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Abstract. Every probability distribution can be approximated up to a given pre-
cision by a phase-type distribution, i.e. a distribution encoded by a continuous
time Markov chain (CTMC). However, an excessive number of states in the cor-
responding CTMC is needed for some standard distributions, in particular most
distributions with regions of zero density such as uniform or shifted distributions.
Addressing this class of distributions, we suggest an alternative representation by
CTMC extended with discrete-time transitions. Using discrete-time transitions
we split the density function into multiple intervals. Within each interval, we
then approximate the density with standard phase-type fitting. We provide an ex-
perimental evidence that our method requires only a moderate number of states
to approximate such distributions with regions of zero density. Furthermore, the
usage of CTMC with discrete-time transitions is supported by a number of tech-
niques for their analysis. Thus, our results promise an efficient approach to the
transient analysis of a class of non-Markovian models.

1 Introduction

In the area of performance evaluation and probabilistic verification, discrete-event
systems (DES) are a prominent modelling formalism. It includes models such as
continuous-time Markov chains, stochastic Petri nets, or generalized semi-Markov pro-
cesses. A DES is a random process that is initialized in some state and then moves from
state to state in continuous-time whenever an event occurs. Every time a state is entered,
some of the events get initiated. An initiated event then occurs after a delay chosen ran-
domly according to its distribution function. When no restrictions on the distribution
functions are imposed, analysis of these models is complicated [8,21], one often resorts
to simulation [17]. When all the distributions Fe are exponential, the DES is then called
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Fig. 1. Three usages of the discrete-time events for PH approximation. In the figures there are
the densities (with thick grey lines), their standard PH approximations with 4 and 40 phases, and
their IPH approximation with 30 phases. On the left, the discrete-time event d postpones the start
of the CTMC C fitted to the area of positive density. On the right, the discrete-time event can
be used directly, instead of its continuous approximation. In the middle, 3 discrete-time events
split the support into 4 intervals with different approximations C1, C2, C3, and C4. Note that for
a distribution with a steep change in density at its upper bound (such as the uniform distribution),
PH fitting performs well on the first half of the support; logarithmic partitioning into intervals
works better than equidistant.

a continuous-time Markov chain (CTMC) for which many efficient analysis methods
exist [26,4] thanks to the memoryless property of the exponential distribution. Hence,
an important method for analysing DES is to approximate it by a CTMC using phase-
type (PH) approximation and to solve resulting CTMC analytically. Roughly speaking,
each event e such that its distribution function is not exponential is replaced by a small
CTMC Ce. This CTMC has a designated absorbing state such that the time it takes to
reach the absorbing state is distributed as closely as possible to the given distribution
function. A well known result [34] states that any continuous probability distribution
can be fitted up to a given precision by the PH approximation. Nevertheless, the closer
the approximation, the more states it requires in the CTMC. For some lower bounds on
the number of required states see, e.g., [1,35,13,12].

In this paper we propose another approach for approximating probability distribu-
tions where phase-type requires extreme amount of states to be fitted precisely [35,12].
In particular, we deal with distributions often encountered in practice that we call inter-
val distributions and that are supported on a proper subinterval of [0,∞). For example
distributions of events that cannot occur before time l > 0 such as due to physical lim-
its when sending a packet; or that cannot occur after time u <∞ such as waiting for
a random amount of time in a collision avoidance protocol; or that occur exactly af-
ter time l = u such as timeouts. We address these interval distributions by an approach
that we call Interval phase-type (IPH) approximation. The crucial point is that it allows
to separate the discrete and the continuous nature of these distributions by enriching
the output formalism. Along with the exponential distribution of the CTMC we al-
low discrete-time events (also called fixed-delay, deterministic, or timeout events) and
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denote it as d-CTMC.1 As illustrated in Figure 1, the usage of discrete-time events for
approximating a non-exponential distribution is threefold:

1. For an event e with occurrence time bounded from below by l > 0, an occurrence
of a discrete-time event d splits the waiting into two parts – an initial part of length
l where the event e cannot occur and the rest that can be more efficiently approxi-
mated by a CTMC C using standard PH methods.

2. For an event e with occurrence time bounded from above by u < ∞, a series of
discrete-time events partition the support of its distribution into n subintervals. The
system starts in the chain C1 which is the standard PH approximation of the whole
density. In parallel to movement in C1 a discrete-time event d1 is awaited with its
occurrence set to the beginning of the second interval. If the absorbing state in C1

is not reached before d1 occurs, the system moves to C2. The chain C2 is fitted to
the whole remaining density conditioned by the fact that the event does not occur
before the beginning of the second interval. Similarly, another discrete-time event
d2 is awaited in C2 with its occurrence set to the beginning of the third interval, etc.
The last interval is not ended by any discrete-time event; occurrence of the event e
thus corresponds to reaching any absorbing state in any of C1, . . . ,Cn.

3. An event with constant occurrence time (� = u) is directly a discrete-time event.

Example. As our running example, we consider the Alternating bit protocol. Via a lossy
FIFO channel, a transmitter attempts to send a sequence of messages, each endowed
with a one-bit sequence number – alternating between 0 and 1. The transmitter keeps
resending each message until it is acknowledged by its sequence number (the receiver
sends back the sequence number of each incoming message). As resending of messages
is triggered by a timeout, setting an appropriate value for the timeout is essential in
balancing the performance of the protocol and the network congestion. For a given
timeout, one may ask, e.g., what is the probability that 10 messages will be successfully
sent in 100ms? In the next section we show a simple DES model of this protocol.
Subsequently, we show the CTMC model yielded by a PH approximation of individual
events, and the d-CTMC model obtained by our proposed IPH approximation.

Our Contribution. We propose an alternative approach to PH approximation, resulting
in a CTMC enriched with fixed-delay events. Our approach is tailored to interval proba-
bility distributions that are often found in reality and for which the standard continuous
PH approximation requires a substantial amount of states. We performed an experimen-
tal evaluation of our approach. In the evaluation, we represent (1) the lower-bounded
distributions by the distribution of the transport time in network communication and (2)
the upper-bounded distributions by the uniform distribution. For both cases, we show that
our approach requires only a moderate number of states to approximate these distribu-
tions up to a given error. Thus, for DES models with interval distributions our approach
promises a viable method for transient analysis as also indicated by our experiments.

1 Note that the formalism of d-CTMC is inspired by the previously studied similar formalisms
of deterministic and stochastic Petri nets [32] and delayed CTMC [16].
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Related Work. Already in the original paper of Neuts [34], the fixed-delay and shifted
exponential distributions have been found difficult to fit with a phase-type approxi-
mation. This fact was explicitly quantified by Aldous and Shepp [1] showing that the
Erlang distribution is the best PH fitting for the fixed-delay distributions. A notoriously
difficult example of a shifted distribution is the data set measuring the length of erup-
tions of a geyser in the Yellowstone National Park [38] whose PH approximation has
been discussed in, e.g., [3,13]. Also heavy tailed distributions often found in telecom-
munication systems are hard to fit; similarly to our method, separate fitting of the body
and the tail of such distributions is used [14,23].

Apart from continuous PH fitting, there are several other methods applicable to anal-
ysis of DES with interval distributions. First, there are several symbolical solution meth-
ods [2,5,20,21] for direct analysis of DES with non-exponential events. Usually, ex-
polynomial distributions are allowed; non-expolynomial distributions need to be fitted
by expolynomials – a problem far less studied than standard PH fitting. Our approach
can be understood as a specific fitting technique that uses a limited subclass of expoly-
nomial distributions (resulting in models with a wider range of analysis techniques).
Second, interval distributions can be efficiently fitted by discrete phase-type approxima-
tion [6]. Instead of a CTMC, this method yields a discrete-time Markov chain (DTMC)
where each discrete step corresponds to elapsing some fixed δ time units. Note however
that this method usually requires to discretize all the events of a DES into a DTMC.
To analyse faithfully a DES with many parallel events one either needs to use a very
small δ [40] or to allow occurrence of multiple events within each δ-time step [33,19],
exponentially increasing the amount of states or transitions in the DTMC, respectively.
Third, similarly to our approach, ideas for combining discrete PH approximation with
continuous PH approximation have already appeared [27,18]. To the best of our knowl-
edge, no previous work considers combining these two approaches on one distribution
having both discrete and continuous “nature”. Expressing the continuous part of such
a distribution using continuous PH again decreases the coincidence of parallel discrete
events discussed above. Note that with d-CTMC, one can freely combine continuous
PH, discrete PH, and interval PH for approximation of different events of a DES.

Organization of the Paper. In Section 2, we define the necessary preliminaries. In Sec-
tion 3, we describe the IPH approximation method and briefly review the analysis tech-
niques for d-CTMC. The paper is concluded by an experimental evaluation in Section 4.

2 Preliminaries

We denote by N, Q, and R the sets of natural, rational, and real numbers, respectively.
For a finite set X,D(X) denotes the set of all discrete probability distributions over X.

Modelling Formalisms. There are several equivalent formalisations of DES. Here
we define generalized-semi Markov processes that contain both CTMC and d-CTMC
as subclasses. Let E be a finite set of events where each event is either a discrete-time
event or a continuous-time event. To each discrete-time event e we assign its delay
delay(e) ∈ Q. To each continuous-time event e we assign a probability density function
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fe : R→ R such that
∫ ∞

0
fe(x)dx = 1. An event is called exponential if it is a continuous-

time event with density function f (x) = λ · e−xλ where λ > 0 is its rate.

Definition 1. A generalized semi-Markov process (GSMP) is a tuple (S ,E,E,Succ,α0)
where

– S is a finite set of states,
– E is a finite set of events,
– E : S → 2E assigns to each state s a set of events active in s,
– Succ : S ×E→D(S ) is the successor function, i.e. it assigns a probability distribu-

tion specifying the successor state to each state and event that occurs there,
– α0 ∈ D(S ) is the initial distribution.

We say that a GSMP is a continuous-time Markov chain (CTMC) if every events of E is
exponential. We say that a GSMP is a continuous-time Markov chain with discrete-time
events (d-CTMC) if every event of E is either exponential or discrete-time.

The run of a GSMP starts in a state s chosen randomly according to α0. At start, each
event e ∈ E(s) is initialized, i.e. the amount of time remain(e) remaining until it occurs
is (1) set to delay(e) if e is a discrete-time event, or (2) chosen randomly according to
the density function fe if e is a continuous-time event. Let the process be in a state s and
let the event e have the minimal remaining time t = remain(e) among all events active
in s. The process waits in s for time t until the event e occurs, then the next state s′
is chosen according to the distribution Succ(s,e)2. Upon this transition, the remaining
time of each event of E(s)�E(s′) which is not active any more is discarded, and each
event of E(s′)�E(s) is initialized as explained above. Furthermore if the just occurred
event e belongs to E(s′), it is also initialized. For a formal definition we refer to [8].

Example (continued) To illustrate the definition, Figure 2 shows on the left a simplified
GSMP model of the Alternating bit protocol. The transmitter sending a message cor-
responds to the exponential event send. The whole remaining process of the message
being transported to the receiver, the receiver sending an acknowledgement message
and the acknowledgement message being transported back to the transmitter is mod-
elled using one continuous-time event ack. In parallel with the event ack, there is a
discrete-time event timeout and an exponential event err representing a packet loss.

To exemplify the semantics, assume the process is in the state sent with
remain(timeout) = 10, remain(ack) is chosen randomly to 12.6 and remain(err) is cho-
sen randomly to 7.2. Hence, after 7.2 time units the event err occurs and the process
moves to the state lost with remain(timeout) = 2.8. After further 2.8 time units, the
timeout elapses and the process moves to the state init where remain(send) is chosen
randomly to 0.8. After this time, the process moves to send where remain(timeout) is
again set to 10 and remain(ack) and remain(err) are again sampled according to their
densities and so on. In the next section, we show the PH approximation of this model.

2 For the sake of simplicity, when multiple events X = {e1, . . . ,en} occur simultaneously, the
successor is determined by the minimal element of X according to some fixed total order on E.
A more general definition [8] allows to specify different behaviour for simultaneous occurrence
of any subset of events.
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Fig. 2. On the left, there is a GSMP model of sending a single message using the the Alternating
bit protocol. The set of events active in a state corresponds to the edges outgoing from that state.
The event timeout is discrete-time with delay 10 ms, send is exponential with rate 2 meaning
that it takes 0.5 ms on average to send a message, err is exponential with rate 0.01 corresponding
to a packet being lost each 100 ms of network traffic on average, and ack is continuous-time with
density displayed in Figure 4 on the left. In the middle, there are 2-phase PH approximations of
events ack and timeout. On the right, there is a PH approximation of the GSMP model obtained
roughly speaking as a product of the GSMP and the two PH components.

Continuous PH Approximation. Continuous PH can be viewed as a class of algorithms

– which take as input the number of phases n ∈ N and a probability density function
f of a positive random variable, and

– output a CTMC C with states {0,1, . . . ,n} where 0 is an absorbing3 state.

Any such CTMC C defines a positive random variable X expressing the time when the
absorbing state 0 is reached in C. Let f̂ denote the probability density function of X. A
possible goal of a PH algorithm is to minimize the absolute density difference [7]4

∫ ∞

0
| f (x)− f̂ (x)| dx. (Err)

Example (continued) When building a CTMC model of the Alternating bit protocol
from the GSMP model, we need to approximate the non-exponential events ack and
timeout. Their simple approximation and the whole CTMC model of the system is
depicted in Figure 2 on the right. Observe that each state of the whole model needs to
be enriched with the phase-number of every non-exponential event scheduled in this
state. The events are then defined in a natural way on this product state space.

3 We say that a state s is absorbing if there are no outgoing transitions, i.e. E(s) = ∅.
4 Note that there are PH methods that do not allow specifying the number of phases. For further

metrics for evaluating quality of PH approximation, see, e.g., [7].
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the CTMC in Figure 2.

In the next section we describe our extension of PH fitting with discrete-time events.

3 Interval Phase-Type Approximation

The Interval phase-type (IPH) approximation addresses the interval probability distri-
butions which are supported on a proper subinterval of [0,∞). Similarly as above,

– it takes as input the number of phases n ∈ N and a probability density function f of
a positive random variable, and

– outputs a d-CTMCD with states {0,1, . . . ,n} where 0 is absorbing.

The goal is again to minimize (Err) for f̂ being the probability density function5 of the
random variable X expressing the time when the absorbing state 0 is reached inD.

3.1 Constructing d-CTMC

As the first step in this alternative direction, we provide two basic techniques that sig-
nificantly decrease the error for interval distributions (compared to standard PH algo-
rithms that are by definition IPH algorithms as well). The first technique deals with
interval distributions bounded from below.

Delay Bounded from Below. For an event that cannot occur before some l> 0 and for a
given number of phases n> 1, our algorithm works as follows. LetC= (S ,E,E,Succ,α0)
be a chain with n−1 phases fitted by some other tool FIT to the density on the interval
[l,∞). We output a d-CTMC (S � {s0},E � {d},E′,Succ′,α′0) with n states that starts
with probability α′0(s0) = 1 in the newly added state s0 in which only the newly added
event d is scheduled, i.e. E′(s0) = {d}; the event d has delay delay(d) = l and after it
occurs, the chain moves according to the initial distribution of C, i.e. Succ′(s0,d) = α0;
E′ and Succ′ coincide with E and Succ elsewhere. A pseudo-code for this algorithm
IPH-shift[FIT] is given in [28].

5 For the error metrics (Err) we assume that the algorithm outputs a d-CTMC such that X has a
density (which holds for our algorithms presented later).
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Example (continued). To obtain the d-CTMC approximation of the GSMP model of
the Alternating bit protocol, we only need to approximate the event ack since timeout
is a discrete-time event. To show an example of the technique, the approximation of the
event ack using the algorithm IPH-shift[PhFit] as well as the whole resulting d-
CTMC is depicted in Figure 3. Since IPH-shift is using the phase-type approximation
only on the “simple” part of the density function, it gets much better results. For instance
for 30 phases it yields approx. 4x smaller error compared to the best results of PH
algorithms. In Figure 4 we provide a more detailed comparison.

Delay Bounded from Above. For an event that cannot occur after some u <∞, our
algorithm IPH-slice[FIT,p] slices the interval [0,u] using discrete-time events into

p subintervals [0, 12 u], [ 1
2 u, 3

4 u], [ 3
4 u, 7

8 u], . . . , [(1− 1
2

p−2
)u, (1− 1

2
p−1

)u], [(1− 1
2

p−1
)u,u].

Their length decreases exponentially with the last two subintervals having the same
length. Corresponding to these intervals, we build a sequence of components C1, . . . ,Cp

that is traversed by a sequence of discrete-time events d1, . . . ,dp−1 as the time flows.
The component of each subinterval [a,b] has n/p phases and is fitted by FIT to the
conditional density of the remaining delay given the event has not occurred on [0,a).
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Consider the example from Figure 6. The uniform distribution on [0,2] has density
0.5 in this interval and 0 elsewhere. When already 1.5 time units pass, the conditional
density of the remaining delay equals 2 on [0,0.5] and 0 elsewhere.

This algorithm IPH-slice[FIT,p] is formally described in [28]. Example output
of IPH-slice[PhFit,3] on the above mentioned uniform distribution is depicted in
Figure 6. Similarly to the previous technique, it provides approximately 8x better re-
sults than the standard PH fitting as demonstrated in Figure 5. Note that we can easily
combine the two techniques for distributions bounded both from below and above such
as uniform on [5,6]. It suffices to apply IPH-shift[IPH-slice[FIT,slices]].

Let us provide two remarks on this technique. First, notice that a standard fitting tool
is applied on the conditional densities. However, a standard fitting tool tries to minimize
the error also beyond the subinterval we are dealing with which may lead to subopti-
mal approximation on the subinterval. Modification of a PH algorithm addressing this
issue might decrease the error of IPH-slice even more. Second, dividing the support
of the distribution into subintervals of exponentially decreasing length is a heuristic
that works well for distributions where the density does not vary much. For substantial
discontinuities in the density, one should consider dividing the support in the points of
discontinuity. Next, we briefly review the analysis methods for d-CTMC.

3.2 Analysing d-CTMC

The existing theory and algorithms applicable to analysis of d-CTMC are a crucial part
of our alternative IPH approximation method. Extending the knowledge in this direction
is out of scope of this paper, here we only summarize the state-of-the-art of transient
and stationary analysis.
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Table 1. The (Err) errors and CPU time for different PH tools fitting by 30 phases

PH fitting tool (Err) for event ack (Err) for uniform distribution CPU time

EMpht 1.7957 1.8980 over one day
G-FIT 1.6100 0.1603 4 min 49 s
momfit 1.8980 0.5820 1 day
PhFit 1.6518 0.1868 4.33 s

The method of supplementary variables [11,15,31] analyses the continuous state-
space S × (R≥0)E extended by the remaining times remain(e) until each currently active
discrete-time event e occurs. The system is described by partial differential equations and
solved by discretization in the tool DSPNExpress 2.0 [30]. A more elaborate method of
stochastic state classes [37,2,22,21] implemented in the tool Oris [9] studies the contin-
uous state-space model at moments when events occur (defining an embedded Markov
chain). In each such moment, multidimensional densities over remain(e) are symboli-
cally derived. The embedded chain is finite iff the system is regenerative, approximation
is applied otherwise.

If the d-CTMC has at most one discrete-time event active at a time (e.g. when
only one event is approximated by IPH), one can apply the efficient method of sub-
ordinated Markov chains [32]. It builds the embedded Markov chain using transient
analysis of CTMC, similarly to the analysis of CTMC observed by a one-clock timed
automaton [10]. In the tool Sabre [16], this method is extended to parallel discrete-
time events by approximating them using one discrete-time event Δ [18] that is ac-
tive in all states and emulates other discrete-time events. An event e occurs with the

delay(e)/delay(Δ)�-th occurrence of Δ after initialization of e. Note that this corre-
sponds to discretizing time for the discrete-time events while leaving the exponential
events intact.

As some of the methods are recent, no good comparison of these methods exists.
Based on our preliminary experiments, we apply in Section 4 the tool Sabre.

4 Experimental Evaluation

In this section we evaluate the reduction of the state space and hence the reduction of the
time needed for the analysis when using IPH compared to PH. Precisely, (1) we inspect
the growth of the state space of both IPH and PH approximations when decreasing the
tolerated error; (2) for a fixed tolerated error, we examine the growth of the state space
of the PH approximation when increasing the shift of a shifted distribution; and (3) for
a fixed model and a fixed PCTL property we compare the running time of the analysis
of d-CTMC yielded by IPH and the running time of the analysis of CTMC yielded by
PH when increasing the number of phases.

We consider the distributions from the previous sections, namely the shifted distri-
bution of the event ack addressed by the IPH-shift algorithm and the distribution
uniform on [0,2] addressed by the IPH-slice algorithm. The uniform distribution is
specified simply by its formula whereas the density of the event ack is based on real
data. Using the Unix ping command, we collected 10000 successful ICMP response
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with the same number of phases. The plotted number of phases is the sum of the phases within
all used slices. The error for the optimal number of slices is plotted in bold.

times of a web server (www.seznam.cz, the most visited web portal in the Czech Re-
public). The data set has mean 4.19 ms, standard deviation 0.314 ms, variance 0.0986,
coefficient of variation 0.075 ms, and the shortest time is 4.06 ms (see Figure 4).

To get reliable results, we need to compare IPH with state-of-the-art tools for contin-
uous PH fitting. For our experiments, we considered the tools EMpht [3], G-FIT [39],
momfit [25], and PhFit [24] (an extended comparison including the tool HyperStar [36]
is in [28]). We ran the tools to produce PH approximations of the two events with 30
phases (we chose such a small number of phases because for some tools it already took
a substantial amount of time). Based on the results shown in Table 1, we have selected
PhFit as the baseline tool. Most of the tools achieve similar precision, however PhFit
significantly outperforms all others regarding the CPU time6.

4.1 Growth of the State Space When Decreasing Error

In the first experiment, we focus on the size of the state space necessary to fit the dis-
tributions up to a decreasing error. The decreasing errors (Err) when increasing the
number of phases, i.e. the state space, are shown in Figure 7. Both our IPH algorithms
exhibit a fast decrease of the error (note that the scales are logarithmic). Observe that
the continuous PH method does not perform particularly well on the event ack obtained
as a real-world example since the absolute density difference of two densities can never
exceed 2. For the uniform distribution, we show the results for different numbers of
slices used in the IPH-slice algorithm. According to our experiments on the uniform
distribution, a finer slicing with less phases in each slice is better than a coarser one
with more phases in each slice, whenever each slice is fitted by at least 4 phases.
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Fig. 8. The growth of the state space when increasing the shift. On the left, there is the dependence
of the error on the size of the state space for distributions with different shifts. Note that the IPH
fitting does not depend on the shift. On the right, there is the growth of the state space when
increasing the shift and fixing the PH fitting error to 1.71.

4.2 Growth of the State Space When Increasing the Shift
In the second experiment, we analyse the growth of the state space when increasing
the shift of a shifted distribution. In other words, how much larger model we get when
we try to fit with a fixed error an event with lower coefficient of variation? We took
the distribution of the ack event and shifted the data to obtain a sequence of events
ack0.15 , · · · ,ack4, · · ·ack32 where acki has zero density on the interval [0, i]. Note that
compared to ack we shifted the data in both directions as ack ≈ ack4. The results in
Figure 8 confirm a quadratic relationship between the shift and the necessary number
of phases for the PH approximation [16].

The quadratic relationship can be supported by the following explanation. Assume
we want to approximate a discrete distribution with shift s by a PH distribution. Due to
[1], the best PH distribution for this purpose is the Erlang distribution, the chain of k
phases with exit rates k/s. Since (Err) does not work in this setting (density is not de-
fined for discrete distributions), we use another common metric - matching moments.
Here the goal is to exactly match the mean and minimize the difference of variance.
Since the variance of the discrete distribution is zero, the error for k phases is the vari-
ance of the Erlang distribution, i.e. s2/k. To get the same error for a discrete distribution
with n-times increased shift n · s, we need n2 · k phases as (n · s)2/(n2 · k) = s2/k.

4.3 Time Requirements and Error Convergence When Increasing State Space
So far, we studied how succinct the IPH approximations are compared to PH. One can
naturally dispute the impact of IPH approximation by saying that the complexity of
d-CTMC analysis is higher that the complexity of CTMC analysis. Here, we show an
example where IPH in fact leads to a lower overall analysis time.

6 The analysis has been performed on Red Hat Enterprise Linux 6.5 running on a server with 8
processors Intel Xeon X7560 2.26GHz (each with 8 cores) and shared 448 GiB DDR3 RAM.
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Table 2. Probability of collision computed by unbounded reachability in CTMC derived using
PH and in d-CTMC derived using IPH. The exact probability of collision is 0.7753.

PRISM on CTMC Sabre on d-CTMC
phases result CPU time phases result CPU time

100 0.527 6.37 s 5 0.695 41s
200 0.541 14.92 s 10 0.730 1 min 24 s
500 0.562 47.74 s 20 0.745 3 min 37 s

1000 0.585 2 min 55 s 30 0.758 10 min 30 s
2000 0.629 9 min 20s
3000 0.680 50 min 49s
5030 0.705 3h 14 min
10030 0.731 32 h 2 min

We model two workstations competing for a shared channel. Each workstation wants
to transmit its data for which it needs 1.2 seconds of an exclusive use of the channel.
Each workstation starts the transmission at a random time. If one workstations starts its
transmission when the other is transmitting, a collision occurs. Our goal is to compute
the probability of collision. For the transmission initiations, we again used the ping
command (for two different servers) and obtained two distributions with zero density in
the first 4.1 seconds and the first 5.51 seconds, respectively.

We approximated the model using both PH and IPH and subsequently run analysis
in the tools PRISM [29] and Sabre [16] that are according to our knowledge the best
tools for analysing large CTMC and d-CTMC models, respectively 7 we used IPH ap-
proximation for both transmission initiating distributions and a discrete-time event for
the 1.2 seconds of transmission. The probability of collision was computed by reacha-
bility analysis. In the CTMC model for PRISM, we used PH approximations for both
transmission initiating distributions. Furthermore, as PRISM does not support nesting
of time bounded until operator into until operator, we again needed to transform the
problem into (unbounded) reachability analysis by incorporating the 1.2 seconds of
transmission time in the model. We approximated the time by Erlang distribution with
1000 phases (using different number of phases causes at most 1% error in the result).

The results of our experiments are shown in Table 2. The exact probability of colli-
sion is 0.7753 as computed directly from the data sampled by ping using a LibreOffice
spreadsheet. Due to some numerical errors in the version of Sabre that we used, we
were not able to get a lower error than 2% even when using more than 30 phases. Note
that the results we were able to obtain from PRISM have a more then twice as high
error8. Moreover, the immense analysis times shown in Table 2 do not include the du-
rations of PH approximations. The largest approximation we were able to obtain using
PhFit was for 3000 phases as for 4000 phases it did not finish within 5 days. For 5030
and 10030 phases we thus constructed the approximations by concatenating an Erlang

7 To eliminate the effects of the implementation, we also run the CTMC analysis in Sabre. How-
ever, it is much slower than PRISM. Full details are in [28].

8 We did our best to make CTMC analysis as quick as possible, we used parameters -s -gs
-maxiters 1000000 -cuddmaxmem 18000000 and set PRISM_JAVAMAXMEM to 200000m.
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approximation of the shift with the 30 phases PH approximation of the remaining part
(as it was obtained during IPH). Overall, the results indicate that for models that are
sensitive to precise approximation of the distributions, the IPH approximation can lead
to a significantly faster analysis compared to PH approximation.

5 Future Work

There are several directions for future work. First, a comparison of the existing algo-
rithms [16,31,21] that can be applied to the transient analysis of d-CTMC would be
highly welcome. Furthermore, for the best algorithm for d-CTMC, one can perform a
more detailed comparison of its running times on the d-CTMC obtained by the IPH fit-
ting with the analysis times of other available methods (such as the standard PH fitting).
Second, we believe that further heuristics can increase the efficiency of IPH or its ap-
plicability to a wider class of distributions. Finally, our method justifies the importance
of research on further analysis algorithms for d-CTMC.

Acknowledgement. We would like to thank Vojtěch Forejt, András Horváth, David
Parker, and Enrico Vicario for inspiring discussions.
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