
Chapter 12
Modelling Synchronisation in Multirobot
Systems with Cellular Automata: Analysis
of Update Methods and Topology Perturbations

Fernando Silva, Luís Correia and Anders Lyhne Christensen

Abstract In this chapter, we consider two-dimensional cellular automata as a tool for
modelling the behaviour of multirobot systems. We study the dynamics of a group of
stationary robots inspired by studies in mixed natural-artificial societies. We model
the behaviour of individual robots as a pulse-coupled oscillator, which influences
other oscillators through short and periodic pulses. We address the problem of self-
organised synchronisation, in which robots have to adjust and synchronise their
behaviour to produce a self-organised collective vibration pattern based on local
interactions. We analyse under which conditions a synchronised global behaviour
can emerge from local coupling between neighbours and focus on two fundamental
aspects: (i) the effects of different update methods, including the interplay between
parameters of local rules and the global behaviour, and (ii) the transition from regular
to irregular topologies by means of dynamic perturbations and fixed perturbations.
Overall, this study is a contribution towards the understanding of the effects of the
update method and of the topological structure when modelling real-world complex
systems with cellular automata.

12.1 Introduction

In this chapter, we study two-dimensional cellular automata as an abstraction for
modelling and examining the behaviour of autonomous, mutually interacting sets
of agents, i.e., multiagent systems. The key principles for modelling multiagent
systems by means of discrete dynamical systems such as cellular automata have not

F. Silva (B) · L. Correia
LabMAg, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
e-mail: fsilva@di.fc.ul.pt

L. Correia
e-mail: luis.correia@di.fc.ul.pt

A.L. Christensen
Instituto de Telecomunicações, Instituto Universitário de Lisboa (ISCTE-IUL),
1649-026 Lisbon, Portugal
e-mail: anders.christensen@iscte.pt

© Springer International Publishing Switzerland 2015
G.Ch. Sirakoulis and A. Adamatzky (eds.), Robots and Lattice Automata,
Emergence, Complexity and Computation 13, DOI 10.1007/978-3-319-10924-4_12

267



268 F. Silva et al.

yet been agreed upon [1]. Proposed approaches include: (i) translation of multiagent
systems into corresponding cellular automata models [2], (ii) modification of the
expressiveness and structure of cellular automata in order to provide a basis for
direct modelling of groups of interacting agents [3], and (iii) hybrid approaches
encompassing both cell-based updating and agent-based updating [4]. Influenced by
the view of multiagent systems as discrete dynamical systems provided by Fatès
and Chevrier [5], we define and model a multiagent system by separating three core
concepts: (i) the formulation of individual behaviour, i.e., the local rules that describe
the actions of the agents, (ii) the update method, which defines the temporal relation
between modifications to the agents’ internal state, and (iii) the topology of the
environment, including connections between agents, which may change or remain
fixed throughout time.

We study the collective dynamics of one class of multiagent systems: multirobot
systems. The robots are modelled after the combined actuator-sensor units (CASUs),
groups of stationary robots developed in the context of the ASSISIbf project [6] on
mixed natural-artificial societies.1 CASUs are designed according to the principles
of distributed control and self-organisation. The robots are expected to coexist and
interact with honeybees and zebrafish both at the individual level and at the group
level. The CASUs are intended: (i) to modulate the behaviour of the animals, and
(ii) to “learn the social language of the animals” [6].

In distributed systems, synchronisation plays a fundamental role [7]. Examples
are ubiquitous and include: (i) imposing a reference timing in wireless networks [8],
(ii) communication scheduling, coordinated duty cycling, and time synchronisation
in sensor networks [9], and (iii) decentralised fault detection in groups of autonomous
robots [10]. In our study, robots have to synchronise to produce self-organised collec-
tive behaviour. The robots are equipped with actuators to emit vibrations, and sensors
that enable them to detect if neighbouring robots are vibrating. The behaviour of each
robot is modelled as a pulse-coupled oscillator [11], which influences other oscil-
lators through short and periodic pulses. Based on local interactions, robots have
to adjust their behaviour in order to produce a common, population-wide vibration
pattern. Our goal is to analyse and understand under which conditions a synchronised
global behaviour can emerge from local coupling between neighbours. Our study is
concerned with answering three fundamental questions:

• Since robots are not centrally synchronised, does the global self-synchronised
behaviour of the multirobot system depend on the update method? Is the system
sensitive or robust against changes in the updating? What is the most appropriate
update method for modelling multirobot synchronisation of behaviour?

• Under a given update method, is the global behaviour influenced by variations of
the parameters that regulate the individual behaviour of agents? In other words,

1 ASSISIbf [6], short for “Animal and robot Societies Self-organise and Integrate by Social Inter-
action”, is an EU-funded FP7 FET project. The project focuses on self-organising mixed societies
of real social animals, namely bees and fish, and artificial systems. The ultimate goal of the project
is to develop a new field of science concerning self-adapting engineered systems able to integrate
themselves in existing natural societies.
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what is the main cause of emergence of certain classes of behaviour: (i) specific
configurations of parameters for the local rules, (ii) the update method, or (iii) the
interplay between the configuration of the local rule parameters and the update
method?

• How robust is the system to modifications in the topology? In particular, if the
topology is perturbed by the removal of connections and therefore interactions
between neighbouring agents, under which conditions can the system continue to
exhibit the desired collective behaviour?

The chapter is organised as follows. Section 12.2 describes the background and
related work. We present the cellular automata model, the update methods used, and
we review relevant studies on pulse-coupled oscillators. In Sect. 12.3, we introduce
a number of definitions and notations necessary to characterise the behaviour of
cellular automata. In Sect. 12.4, we assess the impact of the update method on the
evolution of synchronised behaviour. We also analyse the sensitivity of the update
method to variations in key parameters of individual behavioural rules. In Sect. 12.5,
we investigate the effects of topology perturbations. In particular, we analyse the
robustness of cellular automata when topology characteristics become irregular due
to the removal of connections between neighbouring cells. In Sect. 12.6, we sum-
marise and discuss our contribution, and we present avenues for future research in
modelling multirobot systems with cellular automata.

12.2 Background and Related Work

In this section, we first define the cellular automata model and we describe the five
update methods studied in this chapter. Afterwards, we report the background and
related work on oscillators, and we detail our pulse-coupled oscillator model.

12.2.1 Topology of the Environment

Let A be a two-dimensional squared automaton of length l with toroidal boundary
conditions. We denote N = l×l, the total number of cells, as the size of the automaton.
Individual cells adopt one of two possible states in the set of states S = {0, 1}. The
state of all cells at a given time is called a configuration.

The state of each cell is updated at discrete time steps according to a local tran-
sition function. The locality of the interactions between cells is given by the rela-
tion of each cell c ∈ A with its von Neumann neighbourhood of radius r = 1:
N (c) = {c, c +−→v , c −−→v , c +−→

h , c −−→
h }, where −→v = (0, r) and

−→
h = (r, 0). For

a given cell c and an integer value k, we define the field ϕ(c, k) as:

ϕ(c, k) = {c′ ∈ A | r(c, c′) = k} , (12.1)
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Fig. 12.1 Example of two
fields, ϕ(c, 2) and ϕ(c, 3), for
an automaton of size
N = 10×10. The centre cell c
is marked in black. The fields
ϕ(c, 2) and ϕ(c, 3) are
marked in dark grey and light
grey, respectively

where r(c, c′) is the radial distance between cells c and c′. In Fig. 12.1, we show an
example of the fields ϕ(c, 2) and ϕ(c, 3) for an automaton of size N = 10×10.

12.2.2 Update Methods

The update method determines the set of cells to which the local transition function
applies and the order of the updating at each time step. In the classic definition,
cellular automata are perfectly synchronous as cells are updated instantaneously and
in parallel. The assumption of perfectly synchronous timing has been widely debated,
with the main argument against being that synchrony presupposes the existence of a
global clock that dictates the pace of all local processes in the system [12]. In addition,
the synchronous update does not reflect the microscopic structure of physical and
biological systems [13, 14]. Immediately after the issue of synchrony vs. asynchrony
was raised, a number of additional research questions arose [15] including: Which
properties of the system change when the update method is asynchronous instead of
synchronous? What type of asynchrony should be used to model a given system?

A number of studies focusing on asynchronous update methods have been con-
ducted, see for instance [16–22]. The contributions showed that the behaviour of
cellular automata can change considerably when perfect synchrony is absent. Bersini
and Detours [23], Ruxton and Saravia [24] and Cornforth et al. [13] argued that no
single update method is suitable for all systems. Here, in order to understand which
update method is more faithful to the physical reality of a given system, we study
the effects of five different schemes:

1. Synchronous method, in which all cells are updated in parallel at each time step.
2. α-asynchronous method [19], which is based on a sampling scheme in which

only a fraction of the cells is updated at each time step. Every cell has an inde-
pendent and equal probability α of being updated, with 0 < α < 1, thus sat-
isfying a fair sampling condition. The α-asynchronous method has been widely
used to: (i) define robustness classes [19] and analyse behavioural changes under
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asynchronous conditions in one-dimensional [25–28] and two-dimensional cel-
lular automata [29–31], and (ii) to model multiagent systems in two-dimensional
cellular automata [1, 32].

3. κ-scaling method [22], which extends standard α-asynchrony in order to com-
pensate for fewer updates due to increasing asynchrony. The κ-scaling method is
defined as follows: given a synchrony rate α, at each time step, κ = 1/α updates
are performed. For non-integer κ = 1/α, decimal values are probabilistically used
for deciding between performing n or n + 1 intermediate updates. The resulting
configuration is considered as the automaton’s next stage. κ-scaling introduces a
time-scaling phenomenon according to the synchrony rate, thus potentially nor-
malising the differences introduced by α-asynchrony. In this way, the sampling
compensation allows us to assess if differences in behaviour are due to less cell
activity (asynchrony) or to more complex phenomena.

4. Random order asynchronous method in which, at each time step, all cells are
updated exactly once according to a random order. Kanada [12], Schönfisch and
de Roos [21] and Cornforth et al. [13] have previously assessed the effects of
randomised update sequences in cellular automata. Randomness in the computa-
tional order was shown to significantly influence the spatiotemporal behavioural
patterns. Depending on the local transition function, one-dimensional cellular
automata were found to exhibit chaotic behaviour [12] and quasi-cyclic behav-
iour [13]. The random model update method has also been applied to cellular
automata-based modelling of, for instance, biological systems [33] and chemical
systems [34].

5. Line-by-line sweep, or fixed directional, is the simplest asynchronous method.
All cells are updated at each time setup. The update is performed line-by-line,
from the leftmost cell to the rightmost cell. The effects of this method have
been compared with others by Rakewsky et al. [35] in the asymmetric simple
exclusion process (ASEP), by Schönfisch and de Roos [21] in one-dimensional
cellular automata, and by Ruxton and Saravia [24] in two-dimensional cellular
automata-based ecological modelling. One of the conclusions of the studies was
that the line-by-line sweep can introduce additional structure in the evolution of
the automata. We use the method to analyse if such a cyclic behaviour can offer
any benefit in modelling synchronisation of multirobot systems.

12.2.3 Modelling Individual Behaviour with Pulse-coupled
Oscillators

Our study is concerned with modelling and studying the emergence of synchronised
behaviour in a population of stationary robots. The behaviour of each individual
robot is modelled as a pulse-coupled oscillator [11]. In the following sections, we
describe the motivation for the task, the background on pulse-coupled oscillators,
the robot model, and how the behavioural control of robots is defined.
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12.2.3.1 Synchronisation of Pulse-coupled Oscillators

Self-organised synchronisation is a common and important phenomenon in natural
systems. A number of natural collective systems are subject to a strong and regular
synchronisation component, and they synchronise their behaviour based on local
interactions, i.e., simple coupling rules at the individual level result in a consistently
synchronised behaviour. Complete synchronisation of behaviour is thus a progressive
and emergent phenomenon [36]. Examples of natural synchronisation phenomena
include tropical fireflies that routinely synchronise their rhythmic flashes [37], cardiac
cells [38], circadian pacemaker cells in the brain, metabolic synchrony in yeast cell
suspensions, and crickets that chirp in unison [39].

The phenomenon of collective synchronisation in a number of natural systems
is described by pulse-coupled oscillators that spontaneously lock into a common
phase. Each oscillator periodically emits a self-generated pulse. When other oscil-
lators observe the pulse, they slightly shift their own oscillation phase. This process
leads to an alignment of phases and to synchronised behaviour. Let us consider the
aforementioned tropical fireflies. At an individual level, fireflies have neural timing
mechanisms, an oscillator. The only interaction occurs when fireflies flash, which
stimulates or inhibits the oscillation frequency of neighbouring fireflies and causes
them to modify their internal rhythm [11].

The first example of synchronisation of pulse-coupled oscillators was described by
Peskin [40], who observed the phenomenon in the cardiac pacemaker cells. After-
wards, Mirollo and Strogatz [11] demonstrated that any number of pulse-coupled
oscillators is always able to synchronise their firing rates as long as: (i) the popu-
lation of oscillators is fully connected, i.e., each oscillator is coupled with all the
others, (ii) oscillators are identical with respect to their dynamics, and (iii) the func-
tion governing the evolution of the internal state of oscillators over time is smooth,
monotonically increasing, and concave down.

A study by Bottani followed [41], demonstrating that globally-coupled oscillators
with pulse interaction can synchronise under broader conditions than those consid-
ered in the theorem of Mirollo and Strogatz. More recently, Lucarelli and Wang [42]
showed that local nearest neighbour coupling among oscillators is sufficient, even
in systems whose topology changes every Tc time units, provided that the entire
network is connected every 2 Tc time units. It should be noted that in all studies
described above, for the network of oscillators to converge into a self-synchronised
state, one key assumption is that all oscillators have the same or nearly identical
frequencies.

12.2.3.2 Definition of Pulse-coupled Oscillators

In a population of pulse-coupled oscillators, each individual i maintains an internal
activation level xi that increases over time until a given threshold is reached. Then,
the oscillator i fires, xi is reset to zero, and the cycle repeats. When a neighbour
oscillator j observes the firing of oscillator i , it further increases its own activation
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level x j . If x j exceeds the firing threshold, the oscillator j fires, resets its activation
level to zero, and restarts its behaviour.

Analytically, general pulse-coupled networks can be written as [43]:

ẋi = fi (xi ) + ε

N∑

j=1

gi j (xi )δ(t − t∗j − ηi j ) , (12.2)

where xi denotes the activation level of oscillator i , and the function fi describes
its dynamics. The coupling constant ε denotes the strength of interactions between
oscillators. N is the set of oscillators neighbours of i . The pulse-coupling function
gi j describes the effect of the firing of another oscillator j on i . The time t∗j marks the
moment when oscillator j last fired. When j fires, the activation level xi is increased
by εgi j (xi ) after a delay ηi j ≥ 0. The increment is given in the form of the Dirac
delta function δ satisfying δ(t) = 0 for all t �= 0, δ(0) = ∞, and

∫
δ = 1. In Fig. 12.2,

we show an example of the interactions between two oscillators i and j .

12.2.3.3 Robot Model and Individual Behavioural Control

In this study, we model the behaviour of individual robots with pulse-coupled
oscillators. Each cell in a given automaton corresponds to one stationary robot. We

Fig. 12.2 Example of the
interactions between two
pulse-coupled oscillators i
and j . Each oscillator
increases its activation level
at a constant rate until: (i) the
threshold is reached, which
resets the activation level to
zero, or (ii) until the firing of
the other oscillator is
detected, at which point the
activation of the oscillator that
sensed the firing is increased
by εg(x), where ε is the
coupling constant and g(x) is
the pulse-coupling function
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model the robots after the combined actuator-sensor units (CASUs), static robotic
nodes described by Schmickl et al. [6] in the context of the ASSISIbf project. In our
experiments, robots have to collectively adjust and synchronise to produce a local
cue, a common vibration pattern. The robotic devices are equipped with: (i) actuators
to emit vibrations at a fixed frequency, and (ii) sensors to detect if neighbouring robots
are vibrating. Given the discreteness of the cellular automata model, we transform
the continuous model for general pulse-coupled systems described in Eq. 12.2 into
a discrete time dynamical system with piecewise dynamics, similarly to Christensen
et al. [10], as follows:

xi (n + 1) =
{

xi (n) + 1
T + εγi (n)g(xi (n)) if xi (n) < 1

0 otherwise
(12.3)

where xi (n) is the activation level of oscillator i at time step n, T is the period between
firings of an isolated oscillator, and ε is the coupling constant. γi (n) is the number of
neighbours of i that fired in time step n, and g(xi (n)) is the pulse-coupling function.
If the activation level of one oscillator exceeds the threshold of 1.0, the corresponding
robot vibrates at a fixed frequency, and the state of the cell is set to 1. If the oscillator
is not pulsing, the robot is not vibrating and therefore the state of the cell is 0. An
example of the development of the activation levels during a run with 100 oscillators
is shown in Fig. 12.3. In the example provided, the oscillators synchronise after 1,270
time steps.

Fig. 12.3 Example of the
evolution of activations levels
in a population of 100
pulse-coupled oscillators over
the course of 1,500 time
steps. After time step 1,270,
the activation levels overlap,
which indicates that the
oscillators have synchronised
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12.3 Experimental Assessment

In this section, we introduce a number of definitions and notations that we use
to analyse the behaviour of cellular automata. In cellular automata, the analytical
prediction and classification of behaviour is a complex problem [44]. Depending on
the local transition function, aspects such as the update order of the cells, the degree
of asynchrony, and the initial configuration can influence the dynamics of the system.
In a number of situations, there is even no direct relation between the dynamics of
automata following the same local function but subject to different update conditions,
see [22, 26, 45] for examples.

12.3.1 Characterising the Behaviour of Cellular Automata

We analyse the behaviour of the automata based both on quantitative and qualitative
observations. One of the aspects we are interested in analysing is the time necessary
for the system to synchronise under different experimental conditions. We define
a cellular automaton of size N = l×l to exhibit synchronised behaviour if: (i) the
activation of the first cell is no further than l time steps from all other activations, and
(ii) each cell only fires once during this period. Given that each cell only senses the
states of its nearest neighbours, our definition of synchronised behaviour takes into
account the theoretically maximum latency of the system, i.e., the number of time
steps necessary for the information to propagate across the automaton.

We estimate the behaviour of different automata and measure the quality of the
synchronisation process using two methods:

1. We analyse the space-time diagrams of the automata under execution. This form
of analysis provides a qualitative impression of behaviour, but does not serve as
a formal classification criterion.

2. Complementarily, we quantify the behaviour of the automata using a number of
domain-dependent measures, namely:

• Convergence rate, defined as the number of runs in which the automata are
able to synchronise their behaviour.

• Transient time, computed as the number of time steps necessary for a given
automaton to converge into a synchronised state after it was started.

• Speed of collective oscillation, defined as the total number of time steps nec-
essary for one instance of collective synchronised behaviour to be completed,
i.e., the time elapsed between the first and the last activation of cells in the
automaton.

• Period between oscillations, defined as the number of time steps elapsed
between different instances of synchronised behaviour. If the automata are
properly synchronised, this period should be consistent throughout time, and
in accordance with the value T described in Eq. 12.3.
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Additionally, cellular automata quantification of behaviour is based on a
domain-dependent measure denoted ρ∗. ρ∗ ∈ [−1, 1] measures the degree of cor-
relation between two configurations c1 and c2 based on a normalised Hamming
distance [46] as follows:

ρ∗ = 1 − 2 · σHam(c1, c2)

len(c1)
, (12.4)

σHam(c1, c2) =
len(c1)∑

i=1

1 − δ(c1[i], c2[i]) , (12.5)

where σHam(c1, c2) is the Hamming distance between c1 and c2, len(c1) = len(c2)

is the length of the configurations, and δ(i, j) is the Kronecker delta computed as:

δ(i, j) =
{

1 if i = j

0 otherwise
(12.6)

ρ∗ = 1 indicates that c1 and c2 have identical values for all cells, and ρ∗ = −1 means
that all cells have complementary states.

ρ∗ was used in previous studies in order to: (i) classify the behaviour of one-
dimensional cellular automata [47], and (ii) to identify behavioural responses of
one-dimensional cellular automata when subject to asynchrony and to noise in the
computation of the cell states [22]. In this study, we use ρ∗ to quantify cellular
automata behaviour in two ways:

1. Intra-automata correlation, henceforth intra-ρ∗, defined as the ρ∗ value between
two configurations of a given automaton at different time steps, thereby computing
the rate of cells that change or maintain their state at a given time.

2. Inter-automata correlation, henceforth inter-ρ∗, computed as the ρ∗ value
between configurations of two different automata at a given time step. The inter-
automata correlation enables the pairwise comparison of the state of two automata
and the quantification of the differences between them.

12.4 Effects of the Update Method on Synchronisation
of Behaviour

In this section, we analyse the sensitivity of the cellular automata model to different
update methods. We investigate: (i) if global synchronisation can arise from local
pulse-coupling, (ii) the properties of behaviour under synchronous and asynchronous
conditions, and (iii) the implications of using different alternatives to synchronous
updating, including to what extent the emergence of synchronisation is affected by
the way cells are updated. In addition, we analyse the interplay between different
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configurations of parameters in the individual rules of the cells and the characteristics
of the global behaviour.

12.4.1 Methods

The experiments are conducted using a fixed lattice with size N = 10×10 and
toroidal boundary conditions. We conduct experiments using the five different update
methods described in Sect. 12.2.2, namely: (i) synchronous, (ii) α-asynchronous,
(iii) κ-scaling, (iv) random order asynchronous, and (v) line-by-line sweep. For the
α-asynchronous method and the κ-scaling method, the synchrony rate α is varied
from α = 0.99 (almost synchronous) to α = 1/N = 0.01 (approximates sequential,
fully asynchronous updating), in decrements of 0.01.

For each configuration in each set of experiments, we conduct 100 independent
runs. Each automaton is initialised with a random configuration. A random activation
level ∈ [0, 1] sampled from a uniform distribution is independently assigned to each
oscillator at the beginning of each run. The oscillation period T is set to 50 time
steps. The coupling constant ε is set to 0.1. With respect to the oscillators’ dynamics,
as defined in Eq. 12.3, we use the linear dynamics given by the pulse-coupling
function g(x) = x . We experiment with different coupling constants ε and distinct
pulse-coupling functions in Sect. 12.4.2.2. Each run lasts 50,000 time steps.

12.4.2 Results

Table 12.1 lists the transient time necessary for the automata to synchronise when
subject to different update methods. The synchronisation process is, on average,
slightly faster if there is a fixed update order, either implicit as in the case of the
synchronous update, or explicit as in the line-by-line sweep. Results show that a
fixed update order is not always beneficial, as there is convergence in only 92 %
of the runs conducted using each method. On the other hand, the random order
method displays a convergence rate of 100 %. Differences in the convergence rate
of the synchronous and the line-by-line sweep methods are statistically significant

Table 12.1 Transient time and convergence rate of systems under: (i) synchronous update, (ii) line-
by-line sweep, and (iii) random order asynchronous update

Update Method Average Std. Dev. Shortest Longest Convergence %

Synchronous 985 320 509 2,382 92

Line-by-line 897 292 380 1,793 92

Random Order 1,118 518 378 3,065 100

The values listed are the result of 100 independent runs for each experimental configuration
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Example 1, t = 1

(a) (b) (c) (d)

(e) (f) (g) (h)
Example 1, t = 2 Example 1, t = 3 Example 1, t = 4

Example 2, t = 1 Example 2, t = 2 Example 2, t = 3

Example 1, t = 1
(e) (f) (g) (h)

Example 1, t = 2 Example 1, t = 3 Example 1, t = 4

Example 2, t = 4

Fig. 12.4 Two examples of the field-based wave-like effect exhibited under synchronous updates.
Cells in state 1 (resp. 0) are coloured in white (resp. black), a convention that is maintained through-
out the study

with respect to the convergence rate of the random order method (two-tailed Fisher’s
exact test, ρ = 6.8×10−3).

The synchronous and line-by-line sweep methods lead to periodic vibration pat-
terns that repeat every T = 50 time steps. Nonetheless, the spatiotemporal patterns
exhibited by the automata are due to spurious effects caused by the update method.
Two examples are shown in Fig. 12.4 for the synchronous case. The first example
describes one particular run in which the automaton evolved into a behaviour with
perfectly synchronised neighbour-to-neighbour influence. The first oscillator to fire
is the origin of a field-based wave propagation phenomenon (see Sect. 12.2.1 for
the definition of a field). When the wave starts, all oscillators have activation levels
close to the firing threshold. After the firing of the first oscillator, each set of neigh-
bours that have not yet fired will fire in consecutive time steps. The wave propagates
throughout the system until all oscillators have fired. In this way, after the initial cell
c becomes active at time step t , the behaviour of the automaton at time step t + i
will be a field ϕ(c, i), ∀i ≤ 10. If two or more oscillators fire in the initial time step,
as shown in Fig. 12.4e, each of these activations starts a local field-based wave-like
phenomenon.

The wave effect is due to the characteristics of the synchronous update method.
The state of a given cell at time t can only be perceived by its neighbourhood at time
t + 1, and therefore the activation of pulse-coupled oscillators is always taken into
account with a latency of one time step by its neighbours. As a result, adjacent cells
can only become active at consecutive time steps. Depending on how many cells
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(a)

t = 1

(b)

t = 2

(c)

t = 3

(d)

t = 4

Fig. 12.5 Examples of the domino-like effect caused by the line-by-line sweep. In the first two
time steps, t = 1 and t = 2, the order by which the cells become active in the corresponding time
step is marked numerically. Cells in state 1 (resp. 0) are coloured in white (resp. black)

initiate the collective oscillation process and on how many neighbours each cell can
cause to activate, the speed of collective oscillation after synchronisation may require
from 6 time steps (Fig. 12.4, example 2) to 11 time steps (Fig. 12.4, example 1).

By analysing the sequence of activation of cells at a microscopic level, we observe
that, under a line-by-line sweep, there is also a spurious correlation between the
update order and the spatiotemporal patterns of the automata. The fixed sequen-
tial update order always causes a domino-like effect in the activations of the cells.
Figure 12.5 exemplifies the domino-like effect during a collective oscillation behav-
iour. The order by which the cells become active in the first two time steps is marked
numerically (Fig. 12.5a, b). Once a cell c is updated and becomes active, each neigh-
bour of c will also become active when it is updated. In other words, the directionality
of the influence between cells is solely due to the update order. Depending on the
spatial position of the first cell to become active, the speed of collective oscillation
varies from N = 1 time steps, if the cell is in the top-left corner of the automaton,
to N = 3 time steps, which is the most frequent behaviour.

Increasing stochasticity in the update process through a continuously randomised
order slightly delays convergence by augmenting the transient time. As listed in
Table 12.1, random order asynchronous update yields an average transient time of
1,118 time steps. However, unlike the previously analysed update methods, the ran-
dom order asynchronous scheme does not introduce any artefactual correlation in the
dynamics of the cellular automata. Firstly, the automata always converge. Secondly,
analysis of the spatiotemporal evolution of the automata shows that every 50 time
steps, all cells become active in one time step, and therefore there is always a speed
of collective oscillation s = 1. After the transient time ttransient has elapsed, the
asymptotic behaviour of synchronised automata is equal, which is detected by the
stabilisation of the inter-ρ∗ value =1 when comparing configurations at each time
step ttransient + i , with ttransient + i ≤ 50,000.

The collective oscillation under the random order method is illustrated in Fig. 12.6
through the intra-ρ∗ values of one run. The transient time is of approximately 800 time
steps. Variations of the intra-ρ∗ value until time step 500 indicate that cells become
active with no particular order or coupling. Afterwards, oscillators minimise phase
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Fig. 12.6 Example of intra-CA correlation over the course of 1,000 time steps under the random
order update method. The automata is synchronised after time step 800. Each peak of the intra-
ρ∗ value from 1 to −1 and vice-versa that occurs every 50 time steps represents one instance of
collective oscillation (see text)

differences, and cells start to exhibit a progressively more synchronised behaviour.
At time step 800, cells are completely synchronised based on an asynchronous
process and local interactions. Each peak of the intra-ρ∗ value from 1 to −1 and
vice-versa represents one instance of collective oscillation. At this point, all cells are
in state 0, i.e., no cell is active. In the following time step, all cells become active
and therefore intra-ρ∗ value = −1. A value of −1 is also measured in the subsequent
time step because all cells move from an active to an inactive state, after which the
intra-ρ∗ value =1 is maintained until the next collective activation. The behaviour is
then repeated every 50 time steps until the end of the simulation.

At a microscopic scale, during the activation time step the order by which the cells
become active is determined by the randomly generated update sequences. These
results support the work of Cornforth et al. [13] and Harvey and Bossomaier [48],
among others, which have suggested that random order methods can generate quasi-
cyclic behaviour. Under the light of the random order method, the automata can be
said to display a truly emergent synchronised behaviour. One positive effect of this
update method is that, as mentioned above, it removes the spurious effects that could
be linked to a particular update order. Secondly, the random order scheme appears
to be more faithful to the physical reality of the system being modelled than both
the synchronous and the line-by-line methods. As initially argued by Kanada [12],
the fact that the major source of randomness lies in the order of state transitions
of the cells allows to take into account the microscopic structure of systems, and
is therefore suitable for modelling purposes. However, it should be noted that in a
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Fig. 12.7 Convergence rate
of α-asynchronous and
κ-scaling systems when
subject to distinct degrees of
asynchrony.
Convergence
cannot be ensured for
α-asynchronous systems if
α ≤ 0.93, and for κ-scaling
systems if α ≤ 0.91

real distributed system, it may be difficult to ensure a completely random sequential
updating order.

12.4.2.1 α-dependency

In this section, we analyse the behavioural response of the cellular automata when
subject to α-asynchrony-based update methods. Results show that under the α-
asynchronous and the κ-scaling methods, the behaviour of the automata significantly
depends on the degree of asynchrony in their update. With increasing α-asynchrony,
the automata evolve a behaviour noticeably different from that produced by the three
update methods analysed above. As shown in Fig. 12.7, for 0.90 < α ≤ 0.93, the
convergence rate of α-asynchronous systems varies from 15 % to 34 %, which is
significantly lower than the convergence rate of automata subject to higher α values
(two-tailed Fisher’s exact test, ρ < 1.0 x 10−4 for all 0.90 < α ≤ 0.93). In effect,
for α ≤ 0.90, α-asynchronous systems can no longer synchronise in the 50,000 time
steps limit. Performing a temporal compensation and corresponding normalisation
of the sampling differences by means of the κ-scaling method counteracts to some
extent the effects of α-asynchrony. The automata can always overcome asynchrony
for α > 0.91. As the synchrony rate is lowered, the convergence rate of κ-scaling
systems decreases proportionally to α.

From a practical point of view, α-asynchronous and κ-scaling methods show how
sensitive cellular automata can be to asynchrony. Table 12.2 lists the average transient
time and the average period for 0.99 ≤ α ≤ 0.94. Aside from the aforementioned
convergence rate, asynchrony by means of less cell activity significantly increases
both the transient time and the average period length between consecutive group-
level activations. Even for minimal asynchrony, i.e., α = 0.99, the average period is
128 time steps for α-asynchronous systems and 124 time steps for κ-scaling systems.
With increasing asynchrony, the automata become increasingly lagged thus resulting
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Table 12.2 Transient time and length of the period between consecutive group-level oscillations

Synchrony rate α α-asynchronous κ-scaling

Transient time Period Transient time Period

0.99 1,090 128 1,152 124

0.98 1,437 345 1,340 302

0.97 1,989 863 1,855 680

0.96 3,495 2,294 2,404 1,471

0.95 12,189 6,519 3,876 2,755

0.94 19,278 9,753 4,931 4,387

Values are the average of 100 independent runs for each experimental configuration

in significantly higher transient times and periods between collective oscillations. For
α = 0.94, α-asynchronous systems have a transient time of approximately 19,278
time steps and a period of 9,753 time steps. κ-scaling systems are less affected as
they display a transient time of 4,931 time steps and a period of 4,387 time steps.

Our analysis shows that: (i) the assessed α-asynchrony-based update methods do
not enable the systems to evolve towards a global vibration pattern, and (ii) increasing
asynchrony further degrades behaviour. In fact, the existence of contrasting behav-
iours under α-asynchronous dynamics, even when using moderate asynchrony val-
ues, indicates a hidden sensitivity that may need to be handled carefully depending
on the context.

Overall, the results presented in this section corroborate that not only is asynchrony
relevant, but that the type of asynchrony can have significant effects when modelling
multiagent or multirobot systems by means of discrete dynamical systems. This
question takes a special importance due to the fact that, as argued by Cornforth et
al. [13], multiagent systems are usually modelled based on the synchronous update
method. This begs the question: when modelling multiagent systems that have to
achieve synchronisation or consensus, in which cases is the multiagent system robust
to modifications in the updating? Complementarily, in such multiagent systems, to
what extent is the behaviour exhibited under asynchronous dynamics dependent on
the properties of the local transition function? The following section addresses the
second question by analysing the robustness and the global dynamics of the system
when subject to variations in the main parameters of the pulse-coupled oscillators:
the coupling constant ε and the coupling function g(x).

12.4.2.2 Assessing the Dynamics of the Random Order Method

The behaviour of the oscillators as described in Eq. 12.3 depends on the interactions
between neighbouring cells. The strength of each interaction is controlled by the
coupling constant ε and by the coupling function g(x). In this section, we assess in
which conditions the variation of ε and of g(x) alters the dynamics of the automata.
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Table 12.3 Convergence rate of different pulse-coupling dynamics as a function of the coupling
constant ε

Coupling constant ε Convergence rate (%)

Linear function Sigmoid function Sine function

0.01 14 0 0

0.02 99 33 0

0.05 100 100 0

0.1 100 100 0

0.2 100 100 0

0.5 100 100 100

1.0 100 100 100

For each experimental configuration, the convergence rate is measured by performing 100 indepen-
dent runs

Our goal is to examine the robustness or sensitivity of the update method to changes
in the rules that govern the behaviour of cells.

We conduct the experiments using the update method that yielded the most reliable
result, namely the random order asynchronous method. The effects of the coupling
constant are assessed for ε ∈ {0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.0}. We also study
three pulse-coupling functions. The choice of the coupling function was made to test
different dynamics, namely: (i) linear dynamics with g(x) = x , (ii) even symmetrical
dynamics with respect to x = 0.5 based on a sine function g(x) = sin(πx), and
(iii) “S-shaped” dynamics given by the sigmoid function g(x) = 1

1+e(6−12x) . The three
functions are shown in Fig. 12.8. For each experimental configuration, we perform
100 independent runs. Oscillators are initialised as defined in Sect. 12.4.1, i.e., with
random initial activation levels, and with the period T set to 50 time steps. Each run
lasts 50,000 time steps.

Table 12.3 summarises the convergence rate when ε and g(x) are varied. The
linear pulse-coupling is the most robust function as it shows the highest overall con-
vergence rate in our experiments. Except for the lowest value ε = 0.01, convergence
is almost always ensured. The sigmoid function and the sine function ensure con-

Fig. 12.8 The three models of pulse-coupling functions assessed. From left to right: linear dynam-
ics, even symmetrical dynamics with respect to x = 0.5 based on a sine function g(x) = sin(πx),
and “S-shaped” dynamics given by the sigmoid function g(x) = 1

1+e(6−12x)
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Fig. 12.9 Average transient time as a function of the coupling constant ε. For the linear function,
the average transient time varies from 10,423 time steps for ε = 0.01 to 234 time steps for ε = 1.
For the sigmoid function, the average transient time is of 6,651 time steps for ε = 0.02 and of 161
time steps for ε = 1.0. For the sine function (not plotted), the average transient time varies from
326 time steps (ε = 0.5) to 96 time steps (ε = 1)

vergence if ε ≥ 0.05 and ε ≥ 0.5, respectively. With respect to the time necessary
for convergence, Fig. 12.9 shows the average transient time for the linear function
and for the logistic function when using different coupling values. For these two
functions, the lowest transient time is given when the oscillators are strongly cou-
pled. For ε = 1, the average transient time is 234 time steps for the linear function
and 161 time steps for the sigmoid function. The results suggest that high values of
ε are preferable in the synthesis of synchronised behaviour. For the two functions,
the transient time decreases exponentially with the increase of the coupling constant
until ε = 0.6, after which point the values vary significantly less.

Despite the substantial reduction of the transient time due to the increase of the
coupling constant when using either a linear function or a sigmoid function, the
fastest overall convergence is given by the even symmetrical dynamics of the sine
function. The average transient time varies from 326 time steps for ε = 0.5 to 96
time steps for ε = 1. The reduction in transient time is due to the characteristics of
the sine function, which enable a more effective adjustment of the activation level.
The line of symmetry dictates that increasingly higher adjustments are made to the
activation level for 0 < x < 0.5. For x > 0.5, the closer the activation level x is of
the threshold of 1, the more subtle the adjustment is.

The analysis conducted in this section shows that the parameters ε and g(x) can
have a profound effect on the convergence rate and transient time of the automata. We
estimated and analysed the spectrum of convergence rates and transient times. Firstly,
the results show that increasing the strength of the interaction between neighbouring
cells is beneficial as if ε is large, the oscillators tend to synchronise faster. Secondly,
coupling functions with different properties enable slower or faster convergence.
Thirdly, it should also be noted how low coupling values affect the behaviour exhib-
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ited by an automaton. For ε = 0.01 and ε = 0.02, the speed of collective oscillation
varies from 1 to 11 time steps for the linear function and from 1 to 7 time steps for
the sigmoid function. In other words, low coupling constants cause instabilities in
the systems as the automata evolve towards different configurations. Consequently,
the periodic, quasi-cyclic patterns and the repetition of series of configurations are
altered by using different parameters.

12.4.3 Summary

In this section, we examined the effects of the update method in the synthesis of syn-
chronised behaviour. We showed that in the modelling of multirobot or multiagent
systems, not only is asynchrony relevant, but that the type of asynchrony has pro-
found effects on dynamics. These results are especially important if we consider that
multiagent systems are usually modelled using synchronous update methods [13].

In our experimental setup, the random order asynchronous method was shown to
be the most reliable method. We showed that both the synchronous and the line-by-
line schemes introduce artificial structure in the evolution of our cellular automata
model. We also showed that, in our modelling scenario, α-asynchronous and κ-
scaling methods can also have significant effects on the behaviour of the system. The
two methods exhibited a hidden sensitivity, even for high asynchrony values, that
should be handled carefully when modelling systems that are continuous in time and
space.

To conclude the section, we experimentally analysed the importance of the cou-
pling constant and of the pulse-coupling function. Chiefly, our results showed that:
(i) stronger interactions between neighbours are preferable, as they significantly
increase both the convergence rate and the transient time, and (ii) that the type of
dynamics of the coupling function play a key role in the synchronisation process.

12.5 Perturbing the Topology

In this section, we investigate how topology perturbations modify the evolution of
synchronised behaviour in our cellular automata model. Our goal is to determine
what happens when the cellular automata are no longer perfectly synchronous and
the topology is perturbed, i.e., to estimate the stability or sensitivity of the systems
when topology characteristics become irregular.

12.5.1 Methods

We perturb the topology by definitively removing connections between cells.
Let G = (V, E) be the oriented graph that represents the connections between
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cells. For all cells ci , c j ∈ V , with ci �= c j , the connection (ci , c j ) ∈ E if and only if
c j belongs to the neighbourhood of ci . The oriented graph with perturbed topology
G pert = (V, E pert ) is obtained by assigning to each cell ci ∈ V an independent
probability of removing a randomly chosen connection between c j and one of its
neighbours c j . The parameter pcr is defined as the connection removal rate. It should
be noted that the discrete pulse-coupled model defined in Eq. 12.3 is a totalistic rule
in the sense that it takes into account the total of active neighbours. A neighbour that
is not sensed due to a connection removed is considered as being always in state 0.
In this way, perturbing the topology of the automata is conceptually similar to sim-
ulating faults in the sensors of the robots, one of the central issues with autonomous
robots [49].

We conduct two series of experiments, henceforth dynamic perturbations setup
and fixed perturbations setup. In the dynamic perturbations setup, there is a continual
removal of connections at each time step. Our objective is to investigate the behaviour
of the cellular automata when topology characteristics are continuously modified
throughout time. It should be noted that in this experimental setup, the connections
graph may become disconnected as a result of the deletion of connections between
cells. Therefore, the major requirement in the task is for each cell to synchronise with
its neighbours before the neighbours stop being sensed due to the lack of connections.
On the other hand, in the fixed perturbations setup we analyse the convergence
properties of the systems when the topologies are made irregular but do not change
during the course of a simulation. In this setup, connections are probabilistically
removed according to the connection removal rate pcr before the simulation starts.

The experimental protocol is here defined using a lattice with size N =10×10
and toroidal boundary conditions. Experiments are conducted using the random order
asynchronous method and the linear pulse-coupling function g(x) = x , as this was
shown to be the most robust configuration. In the dynamic perturbations setup, the
connection removal rate pcr is varied in [0.0, 0.1] in steps of 0.002. As the con-
vergence properties of the system is dependent on the strength of the interactions
between neighbouring cells, we also vary the coupling constant ε ∈ [0.1, 1.0] in
steps of 0.1. In the fixed perturbations setup, the connection removal rate is larger
because connections are only removed once, i.e., before the simulation starts. The
connection removal rate is varied in [0.0, 0.75] in steps of 0.05. We experimentally
verified that for pcr > 0.75, the graph tends to be disconnected, which we do not
allow because convergence would not be possible. For each configuration in each set
of experiments, we conduct 100 independent runs. The parameters and initialisation
of the automata follow the experimental setup described in Sect. 12.4.1. Each run
lasts 50,000 time steps.

12.5.2 Results

We start by analysing the results of the dynamic perturbations setup. In Fig. 12.10,
we separately represent the convergence rate and the transient time as a function of
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(a)

(b)

Fig. 12.10 Dynamic perturbations setup. Sampling surface of: (a) the convergence rate sampling
surface for the dynamic perturbations setup, and (b) the average transient time sampling surface for
the dynamic perturbations setup. The values displayed in each sampling surface are a function of both
the coupling constant ε and the connection removal rate pcr . a for pcr > 0.01 the sampling surface
is flat, which indicates 0 % of convergence—not shown for better visualisation of the sampling
surface. b the sampling surface shows a discontinuity of behaviour for 0.002 < pcr < 0.004,
which is marked by separating the sampling surface into two parts. Note that the range of the y-axis
is reversed, i.e., values regarding the coupling constant ε are plotted from y = 1 to y = 0

the connection removal rate pcr and of the coupling constant ε. Each set of values
obtained is represented in a three-dimensional space, which is projected on a two-
dimensional sampling surface.

Results show that the cellular automata are sensitive to perturbations in the topol-
ogy. In general, higher coupling values ε enable the automata to synchronise more
often. However, even for the smaller value of pcr = 0.002 considered, the maximum
convergence rate is of 32 % (for ε = 1.0). For pcr = 0.004, there is no synchronisation
of behaviour for ε ≤ 0.5 and the highest convergence rate is of 9 % (ε = 1.0). For
higher connection removal rates, the convergence rate continuously decreases. For
pcr > 0.01, there is no convergence and the sampling surface is flat and horizontal.

The impact of removing connections is two-fold. An interesting effect of per-
turbing the topology is that, as shown in Fig. 12.10b, increasing rates of connection
removal can harm the overall convergence rate but reduce the transient time when
the automata do converge. Visual examination of the transient time sampling surface
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shows a discontinuity of behaviour, which is marked by separating the surface into
two parts. If no connections are removed, the minimum average transient time is 213
time steps (ε = 1). For pcr = 0.002, the transient time evolves in a similar manner
except that the minimum average transient time is of 122 time steps, again for ε = 1.0.
For the critical values of pcr ≥ 0.004, for which there is no convergence for ε ≤ 0.5,
the transient time is consistently low and decreases to an average of 30 time steps
for the case pcr = 0.01, ε = 1.0.

The results obtained in the dynamic perturbations setup are the consequence of
multiple intricate factors related to local synchronisation of cells. Removing connec-
tions can either deteriorate or accelerate convergence depending on the context of the
cells. For example, consider a cell ci and two of its neighbours, c j and ck . Cells ci and
c j have a small lag between their activations, i.e., they are not entirely synchronised,
and ck is significantly delayed with respect to the firings of ci and c j . If the connec-
tion (ci , c j ) is removed, ci will have to synchronise its behaviour only with ck , which
will require an amount of time that depends on the phase differences between the two
cells. During this time, depending on the connection removal rate, the connection
(ci , ck) may be removed before the cells are synchronised, causing them to remain
unsynchronised throughout time. As a result, there will be no convergence in the
automaton.

If the first connection removed refers to two neighbours that have a large phase
difference, namely ci and ck , synchronisation is accelerated because ci synchronises
with c j without the “interference” of ck . If the automata at a global level are subject
to more acceleration than deterioration phenomena, then a self-organised behaviour
will emerge faster as the result of the interaction between the cells at a local level. On
the other hand, if there are more deterioration than acceleration phenomena in the
relation between the cells, convergence is made progressively more difficult because
the graph becomes increasingly disrupted and potentially disconnected. Therefore, in
the dynamic perturbations setup, the acceleration and deterioration aspects described
above are the result of a continuous removal of connections. Nonetheless, one impor-
tant question remains: if the topology is perturbed but afterwards remain unchanged,
under which conditions can the cells synchronise their behaviour?

In the fixed perturbations setup, the automata always converge regardless of the
experimental configuration, which results in a completely horizontal sampling sur-
face. For the most extreme case assessed, pcr = 0.75, on average 75 out of 400
connections are removed from the initial topology, equivalent to 18.75 %. This aspect
is indicative of the robustness of the cellular automata model and of its ability con-
verge, as long as the connection graph is connected.

Figure 12.11 shows the sampling surface describing the evolution of the transient
time. In the fixed perturbations setup, contrary to the dynamic perturbations experi-
ments, the transient time tends to increase if higher ε and pcr values are used. This
increase is more accentuated for coupling constants around ε ≈ 0.75. By analysing
the speed of collective oscillation and the period between consecutive oscillations,
we observe that for pcr > 0.4 and ε > 0.75, the system becomes unstable. For these
values, the average period varies from 100 to 180 time steps, and collective oscil-
lation can require up to 10 time steps. The results show the interplay between the
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Fig. 12.11 Fixed
perturbations setup. Sampling
surface of the average
transient time. The values
displayed in the sampling
surface are a function of both
the coupling constant ε and of
the connection removal rate
pcr

coupling constant and the degree of connectivity of the connections graph, thereby
indicating that the topology indeed plays a central role in the synchronisation proper-
ties of the cellular automata. In automata with regular topologies such as those used
in Sect. 12.4, higher coupling constants ε are beneficial and accelerate convergence.
However, if the connectivity of the automata is irregular, then setting ε too high is
problematic because each cell has a significant effect on its neighbours. The high
degree of influence in the behaviour of neighbouring cells leads to phase instability,
and can drive the system towards either acceleration of convergence or deterioration
of behaviour.

12.5.3 Summary

In this section, we analysed the effects of perturbing the cellular automata topology
by probabilistically removing connections between neighbouring cells. Based on
extensive numerical simulations, we showed that topology characteristics are impor-
tant for the emergence of synchronised behaviour. If the irregularity of the topology
increases over time, the impact is often two-fold. The convergence rate decreases
with the increase of irregularity but the transient time is effectively smaller when the
automata manage to converge. On the other hand, if the degree of irregularity is kept
fixed, convergence is ensured as long as the connections graph does not become dis-
connected. Additionally, results showed that the strength of the interaction between
neighbouring cells by means of the coupling constant ε plays a central role in the two
circumstances. In particular cases, high values of ε either accelerate synchronisation
of behaviour, or introduce instabilities in the system. These fluctuations significantly
increase the time necessary for convergence and the way by which instances of col-
lective behaviour are produced. Therefore, depending on the topology of the cellular
automata, it is necessary to compromise between the strength of local interactions
and the degree of connectivity of the network.
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12.6 Discussion

A long-standing question in the field of complex systems is determining whether
cellular automata are appropriate modelling tools for multiagent systems or if they
are not sufficiently expressive. To answer the question, it is first necessary to carefully
assess the robustness of cellular automata in a modelling context, and to cover a broad
number of conditions in order to identify the limits of the modelling tool.

This chapter is a contribution towards the understanding of the effects of the update
method and of the topological structure when modelling real-world complex systems
with cellular automata. We analysed the collective dynamics of a group of stationary
robots inspired by studies in mixed natural-artificial societies [6]. The system was
composed by 100 robots, and the behaviour of individual robots was modelled as
a pulse-coupled oscillator. We addressed the problem of self-organised synchroni-
sation, in which robots had to adjust their behaviour to produce a population-wide
common vibration pattern based on local interactions. We focused on two fundamen-
tal aspects: (i) the effects of different update methods, including the interplay between
parameters of local rules and the global behaviour, and (ii) the transition from regular
to irregular grids by means of dynamic perturbations and fixed perturbations.

The first set of experiments outlined in this chapter demonstrated the impact of
five different update methods. Results showed that the way robots synchronise their
behaviour can be bounded by the singular properties of the update method. Modi-
fying the state of the cells according to a random update method was shown to be
the most robust approach with respect to producing the desired dynamics in the mul-
tirobot system. In the second part of the chapter, we conducted a systematic study
on the robustness of cellular automata to topology perturbations under a number
of different conditions. We concluded that the topology characteristics have various
effects on the behaviour of the automata. When subject to topology perturbations,
behaviour exhibited may vary from extremely sensitive to extremely robust. There-
fore, although few researchers have studied this aspect [29], the topology structure is
deemed essential for future studies in modelling the behaviour of multiagent systems
with cellular automata.

The broader agenda for future study on more realistic modelling of real-world
complex systems with cellular automata is to gain new insights on the emergent
behaviour of large-scale multirobot systems, both stationary and mobile, by analysing
them from a dynamical systems perspective. In this respect, the topology perturba-
tion experiments can be extended to simulate scenarios in which a failed robot is
repaired or replaced by a new one, or the fault is transient, and therefore the cellular
automata recover part of their previously lost connections. We also intend to address
increasingly more complex tasks in which robots have to achieve synchronisation or
consensus. Instead of manually tuning the parameters of individual behaviour, our
goal is to synthesise by means of machine learning techniques, the specific para-
meters of the pulse-coupled oscillators (or other models) that can generate a set of
target spatiotemporal dynamics. One important part of our future work is to analyse
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the generality and robustness of the learned parameters by assessing them under
different update methods and topological structures.
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