
Chapter 6
Routing by Cellular Automata Agents in the
Triangular Lattice

Rolf Hoffmann and Dominique Désérable

Abstract This chapter describes an efficient novel router in which the messages
are transported by Cellular Automata (CA) mini-robots or so called CA agents.
CA agents are compliant but inconvenient to describe with the CA paradigm. In
order to implement agents more efficiently, the CA-w model (with write access) is
used. Both CA and CA–w models are compared. The other relevant feature in this
chapter is the underlying network embedded into the triangular lattice, with more
symmetries, thereby providing agents with more degrees of freedom. The router
uses six channels per node that can host up to six agents and provides a minimal
routing scheme (XY Z–protocol). Each agent situated on a channel has a computed
minimal direction defining the new channel in the adjacent node. In order to increase
the throughput an adaptive routing protocol is defined, preferring the direction to
an unoccupied channel. A strategy of deadlock avoidance is also investigated, from
which the initial setting of the channels can be alternated in space, or the agent’s
direction can dynamically be randomized.

6.1 Introduction

Problem solving with robots and agents has become more and more attractive [1–6].
What are the benefits to use agents for a given problem? Generally speaking, agents
are intelligent and their capabilities can be tailored to the problem in order to solve
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it effectively, and often in an unconventional way. Important properties that can be
achieved by agents are

• Scalable: the problem can be solved with a variable number of agents, and faster
or better with more agents.

• Tuneable: depending on the agent’s intelligence, the problem can be solved more
efficiently (with a higher quality and faster).

• Flexible: similar or dynamically changing situations can be solved using the same
agents, e.g. when the shape or size of the environment is changing.

• Fault-tolerant: the problem can be solved with low degradation even if some
“noise” is added, e.g. dynamic obstacles or temporary malfunctions appear, or
some agents break down totally.

Owing to their intelligence, agents can be employed to design, model, analyze, sim-
ulate, and solve problems in the areas of complex systems, real and artificial worlds,
games, distributed algorithms and mathematical questions.

Robots or agents controlled by a finite state machine (FSM) have a long history
in computer science [7], sometimes they are simply called “FSMs”, often with the
property that they canmove aroundon agraphor grid. For example, searching through
the whole environment by an FSM was addressed in [8] and graph exploration by
FSM controlled robots was treated in [9]. In order to support the simulation of such
applications special languages like [10–12] have been developed.

6.1.1 Cellular Automata Agents

What is a Cellular Automata Agent (CA Agent)? Simply speaking, a CA agent is an
agent that can be modeled within the CA paradigm. And what are the most important
attributes an agent should have in our context?

1. Self-contained (an individual, complete in itself). In CA, this property can be
realized by one cell, by a part of a cell, or by a group of cells.

2. Autonomous (not controlled by others). Agents operate on their own and control
their actions and internal states. In CA, this property can be realized by the own
state and the CA rule.

3. Perceptive (perceives information about the environment). In CA, this property
is realized by reading and interpreting the states of the neighborhood.

4. Reactive (can react on the perceived environment). InCA, this property is realized
by changing the own state by taking into account the perceived information.

5. Communicative (can communicate with other agents). This property means that
agents can exchange information, either indirectly through the environment (stig-
mergy, e.g. pheromones), or directly by perceiving other agents and reacting on
them in a perceivable way.

6. Proactive (acts on its own initiative, not only reacting, using a plan). In CA, the
cell’s next state should not only depend on its neighbors’ states but also on its
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own state. The number of inputs and states should not be too small in order to
give the agent a certain intelligence to initiate changes and to deal in advance with
difficult situations. And the agent’s behavior is to a certain extent not foreseeable,
it can be influenced by personal secret information or internal events. In CA, this
can be accomplished by hidden states that cannot be observed by the neighbors,
or by asynchronous internal triggers (e.g. random generator). As it is difficult
to define proactivity in a strict way, it is a matter of viewpoint whether simple
classical CA rules (like Game of Life, Traffic Rule 184) shall be classified as
multi-agent systems or not.

7. Local (acts locally). Agents are small compared to the system size and can only
act on their neighborhood. Global effects arise from accumulated local actions.

8. Mobile (this feature is not required but very useful). Very often agents aremoving
around in the environment, and then the neighborhood and the place of activity
are moving, too. When moving around, an agent may also change its local envi-
ronment at the same time.

Usually an agent performs actions. Internal actions change the state of an agent,
either a visible or a non-visible state, whereas external actions change the state of
the environment. The environment is composed of the ground environment (constant
or variable) and the other agents. In CA, an agent is not allowed to change the state
of a neighboring cell. Therefore, if an agent wants to apply an external action to a
neighboring cell, it can only issue a command that must be adequately executed by
the neighbor. For example agent A sends a “kill” command to agent B, then agent
B has to kill itself. This example shows that the CA modeling and description of
changing the environment is indirect and does not appear natural. Other models are
helpful to simplify such descriptions, like the “CA–w model” presented hereafter.

6.1.2 CA and CA–w Models

In order to describe moving agents, moving particles or dynamic changing activities,
the CA–wmodel (Cellular Automata with write access) was introduced [13]. Simply
speaking, this model allows to write information onto a neighbor. This method has
the advantage that a neighbor can directly be activated or deactivated, or data can be
sent actively to it by the agent. Thus the movement of agents can be described more
easily.

The CA–w model is a restricted case of the more general, “Global” GCA–w
[14–16]. In GCA–w any cell of the whole array can be modified whereas in the
CA–w model only the local neighbors can be. Usually the cells of these models
are a composition of (data, pointers). The neighbors are accessed via pointers, that
can be changed dynamically like the data by an appropriate rule from generation to
generation.
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In order to avoid confusion between CA and CA–w, in this context the CA model
can be attributed as “classical model” and the CA–w model as “implementation
model” although both can be used for description and implementation.

What are the capabilities and limitations of CA–w compared to CA? The main
difference is that the CA–w model allows to modify the state of a neighbor. Thereby
the activity of a neighboring cell can be switched on or off and data can actively be
moved to a neighbor, which is very useful for the description and effective simula-
tion of active particles or moving agents. Comparing their computing power, a CA
equivalent to a CA–w with neighborhood N1 can be found by extending N1 to N2
(N1 extended by write-distance). For example a CA–w with neighborhood distance
1 (read and write) is equivalent to a CA with neighborhood distance 2. Because of
this equivalence, both models can be mapped onto each other.

A drawback is the possible occurrence of write conflicts. There are two solutions
to handle conflicts:

• Use a conflict-resolving function, for example by applying a reduction operator
(max, +, ...) or using a random or deterministic priority scheme.

• Avoid conflicts by algorithmic design, meaning that the parallel application of all
rules never cause a conflict.

The second solution is more simple and elegant and many applications with agents
can be described in this way. Our routing problem with agents herein is implemented
by the CA–wmodel, although it is also possible tomodel amore cumbersome system
by standard CA.

6.1.2.1 Modeling Agents’ Mobility

How can an agent move from A to B? In the CAmodel, a couple of two rules (copy–
rule, delete–rule) must be performed (Fig. 6.1a): the first rule copies the agent from
A to B, the second deletes it on A. Both rules have to compute the same moving
condition, this means a redundant computation. Two operating modes allow the
CA–w to avoid this redundancy:

Fig. 6.1 CA model a cell A deletes the agent and cell B copies it. CA–w model b cell A deletes and
copies the agent or c cell B deletes and copies the agent. Active cells executing a rule are shaded



6 Routing by Cellular Automata Agents in the Triangular Lattice 121

• Cell A (the agent) is responsible for the moving operation (Fig. 6.1b), it computes
the moving condition and, if true, applies a rule that deletes itself on A and copies
it to B.

• Cell B (the empty front cell) is responsible (Fig. 6.1c), it computes the moving
condition and, if true, applies a rule that deletes the agent on A and copies it to B.

The second mode is used for our problem. In this way, concurrent agents wanting to
move to the same empty channel can easily be prioritized. The differences between
CA–w and classical CA for our routing problem will be illustrated in Sect. 6.3.

6.1.3 Lattice Topology

Choosing the best topology for 2d CA agents is not straightforward. We give some
insight hereafter to clarify our choice of the network used in this chapter to route
agents.

6.1.3.1 Towards an Optimal Tiling

The three regular tessellations of the plane are displayed in Fig. 6.2a where Schläfli
symbol {p, q} gives an exact definition of the tiling [17]. Their associated dual {q, p}
tilings are displayed in (b), whence the three possible regular 2d lattices in (c), either
3–valent or 4–valent or 6–valent [18].

Twousual tessellations for 2d cellular automata are identified in the {4, 4} “square”
tiling and the {6, 3} “hexagonal” tiling. It is observed that the minimal number of
neighbors appears in the hexagonal tiling; moreover, the six neighboring cells are
adjacent. Thereby, there is no risk of wavering as in the {4, 4} case between either
a 4–valent von Neumann neighborhood or a 8–valent Moore neighborhood. This
matter of symmetry among lattices may have important impacts upon the behavior
of their CA. A typical example is well known for lattice-gas automata wherein the
4–valent HPP gas cannot be consistent with the Navier-Stokes equation while the
6–valent FHP ensures consistency [19–21]. Our routing problem herein is embedded
into the 6–valent lattice.

6.1.3.2 Towards an Optimal 2d Finite-Sized Network

Once the valence had been settled, the question is to define a finite-sized toroidal
network.As amatter of fact, there is a relationship between a compatible arrangement
and some associated tessellation of the plane. Tiling the {4, 4} tessellation with a
finite-sized “prototile” is examined in [22]. In general, the topologies related to
plane tessellations belong to the family of multi-loop and circulant networks [23].
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Fig. 6.2 a The three regular tessellations of the plane: {3, 6} with 3–gons, {4, 4} with 4–gons,
{6, 3} with 6–gons where {p, q} is the Schläfli symbol; a triangular cell is surrounded with twelve
neighbors, a square cell with eight neighbors, a hexagonal cell with six adjacent neighbors.
b Associated dual tilings: {6, 3}, {4, 4}, {3, 6} (in dashed lines); {q, p} is the dual of {p, q}.
c The three induced regular 2d lattices: 3–valent, 4–valent, 6–valent

The hexagonal (or triple loop) case was investigated in [24] in order to exhibit
graphs with minimum diameter. They proved that the maximum order of a triple loop
graph with diameter n is N = 3n2 + 3n + 1. The grid representation of the graph is
a hexagonal torus with n circular rings of length 6n arranged around a central node.
Incidentally, this family of “honeycombs” Hn was encountered elsewhere, arising in
various projects such as FAIM-1 [25], Mayfly [26], HARTS [27] and more recently
with the EJ networks [28].

When tiling the plane with Hn prototiles, it can be observed that the axes joining
the center of these prototiles and the symmetry axes of the {6, 3} tiling donot coincide.
On the contrary, we have defined a new family of hexavalent networks stabilizing
the symmetry axes, that provide these networks with the highest symmetry level for
a 6–valent finite lattice. A relevant illustration of this discrepancy between prototiles
can be found in [29].

6.1.3.3 Arrowhead and Diamond

Our networks belong to a family of hierarchical Cayley graphs [30]. As a conse-
quence, this property facilitate as far as possible any routing or global communi-
cation procedure. The graphs of this family are denoted elsewhere as “arrowhead”
or “diamond” in order to avoid confusion with Hn family. The reader is referred
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Fig. 6.3 Arrowhead and diamond with N = 4n vertices for n = 3

to [31] for more details about the genesis of these graphs, displayed in Fig. 6.3, and
some of their topological properties. A very important one is that as Cayley graphs
they are vertex-transitive, that means that any vertex behaves identically. Practically,
this property involves a unique version of router code distributed among all nodes.
It was also shown that these graphs provide a good framework for routing [32] and
other global communications like broadcasting [33] and gossiping [34]. A survey of
global communications in usual networks is given in [35] but we focus hereafter on
the routing problem.

Arrowhead and diamond are isomorphic and the diamond itself is isomorphic to
an orthogonal representation of the “T –grid” like in Fig. 6.5 with n = 2. Therefore,
it is easy to map “T ” into the arrowhead by a simple coordinate transformation. In
the sequel, “T ” –or “Tn” if the “size” n is relevant– will always denote the orthogonal
representation of the diamond. It is interesting to observe that the k–ary 2–cube [36]
(k = 2n herein) can be embedded into by eliminating one direction of link, namely the
“diagonal” direction in the orthogonal diamond. For clarity’s sake, the “S–grid” “S”
–or “Sn” as well– will also denote our 2n–ary 2–cube in the sequel as a subgrid of T .
Note that another family of “augmented” k–ary 2–cubes was investigated elsewhere
[37] for any k but which coincide with Tn only when k = 2n .

The tori are well suited for physical ergodic systems with periodic boundary
conditions [38]. For afinite spacewith robots ormultiagents, non-periodic boundaries
can also be definedwith boundary conditions (bounce-back, absorption and so forth).
To conclude this topological presentation, let us hope that our S–T family might
reconcile von Neumann and hexagonal 2d cellular automata and activate exciting
challenges in CA and robot worlds.

6.1.4 The Problem: Routing

Let us consider the approach based on agents transporting messages from a source
node to a destination node and following aminimal route (or shortest path). The nodes
are connected via twelve unidirectional links, namely two in each of the six directions,
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Fig. 6.4 Each node of the
network contains six buffers
(channels) and is connected to
its neighbors by 6 input and 6
output links

that corresponds with a full-duplex or double lane traffic (Fig. 6.4). Each node is
provided with six channels (sometimes called buffers according to the context) and
one channel may host at most one agent transporting a message. Each agent moves
to the next node, defined by the channel’s position it is situated on. When moving to
the next node, an agent may hop to another channel, defined by the agent’s direction
in its minimal path.

A message transfer is the transfer of one message from a source to a target and
each agent shall perform such a message transfer. A set of messages to be transported
is calledmessage set. Amessage set transfer is the successful transfer of all messages
belonging to the set. Initially k agents are situated at their source nodes. Then they
move to their target nodes following their minimal path. When an agent reaches its
target, it is deleted. Thereby the number of moving agents is reduced until no agent is
left. This event defines the end of the whole message set transfer. Note that the agents
hinder each other more at the beginning (due to congestion) and less when many of
the agents have reached their targets and have been deleted. No new messages are
inserted into the systemuntil allmessages of the current set have reached their targets.
This corresponds to a barrier-synchronization between successive sets of messages.
Initially each agent is placed on a certain channel (with direction to the target) in the
source node and each agent knows its target. The target node of an agent should not
be its source node: message transfers within a node without an agent’s movement
are not allowed.

The goal is to find an agent’s behavior in order to transfer a message set (averaged
over many different sets) as fast as possible, that is, within a minimal number of
generations.Weknow frompreviousworks that the agent’s behavior can be optimized
(e.g. by a genetic algorithm) with respect to the set of given initial configurations, the
initial density of agents, and the size of the network. The goal is not to fully optimize
the agent’s behavior but rather to design a powerful router with six channels that
outperforms the ones developed before [39, 40].
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6.1.4.1 Related Work

Target searching has been studied in many variations: with moving targets [41] or
as single-agent systems [42]. Here we consider only stationary targets, and multiple
agents having only a local view. This contribution continues our preceding work on
routing with agents on the cyclic triangular grid [39] and on non-cyclic rectangular
2d meshes [43]. In a recent work [40], tori S and T were compared; evolved agents,
with a maximum of one agent per node, were used in both cases. It turned out that
routing in T is performed significantly better than in S.

The novelty herein is that six agents per node are now used, with one agent per
channel, instead of one agent per node therein. Another difference is that in [39] the
agent’s behavior was controlled by a finite state machine (FSM) evolved by a genetic
algorithm, whereas here the behavior is handcrafted. To summarize, the goal is to
find a faster router in T , using six agents per node and bidirectional traffic between
nodes, at first modeling the system as CA–w and then discussing whether the routing
algorithm is deadlock-free or not. Usually deterministic agents with synchronous
updating are not deadlock-free. Therefore a small amount of randomness can be
added to a deterministic behavior [44] in order to avoid deadlocks.

Communication protocols in hexagonal networks were already studied for Hn or
E J topologies [27, 28]. An adaptive deadlock-free routing protocol was proposed
recently [45] using additional virtual channels. In our approach, if the minimal route
is blocked, the alternativeminimal route is attempted in order tominimize deadlocks.
Further possibilities to avoid deadlocks are proposed in Sect. 6.4.3. Note that we do
not address the problemof fault tolerance networks onVLSI chips [46, 47]. A general
insight on adaptive routing can be found in [48].

The remainder of this chapter is structured as follows. Section 6.2 deals with
the topology of the T –grid and presents the XY Z–protocol computing the minimal
route. Section 6.3 shows how the routing can bymodeled as amulti-agent system. An
analysis of the router efficiency is discussed in Sect. 6.4 and some deadlock situations
are pointed out before Summary. This work finalizes a previous one investigating
this novel router in the triangular grid with six channels [49].

6.2 Minimal Routing in the Triangular Grid

6.2.1 Topology of S and T

Consider the square blocks in Fig. 6.5 with N = 2n × 2n nodes where n denotes
the size of the networks. The nodes are labeled according to the XY–orthogonal
coordinate system. In the left block, a node (x , y) labeled “xy” is connected with
its four neighbors (x ± 1, y), (x , y ± 1) (with addition modulo 2n) respectively
in the W–E , N–S directions, giving the 4–valent torus Sn . In the right block, two
additional links (x − 1, y − 1), (x + 1, y + 1) are provided in the diagonal N W–
SE direction (Z–coordinate), giving the 6–valent torus Tn . Because their associated
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Fig. 6.5 Tori S2 and T2 of order N = 16, labeled in the XY coordinate system; redundant nodes
in grey on the boundary. Inset: orientations W–E , N–S, N W–SE according to an XY Z reference
frame

graphs are regular their number of links is, respectively, 2N for torus Sn and 3N for
torus Tn . Both networks are scalable in the sense that one network of size n can be
built from four blocks of size n − 1. The S–grid is just displayed here because it
is often interesting to compare the topologies and performances of Sn and Tn , two
networks of the same size.

An important parameter for the routing task in the networks is the diameter. The
diameter defines the length of the shortest path between themost distant pair of nodes
and provides a lower bound for routing or other global communications; such a pair
is said to be antipodal. The exact value of the diameters in Sn and Tn is given by

DS
n = √

N ; DT
n = 2(

√
N − 1) + εn

3
(6.1)

where εn = 1 (resp. 0) depends on the odd (resp. even) parity of n and where the
upper symbol identifies the torus type; whence the ratio denoted

DS/T
n ≈ 1.5 (6.2)

between diameters. In this study, only the diameter DT
n will be considered, denoted

simply Dn in the sequel [50].

6.2.2 Minimal Routing Schemes in S and T

The basic, deterministic routing schemes are driven by the Manhattan distance in S
[36] and by the so-called “hexagonal” distance in T [28, 32]. They are denoted as
“rectangular” and “triangular” herein. Considering a source “A” and a target “B” as
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Fig. 6.6 Networks S3 and T3 of order N = 64. Routing paths from a source “A” to a target
“B”: rectangular routing in S (left), triangular routing in T (right). In the rectangular routing, axis
systems X AYA and X BYB intersect at P1, R1 and yield the rectangle AP1B R1 in general. In the
triangular routing, axis systems X AYA Z A and X BYB Z B intersect at Pi , Ri (i = 1, 2, 3) and yield
three parallelograms APi B Ri in general; in this case, the parallelogram AP3B R3 is “minimal”

shown in Fig. 6.6, we choose to find a shortest path from A to B with at most one
change of direction.

In the square grid on the left part, the construction yields the rectangle AP1B R1. In
order to ensure a homogeneous routing scheme, from an usual convention the agent
is carried following one direction first, following the other direction afterwards. This
orientation will be specified in the following subsection. Under these conditions, a
route A → B and a route B → A will follow two disjoint paths and each of them
is made of two unidirectional subpaths, that is A → P1 → B and B → R1 → A
respectively. In a particular case, A and B may share a common axis and the routes
A → B and B → A need a (full-duplex) two-lane way A ↔ B. Note that in a
finite-sized torus, not only the “geometric” rectangle AP1B R1 should be considered
but rather a “generalized” rectangle, because the unidirectional subpathsmay “cross”
over the boundaries of the torus.

In the triangular grid on the right part, the construction involves three generalized
parallelograms of the form APi B Ri . Among them, there exists a “minimal” one that
defines the shortest path. It is the purpose of the following to detect it and to move
CA agents within it.

6.2.3 Computing the Minimal Route in T (XY Z–Protocol)

The following abbreviations are used in the routing algorithm:

sign(d) = (0, 1,−1) IF (d = 0, d > 0, d < 0) for any integer d and

d̄ = d − sign(d) · M/2, where M = 2n is the length of any unidirectional cycle.
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STEP 0. The offsets between target (x ′, y′) and current (x, y) positions are com-
puted.

(dx, dy) := (x ′ − x, y′ − y).

STEP 1. The deviations are contracted to the interval [−M/2,+M/2].
dx := d̄x IF |dx | > M/2; dy := d̄y IF |dy| > M/2

If sign(dx) = sign(dy) then theminimal path is alreadydetermined and thediagonal
is used as one of the subpaths. Note that the path length is given by max(|dx |, |dy|)
if the signs are equal, by |dx | + |dy| otherwise.

STEP 2. One of the following operations is performed, only if dx · dy < 0. They
comprise a test whether the path with or without using the diagonal is shorter.

dx := d̄x IF |dx | > |dy|AND |d̄x | < |dx | + |dy| // |d̄x | = max(|dx |, |dy|)

dy := d̄y IF |dy| ≥ |dx |AND |d̄y| < |dx | + |dy| //|d̄y| = max(|dx |, |dy|)

STEP 3. This step forces the agents to move in the same direction if source and
target lie opposite to each other, namely at distance M/2 on the same axis. Thereby
collisions on a common node on inverse routes are avoided.

(dx, dy) := (|dx |, |dy|) IF (dx = −M/2)AND (dy = −M/2)
dx := |dx | IF (dx = −M/2)AND (dy = 0)
dy := |dy| IF (dy = −M/2)AND (dx = 0)

Then a minimal route is computed as follows:

(a) If dx · dy < 0 then
[dz′ = 0] move first dx ′ = dx steps, then move dy′ = dy steps

(b) If dx · dy > 0 then calculate
(1) dz′ = sign(dx) · min(|dx |, |dy|) // steps on the diagonal
(2) dx ′ = dx − dz′, dy′ = dy − dz′

[dy′ = 0] move first dz′ then dx ′, or
[dx ′ = 0] move first dy′ then dz′ .

This algorithm yields a minimal route and uses a cyclic priority for the six directions,
two or one of them which are used in a valid minimal route. For short, the algorithm
uses the priority scheme:

[dx ′ = 0] move first dy′ then dz′,
[dy′ = 0] move first dz′ then dx ′,
[dz′ = 0] move first dx ′ then dy′.
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Fig. 6.7 This directed graph is a spanning tree of the torus showing the minimal path according to
the XY Z–protocol from a source node “0” to any other node for a 8 × 8 network (n = 3, N = 64).
The maximal distance (longest path) is the diameter D3 = 5 for this graph (refer back to Eq. (6.1).
Six antipodals are highlighted. Note that for n even (n > 2) this routing scheme would display
twelve antipodals [50]

This priority scheme means: use “first dirR then dirL” where dirR and dirL
define the “right” minimal subpath and the “left” minimal subpath respectively,1

viewed from the “observer” agent as in Fig. 6.6.
The minimal routes (first dirR then dirL) are depicted as directed graph in

Fig. 6.7 for a 8 × 8 network. The number in the nodes represents their distance from
the source node “0”.

6.2.4 Deterministic Routing

From the above protocol “first dirR then dirL” the agent follows always the
“right” minimal subpath. This means that the agent changes its moving direction
accordingly. The minimal path can be computed only once at the beginning and
stored in the agent’s state. During the run, the agent updates the remaining path to
its target, decrementing its dirR counter until zero, then decrementing its dirL
counter if any, until completion. It is also possible to recompute the minimal path at
each new position. This was done in the simulation and that yields the same result.

The problemwith deterministic routing is that it is not deadlock-free (see deadlock
discussion in Sect. 6.4.3). Another problem with this protocol is that it may not be
optimal with respect to throughput, especially in case of congestion. But it should be
noted that congestion usually is not very high, because there are six channels available
in each node. Formally, the deterministic routing is secure for an agent alone.

1 An equivalent symmetric protocol would be “first dirL then dirR”.
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6.2.5 Adaptive Routing

The objective for adaptive routing is (i) to increase throughput, and (ii) to avoid
or reduce the probability of deadlocks. This protocol was manually designed and
it is a simple algorithm defining the new direction of an agent. During the run, if
the temporary computed direction (e.g., dirR) points to an occupied channel, then
the other channel (e.g., dirL) is selected no matter this channel is free or not. A
minimal adaptive routing may be roughly denoted as “either dirR or dirL”. The
path from source to target remains minimal on the condition that it remains inside
the boundaries defined by the minimal parallelogram.

In order to increase the throughput when the system is congested or to avoid dead-
locks securely, the agent’s behavior could be more elaborated. The agent could obey
to an internal control automaton (finite state machine as in [39]) and this automaton
can be optimized by genetic algorithms [51].

It would also be useful to allow the agent to deviate from the minimal route in
case of congestion. Referring back to Fig. 6.6, going from source A to target B, the
agent could route out of its minimal parallelogram and move within an extended area
like the trapezium AP1B R3 or even the rectangle AP1B R1 although the minimal
route is of course prioritized. As a consequence, three possible moving directions,
instead of two, remain adaptively possible. The three other directions backwards are
not allowed.

6.3 Modeling the Multi-Agent System

This section is the core of this chapter. The dynamics of moving agents is described,
the impact of the copy–delete rules in the CA–w and CA models is emphasized and
some programming issues are revealed.

6.3.1 Dynamics of the Multi-Agent System

The node structure, the channel state and how agents and arbiters cooperate are pre-
sented herein, the priority rule derived from the above adaptive protocol is analyzed
and the conflict-free transition moving the agents follows.

6.3.1.1 Node Structure

The whole system consists of 2n × 2n nodes arranged as in the T -grid of Fig. 6.5.
Each node labeled by its (x, y) coordinates contains the 6–fold set

C = {C0, C1, C2, C3, C4, C5} = {E, SE, S, W, N W, N } (6.3)
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Fig. 6.8 Inner channels of C oriented (a) and labeled clockwise (b). Outer channels ofM located in
adjacent nodes. The direct neighbor of channelCi in the adjacent node is denoted by Mi . The cardinal
notation “W.E” stands for the E–channel of the W–neighbor; the same relative neighborhood is
valid for anypair (node, channel) by symmetry: M j≡i+3 (mod 6) denotes the i–channel of the adjacent
j–neighbor

of channels Ci oriented2 and labeled clockwise (Fig. 6.8). Index i is called position
or lane number in this context. The position of a channel defines also an implicit
direction that defines the next adjacent node that an agent visits next on its travel.
The direct neighbor of channel Ci in the adjacent node is denoted by Mi where

M = {M0, M1, M2, M3, M4, M5} (6.4)

and M j≡i+3 (mod 6) denotes the i–channel of the adjacent j–neighbor by symmetry.
In the cardinal notation, e.g. for i = 0, “W.E” stands for the E–channel of the
W–neighbor.

6.3.1.2 Channel State

Each agent has a direction which is updated when it moves. In other words, the
current direction of the agent defines the channel in the next node where the agent
requests to move to.

The i–channel’s state at time t is defined by

ci (t) = (p, (x ′, y′)) (6.5)

where (x ′, y′) stands for the agent’s target coordinates and p ∈ P stands for the
agent’s direction (a pointer to the next channel) in the set

P = {−1, 0, 1, 2, 3, 4, 5} ≡ (Empty,toE,toNW,toS,toW,toSE,toN) (6.6)

2 Except a homeomorphism.
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including an empty channel encoded by ω = −1. In a graphical representation, the
directions can be symbolized by (→↖↓←↘↑) according to the inset in Fig. 6.5.

6.3.1.3 Agents and Arbiters

According to the above adaptive routing scheme, an agent can move to a 3–fold
subset of channels at most. Recall that the three other directions backwards are not
allowed. For example, coming from channel W.E of W–neighbor at (x −1, y), going
to channel E or N or SE of current node (x, y) as shown in Fig. 6.9a. In the same
way, agents located in outer channels N W.SE and S.N are possible competitors
for a part of this subset {E, N , SE}: channel subset {SE, E, S} can be requested
by un agent in N W.SE while channel subset {N , N W, E} by un agent in S.N . The
intersection of those three requested subsets is the channel E . From this observation,
E can be chosen as arbiter of three possible concurrent agents. In other words, a
priority rule can be locally defined for this channel. Arbiter E is C0 in Fig. 6.9b and
this concurrent scheme is invariant by rotation.

This interaction between requesting agents and arbiter channels is formalized
hereafter. Let the 3–uple of channels

Ci = (Ci+1, Ci , Ci−1) (6.7)

and let us denote by
Mi = (Ri , Si , Li ) (6.8)

the ordered 3–uple opposite to Ci and where

Ri = Mi+4, Si = Mi+3, Li = Mi+2 (6.9)

Fig. 6.9 a An agent located in the E–channel of the western node W.E can move to one channel in
the “opposite” subset {E, N , SE}. Twoagents in channels N W.SE and S.N are possible competitors
for a part of this subset. b As a consequence, channel C0 is the arbiter of three possible concurrent
agents in the requesting channels M2, M3, M4
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Fig. 6.10 a Requesting channels R0, S0, L0 with respect to C0. The “right”, “straight”,
“left” respective directions are viewed from the “observer” C0. The same concurrent scheme is
valid all around from rotational invariance. b Priority rule: a priority order is assigned clockwise
by any channel Ci ∈ C to its own requesting ordered set Mi = (Ri , Si , Li ) : 1 to left, 2 to
straight, 3 to right

are theright,straight and left outer channels for the three possible incoming
agents viewed from the “observer” channel Ci in Fig. 6.10a (i = 0 assumed herein).
This 3–uple is of special interest because, viewed from channel Ci , the agents may
only move from Ri or Si or Li to Ci on their route.

Conversely, Ci is the requested channel subset for Si , as well as Ci−1 for Li and
Ci+1 for Ri . Now

Ci−1 ∩ Ci ∩ Ci+1 = {Ci } (6.10)

from (6.7). This simple but important property allows to define a local priority rule
for channel Ci and invariant by rotation.

6.3.1.4 Priority Rule

Each channel Ci ∈ C computes the three exclusive conditions selecting the incoming
agent that will be hosted next, with a priority assigned clockwise (Fig. 6.10b):

1. Agent wants to move from Li to Ci , priority 1: LtoC = (l = i)
2. Agent wants to move from Si to Ci , priority 2: StoC = (s = i) ∧ ¬LtoC
3. Agent wants to move from Ri to Ci , priority 3: RtoC = (r = i) ∧ ¬StoC.
In other words, this rule selects a winner among the three possible concurrent agents
requesting channel Ci and the selection is assigned clockwise: first to left, second
to straight, third to right, orientation viewed from the observer channel. It
should be pointed out that this priority scheme is consistent with the protocol “first
dirR then dirL” defined in Sect. 6.2.3 but now viewed from the observer agent.
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6.3.1.5 Moving the Agents

The above priority scheme ensures a conflict-free dynamics of moving agents3 in the
whole network. Thus, from the three previous conditions in channel Ci , five cases
are distinguished:

• case κ1 : (p �= ω) // channel not empty, agent stays at rest,
• case κ2 : (p = ω) ∧ LtoC // channel empty, agent to be copied from Li ,
• case κ3 : (p = ω) ∧ StoC // channel empty, agent to be copied from Si ,
• case κ4 : (p = ω) ∧ RtoC // channel empty, agent to be copied from Ri ,
• case κ5 : (p = ω) ∧ ¬LtoC ∧ ¬StoC ∧ ¬RtoC // channel remains empty.

The new target coordinates (x ′, y′)∗ in the channel’s state are either invariant if the
agent stays at rest (case κ1) or are copied from Li or Si or Ri exclusively, depending
of the selected incoming agent hosted and to be received by the channel. Thus the
target coordinates (x ′, y′)∗ are updated as

(x ′, y′)∗ = (x ′, y′) IF κ1

(x ′, y′)∗ = (x ′, y′)Li IF κ2

(x ′, y′)∗ = (x ′, y′)Si IF κ3

(x ′, y′)∗ = (x ′, y′)Ri IF κ4 (6.11)

according to the current channel’s state and to the result of the selection.
Since the agent’s target coordinates are stuck within its state, the agent must

clearly carry them with it when moving. The new pointer to the next node

p∗ = ϕxy ((x ′, y′)∗) (p∗ ∈ P) (6.12)

is then updated by ϕxy which yields the new direction from the target coordinates
of the selected agent (ϕxy is the local updating function in the current node (x, y)).
For case κ5, the direction is irrelevant and the channel remains empty. Finally, the
i–channel’s state at time t + 1 becomes

ci (t + 1) = (p∗, (x ′, y′)∗) (6.13)

and the new state is updated synchronously. It is assumed that the agents are initially
placed on a channel which is part of the minimal route, and the initial direction is
one of the minimal directions.

3 Except special deadlock or livelock situations pointed out in Sect. 6.4.3.
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6.3.2 The CA–w and CA Copy–Delete Rules

The synchronous transition (6.13) to the next timestep is governed by the copy–
delete operating mode of either the CA or the CA–w model in Fig. 6.1. The impact
of their rules is examined hereafter, that will highlight the simplicity induced by the
write–access in the CA–w model.

6.3.2.1 CA–w Rule

The CA–w model is especially useful if there are no write conflicts by algorithmic
design. This is here the case, because an agent is copied by its receiving channel, after
applying the abovementioned priority scheme and according to the mode displayed
in Fig. 6.1c. Thus only this receiving channel is enabled to delete the agent on
the sending channel at the same time. A further advantage is that only the short-
range copy–neighborhood is sufficient to move an agent, the wide-range delete–
neighborhood (necessary for CA modeling and described hereafter) is not needed.

Therefore the 3–fold copy–neighborhood Mi that needs to be checked by Ci in
order to receive the hosted agent is given by (6.8), this agent in Mi is released by
Ci when firing the transition (6.13) and following the CA–w delete–copy operating
mode in Fig. 6.1c.

6.3.2.2 CA Rule

The CA rule differs from the CA–w rule in the fact that the sending channel has
to delete itself the agent when moving. This means that a separate delete–rule is
necessary.

In order to release its own agent, the sending channel must be aware of the whole
situation in its wide-range neighborhood defined as follows. Knowing that an agent
in channel Mi+3 ∈ Mi and wanting to move (Fig. 6.9a) will be selected by its arbiter
which belongs to Ci (Fig. 6.9b), this requesting agent has other possible competing
agents lying in Mi+1 for Ci+1 or Mi for Ci or Mi−1 for Ci−1. Therefore, the full
set of competitors is the union

̂Mi = Mi+1 ∪ Mi ∪ Mi−1 (6.14)

but
Si−1 = Li , Ri−1 = Li+1 = Si , Si+1 = Ri

from (6.9) whence

̂Mi = (Mi+1, Mi+2, Mi+3, Mi+4, Mi+5) (6.15)
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or, if we exclude the own channel,

M̂i = (Mi+1, Mi+2, Mi+4, Mi+5). (6.16)

In addition, the sending channel must also be aware of the move-to conditions of Ci ,
whence the extended delete–neighborhood

M̂i ∪ Ci = (L Li , Li , Ri , R Ri ) ∪ (Ci+1, Ci , Ci−1) (6.17)

with seven channels altogether and where “L Li” and “R Ri” denote the wide-range
left and right outer channels in Fig. 6.11b. As a matter of fact and referring back also
to Fig. 6.10, it can be observed that only the “isolated” channels are excluded for
this wide-range neighborhood.

Note that the cardinality of the neighborhood of a receiving channel is three
whereas it is seven for a sending channel, without counting the own channel. Thus
the whole neighborhood in the CA model is the union of the copy–and–delete–
neighborhood with three and seven channels respectively, namely ten channels alto-
gether when firing the transition (6.13) and following the CA delete–copy operating
mode in Fig. 6.1a.

The discrepancy between both CA and CA–w rules described hereabove high-
lights henceforth the simplicity of the CA–w model. It should be noted that the
channels of a node can be seen as the partitions of a cell as in “partitioned CA”
[52]. Therefore a similar modeling can be done by partitioned CA. Another way of
modeling such a system would be to use a hexavalent FHP–like lattice-gas [20]; but
here the purpose is to avoid the two-stage timestep in order to save time, with only
one clock cycle instead of two.

Fig. 6.11 Wide–range neighborhoods: a The 3–neighborhood M0 of receiver C0. b The 7–
neighborhood M̂0 of sender S0 extended to L L0 and R R0. Channels C0 and S0 coincide either as
receiver or as sender
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6.3.3 Programming Issues

Some more details are revealed for the reader interested in writing a simulation
program. The following pseudo-codes show the algorithms for implementation of
the CA and CA–w models. Missing items and notes “(*)” are explained afterwards.

6.3.3.1 CA Model

FOR EACH cell IN cellfield DO

// compute own move condition, requires evaluation of copy- and delete neighborhood

1 cell.agent.can_move = (no agent or obstacle in front) AND (*)

(no other agent with higher priority can move to cell in front)

// for each possible sending neighbor, requires evaluation of the copy-neighborhood

// check if an agent wants to move to me and select one with the highest priority

2 neighbor(sending).agent.can_move(to_me) =

neighbor(sending).is(agent) AND

no other agent with higher priority wants to move to me

// compute moving rule

3 cell_next<- empty IF cell.is(empty) AND no agent can move to me // remains empty

<- agent IF cell.is(agent) AND receiving cell occupied // blocked

<- empty IF cell.is(agent) AND cell.agent.can_move // delete (*)

<- neighbor(sending).agent

IF cell.is(empty) AND neighbor(sending).agent.can_move(to_me) // copy

ENDFOREACH

FOR EACH cell IN cellfield DO

5 cell <- cell_next // synchronous updating

ENDFOREACH

Statement 1 evaluates if the agent situated on its cell can move; this evaluation
requires an extended neighborhood because of possible conflicts, namely the union
of the copy- and delete neighborhood. Statement 2 evaluates if a neighboring agent
can move to the current cell; this evaluation requires the copy-neighborhood only. In
Statement 3 an agent may move, by deleting it by the sending cell and copying it by
the receiving cell. Statement 5 performs a synchronous updating of the whole cell
field.

The following simulation using the CA–w model is more simple.

6.3.3.2 CA–w Model

FOR EACH cell IN cellfield DO

// for each possible sending neighbor, requires evaluation of the copy-neighborhood

// check if an agent wants to move to me and select one with the highest priority

2 neighbor(sending).agent.can_move(to_me) =

neighbor(sending).is(agent) AND

no other agent with higher priority wants to move to me

// compute moving rule, now without delete

3 cell_next<- empty IF cell.is(empty) AND no agent can move to me // remains empty
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<- agent IF cell.is(agent) AND receiving cell occupied // blocked

<- neighbor(sending).agent

IF cell.is(empty) AND neighbor(sending).agent.can_move(to_me) // copy

// extra CA--w operation: write on neighbor (deletion of agent when moving)

4 neighbor(sending).agent <- empty IF neighbor(sending).agent.can_move(to_me) //delete

ENDFOREACH

FOR EACH cell IN cellfield DO

5 cell <- cell_next // synchronous updating

ENDFOREACH

Compared to the CA program, the evaluation of the move condition (Statement 1
in CA program (*)) is omitted. Therefore the delete-neighborhood need not to be
checked. As a consequence, the delete(*) line in Statement 3 of the CA program
is also omitted and replaced by the additional Statement 4. Through this statement an
agent on a sending cell is deleted by the receiving cell. The advantage of the CA–w
program is that it is more concise and less expensive, because the move condition
in Statement 1 needs not to be computed.

6.4 Router Efficiency and Deadlocks

Two test cases will be used for evaluation, where k is the number of agents, s the
number of source nodes and m the number of target nodes:

1. First Test Case (m = 1, k = s). All agents move to the same common target.
We will consider the case k = N − 1, meaning that initially an agent is placed
on each site (except on the target). In this case the optimal performance of the
network would be reached if the target consumes six messages in every timestep
(t = (N − 1)/6). In addition, the target location is varying, with a maximum
of N test configurations in order to check the routing scheme exhaustively. We
recall that the T –grid is vertex-transitive, so the induced routing algorithm must
yield the same result for all N cases!

2. Second Test Case (k = s = m). The sources are mutually exclusive (each
source is used only once in a message set) as well as targets. Source locations
may act as targets for other agents, too. We consider the case k = N/2 that was
also used in preceding works [39, 40] for comparison. Note that the minimum
number of timesteps t to fulfil the task is the longest distance between source and
target which is contained in the message set. For a high initial density of agents
the probability is high that the longest distance is close to the diameter of the
network. Thus the best case would be t = Dn .
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6.4.1 Efficiency of Deterministic Routing

Using one agent only in the router, it will travel always on a minimal route. More
agents are also using a minimal route, but sometimes they have to wait due to traffic
congestion.

6.4.1.1 First Test Case

In the first test case scenario, k = N − 1 messages move to the same common
target from all other nodes. All possible or a large number of initial configurations
differing in the target location were tested (Table6.1). The results are the same for
all tested initial configurations. This means that the router works totally symmetric
as expected. An optimal router would consume in every generation six agents at the
target, leading to an optimum of topt = k/6. It is difficult to reach the optimum,
because the agents would need a global or a far view in order to let the agents move
simultaneously in a cohort. Here an agent needs an empty receiver channel in front
in order to move, thus empty channels are necessary to signal to the agents that they
can move.

As the router is completely filled with agents at the beginning (one agent in each
node except the target node), there exist some agents which have as travel distance
the diameter Dn . Therefore the ratio t/Dn (B/C in Table6.1) is significantly higher
than one, slightly higher than

√
N/2. On the other hand, the ratio t/(k/6) = B/D

is quite good and relatively constant, that is B/D ≈ 2 for large N , which is almost
optimal because each agent needs an empty channel in front when moving without
deviation on the minimal route. This phenomenon is easy to understand and has a
close relationship with Traffic Rule 184 in a 1–dimensional system: a car with a car
straight ahead cannot move and must wait for the next timestep.

Table 6.1 First test case: k = N −1 messages travel from all disjoint sources to the same common
target

Nodes N Number of
configura-
tions
(destinations)
checked

(B) Message
transfer time
[steps]

(C) Diameter Ratio B/C (D) N/6 Ratio B/D

4 = 2 × 2 all 4 1 1 1 1 1

16 = 4 × 4 all 16 5 2 2.5 3 1.67

64 = 8 × 8 all 64 23 5 4.6 11 2.09

256 = 16 × 16 all 256 89 10 8.9 43 2.07

1024 = 32 × 32 all 1024 351 21 16.7 171 2.05

4096 = 64 × 64 64 1384 42 32.95 683 2.03

Message transfer time (in timesteps) in the T–grid, averaged over the number of checked initial
configurations. The time is independent of the position of the target



140 R. Hoffmann and D. Désérable

Fig. 6.12 Simulation snapshots for the first scenario in a 8×8 grid T3, N −1 agents moving to the
same target position. Agents are depicted as black triangles, visited channels as small grey triangles:
directions are symbolized by (→↖↓←↘↑). Snapshots on S3 are also displayed for comparison

A simulation sequence of this case is shown in Fig. 6.12 for the 8× 8 grid T3 and
S3 is also displayed for comparison.
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6.4.1.2 Second Test Case

This test case was already used in a previous work [40] and is used for comparison.
Therein, the agentswere controlled by afinite statemachineFSM: optimized, evolved
agents were used, choosing a random direction with probability 0.3% in order to
avoid deadlocks, with only one agent per node. Ratio A/B in Table6.2 shows that
even the deterministic router with six channels performs significantly better, with
A/B ≈ 2.5 for N = 1024. The main reason is that here a node can host six agents,
not only one, and therefore the congestion is considerably lower. The ratio (B/C)
is noteworthy and shows that the mean transfer time is close to the diameter. This
phenomenon is again easy to understand from Traffic Rule 184 but now in a fluid
traffic. A simulation sequence of this case is shown in Fig. 6.13.

6.4.2 Efficiency of Adaptive Routing

An adaptive routing protocol was designed in order to speed up the message set
transfer time and to avoid deadlocks during the run, although this could not be
proved. When an agent computes a new direction and whenever the channel in that
direction is occupied, the agent chooses the other minimal direction if there is a
choice at all.

Table 6.2 Second test case: k = N/2 messages travel from disjoint sources to disjoint targets

Nodes N Number of
configura-
tions checked
for B
randomly
generated

(A) time
steps,
FSM
controlled
agent

(B) time
steps, 6
channels
non-
adaptive

Ratio
A/B

(C)
Diameter

Ratio
B/C

Time
steps, 6
channels
adaptive

4 = 2 × 2 32 3.756 1 3.76 1 1 1

16 = 4 × 4 256 8.528 2.520 3.38 2 1.260 2.520

64 = 8 × 8 256 14.641 5.852 2.50 5 1.170 5.648

256 = 16 × 16 256 28.848 12.070 2.39 10 1.207 11.574

1024 = 32 × 32 256 58.438 23.367 2.50 21 1.113 22.648

4096 = 64 × 64 256 128.087 45.199 2.83 42 1.076 44.082

16384 = 128 × 128 128 300.330 87.789 3.42 85 1.033 86.668

Message transfer time (in timesteps) in the T–grid, averaged over the number of checked initial
configurations. Routing with six channels per node performs significantly better (ratio A/B) than
FSM controlled agents (one per node)
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Fig. 6.13 Simulation snapshots for the second scenario in a 8 × 8 grid T3, 32 agents moving to
their assigned target. Agents are depicted as black triangles, visited channels as small grey triangles:
directions are symbolized by (→↖↓←↘↑). Snapshots on S3 are also displayed for comparison

6.4.2.1 First Test Case

For this scenario with a common target the performance of adaptive routing is the
same as for the deterministic routing. The reason is that all routes to the target are
heavily congested. This means that the adaptive routing can hardly be better, but it
is also not worse for the investigated case.
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6.4.2.2 Second Test Case

For this scenario with randomly chosen sources and targets, the adaptive routing
performs slightly—but only slightly—better. That means that agents’ minimal path
is seldom rerouted because of the fluid traffic. For example, for N = 1024, the
message transfer time is reduced by 4.1%. There seems to be more potential to
optimize the behavior of the agents (using an FSM, or using a larger neighborhood)
in order to guide them in a way that six agents are almost constantly consumed by
the target.

6.4.3 Deadlocks

A trivial deadlock can be produced if all 6N channels contain agents (fully packed),
thus no moving is possible at all. Another deadlock appears if M = 2n agents line up
in a loop on all the channels belonging to one lane, and all of them have the same lane
direction. Then the lane is completely full and the agents are stuck. To escape from
such a deadlock would only be possible if the agents can deviate from the shortest
path, e.g. by choosing a random direction from time to time. More interesting are
the cyclic deadlocks where the agents form a loop and are blocking each other (no
receiving channel is free in the loop). Two situations were investigated.

First situation [Right Loop] (Fig. 6.14). An empty node� is in the center of
six surrounding nodes, let us call them A0, A1,... A5 clockwise. Agent at A0 wants to
go to A2, A1 to A3... in short the Ai want to go to Ai+2 all around.Note that each agent
has two alternatives: goingfirst via� through the center or goingfirst to a surrounding
node (e.g., agent at A0 can go first to � and then to A2, or first to A1 and then to
A2). Whether a deadlock appears depends on the initial assignments to the channels.
If the initial assignments of all agents are “use the left channel first”
via surrounding nodes, then the agents block each other cyclically. Otherwise they
can move via the center node � and no deadlock occurs. Thereby it is assumed that
the channels in � are empty or become empty after some time and are not part of
other deadlocks.

Fig. 6.14 A possible deadlock situation. a Agents targets, target = source + 2 mod 6. b The
alternate paths, two min paths solid leftmost first, dotted rightmost first. c Cyclic deadlock appears
if leftmost subpath is taken first. d No deadlock if rightmost subpath is taken first
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Second situation [Left Loop]. This situation is symmetric to the right loop,
except that the loop direction is now counterclockwise. A deadlock will appear if the
initial directions of all agents are “use the right channel first”.

If an initial configuration includes a right loop and a left loop, then at least one
deadlock will appear if the initial assigned channel is fixed to the left or to the right.
There are several ways to dissolve such deadlocks:

1. A spatial inhomogeneity is used, e.g., agents at odd nodes use initially the left
subroute channel and agents at even nodes use the right subroute channel. The
partition “odd–even” means x + y ≡ 1 or x + y ≡ 0 respectively, under addition
modulo 2. This kind of partition, among others, was examined and did work for a
limited set of experiments. Another similar way would be to randomize the initial
subroute/channel assignment. This may be very successful but still there exists a
very low probability for a deadlock.

2. The choice between the two minimal subroutes is taken randomly, or the choice
may depends on an extended neighborhood.

3. It would be possible to deviate in a deterministic or non-deterministic way from
the minimal route: for example an agent could move side-backwards if the whole
area in direction of the target is blocked.

4. It would be possible to redistribute the channels during the run, by using a two-
stage interaction-advection transition similar to the FHP lattice-gas [20]: move
or don’t move, then redistribute. In this case, the initially assigned channels and
the used channels during the run could be dynamically rearranged.

6.5 Summary

The properties of a family of scalable 6–valent triangular tori were studied herein
and for this family a minimal routing protocol was defined. A novel router with six
channels per node was modeled as a multi-agent system within the cellular automata
paradigm. In order to avoid the redundant computation of the moving condition, the
CA–w model was used for implementation, that allows the receiving cell to copy
the agent and to delete it on the sending cell. Thereby the description becomes more
natural and the simulation faster. Both classical CA and new CA–w models were
presented and compared. Each agent has a computed direction defining the new
channel in the adjacent next node. The computed direction is a “minimal” direction
leading on the shortest path to the target. The novel router is significantly faster (2.5
times for 1024 nodes) than an optimized reference router with one agent per node.
In addition, an adaptive routing protocol was defined, which prefers the leftmost
channel of a minimal route if the rightmost channel is occupied. Thereby a speed-up
of 4.1% for 1024 nodes was reached.

Deadlocks may appear for special situations when the system is overloaded, or
when a group of agents form a loop. In order to avoid some of the deadlocks the initial
subpath’s direction can be alternated in space, or an adaptive protocol can be used.
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The defined adaptive protocol switches to the other alternate minimal subpath in the
case where the channel of the prior subpath is occupied. This adaptive protocol leads
also to a higher throughput in the case of congestion. In order to dissolve deadlocks
securely, a random or pseudo-random component should be introduced that may also
allow the agents to bypass congested routes.

Further work can be aimed towards more intelligent agents in case of congestion
through optimizing their behavior by using a genetic algorithm. Moreover, previous
comparativeworks on the performance of agentsmoving either in the 4–valent S–grid
or in the 6–valent T –grid [40, 53], with a speedup on T over S according to their
diameter ratio (refer back to Eq. (6.2)), emphasize again our choice of triangular
lattice explained in Sect. 6.1.3. The routing protocol could also be simplified by
exploring the symmetries of the isotropic triangular grid: it is conjectured that this
approach may drastically reduce the cost of the router, at least in a deterministic or
adaptive context [54, 55].
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