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Abstract. This paper presents a supervised machine learning approach
that aims at annotating those homograph word forms in WordNet that
share some common meaning and can hence be thought of as belong-
ing to a polysemous word. Using different graph-based measures, a set
of features is selected, and a random forest model is trained and eval-
uated. The results are compared to other features used for polysemy
identification in WordNet. The features proposed in this paper not only
outperform the commonly used CoreLex resource, but they also work on
different parts of speech and can be used to identify both regular and
irregular polysemous word forms in WordNet.

1 Introduction

In [1, p. 16], regular polysemy is defined as follows:

Polysemy of the word A with the meanings ai and aj is called regular
if, in the given language, there exists at least one other word B with
the meanings bi and bj , which are semantically distinguished from each
other in exactly the same way as ai and aj and if ai and bi, aj and bj
are nonsynonymous.

Often mentioned is the so-called grinding rule: the name of an animal can often
also be used to refer to products gained from it. Irregular polysemy on the
contrary covers those cases that do not exhibit such patterns. When for example
animal names are used to denote humans, this can be done referring to different
properties of animals. Calling someone a lion is mostly due to strength and
courage, while chicken may refer to a lack of courage. Since the productive
patterns of regular polysemy can be identified and used by computer systems
while irregular cases are harder to identify, most computational approaches to
polysemy based on WordNet (WN) [11] are focused on regular polysemy.

Since WN represents word senses rather than words, the classic definitions of
polysemy cannot be applied to WN. Instead of looking at the binary decision
of whether a word is polysemous or homonymous, the method proposed in this
paper will look at the sense level and try to identify those (homograph) word
forms that actually are related. Taking the word bank and all its word forms in
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WN, the approach taken here is to connect all those forms that are related to
the field of finance, while not connecting them to those forms that are related
to a slope of any kind.

To achieve this goal, WN’s network topology is exploited: measures such as
the geodesic paths or properties of nodes (e.g., the closeness or betweenness)
are used. Since it could be assumed that homonymous words – or more exactly
in this context word forms – have no semantic similarity to each other, mea-
sures of semantic similarity based on paths between two nodes are taken into
consideration to distinguish related and unrelated word forms.

Although the approach proposed here, especially the graph-based features,
can be applied to all parts of speech (POSs) in WN, this paper is restricted
to those word forms that are either nouns or potentially connected to nouns.
This restriction is necessary to compare the proposed feature set to the CoreLex
features.

2 Related Work

2.1 Regular Polysemy Detection in WordNet

The CoreLex resource [5] defines a set of 39 basic types (BTs), i.e., semantic
classes of words that subsume a number of word senses in WN (e.g. food or
animal). Taking advantage of the hierarchical order of nouns in WN, the BTs
are assigned to anchor nodes in WN that are identified as the hypernym of the
word senses belonging to the given semantic class. When looking at words, one
lexeme is likely to have different word senses and hence different word forms in
WN. Each word form is assigned to at least 1 of the 39 BTs, resulting in a list
of BTs related to a word. This list should display patterns of regular polysemy.
For example, a word like lamb has a meaning that belongs to the BT animal as
well as one belonging to food, etc. This pattern can be found in other words as
well. It therefore satisfies the definition of regular polysemy given above.

The approaches described in [2] and [16] are based on the CoreLex resource.
[16] calculate a ratio of polysemy for words based on the BTs they are related to.
The more words share the same pattern of BTs, the more likely those words are
polysemous. Polysemy and homonymy are considered “two points on a gradient,
where the words in the middle show elements of both” [16, p. 268].

[5], [16], and [2] can only be used to detect regular polysemy. The great number
of irregular polysemous forms cannot be found and is, as done in [16], regarded
as homonymous.

[17] takes a different approach and calculates lexical similarity of glosses of
potentially related word senses sharing a common lemma. If the glosses are simi-
lar, their meaning is considered to be similar as well. This approach is applicable
to other POSs than nouns since it does not rely on the hypernymy/hyponym
relation – which in WN does not exist for adjectives or adverbs.
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Table 1. Existing measures of semantic similarity/relatedness

Abbreviation Source and description POS

Resnik and Yarowsky [14], implemented by [13] N, V

Lin [10], implemented by [13] N, V

Jiang and Conrath [8], implemented by [13] N, V

Hirst and St. Onge [7], implemented by [13] N

Leacock, Miller, and Chodorow [9], implemented by [13] N, V

Wu and Palmer [18], implemented by [13] N, V

distance geodesic path between the two nodes all

2.2 Computing Semantic Similarity in WordNet

The most intuitive measure of semantic similarity in WN is to calculate the
geodesic path (i.e., the distance) between two nodes.

A number of semantic similarity features that can be applied to WN have been
proposed (see Table 1).1 These are mainly based on the geodesic path between
the two nodes in question. Most of these measures are restricted to the noun
and verb subset of WN, since they rely on the hierarchical order of the noun or
verb network.2

The features in Table 1 and others have been used in [15] to find synsets that
are related and could be merged to make WN more coarse grained and thereby
raise the accuracy in wore sense disambiguation based on WN. Furthermore, [15]
propose calculating the distance of both word senses to their closest common
hypernym.

3 Feature Set

The question of whether two word senses are related in meaning can be answered
by calculating the semantic similarity of the word forms and by looking at the
network toponymy (i.e., local and global features of the network). These include
information on the degree of the nodes being examined, the nodes representing
the synsets as well as the nodes representing the word forms connected to them.
Furthermore, different centrality measures for these nodes are calculated. The
centralities are thought of as giving insight to the position a node has within the
network. For example, a node with a high closeness centrality [6] can be expected
to show shorter geodesic paths to any other node, not only to those it is seman-
tically related to. The betweenness [6] indicates the node’s position on geodesic
paths of other nodes. The eigenvector centrality [3] and the PageRank [12] are
two further centrality measures that are likely to better indicate centrality than
the degree of the nodes.

1 Measures based on gloss overlap have been excluded.
2 For information on the single features, see the sources given in Table 1.



Graph-Based, Supervised Machine Learning Approach to Polysemy 87

Table 2. Proposed graph-based feature set

Abbreviation Source or description POS

isA-Rel is-A relation between word forms N,V

isDerivedFrom is one word form derived from the other? all

closeness the closeness value of the node all

betweenness the betweenness value of a node all

POS the part of speech of word form all

word sense degree degree of the word sense nodes all

synset degree degree of the synset nodes all

eigenvector centrality the eigenvector centrality values of the nodes all

page rank the page rank values of the nodes [12] all

POS the part of speech of word form all

sharedLemmas number of lemmas shared by the synsets all

minDist2SharedHypernym proposed in [15] N,V

Although this paper focuses on nouns, noun word forms are often homograph
to word forms of other POSs. Since these homographs are also considered, the
information on the POS of a node is used as a feature.3

The number of lemmas two synsets share is a further feature. Also the in-
formation of whether one word sense is a direct hyponym or hypernym of the
other (e.g., the synset {human, man} subsumes {man} (male human being)) was
considered. An overview of the graph-based features for the noun subset of WN
is given in Table 2.

4 Evaluation

4.1 Evaluation of the Model and Feature Set

Each noun word sense sharing its word form with any other word sense in WN
is extracted.4 An instance consists of the features for the two word forms as
reported in Tables 1 and 2. Each pair of the kind w1 :w2 or w2 :w1 is only
considered once. A subset of 2,511 pairs was manually classified as either sharing
a similar/common meaning, class {yes}, or as being just arbitrarily homograph,
class {no}. In the set, 1,237 pairs have been classified as being related, while
1,274 have been classified as being unrelated. Using a simple prediction assigning
the most common class to each instance (i.e., no), a model has to top a baseline
of 50.74% correctly classified instances.5

3 Especially when looking at other POSs than nouns, one can find the tendency of
some POSs (e.g., adverbs and adjectives) to be more likely to share meaning with
adverbs or adjectives than other POSs.

4 These include pairs of two noun word forms as well as pairs of noun word forms that
are homographic to an adjective, verb, or adverb.

5 This number might seem high, since polysemy is expected to be more frequent than
homonymy. But here word forms belonging to different word senses are considered,
not words.
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Table 3. Precision difference obtained by removal of the single feature

Feature Loss Feature Loss

word 1 degree 0.52 word 2 pos 0.48

word 1 closeness 5.98 word 2 degree −0.24

word 1 betweenness 1.19 word 2 closeness 0.16

word 1 eigenvector centrality 0.68 word 2 betweenness 0.24

word 1 page rank 1.23 word 2 eigenvector centrality 0.32

word 1 synset degree 3.46 word 2 page rank 0.36

distance −1.95 word 2 synset degree 0.52

is-A rel. 0.78 Lin 0.36

Hirst and St. Onge 0.36 Resnik and Yarowsky 0.36

Leacock and Chodorow 0.48 Jiang and Conrath 0.84

Wu and Palmer 0.28 isDerivedFrom 0.52

sharedLemmas 0.92 minDis2SharedHypernym 0.20

Different algorithms have been proposed for classification tasks. Here, the best
results are obtained using the random forest model [4].6 Based on 100 random
trees, each constructed while considering 17 random features and 10 seeds, using
a 10-fold cross-validation, the model reaches a precision of 0.861 and a recall of
0.877 out of 1. The F-measure is thus 0.87; 86.98% of the instances were correctly
classified. The model outperforms the baseline by 36.24 points.

Unfortunately, the random forest algorithm is a black box when it comes
to evaluating the impact of a single feature on the overall performance. Unlike
decision trees the random forest model selects the features randomly. To evaluate
the contribution of a feature, an ablation study was performed. One feature
is sequentially deleted and the algorithm evaluated again. The gain or loss in
accuracy is shown in Table 3. A negative number indicates a gain.

An ablation study, however, does not evaluate the impact of the feature but
rather its contribution to the trained model. The combination of different fea-
tures has more influence on the model than the information content of the single
feature. This is especially true for the random forest model, as [4] shows, and
can be explained by the randomly chosen features.

Interestingly enough, removing the distance from the feature set results in
a considerable gain of accuracy of nearly 2 points. The distance was thought
to be a good indicator of the class {yes}: Almost all instances with a geodesic
path shorter than 6 are of this class. It does not reliably predict the other class
though. Even infinite paths are no indicator of class {no}.

The closeness of the first word form has the biggest impact on the model.
The closeness indicates the mean length of the geodesic paths from this node
to any other node in the graph. The degree of the first word form has a high

6 Other classifiers (e.g., support vector machines and Bayesian models) were evalu-
ated as well. The full results cannot be presented here. Still, the findings are very
comparable to the ones that will be presented here, but the precision, recall, and
F-measures are considerably lower.
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impact on the performance of the model. Also the page rank and betweenness can
contribute a lot to the overall accuracy. The measures of semantic similarity that
were thought to indicate close relations between word senses have less impact.
This is likely related to the fact that these measures only work on pairs where
both word forms are nouns. Only 1,322 of the total 2,511 available instances are
of this kind. The local and global network measures that were proposed in this
paper as features of semantic relatedness between word forms in WN contribute
the greater part to the accuracy of the model.

Leaving out all semantic similarity measures and the geodesic path shows this
even more clearly. Using only the here proposed graph-based features results in
an even higher accuracy of 90.12% of correctly classified instances. The model is
trained using 16 random features.7 This relatively small set of easy to use and to
calculate graph measures contains enough information to suit the classification
task and reach high precision, recall, and F-measure (all three 0.9). This is
very well balanced: No class has a significantly higher precision or recall. In the
following comparison to CoreLex BTs, the measures of semantic similarity and
the geodesic path will not be considered and only the features given in Table 2
will be used.

4.2 Comparison to Using CoreLex BTs as Features

To compare the graph-based features to the CoreLex BTs, every noun word
form was annotated the appropriate BT assigned by the CoreLex resource. The
assumption is that those BTs show patterns of regular polysemy that the classifi-
cation algorithm should be able to identify. The actual rules proposed in [5,16,2]
were not used. Also, this is not a direct comparison to those results. But it should
give insight into the quality of the features used.

The CoreLex approach can only be used to identify regular polysemy. The
ratio of correctly classified instances can therefore be expected to drop compared
to the graph-based approach. All instances of a noun word form and one of
another POS will not show any significant patterns. This again can be expected
to result in a drop of accuracy.

Using only the BTs to train a model and evaluating it as before results in
64.99% accuracy.8 This is 25.13 points less accurate than the method proposed
in this paper.

The BTs are not fit to identify cases involving other POSs than nouns. Us-
ing only instances containing just nouns and no other POSs, and only the BTs
as features results in 66.77% accuracy. Using the graph-based measures instead
results in 82.9%. Thus, they are still 16.13 points more accurate. Combining

7 As the number of available features drops so does the optimal number of features
used in the random forest model.

8 Different models were trained using different algorithms. Still, the random forest
model was the most accurate one. The numbers given in the following are always
the highest possible rates of accuracy of a random forest model of 100 trees. The
number of randomly selected features varies.
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all measures further increases the accuracy up to 93.31% on the set contain-
ing instances of nouns and other POSs and 87.9% when only noun–noun pairs
are used.

5 Outlook

The approach presented in this paper aims at connecting those homograph word
forms in WN that share some common meaning and can hence be assumed to
belong to a polysemous word. Both regular and irregular polysemy are meant
to be covered. This distinguishes the proposed method from other approaches.
Earlier efforts were solely focused on regular polysemy and thereby ignored the
apparently quite high number of irregular cases found in WN.

The procedure described here is not limited to only nouns but can be straight-
forwardly adapted to other POSs as well. By taking homographs of different
POSs into account and by handling irregular polysemy as well, it outperforms
models trained on the BTs proposed in [5] by far. Using the proposed features
and the mentioned measures of semantic similarity including the geodesic path
results in 86.86% accuracy. Using only the graph-based measures further in-
creases the accuracy up to 90.12%. Combining the network-based features and
the BTs results in 93.31% accuracy. Although it was assumed that the decision
whether two homograph word forms belonging to different synsets share a com-
mon meaning was a question of semantic similarity, the geodesic path, although
when < 6 a good indicator for the class yes, and other measures of semantic
similarity did not improve the performance.

Following [16, p. 268], polysemy and homonymy are “two points on a gradient,
where the words in the middle show elements of both”. The method presented
in this paper allows measuring the degree of homonymy a word exhibits by
looking at the sense level and connecting the different senses of a word by relating
the corresponding word forms. The word forms of a word like bank are not all
connected, only those that actually share a common meaning.

The next steps will be to find fitting features for other POSs based on a deep
analysis of the networks structure, to manually annotate a test and training set,
and to train appropriate models on this data.
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