and Moore neighborhood. Von Neumann neighborhood is a diamond
shaped neighborhood and can be used to define a set of cells surrounding a given
cell (x0, y0). Equation 9.2 defines the Von Neumann neighborhood of range r .

N v
(x0,y0) = (x, y) : |x − x0| + |y − y0| ≤ r (9.2)

For a given cell (x0, y0) and range r , Moore neighborhood can be defined by the
following equation:

N M
(x0,y0) = (x, y) : |x − x0| ≤ r, |y − y0| ≤ r (9.3)

The transition rule f determines the way in which each cell of the CA is updated.
The state of each cell is affected by the cell values in its neighborhood and its value
on the previous time step, according to the transition rule or a set of rules. The state of
every cell is updated simultaneously in the CA, thus, providing an inherent parallel
system.

Consider for example a 2-D CA with two possible states, “0” and “1”, as it is
presented in Fig. 9.3. For this example, von Neumann neighborhood was used. In
Fig. 9.3a, the central cell is stated as “1” at time t (black cell) while in Fig. 9.1b it
is stated as “0” (white cell). The central cell updates its state to the next time step
according to a simple XOR transition rule. If a central cell or any of its adjacent
cells have the “1” state, at the next time step its state will be stayed into “1”, as it is
presented in Fig. 9.3, while its adjacent cells will update their state as “1”.

CA have sufficient expressive dynamics to represent phenomena of arbitrary com-
plexity and at the same time can be simulated exactly by digital computers, because
of their intrinsic discreteness, i.e. the topology of the simulated object is reproduced
in the simulating device. The CA approach is consistent with the modern notion of

Fig. 9.3 2-D CA example with two possible states, “0” and “1”. Black cells represent cells with
state “1” while white cells represent “0” stated cells
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unified space time. In computer science, space corresponds to memory and time to
processing unit. In CA, memory (CA cell state) and processing unit (CA local rule)
are inseparably related to a CA cell. Furthermore, CA are an alternative to partial
differential equations [54, 62] and they can easily handle complicated boundary and
initial conditions, inhomogeneities and anisotropies [31, 56].

The basic element of ACO algorithms is “ants” that is, agents with very simple
capabilities which, to some extent, mimic the behavior of real ants [22]. Real ants
are in some ways much unsophisticated insects. Their memory is very limited and
they exhibit individual behavior that appears to have a large random component.
However, acting as a collective, ants collaborate to achieve a variety of complicated
taskswith great reliability and consistency [19], such as defining the shortest pathway,
among a set of alternative paths, from their nests to a food source [4]. This type of
social behavior is based on a common feature with CA, called self-organization, a
set of dynamical mechanisms ensuring that the global aim of the system could be
achieved through low level interactions between its elements [32]. The most vital
feature of this interaction is that only local information is required. There are two
ways of information transfer between ants: a direct communication (mandibular,
antennation, chemical or visual contact, etc.) and an indirect communication, which
is called stigmergy (as defined by Grassé [33]) and is biologically realized through
pheromones, a special secretory chemical that is deposited, in many ant species, as
trail by individual ants when theymove [6].More specifically, due to the fact that ants
can detect pheromone, when choosing their way, they tend to choose pathsmarked by
strong pheromone concentrations. As soon as an ant finds a food source, it evaluates
the quantity and the quality of the food and carries some of it back to the nest.
During the return trip, the quantity of pheromone that an ant leaves on the ground
may depend on the quantity and quality of the food. The pheromone trails will guide
other ants to the food source. This behavior is known as “auto catalytic” behaviour
or the positive feedback mechanism in which reinforcement of the previously most
followed route, is more desirable for future search. In ACO algorithms, an ant will
move from point i to point j with probability:

ρi, j = (τα
i, j )(η

β
i, j )

∑
(τα

i, j )(η
β
i, j )

(9.4)

where, τα
i, j and η

β
i, j are the pheromone value and the heuristic value associated

with an available solution route, respectively. Furthermore, α and β are positive real
parameters whose values determine the relative importance of pheromone versus
heuristic information.

During their search for food, all ants deposit on the ground a small quantity of
specific pheromone type. As soon as an ant discovers a food source, it evaluates
the quantity and the quality of the food and carries some to the nest on their back.
During the return trip, every ant with food leaves on the ground a different type of
pheromone of specific quantity, according to the quality and quantity of the food.



206 K. Ioannidis et al.

In ACO algorithms, pheromone is updated according to the equation:

τi, j = (1 − ρ)τi, j + �τi, j (9.5)

where, τi, j is the amount of pheromone on a given position (i, j), ρ is the rate of the
pheromone evaporation and �τi, j is the amount of pheromone deposited, typically
given by:

�τi, j =
{
1/Lk, if ant k travels on edge i, j

0, otherwise
(9.6)

where Lk is the cost of the kth tour of an ant (typically is measured as length). Finally,
the created pheromone trails will guide other ants to the food source.

Consider for example the experimental setting shown in Fig. 9.4. The ants move
along the path from food source F to the nest N. At point B, all ants walking to
the nest must decide whether to continue their path from point C or from point H
(Fig. 9.2a). A higher quantity of pheromone on the path through point C provides
an ant a stronger motivation and thus a higher probability to follow this path. As no
pheromone was deposited previously at point B, the first ant reaching point B has
the same probability to go through either point C or point H. The first ant following
the path BCD will reach point D earlier than the first ant which followed path BHD,
due to its shorter length. The result is that an ant returning from N to D will trace a
stronger trail on path DCB, caused by the half of all the ants that by chance followed
path DCBF and by the already arrived ones coming via BCD. Therefore, they will
prefer path DCB to path DHB. Consequently, the number of ants following this path

Fig. 9.4 An example of real ants colony: a An ant follows BHD path by chance, b Both paths are
followed with same probability and c Larger number of ants follow the shorter path



9 Cellular Robotic Ants Synergy Coordination for Path Planning 207

will be increased during time than the number of ants following BHD. This causes
the quantity of pheromone on the shorter path to grow faster than the corresponding
longer one. Consequently, the probability with which any single ant chooses the path
to follow is quickly biased towards the shorter one.

The ACO algorithms are basically a colony of artificial ants or cooperative agents,
designed to solve combinatorial optimization problems. These algorithms are prob-
abilistic in nature because they avoid the local minima entrapment and provide very
good solutions close to the natural solution [7]. ACO algorithms are extensively used
to a variety of applications such as the travel salesman problem [23], image retrieval
[40, 41], classification [49], electrical load pattern grouping [14], video games [57],
seismic methods [15], communications networks [21], etc. Moreover, as it is pro-
posed in this paper, ACO algorithms were also used for solving the path planning
in a team of robots and most of the effort was to implement the algorithm in real
systems. More specifically, in [58] heat applicators and sensors were used as virtual
pheromone and detectors, respectively, so that ACO algorithm could be functional.
Furthermore, Garnier et al. in [29] used a visual system, a computer and a projector
to track robots, process the data and project the light, respectively. Moreover, Garnier
et al. in [27] proposed a group of ant-like robots that had to establish a route between
a starting area and a target area in a network of corridors, mimicking the experiments
we performed with ants in authors’ previous studies [28]. For technical convenience
pheromone trails were replaced by light trails projected along the paths followed
by the robots by a video projector (as proposed in [58] and implemented in [29]).
Robots could detect and follow these light trails thanks to two photoreceptors that
mimic the antennae of the ants as also described in the corresponding review article
of Akst [1]. Finally, in [34, 35], RFID stickers were used as data carriers, which were
a priori placed in the area, and they stored data representing the pheromone levels.
At each robot of a team, an RFID reader/writer was mounted in order to read/write
the data stored in the RFID stickers.

9.3 Cellular Ants: A Combination of CA and ACO Algorithms
for Path Planning

One of the main goals of the proposed method is to create collision free trajectories
for every robot of a cooperative team. No a priori knowledge of the configuration area
is required. Obstacle avoidance must be achieved in real time. Knowing their final
position, that is the end of a straight line path, robots can move randomly in the con-
figuration area, according to ACO algorithm. To prevent a scattered formation due
to either an obstacle or a complete absence of pheromone, cooperations between the
members of the team are applied so that their formation could be regained or retained
immutable, respectively. According to the ACO algorithm, every single ant is gov-
erned by a set of simple behavior rules, leading to an uncomplicated approach of the
path planning problem. Due to CAs, these behavior rules are applied simultaneously
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to all ants, in a discrete and iterative way. A concurrent evolution of the entire system
ensures the rapid formation of all possible trajectories. Furthermore, the proposed
method covers the need for self-organization, since the utilized artificial intelligence
algorithms embody this particular attribute. In the following subsections, the pro-
posed method is described in detail. Simulation results are provided as well.

9.3.1 Proposed Method

First, an appropriate CA must be defined, meaning that the variables in Eq.9.1 must
be specified. The configuration area, in which the robot team operates, is considered
to be a 2-D lattice and so is divided into a simple rectangular grid of identical square
cells. The dimensions of the CA (variable d) are selected based on the dimensions
of the configuration area and the cell length. Let m × n be the dimensions of the CA,
therefore d = m, n, and w the length of each cell.

Moreover, each cell can take a finite number of possible states, named set of states
Q = 0, 1, 2, . . . , q . Variable q is proportional to the number of robots that comprise
the team and the predefined pheromone levels. Firstly, vector F = 0 represents the
state of a cell unoccupied by a robot, an obstacle or pheromone, called a free cell. In
addition, vector R = 1, 2, . . . , r represents all possible states of a cell occupied by
a robot. Due to the duality of their nature as a CA cell and as an artificial ant, a cell
occupied by a robot is labeled as a cellular ant. For reasons of complexity, the entire
robot team is divided into smaller subgroups, equally numbered and forming the same
pattern. Furthermore, P = r + 1, r + 2, . . . , ρ is a vector of all possible pheromone
states, where ρ denotes a cell with the maximum pheromone level. Finally, variable
W = ρ + 1 indicates a cell occupied by an obstacle. These vectors were created to
avoid overlapping between possible states according to the following equations:

F ∪ W ∪ R ∪ P = Q & F ∩ W ∩ R ∩ P = Q (9.7)

Summarizing, every CA cell could obtain one possible state at each time step:

• Free cell: cell(x, y) = 0
• Cellular ant: cell(x, y) = r where v ∈ N : rv ∈ R
• Pheromone cell: cell(x, y) = ρ where v ∈ N : ρv ∈ R
• Obstacle cell: cell(x, y) = ρ + 1 where ρ the state of maximum pheromone level

where x and y are the Cartesian coordinates of a cell in the CA grid.
Every CA cell evolves its state according to its current state and the state of each

neighboring cell. For the proposed method, Moore neighborhood was used with
range r = 1 (Eq.9.3). Moreover, cells located on the frontier of the grid evolve their
state using null boundary conditions, meaning that all cells of the firstlast row and
those of the first/last column are enduringly in the 0 state.
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At every time step, all cells update their state simultaneously by applying the
appropriate local transition rule of the CA, F : Q ↔ Q, so that:

cellt+1
i, j = Fcellti, j , cellti−1, j−1, cellti−1, j , . . . , cellti+1, j+1 (9.8)

Three different sets of CA rules were created for achieving different operations:
collision avoidance, pheromone update and formation control.

9.3.1.1 CA Rules for Collision Avoidance

Appropriate CA rules were created so that objects could be avoided. As a cellular
ant moves towards to its final position, it scans its Moore neighborhood at every
time step in order to detect a potential obstacle. Due to this attribute, both static
and dynamic objects can be detected. Depending on the status of its adjacent cells
and its direction, the appropriate CA rule is selected for the evolution of the state of
the corresponding cellular ant. Considering an obstacle detected by a cellular ant, at
first, the applied CA rule is chosen according to the position of the cellular ant in the
formation. If it is positioned on the right of the central cellular ant of the formation,
the right pathway is selected to bypass the obstacle. On the contrary, the left pathway
is selected in case of a left positioned cellular ant. Subsequently, the rest of the
avoidance process is akin with a wall following behavior. If the obstacle is avoided
and the cellular ant regain its position over the desired shortest path, suitable CA rules
are applied in order to continue its way to its final destination. Table 9.1 illustrates a
small subset of eight collision avoidance CA rules out of a total of forty possible CA
rules. Figure9.3 represents the application of CA rules for obstacle avoidance as a
schema. More specifically, in Fig. 9.5a, a cellular ant detects that its NW and its N
adjacent cells are occupied by obstacles, its NE cell as a free cell, “detects” that its
SW is a cellular ant cell and itsW is an obstacle cell. By applying the appropriate CA
rules, at time t + 1, the under study central cellular ant cell is stated as a pheromone
cell with maximum pheromone quantity and its NE free cell becomes a cellular ant

Fig. 9.5 Schematic presentation of two CA rules for collision avoidance: f denotes a free cell,
r denotes a cellular ant cell, o an obstacle cell and ρ a pheromone cell with the highest possible
pheromone state. a NW and N adjacent cells are obstacle cells and b N, NE and E adjacent cells
are obstacle cells
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Table 9.1 A subset of CA rules for collision avoidance

Cell state

At time t At time t + 1

Si, j Si−1, j−1 Si−1, j Si, j+1 Si, j+1 Si+1, j+1 Si+1, j Si+1, j−1 Si, j−1 Si, j

r f f f f f f o f f

f f r f f f f f o r

r f f f f o f f f f

f f r f o f f f f r

r f f f f f o o f f

f r f f f f f f o r

r f f f f o o o f f

f f f f r o o f f r

S denotes cell state, (i, j)Cartesian coordinates of cell on the CA, r a cellular ant cell, o an obstacle
cell and f a free cell

cell. Essentially, a state transition is occurred between the central cell and its NE cell.
Figure9.5b illustrates a similar situation with different states of its adjacent cells.

9.3.1.2 CA Rules for Simulating the Pheromone Functions

To simulate all relative functions of pheromone, appropriate CA rules were also
created. There is an immediate correlation between the state of a pheromone cell
and the corresponding pheromone value. The state of a pheromone cell is relevant
to the detected pheromone quantity (value τ a

i, j ). Every cellular ant scans its front
adjacent cells in order to be stated with the appropriate pheromone state. If a cell
is marked with the highest pheromone state, it will be more likely for the cellular
ant to follow this trail, according to Eq.9.4. Moreover, supplementary CA rules
were created in order to simulate the pheromone evaporation process. A pheromone
cell surrounded by either free cells or pheromone cells updates its state according
to Eqs. 9.5 and 9.6 by decreasing its value. Furthermore, the evaporation rate is
expressed as state per time steps due to the quantized states of the CA. Depending
on the pheromone levels and the evaporation rate, numerous CA rules could be used
to simulate both the stigmergic behavior of a cellular ant and the evaporation of
the pheromone. Table 9.2 illustrates a small subset of eight pheromone update CA
rules, while Fig. 9.4 represents a schematic example of their application. In Fig. 9.6a,
a cellular ant, namely r , detects two of its adjacent cell to be stated as pheromone
cells, ρ5 and ρ1, respectively. The ρ5 cell has a higher pheromone state meaning
that it is occupied by a higher amount of pheromone. According to Eq.9.4, it is more
likely that the cellular ant will follow this path and thus, the appropriate CA rule is
applied in order this pathway to be followed. Additionally, in Fig. 9.6b, a pheromone
cell with state ρ5 at time t updates its state by decreasing its state in order to simulate
the pheromone evaporation.
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Table 9.2 A subset of CA rules for collision avoidance

Cell state

At time t At time t + 1

Si, j Si−1, j−1 Si−1, j Si, j+1 Si, j+1 Si+1, j+1 Si+1, j Si+1, j−1 Si, j−1 Si, j

r f f f f f f o f ρ

f f f r f f f f o r

r f f f f f f f f f

f f r f o f f f f r

r f f f f f ρ2 ρ5 f ρ

ρ2 f r f f f f f ρ5 r

ρ f f f f f f f f ρ

ρ1 f f f f f f f f ρ2

S denotes cell state, (i, j)Cartesian coordinates of cell on the CA, r a cellular ant cell, o an obstacle
cell and f a free cell and ρ pheromone cells (increased pointers mean low levels of pheromone)

Fig. 9.6 Schematic presentations of two CA rules for simulating the pheromone functions:
f denotes a free cell, r denotes a cellular ant cell and ρ a pheromone cell (indices represent
pheromone level; higher index value corresponds to higher pheromone level, state p without any
index represents a pheromone cell with the highest possible pheromone state). a Following the
strongest pheromone trail and b Simulating the pheromone evaporation process

9.3.1.3 CA Rules for Formation Control

Each subgroup of cellular antsmust retain and regain their initial formation during the
entire route. If an obstacle is detected by a cellular ant of a subgroup, the formation of
its subgroup will be scattered. Moreover, in case of complete absence of pheromone,
according to Eq.9.4, a cellular ant could move towards to any of its adjacent free
cells with the same probability leading to a scattered formation as well. In order
to prevent such behaviors, suitable CA rules were created based on cooperations
between the cellular ants of every subgroup. It is assumed that every cellular ant has
a substandard ability to communicate with its immediate neighbors. The coordinates
of every cellular ant in the grid are required in order to complete the formation
control process. Therefore, these coordinates are handled as the exchanged data.
Depending on these data, all the necessary decisions are taken by each cellular ant
meaning, whether to swap positions in the formation with its neighbors, move one
cell to their destination or just stay still until the formation is regained by the other



212 K. Ioannidis et al.

Fig. 9.7 Schematic presentations of two CA rules for formation control: f denotes a free cell, r1,
r2 denote cellular ant cells, o an obstacle cell and ρ a pheromone cell with the highest pheromone
state. a Moving to their goal and b Exchanging positions in formation

cellular ants of the subgroup. These decisions are expressed as simple CA rules in
order to evolve their state to the next time step. Figure9.7 illustrates two examples
of the CA rules set for formation control. In Fig. 9.7a, no pheromone is detected by
the r1 and r2 cellular ants and therefore, they communicate in order to proceed to
data exchange. Since r2 finds its neighbor r1 to its vertical position and vice-versa,
both cellular ants commonly decide to update their state in order to move one cell
towards their destination. On the contrary, in Fig. 9.5b, cellular ant r2 detects an
obstacle and therefore, it will try to bypass it leaving its position in the formation.
At the same time, the r1 cellular ant discovers that it has smaller vertical distance
than the predefined with r2 (after communication). Thus, they commonly decide to
exchange their position in the formation in order to regain the formation as soon as
possible.

For example, consider a cellular ant cell with state r and coordinates (i, j)
with no obstacle found in its neighborhood at time t . At the given time, let
us assume that all cells of its Moore neighborhood have the following states:
cellt

i, j = a0 = r , cellti−1, j−1 = a1 = f , cellti−1, j = a2 = f , cellti−1, j+1 =
a3 = f , cellti, j+1 = a4 = f , cellti+1, j+1 = a5 = f , cellti+1, j = a6 = f ,
cellti+1, j−1 = a7 = f , cellti, j−1 = a8 = f . When applied to Eq.9.8, these val-

ues result to cellt+1
i, j = a0t+1 = F(a0t , a1t , a2t , a3t , a4t , a5t , a6t , a7t , a8t ) =

F(r, f, f, f, f, f, f, f, f ) = r . Furthermore, at time step t , the free cell with coor-
dinates (i + 1, j) will have the following values a0 = f , a1 = f , a2 = r ,
a3 = f , a4 = f , a5 = f , a6 = f , a7 = f , and a8 = f . Applying simulta-
neously the appropriate CA rule, the corresponding results are: cellt+1

i, j = a0t+1 =
F(a0t , a1t , a2t , a3t , a4t , a5t , a6t , a7t , a8t ) = F( f, f, r, f, f, f, f, f, f ) = r . In
other words, with the use of simple rules, the cellular ant cell manages to cover the
distance of a cell to reach the goal position.

The main aims of the method are both the creation of collision free trajectories in
dynamic environments and a fixed formation for every subgroup of the team. In case
of a scattered formation, the members of the subgroup must recover the formation as
soon as possible with the minimum requirements. For reasons of simplicity and for
the given example, a straight line formation was applied. All cellular ants of the first
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Fig. 9.8 Initial state of the CA grid, where R denotes cellular ant cells and N final positions (nests)

subgroup are deployed in either the first row or the first column of the CA having a
specific vertical or horizontal distance, respectively. The forthcoming subgroups are
subsequently introduced at the same positions in the grid after a user defined time
period. Figure9.8 illustrates the initial state of the CA grid for the aforementioned
example using a first row deployment of the cellular ants.

For this particular example and for testing purposes, this specific type of formation
was selected due to the nature of the pattern that cellular ants form [37]. Consider
a real system consisting of multiple robots, each equipped with a digital camera.
Images taken from each camera have a horizontal difference presenting the same
scenery. Many image processing algorithms exploit this difference for a variety of
applications, such as resolution enhancement [59] and panoramic images [9].

The method assumes that the initial and the final position of every cellular ant
are its food source and its nest, respectively. In case of a position exchange in the
formation, the corresponding cellular ants will exchange their final positions-nests,
as well. At every time step, each cellular ant scans its Moore neighborhood in order
to detect any possible obstacle. If an object is detected, the appropriate CA rule for
obstacle avoidance is selected and applied without requiring any further process, e.g.
pheromone detection. Otherwise, every cellular ant will scan its front adjacent cells
in order to detect any pheromone quantity. The probability for every front cell is
calculated according to Eq.9.4 and a quantization is applied. Each quantized proba-
bility ismapped to a pheromone state and every cell ismarkedwith the corresponding
pheromone state. A higher pheromone quantity means that the specific path is more
likely to be followed. Moreover, the formation of the subgroup is scattered either
when an obstacle is detected or in cases of complete pheromone absence. In order
to keep the formation of the subgroup immutable (lack of pheromone) or regain it
(obstacle detection), formation control principles are applied where all decisions are
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expressed as CA rules. These functions are achieved through cooperations between
the cellular ants of a subgroup, meaning that data relative their position in the grid are
exchanged. Every cellular ant knows about the presence of its two nearest cellular
ants with which data exchange is achieved. In case of a deviated cellular ant from its
desired shortest path due to an obstacle, its absence can be detected by its neighbors
using its coordinates. If a cellular ant bypasses an obstacle from the left pathway, the
horizontal distance with its left neighbor will be decreased while the distance with its
right neighboring cellular ant will be increased. Thus, a position exchange between
the cellular ant and its left neighbor will occur while the right neighbor will wait
until the exchange is completed. When swapping is completed, neighboring cellular
ants synchronize their actions by exchanging all necessary data, until all vertical
coordinates are equalized. All formation control functions are continuously applied
till the formation is regained, searching only for obstacle cells since the method is
applicable in dynamic environments. When the straight line formation is regained,
the entire subgroup will move towards to its final position as a team, reaching their
targets synchronized.

As a cellular ant moves to a free or a pheromone cell, its state will be updated
with the corresponding CA rule and thus, at the next time step, it will be stated
as a pheromone cell with the maximum defined pheromone state. The cellular ants
of the next subgroup detect these pheromone trails and consequently, no formation
control principles are required in order to retain or regain the formation of the next
subgroup. This advantage reduces the complexity that the formation control process
introduces. Additionally, in a real system, the formation control process requires the
members of the team to be able to communicate and thus,more time and resources are
needed in order to keep the formation fixed. By using simple sensors for pheromone
detection, if some pheromone is detected, cooperations and data exchange are no
longer necessary. Finally, according to ACO algorithm, past events or situations
could be expressed as modifications or “unusual” status of pheromone, acting as a
local memory, since it is deposited by the anterior ants. In the proposed method,

Fig. 9.9 Flowchart of the proposed method
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these “unusual” pheromone allocations are expressed as a position exchange in the
formation and are detected by the forthcoming cellular ants in order to prevent a
false pheromone trail pathway. The method in a form of a flowchart is provided in
Fig. 9.9.

9.4 Simulation Results

For testing purposes of the proposed method, a simulation environment was created
and some results are illustrated in Fig. 9.10. The under study environment operates
under Microsoft Windows OS and was created using the C# program language and
a graphical user interface. The created simulator includes multiple subgroups con-
stituted of numerous cellular ants. For testing purposes, each subgroup is comprised
by five cellular ants and a straight line formation was applied. The program provides
the ability to the user to define the dimensions of the CA, the number of cellular
ants for all subgroups, the number of iterations-time steps and to draw rectangular
or elliptical shapes as possible objects. Additionally, the pheromone levels and the
evaporation ratio are also user defined. For the examples illustrated in Fig. 9.10, the
dimensions of the CA are 21 × 25 cells with a number of time steps equal to 100.
Every subgroup comprises by 5 cellular ants and is inserted in the grid after 25 time
steps. Also, 10 pheromone levels were selected, meaning that 10 possible states can
be used for the pheromone cells and an evaporation rate equal to 1 state per 10 time
steps. Cellular ants are denoted with the letter R and corresponding numbers rep-
resenting their position in the formation; object cells are depictured with darkened
green squares, nests (final positions) with green and denoted with the letter N and
finally, pheromone cells are illustrated with tones of blue depending on the quantity
of the pheromone. As Fig. 9.10 shows, initially, the CA path planner creates collision
free paths for every cellular ant using the formation control rules since no pheromone
is deposited on the grid. At each time step, every cellular ant moves towards its final
destination avoiding all possible obstacles found on its desired shortest route and
leaving a pheromone trail on the grid. After a short period, the second subgroup
leaves from their food source and thus, amplifying the existing pheromone trails and
so on. Figure9.10a illustrates the simulation results in case of rectangular objects
while Fig. 9.10b presents the case of elliptical objects. For comparison reasons, all
simulation parameters are kept immutable for both cases.

Simulation results indicate that the proposed method can produce accurate colli-
sion free trajectories for every cellular ant with low complexity since ACO principles
are applied. Due to the fact that the proposed method mainly uses a CA, time com-
plexity is found to be approximately O(m ×n) as the majority of the CA algorithms,
where m × n are the dimensions of the rectangular grid, meaning that time complex-
ity is proportional to the CA dimensions. Moreover, time complexity is kept low in
any environment, both static and dynamic. The procedure retains the principles of
self organization of ACO algorithms and concurrently uses CA to achieve our goal.
Furthermore, the whole process is accomplished without any interference of a central
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Fig. 9.10 Simulation results for a rectangular objects and b elliptical objects, where cellular ants
are denoted with the letter R and a number (formation position), final positions are represented by
pale gray cells, object cells are illustrated by darkened cells and pheromone cells are illustrated
with tones of gray

control, making the system autonomous, and is completely parallel. Finally, due to
the fact that each subgroup consists of multiple robots, a cellular ant could wrongly
follow a pheromone trail leading to a scatter formation. Using the advantages of the
CA path planner, this problem could be resolved as depicted in Fig. 9.10.

9.4.1 Implementation of the Method in a Simulated
Cooperative Robot Team

The proposed method was implemented in a simulated cooperative robot team using
a three dimensional simulator, calledWebots [51]. All robots and instances simulated
inWebots are actually real robots that either can be purchased or used for educational
reasons. For our experiments, multiple miniature robots were used, called e-puck [8].
All robot controllers needed for the implemented method were created using the lan-
guage C. E-puck robot is equipped with a variety of sensors which can be used for
the implementation and its hardware structure is considered to be simple. To be fully
functional, the method requires that every robot of the team must be equipped with
specific types of sensors such as distance sensors, differential wheels, communica-
tion modules for data transmission/receipt and appropriate sensors for pheromone
detection. Real e-puck robot is equipped with all the above sensors as well as the
corresponding e-puck robot inWebots. Amore detailed description about the sensors
that were used for the implementation is presented below.

The proposed method requires every robot to be equipped with specific types
of sensors so that it can have a completely awareness of its environment. Consid-
ering that, every robot could avoid possible obstacles, detect pheromone trails and
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communicate with its neighboring robots during its route to its final destination.
Consequently, for every action different type of sensors is needed.

9.4.1.1 Sensors for Obstacle Avoidance

E-puck robot uses infrareds as distance sensors to detect obstacles in the configuration
area. For reasons of correspondence, infrared distance sensors were also used for the
implementation in Webots. Unfortunately, as Fig. 9.11 illustrates, infrareds on the
real e-puck robot are misplaced. Due to the quantization of the configuration area,
obstacle detection cannot easily be achieved, leading to a less accurate system. For
example, if an obstacle with small size is present between two infrared sensors, due
to the distance between them, the robot will not be able to detect the object. By
dividing the configuration area into smaller cells, the system can be more accurate
at the expense of memory resources. However, in systems with miniature robots,
memory restrictions are of great importance.

An obstacle can be detected only if it is in the range of a distance sensor so
that the corresponding cell can be stated as an obstacle cell. Consequently, the cell
length must be at least equal to the distance sensor range. Small memory amounts
are required for large cells but less accurate readings from the sensors are achieved.
Conversely, using small cell length, more accurate readings can be processed from
the sensors but memory demands exceed the limit. To overpass this problem, the
best solution is to define an average cell length, and use numerous sensors. For that
reason, some modifications are required to be done on the e-puck robot. Different
number of proximity sensors was attached on the robot to define the appropriate
cell length so that maximum accuracy could be achieved. All distance sensors were

Fig. 9.11 From left to right:
modified and real e-puck
robot. The continuous lines
represent the range of the
infrared sensors
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Fig. 9.12 Appropriate cell
length for different number of
proximity sensors

placed around the e-puck robot every timewith different angle. Figure9.12 illustrates
the cell length of the system in regard to the required number of distance sensors so
that an object could be detected at any angle.

In case of minimum sensor number, big cell length is required and therefore less
memory is needed. Nevertheless, less accuracy is achieved and thus, some objects
may not be detected. As the cell length is decreased, more sensors are required so
that small obstacles can be detected. High accuracy is achieved but more memory is
required. Therefore, to achieve maximum accuracy, multiple sensors must be used
without using inefficient number of memory. For that reason, thirty six infrared
sensors for obstacle avoidance were used instead of eight that real e-puck robot
has. Each sensor was placed on the circumference of each robot having a distance
of ten degrees with its neighboring sensors. Figure9.11 illustrates the position of
each sensor on a robot while Figs. 9.11 and 9.14 present the modified e-puck robot.
Moreover, to state a free cell as an obstacle cell, the readings from the sensors must
be compared with a threshold, relative to cell length. For accuracy reasons, this
number is equal to the weighted sum of the sensors readings which are physically
included in the correspondence cell. A1×5Gaussian convolution operator was used
as coefficient. For example, in Fig. 9.13, assume that the value which describes the
state of the north cell is equal to:

value = 0.0545 × a0 + 0.2242 × a1 + 0.4026 × a2 + 0.2242 × a3

+0.0545 × a4 (9.9)

where a0, a1, a2, a3 and a4 are the readings from the sensors which are found in
the north cell, from left to right. This value is compared with a threshold and if it is
greater, the cell will be stated as obstacle cell.
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Fig. 9.13 Sensor Positions
on a Robot

Fig. 9.14 Modified e-puck
robot with infrared ground
sensors

9.4.1.2 Sensors for Pheromone Detection

A special component, given by Webots and called pen, was attached to every robot.
The pen componentmodels a pen attached to amobile robot, typically used to present
the trajectory of the robot. The created trails can be considered as pheromone paths
which can be detected by every robot. Essentially, the quantity of pheromone can
be simulated by tones of gray created by the pen on the ground. A tone near to
black represents a high accumulation of pheromone while near to white tones cor-
respond to low levels of pheromone. A transition from black to white tones sim-
ulates the evaporation process of pheromone. Moreover, appropriate sensors must
be selected so that the tones of gray can be detected. For this purpose, multiple
infrared sensors were attached to every robot looking down to the ground, as illus-
trated in Fig. 9.14. According to their structure, infrareds can detect the amount of
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the reflected beam which is transformed to electrical signal. If a sensor measures a
trail with a black tone, a high value will be resulted. In case of closely white trails,
small readings from the sensors will occur. As in obstacle avoidance, these readings
are combined using a Gaussian convolution kernel. Finally, the resulted values are
compared with thresholds to produce different pheromone levels for the pheromone
cells of the CA.

At this point, it should be mentioned that in real e-puck robots, electrical circuits
using infrared sensors can be attached on their front for the same purpose. Three
infrared sensors are attached under the camera of the robot, facing the ground, and
are used as ground sensors to detect possible chromatic trails.

9.4.1.3 Communication Modules

In case of absence of pheromone or a scattered formation, cooperations between
the robots of each subgroup must be achieved so that their formation can be either
retained or regained, respectively. Cooperation tasks are accomplished using data
exchange through a communication link. Each robot communicates with its neigh-
bors and swaps information about its position in the grid. Depending on these data,
robots decidewhether to exchange their position in the formation,move towards their
final destination or remain to their current position. Real e-puck robot is equipped
with a Bluetooth module for serial communications. In Webots, the modified e-puck
robot uses a transmitter and a receiver component to achieve interactions. Essentially,
these two components simulate the operations that a real serial communication mod-
ule can complete. Each robot must scan its neighborhood to avoid obstacles, detect
possible pheromone trails and communicate with other robots, if necessary, to update
its state to the next time step. Thus, the required time to create its path is propor-
tional to the execution time of each above operation. The total execution time is
equal to:

τtotal = τprox + τph + τcom + τex (9.10)

where τtotal is the total execution time, τprox is the required time for handling the prox-
imity sensors and τph is the necessary time for handling the sensors for pheromone
detection.Moreover, τcom is the required time for transmittingreceiving data for coop-
eration tasks and τex is the necessary time for each robot to process all data. Each of
the above parameters are strictly connected with the specifications of the available
hardware modules that every robot is equipped. At this point it must be mentioned
that the processor of every robot is far faster than the other sensors and thus, τex is
considered to be insignificant. Moreover, in case of a detected pheromone trail, com-
munications between robots are not required making the creation of the paths even
faster. Depending on the used sensors in either a system or a simulated system, the
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method could create collision free paths at real time and regain a scattered formation
after a small time period.

9.4.2 Simulator Results

For testing purposes, the proposed method was implemented in a cooperative robot
team consisted of ten modified e-puck robots, using Webots. The entire team was
divided into two equally numbered subgroups of robots. For this specific system, the
cell length was decided to be equal to 2 cm for accuracy reasons. Moreover, every
robot must cover a distance of 140 cm meaning that the configuration area is divided
into a lattice with dimensions 70 × 70 cells. Finally, every robot moves to its final
destination following the desired shortest path, that is a straight line trail, and each
subgroup is forming a straight line pattern.

At the first time step, the first subgroup leaves from its initial positions, or else
food sources. Each robot enables its distance sensors so that possible obstacles can
be detected. Depending on the received readings, every robot decides if an obsta-
cle is present or not. In case of a detected obstacle, the correspondent cell will be
stated as an obstacle cell and by applying the appropriate CA rule, collision avoid-
ance is achieved. If no object is present, every robot enables its ground sensors
to search if any pheromone is deposited on the ground. Depending on the sen-
sor readings, the robot decides if any of its neighboring free cells must be stated
as a pheromone cell with state that represents the detected pheromone level. If a
pheromone cell is present, the appropriate pheromone CA rule is applied. Obvi-
ously, no robot of the first subgroup detects any pheromone trail so cooperation
tasks are applied. Every robot communicates with its neighbors and exchanges data
related to its position in the grid. According to the response, each robot selects
the appropriate CA rule to evolve its state to the next time step, meaning that the
robot will adjust its movements. The same procedure is repeated until every robot
covers the desired distance. After a period of time, the second subgroup begins
its route to their final points in the configuration area following the exact same
process.

Figures9.15, 9.16 and 9.17 illustrate screenshots obtained during the evolution
process. In particular, screenshots of the robot team avoiding a rectangular shaped
object are shown in Fig. 9.15 while Fig. 9.16 demonstrates the avoidance of circular
object. Moreover, Fig. 9.17 illustrates how robots react in a case of a dynamical
environment. The presented results prove that the proposed method can produce
accurate collision free paths by using simple and cheap sensors. Furthermore, the
robustness and the effectiveness of the method are established.
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Fig. 9.15 Modified e-puck robot team avoiding a rectangular shaped object (from left to right
and from upper to lower images), where green spots are the robots and “pheromone” trails are
illustrated with lines of tones of black
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Fig. 9.16 Modified e-puck robot team avoiding a circular shaped object, (from left to right and
from upper to lower images), where green spots are the robots and “pheromone” trails are illustrated
with lines of tones of black
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Fig. 9.17 Modified e-puck robot team avoiding dynamic moving objects, (from left to right and
from upper to lower images), where green spots are the robots and “pheromone” trails are illustrated
with lines of tones of black
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9.5 Conclusions

In this chapter, a method for solving the path planning problem in a cooperative
robot team was presented. The method is the result of a combination between CA
and ACO algorithms resulting to the so called “Cellular Robotic Ants”. To test the
effectiveness of the method, a 2-D environment was created. The complexity of the
proposed method is proportional to the CA dimensions, according to CA algorithms,
and is considered to be lowcompared to other relativemethods.Moreover, themethod
was implemented in a cooperative robot team using a three dimensional simulator,
called Webots. For testing purposes, the under study robot team was constituted
of two subgroups with five robots each. All essential sensors, that all robots must
be equipped, and their direct relations with the cell length and pheromone were
introduced. By some modifications on the real e-puck robot, the total amount of the
required memory was reduced, thus causing the computational cost to be decreased.
Therefore, the method is applicable to a real system consisting of e-puck robots but
with some restrictions, as aforementioned. The accuracy of the method was tested
by using two different types of objects, rectangular and circular shaped. In both
cases, the method created successfully collision free paths. Presented results exhibit
the effectiveness and the robustness of the method. Finally, the proposed “Cellular
Robotic Ants” architecture covers the needs of self organization and autonomy of
the system since no central control interferes.
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