
On the Predictive Properties of Performance

Models Derived through Input-Output
Relationships

Mahmoud Awad and Daniel A. Menascé

Computer Science Department, George Mason University
Fairfax, VA 22030, USA

{mawad1,menasce}@gmu.edu

Abstract. Building an analytical performance model is a challenge when
little is known about the functionality and behavior of the system being
modeled and/or when obtainingmodel parameters throughmeasurements
is difficult. This paper addresses this problem by presenting an approach
that derives analytic model parameters by observing the input-output re-
lationships of a real system. More specifically, input (i.e., arrival rates for
each job class) and output (i.e., average response time for each job class)
measurements are used to estimate the per-class service demands andnum-
ber of servers for a Queuing Network model of the system. This model,
called the computed model (CM), provides the same output values for the
same input values used to derive the CM. The important question is
whether the CM has predictive power, i.e., can the CM predict the out-
put values that would be observed in the real system for different values
of the input? The CM’s parameters are obtained by solving a non-linear
optimization problem. The paper shows through experiments that the CM
is relatively robust and has predictive power over a range of input values.

Keywords: Queuing network models, parameter estimation, non-linear
optimization.

1 Introduction

Analytical performance models, such as Queuing Network (QN) models, are
essential for performance prediction as well as understanding the qualitative
characteristics of a computer system. Developing these models requires intimate
knowledge of the computer system and the availability of a number of perfor-
mance measurements to estimate the model’s input parameters. However, there
are cases when performance prediction is needed for computer systems whose
functionality and behavior are not fully understood.

For example, Internet data centers with virtualized environments, such as
cloud computing providers, are capable of hosting multiple heterogeneous ap-
plication systems of different sizes and complexities. Therefore, it is practically
impossible for such data centers to adequately understand the functionality of-
fered by all hosted application systems in order to develop precise performance
models.

A. Horváth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 89–103, 2014.
c© Springer International Publishing Switzerland 2014



90 M. Awad and D.A. Menascé

The issue we address in this paper is the ability to derive QN models for com-
puter systems where little is known about the internal architecture or behavior
of the system. We view the system as a “grey” box where input parameters (e.g.,
arrival rates) and output parameters (e.g., average response time) are known, in
addition to some internal structural information about the system (e.g., num-
ber and function of each layer in a multi-tiered system, but not necessarily the
number of servers of each type). We then derive a QN model, which we call the
Computed Model (CM), that closely approximates the computer system. Such
model will be of benefit only if it proves capable of predicting the behavior of
the real system as the workload intensity changes over time.

Our approach for deriving QN performance models uses a non-linear opti-
mization technique to determine the parameters of the CM. We conducted a
number of experiments to evaluate the ability of the CM to predict the behavior
of the real system as workload intensity changes. In order to test the viability of
our approach, we initially, conducted a number of controlled experiments with
an analytical QN model acting as a proxy for a real system. Our results showed
that our approach is capable of producing computed QN models that have a ro-
bust predictive power. We then conducted two experiments using Apache OFBiz
(Open For Business) ERP system; one in which the number of servers per tier
is known a priori (Static-N) and one in which the number of servers per tier is
inferred by the optimization technique (Variable-N). Both OFBiz experiments
show results consistent with the controlled experiments.

A few prior efforts are related to our research. It is important to note that this
paper is not about parameterizing QN models of real systems. There is a vast
body of literature on that. In that context, the system components are totally
visible to the modeler and therefore can be instrumented. What is of interest
to the work in this paper is a situation where the modeler either has no access,
is unwilling, or does not have the resources to conduct measurements on the
internal components of a computer system. In that case, the work in [2,3] used
a customized non-linear optimization technique to approximate unknown model
parameters when the queuing model is already known. However, their technique
is applied to a limited set of single queue models. Also, [11] proposed a black-box
approach to calculating unknown input parameters in open multi-class queuing
networks given that some service demands are known.

Our optimization technique is simple and efficient and can be applied to open
multi-class QN models, where the workload intensity and the response time
of the modeled system are known, in addition to minimal internal structure
information.

Autonomic computing environments can benefit the most from our approach
of deriving performance model parameters dynamically [6]. These environments
rely heavily on optimal resource allocation through performance prediction,
where the internal architecture of the hosted application systems is not fully
understood. The technique presented here does not apply when one is interested
in predicting metrics internal to a system (e.g., CPU and disk queue lengths)



On the Predictive Properties of Performance Models 91

The rest of the paper is organized as follows. Section 2 includes the prob-
lem definition and notation used throughout the rest of the paper. Section 3
discusses the methodology and algorithm used. The next section shows experi-
mental results. Section 5 discusses some related work. Finally, section 6 presents
discussions and concluding remarks.

2 Problem Definition

In model-based performance engineering, real computer systems are abstracted
using analytical models, which can be used by performance engineers to answer
“what if” questions related to predicting system performance. Queuing network
(QN) models have been used quite often for that purpose. Such models have two
types of parameters: workload intensity (e.g., arrival rates) and resource service
demands (i.e., the average total time spent by a transaction using a resource).
Service demands do not include the time waiting to use a resource. See e.g. [12]
for details on QN models.

As discussed before, in virtualized environments, the internal architecture
of hosted application systems may not be readily available. However, it is a
common practice for such environments to provide monitoring tools that can
easily record and analyze input and output parameters, such as the transaction
arrival and departure rates as well as the time taken to process each transaction.
Such monitoring is readily available in operating systems as well as virtualization
software, and should be adequate, in our opinion, to develop an overall model
that approximates the behavior of the application system.

Figure 1 demonstrates the problem we address in this paper. To derive an
approximate analytical model of the system, we treat it as a“gray box,” where
the input and output parameters are known, as well as minimal information
about the internal structure of the system (e.g., number of tiers in a multi-tiered
system). The QN Parameter Estimator takes average arrival rates λ (input)
and average response times TAS (output) and establishes a relationship between
them in order to estimate the parameters of the Computed QN Model (CM).
The relationship between the input and output parameters is formulated as a
non-linear optimization problem that can be solved using a non-linear solver.

After the Computed QN Model is parameterized, the behavior of the actual
system and the corresponding QN model need to be compared frequently to
ensure that the QN model accurately represents the actual system, which is
important if the model is to be used for performance prediction. This comparison
process is demonstrated in Figure 2, where the observed response time, TAS, of
the actual system and the computed response time, TCM, of the Computed QN
Model are compared for the same arrival rate. The question we pose in our
experiments is how accurate is the response time of the CM when compared to
the observed response time of the actual system.

This paper considers the problem of deriving and parameterizing a QN model
given that the arrival rate (input) and the response time (output) of the actual
system can be measured at regular intervals. We focus primarily on multi-tier



92 M. Awad and D.A. Menascé

Actual System

QN
Parameter
Estimator

Computed
QN Model

λ TAS

OutputInput

Fig. 1. Parameterizing the Computed QN Model

Actual
System TAS=TCM ?

Computed
QN Model

TAS

TCM

λ

λ

Fig. 2. Maintaining the Accuracy of the Computed QN Model

application systems, in which transactions are processed by one of several servers
at each tier and passed on to the next tier. This architecture is typical of online
transaction processing systems such as e-commerce application systems. How-
ever, our approach can be applied to a host of architectures and application
systems.

Figure 3 shows a sample computed QN Model that would be used to represent
an actual system with a 3-tier architecture. We will use this architecture to
demonstrate our methodology and experimental results. It would be obvious to
one skilled in QNs that our approach can be generalized to any number of tiers.
In this architecture, transactions are submitted to the web server tier, which
may consist of a number of servers that are load balanced. Transactions are
passed from the web server tier to the application server tier, which may also
consist of a number of load balanced servers. If the transaction needs to access
the database, it will be passed on to the database server tier, which will process
the transaction and return the results back to the application server tier and
then to the web server tier.

We assume throughout the paper that the number of tiers in the actual system
is known (we call this internal structural information). But, we assume we do
not know the number of servers in each tier, their internal components, nor
the service demands at these components for each transaction class. In order to
parameterize the computed QN Model, we need to find the service demands for
each tier for each class. Consider the following notation:



On the Predictive Properties of Performance Models 93

IIII 2w

1w

Nw

Web Servers

IIII 2a

1a

Na

App Servers

IIII 2db

1db

Ndb

DB Servers

λw

λw
Nw

λw
Nw

λw
Nw

Xw
Nw

Xw
Nw

Xw
Nw

λa

λa
Na

λa
Na

λa
Na

Xa
Na

Xa
Na

Xa
Na

λdb

λdb
Ndb

λdb
Ndb

λdb
Ndb

Xdb
Ndb

Xdb
Ndb

Xdb
Ndb

X

Fig. 3. Computed QN Model Topology in a 3-tier Architecture

– R: number of transaction classes in the queuing network
– λr: arrival rate of class r transactions (r = 1, · · · , R)
– Nw, Na, Ndb: number of servers in the web, application, and database tiers,

respectively
– DAS

w,r, D
AS
a,r, D

AS
db,r: average class r (r = 1, · · · , R) service demands at each of

the three tiers for the actual system.
– DCM

w,r , D
CM
a,r , D

CM
db,r: average class r (r = 1, · · · , R) service demands at each of

the three tiers for the computed model
– DAS: matrix of service demands for the actual system. The rows correspond

to the web server, application server, and database server tier, respectively,
and the columns correspond to the classes.

– DCM: matrix of service demands for the computed system. The rows corre-
spond to the web server, application server, and database server tier, respec-
tively, and the columns correspond to the classes.

– Tw,r, Ta,r, Tdb,r: average class r (r = 1, · · · , R) response times at each of the
three tiers

– TAS
r : average class r (r = 1, · · · , R) response time for the actual system

– TCM
r : average class r (r = 1, · · · , R) response time for the computed model

3 Methodology

The goal of our methodology is to derive service demands at all tiers and all
classes, for the Computed Model (CM) using only the inputs (average arrival
rates) and outputs (average response times) of the Actual System (AS).

The average response time of the Actual System for class r transactions is a
function fAS

r of the vector λ = (λ1, · · · , λR) of average arrival rates, the vector
N = (Nw, Na, Ndb), and of the matrix of service demands DAS.

Hence,

TAS
r = fAS

r (λ,N ,DAS). (1)

The values of TAS
r , r = 1, · · · , R, can be obtained using standard measuring tools.



94 M. Awad and D.A. Menascé

The class r response times of the computed model are a function fCM
r of the

vector λ = (λ1, · · · , λR) of arrival rates, the vector N = (Nw, Na, Ndb), and of
the matrix of service demands DCM. Thus,

TCM
r = fCM

r (λ,N ,DCM). (2)

The function fCM
r in Eq. (2) is the function (or algorithm) used to solve a

queuing network model given its parameters [12]. The matrix DCM is unknown
and it is a goal of this work to estimate DCM from λ and TAS

r in a way that
TCM
r ≈ TAS

r , for r = 1, · · · , R, for a wide range of values of λ.
Before we discuss how we estimate DCM, we need to provide a formulation for

the function fCM
r for the QN of Fig. 3. We use Seidmann’s approximation [14]

to model the multiple-server queues in this QN.
This approximation replaces a multiple-server queue by a sequence of a delay

device and a load-independent queuing device with properly adjusted service
demands. Then, the response time of an N -server single queue with service
demand equal to D in each server is approximated as

T = D
N − 1

N
+

D/N

1− λ×D/N
. (3)

Therefore, the function fCM
r with input parameters λ,N , and DCM is

Tw,r = DCM
w,r

Nw − 1

Nw
+

DCM
w,r /Nw

1−∑R
r=1 λrDCM

w,r /Nw

(4)

Ta,r = DCM
a,r

Na − 1

Na
+

DCM
a,r /Na

1−∑R
r=1 λrDCM

a,r /Na

(5)

Tdb,r = DCM
db,r

Ndb − 1

Ndb
+

DCM
db,r/Ndb

1−∑R
r=1 λrDCM

db,r/Ndb

(6)

TCM
r = Tw,r + Ta,r + Tdb,r (7)

The problem of obtaining DCM can be cast as the following non-linear opti-
mization problem.

Find the service demands in DCM (i.e., the values of the variables DCM
w,r , D

CM
a,r ,

DCM
db,r ∀ r) that minimize MAXDIFF, the maximum value of the absolute differ-

ences between the response times of the actual system and that of the computed
model.

Minimize MAXDIFF =
R

max
r=1

| TAS
r − TCM

r | (8)

subject to the following constraints:

1. DCM
w,r , D

CM
a,r , D

CM
db,r ≥ 0 r = 1, · · · , R

2. DCM
w,r +DCM

a,r +DCM
db,r ≤ TCM

r r = 1, · · · , R



On the Predictive Properties of Performance Models 95

3.
∑R

r=1 λr
DCM

w,r

Nw
< 1,

∑R
r=1 λr

DCM
a,r

Na
< 1,

∑R
r=1 λr

DCM
db,r

Ndb
< 1 r = 1, · · · , R

4. TCM
r = Tw,r + Ta,r + Tdb,r where

Tw,r = DCM
w,r

Nw−1
Nw

+
DCM

w,r/Nw

1−∑R
r=1 λrDCM

w,r/Nw
, Ta,r = DCM

a,r
Na−1
Na

+
DCM

a,r /Na

1−∑R
r=1 λrDCM

a,r /Na
,

and

Tdb,r = DCM
db,r

Ndb−1
Ndb

+
DCM

db,r/Ndb

1−∑R
r=1 λrDCM

db,r
/Ndb

The first constraint says that all service demands must be non-negative, the
second constraint says that the response time of each class must be at least equal
to the sum of all service demands at all tiers for transactions of that class (this
is the zero congestion case). The third constraint indicates that the utilization
of the web server tier, application tier, and database tier have to be less than
100%. Finally, the fourth constraint provides the function fCM

r used to compute
TCM
r as a function of λ,N , and the service demands in DCM.
The above discussion assumes that the number of servers per tier is known a

priori. However, one can extend this formulation, as done in the experiments, by
including Nws, Na, and Ndb as decision variables with the following constraints:
Nws ∈ N, Na ∈ N, and Ndb ∈ N (where it is understood that 0 �∈ N).

This non-linear optimization problem can be solved using available solvers, in-
cluding Microsoft’s Excel Solver Add-in that uses the Generalized Reduced Gra-
dient (GRG2) method or NEOS solvers (www.neos-server.org/neos/solvers/).
We used the Excel Solver in the results reported in this paper.

The solution of this optimization problem provides the necessary service de-
mands to solve the QN model given the arrival rates measured in the actual sys-
tem. As discussed at the outset of the paper, the question of interest is whether
the computed model CM has predictive power over a range of arrival rate values.
Given a certain threshold ε for the maximum percent absolute relative difference
(MPARD) between the actual response time and that predicted by the computed
model, the process of recomputing the service demands DCM should be repeated
when the MPARD exceeds the threshold. Therefore, the computed model may
have to be re-calibrated when

MPARD =
R

max
r=1

{| (TAS
r − TCM

r )/TAS
r × 100 |} > ε. (9)

4 Experimental Results

The first subsection of this section discusses experiments, called “controlled ex-
periments,” in which we use an open QN model as a proxy for the actual system.
The following subsection reports on experiments conducted with a real system.

4.1 Controlled Experiments

The controlled experiments use an open QN model, referred to as the Actual
Model (AM), as a proxy for an actual system. The parameters of the AM, such
as the service demands at all tiers, are known. Note that these known parameters



96 M. Awad and D.A. Menascé

of the AM are used only for the purpose of solving the AM and obtaining its
response time as a proxy for measuring the response time in the actual system.
The service demands of the AM are not used in any way to derive parameters
for the CM.

The actual system (represented by the Actual Model) is a 3-tier web-based
application system with two classes of transactions and includes a load balancer
at each tier (See Fig. 3). In our experiments, we test the ability of the CM to
predict the response time of the AM (i.e., the proxy for the AS) with varying
average arrival rates and number of load-balanced servers per tier. This is a
typical configuration in elastic cloud computing environments in which resources
are allocated and de-allocated depending on the workload.

Figures 4-5 show results for 3 servers and 5 servers per tier, respectively. The
top graph in each figure shows the value ofMPARD (see Eq. (9)) versus the scaling
factor used to vary average arrival rates. The scaling factor is a multiplier used to
scale up by the same factor the arrival rate of both classes. The initial arrival rates
are 0.3 tps and 0.4 tps for classes 1 and 2, respectively. The scaling factor varies
over a very wide range: up to 180 for the 2-server case, 210 for the 3-server case,
and 400 for the 5-server case. For example, a scaling factor of 20 indicates that
the arrival rates for classes 1 and 2 are 6 (= 20× 0.3) tps and 8 (=20× 0.4) tps,
respectively. The threshold ε in the experiments is set to 3% (a low value for the
threshold). As shown in the MPARD graphs, re-calibration was able to bring the
error rate back to zero after it first surpassed the threshold ε.

As Figs. 4-5 demonstrate, the number of times that MPARD exceeds the
threshold is pretty low despite the wide variation of the scaling factor. For ex-
ample, the threshold was exceeded twice for the 3-server case and six times for
the 5-server case.

The three bottom graphs of each figure show the average response times with
increasing scaling factors, which illustrates the ability of the CM to predict the
response times of the AM. The figures show two curves for each transaction class;
one for AM and another for CM. The curves show that the CM is capable of
tracking very closely (i.e., within the 3% threshold) the response times of the AM.
The following ranges of the scaling factor exhibited no need for recalibration:
(a) 3-server case: 1-149, 160-200; and (b) 5-server case: 1-50, 60-90, 100-130,
140-290, 300-360, 370-390.

Table 1 shows the service demands at each of the three tiers for classes 1 and
2 for the AM and CM models, 5 servers per tier, and a scaling factor of 180.
The table also shows the response times for each class for AM and CM. The
results are very close even though the computed and actual service demands are
significantly different. The value of MAXDIFF is 1.5× 10−4.

We also observed that the timing and frequency of model calibration is hard
to predict as the number of servers per tier increases because the individual
service demands of the actual system and computed model may be different, as
shown in Table 1. Therefore, when the curves for AM and CM response times
take longer time to diverge, that is an indication that the corresponding service
demands for the different servers in AM and CM are accurate. In Figure 4,



On the Predictive Properties of Performance Models 97

0 50 100 150 200
0%

2%

4%

Scaling Factor

M
P
A
R
D

0 50 100 150 200
0.00

0.02

0.04

0.06

0.08

0.10

Scaling Factor

R
es
p
o
n
se

T
im

e
(s
) Class 1 AM

Class 1 CM

Class 2 AM

Class 2 CM

Fig. 4. 3 Servers per Tier. Top: MPARD. Bottom: Response Times for AM and CM
for Classes 1 and 2. ε = 3%.

0 100 200 300 400
0%

2%

4%

Scaling Factor

M
P
A
R
D

0 100 200 300 400
0.00

0.05

0.10

Scaling Factor

R
es
p
o
n
se

T
im

e
(s
) Class 1 AM

Class 1 CM

Class 2 AM

Class 2 CM

Fig. 5. 5 Servers per Tier. Top: MPARD. Bottom: Response Times for AM and CM
for Classes 1 and 2. ε = 3%.



98 M. Awad and D.A. Menascé

Table 1. Service demands and response times for the AM and CM models for 5 servers
per tier and scaling factor equal to 180

AM CM

Service Demands

Tier Class 1 Class 2 Class 1 Class 2

Web 0.010 0.013 0.008 0.016
Application 0.012 0.016 0.021 0.015
DB 0.015 0.018 0.008 0.016

Response Times

0.0414 0.0525 0.0415 0.0524

this occurs when the arrival rates are low, which results in fewer calibrations.
When the resources are close to saturation, the frequency of calibration increases
though. In Fig. 5, however, the service demands are more accurate right after the
fourth calibration, but the frequency of calibration still increases as the system
approaches saturation levels.

As noted above, the error threshold ε used in the previous experiments was
rather low (i.e., 3%). We investigated the impact of increasing ε to 5%. Figure 6
shows the variation of MPARD and the average response time for 3 servers per
tier and ε = 5%. The corresponding figure for ε = 3% is Fig. 4. The first re-
calibration for ε = 5% occurred for a scaling factor of 200 while for ε = 3% it
occurred much earlier, at a scaling factor of 160.

4.2 Experiments with an Actual System

The controlled experiments helped validate the proposed methodology by vary-
ing number of servers per tier and the calibration threshold ε while monitoring
the response time of the CM compared to the AM representing the actual system.
To validate the proposed methodology on a real system we used the Apache OF-
Biz ERP system and Apache JMeter to generate various workloads. OFBiz was
installed on two load-balanced Apache Tomcat servers with two load-balanced
MySQL database servers, and a single Apache web server receiving JMeter re-
quests and routing these requests to the load-balanced OFBiz Tomcat servers.

Figure 7 shows the results when the number of servers per tier is static (1 web
server, 2 OFBiz Tomcat application servers and 2 MySQL database servers) and
the recalibration threshold is set to 25%. In this case, the CM closely predicted
the OFBiz response time within the recalibration threshold, and only needed
six model calibrations before system resource saturation. Similar to the con-
trolled experiments, the variation in response time between the actual system
and the computed model tends to diverge faster as system resources are close to
saturation.

Figure 8 shows the results when the number of servers per tier is variable. This
test case investigates the ability of our methodology to infer more information
about the system architecture components by predicting the optimal number of



On the Predictive Properties of Performance Models 99

0 50 100 150 200
0%

5%

10%

15%

Scaling Factor

M
P
A
R
D

0 50 100 150 200
0.00

0.05

0.10

Scaling Factor

R
es
p
o
n
se

T
im

e
(s
) Class 1 AM

Class 1 CM

Class 2 AM

Class 2 CM

Fig. 6. 3 Servers per Tier. Top: MPARD. Bottom: Response Times for AM and CM
for Classes 1 and 2. ε = 5%.

servers per tier that should be used in the CM to accurately represent the actual
system. In this experiment, the optimizer was used to perform six model calibra-
tions for the CM, and predicted the following number of web servers, application
servers and database servers for each of the six calibrations, respectively: (1,1,2),
(1,2,3), (1,2,3), (2,2,2), (2,2,2), (1,2,2), (1,1,2).

5 Related Work

Much of the related work in the fields of performance engineering and capacity
planning is focused on dynamic resource allocation when a performance model
is fully or partially known a priori. In this paper, we treat the system and its
components as black boxes and we try to establish a relationship between system
input and output in order to estimate and parameterize an analytical model that
closely approximates the behavior of the system.

Some of the prior work that tackled the parameterization of analytical mod-
els includes [2,3,4], where the problem of estimating known model parameters is
treated as an optimization problem that is solved using derivative-free optimiza-
tion. The objective function to be optimized is based on the distance between the
observed measurements and the corresponding points derived from the model.
The authors point out that the main problem is determining how to couple these
two sets of points in order to arrive at an objective function to be minimized.
The proposed approach is applied to a small set of single queue models.



100 M. Awad and D.A. Menascé

0 10 20 30 40 50 60
0%

10%

20%

30%

Arrival Rate (t/s)

M
P
A
R
D

0 10 20 30 40 50 60
0.00

0.10

0.20

Arrival Rate (t/s)

R
es
p
o
n
se

T
im

e
(s
) Class 1 OFBiz

Class 1 CM

0 1 2 3 4 5 6
0.00

0.10

0.20

0.30

Arrival Rate (t/s)

R
es
p
o
n
se

T
im

e
(s
) Class 2 OFBiz

Class 2 CM

Fig. 7. Static N - Top: MPARD vs. Arrival Rate. Middle: Class 1 Transactions. Bottom:
Class 2 Transactions. ε = 25%.

Menascé tackled the issue of model parameterization when some input pa-
rameters are already known [11]. The author proposed a closed-form solution
to the case when a single service demand value is unknown, and a constrained
non-linear optimization solution when a feasible set of service demands are un-
known. However, that work did not propose a solution when none of the service
demands are known a priori.

In [9], the authors presented a survey of performance modeling approaches
focusing mainly on business information systems. The authors described the
general activities involved in workload characterization, especially estimating
service demands, and the various methods and approaches used to estimate it.
Some of these methods include general optimization techniques, linear regression,
and Kalman filters.



On the Predictive Properties of Performance Models 101

0 10 20 30 40 50 60
0%

10%

20%

30%

40%

Arrival Rate (t/s)

M
P
A
R
D

0 10 20 30 40 50 60
0.00

0.10

0.20

Arrival Rate (t/s)

R
es
p
o
n
se

T
im

e
(s
) Class 1 OFBiz

Class 1 CM

0 1 2 3 4 5 6
0.00

0.10

0.20

0.30

Arrival Rate (t/s)

R
es
p
o
n
se

T
im

e
(s
) Class 2 OFBiz

Class 2 CM

Fig. 8. Variable N - Top: MPARD vs. Arrival Rate. Middle: Class 1 Transactions.
Bottom: Class 2 Transactions. ε = 25%.

In [7], the authors presented a method for extracting architecture level perfor-
mance models in distributed component-based systems using tracing informa-
tion and instrumentation to infer system components, their connections and the
(probabilistic) dependency of their parameters. In contrast, our approach does
not require such knowledge of system components or their relationships.

In [13], the authors presented an iterative methodology for building perfor-
mance models in virtualized environments with a focus on the I/O function of
storage systems. The method implemented in that paper focused on the stor-
age component of a particular IBM mainframe system. Our approach addresses
a higher level of system abstraction where the internal structure of individual
servers, such as the storage system, is unknown.



102 M. Awad and D.A. Menascé

In [8], the authors presented Modellus; a system for automated web-based
application modeling that uses workload characterization, data mining and ma-
chine learning techniques. Our focus in this paper is on gray box modeling, where
detailed web server logs and database logs may not be available.

The work in [1] used Kalman Filters to estimate resource service demands for
the purpose of system performance testing. The authors attempted to find the
workload mix that would eventually saturate a certain system resource in a test
environment in order to determine the system’s bottlenecks.

The work in [10,15,16] addressed the problem of estimating model parameters
in highly dynamic autonomic environments in which Service Level Agreements
(SLAs) (in the form of Quality of Service (QoS)) have to be maintained while
offering optimal use of data center resources. The authors proposed the use of
a model-based estimator based on Extended Kalman Filters, where the current
state depends on prior knowledge of previous states. Our approach, on the other
hand, relies on solving an optimization problem where only the current input
and output values are know and where the decision to recalibrate only depends
on the level of divergence between observed measurements and model estimated
measurements.

6 Conclusions

Building an analytical performance model is a challenge when little is known
about the functionality and behavior of the system being modeled and/or when
obtaining model parameters through measurements is difficult. This paper ad-
dresses this problem by presenting an approach that derives analytic model
parameters by observing the input-output relationships of a real system. This
model, called the computed model (CM), provides the same output values for
the same input values used to derive the CM. The CM is obtained by solving a
non-linear optimization problem. The results showed that the CM is quite robust
and has predictive power over a wide range of input values. For example, as the
arrival rate of transactions for both classes was scaled by a factor varying from 1
to 400, the response times predicted by the CM only exceed the 3% error thresh-
old six times. When the error threshold was increased to 5% (still a very low
value), only two re-calibrations were needed. The ability of the CM to model the
number of servers per tier of a multi-tier system is of a particular interest since it
proves the ability of the CM to model system components previously unknown
to it by knowing only the input and output parameters of a real information
system, such as Apache OFBiz.

References

1. Barna, C., Litoiu, M., Ghanbari, H.: Autonomic load-testing framework. In: Proc.
8th ACM Intl. Conf. Autonomic Computing, pp. 91–100 (2011)

2. Begin, T., Baynat, B., Sourd, F., Brandwajn, A.: A DFO technique to calibrate
queuing models. Computers & Operations Research 37(2), 273–281 (2010)



On the Predictive Properties of Performance Models 103

3. Begin, T., Brandwajn, A., Baynat, B., Wolfinger, B.E., Fdida, S.: Towards an
automatic modeling tool for observed system behavior. In: Wolter, K. (ed.) EPEW
2007. LNCS, vol. 4748, pp. 200–212. Springer, Heidelberg (2007)

4. Begin, T., Brandwajn, A., Baynat, B., Wolfinger, B.E., Fdida, S.: High-level ap-
proach to modeling of observed system behavior. ACM SIGMETRICS Performance
Evaluation Review 35(3), 34–36 (2007)

5. Bennani, M.N., Menascé, D.A.: Assessing the robustness of self-managing computer
systems under highly variable workloads. In: Intl. Conf. Autonomic Computing, pp.
62–69 (2004)

6. Bennani, M.N., Menascé, D.A.: Resource Allocation for Autonomic Data Centers
Using Analytic Performance Models. In: 2005 IEEE Intl. Conf. Autonomic Com-
puting, Seattle, WA, June 13-16 (2005)

7. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level per-
formance models of distributed component-based systems. In: 26th IEEE/ACM
Intl. Conf. Automated Software Engineering (ASE), pp. 183–192 (2011)

8. Desnoyers, P., Wood, T., Shenoy, P., Singh, R., Patil, S., Vin, H.: Modellus: Au-
tomated modeling of complex internet data center applications. ACM Tr. on the
Web (TWEB) 6(2) (2012)

9. Kounev, S., Huber, N., Spinner, S., Brosig, F.: Model-based techniques for perfor-
mance engineering of business information systems. In: Shishkov, B. (ed.) BMSD
2011. LNBIP, vol. 109, pp. 19–37. Springer, Heidelberg (2012)

10. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic control
of software systems. ACM SIGSOFT Software Engineering Notes 30(4), 1–7 (2005)

11. Menascé, D.: Computing missing service demand parameters for performance mod-
els. In: Proc. 34th Intl. Computer Measurement Group Conf., pp. 7–12 (2008)

12. Menascé, D., Dowdy, L., Almeida, V.: Performance by Design: Computer Capacity
Planning By Example. Prentice Hall (2004)

13. Noorshams, Q., Rostami, K., Kounev, S., Tuma, P., Reussner, R.: I/O Per-
formance Modeling of Virtualized Storage Systems. In: IEEE 21st Intl. Symp.
Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 121–130 (2013)

14. Seidmann, A., Schweitzer, P., Shalev-Oren, S.: Computerized Closed Queueing Net-
work Models of Flexible Manufacturing, Large Scale System. J. North Holland 12,
91–107 (1987)

15. Woodside, M., Zheng, T., Litoiu, M.: The use of optimal filters to track parameters
of performance models. In: Second Intnl. Conf. Quantitative Evaluation of Systems,
pp. 74–83 (2005)

16. Zheng, T., Yang, J., Woodside, M., Litoiu, M., Iszlai, G.: Tracking time-varying
parameters in software systems with extended Kalman filters. In: Proc. 2005 Conf.
of the Centre for Advanced Studies on Collaborative Research, pp. 334–345 (2005)


	On the Predictive Properties of Performance 
Models Derived through Input-Output Relationships
	1 Introduction
	2 Problem Definition
	3 Methodology
	4 Experimental Results
	4.1 Controlled Experiments
	4.2 Experiments with an Actual System

	5 Related Work
	6 Conclusions
	References




