
Reservations for Compute Resources

in Federated e-Infrastructure

Marcin Radecki1, Tadeusz Szymocha1, Tomasz Piontek2, Bartosz Bosak2,
Mariusz Mamoński†2, Pawe�l Wolniewicz2,

Krzysztof Benedyczak3, and Rafa�l Kluszczyński3

1 AGH University of Science and Technology, ACC Cyfronet AGH,
ul. Nawojki 11, 30-950 Kraków, Poland

tadeusz.szymocha@cyfronet.pl
2 Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry
of the Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland

3 University of Warsaw, Interdisciplinary Center for Mathematical and
Computational Modelling, ul. Pawińskiego 5a, 02-106 Warszawa, Poland

Abstract. This paper presents work done to prepare compute resource
reservations in the PL-Grid Infrastructure. A compute resource reser-
vation allows a user to allocate some fraction of resources for exclusive
access, when reservation is prepared. That way the user is able to run
his/her job without waiting for allocating resources in a batch system.

In the PL-Grid Infrastructure reservations can be allocated up to
amount negotiated in a PL-Grid grant. One way of getting reservation is
allocation by a resource administrator. Another way is to use predefined
pool of resources accessible by various middleware. In both approaches
once obtained, reservations identifiers can be used by middleware during
job submissions. Enabling reservations requires changes in middleware.
The modifications needed in each middleware will be described. The pos-
sible extension of existing reservation model in the PL-Grid Infrastruc-
ture can be envisaged: reservation usage normalization and reservation
accounting.

The reservations are created and utilized in the user’s context, so
there must be a way to pass the reservation details from the user-level
tools to a batch system. Each of PL-Grid supported middleware, namely
gLite, UNICORE and QosCosGrid, required adaptations to implement
this goal.

Keywords: QosCosGrid, UNICORE, gLite, advance reservations, co-
allocation of resources.

1 Introduction

The scheduling of computing jobs at HPC clusters may be done in different ways
according to the resource provider policy:

– advance reservations, when the user needs resources (limited to a single
system, location) for a specific time span in future,

M. Bubak et al. (Eds.): PLGrid Plus, LNCS 8500, pp. 80–93, 2014.
c© Springer International Publishing Switzerland 2014



Reservations for Compute Resources in Federated e-Infrastructure 81

– co-scheduling, when simultaneous access to resources that are part of diffe-
rent logical systems (or locations) is required,

– on-demand scheduling, when jobs for a time-crucial application should be
run as quickly as possible; the existing jobs are let to finish or running jobs
may be preempted to allow a new job to start,

– workflows, when jobs have dependencies between them and one job is waiting
for output of the other job (e.g. a visualisation job should start after core
computations have finished).

The scientists usually need computational resources to perform complex the-
oretical calculations. In most cases, typical submission of a job to the queuing
system is sufficient. The computations are done on shared resources at not exac-
tly predictable time in future. But for some use cases it may be required to run
jobs without waiting in a batch system queue, at exclusive resource or/and at
specific time in future.

The PL-Grid Infrastructure is supporting advance reservations, workflows and
to a limited extent co-scheduling. The QCG middleware has pre-agreed pool of
reserved resources that provide the users with the global co-scheduling mecha-
nism based on advance reservations at every PL-Grid Infrastructure computer
center.

The advance reservations are “expensive” meaning that a reserved resource
cannot be used by other users and if it is not occupied by jobs, it may be
considered as not optimally used. For this reason, the accounting of reservations
needs to be in place to efficiently manage a user’s request. Thus, the advance
reservations are covered by the PL-Grid grant system. The user may apply for
a grant, in which he declares that the advance reservation will be needed and
specifies the general values for size, time-span and recurrence of the reservation.
Then, while the grant is active, the user can apply for setting the reservation
in advance, which is then manually set by a system administrator. The user is
informed about a reservation identifier and can specify it in his own scripts or
middleware tools. There is also some cost incurred by freeing resources needed
for the reservation. This is more substantial for large reservations and is similar
to freeing resources for executing a many-CPU job, however, in the PL-Grid
Infrastructure we decided to neglect this kind of cost.

2 Related Work

The advance reservation is of interest to users of different existing IT infrastruc-
tures. The need of advance reservation was tackled also by I. Foster et al. and
yielded in proposition of the Globus Architecture for Reservation and Allocation
(GARA) [1].

Parallel to the European infrastructure, the United States infrastructure was
developed within the TeraGrid and its continuator – the Extreme Science and
Engineering Digital Environment (XSEDE) [2] project. The metascheduling Re-
quirements Analysis Team (RAT) recommended evaluation of tools facilitating



82 M. Radecki et al.

reservations management [3]. However, authors were not able to reach public
documents describing technical implementation. The RAT indicated the Highly-
Available Resource Co-allocator (HARC) [4] as recommended for further eva-
luation in the TeraGrid project. The goal of HARC is to provide co-allocation
service for metacomputing and workflow applications, where diferent types of re-
sources are reserved as they were a single, indivisible resource. So, the allocation
process reminds database transaction.

An interesting approach of dealing with the issue of resource reservation at
a middleware layer is use of a pilot jobs framework as presented in [5]. A pilot job
occupies a resource and pulls down some other job to be executed at this resource.
This way it is possible to avoid interaction with batch system mechanisms for
resource reservation, which may be troublesome, having in mind a variety of
batch systems in grid environment, but currently (2014) it is not used in the
PL-Grid Infrastructure.

3 The Grid Resource Allocation and Agreement Protocol

The Grid Resource Allocation and Agreement Protocol working group (GRAAP-
WG) [6] of the Global Grid Forum (GGF) defines methods and means to es-
tablish Service Level Agreements between different entities in a distributed
environment. The advance reservation is one of the defined scenarios.

GRAAP-WG defines the advance reservations scenario as to perform a job
submission within the context of an existing (or advance) reservation of capa-
bility or pre-established resource preferences. The difference from the simple job
submission is that the user knows that he has an ongoing relationship with the
job hosting service, and can expect his job offer(s) to be accepted as long as
the requested parameters are kept within certain limits set by the relationship.
For example, the reservation might guarantee availability of a certain kind of
resource on a certain schedule, or with a particular cost model. Reservation is
an abstraction for understanding this refined expectation about the handling of
future jobs; whether the job hosting service uses preemption, predictive models,
or the literal setting aside of resources is an implementation decision for the ser-
vice. Another use of pre-established agreement is to specify resource preferences,
e.g., choice of nodes with a certain amount of memory over others, via an agree-
ment, that are to be used in all subsequent resource allocations to incoming jobs
in the context of this agreement.

GRAAP-WG proposes an architecture comprising two main layers: the Agree-
ment layer and the service provider layer. The Agreement layer implements
the communication protocol used to exchange information about Service Level
Agreements and defines its specification. The reservation and allocation request
is issued by the agreement initiator. The Agreement layer is responsible for en-
suring that the guarantees defined in the “contract” – the Agreement – are
enforced by a suitable service provider. In addition, the Agreement layer defines
the mechanisms:

– to expose information about types of a service and the related agreement
offered (the Agreement templates),



Reservations for Compute Resources in Federated e-Infrastructure 83

– to handle the submission of service requests (the so-called agreement offers)
and submit them to the Agreement layer; one offer needs to comply with
at least one template exposed by the Agreement provider, to which it is
dispatched, and it has to meet the agreement creation constraints specified
in the corresponding Agreement template.

The Agreement layer relies on service providers. An Agreement is successfully
created if one or more service providers are able to enforce the guarantees asso-
ciated with it. The service provider is responsible for supervising the status of
a pool of resources and enforcing the agreed guarantees associated with them.
Each Agreement Factory can interact with one or more service providers. The
actual enforcement mechanisms supported by a given service provider, depend
on the type of technology the provider supports.

Generally speaking, not all the resource instances in one grid infrastructure
need to support service providers for reservation and allocation. The possibility
to do a reservation and an allocation depends on the type of technology the
resource is based on.

4 Results

The reservations in the PL-Grid Infrastructure are delivered based on the fol-
lowing policy. In order to allocate a reservation on resources, the request for
it should be registered in the PL-Grid grant system. Then, after the PL-Grid
grant is active, a user can apply for preparation of reservation. The user specifies
number of reserved slots and time of reservation (Max. res. total walltime). The
agreed reservation allows the user to request the reservation up to the limits
defined in the PL-Grid grant system, during application for the grant. There
are restrictions in delivery of reservations due to the local resource provider po-
licy: for example, minimum number of slots required, minimal walltime required
or period of inactivity of the user. The reservation can be cancelled, but the
user is charged for the time the reservation was active. The reservation time is
accounted as if the resources were used for all the declared time by the user.

4.1 Reservations in gLite

Using LRMS and VOMS Based Reservations with gLite. The schedu-
ling methods mentioned in Introduction form different requirements for service
providers and resource managements systems.

Co-allocation is not supported in gLite, although there is a proposed extension
to gLite architecture (see below).

Exclusive access to resources can be guaranteed by specifying in Job De-
scription Language (JDL) job description file attribute WholeNodes=yes. The
WholeNodes attribute indicates whether whole nodes should be used exclusively
or not.

Most LRMS support advance reservation, but even if a user or a Virtual
Organization (VO) manually agrees reservation with sites, it is impossible to



84 M. Radecki et al.

request a specific reservation identifier (ID) in the JDL job description. JDL
schema does not allow to specify additional parameters to be passed to LRMS.
Another problem is that user accounts are assigned dynamically by LCMAPS,
therefore there is no guarantee that the users can access reserved resources as
they can be mapped to another account. Static mapping is possible, but not
recommended. It is possible to create reservations for a Unix group, but then
all users from the VO group mapped to these user accounts can access the
reservation.

As gLite is strictly bound to Virtual Organisation concepts, it is recommended
to use VO to manage users and their privileges with VOMS [7]. VOMS allows for
elastic users management and users can have assigned specific roles, groups and
attributes. This can be used to reserve some resources for some users by mapping
different groups to different resources or can be used to specify a share in the re-
sources by assigning different share and priority to groups. In site configuration,
VOMS groups should be statically mapped to UNIX GIDs on CEs, LRMS shares
are defined statically according to UNIX GIDs. This approach is simple, but
static. It allows VO manager to dynamically assign individual users to different
groups in VOMS, but changes in share assignment have to be arranged manually
between VO manager(s) and sites. Dynamic share approach was implemented in
GPBOX [8], which was a tool that provided the possibility to define, store and
propagate fine-grained VO policies. It allowed to map users to service classes
and to dynamically change the association between users and classes. Succes-
sors of GPBOX are AuthZ and Argus [9]. The working principle is simple. The
Argus Authorization Service renders consistent authorization decisions basing
on authorization policies defined in XACML. The Policy Administration Point
(PAP) provides the tools to author authorization policies. The policies are then
automatically propagated to the interested entities, where these are evaluated
by a Policy Decision Point (PDP) and enforced by a Policy Enforcement Point
(PEP). The VO managers define Group, Roles and capabilities within a VO.
Then, they assign users to groups and grant them the possibility to ask for roles
(e.g. /vo.plgrid.pl/normalpriority, /vo.plgrid.pl/highpriority). The site adminis-
trator on his side defines a set of policies, describing the mapping between service
classes (e.g. low, medium, high), local unix groups and LRMS shares. The VO
manager defines policy for describing mapping between groups/roles and prede-
fined service classes and this policy can be changed dynamically. XACML se-
mantics allows much more complex policies, not just related to fair share, e.g. for
usage quota. By using VO groups, policies and additional VOMS attributes, it
is possible to implement the PL-Grid grants concept in gLite.

gLite Implementation ofGridResourceAllocation andAgreement Pro-
tocol. The gLite Reservation and allocation architecture was proposed in [10],
based on the agreement initiator, agreement service, agreement offer and service
provider concepts defined by the Grid Resource Allocation and Agreement Proto-
col working group of the GGF. The agreement initiator uses the agreement service
to obtain appropriate agreements with reservation and allocation service providers,



Reservations for Compute Resources in Federated e-Infrastructure 85

which are typically co-located with physical or logical resources. In the gLite ar-
chitecture, agreement initiators would include the workload management system
(WMS), the data scheduler (DS), and the user, while reservation and allocation
service providers would be associated with the logical representation of physical
resources: the computing element (CE), the storage element (SE), and the network
element (NE). Attributes defining reservation and co-allocation requests need to be
specified in the agreement template/offer, which is initially expressed in JDL. Later
on, during the translation to XML, attributes are placed in the Terms section of the
agreement offer [WS-AG] and can belong to two alternative subsections depend-
ing on their nature: the Service Description Terms (SDTs) and Service Properties
subsections. The Terms section provides a quantitative description of the service
requested. Both SDTs and Service Properties need to be mapped to corresponding
JDL attributes. The agreement template/offer expressed in JDL can specify gen-
eral attributes: Type (“reservation”, “allocation” or “coallocation”), ServiceCat-
egory (“computeElement”, “networkElement”, “storageElement”) and Functio-
nality (e.g. “virtualLeasedLine”, “spaceManagement”, “bulkTransfer”). For each
functionality, a set of specific attributes can be specified, e.g. “DurationTime”,
“SizeOfTotalSpaceDesiredInBytes”, “Bandwidth”, “FileTransferEndTime.

The proposed extension was not yet implemented in Workload Management
System WMS [11] and computing elements like CREAM.

4.2 Advance Reservation and Co-allocation of Resources
Capabilities in QosCosGrid Middleware

The QosCosGrid (QCG) middleware [12,13] is an integrated system, offering
advanced job and resource management capabilities to deliver to end-users super-
computer-like performance and structure. By connecting many distributed com-
puting resources together, QCG offers highly efficient mapping, execution and
monitoring capabilities for variety of applications, such as parameter sweep,
workflows, multi-scale, MPI or hybrid MPI-OpenMP. However, for many appli-
cation scenarios the typical best-effort model to access computational resources is
not satisfactory, and they require more advanced one, guarantying the requested
level of quality of service. Addressing such requirements, QCG, as a first grid
middleware offering access to PL-Grid resources, has exposed advance reser-
vation capabilities of the underlying Local Resources Management Systems to
end-users.

Researchers can benefit from advance reservations offered by QCG in many
ways. Firstly, the advance reservation can be directly used to book in advance
resources for a specific period of time. The scenario corresponds to the situation,
in which the scientist wants to perform series of experiments in known a priori
time frame. The time is here usually determined by any event. For example, the
access to resources must be synchronized with availability of some equipment,
date of presentation or lecture. To the created in such a way reservation one can
later submit many tasks to be started without typical delay caused by waiting
in a queue.



86 M. Radecki et al.

While requesting for the reservation, a user can specify a list of potential
resources (so called candidate hosts) as well as resource and time requirements.
QCG can automatically search over all candidate hosts, within user-defined time
window, for free resources and for the requested period of time. With QCG it is
possible to reserve either a given number of slots located on arbitrary nodes or
to request for particular topology by specifying number of nodes and slots per
node.

At present, the advance reservations can be created and managed using
command-line tools (the QCG-SimpleClient client) or graphical, calendar like,
QCG-QoS-Access web application (the Reservation Portal) [14]. Both these tools
are clients to the QCG-Broker service and can be used to create new reservations
as well as to manage existing ones.

In the QCG-QoS-Access portal, the user can create a new reservation with
the intuitive dialog, in which he can specify all requirements and preferences –
see Fig. 1. The created reservations are displayed in the portal in a form of a list,
where each position includes information about current status of reservation as
well as provides a report about reserved resources. If the user wants to resign
from the reservation, he can cancel it and release blocked resources.

Fig. 1. The QosCosGrid reservation portlet

Creation and management of reservations can be also performed using QCG-
SimpleClient. The QCG-SimpleClient is a set of command line tools, inspired by
the simplicity of batch system commands. The tools are dedicated to end-users fa-
miliar with queuing systems and preferring the command line interface over graph-
ical or web solutions. The learning effort needed to start using QCG-SimpleClient
is relatively small as the commands are modeled after the ones known from batch
systems. The qcg-* command-line tools allow a user to submit, control and monitor
jobs as well as to create and manage reservations. The complete list of commands



Reservations for Compute Resources in Federated e-Infrastructure 87

can be found in [12]. In the context of the advance reservation, the following tools
are particularly important:

– qcg-reserve – creates the reservation and returns its identifier,
– qcg-rcancel – cancels the given reservation(s),
– qcg-rinfo – displays comprehensive information about the given reserva-

tion(s),
– qcg-rlist – lists reservation in the system meeting defined criteria.

Every reservation request has to be described in a formal way. The default de-
scription format supported by QCG-Client is QCG-Simple. The format does not
allow yet to describe more sophisticated scenarios like co-allocation of resources
(supported by the XML format called QCG-JobProfile), but is fully sufficient for
most of typical cases. The QCG-Simple format description file is a plain BASH
script annotated with #QCG directives, what is also a common approach for
all modern queuing systems. The #QCG directives inform the system how to
process the task and, in case of the reservation, about user’s requirements and
preferences. Listing 1 presents an example of a QCG-SimpleClient reservation
request for 4 slots on nova cluster for one hour on 2014.01.25, between 8 am and
4 pm.

#QCG host=nova

#QCG walltime=PT1H

#QCG procs=4

#QCG not-before=2014.01.25 8:00

#QCG not-after=2014.01.25 16:00

Listing 1. An example of a QCG-Simple reservation description

Detailed information about the created reservation can be obtained with qcg-
rinfo. The output of this command for our example reservation is presented in
Listing 2.

In contrary to the scenario presented above, in which creation of a reserva-
tion and submission of jobs to it are separated steps, QCG also supports the
scenario, where the reservation is created especially for a job as a part of sub-
mission process. This approach allows to provide the requested level of quality
of service with granularity of a single task and to automate the process of ma-
naging resources. In such a case, the reservation directives extend directly the
task description, while the created reservation is automatically canceled by the
system at the end of task execution.

Except direct usage of the advance reservation by end-users, it can be also
exploited internally by QCG services for more advanced scenarios like cross-
cluster execution of parallel or multi-scale applications. For such applications,
distribution across many resources may be required for two reasons. The first one
is related to the heterogeneous resource requirements of processes constituting



88 M. Radecki et al.

qcg-rinfo R1389951946104__2181

UserDN: /C=PL/O=PL-Grid/O=Uzytkownik/O=PCSS/CN=Tomasz Piontek/CN=plgpiontek

SubmissionTime: Fri Jan 17 10:45:46 CET 2014

DescriptionType: QCG_SIMPLE

StartTime: Sat Jan 25 08:00:00 CET 2014

EndTime: Sat Jan 25 09:01:00 CET 2014

Status: RESERVED

TotalSlotsCount: 4

InUse: false

HostName: nova.wcss.wroc.pl

ProcessesGroupId: qcg

SlotsCount: 4

LocalReservationId: R5949627

Node: wn448 SlotsCount: 2

Node: wn452 SlotsCount: 2

Listing 2. An example output of qcg-rinfo command

an application, what is tightly connected with the QCG support for groups of
processes and communication topologies. The second one addresses the problem
of decomposition of a big task among many resources to enable more complex
problem instances, decrease cluster “defragmentation” and to improve resource
utilization on the whole system level.

The reservation mechanism is applied in the scheduling process to co-allocate
resources and then to synchronize execution of application parts in a multi-
cluster environment. QCG supports both the strict and best-effort approaches to
resource reservation. In the former approach, resources are reserved only if user’s
requirements can be fully met (also known as the “all or nothing” approach),
whereas in the latter case, the system reserves as much resources as possible,
but gives no guarantee that all requested resources (cores) will be available. This
feature allows to construct flexible algorithms of processes allocation, in which
a whole group of processes can be assigned to a single node or even distributed
across many clusters.

QosCosGrid successfully integrates various services and aforementioned tools
to deliver to PL-Grid users an e-Infrastructure capable of dealing with various
kinds of computationally intensive simulations, including ones that require the
requested quality of services. The high-level architecture of the QCG middleware
is shown in Fig. 2.

In general, the middleware consists of two logical layers: grid and local one.
The basic advance reservation capabilities are offered by the local-level QCG-
Computing service, usually deployed on access nodes of batch systems (like
Torque or SLURM). The service provides remote access to capabilities of local
batch systems. The job submission capabilities of QCG-Computing are exposed
via an interface compatible with the OGF HPC Basic Profile [15] specification,
while the integration with a queuing system is realized using DRMAA [16]. As



Reservations for Compute Resources in Federated e-Infrastructure 89

Fig. 2. The QosCosGrid middleware architecture

the first version of DRMAA specification does not address the advance reser-
vation approach, the QCG-Computing specific interface (with a dedicated de-
scription language) was proposed to support this capability. Currently, in QCG,
advance reservations are created by calling LRMS scheduler commands directly,
while in the future leverage of Advance Reservation API of Open Grid Forum
DRMAA 2.0 [17] specification is planned. What is important, flexible configura-
tion allows the local system administrators to keep the full control over resources
that can be reserved, limiting for example advance reservation capabilities only
to a single system partition.

More advance scenarios, like reservations in multi-cluster environment and
co-allocation of resources, are supported by the grid-level service, called QCG-
Broker, which benefits from QCG-Computing capabilities for a single cluster.
The QCG-Broker service, using the adaptive mechanism to determine a time
window for a reservation, tries to allocate resources on machines meeting user’s
requirements. In order to gather the requested amount of resources, the proce-
dure of selection is performed in a loop. If the amount of reserved resources is
not satisfactory, the resources are released and the whole procedure is repeated
for the next time window.

Within the MAPPER project [18], the QosCosGrid stack has been integrated
with the MUSCLE library [19], enabling cross-cluster execution of so-called



90 M. Radecki et al.

multi-scale applications. The common multi-scale application consists of num-
ber of single-scale modules that calculate some phenomena on different spatial or
temporal scales and simultaneously exchange information with each other. Since
the elementary modules can be written in different languages and have different
resource requirements, the QosCosGrid ability to combine many clusters into
the single virtual machine is crucial.

4.3 Reservations in UNICORE

The UNICORE [20] server side included basic resource reservation support for
a long time, however only the Maui scheduler was supported and the reservation
functionality was not enabled out of the box, conversely, it required manual
integration. Especially, the client side support was missing, making the feature
unusable without a dedicated development effort.

Since the version 6.5.1 of the UNICORE servers release (around the end of
2012), the resource reservations support was enhanced to support SLURM and
is integrated by default in the official UNICORE distribution. This work was
greatly influenced by the input and contributions coming from the PLGrid Plus
project. At the same time, the resource reservation control interface was added
to the UNICORE Command line Client (UCC).

The infrastructure is shown in Fig. 3.
UNICORE support for resource reservations is divided into two distinct parts:

reservations management support and submission of jobs to a reservation. This

Fig. 3. UNICORE resource reservation processing: management (left side) and usage
(right side)



Reservations for Compute Resources in Federated e-Infrastructure 91

approach covers a common situation where resource reservation functionality is
not directly exposed to end-users and they can only submit jobs to reservations
created by the site staff or external tools.

The UNICORE server side advertises for each grid site whether it supports
reservations or not. For those sites supporting reservations, a user can create
a reservation, list owned reservations and delete some of the previously created.
It is worth to underline here that the complex reservation resources as CPUs,
nodes or duration are all specified using the same syntax as the resource require-
ments for an ordinary UNICORE job. Therefore, the user is not faced with the
differences between various schedulers.

Submitting a job to a reservation is a simple task: it is enough to set the
reservation identifier in the job’s resource requirements. While the reservations
management support is only available in the UCC client, the submissions of jobs
to reservations is available in both UCC and UNICORE Rich Client (URC).

Server side reservations handling is performed in a similar way to job pro-
cessing: the Unicore/X Web Service component is the site’s entry point talking
to clients. It forwards the requests to the Target System Interface (TSI) server,
which maps an abstract grid reservation related operation to something mea-
ningful to the scheduler being used. It should be noted here that the reservation
related operation, while similarly handled as a classic job, has its own (simpli-
fied) processing pipeline. This approach is probably correct, taking into account
the fundamental lifecycle differences between a resource reservation and a grid
job, however it also results in some limitations. Probably the most important
one is that the functionality of the UNICORE incarnation tweaker1 subsystem
is not available for reservations.

The most significant contribution of the PLGrid Plus project to UNICORE
resource reservations subsystem was a complete UNICORE TSI reservations
management module for SLURM. What is more, the Maui module was updated
and fixed in several places.

The most difficult parts of reservations handling in UNICORE are related
to reservations accounting and authorization of reservation management. In the
PL-Grid Infrastructure we have decided not to include any of those functions in
the grid layer. This decision was dictated by the fact that direct access to com-
puting sites is generally possible, so the accounting and authorization must be
anyway solved on the lower, resource scheduler layer. Still, UNICORE provides
some integration points with respect to those issues. It is possible to authorize
reservation management operations on the Web Service level using the stan-
dard UNICORE authorization policy. The limitation of this approach is that
the authorization is coarse grained: only the complete functionality access can
be controlled, it is not possible to authorize basing on particular reservations or
parameters (e.g. to ban reservations longer then a given value).

1 Incarnation tweaker is a UNICORE server’s feature allowing for nearly unlimited
inspection and modification of the submitted job. It is used to fix common mistakes
in a job description, add site specific settings, enforce required options and finally
trigger additional actions for selected jobs.



92 M. Radecki et al.

The accounting of reservations in UNICORE is not supported. The only in-
tegration point is the TSI script, which can be modified to invoke accounting
operations. However, besides the statistical knowledge about the amount of reser-
vations made through UNICORE, the actual accounting of resource reservations
should be made on the scheduler level to accommodate all reservation changes
made externally to UNICORE.

We can conclude with the statement that our evaluation and deployment of
UNICORE reservations was successful. All the basic features are currently ena-
bled in the infrastructure and we support both Maui and SLURM schedulers,
which are deployed in PL-Grid. The generally available SLURM support in UNI-
CORE was contributed by the PLGrid Plus project. Beside those achievements,
we can also point out limitations of the solution: PBS Pro is not supported
while it is used by one of the PL-Grid Infrastructure sites. There is no support
for higher, grid-level reservations. Functionality to broker reservations (i.e., to
create them at any site fulfilling the given reservation resource requirements) is
missing and could improve the user experience as well as the support for coor-
dinated multi-site reservations. Nevertheless, we can underline that the above
problems are rather minor, taking into account that not all sites in the infras-
tructure allow for the end user controlled resource reservation creation, due to
well-known risks (related for instance to computational resource wasting).

5 Summary and Future Work

The functionality of the advance reservation is very comfortable for the user.
However, it should be used in an efficient way in order not to waste resources at
HPC clusters. Thus, usage of reserved resources is monitored and accounted. The
user negotiates with a resource provider separately wall clock time to be spent on
reserved resources and total time in the PL-Grid grant. The time spent in batch
jobs is accounted based on PBS standard logs. The accounting of reservations
requires additional logging. In Moab, they are triggered by pre-agreed actions,
e.g. reservation ready, reservation removed. The next step would be integration
of these two sources of information about reservations and jobs (PBS logs and
reservation logs) to avoid double charging the user for jobs executed within
reservation and to charge the user for unused reservations.

References

1. Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrstedt, K., Roy, A.: A Distributed
Resource Management Architecture that Supports Advance Reservations and Co-
allocation. In: Proceedings of the 7th International Workshop on Quality of Service,
London, UK (1999)

2. XSEDE project web page, https://www.xsede.org/overview
3. Metascheduling Requirements Analysis Team report,

http://www.teragridforum.org/

mediawiki/images/b/b4/MetaschedRatReport.pdf

https://www.xsede.org/overview
http://www.teragridforum.org/mediawiki/images/b/b4/MetaschedRatReport.pdf
http://www.teragridforum.org/mediawiki/images/b/b4/MetaschedRatReport.pdf


Reservations for Compute Resources in Federated e-Infrastructure 93

4. MacLaren, J.: HARC: The Highly-Available Resource Co-allocator. In: Meersman,
R. (ed.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1385–1402. Springer, Heidelberg
(2007)

5. Casajus, A., Graciani, R., Paterson, S., Tsaregorodtsev, A.: DIRAC Pilot Frame-
work and the DIRAC Workload Management System. Journal of Physics, Confe-
rence Series 219, 062049 (2010)

6. The Grid Resource Allocation and Agreement Protocol Working Group, Global
Grid Forum, https://forge.gridforum.org/projects/graap-wg

7. VOMS home page, http://italiangrid.github.io/voms/
8. Guarise, A.: Policy management and fair share in gLite. In: HPDC 2006, Paris

(2006)
9. Argus Authorization Service,

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

10. Ferrari, T., Ronchieri, E.: gLite Allocation and Reservation Architecture. EGEE
JRA1 technical report (2005), http://edms.cern.ch/document/508055

11. Job Description Language Atrribute Specification for the Workload Management
System, https://edms.cern.ch/file/590869/1/WMS-JDL.pdf

12. Bosak, B., Kopta, P., Kurowski, K., Piontek, T., Mamoński, M.: New QosCosGrid
Middleware Capabilities and Its Integration with European e-Infrastructure. In:
Bubak, M., Kitowski, J., Wiatr, K. (eds.) PLGrid Plus. LNCS, vol. 8500, pp. 34–
53. Springer, Heidelberg (2014)

13. Bosak, B., Komasa, J., Kopta, P., Kurowski, K., Mamoński, M., Piontek, T.: New
Capabilities in QosCosGrid Middleware for Advanced Job Management, Advance
Reservation and Co-allocation of Computing Resources – Quantum Chemistry Ap-
plication Use Case. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011.
LNCS, vol. 7136, pp. 40–55. Springer, Heidelberg (2012)

14. Kurowski, K., Dziubecki, P., Grabowski, P., Krysiński, M., Piontek, T., Szejnfeld,
D.: Easy Development and Integration of Science Gateways with Vine Toolkit.
In: Bubak, M., Kitowski, J., Wiatr, K. (eds.) PLGrid Plus. LNCS, vol. 8500,
pp. 147–163. Springer, Heidelberg (2014)

15. HPC Basic Profile Version 1.0, http://www.ogf.org/documents/GFD.114.pdf
16. Troger, P., Rajic, H., Haas, A., Domagalski, P.: Standardization of an API for

Distributed Resource Management Systems. In: Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the Grid, CCGRID 2007,
pp. 619–626. IEEE Computer Society, Washington, DC (2007)

17. Distributed Resource Management Application API Version 2 (DRMAA),
http://www.ogf.org/documents/GFD.194.pdf

18. Ben Belgacem, M., Chopard, B., Borgdorff, J., Mamoński, M., Rycerz, K.,
Harȩżlak, D.: Distributed multiscale computations using the mapper framework. In:
Alexandrov, V.N., Lees, M., Krzhizhanovskaya, V.V., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS. Procedia Computer Science, vol. 18, pp. 1106–1115. Elsevier (2013)

19. Borgdorff, J., Mamoński, M., Bosak, B., Kurowski, K., Ben Belgacem, M., Chopard,
B., Groen, D., Coveney, P.V., Hoekstra, A.G.: Distributed multiscale compu-
ting with muscle 2, the multiscale coupling library and environment. CoRR,
abs/1311.5740 (2013)

20. Streit, A., et al.: UNICORE 6 – Recent and Future Advancements. Annals of
Telecommunications 65(11-12), 757–762 (2010)

https://forge.gridforum.org/projects/graap-wg
http://italiangrid.github.io/voms/
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
http://edms.cern.ch/document/508055
https://edms.cern.ch/file/590869/1/WMS-JDL.pdf
http://www.ogf.org/documents/GFD.114.pdf
http://www.ogf.org/documents/GFD.194.pdf

	Reservations for Compute Resourcesin Federated e-Infrastructure
	1 Introduction
	2 Related Work
	3 The Grid Resource Allocation and Agreement Protocol
	4 Results
	4.1 Reservations in gLite
	4.2 Advance Reservation and Co-allocation of Resources Capabilities in QosCosGrid Middleware
	4.3 Reservations in UNICORE

	5 Summary and Future Work
	References




