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Preface

Robots and Automata are notionally related. In this context, Automata (originated
from the latinization of the Greek word “αυτόµατoν”) as self-operating autonomous
machines, invented from ancient years can be easily considered as the first steps of
these robotic-like efforts. On other words, an Automaton is a self-operating
machine, while a robot is a hardware agent with role(s) to operate usually without
an immediate human operator. Automata are useful tools for formal descriptions of
robots. Automata themselves are formally represented by final state machines: the
abstract machines which take finite number of states and change their state while
triggered by certain conditions. Authors of the book bring together concepts,
architectures and implementations of Lattice Automata and Robots. Lattice Auto-
mata are minimal universal instantiation of space and time. A Lattice Automaton is
either a regular array of finite state machines or collectives of mobile finite state
machines inhabiting a discrete space. In both cases the finite states machines, or
Automata, update their states by the same rules depending on states of their
immediate neighbours. Automata and Robots often share the same notional
meaning: Automata are mathematical models of robots and also they are integral
parts of robotic control systems.

The book opens with inspiring text by Rosenberg—Chap. 1—on computational
potential of groups of identical finite-state machines. The chapter lays somewhat
foundational theoretical background for the rest of the book.

Modular robots are kinematic machines of many units capable for changing its
topology by dynamically updating connections between the units. To develop
efficient algorithms of reconfiguration, we represent the robotic units by configu-
rations of Lattice Automata and study Automaton transition rules corresponding to
reconfiguration. The topic is studied in full details in three chapters: Chap. 2 by
Stoy introduces the reader to the theoretical and general aspects of modular
reconfigurable robots in Lattice Automata; Chap. 3 by Eckenstein and Yim
reproduces all the up-to-date related works and corresponding modular reconfigu-
rable robotic systems; while in Chap. 4, Tomita and co-authors provide full details
for some of these modular systems, namely Fractum and M-Tran in every possible
aspect and discuss the general problems of Lattice-based robotic systems.
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Motion control and path planning are amongst key problems of robotics, they
put high demands on detailed knowledge of environment and consume substantial
computational resources. Five chapters explicitly deal with these problems. Thus,
Arena and co-authors, in Chap. 5, use Automaton networks to control locomotion
of the fly-inspired robot. Efficient ways of routing, an abstract version of path
planning, are designed and analysed by Hoffman and Désérable in Chap. 6. Mar-
chese proposes to use particular families of Cellular Automata to provide an optimal
representation of space and maps in precise parallel motion planning, in Chap. 7.
Charalampous and co-authors in Chap. 8 adapt classical designs of Cellular
Automaton based shortest path finders to undertake autonomous collision-free
navigation. Moreover, Ioannidis and co-authors proposed the employment of Cel-
lular Automata advanced with Ant Colony Optimization techniques resulting to
Cellular Robotic Ants synergy coordination for tackling the path planning problem
for robotic teams in Chap. 9.

Further applications of Lattice Automata in Robotics are presented in the fol-
lowing chapters. A novel method of map representation is proposed in Chap. 10 by
Kapoutsis and his co-authors. There, a configuration of elevation heights is con-
verted to cells’ states; thus, an entire map is represented by a Cellular Automaton
configuration. Cellular Automata have been a classical tool in image processing
community since mid-1970s, yet, there is still vast lands of unexplored features and
algorithms. In his Chap. 11, Nalpantidis demonstrates practical, real-life imple-
mentation of Cellular Automaton algorithms onboard of a mobile robot.

The last two chapters deal with cooperative actions in large-scale robotic
collectives. In both chapters, robots are oscillating mechanisms arranged on a two-
dimensional array: their aim is to adjust their oscillations or states to produce a
specified vibration pattern. Silva and co-authors, in Chap. 12 provide modelling and
analysis of the space–time behaviour of such collectives and transitions between
different modes of behaviour. Application of the vibrating automaton array to
physical manipulator of objects in real life is studied by Georgilas and co-authors in
Chap. 13. They show how Automaton model of an sub-excitable medium can be
used to purposefully transport objects.

All chapters are written in an accessible manner and lavishly illustrated. The
book will help computer and robotic scientists and engineers to understand
mechanisms of decentralised functioning of robotic collectives and to design future
and emergent reconfigurable, parallel and distributed robotic systems.

Georgios Ch. Sirakoulis
Andrew Adamatzky
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Chapter 1
Algorithmic Insights into Finite-State Robots

Arnold L. Rosenberg

Abstract Modern technology has enabled the deployment of small computers that
can act as the “brains” of mobile robots. Multiple advantages accrue if one can
deploy simpler computers rather than more sophisticated ones: For a fixed cost, one
can deploy more computers, hence benefit from more concurrent computing and/or
more fault-tolerant design—both major issues with assemblages of mobile “intel-
ligent” robots. This chapter explores the capabilities and limitations of computers
that execute simply structured finite-state programs. The robots of interest operate
within constrained physical settings such as warehouses or laboratories; they operate
on tesselated “floors” within such settings—which we view formally as meshes of
tiles. The major message of the chapter is that teams of (identical) robots whose
“intellects” are powered by finite-state programs are capable of more sophisticated
algorithmics than one might expect, even when the robots must operate: (a) without
the aid of centralized control and (b) using algorithms that are scalable, in the sense
that they work in meshes/“floors” of arbitrary sizes. A significant enabler of robots’
algorithmic sophistication is their ability to use their host mesh’s edges—i.e., the
walls of the warehouses or laboratories—when orchestrating their activities. The
capabilities of our “finite-state robots” are illustrated via a variety of algorithmic
problems that involve path planning and exploration, in addition to the rearranging
of labeled objects.

1.1 Introduction

Modern technology has enabled the deployment of small computers that can act as
the “brains” of mobile robots. Multiple advantages accrue if one can deploy simpler
computers rather than more sophisticated ones: For a fixed cost, one can deploy more
computers, hence benefit frommore concurrent computing and/ormore fault-tolerant
design—both major issues with assemblages of mobile “intelligent” robots. This
chapter explores the capabilities and limitations of computers that execute simply
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structured finite-state programs, perhaps the simplest type of program that one can
expect to enable sophisticated robot behavior. The robots of interest—which we
call finite-state machines (FSMs, for short), to emphasize the finite-state property—
operate within constrained physical settings such as warehouses or laboratories;
they operate on tesselated “floors” within such settings—which we view formally as
instances of the n × n mesh of tiles Mn (Fig. 1.1a).

The major message of the chapter is that teams of (identical) FSMs are capable of
more sophisticated algorithmics than one might expect, even when the FSMs must
operate: (a) without the aid of centralized control and (b) using algorithms that are
scalable, in the sense that they work in meshes/“floors” of arbitrary sizes. A signifi-
cant enabler of robots’ algorithmic sophistication is their ability to exploit the edgesof
the meshes they operate in—i.e., the walls of the warehouses or laboratories—when
orchestrating their activities. The capabilities of finite-state robots are illustrated here
via a variety of algorithmic problems that involve path planning and exploration, in
addition to the rearranging of labeled objects (that sit within some tiles of the home
mesh). We note again the major points that FSMs operate without centralized control
while executing algorithms that are scalable.

Our study focuses on algorithmic problems that emerge from complementary
avenues of investigation with histories that span several decades. The literature on
automata theory and its applications contains studies such as [3, 5, 8, 10, 24, 27]
that focus on the (in)ability of FSMs to explore graphs with goals such as finding
“entrance”-to-“exit” paths or exhaustively visiting all of a graph’s nodes or all of its
edges. Other studies, e.g., [4, 15, 17, 23, 26, 36], focus on algorithms that enable
FSMs that populate the tiles of (multidimensional) meshes—cellular automata—to
tightly synchronize, a crucial component of many activities that must be performed
without centralized control; the cellular automaton model dates back a half-century
[38] but remains of interest today [14, 39]. Yet other automata-theoretic studies
update the historical string-recognition work of classical finite-automata theory—
cf., [25, 28]—to more ambitious domains such as graphics [7, 13, 19, 20, 29]. The
robotics literature contains numerous studies—e.g., [1, 2, 11, 18, 35]—that explore
ants as a metaphor for simple robots that collaborate to accomplish complex tasks;
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the interesting topic of “virtual pheromones” within this metaphor is studied in [11,
18, 31, 35]. Cellular automata appear in many studies of robotic applications of
automata-theoretic concepts: application- and implementation-oriented studies as
well as theoretical ones [6, 11, 16, 22, 32, 35, 37]. The current chapter melds the
automata-theoretic and robotic points of view by studying FSMs that operate within
square meshes; most of the problems we discuss are more closely motivated by
robotics than automata theory, although a few emerge from the world of language-
oriented studies.

The specific algorithmic challenges that we study are inspired by our earlier
work on FSMs, which itself emerged from our work on the Cellular ANTomaton
model [32], a marriage of robotics and cellular automata. All of our studies demand
algorithms that are scalable in the sense that they work in meshes Mn of arbitrary
size, i.e., for arbitrarily large values of n. Our first study involving FSMs was [31],
which focused on the Parking Problem for FSMs; this problem requires each FSM
in a mesh to go to its closest corner and has FSMs within each corner organize
into a maximally compact formation (i.e., one that minimizes the FSMs’ aggregate
distance to their nearest corners). A central component of parking is to have each
FSM determine which quadrant of Mn it resides in (cf. Fig. 1.1b); because the
home-quadrant determination problem is treated in detail in [31], we focus here on
a kindred, but rather different problem that requires FSMs to determine their home
wedges (cf. Fig. 1.1c). Our next study of FSMs, in [33], allowed the tiles ofMn to be
labeled from a given repertoire. The study required FSMs to move to a specified tile
vϕ,ψ = 〈�ϕn�, �ψn�〉 of Mn , identified by a prespecified pair of positive rational
numbers 〈ϕ,ψ〉.

Note that: (a) the rational numbers ϕ = a/b andψ = c/d are fixed for each specific problem-
instance, and (b) the FSM F that solves each instance of the problem is designed so that its
state-memory “contains” the four integers a, b, c, d; i.e., F = F (a,b,c,d). The scalability in
our problem solutions refers only to the mesh-size paramater n.

Every tile vϕ,ψ can serve as an anchor to induce a partition of Mn into quadrants,
as in Fig. 1.1b. The added challenge in [33] is to have the FSMs sweep the quadrants
induced by vϕ,ψ to check that each of the mesh’s tiles contains a quadrant-specific
label. In the third of our studies, [34], FSMs do more than plan application-specific
trajectories and seek specified goal-tiles. They now rearrange objects that occupy
Mn’s tiles in various prespecified ways while transporting the objects from Mn’s
top row to its bottom row. The specific rearrangments include: (1) reversing the order
in which objects appear, (2) cyclically rotating the objects, and (3) sorting the objects
by their (ordered) “types.” In addition to being scalable, the algorithms we describe
in [34] are pipelineable in a way that achieves parallel speedup that is asymptotically
linear in the number of FSMs (even as that number approaches n). The pipelining
that we refer to here has a team of identical copies of an FSM F march one after the
other, performing different instances of the chores to be performed; see, e.g., [34]
for details.

The problems we discuss in this chapter describe, and in several places extend or
improve, the material in [32–34]. The problems we discuss require FSMs:
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• to determine where they are within Mn ;
We focus on having FSMs determine which wedge of Mn they reside in
(cf. Fig. 1.1c). (Recall that we treat the analogous problem for quadrants in [31].)

• to seek various target tiles of Mn ;
We recapitulate the study in [33], wherein target tiles are specified via pairs of
positive rational numbers, specifically using the rational pair 〈ϕ,ψ〉 to specify tile
〈�ϕ(n − 1)�, �ψ(n − 1)�〉 of Mn .

• to transport the objects residing in Mn’s top row to Mn’s bottom row while
rearranging the objects in prespecified ways;
Excerpting from our study in [34], we have FSMs (1) reverse the objects’ original
order, (2) cyclically rotate the original order, and (3) sort the objects by their
(ordered) types.

• to determine whether the objects residing in certain of Mn’s rows of tiles have
certain patterns.
We complement the study in [34] by having FSMs check the pattern of objects
alongMn’s rows rather than effect the pattern.WehaveFSMs identifypalindromes
(words that read the same forwards and backwards), perfect squares (even-length
words whose first and second halves are identical), and rotations (a pair of words
one of which is a cyclic rotation of the other).

The algorithmic tools employed by our FSMs extend to myriad other problems.

A final word of introduction. We noted earlier that various sources—e.g., [11, 18,
35]—discuss “virtual pheromones” as a control mechanism for robotic “ants.” This
mechanism assigns registers within each robot’s internal computer to maintain levels
of intensity of an array of pheromones, thereby implementing a digital analogue of
the volatile organic compounds that are used by nature’s ants. We largely ignore
“virtual pheromones” because FSMs do not need them to execute the algorithms
we discuss. We note only that in [31] we have shown that “virtual pheromones” do
not enhance the power of a single FSM—although they can sometimes be used to
decrease the required size of an FSM, as measured in number of states.

1.2 Technical Background

1.2.1 FSM “Robots” and Their Domains

Our formal model of FSM-robots (FSMs, for short) is obtained by augmenting the
capabilities of standard finite-state machines (sources such as [30] provide formal
details) with the ability to travel around square meshes of tiles, possibly transporting
objects from one tile to another (empty) one. We flesh out this informal description.
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Meshes.We index the n2 tiles of the n×n meshMn by the set1 [0, n−1]×[0, n−1];
see Fig. 1.1a. The set of tiles of Mn that share the first index-coordinate i , i.e.,

Ri
def={〈i, j〉 | j ∈ [0, n − 1]}, is the i th row of Mn ; the set of tiles that share the

second index-coordinate j , i.e., C j
def={〈i, j〉 | i ∈ [0, n − 1]}, is the j th column of

Mn . Tile 〈i, j〉 of Mn is:

• a corner tile if i, j ∈ {0, n − 1};
• an (internal) edge tile if it is one of:
– a bottom tile Meaning that i = 0 and j ∈ [1, n − 2];
– a top tile Meaning that i = n − 1 and j ∈ [1, n − 2];
– a left tile Meaning that i ∈ [1, n − 2] and j = 0;
– a right tile Meaning that i ∈ [1, n − 2] and j = n − 1;

• an internal tile if i, j ∈ [1, n − 2].

Weemploy theKing’s move adjacencymodel formeshes, so named for the chess piece
(also known as the Moore model). Under this model, each tile 〈i, j〉 of Mn has up to
8 neighbors, one in each compass direction, abbreviated (in clockwise order) N , N E ,
E , SE , S, SW , W , N W . Accordingly, each internal tile ofMn has 8 neighbors; each
(internal) edge tile has 5 neighbors; and each corner tile has 3 neighbors. Clerical
modifications allow any fixed finite set of adjacencies, each specified by a pair of
signed positive integers 〈±a,±b〉; each such pair, 〈c, d〉, indicates that every tile
〈i, j〉 of Mn has a neighbor at index-point 〈i + c, j + d〉, as long as this point is a
valid index for Mn , meaning that both i + c and j + d are in the range [0, n − 1].
One opts for program compactness at the cost of algorithmic efficiency by choosing
a smaller repertoire of adjacencies, such as NEWS moves: N , E, W, S (which are
also known as the von Neumann model); one opts for increased efficiency at the cost
of larger programs by choosing a larger repertoire of adjacencies, such as the 16
Knight’s+King’s moves. These three alternatives are illustrated in Fig. 1.2, which
depicts the world from the viewpoint of an FSM. Whichever adjacency model is
implemented: every edge of every tile v of Mn is labeled to indicate which of v’s
potential neighbors actually exist. (This enables FSMs to avoid “falling off” Mn or
“banging into a wall.”)

Mn’s four quadrants are determined by lines that cross at an anchor tile v and
are perpendicular to Mn’s edges (Fig. 1.1b). The “standard” quadrants—which are
anchored at Mn’s “center” tile 〈� 1

2 (n −1)�, � 1
2 (n −1)�〉, hence are as close to equal

in number of tiles as the parity of n allows—comprise the following sets of tiles.

1 For positive integers i and j > i , we denote by [i, j] the set {i, i + 1, . . . , j}.
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Quadrant Name Tile-set
southwest QSW {〈x, y〉 | x ≥ � 1

2 (n − 1)�; y ≤ � 1
2 (n − 1)�}

northwest QN W {〈x, y〉 | x < � 1
2 (n − 1)�; y ≤ � 1

2 (n − 1)�}
southeast QSE {〈x, y〉 | x ≥ � 1

2 (n − 1)�; y < � 1
2 (n − 1)�}

northeast QN E {〈x, y〉 | x < � 1
2 (n − 1)�; y ≤ � 1

2 (n − 1)�}

Mn’s four wedges are determined by passing lines with slopes ±1 through Mn’s
“center” tile; see Fig. 1.1c. These lines come as close to connecting Mn’s corners as
the parity of n allows. Mn’s wedges comprise the following sets of tiles.

Wedge Name Tile-set
north WN {〈x, y〉 | [x ≤ y] and [x + y ≤ n − 1]}
south WS {〈x, y〉 | [x > y] and [x + y ≥ n]}
east WE {〈x, y〉 | [x ≤ y] and [x + y ≥ n]}
west WW {〈x, y〉 | [x > y] and [x + y ≤ n − 1]}

Rounding ensures that each tile has a unique home quadrant and home wedge.

Objects. Each tile v of Mn can be empty—i.e., v contains 0 FSMs and 0 objects—or
it can hold at most one FSM and at most one object—i.e., v contains 0 FSMs and
1 object or 1 FSM and 0 objects or 1 FSM and 1 object. Each object has a type
chosen from some fixed finite ordered set. Because the number of objects can be
commensurate with n while the number of object-types must be fixed independent
of n, perforce, many objects can have the same type.

FSMs. At any moment, an FSM F occupies a single tile of Mn , possibly sharing
that tile with an object but not with another FSM. At each step, F can move to any
neighbor v′ of its current tile v (cf. Fig. 1.2), providing that v′ contains no other FSM.
Additionally, if v′ contains no object, the F can convey the object that resides on v
(if there is one) to v′.

"SE"

"N""NW"

"W"

"SW" "S"

"NE"

"E"

Fig. 1.2 Single-step move repertoires for FSMs. (left) The King’s-move repertoire; (center) the
NEWS (North-East-West-South) repertoire; (right) the Knight’s-move+King’s-move repertoire
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ceiling(a)

slope
c/d

(b)

d

c
d

c

staircase

staircase

floor

Fig. 1.3 An idealized “smooth” straight path with slope c/d depicted by solid lines. The smooth
path appears alone in subfigure (a); in subfigure (b), it is accompanied by its two discretized staircase
versions, depicted by dashed lines. Both staircases alternate horizontal subpaths of length c with
vertical subpaths of length d. If the smooth path begins at tile 〈0, i〉 along Mn’s top edge, then
the floor staircase leads to tile 〈n − 1, i + �(c/d)(n − 1)�〉, and the ceiling staircase leads to tile
〈n − 1, i + 
(c/d)(n − 1)�〉

FSM trajectories.AsF plans its nextmove, itmust consider the label of its current
tile—hence be aware of residing on an edge or corner tile of Mn (in order to avoid
“falling off” the mesh or “banging into its walls”). But, being an FSM, F cannot
exploit any knowledge of the size-parameter n of the mesh it resides in—except for
“finite-state” knowledge such as the parity of n.

Our algorithms often mandate that an FSM F traverse straight paths with various
(rational) slopes within Mn . We talk informally as though F can traverse a path
of arbitrary slope ϕ = c/d, as suggested in Fig. 1.3a. However, no matter what
single-step move repertoire one enables FSMs to employ, for most rational slopes
ϕ, F can only approximate following a path of slope ϕ. We have F accomplish
such an approximation by discretizing the path of slope ϕ, in the manner depicted in
Fig. 1.3b, via either a floor staircase or a ceiling staircase. The choice between the
two types of staircase depends on whether F gets a better solution to the problem
that it is solving from undershooting or overshooting the ideal target tile in Mn’s
bottom row. Both discretizing staircases approximate the ideal slope ϕ = c/d of
Fig. 1.3a via a staircase whose stairs each comprise alternating d vertical steps and
c horizontal steps. (This strategy works also for the smaller repertoire of NEWS
adjacencies.) The floor staircase begins with a vertical subpath, while the ceiling
staircase begins with a horizontal subpath. Focus on an ideal path of slope c/d that
begins at tile 〈0, i〉 in Mn’s top row. Its discretizing staircases also begin at this tile.
Depending on the value of n mod d, the discretizing staircases may “miss”—i.e., not
terminate at— the ideal target tile 〈n − 1, i + (c/d)(n − 1)〉 in Mn’s bottom row. In
this case, a finalizing partial stair must be added to the staircase in order to complete
the path to the target tile. F recognizes the need for the final stair when it attempts to
move d steps downward but encounters Mn’s bottom edge after only d ′ < d steps.
In response, F terminates its downward journey and instead moves some number
δ(d ′) ≤ c of steps rightward (for the floor staircase) or leftward (for the ceiling
staircase). After the final correction, F ends up in tile 〈n − 1, i + �(c/d)(n − 1)�〉
via the floor staircase or tile 〈n − 1, i + 
(c/d)(n − 1)�〉 via the ceiling staircase.
The offset δ(d ′) depends only on c and d ′ = n mod d; it does not depend on i or on
the structure of F . The computation of δ(d ′) from d ′ can be stored in a table within
F’s states, using no more than d log2 c bits of storage. To summarize:
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The floor staircase takes F from 〈0, i〉 to 〈n − 1, i + �(c/d)(n − 1)�〉;
The ceiling staircase takes F from 〈0, i〉 to 〈n − 1, i + 
(c/d)(n − 1)�〉. (1.1)

Multiple FSMs on Mn . A team of FSMs on Mn can be activated (from the out-
side world) simultaneously. (One can often use the Firing Squad Synchronization
algorithm [15] to achieve this simultaneity.) Distinct FSMs on Mn operate synchro-
nously, i.e., can follow trajectories in lockstep. FSMs that reside on neighboring tiles
are aware of each other and can pass bounded-length messages—such as “i am
here” or “i want to move to your tile.” Such simple messages often enable
one FSM to act as an “usher”/“shepherd” for other FSMs. Each FSM’s moves on
Mn are tightly orchestrated. Specifically, an FSM attempts to move in direction:

N Only at steps t ≡ 0mod 8; N E Only at steps t ≡ 1mod 8;
E Only at steps t ≡ 2mod 8; SE Only at steps t ≡ 3mod 8;
S Only at steps t ≡ 4mod 8; SW Only at steps t ≡ 5mod 8;
W Only at steps t ≡ 6mod 8; N W Only at steps t ≡ 7mod 8;

(A repertoire of k atomic moves would require a modulus of k.) This orchestration
means that FSMs need never collide! If several FSMs want to enter a tile v from
(perforce distinct) neighboring tiles, then one will have permission to move before
the others—so all FSMs will learn about the conflict before a collision occurs.

Because all FSMs are identical, pairs of FSMs can simulate the effect of crossing
over one another by “exchanging roles.” Say, for instance, that FSM F1 resides at
some tile 〈i, j〉 while FSM F2 resides at a neighboring tile. If F1 wants to proceed
throughF2’s tile, then the two FSMs can simulate the crossover by exchanging iden-
tities. Of course, this can be an expensive operation, since F1 and F2 must exchange
state information in order to implement this simulation strategy. Consequently, it is
usually advantageous tomodify the FSMs’ programs, if possible, either to avoid such
crossovers or to have batches of them happen simultaneously. In principle, though,
such exchanges add only O(1) cost to the FSMs’ times.

1.2.2 Algorithmic Standards and Simplifications

Algorithms are finite-state. Each is specified by a single finite-state program which
all robots execute. Such programs, as described in [30] and employed in “finite-state”
programming systems such asCARPET [37], have the form depicted in Fig. 1.4. Note
in the figure how statement labels play the role of states. Note also that all FSMs are
identical; none has a “name” that renders it unique.

Algorithms are scalable: They work on meshes of arbitrary sizes. In particular,
an FSM F cannot exploit information about the size of a mesh Mn , other than
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Fig. 1.4 The structure of a
program for a generic FSM
F . The start state is indicated
by an arrow

A generic FSM

→ LABEL1: if INPUT1 then OUTPUT1,1 and goto LABEL1,1
...

if INPUTm then OUTPUT1,m and goto LABEL1,m
...

LABELs: if INPUT1 then OUTPUTs,1 and goto LABELs,1
...

if INPUTm then OUTPUTs,m and goto LABELs,m

“finite-state” properties of n such as its parity.

Algorithms are decentralized but synchronous. Once started, FSMs operate
autonomously, but their independent clocks tick at the same rate—so that distinct
FSMs can follow trajectories in lockstep. This assumption is no less realistic than
the analogous assumption with synchronous-start human endeavors.

These guidelines are often violated in implementations, as in [9, 11, 16, 18, 35],
where practical simplicity overshadows algorithmic simplicity.

We specify algorithms in English, trying to tailor the amount of detail to the com-
plexity of the specification. Our goal is to make it clear how to craft a realizing finite-
state program; if we can achieve this, then the details of our algorithm-specification
language are irrelevant. To aid the reader’s intuition, though, we do present one
explicit “pseudo-code” FSM program, for the simple, yet nontrivial, pattern-reversal
problem, in Fig. 1.10. Several other “pseudo-code” FSM programs can be found in
our earlier work on FSM robots [31, 33, 34].

1.3 Mn’s “Walls” as an Algorithmic Tool

This section is devoted to several problems that FSMs can solve efficiently by using
Mn’s edges to algorithmic advantage. We see that these edges sometimes enable
FSMs on Mn to exploit the value of n without really “knowing” the value.

1.3.1 Algorithms Based on “Bouncing Off” Mn’s “Walls”

For this section, we posit that each tile along designated rows of Mn contains an
object that has a type from a fixed finite set; we thereby view each such row as
containing a sequence of the form σ0 . . . σn−1, where each σi is an object-type. In
Sect. 1.3.1.1 we illustrate how an FSM F on Mn can sometimes make inferences
about the value of n from certain edge-to-edge walks within the mesh. In subse-
quent subsections, we illustrate how these inferences allow F to solve some rather
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sophisticated problems that relate to patterns within the sequences of object-types
within Mn . The problems in Sect. 1.3.1.2 require F to check the pattern of object-
types along Mn’s top row; the problems in Sect. 1.3.1.3 require F to transport the
objects alongMn’s top row toMn’s bottom row, whereF deposits the objects while
rearranging the order of their types.

1.3.1.1 An Enabling Phenomenon

Let FSM F initiate walks whose slopes are ±45◦, beginning at a tile along one of
Mn’s edges and ending at a tile along another edge. For simplicity, we focus only
on walks between Mn’s top edge and its side edges. Clerical adjustments allow one
to include Mn’s bottom edge as a source or destination. These walks can be used to
replicate or complement distances alongMn’s edges. To expand on this claim, focus
on walks that begin at a tile on Mn’s top row. Inductively, say that F resides on tile
v = 〈i, j〉 at this moment. If j = n − 1, meaning that v is on Mn’s right column,
then F cannot take a southeasterly step without “falling off” Mn ; if j < n −1, then
F can take a southeasterly step, and a single such step moves F to tile 〈i + 1, j + 1〉
(whose coordinates are obtained by adding 〈+1,+1〉 to v’s coordinates). By similar
reasoning, if j = 0, meaning that v is on Mn’s left column, then F cannot take a
southwesterly step without “falling off” Mn ; if j > 0, then F can take a southwest-
erly step, and a single such step moves F to tile 〈i + 1, j − 1〉 (whose coordinates
are obtained by adding 〈+1,−1〉 to v’s coordinates). Therefore, referring to Fig. 1.5,
if we focus on any integer r ≤ n/2:

• if F begins at a tile A = 〈0, r〉, then its southwesterly walk ends at tile B = 〈r, 0〉
withinMn’s left column, and its southeasterlywalk ends at tileC = 〈n−r −1, n−1〉
within Mn’s right column.
• if F begins at a tile D = 〈0, n − r − 1〉, then its southwesterly walk ends at tile
E = 〈n − r − 1, 0〉 within Mn’s left column, and its southeasterly walk ends at tile
F = 〈r, n − 1〉 within Mn’s right column.

Fig. 1.5 Trajectories that
lead an FSM to the mirrors of
the tile it begins on. The point
is that when the slopes of all
indicated trajectories are
(multiples of) 45◦, then the
indicated distance equalities
hold (as elaborated in the
text)
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1.3.1.2 An FSM Identifies/Checks Patterns Along Mn’s Top Row

We discuss two problems that each has FSM F verify that the sequence of object-
types along Mn’s top row has a prespecified form. An ordinary FSM cannot solve
either of the illustrated problems (cf. [30]): neither corresponds to a regular language.
In contrast, both problems yield to simple solutions that build upon the property
exposed in Sect. 1.3.1.1. The problems we discuss will be familiar to any student of
formal langage theory.

A. The palindrome recognition problem. This problem requires FSM F to deter-
mine whether the pattern of object-types, σ0σ1 . . . σn−1 along Mn’s top edge is
a palindrome—i.e., a string that reads the same forwards and backwards, so that
σ0 = σn−1, σ1 = σn−2, and so forth.

F begins the palindrome-recognition process by proceeding to tile 〈0, 0〉. Induc-
tively, when F is at tile vi = 〈0, i〉, where i < n/2, it remembers object-type σi

and:

1. follows a 45◦ southwesterly path to tile v′
i = 〈i, 0〉 (via King’s-move steps);

2. follows the horizontal path from v′
i to tile v′′

i = 〈i, n − 1〉;
3. follows a 45◦ northwesterly path to tile v′′′

i = 〈0, n − i〉 (via King’s-move steps);
4. checks whether the object-type σi+n/2 at tile v′′′

i equals σi ;
5. retraces its steps to tile vi and moves one step rightward to tile 〈0, i + 1〉.
By horizontally iterating this process in themanner suggested in Fig. 1.6,F solves the
palindrom-recognition problem. The correctness of the illustrated algorithm derives
from Fig. 1.5 which guarantees that F is checking the type-equalities of the correct
pairs of objects.

One can program F to stop in the middle of Mn’s top edge via some sort of
marking or displacement process. For instance, F could move each checked symbol
from row 0 of Mn to row 1 and then halt when it encounters a symbol that has been
moved; alternatively, F could mark each checked symbol in some way, replacing a
symbol σ by an identifiable encoded version σ̂ . One final pass of length n could then
undo editorial marks or movements that F leaves during the checking process.

B. The perfect-square recognition problem. This problem requires F to determine
whether the (even-length) pattern of object-types along Mn’s top row,

71 σ σ σ σ σσ σ0 2 3 4 5 6σ 71 σ σ σ σ σσ σ0 2 3 4 5 6σ 71 σ σ σ σ σσ σ0 2 3 4 5 6σ 71 σ σ σ σ σσ σ0 2 3 4 5 6σ

Fig. 1.6 Illustrating palindrome-checking in action. All trajectory slopes are multiples of 45◦
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σ0 . . . σn/2−1σn/2 . . . σn−1,

is a perfect square—meaning that

σ0 . . . σn/2−1 = σn/2 . . . σn−1.

The term “perfect square” here emerges from viewing the string of object-types as
a product within the free semigroup [21] defined on the string’s constituent symbols
(which are the object-types).

We describe this problem only for the case when n is even. There are several
ways to extend the problem to the case when n is odd. One of simplest is to view
the middle object-type in the sequence along Mn’s top row as a marker and have F
verify that the sequence preceding the marker matches the sequence following the
marker. This extended problem yields to a solution that is a simple modification of
the one we now present for the case when n is even. (Easily, a single round-trip pass
along row 0 enables F to determine the parity of n.)

F begins the perfect-square recognition process byproceeding to tile 〈0, 0〉. Induc-
tively, when F is at tile vi = 〈0, i〉, where i < n/2, it remembers object-type σi

and:

1. follows the ceiling staircase of Fig. 1.3(b) with slope c/d = 1/2 to tile v′
i =

〈n − 1, i + n/2〉 (recall that n is even);
2. follows the vertical path from v′

i to tile v′′
i = 〈0, i + n/2〉;

3. checks whether the object-type σi+n/2 at tile v′′
i equals σi ;

4. retraces its steps to tile vi and moves one step rightward to tile 〈0, i + 1〉.
By horizontally iterating this process in the manner suggested in Fig. 1.7, F solves
the perfect-square recognition problem. The correctness of the illustrated algorithm
derives from our derivation in Eq.1.1 of the destination tile when F follows the
ceiling staircase approximation to the path of slope 1/2.

F terminates its processing after checking σn/2−1 against σn−1; it recognizes this
moment because the latter is the type of the object in the rightmost tile of Mn’s top
row, i.e., resides along Mn’s right edge.

71 σ σ σ σ σσ σ
0 2 3 4 5 6

σ
71 σ σ σ σ σσ σ

0 2 3 4 5 6
σ

71 σ σ σ σ σσ σ
0 2 3 4 5 6

σ
71 σ σ σ σ σσ σ

0 2 3 4 5 6
σ

Fig. 1.7 Illustrating perfect-square checking in action. Each stage of the algorithm has F traverse
the slope-1/2 ceiling staircase from a tile 〈0, i〉 to tile 〈n − 1, i + n/2〉, then follow a vertical path
to 〈0, i + n/2〉, finally checking whether the two top-edge symbols encountered are equal



1 Algorithmic Insights into Finite-State Robots 13

pattern

deposit

transport

return

seek
new

seek
next

σ σ1 σ σ σ σ σ σ0 2 3 4 5 6 7

initial pattern

σ σ σ σ σ σ σ σ
7 6 5 4 3 2 1 0

final

Fig. 1.8 (left, center) The initial and final configurations under the reversal rearrangement. (right)
A generic trajectory that effects the reversal rearrangement. F follows the solid path as transports
the current object from its initial tile along row 0 of Mn (the top row) to its destination tile along
row n − 1 (the bottom row). F then follows the dashed path as it returns to Mn’s top row to get
the next object

1.3.1.3 An FSM Rearranges Patterns from Mn’s Top Row to Its Bottom Row

For this section, we again posit that the tiles along the top row of Mn each contains
an object that has a type from a fixed finite repertoire. We describe two problems that
each has a single FSM F transport the objects from Mn’s top row to Mn’s bottom
row, depositing the objects according to a designated rearranged pattern of their types.

A. The reversal rearrangement. The pattern-reversal problem has F transport the
objects from Mn’s top row to Mn’s bottom row, where it deposits them so as to
reverse the pattern of their object-types; cf. Fig. 1.8(left, center). Figure1.9 illustrates
one way in which F can accomplish this operation on M8, using the “algorithmic
template” of Fig. 1.8(right). In brief, the algorithm proceeds as follows. For each
object σ along row 0, in left-to-right order, F follows a (southeasterly) trajectory of
slope−45◦ until it encounters column n −1 (Mn’s right edge), and thence follows a
(southwesterly) trajectory of slope −135◦ until it encounters row n − 1 (the bottom
row). The analysis in Sect. 1.3.1.1 ensures that this 2-stage trajectory brings F to the
correct tile along Mn’s bottom row for depositing object σ . After depositing σ , F
retraces its steps back to row 0 in preparation for transporting the object that had
been to the right of object σ .

Since pattern-reversal is a rather simple operation, yet not a trivial one, this is
a good place to give an explicit instantiation of the generic FSM program scheme
of Fig. 1.4. Figure1.10 presents an FSM program that implements the single-FSM
version of the algorithm implicit in Fig. 1.8(right); note that the notation used is a
compressed version of that used in Fig. 1.4.

B. Rotational rearrangements. The pattern-rotation problem has F transport the
objects from row 0 of Mn to row n − 1, where it deposits them in a cyclically
rotated order. The amount of rotation is specified by the index-position k along row
n − 1 where the object from tile 〈0, 0〉 is to be deposited; cf. Fig. 1.11(left, center)
for the case k = 3 and n = 8. Our focus here is on the rather challenging variant
of the pattern-rotation problem in which the amount of rotation is indicated by a
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7σ σ1 σ σ σ σ σ σ0 2 3 4 5 6
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σ1 σ σ σ σ σ σ2 3 4 5 6 7
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Fig. 1.9 Illustrating reversal rearrangement in action. All trajectory slopes are multiples of 45◦

pre-specified rationalϕ in the range 0 ≤ ϕ ≤ 1; the problem specified viaϕ mandates
that the pattern be cyclically rotated �ϕ(n − 1)� positions as it is transported from
Mn’s top edge to its bottom edge.Within this context, Fig. 1.11(left, center) depicts a
rational ϕ for which �7ϕ� = 3. The general algorithmic strategy that enables an FSM
to solve the pattern-rotation problemhas the same overall structure as the strategy that
works to solve the pattern-reversal problem, but in contrast to the latter problem, the
pattern-rotation problem has F choose between two trajectory-patterns depending
on which edge of Mn it encounters first during its trajectory from row 0: F follows
the trajectory-pattern of Fig. 1.11(right a) when Mn’s bottom edge is the first edge
it encounters after leaving row 0; F follows the trajectory-pattern of Fig. 1.11(right
b) when it encounters Mn’s right edge before it encounters Mn’s bottom edge.
Actually, the two trajectory-patterns within Fig. 1.11(right) are closely related: the
pattern in Fig. 1.11(right b) would be identical to the pattern in Fig. 1.11(right a) if
one could extend Mn rightward (by adding columns). Because we cannot actually
add any columns toMn , we instead simulate the effect of doing so by overlaying the
added “suffix” of Mn on top of the initial columns of the n × n version. Figure1.12
illustrates the stages as F implements a 3-position rotation-rearrangement of an
8-object pattern.
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An FSM for the Pattern-Reversal Problem

Current State Tile Type Action Move Direction Next State

→ SEEK empty, top-edge (none) east (→) SEEK
′′ object, top-edge pick up object south (↓) DELIVER-SE
′′ empty, right-edge (none) no-move HALT

DELIVER-SE interior (none) southeast (↘) DELIVER-SE
′′ right-edge (none) southwest (↙) DELIVER-SW

DELIVER-SW interior (none) southwest (↙) DELIVER-SW
′′ bottom-edge deposit object northeast (↗) RETURN-NE

RETURN-NE interior (none) northeast (↗) RETURN-NE
′′ right-edge (none) northwest (↖) RETURN-NW

RETURN-NW interior (none) northwest (↖) RETURN
′′ top-edge (none) east (→) SEEK

Fig. 1.10 A program for the pattern-reversal FSM F as it: seeks the next object along Mn’s top

edge; picks up the first found object (halting in the inescapable “halt state” halt if there is none);
conveys the object to Mn’s bottom edge (via a SE-then-SW path), where it deposits the object;

returns toMn’s top edge (via a NE-then-NW path) to continue the process. The start state seek
is indicated by an arrow. Unspecified conditions—such as encountering an interior tile in state

seek —all send F to state halt

(b)

σσ σ σ σ σσ σ
0 1 2 3 45 6 7

final pattern
deposit

transport
return

seek
new

seek next

deposit

return

transport

seek seek
next

new
σ σ1 σ σ σ σ σ σ0 2 3 4 5 6 7

initial pattern

(a)

Fig. 1.11 (left, center) The initial and final configurations under the rotation rearrangement: the
example illustrated is a 3-position rotation within M8. (right) A pair of generic trajectories that
allow F to achieve fixed rotations: a the trajectory that F follows when it encountersMn’s bottom
edge before its right edge; b the trajectory thatF follows when it encountersMn’s right edge before
its bottom edge; all diagonal paths have the same slope

1.3.2 Algorithms Based on “Hugging” Mn’s “Walls”

The rearrangement problems discussed in Sect. 1.3.1 are, in a sense, convenient to
solve because some prespecified “codeword” such as “reversal” or prespecified para-
meter such as the rotation-specifying rational ϕ identifies ab initio trajectory-patterns
that can be used to solve any problem instance. We now discuss an algorithmic
rearrangement strategy that often can be used to solve less conveniently identified
rearrangement problems, specifically ones that require complex run-time adapta-
tion of trajectory-patterns. (The word “complex” here is intended to distinguish the
required adaptations from the simple binary-switch adaptation we used with the
rotation-rearrangement problem in Sect. 1.3.1.3.B).
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Fig. 1.12 Illustrating pattern rotation in action. The light dashed “guide line” is included to enhance
legibility; it does not really exist

The strategy of circumnavigating Mn while “hugging its walls” yields a flexi-
ble tool for solving a broad range of “runtime-determined” pattern-rearrangement
problems. The circumnavigatory trajectory-pattern is illustrated in its generic form
in Fig. 1.13. FSM F makes a series of circumnavigations of Mn , transporting one
object from row 0 to row n − 1 during each circuit. The power of this algorithmic
strategy is manifest in:

• its broad applicability; in fact, it can be used to solve both of the rearrangement
problems discussed in Sect. 1.3.1.3;

• the ease of having a team of FSMs achieve roughly linear parallel speedup by
pipelining any circumnavigation-based algorithm.

The weakness of the strategy arises from its inflexibility regarding possible available
“shortcuts”: each circumnavigation takes the same amount of time—roughly 4n
steps. In contrast, one can sometimes employ a problem-specific strategy to speed
up the rearrangement by a factor of 2. The reversal-FSM of Sect. 1.3.1.3. A achieves
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seek

deposit

return

transport

next

Fig. 1.13 A generic circumnavigatory trajectory that enables F to accomplish a variety of
rearrangement operations. F traverses the solid path as it transports the next object from its initial
tile along row 0 to its destination tile along row n − 1. F traverses the dashed path as it returns to
Mn’s top row to seek the next object

such a speedup, and the rotation-FSM sometimes does—depending on the rational
ϕ and the FSM’s single-step move repertoire (cf. Fig. 1.2).

We flesh out the preceding abstract discussion by focusing on two significant
“runtime-determined” pattern-rearrangement problems. The sorting-rearrangement
problem of Sect. 1.3.2.1 calls for an FSM F that transports the objects that reside in
row 0 of Mn to row n − 1, where F deposits the objects in sorted order according
to their types. (We assume, of course, that object-types come from an ordered set.)
Clearly,F can determine the ultimate placement of an object σ along row n −1 only
when it discovers how many objects along row 0 have types that are smaller than σ ’s
(under the ordering of types). We show in Sect. 1.3.2.1 how the circumnavigation
strategy yields an efficient solution to the sorting-rearrangement problem. We close
this section in Sect. 1.3.2.2 by discussing a variant of the circumnavigation strategy
that solves a variant of the pattern-verification problem of Sect. 1.3.1.2.

1.3.2.1 The Sorting Rearrangement

Figure1.14 illustrates the initial and final patterns of a sorting problem on M8,
wherein objects have types 0, 1, and 2, with the natural order 0 < 1 < 2.

Figure1.15 illustrates the stages as F employs the circumnavigation strategy to
sort an 8-object pattern. The illustrated process is rather straightforward. F makes

Fig. 1.14 The initial and
final configurations under the
sorting operation

pattern

10 0 2 1 0 2 0

initial pattern

0 0 0 0 1 1 2 2

final
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0 0 0 0 1 1 20 0 0 0 1 1 2

Fig. 1.15 Illustrating sorting in action

multiple passes along row 0. During the first batch of passes, each circumnavigation
transports one object having the smallest order-type, call it o, to the block of leftmost
tiles along row n − 1 that are dedicated to objects of this type. F identifies this
block by proceeding along row n − 1 until it encounters either an object of type o
or Mn’s left edge (which signals that no objects of type o have yet been deposited
along row n − 1). Having transported all objects of type o, F embarks on a second
batch of passes, during which it transports all objects having the second smallest
type to the leftmost tiles along row n − 1 that are to the right of the tiles that hold
the objects of type o. This batched process continues, with a new batch of passes
handling each successively larger object-type. One final pass that verifies the absence
of remaining objects along row0 terminates the process. Note that, with the exception
of this single empty-handed circumnavigation of Mn’s periphery, F performs one
complete circuit per object. The entire process thus takes roughly 4n2 steps.

We believe, but have yet to prove that the preceding sorting-rearrangement
algorithm cannot be sped up by any problem-specific strategy, because of the
earlier-mentioned fact that the ultimate destination along row n − 1 of any object σ
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Fig. 1.16 Illustrating the rotation-recognition problem. An FSMmust scalably determine whether,
within the leftmost subfigure, the pattern of object-types along the bottom row of Mn is a rotation
of the pattern along the top row. In other words, the object-laden instance of Mn in the leftmost
subfigure must be one of the instances to the right of the equal sign

from row 0 depends on the number of objects that began along row 0 that have types
smaller than σ ’s.

1.3.2.2 Revisiting the Pattern-Identifying/Checking Problem

Each problem of the genre discussed in Sect. 1.3.1.3 demands a single FSM that
can transport the objects from Mn’s top row to Mn’s bottom row, depositing them
there according to some specified single pattern. We turn now to a kindred genre
of problem that begins with objects lining both Mn’s top row and its bottom row.
The challenge now is to design an FSM (or a team thereof) that can scalably verify
whether the pattern of object-types along row n − 1 belongs to a prespecified family
of rearrangements of the pattern of object-types along row 0. Of course, if the tar-
get family of rearrangements comprises just a single genre of rearrangement—say,
a pattern reversal or a pattern rotation—then solving the just-described verification
problem is never more difficult than solving the associated rearrangement problem.
To wit, design a rearranging FSM that then checks the results of its rearrangement
against the input pattern along row n −1. However, if the target family comprehends
a large number of possible rearrangements, then solving the verification problem can
require rather different algorithmic tools than does each individual target rearrange-
ment. This section introduces the verification problem via just one highly-populated
family of target rearrangements, namely, the family of all possible pattern rotations.
In detail, the problem of interest has the following form. The mesh Mn has objects
arranged along both its top and bottom rows.Onemust design anFSM that can,within
arbitrarily large meshes, answer the following question: Is the pattern of object-types
along Mn’s bottom row a rotation of the pattern along its top row? See Fig. 1.16.

It is not hard to design an FSM F that solves this rotation-recognition problem,
especially under the assumption that all of Mn’s tiles other than those in the top and
bottom rows are empty. We make this assumption here; clerical modifications can
get around it. The algorithm that our FSMF embodies is not elegant: it directly tests
all possibilities seriatim. The only subtlety in the procedure is how F keeps track
of the search space of all rotations. In Fig. 1.17, F accomplishes its bookkeeping by
selectively moving objects from their home rows (which are row 0 or row n − 1) to
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Fig. 1.17 Illustrating an FSM F that scalably solves the rotation-recognition problem. F must
determine whether, within the mesh in the upper-left corner of the figure, the pattern of object-types
along the bottom row of Mn is a rotation of the pattern along the top row. F achieves this by
shuffling objects between the top two rows of Mn and within the bottom three rows; objects never
leave their columns. The third row from the bottom of Mn (row n − 3) is used to keep track of the
starting places of potential rotations that have already been tested. F uses Mn’s rows 1 and n − 2
to keep track of its successive object-matching circumnavigations: during each circumnavigation,
F determines whether the rightmost object of row 1 matches the leftmost object of row n − 1. F
appropriately shifts objects from rows 0 and n − 1 after each match-test, to prepare for the next
circumnavigation, and it appropriately shifts one object from row n−2 to prepare to test for the next
potential rotation. Object-positions are reset appropriately to prepare for each new circumnavigation

neighboring rows. (For “neatness,” we have F restore objects to their home tiles at
the conclusion of the algorithm.) The algorithm proceeds in n stages, each having
n substages. Recall, as in Fig. 1.16, that the sequence of object-types along row 0 is
σ0σ1 . . . σn−1, while the sequence along row n − 1 is σ ′

0σ
′
1 . . . σ ′

n−1.

• The i th primary stage of the algorithm tests tile-position i along row n − 1 to
determine whether the pattern of object-types in row n − 1 is a rotation of the
pattern in row 0, with tile 〈n − 1, i〉 as the anchor of the rotation, meaning that
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σ ′
0 . . . σ ′

i−1σ
′
i . . . σ ′

n−1 = σn−i . . . σn−1σ0σ1 . . . σn−i−1.

– If this test succeeds, then F reports success—the pattern along row n − 1 is a
rotation of the pattern along row 0.

– If the test fails, then F moves σ ′
i up to row n − 3, i.e., to tile 〈n − 3, i〉.

If i = n − 1, then F halts and reports failure—the pattern along row n − 1 is
not a rotation of the pattern along row 0.
If i �= n − 1, then F embarks upon primary stage i + 1.

• The j th secondary stage of the algorithm implements the n circumnavigations
that are needed to determine whether the current potential anchor tile 〈n − 1, j〉
is, indeed, the anchor of the current rotation. For each i ∈ [0, n − 1], F initiates
a sequence of n circumnavigations.
The first circumnavigation begins at tile v0 = 〈0, 0〉. In the course of this trajectory,
F checks whether the object at tile v0 has the same type as the object at tile
〈n − 1, j〉.
– If the answer is “NO,” then F aborts this primary stage and moves on to the
next one.

– If the answer is “YES,” then F completes the circumnavigation and prepares
for the next one, during which it will check whether the object at tile 〈0, 1〉 has
the same type as the object at tile 〈n − 1, j + 1〉.

The important detail here is how F keeps track of the top and bottom tiles whose
objects’ types it is checking. F accomplishes this by moving each checked object
to an adjacent row. An object from row 0 is moved to row 1; an object from row
n − c (c ∈ {1, 2}) is moved to row n − c − 1. At the end of this secondary stage,
all objects are restored to the tiles where they began this stage, in preparation for
the next secondary stage.
Importantly, the “arithmetic” that is implicitly being done to determine successive
objects along the bottom rows ofMn is done modulo n. This is an easy finite-state
operation: when F detects the right edge of Mn , it begins to process tiles from
the left ends of Mn’s bottom rows rather than their middles.

One readily supplies the details that convert this sketch to a complete algorithm.

1.4 The Power of Cooperation

1.4.1 The Need for Cooperation

FSMs acting on their own suffer a fundamental limitation: No single FSM can
find/identify a tile 〈i, j〉 that is “buried” within Mn , in the sense that both i and
j are far from both 0 and n − 1; the notion “buried” is made rigorous in terms of



22 A.L. Rosenberg

(current tile)

s

State s

State s

State s

State s

State s

The actual trajectory

(current tile)

Interior Boundary
Mesh Boundary

.  .  .

.  .  .

.  .  .

.  .  .

Interior Boundary
Mesh Boundary

.  .  .

.  .  .

.  .  .

.  .  .

(current tile)

An indistinguishable compressed trajectory

.  .  .

.  .  .

Mesh Boundary
Interior Boundary

.  
.  

.

.  
.  

.

An indistinguishable extended trajectory

State

Fig. 1.18 A single FSM gets “lost” when either its start tile or its target tile is “buried” withinMn

the number of states of the wandering FSM. The situation is illustrated schemati-
cally in Fig. 1.18, which depicts a (formalizable) intuition that can be encapsulated
as follows. A q-state FSM F is wandering within Mn from an initial tile, v, toward
a target tile, v′. At least one of v and v′ is “buried” within Mn : both of the “buried”
tile’s coordinates, i and j , satisfy q < i, j < n − q − 1. Along any path whose
length exceeds q, F must enter the same state, say s, at least twice; call such a tile
a state-s tile. If the path between any two state-s tiles lies entirely with the inte-
rior of Mn—i.e., each tile along the path “buried” within Mn—then F can never
distinguish between these state-s tiles. Informally, F is “lost.”

Sample applications of (an adequate formalization of) the preceding argument
show that in sufficiently large meshes Mn :

• F cannot identify which quadrant or wedge of Mn it resides in.
• F cannot find a path from, say, tile 〈0, 0〉 to, say, tile 〈� 1

2n�, � 1
2n�〉. (We provide

just one unfeasible source-target pair for illustration.)

Detailed versions of the sketched argument can be found in [31, 33].
The fundamental limitation of single FSMs motivates our focus in this section on

teams of two or more FSMs that cooperate to solve a sampler of problems of the
type we have just argued that single FSMs are unable to solve.
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1.4.2 Tasks Enabled by Cooperative Behavior

Classical results from“machine-based”ComputationTheory (Turingmachines,Reg-
ister machines, etc., as discussed in [30]) make it not surprising that teams of FSMs
can cooperatively accomplish very complex tasks. What we try to suggest in this
section is that the FSMs in the teams: (a) can often all be copies of the same FSM;
(b) can accomplish their tasks by playing very natural roles. We focus on a few tasks
of the sort that Sect. 1.4.1 shows not to be possible for single FSMs.

1.4.2.1 FSMs Exploit “Rational Tiles” Within Mn

A. FSMs Identify “rationally Specified” Tiles

This section is devoted to the problem of having a team of identical FSMs (scalably)
identify tiles of Mn that are specified by pairs of positive rational parameters. The
instance P(ϕ, ψ) of the problem, which is associated with parameters ϕ and ψ ,
requires that we design an FSM F = F (ϕ,ψ) such that teams of copies of F can

cooperate to “identify” tile vϕ,ψ
de f= 〈�ϕ(n − 1)�, �ψ(n − 1)�〉 of Mn , in the sense

that one designated copy of F halts on vϕ,ψ .
We describe an FSM F that solves problem P(ϕ, ψ), in the sense that a team of

three copies of F , call them F0, F1, F2, can identify tile vϕ,ψ . The FSMs begin to
solve the problem within Mn by moving to the first three tiles in row 0, i.e., tiles
〈0, 0〉, 〈0, 1〉, 〈0, 2〉. In turn, each FSM then moves to tile 〈0, 0〉 and follows thence a
variant of the staircase trajectory of Fig. 1.3.F0 andF1 both traverse a “top to bottom”
staircase from row 0 to row n − 1 and there configure themselves as neighbors, with
F1 at tile 〈n − 1, �ψ(n − 1)�〉. F2 traverses a “left to right” staircase from column 0
to column n−1, ending at tile 〈�ϕ(n−1)�, n−1〉. The first configuration of Fig. 1.19
illustrates this initial placement of the three FSMs. In the algorithm:

Wall

 tile
Target

Scout

Usher

Sentry

Fig. 1.19 A teamof three FSMs solve the rational-point identification problem, seeking tile 〈�ϕ(n−
1)�, �ψ(n − 1)�〉 when �ϕ(n − 1)� is odd (so the implicit rectangle has an even number of rows).
Solid lines depict the current trajectory; dashed lines depict past ones
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• F2 acts as a sentry for the team, marking the northeastern corner of the rectangle
whose northwestern corner is the target tile vϕ,ψ ;

• F1 acts as an usher whose role is to guide F0 from its initial tile 〈n − 1, �ψ(n −
1)� + 1〉 to vϕ,ψ ;

• with the help of F1 and F2, F0 acts as the scout who identifies vϕ,ψ .

The body of the algorithm is a sweep by F0 through the rectangle whose antipodal
corner tiles are 〈n − 1, �ψ(n − 1)� + 1〉 and 〈�ϕ(n − 1)�, n − 1〉. The usher F1
moves one tile upward whenever F0 leaves its side, embarking on the next eastward
trajectory of the sweep; F1 then awaits the re-arrival of F0 as the latter completes
the next westward trajectory of the sweep. Note that Mn’s right “wall” terminates
each of F0’s eastward trajectories, whereupon F0 moves up one row and embarks
on its next westward trajectory. F2 meanwhile awaits the arrival of F0; when these
two FSMs meet, F0 knows that it is beginning its last westward trajectory. When F0
then meets F1 again (for the last time), both FSMs know that F1 is standing on the
target tile. (One of them completes the algorithm by going back to tell F2 to “stand
down.”) The reader can easily flesh this sketch out to a complete algorithm.

The just-described version of the algorithm works when the implicit subtended
rectangle has an even number of rows. We leave to the reader the easy modification
needed to accommodate an odd number of rows. The only needed change involves
F0’s final interactions with the usher and the sentry: the final segment of F0’s sweep
will then go from the usher to the sentry rather than from the sentry to the usher. This
odd-even issue arises with the next problem also, wherein a team of FSM sweeps an
internal rectangular region of Mn .

B. FSMs Sweep Rectangular and Square Regions of Mn

The next problem we consider builds on the rational-point identification problem.
The region-sweep problem specifies, via two pairs of positive rational parameters,
〈ϕ0, ψ0〉 and 〈ϕ1, ψ1〉 with ϕ0 > ϕ0 and ψ0 < ψ1, the antipodal corners of a

rectangular region within Mn , namely, tiles v0
de f= 〈�ϕ0(n − 1)�, �ψ0(n − 1)�〉 (the

southwest corner) and v1
de f= 〈�ϕ1(n − 1)�, �ψ1(n − 1)�〉 (the northeast corner).

The problem requires one to design an FSM F such that four copies of F can
jointly sweep the rectangular region so delimited. For simplicity we describe only
the situation in which the delimited rectangle has an even number of rows. Clerical
changes suggested by Fig. 1.20 allow one to adapt the algorithm for an odd number
of rows. (Modular arithmetic based on the four rational parameters and a sweep of
one of Mn’s rows will tell F whether the region has an odd or an even number of
rows.)

We provide a sketch of the region-sweep procedure. Let us name the four copies
of F and assign them roles for the sweep. F0 will be the scout; it will perform the
actual sweep of the region. F1 and F2 will be the ushers; they will climb the vertical
edges of the region at a pace that will allow them to keep F0 within the region.
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Scout Scout00

1

Usher

Sentry

Usher Usher Usher

Sentry

Odd number of rows

(a) (b)

Fig. 1.20 The initial configurations for a team of 4 identical FSMs to sweep an r × c rectangular
region ofMn : the scout performs the sweep; two ushers keep the scout oriented; the sentry identifies
the final tile. (a) The number of rows, r , is even; (b) r is odd

Scout

Sentry

UsherUsher

Fig. 1.21 The sweep of a 4× 6 rectangular region ofMn by a team of 4 identical FSMs: the scout
performs the sweep; two ushers keep the scout oriented; the sentry identifies the final tile. Solid
lines depict the current trajectory; dashed lines depict past ones

F3 will be the sentry; it will find tile v1 and stay there to tell F0 that it has reached
the top row of the region.

The sweep of the region proceeds in the manner sketched in Fig. 1.21. Recall that
we are assuming for the moment that the region has an even number of rows.

1.Using the procedure of Sect. 1.4.2.1, the teamof copies ofF position themselves
within the rectangular region: F1 (one of the ushers) moves to tile v0. F0 (the scout)
moves to the right neighbor of v0, just next to F1. F2 (the other usher) moves to
the southeastern corner tile of the region, by “resolving” the coordinates of v0 and
v1; in a similar way, F3 (the sentry) moves to the northwestern corner tile of the
region. By synchronizing the initiations of their positioning trajectories, the FSMs
can guarantee that they can begin the sweep algorithm as soon as they reach their
assigned tiles.
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2. F0 begins its first eastward sweep. F1 moves one tile northward as soon as F0
leaves its side; it will stay there until F0 returns to its side. F2 awaits F0’s arrival.
Upon that arrival, F0 begins its first westward sweep. F2 moves one tile northward
as soon as F0 leaves its side; it will stay there until F0 returns to its side.

By iterated executions of phase 2,F0 will alternate eastward andwestward sweeps
in successively higher rows of the region, while F1 and F2 climb along the region’s
western and eastern columns, respectively, as they keep F0 from leaving the region.
Eventually, F1 will encounter F3. When F0 next returns to F1, the latter FSM
will inform F0 that it is about to embark on the last eastward sweep. F0 uses this
information to halt when it next encounters F2.

A glance at Fig. 1.20 should help the reader amend the preceding algorithm to
accommodate rectangular regions with odd numbers of rows.

1.4.2.2 Teams of FSMs Identify Their Home Wedges

We now show how to design an FSM F such that two copies of F can, when begun
on adjacent tiles of any mesh Mn , determine their home wedges within O(n) steps.
(Note that the same FSM works for all meshes!)

Say that we have two copies, FL and FR, of an FSM F , which reside on adjacent
tiles of a mesh Mn . We lose no generality by positing that FL resides on some
tile 〈i, j〉 of Mn , where j < n − 1, while FR resides on the right neighbor tile
〈i, j + 1〉. Easy changes to the procedure we describe now to accommodate other
adjacent configurations for FL and FR.

The core of our wedge-identifying procedure is to have FL and FR each perform
two roundtrip walks from its initial tile to some edge of Mn . The outward segment
of the first walk consists of a sequence of (−1,+1), northeasterly, steps; the inward
segment of the first walk consists of a sequence of (+1,−1), southwesterly, steps.
The outward segment of the second walk consists of a sequence of (−1,−1), north-
westerly, steps; the inward segment of the second walk consists of a sequence of
(+1,+1), southeasterly, steps. See Fig. 1.22.

(d)(b)(a) (c)

Fig. 1.22 Illustrating the roundtrip walks in the home-wedge determination algorithm. FL and
FR are depicted as bold dots in tiles that are depicted as transparent squares. a The northeasterly
outward walk; b the southwesterly return; c the northwesterly outward walk; d the southeasterly
return. FL acts as a sentry to enable FR to “return home.” The roles of the FSMs reverse when FL
is performing its roundtrip walks
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(d)(a) (b) (c)

Fig. 1.23 Illustrating home-wedge determination for two adjacent FSMs. FL and FR are depicted
as bold dots in tiles that are depicted as transparent squares. FR discovers via its pair of walks that
it is a a “westerner”; b “northerner”; c “easterner”; d “southerner”

The complete algorithm has each FSM take its roundtrip walks while the other
stays stationary, acting as a sentry so that the moving FSM can return to its initial
tile; see Fig. 1.23. We now verify that each FSM can determine its home wedge from
the termini—Mn’s top edge or one of its side edges—of its outward walks.

We focus first on the northeasterly outward walk by an FSM F . This walk termi-
nates either at a tile along Mn’s top row (Fig. 1.23a and b) or at a tile along Mn’s
rightmost column (Fig. 1.23c and d). For the purposes of ths analysis, let us consider
Mn’s northeastern tile 〈0, n − 1〉 as belonging to its top row. The SW-NE line L1
that connects tiles 〈n − 1, 0〉 and 〈0, n − 1〉 plays a major role in this case.

• In the case of a top-row terminus, F will have reached a tile of the form 〈0, k〉,
where 0 ≤ k ≤ n − 1. This means that F began the walk at a tile of the form
〈h, k −h〉, where 0 ≤ h ≤ k, meaning thatF began either in wedgeWN or wedge
WW , i.e., “above” the line L1.

• In the case of a right-column terminus, F will have reached a tile of the form
〈k, n − 1〉, where 0 < k ≤ n − 1. This means that F began the walk at a tile of the
form 〈k + h, n − 1 − h〉, where n − 1 − k ≤ h < n − 1, meaning that F began
either in wedge WE or wedge WS , i.e., “below” the line L1.

We turn next to the northwesterly outward walk by an FSM F . This walk termi-
nates either at a tile along Mn’s top row (Fig. 1.23b and c) or at a tile along Mn’s
leftmost column (Fig. 1.23a and d). For the purposes of ths analysis, let us consider
Mn’s northwestern tile 〈0, 0〉 as belonging to its top row. The NW-SE line L2 that
connects tiles 〈0, 0〉 and 〈n − 1, n − 1〉 plays a major role in this case.

• In the case of a top-row terminus, F will have reached a tile of the form 〈0, k〉,
where 0 ≤ k ≤ n − 1. This means that F began the walk at a tile of the form
〈h, k + h〉, where 0 ≤ h ≤ n − 1− k, meaning that F began either in wedge WN

or wedge WE , i.e., “above” the line L2.
• In the case of a left-column terminus,F will have reached a tile of the form 〈k, 0〉,
where 0 < k ≤ n − 1. This means that F began the walk at a tile of the form
〈k + h, h〉, where 0 ≤ h ≤ n − 1− k, meaning that F began either in wedge WW

or wedge WS , i.e., “below” the line L2

Table1.1 encapsulates the results of our analysis and indicates how the outward
walks enable an FSM to identify its home wedge.
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Table 1.1 Inferences from each FSM’s wedge-determining walks

F’s northwesterly walk F’s northwesterly walk

Walk terminated by F’s home wedge Walk terminated by: F’s home wedge

Mn’s corner or top edge WN or WE Mn’s corner or top edge WN or WE

Mn’s left edge WW or WS Mn’s left edge WW or WS

Table 1.2 An FSM identifies
its home wedge

F’s home wedge NE-walk terminus NW-walk terminus

WN corner or top edge corner or top edge

WE right edge corner or top edge

WS right edge left edge

WW corner or top edge left edge

Table1.2 “inverts” the information from Table1.1 by indicating the outcomes that
an FSM can expect when it begins in each of Mn’s wedges.

1.5 Conclusion

1.5.1 Retrospective

This chapter attempts to extract and distill the lessons from our three-paper (thus far)
study of the capabilities and limitations of (teams of) finite-state robots (FSMs) that
operate within geographically constrained environments, modeled as square meshes.
All three papers develop algorithms that are scalable, in the sense that they work
in arbitrarily large meshes. The first two papers in the series, [31] and [33], study
problems that involve only themes involving path-planning and exploration. The third
paper, [34], has FSMs rearrange objects within their mesh, via algorithms that are
efficient and fully parallelizable via pipelining. The specific problems studied in these
sources were chosen to exercise different capabilities of FSMs, while suggesting the
availability of systematic solutions to problems that are reminiscent of (components
of) problems that one might encounter in real robotic systems.2 We have provided
here instances of all of the genres of problems studied within these papers.

In addition to distilling our earlier work, we have here begun to explore a genre
of problem that is only touched on in our earlier work. We have begun to study
recognition—or, decision—problems that promise to shed light on the capabilities
and limitations of FSMs. Each such problem requires (teams of) FSMs to deter-
mine whether the pattern of objects residing within a mesh satisfies specific criteria.

2 See, e.g., [16] for a view of real robotic rearrangement problems.
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Although recognition problems do not generally find immediate applicability in the
domain of robotics, such problems have been found, over many decades, to be an
excellent vehicle for exposing the inherent nature of computational devices/systems.
Indeed, both Computation Theory and Complexity Theory found their origins within
the realm of recognition problems (see, e.g., [30]).

1.5.2 Prospective

Ourwork has just scratched the surface of an exciting and potentially applicable topic
of study. We present just a few directions for future work that seem both interesting
and promising.

1.5.2.1 The Inherent Limitations of FSMs

With the exception of a couple of results that depend on the fact that FSMs “lose
their bearings” within the interiors of large meshes (see [31, 33] and Sect. 1.4.1),
our studies have focused entirely on what (teams of) FSMs can accomplish, not on
what they cannot. It would be valuable to expose the limitations of FSMs within the
contexts of a broad range of activities. Such activities would involve more compli-
cated problems involving exploration in large empty spaces than we have considered
thus far, including the limitations of teams of FSMs, not just individual ones. The
activities must also include problems that require FSMs to move and/or manipulate
objects.

1.5.2.2 More Complicated Settings

All of the problemswe have studied have a regular structure, involving teams of iden-
tical FSMs cooperating to perform identical (or very similar) tasks. Such regularity
distances these problems from the highly irregular problems that real robotic systems
must cope with; cf. [16]. Ultimately, one wants to find parallelizable algorithms for
possibly heterogeneous teams of FSMs that accomplish irregularly structured tasks.
Perhaps one could even have heterogeneous teams of FSMs somehow learn which
FSMs are better at various tasks—a type of specialization. Along not-dissimilar lines,
it would be valuable to adapt the insights, tools, and results from sources such as
[7, 12, 13, 19, 20, 29] to generate and study a repertoire of recognition problems
that incorporate the spirit of robotic applications.
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Chapter 2
Lattice Automata for Control
of Self-Reconfigurable Robots

Kasper Stoy

Abstract Self-reconfigurable robots are built from robotic modules typically
organised in a lattice. The robotic modules themselves are complete, although sim-
ple, robots and have onboard batteries, actuators, sensors, processing power, and
communication capabilities. The modules can automatically connect to and dis-
connect from neighbour modules and move around in the lattice of modules. The
self-reconfigurable robot as a whole can, through this automatic rearrangement of
modules, change its own shape to adapt to the environment or as a response to new
tasks. Potential advantages of self-reconfigurable robots are extreme versatility and
robustness. The organisation of self-reconfigurable robots in a lattice structure and
the emphasis on local communication between modules mean that lattice automata
are a useful basis for control of self-reconfigurable robots. However, there are signif-
icant differences which arise mainly from the physical nature of self-reconfigurable
robots as opposed to the virtual nature of lattice automata. The problems resulting
from these differences aremutual exclusion, handlingmotion constraints ofmodules,
and unrealistic assumption about global, spatial orientation. Despite these problems
the self-reconfigurable robot community has successfully applied lattice automata
to simple control problems. However, for more complex problems hybrid solutions
based on lattice automata and distributed algorithms are used.Hence, lattice automata
have shown to have potential for the control of self-reconfigurable robots, but still a
unifying implementation based on lattice automata solving a complex control prob-
lem running on physical self-reconfigurable robot is yet to be demonstrated.

2.1 Self-Reconfigurable Robots

The self-reconfigurable robot community grew out of the distributed autonomous
robot systems community. The idea was that if multiple robots could automatically
form physical bonds between each other the combined robot collective could adapt its
shape and functionality in response to the environment and tasks. The basic scenario

K. Stoy (B)

IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
e-mail: ksty@itu.dk

© Springer International Publishing Switzerland 2015
G.Ch. Sirakoulis and A. Adamatzky (eds.), Robots and Lattice Automata,
Emergence, Complexity and Computation 13, DOI 10.1007/978-3-319-10924-4_2

33



34 K. Stoy

Fig. 2.1 This figure shows
the original scenario that
motivated the need for
self-reconfigurable robots
(Courtesy of Fukuda, © 1988
IEEE)

that motivated self-reconfigurable robotic research given by Fukuda et al. [8], shown
in Fig. 2.1, was that individual robots couldmove into a storage tank through a narrow
passage and once inside they could assemble for the purpose of cleaning the storage
tank.

This vision of self-reconfigurable robots was and is still today attractive. However,
the scientific challenges involved in realising this vision are significant. One aspect
is the mechatronic realisation of self-reconfigurable robots and another central to the
topic of this chapter is the question of their control.

Inmany self-reconfigurable robotsmodules are organised in a lattice structure like
atoms in a crystal. These are called lattice-type self-reconfigurable robots. In these
robots modules can move between lattice positions and thereby change the overall
shape of the robot. The lattice organisation simplifies control of self-reconfiguration,
because assumptions can be made about the precise position of neighbour modules
and hence connection between modules can be performed open-looped.

Given the lattice organisation of self-reconfigurable robots, lattice automata are a
natural basis for their control. However, another equally attractive feature of lattice
automata is that each individual automaton acts independently and autonomously.
This is crucial for self-reconfigurable robots because decoupling the controllers of
individualmoduleswillmake the robotmore robust to failures.A single failedmodule
will not cause the whole system to fail which, for instance, is the case for centralised
control strategies.Another desirable characteristic of lattice automata is the locality of
their rules. Typically, the rules only consider the position and state of neighbour cells.
These rules have a natural mapping to the sensors and the communication system
that modules have which only provide functionality for inter-module communication
and detection.

Given thematch between the features of lattice automata and requirements of self-
reconfigurable robots, researchers enthusiastically applied lattice automata to self-
reconfigurable robots. Early work demonstrated how simple local rules with some
noise added could make a desired configuration emerge through self-reconfiguration
[11]. Another focus was the use of lattice automata to allow a self-reconfigurable
robots to perform locomotion by moving modules from the back of the robot to the
front [3, 13].
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While this work demonstrated the potential of a lattice automata-based approach
control, there is still a risk that using this hand-coded rulesets the self-reconfigurable
robot could reach dead stateswhere no rules applied. In order to be sure no dead states
existed proofswere developed for specific rulesets [5, 20]. Another practical problem
was the development of the rule-sets by hand, which for physical robots became quite
large (e.g. 927 rules in [13]). It then became crucial to develop methods that could
automatically generate rule-sets given a desired behaviour. A possibility that was
exploredwas the use of reinforcement learning [19] and evolutionary algorithms [12].
However, both for the human rule-set designer and the automatic algorithm it became
difficult to device rule-sets bottom-up given a complicated task due to combinatorial
explosion of the configuration space.

A possible answer is to only control critical parts of the self-reconfiguration
and allow a looser, distributed control algorithm to control the rest of the self-
reconfiguration process. This simplification makes it possible to make a global-to-
local compiler that based on a three-dimensional shape could generate a set of rules
that would realize this shape [16]. A useful extension is to have strict rule-sets in crit-
ical areas of the robot (e.g. where there was a risk that modules may be disconnected
from the structure) and let the modules move randomly in other areas [15].

Most of this work is concernedwith controlling the self-reconfigurable robot itself
without considering the potential of having the robot adapting to its environment.
A notable exception is Bojinov et al. [1] who used rules with conditions based
on the neighbour being an obstacle to creating grasping hands and other interesting
functional structures. However, this line ofwork has not been picked up again. Lattice
automata also lost traction in the self-reconfigurable robotics community because it
had not been possible to create mechatronic modules that reliably could produce the
motions used in the lattice automata model (e.g. rotate around a neighbour module,
slide along a surface of modules, etc.). Hence, there is to this day a worry that a
lattice automata based algorithmwould never find practical use on a physical system.
However, this may change as new mechatronic implementations are emerging that
do in fact implement these motion primitives [14]. Hence, this is an exciting time
for self-reconfigurable robots and lattice automata because they may finally come
together to form the basis for controllable and useful self-reconfigurable robots.

2.1.1 Origin, Features, and Applications

The concept of self-reconfigurable robots was from the beginning inspired by multi-
cellular organisms [7, 9]. The idea being that from a limited number of cell types
a huge number of organisms are and can be created. For instance, an organism as
complex as the human consist of about 100 trillion cells, but there are only two hun-
dred different cell types. Hence, from an engineering perspective you could design
and implement a few robotic cell types and then on the fly assemble them into a
specific robot depending on your need. This concept is in the self-reconfigurable
robotic community referred to as versatility. A shortcoming of mechatronic modules
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is that unlike natural cells they cannot grow and divide hence another mechanism
is needed to simulate growth. The mechanism used is self-reconfiguration. Instead
of modules dividing and growing the robot can change its shape by rearranging the
way modules are connected. In other words, modules can wander on the surface of
other modules. While this is less common in nature it does happen and is known
as morphallaxis. The typical example is the small fresh water animal Hydra which
if cut in two can reorganize its tissues to become two hydras of roughly half the
original size. As a side point there is also evidence that suggests that Hydras do not
age. In fact, it is a truly remarkable animal.

Another feature of self-reconfigurable robots is robustness. Given the robot con-
sists ofmany independently functioningmodules, failure of onemodule is not critical
to the functionality of the whole robot. Even if a module is placed in a critical region
of the robot e.g. connecting two parts, it may be possible to replace it through self-
reconfiguration. The conceptual robustness of the system of course also requires
the controller to be distributed otherwise the control reduces the robustness of the
entire system.

A self-reconfigurable robot is based on only a few different module types and
these module types can be mass-produced. Hence, although the assembled robot is
quite complex the cost of individual modules can be kept relatively low.

Together these features could provide us with robot technology that is particu-
larly well suited for applications where the tasks are not known in advance, where the
transportation cost of equipment is significant, and where robustness is important.
A clear application is extra planetary exploration, but currently the most success-
ful modular robotics company is creating robots for educational and entertainment
purposes.1

2.1.2 Mechatronic Implementation

We have so far discussed self-reconfigurable robots at the conceptual level, but not
how they are implemented in practice.

A module of a self-reconfigurable robot is a complete robot by itself. Typically, a
module has sensors, actuators, processor, battery, and means of communication:

• Sensors are often limited to infrared transceivers that allow modules to detect
nearby obstacles. These transceivers also often are used to communicate with
neighbour modules. Otherwise, sensors are mostly internal and include encoders
and accelerometers.

• Actuators include various forms of electrical motors to control the motion of a
module as well as connector mechanisms.

• Processors used to be relatively small, embedded ones, but given the advance in
terms of energy efficiency and computation power processors employed today

1 http://modrobotics.com, [Online], retrieved 28/1/2013.

http://modrobotics.com
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(b)(a)

(d)(c)

Fig. 2.2 The ATRON self-reconfigurable robot is performing one self-reconfiguration step. a-b
First, the top right, dark module rotates the white module to its new position. c-d Once at the new
position the white module extends connectors to attach to the new neighbour module as can be seen
in the bottom right photo between the dark and white module

typically provide enough computation power to be able to run embedded variants
of Linux.

• Batteries are typically Li-Ion allowing modules to functioning for an hour or two.
• Communication may be based on infrared communication, Bluetooth, or WiFi
communication. In some cases electrical contact is made between neighbour mod-
ules allowing the modules to communicate across a shared CAN bus or similar
technology.

In a typical self-reconfigurable robot, a self-reconfiguration step consists of a
series of small steps as illustrated in Fig. 2.2. First a module disconnects from some
of its neighbours, it then moves to a neighbour lattice position, and, finally, extends
connectors to attach to neighbour modules at the new position.

The mechatronics design of self-reconfigurable robots is a major challenge given
the physical constraints and the high requirements in terms of functionality. However,
mechatronics is not the focus of this chapter so the interested reader can find more
information on this topic in [10, 18].

2.2 Assumptions of Lattice Automata

As we have already argued lattice automata have features that match the desired
features of a controller for self-reconfigurable robots. However, the match is not
perfect. In fact, there are several problems one has to consider when applying lattice
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Fig. 2.3 This figure shows the two steps necessary to move a simulated self-reconfigurable robot
consisting of two modules, represented by the squares, one step forward

automata as a basis for control of self-reconfigurable robots. We will introduce these
challenges here and then continue to the actual application of lattice automata in the
context of self-reconfigurable robots in the following sections.

Let us start by considering the simple motion sequence shown in Fig. 2.3. In this
figure, two modules represented by squares are resting on the ground. The two-
module self-reconfigurable robot can move forward by moving the rear module on
top of the front module and then down in front of themodule it is now resting on. This
movement recreates the start configuration of the self-reconfigurable robot and the
motion sequence can be repeated to generate forward locomotion. Implementing a
controller based on lattice automata that realizes this concept is very simple.However,
before we do this let us introduce some basic notation. There are eight directions
that are relevant to these modules let us use the compass directions to identify those.
For example, NE—north-east—is up and to the right of the current module. We now
define the states of lattice positions, which can either be Empty or Module. Finally,
we define a function State that maps a direction to a state. Using this notation the
lattice automata rules resulting in the self-reconfiguration sequence shown in Fig. 2.3
could be as follows:

if (State(E) == Module) Move(NE) (2.1)

if (State(S) == Module) Move(SE) (2.2)
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This may appear trivially correct, but it could in fact go wrong if there are more
modules present. Even though, cell positions in a virtual world or simulator can be
turned on or off easily, this is not the case here because the physical modules cannot
be turned on and off. We have to simulate on and off by moving the modules. Hence,
when one is turned off a neighbour cell has to be turned on. We also need to ensure
that the cells a module passes through to reach the new on cell are free. Hence a
ruleset like this is necessary:

if

⎛

⎝

State(E) == Module ∧
State(N) == Empty ∧
State(NE) == Empty

⎞

⎠ Move(NE) (2.3)

if

⎛

⎝

State(S) == Module ∧
State(E) == Empty ∧
State(SE) == Empty

⎞

⎠ Move(SE) (2.4)

This set of rules assumes that the physical module has to pass through a cell to get
to the desired cell. Although this appears to be a sound rule set there are still problems.
One problem is that a module does not transition instantly from one cell to another;
in fact, physical modules typically take on the order of several seconds to make a
transition. The implication of this is that there is significant period of time between
a module detects a cell to be Empty and it has moved into this cell. This opens up for
problems as othermodulesmay perceive the cell asEmpty and start a transition into it,
leading to several modules moving into the same cell. From a lattice automata point
of view and from the point of view of the moving module in our simple example a
trivial solution could be that all cells amovingmodule has to pass through aremarked
as Module while the module is transitioning. However, this is impossible, because a
cell can only be marked if there is a physical module in the cell able to transmit this
information. A possible way to reduce this problem is to place proximity sensors
in such a way that they minimize the amount of time a cell is wrongly categorised.
A module leaving a cell is sensed as late as possible and a module entering a cell
is sensed as early as possible. However, this of course does not solve the problem,
but only reduce the probability that it will happen. One approach to solve this is to
use communication to perform mutual exclusion, but in the worst case this requires
time proportional to the number of modules because in a ring configuration with one
hole the whole ring has to be informed. In order to completely solve this problem the
lattice automata controller has to be complemented with a global communication and
coordination mechanism. However, a better alternative is probably to use a roll-back
strategywheremodules attempt tomove into cells as directed by the lattice automata,
but if the module senses collision with another module moving into the same space
it can roll back to its original position [6]. This might in rare cases lead to dead locks
if there is a cycle, but the approach is attractive because it does not rely on global
information.
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Another complication is that the assumption of shared knowledge of orientations
is not trivial for modular robots. Either this information has to come from embedded
sensors, accelerometer and gyroscopes, or though a global coordination scheme.

Finally, several other practical issues also need to be handled: (1) one has to
ensure that modules do not become disconnected from the configuration during the
self-reconfiguration process because this may cause them to fall down and break, (2)
one has to ensure that modules do not create hollow sub configurations that cannot
be filled or where modules can be trapped.

In summary, when applying lattice automata to modular robotics one has to be
concerned about the following problems.

• Motion constraints
• Mutual exclusion
• Spatial orientation
• Disconnection
• Hollow configurations

These problems arise from the physical nature of the modules and their ability to
move in parallel. If not handled carefully, the problems may require global informa-
tion, which again may reduce the responsiveness, scalability and robustness of the
self-reconfigurable robot. While these problems are important, discussing them in
detail is outside the scope of this brief introduction, but please refer to [16, 18] for
details.

2.3 Lattice Automata-Based Control

Despite the complications outlined in the previous sections, many interesting exam-
ples of the use of lattice automata in the context of self-reconfigurable robots can be
found in the literature.

One of the most thoroughly studied examples is cluster-flow locomotion of cubic
self-reconfigurable robots, which is a generalisation of the trivial example we gave
in the previous section. Butler et al. have in a series of papers extended the use of
lattice automata rules for cluster-flow starting in two dimensions [3] and in later work
moving to three dimensions. The algorithms were also able to handle obstacles in the
environment [4]. A nice aspect of this work is also that since it has a strong theoretical
basis in lattice automata it was possible to proof sufficiency and correctness for
some of the rule sets. A fundamental problem, however, is that as the task and
configurations become more varied the rule sets become complex. This was also a
problem encountered by Østergaard et al. working with a more physical realistic
simulation of the ATRON self-reconfigurable robot. In fact, for simple cluster flow
locomotion 927 rules were necessary [13].

The use of hand-coded lattice automata rules becomes intractable as the complex-
ity of the robot and the task increases. Hence, some effort has been made to automate
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the design of lattice automata rules. Varshavskaya et al. [19] used a reinforcement
learning based approach and Østergaard et al. [13] tried to use evolutionary algo-
rithms. Both approaches were successful for relatively small tasks, but inherently
suffer from scalability problems due to the size of the search space.

The lesson learned from this work is that lattice automata are useful if the config-
uration space is relatively small, but otherwise become impractical.

2.4 Hybrid Control

We have previously focused on locomotion through water-flow, however, in some
cases it is not the function that is important, but the shape. Hence, transforming a self-
reconfigurable robot into a specific shape becomes a task in its own right and is also
important as a fundamental primitive that can be used as part of higher-level func-
tionality. In self-reconfigurable robotics the transformation or self-reconfiguration
problem is often stated as “Given an initial configuration and a goal configuration,
find a sequence of module moves that will reconfigure the robot from the initial
configuration to the goal configuration.” [18]. Part of the effort to solve this problem
has been to make global-to-local compilers. That is, compilers that take a high-level,
centralised representation of a goal configuration and automatically compiles it into
a lattice automata ruleset running distributedly on the modules.

Stoy et al. [16] use an approach where a three-dimensional CAD model is con-
verted into lattice automata rules. We will describe this approach in detail below.

The first step is that a CAD model and a starting point contained inside this CAD
model is given. At this point a cube is placed that represents a module. The algorithm
then proceeds by adding neighbour cubes to this initial cube, but only if the position
of the neighbour cube is also contained in the CADmodel. Under the same conditions
neighbour cubes are added to these cubes. From this point the algorithm continuous
recursively until the contained volume has been filled. In effect, the surface-based
representation of the CAD model is turned into a voxel-based representation. The
position of each voxel corresponds to the desired position of a module in the goal
configuration.

In the second step this voxel representation is turned into a set of lattice automata
rules. The cubes are assigned a unique ID, in practice, an integer between 0 and
N where N is the number of cubes contained in the representation. The second
step is that for each pair of cubes with a shared face two lattice automata rules are
generated. The direction orthogonal to the face determines the direction in which the
two modules are connected. One rule creates one cube if the other cube is present
and the other rule the other way around. Since they are symmetric let us just look at
one rule. Let us assume we have two neighbour cubes with IDs k1 and k2 and the
direction d is orthogonal to their shared face pointing from k2 to k1. If we then are
in a situation where the cube with the ID k1 has been assigned we can then define
that:
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if (<module in direction d equals k1 >) {
<current module is assigned ID k2 >

}

We can now imagine a situation where a lattice automaton runs inside each cube
with this rule set. If no IDs are assigned nothing happens. However, as soon as one
module is given an ID the original assignment of IDs to cubes will be recreated.

The third step is to start a self-reconfigurable robot in a random configuration and
give each module a copy of the above generated ruleset. We then trigger the self-
reconfiguration process by assigning an ID to a random module. From this module
IDs are assigned to neighbour modules and in turn to their neighbours and so on.
Once this process has completed all modules either have an ID and belong to the goal
configuration or they have no ID and are outside the goal configuration. The self-
reconfiguration algorithm could now bemade towork by lettingmoduleswithout IDs
move around randomly on the structure of module who has been assigned IDs. This
would, given significant time, realize self-reconfiguration from the initial random
configuration to the desired goal shape specified by the CAD model.

While acceptable in theory, the random walk of unassigned modules is not prac-
tically acceptable as the convergence to the desired configuration would take too
long. In particular, when one considers that each self-reconfiguration step takes on
the order of a couple of seconds. Hence, in order to speed up this process a separate
algorithm is introduced that allow modules to travel to growth points more rapidly.
A growth point in this context is a point where the neighbour module knows from
the ruleset that a module should be present, but it is not. This implies that the config-
uration should be extended or grown in this direction. The intuition of the algorithm
for attracting modules is fairly simple. A module, which is a neighbour of a growth
point, sends out an integer. All modules listen for integers for a short period and
propagate the smallest one they hear in this period plus one. This creates a gradient
in the configuration. Now spare modules moving around in the structure can descend
this gradient to locate the growth point. Once the growth point has been filled the
initial module will stop transmitting and the gradient will adapt to create a gradient
to a growth point further away or if no grow points are left slowly level out, because
modules keep counting each other up until a maximum is reached.

Two important aspects of this approach is the division between the two control
mechanisms. On one hand there are the lattice automata rules that handle the critical
coordination element, e.g. ensure that the desired configuration is built, while on
the other hand there is a simple algorithm for moving modules around on a global
scale where the precise movement is less critical. This seems to be a critical aspect
of applying lattice automata to self-reconfigurable robots because it is not tractable
to encode rules for every configuration that the robot can assume. As a side point,
careful configuration enumeration of the cube model has shown that for just 12 cubic
modules there aremore than 18million different non-isomorphic configurations [17].

While the split into a local and a global control strategy is important, it does not
have to be done as described above. Another approach explored by Rosa et al. [15] is
to consider movement in the internal homogenous interior of the self-reconfigurable
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Fig. 2.4 This figure shows a
self-reconfigurable robot
reacting to and obstacle and
grasping it. (Courtesy of
Bojinov, © 2000 IEEE)

robot as part of a simple global coordination strategy while on the edges specific
lattice automata ruleswere implemented to ensure thatmoduleswould not disconnect
from the edge of the configurationwhich, if implemented in a physical system, would
cause modules to fall down and potentially break.

Bojinov et al. [1, 2] also explore a combination of gradients for global coordination
and lattice automata rules for local coordination. However, in contrast to the above
work their rules are based on interaction with surrounding obstacles. For instance, if
a module touches an object it can attract other modules to grow a structure around
an object as shown in Fig. 2.4.

Considering this volume of work on lattice automata in the self-reconfigurable
robotic community it is evident that lattice automata rarely can stand alone as a unify-
ing control strategy for self-reconfigurable robots. However, it has been demonstrated
that it is a powerful mechanism for controlling local aspects of a self-reconfiguration
process that requires precise module movements.

2.5 Conclusion

There is a good match between the features of lattice automata and what is desired
and possible to implement in self-reconfigurable robots. The rules of lattice automata
typically only depend on the state of neighbor automata. On real hardware, this
information can easily be obtained through neighbor-to-neighbor infrared commu-
nication. The distributed nature of lattice automata is also appealing from a self-
reconfigurable robotic point of view since distributed control is a key element of
making a self-reconfigurable robot robust.

There are, however, assumptions made in the use of lattice automata that are not
easily handled in physical self-reconfigurable robots. One assumption is that unlike
cells in a computer simulation,modules do not blink in and out of existence. In fact, in
order to turn off one cell and turn on another a physical module has to move from the
first to the latter. This is a physical process that easily can take on the order of several
seconds. This immediately leads to a few problems e.g. themutual exclusion problem
of modules trying to move into the same cell, the problem of motion constraints
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where not only the from and to cells are of interest, but also the cells that the module
is physically moving through to get from one cell to another are also important.
A final assumption, is that in computer simulations it is assumed that cells agree
on directions, e.g. based on implementation in a two or three dimensional array.
However, obtaining this information in a self-reconfigurable robots either requires
dedicated sensors or a distributed consensus algorithm.

While the above problems have been less of a focus in the self-reconfigurable robot
community, maybe because they are not apparent in simulation-studies, the problem
of scalability has been a corner stone of the work. The main challenge arises from
the combinatorial explosion of configuration neighbourhoods and the practical need
to differentiate the active lattice automata rules in different parts of the robot.

As we have discussed in this chapter there are a few solutions to these problems.
The first and most basic is to limit the task domain and, in addition, consider tasks
where the individual module has a large degree of autonomy. In situations, where the
modules start to depend on each other more careful considerations have to be done.
Typically, this involves a split where local aspects of the control is performed by
lattice automata, but there is a distributed algorithm that handles the global aspects
of the problem.

From a lattice automata point of view it may be instructive to develop lattice
automata where the underlying assumptions are a better fit for the physical modules
of self-reconfigurable robots. From a self-reconfigurable robotic perspective it seems
there is still potential in exploring hybrid algorithms with a lattice automata basis
and a more globally oriented algorithm. From the point of view of mechatronics it
may also be possible to develop modules where breaking the assumptions of lattice
automata is less of problem. One avenue of research could be soft modular robots
that may be able to squeeze past each other passing through a single cell alleviating
the mutual exclusion problem.

In conclusion, the interaction between lattice automata research and research on
self-reconfigurable robots has been productive and there is significant potential in
exploring how the two can benefit each other further.
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Chapter 3
Modular Reconfigurable Robotic Systems:
Lattice Automata

Nick Eckenstein and Mark Yim

Abstract Modular and reconfigurable robots hold the promises of versatility, low
cost, and robustness.Manydifferent implementations utilizing lattice structures exist,
with varying advantages. We introduce, define terms for, and describe in full several
key systems. Comparisons between connection mechanisms are made. We describe
some of the software concerns for modular robots, and review the applications of
self-assembly and self-repair.

3.1 Introduction

Modular and Reconfigurable Robotic Systems (or MRR systems, as they will be
referred to in this chapter) are robotic systems that are made up of many repeated
modules that can be rearranged. They can be classified by the underlying structure
used to organize a group of modules; chain type systems are organized into a chain
or tree structure whereas lattice type systems are organized on a lattice structure.
Hybrid systems are those that can switch between these organizations. This chapter
will serve to introduce the concepts of MRR systems specifically focusing on lattice
and hybrid type MRR systems. More detail on the type descriptions is given in
Sect. 3.1.2.

A modular robot is defined as one that is “built from several physically inde-
pendent units that encapsulate some of the complexity of their functionality” [37].
A reconfigurable modular robot is defined as one where the module’s connec-
tivity can be changed. One example of a lattice type MRR system is shown in
Fig. 3.1.
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(a)
(b)

Fig. 3.1 The Telecube [38] system is an archetypical 3D lattice-type modular reconfigurable robot
system.The systemcanexpandeach side to accomplishmotion along the lattice.Docking attachment
is accomplished by means of switching permanent magnet faces. The figure on the right depicts
Telecubes performing a reconfiguration operation [43]. a Telecube physical prototype, b Telecubes
reconfiguring

3.1.1 Motivation

MRR systems hold three promises: versatility, robustness and low cost.
Versatility Typically, a robot is built to certain size and shape specifically for a

given application with an associated set of tasks. MRR systems can be reconfigured
into many different sizes and shapes and so can achieve many more tasks than fixed
configuration systems.

Robustness MRR systems achieve robustness through redundancy and self-repair.
If a module or set of modules malfunctions or is damaged, the robot can recognize
this and utilize redundant module(s) from elsewhere in the configuration or replace
good modules for bad ones.

Low cost MRR systems typically have many repeated modules. This repetition
allows batch fabrication and mass production techniques to be utilized to lower the
cost of the individual modules.

Note that of these three promises, only versatility has been proven so far. More
redundancy means more opportunity for failure, so techniques must be developed
that provide graceful degradation of performance with redundancy. Lower individual
module cost can help reduce costs, but the overall system cost to achieve tasks is the
ultimate goal.

3.1.2 Key Terminology

Asmentioned earlier,MRR systems fit into several different types [37, 49]. Examples
of these types are shown in Fig. 3.2.

Lattice type systems have modules that are nominally situated on a virtual lattice.
Eachmodule occupies one site in the lattice and is capable ofmoving to a neighboring
site. This movement is characterized by a simple motion along a single degree of
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(a) (b) (c)

Fig. 3.2 Examples of MRR types. a 3D Unit, another lattice-type modular system, b CONRO, a
chain-type modular robot in a snake configuration, c ATRON [27], a hybrid-type robot

freedom (DOF) path with a swept volume local to the neighborhood of the site. The
local property of this motion means that the motion planning and collision detection
is independent of the number of modules.

Chain type systems are organized in a chain or tree architecture. To reconfigure,
chains of modules attach two ends together and break at a different point. Sequences
of making and breaking loops serve to reconfigure a system from one shape into a
goal shape. For these chains, the computational time complexity of motion planning
scales with the number of modules. For this reason, reconfiguration planning, that
is the determination of a sequence of motions, attachments and detachments of an
MRR system has been much easier with lattice systems. However, chain systems
can form articulated arms/legs and tend to be easier to use for robotic tasks such as
locomotion or manipulation of objects.

Hybrid type systems can operate as either a lattice type or a chain type system.
Their capabilities can be organized either way depending on the application.

Other types for MRR system categorizations [3] focus on reconfiguration mecha-
nisms and include mobile type systems. Mobile systems have modules that can move
independently in the environment. In this chapter however, the reconfiguration is not
as central as the organization of modules, so the mobility of individual modules is
listed simply as a property of the system.

Connectedness describes how many faces on one module can be connected to
another module. For a given polyhedral base, the number of available connection
faces describes the connectedness. For example, a cube has six faces and if all six
faces are possible connection faces, the module is said to have full 6-connectedness.
It is typically desirable to have full connectedness, but in many cases, it is difficult
to implement.

A configuration refers to the arrangement of modules with the associated con-
nectivity. Note this does not include the joint angles of the modules which result in
a particular shape, or pose of the robot.

Terms for collections of modules include; cluster, meaning a small set of con-
tiguous modules, and meta-module, which is a configuration of a small number of
modules that acts as a repeated element within a larger configuration. Meta-module
planning is often used to improve the speed of reconfiguration planning.



50 N. Eckenstein and M. Yim

3.1.3 Environments

Lattice MRR systems exist in multiple environments, although the primary environ-
ment of choice is land or on a pre-existing lattice structure. Land systems will be
shown in detail in the section focused on hardware, so here we will note only systems
which perform in alternate environments.

Some lattice systems operate with at least one ‘anchor site’. This anchor site is
either a passive representation of the connector used betweenmodules, or a stationary
module others can attach to, serving as abase site and reference frame.Moduleswhich
make use of anchor sites include Xbot [46], 3D Fracta [23] and the Crystalline robot
[2], all of which use the existing anchor sites for stability and are shown in Sect. 3.3.1.

Recently, the DARPA TEMP system accomplished reconfiguration of on the sur-
face of water, as a testbed for a modular deployable seabase system [26]. Assembly
consisted of arranging 33 modules autonomously into a bridge shape, which was
then crossed by a remote controlled car. The TEMP system is a more modular ver-
sion of an earlier project known as the Mobile Operating Base, composed of 3–5
large modules [13]. Other systems in fluid environments include stochastic-based
assembly systems from Tolley et al. [39].

The only MRR system to perform in air of note is the Distributed Flight Array,
a 2D planar array of rotors which perform decentralized flight control, driving, and
docking. In thismanner the systemcan self-assemble, takeoff, andperformcontrolled
flight [28], though reconfiguration occurs on land.

3.2 Challenges and Practical Issues for MRR

3.2.1 General Limitations

Many limitations exist in the context of MRR systems, principally due to design
requirements. Counterintuitively, the repetitive nature of MRR systems can be quite
constraining. Required functionality of a system must be decomposed into identical
modules, yet having the entire functionality in a single module would defeat the
purpose of having and MRR system.

In anyMRR system, requirements can be broken into two parts, task requirements
and reconfigurability requirements. Since the task is unknown a priori, generic task
requirements lead to system characteristics such as strength, size, weight, power
capacity, efficiency and precision. Reconfigurability requirements lead to system
characteristics involved with attaching and detaching mechanisms.

Development and improvements to an existing design are constrained by the
form factor limitations. In a lattice MRR system, the given lattice structure has a
characteristic size of a unit cell in the system. For example, the lattice size in the
CKBot version 1.0 modules was 60mm×60mm×60mm. No part of the module
may extend beyond this lattice size. The motor in particular often requires a large
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footprint within the module, taking up space that could be used for battery, control
board, sensors, etc. As with most designs, trade-offs must be taken with the most
crucial features having the highest priority of space and position.

To help us further reduce the strain on the lattice space, some implementations
of these types of systems move certain function requirements off-board or to sepa-
rate specialized heterogeneous modules. These functions are then relayed through a
tether, bus, or mechanical attachment to the full system. Functions which have been
successfully moved outside of the module itself include power, sensing, communi-
cation/control, and even actuation [47], as we will note below.

3.2.2 Key Metrics

ComparingMRRdesigns is somewhat difficult due to the variations in intended appli-
cation and design requirements. For example,measuring strength alone is not straight
forward since modules with larger lattice sizes will typically contain larger motors.
To that end, we must reformulate our metrics of comparison to better understand the
advantages between different designs. A leading metric for modular systems is the
number of modules in a system. The more modules the system supports, the more
complex and interesting behaviors exist for the system to perform. Additionally,
larger systems may be able to engage larger forces by parallel actuation.

The record for number of modules simulated is 1303 (2.2 million), for a cube
shaped conglomerate of lattice-type simulated modules 130 to a side [8]. The record
for number of physical modules implemented at once in a single robot is held by
M-TRAN (Mark III), which had produced 50 modules.

In order to accomplish sophisticated mass behaviors with many modules, we
wish to have smaller modules—so small size is another desirable quantity. Externally
controlled assembly systems have been built as small as 500×500×30µmemployed
by Lipson et. al. [39]. Self-actuated systems such as Smart Blocks [31] and Milli-
Motein [19] are 10mm in size. With many modules on a significantly small scale,
we increase the resolution of our systems and come closer to presenting a seemingly
‘continuous’ set of behaviors for locomotion, reconfiguration, etc.

Larger modules can be desirable as well—if for example we wish to construct
a large structures with a minimum of materials. The Giant Helium Catoms (GHC)
currently hold the record of largest module at a cube size approximately 1.9m on a
side.

A key metric to the reconfigurability requirements is the bonding strength of the
attaching mechanism. For many systems which uses hooks or latches, the material
strength of the hook or latch is the limiting factor and is typically large compared to
the strength of actuators. For systems which use magnetic or electrostatic bonding,
the strength of the bond is much weaker and can be a limiting factor in the size of a
conglomerate system.

A related metric is the force required to un-bond or de-dock. Typically stronger
bonds also require concomitantly large forces or energy to undo them. For example,
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low temperature melting point alloys can be used to bond two modules, but require
a large amount of energy to melt the bond.

3.2.3 Modular Robot Morphology—Shape and Connectedness

MRR Systems have had a variety of shapes and lattice types since the first system
was created in 1989 [9]. Shapes that have the properties of being space-filling and
easily calculated lattice positions are desirable. With the exception of the cube, most
regular polyhedra do not tile space. Two other polyhedra that tile space include a
rhombic dodecahedron and a right angle tetrahedron. This tiling implies the under-
lying lattice structure. For example, the rhombic dodecahedron is the resulting shell
of one cell of the Voronoi diagram of the centers of a face centered cubic lattice
structure.

Connectedness impacts the range of configurations possible with a given MRR
system. Connectedness affects the available graph representations [18] and practical
applications—i.e. a cubic system which connects four out of six faces cannot always
represent all possible configurations. Most systems also construct the connector with
symmetries in such a way that two connected modules can have more than one way
to attach. In the M-TRAN system for example, any two eligible faces (that is, a
male-female pair) can connect in up to four ways, each option representing a 90◦
change in orientation.

Wewill call the combination of the external shape occupied by themodule (e.g. the
angles of joints in the robot) and the configuration the morphology for the purposes
of this chapter.

3.3 Example Lattice System Hardware

Here we profile several systems, and discuss relevant features compared across plat-
forms. Each system presented represents a set of solutions to the unique design
challenges faced in MRR systems design. We will first present each system in detail
and then compare features as they were implemented. Systems are sorted roughly
by lattice type.

3.3.1 Key Designs

3.3.1.1 Three-Dimensional Systems

The majority of implementations use cubic shaped modules. Early systems include
the 3d-Unit, Molecule and Telecube systems.
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The 3d-Unit (or 3D Fracta, as it is sometimes called) exists on the cubic lattice
with full 6-connectedness. The systemuses a singlemotor and a clutch to individually
actuate one of the 12 degrees of freedom as required (six for rotation of faces, six for
connecting faces) [23]. The 3d-Unit system can be seen in Fig. 3.2a. The connectors
are paired at 90◦ by a special handshakemechanism,meaning a successful connection
may require rotation along a face. Power and communication are transmitted through
this connection mechanism. Movement of a module in the lattice requires rotation
by an adjacent module using a connection on that adjacent module on the axis of
rotation. In this way modules can be moved laterally or vertically one position at a
time. Actuation for both the face rotation and connectionmechanism is accomplished
by means of a single DC motor/harmonic drive combination for each module. A
diagram of the motion pattern is shown in Fig. 3.3.

The Self-Reconfiguring Robotic Molecule [20], often referred to simply as the
Molecule system also exists on the cubic lattice. Each molecule is composed of
two ‘atoms’, connected by a right-angle bracket, so each contiguous module takes
up three positions on the cubic lattice, in an ‘L’ shape. Each atom has five connec-
tors to connect to other modules and two actuated degrees of freedom; one about
the right-angle connection and one about a single connector. RC servomotors are
used for the two rotational degrees of freedom. The connection is accomplished by
means of oppositely polarized 1′′ electromagnet faces, with an interlocking sheath
pattern to prevent undesired rotations. Electronic hardware on the module is com-
posed of a microprocessor and controllers for the electromagnets and servos, with
high-level control of the system accomplished by a workstation connected to the
module by RS-485 connection. Despite the somewhat strange shape of the module,
it has no problems traversing the lattice in a straight line or over convex/concave
edges, computing the straightest path in O(n) time. A Molecule prototype can be
seen in Fig. 3.4.

The Telecube system (Fig. 3.1), like 3d-Unit, exists on the cubic lattice with full
6-connectedness. Each face has a prismatic DOF allowing any side to expand tomore
than twice its original length. Careful control of connections and use of the prismatic
DOFs results in motion in the desired direction along the lattice. This method of
module motion is a 3D extension of a 2D system called Crystalline [2]. Connection
between faces is accomplished by means of permanent magnet faces. These perma-

Fig. 3.3 3d Unit Lattice
motion pattern
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Fig. 3.4 Molecule
module prototype. Note the
two 5-connected ‘atoms’, and
the right-angle bracket which
takes up a lattice position.
Photo Keith Kotay

nent magnet faces have two layers of neodymium magnets, and connection status
is changed by moving one set of magnets one pitch length thus changing the path
of magnetic flux. The magnets are moved by a shape memory alloy (SMA) mech-
anism which shifts the layer. The frame material is chosen both because it is light
and because it is internally lubricated to provide low friction. The linear actuation is
achieved via brushless DC motors attached to worm gears.

The largest MRR system in the literature is the Giant Helium Catoms (GHC),
developed at CMU.One possible application is extraplanetary structures where ultra-
light expandable modules would be useful for structural applications [17]. The GHC
exists on the cubic lattice with full 6-connectedness. Connection between modules is
accomplished by use of a novel electrostatic adhesionmechanism. Each face has four
flapswhich contain two electrodes each,with a dielectricmaterial (mylar) in between.
This allows charges to build up across the module interface, creating the electrostatic
attraction. Each flap corresponds to an edge on the face, as seen in Fig. 3.5. The flaps
themselves can be actuated to extend by means of Nitinol (SMA) wires, with reverse
actuation by a constant force spring to close the flap back down. Each module was
filled with helium, allowing for a total module weight of 50g, despite the modules
being approx. 1.9m on a side. Each module had a central processing board and six
outer slave boards, one for each face, as well as its own battery for power and Zig-
bee for wireless communication, although power transmission is proposed between
modules via the adhesion interface. Sensors and actuators are controlled using the
I2C bus. Each flap angle was controlled and sensed by a combination of the flap
voltage and a potentiometer to measure angle.

The M-TRAN system (Mark III) [21] is a hybrid system that can be organized
on a simple cubic lattice (Figs. 3.6 and 3.7). Each module is composed of two cubes
with a revolute DOF about the center of each cube relative to a link that attaches to
both. The blocks each occupy a single simple cubic lattice site; thus each module
occupies two adjacent sites. As a hybrid system the modules can form chains to
perform articulated tasks but can also arrange themselves on the cubic lattice for
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Fig. 3.5 GHC robot with 4 flaps on each face, 24 flaps total. Each flap can be rotated about the
edge to accomplish module motion, as seen in the left-hand image. The image on the right shows
two prototypes stacked on top of one another

Fig. 3.6 M-TRAN III
Module

reconfiguration. One block has three active latching male connection mechanisms;
the other has three passive female connection plates. Each module has a total of
five DC motors (two for the link section—one for each block, plus one for each
of the three active male faces). Module motion is accomplished by the combined
motion of the two link motors, as well as selective attachment/detachment to other
modules in the lattice. The conjoined male/female combination of modules results
in a tiling alternating block gender along each cartesian coordinate. It checkerboards
the a three-dimensional space. Each connector pair can be oriented at an offset of 0,
90, 180, or 270◦, giving four symmetric possible orientations. By clever arrangement
of modules then it is possible to move modules from one axis-alignment to another
during reconfiguration. M-TRAN III carries the distinction of having demonstrated



56 N. Eckenstein and M. Yim

Fig. 3.7 M-TRAN Mark III
moving along a lattice
structure by reconfiguration

themost reliability of a system of its complexity, having changed surface connections
by up to 24 modules over 100 times.

The SMORES modular system [5] are organized on the cubic lattice, forming a
cube with four connection ports. It has four actuated DOF. Two of the DOF serve as
wheels allowing each module to move independently, making SMORES a mobile
system. The other two actuation degrees of freedom allow tilt and pan of the module
faces. This design has the ability to emulate many other types of modular robots
and progress towards a “universal” modular robot. In this way the SMORES system
is capable of emulating many of the existing lattice and chain type modular robots
successfully, in the hopes that the systemwill have the combined capabilities ofmany
of the existing systems.

A recent system developed at MIT, M-Blocks (Fig. 3.8), exists on the cubic lattice
with full 6-connectedness [33]. It uses internal inertial exchange to move modules
in the lattice. A flywheel located within the module in combination with a belt brake
allow the module to abruptly exchange angular momentum. The external frame con-
tains of a set of 24 diametricallymagnetizedmagnets (2 on each edge). Thesemagnets
ensure that edge-edge contact is maintained during the motion, with another set of
8 smaller magnets on the faces to ensure the module bonds in an aligned position.
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Fig. 3.8 M-Blocks robots.
Top figure shows the
hardware, including the
magnet patterns on the
edges/faces, as well as the
flywheel. Bottom figures show
the path taken by a module
during a typical convex
transition pivot motion. Photo
by John Romanishin (Daniela
Rus’s Distributed Robotics
Laboratory at CSAIL, MIT)

Presently the system can only move in the plane perpendicular to the axis of rotation
of the flywheel, though developing a system with three perpendicular flywheels is
feasible. Due to the unique mechanism for motion, modules are capable of mov-
ing independently of the lattice, making them a mobile system. Each module also
contains its own power, wireless (Xbee) communication, and a 32-bit /ARM micro-
processor. Sensors include a 6-axis IMU, an IR LED/photodiode pair for intermodule
communication, and Hall Effect sensors to detect misalignments. Reconfiguration
planning requires a bit of compensation for the way in which the modules pivot about
an edge, precluding other modules from occupying corresponding positions which
could block themotion. The authors address these issues with a Pivoting CubeModel
(PCM) for reconfiguration.

ATRON, a system developed at the University of Southern Denmark, is the only
modular system modeled on a “face-centered cubic” lattice, allowing connections
to up to 8 other modules [27]. Its major components can be seen in Fig. 3.10. The
module has two halves which can spin relative to one another somewhat like a wheel.
This motion won’t cause the module itself to move itself to another lattice position,
but it will move two other modules relative to each other. Each half of each module
has two actively-driven male connectors and two passive female connectors, as well
as a microprocessor. Each module carries its own power, and the two halves of the
module share power and communications through a large slip ring in the central
plane of the module. This allows for continuous uninterrupted motion of one half
relative to the other, for ‘wheel’ type functionality in a module.
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Fig. 3.9 ATRON Robot, performing swap with a full lattice. The center point represents an out-
of-plane module which rotates to perform the swap

Fig. 3.10 ATRON Robot, Exploded view and full prototype without plastic cover

Inter-module connection is accomplished by mechanical arms which reach out
and ‘grab’ the passive connector, simultaneously aligning it and making a solid
mechanical connection. Inter-module communication is accomplished by an infrared
emitter-detector pair which also serves as a proximity sensor. The lattice choice
combined with appropriate shaping of the module exterior permits modules to be
moved even in a fully-packed lattice, as shown in Fig. 3.9. ATRON can connect its
modules only orthogonally (that is, at the 90◦ angles seen in Fig. 3.2c), and so has no
orientation options between two modules like other systems. With the large hooks
for latching, the connection system has one of the strongest bonds, but also consumes
a majority of the space within each module.

3.3.1.2 Two-Dimensional Systems

Although full-scale reconfiguration would ideally be on a three-dimensional lattice,
many two-dimensional systems have made interesting advances in the technology. In
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particular, removing the necessity to compensate for gravity reduces the functional
strength requirement, allowing experimentation with alternative actuation methods
and reducing actuation overhead. The following systems are organized on a two-
dimensional lattice.

The X-Bots system developed at the University of Pennsylvania [46] is organized
on the 2D lattice with full 4-connectedness. Each X-bot is simplified by containing
only local power, processing and connection systems. Communication is performed
by conductor contact at the connectionpoints.Actuation is located externally, byplac-
ing the system on an X–Y stage. In this way the system can use selective connection
in combination with inertial motion to reconfigure the system, as shown in Fig. 3.11.
In addition to rotations of a single module around an axis, by selective disconnection
the system has demonstrated more complicated two-module ‘motion primitives’ to
enable reconfiguration into arbitrary conglomerate shapes. As with many systems,
a proof is shown that any arbitrary shape can be obtained. An algorithm is devel-
oped that determines a sequence of motions that transform any configuration into a
canonical configuration (e.g. a single line of modules). This sequence is reversible so
any configuration can transformed into any other by transforming into the canonical
configuration and reversing the sequence into the goal configuration.

The Micro Unit system [53] exists on the 2D lattice with full 4-connectedness.
Eachmodule has twomale and two female connectors at the corners, about which the
modules rotate. All rotation and actuation of the latching for connection is accom-
plished by SMA wires heated electrically. These wires allow rotation at the corners
betweenmodules, as well as activation/deactivation of latches betweenmodules. The
Micro Unit system is one of the smallest systems prototyped at a system size of 2cm.
A prototype can be seen in Fig. 3.12.

Fig. 3.11 Left X-Botsmodule. Connectionmagnets and SMAwires are visible, power and process-
ing contained within frame. Right X-Bots module undergoing complex motion primitive. By dis-
connecting two modules at specific points, the inertial motion can reconfigure both at once
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Fig. 3.12 The Micro unit system undergoing reconfiguration. Male and female connectors are
visible

The 1-cm Pebbles system, developed at MIT, was the first to make use of electro-
permanentmagnets as a connectionmechanism formodules. These devices consist of
two rods of different types ofmagnetmaterialswith nearly the samemagnetic strength
but widely differing coercivity, capped with iron and wrapped in an electromagnet
coil. The two rods are made of Neodymium-Iron-Boron (NdFeB) and Alnico V,
respectively. The Alnico magnet switches its polarity much more readily, so a pulse
from the electromagnet coil switches this magnet, but not the NdFeB. If the two
magnets have the same polarity, magnetic flux points outward and the module can
attract othermodules. If however, theAlnico is flipped by the coil and has the opposite
polarity of the NdFeB magnet, the flux circulates within the EP magnet and does not
leave through the poles. While this mechanism requires some power to change the
polarity of the Alnico magnet and switch states, it does not require any power once a
state has been set; it is bistable. Power is transmitted between modules by conductor
contact and communication is transmitted by induction through themagnets.Module
motion was not implemented for this system; the idea is for construction of a shape
by self-disassembly, rather than self-assembly or self-reconfiguration. This means
shapes are formed by deactivation of the EP magnets, allowing extraneous modules
to drop out when external force is applied to the system. You can see several shapes
formed by Pebbles in this way in Fig. 3.13, along with a prototype.

The EM-Cube [1], presented in 2008 by An, exists on a 2D square lattice, with
full 4-connectedness. Each module contains a microprocessor and a Zigbee chip for
wireless communication. Power is supplied externally. The motion method for the
EM-Cube is novel; two faces (bottom and left) contain a pair of permanent magnets.
The other two faces (top and right) contain three electromagnets. By changing the
polarity of these electromagnets, the overall magnetic force changes, allowing the
EM-Cube to move through a five-step process from one module to the next, as seen
on the right in Fig. 3.14. So long as all modules are placed in the lattice with the
same orientation, any module can be moved—either with its own electromagnets
or by the neighboring modules. However, some creativity is required for a module
to move around a convex corner, as you can see in Fig. 3.15. Since a surface of
two modules is required to move a module, two modules must move together to
accomplish the convex transition. An also presents other motion algorithms for four-
module conglomerations, including one that accomplishes motion as long as it is
allowed to run, automatically accounting for convex/concave transitions.
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(a) (b)

Fig. 3.13 Pebbles system. Photos by Kyle Gilpin (Daniela Rus’s Distributed Robotics Laboratory
at CSAIL, MIT). a Pebbles module, with flex circuit exposed. 4 sites for EP magnet placement are
visible. A fully constructed module fits within the cube frame, b Pebbles arranged into a variety of
2D shapes [12]

(b)

(c) (d)

(a)
(a)

(A) (B)

(b) (c)

(d) (e)

Fig. 3.14 EM-Cube System. [1]. a EM-Cube protype. Note in (c) that the electromagnets are only
on two faces, b EM-Cube sequence of magnet switching for motion. The combination of repulsive
and attractive forces at each step results in net motion

3.3.2 Lattice Locomotion

Many different types of lattice locomotion exist—each system seemingly has its own
motion primitives capable of moving a module from one position in the lattice to
another.

There are two types ofmodule locomotion inMRR systems—pivoting (rotational)
and sliding (translational). Rotationalmotion is easier to accomplish due to the ability
to use standard motors without a linear drive mechanism, saving space. Typically the
center of this rotation is at or near the center of a module connected adjacent to the
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Fig. 3.15 EM-Cube undergoing a convex transition. More than one module is required to maintain
a surface against which the module can move

moving module, but this is not always the case. Corners and edges are sometimes
used as ‘pivot points’ to stabilize otherwise unstable motions, resulting in slightly
different centers of rotation. Depending on the center of rotation, pivoting modules
have some ‘exclusion zone’, where other modules cannot be located if the module
locomotion action is to be successful. Pivoting systems with an exclusion zone thus
have fewer locomotion options than slidingmodules.Most systems are of the pivoting
type. Sliding type systems are less common but include systems such as Crystalline
[2], Telecube [43], EM-Cube [1], and Smart Blocks [31].

In pivoting type modules with only one motor (or multiple motors with the same
axis) some limitation in locomotion results. For example, if all the modules in a
configuration have the same axis of rotation they will be unable to leave the relevant
plane, even if they otherwise exist on the three-dimensional lattice. So in systems
such as M-TRAN [21] and CKBot [51], care must be taken to add sufficient modules
of different axes to permit full reconfiguration capabilities.

3.3.2.1 Locomotion Actuators

Actuation in MRR is typically performed by traditional electric motors, or servomo-
tors. These have the advantage of being relatively easy to use, having easy power
transmission, and high strength. However, they have a tendency to take up a lot of
space and do not scale well. In particular, scaling down electric motors quickly leads
to a significant loss of strength. Functionality such as self-reconfiguration requires
additional actuators for attaching/detaching, increasing the importance of actuation
in platforms that self-reconfigure.

As a result, alternative actuation has been studied extensively for MRRs. Mag-
netic bonding methods are attractive due to their self-aligning properties. Standard
electromagnets require very large currents to generate enough attraction or repul-
sion power and are not practical for battery powered MRR systems. Switchable
permanent magnets and electropermanent magnets scale relatively well, and are uti-
lized to perform attachment/detachment with a relatively low design burden. These
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magnetsmake use of a permanentmagnet-electromagnet pair to change the attraction
behavior. Telecube and Pebbles both use this technology for face-to-face attachment
[11, 43]. Telecube uses a physical SMAmechanism to move the magnets while Peb-
bles use electropermanent magnets. Electropermanent magnets can be electronically
‘switched’ off or on by application of the magnetic field from an electromagnet.
Recently, an electropermanent magnet ‘wobble’ motor has been designed for the
Milli-moteins system allowing for useful actuation at the 1-cm scale [19].

Another alternative actuation method proposed for modular robots uses active
materials such as SMA [53] or DEA [48] (dielectric elastomer actuation) to perform
the primary motion of the modules. These methods show promise for scalability, but
can have other drawbacks; SMA is slow to respond and is not very consistent due to
its dependence on ambient temperature, and DEA requires thousands of volts with
reliability and robustness issues.

Incomplete actuation and external actuation is also presented in some types of
systems, as we show in Sect. 3.5.1. These solutions are useful by giving up space
inside a module for other components.

3.3.3 Connection Types

Essential to the act of reconfiguration (whether self-reconfigured or not) is the mech-
anism by which modules are physically mated together. There are many different
ways to characterize these connection mechanisms. Table 3.1 shows many of the
MRR systems and their connection mechanisms.

Several terms used here to categorize these connectors are explained below.
Self-Aligning Degree represents the degree to which the connector passively

aligns the two faces, such as magnetic or mechanical forces. A ‘High’ Rating indi-
cates self-alignment capability in one offset direction approximately greater than
20% of the characteristic size of the module face. ‘Low’ rated systems have some
self-alignment capability but less than 20%. ‘None’ rated systems have no self-
alignment capabilities and must be aligned carefully either by active robotic mech-
anism or by hand.

Gendering represents whether connectors are interchangeable or must be paired
in a particular manner. Gendered connectors have a ‘male’ and ‘female’ face—male
faces can only pair with female faces, and vice versa. Ungendered connectors do not
have this restriction—any face can pair with any other face.

Connection Activity and Disconnection Activity indicate whether the act of
connection/disconnection requires an action on the part of a module. Connection
Agency and Disconnection Agency indicate which modules are required to be oper-
ational/active for the respective action. Double End Agency requires both faces to
cooperate to accomplish the connection/disconnection, Single End Agency requires
only one functioning face (either one), and Male/Female requires the indicated (sin-
gle) face.
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Table 3.2 Table of ZRAA metrics, normalized relative to characteristic length of the face

System Normalized ZRAA sum

GENFA connector 0.00353

Polybot 0.00503

M-TRAN III 0.00592

JHU 0.00592

I-Cubes* 0.0187

CONRO* 0.0425

Vacuubes 0.0555

ACOR(unpaired) 0.0711

SINGO Connector 0.306

DRAGON 0.353

amour 1.57

3D X-Face 2.00

These are exact where possible from the data available in the literature, otherwise estimated. Entries
marked with a * indicate estimated ZRAA rather than exact. Table reproduced from [7]

Connection Type indicates the mechanism by which connections are accom-
plished. Most systems use either magnetic mechanisms or mechanical latching with
a few systems using electrostatic forces or pressure to maintain the connection.

Connection Maintenance indicates the extent to which power is required to
maintain a connection. Generally speaking, it is undesirable to have a system require
power simply to maintain its shape. This is especially true in modular systems which
often have a limited power budget.

Compliance indicates the flexibility of the connection. ‘Rigid’ connections have
a mechanically rigid connection between module frames. ‘Compliant’ systems have
some flexibility to external forces, either from springs/compliant parts or magnetic
compliance.

Approach Angle indicates the direction of approach that the system most regu-
larly encounters. Systems with a direction of approach perpendicular to the face are
generally more responsive to self-alignment design features.

One metric by which connectors are measured is known as Area of Acceptance.
Area of acceptance is defined as “the range of possible starting conditions for which
mating will be successful” [6]. Practically speaking, what this means is that if the
docking procedure is executed given some initial misalignment offset between con-
nectors, the alignment features of the connector will correct the offset. The range
over which this occurs is the area of acceptance. Area of acceptance can be difficult
to determine; for three-dimensional systems it contains two positional offsets and
three orientation offsets (we consider all points along the approach direction to be
the same, removing one translational DOF). The concept of Zero Rotation Area of
Acceptance (ZRAA) is one simplification which assumes that all orientation degrees
of freedom are removed and the approach direction is perpendicular to the face.
For purely mechanical self-alignment (e.g. no magnets) a set of active and passive
connectors from the literature is characterized in Table 3.2 as a sum of the positions
normalized with respect to the connector cross-sectional area.
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The concept of area of acceptance is important because alignment and connection
systems need to be error-tolerant in order to be successful. Long module chains in
particular have a tendency to accumulate errors quickly resulting in failed connec-
tions if connectors are not sufficiently corrective. These errors could be in multiple
dimensions at once, so it is best to measure the area of acceptance over as many
dimensions as is feasible.

3.4 Software Systems for MRR

Software formodular robots poses some interesting problems. Since the robots them-
selves are typically not that complex, dynamic control issues are not generally dis-
cussed, although in some instances high accuracy in position and controllability is
desirable. The relevant problem for lattice reconfiguration is at the system level,
planning for the reconfiguration of the system in a failure-proof and distributed way.
SinceMRR systems do not always have a centralized controller, planning and issuing
commands, decentralized planning algorithms become necessary.

3.4.1 Reconfiguration Planning

In addition to the typical collision-free motion planning problems that exist through-
out robotics, MRR systems have a separate category of planning problem, called
reconfiguration planning. These problems require the system to recognize its con-
figuration and then find a sequence of reconfigurations to reach a goal configuration.
The reconfiguration planning problem does not deal with the specific path or dynam-
ics of the system; rather it is a sequence of viable configuration changes from the
initial configuration to thegoal configuration.These configurations canbe represented
in the literature as a diagram or graph of connected modules.

If the robot is not explicitly given its initial configuration, configuration recogni-
tion is a critical step. The robot or systemmust first identify the current configuration
before reconfiguration can occur. This requires the ability to sense neighbors and can
be done in a decentralized [30] or centralized [26] manner.

Once the initial configuration is determined, a reconfiguration plan must be
calculated. Doing this in the smallest number of moves has been shown to be an
NP-complete problem [14]. Reconfiguration planning is largely dependent on each
particular system and its design. In particular the lattice type, connectedness, method
of locomotion, torque limit, and exclusion rules due tomethod of locomotion all con-
tribute to the set of rules that define the reconfiguration problem. Thus each system
design typically has had specific algorithms to most effectively find a reconfigura-
tion plan; for the Metamorphic system, a heuristic based on Simulated Annealing
[29], for theM-TRAN system, a centralized two-layer planner (first with locomotion
by meta-module, then locally cooperative behavior rules) [52]. The DARPA TEMP
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system converts the goal configuration to a directed graph and grows the assembly
outward from a chosen ‘seed’ module [26]. The methods are nearly as varied as the
systems, and typically are developed to best fit the individual system with a quickly
computed solution, or more optimally a quickly executed one.

3.5 Assembly Robotics

A common application for MRR systems is assembly. This assembly can be directed
either externally to the formation of a superstructure such as a truss or other object,
or internally to the assembly of robots from modules available. These tasks however
have fundamental considerations in common such as the availability of materials,
transport of materials, assembly order, etc. It is also often desirable to have some
decentralized method of assembly so that a malfunction of one component does
not hinder the system, and so that the system can be reconfigured at will. To this
end algorithms have been developed which permit the centralized or decentralized
assembly planning and execution.

3.5.1 Self-Assembly and Self-Repair

Thanks to the interchangability aspects of MRR systems, they are capable of per-
forming operations such as self-assembly and self-repair. These operations contribute
to the robustness and versatility of MRR systems by allowing for damage and failure
scenarios.

Self-repair in modular robots has taken several forms. The intended mecha-
nism is more like self-replacement or self-reassembly; non-functioning modules
are abandoned and replaced with a functional module rather than repaired per se.
Regardless, this mechanism is highly useful, and relatively less costly the more units
exist in the system. The ‘Unit’ systems (2D, 3D, and Micro Unit) have demonstrated
the capability for self-repair by moving defective modules out and replacing them
with (previously) redundant modules [24]. This is due in part to the fact that each
module is capable of moving a damaged module and disconnecting from it. These
are essential qualities of the design for this kind of self-repair since the functions of
the defective module cannot be relied upon. An alternate kind of self-repair in mobile
clusters occurred with CKBot [51], where the clusters were attached manually and
then kicked apart (Fig. 3.16). The clusters were then able to self-right, locate other
clusters and cooperatively reassemble.

Self-assembling systems like Molecube [54] and White et. al’s systems [45] are
capable of creating large structures from very simple modules. Sambot has demon-
strated self-assembly [44]. Self-assembly of structural components using an expand-
ing spray foam has been accomplished to support standalone clusters of modules
and create a conglomerate robot [32]. A more complete survey of self-assembly in
robotic systems can be found in [15].
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Fig. 3.16 CKBot Self-Reassembly procedure

A term that incorporates self-assembly is Programmable Matter. The goal of
programmable matter is to have amassive conglomeration of very small mechatronic
devices capable of reassembling themselves from one form to another. While the
types of systems we have seen already may someday be capable of this kind of
application, at present they are too large and make use of technology that is difficult
scale down (i.e. electric motors, which lose strength relative to their size very quickly
as they scale down). Therefore, alternative systems have been implemented to combat
these kinds of problems.

The Pebbles [12] system, mentioned earlier, makes use only of EPmagnets which
is easier to reduce in size. The X-bots [46] system mentioned above uses inertia to
move one or two modules about a lattice at a time. The RATChET system demon-
strates how a system can be constructed using a long chain and two external actua-
tors by a combination of inertia and smart design [47]. This implementation allows
shapes to be formed from a chain of N modules, while keeping the number of actua-
tors constant, and off-board of the modules. A typical formation sequence is shown
in Fig. 3.17. Connection between modules is magnetic, with magnets being released
into the ‘active’ (ready to connect) position by SMA wire. By activating the correct
magnets and correctly utilizing external actuation nearly any shape can be formed
from a chain of these modules.

Stochastic configuration of passive components on a lattice has been done at
several different scales, mostly by Tolley, Lipson, et al. [16, 39, 40]. This is accom-
plished in a fluidic environment with an array of ports set up to perform as either
source or sink. Totally passive mechanical modules with a passive latch are intro-
duced, and then allowed to settle into the area around the desired sink(s), where they
latch, reaching the desired assembly before being released. Larger structures require
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Fig. 3.17 RATChET Chain assembling under external actuation [47]

(a)

(b)

Fig. 3.18 Fluidic Systems a Microfluidic components in assembly procedure. Hydrodynamic
forces accomplish the relative motion of the modules, with latching beginning a natural mechancial
consequence of the shapes being forced together, b A three-dimentional fluidicstocgastic system.
Each module is 1cm in size, and is latched mechanically to its neighbors. Array of ports is visible
at the bottom of the tank

re-trapping an assembly already made in a different orientation so that additional
parts can be added. Since different control is required to attract, repel, and latch the
modules, visual feedback is required. This means that presently the systems are not
autonomous but rely on the input from a human operator. The system also relies
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on stochastic motions present in the environment to attract modules, and have them
approach in a way that results in alignment. Examples of these systems are shown
in Figure 3.18.

3.6 Conclusions and the Future of MRR

MRR systems hold the promise of being versatile, robust and low cost. Several lattice
and hybrid systems have been presented in the literature both in 2D and 3D. The
lattice structures utilized have mostly been square or cubic but other lattice shapes
have shown to be useful as well. These systems assemble, repair, and reconfigure
themselves in various ways which enable versatile and robustly functional robotic
systems.

In the future, we hope to see MRR systems which become smaller, stronger, and
more numerous to enable greater utility. To date there are dozens of groups around
theworld working on these systems, from both hardware and software points of view.
With the continued progress of the research literature the three promises of MRR
systems will be seen.
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Chapter 4
Lattice-Based Modular Self-Reconfigurable
Systems

Kohji Tomita, Haruhisa Kurokawa, Eiichi Yoshida, Akiya Kamimura,
Satoshi Murata and Shigeru Kokaji

Abstract This chapter presents a review of research related to self-reconfigurable
systems at AIST, particularly addressing their lattice nature. Mainly, three systems
are described: Fractum in a 2D hexagonal lattice, and 3D units and M-TRAN in a
cubic lattice. Each has distinctive characteristics. Their basic design, reconfiguration
methods, and physical implementation issues are discussed and compared.

4.1 Introduction

Typical conventional robots and mechanical systems comprise components of vari-
ous kinds such as structural elements, mechanisms, and actuators. Components are
arranged carefully. The mechanical connectivity among the components does not
change. When a robot’s task is fixed or its environment is known well in advance,
such a design is crucial for realizing high precision, durability, and efficiency in terms
of time, space, and energy.
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arbitrary initial configuration

<self-assembly process>

<self-repair process>

failure cut off

self-repair using
spare units

self-assembly to goal configuration

Fig. 4.1 Self-assembly and self-repair [1]

We have beenworking on robotic systems comprisingmany identical components
called units, similar to living systemswith their constituent cells and identical genetic
information. The units are assumed to have the ability to change their mutual con-
nections independently. Such systems, called modular self-reconfigurable systems,
have the following potential benefits.

• Adaptability: Depending on the change of its environment or task, the system can
adapt its configuration and function.

• Scalability: Depending on the number of units, different structure and function
can be realized.

• Redundancy: Malfunctioning units can be replaced.
• Reliability: The system can continue working in spite of component failures.

Modular self-reconfigurable systems are well suited for self-assembly and self-
repair, which is difficult to realize using conventional robots. A process of self-
assembly and self-repair is presented in Fig. 4.1. The system assembles itself into a
target configuration and achieves its function. If some part is damaged, the system
repairs itself and recovers its functionality by cutting off the damaged parts and
reassembling itself again using undamaged spare units.

For designing modular self-reconfigurable systems, it is helpful to make a lattice
constraint so that the rest positions of the units are restricted to the grid points of a
lattice. The translational and rotational symmetry and the regularity of lattices reduce
the complexity of modular self-reconfigurable systems both computationally and
mechanically. Computationally, it is important that each unit has at most a certain
fixed number of neighboring units. For instance, by assigning a discrete state to
each unit and by providing state transition rules described in a uniform manner, the
global state or configuration of the system can be controlled as in cellular automata
[2, 3]. Mechanically, restricting the rest positions of the units to grid points reduces
complexity in the design of motions of the units. For instance, global reconfiguration
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can be achieved by repetitive local reconfiguration such that a unit on a grid point
moves to an adjacent vacant grid point. Such local reconfiguration is much simpler
because the possible movements are few.

In spite of the theoretical simplicity, their hardware implementation brings much
difficulty. Numerous lattice-basedmodular self-reconfigurable robots have been pro-
posed [1, 4–6]. Many have only been implemented in a few hardware units or only
in simulation. This chapter presents a review of our three lattice-based hardware
systems: Fractum, 3D units, and M-TRAN. Among these three systems, the for-
mer two were intended mainly to simulate an ideal lattice-based system. M-TRAN
was intended to function by itself as a real machine or a robot capable of robotic
motion by continuous actuation. This survey presents a review of their basic designs,
reconfiguration algorithms, and hardware implementation, and discussion of general
problems of lattice-based mechanical systems.

4.2 Fractum

The Fractum is our early prototype system based on the 2D hexagonal lattice [7–9].
Using this system,we developed several algorithms for self-assembly and self-repair.
Then we conducted experiments to demonstrate its feasibility.

4.2.1 Basic Design

Figure4.2 is a schematic view of a Fractum unit. Nomovable part exists in any single
unit. Self-reconfiguration is done by controlling magnetic force.

permanent magnet

electromagnet

electromagnet

optical receiver

optical receiver

optical transmitter

optical transmitter

ball castor

Fig. 4.2 Schematic view of Fractum [1]
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Fig. 4.3 Basic functions of
Fractum. a Change
connection, b Cut connection,
c Transportation [1]

(a) (b)

(c)

A Fractum unit has a three-layer structure. Permanent magnets are placed in the
round parts of the top and bottom layers. Electromagnets are placed in the round
parts of the middle layer. The round parts are called arms. By attractive or repulsive
force between an electromagnet of a unit and permanent magnets of another unit,
the arm of the former unit is attracted to or repelled from the arm of the latter unit.
Using this, as shown in Fig. 4.3, changing the polarity of electromagnets realizes (a)
change of connective relation between neighbor units, (b) connection cut, and (c)
transportation of a unit.

When two units are connected, bidirectional communication is possible between
them using the optical transmitters and receivers embedded in the arms. It is used
for transmitting units’ states.

4.2.2 Algorithm I

A reconfiguration method based on the local connective relation is presented. To
make the best use of physically distributed characteristics of the units, it is desirable
that every unit have the same software and that the overall system be controlled
in a distributed manner without global information to the greatest extent possible.
We consider describing a global configuration as a collection of local connective
relations.

Each Fractum unit has six connecting arms, and their connective relations are
classified into the 12 types shown in Fig. 4.4a. Using these types, the global configu-
ration is described. For instance, a triangle in Fig. 4.4b includes three types: o, K and
s. Every type o unit has two neighbors with type K. Such a local connective relation
is written as ‘o (K, K)’. Similarly, units with type K have neighbors with type o, K,
K, and s, and units with type s have six neighbors with type s. This configuration is
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Fig. 4.4 Connection types and triangular configuration [1]

therefore described as

o(K,K),

K(o,K,K, s),
s(K,K,K,K,K,K).

We regard it as a target description.
To achieve a target configuration from an arbitrary initial configuration, each

unit is assumed to be given a common target description. Then, depending on the
local connective information obtained by communication with the neighbors, each
unit repeatedly changes its connection if necessary. The outline of the process is as
follows. Each unit calculates its distance of the current local configuration to the
given target configuration. If this distance is zero for a unit, then the current local
configuration matches some part of target configuration and the unit need not move.
If the distance is zero for all units, then the process is regarded as completed and no
unit moves. Otherwise, a unit with large distance moves randomly to the right or left.

Hardware experiment of this method using 11 units with the target description (1)
is shown in Fig. 4.5.

4.2.3 Algorithm II

Using the method described above, when the structure is large, the system does not
always converge to the goal configuration. To improve the success rate and speed of

Fig. 4.5 Reconfiguration experiments using Fractum [1]
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convergence, it is effective to provide information not only of the final configuration,
but of the intermediate configuration in each construction step.

Figure 4.6 presents an image of the second algorithm. The idea is that a connection
network is developed hierarchically from a unit called a kernel, and that undiffer-
entiated units, which are encircling the circumference, are supplied at necessary
locations.

Information at each stage is described using the connection types explained above
in the form of a lower triangular matrix called a description matrix. From a given
target shape, its corresponding description matrix can be generated automatically.
Figure 4.7 shows an example of a description matrix and its corresponding con-
figuration at each step. The connection network is generated step-by-step, and the
connection type of each unit at each step is described in the matrix. For instance, at
stage 4, three units are added, all with type o. They change their types to ε at stage
5, and have type K at stage 6 and later.

When a failure occurs, the system can execute self-repair by cutting off the faulty
part and returning to a previous stage. Figure 4.8 shows a simulation of self-assembly
and self-repair using this method.

4.2.4 Meta Unit

A group of several units that are arranged in a larger lattice and which have reconfig-
uration capability as a group in the larger lattice are called meta units. Meta units are
intended not only to mimic the original behavior, but also to have more flexibility.

Fig. 4.6 Algorithm II [1]

kernel

circulation of
undifferentiated units

hierarchical 
development of
connection network
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(a) (b)

Fig. 4.7 Description matrix and configuration at each stage [1]

Cut-off

Fig. 4.8 Simulation of self-assembly by Algorithm II

For instance, one can consider a meta unit for Fractum. Using the original units,
in the configuration in Fig. 4.9a, it is not possible for the gray unit to move downward
and pass through a gap. Using a meta unit composed of 24 original units in Fig. 4.9b,
however, by appropriately designing a moving sequence, the gray meta unit can pass
through a gap and perform the prohibited motion (Fig. 4.9c).

From a practical perspective, implementing meta units requires many original
units and is not so easy. However, when the movability of the original unit is not
enough, introducing meta units is effective, as described later with M-TRAN.
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(a)

(c)

(b)

Fig. 4.9 Meta unit for Fractum [1]

4.3 3D Units

Our next system is Three Dimensional Universal Connection System (called as 3D
units) [10], which is an extension of 2D hexagonal lattice of Fractum to cubic lattice.

4.3.1 Design

Each 3Dunit occupies a grid point in the cubic lattice. Figure 4.10a shows a schematic
view of a unit. Each unit has one rotation arm with a connecting hand in every
six directions. The hand is for connection and disconnection. The arm is for local
reconfiguration by pairwise motion; rotation of itself and its neighbor depending
on connective situation. Such rotation enables local reconfiguration as shown in
Fig. 4.10b, c. We assume that unit X and unit Y are connected, and that both are
connected to their own lower units. Reconfiguration is performed by the following
steps:

1. Unit Y and unit Z cut their mutual connection.
2. Unit X rotates the lower arm for 90◦ around the b axis, resulting in the position

change of unit Y.
3. Unit Y and its lower unit connect each other.

Figure 4.11 shows the developed hardware units.

4.3.2 Reconfiguration

A reconfiguration method based on local connection types, which is an extension of
the Algorithm I for Fractum, was developed.
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Fig. 4.10 Schematic view of the 3D unit and basic function

Fig. 4.11 3D units hardware

In this system, nine connection types exist, as shown in Fig. 4.12a. Figure 4.12b
shows simulation steps using 12 units for constructing a target shape described as

C31(C31,C31,C41),
C41(C31,C31,C41,C41).
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(b)

(a)

initial state (ladder shape) after 20 steps after 40 steps after 70 steps
(completed)

Fig. 4.12 Connection types and reconfiguration simulation of 3D units. a Connection types of 3D
units, b Reconfiguration simulation

4.4 M-TRAN

WedevelopedModular TRANsformer (M-TRAN)by simplifying the 3Dunits so that
two units are mechanically combined into a module [11–17]. Each module has only
two rotational degrees of freedom, but modules have 3D reconfiguration capability
as a group.

4.4.1 Design

An M-TRAN module comprises three parts: an active block, a passive block, and
a link between them, as in Fig. 4.13. Each block has the shape of a half-cube and
half-cylinder, and can rotate 180◦. Each block has three flat surfaces for connection.
An active block connects only with a passive block of another module. Because of
the parity property of the cubic lattice, this polarity is not a restriction.

In contrast to the previous two systems, M-TRAN is largely asymmetric, i.e.,
possible motions by an M-TRANmodule differ depending on its posture. For exam-
ple, if we assume that a single module is placed on a plane filled with modules as
in Fig. 4.14, the module can move by rolling (a) or pivoting (b), depending on its
posture. These two postures can be changed mutually with the help of an additional
module as in (c). In many reconfiguration sequences of M-TRAN, cooperation of
two or more modules in this manner is indispensable.
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Fig. 4.13 Schematic view of M-TRAN module

Fig. 4.14 Motions of M-TRAN modules

4.4.2 Reconfiguration

Designing the reconfiguration procedure ofM-TRANmodules is not straightforward
because the possible motion and connection of amodule is restricted by its simplicity
and anisotropy. Two neighboring modules in the lattice cannot always be mutually
connected because of the limited number of connecting surfaces on each block. A
module’s motion is also restricted by nearby modules because of collision.

We have manually developed various reconfiguration sequences for small scale
reconfiguration up to 10modules, including transformation of a four-legged structure
to a linear structure and its reversal (Fig. 4.15a, e).
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Fig. 4.15 Reconfiguration experiments from a four-legged robot to a linear robot [1]

This small scale reconfiguration is fromone initial configuration to another. There-
fore, it is different from self-assembly as discussed in the previous sections. To realize
self-assembly for a larger reconfiguration, using meta units and introducing regular-
ity to the whole system is beneficial. Herein, we present some regular structures for
reconfiguration.

The first is shown in Fig. 4.16a: meta-modules, each of which comprises four
modules, are connected linearly. A pair ofmodules called a converter is attached. This
structure is capable of flow motion by the repetitive reconfiguration of transporting
the tail meta module to the head position. Turning horizontally or vertically is also
possible when assisted by the converter.

The second one (Fig. 4.16b) is a simpler structure for linear flow motion. It
comprises two lines of modules. Reconfiguration of this structure was confirmed
experimentally.

The next structure is two-dimensional, as shown in Fig. 4.16c. Each meta module
comprises four modules. If this structure with sufficient number of modules is placed
on a plane, then it canmove to a desired direction by flowmotion and can take various
2D shapes (Fig. 4.16d).

The final structure is three-dimensional (Fig. 4.17). Eachmeta module is the same
as the previous one, but meta modules are connected in a different way to constitute
the cubic lattice. Local reconfiguration procedures formetamoduleswere developed,
but it will be difficult to realize on earth because of gravity.

Individual reconfiguration processes for each step motion require much commu-
nication and control including connection and disconnection and rotation, but dis-
cussion of the related details is omitted here. By describing them as state transition,
the processes can be, in principle, formulated directly as finite state automata.

4.4.3 Robotic Motion

Webriefly introduce roboticmotion byM-TRANmodules by relaxing the lattice con-
straint. After reconfiguration into an appropriate structure under a lattice constraint,



4 Lattice-Based Modular Self-Reconfigurable Systems 89

Basic structure with converters Cluster flow motions

(a)

21

3 4

(b)

1

3

2

4

(c)

(d)

Fig. 4.16 Regular structures of M-TRAN [1]
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Fig. 4.17 3D regular structure of M-TRAN

Fig. 4.18 Various locomotion patterns

the modules as a whole can perform robotic motions such as walking. Figure 4.18
shows locomotion experiments of four-legged and linear robots. In fact, locomotion
control for each robot is based on a central pattern generator (CPG), the network of
which was obtained by a genetic algorithm.

4.5 General Problems of Lattice-Based Mechanical Systems

In this section, we examine hardware issues of general lattice-based systems. Among
the three systems described above, the former two, namely Fractum and the 3D units,
were intended mainly to simulate ideal lattice-based systems. An ideal system is a
distributed physical system comprising many identical units. Each unit is considered
simple both in motion and in information processing capabilities and each produces
motion according to local rules or local decisionmaking such as a cellular automaton.
It can be as small as a molecule or a biological cell, so physical and mechanical
realization was not the main objective, and mechanical performance was not an
issue. Development of these systems actually left behind many physical problems.
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The three generations of M-TRAN, namely M-TRANs I, II, and III, were devel-
oped to overcome such problems in mechanical realization. It was aimed to work by
itself as a real machine or a robot. Designs of two types were combined, which were
designated afterwards as lattice-based and chain-based. Improved performance of
the unit was necessary because a chain-based modular robot as a whole must work
as a locomotive robot (Fig. 4.18) under rather centralized control.

4.5.1 Improvement in M-TRAN Hardware

AnM-TRANmodule equips stronger actuators and a more powerful microprocessor
than the other two systems. Each cubic block of anM-TRANmodule equips only one
actuator for motion, so a module needs to carry other modules for reconfiguration.
For robotic locomotion, such as walking in a legged configuration (Fig. 4.18), a
small number of joint motors must support and move the whole body, so a stronger
actuator is necessary. At the same time, joints’ motion must be synchronized among
modules, and modules need to respond fast to an input to a module’s sensor. If
dynamic control is sought, more complicated numerical processing is necessary.
Therefore, an M-TRAN III module has a fast processor (32 bit CPU, SH-II; Renesas
Electronics Corp.) and fast and global inter-module communication (CAN bus).

Each module of M-TRAN II and III has a battery. This not only made the whole
body locomotion possible but also helped reconfiguration as a lattice-based system.
For Fractum and 3D units, their reconfiguration invariably made tethers for power
supply tangle. To address this problem, M-TRAN I was designed so that a single set
of tethers is connected at one end of the whole system and power is transmitted to
all the units via connection. This method, however, proved to be ineffective because
the transmission loss was too large when several units were connected serially.

4.5.2 General, Physical Problem in Modular
Reconfigurable Systems

As a lattice-based system,M-TRAN is based on a cubic lattice, but a singleM-TRAN
module comprises two cubic units. This design presents the important benefits of
solving problems encountered by Fractum and the 3D units. Simultaneously, it
presents many shortcomings. Each such problem and corresponding design solu-
tion relates to others. It is not easy to analyze problems systematically and to derive
a design guide. Here, some general and important issues will be explained along with
a brief introduction of others [1].
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(a) (b)

(e)(d)(c)

Fig. 4.19 Collision avoidance by parallel axismotion. Although collision is unavoidable by a single
axis motion as in b, two axis motion avoids it as c, d, and e

4.5.2.1 Unit Shape

With a lattice-based logical system, it is considered that any unit in a cell can move to
its adjacent neighbor void cell based on its state, its neighbors’ states, and the rules.
With a physical system, such motion is not always possible depending on the unit
shape, kinematic design, local configuration, and physical performance of actuators.
Although a circular or spherical unit can move without colliding with other units, a
square or cubic unit cannot always do so, depending on its motion mechanism and
surrounding units. However, a circle or a sphere contacts with its neighbor only via
a point, which makes it difficult to ensure a rigid connection and strong actuation. A
square or a cube is beneficial not only in terms of precision, rigidity of connection, and
in actuation strength. It also makes a larger interior space useful for the installation
of mechanisms, actuators and circuits. In the case of M-TRAN, with its semi-cubic
shape, a problem of collision is partially relaxed by two parallel axes of a single
module (Fig. 4.19).

4.5.2.2 Geometric Error, Structure, and Deformation

In contrast to identical units of an ideal lattice-based system, any mechanical product
invariably has errors in its geometry. In actual production performed by a precision
machine, elements are selected and combined with others so that the error of one
element compensates an error of others. Regarding a modular system, all the units
must fit at any position. Such compensation is not possible (Fig. 4.20).

With geometric errors,multiple units cannot fit perfectly, so the elasticity of units is
necessary to assemble units. In the usual case of assembling a machine or a structure,
no element is assembled tightlywhen it is assembled to others, but all the elements are
tightened gradually to distribute stress and strain over the whole body. Such gradual
tightening is not considered for a lattice-based machine. Therefore, when units are
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C

d1
d0d0

Fig. 4.20 Problem of geometric error. If d1 > d0, then A cannot move into the gap separating B
and C

(a) (b)

Fig. 4.21 Building a large structure. a Irregular units, b Non-uniform strain

Connection failure

Controllable axis
Motion not possible

Deformation

Connection success

Temporary support

(a) (b) (c)

Fig. 4.22 Deformation and control. a Gravitational bending of a cantilever beammight cause large
misalignment and connection failure. b Deformation in a is avoided using a supporting module. c
Without sufficient motion DOFs, deformation in a cannot be corrected by control

assembled adding one after another, error will accumulate so that with some number
of units, a new unit cannot be added without violating some deformation limit or an
actuator’s maximum output (Fig. 4.21).

However, elasticity cannot be set too weak. With weak elasticity, deformation
of a cantilever beam under gravity might become so large that other units cannot
move into the space under the beam or large positioning error might produce an
unsuccessful connection (Fig. 4.22a).

Consequently, elasticity and rigidity are required simultaneously.Their proper bal-
ance cannot generally be attained using a conventionalmechanical system.Regarding
M-TRAN, this problem is sometimes avoided by the meticulous design of a recon-
figuration sequence. For example, such a vulnerable part as a cantilever beam is
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temporarily supported by another module (Fig. 4.22b). This method of avoidance,
however, tends to require planning of the whole system. For that reason, a distributed
and decentralized nature of a lattice-based system is not always attained.

4.5.2.3 Density

Because an M-TRAN module lacks full symmetry for a cubic unit, it must carry at
least one other unit for reconfiguration; its actuator needs to lift its half part plus
at least another full module. When an actuator and a battery of sufficient power
are given, the weight of a module is roughly determined. With a given weight, and
with available force and torque, the smaller the module, the greater the number of
modules that can be lifted. Therefore, a higher density of a module is better. Actually,
M-TRAN II and III are, although not optimized, quite packed. With its current size,
i.e., of about 650 mm cube, it’s unlikely that drastic, mechanical improvement in
M-TRAN can be made if it is produced using currently available technology.

4.5.2.4 Control

Robotics can be regarded as a science of intelligence in mechanical control. If a mod-
ule’s geometry is not sufficiently precise or if structural deformation is not negligible,
then some control or adaptation should be integrated into the system.

Designing a module to have controllability of geometry might make the problem
worse, making the module more complicated and heavy, hence more vulnerable to
external forces and easier to deform. For a single module, to measure or correct
misalignment as in Fig. 4.22a is not easy and mostly impossible. Cooperation of
multiple modules is also not a solution, because sensors and actuators of surrounding
modules do not always possess sufficient degrees of freedom for feedback control as
shown in Fig. 4.22c. Consequently, a straightforward approach to feedback control
is not practical, and is, from the very first, not a proper approach to a lattice-based
mechanical system, in which an ideal unit is presumably able to move from one cell
to another with a switching motion.

ForM-TRAN, each actuator is position-controlledmostly at five discrete angles in
45 deg step. There is no position sensor except angle sensors for the servo controllers
and a sensor detecting completion of connection with another module. With such a
setting, the modules’ motions were controlled in a feed-forward manner. Feasible
sequences of reconfiguration such as those in Figs. 4.15 and 4.16c were designed
and examined in experiments using a trial-and-error process.

4.5.3 Achievement by M-TRAN

In case of small-scale self-reconfiguration, in which up to 10 modules change their
configurations among pre-designed robotic ones, M-TRAN III modules realized
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many steps of lattice-based transformations with a small failure ratio. In such cases,
geometric errors were not severe. Because robotic motions are intended after recon-
figuration, synchronized re-tightening of the whole connection was made to relax
possible concentrated strain in the whole structure, thereby avoiding the problems
described above in Sect. 4.5.2.2.

Self-reconfiguration in a larger structure as shown in Fig. 4.16c, avoided the
problems presented in Fig. 4.20 and Fig. 4.21 because the structure is planar and is not
fully packed but instead contains spaces. Some trials of reconfiguration experienced
connection failures because of the problems explained in Sects. 4.5.2.2 and 4.5.2.4.
So various sequences of reconfiguration for the same target configurations were
designed and experimented, and better ones were selected.

Truly three-dimensional structures resembling those shown in Fig. 4.16d and
their self-reconfiguration were not tried. They seem far from feasible by the current
M-TRAN system because of the problems and difficulties described above.

4.6 Conclusions

We have reviewed self-reconfigurable robots particularly addressing their lattice
nature. Three systems, Fractum, 3D units, and M-TRAN, were described. Hardware
problems were discussed while taking M-TRAN as a typical case.

Although all the systems, based on latest mechanical and electronic technology,
have achieved fairly useful results verifying a lattice-based system, assigning too
much emphasis to such mechanical and electronic realization might lead to a dead
end. Considering discussions presented in the previous section, the feasibility of a
lattice-basedmechanical system in general is not assured even when several numbers
of units are developed and only with them, varieties of lattice-based motions are
verified by experimentation. A breakthrough beyond the achievements of research
and evaluations of modular robotics conducted in the past will require considerable
numbers of new ideas related to design and a new method of manufacturing and
working with vast amounts of units in a simple manner and at low cost.

Recent technologies, such as microfabrication and nanofabrication, DNA tiling,
and other molecular nanotechnologies, seem promising. For example, DNA nan-
otechnology can producemolecular-scale components such as structures, logic gates,
sensors, and actuators, which, if integrated properly, can realize molecular scale
robots. Working in liquid might mitigate most of the problems listed above. More-
over, a chemical power supply can be made to all units without tethers and batteries.
Controllable microparticles or microshells are anticipated for various applications
such as drug delivery, such that drugs are contained, transported, and released by
micro shells.

For the future development of such systems, the study of robotics is no doubt
indispensable.Moreover, the fusion of diverse disciplines of science and technologies
will be strongly required, such as nanotechnologies, molecular biology, information
technology, and systems science including the study of lattice-based systems.
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Chapter 5
Speed Control on a Hexapodal Robot Driven
by a CNN-CPG Structure

E. Arena, P. Arena and L. Patané

Abstract Locomotion control in legged robots is an interesting research field that
can take inspiration from biology to design innovative bio-inspired control systems.
Central Pattern Generators (CPGs) are well known neural structures devoted to gen-
erate activation signals to allow a coordinated movement in living beings. Looking
in particular in the insect world, and taking as a source of inspiration the Drosophila
melanogaster, a hierarchical architecture mainly based on the paradigm of a Cellular
non-linear Network (CNN) has been developed and applied to control locomotion in
a fruit fly-inspired simulated hexapod robot. The modeled neural structure is able to
show different locomotion gaits depending on the phase locking among the neurons
responsible for the motor activities at the level of the leg joints and theoretical con-
siderations about the generated pattern stability are discussed. Moreover the phase
synchronization between the leg, altering the locomotion, can be used to modify the
speed of the robot that can be controlled to follow a reference speed signal. To find
the suitable transitions among patterns of coordinated movements, a reward-based
learning process has been considered. Simulation results obtained in a dynamical
environment using a Drosophila-inspired hexapod robot are here reported analyzing
the performance of the system.

5.1 Introduction

Gait generation and locomotion control in artificial systems are extremely important
to build efficient and highly adaptive walking robots. Since the last decade a huge
effort has been paid to discover and model the rules that biological neural systems
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adopt to show efficient strategies for generating and controlling the gait in animals
andmanage the efficient transition among different patterns of locomotion. Thework
here presented is in line with the on-going studies on the insect brain architecture
[1, 2]. In particular a huge effort has been paid recently to design block-size models
for a number of different parts of the fly Drosophila melanogaster brain, to try
to attain perceptual capabilities and to transfer them to biorobots. In the field of
Bio inspired cognitive Robotics, the paradigm of Cellular Nonlinear Networks, the
continuous time extension of cellular automata, has been widely exploited for their
capabilities of complex spatial temporal pattern formation, both in the steady state
regime [3, 4], and through dynamical attractors [5].

Regarding the Neurobiological studies on the fly motor control, while it is already
knownwhich are the centers involved in visually guided orientation control behaviors
(i.e. Central Complex) [6–8], it is not clear how the high level controller acts at the low
level, to finely modulate the neural circuitry responsible for the locomotion pattern
generation, steering activities and others. On the other side, behavioral experiments
are in line with the idea that the fruit fly mainly adopts the Central Pattern Generator
(CPG) scheme to generate and control its locomotion patterns [9–11]. A plausible
CPG based neural controller was then designed, able to generate the joint signals
and the consequent stepping diagrams for the fruit fly. The designed network was
used to control an artificial model of the fruit fly built using a dynamic simulation
environment as will be reported in the next sections.

In literature several CPG-based central structures were developed and applied to
different robotic platforms [12]. Here the possibility to host signals coming from sen-
sors can improve the robot performance in terms of adaptability to the environment
state [13]. The use of dynamical oscillators is also commonly exploited to repre-
sent the overall joint activity of a whole neural group and the different topological
links among the oscillators give the opportunity to develop a rich variety of robot
behaviors [14]. The various locomotion gaits are obtained imposing different phase
displacements among the oscillators, which however, have to maintain in time the
imposed phase synchronization. Adaptive walking and climbing capabilities were
also obtained in real and simulated hexapodal structure referring to CPG realised via
CNN architectures [15, 16]. However, only a few works deal with the problem of
stability of the obtained gait, which is indeed a crucial aspect to be analyzed. In the
proposed work a network of coupled oscillators is used to control the 18 DOFs of
a Drosophila-like hexapod structure. To create a stable gait generator, a two layer
structure is used to uncouple the gait generation mechanisms from the low level actu-
ation of the legs that present different peculiar kinematics structures. To guarantee
the stability of the imposed locomotion gaits, the partial contraction theory [17] has
been suitably applied. The proof of convergence to every imposed gait thanks to the
particular tree structure of the proposed CNN network is guaranteed. The defined
CPG is then available to control the locomotion of an hexapod simulated robot with
a variety of gaits that can be obtained changing the phase relations between the
interconnected neurons dedicated to each leg. In Nature the locomotion pattern is
changed in time depending both on the environmental constraints and on the speed
imposed by the internal state of the insect. Therefore we proposed to include, as a
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higher controller a neural structure similar to aMotorMap. This neural net creates an
unsupervised association between the reference speed that, together with the actual
speed, is given as input, and the phase value used to synchronize the CPG neurons
in order to control the robot speed.

Motor Maps were already used in a number of different complex control issues.
In particular, they were used, together with CNNs, to model bio-inspired perceptual
capabilities implemented on roving robots [18, 19]. An approach similar to that one
presented here already appeared in previous works: there a simplified symmetric
structure was considered for the robot and different controlling parameters at the
level of CPG were taken into account to fulfill the task [20].

In this work the control parameters are exactly the phases among the legs that can
be freely imposed without loosing the phase stability, thanks to powerful theoretical
results recently found in this class of non-linear systems.

In the next sections the complexity of the problemwill be explained to understand
why a linear controller like a PID cannot be used to solve the proposed task.

The learning process was carried out in a dynamic simulation were a Drosophila-
like hexapodal structure was designed. Interesting information on the real stepping
diagrams of the system can be extracted from the environment together with the robot
position and speed in time, in order to evaluate the performance of the developed
neural controller.

5.2 The Neural Network for Locomotion Control

TheCNNbased locomotion controller for our bio-robot follows the traditional guide-
lines that characterize the Central Pattern Generator paradigm. This is divided into
subnetworks. Starting from the lowest level, motor neurons and interneurons are
devoted to stimulate the muscle system for each of the limbs of the animal. The
neural control of the motion of each limb suitably fits the kinematic constraints and
geometric parameters of the limb itself so as to evoke a set of fixed action patterns.
Theway inwhich the different limbmotions are synchronized to achieve an organized
locomotion activity for the animal is managed by a higher level net of Command
Neurons. These generates the suitable phase displacement for the implementation
of a number of different locomotion patterns, which vary according to the environ-
mental as well as to the internal state of the animal. The overall scheme of the neural
controller is reported Fig. 5.1. Where the top layer represents the command system,
whereas the bottom layer accounts for the local motorneuron systems. Among the
different neuron models nowadays available, the authors already had introduced a
neuron model that suitably matched the CNN basic cell, including the nonlinearity
[11]. Its equations are reported below:

{

ẋ1,i = −x1,i + (1 + μ + ε)y1,i − s1y2,i + i1
ẋ2,i = −x2,i + s2y1,i + (1 + μ − ε)y2,i + i2

(5.1)
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Fig. 5.1 Neural network scheme: the top layer generates a stable locomotion pattern, whereas the
bottom layer is constituted by additional sub-networks generating the needed signals for the leg
joints actuation

Here the authors substituted the original Piece wise linear output nonlinearity,
typical of standard CNNs, with its smooth approximation yi = tanh(xi ), uniquely
for simplicity in using mathematical tools for proving stability results.

By using the following parameters for each cell: μ = 0.23, ε = 0, s1 = s2 =
1, i1 = i2 = 0 the cell dynamics is able to show a stable limit cycle behavior [21]. In
this case, the μ value was chosen so as to make the ratio between the slow and the
fast part of the dynamics of the limit cycle next to one, to approximate a harmonic
oscillator; nevertheless, other values can be used to make the system dynamics to
elicit a spiking activity.

Once defined the cell dynamics, the command network is built by locally con-
necting the cells using bidirectional diffusion connections. In particular, the diffusion
effect implements a suitable phase shift among the command neurons, which will
then become drivers for the lower level motor nets controlling each leg. To this
purpose, the cloning templates for the command net can be directly defined through
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rotational matrices R(φ), locally linking the command neurons. Thewhole dynamics
configures as a two layer RD-CNN:

ẋ = f (x) − k · L · x (5.2)

where x is the state variables vector (x1, . . . , x2N )T , N is the number of cells;
f (x) = [ f (x), . . . , f (x2N )]T is the dynamics of the whole uncoupled system; L is
the laplacian diffusion matrix, k is the diffusion coefficient, standing for a coupling
gain.

This equation, written in terms of a standard RD-CNN reads:

ẋi = −xi +
∑

Cell( j)∈Nr (i)

[

Ai; j y j + Bi; j u j + Ci; j x j
]

(5.3)

1 ≤ i, j ≤ N

Here, being the system autonomous, B = 0. On the other hand, the laplacian
operator modulates directly the influences among the state variables; therefore, the
paradigm of the state controlled CNN, introduced in [22] is here used. Being the
CNN cell a second order system it results:

A =
(

A11 A12
A21 A22

)

; C =
(

C11 C12
C21 C22

)

; (5.4)

with

A11 =
⎛

⎝

0 0 0
0 1 + μ 0
0 0 0

⎞

⎠ ; A12 =
⎛

⎝

0 0 0
0 −s 0
0 0 0

⎞

⎠ ;

A21 =
⎛

⎝

0 0 0
0 s 0
0 0 0

⎞

⎠ ; A22 =
⎛

⎝

0 0 0
0 1 + μ 0
0 0 0

⎞

⎠ . (5.5)

C11 =
⎛

⎝

1 cos(φi−1;i ) 0
−cos(−φi−1;i ) d −cos(φi;i+1)

0 −cos(−φi;i+1) 1

⎞

⎠ ;

C12 =
⎛

⎝

0 −sin(φi−1;i ) 0
−sin(−φi−1;i ) 0 sin(φi;i+1)

0 sin(−φi;i+1) 0

⎞

⎠ ;

C21 =
⎛

⎝

0 sin(φi−1;i ) 0
sin(−φi−1;i ) 0 sin(φi;i+1)

0 sin(−φi;i+1) 0

⎞

⎠ ;



102 E. Arena et al.

C22 =
⎛

⎝

1 cos(φi−1;i ) 0
−cos(−φi−1;i ) d −cos(φi;i+1)

0 −cos(−φi;i+1) 1

⎞

⎠ . (5.6)

The parameter d is equal to the number of cells directly connected to the considered
one; this corresponds to the un-weighted degree of the underlying graph. Moreover
zero boundary conditions were considered. The template parameters can be easily
derived considering that, in view of the bidirectional connections, among a given
cell and the neighbors, there exists a precise phase displacement φ which is imposed
using the classical rotation matrix in R2:

R(φ) =
(

cos(φ) −sin(φ)

sin(φ) cos(φ)

)

; (5.7)

More details can be found in [1].
Being the connection matrix L defined as a function of the imposed phase shift

among the oscillators, L imposes a particular locomotion pattern through the associ-
ated Flow Invariant Subspace M [17], which was proven to be a global exponential
attractor for the network dynamics. In fact the particular topology of the RD-CNN,
used as the command neuron net, can be seen as a dynamic undirected diffusive
tree-graph consisting of 9 neurons (see Fig. 5.1). For this particular family of con-
figurations, an important result on the global asymptotic stability was derived [23]:
any desired phase shift among the cells can be obtained if the following constraint
is imposed for the diffusion coefficient k:

k · λ1 > supxi ,tλmax

(

ϑ f

ϑx
(xi , t)

)

(5.8)

where λ1 is the algebraic connectivity of the graph associated to the network [17].
This guarantees asymptotic phase stability to the network, i.e. any desired phase
among the command neurons (which will reflect into a phase shift among the robot
legs) can be obtained. Once the topology is fixed (in terms of cell structure and net-
work tree topology), all the parameters in Eq.5.8 are known: the suitable k value
can be therefore selected so as to make the network converge exponentially to
any arbitrary flow invariant subspace M, defined through the phase displacements
[24, 25].

5.2.1 Leg Motor Neuron Network

Neural signals, consisting in oscillating potentials from the command neuron net,
reach the lower level neural structures innervating each of the limbs. These neurons
have to elicit fixed action patterns synchronized with the wave of neural activity
imposed by the command neurons. It is known that in many insects, including adult
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Drosophila, the six legs move in a highly coordinated way, thanks to a network of
axons coming from the part of the central nervous system located in the thoracic
ganglia and synapsing onto specific muscle set [26]. The motor neuron network that
we are presenting here consists of a series of neurons which are enslaved by the
command neurons and send combined signals to the leg actuators. These signals
are peculiarly shaped so as to adapt to the particular leg kinematic structure. The
particular motor control network designed for each leg can be still considered as a
CNN, since all neurons are characterized by local connectivity and retain the same
structure as in Eq.5.1. One main difference over the command neuron net is that
connections among themotor neurons aremono directional. This gives the possibility
to act in a top down fashion and prevents disturbances acting at the bottom layer to
reach and affect the overall command neuron dynamics. This functional polarity
is common of synapses and frequently met in locomotion control of multi legged
systems, endowed with both chemical and electrical rectifying synapses [27]. This
is really useful for our purposes, since a leg could be even temporarily disconnected
from the command systemwithout affecting the high level organized dynamics. This
can be necessary to perform particular steering maneuvers (like turning on the spot)
or special strategies for looking for a suitable foot bold position. An example of the
neural motor system designed for the front leg of our robot prototype is depicted in
the bottom part of Fig. 5.1. The state variables of the motor neurons are also post-
processed and combined through gating functions, gains, offsets and multipliers to
provide the appropriate Primitive functions controlling the coxa, femur and tibia
joints for each leg. For the case of the rear leg, all neuron oscillators have the same
frequency. For an accurate implementation of themotions for themiddle and front leg,
the presence of cells oscillating at a frequency resulting the double with respect to the
one adopted for all the others is needed. In this case a specific control strategy based
on impulsive synchronization has been implemented [28]. The network designed, in
spite of its apparent complexity, can allowahigh degree of adaptability bymodulating
a small set of parameters.

5.3 Reward-Based Learning for Speed Control

The RD-CNN structure presented above does not show any aspect related to learning
or adaptation. However a highly degree of adaptability is required for a flexible
locomotion control. In this paper we refer on how to introduce a suitable strategy to
modulate the robot velocity. The insect brain computational model recently designed
[1], hypothesizes the presence of two main blocks: the Decision layer and the Motor
layer, which includes theDescription of behaviors. The former, according to specific
drives coming from the internal state of the animal or from specific external inputs,
selects the particular behavior to be taken, whereas the latter is in charge for the
description of the behavior to be implemented in terms of the consequent motor
organization at the level of the limbs. Whereas some of the most basic behaviors
are inherited, some others have to be learned to face with novel circumstances. In
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our specific case of learning speed control, we can assume that the drives impose a
specific speed reference value and this has to be translated into a particular locomotion
pattern that satisfies the control needs. Indeed speed control in hexapod is achieved
modulating both the oscillation frequency of the neural control units and the phase
displacement among the legs. In this work we refer only to the latter strategy which
efficiently produces a modulation of the robot speed. In addition, it is required that
the learning of phase displacement should take place in an unsupervised manner.
To this aim, a particular neural network, known as Motor Map, was used. This
is a generalization of the Self Organizing Feature Maps introduced by Kohonen.
Here specific characteristics of the input patterns are mirrored in specific topological
areas of the responding neurons: the space of the peculiar input pattern feature is
mapped into the spatial location of the corresponding neural activity [29, 30]. This
interesting potentiality can be well exploited for motion pattern generation, leading
to the introduction of the Motor Maps (MMs) [31, 32]. Here the location of the
neural activity within the Kohonen layer is able to produce a trainable weighted
excitation, able to generate a motion which best matches an expected reward signal.
Two layers are so considered: the Kohonen layer, devoted to the storage of learnable
input weights and giving rise to a self organized topographic map, and the motor
layer, where trainable output weights associate a suitable control signal to each
input. The plastic characteristics of the Kohonen layer should also be preserved in
the assignment of output values, so the learning phase deals with updating both the
input and the output weights.

This is an extension of the winner-take-all algorithm. Once defined the dimension
of the topographic map, typically by a trial and error method, and once randomly
initialized the input and output weights, a Reward function is defined, which will
guide the overall learning phase. At each learning step, the neuron q which best
matches the pattern given as input is selected as the winning neuron.

Its output weight is used to perform the following perturbed control action Aq :

Aq = wq,out + aqλ (5.9)

wherewq,out is the output weight of the winner neuron q, aq is a parameter determin-
ing the mean value of the search step for the neuron q, and λ is a Gaussian random
variable with a zero mean. This is a way to guarantee a random search for possi-
ble solutions. Then the increase for the delta Reward Function (DRF) is computed
and, if this value exceeds the average increase bq gained at the neuron q, the weight
update is performed; otherwise this step is skipped. The mean increase in the reward
function is updated as follows:

bq(new) = bq(old) + ρ(DRF − bq(old)) (5.10)

where ρ is a positive value.Moreover, aq is decreased asmore andmore experience is
gained (this holds for the winner neuron and for the neighboring neurons), according
to the following rule:
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ai (new) = ai (old) + ηaξa(a − ai (old)) (5.11)

where i indicates the generic neuron to be updated (the winner and its neighbors), a
is a threshold the search step should converge to, and ηa is the learning rate, whereas
ξa takes into account the fact that the parameters of the neurons to be updated are
varied by different amounts, defining the extent and the shape of the neighborhood. If
DRF > bq , the weights of the winner neuron and those of its neighbors are updated
following the rule:

{

wi,in(new) = wi,in(old) + ηξ(v − wi,in(old))

wi,out (new) = wi,out (old) + ηξ(A − wi,out (old))
(5.12)

where η is the learning rate, ξ , v, win , and wout are the neighborhood function, the
input pattern, the input weights and the output weights, respectively. The subscript
takes into account the neighborhood of the winner neuron.

The steps involvingEqs. 5.9–5.12 are repeated. If onewishes to preserve a residual
plasticity for a later re-adaptation, by choosing a �= 0 in Eq.5.11, learning is always
active.

The idea proposed in this work is to use a hybrid approach joining the real time
computation of RD-CNNs for generating stable locomotion patterns and a Motor
Map as a high layer controller on the CNN-CPG, at the aim to control the speed
of the robot, adapting the phase coordination among the legs. The MM input layer
receives both the actual speed of the robot and the target speed used to evaluate the
actual error. Each neuron provides a control law that modifies the phase displacement
between the legs of the system.

The strategy adopted for the unsupervised modulation of the phases starts from
considering the three stereotyped gaits generally adopted by hexapods and reported,
in terms of phase displacements, in Table5.1. These vary around the tripod gait and
are able to maintain both static and dynamic stability. Here they are implemented
by considering the front left leg L1 as the reference leg and imposing a fixed phase
relation between the front legs (φL1,L1 = 0◦; φL1,R1 = 180◦) for any of the selected
gaits. From the inspection of Table5.1 it emerges that, for example, a migration from
gait G1 to G2 would imply a variation δφL1,L2 = δφL1,R2 = −30◦ and a varia-
tion δφL1,L3 = δφL1,R3 = −60◦. Moreover, referring to Fig. 5.1, the network of
command neurons was designed to leave the possibility to impose the oscillation
phase of each leg independent on that one of the others. This is also allowed from
the theoretical results, discussed previously, which enable any imposed phase dis-

Table 5.1 Phase relation within legs in stereotyped locomotion gaits

Gait type Speed (bodylength/s) φL1,L1 φL1,R1 φL1,L2 φL1,R2 φL1,L3 φL1,R3

G1 0.6 0 180◦ 270◦ 90◦ 180◦ 360◦

G2 0.73 0 180◦ 240◦ 60◦ 120◦ 300◦

G3 0.77 0 180◦ 180◦ 0◦ 0◦ 180◦
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Table 5.2 Parameters used
for the motor map-based
architecture designed to solve
a speed control task

Parameters Value

λ [−40, 40]

η 0.2 + 0.8 ∗ e(−0.6t)

aq 0.8

bq 0

athr 0.2

placement among the legs to be reached exponentially. Of course, phase stability
does not imply the dynamic stability of the gait. For this reason we preferred to move
within the set of stable gaits G1, G2, G3, allowing the MM to find the most suitable
phases to attain the desired speed. Within this plethora of gaits it is envisaged that a
given phase imposed to a specific leg does not affect the phase associated with any
other leg; to this aim the neurons belonging to the central backbone are synchro-
nized and the phase displacements are imposed only to the connections from the
backbone neurons to the outer cells. In this way, referring to Table5.1, it holds, for
example: φL1,R2 = φB2,R2, φL1,L3 = φB3,L3, and so on. This symmetry in the phase
modulation between the right and left side of the structure leads to adopt only two
output trainable weights for the MM. Also the MM acts by adding increments in the
phase displacement among the legs: this is preferable over sharply imposing absolute
phases, that could imply potential loss of stability. In details, one of the two output
weights represents the phase modulation δφB2,L2, (which will also be imposed to
δφB2,R2 for symmetry), the other stands for δφB3,L3 = δφB3,R3. To find the suitable
output weights a reward function that takes into account the speed error is consid-
ered and used to guide the learning process: R = −(speedactual − speedre f )

2. The
learning phase will find the weight set leading R as much as possible close to zero.
The MM parameters used in the following simulations are reported in Table5.2.

5.4 Dynamic Simulator

Tovalidate the approachproposed, a dynamic simulator represents a suitable platform
where these cognitive bio-inspired structures can be simulated, in view of being
implemented in real robot prototypes for real life scenarios. The simulator is written
in C++, and uses Open Dynamics Engine (ODE) as a physics engine to simulate
dynamics and collision detection, andOpen SceneGraph (OSG) as high performance
3D rendering engine [1, 33]. Themainnovelty of this approach consists in the extreme
extensibility to introduce models. In fact, to import robot models in the simulator,
a procedure was developed which starts from models realized in 3D Studio MAX
and provides, using NVIDIA Physics Plugin for 3D Studio MAX, a COLLADA
(COLLAborative Design Activity) description of the model to permit the correct
transport in the simulated environment. In this way, the possibility to simulate own
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Fig. 5.2 Dynamical model of the Drosophila-inspired hexapod robot; the lower left panel reports
the details of the operation range for the three joints of the left front leg, whereas the right bottom
panel reports the kinematic simulation of the hind leg, showing the motion of the feet, cycling
among the Anterior Extreme Position (AEP) and the Posterior Extreme Position (PEP)

environments and robots is guaranteed. The dynamical model of the Drosophila-
inspired robot is shown in Fig. 5.2 where the typical asymmetric design and sprawled
posture is evident. The structure includes a total of 18◦ of freedom, three for each leg.
The legs, like in the real insect, are different in shapes and functionalities. Figure5.2
reports also the operation ranges for the different leg joints for the front leg, as well as
the rotation axes for the leg actuators, drawn by the correspondingMatlab Kinematic
simulation. Here the trajectory spanned by the tip of the hind leg is also reported. The
emerging limit cycle is the result of the application of the three Primitive Functions
arising by the motor neuron net in Fig. 5.1. The robot is equipped with distance
sensors, placed on the head and ground contact sensors located on the tip of each
leg. The dimension is in scale with the biological counterpart with a body length of
about 2.5 mm.

A block diagram showing the complete control structure is reported in Fig. 5.3.
The CPG is able to generate the locomotion patterns of the robot depending on the
control signals coming from theMotorMap for the speed control and from a reflexive
behavior path that can trigger obstacles avoidance behaviors if an object is detected
from the sensors equipped on the robot.
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Fig. 5.3 Block diagramof the control system used to guide the locomotion of the hexapod structure.
The CPG motor signals are modulated by the inputs provided by the Motor Maps for speed control
and by the reflexive path that takes the lead in presence of obstacle to be avoided. The MM receives
in input the reference speed and the current speed whereas the reflexive behavior block is elicited in
presence of an obstacle detected through distance sensors. The MM acts on the CPG by changing
the phase displacement of the middle and hind legs whereas the reflexive block inhibits the learning
procedure for the MM and activates a turning strategy

5.5 Simulation Results

Analyzing the learning process in the proposed architecture we considered to start
from gait G2 as initial configuration. The input related to the target speed, used for
the MM neurons, is important when a time varying speed profile should be followed.
For a first trial we considered a fixed speed, limiting the input to the speed error.
This solution allowed to use a reduced number of neurons to create the map. In
the following simulations a 3x3 lattice was adopted in the Kononen layer of the
MM. To evaluate the mean speed of the robot in the dynamic simulator, soon after
imposing a new phase configuration, a complete stepping cycle is performed to leave
the dynamics to reach a steady state: then the displacement over the two subsequent
stepping cycles is evaluated to have a consistent speed result.

The stepping time imposed by the CPG to each leg is about 1.5 s. The arena used
during the learning process is limited by walls. When the robot detects an obstacle
(or the arena walls) with the distance sensor placed on the head, a turning strategy
is applied. During this avoidance behavior the speed evaluation is stopped and the
learning process waits until the procedure is completed.

The time evolution of the input and output weights after an initial transient is
shown in Fig. 5.4. It can be noticed that each neuron specializes to incrementally
reach the desired solution: the topological arrangement of the Kohonen layer leads
to the specialization of each neuron to a specific range of the input value. The output
weights affect the leg phase displacement and the trend is shown in Fig. 5.5 where
the anterior left leg (L1) that is directly connected with the backbone with zero phase
is considered as reference for all the other legs. The phase relation for the anterior
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Fig. 5.4 Time evolution of the input and output weights of the MM after an initial transient
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Fig. 5.5 Phase displacement in middle and hind legs obtained during learning

legs is not affected by adaptation, as explained above, and remains unchanged during
the learning process.

The performance of the robot when autonomously learning to follow the reference
speed is reported in Fig. 5.6. The initial speed of about 1 bodylength/s changes in
time to reach a steady state solution of about 0.57 bodylength/s that was provided as
reference speed.The same figure reports also the trend of the input weights related
to each of the Kohonen neurons. Their values, after an initial transient, reach their
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Fig. 5.6 Time evolution of the input weights and the robot speed. The target speed is 0.57
bodylength/s and the robot after a transient converges toward this value. Each circle indicates a
measured speed, the distance between each marker is not constant because the speed evaluation is
stopped during the obstacle avoidance behavior

steady state distribution which encodes the unsupervised, topological clustering of
the input velocity space.

The locomotion gait can be analyzed using the stepping diagram that reports the
stance and swing phase for each leg. The experiment reported in Fig. 5.7 shows a typ-
ical simulation starting from the G2 gait configuration: during learning, the imposed
phase from the MM controller onto the legs results in a gait transition, appreciated
through themodulation of the stepping diagramof the robot. This diagram is recorded
acquiring information from the ground contact sensor located on the tip of each leg.
In this way it is possible to better understand the phase relation between legs, also
taking into account the noise intrinsically present in a dynamic environment. Learn-
ing causes the phase locking between legs to change in time, searching for a suitable
configuration that matches the desired speed value. It should be noticed that the
application of the proposed strategy to a dynamic simulator is really similar to the
outcome in a real experiment. Learning the complex map between the error speed
and the corresponding phase displacement to be imposed passes through a series of
unsuccessful trials where, for a given speed error currently provided in input, a trial
phase is applied to the leg: if this choice is a failure, i.e. it does not contribute to an
increase in the reward function, the simulator cannot come back to the previous stage.
Instead it continues with the applied phase looking for a future rewarding choice.

An important element to evaluate the system performance is to test the control
architecture: after 1, 500s of simulation (i.e. in this time window the learning cycles
in the motor map oscillate between 200 and 300) the weight adaptation was frozen
and the network performance was tested. An interesting test is shown in Fig. 5.8,
where a time varying speed profile is given as target to the robot.The robot easily
reaches the first assigned speed of 0.71 bodylength/s and, in a short time, is able to
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Fig. 5.7 Stepping diagram obtained looking to the ground contact sensors placed in each leg tip
of the simulated Drosophila-inspired robot. a The system starts from a phase configuration next to
the gait G2 and evolves in a series of free gaits trying to reach the desired speed. b In the stepping
diagram that corresponds to the area outlined in the panel a the stance phase is shown in black, the
swing phase in white and the legs are labeled as left (L) and right (R) and from front to back with
numbers

readapt the robot gait to reduce the speed to 0.57 bodylength/s to finally grow up
again to the previous reference speed. The phase adaptation in time is also shown:
during the testing phase the leg phases change due to the incremental effect of the
output weights that however remain unchanged in time. As a classical controller, the
learned non linear control law is governed by the varying speed error, provided at
the network input.
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Fig. 5.8 Testing phase with different target speed values. a Time evolution of the robot speed.
The target speed changes from 0.71 to 0.57 bodylength/s and the robot after a transient, converges
toward the reference value in time. b Trend of the phase displacement among the robot legs during
the testing phase

The learning is robust also to different initial configurations of the systemwalking
gait (see Table5.1). Using the same network already learned as previously presented,
the robot is able to reach the target speed also starting from a different gait (i.e. G2
gait) not used as starting condition during the learning iterations. Figure5.9 shows
the followed speed profile that converges to a target value of 0.57 bodylength/s.



5 Speed Control on a Hexapodal Robot Driven by a CNN-CPG Structure 113

0 10 20 30 40 50 60 70 80 90
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Simulation time(s)

B
od

y 
Le

ng
th

/s
mean speed
target speed
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starts from a medium gait configuration that differs from the learning phase where a slow gait was
considered as starting locomotion pattern

At the aim to evaluate the efficiency of the learned control law, the a-posteriori
evaluation of the searching space in the phase domain is significant to enhance the
important role of the MM speed controller. Figure5.10 gives a qualitative idea about
the searching space where the different phase configurations of the legs are related
with the associated robot speed. The searching domain is complex and a non-linear
mapping provided by the MM is needed to find a suitable solution to solve the
speed control problem. To better illustrate the movement on the map the trajectory
(in the space of the imposed phases) is also reported. Starting from a given initial
configuration, the robot reaches the target speed finding the suitable path within the
highly non-linear searching space.

5.6 Conclusions

Modeling neural structures is an important link in a chain connecting together Biol-
ogists and Engineers that cooperate to improve the knowledge on the neural mech-
anisms generating our behaviors and to develop new robots able to show adaptive
capabilities similarly to their biological counterparts. A cellular automata approach
to this problem, extended to the analog time domain with the CNNs, gives an inter-
esting prospective because it easily allows theoretical analysis concerning stability
issue, and also thanks to the mainly local connections between neurons, it creates
a short-cut to the hardware implementation: different solutions are available using
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Fig. 5.10 Map of the searching space where, for each phase pair for middle and hind legs, the
corresponding speed value is considered (i.e. reported in the z-axis). The trajectory followed by the
system in the phase domain during a testing simulation is also reported: the starting point speed is
about 0.89 bodylength/s, the robot reduced it reaching a speed of 0.46 bodylength/s following the
learned trajectory in the phase space thanks to the MM neurons action

both micro-controller and dedicated integrated circuits. A Central Pattern Generator
has been designed to generate the locomotion patterns for an asymmetric hexapod
robot inspired by theDrosophila melanogaster. The integration of a neural controller
based onMotorMaps allowed to adaptively control the robot speed acting on theCPG
parameters. The reported results showed that the dynamically simulated robot was
able to follow a desired speed profile incrementally adapting the phase displacement
between legs. The neural controller shows interesting generalization capabilities to
efficiently respond to novel initial conditions and time-varying speed profiles. This
approach to adaptive speed control has to be considered as a brick within the much
wider design of an insect brain computational model, where adaptive locomotion
capabilities are required to show complex cognitive skills for the next generation of
adaptive intelligent machinesmore andmoremimicking their biological counterpart.
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Chapter 6
Routing by Cellular Automata Agents in the
Triangular Lattice

Rolf Hoffmann and Dominique Désérable

Abstract This chapter describes an efficient novel router in which the messages
are transported by Cellular Automata (CA) mini-robots or so called CA agents.
CA agents are compliant but inconvenient to describe with the CA paradigm. In
order to implement agents more efficiently, the CA-w model (with write access) is
used. Both CA and CA–w models are compared. The other relevant feature in this
chapter is the underlying network embedded into the triangular lattice, with more
symmetries, thereby providing agents with more degrees of freedom. The router
uses six channels per node that can host up to six agents and provides a minimal
routing scheme (XY Z–protocol). Each agent situated on a channel has a computed
minimal direction defining the new channel in the adjacent node. In order to increase
the throughput an adaptive routing protocol is defined, preferring the direction to
an unoccupied channel. A strategy of deadlock avoidance is also investigated, from
which the initial setting of the channels can be alternated in space, or the agent’s
direction can dynamically be randomized.

6.1 Introduction

Problem solving with robots and agents has become more and more attractive [1–6].
What are the benefits to use agents for a given problem? Generally speaking, agents
are intelligent and their capabilities can be tailored to the problem in order to solve
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it effectively, and often in an unconventional way. Important properties that can be
achieved by agents are

• Scalable: the problem can be solved with a variable number of agents, and faster
or better with more agents.

• Tuneable: depending on the agent’s intelligence, the problem can be solved more
efficiently (with a higher quality and faster).

• Flexible: similar or dynamically changing situations can be solved using the same
agents, e.g. when the shape or size of the environment is changing.

• Fault-tolerant: the problem can be solved with low degradation even if some
“noise” is added, e.g. dynamic obstacles or temporary malfunctions appear, or
some agents break down totally.

Owing to their intelligence, agents can be employed to design, model, analyze, sim-
ulate, and solve problems in the areas of complex systems, real and artificial worlds,
games, distributed algorithms and mathematical questions.

Robots or agents controlled by a finite state machine (FSM) have a long history
in computer science [7], sometimes they are simply called “FSMs”, often with the
property that they canmove aroundon agraphor grid. For example, searching through
the whole environment by an FSM was addressed in [8] and graph exploration by
FSM controlled robots was treated in [9]. In order to support the simulation of such
applications special languages like [10–12] have been developed.

6.1.1 Cellular Automata Agents

What is a Cellular Automata Agent (CA Agent)? Simply speaking, a CA agent is an
agent that can be modeled within the CA paradigm. And what are the most important
attributes an agent should have in our context?

1. Self-contained (an individual, complete in itself). In CA, this property can be
realized by one cell, by a part of a cell, or by a group of cells.

2. Autonomous (not controlled by others). Agents operate on their own and control
their actions and internal states. In CA, this property can be realized by the own
state and the CA rule.

3. Perceptive (perceives information about the environment). In CA, this property
is realized by reading and interpreting the states of the neighborhood.

4. Reactive (can react on the perceived environment). InCA, this property is realized
by changing the own state by taking into account the perceived information.

5. Communicative (can communicate with other agents). This property means that
agents can exchange information, either indirectly through the environment (stig-
mergy, e.g. pheromones), or directly by perceiving other agents and reacting on
them in a perceivable way.

6. Proactive (acts on its own initiative, not only reacting, using a plan). In CA, the
cell’s next state should not only depend on its neighbors’ states but also on its
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own state. The number of inputs and states should not be too small in order to
give the agent a certain intelligence to initiate changes and to deal in advance with
difficult situations. And the agent’s behavior is to a certain extent not foreseeable,
it can be influenced by personal secret information or internal events. In CA, this
can be accomplished by hidden states that cannot be observed by the neighbors,
or by asynchronous internal triggers (e.g. random generator). As it is difficult
to define proactivity in a strict way, it is a matter of viewpoint whether simple
classical CA rules (like Game of Life, Traffic Rule 184) shall be classified as
multi-agent systems or not.

7. Local (acts locally). Agents are small compared to the system size and can only
act on their neighborhood. Global effects arise from accumulated local actions.

8. Mobile (this feature is not required but very useful). Very often agents aremoving
around in the environment, and then the neighborhood and the place of activity
are moving, too. When moving around, an agent may also change its local envi-
ronment at the same time.

Usually an agent performs actions. Internal actions change the state of an agent,
either a visible or a non-visible state, whereas external actions change the state of
the environment. The environment is composed of the ground environment (constant
or variable) and the other agents. In CA, an agent is not allowed to change the state
of a neighboring cell. Therefore, if an agent wants to apply an external action to a
neighboring cell, it can only issue a command that must be adequately executed by
the neighbor. For example agent A sends a “kill” command to agent B, then agent
B has to kill itself. This example shows that the CA modeling and description of
changing the environment is indirect and does not appear natural. Other models are
helpful to simplify such descriptions, like the “CA–w model” presented hereafter.

6.1.2 CA and CA–w Models

In order to describe moving agents, moving particles or dynamic changing activities,
the CA–wmodel (Cellular Automata with write access) was introduced [13]. Simply
speaking, this model allows to write information onto a neighbor. This method has
the advantage that a neighbor can directly be activated or deactivated, or data can be
sent actively to it by the agent. Thus the movement of agents can be described more
easily.

The CA–w model is a restricted case of the more general, “Global” GCA–w
[14–16]. In GCA–w any cell of the whole array can be modified whereas in the
CA–w model only the local neighbors can be. Usually the cells of these models
are a composition of (data, pointers). The neighbors are accessed via pointers, that
can be changed dynamically like the data by an appropriate rule from generation to
generation.
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In order to avoid confusion between CA and CA–w, in this context the CA model
can be attributed as “classical model” and the CA–w model as “implementation
model” although both can be used for description and implementation.

What are the capabilities and limitations of CA–w compared to CA? The main
difference is that the CA–w model allows to modify the state of a neighbor. Thereby
the activity of a neighboring cell can be switched on or off and data can actively be
moved to a neighbor, which is very useful for the description and effective simula-
tion of active particles or moving agents. Comparing their computing power, a CA
equivalent to a CA–w with neighborhood N1 can be found by extending N1 to N2
(N1 extended by write-distance). For example a CA–w with neighborhood distance
1 (read and write) is equivalent to a CA with neighborhood distance 2. Because of
this equivalence, both models can be mapped onto each other.

A drawback is the possible occurrence of write conflicts. There are two solutions
to handle conflicts:

• Use a conflict-resolving function, for example by applying a reduction operator
(max, +, ...) or using a random or deterministic priority scheme.

• Avoid conflicts by algorithmic design, meaning that the parallel application of all
rules never cause a conflict.

The second solution is more simple and elegant and many applications with agents
can be described in this way. Our routing problem with agents herein is implemented
by the CA–wmodel, although it is also possible tomodel amore cumbersome system
by standard CA.

6.1.2.1 Modeling Agents’ Mobility

How can an agent move from A to B? In the CAmodel, a couple of two rules (copy–
rule, delete–rule) must be performed (Fig. 6.1a): the first rule copies the agent from
A to B, the second deletes it on A. Both rules have to compute the same moving
condition, this means a redundant computation. Two operating modes allow the
CA–w to avoid this redundancy:

Fig. 6.1 CA model a cell A deletes the agent and cell B copies it. CA–w model b cell A deletes and
copies the agent or c cell B deletes and copies the agent. Active cells executing a rule are shaded
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• Cell A (the agent) is responsible for the moving operation (Fig. 6.1b), it computes
the moving condition and, if true, applies a rule that deletes itself on A and copies
it to B.

• Cell B (the empty front cell) is responsible (Fig. 6.1c), it computes the moving
condition and, if true, applies a rule that deletes the agent on A and copies it to B.

The second mode is used for our problem. In this way, concurrent agents wanting to
move to the same empty channel can easily be prioritized. The differences between
CA–w and classical CA for our routing problem will be illustrated in Sect. 6.3.

6.1.3 Lattice Topology

Choosing the best topology for 2d CA agents is not straightforward. We give some
insight hereafter to clarify our choice of the network used in this chapter to route
agents.

6.1.3.1 Towards an Optimal Tiling

The three regular tessellations of the plane are displayed in Fig. 6.2a where Schläfli
symbol {p, q} gives an exact definition of the tiling [17]. Their associated dual {q, p}
tilings are displayed in (b), whence the three possible regular 2d lattices in (c), either
3–valent or 4–valent or 6–valent [18].

Twousual tessellations for 2d cellular automata are identified in the {4, 4} “square”
tiling and the {6, 3} “hexagonal” tiling. It is observed that the minimal number of
neighbors appears in the hexagonal tiling; moreover, the six neighboring cells are
adjacent. Thereby, there is no risk of wavering as in the {4, 4} case between either
a 4–valent von Neumann neighborhood or a 8–valent Moore neighborhood. This
matter of symmetry among lattices may have important impacts upon the behavior
of their CA. A typical example is well known for lattice-gas automata wherein the
4–valent HPP gas cannot be consistent with the Navier-Stokes equation while the
6–valent FHP ensures consistency [19–21]. Our routing problem herein is embedded
into the 6–valent lattice.

6.1.3.2 Towards an Optimal 2d Finite-Sized Network

Once the valence had been settled, the question is to define a finite-sized toroidal
network.As amatter of fact, there is a relationship between a compatible arrangement
and some associated tessellation of the plane. Tiling the {4, 4} tessellation with a
finite-sized “prototile” is examined in [22]. In general, the topologies related to
plane tessellations belong to the family of multi-loop and circulant networks [23].
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Fig. 6.2 a The three regular tessellations of the plane: {3, 6} with 3–gons, {4, 4} with 4–gons,
{6, 3} with 6–gons where {p, q} is the Schläfli symbol; a triangular cell is surrounded with twelve
neighbors, a square cell with eight neighbors, a hexagonal cell with six adjacent neighbors.
b Associated dual tilings: {6, 3}, {4, 4}, {3, 6} (in dashed lines); {q, p} is the dual of {p, q}.
c The three induced regular 2d lattices: 3–valent, 4–valent, 6–valent

The hexagonal (or triple loop) case was investigated in [24] in order to exhibit
graphs with minimum diameter. They proved that the maximum order of a triple loop
graph with diameter n is N = 3n2 + 3n + 1. The grid representation of the graph is
a hexagonal torus with n circular rings of length 6n arranged around a central node.
Incidentally, this family of “honeycombs” Hn was encountered elsewhere, arising in
various projects such as FAIM-1 [25], Mayfly [26], HARTS [27] and more recently
with the EJ networks [28].

When tiling the plane with Hn prototiles, it can be observed that the axes joining
the center of these prototiles and the symmetry axes of the {6, 3} tiling donot coincide.
On the contrary, we have defined a new family of hexavalent networks stabilizing
the symmetry axes, that provide these networks with the highest symmetry level for
a 6–valent finite lattice. A relevant illustration of this discrepancy between prototiles
can be found in [29].

6.1.3.3 Arrowhead and Diamond

Our networks belong to a family of hierarchical Cayley graphs [30]. As a conse-
quence, this property facilitate as far as possible any routing or global communi-
cation procedure. The graphs of this family are denoted elsewhere as “arrowhead”
or “diamond” in order to avoid confusion with Hn family. The reader is referred
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Fig. 6.3 Arrowhead and diamond with N = 4n vertices for n = 3

to [31] for more details about the genesis of these graphs, displayed in Fig. 6.3, and
some of their topological properties. A very important one is that as Cayley graphs
they are vertex-transitive, that means that any vertex behaves identically. Practically,
this property involves a unique version of router code distributed among all nodes.
It was also shown that these graphs provide a good framework for routing [32] and
other global communications like broadcasting [33] and gossiping [34]. A survey of
global communications in usual networks is given in [35] but we focus hereafter on
the routing problem.

Arrowhead and diamond are isomorphic and the diamond itself is isomorphic to
an orthogonal representation of the “T –grid” like in Fig. 6.5 with n = 2. Therefore,
it is easy to map “T ” into the arrowhead by a simple coordinate transformation. In
the sequel, “T ” –or “Tn” if the “size” n is relevant– will always denote the orthogonal
representation of the diamond. It is interesting to observe that the k–ary 2–cube [36]
(k = 2n herein) can be embedded into by eliminating one direction of link, namely the
“diagonal” direction in the orthogonal diamond. For clarity’s sake, the “S–grid” “S”
–or “Sn” as well– will also denote our 2n–ary 2–cube in the sequel as a subgrid of T .
Note that another family of “augmented” k–ary 2–cubes was investigated elsewhere
[37] for any k but which coincide with Tn only when k = 2n .

The tori are well suited for physical ergodic systems with periodic boundary
conditions [38]. For afinite spacewith robots ormultiagents, non-periodic boundaries
can also be definedwith boundary conditions (bounce-back, absorption and so forth).
To conclude this topological presentation, let us hope that our S–T family might
reconcile von Neumann and hexagonal 2d cellular automata and activate exciting
challenges in CA and robot worlds.

6.1.4 The Problem: Routing

Let us consider the approach based on agents transporting messages from a source
node to a destination node and following aminimal route (or shortest path). The nodes
are connected via twelve unidirectional links, namely two in each of the six directions,
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Fig. 6.4 Each node of the
network contains six buffers
(channels) and is connected to
its neighbors by 6 input and 6
output links

that corresponds with a full-duplex or double lane traffic (Fig. 6.4). Each node is
provided with six channels (sometimes called buffers according to the context) and
one channel may host at most one agent transporting a message. Each agent moves
to the next node, defined by the channel’s position it is situated on. When moving to
the next node, an agent may hop to another channel, defined by the agent’s direction
in its minimal path.

A message transfer is the transfer of one message from a source to a target and
each agent shall perform such a message transfer. A set of messages to be transported
is calledmessage set. Amessage set transfer is the successful transfer of all messages
belonging to the set. Initially k agents are situated at their source nodes. Then they
move to their target nodes following their minimal path. When an agent reaches its
target, it is deleted. Thereby the number of moving agents is reduced until no agent is
left. This event defines the end of the whole message set transfer. Note that the agents
hinder each other more at the beginning (due to congestion) and less when many of
the agents have reached their targets and have been deleted. No new messages are
inserted into the systemuntil allmessages of the current set have reached their targets.
This corresponds to a barrier-synchronization between successive sets of messages.
Initially each agent is placed on a certain channel (with direction to the target) in the
source node and each agent knows its target. The target node of an agent should not
be its source node: message transfers within a node without an agent’s movement
are not allowed.

The goal is to find an agent’s behavior in order to transfer a message set (averaged
over many different sets) as fast as possible, that is, within a minimal number of
generations.Weknow frompreviousworks that the agent’s behavior can be optimized
(e.g. by a genetic algorithm) with respect to the set of given initial configurations, the
initial density of agents, and the size of the network. The goal is not to fully optimize
the agent’s behavior but rather to design a powerful router with six channels that
outperforms the ones developed before [39, 40].
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6.1.4.1 Related Work

Target searching has been studied in many variations: with moving targets [41] or
as single-agent systems [42]. Here we consider only stationary targets, and multiple
agents having only a local view. This contribution continues our preceding work on
routing with agents on the cyclic triangular grid [39] and on non-cyclic rectangular
2d meshes [43]. In a recent work [40], tori S and T were compared; evolved agents,
with a maximum of one agent per node, were used in both cases. It turned out that
routing in T is performed significantly better than in S.

The novelty herein is that six agents per node are now used, with one agent per
channel, instead of one agent per node therein. Another difference is that in [39] the
agent’s behavior was controlled by a finite state machine (FSM) evolved by a genetic
algorithm, whereas here the behavior is handcrafted. To summarize, the goal is to
find a faster router in T , using six agents per node and bidirectional traffic between
nodes, at first modeling the system as CA–w and then discussing whether the routing
algorithm is deadlock-free or not. Usually deterministic agents with synchronous
updating are not deadlock-free. Therefore a small amount of randomness can be
added to a deterministic behavior [44] in order to avoid deadlocks.

Communication protocols in hexagonal networks were already studied for Hn or
E J topologies [27, 28]. An adaptive deadlock-free routing protocol was proposed
recently [45] using additional virtual channels. In our approach, if the minimal route
is blocked, the alternativeminimal route is attempted in order tominimize deadlocks.
Further possibilities to avoid deadlocks are proposed in Sect. 6.4.3. Note that we do
not address the problemof fault tolerance networks onVLSI chips [46, 47]. A general
insight on adaptive routing can be found in [48].

The remainder of this chapter is structured as follows. Section 6.2 deals with
the topology of the T –grid and presents the XY Z–protocol computing the minimal
route. Section 6.3 shows how the routing can bymodeled as amulti-agent system. An
analysis of the router efficiency is discussed in Sect. 6.4 and some deadlock situations
are pointed out before Summary. This work finalizes a previous one investigating
this novel router in the triangular grid with six channels [49].

6.2 Minimal Routing in the Triangular Grid

6.2.1 Topology of S and T

Consider the square blocks in Fig. 6.5 with N = 2n × 2n nodes where n denotes
the size of the networks. The nodes are labeled according to the XY–orthogonal
coordinate system. In the left block, a node (x , y) labeled “xy” is connected with
its four neighbors (x ± 1, y), (x , y ± 1) (with addition modulo 2n) respectively
in the W–E , N–S directions, giving the 4–valent torus Sn . In the right block, two
additional links (x − 1, y − 1), (x + 1, y + 1) are provided in the diagonal N W–
SE direction (Z–coordinate), giving the 6–valent torus Tn . Because their associated
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Fig. 6.5 Tori S2 and T2 of order N = 16, labeled in the XY coordinate system; redundant nodes
in grey on the boundary. Inset: orientations W–E , N–S, N W–SE according to an XY Z reference
frame

graphs are regular their number of links is, respectively, 2N for torus Sn and 3N for
torus Tn . Both networks are scalable in the sense that one network of size n can be
built from four blocks of size n − 1. The S–grid is just displayed here because it
is often interesting to compare the topologies and performances of Sn and Tn , two
networks of the same size.

An important parameter for the routing task in the networks is the diameter. The
diameter defines the length of the shortest path between themost distant pair of nodes
and provides a lower bound for routing or other global communications; such a pair
is said to be antipodal. The exact value of the diameters in Sn and Tn is given by

DS
n = √

N ; DT
n = 2(

√
N − 1) + εn

3
(6.1)

where εn = 1 (resp. 0) depends on the odd (resp. even) parity of n and where the
upper symbol identifies the torus type; whence the ratio denoted

DS/T
n ≈ 1.5 (6.2)

between diameters. In this study, only the diameter DT
n will be considered, denoted

simply Dn in the sequel [50].

6.2.2 Minimal Routing Schemes in S and T

The basic, deterministic routing schemes are driven by the Manhattan distance in S
[36] and by the so-called “hexagonal” distance in T [28, 32]. They are denoted as
“rectangular” and “triangular” herein. Considering a source “A” and a target “B” as
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Fig. 6.6 Networks S3 and T3 of order N = 64. Routing paths from a source “A” to a target
“B”: rectangular routing in S (left), triangular routing in T (right). In the rectangular routing, axis
systems X AYA and X BYB intersect at P1, R1 and yield the rectangle AP1B R1 in general. In the
triangular routing, axis systems X AYA Z A and X BYB Z B intersect at Pi , Ri (i = 1, 2, 3) and yield
three parallelograms APi B Ri in general; in this case, the parallelogram AP3B R3 is “minimal”

shown in Fig. 6.6, we choose to find a shortest path from A to B with at most one
change of direction.

In the square grid on the left part, the construction yields the rectangle AP1B R1. In
order to ensure a homogeneous routing scheme, from an usual convention the agent
is carried following one direction first, following the other direction afterwards. This
orientation will be specified in the following subsection. Under these conditions, a
route A → B and a route B → A will follow two disjoint paths and each of them
is made of two unidirectional subpaths, that is A → P1 → B and B → R1 → A
respectively. In a particular case, A and B may share a common axis and the routes
A → B and B → A need a (full-duplex) two-lane way A ↔ B. Note that in a
finite-sized torus, not only the “geometric” rectangle AP1B R1 should be considered
but rather a “generalized” rectangle, because the unidirectional subpathsmay “cross”
over the boundaries of the torus.

In the triangular grid on the right part, the construction involves three generalized
parallelograms of the form APi B Ri . Among them, there exists a “minimal” one that
defines the shortest path. It is the purpose of the following to detect it and to move
CA agents within it.

6.2.3 Computing the Minimal Route in T (XY Z–Protocol)

The following abbreviations are used in the routing algorithm:

sign(d) = (0, 1,−1) IF (d = 0, d > 0, d < 0) for any integer d and

d̄ = d − sign(d) · M/2, where M = 2n is the length of any unidirectional cycle.
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STEP 0. The offsets between target (x ′, y′) and current (x, y) positions are com-
puted.

(dx, dy) := (x ′ − x, y′ − y).

STEP 1. The deviations are contracted to the interval [−M/2,+M/2].
dx := d̄x IF |dx | > M/2; dy := d̄y IF |dy| > M/2

If sign(dx) = sign(dy) then theminimal path is alreadydetermined and thediagonal
is used as one of the subpaths. Note that the path length is given by max(|dx |, |dy|)
if the signs are equal, by |dx | + |dy| otherwise.

STEP 2. One of the following operations is performed, only if dx · dy < 0. They
comprise a test whether the path with or without using the diagonal is shorter.

dx := d̄x IF |dx | > |dy|AND |d̄x | < |dx | + |dy| // |d̄x | = max(|dx |, |dy|)

dy := d̄y IF |dy| ≥ |dx |AND |d̄y| < |dx | + |dy| //|d̄y| = max(|dx |, |dy|)

STEP 3. This step forces the agents to move in the same direction if source and
target lie opposite to each other, namely at distance M/2 on the same axis. Thereby
collisions on a common node on inverse routes are avoided.

(dx, dy) := (|dx |, |dy|) IF (dx = −M/2)AND (dy = −M/2)
dx := |dx | IF (dx = −M/2)AND (dy = 0)
dy := |dy| IF (dy = −M/2)AND (dx = 0)

Then a minimal route is computed as follows:

(a) If dx · dy < 0 then
[dz′ = 0] move first dx ′ = dx steps, then move dy′ = dy steps

(b) If dx · dy > 0 then calculate
(1) dz′ = sign(dx) · min(|dx |, |dy|) // steps on the diagonal
(2) dx ′ = dx − dz′, dy′ = dy − dz′

[dy′ = 0] move first dz′ then dx ′, or
[dx ′ = 0] move first dy′ then dz′ .

This algorithm yields a minimal route and uses a cyclic priority for the six directions,
two or one of them which are used in a valid minimal route. For short, the algorithm
uses the priority scheme:

[dx ′ = 0] move first dy′ then dz′,
[dy′ = 0] move first dz′ then dx ′,
[dz′ = 0] move first dx ′ then dy′.
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Fig. 6.7 This directed graph is a spanning tree of the torus showing the minimal path according to
the XY Z–protocol from a source node “0” to any other node for a 8 × 8 network (n = 3, N = 64).
The maximal distance (longest path) is the diameter D3 = 5 for this graph (refer back to Eq. (6.1).
Six antipodals are highlighted. Note that for n even (n > 2) this routing scheme would display
twelve antipodals [50]

This priority scheme means: use “first dirR then dirL” where dirR and dirL
define the “right” minimal subpath and the “left” minimal subpath respectively,1

viewed from the “observer” agent as in Fig. 6.6.
The minimal routes (first dirR then dirL) are depicted as directed graph in

Fig. 6.7 for a 8 × 8 network. The number in the nodes represents their distance from
the source node “0”.

6.2.4 Deterministic Routing

From the above protocol “first dirR then dirL” the agent follows always the
“right” minimal subpath. This means that the agent changes its moving direction
accordingly. The minimal path can be computed only once at the beginning and
stored in the agent’s state. During the run, the agent updates the remaining path to
its target, decrementing its dirR counter until zero, then decrementing its dirL
counter if any, until completion. It is also possible to recompute the minimal path at
each new position. This was done in the simulation and that yields the same result.

The problemwith deterministic routing is that it is not deadlock-free (see deadlock
discussion in Sect. 6.4.3). Another problem with this protocol is that it may not be
optimal with respect to throughput, especially in case of congestion. But it should be
noted that congestion usually is not very high, because there are six channels available
in each node. Formally, the deterministic routing is secure for an agent alone.

1 An equivalent symmetric protocol would be “first dirL then dirR”.
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6.2.5 Adaptive Routing

The objective for adaptive routing is (i) to increase throughput, and (ii) to avoid
or reduce the probability of deadlocks. This protocol was manually designed and
it is a simple algorithm defining the new direction of an agent. During the run, if
the temporary computed direction (e.g., dirR) points to an occupied channel, then
the other channel (e.g., dirL) is selected no matter this channel is free or not. A
minimal adaptive routing may be roughly denoted as “either dirR or dirL”. The
path from source to target remains minimal on the condition that it remains inside
the boundaries defined by the minimal parallelogram.

In order to increase the throughput when the system is congested or to avoid dead-
locks securely, the agent’s behavior could be more elaborated. The agent could obey
to an internal control automaton (finite state machine as in [39]) and this automaton
can be optimized by genetic algorithms [51].

It would also be useful to allow the agent to deviate from the minimal route in
case of congestion. Referring back to Fig. 6.6, going from source A to target B, the
agent could route out of its minimal parallelogram and move within an extended area
like the trapezium AP1B R3 or even the rectangle AP1B R1 although the minimal
route is of course prioritized. As a consequence, three possible moving directions,
instead of two, remain adaptively possible. The three other directions backwards are
not allowed.

6.3 Modeling the Multi-Agent System

This section is the core of this chapter. The dynamics of moving agents is described,
the impact of the copy–delete rules in the CA–w and CA models is emphasized and
some programming issues are revealed.

6.3.1 Dynamics of the Multi-Agent System

The node structure, the channel state and how agents and arbiters cooperate are pre-
sented herein, the priority rule derived from the above adaptive protocol is analyzed
and the conflict-free transition moving the agents follows.

6.3.1.1 Node Structure

The whole system consists of 2n × 2n nodes arranged as in the T -grid of Fig. 6.5.
Each node labeled by its (x, y) coordinates contains the 6–fold set

C = {C0, C1, C2, C3, C4, C5} = {E, SE, S, W, N W, N } (6.3)
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Fig. 6.8 Inner channels of C oriented (a) and labeled clockwise (b). Outer channels ofM located in
adjacent nodes. The direct neighbor of channelCi in the adjacent node is denoted by Mi . The cardinal
notation “W.E” stands for the E–channel of the W–neighbor; the same relative neighborhood is
valid for anypair (node, channel) by symmetry: M j≡i+3 (mod 6) denotes the i–channel of the adjacent
j–neighbor

of channels Ci oriented2 and labeled clockwise (Fig. 6.8). Index i is called position
or lane number in this context. The position of a channel defines also an implicit
direction that defines the next adjacent node that an agent visits next on its travel.
The direct neighbor of channel Ci in the adjacent node is denoted by Mi where

M = {M0, M1, M2, M3, M4, M5} (6.4)

and M j≡i+3 (mod 6) denotes the i–channel of the adjacent j–neighbor by symmetry.
In the cardinal notation, e.g. for i = 0, “W.E” stands for the E–channel of the
W–neighbor.

6.3.1.2 Channel State

Each agent has a direction which is updated when it moves. In other words, the
current direction of the agent defines the channel in the next node where the agent
requests to move to.

The i–channel’s state at time t is defined by

ci (t) = (p, (x ′, y′)) (6.5)

where (x ′, y′) stands for the agent’s target coordinates and p ∈ P stands for the
agent’s direction (a pointer to the next channel) in the set

P = {−1, 0, 1, 2, 3, 4, 5} ≡ (Empty,toE,toNW,toS,toW,toSE,toN) (6.6)

2 Except a homeomorphism.
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including an empty channel encoded by ω = −1. In a graphical representation, the
directions can be symbolized by (→↖↓←↘↑) according to the inset in Fig. 6.5.

6.3.1.3 Agents and Arbiters

According to the above adaptive routing scheme, an agent can move to a 3–fold
subset of channels at most. Recall that the three other directions backwards are not
allowed. For example, coming from channel W.E of W–neighbor at (x −1, y), going
to channel E or N or SE of current node (x, y) as shown in Fig. 6.9a. In the same
way, agents located in outer channels N W.SE and S.N are possible competitors
for a part of this subset {E, N , SE}: channel subset {SE, E, S} can be requested
by un agent in N W.SE while channel subset {N , N W, E} by un agent in S.N . The
intersection of those three requested subsets is the channel E . From this observation,
E can be chosen as arbiter of three possible concurrent agents. In other words, a
priority rule can be locally defined for this channel. Arbiter E is C0 in Fig. 6.9b and
this concurrent scheme is invariant by rotation.

This interaction between requesting agents and arbiter channels is formalized
hereafter. Let the 3–uple of channels

Ci = (Ci+1, Ci , Ci−1) (6.7)

and let us denote by
Mi = (Ri , Si , Li ) (6.8)

the ordered 3–uple opposite to Ci and where

Ri = Mi+4, Si = Mi+3, Li = Mi+2 (6.9)

Fig. 6.9 a An agent located in the E–channel of the western node W.E can move to one channel in
the “opposite” subset {E, N , SE}. Twoagents in channels N W.SE and S.N are possible competitors
for a part of this subset. b As a consequence, channel C0 is the arbiter of three possible concurrent
agents in the requesting channels M2, M3, M4
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Fig. 6.10 a Requesting channels R0, S0, L0 with respect to C0. The “right”, “straight”,
“left” respective directions are viewed from the “observer” C0. The same concurrent scheme is
valid all around from rotational invariance. b Priority rule: a priority order is assigned clockwise
by any channel Ci ∈ C to its own requesting ordered set Mi = (Ri , Si , Li ) : 1 to left, 2 to
straight, 3 to right

are theright,straight and left outer channels for the three possible incoming
agents viewed from the “observer” channel Ci in Fig. 6.10a (i = 0 assumed herein).
This 3–uple is of special interest because, viewed from channel Ci , the agents may
only move from Ri or Si or Li to Ci on their route.

Conversely, Ci is the requested channel subset for Si , as well as Ci−1 for Li and
Ci+1 for Ri . Now

Ci−1 ∩ Ci ∩ Ci+1 = {Ci } (6.10)

from (6.7). This simple but important property allows to define a local priority rule
for channel Ci and invariant by rotation.

6.3.1.4 Priority Rule

Each channel Ci ∈ C computes the three exclusive conditions selecting the incoming
agent that will be hosted next, with a priority assigned clockwise (Fig. 6.10b):

1. Agent wants to move from Li to Ci , priority 1: LtoC = (l = i)
2. Agent wants to move from Si to Ci , priority 2: StoC = (s = i) ∧ ¬LtoC
3. Agent wants to move from Ri to Ci , priority 3: RtoC = (r = i) ∧ ¬StoC.
In other words, this rule selects a winner among the three possible concurrent agents
requesting channel Ci and the selection is assigned clockwise: first to left, second
to straight, third to right, orientation viewed from the observer channel. It
should be pointed out that this priority scheme is consistent with the protocol “first
dirR then dirL” defined in Sect. 6.2.3 but now viewed from the observer agent.
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6.3.1.5 Moving the Agents

The above priority scheme ensures a conflict-free dynamics of moving agents3 in the
whole network. Thus, from the three previous conditions in channel Ci , five cases
are distinguished:

• case κ1 : (p �= ω) // channel not empty, agent stays at rest,
• case κ2 : (p = ω) ∧ LtoC // channel empty, agent to be copied from Li ,
• case κ3 : (p = ω) ∧ StoC // channel empty, agent to be copied from Si ,
• case κ4 : (p = ω) ∧ RtoC // channel empty, agent to be copied from Ri ,
• case κ5 : (p = ω) ∧ ¬LtoC ∧ ¬StoC ∧ ¬RtoC // channel remains empty.

The new target coordinates (x ′, y′)∗ in the channel’s state are either invariant if the
agent stays at rest (case κ1) or are copied from Li or Si or Ri exclusively, depending
of the selected incoming agent hosted and to be received by the channel. Thus the
target coordinates (x ′, y′)∗ are updated as

(x ′, y′)∗ = (x ′, y′) IF κ1

(x ′, y′)∗ = (x ′, y′)Li IF κ2

(x ′, y′)∗ = (x ′, y′)Si IF κ3

(x ′, y′)∗ = (x ′, y′)Ri IF κ4 (6.11)

according to the current channel’s state and to the result of the selection.
Since the agent’s target coordinates are stuck within its state, the agent must

clearly carry them with it when moving. The new pointer to the next node

p∗ = ϕxy ((x ′, y′)∗) (p∗ ∈ P) (6.12)

is then updated by ϕxy which yields the new direction from the target coordinates
of the selected agent (ϕxy is the local updating function in the current node (x, y)).
For case κ5, the direction is irrelevant and the channel remains empty. Finally, the
i–channel’s state at time t + 1 becomes

ci (t + 1) = (p∗, (x ′, y′)∗) (6.13)

and the new state is updated synchronously. It is assumed that the agents are initially
placed on a channel which is part of the minimal route, and the initial direction is
one of the minimal directions.

3 Except special deadlock or livelock situations pointed out in Sect. 6.4.3.
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6.3.2 The CA–w and CA Copy–Delete Rules

The synchronous transition (6.13) to the next timestep is governed by the copy–
delete operating mode of either the CA or the CA–w model in Fig. 6.1. The impact
of their rules is examined hereafter, that will highlight the simplicity induced by the
write–access in the CA–w model.

6.3.2.1 CA–w Rule

The CA–w model is especially useful if there are no write conflicts by algorithmic
design. This is here the case, because an agent is copied by its receiving channel, after
applying the abovementioned priority scheme and according to the mode displayed
in Fig. 6.1c. Thus only this receiving channel is enabled to delete the agent on
the sending channel at the same time. A further advantage is that only the short-
range copy–neighborhood is sufficient to move an agent, the wide-range delete–
neighborhood (necessary for CA modeling and described hereafter) is not needed.

Therefore the 3–fold copy–neighborhood Mi that needs to be checked by Ci in
order to receive the hosted agent is given by (6.8), this agent in Mi is released by
Ci when firing the transition (6.13) and following the CA–w delete–copy operating
mode in Fig. 6.1c.

6.3.2.2 CA Rule

The CA rule differs from the CA–w rule in the fact that the sending channel has
to delete itself the agent when moving. This means that a separate delete–rule is
necessary.

In order to release its own agent, the sending channel must be aware of the whole
situation in its wide-range neighborhood defined as follows. Knowing that an agent
in channel Mi+3 ∈ Mi and wanting to move (Fig. 6.9a) will be selected by its arbiter
which belongs to Ci (Fig. 6.9b), this requesting agent has other possible competing
agents lying in Mi+1 for Ci+1 or Mi for Ci or Mi−1 for Ci−1. Therefore, the full
set of competitors is the union

̂Mi = Mi+1 ∪ Mi ∪ Mi−1 (6.14)

but
Si−1 = Li , Ri−1 = Li+1 = Si , Si+1 = Ri

from (6.9) whence

̂Mi = (Mi+1, Mi+2, Mi+3, Mi+4, Mi+5) (6.15)
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or, if we exclude the own channel,

M̂i = (Mi+1, Mi+2, Mi+4, Mi+5). (6.16)

In addition, the sending channel must also be aware of the move-to conditions of Ci ,
whence the extended delete–neighborhood

M̂i ∪ Ci = (L Li , Li , Ri , R Ri ) ∪ (Ci+1, Ci , Ci−1) (6.17)

with seven channels altogether and where “L Li” and “R Ri” denote the wide-range
left and right outer channels in Fig. 6.11b. As a matter of fact and referring back also
to Fig. 6.10, it can be observed that only the “isolated” channels are excluded for
this wide-range neighborhood.

Note that the cardinality of the neighborhood of a receiving channel is three
whereas it is seven for a sending channel, without counting the own channel. Thus
the whole neighborhood in the CA model is the union of the copy–and–delete–
neighborhood with three and seven channels respectively, namely ten channels alto-
gether when firing the transition (6.13) and following the CA delete–copy operating
mode in Fig. 6.1a.

The discrepancy between both CA and CA–w rules described hereabove high-
lights henceforth the simplicity of the CA–w model. It should be noted that the
channels of a node can be seen as the partitions of a cell as in “partitioned CA”
[52]. Therefore a similar modeling can be done by partitioned CA. Another way of
modeling such a system would be to use a hexavalent FHP–like lattice-gas [20]; but
here the purpose is to avoid the two-stage timestep in order to save time, with only
one clock cycle instead of two.

Fig. 6.11 Wide–range neighborhoods: a The 3–neighborhood M0 of receiver C0. b The 7–
neighborhood M̂0 of sender S0 extended to L L0 and R R0. Channels C0 and S0 coincide either as
receiver or as sender
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6.3.3 Programming Issues

Some more details are revealed for the reader interested in writing a simulation
program. The following pseudo-codes show the algorithms for implementation of
the CA and CA–w models. Missing items and notes “(*)” are explained afterwards.

6.3.3.1 CA Model

FOR EACH cell IN cellfield DO

// compute own move condition, requires evaluation of copy- and delete neighborhood

1 cell.agent.can_move = (no agent or obstacle in front) AND (*)

(no other agent with higher priority can move to cell in front)

// for each possible sending neighbor, requires evaluation of the copy-neighborhood

// check if an agent wants to move to me and select one with the highest priority

2 neighbor(sending).agent.can_move(to_me) =

neighbor(sending).is(agent) AND

no other agent with higher priority wants to move to me

// compute moving rule

3 cell_next<- empty IF cell.is(empty) AND no agent can move to me // remains empty

<- agent IF cell.is(agent) AND receiving cell occupied // blocked

<- empty IF cell.is(agent) AND cell.agent.can_move // delete (*)

<- neighbor(sending).agent

IF cell.is(empty) AND neighbor(sending).agent.can_move(to_me) // copy

ENDFOREACH

FOR EACH cell IN cellfield DO

5 cell <- cell_next // synchronous updating

ENDFOREACH

Statement 1 evaluates if the agent situated on its cell can move; this evaluation
requires an extended neighborhood because of possible conflicts, namely the union
of the copy- and delete neighborhood. Statement 2 evaluates if a neighboring agent
can move to the current cell; this evaluation requires the copy-neighborhood only. In
Statement 3 an agent may move, by deleting it by the sending cell and copying it by
the receiving cell. Statement 5 performs a synchronous updating of the whole cell
field.

The following simulation using the CA–w model is more simple.

6.3.3.2 CA–w Model

FOR EACH cell IN cellfield DO

// for each possible sending neighbor, requires evaluation of the copy-neighborhood

// check if an agent wants to move to me and select one with the highest priority

2 neighbor(sending).agent.can_move(to_me) =

neighbor(sending).is(agent) AND

no other agent with higher priority wants to move to me

// compute moving rule, now without delete

3 cell_next<- empty IF cell.is(empty) AND no agent can move to me // remains empty
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<- agent IF cell.is(agent) AND receiving cell occupied // blocked

<- neighbor(sending).agent

IF cell.is(empty) AND neighbor(sending).agent.can_move(to_me) // copy

// extra CA--w operation: write on neighbor (deletion of agent when moving)

4 neighbor(sending).agent <- empty IF neighbor(sending).agent.can_move(to_me) //delete

ENDFOREACH

FOR EACH cell IN cellfield DO

5 cell <- cell_next // synchronous updating

ENDFOREACH

Compared to the CA program, the evaluation of the move condition (Statement 1
in CA program (*)) is omitted. Therefore the delete-neighborhood need not to be
checked. As a consequence, the delete(*) line in Statement 3 of the CA program
is also omitted and replaced by the additional Statement 4. Through this statement an
agent on a sending cell is deleted by the receiving cell. The advantage of the CA–w
program is that it is more concise and less expensive, because the move condition
in Statement 1 needs not to be computed.

6.4 Router Efficiency and Deadlocks

Two test cases will be used for evaluation, where k is the number of agents, s the
number of source nodes and m the number of target nodes:

1. First Test Case (m = 1, k = s). All agents move to the same common target.
We will consider the case k = N − 1, meaning that initially an agent is placed
on each site (except on the target). In this case the optimal performance of the
network would be reached if the target consumes six messages in every timestep
(t = (N − 1)/6). In addition, the target location is varying, with a maximum
of N test configurations in order to check the routing scheme exhaustively. We
recall that the T –grid is vertex-transitive, so the induced routing algorithm must
yield the same result for all N cases!

2. Second Test Case (k = s = m). The sources are mutually exclusive (each
source is used only once in a message set) as well as targets. Source locations
may act as targets for other agents, too. We consider the case k = N/2 that was
also used in preceding works [39, 40] for comparison. Note that the minimum
number of timesteps t to fulfil the task is the longest distance between source and
target which is contained in the message set. For a high initial density of agents
the probability is high that the longest distance is close to the diameter of the
network. Thus the best case would be t = Dn .
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6.4.1 Efficiency of Deterministic Routing

Using one agent only in the router, it will travel always on a minimal route. More
agents are also using a minimal route, but sometimes they have to wait due to traffic
congestion.

6.4.1.1 First Test Case

In the first test case scenario, k = N − 1 messages move to the same common
target from all other nodes. All possible or a large number of initial configurations
differing in the target location were tested (Table6.1). The results are the same for
all tested initial configurations. This means that the router works totally symmetric
as expected. An optimal router would consume in every generation six agents at the
target, leading to an optimum of topt = k/6. It is difficult to reach the optimum,
because the agents would need a global or a far view in order to let the agents move
simultaneously in a cohort. Here an agent needs an empty receiver channel in front
in order to move, thus empty channels are necessary to signal to the agents that they
can move.

As the router is completely filled with agents at the beginning (one agent in each
node except the target node), there exist some agents which have as travel distance
the diameter Dn . Therefore the ratio t/Dn (B/C in Table6.1) is significantly higher
than one, slightly higher than

√
N/2. On the other hand, the ratio t/(k/6) = B/D

is quite good and relatively constant, that is B/D ≈ 2 for large N , which is almost
optimal because each agent needs an empty channel in front when moving without
deviation on the minimal route. This phenomenon is easy to understand and has a
close relationship with Traffic Rule 184 in a 1–dimensional system: a car with a car
straight ahead cannot move and must wait for the next timestep.

Table 6.1 First test case: k = N −1 messages travel from all disjoint sources to the same common
target

Nodes N Number of
configura-
tions
(destinations)
checked

(B) Message
transfer time
[steps]

(C) Diameter Ratio B/C (D) N/6 Ratio B/D

4 = 2 × 2 all 4 1 1 1 1 1

16 = 4 × 4 all 16 5 2 2.5 3 1.67

64 = 8 × 8 all 64 23 5 4.6 11 2.09

256 = 16 × 16 all 256 89 10 8.9 43 2.07

1024 = 32 × 32 all 1024 351 21 16.7 171 2.05

4096 = 64 × 64 64 1384 42 32.95 683 2.03

Message transfer time (in timesteps) in the T–grid, averaged over the number of checked initial
configurations. The time is independent of the position of the target
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Fig. 6.12 Simulation snapshots for the first scenario in a 8×8 grid T3, N −1 agents moving to the
same target position. Agents are depicted as black triangles, visited channels as small grey triangles:
directions are symbolized by (→↖↓←↘↑). Snapshots on S3 are also displayed for comparison

A simulation sequence of this case is shown in Fig. 6.12 for the 8× 8 grid T3 and
S3 is also displayed for comparison.
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6.4.1.2 Second Test Case

This test case was already used in a previous work [40] and is used for comparison.
Therein, the agentswere controlled by afinite statemachineFSM: optimized, evolved
agents were used, choosing a random direction with probability 0.3% in order to
avoid deadlocks, with only one agent per node. Ratio A/B in Table6.2 shows that
even the deterministic router with six channels performs significantly better, with
A/B ≈ 2.5 for N = 1024. The main reason is that here a node can host six agents,
not only one, and therefore the congestion is considerably lower. The ratio (B/C)
is noteworthy and shows that the mean transfer time is close to the diameter. This
phenomenon is again easy to understand from Traffic Rule 184 but now in a fluid
traffic. A simulation sequence of this case is shown in Fig. 6.13.

6.4.2 Efficiency of Adaptive Routing

An adaptive routing protocol was designed in order to speed up the message set
transfer time and to avoid deadlocks during the run, although this could not be
proved. When an agent computes a new direction and whenever the channel in that
direction is occupied, the agent chooses the other minimal direction if there is a
choice at all.

Table 6.2 Second test case: k = N/2 messages travel from disjoint sources to disjoint targets

Nodes N Number of
configura-
tions checked
for B
randomly
generated

(A) time
steps,
FSM
controlled
agent

(B) time
steps, 6
channels
non-
adaptive

Ratio
A/B

(C)
Diameter

Ratio
B/C

Time
steps, 6
channels
adaptive

4 = 2 × 2 32 3.756 1 3.76 1 1 1

16 = 4 × 4 256 8.528 2.520 3.38 2 1.260 2.520

64 = 8 × 8 256 14.641 5.852 2.50 5 1.170 5.648

256 = 16 × 16 256 28.848 12.070 2.39 10 1.207 11.574

1024 = 32 × 32 256 58.438 23.367 2.50 21 1.113 22.648

4096 = 64 × 64 256 128.087 45.199 2.83 42 1.076 44.082

16384 = 128 × 128 128 300.330 87.789 3.42 85 1.033 86.668

Message transfer time (in timesteps) in the T–grid, averaged over the number of checked initial
configurations. Routing with six channels per node performs significantly better (ratio A/B) than
FSM controlled agents (one per node)
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Fig. 6.13 Simulation snapshots for the second scenario in a 8 × 8 grid T3, 32 agents moving to
their assigned target. Agents are depicted as black triangles, visited channels as small grey triangles:
directions are symbolized by (→↖↓←↘↑). Snapshots on S3 are also displayed for comparison

6.4.2.1 First Test Case

For this scenario with a common target the performance of adaptive routing is the
same as for the deterministic routing. The reason is that all routes to the target are
heavily congested. This means that the adaptive routing can hardly be better, but it
is also not worse for the investigated case.
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6.4.2.2 Second Test Case

For this scenario with randomly chosen sources and targets, the adaptive routing
performs slightly—but only slightly—better. That means that agents’ minimal path
is seldom rerouted because of the fluid traffic. For example, for N = 1024, the
message transfer time is reduced by 4.1%. There seems to be more potential to
optimize the behavior of the agents (using an FSM, or using a larger neighborhood)
in order to guide them in a way that six agents are almost constantly consumed by
the target.

6.4.3 Deadlocks

A trivial deadlock can be produced if all 6N channels contain agents (fully packed),
thus no moving is possible at all. Another deadlock appears if M = 2n agents line up
in a loop on all the channels belonging to one lane, and all of them have the same lane
direction. Then the lane is completely full and the agents are stuck. To escape from
such a deadlock would only be possible if the agents can deviate from the shortest
path, e.g. by choosing a random direction from time to time. More interesting are
the cyclic deadlocks where the agents form a loop and are blocking each other (no
receiving channel is free in the loop). Two situations were investigated.

First situation [Right Loop] (Fig. 6.14). An empty node� is in the center of
six surrounding nodes, let us call them A0, A1,... A5 clockwise. Agent at A0 wants to
go to A2, A1 to A3... in short the Ai want to go to Ai+2 all around.Note that each agent
has two alternatives: goingfirst via� through the center or goingfirst to a surrounding
node (e.g., agent at A0 can go first to � and then to A2, or first to A1 and then to
A2). Whether a deadlock appears depends on the initial assignments to the channels.
If the initial assignments of all agents are “use the left channel first”
via surrounding nodes, then the agents block each other cyclically. Otherwise they
can move via the center node � and no deadlock occurs. Thereby it is assumed that
the channels in � are empty or become empty after some time and are not part of
other deadlocks.

Fig. 6.14 A possible deadlock situation. a Agents targets, target = source + 2 mod 6. b The
alternate paths, two min paths solid leftmost first, dotted rightmost first. c Cyclic deadlock appears
if leftmost subpath is taken first. d No deadlock if rightmost subpath is taken first
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Second situation [Left Loop]. This situation is symmetric to the right loop,
except that the loop direction is now counterclockwise. A deadlock will appear if the
initial directions of all agents are “use the right channel first”.

If an initial configuration includes a right loop and a left loop, then at least one
deadlock will appear if the initial assigned channel is fixed to the left or to the right.
There are several ways to dissolve such deadlocks:

1. A spatial inhomogeneity is used, e.g., agents at odd nodes use initially the left
subroute channel and agents at even nodes use the right subroute channel. The
partition “odd–even” means x + y ≡ 1 or x + y ≡ 0 respectively, under addition
modulo 2. This kind of partition, among others, was examined and did work for a
limited set of experiments. Another similar way would be to randomize the initial
subroute/channel assignment. This may be very successful but still there exists a
very low probability for a deadlock.

2. The choice between the two minimal subroutes is taken randomly, or the choice
may depends on an extended neighborhood.

3. It would be possible to deviate in a deterministic or non-deterministic way from
the minimal route: for example an agent could move side-backwards if the whole
area in direction of the target is blocked.

4. It would be possible to redistribute the channels during the run, by using a two-
stage interaction-advection transition similar to the FHP lattice-gas [20]: move
or don’t move, then redistribute. In this case, the initially assigned channels and
the used channels during the run could be dynamically rearranged.

6.5 Summary

The properties of a family of scalable 6–valent triangular tori were studied herein
and for this family a minimal routing protocol was defined. A novel router with six
channels per node was modeled as a multi-agent system within the cellular automata
paradigm. In order to avoid the redundant computation of the moving condition, the
CA–w model was used for implementation, that allows the receiving cell to copy
the agent and to delete it on the sending cell. Thereby the description becomes more
natural and the simulation faster. Both classical CA and new CA–w models were
presented and compared. Each agent has a computed direction defining the new
channel in the adjacent next node. The computed direction is a “minimal” direction
leading on the shortest path to the target. The novel router is significantly faster (2.5
times for 1024 nodes) than an optimized reference router with one agent per node.
In addition, an adaptive routing protocol was defined, which prefers the leftmost
channel of a minimal route if the rightmost channel is occupied. Thereby a speed-up
of 4.1% for 1024 nodes was reached.

Deadlocks may appear for special situations when the system is overloaded, or
when a group of agents form a loop. In order to avoid some of the deadlocks the initial
subpath’s direction can be alternated in space, or an adaptive protocol can be used.
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The defined adaptive protocol switches to the other alternate minimal subpath in the
case where the channel of the prior subpath is occupied. This adaptive protocol leads
also to a higher throughput in the case of congestion. In order to dissolve deadlocks
securely, a random or pseudo-random component should be introduced that may also
allow the agents to bypass congested routes.

Further work can be aimed towards more intelligent agents in case of congestion
through optimizing their behavior by using a genetic algorithm. Moreover, previous
comparativeworks on the performance of agentsmoving either in the 4–valent S–grid
or in the 6–valent T –grid [40, 53], with a speedup on T over S according to their
diameter ratio (refer back to Eq. (6.2)), emphasize again our choice of triangular
lattice explained in Sect. 6.1.3. The routing protocol could also be simplified by
exploring the symmetries of the isotropic triangular grid: it is conjectured that this
approach may drastically reduce the cost of the router, at least in a deterministic or
adaptive context [54, 55].
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Chapter 7
Multi-Resolution Hierarchical Motion Planner
for Multi-Robot Systems on Spatiotemporal
Cellular Automata

Fabio M. Marchese

Abstract This chapter presents a new multi-resolution and hierarchical approach
to the problem of motion planning of Multi-Robot Systems on discretized spaces.
The goal is to operate on large spaces (compared to the size of the robots), where the
number of cells quickly becomes untreatable, in particular for n interacting robots
problems, without losing precision (resolution). To work around this problem, we
have introduced 3 levels of maps: the first is topological, the second a rectangular
tessellation covering the free space, and the third a regular (small) cells decompo-
sition. The first two maps are used to reduce the problem and to simplify it with
non-accurate planning. Limiting the search space to smaller areas of interest at the
last level and considering the interactions between robots, precise parallel motion
planning is performed using Spatiotemporal Cellular Automata.

7.1 Introduction

This chapter concerns the coordinated motion of a Multi-Robot System (MRS) over
wide spaces. We have considered MRSs composed of heterogeneous mobile robots
having generic shapes, sizes and kinematics. In particular, we are interested in the
coordination of a team of mobile robots moving over 2D structured environments
(2Dmanifolds). Typical applications include the CMOMMT problem [18] related to
surveillance tasks, as well as cooperation issues in soccer teams (e.g., RoboCup) or
transportation of parts inmanufacturing plants (logistic), rescue robots and equivalent
problems. Over the years, various planners have been implemented on continuous
spaces. Despite their interesting properties, they are prone to the problem of using
high time consuming algorithm. We want to tackle an issue like extended spaces
or, conversely, small models with very high-precision representation as an unique
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problem. It is necessary to reduce calculation times throughout two solutions: (i) the
adoption of models on discrete spaces (lattices or grids); (ii) the reduction of the
complexity of the planning algorithm to reduce the search space. Starting from a
2D metric representation of the environment, in a completely automatic way, maps
at different resolutions level are calculated, finally generating a topological space
representation (graph of adjacent regions). The aim is to reduce the complexity of
the problem on large lattices, in order to make them more manageable. Therefore,
we realized a multi-resolution system, starting from a high-resolution map (regular
cells decomposition). Then, rectangular regions of different sizes (clusters of cells)
are recognized, generating an irregular decomposition or tessellation, but still able
to completely cover the Free Space. It is similar to generalized cones by Brooks [4],
where rectangles are considered as a degenerate case of cones. From this map, we
generated a graph of adjacent rectangles and finally a graph of passing zones, which
are used for a topological planning. Conceptually, we have designed a two-level
hierarchical planner:

1. High level planner (Gross motion planning). This planner works on a topological
map, the only purpose of which is to identify a ‘channel’ the robot moves through.
This planning phase does not take into account the time level, but it works exclu-
sively at the space level (geometric level, hence only trajectories). The channel
delimits the area in which to look for a precise spatial trajectory (and later on a
spatiotemporal trajectory, i.e. a movement).

2. Low level planner (Fine motion planning). It is a spatiotemporal CA (STCA)
planner working on a precise environment map delimited by the above mentioned
‘channel’. It coordinates the necessarymaneuvers to avoid obstacles (in particular
to avoid moving obstacles, i.e. other robots), while taking into account shapes,
sizes, orientations, kinematics of robots and temporal constraints (departure time
and arrival time).

The rest of the chapter is organized as follows: in Sect. 7.2, theMRSMotion Plan-
ning Problem is introduced. Sections7.3 and 7.4 are related to Fine andGrossMotion
Planning. Section7.5 concerns to an example of MRS problem and in Sect. 7.6 the
conclusions are presented.

7.2 MRS Motion Planning Problem

AMulti-Robot System is a set (a team) of robots sharing a common task. To solve the
same task, the robots often use the same resources. In the same workspace, several
MRSwith different tasks can coexist, but they still compete for the same resources. In
particular, while moving, they compete for the access to the ‘Space’ resource. In this
work,we address the problemof the coordination ofmotion for a set of heterogeneous
mobile robots in order to avoid collisions with static and dynamic obstacles. Since
the late 70s, many approaches have been proposed for the solution of the Path/Motion
Planning problem for single and multiple robots. A Configuration Space (C-Space)
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solution has been proposed since 1979 [13] where a geometrical description of the
environment was given. To address the problem in a dynamical world, some authors
proposed the Artificial Potential Fields Methods as in [9]. Jahanbin and Fallside
introduced a wave propagation algorithm in the C-Space on discrete maps (Distance
Transform [8]). In the 90s, Barraquand et al. used the Numerical Potential Field
Technique over the C-Space to build a generalized Voronoi Diagram [1]. In 1994,
Zelinsky extended the Distance Transform to the Path Transform [22]. Since 1990,
Warren in [21] used a discretized 3D C-Spacetime (2D Workspace + Time) for
multiple translating robots’ motion planning with simple shapes (only square and
circle). In the same decade, the Cellular Automata approach for the single robot
path-planning problem was introduced [2, 14, 20]. In [11], the authors applied the
concepts of Game Theory and multiobjective optimization to the centralized and
decoupled multi-robots motion-planning. A solution in the C-Spacetime has been
proposed in [3], where the authors use a decoupled and prioritized path-planning in
which they repeatedly reorder the robots’ priorities to try to find a solution. In the
2000s, Cellular Automata started to be also used for the coordination of multiple
robots [7, 16].

7.3 Fine Motion Planner

The Fine Motion Planner calculates the precise collision-free trajectories and move-
ments that a team of robots must follow to reach their goals. Although it is driven
by the Gross Motion Planner, it is the most important phase because it finalizes the
method. It relies on a set of discretized metric spaces (see 7.3.1), the most important
of which is the cellular space STCA. This planner uses the approach of Artificial
Potential Fields, i.e. force fields that drive the robots toward their given goals.

7.3.1 Spaces

In this section, the spaces used by the fine motion planner are described. They are
multidimensional Cellular Spaces (up to 5 dimensions) and all of them are pro-
jections of the underlaying discretized version of a 2D manifold in the real Space
where the robots moves. All these spaces participate, by means of the evolutions of
their automata, to the computation of the planner. In particular, the Attraction Space
finalized the contribution of the other spaces, generating the final motion of theMRS.

7.3.1.1 Spatiotemporal Cellular Automata

All the spaces used derive from the definition of discretized spacetime. It is a
multidimensional cellular space, i.e. a discretized version of the continuous linear
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Fig. 7.1 Spatiotemporal
cellular automata:
dependencies between CA in
adjacent layers and itself
(radius 1)

(Euclidean) Spacetime, where some spatial dimensions are compounded with the
Time’s Arrow. Each dimension is discretized in indivisible quanta that represent the
lower limit of both spatial and temporal resolution. This discretization induces a par-
tition of multidimensional space in basic cells. Depending on the type of spacetime
represented, each cell contains a value/state (even a vector of states) that is calculated
on the basis of homologous values in adjacent cells with which it interacts. It is there-
fore a Cellular Automata, composed of different temporal layers. Each layer contains
the representation of the whole workspace at a certain moment. Its peculiarity lies in
the mapping of physical Time, not to be confused with Computing Time and Simu-
lation Time. While physical Time is represented as a dimension of Spacetime, and
therefore it becomes a static component, the Computation Time is the time necessary
to upgrade the cells of STCA, and finally the Simulation Time is the passage from
one temporal layer to the next of the STCA to follow the evolution of the system
(the robots’ movements). Since, as is well known, Time flows in one direction, to
satisfy this property and then the physical feasibility, the Cellular Automata in a layer
depend exclusively on Cellular Automata of the layer beneath (even more than one
layer) at the same location or in the spatial neighborhood of the cell. It depends also
on its own state, but it does not depend on automata of the same temporal layer or
on those at successive times. Thus the number of total dependencies is reduced and,
accordingly, computation time. For example, in a 3D Spacetime, the total number of
dependencies from any other cell (neighborhood radius 1) would be 27, but thanks
to the direction of Time, they are only 9 + 1 (Fig. 7.1). This condition is necessary
to ensure the feasibility of the system, in both cases if it represents a real or a pure
mathematical transformation.

7.3.1.2 C-Spacetime Space

When a layer of the STCA represents the configurations of a physical system, it
becomes a discretized C-Spacetime. Please note that a configuration is a set of para-
meters representing the state of a system (in other words, the robot is represented
as a point in the space). In our case, the configurations are given by the poses of
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each robot. Because robots are considered as rigid bodies, a limited number of para-
meters represents their states: their positions and orientations. For motions on 2D
spatial manifolds, we use (X, Y ) for the position + � for orientation to define the
Configuration Space. The overall C-Spacetime will be 4D: 2D (position) + 1D (ori-
entation) + 1D (time). In the C-Spacetime, obstacles are mapped as not admissible
configurations, that is configurations the robot cannot assume at a given instant of
time without colliding with them (but which can be assumed in other moments if the
obstacles move away).

7.3.1.3 Coordination Space

The Coordination Space is a unique space for all the MRSs, where the interaction
robot-robot and robot-obstacle are modeled. It is the space in which the robots are
coordinated in their movements, i.e. where to monitor the interactions between vari-
ous objects (static and dynamic) to prevent their movements that lead them to collide.
It is a representation of the real Spacetime in a discretized form, to manage move-
ments on a 2D manifold. It is a 3D space: 2D (position) + 1D (time). In this space all
static obstacles (e.g., walls) and dynamic obstacles are mapped, including moving
objects (with a priori known movement) and all robots. All their movements are
computed by the planner, in a similar way as in the discretized C-Spacetime, but
the robots and all the other objects are fully represented, time by time, with their
real shapes and extensions. It replaces what was once known as Repulsive Space,
where artificial forces where evaluated to keep the robot away from the obstacles. In
the Coordination Space, the cells are either occupied or free depending on whether
an object at a certain moment covers that position. In order to satisfy Shannon’s
Theorem, Time is sampled at double frequency, i.e. the time unit used is half of the
time unit used in any other spaces to prevent thin objects from passing through each
other.

7.3.1.4 Attraction Space

The Attraction Space is a 5D STCA, where the configurations of all robots are repre-
sented. It is ultimately a 4D C-Spacetime for each robot, developed along the Robot
Dimension, i.e. in each layer the C-Spacetime of a single robot is evaluated. Each
automaton has a non-stationary potential value (it evolves along the Computational
Time, but it is stationary in its representation in the Spacetime). This potential is
referred to a lower potential located in the cell of the goal configuration. As usual,
whenever there is a potential field, a force F appears (−gradφ). In this metaphor,
this virtual force attracts the robot towards the goal, turning around the obstacles. A
potential value represents the integer ‘distance’ of the current cell from the goal cell
along the shortest collision-free path (more simply: it is the minimum cost to reach
the goal from the current cell avoiding all obstacles). The potential is updated with
respect to the neighbors’ values to reach a steady value. The updating rule is quite
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simple: the potential value is the minimum value of the potentials of the neighbors
plus the cost of the move that carries the robot from the neighbor cell to the current
one. Within a temporal layer, the potentials are calculated up to their stability, before
the successive layer is updated on the base of the current one (the temporal layers
are sequentially updated). At the end, all temporal layers are stabilized and the 4D
space contains a ‘potential bowl’ with a minimum at the goal pose. The CA updating
rules ensure that the potential is calculated by turning around obstacles, and with
a single minimum, i.e. no local minima are generated (in which the robot would
stall). Within the Attraction Space all the movements are represented which may
lead to the goal pose from any starting pose, under the form of spacetime trajectories
(geometrization of movements). The calculation of the movements (ST trajectories)
is made according to the negated gradient of the potential surface. The robot is shrunk
to a single point, which moves on (rolls over) a potential 4D hyper-surface towards
the goal. In order to take into account the actual size of the robot (which also changes
with its orientation), it relies on the Coordination Space to validate the moves set,
temporarily deactivating the moves which would lead to a collision (see 7.3.2.2).

7.3.2 Motion and Moves

Planning is the results of the interaction between two aspects: on one hand the search
spaces (7.3.1), on the other hand the model of the process. In this section, it is
introduced the kinematic model of a generic robot. A new ‘dynamical’ model of
the robot results from combining the robot’s kinematic model with its shape, called
Motion Silhouette.

7.3.2.1 Spatiotemporal Moves

Robot discrete kinematics is described by a set of atomic spacetime moves, also
including (non-)holonomic constraints. All objects, including static objects, follow
a temporal trajectory (movement) consisting of a sequence of spacetime moves.
In a discretized spatiotemporal space Z4 for a robot moving on a 2D manifold,
the definition of spatiotemporal move is the 4-tuple: (Δx,Δy,Δθ,Δt), where Δ

is a finite variation, (Δx,Δy) ∈ Z2, Δθ ∈ S1, Δt ∈ Z and with the obvious
constraint Δt ≥ 0. This definition has two main interpretations: (Δx,Δy,Δθ) are
finite increments of the spatial coordinates during the finite time interval Δt .

It entails the following space metrics �s:

move ∼= (Δx,Δy,Δθ)

Δt
⇒ Δs2 = Δx2 + Δy2 + r2Δθ2

In the same way, (Δx,Δy,Δθ,Δt) are finite increments of the spatiotemporal
coordinates, inducing the following metrics:

move ∼= (Δx,Δy,Δθ,Δt) ⇒ ΔS2 = Δx2 + Δy2 + r2Δθ2 + v2r Δt2
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whereΔS is the ‘distance’ between two events of the spacetime, r is a dimensional
constant, vr is the ‘speed’ of spontaneous translation along the Time axis.

Static objects only have a single type of motion parallel to the Time’s Arrow. They
have only one move (we call it ‘existence rule’): (0, 0, 0,+1). This move is part of
the kinematics of all robots, without which the object does not have a physical sense
(it should move indefinitely, something like a perpetuum mobile, never standing in
a place).

Thanks to this definition of spatiotemporal move, the movement of a rigid body
becomes a geometrical trajectory in the spacetime executed by means of a sequence
of finitemoves. The speed is computed as usual, but it is a rational value. For example,
(+2, 0, 0,+1) is a move with double speed (x direction) or (+1, 0, 0,+2) represents
a move at a half speed with respect to normalized units. Using an appropriate set of
moves, it is possible to represent every type of kinematics of any robot. Furthermore,
there is no theoretical limit to represent any velocity.

7.3.2.2 Motion Silhouette (Moves Validation)

To face with real robots in real environments, it is necessary to represent the shape of
a robot. In the Configuration Space, the robot is represented only by a point (a vector
of coordinates), but its real extension is not considered. In the late 70s, Lozano-
Pérez first introduced the concept of obstacles enlargement to take into account the
actual footprint of a robot [13]. In the first method, enlargement was isotropic, by an
amount equal to the maximum radius of the robot (Fig. 7.2a). This method clearly
led to an excessive enlargement because it transformed the robot shape to a cylinder
that surrounded it. The result was a great loss of available free space and the closure
of narrow passages. At the beginning of the 80s, Lozano-Pérez et al. [12] proposed
a better solution: they also took into account robot orientation (Fig. 7.2b), realizing
n obstacles maps, one for each expected orientation and with a different obstacles
enlargement (anisotropic enlargement). This was translated in the C-Space as zones
with admissible configurations and areas with forbidden configurations.

Fig. 7.2 Obstacle enlargement: a isotropic [12]; b oriented [13]
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Fig. 7.3 a Sweeping silhouette [15]; b Motion silhouette [17]

In 2003, the authors proposed a method which takes into account what happen
between two different orientations: the Sweeping Silhouettes [15]. Instead of widen-
ing the obstacles, the Sweeping Silhouettes of the robot were used on discretized
C-Space cells to determine which configuration have to be considered admissible.
This method makes it easier and more accurate to determine prohibited configura-
tions, eliminating even the configurations in which the robot does not collide with
obstacles just in the start and arrival poses of a single move, but also in all the inter-
mediate positions, avoiding problems of ‘tunneling’ thin object like in Fig. 7.3a. The
next evolution occurred in 2011 with the Motion Silhouette [17]. It coincides with
the use of discretized C-Spacetime, strictly necessary when planning in the presence
of moving obstacles (in particular other robots). With a double sampling of Time (to
satisfy the Shannon’s Theorem) a sequence of silhouettes are generated to map an
elementary move. A collision test occurs within temporal layers of the Spacetime
with respect to the poses of other obstacles. The prediction of a collision in a temporal
movement step allows to disable the move starting from that particular robot pose
(Fig. 7.3b). The test is performed for each pose and for each instant of time to validate
the set of available moves (i.e. kinematics), temporarily disabling those which lead
to a collision. Motion Silhouette method is able to represent any robot shape of any
size. The only limit is due to the limit of the representation. It is a discretization of a
2D shape, thus the accuracy of the representation depends on the real size of a cell.

7.3.3 Interaction Between Spaces and Moves (Planning)

Conceptually, the motion planning is the result of the interaction between the Spaces
and the set of Moves (kinematics) of a robot, i.e. depending on the move selected,
spaces are altered accordingly.
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7.3.3.1 Prioritized Planning

While the path planning problem for a single robot has a polynomial complexity, in
1979 Reif [19] established that the problem for a team of robots is PSPACE-hard,
which implies it is NP-hard. Canny later established that the problem lies in the
PSPACE, and therefore the general motion planning problem is PSPACE-complete
[5]. Even Warehouseman’s problem on a 2D grid is PSPACE-hard [6]. In general,
for a N rigid robots problem the number of dimensions of the C-Spacetime would
be: CST = C1 × C2 × ... × C N × T . If robots are moving on a 2D manifold, the
C-Space of a single robot is �2 × SO(2) ≡ �2 × S1, thus the overall C-Spacetime
has 3N + 1 dimensions. Even for small MRS, the cardinality of the space makes the
problem untreatable. Therefore, it is necessary to reduce the number of dimensions,
for example adopting the Prioritized Planning technique (a description in [10]). This
technique is a case of Decoupled Planning for multiple robots, where the robot to
robot interaction is ignored in the first phase of motion design. Then the interactions
are taken into account to constrain the available options. The problem arises when no
option remains because this approach is not reversible, thus losing the completeness.
Nevertheless, Prioritized Planning is very practical and solves most of the situa-
tions. In the prioritized approach, a planning order is given, starting to plan with the
high-priority robot first. Robots with a lower priority see the higher-priority robots
as moving obstacles with designed spatiotemporal trajectories. The planning phases
are:

1. Establish a priority order for the robots (ordered set).
2. Plan the motion for the robot with the highest priority not yet planned (single

robot motion planning in its Attraction Space).
3. Using the Coordination Space, select one collision-free movement from the set

of all movements found (if any).
4. If there is at least one movement, trace the robot in the Coordination Space (mark

the configurations along the movement as no longer available: the robot becomes
an obstacle for all the other robots with a lower priority).

5. Exit if all the robot has been planned (finding or not a movement).
6. Goto step 2.

If no collision-free movement can be found for a robot, many recovery strategies
can be adopted. The simplest one is to eliminate the robot from the space (and from
the problem). Another strategy is to consider the robot as a static object standing in
the starting pose. A more complex strategy is to let the robot at the starting pose,
with the task to stay in the same pose, but reducing its priority. In this case, the robot
can move away if another robot (with a higher priority) has to pass in that pose, and
then it goes back to the initial pose. It is quite hard to define the complexity of this
algorithm. It has been established [14] that, for a single robot, in the worst cases the
complexity is O(N 2), where N is the number of cells of the discretized C-Space.
Hence, for an algorithm using the Prioritized Planning, its complexity is O(pN 2),
where p is the number of robots of the MRS.
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7.3.3.2 T-Invariant Motion Planning

Dual kinematics is defined as a set of dual moves. These are obtained by the original
kinematics by reversing the sign of all the components of the initial moves:

move ∼= (Δx,Δy,Δθ,Δt) dualmove ∼= (−Δx,−Δy,−Δθ,−Δt)
The dual moves still belong to the same set of the original moves, and the dual

kinematics is again a ‘normal’ kinematics. The original problem was a classical top-
down planning (or backward planning: from goal to the start); the dual problem is
a bottom-up planning (or forward planning: from start to goal). By exchanging the
start with the goal and dualizing the kinematics we can solve the dual problem using
the same algorithm. Hence, because they have the same solution, they belong to the
same class of motion planning problems. It is possible to plan a movement from the
goal to the starting pose, or viceversa from the starting pose to the goal, and we will
find the same solution. We call this property as T-invariance of Motion Planning.

7.4 Gross Motion Planning

The approach to multidimensional Cellular Automata suffers from the problem of
the appreciable increase of the computational burden, which grows with the number
of dimensions of the Spacetime and the number of robots. Let’s suppose we model
a space with 100× 100 cells, with a discretization of the orientation every 3 degrees
(120 cells along the orientation axis), with 50 ticks along the time axis (100 cells for
double sampling) and finally using 10 robots. The overall Attraction Space easily
exceeds the billion of cells needed to manage the MRS (the Coordination Space
is limited to only 106 cells). Fortunately, the Attraction Spaces of each robot are
handled separately, but anyway each one reaches 108 cells. It is important to reduce
its complexity. To do this, we add a preprocessing phase: the gross motion planning.
Its purpose is to identify ‘coarse’ channels within which the robot will move. Then
simply generate a set of possible trajectories (inside the channel) not taking into
consideration the travel times. The aim is to discard all regions in the environment
through which the robots do not pass and limit the precise motion planning only to
the ‘touched’ areas, thus significantly reducing the number of cells really involved.

7.4.1 Topological Approach

To drastically reduce the computation time, we decided to adopt a static topolog-
ical approach (not considering the time at this phase). From the 2D grid map of
the environment, through appropriate processing, we generated a weighted graph
representation of space (topological map). Topological map building occurs in three
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Fig. 7.4 Example of clockwise spiral cells clustering

steps:

1. free space decomposition in rectangular regions (complete coverage) through a
mechanism of aggregation of cells;

2. search for border areas between regions;
3. construction of topological weighted graph.

7.4.1.1 Cells Clustering (Rectangular Coverage)

The process of decomposition of the free space in rectangles is performed by clus-
tering adjacent cells in a spiral pattern (Fig. 7.4). It identifies a cell seed not yet
part of any rectangle. This cell represents a basic ‘rectangle’ from which to start an
enlargement phase by aggregation. It proceeds with a clockwise spiral by adding a
row of cells (a rectangle of one cell thick) to the previous rectangle, getting a new
wider rectangle. The result is always a rectangle, i.e. a convex region (the rectangles
set is closed under this operation). The procedure continues while it finds new lines
of cells that do not overlap with obstacles, or with the map boundary, or with other
rectangles already identified, or until it reaches a maximum width.

At this point, it tries with a new cell not yet used and repeats the clustering. The
procedure terminates when all cells are part of a rectangle (red in Fig. 7.5a) having
the complete coverage of the space.
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Fig. 7.5 Cells clustering: a Rectangular tessellation; b Border rectangles (‘doors’)

Fig. 7.6 Topological map: a weighted graph; b insertion of starting and goal nodes

7.4.1.2 Calculation of Boundary Zones

From the set of rectangular regions, border areas between them are determined. The
algorithm considers pairs of rectangles to determine if there are groups of border
cells between them. These cells will constitute a new set of rectangles one cell thick
(blue in Fig. 7.5b). During the movement, a robot that has to come into an area has to
go through one of these thin rectangles (‘doors’ or ‘passages’), representing the input
door-sill of the rectangles. If they are wider than robot size, they will become the
nodes of a graph (Fig. 7.6a), while links will represent a chance to switch between
different sills crossing the rectangle in which they are contained. As part of border
regions of convex areas, links cannot pass over occupied cells, ensuring the clearance.
The links are weighted by values representing the linear distance between the sills,
according to the canonical Euclidean metric. This graph will be used for the Gross
Motion Planning.
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Fig. 7.7 Topological path
(‘channel’ in light green)

7.4.1.3 Topological Path-Planning

Planning starts with the inclusion of two additional nodes that represent the starting
point (green) and arrival point (red in Fig. 7.6b). These nodes are connected to all
the existing door-sills of the rectangle, altering the topology (the algorithm cuts any
other links inside the rectangle because it will never participate in the final trajectory.
Likewise for the group of nodes connected to the arrival rectangle).

Topological level planning is done using the classic Djikstra’s algorithm on
weighted graphs (with exclusively positive weights), identifying the lowest cost path.
This cost is only a rough estimate of the true length of the trajectory, and the path
obtained is not optimal from many points of view. The purpose of this phase is just
to identify the rooms involved by the trajectory in order to find a passing channel
(Fig. 7.7), not to compute the path to be followed. With subsequent computation of a
precise movement, it can determine the true trajectory inside the channel. Since the
fine planner computation is relatively heavier, if we restrict its application solely to
space involved by the channel, we can significantly reduce the computation times in
some cases even by a factor of 10.

7.4.2 Examples

In this section, we show some examples related to the topological phase (or gross
motion planning).
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Fig. 7.8 H-shaped obstacle problem: a graph; b ‘channel’

Fig. 7.9 Office-like environment: a graph; b ‘channel’

7.4.2.1 H-Shaped Obstacle

Figure7.8 shows that using nodes at the ‘doors’ of the rectangular regions, since they
are convex, the planner does not stall in concave obstacles, but it always drives the
robot to exit easily from a potentially critical situation.

7.4.2.2 Office-Like Environment

In the situation of Fig. 7.9, an office-like environment is represented. The total number
of cells is 2,500 (50 × 50 cells). During the fine motion planning, the total number
of cells of the Attractive Spacetime rises to 18 Mcells (18 × 106 cells). With the
topological planning phase, the number of cells is reduced to about 3.5Mcells, i.e.
less than 20%.
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Fig. 7.10 Fractal obstacles example

Fig. 7.11 Fractal obstacles channel

7.4.2.3 Fractal Obstacles

The last two examples were set to highly stress the system. In Fig. 7.10 a binarized
fractal is represented on a grid of 650 × 450 cells (292,500 cells). In this situation,
the Attractive Spacetime for a single robot would be more than 2.1 billions cells!.
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Fig. 7.12 The Maze

Making a topological planning and limiting the rectangles size to 10% of the
length of the environment sides (45 cells), we will get a total of 1,967 rectangles
(Fig. 7.11). The trajectory obtained involves only 19,371 cells out of 292,500 (6.6%),
reducing the total amount of cells involved in the next phase up to 139.5Mcells.
Some computation times: even in such a hard situation, the most costly phase (graph
building) requires only 0.15 s (on a Intel 32bit 8core 3.6GHz), while the planning
phase just 0.12 s.

7.4.2.4 Huge Maze

This example represents the most complex situation, although it is not realistic for
a robot. A maze of 400 × 400 cells (160,000 cells) has been built (Fig. 7.12) using
an automatic algorithm, making sure to generate at least 3 cell wide passages. It is
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Fig. 7.13 Maze rectangular tessellation

unrealistic for a robot because it would bewide at most one cell to ensure the passage,
but it represents a very hard test for this algorithm.

In Fig. 7.13 the set of rectangular regions is shown. The average computation time
(on 1,000 repetitions) for this phase is 0.87 s.

Two problems have been tested: in the first the robot starts from the top-left corner
and has to reach the bottom-right corner. In the second test a path covering a wider
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Fig. 7.14 Maze: first problem solution

area is found. The first result is shown in Fig. 7.14. The average time to solve the
problem is 0.29 s.

The second problem is shown in Fig. 7.15 and requires 0.39 s. If we use the fine
motion planner on this maze, we would have a total number of cells in the Attractive
Spacetime of 4.6Gcells for a single robot. With the topological phase to reduce the
involved space, we would need only respectively 7% of cells for the first issue and
25% for the second (which deliberately has a broader coverage).

7.5 Multi-Robots Motion Problem

In a situation with multi-robots, the gross motion planning allows to decouple the
problem moving a single robot at a time. The adjacency graph (relatively heavier at
the computational level) remains unchanged and is calculated off-line once for all the
robots: from time to time the goal and start nodes of a robot are added to calculate its
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Fig. 7.15 Maze: second problem solution (path with a wider coverage)

trajectory (or to determine that it does not exist). This decoupling enables to locate
the coarse paths for all the robots, but also has a second important utility: to determine
the areas of interaction (interference) between robots. Identifying which robots pass
through the same room, it figures out which robots risk mutual collision and which
are excluded. It realizes a decoupling of the problem of multiple robots: on one hand
there are robots that move through the environment without any risk of collisions and
require just a planner for a single robot (polynomial complexity) applied separately
(in parallel and non-interacting). On the other hand, there will be groups of robots
that risk reciprocal collisions and that will be processed by a coordinated motion
planner for MRS (coordinated within each group, but in parallel between different
groups). In all cases, the level of complexity significantly decreases on the basis of
the number of robots in addition to the space dimensions. If, as in the example of
Fig. 7.16, instead of using a coordinated planner over four robots on the entire space,
we use one on only two robots and a single planner on the remaining two, besides
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Fig. 7.16 Multi-robots motion problem graph

Table 7.1 Multi-robots
motion problem performances
(topological phase)

Phase Mean time
(ms)

Graph build 0.639

Green R. planning 0.046

Red R. planning 0.045

Blue R. planning 0.031

Yellow R. planning 0.030

Fig. 7.17 Green robot (a) and Red robot (b) topological paths
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Fig. 7.18 Blue robot (a) and Yellow robot (b) topological paths

Table 7.2 Multi-robots
motion problem performances
(Spatiotemporal planning
phase)

Phase Mean time (s)

Green+Red R. planning 0.83

Blue R. planning 0.50

Yellow R. planning 0.84

Fig. 7.19 Summary of the precise trajectories of the Green, Red, Blue and Yellow robots
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Fig. 7.20 MRS movement (1): a T = 0 (robots start moving); b T = 5; c T = 12 (the interaction
between Red and Green robots starts); d T = 20 (the Green robot has higher priority and passes
first)

reducing the space involved in the planning, the complexity is much lower. For this
problem, the average calculation time is less than one millisecond for all phases,
including the construction of the graph, as shown in Table7.1 (Figs. 7.17, 7.18).

The calculation of the graph is made once for any problem data set with any
number of robots and can be made off-line. The calculation for each robot takes
place in real-time in parallel on different processors, and the worst result is for the
Green robot with 0.046ms, a time absolutely negligible. In the next step, we use
the fine motion planner to determine the precise trajectories, maneuvering to handle
the interaction between robots in the same rooms. The result is shown in Fig. 7.19,
where the trajectories have been summarized. As we can see, the spatiotemporal
motion planner finds slightly different but more efficient trajectories, handling the
real robots shapes and their orientations; in particular, it manages the interaction
between Red and Green robots to avoid collisions.

In Figs. 7.20, 7.21, snapshots at significant timestamps are reported. It is interest-
ing to note the interaction phase between Red and Green robots starting at T = 12
to T = 45. Actually, the calculation has been assigned to three instances of the same
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Fig. 7.21 MRS movement (2): a T = 30; b T = 45 (Red-Green interaction ends); c T = 60; d T =
75 (Yellow robot stops) e T = 80 (Red and Blue robots stop); f T = 98 (Green robot stops)

spatiotemporal motion planner and runs on three different microprocessors. Out of
the three instances, the worst computing time results on the Yellow robot (Table7.2),
and it is the time that affects the entire procedure (0.84 s for a total of 15.1Mcells).
Therefore, the total time for all the phases is 0.85 s. On the other hand, assigning the
test to only one single instance of the same coordinated motion planner handling all
the four robots, the computation time required would be 4.31 s on a total of 64Mcells
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managed. Considering the planning time during the motion (real-time planning), a
coordinated motion planner is 5 times slower than the solution proposed (4.31 s vs.
0.85 s).

7.6 Conclusions

A two-phase planner has been used based on a jointmetric-topological representation
that allows to split the general problem of planning into two separate planning issues
(divide et impera). Clustering of cells in rectangular homogeneous areas actually
introduces a multi-resolution approach: we use a more abstract topological map at
a lower resolution and, in the second phase, a regular cells decomposition map at
high resolution. The tessellation with variable-sized rectangles allows a complete
coverage of the free space and maintains a spatial link with the highest-resolution
map. This allows us to move between the two different resolution levels on a spatial
basis.

The approach is characterized therefore by:

• Multi-resolution: the detection of clusters of cells leads to two resolution levels of
representation, to which a third topological level is added;

• Hierarchical Planning: gross and fine planning brought on two different resolution
levels, the gross one for channels identification and the fine one for the precise
movements.

The gross part allows to identify channels and significantly reduce the area of inter-
est (number of cells) operated by the spatiotemporal planner. The latter is able to
determine the precise trajectories, spreading potentials only within channels. It is
also able to solve the interaction problems (in the conflict areas) only between the
robots involved, significantly reducing the total amount of computational time.
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Chapter 8
Autonomous Robot Path Planning Techniques
Using Cellular Automata

Konstantinos Charalampous, Ioannis Kostavelis, Evangelos Boukas,
Angelos Amanatiadis, Lazaros Nalpantidis, Christos Emmanouilidis
and Antonios Gasteratos

Abstract Path planning for autonomous navigation remains an active research topic,
ensuring safe maneuver of mobile robots in congestive environments by producing
collision free trajectories. To this end, this chapter introduces the amalgamation of
path planning techniqueswithCellularAutomata (CA) operations in order to embody
analogous desired properties. These navigation systems are consist of signee scene
and global map components. Regarding the single scene method presented here,
it achieves obstacle free routes from the current position of the robot towards the
goal one. The latter serves as local planner and is accomplished via the attenuation
of a v-disparity image formed upon the respective depth map. Afterwards, a CA
floor field is created revealing the traversable regions within the scene. Once the
target point is brought to light, a supplementary CA routine is performed on the
floor field to expose the traversable route. Concerning the global map operations, a
global path planning algorithm is demonstrated, suitable for dynamically changing
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environments. This method incorporates the A* search methodology tuned with CA
strategies taking advantage of their discrete nature and, thus, administering a valuable
searching approach. Moreover, the corresponding global path planning approach
guarantees an obstacle free and low cost productive path. The main characteristic of
this approach is that extends the map state space susceptible to time. The respective
time intervals are adjusting and foresee the probable enlargement of obstructions. The
performance of the examined algorithms has been evaluated on real data exhibiting
remarkable results.

8.1 Introduction

Over the last years, multiple attempts were made with respect to the advancement
of efficient methods for safe autonomous robot navigation. The latter comprises an
effective research area in multiple scientific fields, the majority of which focuses on
the formation of a collision free route from a starting point to a target one, given
precise operating constraints and scenarios. The most ordinary, however significant
criteria such a system should retain are the capability of obstacle avoidance, the
capacity to deploy in static or dynamic environments and the computational effi-
ciency. The derivation of a collision free path is an indispensable characteristic in
any autonomous system [1]. The functionality in static or dynamic environments con-
cern whether the world model stays intact during time advancement or not, respec-
tively. Computational efficiency is an additional requested feature for constructing an
autonomous system that finds applications in real time operations. Such constraints
a system should hold have given birth to a plethora in number and variations of the
proposed methods, that have guided to significant improvements especially in robot
and car navigation [2], ambient assisted living [3], sensor fusion [4], logistics [5] or
even in search and rescue robots [6, 7]. However, the autonomous navigation field
should not be considered as a closed issue.

Concerning the estimation of traversable routes, which robots can safely follow
in a scene, comprises the exposure and prevention of collision with obstacles. Con-
sequently, it constitutes the primary step that leads to higher level navigation algo-
rithms, namely the global path planning and simultaneously localization andmapping
(SLAM). CA have been demonstrated their capabilities to offer trustworthy solutions
to many robotics-related problems. Their profitable engage may be witnessed in the
area ofmobile robotics [8], as well as in othermanufacturing and fabrication process-
ing problems [9]. Most of those CA applications in robotic problems assume a cell
grid workspace, where the robot and the obstacles acquire punctual representation
[10, 11]. Namely, in the work of Marchese et al. [12], a CA method is proposed
providing a solution to the path planning of a rigid body in a planar workspace where
prior information for the localization of the obstacles is assumed. As a result, the
mobile platform is designed to be a point that traverses from one cell to another, while
the important restriction is that the robotic platform follows a smoothed trajectory
without stopping and rotating with a minimum radius of curvature. Additionally, in



8 Autonomous Robot Path Planning Techniques Using Cellular Automata 177

Behring et al. [13] suggested that the input space is a frame acquired by a camera,
attaining information related to the location of all items and the coordinates of the
starting and the goal point. This CA based method functions in two distinct stages
taking advantage of theManhattan distance yielding thus themost efficient path from
the starting to the goal position. A different approach is followed in [14], in a nutshell,
a CA technique is used to surpass the perspective-effect. This method is embodied
in a vision system of an autonomous platform intended to function in indoor envi-
ronments. Moreover, in [15], a CA algorithm is exploited in order to construct a real
time path planning system of cooperative robots confirming that precise collision-
free paths can be formed having low computational cost. A simulation algorithm that
relies upon CA advances for a qualitative description of a structured indoor environ-
ment, comprising thus the stepping stone for a SLAM framework presented in [16].
Furthermore, the work in [17] proposed a planar CA component encapsulated in a
SLAM algorithm. In more detail, a CA engages in the improvement of the global
and local map blending action, thus, bettering the quality of the constructed map.
Regarding the global path planning, it produces a variety of solutions that cope with
the majority of the previously mentioned constraints. Techniques that rely upon the
optimization form a set of inequalities and constraints utilized to solve the problem.
Yet, with the aim to be accurately formed, the set of inequalities grows proportion-
ally and as a result derives complex non linear functions that have to be optimized
[18]. The works in [19, 20] employ the comprehensive utilization of Voronoi dia-
grams having the drawback of significant computational cost. The authors in [21]
also exploit the Voronoi diagrams, yet their method is unable to cope with robots that
attain arbitrary shapes. The work in [22] presented a technique that replicates the
Dubin’s theorem, employing the genetic algorithms in order to extract the optimal
solution in a static environment. Another family ofmethodologies rely upon heuristic
functions [18], with the aim to prune non-traversable paths while at the same time
deal with the robot’s embodiment. The work in [23] presented a technique that mim-
ics a wave, the later generates a wave that carries the respective distances from the
goal point. It was further expanded in [24], named path transform, which appends
distances from adjacent obstacles into the calculations. Last, CA confirmed to be
suited to administer accurate solutions to a collection of robotics-related problems.
In more detail, CA have been favorably applied in the area of mobile robotics [25,
26] and in the one of robotic vision [27]. A rather significant characteristic in the
larger part of CA applications in robotics is the assumption of a cell grid workspace,
in which the robot and the obstacles are punctual [10].

The chapter in hand introduces two methodologies, dealing individually with the
local and path planning problem, respectively. Bothmethods provide solutions for the
respective navigation components which are thoroughly discussed and experimen-
tally evaluated. In short, the local path planning solution discussed in a subsequent
section applies 3D vision methodologies and CA operations in order to derive a
collision-free path for a robot in a scene. In the first step, a stereo vision method
or a suitable depth sensor is utilized for the formation of the disparity map of the
respective scene. The second step includes the employment of a polar transforma-
tion on the disparity map to create a polar-depth frame, in which the objects are
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Fig. 8.1 The flow chart of the proposed methodology

readjusted with respect to an angular formation. Then, a v-disparity routine models
the ground plane of the scene considering the original depth frame and, as a result,
a novel obstacle-free depth map is computed. The latter map is also converted into
a polar one. Afterwards, the comparison of the polar maps takes place and extract
a binary polar workspace uncovering the presence of objects towards all possible
directions. The successive step involves the creation of a floor field that relies on CA
operations and comprises the computation of the distances among the positioning of
the robot and the traversable areas in the scene. Last, the target position is discovered
within the scene and via the exploitation of CA rules over the floor field, the obstacle
free path is calculated. Figure8.1 illustrates the fundamental acts of the described
technique.

The global path planning algorithm analyzed in this chapter pledges a traversable
route among obstacles that are capable of presenting a dynamically expanding behav-
ior. At the same time, the respective path cost produced is locally optimal one in all the
intervals. The extracted overall trajectory is found to be in the vicinity of the global
optimum due to the fact that attempts to acquire the global optimum, in every itera-
tion. The inflation of the dynamic obstacles rely on particular CA rules [28]. For that
reason, in conjunction with the corresponding dynamic obstacles various expansion
rulesmay be performed. Themethod described here considers theMoore’s expansion
neighborhood which is the one that wraps more area and leads to a more general-
ized solution. A demonstration of the discussed method also takes place within this
chapter. The obtained 3Dmap is then top-down projected to create the 2Dworkspace
upon which the CA operations take place. The presented methodology is defined as
a computational efficient one, suitable for real time operations.

8.2 Theoretical Background

8.2.1 Cellular Automaton Theory

Automaton is a mathematical structure, outlined in a formal fashion as a quintuple:

{I, Z , Q, δ1, ω} (8.1)
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where I , Z are the two sets of the corresponding inputs to the defined automaton, Q
is a set of internal states, and δ1 is a transition function defined as δ1: I × Q → Q,
that derives the respective internal state from the Cartesian product of an internal
state and the set of inputs. Moreover, ω is a function that extracts the output from the
Cartesian product of an internal state and the set of inputs, defined asω: I × Q → Z .

Cellular automata is a subdivision of automata, having as amain property the capa-
bility to handle simultaneously with time and space in a discrete fashion. According
to the latter definition, a subsequent state is the derivative of the exact previous one.
However, this statement can be extended, guiding to a system with memory, capa-
ble of inferring decisions by examining several previous states. The spacial region
around a cell is characterized as neighborhood, while a cell is in position to explore
it. Regarding the size of a neighborhood is theoretically unbounded, though it needs
to be the same for all cells. Two well known classes of neighborhoods are the Von
Neumann and the Moore ones. The aforementioned one attains a diamond shape
illustration in the case of a square grid. Let a cell (x0, y0) in a two-dimensional
plane, and length r , Von Neumann neighborhood is defined as [29]:

N V
x0,y0 = {(x, y) : |x − x0| + |y − y0| ≤ r} (8.2)

However,Moore’s neighborhood derives a squared shaped neighborhood in a squared
grid. Let a cell (x0, y0) in a two-dimensional plane and length r ,Moore neighborhood
is defined as [29]:

N M
x0,y0 = {(x, y) : |x − x0| ≤ r, |y − y0| ≤ r} (8.3)

8.2.2 Path Planning Theory

The field of path planning is separated in global and local one. Global path planning
(GPP) and local path planning (LPP) are two complementary functionalities for
autonomous navigation. On the one hand, GPP operates in a high level, performs
long term planning, seeks for the shortest path to a goal according to certain criteria
and avoids “cul-de-sacs” situations. On the other hand, a local path planner focuses
on smaller obstacles lying close to the robot’s sensory input and derives a feasible,
continuous, obstacle free trajectory in a time efficient fashion. Both problems are
thoroughly studied individually, yet the recent notion is the proposition of hybrid
methodologies, i.e. systems that provide simultaneous global and local resolutions.

A well-known component that has been widely used for global path planning is
theA* search algorithm. The latter is a search algorithm,well known one in computer
science, primarily in path seeking and graph traversing problems. A* was presented
as a continuation of Dijkstra’s algorithm [30]. Initially, it was suggested for two-
dimensional grids, referred to as state spaces, indicating its discrete nature. A* may
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be called as the mixture of Dijkstra’s algorithm since it can retrieve the shortest path
and of the Greedy Best-First-Search due to the fact that utilizes a heuristic function.
In more detail, A* pursues the path that minimizes the cost function f (s), where:

f (s) = g(s) + h(s) (8.4)

The g(s) part demonstrates the cost of the already traversed path until the present
state-cell s. The h(s) path represents a heuristic function that supplies with an
appraisal of the cost from the present node to the goal one. In the case where h(s)
is an admissible function, i.e. h(s) never overestimates the true cost from current
state to goal providing a value of less or equal to real cost, then A* attains sev-
eral intriguing features, namely the fact that the extracted path will definitely be
the shortest-optimal one [31]. From the very beginning of A*, a variety of heuristic
functions have been presented over the last decades, providing adequate solutions
with respect to the nature of a certain problem. A typical characteristic among all
those methods is the trade-off between heuristic’s accuracy and time complexity in
order to produce a result, in the form of an estimation. The key point in order to
convert a search method suitable for real time applications may be found in an adept
heuristic function. With respect to the nature of each problem, the adopted plan of
action should be regarded as the optimal trade off between global optimum path cost
and fast convergence. Moreover, A* is a complete method, i.e. it constantly spans a
solution when such one is in existence.

The computational complexity of A*, as noticed before, depends upon the utilized
heuristic function h(s). The complexity is bounded to be polynomial in the casewhere
the following restrictions hold: (i) State space is a tree, and (ii) for a given heuristic
function h(s) the next condition is valid:

|h∗(s) − h(s)| = O(log(h∗(s))) (8.5)

where, h(s) is the heuristic’s value at state s, and h∗(s) is the optimal function’s value
at state s, i.e. the actual cost from state s to goal. The latter suggests that the approx-
imation error, expressed as the absolute difference between the optimal function and
the heuristic of interest, needs to be equivalent to the optimal solution’s logarithmic
value. Yet, the number of nodes may similarly be extended in an exponential fashion,
while extracting the minimum cost route [32].

8.3 Local Path Planning

8.3.1 Depth Map Acquisition

The initial step of the presented local path planner attains the calculation of a dis-
parity frame, which embodies the depth information of the scene [33]. Although the
construction of a stereo visionmethod that derives disparity frames is out of the scope
of this chapter, it is worth mentioning that there is a variety of techniques regarding
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the computation of the depth information comprising miscellaneous depth sensors
and techniques. Several cameras exist, capable of attaining a continuous stream of
depth frames namely Microsoft Kinect or Time of Flight Cameras (ToFC) which
are nowadays generally available, while several research has already been done in
this area [34, 35]. Moreover, a famous method capable of attaining the depth of a
scene is the usage of a stereo correspondence system, which acquires as input a pair
of frames captured from a stereo rig and derives the corresponding disparity map
[36]. The methodology presented here does not assume a specific type of depth map
acquisitions, as long as the respective of derives accurate and dense depth maps. In
the absence of a depth estimation camera system, an advisable algorithm for robotic
applications that deals with the stereo correspondence is presented in [37]. The capa-
bilities of this stereo algorithm has been thoroughly tested in real world navigation
systems [17], the output of which is illustrated in Fig. 11b.

8.3.2 Obstacle Free Ground Plane Modelling

An acquired depth map, similar to the one obtained from the aforementioned stereo
correspondence algorithm, may be utilized for the calculation of a v-disparity image,
as depicted in Fig. 8.2c. The latter considers a horizontal histogram of the disparity
values, involving fundamental geometrical attributes of the respective scene and it
administers, in a straightforward manner, an assessment of the horizon and the obsta-
cles over the ground plane. In a v-disparity image, each pixel has a positive integer
value that denotes the number of pixels in the input image that lie on the same image
line (ordinate) and possesses disparity values equal to its abscissa [38]. The knowl-
edge acquired from the v-disparity image is essential since it separates the pixels
corresponding to the ground from the ones referring to objects. The ground plane
may be expressed in terms of a linear equation f (x) = α · x +β in a disparity image,
in which the variables α and β refer to the slope of the camera and to the height that
the ground plane meets the horizon in the scene respectively. The aforementioned

Fig. 8.2 a Left reference image of the stereo pair, b The disparity map, c The calculated v-disparity
map
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parameters may be calculated via the Hough transform [39], where the geometrical
attributes of the camera-environment framework are assumed to be known. After-
wards, the utilization of α and β aids to the reconstruction of a null-disparity image,
resembling to an object free frame, having a fundamental geometry akin to the one
of the original depth map.

8.3.3 Polar Transformation of the Depth Map

The original and the assessed ground plane depth map are remapped via the usage of
a polar transformation, where the latter readjusts the knowledge of the depth in the
scene and positions the disparity values in a radial topology in the circumference of
the robot. As a result, a spatial arrangement of the objects, positioned around the robot
is attained. This transformation results two separate polar depth frames. The first one
is one is the polar-depth information extracted from the transformation of the original
disparity frame (Fig. 8.3b) and the second one is the ground plane polar-depth map
(Fig. 8.3d) derived from the transformation of the estimated obstacle-free depth map.
Every column of the polar-depth map refers to a certain direction in the scene, for
example the 90th column refers to a direction at 90◦, that is straight ahead of the
robotic platform. The most essential asset of the applied polar-depth mapping is the
fact that the depth information is favorably readjusted in order to refer to the probable
directions the robot can move towards to. As a result, every column characterizes the
spatial distribution of the obstacles being on the corresponding direction. In more
detail, the pole, from which the polar coordinate system initiates, is placed to the
central pixel of the bottom row of the disparity image O(M, N

2 ), where M and N
designate the number of the disparity rows and columns respectively (Fig. 8.3b). The
chosen radial resolution ρ guarantees that the knowledge of the image is uniformly
distributed in the polar space, while the angular resolution θ is a variable obtaining
values within the range [0◦, 180◦] with one degree step. Afterwards, the two polar-
depthmaps are subtracted (Fig. 8.3e) in order to derive a binary framewhere the areas
referring to the ground plane are marked with zeros (0), while obstacles are marked
with ones (1) (Fig. 8.3f). To bemore accurate, the outcomeof the subtraction is further
thresholded because the ground plane polar-depth map comprises an estimation
based on the v-disparity frame.

8.3.4 Floor Field

The binary polar frame comprises the area where the floor field for every pixel (i, j)
is formed [40]. The latter field comprises a gradient that attains low values adjacent
to the robot and high ones as the distance from it grows [41]. The dimensionality of
the respective area is equivalent to the original polar-depth maps and, as a result, the
Fi, j space is populated according to the subsequent rule:
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Fi, j =
⎧

⎨

⎩

>0, if a distance value has been assigned
=0, if no value has been assigned yet
= − 1, if there is an obstacle.

(8.6)

The calculation of the floor field relies on a CA operation that considers the
Von Neumann neighborhood. As already discussed, the latter is a diamond shaped
one, utilized in order to describe the set of cells around the principal one in the
middle, having coordinates (i0, j0). In the describedmethodology, the VonNeumann
neighborhood is alter in order to leave aside the central cell. Additionally, the CA
operates in a parallel fashion with respect to a particular rule, which is repeated
until all the Fi, j cells attain non zero values. At every time instance t the CA rule
is performed upon all cell with null values Ft (i0, j0) and considers the values of
the neighbor pixels Ft (i, j) within the Von Neumann one. Correspondingly, in the
subsequent time step t +1 the corresponding cell Ft+1(i0, j0) acquires the minimum
positive value of the respective neighborhood, grown by one explained in Eq.8.7,
while in a contrasting case the value of the cell a time t + 1 remains equal to the one
in t (Eq. 8.8).

IF Ft (i0, j0) = 0 AND Ft (i, j) > 0 THEN Ft+1(i0, j0) = min Ft (i, j) + 1 (8.7)

IF Ft (i0, j0) = 0 AND Ft (i, j) ≤ 0 THEN Ft+1(i0, j0) = Ft (i0, j0) (8.8)

where (i, j) belongs to the Von Neumann neighbor. Figure8.4a illustrates a tra-
versable scene, which encompasses several objects and it is transformed into a polar
binary one (Fig. 8.4b). The latter rule is performed upon the binary frame and the
composed floor field is depicted in Fig. 8.4c. In this figure, the areas that refer to in
obstacles have been omitted.

8.3.5 Local Path Estimation

After the calculation of the floor field, the goal position in the respective scene need
to be chosen. The latter position is the most distant point that the robot can traverse
to. The binary polar workspace is exploited in order to compute the distance in terms
of pixels between the position of the robot and the goal one. In more detail, the
number of the row that the goal point is found in the polar-depth map, suggests the
longest distance the robot is capable of traversing. Based on the fact that this section
deals solely with traversable areas in the scene the acquisition of the goal position
is limited within the area that resembles the horizon. The latter is already calculated
(β in the v-disparity), and, as a result, the maximum number of the rows in the polar
depth map that analyzed is equal to β as illustrated in Fig. 8.5a. The subsequent step
involves the retrieval of the path the robot has to pursue in order to be found to
the horizon of the scene. Having that aim, a supplementary CA operation has been
considered taking advantage of the pre-calculated floor field, which embodies the
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Fig. 8.4 a A reference image
of a scene, b the polar
workspace that contains the
obstacles and the ground
plane, and c the respective
floor field
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sum of distances from the position of the robot to all traversable points. As a result,
seeing as a initial point the goal position and via the transiting to the cell that obtain
lower distance values a trace which connects this point with the robot location can
be calculated. This trace reveals the chosen route and the corresponding calculation
relies to the CA via the application of the Moore neighborhood, which is a square
shaped one. The workspace of the CA operation consists of the already calculated
floor field and the binary polar image. Yet, it is investigated solely up to the curve
that refers to the horizon, as predicted by the v-disparity. Fore that reason, the novel
planar workspace Pi, j is described with respect to Eq.8.9.

Pi, j =
⎧

⎨

⎩

=0, traversable region
=1, occupied region
=2, path indexes.

(8.9)

Firstly, the goal position on the workspace is marked solely, as path index, and then,
the route that the robot need to pursue in order to maneuver among the obstacle is
extracted via the application of the subsequent CA rule:

IF
1

∑

i=−1

1
∑

i=−1

Pt (i, j) < 3 THEN Pt+1(imin, jmin) = 1 (8.10)

where the (imin, jmin) are the indexes that correspond to the minimum values in
the respective neighborhood in the floor field, i.e. [imin, jmin] = argminF(i, j).
Additionally, the CA operation is accomplished at the same time in accordance with
the previously described rule, until the path that joins the location of the robot and
the horizon is concluded. The calculated path which exploits the CA rule over the
respective floor field is illustrated in Fig. 8.5b. Moreover, the pixels that refer to the
polar path are transformed back to the Cartesian coordinate system and, as a result,
the calculated path is depicted in the reference frame in Fig. 8.5c.

Fig. 8.5 a A binary polar image with the horizon, b the estimated path in the polar space, c the
respective path in the Cartesian space
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8.4 Global Path Planning

8.4.1 Operation in the Continuous Space

The method discussed in this section relies on the A* algorithm due to the fact
that takes advantage of the CA theory. The aim of this algorithm is the extraction
of a kinematically feasible path to a target position with rapid convergence and at
the same time considering the formation of dynamic obstacles and their expansion.
Due to the fact that the A* search algorithm may be performed on two-dimensional
grids, similar to the fundamental CA properties of time and space discrete level of
processing, permits a seamless blending of both CA and A* theories. As mentioned
previously, the he A* algorithm as originally presented, is endowed with several
interesting properties, however they can only be performed upon a static and com-
pletely observable grid maps. With the aim to alleviate the previously mentioned
disadvantage, the discussed algorithm constructs a seamless union between A* and
CA theories. The fundamental idea relies on the fact that since A* in not applicable
on dynamic grids, it will be preformed on anticipated grid maps where the formation
properties and the growth of the obstacles are taken into consideration. The prognosis
of the grid map is possible due to the discrete nature of both A* and CA theories. Yet,
is necessary to apply a time step. This limitation is solved by utilizing an adaptive
step. This method sets the time step in an iterative fashion as the grid map evolutes.
The time step is calculated as follows:

Do(i, j) = disto(Oi , O j )

2
∗ re(i) i, j = 1, . . . , No, i �= j (8.11)

Vr (i) = distr (r, Oi )

2
∗ re(i) i = 1, . . . , No (8.12)

Ts = min(Do, Vr ) (8.13)

where No is the number of obstacles, Oi defines the coordinates of the i-th obstacle,
re(i) is the expansion rate of obstacle i , disto is an operator that calculates the
Euclidean distance between two obstacles and Do(i, j) is a matrix. Let the number of
obstacles be No, the methodology computes the mid distance between two obstacles
and then multiplies it with the growth rate of every one of them. In every time step,
the matrix Do(i, j) attains the time interval that is essential in order for an obstacle
Oi to reach half the distance to the obstacle O j . In (8.12), distr is an operator that
calculates the naive Euclidean distance between an obstacle and the robot. Vector
Vr (i) ∈ R

N0 stores the time in which an obstacle Oi will reach half the distance
to the robot. In (8.13), min is an operator that finds the minimum time for any
of the above events to happen defining the time step Ts . The definition of a time
step is accompanied with the evolution of the map Ts steps in time. As a result,
A* is performed upon the novel map and progresses the robot Ts time steps. Then,
follows the recalculation on a new time step. Those step are iterated until the robot
is found to the target position. The justification of the time step computation may
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be found in the fact that the obstacles in the anticipated map will avoid collision,
resulting constantly to a kinematically feasible between them, for the robot to follow.
Regarding the case where the time interval between an obstacle and the robot is less
that the necessary time for two obstacles to collide, this time interval is selected
to be the new time step, guaranteeing the avoidance of impact with respect to the
robot. In the discussed algorithm, the expansion of the obstacles obey the Moore’s
neighborhood rule, without being a constraint, since all types of neighborhoods may
be preformed to the presented strategy.Yet,Moore’s neighborhood can be regarded to
be as the most disastrous way an obstacle can expand, in terms of coverage upon the
grid map. The expansion rate may vary among the obstacles, while in this algorithm
it is also allowed the addition of obstacles during execution, as well as the alteration
of the target location. The latter may be applied previous to any iteration, where the
recalculation of the path takes place, absent of additional computational burden. In
order to guarantee the computation of a safe path, the A* algorithm is performed,
at a current time t by exploiting the anticipated grid map of time interval t + Ts .
In this fashion, the A* behaves towards the obstacles on the anticipated map as
being the ones in the present one. The projection of the expansion of obstacles with
respect to time provides the assurance that the computed trajectory will be always
kinematically. With the aim to decrease the computational burden, the presented
algorithm screens whether the subsequent conditions are valid:

1. The imaginary line segment that joins two obstacles does not intersect with the
robot path,

2. If an obstacle has a sufficiently greater expansion rate than another, leading at a
time to the second obstacle to be overlaid from the first one, then only the first
obstacle needs to be taken into account from time to onwards.

The computational complexity of this algorithm is in proportion with the number
and location of the obstacles. The subsequent cases are presented to exhibit the A*
method’s fluctuations. Considering the most unfavorable case, where all obstacles
need to be considered, the computational complexity is O((No)

2), where No defines
the number of obstacles. In the best case, where the robot distance from the goal can
be traversed in less time than the time step Ts , then the complexity is reduced to that
of A*. The most frequent case suggest that k obstacles comply with the previously
mentioned conditions, and, thus, only No − k obstacles are considered in the loop,
leading the computational complexity to be equivalent to O((No − k)2).

8.4.2 From the Continuous to the Discrete Space

The introduced method has been evaluated on real-world data which are attained
using a mobile robot platform. The respective setup consists of the wheeled robot
ERA-Mobi with and on-board pc bearing an Intel Core2Duo at 2.0GHz processor
and 4GB of RAM. The servo-electric rotary pan-tilt actuator PW-70 by SCHUNK
has been adopted, which cooperating with the SICK LMS500 PRO 2D laser scanner
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Fig. 8.6 a A 3D point cloud resulted from an indoors environment, b the respective top-down
projection, c the derived grid map on which the proposed path planning methodology is performed

produces the resulted 3Dpoint cloud as depicted in Fig. 8.6a. The reconstructed space
has an area equal to 4.7×4.4m2 and refers to the continuous scene. Once the ceiling
of the area is removed from the point cloud, then it is top-down projected (Fig. 8.6b).
The subsequent step consist of the adaptation of continuous 2D map to a discrete 2D
grid, upon which the presented technique may be applied. The acquired occupancy
grid is illustrated in Fig. 8.6c, where every cell refers to 4mm administering sufficient
resolution for the path planner to extract dependable and feasible route.

8.5 Experimental Evaluation

8.5.1 Local Path Planning

The performance of the presented local path planning methodology has been
appraised on the “Learning Applied to Ground Robots” (LAGR) from DARPA. The
latter comprises a series of natural outdoor scenes [42]. Regarding the dataset, the
reference color images are accompanied with the respective disparity information.
The geometry of the camera-environment was unknown and constantly variating.
As a result, the ground plane in the computed v-disparity frames was modeled by
considering the Hough transformation. The dataset comprises of immediate and indi-
rectly traversable scenes and, as a result, the introduced method was tested on both
scenarios. To be more accurate, among the entire tested dataset four different cases
are illustrated in Fig. 8.7, in which the in-between results and the conclusion of the
method are presented. The first two cases consist of the evaluation of the presented
algorithm on fully traversable scenes, attaining no obstacles (Fig. 8.7c) or obstacles
occur in the background (Fig. 8.7f). The third case comprises traversable scenes yet,
the presence of obstacles nearby the robot occurs. The calculated path among the
position of the robot and the dictated goal one, which is found in the horizon, avoids
all the obstacles (Fig. 8.7i). Additionally, the last case refers to another immediate
traversable scene, where the presented algorithm administers to design a path that
bypasses all the obstacles within the scene (Fig. 8.7l).
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Fig. 8.7 Experimental results for four different scenarios. a–f correspond to a fully traversable
scene, whilst g–l correspond to a traversable scene with some obstacles around the robot

8.5.2 Global Path Planning

The experimental evaluation of the presented global path planner takes place here-
along with the robot set up- n both indoors and outdoors scenarios. Considering the
evaluation, a mobile platform geared with a laser scanner has been used as depicted
in Fig. 8.8. Considering the indoors scenario, the walls were constraining the area
of practice. The room has an area of 4.7 × 8m2, and the original placement of the
robot is a random one. At the beginning, the 3D scanning component is performed,
accomplishing a 360◦ scan sweep. Then, the points are congregated and the 3D
representation of the indoor place is concluded. Subsequently, the points that refer
to the ceiling and the floor are excluded and the rest of them are top-down projected.
Figure8.9a depicts the respective 3D reconstruction, Fig. 8.9b illustrates the top-
down projection and Fig. 8.9c the derived occupancy map. At this juncture the grid
comprises solely static obstacles, the dynamic ones are provided individually along
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Fig. 8.8 The robotic platform used in the respective work, equipped with a 3D laser scanner and
a pan-tilt unit

with the goal position. Regarding the first indoor evaluation only one expanding
obstacle participated, while its expansion rate was equivalent to 0.3. It is obvious that
the initial trajectory of the robot is curvy, avoiding the collision. Once the traversal
among obstacle is concluded the robot pursues a line, due to the A* characteristic.
Figure8.9d illustrates the initial and the goal position as well as the starting point
of the expanding obstacle. An intermediate state of the path planning procedure
is depicted in Fig. 8.9e. The second indoor evaluation comprises two expanding
obstacles attaining different expansion rates equivalent to 0.3 and 0.4, accordingly.
The initial position of the robot, the goal one and the obstacles are illustrated in
Fig. 8.9g. It is apparent that the robot has to travel among the expanding obstacles,
yet, as illustrated in Fig. 8.9h, when the robot surpasses the static obstacle in the
middle of the room it does not continue in a line, rather seeks tomaximize themargins
among the expandingones as anoutcomeof the proposedpath planningmethodology.
Regarding the outdoors case, the 3D point cloud acquisition is identical to the indoors
one. The most significant alteration is the fact that the scanning area is dramatically
wider, concluding to an also broader grid map. Figure8.10a, b, c depict the 3D
construction, the top-down projection and the occupancy grid, accordingly. The first
case (Fig. 8.10d–f) comprises two expanding obstacles with the same expansion rate
of 0.4. The second case (Fig. 8.10g–i) consists of two expanding obstacles with
expansion rates of 0.4 and 0.6, accordingly.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8.9 a A 360◦ 3D point cloud resulted from an indoors environment, b the respective top-down
projection, c the derived grid map on which the proposed path planning methodology is performed,
d–f the derived trajectory for the corresponding start and target position, g–i the derived trajectory
for different start and target position
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8.10 a A 360◦ 3D point cloud resulted from an outdoors environment, b the respective top-
down projection, c the derived grid map on which the proposed path planning methodology is
performed, d–f the derived trajectory for the corresponding start and target position, g–i the derived
trajectory for different start and target position
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8.6 Discussion

The objective of this chapter was to present the application of the CA theory applied
on local and global path planning techniques for autonomous robot navigation. The
local path planning algorithm concerns the local obstacle avoidance for a robot
which is equipped with a stereoscopic camera. The presented algorithm operates
on the image plane and produces obstacle free routes. More precisely, it concerns a
stereo vision module responsible for the depth acquisition of the scene. An auxiliary
modeled depth map has been calculated utilizing the v-disparity image algorithmic
procedure. Then a polar transformation is applied to the depth images producing a
radial rearrangement of the obstacles in the scene. After a thresholding procedure,
the polar planar workspace that contains only the obstacles of the scene is further
processed byCA techniques. In the latter, the floor field is computed and the estimated
path is produced after an additional CA step. The main advantage of the proposed
method is that the occupancy grid is formed directly on the image plane by exploiting
the polar transformation, contrary to the already existed techniques that assume a
planar occupation grid as aworkspace for the CA. This attribute endows the proposed
method with the ability to directly track the obstacle free path within the scene. The
second part of this chapter concerned a global path planner which assumes a formed
2D map of the explored environment. This algorithm is responsible to dictate a
sequence of points that the robot should track in order to maneuver from its current
location to a target one. The adopted strategy outlines a collision-free and a low-cost
path planning framework able to provide efficient solution to robot navigation under
the appearance of dynamically changing obstacles. The discrete A* algorithm along
with the CA rules resulted into a strong finite tool upon which the search tactic relies.
The final trajectory produced attains the neighborhood of the global optimum since
it tries to find the global optimum in every iteration. The two examined algorithms
have been evaluate on real world data acquired with actual mobile robot platforms.
They exhibited remarkable performance in terms of accuracy, proving that the CA
can provide efficient solutions in the autonomous robot navigation. Moreover, due
to their nature of implementation the CA solutions are characterized by their low
computational cost and their ability of parallelization, making them suitable for real-
time applications.

Acknowledgments This work has been partially funded by the GSRT project ‘Polytropon’ (GSRT
KRIPIS2012).
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Chapter 9
Cellular Robotic Ants Synergy
Coordination for Path Planning

Konstantinos Ioannidis, Georgios Ch. Sirakoulis and Ioannis Andreadis

Abstract In this chapter, a unified architecture is proposed for a robot team in
order to accomplish several tasks based on the application of an enhanced Cellu-
lar Automata (CA) path planner. The presented path planner can produce adequate
collision-free pathways with minimum hardware resources and low complexity lev-
els. During the course of a robot team to its final destination, dynamic obstacles are
detected and avoided in real time as well as coordinated movements are executed by
applying cooperations in order to maintain the team’s initial formation. The inherit
parallelism and simplicity of CA result in a path planner that requires low computa-
tional resources and thus, its implementation in miniature robots is straightforward.
Cooperations are limited to a minimum so that further resource reduction can be
achieved. For this purpose, the basic fundamentals of another artificial intelligence
method, namely Ant Colonies Optimization (ACO) technique, were applied. The
entire robot team is divided into equally numbered subgroups and an ACO algorithm
is applied to reduce the complexity. As each robot moves towards to its final position,
it creates a trail of an evaporated substance, called “pheromone”. The “pheromone”
and its quantity are detected by the following robots and thus, every robot is absolved
by the necessity of continuous communication with its neighbors. The total complex-
ity of the presented architecture results to a possible implementation using a team of
miniature robots where all available resources are exploited.
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9.1 Introduction

Robot navigation is perhaps the most significant and active research field on the area
of mobile robotics due to its applicability to a wide variety of tasks such as industry
and human-supported works. The development of a rapid and efficient procedure
which deals with the path planning problem is considered to be a key step for the
motion of a mobile robot [68]. Path planning typically refers to the design of geo-
metric specifications of the positions and orientations of robots in the presence of
obstacles. An efficient path planner aims for the creation of a continuous motion
that connects a starting point and a goal point in the configuration area of a mobile
robot with the presence of obstacles (Fig. 9.1). The complexity of the problem is
significantly increased when the developed framework is required to create collision
free trajectories for every robot of a cooperative team. Cooperative robotic teams are
extensively used in systems for accomplishing tasks where single robots fail to com-
plete successfully their goals [46]. A variety of practical and potential applications
can benefit from the use of a cooperative robot team, such as exploration of unknown
areas [10], search and rescue [53] and formation control [25].

In general, the most widely known classification for path planning solution algo-
rithms relies on the discrimination of the environments between static and dynamic.
In the static case, all necessary information relative to the position of obstacles is
known a priori while in dynamic planning, robots display a complete unawareness
of their configuration area. For example, Tzionas et al. proposed in [63] an approach
based on a retraction of free space onto the Voronoi diagram, which is constructed
through the time evolution of Cellular Automata (CA) after an initial phase, during
which the boundaries of obstacles are identified and coded with respect to their ori-
entation. Despite its rapid execution, the approach suffers from a constraint of the

Fig. 9.1 An example of path planning that connects a starting point and a goal point in the config-
uration area of a mobile robot with the presence of obstacles
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workspace, which is restricted in the sense that a generally shaped robot is enclosed
within a diamond-shaped figure. A similar CA-based technique was proposed by
Marchese in [47] where an anisotropic propagation of attracting potential values in
a 4-D space-time using a multilayered cellular automaton (MCA) architecture was
exploited. The algorithm executes a search for all the optimal collision-free trajec-
tories following the minimum valley of a potential hypersurface embedded in a five
dimensional space. However, efficiency cannot be obtained due to the uncompleted
priority planning and thus, collisions between robots may occur. A cell basedmethod
was also proposed in [70] where a known environment was assumed. The configu-
ration area was represented by occupancy grids and it was separated into a grid of
equally spaced cells. The problem is converted to a graph-search problem and so, an
A-star algorithm was applied [17]. Due to its features, the A-star approach increases
the complexity of the system and thus, more processing resources are required in
a real system. Dubins’ theorem was also exploited for increased efficiency in [66]
in order to deal with static environments. A genetic algorithm as well as a hierar-
chical structure of chromosomes to denote a possible path were used to identify the
most optimal route. The method requires significant amounts of time rendering its
implementation in real-time systems constrained.

Despite their efficiency, static environment approaches restrict their applicability
in non-real world scenarios since most of the environments include dynamic obsta-
cles. Path planners for dynamic environments may properly modify the path of a
robot in cases of unexpected changes of its immediate environment. For example,
the approach in [5] extracts a path from a static environment for a robot which is
equipped with proximity sensors. Based on the sensors’ readings, the robot bypasses
possible obstacles that unexpectedly may block its route. The method requires part
of information related to the status of the environment in order to be functional.
A similar approach was proposed in [55] where a mobile robot modifies its path
in the presence of semi-dynamic obstacles. The navigational planning is achieved
with the application of a genetic algorithm until the robot reaches its final desti-
nation. In addition, a fuzzy-logic sensor fusion system was developed in [61] for
target recognition, wherein the proposed path planning solver is based on a grid-
map-oriented system that permits path revision through interactions with dynamical
environments. An efficient dynamic system algorithm, using a neural dynamicmodel
and a distance transform model was proposed in [67]. The approach develops effi-
cient collision-free trajectories for a robot, and although dynamic programming is
employed, computational cost remains in high levels. The A-star approach was also
used in [24] as a global path planner to produce a series of sub-goal points to the
target point. A potential field method was embedded as a local path planner in order
to smooth the path between the preplanned sub-goal points. Thus, the method fails
to cope with a real-time robot systems since global information of the entire config-
uration area is required. In order to produce smooth paths and reduce the complexity
of the solution, a series of waypoints are interpolated in [2] with the use of a B-spline
which is altered only in the area local to the obstacle. B-splines are piecewise series
of polynomials and, therefore, the solution remains complex despite their low order.
Finally, in [71], an improved Hopfield type neural network model was applied in
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order to propagate the target activity among neurons, in the manner of physical heat
conduction. The motion of a robot is defined through the dynamic neural network
activity. In general, the method creates efficient paths for a robot, nonetheless, the
exploitation of the neural network leads to high computational burden.

The discrimination of the path planning algorithms into either static or dynamic
provides a base categorization without, nonetheless, any reference to the solution
itself. A more proper differentiation is relied on the nature of the problem and the
manner that an algorithm approaches its solution. Thus, research in path planning
could also be classified into four basic categories: visibility graphs, potential fields,
cell decomposition and heuristic algorithms [63]. Visibility graphs include the deter-
mination of a line collection in free space such that a connection of features of an
object to those of another is accomplished [42]. A visibility graph can produce O(n2)

edges for (n) features and so it is characterized by high complexity. On the contrary,
potential field approaches exploit potential functions that are developed for obstacle
avoidance in static environments. These approaches treat a robot’s configuration as a
point in a potential field that combines attraction to the goal and repulsion from obsta-
cles. For example, the method proposed in [3] relies on the generation of a potential
field by sigmoid and normal functions which eventually create the vector fields that
control the velocity and heading of robot swarms. Similarly, relative headings to the
goal and to obstacles, the distance to the goal and the angular width of obstacles
were used in [36] to compute a potential field over the robot heading. The com-
puted potential field controls the angular acceleration of the robot, steering towards
the goal and far from the obstacles. In general, potential field approaches produce
efficient trajectories however; higher accuracy can only be achieved by using higher
order potentials, increasing the computational complexity. Heuristic approaches have
been proposed as alternative solutions in order to simplify the problem. Ferguson
proposed in [20] an extended version of a D-star algorithm [60] by using linear
interpolation during each vertex expansion. Heuristic methods are characterized by
their high time complexity which depends on the applied heuristic. On the contrary,
cell decomposition methods were proposed to reduce the total complexity of the
problem. Their main concept includes partitioning the free space into regions and
identifying possible contacts between a single robot and obstacles in each region. For
example, in [16], a variant of the A-star algorithm, namely Theta-star, propagates
information along grid edges without constraining the paths to grid edges. As A-star
based algorithms, the method requires a complete knowledge of the configuration
area to produce the desired paths, thus, its implementation to a real system would
be intricate. Nevertheless, Charalampous et al. in [12] combined the A-star with
CA, and tested successfully the resulting method in real world planar environments.
More specifically, the finite properties of the A-star algorithm were amalgamated
with the CA rules to built up a substantial search strategy [11]. The corresponding
algorithm’s main attribute is that it expands the map state space with respect to time
using adaptive time intervals to predict the potential expansion of obstacles.

Additionally, during the past few years, many artificial intelligence algorithms
were employed as possible solutions to the problem so that the main drawbacks of
the above solutions could be eliminated. In [43], a fuzzybased approachwas proposed
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Fig. 9.2 Several formations of cooperative robotic teams

to navigate a mobile robot in an unknown dynamic environment filled with obstacles.
The method requires for the robot to be equipped with a variety and highly accurate
sensors to produce the desired pathways increasing the total cost of the system.
More efficient paths were produced by the neural network in [69] nonetheless; in
static environments and with high computational cost. A cell decomposition method
along with an artificial intelligence method was used as a possible solution to the
problem in [48]. Multilayered Cellular Automata (MCA) were applied where the
configuration area is presented as a lattice of cells and four layers of identical grids
are exploited for solving the path planning problem.

The majority of the above approaches deals with systems which include one
robot and so only a single path should be extracted. The complexity of the solution is
significantly increased in systems of multiple robots and is proportional to the total
number of its members (Fig. 9.2). Such systems must complete further goals beyond
the coverage of the desired distance. In case of a cooperative robot team, tracing
paths for every robot becomes even more complex. The coordinated motion of a
robotic team comprises one of the most widely studied research field in cooperative
robotics and is known as formation control. Fredslund et al. in [26] achieved a
collective behavior in a group of distributed robots using local sensing and minimal
communication. Each robot references itself locally to one neighboring robot and
keeps a certain bearing and distance by using an appropriate sensor. Moreover, a
novel approach was proposed in [30] where formation structures are represented in
terms of queues and formation vertices and formation control is accomplished using
artificial potential trenches. A feedback law using Lyapunov type analysis was also
exploited for a single robot and so collision avoidance and tracking of a reference
trajectory was achieved [50]. Then, the method extends the resulted pathway to the
case of multiple non-holonomic robots. Finally, a coordinated control scheme based
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on a leader-follower approach was proposed in [18] so that formation maneuvers
could be achieved. First and second order sliding mode controllers were used for
asymptotically stabilizing the vehicles to a time varying desired formation.

The aforementioned methods for formation control and collision avoidance dis-
play high levels of computational complexity cost, despite their efficiency in both
trajectory accuracy and formation immutability. Thus, their implementation in real
systems could be either exclusionary or restricted. A minority of these methods
could be potential for possible real system implementation nonetheless; robots must
be equipped with farfetched sensors and high technical specifications which eventu-
ally increases the total cost of the system. On the other hand, their implementation
in low cost robots restrict the number of tasks that could be executed leading to
single purpose systems. For example, most of the commercial robots are equipped
with digital cameras which are unable to be exploited since all the computational
resources are occupied by the path planner. A low computational cost path planning
approach could provide spare resources that are beneficial for exploiting the digital
cameras to accomplish further tasks. However, these cameras capture low resolution
images since higher resolution cameras requiremore processing power to analyze and
manipulate a digital image. Instead, low resolution images are frequently inappro-
priate to achieve specific goals. Low resolution images can lead to false results when
they are used to accomplish tasks like panoramic images or simultaneous localiza-
tion and mapping (SLAM). Consequently, spare processing amounts could be used
to increase the captured images’ resolution with the application of image resizing
methods. Several commonly used interpolation methods have been used for resizing
images, such as nearest neighbor [38], bilinear [38] and bicubic interpolation [39]. In
addition, a quadratic image interpolation method was proposed in [52] with adequate
visual results nonetheless; its high computational cost prohibits its implementation.
The preservation of the edges of a low resolution image comprises a crucial task
and thus, a fuzzy decision system was developed in [45] to classify all the pixels
of the input image into sensitive and non-sensitive class. Bilinear interpolation was
applied to the non-sensitive regions while a neural network was used to interpolate
the sensitive regions along the edges of the images. In order to decrease the com-
putational complexity and preserve the satisfying image results, an edge-oriented
method was proposed in [13] where the processed image is discriminated in non-
edge and edge areas and each region is processed by a different type of interpolation
method. The method achieves real-time image enlargement, despite the two stages
of processing, nevertheless, the classification of the areas depends on a predefined
threshold. Finally, the method in [44] initially estimates local covariance coefficients
from the low resolution image which are sequentially used to adapt the interpolation
at a higher resolution based on the geometric duality between the low-resolution
and the high-resolution covariance. Despite its visually accurate resulted images,
the method displays high levels of computational cost and thus, its application in
real-time systems is restricted.

In this chapter, a unified architecture is presented for a robot team in order to
accomplish several tasks and includes the application of an enhancedCApath planner
combined with Ant Colonies Optimization (ACO) technique resulting to “Cellular
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Robotic Ants”. The presented path planner can produce adequate collision-free
pathways with minimum hardware resources and low complexity levels. During
the course of a robot team to its final destination, dynamic obstacles are detected
and avoided in real time as well as coordinated movements are executed by applying
cooperations in order to maintain the team’s initial formation. The inherit paral-
lelism and simplicity of CA result in a path planner that requires low computational
resources and thus, its implementation in miniature robots is straightforward. The
significant cooperations are limited to a minimum so that further resource reduction
can be achieved. For this purpose, the basic fundamentals of ACO technique were
applied. The entire robot team is divided into equally numbered subgroups and an
ACO algorithm is applied to reduce the complexity. As each robot moves towards to
its final position, it creates a trail of an evaporated substance, called “pheromone” .
The “pheromone” and its quantity are detected by the following robots and thus, every
robot is absolved by the necessity of continuous communication with its neighbors.
The total complexity of the presented architecture results to a possible implemen-
tation using a team of miniature robots where all available resources are exploited.
More specifically, the method was implemented in a cooperative robot team using
a 3-D simulator, called Webots [51]. For testing purposes, the under study robot
team was constituted of two subgroups with five robots each. All essential sensors,
that all robots must be equipped, and their direct relations with the cell length and
pheromone were introduced. The accuracy of the method was tested by using two
different types of objects, rectangular and circular shaped. In both cases, the method
created successfully collision free paths and the corresponding results exhibit the
effectiveness and the robustness of the method.

The rest of the chapter is organized as follows. All the theoretical background
for the CA and ACO algorithms is presented in Sect. 9.2 while the path planner,
derived from the combination of CA and ACO, is presented in Sect. 9.3. Simulation
results and the implementation of the architecture are presented in Sect. 9.4. Finally,
conclusions are drawn in Sect. 9.5.

9.2 Cellular Automata and Ant Colony Optimization Principles

Cellular Automata (CA) were originally introduced by John Von Neumann [65] and
his colleague Stanislaw Ulam [64]. CA can be considered as dynamical systems in
which space and time are discrete and interactions are local. In general, a CA is
consisted of a large number of identical entities with local connectivity arranged on
a regular array. A finite Cellular Automaton could be defined by the quadruple:

{d, q, N , F} (9.1)

From Eq.9.1, variable d is a vector of two elements, m and n, denoting the vertical
and horizontal CA dimensions, respectively. Both of these variables are expressed
in number of cells. At each time step, the state of each cell is updated using a value
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from the set Q = 1, 2, . . . , q − 1, called set of states. The neighborhood of each cell
is defined by the variable N . For a 2-D CA, two neighborhoods are often considered,
Von Neumann and Moore neighborhood. Von Neumann neighborhood is a diamond
shaped neighborhood and can be used to define a set of cells surrounding a given
cell (x0, y0). Equation 9.2 defines the Von Neumann neighborhood of range r .

N v
(x0,y0) = (x, y) : |x − x0| + |y − y0| ≤ r (9.2)

For a given cell (x0, y0) and range r , Moore neighborhood can be defined by the
following equation:

N M
(x0,y0) = (x, y) : |x − x0| ≤ r, |y − y0| ≤ r (9.3)

The transition rule f determines the way in which each cell of the CA is updated.
The state of each cell is affected by the cell values in its neighborhood and its value
on the previous time step, according to the transition rule or a set of rules. The state of
every cell is updated simultaneously in the CA, thus, providing an inherent parallel
system.

Consider for example a 2-D CA with two possible states, “0” and “1”, as it is
presented in Fig. 9.3. For this example, von Neumann neighborhood was used. In
Fig. 9.3a, the central cell is stated as “1” at time t (black cell) while in Fig. 9.1b it
is stated as “0” (white cell). The central cell updates its state to the next time step
according to a simple XOR transition rule. If a central cell or any of its adjacent
cells have the “1” state, at the next time step its state will be stayed into “1”, as it is
presented in Fig. 9.3, while its adjacent cells will update their state as “1”.

CA have sufficient expressive dynamics to represent phenomena of arbitrary com-
plexity and at the same time can be simulated exactly by digital computers, because
of their intrinsic discreteness, i.e. the topology of the simulated object is reproduced
in the simulating device. The CA approach is consistent with the modern notion of

Fig. 9.3 2-D CA example with two possible states, “0” and “1”. Black cells represent cells with
state “1” while white cells represent “0” stated cells
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unified space time. In computer science, space corresponds to memory and time to
processing unit. In CA, memory (CA cell state) and processing unit (CA local rule)
are inseparably related to a CA cell. Furthermore, CA are an alternative to partial
differential equations [54, 62] and they can easily handle complicated boundary and
initial conditions, inhomogeneities and anisotropies [31, 56].

The basic element of ACO algorithms is “ants” that is, agents with very simple
capabilities which, to some extent, mimic the behavior of real ants [22]. Real ants
are in some ways much unsophisticated insects. Their memory is very limited and
they exhibit individual behavior that appears to have a large random component.
However, acting as a collective, ants collaborate to achieve a variety of complicated
taskswith great reliability and consistency [19], such as defining the shortest pathway,
among a set of alternative paths, from their nests to a food source [4]. This type of
social behavior is based on a common feature with CA, called self-organization, a
set of dynamical mechanisms ensuring that the global aim of the system could be
achieved through low level interactions between its elements [32]. The most vital
feature of this interaction is that only local information is required. There are two
ways of information transfer between ants: a direct communication (mandibular,
antennation, chemical or visual contact, etc.) and an indirect communication, which
is called stigmergy (as defined by Grassé [33]) and is biologically realized through
pheromones, a special secretory chemical that is deposited, in many ant species, as
trail by individual ants when theymove [6].More specifically, due to the fact that ants
can detect pheromone, when choosing their way, they tend to choose pathsmarked by
strong pheromone concentrations. As soon as an ant finds a food source, it evaluates
the quantity and the quality of the food and carries some of it back to the nest.
During the return trip, the quantity of pheromone that an ant leaves on the ground
may depend on the quantity and quality of the food. The pheromone trails will guide
other ants to the food source. This behavior is known as “auto catalytic” behaviour
or the positive feedback mechanism in which reinforcement of the previously most
followed route, is more desirable for future search. In ACO algorithms, an ant will
move from point i to point j with probability:

ρi, j = (τα
i, j )(η

β
i, j )

∑

(τα
i, j )(η

β
i, j )

(9.4)

where, τα
i, j and η

β
i, j are the pheromone value and the heuristic value associated

with an available solution route, respectively. Furthermore, α and β are positive real
parameters whose values determine the relative importance of pheromone versus
heuristic information.

During their search for food, all ants deposit on the ground a small quantity of
specific pheromone type. As soon as an ant discovers a food source, it evaluates
the quantity and the quality of the food and carries some to the nest on their back.
During the return trip, every ant with food leaves on the ground a different type of
pheromone of specific quantity, according to the quality and quantity of the food.
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In ACO algorithms, pheromone is updated according to the equation:

τi, j = (1 − ρ)τi, j + �τi, j (9.5)

where, τi, j is the amount of pheromone on a given position (i, j), ρ is the rate of the
pheromone evaporation and �τi, j is the amount of pheromone deposited, typically
given by:

�τi, j =
{

1/Lk, if ant k travels on edge i, j

0, otherwise
(9.6)

where Lk is the cost of the kth tour of an ant (typically is measured as length). Finally,
the created pheromone trails will guide other ants to the food source.

Consider for example the experimental setting shown in Fig. 9.4. The ants move
along the path from food source F to the nest N. At point B, all ants walking to
the nest must decide whether to continue their path from point C or from point H
(Fig. 9.2a). A higher quantity of pheromone on the path through point C provides
an ant a stronger motivation and thus a higher probability to follow this path. As no
pheromone was deposited previously at point B, the first ant reaching point B has
the same probability to go through either point C or point H. The first ant following
the path BCD will reach point D earlier than the first ant which followed path BHD,
due to its shorter length. The result is that an ant returning from N to D will trace a
stronger trail on path DCB, caused by the half of all the ants that by chance followed
path DCBF and by the already arrived ones coming via BCD. Therefore, they will
prefer path DCB to path DHB. Consequently, the number of ants following this path

Fig. 9.4 An example of real ants colony: a An ant follows BHD path by chance, b Both paths are
followed with same probability and c Larger number of ants follow the shorter path
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will be increased during time than the number of ants following BHD. This causes
the quantity of pheromone on the shorter path to grow faster than the corresponding
longer one. Consequently, the probability with which any single ant chooses the path
to follow is quickly biased towards the shorter one.

The ACO algorithms are basically a colony of artificial ants or cooperative agents,
designed to solve combinatorial optimization problems. These algorithms are prob-
abilistic in nature because they avoid the local minima entrapment and provide very
good solutions close to the natural solution [7]. ACO algorithms are extensively used
to a variety of applications such as the travel salesman problem [23], image retrieval
[40, 41], classification [49], electrical load pattern grouping [14], video games [57],
seismic methods [15], communications networks [21], etc. Moreover, as it is pro-
posed in this paper, ACO algorithms were also used for solving the path planning
in a team of robots and most of the effort was to implement the algorithm in real
systems. More specifically, in [58] heat applicators and sensors were used as virtual
pheromone and detectors, respectively, so that ACO algorithm could be functional.
Furthermore, Garnier et al. in [29] used a visual system, a computer and a projector
to track robots, process the data and project the light, respectively. Moreover, Garnier
et al. in [27] proposed a group of ant-like robots that had to establish a route between
a starting area and a target area in a network of corridors, mimicking the experiments
we performed with ants in authors’ previous studies [28]. For technical convenience
pheromone trails were replaced by light trails projected along the paths followed
by the robots by a video projector (as proposed in [58] and implemented in [29]).
Robots could detect and follow these light trails thanks to two photoreceptors that
mimic the antennae of the ants as also described in the corresponding review article
of Akst [1]. Finally, in [34, 35], RFID stickers were used as data carriers, which were
a priori placed in the area, and they stored data representing the pheromone levels.
At each robot of a team, an RFID reader/writer was mounted in order to read/write
the data stored in the RFID stickers.

9.3 Cellular Ants: A Combination of CA and ACO Algorithms
for Path Planning

One of the main goals of the proposed method is to create collision free trajectories
for every robot of a cooperative team. No a priori knowledge of the configuration area
is required. Obstacle avoidance must be achieved in real time. Knowing their final
position, that is the end of a straight line path, robots can move randomly in the con-
figuration area, according to ACO algorithm. To prevent a scattered formation due
to either an obstacle or a complete absence of pheromone, cooperations between the
members of the team are applied so that their formation could be regained or retained
immutable, respectively. According to the ACO algorithm, every single ant is gov-
erned by a set of simple behavior rules, leading to an uncomplicated approach of the
path planning problem. Due to CAs, these behavior rules are applied simultaneously
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to all ants, in a discrete and iterative way. A concurrent evolution of the entire system
ensures the rapid formation of all possible trajectories. Furthermore, the proposed
method covers the need for self-organization, since the utilized artificial intelligence
algorithms embody this particular attribute. In the following subsections, the pro-
posed method is described in detail. Simulation results are provided as well.

9.3.1 Proposed Method

First, an appropriate CA must be defined, meaning that the variables in Eq.9.1 must
be specified. The configuration area, in which the robot team operates, is considered
to be a 2-D lattice and so is divided into a simple rectangular grid of identical square
cells. The dimensions of the CA (variable d) are selected based on the dimensions
of the configuration area and the cell length. Let m × n be the dimensions of the CA,
therefore d = m, n, and w the length of each cell.

Moreover, each cell can take a finite number of possible states, named set of states
Q = 0, 1, 2, . . . , q . Variable q is proportional to the number of robots that comprise
the team and the predefined pheromone levels. Firstly, vector F = 0 represents the
state of a cell unoccupied by a robot, an obstacle or pheromone, called a free cell. In
addition, vector R = 1, 2, . . . , r represents all possible states of a cell occupied by
a robot. Due to the duality of their nature as a CA cell and as an artificial ant, a cell
occupied by a robot is labeled as a cellular ant. For reasons of complexity, the entire
robot team is divided into smaller subgroups, equally numbered and forming the same
pattern. Furthermore, P = r + 1, r + 2, . . . , ρ is a vector of all possible pheromone
states, where ρ denotes a cell with the maximum pheromone level. Finally, variable
W = ρ + 1 indicates a cell occupied by an obstacle. These vectors were created to
avoid overlapping between possible states according to the following equations:

F ∪ W ∪ R ∪ P = Q & F ∩ W ∩ R ∩ P = Q (9.7)

Summarizing, every CA cell could obtain one possible state at each time step:

• Free cell: cell(x, y) = 0
• Cellular ant: cell(x, y) = r where v ∈ N : rv ∈ R
• Pheromone cell: cell(x, y) = ρ where v ∈ N : ρv ∈ R
• Obstacle cell: cell(x, y) = ρ + 1 where ρ the state of maximum pheromone level

where x and y are the Cartesian coordinates of a cell in the CA grid.
Every CA cell evolves its state according to its current state and the state of each

neighboring cell. For the proposed method, Moore neighborhood was used with
range r = 1 (Eq.9.3). Moreover, cells located on the frontier of the grid evolve their
state using null boundary conditions, meaning that all cells of the firstlast row and
those of the first/last column are enduringly in the 0 state.
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At every time step, all cells update their state simultaneously by applying the
appropriate local transition rule of the CA, F : Q ↔ Q, so that:

cellt+1
i, j = Fcellti, j , cellti−1, j−1, cellti−1, j , . . . , cellti+1, j+1 (9.8)

Three different sets of CA rules were created for achieving different operations:
collision avoidance, pheromone update and formation control.

9.3.1.1 CA Rules for Collision Avoidance

Appropriate CA rules were created so that objects could be avoided. As a cellular
ant moves towards to its final position, it scans its Moore neighborhood at every
time step in order to detect a potential obstacle. Due to this attribute, both static
and dynamic objects can be detected. Depending on the status of its adjacent cells
and its direction, the appropriate CA rule is selected for the evolution of the state of
the corresponding cellular ant. Considering an obstacle detected by a cellular ant, at
first, the applied CA rule is chosen according to the position of the cellular ant in the
formation. If it is positioned on the right of the central cellular ant of the formation,
the right pathway is selected to bypass the obstacle. On the contrary, the left pathway
is selected in case of a left positioned cellular ant. Subsequently, the rest of the
avoidance process is akin with a wall following behavior. If the obstacle is avoided
and the cellular ant regain its position over the desired shortest path, suitable CA rules
are applied in order to continue its way to its final destination. Table 9.1 illustrates a
small subset of eight collision avoidance CA rules out of a total of forty possible CA
rules. Figure9.3 represents the application of CA rules for obstacle avoidance as a
schema. More specifically, in Fig. 9.5a, a cellular ant detects that its NW and its N
adjacent cells are occupied by obstacles, its NE cell as a free cell, “detects” that its
SW is a cellular ant cell and itsW is an obstacle cell. By applying the appropriate CA
rules, at time t + 1, the under study central cellular ant cell is stated as a pheromone
cell with maximum pheromone quantity and its NE free cell becomes a cellular ant

Fig. 9.5 Schematic presentation of two CA rules for collision avoidance: f denotes a free cell,
r denotes a cellular ant cell, o an obstacle cell and ρ a pheromone cell with the highest possible
pheromone state. a NW and N adjacent cells are obstacle cells and b N, NE and E adjacent cells
are obstacle cells
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Table 9.1 A subset of CA rules for collision avoidance

Cell state

At time t At time t + 1

Si, j Si−1, j−1 Si−1, j Si, j+1 Si, j+1 Si+1, j+1 Si+1, j Si+1, j−1 Si, j−1 Si, j

r f f f f f f o f f

f f r f f f f f o r

r f f f f o f f f f

f f r f o f f f f r

r f f f f f o o f f

f r f f f f f f o r

r f f f f o o o f f

f f f f r o o f f r

S denotes cell state, (i, j)Cartesian coordinates of cell on the CA, r a cellular ant cell, o an obstacle
cell and f a free cell

cell. Essentially, a state transition is occurred between the central cell and its NE cell.
Figure9.5b illustrates a similar situation with different states of its adjacent cells.

9.3.1.2 CA Rules for Simulating the Pheromone Functions

To simulate all relative functions of pheromone, appropriate CA rules were also
created. There is an immediate correlation between the state of a pheromone cell
and the corresponding pheromone value. The state of a pheromone cell is relevant
to the detected pheromone quantity (value τ a

i, j ). Every cellular ant scans its front
adjacent cells in order to be stated with the appropriate pheromone state. If a cell
is marked with the highest pheromone state, it will be more likely for the cellular
ant to follow this trail, according to Eq.9.4. Moreover, supplementary CA rules
were created in order to simulate the pheromone evaporation process. A pheromone
cell surrounded by either free cells or pheromone cells updates its state according
to Eqs. 9.5 and 9.6 by decreasing its value. Furthermore, the evaporation rate is
expressed as state per time steps due to the quantized states of the CA. Depending
on the pheromone levels and the evaporation rate, numerous CA rules could be used
to simulate both the stigmergic behavior of a cellular ant and the evaporation of
the pheromone. Table 9.2 illustrates a small subset of eight pheromone update CA
rules, while Fig. 9.4 represents a schematic example of their application. In Fig. 9.6a,
a cellular ant, namely r , detects two of its adjacent cell to be stated as pheromone
cells, ρ5 and ρ1, respectively. The ρ5 cell has a higher pheromone state meaning
that it is occupied by a higher amount of pheromone. According to Eq.9.4, it is more
likely that the cellular ant will follow this path and thus, the appropriate CA rule is
applied in order this pathway to be followed. Additionally, in Fig. 9.6b, a pheromone
cell with state ρ5 at time t updates its state by decreasing its state in order to simulate
the pheromone evaporation.
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Table 9.2 A subset of CA rules for collision avoidance

Cell state

At time t At time t + 1

Si, j Si−1, j−1 Si−1, j Si, j+1 Si, j+1 Si+1, j+1 Si+1, j Si+1, j−1 Si, j−1 Si, j

r f f f f f f o f ρ

f f f r f f f f o r

r f f f f f f f f f

f f r f o f f f f r

r f f f f f ρ2 ρ5 f ρ

ρ2 f r f f f f f ρ5 r

ρ f f f f f f f f ρ

ρ1 f f f f f f f f ρ2

S denotes cell state, (i, j)Cartesian coordinates of cell on the CA, r a cellular ant cell, o an obstacle
cell and f a free cell and ρ pheromone cells (increased pointers mean low levels of pheromone)

Fig. 9.6 Schematic presentations of two CA rules for simulating the pheromone functions:
f denotes a free cell, r denotes a cellular ant cell and ρ a pheromone cell (indices represent
pheromone level; higher index value corresponds to higher pheromone level, state p without any
index represents a pheromone cell with the highest possible pheromone state). a Following the
strongest pheromone trail and b Simulating the pheromone evaporation process

9.3.1.3 CA Rules for Formation Control

Each subgroup of cellular antsmust retain and regain their initial formation during the
entire route. If an obstacle is detected by a cellular ant of a subgroup, the formation of
its subgroup will be scattered. Moreover, in case of complete absence of pheromone,
according to Eq.9.4, a cellular ant could move towards to any of its adjacent free
cells with the same probability leading to a scattered formation as well. In order
to prevent such behaviors, suitable CA rules were created based on cooperations
between the cellular ants of every subgroup. It is assumed that every cellular ant has
a substandard ability to communicate with its immediate neighbors. The coordinates
of every cellular ant in the grid are required in order to complete the formation
control process. Therefore, these coordinates are handled as the exchanged data.
Depending on these data, all the necessary decisions are taken by each cellular ant
meaning, whether to swap positions in the formation with its neighbors, move one
cell to their destination or just stay still until the formation is regained by the other
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Fig. 9.7 Schematic presentations of two CA rules for formation control: f denotes a free cell, r1,
r2 denote cellular ant cells, o an obstacle cell and ρ a pheromone cell with the highest pheromone
state. a Moving to their goal and b Exchanging positions in formation

cellular ants of the subgroup. These decisions are expressed as simple CA rules in
order to evolve their state to the next time step. Figure9.7 illustrates two examples
of the CA rules set for formation control. In Fig. 9.7a, no pheromone is detected by
the r1 and r2 cellular ants and therefore, they communicate in order to proceed to
data exchange. Since r2 finds its neighbor r1 to its vertical position and vice-versa,
both cellular ants commonly decide to update their state in order to move one cell
towards their destination. On the contrary, in Fig. 9.5b, cellular ant r2 detects an
obstacle and therefore, it will try to bypass it leaving its position in the formation.
At the same time, the r1 cellular ant discovers that it has smaller vertical distance
than the predefined with r2 (after communication). Thus, they commonly decide to
exchange their position in the formation in order to regain the formation as soon as
possible.

For example, consider a cellular ant cell with state r and coordinates (i, j)
with no obstacle found in its neighborhood at time t . At the given time, let
us assume that all cells of its Moore neighborhood have the following states:
cellt

i, j = a0 = r , cellti−1, j−1 = a1 = f , cellti−1, j = a2 = f , cellti−1, j+1 =
a3 = f , cellti, j+1 = a4 = f , cellti+1, j+1 = a5 = f , cellti+1, j = a6 = f ,
cellti+1, j−1 = a7 = f , cellti, j−1 = a8 = f . When applied to Eq.9.8, these val-

ues result to cellt+1
i, j = a0t+1 = F(a0t , a1t , a2t , a3t , a4t , a5t , a6t , a7t , a8t ) =

F(r, f, f, f, f, f, f, f, f ) = r . Furthermore, at time step t , the free cell with coor-
dinates (i + 1, j) will have the following values a0 = f , a1 = f , a2 = r ,
a3 = f , a4 = f , a5 = f , a6 = f , a7 = f , and a8 = f . Applying simulta-
neously the appropriate CA rule, the corresponding results are: cellt+1

i, j = a0t+1 =
F(a0t , a1t , a2t , a3t , a4t , a5t , a6t , a7t , a8t ) = F( f, f, r, f, f, f, f, f, f ) = r . In
other words, with the use of simple rules, the cellular ant cell manages to cover the
distance of a cell to reach the goal position.

The main aims of the method are both the creation of collision free trajectories in
dynamic environments and a fixed formation for every subgroup of the team. In case
of a scattered formation, the members of the subgroup must recover the formation as
soon as possible with the minimum requirements. For reasons of simplicity and for
the given example, a straight line formation was applied. All cellular ants of the first
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Fig. 9.8 Initial state of the CA grid, where R denotes cellular ant cells and N final positions (nests)

subgroup are deployed in either the first row or the first column of the CA having a
specific vertical or horizontal distance, respectively. The forthcoming subgroups are
subsequently introduced at the same positions in the grid after a user defined time
period. Figure9.8 illustrates the initial state of the CA grid for the aforementioned
example using a first row deployment of the cellular ants.

For this particular example and for testing purposes, this specific type of formation
was selected due to the nature of the pattern that cellular ants form [37]. Consider
a real system consisting of multiple robots, each equipped with a digital camera.
Images taken from each camera have a horizontal difference presenting the same
scenery. Many image processing algorithms exploit this difference for a variety of
applications, such as resolution enhancement [59] and panoramic images [9].

The method assumes that the initial and the final position of every cellular ant
are its food source and its nest, respectively. In case of a position exchange in the
formation, the corresponding cellular ants will exchange their final positions-nests,
as well. At every time step, each cellular ant scans its Moore neighborhood in order
to detect any possible obstacle. If an object is detected, the appropriate CA rule for
obstacle avoidance is selected and applied without requiring any further process, e.g.
pheromone detection. Otherwise, every cellular ant will scan its front adjacent cells
in order to detect any pheromone quantity. The probability for every front cell is
calculated according to Eq.9.4 and a quantization is applied. Each quantized proba-
bility ismapped to a pheromone state and every cell ismarkedwith the corresponding
pheromone state. A higher pheromone quantity means that the specific path is more
likely to be followed. Moreover, the formation of the subgroup is scattered either
when an obstacle is detected or in cases of complete pheromone absence. In order
to keep the formation of the subgroup immutable (lack of pheromone) or regain it
(obstacle detection), formation control principles are applied where all decisions are
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expressed as CA rules. These functions are achieved through cooperations between
the cellular ants of a subgroup, meaning that data relative their position in the grid are
exchanged. Every cellular ant knows about the presence of its two nearest cellular
ants with which data exchange is achieved. In case of a deviated cellular ant from its
desired shortest path due to an obstacle, its absence can be detected by its neighbors
using its coordinates. If a cellular ant bypasses an obstacle from the left pathway, the
horizontal distance with its left neighbor will be decreased while the distance with its
right neighboring cellular ant will be increased. Thus, a position exchange between
the cellular ant and its left neighbor will occur while the right neighbor will wait
until the exchange is completed. When swapping is completed, neighboring cellular
ants synchronize their actions by exchanging all necessary data, until all vertical
coordinates are equalized. All formation control functions are continuously applied
till the formation is regained, searching only for obstacle cells since the method is
applicable in dynamic environments. When the straight line formation is regained,
the entire subgroup will move towards to its final position as a team, reaching their
targets synchronized.

As a cellular ant moves to a free or a pheromone cell, its state will be updated
with the corresponding CA rule and thus, at the next time step, it will be stated
as a pheromone cell with the maximum defined pheromone state. The cellular ants
of the next subgroup detect these pheromone trails and consequently, no formation
control principles are required in order to retain or regain the formation of the next
subgroup. This advantage reduces the complexity that the formation control process
introduces. Additionally, in a real system, the formation control process requires the
members of the team to be able to communicate and thus,more time and resources are
needed in order to keep the formation fixed. By using simple sensors for pheromone
detection, if some pheromone is detected, cooperations and data exchange are no
longer necessary. Finally, according to ACO algorithm, past events or situations
could be expressed as modifications or “unusual” status of pheromone, acting as a
local memory, since it is deposited by the anterior ants. In the proposed method,

Fig. 9.9 Flowchart of the proposed method
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these “unusual” pheromone allocations are expressed as a position exchange in the
formation and are detected by the forthcoming cellular ants in order to prevent a
false pheromone trail pathway. The method in a form of a flowchart is provided in
Fig. 9.9.

9.4 Simulation Results

For testing purposes of the proposed method, a simulation environment was created
and some results are illustrated in Fig. 9.10. The under study environment operates
under Microsoft Windows OS and was created using the C# program language and
a graphical user interface. The created simulator includes multiple subgroups con-
stituted of numerous cellular ants. For testing purposes, each subgroup is comprised
by five cellular ants and a straight line formation was applied. The program provides
the ability to the user to define the dimensions of the CA, the number of cellular
ants for all subgroups, the number of iterations-time steps and to draw rectangular
or elliptical shapes as possible objects. Additionally, the pheromone levels and the
evaporation ratio are also user defined. For the examples illustrated in Fig. 9.10, the
dimensions of the CA are 21 × 25 cells with a number of time steps equal to 100.
Every subgroup comprises by 5 cellular ants and is inserted in the grid after 25 time
steps. Also, 10 pheromone levels were selected, meaning that 10 possible states can
be used for the pheromone cells and an evaporation rate equal to 1 state per 10 time
steps. Cellular ants are denoted with the letter R and corresponding numbers rep-
resenting their position in the formation; object cells are depictured with darkened
green squares, nests (final positions) with green and denoted with the letter N and
finally, pheromone cells are illustrated with tones of blue depending on the quantity
of the pheromone. As Fig. 9.10 shows, initially, the CA path planner creates collision
free paths for every cellular ant using the formation control rules since no pheromone
is deposited on the grid. At each time step, every cellular ant moves towards its final
destination avoiding all possible obstacles found on its desired shortest route and
leaving a pheromone trail on the grid. After a short period, the second subgroup
leaves from their food source and thus, amplifying the existing pheromone trails and
so on. Figure9.10a illustrates the simulation results in case of rectangular objects
while Fig. 9.10b presents the case of elliptical objects. For comparison reasons, all
simulation parameters are kept immutable for both cases.

Simulation results indicate that the proposed method can produce accurate colli-
sion free trajectories for every cellular ant with low complexity since ACO principles
are applied. Due to the fact that the proposed method mainly uses a CA, time com-
plexity is found to be approximately O(m ×n) as the majority of the CA algorithms,
where m × n are the dimensions of the rectangular grid, meaning that time complex-
ity is proportional to the CA dimensions. Moreover, time complexity is kept low in
any environment, both static and dynamic. The procedure retains the principles of
self organization of ACO algorithms and concurrently uses CA to achieve our goal.
Furthermore, the whole process is accomplished without any interference of a central
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Fig. 9.10 Simulation results for a rectangular objects and b elliptical objects, where cellular ants
are denoted with the letter R and a number (formation position), final positions are represented by
pale gray cells, object cells are illustrated by darkened cells and pheromone cells are illustrated
with tones of gray

control, making the system autonomous, and is completely parallel. Finally, due to
the fact that each subgroup consists of multiple robots, a cellular ant could wrongly
follow a pheromone trail leading to a scatter formation. Using the advantages of the
CA path planner, this problem could be resolved as depicted in Fig. 9.10.

9.4.1 Implementation of the Method in a Simulated
Cooperative Robot Team

The proposed method was implemented in a simulated cooperative robot team using
a three dimensional simulator, calledWebots [51]. All robots and instances simulated
inWebots are actually real robots that either can be purchased or used for educational
reasons. For our experiments, multiple miniature robots were used, called e-puck [8].
All robot controllers needed for the implemented method were created using the lan-
guage C. E-puck robot is equipped with a variety of sensors which can be used for
the implementation and its hardware structure is considered to be simple. To be fully
functional, the method requires that every robot of the team must be equipped with
specific types of sensors such as distance sensors, differential wheels, communica-
tion modules for data transmission/receipt and appropriate sensors for pheromone
detection. Real e-puck robot is equipped with all the above sensors as well as the
corresponding e-puck robot inWebots. Amore detailed description about the sensors
that were used for the implementation is presented below.

The proposed method requires every robot to be equipped with specific types
of sensors so that it can have a completely awareness of its environment. Consid-
ering that, every robot could avoid possible obstacles, detect pheromone trails and
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communicate with its neighboring robots during its route to its final destination.
Consequently, for every action different type of sensors is needed.

9.4.1.1 Sensors for Obstacle Avoidance

E-puck robot uses infrareds as distance sensors to detect obstacles in the configuration
area. For reasons of correspondence, infrared distance sensors were also used for the
implementation in Webots. Unfortunately, as Fig. 9.11 illustrates, infrareds on the
real e-puck robot are misplaced. Due to the quantization of the configuration area,
obstacle detection cannot easily be achieved, leading to a less accurate system. For
example, if an obstacle with small size is present between two infrared sensors, due
to the distance between them, the robot will not be able to detect the object. By
dividing the configuration area into smaller cells, the system can be more accurate
at the expense of memory resources. However, in systems with miniature robots,
memory restrictions are of great importance.

An obstacle can be detected only if it is in the range of a distance sensor so
that the corresponding cell can be stated as an obstacle cell. Consequently, the cell
length must be at least equal to the distance sensor range. Small memory amounts
are required for large cells but less accurate readings from the sensors are achieved.
Conversely, using small cell length, more accurate readings can be processed from
the sensors but memory demands exceed the limit. To overpass this problem, the
best solution is to define an average cell length, and use numerous sensors. For that
reason, some modifications are required to be done on the e-puck robot. Different
number of proximity sensors was attached on the robot to define the appropriate
cell length so that maximum accuracy could be achieved. All distance sensors were

Fig. 9.11 From left to right:
modified and real e-puck
robot. The continuous lines
represent the range of the
infrared sensors
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Fig. 9.12 Appropriate cell
length for different number of
proximity sensors

placed around the e-puck robot every timewith different angle. Figure9.12 illustrates
the cell length of the system in regard to the required number of distance sensors so
that an object could be detected at any angle.

In case of minimum sensor number, big cell length is required and therefore less
memory is needed. Nevertheless, less accuracy is achieved and thus, some objects
may not be detected. As the cell length is decreased, more sensors are required so
that small obstacles can be detected. High accuracy is achieved but more memory is
required. Therefore, to achieve maximum accuracy, multiple sensors must be used
without using inefficient number of memory. For that reason, thirty six infrared
sensors for obstacle avoidance were used instead of eight that real e-puck robot
has. Each sensor was placed on the circumference of each robot having a distance
of ten degrees with its neighboring sensors. Figure9.11 illustrates the position of
each sensor on a robot while Figs. 9.11 and 9.14 present the modified e-puck robot.
Moreover, to state a free cell as an obstacle cell, the readings from the sensors must
be compared with a threshold, relative to cell length. For accuracy reasons, this
number is equal to the weighted sum of the sensors readings which are physically
included in the correspondence cell. A1×5Gaussian convolution operator was used
as coefficient. For example, in Fig. 9.13, assume that the value which describes the
state of the north cell is equal to:

value = 0.0545 × a0 + 0.2242 × a1 + 0.4026 × a2 + 0.2242 × a3

+0.0545 × a4 (9.9)

where a0, a1, a2, a3 and a4 are the readings from the sensors which are found in
the north cell, from left to right. This value is compared with a threshold and if it is
greater, the cell will be stated as obstacle cell.
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Fig. 9.13 Sensor Positions
on a Robot

Fig. 9.14 Modified e-puck
robot with infrared ground
sensors

9.4.1.2 Sensors for Pheromone Detection

A special component, given by Webots and called pen, was attached to every robot.
The pen componentmodels a pen attached to amobile robot, typically used to present
the trajectory of the robot. The created trails can be considered as pheromone paths
which can be detected by every robot. Essentially, the quantity of pheromone can
be simulated by tones of gray created by the pen on the ground. A tone near to
black represents a high accumulation of pheromone while near to white tones cor-
respond to low levels of pheromone. A transition from black to white tones sim-
ulates the evaporation process of pheromone. Moreover, appropriate sensors must
be selected so that the tones of gray can be detected. For this purpose, multiple
infrared sensors were attached to every robot looking down to the ground, as illus-
trated in Fig. 9.14. According to their structure, infrareds can detect the amount of
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the reflected beam which is transformed to electrical signal. If a sensor measures a
trail with a black tone, a high value will be resulted. In case of closely white trails,
small readings from the sensors will occur. As in obstacle avoidance, these readings
are combined using a Gaussian convolution kernel. Finally, the resulted values are
compared with thresholds to produce different pheromone levels for the pheromone
cells of the CA.

At this point, it should be mentioned that in real e-puck robots, electrical circuits
using infrared sensors can be attached on their front for the same purpose. Three
infrared sensors are attached under the camera of the robot, facing the ground, and
are used as ground sensors to detect possible chromatic trails.

9.4.1.3 Communication Modules

In case of absence of pheromone or a scattered formation, cooperations between
the robots of each subgroup must be achieved so that their formation can be either
retained or regained, respectively. Cooperation tasks are accomplished using data
exchange through a communication link. Each robot communicates with its neigh-
bors and swaps information about its position in the grid. Depending on these data,
robots decidewhether to exchange their position in the formation,move towards their
final destination or remain to their current position. Real e-puck robot is equipped
with a Bluetooth module for serial communications. In Webots, the modified e-puck
robot uses a transmitter and a receiver component to achieve interactions. Essentially,
these two components simulate the operations that a real serial communication mod-
ule can complete. Each robot must scan its neighborhood to avoid obstacles, detect
possible pheromone trails and communicate with other robots, if necessary, to update
its state to the next time step. Thus, the required time to create its path is propor-
tional to the execution time of each above operation. The total execution time is
equal to:

τtotal = τprox + τph + τcom + τex (9.10)

where τtotal is the total execution time, τprox is the required time for handling the prox-
imity sensors and τph is the necessary time for handling the sensors for pheromone
detection.Moreover, τcom is the required time for transmittingreceiving data for coop-
eration tasks and τex is the necessary time for each robot to process all data. Each of
the above parameters are strictly connected with the specifications of the available
hardware modules that every robot is equipped. At this point it must be mentioned
that the processor of every robot is far faster than the other sensors and thus, τex is
considered to be insignificant. Moreover, in case of a detected pheromone trail, com-
munications between robots are not required making the creation of the paths even
faster. Depending on the used sensors in either a system or a simulated system, the
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method could create collision free paths at real time and regain a scattered formation
after a small time period.

9.4.2 Simulator Results

For testing purposes, the proposed method was implemented in a cooperative robot
team consisted of ten modified e-puck robots, using Webots. The entire team was
divided into two equally numbered subgroups of robots. For this specific system, the
cell length was decided to be equal to 2 cm for accuracy reasons. Moreover, every
robot must cover a distance of 140 cm meaning that the configuration area is divided
into a lattice with dimensions 70 × 70 cells. Finally, every robot moves to its final
destination following the desired shortest path, that is a straight line trail, and each
subgroup is forming a straight line pattern.

At the first time step, the first subgroup leaves from its initial positions, or else
food sources. Each robot enables its distance sensors so that possible obstacles can
be detected. Depending on the received readings, every robot decides if an obsta-
cle is present or not. In case of a detected obstacle, the correspondent cell will be
stated as an obstacle cell and by applying the appropriate CA rule, collision avoid-
ance is achieved. If no object is present, every robot enables its ground sensors
to search if any pheromone is deposited on the ground. Depending on the sen-
sor readings, the robot decides if any of its neighboring free cells must be stated
as a pheromone cell with state that represents the detected pheromone level. If a
pheromone cell is present, the appropriate pheromone CA rule is applied. Obvi-
ously, no robot of the first subgroup detects any pheromone trail so cooperation
tasks are applied. Every robot communicates with its neighbors and exchanges data
related to its position in the grid. According to the response, each robot selects
the appropriate CA rule to evolve its state to the next time step, meaning that the
robot will adjust its movements. The same procedure is repeated until every robot
covers the desired distance. After a period of time, the second subgroup begins
its route to their final points in the configuration area following the exact same
process.

Figures9.15, 9.16 and 9.17 illustrate screenshots obtained during the evolution
process. In particular, screenshots of the robot team avoiding a rectangular shaped
object are shown in Fig. 9.15 while Fig. 9.16 demonstrates the avoidance of circular
object. Moreover, Fig. 9.17 illustrates how robots react in a case of a dynamical
environment. The presented results prove that the proposed method can produce
accurate collision free paths by using simple and cheap sensors. Furthermore, the
robustness and the effectiveness of the method are established.
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Fig. 9.15 Modified e-puck robot team avoiding a rectangular shaped object (from left to right
and from upper to lower images), where green spots are the robots and “pheromone” trails are
illustrated with lines of tones of black
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Fig. 9.16 Modified e-puck robot team avoiding a circular shaped object, (from left to right and
from upper to lower images), where green spots are the robots and “pheromone” trails are illustrated
with lines of tones of black
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Fig. 9.17 Modified e-puck robot team avoiding dynamic moving objects, (from left to right and
from upper to lower images), where green spots are the robots and “pheromone” trails are illustrated
with lines of tones of black
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9.5 Conclusions

In this chapter, a method for solving the path planning problem in a cooperative
robot team was presented. The method is the result of a combination between CA
and ACO algorithms resulting to the so called “Cellular Robotic Ants”. To test the
effectiveness of the method, a 2-D environment was created. The complexity of the
proposed method is proportional to the CA dimensions, according to CA algorithms,
and is considered to be lowcompared to other relativemethods.Moreover, themethod
was implemented in a cooperative robot team using a three dimensional simulator,
called Webots. For testing purposes, the under study robot team was constituted
of two subgroups with five robots each. All essential sensors, that all robots must
be equipped, and their direct relations with the cell length and pheromone were
introduced. By some modifications on the real e-puck robot, the total amount of the
required memory was reduced, thus causing the computational cost to be decreased.
Therefore, the method is applicable to a real system consisting of e-puck robots but
with some restrictions, as aforementioned. The accuracy of the method was tested
by using two different types of objects, rectangular and circular shaped. In both
cases, the method created successfully collision free paths. Presented results exhibit
the effectiveness and the robustness of the method. Finally, the proposed “Cellular
Robotic Ants” architecture covers the needs of self organization and autonomy of
the system since no central control interferes.
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Chapter 10
Employing Cellular Automata for Shaping
Accurate Morphology Maps Using Scattered
Data from Robotics’ Missions

Athanasios Ch. Kapoutsis, Savvas A. Chatzichristofis,
Georgios Ch. Sirakoulis, Lefteris Doitsidis and Elias B. Kosmatopoulos

Abstract Accurate maps are essential in the case of robot teams, so that they can
operate autonomously and accomplish their tasks efficiently. In this work we present
an approach which allows the generation of detailed maps, suitable for robot navi-
gation, from a mesh of sparse points using Cellular Automata and simple evolutions
rules. The entire map area can be considered as a 2DCellular Automaton (CA)where
the value at each CA cell represents the height of the ground in the corresponding
coordinates. The set of measurements form the original state of the CA. The CA
rules are responsible for generating the intermediate heights among the real mea-
surements. The proposedmethod can automatically adjust its rules, so as to encapture
local morphological attributes, using a pre-processing procedure in the set of mea-
surements. Themain advantage of the proposed approach is the ability to maintain an
accurately reconstruction even in cases where the number of measurements are sig-
nificant reduced. Experiments have been conducted employing data collected from
two totally different real-word environments. In the first case the proposed approach
is applied, so as to build a detailedmap of a large unknown underwater area inOporto,
Portugal. The second case concerns data collected by a team of aerial robots in real
experiments in an area near Zurich, Switzerland and is also used for the evaluation
of the approach. The data collected, in the two aforementioned cases, are extracted
using different kind of sensors and robots, thus demonstrating the applicability of

The research leading to these results has received funding from the European Communities
Seventh Framework Programme (FP7/2007–2013) under grant agreements n. 270180 (NOPTILUS)

A.Ch. Kapoutsis (B) · S.A. Chatzichristofis · G.Ch. Sirakoulis · E.B. Kosmatopoulos
Department of Electrical and Computer Engineering, Democritus University of Thrace,
67100 Xanthi, GR, Greece
e-mail: akapouts@ee.duth.gr

A.Ch. Kapoutsis · S.A. Chatzichristofis · G.Ch. Sirakoulis · L. Doitsidis · E.B. Kosmatopoulos
Telematics Institute, Center for Research and Technology, Hellas (ITI-CERTH),
57001 Thessaloniki, Greece

L. Doitsidis
Department of Electronic Engineering, Technological Educational Institute of Crete,
73100 Chania, GR, Greece

© Springer International Publishing Switzerland 2015
G.Ch. Sirakoulis and A. Adamatzky (eds.), Robots and Lattice Automata,
Emergence, Complexity and Computation 13, DOI 10.1007/978-3-319-10924-4_10

229



230 A.Ch. Kapoutsis et al.

our approach in different kind of devices. The proposed method outperforms the
performance of other well-known methods in literature thus enabling its application
for real robot navigation.

10.1 Introduction

Scattered data interpolation refers to the problem of generating the intermediate val-
ues through a non-uniform, unpredictable distribution of data samples. This numer-
ical analysis method can be adapted in a variety of engineering fields where data is
often measured or produced at random and irregular positions. The goal of interpo-
lation is to find the best way to propagate the data, finding an underlying function
[1] or utilizing the information of the neighborhood [2] and etc., onto all positions
in the domain.

There are three principal sources of scattered data: measured values of physical
quantities, experimental results and computational values [3]. This chapter focuses in
the investigation of the first category without losing the ability of direct adjustment in
other types of applications. Non-uniform measured values of physical quantities are
collected in geology,meteorology, oceanography, cartography,mining, etc.Although
our method applies in any of the previous categories we limit our presentation to
measurement data obtained by robot teams.

In general, a key element to the successful operation of a robot team is the ability to
perceive the environment in which it operates and therefore be able to function with
the highest level of autonomy. Currently several types of robots including ground [4],
aerial [5], surface or underwater robots [6] or even heterogeneous teams consisted
of different type of robots [7] are deployed in different type of missions utilizing a
diverse set of sensors. In all cases the key questions is how the data gathered by the
team members, will be processed and transformed into meaningful information, in
the form of maps so that they can be used by the robots. Usually the data collected
are in the form of scattered and often noisy data.

In recent literature numerous applications of robots used formapping of regions of
interest (see e.g., Fig. 10.1) are reported. In the case ofMicroAerialVehicles (MAVs),
they have been used both in indoors [8] or outdoors [9, 10] environments using laser
rangefinder sensor and a front-looking stereo camera as the main sensor respectively.
A fully autonomous system using a team of MAVs has been used to construct maps
of an unknown environment using a state-of-the-art visual-SLAM algorithm which
tracks the pose of the camera while simultaneously and autonomously, building an
incremental map of the surrounding environment [11].

In the case of underwater missions the state-of-the-art sensors, for Autonomous
Underwater Vehicles and for mapping the sea-bottom, are bathymeters (sonars)
or range scans [6, 12]. Furthermore, one of the sensors that is in common to all
Autonomous Ground Vehicles is the sensor to perceive the environment and their
movement (range sensing devices) [4].
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Fig. 10.1 Real life applications of teams of Autonomous Vehicles, operating under different envi-
ronment, constructed under different design architectures. a Unmanned Aerial Vehicles (UAVs) in
continuous infrastructure monitoring to prevent accidents [5]. b Autonomous Underwater Vehi-
cles (AUVs) for underwater archeology and post-disaster infrastructure inspection. c Autonomous
Ground Vehicles (AGVs) during ground surveillance task

In all the aforementioned cases the vehicles’ sensors produce either directly or
after some processing a pool of scattered measurements of the environment in which
they are operating. The elaboration of these measurements can be done either on-
line or off-line. A successful demonstration of the on-line case is presented in [13]
were a team of Autonomous Underwater Vehicles (AUVs) has efficiently and fully-
autonomously navigated in a dynamic environment. In the off-line scenario, the
robots have to follow a predefined trajectory gathering the corresponding points.
After the completion of the mission the interpolation methods are used to produce
the desired map. Despite the fact that, in the off-line scenario, a a-priori information
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about the exact location of the measurements could be used in order to improved
the performance of the interpolation process, crucial information, about the specific
morphology of the area, may be lost.

There is, no unique solution to the interpolation problem, resulting in different
fields when alternative techniques are applied to the same discrete data set. Since
the interpolation methods in bibliography are numerous, we have used as evaluation
methods four of the most common and most general applicable ones:

1. Linear
Linear interpolation is the simplest method of getting values at positions between
the data points. The points are simply joined by straight line segments. Each
segment (bounded by two data points) can be interpolated independently. The
parameter mu defines where to estimate the value on the interpolated line, it is 0
at the first point and 1 and the second point. For interpolated values between the
two points mu ranges between 0 and 1.

y(x) = y1 × (1 − mu) + y2 × mu (10.1)

2. Nearest Neighbors
The nearest neighbors (NN) method predicts the value of an attribute at an
arbitrary point based on the value of the nearest sample by drawing perpen-
dicular bisectors between sampled points (n), forming such as Thiessen (or
Dirichlet/Voronoi) polygons (Vi , i = 1, 2, . . . , n). This produces one polygon
per sample and the sample is located in the center of the polygon, such that in
each polygon all points are nearer to its enclosed sample point than to any other
sample points [14–16]. The estimations of the attribute at arbitrary points within
polygon Vi are the measured value at the nearest single sampled data point xi

that is ẑ(x0) = z(xi ). The weights are:

λi =
{

1 if xi ∈ Vi

0 otherwise
(10.2)

All points (or locations) within each polygon are assigned the same value
[15, 16]. A number of algorithms exist to generate the polygons [17], includ-
ing pycnophylactic interpolation [18].

3. Natural
The natural neighbors method was introduced by Sibson (1981). It combines
the best features of NN and Triangular Irregular Network [16]. The first step
is a triangulation of the data by Delauneys method, in which the apices of the
triangles are the sample points in adjacent Thiessen polygons. This triangulation
is unique except where the data are on a regular rectangular grid. To estimate the
value of a point, it is inserted into the tessellation and then its value is determined
by sample points within its bounding polygons. For each neighbors, the area of
the portion of its original polygon that became incorporated in the tile of the



10 Employing Cellular Automata for Shaping Accurate … 233

new point is calculated. These areas are scaled to sum 1 and are used as weights
for the corresponding samples [16]. This method can provide a more smooth
approximation to the underlying “true” function.

4. Cubic
A cubic spline is a spline constructed of piecewise third-order polynomials which
pass through a set of N control points. The polynomials describe pieces of a line
or surface (i.e., they are fitted to a small number of data points exactly) and are
fitted together so that they join smoothly [16, 18]. The places where the pieces
join are called knots. The choice of knots is arbitrary and may have a dramatic
impact on the estimation [18]. Splines with few knots are generally smoother
than splines with many knots; however, increasing the number of knots usually
increases the fit of the spline function to the data. Knots give the curve freedom
to bend to more closely follow the data.

In this work we propose a Cellular Automata (CA) based method for shaping
accurate morphology maps using scattered data collected from multi robot teams.
CA have attracted researchers from several disciplines (e.g., from the field of robotics
[19, 20], image processing [21, 22] and environmental modelling [23]) and a large
number of scientific papers are published every year.

CA, initially were proposed as models of physical systems, where space and time
are discrete and interactions are local, by von Neumann [24]. Any physical system
satisfying differential equations may be approximated by a CA, by introducing finite
differences and discrete variables [25–31]. Additionally, CA are one of the compu-
tational structures best suited for a VLSI realization [32–35]. The CA architecture
offers a number of advantages and beneficial features such as simplicity, regularity,
ease of mask generation, silicon-area utilization, and locality of interconnections
[26, 33].

In order to evaluate the proposed approach, experiments conducted employing
real-word data collected from two different types of robot teams. Initially, using the
proposed CA based method for shaping accurate morphology maps, a detailed map
of a large unknown underwater area in Oporto, Portugal was constructed. In the
sequel, the proposed approach generates a detailed map using data collected from
an area near Zurich, Switzerland, by a team of aerial robots. It is worth noting that
the collected data, in the two experimental setups, are captured employing different
type of sensors. In both cases, the proposed CA based method outperforms the
performance of several other well-known methods from the literature.

The rest of the chapter is organized as follows. Section10.2.1 demonstrates the
problem of scattered data interpolation in strict notation. In Sect. 10.2.2, we demon-
strate the exact steps of the proposed methodology using CA. Section10.3 presents
a series of experiments carried out with measurements from real robot systems.
Conclusions and future steps are given in Sect. 10.4.
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10.2 CA Based Methodology for Shaping Morphology Maps
Using Scattered Data

10.2.1 Problem Formulation

Without loss of generality, we can assume that the area to be mapped is constrained
within a rectangle in the (x, y)-coordinates, i.e., the mobile robots are called to map
the area constrained in the (x, y)-coordinates as follows:

U =
{

x, y : x ∈ [xmin, xmax], y ∈ [ymin, ymax]
}

(10.3)

This rectangle can be divided into discrete cells, in such a way that if all the values
in each cell are known, the representation of this rectangle would approximate the
real surface.

xi+1 = xi + �x,�x = (xmax−xmin)
L

yi+1 = yi + �y,�y = (ymax−ymin)
M

(10.4)

where L and M denote the desirable discretization in x and y axis correspondingly.
The goal is from an, arbitrarily located, set of data (xi , yi , fi ) , i = 1, . . . , N that rep-
resent the error-free1 measurements taken from different type of sensors, to generate
the values (x, y) ∈ U in all the cells of the rectangle.

10.2.2 Proposed Methodology

The basic steps of the proposed CA methodology are given as follows:
STEP 1: The map area is divided into a matrix, and for now on it will be referred

as C, of identical square cells that represented by a CA, where each cell of the map
is considered as a CA cell.

STEP 2: In the second step is applied the registration between the measurements’
data and the corresponding CA cells. In other words every set (xi , yi , fi ) of mea-
surements has to be placed in the appropriate cell C (xi , yi ) = fi . After this step we
have defined the dimensions of our CA and its initial conditions.

STEP 3: The evolution rules of a m CA cell, where m : (mx , my), are chosen as
a combination of two different approaches. On the one hand, a direct “propagation”
of the information is applied, following the Moore’s neighbor (Eq. 10.5), around
the initially known cells. Please note that the logical expression: ||i − mx || = 1 or

1 We will assume that the robot’s measurements are filtered and free of bias/Gaussian noise. It has
to be emphasized that the proposed approach can be extended to deal with noisy data giving weights
about the confidence level of the measurement’s accuracy.
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Fig. 10.2 The initial
conditions of CA

|| j − my || = 1 has to be true in order to follow the Moore’s neighborhood. If a cell
is affected by more than one value in the same step, a simple average is applied (see
Fig. 10.3).

Fig. 10.3 The evolution
rules. a Direct “propagation”.
b Using Remote Information
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Cti
1 (mx , my) =

{Cti (i, j) if Cti−1
1 (mx , my) = 0

Cti−1
1 (mx , my) otherwise

(10.5)

On the other hand, an evolution rule using information of the closest neighbors is
applied. We calculate the estimated value using a weighted average of the neighbors
that are in a pre-specified (see 10.2.3) “radius of influence” (RD) as shown inEq.10.6:

Cti
2 (mx , my) =

∑n
k=1 Cti−1

(

kx , ky
)

/Md(k, m)2
∑n

k=1 1/Md(k, m)2
(10.6)

STEP 4: Subsequently, a merging procedure is applied in order to render the final
value of the estimated cell, which, can be represented as follows:

Cti (mx , my) = a × Cti
1 (mx , my) + (1 − a) × Cti

2 (mx , my) (10.7)

Here, a servers as smoothing factor to give more/less weight to the one term against
the other.

STEP 5: Repeat STEP 3–4 until every cell of the CA obtain an estimation about
its height.

10.2.3 Define Adaptively the “Radius of Influence”

The RD corresponds to the maximum distance that is allowed between the current
CA cell and every other cell with value already calculated. It defines how far “travels”
the information, from the measurements, on the terrain. There is no global value for
the RD that can be applied in every map, e.g., if the area to be mapped was “flat”,
probably a good strategy would be to choose a “big” value for the RD. Information
about themorphology of the area, and thus about theRD, can be derived by exploiting
the distribution of the measurements’ set. The following steps are describing the
dynamic adjustment of the RD, utilizing the robot’s measurements.

STEP 1: The measurements sets have specific attributes, that could differ from
a sub-area to another. Initially these measurements data have to be classified, in an
optimal manner. To keep the analysis as general as possible, it will be considered
that the number of classes is unknown, and have to be investigated as the initial mea-
surements change. Based on the above we can formulate the following optimization
problem,

minimize
k

F(k) = ∑N
i=1 || [xc yc hc]i − [xi yi hi ] ||

subject to k ≥ 2
(10.8)

where N is the number of the measurements, k denotes the number of centroids,
[xi yi hi ] denotes the i-th measurement vector and [xc yc hc]i the centroid of the
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class, where with the current centroids’ selection, belongs the i-th measurement.
The cost function F(k) can be separated in two terms.

Whenever an updated value, about the number of classes, is calculated, the algo-
rithm K -means is called to find the 3 dimension vector of each centroid. Only when
the iterative procedure of K-means ends, the cost function F(k) (Eq.10.8) is calcu-
lated again to evaluate the difference in classification with the modified number of
centroids.

Taking into account that the dimensions of the centroids are in three dimensional
space, the above procedure can be completed in a reasonable time using an optimiza-
tion algorithm such as Hill climbing.

STEP 2: Having defined the optimal number of classes kopt and the corresponding
centroids (using K-means) we can now proceed to the final calculation about the RD.

RD = F(kopt)

N
(10.9)

The RD corresponds to the influence of the current cell in its neighborhood. If we
calculate the average of distances between all the measurements and their centroids
(Eq.10.9), we can have a rough estimation about the spatial influence of every cell
around its neighborhood.

10.3 Experiments

In this section we validate the proposed approach using real data collected by two
different types of robotic devices using different sensors. In both cases the robots
were collecting the data in order to construct a map to assist them in performing a
predefined mission. The first case refers to data collected from Oporto’s harbor area
using bathymetry sensors [36], while the second test case refers to data collected
using a camera mounted on a single aerial robot [11]. The diversity of the data
collected from two different type of devices is used as a proof of concept of the
generality and applicability of our approach.

10.3.1 Underwater Scenario—Oporto harbor

Using themethod described in detail in Sect. 10.2.2, we have reconstructed the under-
sea morphology of a sub-region of Oporto’s harbor. The underwater region covers
an area of 200 × 200 points spaced by 5m. To acquire full knowledge of the sea-
floor we should have known the value in each of the 40,000 points arising from the
previous grid. In Fig. 10.4 we present the real morphology of the area and the infor-
mation which will be used as ground truth to evaluate our approach. In a realistic
scenario the robot team, in this case a team of autonomous underwater vehicles,
would have returned after the completion of a mission with a data set much smaller
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Fig. 10.4 Ground truth—40,000 points—real representation of the operation area

Fig. 10.5 Initial measurements—308 points gathered by swarm of robots

than the one needed to have a detailed representation of the environment monitored.
Figure10.5 depicts the visualization of real scenario where the AUVs gathered 308
measurements points. It is worth-noticing that this subset (derived from robot’s mea-
surements) constitutes only the 0.77% 2 of the total area to be mapped, and for that
is considered a severe experiment.

The details of the CA environment are as follows:

• 2-D CA with 200 × 200 cells
• The initial condition of the CA are the 308 measurements as depicted in Fig. 10.5
and the unknown cells are filled with −1

• The evolution rules are as explained in the previous section (Eq.10.7)

2 Note that now and in the next experiments there has not been any analysis about the distribution that
is followed by the measurements. Different modalities, like different number of robots or different
type of sensors, etc., will lead to a different data distribution. The above problem is tackled by
conducted the same experiment 500 times with the initial measurements stochastically changed and
keep the average of error.



10 Employing Cellular Automata for Shaping Accurate … 239

The Fig. 10.6 demonstrates the incremental evolution of the CA over the time. The
whole procedure, even in this case with the extremely sparse measurements data, is
completed in 20 time-steps, renders the procedure directly applicable to real-time
interpolation systems.

As evaluation, theFig. 10.7 illustrates the results of different interpolationmethods
for the same data sets. The visual superiority of the proposed method is appeared
also in extended simulations, where a batch of 500 iterations, with different initial
measurements (conditions), per method is conducted and the average of L2 error
with ground-truth is calculated. The results are shown in Table10.1.

10.3.2 Aerial robots Scenario

To test the efficiency and stability of the proposed approach, regardless of the area
which is called to reconstruct the morphology, we have also tested it in data gathered
from aerial robots. In this case we will demonstrate the reconstruction of a “village
like” area based on data collected in an area near Zurich, Switzerland. The initial data
and the respective map were collected using a state-of-the-art visual-SLAM algo-
rithm which tracks the pose of the camera while simultaneously and autonomously,
building an incremental map of the surrounding environment. More details regarding
the extraction methodology are given in [8, 37].

This area is consisted of ruins and small urban structures and for that has high rate
of inhomogeneity and the transitions among different sub-areas are often steep. For
those reasons the interpolation in measurements’ data consists in a very challeng-
ing task. In Fig. 10.8 is presented the real surface with 13,855 points Fig. 10.8a and
the reconstructed one from 462 (3.3%) measurements: using the proposed method
Fig. 10.8b, while in Fig. 10.9 as evaluation we illustrate the results of the different
interpolation methods for the same data sets. The average of L2-Norm for this ini-
tial configuration for each method is presented in the second row of Table10.2. The
Table10.2 is an analysis of the impact that has the reduction of the initial measure-
ments in the final result of the interpolation procedure.

As robots are reducing their sampling rates of their sensors or operating for less
time the pool of gathered measurements will be smaller and thus the interpola-
tion procedure will have less accuracy, regardless of the choice of the interpolation
method and that’s something that is imprinted in the Table10.2. The proposedmethod
achieves better performance not only as weighted average, but in every different con-
figuration in number of measurements. This property can be achieved because the
proposed method can adapt its parameters in the available data set (Sect. 10.2.3) and
finally is able to manage to elaborate them in a efficient fashion.
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Fig. 10.6 Incremental evolution based on the CA methodology. The figures illustrate the progress
at 25, 50, 75 and 100%, correspondingly, of the CA process
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Fig. 10.7 Results using other interpolation methods. a Linear, b Natural, c Nearest neighbors,
d Cubic
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Table 10.1 L2-Norm between the ground truth and the constructed map for each method for each
number of initial measurements

L2-Norm Linear Natural Nearest neighbors Cubic Proposed

Weighted average 340.1553 340.8651 288.520 338.520 266.9886

Fig. 10.8 Zurich area—interpolation results over 462 points (3.3%), a Ground truth b Proposed
methodology using CA

10.4 Conclusions and Future Work

In this chapter, a novel method is presented using CA for scattered data interpo-
lation. We have successfully demonstrated the composition of morphology maps
from sensor’s measurements that outperform the most common used ones in all the
test-cases. The efficiency of the methodology relies, both on the ability of CA to
efficiently process elements that are arranged in a regular grid of identical cells, and
on the adaptability on the local morphology of each region, analyzing the variety in
measurements.

We are interested in considering situations where the robots’ measurements con-
tain errors. In this case, the problem becomes even harder since the CA now have
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Fig. 10.9 Zurich area—Results using other interpolation methods, namely a Linear, b Natural, c
Nearest neighbors, d Cubic
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Table 10.2 L2-Norm between the ground truth and the constructed map for each method for each
number of initial measurements

Initial points% Linear Natural Nearest neighbors Cubic Proposed

1386 (10) 361.117 343.837 407.426 355.361 338.004

462 (3.3) 499.623 477.9376 562.482 507.109 463.655

277 (2) 593.827 571.870 656.690 602.876 544.507

139 (1) 754.819 734.043 826.645 772.014 699.616

69 (0.5) 959.421 938.274 1032.046 933.780 866.569

46 (0.33) 1108.377 1086.865 1140.229 1079.947 928.137

Weighted average 720.022 699.247 778.214 715.578 657.203

to solve two problems. In the case CA will have to face a dual problem, since they
will have to identify which measurements are useful in the process and which have
to be ignored or corrected and also must be able to make an estimation, followed the
proposed methodology, about the morphology of the terrain, in real-time to keep its
directly applicable nature. We would like also to investigate scenarios in which the
objective is to build the morphology map of sub-region, where the robots do not visit
at all (extrapolation) or in which the environment changes over time.

References

1. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12(4),
377–410 (2000)

2. Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: Interpolation methods in medical image
processing. Med. Imaging IEEE Trans. 18(11), 1049–1075 (1999)

3. Franke, R., Nielson, G.M.: Scattered data interpolation and applications: a tutorial and survey.
In: Geometric Modeling, pp. 131–160. Springer, Berlin (1991)

4. Thorsten, L., Michael, H., Wuensche, H.-J.: Autonomous ground vehicles concepts and a path
to the future. Proc. IEEE 100(13), 1831–1839 (2012)

5. Achtelik, M., Achtelik, M., Brunet, Y., Chli, M., Chatzichristofis, S.A.., Decotignie, J-D.,
Doth, K-M., Fraundorfer, F., Kneip, L., Gurdan, D., Heng, L., Kosmatopoulos, E.B., Doitsidis,
L., Lee, G.H., Lynen, S., Martinelli, A., Meier, L., Pollefeys, M., Piguet, D., Renzaglia, A.,
Scaramuzza, D., Siegwart, R., Stumpf, J., Tanskanen, P., Troiani, C., Weiss. S.: Sfly: swarm of
micro flying robots. In: IROS, pp. 2649–2650. IEEE (2012)

6. Birk, A., Pfingsthorn, M., Bülow, H.: Advances in underwater mapping and their application
potential for safety, security, and rescue robotics. In: IEEE International Symposium on Safety,
Security, Rescue Robotics (SSRR). IEEE Press (2012)

7. Michael, N., Shaojie, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada, Y.,
Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative
mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 29(5),
832–841 (2012)

8. Blosch,M.,Weiss, S., Scaramuzza, D., Siegwart, R.: Vision basedMAVnavigation in unknown
andunstructured environments. In: IEEE InternationalConference onRobotics andAutomation
(ICRA), 2010, pp. 21–28. IEEE (2010)



10 Employing Cellular Automata for Shaping Accurate … 245

9. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.:
Vision-based autonomousmapping and exploration using a quadrotor mav. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2012, pp. 4557–4564. IEEE
(2012)

10. Majdik, A., Albers-Schoenberg, Y., Scaramuzza, D.: MAV urban localization from google
street view data. In: IROS, pp. 3979–3986 (2013)

11. Doitsidis, L., Weiss, S., Renzaglia, A., Achtelik, M.W., Kosmatopoulos, E.B., Siegwart, R.,
Scaramuzza, D.: Optimal surveillance coverage for teams of micro aerial vehicles in GPS-
denied environments using onboard vision. Auton. Robots 33(1–2), 173–178 (2012)

12. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research chal-
lenges. Adhoc Netw. 3(3), 257–279 (2005)

13. Kapoutsis, A.Ch., Chatzichristofis, S.A., Doitsidis, L., Borges de Sousa, J., Kosmatopoulos,
E.B.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for explo-
ration of unknown static & dynamic environments. In: 21st Mediterranean Conference on
Control & Automation (MED), 2013, pp. 1181–1188. IEEE (2013)

14. Bohling, G.: Introduction to Geostatistics and Variogram Analysis, p. 20. Kansas Geological
Survey, Kansas (2005)

15. Ripley, B.D.: Spatial Statistics, vol. 575. Wiley.com, New York (2005)
16. Webster, R., Oliver,M.A.: Geostatistics for Environmental Scientists.Wiley, Chichester (2007)
17. Christopher, C.M., Condal, A.R.: A spatial data structure integrating GIS and simulation in a

marine environment. Mar. Geodesy 18(3), 213–228 (1995)
18. Burrough, P.A.: Principles of Geographical Information Systems for Land Resources Assess-

ment (1986)
19. Charalampous, K., Amanatiadis, A., Gasteratos, A.: Efficient robot path planning in the pres-

ence of dynamically expanding obstacles. In:ACRI, volume7495 ofLectureNotes inComputer
Science, pp. 330–339. Springer (2012)

20. Ioannidis, K., Sirakoulis, GCh., Andreadis, I.: Cellular automata-based architecture for coop-
erative miniature robots. J. Cell. Autom. 8(1–2), 91–111 (2013)

21. Chatzichristofis, S.A.,Mitzias,D.A., Sirakoulis,GCh.,Boutalis,Y.S.:Anovel cellular automata
based technique for visual multimedia content encryption. Opt. Commun. 283(21), 4250–4260
(2010)

22. Zagoris, K., Pratikakis, I.: Scene text detection on images using cellular automata. In: ACRI,
pp. 514–523 (2012)

23. Georgoudas, I.G., Sirakoulis, GCh., Scordilis, E.M., Andreadis, I.: A cellular automaton sim-
ulation tool for modelling seismicity in the region of Xanthi. Environ. Modell. Softw. 22(10),
1455–1464 (2007)

24. Von Neumann, J., Burks, A.W., et al.: Theory of Self-Reproducing Automata. University of
Illinois Press, Urbana (1966)

25. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge Univer-
sity Press, New York (1998)

26. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential
equations in modeling physics. Phys. D Nonlinear Phenom. 10(1–2), 117–127 (1984)

27. Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular
automata. Phys. Rev. D 49(12), 6920–6927 (1994)

28. Omohundro, S.: Modelling cellular automata with partial differential equations. Phys. D Non-
linear Phenom. 10(1–2), 128–134 (1984)

29. Malamud, B.D., Turcotte, D.L.: Cellular-automata models applied to natural hazards. Comput.
Sci. Eng. 2(3), 42–51 (2000)

30. Sirakoulis, GCh., Karafyllidis, I., Mardiris, V., Thanailakis, A.: Study of lithography profiles
developed on non-planar Si surfaces. Nanotechnology 10, 421–427 (1999)

31. Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects
of population movement and vaccination on epidemic propagation. Ecol. Modell. 133(3), 209–
223 (2000)



246 A.Ch. Kapoutsis et al.

32. Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A., Mardiris, V.: A methodology for VLSI
implementation of cellular automata algorithms using VHDL. Adv. Eng. Softw. 32(3), 189–
202 (2000)

33. Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A.: A CAD system for the construction and
VLSI implementation of cellular automata algorithms using VHDL. Microprocess. Microsyst.
27(8), 381–396 (2003)

34. Sirakoulis, GCh.: A TCAD system for VLSI implementation of the CVD process using VHDL.
Integr. VLSI J. 37(1), 63–81 (2004)

35. Mardiris, V., Sirakoulis, GCh., Mizas, Ch., Karafyllidis, I., Thanailakis, A.: A CAD system for
modeling and simualtion of computer networks using cellular automata. IEEETrans. SMC-Part
C 38(2), 1–12 (2008)

36. Glynn, J., de Moustier, C., Huff, L.: Survey operations and results using a Klein 5410 bathy-
metric sidescan sonar. In: US Hydro (2007)

37. Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., Siegwart, R.: Intuitive 3D maps for MAV
terrain exploration and obstacle avoidance. J. Intell. Robot. Syst. 61(1–4), 473–493 (2011)



Chapter 11
On the Use of Cellular Automata
in Vision-Based Robot Exploration

Lazaros Nalpantidis

Abstract CellularAutomata constitute a powerful tool tomodel spatial and temporal
relations of complex discrete systems. Visual information, as captured by digital
imaging sensors, can be efficiently processed by such techniques. Furthermore, robot
exploration is commonly based on discrete metric occupancy grid representations of
the environment. This chapter covers possible uses of Cellular Automata along the
whole pipeline of vision-based robot exploration algorithms, and focuses on specific
implementation examples of robotic systems with integrated CA-enhanced vision
algorithms.

11.1 Introduction

Robot exploration of unknown environments is a very active topic among the
autonomous robotics community. Robots are expected to navigate in such environ-
ments, localize themselves, and performmapping. Computational resources onboard
a mobile robot are limited, and have to be shared among many concurrent tasks.
Thus, computationally efficient methods are favored instead of complex solutions,
which makes the use of efficient and inherently parallelizable tools, such as Cellular
Automata (CA), very appealing.

Naturally, 2D and 3D perception is of utter importance in robot exploration tasks
and robots need sensors to perceive their environment and adapt their behavior
accordingly. Cameras have been constantly gaining popularity due to their decreasing
size and price, as well as due to their ability to provide very rich descriptions of the
world at very high frame rates. Stereo vision systems are constantly one of the most
commonly used ways to obtain depth information, other alternatives being laser-
based [14], Time of Flight (ToF), and structured light sensors. Sensors that, apart
from color images of the scene, can simultaneously provide depth measurements,
i.e. the so called RGB-D sensors, have been steadily gaining popularity. The most
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iconic RGB-D sensor is the Microsoft Kinect that apart from the RGB information
provides as an additional “channel’ the depth; i.e. a grayscale image where each pixel
value denotes the corresponding depth.

What is common about digital images, either RGB or RGB-D, is that their pixels
constitute a lattice. As a result, CA have been applied successfully to image process-
ing [1, 9, 12, 16] and dealt efficiently with image enhancement operations such as
noise filtering [15]. However, noise filtering, image enhancement or edge extraction
are just some of the applications where CA have provided efficient solutions. This
chapter examines howCAcan be incorporated in various stages of vision-based robot
systems, improving results with only minimal computational overhead. More specif-
ically, Sect. 11.2 deals with a CA-enhanced stereo correspondence algorithm, while
Sect. 11.3 builds further upon that, examining a stereo vision-based simultaneous
localization and mapping (SLAM) algorithm that uses CA to improve the generated
occupancy map.

11.2 Stereo Vision

Robots need to perceive their 3D environments in order to plan their activities and
execute them. Stereo vision can provide the means to perceive depth out of two
images (Fig. 11.1).

CAcanbe used tomake the stereo correspondence searchmore efficient and robust
against noise. Rather than just a noise removal tool applied to the input images or
the resulting depth maps, as discussed in the previous section, we have explored
the tight integration of simple CA rules in the heart of the stereo correspondence
process. More specifically, in [12] a CA-enhanced stereo algorithm is presented.
Every stereo correspondence algorithm makes use of a matching cost function so
as to establish correspondence between two pixels. The results of the matching cost
computation comprise the disparity space image (DSI). DSI is a 3Dmatrix containing
the computed matching costs for every pixel and for all its potential disparity values

Fig. 11.1 A robot equipped
with a stereo camera,
operating outdoors
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Fig. 11.2 DSI containing
matching costs for every pixel
of the image and for all its
potential disparity values.
Values within this 3D
structure are processed with
CA

[10]. The structure of a DSI is illustrated in Fig. 11.2. The algorithm presented in [12]
utilizes the absolute differences (AD) as matching cost and aggregates the results
inside support windows, assigningGaussian distributedweights to the support pixels,
based on their Euclidean distance. The resulting DSI is then refined by CA acting in
all of the three dimensions of the DSI.

The main merit of the presented algorithm is its simplicity, rendering it as an ideal
choice for real-time operations and hardware implementation. Its structural elements
are summarized as:

1. AD is utilized as matching cost function since it is the simplest one, involving no
multiplications.

2. The aggregation step is a 2D process performed inside fix-sized square support
windows upon a slice of the DSI. The pixels inside each support window are
assigned to a Gaussian distributed weight during aggregation. The weight of each
pixel is a Gaussian function of its Euclidean distance towards the central pixel of
the current window.

3. The resulting aggregated values of the DSI are furthered refined by applying CA.
CA are used inside the 3D DSI, and not as a 2D post-processing disparity map
filter [7].

4. Finally, the best disparity value for each pixel is decided by aWTA selection step.

This algorithm was not indented to achieve excellence of results but to provide a
simple to implement, fast to execute yet credible stereo correspondencemethodology.
In this way the presented algorithm is able to be executed in real-time and to be easily
hardware implemented, as demanded by many applications.

11.2.1 Algorithm Description

Themain differentiation of the used algorithm from themajority of stereo algorithms
is that thematching cost aggregation step consists of two sub-steps rather than one. In
addition, the disparity selection process is a non-iterative one. Finally, the calculated
disparity map is not further refined. The block diagram of the presented algorithm is
shown in Fig. 11.3.

The key idea is that instead of refining the resulting 2D disparity map , refinement
should be performed inside the 3D DSI. Thus, all the available information could
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Fig. 11.3 Block diagram of the a CA-enhanced stereo correspondence algorithm (adapted from
[12])

be taken into consideration. After all, WTA is a rigid information rejection method,
often rejecting useful information as well. This alteration preserves the quality of the
produced results while removing any iterative stage from the algorithm’s flow.

The matching cost function utilized in the presented algorithm is the AD. The
main merit of AD is the speed of calculations, since it involves only summations
and finding absolute values, and its potential to be easily hardware implemented.
Moreover, the results obtained by it are very satisfactory, considering the amount of
avoided calculations that would be required by other metrics found in literature [10].

The AD calculated in the previous step comprise the DSI. These results are aggre-
gated inside fix-sized square windows for constant value of disparity. The width of
the window plays an important role on the final result. Small windows generally pre-
serve details but suffer from noise, whereas big windows have the inverse behavior.
After extensive testing to perform best, the width of the square window is selected
to be 11 pixels. This number is considered a rational choice, as it manages to keep a
balance between the loss of detail and the emergence of noise.

However, the AD summation is weighted. Each pixel is assigned a weight
w(i, j, d), the value of which results from the 2D Gaussian function of the pixel’s
Euclidean distance from the central pixel. The center of the function coincides with
the central pixel and has a standard deviation equal to the one third of the distance
from the central pixel to the nearest window-border. The Gaussian weight function
remains the same for fixed width of the support window. Thus, it can be considered
as a fixed mask that can be computed once, and then applied to all the windows.

The weighted SAD comprises the DSI:

DSI (i, j, d) =
μ=5
∑

μ=−5

5
∑

ν=−5

w(i + μ, j + ν, d) · AD(i + μ, j + ν, d) (11.1)

The resulting aggregated values of the DSI are furthered refined by applying CA.
All cells canwork in parallel and as a result the used CA can be easily implemented in
hardware. Two CA transition rules are applied to the DSI. The values of parameters
used by them were determined after extensive testing to perform best. The first
rule attempts to resolve disparity ambiguities. It checks for excessive consistency
of results along the disparity d axis and, if necessary, corrects on the perpendicular
(i, j) plane. The second rule is placed in order to smoothen the results and at the



11 On the Use of Cellular Automata in Vision-Based Robot Exploration 251

same time to preserve the details. It checks and acts on constant-disparity planes.
The two rules can be expressed as:

1. If at least one of the two pixels lying from either sides of a pixel across the
disparity axis d differs from the central pixel less than half of its value, then its
value is further aggregatedwithin its 3×3 pixel, constant-disparity neighborhood.

First CA rule Pseudocode

if {

|DSI(i,j,d)-DSI(i,j,d-1)| < (1/2)DSI(i,j,d) }

or {

|DSI(i,j,d)-DSI(i,j,d+1)| < (1/2)DSI(i,j,d) }

then {

for m,n = (-1,0,1) {

DSI(i,j,d) = (1/9)sum(sum(DSI(i+m,j+n,d) }}

2. If there are at least 7 pixels in the 3×3 pixel neighborhood which differ from the
central pixel less than half of the central pixel’s value, then the central pixel’s
value is scaled down by the factor 1.3, as dictated by exhaustive testing.

Second CA rule Pseudocode

for m,n = (-1,0,1) {

while (m and n)<>0 {

if {

|DSI(i+m,j+n,d)-DSI(i,j,d)| < (1/2)DSI(i,j,d) }

then {

count++ }}}

if {

count>=7 }

then {

DSI(x,y,d) = (1/1.3)DSI(i,j,d) }

The two rules are applied once. Their outcome comprises the enhanced DSI that
will be used in order the optimum disparity map to be chosen by a simple, non-
iterative WTA final step.

In the last stage the best disparity value for each pixel is decided by a WTA
selection procedure. For each image pixel coordinates (i, j) the smaller value is
searched for on the d axis and its position is declared to be the pixel’s disparity
value. That is:

D(i, j) = arg(min(DSI (i, j, d))) (11.2)
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Fig. 11.4 Results for the Middlebury data sets. From left to right: the Tsukuba, Venus, Teddy and
Cones image From top to bottom: the reference (left) images (a), the provided ground truth disparity
maps (b), the disparity maps calculated by the presented method (c), maps of signed disparity error
(d), and maps of pixels with absolute computed disparity error bigger than one (e)

11.2.2 Experimental Evaluation

The standard image sets used were the four stereo images [17, 18] provided along
with their corresponding ground truth disparity maps by Scharstein and Szeliski
through their web site [19]. Figure11.4 depicts the reference (left) images (a), the
provided ground truth disparity maps (b), the disparity maps calculated by the pre-
sented method (c), maps of signed disparity error where middle (50%) gray tone
equals to zero error (d), and maps of pixels with absolute computed disparity error
bigger than one shown in black (e). The percentage of pixels whose absolute dis-
parity error is greater than one in the non-occluded, all, and near discontinuities
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and occluded regions are presented in Fig. 11.5. The presented algorithm leaves
non-calculated a frame around the image whose width is equal to the aggregation
window width, i.e. 11 pixels. Thus, the results of Fig. 11.5 slightly underestimate the
performance of the presented algorithm, except for the case of Tsukuba image set,
where the ground truth itself ignores that frame as well.

Figure 11.6, on the other hand, presents the Normalized Mean Square Error
(NMSE) for the calculated disparity maps of the four image sets, excluding the
11 pixel wide frame. NMSE is calculated for a simplified version of the presented
algorithm, which makes no use of CA, as well as for the complete version of the
algorithm. The addition of CA substantially improves the quality, as shown from the
last column.

11.2.3 Discussion

The presented algorithm exhibits satisfactory performance despite its simple struc-
ture. Gaussian weighted aggregation and CA refinement inside the DSI have been
proven to comprise an effective computational combination. The data show that the
presented algorithm is in the right direction for a hardware implementable, real-time
solution. However, the quality of the results could be further improved by refining
further the applied CA rules. The possibilities concerning the nature and the number
of the applied CA rules are practically endless and the chosen ones, although effec-
tive, are only one of those possibilities. The presented algorithm’s ability to calculate
disparity maps of real-life scenes is highly appreciated. Finally, it can be concluded
that the algorithm’s serial flow and low complexity combined with the presented
satisfactory results render it as an appealing candidate for hardware implementation.
Thus, depth calculation could be performed efficiently in real-time by autonomous
robotic systems.

Fig. 11.5 Percentage of pixels whose absolute disparity error is greater than one in various regions
of the images
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Fig. 11.6 Calculated NMSE on the Middlebury dataset for the presented stereo algorithm with and
without CA enhancement

11.3 CA Refinement of Simultaneous Localization and Mapping

The use of CA in the SLAM problem has been explored in [11, 13]. SLAM is about
estimating the robot’s position and progressively building a map of its environment.

The difficulties of solving SLAM arise from the finite precision of the sensors and
actuators of the robot, given real-life situations. The computational load of SLAM
is also an additional problem. Much effort has been devoted to reduce the demanded
computations [2, 6]. Yet, updating maps after each new observation requires more
resources as the maps are getting larger. A typical example is the SLAM methods
based on particle filters, where the selected number of particles and the consequent
map matching and merging procedures significantly affect the computational load
[2]. On the other hand, a simpler solution has been adopted in the method at hand.
Instead of iteratively updating a large number of estimations, the presented method
uses a corrective jittering procedure which aligns the most recently produced local
map with the accumulated global map so as to minimize the occupied area of the
resulting new global map. Then, carefully chosen CA rules are used to refine the
resulting occupancy map. Thus, possible mistakes in the camera’s motion estimation
or mistakenly merged previous local maps can be overcome.

The solution presented in this method avoids complex update strategies in favor of
a computationally efficient one. The only sensor required by the presented algorithm
is a stereo camera. The resulting maps indicate the occupied regions of the area and,
thus, can be used for area measurement applications. Emphasis has been given to the
development of custom-tailored, non-iterative solutions for each step of the proposed
algorithm’s execution. The specially developed stereo correspondence algorithm is
a rapidly executed local algorithm embodying gaussian weighted aggregation as
well as a double validation scheme based on a certainty estimation criterion and
a bidirectional consistency check. Concerning the camera’s motion estimation, the
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Fig. 11.7 Outline of the CA-enhanced SLAM algorithm (adapted from [13])

Speeded-Up Robust Features (SURF) feature detector and matcher [3] has been
utilized as the first step of an efficient estimation method. This estimation is further
refined afterwards during a sophisticated map merging procedure and sharpened up
by CA [24].

11.3.1 SLAM Algorithm Description

The algorithm presented in [13] progressively builds amap of the environment, based
entirely on stereo vision information. The produced maps indicate the occupied and
free regions of the explored environment. The outline of the algorithm is summarized
in Fig. 11.7. Each independent component is discussed in detail in the following
sections.

11.3.1.1 Egomotion Estimation

The egomotion of the robot can be estimated by correlating the reference images
from two consecutive image pairs. Feature detection andmatching has become a very
attractive and useful field for many computer vision applications. Among the variety
of possible detectors and descriptors this work has embodied SURF, as described
in [3]. SURF is a scale and rotation invariant detector and descriptor. It has the
advantages of achieving high repeatability, distinctiveness and robustness. However,
the most attractive feature of SURF is its computational efficiency, which allows
very fast computation times. Preliminary experiments have confirmed the accuracy
and effectiveness of SURF for the examined situations. SURF is given with two
consecutive reference images as input and provides as output a list containing the
coordinates of N matched features in the two images.

The coordinates of the pixels in each image are given in respect to that image’s
plain reference system. If the disparity values of the pixels matched by SURF have
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been validly computed in the stereo correspondence step, then the local reference
system’s coordinates of the depicted point, i.e. with respect to the current camera
position, can be computed by triangulation, given the intrinsic parameters of the
stereo camera. Thus, the 3D coordinates, or equivalently two 3D point clouds, of the
matched points for each stereo image pair are obtained as output.

The assumption required in the analysis hereafter is that the observed environment
is static concerning the two adjacent image pairs and that the only non static object
is the camera. However, even a partially non-static environment can be successfully
processedmost of the times. Consider for example the case of amoving person inside
the room being mapped. The existence of the person will result in unwanted marks
of obstacles. However, these “obstacles” will normally be present in a given position
only for one single image pair, as the person will have moved till the capture of the
next image pair. As a result, such a moving obstacle will produce weak obstacle
traces, i.e. found only in a few of the input image pairs. The CAmechanism that will
reject these non-existent obstacles is a subsequent step of the algorithm, which will
be discussed later.

Consider the resulting two 3D point clouds. In this case the local coordinates of
the features’ position vectors p′

1, . . . , p′
N in the reference image of the second pair

are related to the position vectors p1, . . . , pN in the reference image of the first pair
by the equation:

pi = T + R · p′
i for i = 1, 2, . . . ,N (11.3)

where T and R are the translation and the rotation matrices respectively, describing
the camera’s movement between the two reference images. In the ideal case, six
perfectly matching features are sufficient in order to compute T and R. However,
in realistic, error-suffering situations more points are needed. The sought T and R
should minimise the following sum of quadratic differences [21]:

N
∑

i=1

||pi − T − R · p′
i ||2 (11.4)

The minimisation of this equation exploiting linear algebra, i.e. the application of
a Procrustes transformation to the resulting two point clouds, results in the relative
translation T (x0, y0) and rotation R(θ0)of the rover. Thisway, a linear transformation
is determined between the points of the first point cloud and the points of the second
one.

11.3.1.2 Local Map Generation

A local 2D map is computed from each stereo image pair. Using the sparse disparity
map obtained by the stereo correspondence algorithm a reliable v-disparity image
can be computed [8, 26]. In a v-disparity image each pixel has a positive integer
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Fig. 11.8 Environment’s maps for a domestic scene obtained with the presented method and
enhanced using CA. a Observed hallway, b Computed disparity map, c Local map, d Initial global
map, e Updated global map, f CA enhanced global map

value that denotes the number of pixels in the input image that lie on the same image
line (ordinate) and have disparity value equal to its abscissa [8].

The terrain in the v-disparity image is mapped into a slanted line segment, which
can be modeled by a linear equation. The parameters of this linear equation contain
the information about the height and the angle of the camera with respect to the
ground. The values of the linear equation’s parameters can be found using Hough
transform [4] or by exploiting an inertial measurement unit (IMU), if the camera-
environment system’s geometry is unknown. However, if the geometry of the system
is constant and known (which is the case for a camera firmly mounted on a robot
exploring a flat, e.g. indoor, environment) the two parameters can be easily computed
beforehand and used in all the image pairs during the exploration. A tolerance region
on either side of the terrain’s linear segment is considered and any point outside this
region is considered as an “obstacle”. For each pixel corresponding to an “obstacle”
the local coordinates are computed. The local map, e.g. the one shown in Fig. 11.8c,
is an occupancy grid of the environment consisting of all the points corresponding
to “obstacles”.

11.3.1.3 Global Map Merging

The motion estimation technique, as described in the respective section, gives the
relative translation T (x0, y0) and rotation R(θ0) required to superimpose the new
local map, Fig. 11.8c, to the global map accumulated up to that point, Fig. 11.8d.
However, the situation of perfectly matched features that result in exactly precise T
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and R is barely ever encountered. Thus, one further step is required to address this
issue.

The concept of aligning clouds of robust features is not a new one [20]. Stochastic
and probabilistic methods have also been examined [5, 22] giving accurate results, at
the expense of computational load. The solution adopted in this work is to accept the
translation and rotation vectors T (x0, y0) and R(θ0) only as a good starting point. The
fine tuning of the new local map with reference to the global one can be performed as
a jittering procedure around the initial estimation.More specifically, the values of the
translation and rotation vectors are iteratively updated so as to obtain a combination
of values x1 ∈ [x0−5, x0+5], y1 ∈ [y0−5, y0+5] and θ1 ∈ [θ0−4, θ0+4] (where
x0 and y0 are measured in pixels and θ0 in degrees) that when applied to the local
map before the superimposition minimizes the total occupied area of the resulting
new global occupancy map. This combination is considered as the fine-tuned values
which determine the final T and R vectors and are used for the generation of the
updated global map, e.g. the one shown in Fig. 11.8e.

11.3.1.4 Global Map Refinement Using CA

The algorithm’s final output is a global map, i.e. an occupancy grid map of the
explored area, whenever the user asks for it or when a termination criterion is met.
The results of Fig. 11.8 are based on a series of self-captured stereo pairs. As shown,
the global map usually needs to be filtered in order to fill possible gaps in it or remove
unwanted noise. Such an enhancement is difficult to be achieved by typical image
filtering techniques. This work proposes the use of planar CA for the refinement
step, as they can easily deal with local interactions and can significantly improve the
quality of the final result, as shown in Fig. 11.8f.

Despite its ease of implementation and simplicity, CA is a powerful tool that
can generate robust filtering techniques. In their original definition, CA are dynam-
ical systems, where space and time are discrete, interactions are local and they can
easily handle complicated boundary and initial conditions [24, 25]. Using a more
mathematical definition, a CA system requires:

1. a regular lattice of cells covering a portion of a d-dimensional space;
2. a set C(r, t) = {C1(r, t), C2(r, t), . . . , Cm(r, t)} of variables attached to each

position r of the lattice giving the local state of each cell at the time t = 0, 1, 2, . . .;
3. a rule R = {R1, R2, . . . , Rm} which specifies the time evolution of the states

C(r, t) in the following way:

C j (r, t + 1) = R j { C(r, t), C(r + δ1, t),
C(r + δ2, t) . . . , C(r + δq , t)} (11.5)

where r + δk designate the cells belonging to a given neighborhood of cell r.
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In the above definition, the rule R is identical for all sites and it is applied simultane-
ously to each of them, leading to a synchronous dynamics. It is important to notice
that the rule is homogeneous, i.e. it does not depend explicitly on the cell position r.

The neighborhood of cell r is the spatial region in which a cell needs to search
in its vicinity. In principle, there is no restriction on the size of the neighborhood,
except that it is the same for all cells. However, in practice, it is often made up of
adjacent cells only. If the neighborhood of each cell is defined by the variable N , then
for a 2D CA, two neighborhoods are often considered, Von Neumann and Moore
neighborhood. Von Neumann neighborhood is a diamond shaped neighborhood and
can be used to define a set of cells surrounding a given cell, r with given coordinates
(i0, j0). The following equation defines the Von Neumann neighborhood, N von, of
range p:

N (i0, j0)
von = {(i, j) : |i − i0| + | j − j0| ≤ (p)} (11.6)

For a given cell r with given coordinates (i0, j0) and range of neighborhood p, the
Moore neighborhood, a square shaped neighborhood can be defined by the following
equation, respectively:

N(i0, j0)
Moore = {(i, j) : |i − i0| ≤ (p), | j − j0| ≤ (p)} (11.7)

The CA rules as mentioned above determine the way in which each cell of the
CA is updated. It is clear that the state of each cell is affected by the cell values in
its neighborhood and its value on the previous time step, according to the transition
CA rule, or a set of rules. The state of every cell is updated simultaneously in the CA,
thus, providing an inherent parallel system. In practice, when simulating a given CA
rule, it is impossible to deal with an infinite lattice. The systemmust be finite and have
boundaries. Clearly, a site belonging to the lattice boundary does not have the same
neighborhood as other internal sites. In order to define the behavior of these sites,
the neighborhood is extending for the sites at the boundary leading to various types
of boundary conditions such as periodic (or cyclic), fixed, adiabatic or reflection.

Based on the above CA presentation, the following two 2D majority rules are
taken into account for the occupancy grid enhancement. It should be noticed that dif-
ferent neighborhood sizes were tested several times and for different images in order
to provide more accurate results in correspondence to the requested computational
resources. As a result, the extended CA Moore neighborhood with range p = 2 was
finally selected as a compromise between accuracy and the corresponding computa-
tion time. Thus, considering Co,o as the central pixel of the 5× 5 neighborhood, the
used majority rules can be expressed by the following if-then statements:

if
2

∑

i=−2

2
∑

j=−2

Ci, j < 4 ∀ (i �= 0 and j �= 0) then Co,o = 0 (11.8)
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Fig. 11.9 Application of CAmajority rules for the time evolution of the CA state Co,o for different
initial conditions and for Moore neighborhood with range p = 2. The CA states of the black pixels
equal to 1 while the CA states of the white pixels equal to 0

and

if
2

∑

i=−2

2
∑

j=−2

Ci, j > 5 ∀ (i �= 0 and j �= 0) then Co,o = 1 (11.9)

In Fig. 11.9, two application examples of the aforementioned CA majority rules
are provided, respectively. More specifically, in Fig. 11.9a the CA cell state of Co,o

results in next time t + 1 in 0, according to the first majority rule in the above
mathematical description, since the sum of all its neighbors states equals to 2; while
in Fig. 11.9b the CA cell state of Co,o results in next time t + 1 in 1, according to the
secondmajority rule, since the sum of all its neighbours states equals to 5. In both the
previous examples, it should be mentioned that, for readability reasons, all the CA
cell states outside the neighborhood of the under study CA cell Co,o are not taken
into account and as a result the states of all other CA cells depicted in Fig. 11.9a, b
are not evaluated. The aforementioned CA rules were explicitly implemented after
extensive testing to perform best, according to the accuracy speed trade-off of the
method. Finally, the boundary conditions of the used CA were selected to be fixed
zero-valued for better computational results.

Just one generation, i.e. a single application of the aforementioned CA rules, pro-
vides significantly enhanced results, as seen in Fig. 11.8f. The barely connected 2D
point cloud of Fig. 11.8e has been transformed to the solid occupied region shown
in Fig. 11.8f. Due to the fact that the presented global map enhancement uses a CA,
time complexity is found to be approximately O(m × n) as the majority of the CA
algorithms, where m × n are the dimensions of the rectangular grid, meaning that
time complexity is proportional to the CA dimensions. The main advantages of the
presented solution are its significantly enhanced results, combined with low com-
plexity and low computational cost, thus, suitable for an efficient real-time system
implementation.
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Fig. 11.10 Robot equipped
with Bumblebee stereo
camera used in experiments

11.3.2 Experimental Evaluation

The presented algorithm was tested experimentally by being applied to a series of
self-captured indoor images. Two sets of images were used for testing. The first set of
images consisted of 10 stereo image pairs captured in a domestic indoor environment,
i.e. a hallway with some open doors alongside. The second set of images constituted
of 113 imagepairs capturedby a stereo camera-equipped robot exploring a public area
of a university building. The used mobile robot can be seen in Fig. 11.10; it actually
has two stereo cameras but the one that was used in the following experiments was
the one placed lower—the yellow Point Grey Bumblebee2.

For the first set of images, i.e. for the images of the hallway, the orientation of the
camera was only slightly different among successive captures, in order to facilitate
the task of the feature matching procedure. The lighting of the environment was the
natural lighting found in real indoor environments. As a result, the captured images
were far from being ideal, obstructing the stereo correspondence and the feature
matching procedures.

In Fig. 11.11 the first column, Fig. 11.11a, presents the reference images of the
first, second, sixth, and tenth image pair of the tested image series. The differences
in the illumination conditions are evident, especially in the image of the third row.
The second column, Fig. 11.11b, presents the sparse disparity maps computed with
the used stereo algorithm. One can observe that very little falsely matched pixels
have been produced. However, the overall coverage is more than enough in order
to to detect any obstacles in the scene. The third column, Fig. 11.11c, shows the
global maps of the environment containing the accumulated local maps up to that
point. The gradual superimposition of further local maps is remarkably accurate and
results in clear arrangements of “obstacle”-points. The final column, Fig. 11.11d,
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Fig. 11.11 Experimental results after processing 1 (first row), 2 (second row), 6 (third row), and 10
(fourth row) image pairs of the hallway scene. a Reference images of the scene. b Sparse disparity
maps of the scene. c Updated global maps. d CA enhanced global maps

shows the global maps after the CA enhancement. This procedure, makes the sparse
information of the global maps continuous and more clear.

As shown by the lower-right image of Fig. 11.11 the result of the algorithm with
only ten input image pairs is a clear and reliable representation of the obstacles found
in the hallway. The walls, the closed door straight ahead of the camera, and some
open doors are all clearly visible.

The second set of images consisted of 113 stereo image pairs of a scene captured
in a university building. The imageswere captured by a robot whose path resulted in a
full closed loop inside the explored environment. The experimental results, presented
in Fig. 11.12, shows that the presented methodology can handle large sequences of
input images recovering from and counterbalancing the obviously error-including
pose and mapping estimations.

ThefinalCAenhancedmaps for the twodatasets, i.e. the hallway and theuniversity
ones, are shown in Fig. 11.13.Apart form the SLAMoutput, the outline of themapped
environment is superimposed in red for the purpose of comparison.

The accuracy of the produced maps depends on two different error inducing
mechanisms, i.e. false matching and estimation inaccuracy. False matching is almost
inevitable for any stereo correspondence algorithm to some extent. Such errors are
handled by validation techniques. The disparity estimation inaccuracy occurs when
the integer-pixel disparity value is found correctly but the subpixel precision value is
erroneous. This case has a lot to do with the used camera’s resolution. The camera’s
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Fig. 11.12 From top to bottom the reference image, highlighted traversable areas and obstacles,
global map, and CA enhanced global map for the a 1st, b 20th, c 50th, d 80th, and e 113th pair of
the university scene

Fig. 11.13 The final CA enhanced global maps and the outline of the mapped environments

lenses had 3.8mm focal length, resulting in 65◦ horizontal field of view (HFOV). One
can derive that the used stereo vision system can produce maps of its environment
with theoretical accuracy better than 0.85%, for objects within a radial distance of
up to 2m.
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11.3.3 Discussion

SLAM methods are able to produce maps of areas and provide metric results about
occupied and free regions. However, SLAM is known to be a computational inten-
sive task. A simple and computationally efficient SLAM algorithm would comprise
a useful tool for distance and area measurement applications. In this work, a compu-
tationally simple stereo vision-based SLAM algorithm has been presented that uses
CA to produce accurate occupancy maps. New methodologies for the generation
and the superimposition of the partial maps have been proposed. The sole use of
one sensor, i.e. a stereo camera, and the substitution of computationally demanding
procedures are indicative of the algorithm’s focus on computational effectiveness.

The stereo correspondence algorithm used in this work is a rapidly executed local
algorithm embodying gaussianweighted aggregation and a double validation scheme
based on a certainty estimation criterion and a bidirectional consistency check.

The vision-based estimation of the camera’s motion is based on the SURF feature
detector and matcher in order to obtain a first rough estimation. This first estimation
is further refined afterwards during a sophisticated and efficient map merging pro-
cedure. The superimposition of the latest local map to the accumulated global one is
performed through a jittering procedure around the SURF-based estimation, which
minimizes the overall occupied area of the map. Thus, for slightly differentiated
consecutive image pairs a very good fitting can be achieved. In contrast to stochastic
and probabilistic methods proposed in the relevant literature, the presented method
has been found able to produce accurate results having only a small computational
footprint.

The generally sparse results of the map merging are sharpened up by the use
of CA. CA have been proved to be an effective tool for to image processing and
image enhancement operations such as noise filtering. In this work, the application
of proper CAmajority rules accomplishes to remove unwanted noise and at the same
time produce a continuous contour of the obstacles surface.

Finally, another interesting prospective concerning the hardware implementation
of the presented stereo vision-based SLAM algorithm arrives from the suitability of
the CA module itself used in the presented framework. CA design is most efficient
when implemented in hardware, due to the highly parallel independent process-
ing. More specifically, the reasons why CA can be ideally implemented by VLSI
techniques are that from circuit designing point of view, according to Toffoli [23],
there are four main factors that determine the cost/performance ratio of an integrated
circuit, namely, circuit design and layout, ease of mask generation, silicon-area uti-
lization, and maximization of achievable clock speed; for a given technology, the
latter is inversely proportional to the maximum length of the signal paths. CA circuit
design reduces to the design of a single, relatively simple cell with uniform layout.
The whole mask for a large CA array (the cells with their internal connections as
well as the interconnection between cells) can be generated by a repetitive procedure
so no circuit area is wasted on long interconnection lines and because of the locality
of processing, the length of critical paths is minimal and independent of the num-
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ber of cells. Furthermore, based on the above circuit CA design characteristics the
FPGA implementation of the corresponding CA algorithms is also straightforward.
Beyond its simplicity the resulting hardware would present the advantages of parallel
implementation with maximum speed.

11.4 Conclusion

Robots need to operate in their environments, i.e. sense, perceive and act, in a natural
way. Vision-based perception is known to be computationally demanding. To ensure
a natural flow of operation, without requiring stops for processing, one needs to find a
balance between required accuracy and speed. This fact makes computational simple
tools, such as CA, a very appealing choice for improving the results of simple (but
fast) algorithms.

Visual images, either color or also depth ones, constitute a regular spatial lattice,
while video streams add an additional, temporal, dimension to that. Furthermore,
many data structures, used in vision algorithms for robot exploration have the form
of regular latices, where locality plays a significant role in the stored information. In
this chapter we have examined how CA can be incorporated in various stages of a
stereo vision and a SLAM algorithm used in vision-equipped mobile robot systems.
The results of both algorithms significantly improved, through the use of carefully
designed CA rules, while the added computational overhead was very limited. These
findings, together with the inherent nature of CA that allows for parallelization and
very efficient hardware implementation, indicate that CA can be integrated even
further and further improve the results and efficiency of mobile robotic systems.
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Chapter 12
Modelling Synchronisation in Multirobot
Systems with Cellular Automata: Analysis
of Update Methods and Topology Perturbations

Fernando Silva, Luís Correia and Anders Lyhne Christensen

Abstract In this chapter, we consider two-dimensional cellular automata as a tool for
modelling the behaviour of multirobot systems. We study the dynamics of a group of
stationary robots inspired by studies in mixed natural-artificial societies. We model
the behaviour of individual robots as a pulse-coupled oscillator, which influences
other oscillators through short and periodic pulses. We address the problem of self-
organised synchronisation, in which robots have to adjust and synchronise their
behaviour to produce a self-organised collective vibration pattern based on local
interactions. We analyse under which conditions a synchronised global behaviour
can emerge from local coupling between neighbours and focus on two fundamental
aspects: (i) the effects of different update methods, including the interplay between
parameters of local rules and the global behaviour, and (ii) the transition from regular
to irregular topologies by means of dynamic perturbations and fixed perturbations.
Overall, this study is a contribution towards the understanding of the effects of the
update method and of the topological structure when modelling real-world complex
systems with cellular automata.

12.1 Introduction

In this chapter, we study two-dimensional cellular automata as an abstraction for
modelling and examining the behaviour of autonomous, mutually interacting sets
of agents, i.e., multiagent systems. The key principles for modelling multiagent
systems by means of discrete dynamical systems such as cellular automata have not
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yet been agreed upon [1]. Proposed approaches include: (i) translation of multiagent
systems into corresponding cellular automata models [2], (ii) modification of the
expressiveness and structure of cellular automata in order to provide a basis for
direct modelling of groups of interacting agents [3], and (iii) hybrid approaches
encompassing both cell-based updating and agent-based updating [4]. Influenced by
the view of multiagent systems as discrete dynamical systems provided by Fatès
and Chevrier [5], we define and model a multiagent system by separating three core
concepts: (i) the formulation of individual behaviour, i.e., the local rules that describe
the actions of the agents, (ii) the update method, which defines the temporal relation
between modifications to the agents’ internal state, and (iii) the topology of the
environment, including connections between agents, which may change or remain
fixed throughout time.

We study the collective dynamics of one class of multiagent systems: multirobot
systems. The robots are modelled after the combined actuator-sensor units (CASUs),
groups of stationary robots developed in the context of the ASSISIbf project [6] on
mixed natural-artificial societies.1 CASUs are designed according to the principles
of distributed control and self-organisation. The robots are expected to coexist and
interact with honeybees and zebrafish both at the individual level and at the group
level. The CASUs are intended: (i) to modulate the behaviour of the animals, and
(ii) to “learn the social language of the animals” [6].

In distributed systems, synchronisation plays a fundamental role [7]. Examples
are ubiquitous and include: (i) imposing a reference timing in wireless networks [8],
(ii) communication scheduling, coordinated duty cycling, and time synchronisation
in sensor networks [9], and (iii) decentralised fault detection in groups of autonomous
robots [10]. In our study, robots have to synchronise to produce self-organised collec-
tive behaviour. The robots are equipped with actuators to emit vibrations, and sensors
that enable them to detect if neighbouring robots are vibrating. The behaviour of each
robot is modelled as a pulse-coupled oscillator [11], which influences other oscil-
lators through short and periodic pulses. Based on local interactions, robots have
to adjust their behaviour in order to produce a common, population-wide vibration
pattern. Our goal is to analyse and understand under which conditions a synchronised
global behaviour can emerge from local coupling between neighbours. Our study is
concerned with answering three fundamental questions:

• Since robots are not centrally synchronised, does the global self-synchronised
behaviour of the multirobot system depend on the update method? Is the system
sensitive or robust against changes in the updating? What is the most appropriate
update method for modelling multirobot synchronisation of behaviour?

• Under a given update method, is the global behaviour influenced by variations of
the parameters that regulate the individual behaviour of agents? In other words,

1 ASSISIbf [6], short for “Animal and robot Societies Self-organise and Integrate by Social Inter-
action”, is an EU-funded FP7 FET project. The project focuses on self-organising mixed societies
of real social animals, namely bees and fish, and artificial systems. The ultimate goal of the project
is to develop a new field of science concerning self-adapting engineered systems able to integrate
themselves in existing natural societies.
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what is the main cause of emergence of certain classes of behaviour: (i) specific
configurations of parameters for the local rules, (ii) the update method, or (iii) the
interplay between the configuration of the local rule parameters and the update
method?

• How robust is the system to modifications in the topology? In particular, if the
topology is perturbed by the removal of connections and therefore interactions
between neighbouring agents, under which conditions can the system continue to
exhibit the desired collective behaviour?

The chapter is organised as follows. Section 12.2 describes the background and
related work. We present the cellular automata model, the update methods used, and
we review relevant studies on pulse-coupled oscillators. In Sect. 12.3, we introduce
a number of definitions and notations necessary to characterise the behaviour of
cellular automata. In Sect. 12.4, we assess the impact of the update method on the
evolution of synchronised behaviour. We also analyse the sensitivity of the update
method to variations in key parameters of individual behavioural rules. In Sect. 12.5,
we investigate the effects of topology perturbations. In particular, we analyse the
robustness of cellular automata when topology characteristics become irregular due
to the removal of connections between neighbouring cells. In Sect. 12.6, we sum-
marise and discuss our contribution, and we present avenues for future research in
modelling multirobot systems with cellular automata.

12.2 Background and Related Work

In this section, we first define the cellular automata model and we describe the five
update methods studied in this chapter. Afterwards, we report the background and
related work on oscillators, and we detail our pulse-coupled oscillator model.

12.2.1 Topology of the Environment

Let A be a two-dimensional squared automaton of length l with toroidal boundary
conditions. We denote N = l×l, the total number of cells, as the size of the automaton.
Individual cells adopt one of two possible states in the set of states S = {0, 1}. The
state of all cells at a given time is called a configuration.

The state of each cell is updated at discrete time steps according to a local tran-
sition function. The locality of the interactions between cells is given by the rela-
tion of each cell c ∈ A with its von Neumann neighbourhood of radius r = 1:
N (c) = {c, c +−→v , c −−→v , c +−→

h , c −−→
h }, where −→v = (0, r) and

−→
h = (r, 0). For

a given cell c and an integer value k, we define the field ϕ(c, k) as:

ϕ(c, k) = {c′ ∈ A | r(c, c′) = k} , (12.1)
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Fig. 12.1 Example of two
fields, ϕ(c, 2) and ϕ(c, 3), for
an automaton of size
N = 10×10. The centre cell c
is marked in black. The fields
ϕ(c, 2) and ϕ(c, 3) are
marked in dark grey and light
grey, respectively

where r(c, c′) is the radial distance between cells c and c′. In Fig. 12.1, we show an
example of the fields ϕ(c, 2) and ϕ(c, 3) for an automaton of size N = 10×10.

12.2.2 Update Methods

The update method determines the set of cells to which the local transition function
applies and the order of the updating at each time step. In the classic definition,
cellular automata are perfectly synchronous as cells are updated instantaneously and
in parallel. The assumption of perfectly synchronous timing has been widely debated,
with the main argument against being that synchrony presupposes the existence of a
global clock that dictates the pace of all local processes in the system [12]. In addition,
the synchronous update does not reflect the microscopic structure of physical and
biological systems [13, 14]. Immediately after the issue of synchrony vs. asynchrony
was raised, a number of additional research questions arose [15] including: Which
properties of the system change when the update method is asynchronous instead of
synchronous? What type of asynchrony should be used to model a given system?

A number of studies focusing on asynchronous update methods have been con-
ducted, see for instance [16–22]. The contributions showed that the behaviour of
cellular automata can change considerably when perfect synchrony is absent. Bersini
and Detours [23], Ruxton and Saravia [24] and Cornforth et al. [13] argued that no
single update method is suitable for all systems. Here, in order to understand which
update method is more faithful to the physical reality of a given system, we study
the effects of five different schemes:

1. Synchronous method, in which all cells are updated in parallel at each time step.
2. α-asynchronous method [19], which is based on a sampling scheme in which

only a fraction of the cells is updated at each time step. Every cell has an inde-
pendent and equal probability α of being updated, with 0 < α < 1, thus sat-
isfying a fair sampling condition. The α-asynchronous method has been widely
used to: (i) define robustness classes [19] and analyse behavioural changes under
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asynchronous conditions in one-dimensional [25–28] and two-dimensional cel-
lular automata [29–31], and (ii) to model multiagent systems in two-dimensional
cellular automata [1, 32].

3. κ-scaling method [22], which extends standard α-asynchrony in order to com-
pensate for fewer updates due to increasing asynchrony. The κ-scaling method is
defined as follows: given a synchrony rate α, at each time step, κ = 1/α updates
are performed. For non-integer κ = 1/α, decimal values are probabilistically used
for deciding between performing n or n + 1 intermediate updates. The resulting
configuration is considered as the automaton’s next stage. κ-scaling introduces a
time-scaling phenomenon according to the synchrony rate, thus potentially nor-
malising the differences introduced by α-asynchrony. In this way, the sampling
compensation allows us to assess if differences in behaviour are due to less cell
activity (asynchrony) or to more complex phenomena.

4. Random order asynchronous method in which, at each time step, all cells are
updated exactly once according to a random order. Kanada [12], Schönfisch and
de Roos [21] and Cornforth et al. [13] have previously assessed the effects of
randomised update sequences in cellular automata. Randomness in the computa-
tional order was shown to significantly influence the spatiotemporal behavioural
patterns. Depending on the local transition function, one-dimensional cellular
automata were found to exhibit chaotic behaviour [12] and quasi-cyclic behav-
iour [13]. The random model update method has also been applied to cellular
automata-based modelling of, for instance, biological systems [33] and chemical
systems [34].

5. Line-by-line sweep, or fixed directional, is the simplest asynchronous method.
All cells are updated at each time setup. The update is performed line-by-line,
from the leftmost cell to the rightmost cell. The effects of this method have
been compared with others by Rakewsky et al. [35] in the asymmetric simple
exclusion process (ASEP), by Schönfisch and de Roos [21] in one-dimensional
cellular automata, and by Ruxton and Saravia [24] in two-dimensional cellular
automata-based ecological modelling. One of the conclusions of the studies was
that the line-by-line sweep can introduce additional structure in the evolution of
the automata. We use the method to analyse if such a cyclic behaviour can offer
any benefit in modelling synchronisation of multirobot systems.

12.2.3 Modelling Individual Behaviour with Pulse-coupled
Oscillators

Our study is concerned with modelling and studying the emergence of synchronised
behaviour in a population of stationary robots. The behaviour of each individual
robot is modelled as a pulse-coupled oscillator [11]. In the following sections, we
describe the motivation for the task, the background on pulse-coupled oscillators,
the robot model, and how the behavioural control of robots is defined.
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12.2.3.1 Synchronisation of Pulse-coupled Oscillators

Self-organised synchronisation is a common and important phenomenon in natural
systems. A number of natural collective systems are subject to a strong and regular
synchronisation component, and they synchronise their behaviour based on local
interactions, i.e., simple coupling rules at the individual level result in a consistently
synchronised behaviour. Complete synchronisation of behaviour is thus a progressive
and emergent phenomenon [36]. Examples of natural synchronisation phenomena
include tropical fireflies that routinely synchronise their rhythmic flashes [37], cardiac
cells [38], circadian pacemaker cells in the brain, metabolic synchrony in yeast cell
suspensions, and crickets that chirp in unison [39].

The phenomenon of collective synchronisation in a number of natural systems
is described by pulse-coupled oscillators that spontaneously lock into a common
phase. Each oscillator periodically emits a self-generated pulse. When other oscil-
lators observe the pulse, they slightly shift their own oscillation phase. This process
leads to an alignment of phases and to synchronised behaviour. Let us consider the
aforementioned tropical fireflies. At an individual level, fireflies have neural timing
mechanisms, an oscillator. The only interaction occurs when fireflies flash, which
stimulates or inhibits the oscillation frequency of neighbouring fireflies and causes
them to modify their internal rhythm [11].

The first example of synchronisation of pulse-coupled oscillators was described by
Peskin [40], who observed the phenomenon in the cardiac pacemaker cells. After-
wards, Mirollo and Strogatz [11] demonstrated that any number of pulse-coupled
oscillators is always able to synchronise their firing rates as long as: (i) the popu-
lation of oscillators is fully connected, i.e., each oscillator is coupled with all the
others, (ii) oscillators are identical with respect to their dynamics, and (iii) the func-
tion governing the evolution of the internal state of oscillators over time is smooth,
monotonically increasing, and concave down.

A study by Bottani followed [41], demonstrating that globally-coupled oscillators
with pulse interaction can synchronise under broader conditions than those consid-
ered in the theorem of Mirollo and Strogatz. More recently, Lucarelli and Wang [42]
showed that local nearest neighbour coupling among oscillators is sufficient, even
in systems whose topology changes every Tc time units, provided that the entire
network is connected every 2 Tc time units. It should be noted that in all studies
described above, for the network of oscillators to converge into a self-synchronised
state, one key assumption is that all oscillators have the same or nearly identical
frequencies.

12.2.3.2 Definition of Pulse-coupled Oscillators

In a population of pulse-coupled oscillators, each individual i maintains an internal
activation level xi that increases over time until a given threshold is reached. Then,
the oscillator i fires, xi is reset to zero, and the cycle repeats. When a neighbour
oscillator j observes the firing of oscillator i , it further increases its own activation
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level x j . If x j exceeds the firing threshold, the oscillator j fires, resets its activation
level to zero, and restarts its behaviour.

Analytically, general pulse-coupled networks can be written as [43]:

ẋi = fi (xi ) + ε

N
∑

j=1

gi j (xi )δ(t − t∗j − ηi j ) , (12.2)

where xi denotes the activation level of oscillator i , and the function fi describes
its dynamics. The coupling constant ε denotes the strength of interactions between
oscillators. N is the set of oscillators neighbours of i . The pulse-coupling function
gi j describes the effect of the firing of another oscillator j on i . The time t∗j marks the
moment when oscillator j last fired. When j fires, the activation level xi is increased
by εgi j (xi ) after a delay ηi j ≥ 0. The increment is given in the form of the Dirac
delta function δ satisfying δ(t) = 0 for all t �= 0, δ(0) = ∞, and

∫

δ = 1. In Fig. 12.2,
we show an example of the interactions between two oscillators i and j .

12.2.3.3 Robot Model and Individual Behavioural Control

In this study, we model the behaviour of individual robots with pulse-coupled
oscillators. Each cell in a given automaton corresponds to one stationary robot. We

Fig. 12.2 Example of the
interactions between two
pulse-coupled oscillators i
and j . Each oscillator
increases its activation level
at a constant rate until: (i) the
threshold is reached, which
resets the activation level to
zero, or (ii) until the firing of
the other oscillator is
detected, at which point the
activation of the oscillator that
sensed the firing is increased
by εg(x), where ε is the
coupling constant and g(x) is
the pulse-coupling function



274 F. Silva et al.

model the robots after the combined actuator-sensor units (CASUs), static robotic
nodes described by Schmickl et al. [6] in the context of the ASSISIbf project. In our
experiments, robots have to collectively adjust and synchronise to produce a local
cue, a common vibration pattern. The robotic devices are equipped with: (i) actuators
to emit vibrations at a fixed frequency, and (ii) sensors to detect if neighbouring robots
are vibrating. Given the discreteness of the cellular automata model, we transform
the continuous model for general pulse-coupled systems described in Eq. 12.2 into
a discrete time dynamical system with piecewise dynamics, similarly to Christensen
et al. [10], as follows:

xi (n + 1) =
{

xi (n) + 1
T + εγi (n)g(xi (n)) if xi (n) < 1

0 otherwise
(12.3)

where xi (n) is the activation level of oscillator i at time step n, T is the period between
firings of an isolated oscillator, and ε is the coupling constant. γi (n) is the number of
neighbours of i that fired in time step n, and g(xi (n)) is the pulse-coupling function.
If the activation level of one oscillator exceeds the threshold of 1.0, the corresponding
robot vibrates at a fixed frequency, and the state of the cell is set to 1. If the oscillator
is not pulsing, the robot is not vibrating and therefore the state of the cell is 0. An
example of the development of the activation levels during a run with 100 oscillators
is shown in Fig. 12.3. In the example provided, the oscillators synchronise after 1,270
time steps.

Fig. 12.3 Example of the
evolution of activations levels
in a population of 100
pulse-coupled oscillators over
the course of 1,500 time
steps. After time step 1,270,
the activation levels overlap,
which indicates that the
oscillators have synchronised
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12.3 Experimental Assessment

In this section, we introduce a number of definitions and notations that we use
to analyse the behaviour of cellular automata. In cellular automata, the analytical
prediction and classification of behaviour is a complex problem [44]. Depending on
the local transition function, aspects such as the update order of the cells, the degree
of asynchrony, and the initial configuration can influence the dynamics of the system.
In a number of situations, there is even no direct relation between the dynamics of
automata following the same local function but subject to different update conditions,
see [22, 26, 45] for examples.

12.3.1 Characterising the Behaviour of Cellular Automata

We analyse the behaviour of the automata based both on quantitative and qualitative
observations. One of the aspects we are interested in analysing is the time necessary
for the system to synchronise under different experimental conditions. We define
a cellular automaton of size N = l×l to exhibit synchronised behaviour if: (i) the
activation of the first cell is no further than l time steps from all other activations, and
(ii) each cell only fires once during this period. Given that each cell only senses the
states of its nearest neighbours, our definition of synchronised behaviour takes into
account the theoretically maximum latency of the system, i.e., the number of time
steps necessary for the information to propagate across the automaton.

We estimate the behaviour of different automata and measure the quality of the
synchronisation process using two methods:

1. We analyse the space-time diagrams of the automata under execution. This form
of analysis provides a qualitative impression of behaviour, but does not serve as
a formal classification criterion.

2. Complementarily, we quantify the behaviour of the automata using a number of
domain-dependent measures, namely:

• Convergence rate, defined as the number of runs in which the automata are
able to synchronise their behaviour.

• Transient time, computed as the number of time steps necessary for a given
automaton to converge into a synchronised state after it was started.

• Speed of collective oscillation, defined as the total number of time steps nec-
essary for one instance of collective synchronised behaviour to be completed,
i.e., the time elapsed between the first and the last activation of cells in the
automaton.

• Period between oscillations, defined as the number of time steps elapsed
between different instances of synchronised behaviour. If the automata are
properly synchronised, this period should be consistent throughout time, and
in accordance with the value T described in Eq. 12.3.
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Additionally, cellular automata quantification of behaviour is based on a
domain-dependent measure denoted ρ∗. ρ∗ ∈ [−1, 1] measures the degree of cor-
relation between two configurations c1 and c2 based on a normalised Hamming
distance [46] as follows:

ρ∗ = 1 − 2 · σHam(c1, c2)

len(c1)
, (12.4)

σHam(c1, c2) =
len(c1)
∑

i=1

1 − δ(c1[i], c2[i]) , (12.5)

where σHam(c1, c2) is the Hamming distance between c1 and c2, len(c1) = len(c2)

is the length of the configurations, and δ(i, j) is the Kronecker delta computed as:

δ(i, j) =
{

1 if i = j

0 otherwise
(12.6)

ρ∗ = 1 indicates that c1 and c2 have identical values for all cells, and ρ∗ = −1 means
that all cells have complementary states.

ρ∗ was used in previous studies in order to: (i) classify the behaviour of one-
dimensional cellular automata [47], and (ii) to identify behavioural responses of
one-dimensional cellular automata when subject to asynchrony and to noise in the
computation of the cell states [22]. In this study, we use ρ∗ to quantify cellular
automata behaviour in two ways:

1. Intra-automata correlation, henceforth intra-ρ∗, defined as the ρ∗ value between
two configurations of a given automaton at different time steps, thereby computing
the rate of cells that change or maintain their state at a given time.

2. Inter-automata correlation, henceforth inter-ρ∗, computed as the ρ∗ value
between configurations of two different automata at a given time step. The inter-
automata correlation enables the pairwise comparison of the state of two automata
and the quantification of the differences between them.

12.4 Effects of the Update Method on Synchronisation
of Behaviour

In this section, we analyse the sensitivity of the cellular automata model to different
update methods. We investigate: (i) if global synchronisation can arise from local
pulse-coupling, (ii) the properties of behaviour under synchronous and asynchronous
conditions, and (iii) the implications of using different alternatives to synchronous
updating, including to what extent the emergence of synchronisation is affected by
the way cells are updated. In addition, we analyse the interplay between different
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configurations of parameters in the individual rules of the cells and the characteristics
of the global behaviour.

12.4.1 Methods

The experiments are conducted using a fixed lattice with size N = 10×10 and
toroidal boundary conditions. We conduct experiments using the five different update
methods described in Sect. 12.2.2, namely: (i) synchronous, (ii) α-asynchronous,
(iii) κ-scaling, (iv) random order asynchronous, and (v) line-by-line sweep. For the
α-asynchronous method and the κ-scaling method, the synchrony rate α is varied
from α = 0.99 (almost synchronous) to α = 1/N = 0.01 (approximates sequential,
fully asynchronous updating), in decrements of 0.01.

For each configuration in each set of experiments, we conduct 100 independent
runs. Each automaton is initialised with a random configuration. A random activation
level ∈ [0, 1] sampled from a uniform distribution is independently assigned to each
oscillator at the beginning of each run. The oscillation period T is set to 50 time
steps. The coupling constant ε is set to 0.1. With respect to the oscillators’ dynamics,
as defined in Eq. 12.3, we use the linear dynamics given by the pulse-coupling
function g(x) = x . We experiment with different coupling constants ε and distinct
pulse-coupling functions in Sect. 12.4.2.2. Each run lasts 50,000 time steps.

12.4.2 Results

Table 12.1 lists the transient time necessary for the automata to synchronise when
subject to different update methods. The synchronisation process is, on average,
slightly faster if there is a fixed update order, either implicit as in the case of the
synchronous update, or explicit as in the line-by-line sweep. Results show that a
fixed update order is not always beneficial, as there is convergence in only 92 %
of the runs conducted using each method. On the other hand, the random order
method displays a convergence rate of 100 %. Differences in the convergence rate
of the synchronous and the line-by-line sweep methods are statistically significant

Table 12.1 Transient time and convergence rate of systems under: (i) synchronous update, (ii) line-
by-line sweep, and (iii) random order asynchronous update

Update Method Average Std. Dev. Shortest Longest Convergence %

Synchronous 985 320 509 2,382 92

Line-by-line 897 292 380 1,793 92

Random Order 1,118 518 378 3,065 100

The values listed are the result of 100 independent runs for each experimental configuration
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Example 1, t = 1

(a) (b) (c) (d)

(e) (f) (g) (h)
Example 1, t = 2 Example 1, t = 3 Example 1, t = 4

Example 2, t = 1 Example 2, t = 2 Example 2, t = 3

Example 1, t = 1
(e) (f) (g) (h)

Example 1, t = 2 Example 1, t = 3 Example 1, t = 4

Example 2, t = 4

Fig. 12.4 Two examples of the field-based wave-like effect exhibited under synchronous updates.
Cells in state 1 (resp. 0) are coloured in white (resp. black), a convention that is maintained through-
out the study

with respect to the convergence rate of the random order method (two-tailed Fisher’s
exact test, ρ = 6.8×10−3).

The synchronous and line-by-line sweep methods lead to periodic vibration pat-
terns that repeat every T = 50 time steps. Nonetheless, the spatiotemporal patterns
exhibited by the automata are due to spurious effects caused by the update method.
Two examples are shown in Fig. 12.4 for the synchronous case. The first example
describes one particular run in which the automaton evolved into a behaviour with
perfectly synchronised neighbour-to-neighbour influence. The first oscillator to fire
is the origin of a field-based wave propagation phenomenon (see Sect. 12.2.1 for
the definition of a field). When the wave starts, all oscillators have activation levels
close to the firing threshold. After the firing of the first oscillator, each set of neigh-
bours that have not yet fired will fire in consecutive time steps. The wave propagates
throughout the system until all oscillators have fired. In this way, after the initial cell
c becomes active at time step t , the behaviour of the automaton at time step t + i
will be a field ϕ(c, i), ∀i ≤ 10. If two or more oscillators fire in the initial time step,
as shown in Fig. 12.4e, each of these activations starts a local field-based wave-like
phenomenon.

The wave effect is due to the characteristics of the synchronous update method.
The state of a given cell at time t can only be perceived by its neighbourhood at time
t + 1, and therefore the activation of pulse-coupled oscillators is always taken into
account with a latency of one time step by its neighbours. As a result, adjacent cells
can only become active at consecutive time steps. Depending on how many cells
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(a)

t = 1

(b)

t = 2

(c)

t = 3

(d)

t = 4

Fig. 12.5 Examples of the domino-like effect caused by the line-by-line sweep. In the first two
time steps, t = 1 and t = 2, the order by which the cells become active in the corresponding time
step is marked numerically. Cells in state 1 (resp. 0) are coloured in white (resp. black)

initiate the collective oscillation process and on how many neighbours each cell can
cause to activate, the speed of collective oscillation after synchronisation may require
from 6 time steps (Fig. 12.4, example 2) to 11 time steps (Fig. 12.4, example 1).

By analysing the sequence of activation of cells at a microscopic level, we observe
that, under a line-by-line sweep, there is also a spurious correlation between the
update order and the spatiotemporal patterns of the automata. The fixed sequen-
tial update order always causes a domino-like effect in the activations of the cells.
Figure 12.5 exemplifies the domino-like effect during a collective oscillation behav-
iour. The order by which the cells become active in the first two time steps is marked
numerically (Fig. 12.5a, b). Once a cell c is updated and becomes active, each neigh-
bour of c will also become active when it is updated. In other words, the directionality
of the influence between cells is solely due to the update order. Depending on the
spatial position of the first cell to become active, the speed of collective oscillation
varies from N = 1 time steps, if the cell is in the top-left corner of the automaton,
to N = 3 time steps, which is the most frequent behaviour.

Increasing stochasticity in the update process through a continuously randomised
order slightly delays convergence by augmenting the transient time. As listed in
Table 12.1, random order asynchronous update yields an average transient time of
1,118 time steps. However, unlike the previously analysed update methods, the ran-
dom order asynchronous scheme does not introduce any artefactual correlation in the
dynamics of the cellular automata. Firstly, the automata always converge. Secondly,
analysis of the spatiotemporal evolution of the automata shows that every 50 time
steps, all cells become active in one time step, and therefore there is always a speed
of collective oscillation s = 1. After the transient time ttransient has elapsed, the
asymptotic behaviour of synchronised automata is equal, which is detected by the
stabilisation of the inter-ρ∗ value =1 when comparing configurations at each time
step ttransient + i , with ttransient + i ≤ 50,000.

The collective oscillation under the random order method is illustrated in Fig. 12.6
through the intra-ρ∗ values of one run. The transient time is of approximately 800 time
steps. Variations of the intra-ρ∗ value until time step 500 indicate that cells become
active with no particular order or coupling. Afterwards, oscillators minimise phase
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Fig. 12.6 Example of intra-CA correlation over the course of 1,000 time steps under the random
order update method. The automata is synchronised after time step 800. Each peak of the intra-
ρ∗ value from 1 to −1 and vice-versa that occurs every 50 time steps represents one instance of
collective oscillation (see text)

differences, and cells start to exhibit a progressively more synchronised behaviour.
At time step 800, cells are completely synchronised based on an asynchronous
process and local interactions. Each peak of the intra-ρ∗ value from 1 to −1 and
vice-versa represents one instance of collective oscillation. At this point, all cells are
in state 0, i.e., no cell is active. In the following time step, all cells become active
and therefore intra-ρ∗ value = −1. A value of −1 is also measured in the subsequent
time step because all cells move from an active to an inactive state, after which the
intra-ρ∗ value =1 is maintained until the next collective activation. The behaviour is
then repeated every 50 time steps until the end of the simulation.

At a microscopic scale, during the activation time step the order by which the cells
become active is determined by the randomly generated update sequences. These
results support the work of Cornforth et al. [13] and Harvey and Bossomaier [48],
among others, which have suggested that random order methods can generate quasi-
cyclic behaviour. Under the light of the random order method, the automata can be
said to display a truly emergent synchronised behaviour. One positive effect of this
update method is that, as mentioned above, it removes the spurious effects that could
be linked to a particular update order. Secondly, the random order scheme appears
to be more faithful to the physical reality of the system being modelled than both
the synchronous and the line-by-line methods. As initially argued by Kanada [12],
the fact that the major source of randomness lies in the order of state transitions
of the cells allows to take into account the microscopic structure of systems, and
is therefore suitable for modelling purposes. However, it should be noted that in a
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Fig. 12.7 Convergence rate
of α-asynchronous and
κ-scaling systems when
subject to distinct degrees of
asynchrony.
Convergence
cannot be ensured for
α-asynchronous systems if
α ≤ 0.93, and for κ-scaling
systems if α ≤ 0.91

real distributed system, it may be difficult to ensure a completely random sequential
updating order.

12.4.2.1 α-dependency

In this section, we analyse the behavioural response of the cellular automata when
subject to α-asynchrony-based update methods. Results show that under the α-
asynchronous and the κ-scaling methods, the behaviour of the automata significantly
depends on the degree of asynchrony in their update. With increasing α-asynchrony,
the automata evolve a behaviour noticeably different from that produced by the three
update methods analysed above. As shown in Fig. 12.7, for 0.90 < α ≤ 0.93, the
convergence rate of α-asynchronous systems varies from 15 % to 34 %, which is
significantly lower than the convergence rate of automata subject to higher α values
(two-tailed Fisher’s exact test, ρ < 1.0 x 10−4 for all 0.90 < α ≤ 0.93). In effect,
for α ≤ 0.90, α-asynchronous systems can no longer synchronise in the 50,000 time
steps limit. Performing a temporal compensation and corresponding normalisation
of the sampling differences by means of the κ-scaling method counteracts to some
extent the effects of α-asynchrony. The automata can always overcome asynchrony
for α > 0.91. As the synchrony rate is lowered, the convergence rate of κ-scaling
systems decreases proportionally to α.

From a practical point of view, α-asynchronous and κ-scaling methods show how
sensitive cellular automata can be to asynchrony. Table 12.2 lists the average transient
time and the average period for 0.99 ≤ α ≤ 0.94. Aside from the aforementioned
convergence rate, asynchrony by means of less cell activity significantly increases
both the transient time and the average period length between consecutive group-
level activations. Even for minimal asynchrony, i.e., α = 0.99, the average period is
128 time steps for α-asynchronous systems and 124 time steps for κ-scaling systems.
With increasing asynchrony, the automata become increasingly lagged thus resulting
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Table 12.2 Transient time and length of the period between consecutive group-level oscillations

Synchrony rate α α-asynchronous κ-scaling

Transient time Period Transient time Period

0.99 1,090 128 1,152 124

0.98 1,437 345 1,340 302

0.97 1,989 863 1,855 680

0.96 3,495 2,294 2,404 1,471

0.95 12,189 6,519 3,876 2,755

0.94 19,278 9,753 4,931 4,387

Values are the average of 100 independent runs for each experimental configuration

in significantly higher transient times and periods between collective oscillations. For
α = 0.94, α-asynchronous systems have a transient time of approximately 19,278
time steps and a period of 9,753 time steps. κ-scaling systems are less affected as
they display a transient time of 4,931 time steps and a period of 4,387 time steps.

Our analysis shows that: (i) the assessed α-asynchrony-based update methods do
not enable the systems to evolve towards a global vibration pattern, and (ii) increasing
asynchrony further degrades behaviour. In fact, the existence of contrasting behav-
iours under α-asynchronous dynamics, even when using moderate asynchrony val-
ues, indicates a hidden sensitivity that may need to be handled carefully depending
on the context.

Overall, the results presented in this section corroborate that not only is asynchrony
relevant, but that the type of asynchrony can have significant effects when modelling
multiagent or multirobot systems by means of discrete dynamical systems. This
question takes a special importance due to the fact that, as argued by Cornforth et
al. [13], multiagent systems are usually modelled based on the synchronous update
method. This begs the question: when modelling multiagent systems that have to
achieve synchronisation or consensus, in which cases is the multiagent system robust
to modifications in the updating? Complementarily, in such multiagent systems, to
what extent is the behaviour exhibited under asynchronous dynamics dependent on
the properties of the local transition function? The following section addresses the
second question by analysing the robustness and the global dynamics of the system
when subject to variations in the main parameters of the pulse-coupled oscillators:
the coupling constant ε and the coupling function g(x).

12.4.2.2 Assessing the Dynamics of the Random Order Method

The behaviour of the oscillators as described in Eq. 12.3 depends on the interactions
between neighbouring cells. The strength of each interaction is controlled by the
coupling constant ε and by the coupling function g(x). In this section, we assess in
which conditions the variation of ε and of g(x) alters the dynamics of the automata.
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Table 12.3 Convergence rate of different pulse-coupling dynamics as a function of the coupling
constant ε

Coupling constant ε Convergence rate (%)

Linear function Sigmoid function Sine function

0.01 14 0 0

0.02 99 33 0

0.05 100 100 0

0.1 100 100 0

0.2 100 100 0

0.5 100 100 100

1.0 100 100 100

For each experimental configuration, the convergence rate is measured by performing 100 indepen-
dent runs

Our goal is to examine the robustness or sensitivity of the update method to changes
in the rules that govern the behaviour of cells.

We conduct the experiments using the update method that yielded the most reliable
result, namely the random order asynchronous method. The effects of the coupling
constant are assessed for ε ∈ {0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.0}. We also study
three pulse-coupling functions. The choice of the coupling function was made to test
different dynamics, namely: (i) linear dynamics with g(x) = x , (ii) even symmetrical
dynamics with respect to x = 0.5 based on a sine function g(x) = sin(πx), and
(iii) “S-shaped” dynamics given by the sigmoid function g(x) = 1

1+e(6−12x) . The three
functions are shown in Fig. 12.8. For each experimental configuration, we perform
100 independent runs. Oscillators are initialised as defined in Sect. 12.4.1, i.e., with
random initial activation levels, and with the period T set to 50 time steps. Each run
lasts 50,000 time steps.

Table 12.3 summarises the convergence rate when ε and g(x) are varied. The
linear pulse-coupling is the most robust function as it shows the highest overall con-
vergence rate in our experiments. Except for the lowest value ε = 0.01, convergence
is almost always ensured. The sigmoid function and the sine function ensure con-

Fig. 12.8 The three models of pulse-coupling functions assessed. From left to right: linear dynam-
ics, even symmetrical dynamics with respect to x = 0.5 based on a sine function g(x) = sin(πx),
and “S-shaped” dynamics given by the sigmoid function g(x) = 1

1+e(6−12x)



284 F. Silva et al.

Fig. 12.9 Average transient time as a function of the coupling constant ε. For the linear function,
the average transient time varies from 10,423 time steps for ε = 0.01 to 234 time steps for ε = 1.
For the sigmoid function, the average transient time is of 6,651 time steps for ε = 0.02 and of 161
time steps for ε = 1.0. For the sine function (not plotted), the average transient time varies from
326 time steps (ε = 0.5) to 96 time steps (ε = 1)

vergence if ε ≥ 0.05 and ε ≥ 0.5, respectively. With respect to the time necessary
for convergence, Fig. 12.9 shows the average transient time for the linear function
and for the logistic function when using different coupling values. For these two
functions, the lowest transient time is given when the oscillators are strongly cou-
pled. For ε = 1, the average transient time is 234 time steps for the linear function
and 161 time steps for the sigmoid function. The results suggest that high values of
ε are preferable in the synthesis of synchronised behaviour. For the two functions,
the transient time decreases exponentially with the increase of the coupling constant
until ε = 0.6, after which point the values vary significantly less.

Despite the substantial reduction of the transient time due to the increase of the
coupling constant when using either a linear function or a sigmoid function, the
fastest overall convergence is given by the even symmetrical dynamics of the sine
function. The average transient time varies from 326 time steps for ε = 0.5 to 96
time steps for ε = 1. The reduction in transient time is due to the characteristics of
the sine function, which enable a more effective adjustment of the activation level.
The line of symmetry dictates that increasingly higher adjustments are made to the
activation level for 0 < x < 0.5. For x > 0.5, the closer the activation level x is of
the threshold of 1, the more subtle the adjustment is.

The analysis conducted in this section shows that the parameters ε and g(x) can
have a profound effect on the convergence rate and transient time of the automata. We
estimated and analysed the spectrum of convergence rates and transient times. Firstly,
the results show that increasing the strength of the interaction between neighbouring
cells is beneficial as if ε is large, the oscillators tend to synchronise faster. Secondly,
coupling functions with different properties enable slower or faster convergence.
Thirdly, it should also be noted how low coupling values affect the behaviour exhib-
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ited by an automaton. For ε = 0.01 and ε = 0.02, the speed of collective oscillation
varies from 1 to 11 time steps for the linear function and from 1 to 7 time steps for
the sigmoid function. In other words, low coupling constants cause instabilities in
the systems as the automata evolve towards different configurations. Consequently,
the periodic, quasi-cyclic patterns and the repetition of series of configurations are
altered by using different parameters.

12.4.3 Summary

In this section, we examined the effects of the update method in the synthesis of syn-
chronised behaviour. We showed that in the modelling of multirobot or multiagent
systems, not only is asynchrony relevant, but that the type of asynchrony has pro-
found effects on dynamics. These results are especially important if we consider that
multiagent systems are usually modelled using synchronous update methods [13].

In our experimental setup, the random order asynchronous method was shown to
be the most reliable method. We showed that both the synchronous and the line-by-
line schemes introduce artificial structure in the evolution of our cellular automata
model. We also showed that, in our modelling scenario, α-asynchronous and κ-
scaling methods can also have significant effects on the behaviour of the system. The
two methods exhibited a hidden sensitivity, even for high asynchrony values, that
should be handled carefully when modelling systems that are continuous in time and
space.

To conclude the section, we experimentally analysed the importance of the cou-
pling constant and of the pulse-coupling function. Chiefly, our results showed that:
(i) stronger interactions between neighbours are preferable, as they significantly
increase both the convergence rate and the transient time, and (ii) that the type of
dynamics of the coupling function play a key role in the synchronisation process.

12.5 Perturbing the Topology

In this section, we investigate how topology perturbations modify the evolution of
synchronised behaviour in our cellular automata model. Our goal is to determine
what happens when the cellular automata are no longer perfectly synchronous and
the topology is perturbed, i.e., to estimate the stability or sensitivity of the systems
when topology characteristics become irregular.

12.5.1 Methods

We perturb the topology by definitively removing connections between cells.
Let G = (V, E) be the oriented graph that represents the connections between
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cells. For all cells ci , c j ∈ V , with ci �= c j , the connection (ci , c j ) ∈ E if and only if
c j belongs to the neighbourhood of ci . The oriented graph with perturbed topology
G pert = (V, E pert ) is obtained by assigning to each cell ci ∈ V an independent
probability of removing a randomly chosen connection between c j and one of its
neighbours c j . The parameter pcr is defined as the connection removal rate. It should
be noted that the discrete pulse-coupled model defined in Eq. 12.3 is a totalistic rule
in the sense that it takes into account the total of active neighbours. A neighbour that
is not sensed due to a connection removed is considered as being always in state 0.
In this way, perturbing the topology of the automata is conceptually similar to sim-
ulating faults in the sensors of the robots, one of the central issues with autonomous
robots [49].

We conduct two series of experiments, henceforth dynamic perturbations setup
and fixed perturbations setup. In the dynamic perturbations setup, there is a continual
removal of connections at each time step. Our objective is to investigate the behaviour
of the cellular automata when topology characteristics are continuously modified
throughout time. It should be noted that in this experimental setup, the connections
graph may become disconnected as a result of the deletion of connections between
cells. Therefore, the major requirement in the task is for each cell to synchronise with
its neighbours before the neighbours stop being sensed due to the lack of connections.
On the other hand, in the fixed perturbations setup we analyse the convergence
properties of the systems when the topologies are made irregular but do not change
during the course of a simulation. In this setup, connections are probabilistically
removed according to the connection removal rate pcr before the simulation starts.

The experimental protocol is here defined using a lattice with size N =10×10
and toroidal boundary conditions. Experiments are conducted using the random order
asynchronous method and the linear pulse-coupling function g(x) = x , as this was
shown to be the most robust configuration. In the dynamic perturbations setup, the
connection removal rate pcr is varied in [0.0, 0.1] in steps of 0.002. As the con-
vergence properties of the system is dependent on the strength of the interactions
between neighbouring cells, we also vary the coupling constant ε ∈ [0.1, 1.0] in
steps of 0.1. In the fixed perturbations setup, the connection removal rate is larger
because connections are only removed once, i.e., before the simulation starts. The
connection removal rate is varied in [0.0, 0.75] in steps of 0.05. We experimentally
verified that for pcr > 0.75, the graph tends to be disconnected, which we do not
allow because convergence would not be possible. For each configuration in each set
of experiments, we conduct 100 independent runs. The parameters and initialisation
of the automata follow the experimental setup described in Sect. 12.4.1. Each run
lasts 50,000 time steps.

12.5.2 Results

We start by analysing the results of the dynamic perturbations setup. In Fig. 12.10,
we separately represent the convergence rate and the transient time as a function of
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(a)

(b)

Fig. 12.10 Dynamic perturbations setup. Sampling surface of: (a) the convergence rate sampling
surface for the dynamic perturbations setup, and (b) the average transient time sampling surface for
the dynamic perturbations setup. The values displayed in each sampling surface are a function of both
the coupling constant ε and the connection removal rate pcr . a for pcr > 0.01 the sampling surface
is flat, which indicates 0 % of convergence—not shown for better visualisation of the sampling
surface. b the sampling surface shows a discontinuity of behaviour for 0.002 < pcr < 0.004,
which is marked by separating the sampling surface into two parts. Note that the range of the y-axis
is reversed, i.e., values regarding the coupling constant ε are plotted from y = 1 to y = 0

the connection removal rate pcr and of the coupling constant ε. Each set of values
obtained is represented in a three-dimensional space, which is projected on a two-
dimensional sampling surface.

Results show that the cellular automata are sensitive to perturbations in the topol-
ogy. In general, higher coupling values ε enable the automata to synchronise more
often. However, even for the smaller value of pcr = 0.002 considered, the maximum
convergence rate is of 32 % (for ε = 1.0). For pcr = 0.004, there is no synchronisation
of behaviour for ε ≤ 0.5 and the highest convergence rate is of 9 % (ε = 1.0). For
higher connection removal rates, the convergence rate continuously decreases. For
pcr > 0.01, there is no convergence and the sampling surface is flat and horizontal.

The impact of removing connections is two-fold. An interesting effect of per-
turbing the topology is that, as shown in Fig. 12.10b, increasing rates of connection
removal can harm the overall convergence rate but reduce the transient time when
the automata do converge. Visual examination of the transient time sampling surface
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shows a discontinuity of behaviour, which is marked by separating the surface into
two parts. If no connections are removed, the minimum average transient time is 213
time steps (ε = 1). For pcr = 0.002, the transient time evolves in a similar manner
except that the minimum average transient time is of 122 time steps, again for ε = 1.0.
For the critical values of pcr ≥ 0.004, for which there is no convergence for ε ≤ 0.5,
the transient time is consistently low and decreases to an average of 30 time steps
for the case pcr = 0.01, ε = 1.0.

The results obtained in the dynamic perturbations setup are the consequence of
multiple intricate factors related to local synchronisation of cells. Removing connec-
tions can either deteriorate or accelerate convergence depending on the context of the
cells. For example, consider a cell ci and two of its neighbours, c j and ck . Cells ci and
c j have a small lag between their activations, i.e., they are not entirely synchronised,
and ck is significantly delayed with respect to the firings of ci and c j . If the connec-
tion (ci , c j ) is removed, ci will have to synchronise its behaviour only with ck , which
will require an amount of time that depends on the phase differences between the two
cells. During this time, depending on the connection removal rate, the connection
(ci , ck) may be removed before the cells are synchronised, causing them to remain
unsynchronised throughout time. As a result, there will be no convergence in the
automaton.

If the first connection removed refers to two neighbours that have a large phase
difference, namely ci and ck , synchronisation is accelerated because ci synchronises
with c j without the “interference” of ck . If the automata at a global level are subject
to more acceleration than deterioration phenomena, then a self-organised behaviour
will emerge faster as the result of the interaction between the cells at a local level. On
the other hand, if there are more deterioration than acceleration phenomena in the
relation between the cells, convergence is made progressively more difficult because
the graph becomes increasingly disrupted and potentially disconnected. Therefore, in
the dynamic perturbations setup, the acceleration and deterioration aspects described
above are the result of a continuous removal of connections. Nonetheless, one impor-
tant question remains: if the topology is perturbed but afterwards remain unchanged,
under which conditions can the cells synchronise their behaviour?

In the fixed perturbations setup, the automata always converge regardless of the
experimental configuration, which results in a completely horizontal sampling sur-
face. For the most extreme case assessed, pcr = 0.75, on average 75 out of 400
connections are removed from the initial topology, equivalent to 18.75 %. This aspect
is indicative of the robustness of the cellular automata model and of its ability con-
verge, as long as the connection graph is connected.

Figure 12.11 shows the sampling surface describing the evolution of the transient
time. In the fixed perturbations setup, contrary to the dynamic perturbations experi-
ments, the transient time tends to increase if higher ε and pcr values are used. This
increase is more accentuated for coupling constants around ε ≈ 0.75. By analysing
the speed of collective oscillation and the period between consecutive oscillations,
we observe that for pcr > 0.4 and ε > 0.75, the system becomes unstable. For these
values, the average period varies from 100 to 180 time steps, and collective oscil-
lation can require up to 10 time steps. The results show the interplay between the
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Fig. 12.11 Fixed
perturbations setup. Sampling
surface of the average
transient time. The values
displayed in the sampling
surface are a function of both
the coupling constant ε and of
the connection removal rate
pcr

coupling constant and the degree of connectivity of the connections graph, thereby
indicating that the topology indeed plays a central role in the synchronisation proper-
ties of the cellular automata. In automata with regular topologies such as those used
in Sect. 12.4, higher coupling constants ε are beneficial and accelerate convergence.
However, if the connectivity of the automata is irregular, then setting ε too high is
problematic because each cell has a significant effect on its neighbours. The high
degree of influence in the behaviour of neighbouring cells leads to phase instability,
and can drive the system towards either acceleration of convergence or deterioration
of behaviour.

12.5.3 Summary

In this section, we analysed the effects of perturbing the cellular automata topology
by probabilistically removing connections between neighbouring cells. Based on
extensive numerical simulations, we showed that topology characteristics are impor-
tant for the emergence of synchronised behaviour. If the irregularity of the topology
increases over time, the impact is often two-fold. The convergence rate decreases
with the increase of irregularity but the transient time is effectively smaller when the
automata manage to converge. On the other hand, if the degree of irregularity is kept
fixed, convergence is ensured as long as the connections graph does not become dis-
connected. Additionally, results showed that the strength of the interaction between
neighbouring cells by means of the coupling constant ε plays a central role in the two
circumstances. In particular cases, high values of ε either accelerate synchronisation
of behaviour, or introduce instabilities in the system. These fluctuations significantly
increase the time necessary for convergence and the way by which instances of col-
lective behaviour are produced. Therefore, depending on the topology of the cellular
automata, it is necessary to compromise between the strength of local interactions
and the degree of connectivity of the network.
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12.6 Discussion

A long-standing question in the field of complex systems is determining whether
cellular automata are appropriate modelling tools for multiagent systems or if they
are not sufficiently expressive. To answer the question, it is first necessary to carefully
assess the robustness of cellular automata in a modelling context, and to cover a broad
number of conditions in order to identify the limits of the modelling tool.

This chapter is a contribution towards the understanding of the effects of the update
method and of the topological structure when modelling real-world complex systems
with cellular automata. We analysed the collective dynamics of a group of stationary
robots inspired by studies in mixed natural-artificial societies [6]. The system was
composed by 100 robots, and the behaviour of individual robots was modelled as
a pulse-coupled oscillator. We addressed the problem of self-organised synchroni-
sation, in which robots had to adjust their behaviour to produce a population-wide
common vibration pattern based on local interactions. We focused on two fundamen-
tal aspects: (i) the effects of different update methods, including the interplay between
parameters of local rules and the global behaviour, and (ii) the transition from regular
to irregular grids by means of dynamic perturbations and fixed perturbations.

The first set of experiments outlined in this chapter demonstrated the impact of
five different update methods. Results showed that the way robots synchronise their
behaviour can be bounded by the singular properties of the update method. Modi-
fying the state of the cells according to a random update method was shown to be
the most robust approach with respect to producing the desired dynamics in the mul-
tirobot system. In the second part of the chapter, we conducted a systematic study
on the robustness of cellular automata to topology perturbations under a number
of different conditions. We concluded that the topology characteristics have various
effects on the behaviour of the automata. When subject to topology perturbations,
behaviour exhibited may vary from extremely sensitive to extremely robust. There-
fore, although few researchers have studied this aspect [29], the topology structure is
deemed essential for future studies in modelling the behaviour of multiagent systems
with cellular automata.

The broader agenda for future study on more realistic modelling of real-world
complex systems with cellular automata is to gain new insights on the emergent
behaviour of large-scale multirobot systems, both stationary and mobile, by analysing
them from a dynamical systems perspective. In this respect, the topology perturba-
tion experiments can be extended to simulate scenarios in which a failed robot is
repaired or replaced by a new one, or the fault is transient, and therefore the cellular
automata recover part of their previously lost connections. We also intend to address
increasingly more complex tasks in which robots have to achieve synchronisation or
consensus. Instead of manually tuning the parameters of individual behaviour, our
goal is to synthesise by means of machine learning techniques, the specific para-
meters of the pulse-coupled oscillators (or other models) that can generate a set of
target spatiotemporal dynamics. One important part of our future work is to analyse
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the generality and robustness of the learned parameters by assessing them under
different update methods and topological structures.
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Chapter 13
Cellular Automaton Manipulator Array

Ioannis Georgilas, Andrew Adamatzky and Chris Melhuish

Abstract We present a cellular automaton architecture for massive-parallel
manipulation tasks. The cellular-automaton manipulator is an array of actuators,
which interact locally with each other and generate coordinated manipulation forces
for precise translation of the manipulated object. The cellular-automaton actuator
arrays behave as an excitablemedium,where initial perturbation leads to propagation
of excitation waves. The excitation waves are physically mapped onto the hardware
actuation waves. We analyse different types of excitation and manipulation patterns
and physical implementations of the actuating surface.

13.1 Introduction

Traditionally industrial manipulation tasks are performed in an autonomous manner
with the use of large, usually 6 Degrees of Freedom manipulators, that can move
objects lighter than the manipulating robot itself. Such manipulators are either sin-
gle units or small groups of units. In the groups of units collaborative tasks are
achieved by planning the spatial trajectories of individual units in advance, often
before start of the manipulation. Although the vast majority of manipulation tasks
are still completed by these robots a new type of manipulation emerged: micro-scale
manipulation and assembly. This new type of manipulation require high precision,
optimum force application, non-prehensile handling and concurrent manipulation
of several objects during the work cycle. Classic manipulation approaches struggle
to satisfy these requirements. We therefore explore a specialised massively parallel
hardware operating like a smart manipulating surface [13]. Amanipulating surface is
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an array of simple actuators, each of them has a small power output, that collectively
transport, orient and position objects whose masses and sizes are higher compared
to the power output generated by a single actuator. Each individual actuator is rela-
tively inexpensive, and a modular structure of the parallel manipulator would allow
for mass production and scalability.

One of the key technologies utilised to control the motion of the objects for these
systems are arrays of air jets [11, 14, 22, 24]. Other approaches include mechanical
wheel based arrangements [23, 26], sound based solutions [31] and electromechani-
cal actuators to excite membranes [12, 27]. Most of these manipulation methods are
using the underling physical phenomena in an intelligent way to control the manip-
ulation, i.e. flow interactions [16], and anisotropic friction control [30]. Various
control systems have been proposed mainly on the concept of closed-loop control,
with feedback provided either from a camera [15] or other form of light information,
i.e. photodiodes [11].

The main issue in all these control methods is a scalability of the task. Controlling
the vast number of actuators is computationally plausible as shown by simulation
examples [17] but still expensive and usually comes at the cost of precision [8]. The
manipulation task becomes even more complicated when multiple objects must be
processed simultaneously and the controller must synchronise the spatio-temporal
trajectories of the objects.

A strong alternative to address the problem of scalability of control is the use of
lattice automata as the underlying controllers of the manipulation array. Specifically
each individual actuator’s state is controlled by the state of the automaton. The intel-
ligence and control is achieved by the emergence of order in the lattice. Furthermore
the system scales uniformly since the computation cost of the state-machine for each
actuator remains the same irrespective of the number of actuators. The use of lat-
tice automata as robot controllers is not new and have been utilised to control path
planning for mobile robot platforms [4, 5, 29]. The proposed here use of the lattice
automata differentiates from previous implementations in the effort to enhance and
bring forward the synergies necessary to complete the required manipulation task.

We discuss firstly what characteristics of lattice automata are ideal for this type
of control, and what ‘modes’ of operations optimally can achieve this, and by which
set of state rules. Also some details on the importance of the hardware and how
it improves the synergy will be given. We evaluate the behaviour and operation of
the lattice performance in a series of simulation and real-world experiments. The
qualitative and quantitative performance of the experimental prototype of cellular-
automaton actuator array is analysed.

13.2 Cellular Automata Controller

Actuators arranged in a two-dimensional array is one ofmost optimalways to achieve
modularity, controllability and fault tolerance. If we want an actuator array to be
autonomous, i.e. not controlled by a host computer, we should allow each elementary
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actuating unit to have some computing power, in principle some local sensing, and be
able to interact with its immediate actuating neighbours. By using local interaction
the actuators can establish a coordinated action and manipulate objects, which are
substantially larger in size than a single actuator, leading to epiphenomenal ‘task’
behaviour. Cellular automata would be ideal controller for the arrays of actuators.
This is because a cellular automaton is an array of finite statemachines, or cells,which
update their states in discrete time depending on states of their immediate neighbours.
Thus we can assign a unique cell of a cellular automaton to an elementary unit of an
actuating array. The topology is preserved. All cells of a cellular automaton update
their states by the same rule, all units of the actuator array act by the samemechanics.

A requirement for focused force application suggests us that most convenient
manipulation rules should be based on propagating patterns, either omni-directional
waves or travelling localizations [3]. Mobile self-localizations can be described as
waves or wave-fragments (gliders, wavelets), the manipulation abilities of which
have been previously demonstrated in [21]. The use of wave-fragments and their
synchronisation signals have been analysed in [18],where the concept ofmetachronal
waves [7] was applied in lattice automata-controlled hardware.

The lattice automaton we are proposing to utilise is the 2+ medium [1, 6], a
3-state (excited (+), refractory (−), resting(·)) cellular automaton with well defined
mobile self-localizations. The cell-state transition rule of the 2+ medium is given in
Eq.13.1: a resting cell excites if it has exactly two excited neighbours; an excited
cells becomes refractory; a refractory cell returns to a resting state.

xt+1 =

⎧

⎪

⎨

⎪

⎩

+, xt = · and ∑

y∈u(x) χ(y,+) = 2

−, xt = +
·, otherwise

(13.1)

where χ(y,+) = 1 if y = + and 0, otherwise.
In the 2+ medium both omnidirectional waves and wave-fragments can be cre-

ated using simple initial conditions. Both types of waves can travel in the cardinal
directions, which is an extra benefit for manipulation tasks, since it allows for clear
directional vectors for the manipulated objects. The basic manipulation element is
the wave-fragment, or glider, consisting of an excited head (two excited cells) and a
refractory tale (two refractory cells), Fig. 13.1 The ternary nature of the automaton
is convenient for the hardware interface. Each state of the automaton can be directly
mapped onto a state of actuator motor: off, clockwise spin, and counter-clockwise
spin.

Fig. 13.1 Typical travelling localisation in 2+-medium [2]. The localisation propagates eastward.
The excitation wave-front is followed by refractory tail. Excited sites are shown by ‘+’, refractory
by ‘−’
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Table 13.1 Combination scenarios of physical contacts between actuator surfaces andmanipulated
object

Cilia in... Scenario 1 Scenario 2 Scenario 3 Scenario 4a

Object − + − +
Surface − − + +

Presence of cilia on object or surface is indicated by ‘+’, absence by ‘−’
aScenario 4 has not been investigated

13.3 Hardware Layer Role

The hardware architecture of a cellular automaton controller is proposed in [20]. The
architecture draws its inspiration from the ciliary motion of Paramecium caudatum.
Cilia are also used to exploit anisotropic friction [25, 32] and thus to generate force
fields to move the object. Although some research teams have introduced this idea of
programable force-fields with anisotropic friction using vibratory motion [28, 30],
our method differentiates on the mechanism of generating the friction, hence the
force. We propose the coordinated vibratory motion of cilia structures controlled by
lattice automata.

To fully evaluate the applicability of the proposed method different hardware
architectures are investigated. The differentiation factor of these architectures is the
location of the cilia-like structures. Table13.1 gives us the potential combinations.

Scenario 4 in Table13.1 is being presented only for completeness. Although it is
possible to create a system with cilia in both the object and the manipulation surface,
it will be a system of complex physical interactions between the cilia on actuators’
surfaces and the cilia on the manipulated object.

13.4 Experimental and Simulation Results

Each of the scenarios presented in Table13.1, except Scenario 4, was tested in hard-
ware or computer simulation to evaluate the performance of the lattice automata in
control. In hardware tests we used the prototype described in [19, 20]. The prototype
is an array 8×8 oscillating motors, covered with a silicon membrane. The array is
110 ×110 mm in size. Rotation direction of each motor is controlled independently
on other motors. We used overhead video camera to measure motion of the manip-
ulated objects.

Computer simulation of the actuator array was made using MATLAB and
APRON—(A)rray (P)rocessing envi(RON)ment [9], a real-time simulation platform
for working with and debugging two-dimensional arrays of data and rapidly proto-
typing array based algorithms. For some of the simulation experiments, where the
focus was on the physics-based analysis of manipulation, an environment for physics
simulation was utilised [10].
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Fig. 13.2 Manipulation with waves. Simulation frames of manipulating objects with omni-
directional wave (a) and travelling localisation (c). Trajectories of objects translated by these waves
are shown in (b) and (d). x and y-axis in simulator distance units. Simulation is implemented in
APRON [9]

13.4.1 Scenario 1: No Cilia

In the no-cilia scenario two sets of simulation experiments were carried out and
the behaviour of omni-directional and wave fragments was investigated. In the ini-
tial experiment, firstly four objects were displaced using omni-directional waves,
Fig. 13.2a, and secondly a single object using linearly propagating wavelets,
Fig. 13.2c. In the latter experiment only one object was used given the narrow
focus of the glider. The trajectories of the objects were recorded. They are shown in
Fig. 13.2b, d.

In the laboratory experiments with hardware prototype the object shown in
Fig. 13.3a was manipulated by the actuator array. The object is a 40× 20mm hol-
low, plastic, rectangular box. We did not execute laboratory experiments with omni-
directional waves because in such type of manipulation objects move along coupled
trajectories which is not suitable for a precise manipulation; also, the manipulated
objects ‘hopped’ above the surface, see more details in Sect. 13.5. In the laboratory
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Fig. 13.3 Neither actuator array nor themanipulated object are equippedwith cilia. a Photograph of
a hardware prototype of 8×8 actuator arraywith themanipulated object on top. b Four experimental
trajectories; x and y axises adjusted to simulator distance units

experiments on manipulating with travelling localisations four different trajectories
were recorded, see Fig. 13.3b. Although each trajectory is slightly different due to
mechanical variations of the prototype, the overall pattern is as predicted in the
simulation experiment.

As can be observed for the omni-directionalwaves the ‘broadcast’mode is typical:
waves traveling all across the lattice render the trajectories of the objects coupled.
Moreover, as seen from the screen shot in Fig. 13.2a, the delivered energy causes
vertical displacement of the objects, a ‘hopping’ effect. On the other hand, thewavelet
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manipulation operates as expected, the object moves in a linear fashion. The slight
parabolic motion can be attributed to the specific dynamics of the simulation engine.

13.4.2 Scenario 2: Object with Cilia/Surface Without Cilia

In the second scenario an object with cilia was manipulated by the actuator array
without cilia. We selected a toothbrush as a manipulated object due to its intriguing
geometry, see Fig. 13.4a, b and the availability of a ciliated object of standardised
construction. The toothbrush was 35 × 12 mm in size. A photo of the experimental
prototype is shown in Fig. 13.4c. The cilia, or bristles, of the toothbrush create an
anisotropic friction that allows the surface to manipulate the object.

Two sets of experiments have been conducted. The first set dealt with linear
motion of the toothbrush, the target is in the same line as the toothbrush’s initial
position. In the second set of experiments, we introduced a change of the toothbrush’s
direction path is necessary: the target was positioned at a 90◦ angle from the line
of direction of the toothbrush. This cornering action was achieved by a combination
of glider motions and turning patterns. The turning patterns were represented in
cellular automaton controller as two excited+ and two refractory− cells in a crossed
configuration.

Two trajectories were recorded for each set. In Figs. 13.5 and 13.6 the overlap of
the trajectories, with rotation tracked by the directional vectors, can be seen along
with the start position of the toothbrush and the target. In Figs. 13.5 and 13.6 the
trajectory and rotation of toothbrush body is separately plotted for ease of analysis.

By analysing the data of the trajectories we can identify some interesting patterns.
Although there are variations, both sets of trajectories are similar with most of the
same characteristic motifs. These variations can be attributed to specific hardware
and software aspects. Three key aspects are identified:

• Drifting movement of the toothbrush.The toothbrush head, because of its special
geometry, tends to move in a drifting fashion, oscillating from side to side.

• Motor array variations.Although the highest specifications where used to design
and construct the prototype some variations still exist. Differences in geometry of
the modules and inevitable differences in motor operation (manufacturer’s speci-
fications) result in small variations of performance from cell to cell.

• Algorithm and CA propagation. The implementation of the lattice automaton
algorithm affects operations in two distinctive ways. First, the pattern used to turn
the toothbrush might affect its trajectory in an unwanted manner. Secondly, the
lattice refresh interval (200m in the experiments) affects movement patterns, indi-
cating that there are other spatio-temporal dynamic phenomena at play impacting
the operation of the system.

The different reasons for the patterns recognised in the experiments, allow to draw
some interesting experience regarding the system both in hardware and software
terms. The first two, drifting movement and motor variations, are related to the
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Fig. 13.4 Manipulated object has cilia but actuator array has none. a Side and b front view of
object’s cilia geometry responsible for the anisotropic friction, c Photograph of the parallel manip-
ulator with an ciliated object on top

hardware being used, toothbrush head geometry and prototype variant. In order to
emphasise the robustness of the proposed conveyor system the decision was taken to
accept mechanical variations within specific tolerances. This way the system proves
that it can compensate for those variations using the intelligent underlying control
algorithm. Due to the systemic occurrences of both phenomena, it is possible to
map those mechanical imperfections and incorporate them in the lattice automata
controller making the system more robust.

The third reason is related to the implementation of the automaton controller.
Simple linear gliders in 2+ medium seem to provide a good linear object propa-
gation while the proposed turning patterns address to a certain degree the 90◦ turns
required for the selected trajectories.Both the gliding and the turningpatterns perform
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Fig. 13.5 Set of Linear Movements
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Fig. 13.6 Set of Corner (90◦) Movements
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Fig. 13.7 Photograph of the bristles fabricated to emulate natural cilia. This design is used as an
alternative to the membrane design described in [20]

satisfactorily in compensating for the hardware’s weaknesses. Undoubtedly, deter-
mining the iteration (generation) step is a crucial parameter affected by the dynamics
of the system.

13.4.3 Scenario 3: Object Without Cilia/Surface with Cilia

The third scenario is tested using simulation experiments based on the modelled
behaviour of the ciliated surface. A small hardware version of the proposed system
has been fabricated for verification, see Fig. 13.7. The model is based in the vortex-
like behaviour of a single motor and the resulting force field as exerted by the cilia
structures is shown in Fig. 13.8a.

In this scenario, the task was to move a square object from the lower right corner
of the lattice to the centre of it. This corresponds to the natural task encountered in
microorganisms for the transportation of food to their ‘mouth’ pore [18]. The impor-
tance of synchronisation signals was investigated with the application of three differ-
ent signals. Specifically the signals tested are (a) Single motor actuation, Fig. 13.8b;
(b) Random motor actuation, Fig. 13.8c; and (c) Metachronal wave motor actua-
tion, created by linearly traveling localisation, Fig. 13.8d, f. This selection of signal
was made to demonstrate the necessity of proper synchronisation and co-action of
actuators in the manipulation tasks.



306 I. Georgilas et al.

(a) (b)

(e) (f)

(c) (d)

Fig. 13.8 Simulation frames from MATLAB with APRON generated control signals. The vectors
of the force field, the rectangular object with a rotation indication line and the trajectory are depicted.
a The vortex force-field created by a single motor. b The single motor force field ‘pulling’ the object
towards the centre of the lattice (frame 60). cThe trajectory of the object under a randomly generated
force field (frame 400). d–f Frames 0, 60 and 400 of the trajectory under the metachronal wave
signal. Object is placed at coordinates (12,4). Axis are simulation based units
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Analysing the trajectories from the different control signals we can deduce some
interesting results regarding the cooperative attributes of the various control sig-
nalling (Fig. 13.8). In the single motor approach, the motor trying to ‘pull’ the object
towards the centre fails even to start moving the object (Fig. 13.8a, b). Investigating
the exhibited forces we find that the single motor is not able to exert the friction
between the object and the surface. This is a demonstration that a single ‘cilium’
fails to achieve the task and some form of cooperative action needs to take place.
The random motor approach overcomes the lack of power, since it does move the
object from its initial position. Nonetheless, the object is moving along a random
path (Fig. 13.8c). Furthermore, it might be locked in local attractors that will not
coincide with the intended target. Hence, the use of multiple ‘cilia’ is necessary to
produce manipulation, but random ‘beating’, i.e. signalling, does not create control-
lable behaviour. Finally, the 2+-medium glider, seen as metachronal wave, moves
the object towards the target (Fig. 13.8d, f).

13.5 Conclusions

In this chapter we demonstrate the use of lattice automata as distributed control
systems formanipulation applications.Wehave shown that controllablemanipulation
can be reached via interaction between cells/actuators and also between physical
surfaces of the actuator units and the manipulated object. In all three scenarios, as
shown in computer modelling and laboratory experiments, travelling localisations
(gliders, solitons, wave-fragments) are proved to be ideal manipulating patterns.
Further studies are required to select the best morphology of the control patterns
in cellular automata, which can lead to robust and precise manipulation. Actuator
arrays discussed in the chapter are open-loop manipulators: actuating units do not
sense the manipulated object. In our future research we aim to develop closed-loop
manipulators, where actuators are equipped with sensors allowing them to feel the
manipulated object.
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