
Uniform and Efficient Access to Data

in Organizationally Distributed Environments

�Lukasz Dutka1, Renata S�lota2, Micha�l Wrzeszcz1,
Dariusz Król1,2, and Jacek Kitowski1,2

1 AGH University of Science and Technology, ACC Cyfronet AGH,
ul. Nawojki 11, 30-950 Kraków, Poland

2 AGH University of Science and Technology,
Faculty of Computer Science, Electronics and Telecommunications,

Department of Computer Science,
al. Mickiewicza 30, 30-059 Kraków, Poland

{dutka,rena,wrzeszcz,dkrol,kito}@agh.edu.pl

Abstract. In this article, the authors present a solution to the prob-
lem of accessing data in organizationally distributed environments, such
as Grids and Clouds, in a uniform and efficient manner. An overview
of existing storage solutions is described, in particular high-performance
filesystems and data management systems, with regard to the provided
functionality, scalability and configuration elasticity. Next, a novel solu-
tion, called VeilFS, is described in terms of objectives to attain, its archi-
tecture and current implementation status. In particular, the mechanisms
used for achieving a desired level of performance and fault-tolerance are
discussed and preliminary overhead tests are presented.

Keywords: storage system, data management system, virtual file sys-
tem, distributed environment, Grid.

1 Introduction

We are observing a fast growth of the digital universe [7]. However, the increa-
sing number of powerful computing environments is more challenging than the
increase in the overall data volume. The data not only has to be stored, but
it also has to be processed. This problem is often called the Big Data revolu-
tion [11] and addresses such issues as the variety of data and the processing speed
required to unlock the potential of access to such an amount of information. The
processing of large volumes of diverse data with a satisfactory performance re-
quires use of appropriate storage systems. Moreover, different requirements of
user groups make it necessary to install heterogeneous storage systems managed
by advanced data management systems for efficient storage resources usage and
provisioning.

We have investigated data access requirements of PL-Grid Infrastructure users
[9]. Thirteen groups of users representing essential science disciplines are sup-
ported by the PLGrid Plus project, namely: AstroGrid-PL, HEPGrid, Nanotech-
nologies, Acoustics, Life Science, Quantum Chemistry and Molecular Physics,

M. Bubak et al. (Eds.): PLGrid Plus, LNCS 8500, pp. 178–194, 2014.
c© Springer International Publishing Switzerland 2014



Uniform and Efficient Access to Data in Distributed Environments 179

Ecology, SynchroGrid, Energy Sector, Bioinformatics, Health Sciences, Mate-
rials, and Metallurgy. As the PL-Grid Infrastructure spans across five biggest
academic computer centers in Poland, most of these groups need to access their
data located in different sites and storage systems. A common use case involves
users who schedule computations to all available sites to generate data, e.g. as
part of a data farming experiment [10], and then collecting the data in a single
site to extract meaningful information.

The PL-Grid Infrastructure provides various storage systems fulfilling diffe-
rent requirements: “scratch” for intermediate job results, “storage” for final job
results, and LFC/DPM for long-term data storage. “Scratch” and “storage” sys-
tems are file systems used locally within each site, while LFC/DPM is a global so-
lution, accessible through a dedicated API, appropriate for data sharing between
sites. Even within a single PL-Grid site, efficient data management is a challen-
ging task, especially when involving the data access quality requirements, due to
dealing with workload balancing between multiple storage resources abstracted
by a single file system [14,15]. The users’ quality requirements, defined using
SLA, are an important aspect of resource management, as well as an important
aspect of users’ accounting [16].

The analysis of the PL-Grid Infrastructure users’ requirements has shown
that access to data is often too complicated [13]. The variety of possible storage
solutions confuses users. Users expect that data access will be simple using one
tool. The distribution of large scale computational environments should not cre-
ate new barriers, but should provide new opportunities such as intra-community
data sharing and collaboration.

The data access may be simplified by administrators of computing centers
who can create special storage spaces for particular groups of users. However, it
complicates the work of administrators and causes problems in the infrastructure
maintenance when a lot of storage spaces is created and supported. Tools that
will help the administrators with such management of various storage systems
will be useful for them.

In this article, the authors introduce a system operating in the user space (i.e.,
FUSE), called VeilFS, which virtualizes organizationally distributed, heteroge-
neous storage systems to obtain uniform and efficient access to data. A single
VeilFS instance works at a data center site level, but can also cooperate with
instances from other sites to support geographically distributed organizations or
separated organizations, which share resources on a federation level.

The rest of the article is organized as follows. Section 2 presents other pos-
sible solutions to the problem of accessing data in organizationally distributed
environments and shows their shortcomings. The proposed VeilFS system archi-
tecture is widely described in Section 3. Section 4 shows the current state of
VeilFS’s implementation and preliminary tests results. Finally, Section 5 con-
cludes the article.



180 �L. Dutka et al.

2 State of the Art

In distributed environments, storage resources are provided to users through one
of two types of systems: (1) high-performance file systems and (2) data manage-
ment systems. Solutions of the former type intend to provide access to storage
resources in an optimized for performance manner. They are built on top of
dedicated storage resources, e.g. RAIDs, and they expose a POSIX-compliant
interface. They can be used during computation to store results, which exceed the
capacity of a single hard drive. Examples of such solutions include GlusterFS [3],
CephFS [1], and Scality RING [5]. Despite providing similar functionality, these
systems differ in implementation, which influences their non-functional features.
For instance, to resolve the actual location of data, GlusterFS uses an elastic
hashing algorithm (each node is able to find the location of the data algorithmi-
cally, without use of a metadata server), CephFS uses a metadata server, while
Scality RING utilizes a routing-based algorithm within a P2P network. Most of
them are scalable, while strictly avoiding architectural bottlenecks. The choice
which one to use should depend on the actual requirements, e.g. low latency or
support for dynamic reconfiguration. However, they are not suitable for Grids
due to limited support for federalization, which is essential in organizationally
distributed environments such as Grids.

The second type of solutions for exposing the storage resources are data mana-
gement systems. Such systems are oriented towards high-level data management,
e.g. to provide data accessibility between sites, rather than high-perfor-mance
data access. They aim at providing an abstraction layer on top of storage re-
sources across multiple organizations, which exposes a single namespace for data
storage. In addition, many of such systems facilitate data management by en-
abling administrators to define data management rules, e.g. w.r.t. archiving the
unused data. Examples of such systems include Parrot [17], iRODS system [8],
[12], and DropBox [2]. The main goal of these systems is to enable data access
from anywhere in a uniform way, e.g. Parrot utilizes the ptrace debugging inter-
face to trap the system calls of a program and replace them with remote I/O
operations. As a result, remote data can be accessed in the same way as local
files. Data integration in the iRODS system is based on a metadata catalog –
iCAT – which is involved in the processing of the majority of data access re-
quests. The metadata catalog is implemented as a relational database, hence it
can be considered as a bottleneck of the whole system.

The analyzed systems were compared (see Table 1) according to the following
features:

– high-performance data access,
– data location transparency,
– support for data management rules,
– POSIX-compliant interface,
– decentralized management.

The first thing to notice is that there is no system, which would provide
all the mentioned features. High-performance file systems provide efficient data



Uniform and Efficient Access to Data in Distributed Environments 181

Table 1. Comparison of storage exposing solutions

System
High-
performance

Location
transparency

Management
rules

POSIX-
compliancy

Decentralized
management

GlusterFS Yes Yes No Yes No

CephFS Yes Yes No Yes No

Scality RING Yes Yes Yes Yes No

Parrot No Yes No Yes No

iRODS No No Yes Yes Yes

DropBox No Yes N/A No No

access, but they lack data management capabilities, while data management
systems provide management-related capabilities, but they do not ensure high-
performance. As a result, the users have to utilize high-performance systems
during computations in one site, but a data management system has to be used
during access to the generated data from other sites. Moreover, administrators
have multiple storage solutions to manage, which can be error-prone and ineffi-
cient.

3 A Unified Data Access Solution for Organizationally
Distributed Environments – VeilFS

Below we describe our solution to the problem of accessing data stored in or-
ganizationally distributed environments in an efficient and uniform way, named
VeilFS, implemented as a virtual file system. We start with a summary of the
functionality provided by our system. Next, we discuss its architecture and its
internal components.

3.1 Functionality Overview

The VeilFS system provides a unified and efficient access to data stored in or-
ganizationally distributed environments, e.g. Grids and Clouds. From the user
point of view, VeilFS:

– Provides a Uniform and Coherent View on All Data Stored on the
Storage Systems Distributed Across the Infrastructure. The user of
geographically distributed organization can perform many tasks simultane-
ously. The tasks may be executed in one or many locations. Using VeilFS,
all user’s processes see all data stored in all sites. If the needed data is not
stored locally, it is migrated by the system. The user can also mount VeilFS
on her/his PC and access the data as if it was stored on a local hard drive.

– Supports Working in Groups by Creation of an Easy-to-Use Shared
Workspace for Each Group. Users are able to share data inside a group
by simply moving the data to an appropriate directory.



182 �L. Dutka et al.

– Supports Data Sharing. Users are able to publish a file obtaining a unique
URL. Until canceled by the owner, anyone is able to download the file using
the obtained URL. However, only the owner is able to modify the file.

– Serves Data Efficiently. The system is designed to minimize overheads
and provide data from remote storages as fast as possible.

Fig. 1. Functionalities provided by VeilFS

However, simplification of the system for the users results in an increase in
the number and difficulty of management tasks that have to be done by adminis-
trators or automaton. Hence, VeilFS provides functionalities that also facilitate
administrators’ work:

– Gathering and visualizing of the infrastructure state monitoring data – each
storage system supervised by VeilFS is monitored to provide the adminis-
trators with an insight into storage utilization.

– Rule-based data management – automatic data management can be per-
formed on the basis of rules specified by administrators, e.g. the rarely used
data can be automatically migrated from fast to cost-effective storage. The
optimization of use of storage resources is transparent to the users.

– Data protection from unauthorized access – the system is integrated with
grid and Linux security systems to protect the data.

Both points of view are summarized in Fig. 1.
Such a wide set of functionalities implies that VeilFS can be perceived as a file

system (it provides access to files), but on the other hand it can be treated as
a data management system, because it manages the data on storage systems
beneath it.



Uniform and Efficient Access to Data in Distributed Environments 183

3.2 High-Level Architecture of VeilFS

An exemplary environment where VeilFS works is depicted in Fig. 2. This envi-
ronment contains two sites. In each site an instance of VeilFS is installed. The
most important element is Data Management Component, which coordinates
the system’s operation in the site and processes client requests. It consists of
a set of cooperating modules, which may be deployed to a cluster to increase the
throughput of the component. It is connected to a database (DB), which stores
information about metadata, e.g. the mappings of logical filenames to the actual
data location on a storage. Each site has its own Data Management Component
with DB.

Fig. 2. Exemplary environment with VeilFS

The site usually contains many Computing Elements where users’ processes
are executed. Computing Elements are connected to Storage Systems where
users’ data is stored. Storage Systems in sites are usually organized as high
performance systems with high capacity (e.g. Lustre) rather than simple hard
disks. Not all Computing Elements must be connected to all Storage Systems,
in contrary to the machines where Data Management Component is deployed.

There can be three levels of utilization of VeilFS:

– site level, i.e., a single data center being a part of a single organization,

– organization level (also geographically distributed organization), i.e., a single
organization, which spans across one or more sites,

– federation level, i.e., separated organizations cooperating together to achieve
a common goal, yet maintaining their autonomy.



184 �L. Dutka et al.

There is no difference between the deployment of components when instances
of VeilFS are cooperating within an organization or a federation. The difference
is in the administration – VeilFS instances that belong to the same organization
can cooperate more closely.

3.3 System Clients and Protocols

End users access the data stored within VeilFS through one of the provided user
interfaces:

– FUSE client, which implements a file system in user space to cover the data
location and exposes a standard POSIX file system interface,

– Web-based GUI, which allows data management via any Internet browser,
– REST API.

The simplest way of usage is a Web based GUI. The Internet browser installed
on a user’s PC connects to Data Management Component using safe protocols.
After authentication, the user is able to perform several operations on files,
e.g. download, upload or publish.

The FUSE client operates on files as if they were stored locally. It may be
installed on Computing Elements within a site, or on a user PC. The client
provides a file system in user space, which translates a logical file name to the
actual data location on a storage system. To do the translation, the file system
communicates with Data Management Component. The system intends to pro-
vide efficiency sufficient for high-performance applications, therefore it operates
on the data locally whenever it is possible (in many cases Computing Elements
are connected using a shared storage within a site). If the data is not reachable
locally, the system provides the data from a remote storage system as efficiently
as possible. Data Management Component has access to all storages in a site
so it may copy the data to the storage, to which the client has direct access, or
stream data to the client. VeilFS covers the management of temporary copies
according to the rules specified previously by administrators, e.g. only the re-
quired blocks of a file can be copied in case of large datasets. If the client is
located in a different site than the data, the instances of Data Management
Component of both sites cooperate to increase the data transfer speed – the
data is copied using an own protocol that allows for utilization of many hosts
and many channels at the same time. The client from outside connects to the
Data Management Component instance using DNS, where Data Management
Component instances register information about users. When the data is not
reachable locally, advanced buffering and prefetching algorithms are used.

VeilFS provides a REST programming interface to enable integration with
other applications, which handle user data, e.g. domain-specific web portals.
Another example is grid scheduling systems, which can decide to execute a grid
job in a particular site, based on information about the required data location
obtained through the REST API. Moreover, the scheduling system may request
a transfer of the remaining data to the site where the job will run while this job
is queued.



Uniform and Efficient Access to Data in Distributed Environments 185

3.4 Data Management Component Architecture

Inside the Data Management Component we can distinguish between a few lo-
gical elements that perform specific tasks. We call them modules. The modules
are listed below and shown in Fig. 3:

– fslogic – it is responsible for mapping the logical filenames to the real loca-
tions of data. It handles requests from FUSE clients.

– dao – this module performs operations in database.
– rtransfer and gateway – they are responsible for transfer of data between

sites. One rtransfer can cooperate with many gateways. The gateway trans-
fers parts of the data while the rtransfer coordinates requests (there may
be many requests for transfer of the same data) and splits data between
gateways to increase the transfer.

– control panel – this module handles requests from web-based GUI.
– remote files manager – this module mediates between the FUSE client and

storage during I/O operations when the FUSE client is not directly connected
to the storage where data is located (e.g. it is installed at user’s PC).

– dns – it provides answers to DNS queries. It is part of the load balancing
system described later in this article.

– cluster rengine – it handles the events used for monitoring and executes rules
triggered by these events.

– rule manager – this module allows for definition of management rules by
administrators.

– central logger – it gathers logs from all the nodes of the system in one place.

Analysis of exemplary use cases can help understand the functionality of each
module. When a user writes some data using FUSE client on his/her PC, the
client sends a DNS request to identify, to which machine it should connect to per-
form further operations. The answer is formulated by the dns module. Next, the
client sends a request to fslogic to resolve the location of data. fslogic obtains this
information from the database through dao. When the data should be written to
a remote storage, the client writes this data sending it to remote files manager.

Afterwards, when the user wants to read other file, the client again uses fslogic
to get location of the desired data. If the data is located in other site, it returns
the information where the data will be copied and sends a request to rtransfer
to download the needed data. rtransfer chooses instances of the gateway module
that should perform the transfer and sends requests to them. The data may
be split across many gateways when a large amount of data is requested (it is
possible due to the use of the prefetching algorithms).

Administrators can define some rules, e.g. quota check every 10 000 writes
performed by the user. It is done by defining a rule via the web-based GUI. GUI
requests are handled by the control panel module, which, in this case, sends
a request of rule definition to rule manager. rule manager sends the definition
of the rule to cluster rengine and requests all connected clients to produce write
events. The newly connected clients (e.g., recently installed on users’ PCs) will
download a list of events to be produced during the initialization. Then, when the



186 �L. Dutka et al.

Fig. 3. Data Management Component modules

user performs a write operation, the write event is produced. If the administrator
wishes to, the events are initially aggregated at the client-side, to reduce the load
of network interfaces, and then sent to cluster rengine, which counts events and
performs the rule when at least 10 000 events have appeared.

3.5 Security

Data Management Component should be deployed on machines that are con-
nected by internal network protected by a firewall. Only two ports should be
opened: 53 for DNS and 443 for communication with clients, which is possible
only using encrypted transmission (SSL).

The VeilFS authentication mechanisms are integrated with mechanisms al-
ready existing in PL-Grid so the user may use the PL-Grid certificate to mount
the FUSE client or log-in to the web-based GUI. Additionally, proxy certificates
generated with the PL-Grid certificates are also supported to enable the use of
the FUSE client inside grid jobs. The web-based GUI cooperates with PL-Grid
OpenID to automatically download additional information about users so the
user is also able to log-in to GUI using the PL-Grid username and password.

The authorization mechanism is based on the fact that the sender of each
request can be identified using data from his/her certificate or OpenID. Thus,
the users’ spaces in the database, that store information about data location,
can be separated – the space connected with the request is automatically chosen.
It is impossible to modify the data from other users’ spaces.

The PL-Grid user accounts are automatically mapped to operating system
accounts on all Computing Elements inside the sites. The data on the storage



Uniform and Efficient Access to Data in Distributed Environments 187

is created with adequate permissions so it is not possible to read the data that
belongs to other user directly from the storage system.

FUSE clients installed outside all sites (on users’ PCs) perform operations
on the storage through Data Management Component that works with root
permissions. Data Management Component verifies if the sender of a request
has appropriate permissions to operate on a chosen data, because one might try
to operate on other user’s data by sending specially prepared requests of storage
operations.

3.6 Deployment

Data Management Component has to manage thousands of clients working si-
multaneously. Furthermore, each client can generate several requests per second.
Thus, one of the main non-functional requirements for Data Management Com-
ponent is providing high-performance in terms of processed requests per second.
For this reason, Data Management Component was written in Erlang, which
provides very lightweight processes in comparison with standard operating sys-
tem processes. To provide the implementation of basic language elements such as
lightweight processes, Erlang has a dedicated Execution Environment – Erlang
Virtual Machine. Erlang supports two types of applications – Erlang Applica-
tion and Erlang Distributed Application. Erlang Application is executed inside
a single Erlang Virtual Machine while Erlang Distributed Application links se-
veral Erlang Virtual Machines. At the start, Erlang Distributed Application is
initialized on many Erlang Virtual Machines. However, all but one instances are
paused immediately after the initialization. If the working instance fails, one of
the paused instances is automatically resumed.

Data Management Component is deployed on a dedicated cluster of nodes us-
ing two types of applications that cooperate to provide the needed functionality:

– Erlang Worker Application (EWA), which hosts the modules (see subsec-
tion 3.4). It is a standard Erlang Application.

– Erlang Management Distributed Application (EMDA), which manages the
cluster. It is an Erlang Distributed Application.

On each node, where Data Management Component is deployed, EWA is
started. EMDA is started on chosen nodes. EWA and EMDA do not share Erlang
Virtual Machine – if the node hosts them both, two instances of Erlang Virtual
Machine are launched.

The nodes are physical or virtual machines. It is recommended to use physical
machines to increase hardware fault tolerance (if a deployment is based on virtual
machines, a hardware problem may cause a crash of many Virtual Machines –
in the worst case it can be a crash of Virtual Machines that host all instances of
EMDA). A deployment on a 5-node cluster is depicted in Fig. 4. Summarizing,
the cluster nodes can be split into three groups:

– Management Master Node that hosts EWA and EMDA. On this node EMDA
is working.



188 �L. Dutka et al.

Fig. 4. Data Management Component exemplary deployment



Uniform and Efficient Access to Data in Distributed Environments 189

– Management Reserve Master Nodes that host EWA and EMDA. Instances
of EMDA are paused on these nodes.

– Management Slave Nodes that host only EWA.

When the Management Master Node fails, one of Management Reserve Master
Nodes resumes EMDA and becomes the Management Master Node.

To provide the requested functionality and meet non-functional requirements,
several application elements have been implemented using Erlang (see Fig. 4):

– Module Host – an element that executes the code of a chosen module (see 3.4).
– Central Manager – an element that coordinates all nodes, which are part of

Data Management Component.
– Application Manager – an element that monitors the state of the node where

the application is deployed and provides information about the node state
to the Central Manager.

– Application Supervisor – an element that monitors the execution of applica-
tion code and repairs the application after an error (Supervisor is an Erlang
element that monitors Erlang processes and restarts them in case of failure).

– Requests Dispatcher – an element that is responsible for forwarding the
requests to the appropriate Module Host.

EWA includes instances of Module Host, which provide modules’ functiona-
lities. Requests are processed by the modules concurrently – each request has
its own Erlang process inside Module Host. The nodes and EWAs are indepen-
dent. They cooperate due to the use of Central Manager, which coordinates their
work. The Central Manager is the most important element of EMDA. It is not
a single point of failure owing to the properties of Erlang Distributed Applica-
tion described above. The set of nodes may change dynamically through the use
of Application Managers. Application Manager periodically sends a heartbeat to
Central Manager so Central Manager is able to discover new EWAs. Afterwards,
Central Manager monitors Erlang Virtual Machine inside, which EWA works to
notice when Erlang Virtual Machine is stopped, e.g. due to a failure. Application
Manager also checks periodically if Requests Dispatcher (see subsection 3.7) has
up-to-date information about the modules and triggers an update if needed.

Application Manager constantly monitors the load of a node. Module Host
monitors the load of a module. Central Manager periodically gathers information
about the load from all instances of Application Manager and Module Host. On
the basis of this information, it dynamically starts/stops instances of Module
Host working for chosen modules to provide load balancing and high availabi-
lity of each module (for more details see subsection 3.7). Central Manager uses
Application Supervisor available on each node to start/stop instances of Module
Host. Application Supervisor is an element that monitors Erlang processes and
restarts them in case of a failure so Central Manager is not involved in repairs.

Such a design of Data Management Component makes it scalable and resistant
to failures. Central Manager is able to capture any changes and respond to them.
Moreover, all nodes are able to work independently in case of a network failure,
because they have own Supervisors. When the network is repaired, they connect
once more and Central Manager is again able to reconfigure the node if needed.



190 �L. Dutka et al.

3.7 Notifications and Requests

Clients send synchronous requests to Data Management Component to get/up-
date metadata, e.g. get the mappings of logical filenames to the actual data
locations on a storage or initiate metadata for the newly created files. Beside the
standard requests connected with metadata, VeilFS heavily utilizes asynchronous
notifications, which are processed by Data Management Component to exchange
monitoring information across the system. Notifications provide useful informa-
tion about the infrastructure state to administrators. The administrators use
this information to create or parameterize data management rules, which are
the basis of the effective data management subsystem, e.g. the rules that control
data migration or system quotas. When the rules are defined, notifications are
used as triggers of the rules (see exemplary use cases described in subsection 3.4).
A typical rule concerns data management within a site. Data management that
involves different sites is described in subsection 3.8. Notifications also enable
detailed accounting. Beside the information about the amount of data stored in
the system, other information such as the load of storage systems by read/write
operations generated by user’s processes can be controlled.

Types of requests/notifications may change with time. To meet this challenge,
a scalable and elastic way of request handling has been designed. Central Man-
ager controls DNS to inform clients, at which nodes a particular module works.
However, Module instances may be started/stopped dynamically when types of
incoming requests/notifications change. Therefore, a Module instances location
may change before the mapping of modules to nodes provided by DNS is ex-
pired. Moreover, when many clients work simultaneously, a situation when no
mapping is valid may never occur. For this reason, an instance of Requests Dis-
patcher works inside each application. It is used to route requests from a network
interface to the nodes where a desired module is working. Having a Dispatcher
instance, control over DNS is not required (requests are always redirected to an
appropriate node), but is profitable, because an extensive use of DNS decreases
the network traffic inside a cluster (requests usually go straight to the node,
which hosts the required module). Additionally, Dispatcher provides a load ba-
lancing capability. The communication between instances of Module Host and
Requests Dispatcher is not visualized in Fig. 4 – it would make the image too
complicated. Instead, a request flow is depicted in Fig. 5.

3.8 Data Access in Organizationally Distributed Environments

The deployment of VeilFS is similar in the context of distributed organization
and federation. The access to the data located in different sites was described
in subsection 3.3. However, some requirements have to be fulfilled to provide
a uniform and coherent view on data as well as an efficient access to data in the
federation case. VeilFS supports rules, which operate between sites. Administra-
tors of all organizations should agree on the management rules. Typically, the
newly created data should be migrated to a site where the user has a granted
storage when the data is no longer used by the process that has created it.



Uniform and Efficient Access to Data in Distributed Environments 191

Fig. 5. Client request flow within VeilFS

However, when the user has an access granted to storage resources in multiple
sites, different possibilities appear. For example, the data may be migrated to a
site where it is used most frequently if all sites have activated rules that permit
data send/receive in this case. It decreases the network traffic, because – once
migrated – the data will be more frequently read locally than streamed.

4 Implementation Status

A prototype version of the presented system was implemented and evaluated.
To provide high performance and scalability, Erlang, C programming languages
and a NoSQL database were used. Erlang offers massive parallelism through
its lightweight process mechanism, which is very important in the data manage-
ment part, because Data Management Component cooperates with thousands of
Computing Elements simultaneously. On the other hand, the C language enables
efficient implementation of low level operations on the physical data. The infor-
mation about metadata and the system state is stored in a fault-tolerant, high-
performance, distributed NoSQL database to avoid performance bottlenecks and
guarantee data security.

The implemented prototype version provides unification of namespace, sup-
port for group working and results publication. The FUSE client, web-based GUI



192 �L. Dutka et al.

Fig. 6. Web-based GUI for VeilFS

Table 2. Preliminary overhead tests results

Number of threads used 1 thread 16 threads

Test mode RW WR RD RW WR RD

Without VeilFS [Mb/s] 2,65 14,69 11,27 6,05 13,66 11,25

With VeilFS [Mb/s] 2,76 14,52 11,21 5,63 13,50 11,26

Difference [Mb/s] 0,10 -0,17 -0,06 -0,42 -0,15 0,01

Difference [%] 3,79 -1,12 -0,55 -6,99 -1,13 0,05

(see Fig. 6) and the REST API have been implemented using secure commu-
nication methods (SSL and GSI). The Data Management Component has been
equipped with mechanisms that provide load balancing and high availability.
Simple installators of client, Data Management Component and DB have also
been created.

The components implemented using different technologies are able to coope-
rate. In case of the FUSE client, the component implemented in the C language
communicates with modules on the server side implemented in Erlang. The re-
quests are processed concurrently by light Erlang processes to minimize the
answer time on multi-core machines. Preliminary tests results have shown that
the overhead of VeilFS is low (see Table 2). The transfer rates measured by



Uniform and Efficient Access to Data in Distributed Environments 193

SysBench [6] were similar when operations were performed directly using NFS
[4] and when they were performed using VeilFS that exploited NFS to store data.

The current version of the system provides a complete set of functionalities for
the end user – it provides a uniform and coherent view on all user’s data, supports
work in groups and data publication. Further work is going on to increase the
functionality from the administrator point of view.

5 Conclusions and Future Work

A need for easy data access arises due to the continuously increasing diversity of
storage systems. A users’ requirements analysis has shown that access to files is
often too complicated. Although there are a lot of tools that provide a single user
interface for various storage management systems, they are too cumbersome to
use in globally distributed environments.

The presented system addresses the issue of easy access to data along with ad-
ministrators’ requirements for effective managing federated, heterogeneous sto-
rage resources. The described solutions not only provide users with easy access
to data anywhere and anytime, but also give administrators powerful tools for
automated infrastructure monitoring and management. Moreover, the proposed
architecture is able to process a large number of requests and notifications, which
is needed to offer the described functionality. We believe that the system will
be useful for all PL-Grid Infrastructure users and more users will be able to use
all functionalities currently offered by the PL-Grid Infrastructure through the
simplification of data management by VeilFS. We hope that the new functiona-
lities offered by the system, e.g. a simple data sharing and publishing, will be
appreciated by its users.

Future work will focus on further development of storage resources manage-
ment, particularly in the areas of migration, caching and prefetching of data,
as well as on creation the tools for administrators. Additionally, the authors
are working to add a global level of VeilFS, which allows users data migration
between different organizations that are not federated and globally unifies the
access to data – the user will see all the data stored in all sites that belong to
different federations regardless of the actual access point.

Acknowledgements. Thanks go to the rest of VeilFS team, especially to Rafa�l
S�lota, �Lukasz Opio�la, Darin Nikolow, Pawe�l Sa�lata, Beata Skiba and Bartosz
Polnik for their support.

References

1. Ceph Filesystem web site, http://ceph.com/docs/next/cephfs/
2. Dropbox web site, https://www.dropbox.com/
3. GlusterFS community web site, http://www.gluster.org/about/
4. Nfs version 3 protocol specification, http://tools.ietf.org/html/rfc1813

http://ceph.com/docs/next/cephfs/
https://www.dropbox.com/
http://www.gluster.org/about/
http://tools.ietf.org/html/rfc1813


194 �L. Dutka et al.

5. Scality web site, http://www.scality.com/products/what-is-ring/
6. Sysbench: a system performance benchmark,

http://sysbench.sourceforge.net/index.html

7. Gantz, J., Reinsel, D.: The Digital Universe in 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East (2012),
http://www.emc.com/leadership/digital-universe/index.htm

8. Hunich, D., Muller-Pfefferkorn, R.: Managing Large Datasets with iRODS: a Per-
formance Analysis. In: Proceedings of the 2010 International Multiconference on
Computer Science and Information Technology (IMCSIT), pp. 647–654 (2010)

9. Kitowski, J., Dutka, �L., Mosurska, Z., Paja̧k, R., Sterzel, M., Szepieniec, T.: De-
velopment of Polish Infrastructure for Advanced Scientific Research – Status and
Current Achievements. In: Proc. of IEEE Conf. 12th Inter. Symposium on Parallel
and Distributed Computing (ISPDC 2013), Bucharest, Romania, pp. 34–41 (2013)

10. Kryza, B., Król, D., Wrzeszcz, M., Dutka, �L., Kitowski, J.: Interactive cloud
data farming environment for military mission planning support. Computer
Science 13(3), 89–100 (2012),
https://journals.agh.edu.pl/csci/article/view/19

11. Mills, S., Lucas, S., Irakliotis, L., Rappa, M., Carlson, T., Perlowitz, B.: DEMYS-
TIFYING BIG DATA: A Practical Guide to Transforming the Business of Gov-
ernment. Technical report (2012),
http://www.ibm.com/software/data/demystifying-big-data/

12. Roblitz, T.: Towards Implementing Virtual Data Infrastructures – a Case Study
with iRODS. Computer Science 13(4) (2012),
http://journals.agh.edu.pl/csci/article/view/43

13. S�lota, R., Dutka, �L., Wrzeszcz, M., Kryza, B., Nikolow, D., Król, D., Kitowski,
J.: Storage Systems for Organizationally Distributed Environments – PLGrid Plus
Case Study. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasśniewski, J.
(eds.) PPAM 2013, Part I. LNCS, pp. 724–733. Springer, Heidelberg (2013)

14. S�lota, R., Król, D., Ska�lkowski, K., Kryza, B., Niko�low, D., Orzechowski, M., Ki-
towski, J.: A Toolkit for Storage QoS Provisioning for Data-Intensive Applications.
In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136,
pp. 157–170. Springer, Heidelberg (2012)

15. S�lota, R., Nikolow, D., Kitowski, J., Król, D., Kryza, B.: FiVO/QStorMan Semantic
Toolkit for Supporting Data-Intensive Applications in Distributed Environments.
Computing and Informatics 31(5), 1003–1024 (2012),
http://dblp.uni-trier.de/db/journals/cai/cai31.html#SlotaNK0K12

16. Szepieniec, T., Tomanek, M., Radecki, M., Szopa, M., Bubak, M.: Implementation
of Service Level Management in PL-Grid Infrastructure. In: Bubak, M., Szepie-
niec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 171–181. Springer,
Heidelberg (2012)

17. Thain, D., Livny, M.: Parrot: an Application Environment for Data-Intensive Com-
puting. Journal of Parallel and Distributed Computing Practices, 9–18 (2005)

http://www.scality.com/products/what-is-ring/
http://sysbench.sourceforge.net/index.html
http://www.emc.com/leadership/digital-universe/index.htm
https://journals.agh.edu.pl/csci/article/view/19
http://www.ibm.com/software/data/demystifying-big-data/
http://journals.agh.edu.pl/csci/article/view/43
http://dblp.uni-trier.de/db/journals/cai/cai31.html#SlotaNK0K12

	Uniform and Efficient Access to Datain Organizationally Distributed Environments
	1 Introduction
	2 State of the Art
	3 A Unified Data Access Solution for Organizationally Distributed Environments – VeilFS
	3.1 Functionality Overview
	3.2 High-Level Architecture of VeilFS
	3.3 System Clients and Protocols
	3.4 Data Management Component Architecture
	3.5 Security
	3.6 Deployment
	3.7 Notifications and Requests
	3.8 Data Access in Organizationally Distributed Environments

	4 Implementation Status
	5 Conclusions and Future Work
	References




