
Integrating Slurm Batch System with European

and Polish Grid Infrastructures

Dominik Bartkiewicz, Krzysztof Benedyczak, Rafa�l Kluszczyński,
Marcin Stolarek, and Tomasz Rȩkawek

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, ul. Pawińskiego 5a, 02-106 Warszawa, Poland

{bart,golbi,klusi,mstol}@icm.edu.pl,newton@mat.umk.pl

http://www.icm.edu.pl

Abstract. ICM, one of the major Polish HPC resource providers, mi-
grated to the Slurm batch system as the first site in the PL-Grid and
WLCG grid infrastructures. This article describes the Slurm integration
issues and the solutions developed. The integration was focused on se-
veral areas where grid middleware interacts with the batch scheduling
system, additionally taking into consideration the PL-Grid specifics. In
particular, the resource usage accounting required a dedicated Slurm
support and the scientific grants enforcement policy needed a new im-
plementation. What is more, in this work we present the reasons of the
Slurm adoption and other improvements that were necessary to handle
the increasing load of the grid site.

Keywords: Slurm, accounting, gLite, UNICORE.

1 Introduction

The PL-Grid project [4], [8] was started in the year 2009 as a response to many re-
quirements of Polish scientists for more user-friendly access to high-performance
computing (HPC) resources. It consists of 5 main Polish supercomputing and
networking centers, geographically distributed. The goals of the project were to
build the Polish national grid infrastructure, provide users with computing and
storage resources accessible in a uniform way. On top of this infrastructure, there
are being prepared solutions and services for specific scientific environments, so
called “domain grids” (addressed by the current PLGrid Plus project [7]). Unfor-
tunately, distributed resources provisioned in PL-Grid are highly heterogeneous,
what makes the integration sometimes not so easy as it was assumed at the
beginning.

In the year 2012, ICM HPC system was migrated to the Slurm batch sys-
tem [10], [14] as the first site in the PL-Grid and WLCG infrastructures. This
change was dictated by the fact that Torque [13] became significantly inefficient
under heavy load, what we describe in a next section.

The integration tasks included also the implementation of the PL-Grid scien-
tific computational grants system, called POZO. POZO is an infrastructure wide

M. Bubak et al. (Eds.): PLGrid Plus, LNCS 8500, pp. 106–117, 2014.
c© Springer International Publishing Switzerland 2014

http://www.icm.edu.pl


Integrating Slurm with European and Polish Grid Infrastructures 107

resource access policy, which defines resource limits for scientists, granted by the
infrastructure managers. The whole system is based on computing grants as-
signed to a user or scientific team. Every user has a small private grant issued
every half a year to allow him/her to access the infrastructure for one thousand
CPU hours. In case when the user needs much more time for simulations, he/she
needs to create a scientific team and apply for a proper grant. For this purpose,
the Bazaar [9], [12] system is used where HPC administrators negotiate with
the user how many resources the user will need. After a successful agreement,
no batch system used in PL-Grid should allow to access more resources than
agreed.

POZO policy access describes how the system should behave when user re-
sources are exhausted. All batch systems used in PL-Grid have to work according
to the policy. In particular, Slurm used at ICM. The way of POZO implemen-
tation is described in the article.

The PL-Grid Infrastructure has complex requirements with regard to the
accounting of the resource consumption by the grid jobs. It is required for billing
both the individual users and also groups of users. Therefore, the accounting data
needs to be collected and centrally stored for the internal management of the
PL-Grid Infrastructure itself. This data must include records of both grid jobs
(regardless of the middleware used) and jobs submitted locally, directly to the
computing machines. The information about the middleware being used (if any)
is also required for the purposes of internal reporting.

Besides the national accounting system, PL-Grid as a member of the European
Grid Infrastructure (EGI) is additionally obligated to publish the accounting
data to the European-wide database. The data exported to EGI typically should
be pre-processed, to provide coarse-grained usage summaries only, and includes
exclusively the grid job related records. Therefore, the accounting data required
by EGI is different both in terms of the content, format and source jobs from
the data being used in the National Grid Infrastructure (NGI).

As the vast majority of accounting data is collected from a resource mana-
gement system, the newly introduced Slurm system needed to be integrated
with the whole, complex accounting infrastructure. What is more, it turned out
that the UNICORE accounting system [2] had, similarly as Torque, performance
problems when tackling the constantly increasing stream of jobs. In this article
we discuss the details of the observed problems and the developed solutions.

2 State of the Art

The Torque batch subsystem, used until recently at ICM, is properly supported
by the grid infrastructure and the typical helper tools. This is true for the gLite
job submission interface, the gLite APEL accounting system [5], UNICORE job
submission and, eventually, Torque is properly supported by the UNICORE
accounting system [2].

Unfortunately, in the recent years we observed that version 3.x of the Torque
batch system (the latest one at that moment) was unstable under heavy load. It
even came to solutions where a server daemon was checked if it responded and



108 D. Bartkiewicz et al.

restarted in case if not. This was the reason why we have tested the Slurm batch
system, which proved much more stable and efficient, especially with a load of
thousands of jobs.

One of the grid systems supported by the PL-Grid Infrastructure is gLite with
the Cream computing element (CE). CREAM accepts job submission requests
described with Job Description Language (JDL) [6]. The CREAM support for
the Torque batch system is well tested and works fine including the accoun-
ting subsystem. Unfortunately, JDL does not support any attribute, which can
be used to express the PL-Grid grant. For authentication purposes, CREAM
uses an LCAS/LCMAPS security stack. LCMAPS is a pluggable framework,
implemented as a library that can be used by applications to map incoming
grid identities to local POSIX identities, taking into account the local site po-
licy. Therefore, LCMAPS plugin has been developed at ICM to allow efficient
mapping grid-based users to their own POSIX LDAP accounts. Fig. 1 presents
a decision rule used for the mapping.

Fig. 1. The diagram of PL-Grid LCMAPS plugin. It shows decision rule based on the
user’s VO organization.

Such a method reacts in real time to changes in default grants or adding new
users to the system. At the same time, it eliminates frequent generation of
gridmapfile, which includes all users data. Support for Slurm in the gLite accoun-
ting system (called APEL) is officially available since its latest release, however



Integrating Slurm with European and Polish Grid Infrastructures 109

it is immature and significantly buggy. Tests have shown that over 80% of job
records were not handled correctly by the APEL Slurm module.

UNICORE, one of the three base grid solutions deployed in the PL-Grid In-
frastructure [3], natively supports custom resource requirements. These require-
ments, among others, can be used to express the information about a requested
PL-Grid grant in each UNICORE job. As all resource requirements are subject to
brokering, a grant-aware site selection can be easily implemented in UNICORE.
This, however, was not yet done as typically the grants are supported on all
sites and in the rare cases when this is not true, the automatic job rescheduling
solves the problem. Therefore, the integration with the PL-Grid POZO was not
problematic from the UNICORE perspective.

UNICORE’s accounting system developed at ICM was released back in 2010
and subsequently it has been deployed in the PL-Grid Infrastructure. Since this
date, the system has processed several million of jobs using the Torque batch sys-
tem, which was supported by the system since its beginning (next to Sun/Oracle
Grid Engine). The situation with the UNICORE and Slurm was worse, as the
Slurm batch system was not supported in the accounting system. To understand
the required functionality, the details of the accounting deployment in PL-Grid
need to be presented.

The PL-Grid Infrastructure features a complex accounting system or – more
precisely – a set of cooperating accounting systems. The principal solution used
for national and at the same time internal project accounting is called MWZ.
Originally, MWZ was designed to collect accounting data from the gLite middle-
ware. As PL-Grid exposes also QCG and UNICORE interfaces, their accounting
solutions were deployed too, with additional plugins exporting the data to the
central MWZ database. The export of accounting records to the EGI infrastruc-
ture should be done separately by each middleware installed. So far, it was only
set up for the gLite system using its typical solution – APEL, the same software,
which is used by EGI to receive and store the records in the central database.

The retrieval of the accounting data is as complicated as its distribution. The
accounting data must be collected from two sources and then merged: from the
resource management system (as Torque or PBS Pro) and from each middleware
to enrich the low level data by grid related information.

To summarize this complex accounting landscape, the accounting deployment
looks as follows from the ICM site perspective:

– APEL software is installed on the site and reports the accounting data of
gLite jobs directly to the EGI central database.

– The UNICORE accounting system is installed and (independently of APEL)
collects accounting data about all jobs submitted to the site from the batch
subsystem (regardless of the middleware) and from the UNICORE middle-
ware (in case of UNICORE jobs).

– Finally, the accounting data is exported to the central MWZ server and
(what is planned) should be exported to the EGI central APEL service in
case of UNICORE jobs.



110 D. Bartkiewicz et al.

In case of the remaining sites, typically the MWZ agent is installed to collect
the data from the resource management system, and the UNICORE accounting
module is responsible only for retrieving the grid part. The UNICORE grid part
is sent first to the UNICORE accounting system at ICM and from that point it
is forwarded (together with other records) to all configured consumers as MWZ
or APEL. This scenario is presented in Fig. 2.

Fig. 2. UNICORE accounting deployment at the PL-Grid Infrastructure

The UNICORE accounting was tested with a typical HPC load and it han-
dled thousands of jobs without any noticeable performance problems. However,
as soon as a large amount of small high-throughput computing (HTC) jobs
started to be processed, the database size reaches a much larger size. Around
1,000,000 records, the system started to consume large amount of CPU time
during regular operation. It has become obvious that sooner or later the time
needed to process a single job will be longer than an average delay between sub-
sequent jobs collected by the system. Such a situation would nearly instantly
lead to a crash of the whole system.



Integrating Slurm with European and Polish Grid Infrastructures 111

In the next section, a description of the Slurm integration module as well as
the general performance and database model changes are presented.

3 Description of the Solution

The article describes the solutions for the Slurm integration with the gLite and
UNICORE middleware as well as the implementation of the PL-Grid grants
system in the gLite middleware.

The Slurm scripts from the gLite APEL were updated and the article dis-
cusses the issues and their solutions. What is more, the support for limiting
the access to resources based on the PL-Grid grants specification (called POZO)
with an ability to handle users’ default grants has been implemented. The article
describes the solution allowing for the enforcement of the PL-Grid POZO system
with a new LCMAPS module. In this module, we use the data picked directly
from the PL-Grid LDAP database, so the changes take place immediately, once
the data is updated in the central PL-Grid database. However, it is important
to emphasize that the main source of information about users’ grants in POZO
system is Bazaar [9], which provides data in XML format, available only for
HPC administrators through a secure protocol. The Bazaar part of data con-
tains more detailed information agreed between the site and the user, containing
among others:

– maximal total walltime,
– maximal walltime for a single job,
– maximal parallelism of a single job,
– minimal memory value.

During the phase of implementation of POZO for the Slurm batch system
three different solutions were tested, all of them having their advantages and
disadvantages. All of them are using Slurm built-in associations. An association
is a 4-tuple consisting of a cluster name, a bank account, a user and optionally
a partition. If set correctly, only the users with valid associations will be enabled
to run jobs. The bank account contains information about user’s limits, which
also are enforced during job execution. This is a convenient way to implement
any computing policy, so we decided to use it during POZO implementation.

The first attempt was a simple script working periodically as a cron job. This
solution was gathering data from PL-Grid LDAP and Bazaar and adding all users
and account information into Slurm database using normal user space Slurm
utilities. In this concept, all data was being processed by slurmdbd daemon.
A schematic workload of this scenario is presented in Fig. 3.

Unfortunately, the PL-Grid Infrastructure supports more than seven hundreds
users, all of them having their private grants. Running such a script in this
situation was causing Slurm to be not responsive to any users’ grant changes for
more than two hours. Obviously, this cannot be accepted and another attempt
to implement Slurm support was needed.



112 D. Bartkiewicz et al.

Fig. 3. The diagram of the first prototype of POZO implementation for Slurm

The first idea was to construct a buffer and run Slurm utilities only to up-
date the users’ grants data that have changed between a current and previous
iteration. The implemented buffer database was almost a copy of Slurm accoun-
ting tables. This solution used SQLite [11], because its efficiency was not that
important. Unluckily, another situation specific for the PL-Grid Infrastructure
prevented this implementation from going into the production phase. The pri-
vate grants, which are given by default to all PL-Grid users, are changing every
half of year. This change is applied by the Bazaar system in several parts. Even
though it still could cause efficiency problems every six months. This time it
could cause Slurm to be immune to any grants changes for even three days.
This again was not acceptable. A schematic design for this workflow is presented
in Fig. 4.

While the previous implementations were tested, the Slurm version at ICM
was upgraded from 2.4.3 to 2.6.1, allowing us to redesign the solution. The
new version of Slurm supported reading the account information from backups
with flushing the current state of the accounting database (in previous versions
this operation was not able to delete users/accounts). In fact, this operation
is not a simple flush. The dump file of the database is being compared with
the current state of the database and, based on the results, a binary version
of the new database state is prepared. Then, the whole new database is being
imported through slurmdbd. This operation takes less than a minute, so with
setting up proper timeouts it is possible to perform this action every day, which
is a standard accepted by the PL-Grid Infrastructure (the existing solutions for
Moab/Maui and PBS Pro work with the same interval constraint). A schematic
workflow for this solution is presented in Fig. 5.

Batch system integration has also been done in the designated component
of the UNICORE accounting, called BSS-Adapter. It orchestrates various batch
system dependent modules, which have to implement a common internal SPI.
The job records produced by a selected module are sent to the rest of the UNI-
CORE accounting system using the ActiveMQ [1] message bus.

The Slurm support turned out to be the most difficult submodule of the BSS-
Adapter. First of all, a difficult decision needed to be made on from what part



Integrating Slurm with European and Polish Grid Infrastructures 113

Fig. 4. The diagram of the second solution of integration of the POZO policy with the
Slurm batch system

Fig. 5. The diagram of the final implementation of POZO used at the ICM. To be fully
responsive, the solution needs at least 2.6.1 version of Slurm.

of Slurm the accounting data should be retrieved. As Slurm supports different
storage backends for accounting data, it is possible to extract information di-
rectly from any of them (MySQL database and text files are the most common
choices). Such an approach is easier from the development point of view, however
in order to make the RUS BSS-Adapter independent from a SLURM backend,
we developed a solution accessing the SLURM accounting data via its standard
reporting sacct command.

The sacct command guarantees the same output format, regardless of the se-
lected accounting storage backend. It also allows for changing its output format,
with an ability to choose a format, which is suited to the machine processing.



114 D. Bartkiewicz et al.

Theoretically, this looks as a perfect approach, however practice showed a lot of
obstacles:

– The output of the sacct command is not escaped and in several cases the
field content can itself contain a field separator character (which is “|”). This
problem complicates the sacct output parsing a lot.

– Officially, the output of sacct can be controlled with time range parameters,
unfortunately some of them don’t work correctly. Therefore, the relaying ap-
plication has to support the situation when the same job record is presented
multiple times.

– It was observed that Slurm updates the accounting information of the jobs,
which were previously marked as finished. For instance, a job’s CPU time is
sometimes slightly adjusted.

– The job information is provided in different ways depending on internal
Slurm handling – sometimes some of the job’s information is split into the
so called job steps, what is a Slurm artifact.

To handle all the above obstacles, a quite complex algorithm was developed.
It is presented in Fig. 6.

The algorithm is invoked in an infinite loop. The data is obtained from the
sacct command and the output is processed job by job. The parsing is using
a special trick to detect inclusion of a field separator character used as an or-
dinary character: sacct is invoked to output all the fields, which can carry such
characters twice. By finding the repeated text sequences, the actual content of
those fields can be established, without relying on the field separator. Additio-
nally, all job steps are processed and if the data is available in them, it is added
to the job record. This is typical for the memory usage.

The next step is a record post-processing. The system is storing in memory a
cache of key information of the already sent jobs. The unfinished jobs without
a status change are ignored and discarded. Note that this system is not fully
guaranteeing that a particular job record is absolutely never sent twice (for
instance, this can happen if a BSS-Adapter is restarted and the sent records
cache is cleared). However, this is not a problem for the accounting system as
the central service ignores the unchanged job data. Therefore, this step is only
reducing the network and processing load.

The second post-processing step is a workaround for the problem of Slurm
changing the accounting information of a job, which is already in a terminal state
and possibly could be already sent to the central accounting system. Therefore,
the Slurm module ceases to send job records in a terminal state, which were
finished only recently. The security time threshold is set to 2 minutes and tests
confirm that after this time the job information becomes stable. Such jobs are
going to be sent during the subsequent iteration of the Slurm module.

Besides the Slurm integration, the accounting system was redesigned to han-
dle greater load and provide an unattended operation with a constantly growing



Integrating Slurm with European and Polish Grid Infrastructures 115

Fig. 6. Processing of the Slurm accounting data, using the sacct program as a source.
The highlighted element is a good starting point to start following this infinite loop.

amount of processed records. The storage layer was redesigned and the new
version is using a quite different persistence model. First of all, the daily usage
summaries (kept for each user, site, queue and job status) become a fundamental
element that is used for reporting and user-driven accounting data presentation.
The measurements showed that such an approach provides a data amount reduc-
tion by approximately 20 times. The individual job records are still stored in the
database, but only for a relatively short period of time (configurable, by default
half a year) and after this period are automatically moved to a separate archive.
This allows for keeping the advanced functionality of the system, which relies
on the fine grained information stored in individual job records, yet keeping the
amount of processed records at a reasonable level.

What is more, the same mechanism was implemented for the summary records,
but with a much longer time period, after which the summaries are moved to
an archive. Those two solutions together greatly improved the response time in
case of accounting queries, reduced the everyday processing time and, finally,
provide a promise that the system can work for many years to come.



116 D. Bartkiewicz et al.

4 Conclusions and Future Work

As a result, we have managed to deploy a new version of services with a full
Slurm support. All middleware available in PL-Grid is able to execute jobs using
Slurm and, what is more important, the accounting of the batch system and
grid data is properly gathered and exported to external services in PL-Grid
and EGI. The support for the PL-Grid grants system is available not only in
UNICORE, but also in gLite. Additionally, users static mapping implemented
by LCMAPS plugin was also successfully used for GridFTP connections and
GSI-SSH configuration in other PL-Grid sites.

The integration was problematic at the beginning and still requires some
work to make it more reliable. Nevertheless, we have managed to make it fully
operational, which is a notable success and an example for others to pursue.

Further work concerning integration of Slurm with the new version of POZO
may focus on writing a separate slurmdbd accounting backend, which will gather
the usage of MySQL and LDAP databases. This work may be of special interest
for all Slurm users, because information about users and groups is customarily
kept in an LDAP database, while information about their jobs accounting should
be saved in a relational database. Such a solution will have to deal with a lot of
issues coming from possible incoherencies between separate databases, but will
give the administrators a very convenient tool.

References

1. ActiveMQ message bus web site, http://activemq.apache.org

2. Ba�la, P., Benedyczak, K., Kluszczyński, R., Marczak, G.: Advancements in UNI-
CORE Accounting. In: UNICORE Summit 2013 Proceedings, IAS Series 21, iii,
Forschungszentrum Jülich GmbH Zentralbibliothek. Verlag Jülich (2013)

3. Benedyczak, K., Stolarek, M., Rowicki, R., Kluszczyński, R., Borcz, M., Marczak,
G., Filocha, M., Ba�la, P.: Seamless Access to the PL-Grid e-Infrastructure Using
UNICORE Middleware. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid
2011. LNCS, vol. 7136, pp. 56–72. Springer, Heidelberg (2012)

4. Kitowski, J., Tura�la, M., Wiatr, K., Dutka, �L.: PL-Grid: Foundations and Perspec-
tives of National Computing Infrastructure. In: Bubak, M., Szepieniec, T., Wiatr,
K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 1–14. Springer, Heidelberg (2012)

5. Byrom, R., Cordenonsi, R., Cornwall, L., Craig, M., Djaoui, A., Duncan, A., Fisher,
S., Gordon, J., Hicks, S., Kant, D., Leake, J., Middleton, R., Thorpe, M., Walk,
J., Wilson, A.: APEL: An implementation of Grid accounting using R-GMA. In:
UK e-Science All Hands Conference (2005)

6. Pacini, F., Kunzt, P.: Job description language attributes specification. EGEE
project (2006)

7. PLGrid Plus project web site, http://www.plgrid.pl/en/projects/plus

8. PL-Grid project web site, http://projekt.plgrid.pl/en

9. PL-Grid Resources Bazaar portal, https://bazaar.plgrid.pl

10. Slurm Workload Manager web site, http://slurm.schedmd.com

11. SQLite database web site, http://www.sqlite.org

http://activemq.apache.org
http://www.plgrid.pl/en/projects/plus
http://projekt.plgrid.pl/en
https://bazaar.plgrid.pl
http://slurm.schedmd.com
http://www.sqlite.org


Integrating Slurm with European and Polish Grid Infrastructures 117

12. Szepieniec, T., Tomanek, M., Radecki, M., Szopa, M., Bubak, M.: Implementation
of Service Level Management in PL-Grid Infrastructure. In: Bubak, M., Szepie-
niec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 171–181. Springer,
Heidelberg (2012)

13. Torque Resource Manager web site,
http://www.adaptivecomputing.com/products/open-source/torque/

14. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003)

http://www.adaptivecomputing.com/products/open-source/torque/

	Integrating Slurm Batch System with European
and Polish Grid Infrastructures

	1 Introduction
	2 State of the Art
	3 Description of the Solution
	4 Conclusions and Future Work
	References




