
Chapter 5
Speed Control on a Hexapodal Robot Driven
by a CNN-CPG Structure

E. Arena, P. Arena and L. Patané

Abstract Locomotion control in legged robots is an interesting research field that
can take inspiration from biology to design innovative bio-inspired control systems.
Central Pattern Generators (CPGs) are well known neural structures devoted to gen-
erate activation signals to allow a coordinated movement in living beings. Looking
in particular in the insect world, and taking as a source of inspiration the Drosophila
melanogaster, a hierarchical architecture mainly based on the paradigm of a Cellular
non-linear Network (CNN) has been developed and applied to control locomotion in
a fruit fly-inspired simulated hexapod robot. The modeled neural structure is able to
show different locomotion gaits depending on the phase locking among the neurons
responsible for the motor activities at the level of the leg joints and theoretical con-
siderations about the generated pattern stability are discussed. Moreover the phase
synchronization between the leg, altering the locomotion, can be used to modify the
speed of the robot that can be controlled to follow a reference speed signal. To find
the suitable transitions among patterns of coordinated movements, a reward-based
learning process has been considered. Simulation results obtained in a dynamical
environment using a Drosophila-inspired hexapod robot are here reported analyzing
the performance of the system.

5.1 Introduction

Gait generation and locomotion control in artificial systems are extremely important
to build efficient and highly adaptive walking robots. Since the last decade a huge
effort has been paid to discover and model the rules that biological neural systems
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adopt to show efficient strategies for generating and controlling the gait in animals
andmanage the efficient transition among different patterns of locomotion. Thework
here presented is in line with the on-going studies on the insect brain architecture
[1, 2]. In particular a huge effort has been paid recently to design block-size models
for a number of different parts of the fly Drosophila melanogaster brain, to try
to attain perceptual capabilities and to transfer them to biorobots. In the field of
Bio inspired cognitive Robotics, the paradigm of Cellular Nonlinear Networks, the
continuous time extension of cellular automata, has been widely exploited for their
capabilities of complex spatial temporal pattern formation, both in the steady state
regime [3, 4], and through dynamical attractors [5].

Regarding the Neurobiological studies on the fly motor control, while it is already
knownwhich are the centers involved in visually guided orientation control behaviors
(i.e. Central Complex) [6–8], it is not clear how the high level controller acts at the low
level, to finely modulate the neural circuitry responsible for the locomotion pattern
generation, steering activities and others. On the other side, behavioral experiments
are in line with the idea that the fruit fly mainly adopts the Central Pattern Generator
(CPG) scheme to generate and control its locomotion patterns [9–11]. A plausible
CPG based neural controller was then designed, able to generate the joint signals
and the consequent stepping diagrams for the fruit fly. The designed network was
used to control an artificial model of the fruit fly built using a dynamic simulation
environment as will be reported in the next sections.

In literature several CPG-based central structures were developed and applied to
different robotic platforms [12]. Here the possibility to host signals coming from sen-
sors can improve the robot performance in terms of adaptability to the environment
state [13]. The use of dynamical oscillators is also commonly exploited to repre-
sent the overall joint activity of a whole neural group and the different topological
links among the oscillators give the opportunity to develop a rich variety of robot
behaviors [14]. The various locomotion gaits are obtained imposing different phase
displacements among the oscillators, which however, have to maintain in time the
imposed phase synchronization. Adaptive walking and climbing capabilities were
also obtained in real and simulated hexapodal structure referring to CPG realised via
CNN architectures [15, 16]. However, only a few works deal with the problem of
stability of the obtained gait, which is indeed a crucial aspect to be analyzed. In the
proposed work a network of coupled oscillators is used to control the 18 DOFs of
a Drosophila-like hexapod structure. To create a stable gait generator, a two layer
structure is used to uncouple the gait generation mechanisms from the low level actu-
ation of the legs that present different peculiar kinematics structures. To guarantee
the stability of the imposed locomotion gaits, the partial contraction theory [17] has
been suitably applied. The proof of convergence to every imposed gait thanks to the
particular tree structure of the proposed CNN network is guaranteed. The defined
CPG is then available to control the locomotion of an hexapod simulated robot with
a variety of gaits that can be obtained changing the phase relations between the
interconnected neurons dedicated to each leg. In Nature the locomotion pattern is
changed in time depending both on the environmental constraints and on the speed
imposed by the internal state of the insect. Therefore we proposed to include, as a
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higher controller a neural structure similar to aMotorMap. This neural net creates an
unsupervised association between the reference speed that, together with the actual
speed, is given as input, and the phase value used to synchronize the CPG neurons
in order to control the robot speed.

Motor Maps were already used in a number of different complex control issues.
In particular, they were used, together with CNNs, to model bio-inspired perceptual
capabilities implemented on roving robots [18, 19]. An approach similar to that one
presented here already appeared in previous works: there a simplified symmetric
structure was considered for the robot and different controlling parameters at the
level of CPG were taken into account to fulfill the task [20].

In this work the control parameters are exactly the phases among the legs that can
be freely imposed without loosing the phase stability, thanks to powerful theoretical
results recently found in this class of non-linear systems.

In the next sections the complexity of the problemwill be explained to understand
why a linear controller like a PID cannot be used to solve the proposed task.

The learning process was carried out in a dynamic simulation were a Drosophila-
like hexapodal structure was designed. Interesting information on the real stepping
diagrams of the system can be extracted from the environment together with the robot
position and speed in time, in order to evaluate the performance of the developed
neural controller.

5.2 The Neural Network for Locomotion Control

TheCNNbased locomotion controller for our bio-robot follows the traditional guide-
lines that characterize the Central Pattern Generator paradigm. This is divided into
subnetworks. Starting from the lowest level, motor neurons and interneurons are
devoted to stimulate the muscle system for each of the limbs of the animal. The
neural control of the motion of each limb suitably fits the kinematic constraints and
geometric parameters of the limb itself so as to evoke a set of fixed action patterns.
Theway inwhich the different limbmotions are synchronized to achieve an organized
locomotion activity for the animal is managed by a higher level net of Command
Neurons. These generates the suitable phase displacement for the implementation
of a number of different locomotion patterns, which vary according to the environ-
mental as well as to the internal state of the animal. The overall scheme of the neural
controller is reported Fig. 5.1. Where the top layer represents the command system,
whereas the bottom layer accounts for the local motorneuron systems. Among the
different neuron models nowadays available, the authors already had introduced a
neuron model that suitably matched the CNN basic cell, including the nonlinearity
[11]. Its equations are reported below:

{
ẋ1,i = −x1,i + (1 + μ + ε)y1,i − s1y2,i + i1
ẋ2,i = −x2,i + s2y1,i + (1 + μ − ε)y2,i + i2

(5.1)
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Fig. 5.1 Neural network scheme: the top layer generates a stable locomotion pattern, whereas the
bottom layer is constituted by additional sub-networks generating the needed signals for the leg
joints actuation

Here the authors substituted the original Piece wise linear output nonlinearity,
typical of standard CNNs, with its smooth approximation yi = tanh(xi ), uniquely
for simplicity in using mathematical tools for proving stability results.

By using the following parameters for each cell: μ = 0.23, ε = 0, s1 = s2 =
1, i1 = i2 = 0 the cell dynamics is able to show a stable limit cycle behavior [21]. In
this case, the μ value was chosen so as to make the ratio between the slow and the
fast part of the dynamics of the limit cycle next to one, to approximate a harmonic
oscillator; nevertheless, other values can be used to make the system dynamics to
elicit a spiking activity.

Once defined the cell dynamics, the command network is built by locally con-
necting the cells using bidirectional diffusion connections. In particular, the diffusion
effect implements a suitable phase shift among the command neurons, which will
then become drivers for the lower level motor nets controlling each leg. To this
purpose, the cloning templates for the command net can be directly defined through



5 Speed Control on a Hexapodal Robot Driven by a CNN-CPG Structure 101

rotational matrices R(φ), locally linking the command neurons. Thewhole dynamics
configures as a two layer RD-CNN:

ẋ = f (x) − k · L · x (5.2)

where x is the state variables vector (x1, . . . , x2N )T , N is the number of cells;
f (x) = [ f (x), . . . , f (x2N )]T is the dynamics of the whole uncoupled system; L is
the laplacian diffusion matrix, k is the diffusion coefficient, standing for a coupling
gain.

This equation, written in terms of a standard RD-CNN reads:

ẋi = −xi +
∑

Cell( j)∈Nr (i)

[
Ai; j y j + Bi; j u j + Ci; j x j

]
(5.3)

1 ≤ i, j ≤ N

Here, being the system autonomous, B = 0. On the other hand, the laplacian
operator modulates directly the influences among the state variables; therefore, the
paradigm of the state controlled CNN, introduced in [22] is here used. Being the
CNN cell a second order system it results:

A =
(

A11 A12
A21 A22

)
; C =

(
C11 C12
C21 C22

)
; (5.4)

with

A11 =
⎛
⎝ 0 0 0
0 1 + μ 0
0 0 0

⎞
⎠ ; A12 =

⎛
⎝ 0 0 0
0 −s 0
0 0 0

⎞
⎠ ;

A21 =
⎛
⎝ 0 0 0
0 s 0
0 0 0

⎞
⎠ ; A22 =

⎛
⎝ 0 0 0
0 1 + μ 0
0 0 0

⎞
⎠ . (5.5)

C11 =
⎛
⎝ 1 cos(φi−1;i ) 0

−cos(−φi−1;i ) d −cos(φi;i+1)

0 −cos(−φi;i+1) 1

⎞
⎠ ;

C12 =
⎛
⎝ 0 −sin(φi−1;i ) 0

−sin(−φi−1;i ) 0 sin(φi;i+1)

0 sin(−φi;i+1) 0

⎞
⎠ ;

C21 =
⎛
⎝ 0 sin(φi−1;i ) 0
sin(−φi−1;i ) 0 sin(φi;i+1)

0 sin(−φi;i+1) 0

⎞
⎠ ;
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C22 =
⎛
⎝ 1 cos(φi−1;i ) 0

−cos(−φi−1;i ) d −cos(φi;i+1)

0 −cos(−φi;i+1) 1

⎞
⎠ . (5.6)

The parameter d is equal to the number of cells directly connected to the considered
one; this corresponds to the un-weighted degree of the underlying graph. Moreover
zero boundary conditions were considered. The template parameters can be easily
derived considering that, in view of the bidirectional connections, among a given
cell and the neighbors, there exists a precise phase displacement φ which is imposed
using the classical rotation matrix in R2:

R(φ) =
(
cos(φ) −sin(φ)

sin(φ) cos(φ)

)
; (5.7)

More details can be found in [1].
Being the connection matrix L defined as a function of the imposed phase shift

among the oscillators, L imposes a particular locomotion pattern through the associ-
ated Flow Invariant Subspace M [17], which was proven to be a global exponential
attractor for the network dynamics. In fact the particular topology of the RD-CNN,
used as the command neuron net, can be seen as a dynamic undirected diffusive
tree-graph consisting of 9 neurons (see Fig. 5.1). For this particular family of con-
figurations, an important result on the global asymptotic stability was derived [23]:
any desired phase shift among the cells can be obtained if the following constraint
is imposed for the diffusion coefficient k:

k · λ1 > supxi ,tλmax

(
ϑ f

ϑx
(xi , t)

)
(5.8)

where λ1 is the algebraic connectivity of the graph associated to the network [17].
This guarantees asymptotic phase stability to the network, i.e. any desired phase
among the command neurons (which will reflect into a phase shift among the robot
legs) can be obtained. Once the topology is fixed (in terms of cell structure and net-
work tree topology), all the parameters in Eq.5.8 are known: the suitable k value
can be therefore selected so as to make the network converge exponentially to
any arbitrary flow invariant subspace M, defined through the phase displacements
[24, 25].

5.2.1 Leg Motor Neuron Network

Neural signals, consisting in oscillating potentials from the command neuron net,
reach the lower level neural structures innervating each of the limbs. These neurons
have to elicit fixed action patterns synchronized with the wave of neural activity
imposed by the command neurons. It is known that in many insects, including adult
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Drosophila, the six legs move in a highly coordinated way, thanks to a network of
axons coming from the part of the central nervous system located in the thoracic
ganglia and synapsing onto specific muscle set [26]. The motor neuron network that
we are presenting here consists of a series of neurons which are enslaved by the
command neurons and send combined signals to the leg actuators. These signals
are peculiarly shaped so as to adapt to the particular leg kinematic structure. The
particular motor control network designed for each leg can be still considered as a
CNN, since all neurons are characterized by local connectivity and retain the same
structure as in Eq.5.1. One main difference over the command neuron net is that
connections among themotor neurons aremono directional. This gives the possibility
to act in a top down fashion and prevents disturbances acting at the bottom layer to
reach and affect the overall command neuron dynamics. This functional polarity
is common of synapses and frequently met in locomotion control of multi legged
systems, endowed with both chemical and electrical rectifying synapses [27]. This
is really useful for our purposes, since a leg could be even temporarily disconnected
from the command systemwithout affecting the high level organized dynamics. This
can be necessary to perform particular steering maneuvers (like turning on the spot)
or special strategies for looking for a suitable foot bold position. An example of the
neural motor system designed for the front leg of our robot prototype is depicted in
the bottom part of Fig. 5.1. The state variables of the motor neurons are also post-
processed and combined through gating functions, gains, offsets and multipliers to
provide the appropriate Primitive functions controlling the coxa, femur and tibia
joints for each leg. For the case of the rear leg, all neuron oscillators have the same
frequency. For an accurate implementation of themotions for themiddle and front leg,
the presence of cells oscillating at a frequency resulting the double with respect to the
one adopted for all the others is needed. In this case a specific control strategy based
on impulsive synchronization has been implemented [28]. The network designed, in
spite of its apparent complexity, can allowahigh degree of adaptability bymodulating
a small set of parameters.

5.3 Reward-Based Learning for Speed Control

The RD-CNN structure presented above does not show any aspect related to learning
or adaptation. However a highly degree of adaptability is required for a flexible
locomotion control. In this paper we refer on how to introduce a suitable strategy to
modulate the robot velocity. The insect brain computational model recently designed
[1], hypothesizes the presence of two main blocks: the Decision layer and the Motor
layer, which includes theDescription of behaviors. The former, according to specific
drives coming from the internal state of the animal or from specific external inputs,
selects the particular behavior to be taken, whereas the latter is in charge for the
description of the behavior to be implemented in terms of the consequent motor
organization at the level of the limbs. Whereas some of the most basic behaviors
are inherited, some others have to be learned to face with novel circumstances. In
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our specific case of learning speed control, we can assume that the drives impose a
specific speed reference value and this has to be translated into a particular locomotion
pattern that satisfies the control needs. Indeed speed control in hexapod is achieved
modulating both the oscillation frequency of the neural control units and the phase
displacement among the legs. In this work we refer only to the latter strategy which
efficiently produces a modulation of the robot speed. In addition, it is required that
the learning of phase displacement should take place in an unsupervised manner.
To this aim, a particular neural network, known as Motor Map, was used. This
is a generalization of the Self Organizing Feature Maps introduced by Kohonen.
Here specific characteristics of the input patterns are mirrored in specific topological
areas of the responding neurons: the space of the peculiar input pattern feature is
mapped into the spatial location of the corresponding neural activity [29, 30]. This
interesting potentiality can be well exploited for motion pattern generation, leading
to the introduction of the Motor Maps (MMs) [31, 32]. Here the location of the
neural activity within the Kohonen layer is able to produce a trainable weighted
excitation, able to generate a motion which best matches an expected reward signal.
Two layers are so considered: the Kohonen layer, devoted to the storage of learnable
input weights and giving rise to a self organized topographic map, and the motor
layer, where trainable output weights associate a suitable control signal to each
input. The plastic characteristics of the Kohonen layer should also be preserved in
the assignment of output values, so the learning phase deals with updating both the
input and the output weights.

This is an extension of the winner-take-all algorithm. Once defined the dimension
of the topographic map, typically by a trial and error method, and once randomly
initialized the input and output weights, a Reward function is defined, which will
guide the overall learning phase. At each learning step, the neuron q which best
matches the pattern given as input is selected as the winning neuron.

Its output weight is used to perform the following perturbed control action Aq :

Aq = wq,out + aqλ (5.9)

wherewq,out is the output weight of the winner neuron q, aq is a parameter determin-
ing the mean value of the search step for the neuron q, and λ is a Gaussian random
variable with a zero mean. This is a way to guarantee a random search for possi-
ble solutions. Then the increase for the delta Reward Function (DRF) is computed
and, if this value exceeds the average increase bq gained at the neuron q, the weight
update is performed; otherwise this step is skipped. The mean increase in the reward
function is updated as follows:

bq(new) = bq(old) + ρ(DRF − bq(old)) (5.10)

where ρ is a positive value.Moreover, aq is decreased asmore andmore experience is
gained (this holds for the winner neuron and for the neighboring neurons), according
to the following rule:
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ai (new) = ai (old) + ηaξa(a − ai (old)) (5.11)

where i indicates the generic neuron to be updated (the winner and its neighbors), a
is a threshold the search step should converge to, and ηa is the learning rate, whereas
ξa takes into account the fact that the parameters of the neurons to be updated are
varied by different amounts, defining the extent and the shape of the neighborhood. If
DRF > bq , the weights of the winner neuron and those of its neighbors are updated
following the rule:

{
wi,in(new) = wi,in(old) + ηξ(v − wi,in(old))

wi,out (new) = wi,out (old) + ηξ(A − wi,out (old))
(5.12)

where η is the learning rate, ξ , v, win , and wout are the neighborhood function, the
input pattern, the input weights and the output weights, respectively. The subscript
takes into account the neighborhood of the winner neuron.

The steps involvingEqs. 5.9–5.12 are repeated. If onewishes to preserve a residual
plasticity for a later re-adaptation, by choosing a �= 0 in Eq.5.11, learning is always
active.

The idea proposed in this work is to use a hybrid approach joining the real time
computation of RD-CNNs for generating stable locomotion patterns and a Motor
Map as a high layer controller on the CNN-CPG, at the aim to control the speed
of the robot, adapting the phase coordination among the legs. The MM input layer
receives both the actual speed of the robot and the target speed used to evaluate the
actual error. Each neuron provides a control law that modifies the phase displacement
between the legs of the system.

The strategy adopted for the unsupervised modulation of the phases starts from
considering the three stereotyped gaits generally adopted by hexapods and reported,
in terms of phase displacements, in Table5.1. These vary around the tripod gait and
are able to maintain both static and dynamic stability. Here they are implemented
by considering the front left leg L1 as the reference leg and imposing a fixed phase
relation between the front legs (φL1,L1 = 0◦; φL1,R1 = 180◦) for any of the selected
gaits. From the inspection of Table5.1 it emerges that, for example, a migration from
gait G1 to G2 would imply a variation δφL1,L2 = δφL1,R2 = −30◦ and a varia-
tion δφL1,L3 = δφL1,R3 = −60◦. Moreover, referring to Fig. 5.1, the network of
command neurons was designed to leave the possibility to impose the oscillation
phase of each leg independent on that one of the others. This is also allowed from
the theoretical results, discussed previously, which enable any imposed phase dis-

Table 5.1 Phase relation within legs in stereotyped locomotion gaits

Gait type Speed (bodylength/s) φL1,L1 φL1,R1 φL1,L2 φL1,R2 φL1,L3 φL1,R3

G1 0.6 0 180◦ 270◦ 90◦ 180◦ 360◦

G2 0.73 0 180◦ 240◦ 60◦ 120◦ 300◦

G3 0.77 0 180◦ 180◦ 0◦ 0◦ 180◦
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Table 5.2 Parameters used
for the motor map-based
architecture designed to solve
a speed control task

Parameters Value

λ [−40, 40]

η 0.2 + 0.8 ∗ e(−0.6t)

aq 0.8

bq 0

athr 0.2

placement among the legs to be reached exponentially. Of course, phase stability
does not imply the dynamic stability of the gait. For this reason we preferred to move
within the set of stable gaits G1, G2, G3, allowing the MM to find the most suitable
phases to attain the desired speed. Within this plethora of gaits it is envisaged that a
given phase imposed to a specific leg does not affect the phase associated with any
other leg; to this aim the neurons belonging to the central backbone are synchro-
nized and the phase displacements are imposed only to the connections from the
backbone neurons to the outer cells. In this way, referring to Table5.1, it holds, for
example: φL1,R2 = φB2,R2, φL1,L3 = φB3,L3, and so on. This symmetry in the phase
modulation between the right and left side of the structure leads to adopt only two
output trainable weights for the MM. Also the MM acts by adding increments in the
phase displacement among the legs: this is preferable over sharply imposing absolute
phases, that could imply potential loss of stability. In details, one of the two output
weights represents the phase modulation δφB2,L2, (which will also be imposed to
δφB2,R2 for symmetry), the other stands for δφB3,L3 = δφB3,R3. To find the suitable
output weights a reward function that takes into account the speed error is consid-
ered and used to guide the learning process: R = −(speedactual − speedre f )

2. The
learning phase will find the weight set leading R as much as possible close to zero.
The MM parameters used in the following simulations are reported in Table5.2.

5.4 Dynamic Simulator

Tovalidate the approachproposed, a dynamic simulator represents a suitable platform
where these cognitive bio-inspired structures can be simulated, in view of being
implemented in real robot prototypes for real life scenarios. The simulator is written
in C++, and uses Open Dynamics Engine (ODE) as a physics engine to simulate
dynamics and collision detection, andOpen SceneGraph (OSG) as high performance
3D rendering engine [1, 33]. Themainnovelty of this approach consists in the extreme
extensibility to introduce models. In fact, to import robot models in the simulator,
a procedure was developed which starts from models realized in 3D Studio MAX
and provides, using NVIDIA Physics Plugin for 3D Studio MAX, a COLLADA
(COLLAborative Design Activity) description of the model to permit the correct
transport in the simulated environment. In this way, the possibility to simulate own
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Fig. 5.2 Dynamical model of the Drosophila-inspired hexapod robot; the lower left panel reports
the details of the operation range for the three joints of the left front leg, whereas the right bottom
panel reports the kinematic simulation of the hind leg, showing the motion of the feet, cycling
among the Anterior Extreme Position (AEP) and the Posterior Extreme Position (PEP)

environments and robots is guaranteed. The dynamical model of the Drosophila-
inspired robot is shown in Fig. 5.2 where the typical asymmetric design and sprawled
posture is evident. The structure includes a total of 18◦ of freedom, three for each leg.
The legs, like in the real insect, are different in shapes and functionalities. Figure5.2
reports also the operation ranges for the different leg joints for the front leg, as well as
the rotation axes for the leg actuators, drawn by the correspondingMatlab Kinematic
simulation. Here the trajectory spanned by the tip of the hind leg is also reported. The
emerging limit cycle is the result of the application of the three Primitive Functions
arising by the motor neuron net in Fig. 5.1. The robot is equipped with distance
sensors, placed on the head and ground contact sensors located on the tip of each
leg. The dimension is in scale with the biological counterpart with a body length of
about 2.5 mm.

A block diagram showing the complete control structure is reported in Fig. 5.3.
The CPG is able to generate the locomotion patterns of the robot depending on the
control signals coming from theMotorMap for the speed control and from a reflexive
behavior path that can trigger obstacles avoidance behaviors if an object is detected
from the sensors equipped on the robot.
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Fig. 5.3 Block diagramof the control system used to guide the locomotion of the hexapod structure.
The CPG motor signals are modulated by the inputs provided by the Motor Maps for speed control
and by the reflexive path that takes the lead in presence of obstacle to be avoided. The MM receives
in input the reference speed and the current speed whereas the reflexive behavior block is elicited in
presence of an obstacle detected through distance sensors. The MM acts on the CPG by changing
the phase displacement of the middle and hind legs whereas the reflexive block inhibits the learning
procedure for the MM and activates a turning strategy

5.5 Simulation Results

Analyzing the learning process in the proposed architecture we considered to start
from gait G2 as initial configuration. The input related to the target speed, used for
the MM neurons, is important when a time varying speed profile should be followed.
For a first trial we considered a fixed speed, limiting the input to the speed error.
This solution allowed to use a reduced number of neurons to create the map. In
the following simulations a 3x3 lattice was adopted in the Kononen layer of the
MM. To evaluate the mean speed of the robot in the dynamic simulator, soon after
imposing a new phase configuration, a complete stepping cycle is performed to leave
the dynamics to reach a steady state: then the displacement over the two subsequent
stepping cycles is evaluated to have a consistent speed result.

The stepping time imposed by the CPG to each leg is about 1.5 s. The arena used
during the learning process is limited by walls. When the robot detects an obstacle
(or the arena walls) with the distance sensor placed on the head, a turning strategy
is applied. During this avoidance behavior the speed evaluation is stopped and the
learning process waits until the procedure is completed.

The time evolution of the input and output weights after an initial transient is
shown in Fig. 5.4. It can be noticed that each neuron specializes to incrementally
reach the desired solution: the topological arrangement of the Kohonen layer leads
to the specialization of each neuron to a specific range of the input value. The output
weights affect the leg phase displacement and the trend is shown in Fig. 5.5 where
the anterior left leg (L1) that is directly connected with the backbone with zero phase
is considered as reference for all the other legs. The phase relation for the anterior
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Fig. 5.4 Time evolution of the input and output weights of the MM after an initial transient
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Fig. 5.5 Phase displacement in middle and hind legs obtained during learning

legs is not affected by adaptation, as explained above, and remains unchanged during
the learning process.

The performance of the robot when autonomously learning to follow the reference
speed is reported in Fig. 5.6. The initial speed of about 1 bodylength/s changes in
time to reach a steady state solution of about 0.57 bodylength/s that was provided as
reference speed.The same figure reports also the trend of the input weights related
to each of the Kohonen neurons. Their values, after an initial transient, reach their
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Fig. 5.6 Time evolution of the input weights and the robot speed. The target speed is 0.57
bodylength/s and the robot after a transient converges toward this value. Each circle indicates a
measured speed, the distance between each marker is not constant because the speed evaluation is
stopped during the obstacle avoidance behavior

steady state distribution which encodes the unsupervised, topological clustering of
the input velocity space.

The locomotion gait can be analyzed using the stepping diagram that reports the
stance and swing phase for each leg. The experiment reported in Fig. 5.7 shows a typ-
ical simulation starting from the G2 gait configuration: during learning, the imposed
phase from the MM controller onto the legs results in a gait transition, appreciated
through themodulation of the stepping diagramof the robot. This diagram is recorded
acquiring information from the ground contact sensor located on the tip of each leg.
In this way it is possible to better understand the phase relation between legs, also
taking into account the noise intrinsically present in a dynamic environment. Learn-
ing causes the phase locking between legs to change in time, searching for a suitable
configuration that matches the desired speed value. It should be noticed that the
application of the proposed strategy to a dynamic simulator is really similar to the
outcome in a real experiment. Learning the complex map between the error speed
and the corresponding phase displacement to be imposed passes through a series of
unsuccessful trials where, for a given speed error currently provided in input, a trial
phase is applied to the leg: if this choice is a failure, i.e. it does not contribute to an
increase in the reward function, the simulator cannot come back to the previous stage.
Instead it continues with the applied phase looking for a future rewarding choice.

An important element to evaluate the system performance is to test the control
architecture: after 1, 500s of simulation (i.e. in this time window the learning cycles
in the motor map oscillate between 200 and 300) the weight adaptation was frozen
and the network performance was tested. An interesting test is shown in Fig. 5.8,
where a time varying speed profile is given as target to the robot.The robot easily
reaches the first assigned speed of 0.71 bodylength/s and, in a short time, is able to
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Fig. 5.7 Stepping diagram obtained looking to the ground contact sensors placed in each leg tip
of the simulated Drosophila-inspired robot. a The system starts from a phase configuration next to
the gait G2 and evolves in a series of free gaits trying to reach the desired speed. b In the stepping
diagram that corresponds to the area outlined in the panel a the stance phase is shown in black, the
swing phase in white and the legs are labeled as left (L) and right (R) and from front to back with
numbers

readapt the robot gait to reduce the speed to 0.57 bodylength/s to finally grow up
again to the previous reference speed. The phase adaptation in time is also shown:
during the testing phase the leg phases change due to the incremental effect of the
output weights that however remain unchanged in time. As a classical controller, the
learned non linear control law is governed by the varying speed error, provided at
the network input.
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Fig. 5.8 Testing phase with different target speed values. a Time evolution of the robot speed.
The target speed changes from 0.71 to 0.57 bodylength/s and the robot after a transient, converges
toward the reference value in time. b Trend of the phase displacement among the robot legs during
the testing phase

The learning is robust also to different initial configurations of the systemwalking
gait (see Table5.1). Using the same network already learned as previously presented,
the robot is able to reach the target speed also starting from a different gait (i.e. G2
gait) not used as starting condition during the learning iterations. Figure5.9 shows
the followed speed profile that converges to a target value of 0.57 bodylength/s.
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Fig. 5.9 Time evolution of the robot speed. The target speed is 0.57 bodylength/s and the robot
starts from a medium gait configuration that differs from the learning phase where a slow gait was
considered as starting locomotion pattern

At the aim to evaluate the efficiency of the learned control law, the a-posteriori
evaluation of the searching space in the phase domain is significant to enhance the
important role of the MM speed controller. Figure5.10 gives a qualitative idea about
the searching space where the different phase configurations of the legs are related
with the associated robot speed. The searching domain is complex and a non-linear
mapping provided by the MM is needed to find a suitable solution to solve the
speed control problem. To better illustrate the movement on the map the trajectory
(in the space of the imposed phases) is also reported. Starting from a given initial
configuration, the robot reaches the target speed finding the suitable path within the
highly non-linear searching space.

5.6 Conclusions

Modeling neural structures is an important link in a chain connecting together Biol-
ogists and Engineers that cooperate to improve the knowledge on the neural mech-
anisms generating our behaviors and to develop new robots able to show adaptive
capabilities similarly to their biological counterparts. A cellular automata approach
to this problem, extended to the analog time domain with the CNNs, gives an inter-
esting prospective because it easily allows theoretical analysis concerning stability
issue, and also thanks to the mainly local connections between neurons, it creates
a short-cut to the hardware implementation: different solutions are available using
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Fig. 5.10 Map of the searching space where, for each phase pair for middle and hind legs, the
corresponding speed value is considered (i.e. reported in the z-axis). The trajectory followed by the
system in the phase domain during a testing simulation is also reported: the starting point speed is
about 0.89 bodylength/s, the robot reduced it reaching a speed of 0.46 bodylength/s following the
learned trajectory in the phase space thanks to the MM neurons action

both micro-controller and dedicated integrated circuits. A Central Pattern Generator
has been designed to generate the locomotion patterns for an asymmetric hexapod
robot inspired by theDrosophila melanogaster. The integration of a neural controller
based onMotorMaps allowed to adaptively control the robot speed acting on theCPG
parameters. The reported results showed that the dynamically simulated robot was
able to follow a desired speed profile incrementally adapting the phase displacement
between legs. The neural controller shows interesting generalization capabilities to
efficiently respond to novel initial conditions and time-varying speed profiles. This
approach to adaptive speed control has to be considered as a brick within the much
wider design of an insect brain computational model, where adaptive locomotion
capabilities are required to show complex cognitive skills for the next generation of
adaptive intelligent machinesmore andmoremimicking their biological counterpart.
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