Chapter 2
Lattice Automata for Control
of Self-Reconfigurable Robots

Kasper Stoy

Abstract Self-reconfigurable robots are built from robotic modules typically
organised in a lattice. The robotic modules themselves are complete, although sim-
ple, robots and have onboard batteries, actuators, sensors, processing power, and
communication capabilities. The modules can automatically connect to and dis-
connect from neighbour modules and move around in the lattice of modules. The
self-reconfigurable robot as a whole can, through this automatic rearrangement of
modules, change its own shape to adapt to the environment or as a response to new
tasks. Potential advantages of self-reconfigurable robots are extreme versatility and
robustness. The organisation of self-reconfigurable robots in a lattice structure and
the emphasis on local communication between modules mean that lattice automata
are a useful basis for control of self-reconfigurable robots. However, there are signif-
icant differences which arise mainly from the physical nature of self-reconfigurable
robots as opposed to the virtual nature of lattice automata. The problems resulting
from these differences are mutual exclusion, handling motion constraints of modules,
and unrealistic assumption about global, spatial orientation. Despite these problems
the self-reconfigurable robot community has successfully applied lattice automata
to simple control problems. However, for more complex problems hybrid solutions
based on lattice automata and distributed algorithms are used. Hence, lattice automata
have shown to have potential for the control of self-reconfigurable robots, but still a
unifying implementation based on lattice automata solving a complex control prob-
lem running on physical self-reconfigurable robot is yet to be demonstrated.

2.1 Self-Reconfigurable Robots

The self-reconfigurable robot community grew out of the distributed autonomous
robot systems community. The idea was that if multiple robots could automatically
form physical bonds between each other the combined robot collective could adapt its
shape and functionality in response to the environment and tasks. The basic scenario

K. Stoy (X))
IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
e-mail: ksty @itu.dk

© Springer International Publishing Switzerland 2015 33
G.Ch. Sirakoulis and A. Adamatzky (eds.), Robots and Lattice Automata,
Emergence, Complexity and Computation 13, DOI 10.1007/978-3-319-10924-4_2

34 K. Stoy

Fig. 2.1 This figure shows
the original scenario that
motivated the need for
self-reconfigurable robots
(Courtesy of Fukuda, © 1988
IEEE)

s !
e

R N R SRR RRRE TR R
AR LAEEEEEEEN SR ERRA AR RAAARR RN

that motivated self-reconfigurable robotic research given by Fukuda et al. [8], shown
in Fig. 2.1, was that individual robots could move into a storage tank through a narrow
passage and once inside they could assemble for the purpose of cleaning the storage
tank.

This vision of self-reconfigurable robots was and is still today attractive. However,
the scientific challenges involved in realising this vision are significant. One aspect
is the mechatronic realisation of self-reconfigurable robots and another central to the
topic of this chapter is the question of their control.

In many self-reconfigurable robots modules are organised in a lattice structure like
atoms in a crystal. These are called lattice-type self-reconfigurable robots. In these
robots modules can move between lattice positions and thereby change the overall
shape of the robot. The lattice organisation simplifies control of self-reconfiguration,
because assumptions can be made about the precise position of neighbour modules
and hence connection between modules can be performed open-looped.

Given the lattice organisation of self-reconfigurable robots, lattice automata are a
natural basis for their control. However, another equally attractive feature of lattice
automata is that each individual automaton acts independently and autonomously.
This is crucial for self-reconfigurable robots because decoupling the controllers of
individual modules will make the robot more robust to failures. A single failed module
will not cause the whole system to fail which, for instance, is the case for centralised
control strategies. Another desirable characteristic of lattice automata is the locality of
their rules. Typically, the rules only consider the position and state of neighbour cells.
These rules have a natural mapping to the sensors and the communication system
that modules have which only provide functionality for inter-module communication
and detection.

Given the match between the features of lattice automata and requirements of self-
reconfigurable robots, researchers enthusiastically applied lattice automata to self-
reconfigurable robots. Early work demonstrated how simple local rules with some
noise added could make a desired configuration emerge through self-reconfiguration
[11]. Another focus was the use of lattice automata to allow a self-reconfigurable
robots to perform locomotion by moving modules from the back of the robot to the
front [3, 13].

2 Lattice Automata for Control of Self-Reconfigurable Robots 35

While this work demonstrated the potential of a lattice automata-based approach
control, there is still a risk that using this hand-coded rulesets the self-reconfigurable
robot could reach dead states where no rules applied. In order to be sure no dead states
existed proofs were developed for specific rulesets [5, 20]. Another practical problem
was the development of the rule-sets by hand, which for physical robots became quite
large (e.g. 927 rules in [13]). It then became crucial to develop methods that could
automatically generate rule-sets given a desired behaviour. A possibility that was
explored was the use of reinforcement learning [19] and evolutionary algorithms [12].
However, both for the human rule-set designer and the automatic algorithm it became
difficult to device rule-sets bottom-up given a complicated task due to combinatorial
explosion of the configuration space.

A possible answer is to only control critical parts of the self-reconfiguration
and allow a looser, distributed control algorithm to control the rest of the self-
reconfiguration process. This simplification makes it possible to make a global-to-
local compiler that based on a three-dimensional shape could generate a set of rules
that would realize this shape [16]. A useful extension is to have strict rule-sets in crit-
ical areas of the robot (e.g. where there was a risk that modules may be disconnected
from the structure) and let the modules move randomly in other areas [15].

Most of this work is concerned with controlling the self-reconfigurable robot itself
without considering the potential of having the robot adapting to its environment.
A notable exception is Bojinov et al. [1] who used rules with conditions based
on the neighbour being an obstacle to creating grasping hands and other interesting
functional structures. However, this line of work has not been picked up again. Lattice
automata also lost traction in the self-reconfigurable robotics community because it
had not been possible to create mechatronic modules that reliably could produce the
motions used in the lattice automata model (e.g. rotate around a neighbour module,
slide along a surface of modules, etc.). Hence, there is to this day a worry that a
lattice automata based algorithm would never find practical use on a physical system.
However, this may change as new mechatronic implementations are emerging that
do in fact implement these motion primitives [14]. Hence, this is an exciting time
for self-reconfigurable robots and lattice automata because they may finally come
together to form the basis for controllable and useful self-reconfigurable robots.

2.1.1 Origin, Features, and Applications

The concept of self-reconfigurable robots was from the beginning inspired by multi-
cellular organisms [7, 9]. The idea being that from a limited number of cell types
a huge number of organisms are and can be created. For instance, an organism as
complex as the human consist of about 100 trillion cells, but there are only two hun-
dred different cell types. Hence, from an engineering perspective you could design
and implement a few robotic cell types and then on the fly assemble them into a
specific robot depending on your need. This concept is in the self-reconfigurable
robotic community referred to as versatility. A shortcoming of mechatronic modules

36 K. Stoy

is that unlike natural cells they cannot grow and divide hence another mechanism
is needed to simulate growth. The mechanism used is self-reconfiguration. Instead
of modules dividing and growing the robot can change its shape by rearranging the
way modules are connected. In other words, modules can wander on the surface of
other modules. While this is less common in nature it does happen and is known
as morphallaxis. The typical example is the small fresh water animal Hydra which
if cut in two can reorganize its tissues to become two hydras of roughly half the
original size. As a side point there is also evidence that suggests that Hydras do not
age. In fact, it is a truly remarkable animal.

Another feature of self-reconfigurable robots is robustness. Given the robot con-
sists of many independently functioning modules, failure of one module is not critical
to the functionality of the whole robot. Even if a module is placed in a critical region
of the robot e.g. connecting two parts, it may be possible to replace it through self-
reconfiguration. The conceptual robustness of the system of course also requires
the controller to be distributed otherwise the control reduces the robustness of the
entire system.

A self-reconfigurable robot is based on only a few different module types and
these module types can be mass-produced. Hence, although the assembled robot is
quite complex the cost of individual modules can be kept relatively low.

Together these features could provide us with robot technology that is particu-
larly well suited for applications where the tasks are not known in advance, where the
transportation cost of equipment is significant, and where robustness is important.
A clear application is extra planetary exploration, but currently the most success-
ful modular robotics company is creating robots for educational and entertainment

purposes.!

2.1.2 Mechatronic Implementation

We have so far discussed self-reconfigurable robots at the conceptual level, but not
how they are implemented in practice.

A module of a self-reconfigurable robot is a complete robot by itself. Typically, a
module has sensors, actuators, processor, battery, and means of communication:

e Sensors are often limited to infrared transceivers that allow modules to detect
nearby obstacles. These transceivers also often are used to communicate with
neighbour modules. Otherwise, sensors are mostly internal and include encoders
and accelerometers.

e Actuators include various forms of electrical motors to control the motion of a
module as well as connector mechanisms.

e Processors used to be relatively small, embedded ones, but given the advance in
terms of energy efficiency and computation power processors employed today

! http://modrobotics.com, [Online], retrieved 28/1/2013.

http://modrobotics.com

2 Lattice Automata for Control of Self-Reconfigurable Robots 37

Fig. 2.2 The ATRON self-reconfigurable robot is performing one self-reconfiguration step. a-b
First, the top right, dark module rotates the white module to its new position. c-d Once at the new
position the white module extends connectors to attach to the new neighbour module as can be seen
in the bottom right photo between the dark and white module

typically provide enough computation power to be able to run embedded variants
of Linux.
e Batteries are typically Li-Ion allowing modules to functioning for an hour or two.
e Communication may be based on infrared communication, Bluetooth, or WiFi
communication. In some cases electrical contact is made between neighbour mod-
ules allowing the modules to communicate across a shared CAN bus or similar
technology.

In a typical self-reconfigurable robot, a self-reconfiguration step consists of a
series of small steps as illustrated in Fig.2.2. First a module disconnects from some
of its neighbours, it then moves to a neighbour lattice position, and, finally, extends
connectors to attach to neighbour modules at the new position.

The mechatronics design of self-reconfigurable robots is a major challenge given
the physical constraints and the high requirements in terms of functionality. However,
mechatronics is not the focus of this chapter so the interested reader can find more
information on this topic in [10, 18].

2.2 Assumptions of Lattice Automata

As we have already argued lattice automata have features that match the desired
features of a controller for self-reconfigurable robots. However, the match is not
perfect. In fact, there are several problems one has to consider when applying lattice

38 K. Stoy

I
/
//
-

Fig. 2.3 This figure shows the two steps necessary to move a simulated self-reconfigurable robot
consisting of two modules, represented by the squares, one step forward

automata as a basis for control of self-reconfigurable robots. We will introduce these
challenges here and then continue to the actual application of lattice automata in the
context of self-reconfigurable robots in the following sections.

Let us start by considering the simple motion sequence shown in Fig. 2.3. In this
figure, two modules represented by squares are resting on the ground. The two-
module self-reconfigurable robot can move forward by moving the rear module on
top of the front module and then down in front of the module it is now resting on. This
movement recreates the start configuration of the self-reconfigurable robot and the
motion sequence can be repeated to generate forward locomotion. Implementing a
controller based on lattice automata that realizes this concept is very simple. However,
before we do this let us introduce some basic notation. There are eight directions
that are relevant to these modules let us use the compass directions to identify those.
For example, NE—north-east—is up and to the right of the current module. We now
define the states of lattice positions, which can either be Empty or Module. Finally,
we define a function State that maps a direction to a state. Using this notation the
lattice automata rules resulting in the self-reconfiguration sequence shown in Fig. 2.3
could be as follows:

if (State(E) == Module) Move(NE) 2.1
if (State(S) == Module) Move(SE) 2.2)

2 Lattice Automata for Control of Self-Reconfigurable Robots 39

This may appear trivially correct, but it could in fact go wrong if there are more
modules present. Even though, cell positions in a virtual world or simulator can be
turned on or off easily, this is not the case here because the physical modules cannot
be turned on and off. We have to simulate on and off by moving the modules. Hence,
when one is turned off a neighbour cell has to be turned on. We also need to ensure
that the cells a module passes through to reach the new on cell are free. Hence a
ruleset like this is necessary:

State(E) == Module N
if | State(N) == Empty A | Move(NE) (2.3)
State(NE) == Empty

State(S) == Module N
if | State(E) == Empty A | Move(SE) 2.4)
State(SE) == Empty

This set of rules assumes that the physical module has to pass through a cell to get
to the desired cell. Although this appears to be a sound rule set there are still problems.
One problem is that a module does not transition instantly from one cell to another;
in fact, physical modules typically take on the order of several seconds to make a
transition. The implication of this is that there is significant period of time between
a module detects a cell to be Empty and it has moved into this cell. This opens up for
problems as other modules may perceive the cell as Empty and start a transition into it,
leading to several modules moving into the same cell. From a lattice automata point
of view and from the point of view of the moving module in our simple example a
trivial solution could be that all cells a moving module has to pass through are marked
as Module while the module is transitioning. However, this is impossible, because a
cell can only be marked if there is a physical module in the cell able to transmit this
information. A possible way to reduce this problem is to place proximity sensors
in such a way that they minimize the amount of time a cell is wrongly categorised.
A module leaving a cell is sensed as late as possible and a module entering a cell
is sensed as early as possible. However, this of course does not solve the problem,
but only reduce the probability that it will happen. One approach to solve this is to
use communication to perform mutual exclusion, but in the worst case this requires
time proportional to the number of modules because in a ring configuration with one
hole the whole ring has to be informed. In order to completely solve this problem the
lattice automata controller has to be complemented with a global communication and
coordination mechanism. However, a better alternative is probably to use a roll-back
strategy where modules attempt to move into cells as directed by the lattice automata,
but if the module senses collision with another module moving into the same space
it can roll back to its original position [6]. This might in rare cases lead to dead locks
if there is a cycle, but the approach is attractive because it does not rely on global
information.

40 K. Stoy

Another complication is that the assumption of shared knowledge of orientations
is not trivial for modular robots. Either this information has to come from embedded
sensors, accelerometer and gyroscopes, or though a global coordination scheme.

Finally, several other practical issues also need to be handled: (1) one has to
ensure that modules do not become disconnected from the configuration during the
self-reconfiguration process because this may cause them to fall down and break, (2)
one has to ensure that modules do not create hollow sub configurations that cannot
be filled or where modules can be trapped.

In summary, when applying lattice automata to modular robotics one has to be
concerned about the following problems.

Motion constraints
Mutual exclusion
Spatial orientation
Disconnection
Hollow configurations

These problems arise from the physical nature of the modules and their ability to
move in parallel. If not handled carefully, the problems may require global informa-
tion, which again may reduce the responsiveness, scalability and robustness of the
self-reconfigurable robot. While these problems are important, discussing them in
detail is outside the scope of this brief introduction, but please refer to [16, 18] for
details.

2.3 Lattice Automata-Based Control

Despite the complications outlined in the previous sections, many interesting exam-
ples of the use of lattice automata in the context of self-reconfigurable robots can be
found in the literature.

One of the most thoroughly studied examples is cluster-flow locomotion of cubic
self-reconfigurable robots, which is a generalisation of the trivial example we gave
in the previous section. Butler et al. have in a series of papers extended the use of
lattice automata rules for cluster-flow starting in two dimensions [3] and in later work
moving to three dimensions. The algorithms were also able to handle obstacles in the
environment [4]. A nice aspect of this work is also that since it has a strong theoretical
basis in lattice automata it was possible to proof sufficiency and correctness for
some of the rule sets. A fundamental problem, however, is that as the task and
configurations become more varied the rule sets become complex. This was also a
problem encountered by @stergaard et al. working with a more physical realistic
simulation of the ATRON self-reconfigurable robot. In fact, for simple cluster flow
locomotion 927 rules were necessary [13].

The use of hand-coded lattice automata rules becomes intractable as the complex-
ity of the robot and the task increases. Hence, some effort has been made to automate

2 Lattice Automata for Control of Self-Reconfigurable Robots 41

the design of lattice automata rules. Varshavskaya et al. [19] used a reinforcement
learning based approach and @stergaard et al. [13] tried to use evolutionary algo-
rithms. Both approaches were successful for relatively small tasks, but inherently
suffer from scalability problems due to the size of the search space.

The lesson learned from this work is that lattice automata are useful if the config-
uration space is relatively small, but otherwise become impractical.

2.4 Hybrid Control

We have previously focused on locomotion through water-flow, however, in some
cases it is not the function that is important, but the shape. Hence, transforming a self-
reconfigurable robot into a specific shape becomes a task in its own right and is also
important as a fundamental primitive that can be used as part of higher-level func-
tionality. In self-reconfigurable robotics the transformation or self-reconfiguration
problem is often stated as “Given an initial configuration and a goal configuration,
find a sequence of module moves that will reconfigure the robot from the initial
configuration to the goal configuration.” [18]. Part of the effort to solve this problem
has been to make global-to-local compilers. That is, compilers that take a high-level,
centralised representation of a goal configuration and automatically compiles it into
a lattice automata ruleset running distributedly on the modules.

Stoy et al. [16] use an approach where a three-dimensional CAD model is con-
verted into lattice automata rules. We will describe this approach in detail below.

The first step is that a CAD model and a starting point contained inside this CAD
model is given. At this point a cube is placed that represents a module. The algorithm
then proceeds by adding neighbour cubes to this initial cube, but only if the position
of the neighbour cube is also contained in the CAD model. Under the same conditions
neighbour cubes are added to these cubes. From this point the algorithm continuous
recursively until the contained volume has been filled. In effect, the surface-based
representation of the CAD model is turned into a voxel-based representation. The
position of each voxel corresponds to the desired position of a module in the goal
configuration.

In the second step this voxel representation is turned into a set of lattice automata
rules. The cubes are assigned a unique ID, in practice, an integer between 0 and
N where N is the number of cubes contained in the representation. The second
step is that for each pair of cubes with a shared face two lattice automata rules are
generated. The direction orthogonal to the face determines the direction in which the
two modules are connected. One rule creates one cube if the other cube is present
and the other rule the other way around. Since they are symmetric let us just look at
one rule. Let us assume we have two neighbour cubes with IDs k1 and k2 and the
direction d is orthogonal to their shared face pointing from k2 to k1. If we then are
in a situation where the cube with the ID k1 has been assigned we can then define
that:

42 K. Stoy

if (<module in direction d equals k1l >) {
<current module is assigned ID k2 >

We can now imagine a situation where a lattice automaton runs inside each cube
with this rule set. If no IDs are assigned nothing happens. However, as soon as one
module is given an ID the original assignment of IDs to cubes will be recreated.

The third step is to start a self-reconfigurable robot in a random configuration and
give each module a copy of the above generated ruleset. We then trigger the self-
reconfiguration process by assigning an ID to a random module. From this module
IDs are assigned to neighbour modules and in turn to their neighbours and so on.
Once this process has completed all modules either have an ID and belong to the goal
configuration or they have no ID and are outside the goal configuration. The self-
reconfiguration algorithm could now be made to work by letting modules without IDs
move around randomly on the structure of module who has been assigned IDs. This
would, given significant time, realize self-reconfiguration from the initial random
configuration to the desired goal shape specified by the CAD model.

While acceptable in theory, the random walk of unassigned modules is not prac-
tically acceptable as the convergence to the desired configuration would take too
long. In particular, when one considers that each self-reconfiguration step takes on
the order of a couple of seconds. Hence, in order to speed up this process a separate
algorithm is introduced that allow modules to travel to growth points more rapidly.
A growth point in this context is a point where the neighbour module knows from
the ruleset that a module should be present, but it is not. This implies that the config-
uration should be extended or grown in this direction. The intuition of the algorithm
for attracting modules is fairly simple. A module, which is a neighbour of a growth
point, sends out an integer. All modules listen for integers for a short period and
propagate the smallest one they hear in this period plus one. This creates a gradient
in the configuration. Now spare modules moving around in the structure can descend
this gradient to locate the growth point. Once the growth point has been filled the
initial module will stop transmitting and the gradient will adapt to create a gradient
to a growth point further away or if no grow points are left slowly level out, because
modules keep counting each other up until a maximum is reached.

Two important aspects of this approach is the division between the two control
mechanisms. On one hand there are the lattice automata rules that handle the critical
coordination element, e.g. ensure that the desired configuration is built, while on
the other hand there is a simple algorithm for moving modules around on a global
scale where the precise movement is less critical. This seems to be a critical aspect
of applying lattice automata to self-reconfigurable robots because it is not tractable
to encode rules for every configuration that the robot can assume. As a side point,
careful configuration enumeration of the cube model has shown that for just 12 cubic
modules there are more than 18 million different non-isomorphic configurations [17].

While the split into a local and a global control strategy is important, it does not
have to be done as described above. Another approach explored by Rosa et al. [15] is
to consider movement in the internal homogenous interior of the self-reconfigurable

2 Lattice Automata for Control of Self-Reconfigurable Robots 43

Fig. 2.4 This figure shows a
self-reconfigurable robot
reacting to and obstacle and
grasping it. (Courtesy of
Bojinov, © 2000 IEEE)

robot as part of a simple global coordination strategy while on the edges specific
lattice automata rules were implemented to ensure that modules would not disconnect
from the edge of the configuration which, if implemented in a physical system, would
cause modules to fall down and potentially break.

Bojinovetal.[1, 2] also explore acombination of gradients for global coordination
and lattice automata rules for local coordination. However, in contrast to the above
work their rules are based on interaction with surrounding obstacles. For instance, if
a module touches an object it can attract other modules to grow a structure around
an object as shown in Fig.2.4.

Considering this volume of work on lattice automata in the self-reconfigurable
robotic community it is evident that lattice automata rarely can stand alone as a unify-
ing control strategy for self-reconfigurable robots. However, it has been demonstrated
that it is a powerful mechanism for controlling local aspects of a self-reconfiguration
process that requires precise module movements.

2.5 Conclusion

There is a good match between the features of lattice automata and what is desired
and possible to implement in self-reconfigurable robots. The rules of lattice automata
typically only depend on the state of neighbor automata. On real hardware, this
information can easily be obtained through neighbor-to-neighbor infrared commu-
nication. The distributed nature of lattice automata is also appealing from a self-
reconfigurable robotic point of view since distributed control is a key element of
making a self-reconfigurable robot robust.

There are, however, assumptions made in the use of lattice automata that are not
easily handled in physical self-reconfigurable robots. One assumption is that unlike
cells in a computer simulation, modules do not blink in and out of existence. In fact, in
order to turn off one cell and turn on another a physical module has to move from the
first to the latter. This is a physical process that easily can take on the order of several
seconds. This immediately leads to a few problems e.g. the mutual exclusion problem
of modules trying to move into the same cell, the problem of motion constraints

44 K. Stoy

where not only the from and to cells are of interest, but also the cells that the module
is physically moving through to get from one cell to another are also important.
A final assumption, is that in computer simulations it is assumed that cells agree
on directions, e.g. based on implementation in a two or three dimensional array.
However, obtaining this information in a self-reconfigurable robots either requires
dedicated sensors or a distributed consensus algorithm.

While the above problems have been less of a focus in the self-reconfigurable robot
community, maybe because they are not apparent in simulation-studies, the problem
of scalability has been a corner stone of the work. The main challenge arises from
the combinatorial explosion of configuration neighbourhoods and the practical need
to differentiate the active lattice automata rules in different parts of the robot.

As we have discussed in this chapter there are a few solutions to these problems.
The first and most basic is to limit the task domain and, in addition, consider tasks
where the individual module has a large degree of autonomy. In situations, where the
modules start to depend on each other more careful considerations have to be done.
Typically, this involves a split where local aspects of the control is performed by
lattice automata, but there is a distributed algorithm that handles the global aspects
of the problem.

From a lattice automata point of view it may be instructive to develop lattice
automata where the underlying assumptions are a better fit for the physical modules
of self-reconfigurable robots. From a self-reconfigurable robotic perspective it seems
there is still potential in exploring hybrid algorithms with a lattice automata basis
and a more globally oriented algorithm. From the point of view of mechatronics it
may also be possible to develop modules where breaking the assumptions of lattice
automata is less of problem. One avenue of research could be soft modular robots
that may be able to squeeze past each other passing through a single cell alleviating
the mutual exclusion problem.

In conclusion, the interaction between lattice automata research and research on
self-reconfigurable robots has been productive and there is significant potential in
exploring how the two can benefit each other further.

References

1. Bojinov, H., Casal, A., Hogg, T.: Emergent structures in modular self-reconfigurable robots.
In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp.
1734—1741. San Francisco, California (2000)

2. Bojinov, H., Casal, A., Hogg, T.: Multiagent control of self-reconfigurable robots. In: Proceed-
ings of 4th International Conference on MultiAgent Systems, pp. 143—150. Boston, Massa-
chusetts (2000)

3. Butler, Z., Kotay K., Rus, D., Tomita, K.: Cellular automata for decentralized control of
self-reconfigurable robots. In Proceedings of IEEE International Conference on Robotics and
Automation, Workshop on Modular Self-Reconfigurable Robots. Seoul, Korea (2001)

4. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic de-centralized control for lattice-based
self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919-937 (2004)

2 Lattice Automata for Control of Self-Reconfigurable Robots 45

5.

6.

10.
11.

13.

15.

16.

17.

18.

19.

20.

Butler, Zack, Rus, Daniela: Distributed planning and control for modular robots with unit-
compressible modules. Int. J. Robot. Res. 22(9), 699-715 (2003)

Christensen, D.J.: Experiments on fault-tolerant self-reconfiguration and emergent self-repair.
Proceedings. Symposium on Artificial Life part of the IEEE Symposium Series on Computa-
tional Intelligence, pp. 355-361. Honolulu, Hawaii (2007)

. Fukuda, T., Kawauchi, Y., Buss, M.: Self organizing robots based on cell structures—CEBOT.

In: Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp.
145-150 (1988)

. Fukuda, T., Nakagawa, S.: Dynamically reconfigurable robotic system. In: Proceedings of IEEE

International Conference on Robotics and Automation, vol. 3, pp. 1581-1586 (1988)

. Fukuda, T., Ueyama, T.: Cellular Robotics and Micro Robotics Systems, vol. 10 of World

Scientific Series in Robotics and Autonomous Systems, vol. 10. World Scientific (1994)
Murata, S., Kurokawa, H.: Self-Organizing Robots. Springer, New York (2012)

Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of IEEE
International Conference on Robotics and Automation, pp. 441-448. San Diego, California
(1994)

. Qstergaard, E.H., Lund, H.H.: Evolving control for modular robotic units. Proceedings of

IEEE International Symposium on Computational Intelligence in Robotics and Automation,
pp- 886—-892. Kobe, Japan (2003)

(stergaard, E.H., Lund, H.H.: Distributed cluster walk for the ATRON self-reconfigurable
robot. In: Proceedings of 8th Conference on Intelligent Autonomous Systems, pp. 291-298.
Amsterdam, Holland (2004)

. Romanishin, J.W., Gilpin, K., Rus, D.: M-blocks: Momentum-driven, magnetic modular robots.

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
8288-4295. Tokyo, Japan (2013)

Rosa, M.D., Goldstein, S., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpting via hole
motion: Motion plan- ning in lattice-constrained modular robots. In: Proceedings of IEEE
International Conference on Robotics and Automation, pp. 1462—1468, Orlando (2006)

Stagy, K.: Controlling self-reconfiguration using cellular automata and gradients. In: Proceed-
ings of 8th International Conference on Intelligent Autonomous Systems, pp. 693—-702. Ams-
terdam, The Netherlands (2004)

Stoy, K., Brandt, D.: Efficient enumeration of modular robot configurations and shapes. In:
Proceedings of IEEE/RSJ International Conference on Robotics and Intelligent Systems, pp.
4296-4301. Tokyo (2013)

Stoy, K., Christensen, D.J., Brandt, D.: Self-Reconfigurable Robots: An Introduction. MIT
Press (2010)

Varshavskaya, P., Kaelbling, L.P., Rus, D.: Automated design of adaptive controllers for mod-
ular robots using reinforcement learning. Int. J. Robot. Res. 27(3—4), 505-526 (2008)

Walter, J., Welch, J., Amato, N.: Concurrent metamorphosis of hexagonal robot chains into
simple connected configurations. IEEE Trans. Robot. Autom. 18(6), 945-956 (2002)

	2 Lattice Automata for Control of Self-Reconfigurable Robots
	2.1 Self-Reconfigurable Robots
	2.1.1 Origin, Features, and Applications
	2.1.2 Mechatronic Implementation

	2.2 Assumptions of Lattice Automata
	2.3 Lattice Automata-Based Control
	2.4 Hybrid Control
	2.5 Conclusion
	References

