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Abstract. We study a vacation-type queueing model, and a single-
server multi-queue polling model, with the special feature of retrials.
Just before the server arrives at a station there is some deterministic
glue period. Customers (both new arrivals and retrials) arriving at the
station during this glue period will be served during the visit of the
server. Customers arriving in any other period leave immediately and
will retry after an exponentially distributed time. Our main focus is on
queue length analysis, both at embedded time points (beginnings of glue
periods, visit periods and switch- or vacation periods) and at arbitrary
time points.
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1 Introduction

Queueing systems with retrials are characterized by the fact that arriving cus-
tomers, who find the server busy, do not wait in an ordinary queue. Instead of
that they go into an orbit, retrying to obtain service after a random amount of
time. These systems have received considerable attention in the literature, see
e.g. the book by Falin and Templeton [7], and the more recent book by Artalejo
and Gomez-Corral [3].

Polling systems are queueing models in which a single server, alternatingly,
visits a number of queues in some prescribed order. Polling systems, too, have
been extensively studied in the literature. For example, various different service
disciplines (rules which describe the server’s behaviour while visiting a queue)
and both models with and without switchover times have been considered. We
refer to Takagi [20,21] and Vishnevskii and Semenova [22] for some literature
reviews and to Boon, van der Mei and Winands [5], Levy and Sidi [12] and
Takagi [18] for overviews of the applicability of polling systems.

In this paper, motivated by questions regarding the performance modelling of
optical networks, we consider vacation and polling systems with retrials. Despite
the enormous amount of literature on both types of models, there are hardly any
papers having both the features of retrials of customers and of a single server
polling a number of queues. In fact, the authors are only aware of a sequence
of papers by Langaris [9,10,11] on this topic. In all these papers the author
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determines the mean number of retrial customers in the different stations. In
[9] the author studies a model in which the server, upon polling a station, stays
there for an exponential period of time and if a customer asks for service before
this time expires, the customer is served and a new exponential stay period
at the station begins. In [10] the author studies a model with two types of
customers: primary customers and secondary customers. Primary customers are
all customers present in the station at the instant the server polls the station.
Secondary customers are customers who arrive during the sojourn time of the
server in the station. The server, upon polling a station, first serves all the
primary customers present and after that stays an exponential period of time to
wait for and serve secondary customers. Finally, in [11] the author considers a
model with Markovian routing and stations that could be either of the type of
[9] or of the type of [10].

In this paper we consider a polling station with retrials and so-called glue
periods. Just before the server arrives at a station there is some deterministic
glue period. Customers (both new arrivals and retrials) arriving at the station
during this glue period ”stick” and will be served during the visit of the server.
Customers arriving in any other period leave immediately and will retry after
an exponentially distributed time.

The study of queueing systems with retrials and glue periods is motivated by
questions regarding the performance modelling and analysis of optical networks.
Performance analysis of optical networks is a challenging topic (see e.g. Maier [13]
and Rogiest [17]). In a telecommunication network, packets must be routed from
source to destination, passing through a series of links and nodes. In copper-based
transmission links, packets from different sources are time-multiplexed. This is
often modeled by a single server polling system. Optical fibre offers some big
advantages for communication w.r.t. copper cables: huge bandwidth, ultra-low
losses, and an extra dimension – the wavelength of light. However, in an optical
routing node, opposite to electronics, it is difficult to store photons, and hence
buffering in optical routers can only be very limited. Buffering in these networks
is typically realized by sending optical packets into fibre delay loops, i.e., let-
ting them circulate in a fibre loop and extracting them after a certain number
of circulations. This feature can be modelled by retrial queues. Recent experi-
ments with ‘slow light’, where light is slowed down by significantly increasing
the refractive index in waveguides, have up to now shown very modest buffering
times [8]. It should be noted that with the very high speeds achievable in fibre,
packet durations are very short, so that small buffering times may already allow
sufficient storage of small packets. We represent the effect of slowing down light
by introducing a glue period at a queue just before the server arrives.

The paper is organized as follows. In Section 2 we consider the case of a single
queue with vacations and retrials; arrivals and retrials only ”stick” during a
glue period. We study this case separately because (i) it is of interest in its own
right, (ii) it allows us to explain the analytic approach as well as the probabilistic
meaning of the main components in considerable detail, (iii) it makes the analysis
of the multi-queue case more accessible, and (iv) results for the one-queue case
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may serve as a first-order approximation for the behaviour of a particular queue
in the N -queue case, switchover periods now also representing glue and visit
periods at other queues. In Section 3 the two-queue case is analyzed. We do
not have the space to treat the N -queue case in this paper, but the analysis in
Sections 2 and 3 lays the groundwork for analyzing the N -queue case. Section 4
presents some conclusions and suggestions for future research.

2 Queue Length Analysis for the Single-Queue Case

2.1 Model Description

In this section we consider a single queueQ in isolation. Customers arrive atQ ac-
cording to a Poisson process with rate λ. The service times of successive customers
are independent, identically distributed (i.i.d.) random variables (r.v.), with dis-
tribution B(·) and Laplace-Stieltjes transform (LST) B̃(·). A generic service time
is denoted by B. After a visit period of the server at Q it takes a vacation. Suc-
cessive vacation lengths are i.i.d. r.v., with S a generic vacation length, with dis-
tribution S(·) and LST S̃(·). We make all the usual independence assumptions
about interarrival times, service times and vacation lengths at the queues. After
the server’s vacation, a glue period of deterministic (i.e., constant) length begins.
Its significance stems from the following assumption. Customers who arrive at Q
do not receive service immediately. When customers arrive atQ during a glue pe-
riod G, they stick, joining the queue of Q. When they arrive in any other period,
they immediately leave and retry after a retrial interval which is independent of
everything else, and which is exponentially distributed with rate ν. The glue pe-
riod is immediately followed by a visit period of the server at Q.

The service discipline at Q is gated: During the visit period at Q, the server
serves all ”glued” customers in that queue, i.e., all customers waiting at the end
of the glue period (but none of those in orbit, and neither any new arrivals).

We are interested in the steady-state behaviour of this vacation model with
retrials. We hence make the assumption that ρ := λEB < 1; it may be verified
that this is indeed the condition for this steady-state behaviour to exist.

Some more notation:
Gn denotes the nth glue period of Q.
Vn denotes the nth visit period of Q (immediately following the nth glue period).
Sn denotes the nth vacation of the server (immediately following the nth visit
period).
Xn denotes the number of customers in the system (hence in orbit) at the start
of Gn.
Yn denotes the number of customers in the system at the start of Vn. Notice
that here we should distinguish between those who are queueing and those who

are in orbit: We write Yn = Y
(q)
n +Y

(o)
n , where q denotes queueing and o denotes

in orbit.
Finally,
Zn denotes the number of customers in the system (hence in orbit) at the start
of Sn.



48 O. Boxma and J. Resing

2.2 Queue Length Analysis at Embedded Time Points

In this subsection we study the steady-state distributions of the numbers of
customers at the beginning of (i) glue periods, (ii) visit periods, and (iii) vacation
periods. Denote by X a r.v. with as distribution the limiting distribution of Xn.
Y and Z are similarly defined, and Y = Y (q) + Y (o), the steady-state numbers
of customers in queue and in orbit at the beginning of a visit period (which
coincides with the end of a glue period). In the sequel we shall introduce several
generating functions, throughout assuming that their parameter |z| ≤ 1. For
conciseness of notation, let β(z) := B̃(λ(1 − z)) and σ(z) := S̃(λ(1 − z)). Then
it is easily seen that

E[zX ] = σ(z)E[zZ ], (2.1)

since X equals Z plus the new arrivals during the vacation;

E[zZ ] = E[β(z)Y
(q)

zY
(o)

], (2.2)

since Z equals Y (o) plus the new arrivals during the Y (q) services; and

E[zY
(q)

q zY
(o)

o ] = e−λ(1−zq)GE[{(1− e−νG)zq + e−νGzo}X ]. (2.3)

The last equation follows since Y (q) is the sum of new arrivals during G and
retrials who return during G; each of the X customers which were in orbit at
the beginning of the glue period have a probability 1− e−νG of returning before
the end of that glue period.

Combining Equations (2.1)-(2.3), and introducing

f(z) := (1− e−νG)β(z) + e−νGz, (2.4)

we obtain the following functional equation for E[zX ]:

E[zX ] = σ(z)e−λ(1−β(z))G
E[f(z)X ].

Introducing K(z) := σ(z)e−λ(1−β(z))G and X(z) := E[zX ], we have:

X(z) = K(z)X(f(z)). (2.5)

This is a functional equation that naturally occurs in the study of queueing
models which have a branching-type structure; see, e.g., [6] and [16]. Typically,
one may view customers who newly arrive into the system during a service as
children of the served customer (”branching”), and customers who newly arrive
into the system during a vacation or glue period as immigrants. Such a functional
equation may be solved by iteration, giving rise to an infinite product – where
the jth term in the product typically corresponds to customers who descend
from an ancestor of j generations before. In this particular case we have after n
iterations:

X(z) =

n∏

j=0

K(f (j)(z))X(f (n+1)(z)), (2.6)

where f (0)(z) := z and f (j)(z) := f(f (j−1)(z)), j = 1, 2, . . . . Below we show that
this product converges for n → ∞ iff ρ < 1, thus proving the following theorem:
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Theorem 1. If ρ < 1 then the generating function X(z) = E[zX ] is given by

X(z) =

∞∏

j=0

K(f (j)(z)). (2.7)

Proof. Equation (2.5) is an equation for a branching process with immigration,
where the number of immigrants has generating functionK(z) and the number of
children in the branching process has generating function f(z). Clearly, K ′(1) =
λES + λρG < ∞ and f ′(1) = e−νG +

(
1− e−νG

)
ρ < 1, if ρ < 1. The result of

the theorem now follows directly from the theory of branching processes with
immigration (see e.g., Theorem 1 on page 263 in Athreya and Ney [4]).

Having obtained an expression for E[zX ] in Theorem 1, expressions for E[zZ ]

and E[zY
(q)

q zY
(o)

o ] immediately follow from (2.2) and (2.3). Moments of X may
be obtained from Theorem 1, but it is also straightforward to obtain EX from
Equations (2.1)-(2.3):

EX = λES + EZ, (2.8)

EZ = ρEY (q) + EY (o), (2.9)

EY (q) = λG+ (1− e−νG)EX, (2.10)

EY (o) = e−νG
EX, (2.11)

yielding

EX =
λES + λρG

(1− ρ)(1 − e−νG)
. (2.12)

Hence

EY (q) = λG+ (1− e−νG)
λES + λρG

(1 − ρ)(1− e−νG)
=

λES + λG

1− ρ
, (2.13)

EY (o) = e−νG λES + λρG

(1− ρ)(1 − e−νG)
, (2.14)

EZ =
λρG+ λES[ρ(1 − e−νG) + e−νG]

(1− ρ)(1− e−νG)
. (2.15)

Notice that the denominators of the above expressions equal 1 − f ′(1). Also
notice that it makes sense that the denominators contain both the factor 1 − ρ
and the probability 1− e−νG that a retrial returns during a glue period.

In a similar way as the first moments of X , Y (q), Y (o) and Z have been
obtained, we can also obtain their second moment. Here we only mention EX2:

EX2 =
K′′(1)

(1 − ρ)(1 − e−νG)(1 + ρ(1 − e−νG) + e−νG)
(2.16)

+
K′(1)[1 − (ρ(1 − e−νG) + e−νG)2 + 2K′(1)(ρ(1 − e−νG) + e−νG) + (1 − e−νG)λ2

EB2]

(1 − ρ)2(1 − e−νG)2(1 + ρ(1 − e−νG) + e−νG)
,

where K ′(1) = λES+λρG and K ′′(1) = λ2
ES2+2ρλ2GES+λ3GEB2+(λGρ)2.
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Remark 1. Special cases of the above analysis are, e.g.:
(i) Vacations of length zero. Simply take σ(z) ≡ 1 and ES = 0 in the above
formulas.
(ii) ν = ∞. Retrials now always return during a glue period. We then have
f(z) = β(z), which leads to minor simplifications.

Remark 2. It seems difficult to handle the case of non-constant glue periods, as
it seems to lead to a process with complicated dependencies. If G takes a few dis-
tinct values G1, . . . , GN with different probabilities, then one might still be able
to obtain a kind of multinomial generalization of the infinite product featuring
in Theorem 1. One would then have several functions fi(z) := (1− e−νGi)β(z)+
e−νGiz, and all possible combinations of iterations fi(fh(fk(. . . (z)))) arising in
functions Ki(z) := σ(z)e−λ(1−β(z))Gi , i = 1, 2, . . . , N . By way of approxima-
tion, one might stop the iterations after a certain number of terms, the number
depending on the speed of convergence (hence on 1− ρ and on 1− e−νGi).

2.3 Queue Length Analysis at Arbitrary Time Points

Having found the generating functions of the number of customers at the be-

ginning of (i) glue periods (E[zX ]), (ii) visit periods (E[zY
(q)

q zY
(o)

o ]), and (iii)

vacation periods (E[zZ ]), we can also obtain the generating function of the num-
ber of customers at arbitrary time points.

Theorem 2. If ρ < 1, we have the following results:

a) The joint generating function, Rva(zq, zo), of the number of customers in
the queue and in the orbit at an arbitrary time point in a vacation period is
given by

Rva(zq, zo) = E[zZo ] ·
1− S̃(λ(1 − zo))

λ(1 − zo)ES
. (2.17)

b) The joint generating function, Rgl(zq, zo), of the number of customers in the
queue and in the orbit at an arbitrary time point in a glue period is given by

Rgl(zq, zo) =

∫ G

t=0

e−λ(1−zq)tE[{(1− e−νt)zq + e−νtzo}X ]
dt

G
. (2.18)

c) The joint generating function, Rvi(zq, zo), of the number of customers in the
queue and in the orbit at an arbitrary time point in a visit period is given by

Rvi(zq, zo) =
zq

[
E[zY

(q)

q zY
(o)

o ]− E[B̃(λ(1 − zo))
Y (q)

zY
(o)

o ]
]

E[Y (q)]
(
zq − B̃(λ(1− zo))

) · 1− B̃(λ(1− zo))

λ(1− zo)EB
.

(2.19)
d) The joint generating function, R(zq, zo), of the number of customers in the

queue and in the orbit at an arbitrary time point is given by

R(zq, zo) = ρRvi(zq, zo) + (1− ρ) G
G+ESR

gl(zq, zo) + (1− ρ) ES
G+ESR

va(zq, zo).
(2.20)
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Proof.

a) Follows from the fact that during vacation periods the number of customers
in the queue is 0 and the fact that the number of customers at an arbitrary
time point in the orbit is the sum of two independent terms: The number
of customers at the beginning of the vacation period and the number that
arrived during the past part of the vacation period. The generating function
of the latter is given by

1− S̃(λ(1 − zo))

λ(1− zo)ES
.

b) Follows from the fact that if the past part of the glue period is equal to t,
the generating function of the number of new arrivals in the queue during
this period is equal to e−λ(1−zq)t and each customer present in the orbit at
the beginning of the glue period is, independent of the others, still in orbit
with probability e−νt and has moved to the queue with probability 1− e−νt.

c) During an arbitrary point in time in a visit period the number of customers
in the system consists of two parts:
• the number of customers in the system at the beginning of the service
time of the customer currently in service, leading to the term

zq

(
E[zY

(q)

q zY
(o)

o ]− E[B̃(λ(1 − zo))
Y (q)

zY
(o)

o ]
)

E[Y (q)]
(
zq − B̃(λ(1 − zo))

) ;

(see Takagi [19], formula (5.14) on page 206, for a similar formula in the
ordinaryM/G/1 vacation queue with gated service but without retrials).

• the number of customers that arrived during the past part of the service
of the customer currently in service, leading to the term

1− B̃(λ(1 − zo))

λ(1 − zo)EB
.

d) Follows from the fact that the fraction of time the server is visiting Q is
equal to ρ, and if the server is not visiting Q, with probability ES/(G+ES)
the server is on vacation and with probability G/(G+ ES) the system is in
a glue phase.

From Theorem 2, we now can obtain the steady-state mean number of cus-
tomers in the system at arbitrary time points in vacation periods (E[Rva]), in
glue periods (E[Rgl]), in visit periods (E[Rvi]) and in arbitrary periods (E[R]).
These are given by

E[Rva] = E[Z] + λE[S2]
2E[S] ,

E[Rgl] = E[X ] + λG
2 ,

E[Rvi] = 1 + λE[B2]
2E[B] +

E[Y (q)Y (o)]
E[Y (q)]

+ (1+ρ)E[Y (q)(Y (q)−1)]
2E[Y (q)]

,

E[R] = ρE[Rvi] + (1− ρ) G
G+ESE[Rgl] + (1− ρ) ES

G+ESE[Rva].
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Remark that the quantities E[Y (q)Y (o)] and E[Y (q)(Y (q) − 1)] can be obtained
using (2.3):

E[Y (q)Y (o)] = λGe−νG
E[X ] +

(
1− e−νG

)
e−νG

E[X(X − 1)],

E[Y (q)(Y (q) − 1)] = (λG)2 +
(
1− e−νG

)2
E[X(X − 1)] + 2λG

(
1− e−νG

)
E[X ].

Finally, the mean sojourn time of an arbitrary customer now immediately follows
from Little’s formula. The results of this section can, e.g., be used to determine
the value of G which minimizes the mean sojourn time of an arbitrary customer.

3 Queue Length Analysis for The Two-Queue Case

3.1 Model Description

In this section we consider a one-server polling model with two queues, Q1 and
Q2. Customers arrive at Qi according to a Poisson process with rate λi; they
are called type-i customers, i = 1, 2. The service times at Qi are i.i.d. r.v.,
with Bi a generic r.v., with distribution Bi(·) and LST B̃i(·), i = 1, 2. After a
visit of the server at Qi, it switches to the other queue. Successive switchover
times from Qi to the other queue are i.i.d. r.v., with Si a generic r.v., with
distribution Si(·) and LST S̃i(·), i = 1, 2. We make all the usual independence
assumptions about interarrival times, service times and switchover times at the
queues. After a switch of the server to Qi, there first is a deterministic (i.e.,
constant) glue period Gi, i = 1, 2, before the visit of the server at Qi begins. As
in the one-queue case, the significance of the glue period stems from the following
assumption. Customers who arrive at Qi do not receive service immediately.
When customers arrive at Qi during a glue period Gi, they stick, joining the
queue of Qi. When they arrive in any other period, they immediately leave and
retry after a retrial interval which is independent of everything else, and which
is exponentially distributed with rate νi, i = 1, 2.

The service discipline at both queues is gated: During the visit period at Qi,
the server serves all ”glued” customers in that queue, i.e., all type-i customers
waiting at the end of the glue period – but none of those in orbit, and neither
any new arrivals.

We are interested in the steady-state behaviour of this polling model with
retrials. We hence assume that the stability condition

∑2
i=1 ρi < 1 holds, where

ρi := λiEBi.
Some more notation:

Gni denotes the nth glue period of Qi.
Vni denotes the nth visit period of Qi.
Sni denotes the nth switch period out of Qi, i = 1, 2.

(X
(i)
n1 , X

(i)
n2 ) denotes the vector of numbers of customers of type 1 and of type 2

in the system (hence in orbit) at the start of Gni, i = 1, 2.

(Y
(i)
n1 , Y

(i)
n2 ) denotes the vector of numbers of customers of type 1 and of type 2

in the system at the start of Vni, i = 1, 2. We distinguish between those who are
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queueing in Qi and those who are in orbit for Qi: We write Y
(1)
n1 = Y

(1q)
n1 +Y

(1o)
n1

and Y
(2)
n2 = Y

(2q)
n2 + Y

(2o)
n2 , where q denotes queueing and o denotes in orbit.

Finally,

(Z
(i)
n1 , Z

(i)
n2 ) denotes the vector of numbers of customers of type 1 and of type 2

in the system (hence in orbit) at the start of Sni, i = 1, 2.

3.2 Queue Length Analysis

In this section we study the steady-state joint distribution of the numbers of
customers in the system at beginnings of glue periods. This will also immedi-
ately yield the steady-state joint distributions of the numbers of customers in
the system at the beginnings of visit periods and of switch periods. We follow
a similar generating function approach as in the one-queue case, throughout
making the following assumption regarding the parameters of the generating
functions: |zi| ≤ 1, |ziq| ≤ 1, |zio| ≤ 1. Observe that the generating func-
tion of the vector of numbers of arrivals at Q1 and Q2 during a type-i service
time Bi is βi(z1, z2) := B̃i(λ1(1 − z1) + λ2(1 − z2)). Similarly, the generating
function of the vector of numbers of arrivals at Q1 and Q2 during a type-i
switchover time Si is σi(z1, z2) := S̃i(λ1(1 − z1) + λ2(1 − z2)). We can succes-

sively express (in terms of generating functions) (X
(2)
n1 , X

(2)
n2 ) into (Z

(1)
n1 , Z

(1)
n2 ),

(Z
(1)
n1 , Z

(1)
n2 ) into (Y

(1q)
n1 , Y

(1o)
n1 , Y

(1)
n2 ), and (Y

(1q)
n1 , Y

(1o)
n1 , Y

(1)
n2 ) into (X

(1)
n1 , X

(1)
n2 );

etc. Denote by (X
(i)
1 , X

(i)
2 ) the vector with as distribution the limiting distribu-

tion of (X
(i)
n1 , X

(i)
n2 ), i = 1, 2, and similarly introduce (Z

(i)
1 , Z

(i)
2 ) and (Y

(i)
1 , Y

(i)
2 ),

with Y
(1)
1 = Y

(1q)
1 + Y

(o)
1 and with Y

(2)
2 = Y

(2q)
2 + Y

(o)
2 , for i = 1, 2. We have:

E[z
X

(2)
1

1 z
X

(2)
2

2 ] = σ1(z1, z2)E[z
Z

(1)
1

1 z
Z

(1)
2

2 ]. (3.1)

E[z
Z

(1)
1

1 z
Z

(1)
2

2 |Y (1q)
1 = h1q, Y

(1o)
1 = h1o, Y

(1)
2 = h2] = zh1o

1 zh2
2 β

h1q

1 (z1, z2), (3.2)

yielding

E[z
Z

(1)
1

1 z
Z

(1)
2

2 ] = E[β1(z1, z2)
Y

(1q)
1 z

Y
(1o)
1

1 z
Y

(1)
2

2 ]. (3.3)

Furthermore,

E[z
Y

(1q)
1

1q z
Y

(1o)
1

1o z
Y

(1)
2

2 |X(1)
1 = i1, X

(1)
2 = i2]

= zi22 e−λ2(1−z2)G1e−λ1(1−z1q)G1 [(1 − e−ν1G1)z1q + e−ν1G1z1o]
i1 , (3.4)

yielding

E[z
Y

(1q)
1

1q z
Y

(1o)
1

1o z
Y

(1)
2

2 ] = e−λ2(1−z2)G1e−λ1(1−z1q)G1

×E[[(1− e−ν1G1)z1q + e−ν1G1z1o]
X

(1)
1 z

X
(1)
2

2 ]. (3.5)

It follows from (3.1), (3.3) and (3.5), with

f1(z1, z2) := (1− e−ν1G1)β1(z1, z2) + e−ν1G1z1, (3.6)

that
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E[z
X

(2)
1

1 z
X

(2)
2

2 ] = σ1(z1, z2)e
−λ1(1−β1(z1,z2))G1−λ2(1−z2)G1

×E[f1(z1, z2)
X

(1)
1 z

X
(1)
2

2 ]. (3.7)

Similarly we have, with

f2(z1, z2) := (1− e−ν2G2)β2(z1, z2) + e−ν2G2z2, (3.8)

that

E[z
X

(1)
1

1 z
X

(1)
2

2 ] = σ2(z1, z2)e
−λ1(1−z1)G2−λ2(1−β2(z1,z2))G2

×E[z
X

(2)
1

1 f2(z1, z2)
X

(2)
2 ]. (3.9)

It follows from (3.7) and (3.9) that

E[z
X

(1)
1

1 z
X

(1)
2

2 ] = σ1(z1, f2(z1, z2))σ2(z1, z2)e
−λ1(1−z1)G2−λ2(1−β2(z1,z2))G2

×e−λ1(1−β1(z1,f2(z1,z2))G1−λ2(1−f2(z1,z2))G1

×E[f1(z1, f2(z1, z2))
X

(1)
1 f2(z1, z2)

X
(1)
2 ]. (3.10)

We can rewrite this, with

h1(z1, z2) := f1(z1, f2(z1, z2)), h2(z1, z2) := f2(z1, z2), (3.11)

and

X(z1, z2) := E[z
X

(1)
1

1 z
X

(1)
2

2 ], (3.12)

and with an obvious definition of K(·, ·), as

X(z1, z2) = K(z1, z2)X(h1(z1, z2), h2(z1, z2)). (3.13)

Define

h
(0)
i (z1, z2) := zi, h

(n)
i (z1, z2) := hi(h

(n−1)
1 (z1, z2), h

(n−1)
2 (z1, z2)), i = 1, 2.

(3.14)

Theorem 3. If ρ1 + ρ2 < 1, then the generating function X(z1, z2) is given by

X(z1, z2) =
∞∏

m=0

K(h
(m)
1 (z1, z2), h

(m)
2 (z1, z2)). (3.15)

Proof. Equation (3.15) follows from (3.13) by iteration. We still need to prove
that the infinite product converges if ρ1 + ρ2 < 1. Equation (3.13) is an equa-
tion for a multi-type branching process with immigration, where the number of
immigrants of different types has generating function K(z1, z2) and the number
of children of different types of a type 1 individual in the branching process has
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generating function h1(z1, z2) and the number of children of different types of
a type 2 individual in the branching process has generating function h2(z1, z2).
An important role in the analysis of such a process is played by the mean matrix
M of the branching process,

M =

(
m11 m12

m21 m22

)
, (3.16)

wheremij represents the mean number of children of type j of a type i individual.
In our case, the elements of the matrix M are given by

m11 = e−ν1G1 +
(
1− e−ν1G1

)
ρ1 +

(
1− e−ν1G1

) (
1− e−ν2G2

)
ρ1ρ2, (3.17)

m12 =
(
1− e−ν1G1

)
λ2EB1

(
e−ν2G2 +

(
1− e−ν2G2

)
ρ2
)
, (3.18)

m21 =
(
1− e−ν2G2

)
λ1EB2, (3.19)

m22 = e−ν2G2 +
(
1− e−ν2G2

)
ρ2. (3.20)

For example, formula (3.18) can be explained as follows. A type 1 customer
present in the system at the beginning of a glue period of Q1 is served with
probability 1 − e−ν1G1 . If he is served, on average λ2EB1 type 2 customers
will arrive during his service time. During the visit period of Q2 each of these
customers is not served with probability e−ν2G2 or served with probability 1 −
e−ν2G2 , in which case on average ρ2 type 2 customers will arrive during this
service time.

The theory of multitype branching processes with immigration (see Quine [15]
and Resing [16]) now states that if (i) the expected total number of immigrants
in a generation is finite and (ii) the maximal eigenvalue λmax of the mean matrix
M satisfies λmax < 1, then the generating function of the steady state distribu-
tion of the process is given by (3.15). To complete the proof of Theorem 3, we
shall now verify (i) and (ii).

Ad (i): The expected total number of immigrants in a generation is

(λ1 + λ2)ES2 + λ1G2 + λ2G2(λ1 + λ2)EB2

+λ1ES1 + λ2ES1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

)

+λ1G1

(
λ1EB1 + λ2EB1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

))

+λ2G1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

)
, (3.21)

and hence indeed finite. Here, the term (λ1 + λ2)ES2 corresponds to the cus-
tomers arriving during the switch period out of Q2. The term λ1G2 corre-
sponds to the type 1 customers arriving during the glue period of Q2. The
term λ2G2(λ1 + λ2)EB2 corresponds to the type 2 customers arriving during
the glue period of Q2. These customers are served during the visit period of
Q2 and during their service time other customers will arrive. The term λ1ES1

corresponds to the type 1 customers arriving during the switch period out of Q1.
The term λ2ES1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

)
corresponds to the type
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2 customers arriving during the switch period out of Q1. These customers are
served during the visit period of Q2 with probability 1 − e−ν2G2 (in which case
again other customers will arrive during their service time) and with probability
e−ν2G2 they are not served during this visit period. The last two terms in (3.21)
correspond to the type 1 and type 2 customers arriving during the glue period
of Q1.

Ad (ii): Define the matrix

H =

(
e−ν1G1 +

(
1− e−ν1G1

)
ρ1

(
1− e−ν1G1

)
λ2EB1(

1− e−ν2G2
)
λ1EB2 e−ν2G2 +

(
1− e−ν2G2

)
ρ2

)
, (3.22)

where the elements hij of the matrix H represent the mean number of type j
customers that replace a type i customer during a visit period of Qi (either new
arrivals if the customer is served, or the customer itself if it is not served). We
have that

H

(
EB1

EB2

)
=

([
e−ν1G1 +

(
1− e−ν1G1

)
(ρ1 + ρ2)

]
EB1[

e−ν2G2 +
(
1− e−ν2G2

)
(ρ1 + ρ2)

]
EB2

)
<

(
EB1

EB2

)
(3.23)

if and only if ρ1+ρ2 < 1. Using this result and following the same line of proof as
in Section 5 of Resing [16], we can show that the stability condition ρ1 + ρ2 < 1
implies that also the maximal eigenvalue λmax of the mean matrix M satisfies
λmax < 1. This concludes the proof.

4 Conclusions and Suggestions for Future Research

In this paper we have studied vacation queues and two-queue polling models
with the gated service discipline and with retrials. Motivated by optical com-
munications, we have introduced a glue period just before a server visit; during
such a glue period, new customers and retrials ”stick” instead of immediately
going into orbit. For both the vacation queue and the two-queue polling model,
we have derived steady-state queue length distributions at an arbitrary epoch
and at various specific epochs. This was accomplished by establishing a relation
to branching processes. We have thus laid the groundwork for the performance
analysis of an N -queue polling model with retrials.

In future studies, we shall not only turn to that N -queue model; we also
would like to consider other service disciplines. Furthermore, the following model
variants seem to fall within our framework: (i) customers may not retry with a
certain probability; (ii) the arrival rates may be different for visit, vacation and
glue periods; (iii) one might allow that new arrivals during a glue period are
already served during that glue period.

We would also like to explore the possibility to study the heavy traffic behavior
of these models via the relation to branching processes, cf. [14].
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Finally, we would like to point out an important advantage of optical fibre: the
wavelength of light. A fibre-based network node may thus route incoming pack-
ets not only by switching in the time-domain, but also by wavelength division
multiplexing. In queueing terms, this gives rise to multiserver polling models,
each server representing a wavelength. We refer to [1] for the stability analy-
sis of multiserver polling models, and to [2] for a mean field approximation of
large passive optical networks. It would be very interesting to study multiserver
polling models with the additional features of retrials and glue periods.
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