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Preface

It is our pleasure to present the proceedings of EPEW 2014, the 11th European
Workshop on Performance Engineering held during September 11–12, 2014, in
Florence, Italy. This annual workshop series aims to gather academic and indus-
trial researchers working on all aspects of performance engineering. The accepted
papers reflect the diversity of modern performance engineering. A number of pa-
pers tackle theoretical modeling issues in queuing theory and the analysis of
Markov chains. Others address practical problems of resource allocation, com-
munications networks, or even car parking systems and bus services.

The program of EPEW 2014 comprised 18 papers selected from 30 sub-
missions. Each paper was peer reviewed by three reviewers from the Program
Committee (PC). After the collection of reviews the PC members carefully dis-
cussed the quality of the papers for one week before deciding about acceptance.
We therefore owe special thanks to the members of the PC for their work in the
reviewing process and the subsequent discussion panels.

EPEW 2014 was honored to have two keynote speakers. Luca Bortolussi ex-
plored combination of statistical machine tools and stochastic model checking.
Armando Tacchella considered quantitative model checking for analysis and re-
pair of stochastic control policies.

We wish to express our gratitude to the staff of the University of Florence
for hosting the workshop, the EasyChair team for having allowed us to use
their conference system, and Springer for the continued editorial support of
this workshop series. Finally, we thank the authors of all the papers for their
contribution.

July 2014 András Horváth
Katinka Wolter



Organization

Program Committee

Gianfranco Balbo University of Turin, Italy
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Quantitative Model Checking

for Analysis and Repair of Stochastic Control
Policies

Armando Tacchella

Dipartimento. di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi
(DIBRIS)

Università degli Studi di Genova, Via Opera Pia, 13 – 16145 Genova – Italy

Armando.Tacchella@unige.it

Abstract. Given a system operating in an environment modeled as a
Markov decision process, it is possible to synthesize (optimal) stochastic
control policies in a variety of ways. In particular, if the model of the envi-
ronment is not available, a policy can be obtained using Reinforcement
Learning (RL) techniques, wherein trial-and-error interaction between
the system and the environment is leveraged. RL methods have shown
robust and efficient learning on a variety of robot-control problems —
see, e.g., [1]. However, while policies learned by reinforcement are satis-
factory according to utility-based measures, they may fail to meet other
requirements, e.g., safety. In this direction RL methods per se cannot pro-
vide adequate guarantees. In the words of [2]: “The asymptotic nature of
guarantees about RL performances makes it difficult to bound the prob-
ability of damaging the controlled robot and/or the environment”. How
to guarantee that, given a control policy synthesized by RL, such policy
will have a very low probability of yielding undesirable behaviors? Our
answer leverages Probabilistic Model Checking techniques — see, e.g., [3]
– by describing robot-environment interactions using Markov chains, and
the related safety properties using probabilistic logic. Both the encoding
of the interaction models and their verification can be fully automated,
and only properties have to be manually specified. Our research goes
beyond automating verification, to consider the problem of automating
repair, i.e., if the policy is found unsatisfactory, how to fix it without
manual intervention. In this talk, we detail how to automate the analysis
of policies using probabilistic model checking techniques. Our methodol-
ogy includes algorithms to repair control policies until they satisfy a set
of safety requirements. We describe theoretical and empirical evidence
about the effectiveness of our methodology. Alternative approaches and
similar results available in the literature are also discussed.

References
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Machine Learning Meets Stochastic Model

Checking�

Luca Bortolussi1,2,3

1 Dept. of Computer Science, Saarland University, Germany
2 DMG, University of Trieste, Italy

3 CNR/ISTI, Pisa, Italy

Introduction. Performance modelling is more and more concerned with the
modelling of complex systems, in which the interactions of many heterogeneous
entities produce complex emergent system-level behaviours. Examples span from
sensor networks to cloud computing and to smart cities. When the interest is in
predictive modelling, as is the case in performance, these models are necessarily
quantitative, e.g. expressed as Continuous Time Markov Chains (CTMC) or as
other kinds of stochastic processes. Their quantitative nature is reflected in their
dependence on several parameters, which are often known with a considerable
margin of uncertainty. Practically, this means that we most likely can provide a
bounded interval supposed to contain the true value of a parameter, but not the
true value itself. We will refer to this class of CTMC as Uncertain CTMC.

Problem and Methodology. The problem we address is, given an uncertain
CTMC model, how to reason about it with automatic tools. Our approach is
statistical, combining state-of-the-art Statistical Machine Learning tools, specif-
ically designed to tackle uncertainty, with classic tools from formal methods,
mainly Model Checking.

The first problem we face is how to estimate the satisfaction probability of
a linear temporal logic property under such uncertainty [3]. We will show how
we can reconstruct the functional dependency of the satisfaction probability
on unknown parameters using Machine Learning techniques based on Gaussian
Processes, which offer a flexible framework for regression and classification. We
dubbed this approach Smoothed Model Checking, as it relies on smoothness
properties of CTMCs.

An alternative way to deal with uncertainty is to try to eliminate it exploit-
ing available observations of the real system modelled. As it is often easier to
observe and capture qualitative properties, rather than performing precise mea-
surements, we tackled the problem of parameter estimation from observations of
truth values of temporal logic formulae [2]. Also in this case, Gaussian Processes
and Bayesian Optimisation play a central role in the solution of this problem. In

* Work in collaboration with Guido Sanguinetti, from the University of Edinburgh.
L.B. acknowledges partial supported from EU-FET project QUANTICOL (nr.
600708).



XIV L. Bortolussi

a similar way we can tackle the twin problem of system design [2, 1], which con-
sists in finding optimal parameter values to enforce a desired behaviour, again
given by a linear temporal property.

References

1. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tempo-
ral properties for stochastic models. Electronic Proceedings in Theoretical Computer
Science 125, 3–19 (2013)

2. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from
logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

3. Bortolussi, L., Sanguinetti, G.: Smoothed model checking for uncertain continuous
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Optimal Hiring of Cloud Servers

Andrew Stephen McGough1 and Isi Mitrani2

1 School of Engineering and Computing Sciences, Durham University, DH1 3LE, U.K.
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Abstract. A host uses servers hired from a Cloud in order to offer cer-
tain services to paying customers. It must decide dynamically when and
how many servers to hire, and when to release them, so as to minimize
both the job holding costs and the server costs. Under certain assump-
tions, the problem can be formulated in terms of a semi-Markov decision
process and the optimal hiring policy can be computed. Two situations
are considered: (a) jobs are submitted in random batches and servers can
be hired for arbitrary periods of time; (b) jobs arrive singly and servers
must be hired for fixed periods of time. In both cases, the optimal policies
are compared with some simple and easily implementable heuristics.

1 Introduction

This paper focuses on certain special, and important, dynamic scheduling prob-
lems that arise in the market for computer services. It presents a general op-
timization methodology and applies it in situations where detailed exact and
approximate solutions can be developed.

A host offers certain services which involve running user jobs. It does not own
servers, but hires them on a temporary basis from a Cloud provider. The host
must decide dynamically when, and how many, servers to hire. The objective is
to manage optimally the long-term trade-offs between the operating costs (which
depend on the number of servers hired), and the Quality-of-Service, or ‘holding’
costs (which are proportional to the number of jobs present).

Two distinct models are considered. In the first, jobs are submitted in batches
of random size and at random intervals. Servers may be hired and released
at arbitrary moments of time, hence the hiring decisions can be taken at the
instants when new batches arrive. In the second model, servers must be hired
for reasonably long fixed periods of time, e.g. by the hour. Hiring decisions are
therefore assumed to take place at discrete moments in time, while jobs arrive
and depart singly and in continuous time. The second model is perhaps closer
to current practice, but the first one may come into its own since some Cloud
providers are beginning to offer servers for very short-term hire, e.g. by the
minute.

We show how, under certain assumptions, these dynamic optimization prob-
lems can be solved by formulating them in terms of semi-Markov decision pro-
cesses and applying a policy improvement algorithm. The optimal hiring policy

A. Horváth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014



2 A.S. McGough and I. Mitrani

can then be computed in a finite number of iterations. Although that compu-
tation is efficient, it may sometimes be too expensive to be carried out on-line.
We therefore propose simple and easily implementable heuristic policies for both
models. In numerical experiments, the performance of the heuristics is compared
to that of the optimal policy.

An example of a company using Cloud servers is Cycle Computing1, which
acts as a broker offering virtual High-Throughput HTCondor [15] clusters in
the Cloud. Different service facilities are also provided by interfaces such as e-
Science Central [8], whereby access to Cloud computing resources is offered to
users in a transparent manner. However, at present these systems do not make
any attempt to optimize their operating policies.

The main distinguishing feature of the present study is that we carry out a
rigorous dynamic optimization of the systems considered. That is, we consider
operational decisions that depend not only on the system parameters, but also
on the changing system state. Moreover, the optimization takes into account
the transition probabilities between states, and hence covers a long-term system
trajectory. This does not appear to have been done before.

Being able to determine the optimal operating policy is valuable, even when
good heuristics exist. One may suspect that a simple heuristic policy will perform
well, but the only way to quantify such a statement is to compute the optimal
policy and carry out a proper comparison.

1.1 Related Work

The existing approaches to the server hiring problem are, on the whole, con-
cerned with static policies. That is, the hiring decisions are based on knowing or
estimating the characteristics of user demand. Those decisions change only when
the demand parameters change. On the other hand, a dynamic policy reacts to
random changes in the system state, even if the demand characteristics remain
the same. In general, dynamic policies are more efficient than static ones, as we
shall see when presenting our numerical results.

Mazzucco et al. [10] have used workload estimation in order to determine the
optimal number of servers to hire. By assuming that impatient users will abandon
job requests (common for HTTP) an Erlang-C problem is converted into an
Erlang-A problem and a solution is obtained by a binary search algorithm. This
work is extended in [12] to evaluate the number of Virtual Machines (VMs)
required by a Software-as-a-Service (SaaS) provider using an Infrastructure-as-
a-Service (IaaS) backend. Bod́ık et al. [2] use statistical machine learning to
estimate the workload in the next epoch. Like other approaches, this requires
additional servers to be provisioned in case the estimate is low.

Another static version of the server hiring problem was considered by Lampe
et al. [9], who examined the optimal placement of a fixed set of jobs, with given
run times and resource requirements, onto different Cloud servers. An exact for-
mulation based on Binary Integer Programming and an approximate algorithm

1 http://www.cyclecomputing.com

http://www.cyclecomputing.com
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using bin-packing techniques were proposed. A similar problem involving work-
flows was addressed by Byun et al. [3,4]. In this instance, the servers are not
different, but the jobs must satisfy a set of precedence constraints. Again, the
aim is to minimize the cost of executing a given workflow on the Cloud. An
approximate scheduling algorithm is proposed.

Chaisiri et al. [6] attempt to exploit the lower costs of future reservations in
order to minimize the overall cost of hiring Cloud resources. They use stochastic
and deterministic programming techniques, coupled with sample-average ap-
proximations or Benders decomposition. This study has some dynamic aspects.
However, the actual demand process is not modelled and therefore the costs of
waiting cannot be taken into account.

The server hiring problem is distantly related to other server allocation topics,
for which a large body of literature exists. These topics include the trade-offs
between performance and power consumption in a service center. In Mazzucco
et al. [11] and Mitrani [13], certain dynamic server allocation policies were anal-
ysed, but no attempt was made to find the optimal policy. The maximization of
throughput and the minimization of waiting or response time were considered
in Urgaonkar et al. [17], Chandra et al. [5] and Bennani and Menascé [1].

The general Semi-Markov decision process and the algorithm for computing
the optimal policy are described in section 2. The applications of the theory to
the models with batch arrivals and with fixed hiring periods are presented in
sections 3 and 4, respectively. Section 5 introduces the heuristic and shows the
results of some numerical experiments. Some directions for further research are
outlined in the conclusion – section 6.

2 Semi-Markov Decision Processes

Consider a finite-state system which is observed at random points in time, ti (i =
0, 1, . . .). These instants are called ‘decision epochs’ and the intervals between
them are ‘decision intervals’. If at time ti the system is in state j (j = 1, 2, . . . , J),
an action, or decision, aj , is taken. That action may influence the length of the
ensuing decision interval, ti+1 − ti, and also the system state at the next epoch.
However, neither the decision interval nor the next state depend on anything that
happened prior to ti. Such a process is called a ‘semi-Markov decision process’.
The actions taken in the various states constitute a ‘stationary policy’, if for
all states j, whenever the state j is observed, the same action, aj , is taken,
regardless of current time and past history.

The system incurs costs which depend on the states it passes through and on
the decisions taken in those states. Let ZA(t) be the total cost incurred up to
time t under a stationary policy A. Then the long-run average cost of policy A
per unit time is defined as the limit:

g(A) = lim
t→∞

1

t
E[ZA(t)] . (1)

That quantity, which does not depend on the initial state, is the optimization
criterion. The object is to find a policy A that minimizes g(A).
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The evolution of the process under the control of a stationary policy A is
governed by the succession of states at decision epochs, the decisions made at
those epochs and the costs incurred during the decision intervals. Let pj,k(A) be
the transition probability that the system will be in state k at the next decision
epoch, given that the current state is j and the policy is A; j, k = 1, 2, . . . , J .
Also, denote by cj(A) the average cost incurred during a decision interval, given
the current state j and policy A. Finally, let τj(A) be the average length of the
decision interval, given the current state and policy.

The long-run average cost of policy A, g(A), can be computed by introducing
certain quantities called ‘relative values’, vj , j = 1, 2, . . . , J , (Tijms [16]). These
relative values, together with g(A), satisfy a set of simultaneous linear equations:

vj = cj(A)− τj(A)g(A) +

J∑
k=1

pj,k(A)vk ; j = 1, 2, . . . , J , (2)

with cj(A), pj,k(A) and τj(A) as defined above.
In this set, there are J equations with J + 1 unknowns. However, if the same

constant, c, is added to all relative values vj , the value of g(A) would not change
(since for each j, the sum of pj,k(A) with respect to k is 1). Therefore, the
solution of (2) can be made unique by choosing an arbitrary state, m, and
setting vm = 0. The optimal policy can be determined by the following ‘policy
improvement’ algorithm.

1. Choose some stationary policy A.
2. Compute g(A) and vj by solving (2).
3. For each j, find action a∗ that minimizes the right-hand side of equation (2):

min
a

[
cj(A)− τj(a)g(A) +

J∑
k=1

pj,k(a)vk

]
,

where g(A) and vk keep the values already computed.
4. If new actions a∗ are the same as the old ones for all states, i.e. new policy

A∗ is the same as A, stop. Otherwise repeat from step 2, replace A with A∗.

This algorithm terminates after a finite number of iterations, producing an op-
timal policy and the corresponding long-run average cost, g.

An efficient and stable method for solving the set of equations (2) is to use
Gauss-Seidel iterations, starting with vj = 0 for all j. Convergence is assured
because the coefficients in the right-hand sides of (2), being probabilities, do
not exceed 1. If that method is adopted, then the complexity of computing the
optimal policy is on the order of O(J2SI), where J is the size of the state space,
S is the number of iterations in the Gauss-Seidel solution and I is the number
of iterations in the policy-improvement algorithm.

3 Batch Arrivals

The first system we examine is one where user demands arrive at the host’s site
in a Poisson stream with rate λ. Consecutive demands consist of batches of jobs
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whose sizes are i.i.d. random variables with an arbitrary distribution. Let bj be
the probability that a batch contains j jobs (j = 1, 2, . . . , ...). The average batch
size is denoted by b:

b =
∞∑
j=1

jbj . (3)

A job’s runtime, on any available server, is distributed exponentially with mean
1/μ. Thus, the total offered load at the site is ρ = λb/μ. When all available
servers are busy, jobs wait in a common FIFO queue. Servers may be hired and
released at any moment.

In this model, the decision epochs are the instants just after the arrival of
a new batch. The system state at a decision epoch is the total number, j, of
jobs present. That number may include jobs from previous batches that are still
waiting or are in service. The decision taken at a decision epoch is the number
of servers, n, that are hired from a Cloud provider and will be available to serve
jobs. That number may include previously hired servers, plus any newly hired
ones, or minus any servers whose hire is terminated at this decision epoch.

Each job present incurs a holding cost of c1 per unit time spent in the system.
These costs reflect the importance attached to fast service. In addition, each hired
server incurs a cost of c2 per unit time. This is predicated on the assumption
that the host is dealing with a Cloud that allows hire and release at arbitrary
moments, with charges proportional to the duration of hire. A different hire
regime will be modeled in the next section.

Thus, the total cost incurred per unit of time during which there are j jobs
present and n servers hired is c1j + c2n.

Note that in this model the decision interval does not depend on the current
state or on the decision taken. The average length of that interval is the average
interarrival time between batches: τ = 1/λ.

Since the algorithms available for determining the optimal policy require that
the state space is finite, we assume that there is an upper bound, J , for the
number of jobs that may be present. If an incoming batch would cause that
bound to be exceeded, some or all of its jobs are rejected. That condition is
not too restrictive: under any policy that does not allow the queue to saturate,
one can choose J sufficiently large so that the probability of rejecting jobs is
negligible. However, the numerical complexity of the solution increases with J .

To write equations (2) for a given policy A in the present model, we need
expressions for cj(n) and pj,k(n), where n is the number of servers hired in state
j under policy A. We start with the costs. Let Tj(n) be the total average time
that the j jobs currently present spend in the system during the decision period,
given that n servers are available to serve them. There are two cases to consider:

1. If j ≤ n, all jobs present are being served. The contribution of each job to
Tj(n) is the average minimum of its remaining service time and the remaining
decision period. Hence, in this case,

Tj(n) =
j

λ+ μ
; j = 1, 2, . . . , n . (4)
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2. If j > n, then n jobs are being served and j − n are waiting. The next event
to occur is either a service completion, with probability nμ/(λ+ nμ), or an
arrival of a new batch, with probability λ/(λ+nμ). The average interval until
that event is 1/(λ+ nμ), and there are j jobs present during it. If the next
event is a service completion, then the decision period continues with j − 1
jobs present; otherwise it terminates and there is no further contribution to
Tj(n). This provides a recurrence relation,

Tj(n) =
j

λ+ nμ
+

nμ

λ+ nμ
Tj−1(n) ;

j = n+ 1, n+ 2, . . . , J . (5)

Equation (4), together with the recurrences (5), allow the holding times Tj(n)
to be computed easily for all j and n. The average cost, cj(n), incurred during
a decision period is the sum of the holding cost and the server cost:

cj(n) = c1Tj(n) + c2n
1

λ
. (6)

Before addressing the transition probabilities pj,k(n), consider the probability,
qj,k(n), that there will be k jobs present just before the next decision epoch, given
that there are j jobs now and n servers are available. That is the probability that
j − k jobs are completed during the decision interval. There are three distinct
cases:

1. If j < n, more servers become idle with each departing job. In order that
k jobs are left at the end of the decision period, the latter must terminate
when there are k busy servers. Hence,

qj,k(n) =

[
j∏

i=k+1

iμ

λ+ iμ

]
λ

λ+ kμ
; k = 0, 1, . . . , j , (7)

where an empty product is equal to 1 by definition.
2. If j ≥ n and k ≥ n, then qj,k(n) is the probability that exactly j − k jobs

are completed by n busy servers before the decision period terminates:

qj,k(n) =

[
nμ

λ+ nμ

]j−k
λ

λ+ nμ
; k = n, n+ 1, . . . , j . (8)

3. If j ≥ n and k < n, then of the j−k completions that must take place before
the end of the observation period, j − n+ 1 occur while n servers are busy
and n− 1− k with gradually diminishing number of busy servers:

qj,k(n) =

[
nμ

λ+ nμ

]j−n+1
[

n−1∏
i=k+1

iμ

λ+ iμ

]
λ

λ+ kμ
;

k = 0, 1, . . . , n− 1 . (9)
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Now we can obtain the transition probabilities from state j to state k, pj,k(n),
by remarking that the number of jobs present after the arrival of the next batch
is the convolution of the number left over at the end of the decision interval and
the number contained in the new batch. Hence,

pj,k(n) =

m∑
i=0

qj,i(n)bk−i ; k = 1, 2, . . . , J − 1 , (10)

where m = min(j, k − 1). The exception to that pattern is destination state J ,
which may be reached after rejecting some new arrivals:

pj,J(n) =

j∑
i=0

qj,i(n)
∞∑

s=J−i

bs . (11)

All quantities necessary for setting up equations (2), and hence for applying
the policy improvement algorithm, are now available.

N.B. The reason for assuming that the batch interarrival intervals are dis-
tributed exponentially was the tractability of the expressions for cj(n) and
pj,k(n). It would be possible to relax that assumption, e.g. by replacing the
exponential with a phase-type distribution. However, the resulting expressions
would be considerably more complicated.

4 Fixed Hiring Periods

We now address a system where a server must be hired for a sizeable minimum
period of time, τ . Amazon, for example, hires servers by the hour. Although
in principle one could initiate a hire at any time, it is reasonable, and more
tractable, to use the instants 0, τ , 2τ , . . ., as decision epochs (i.e., the length
of the decision interval is τ). Assume that jobs arrive singly during a decision
interval, in a Poisson stream with rate λ. Their service times are again distributed
exponentially, with mean 1/μ.

Thus, if there are j jobs in the system at a decision epoch, and n servers
are hired, then during an interval of length τ the queue behaves as a transient
M/M/n/J queue (J is the bound on the number of jobs present), with initial
state j. To define our decision process, we need the transition probabilities,
pj,k(n), that there will be k jobs at time τ , given that there were j jobs at time
0 and n servers were hired.

Denote by P (t) = [pj,k(t)], j, k = 0, 1, . . . , J , the transient transition proba-
bility matrix for the M/M/n/J queue over the interval (0,t). Clearly, P (0) = I,
where I is the (J +1)× (J +1) identity matrix. We are interested in computing
the j’th row of P (τ).
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Let G be the generator matrix for the M/M/n/J queue:

G =

⎡⎢⎢⎢⎢⎢⎣
−λ λ
μ1 −(λ+ μ1) λ

. . .

−(λ+ μJ−1) λ
μJ −μJ

⎤⎥⎥⎥⎥⎥⎦ , (12)

where μi = min(i, n)μ. The matrix P (t) is given by the matrix-exponential:

P (t) = eGt . (13)

If the solution algorithms are implemented in Matlab, this matrix exponentiation
can be performed by the built-in function expm(G ∗ t), which is stable and
fast. If that is not available, one could employ the ‘uniformization’ technique,
which involves replacing the continuous-time Markov process with an equivalent
discrete-time Markov chain using the parameter γ = λ+ nμ (e.g., see [14]). The
generator matrix G is replaced by the matrix:

Q = I +
G

γ
,

where I is the identity matrix. Then P (t) is given by the series:

P (t) =

∞∑
i=0

Qi (γt)
i

i!
e−γt . (14)

This expression provides an efficient way of computing P (t) because (a) Q is
a stochastic matrix, so the elements of Qi remain uniformly bounded for all
i (since the rows always sum up to 1), and (b) the Poisson probabilities that
appear in (14) converge rapidly to 0. Hence, the infinite series can be truncated
on the right, and possibly on the left, resulting in a finite sum:

P (t) =

r∑
i=�

Qi (γt)
i

i!
e−γt , (15)

where � and r are chosen so that the two omitted tails are negligible (see [7]).
It remains to determine the average cost, cj(n), incurred during a decision

interval. Let Lj be the average number of jobs in the system at time τ , given
that there were j jobs at time 0 and n servers were hired. That average is
obtained:

Lj =

J∑
k=1

kpj,k(τ) . (16)

The average number of jobs present during the decision interval can be approx-
imated by taking the mean of the queue sizes at the beginning and end of the
interval, i.e. (j + Lj)/2. Hence, the total cost incurred during the interval is
given by:
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cj(n) =

[
c1
j + Lj

2
+ c2n

]
τ . (17)

Using these expressions, the optimal policy can be computed as described in
section 2.

N.B. One might wish to relax the assumptions that jobs arrive in a Pois-
son stream during a decision interval, and their lengths are distributed expo-
nentially. Some generalizations using phase-type distributions could be treated
numerically, but replacing the M/M/n/J queue with a GI/G/n/J one would
require major approximations.

5 Heuristics and Experiments

When the computation of the optimal becomes expensive, it may be worth ex-
ploring policies that are sub-optimal, but offering good performance and ease of
implementation.

A promising heuristic policy for any given model is the one which, at every
decision epoch, minimizes the average cost incurred during the current decision
interval. In other words, when the current state is j, take the action n∗ such
that:

cj(n
∗) = min

n
cj(n) , (18)

where cj(n) is the cost appropriate to the model. This short-term policy that
looks only at the current state and does not care about the future. It will be
called the ‘greedy’ heuristic, as this type of policies are commonly referred to.

The implementation of the greedy heuristic does not require any iterations; it
is enough to evaluate the costs cj(n) for different values of n. Hence, the complex-
ity of implementing the greedy heuristic is O(JC), where C is the complexity
of evaluating an individual cost. In practice, the greedy heuristic is orders of
magnitude faster to find than the optimal policy.

The performance of the greedy heuristic will be compared with that of the
optimal policy, for each of our models. In addition, an even simpler policy will
be introduced to use as a benchmark. The latter abandons dynamic decision-
making altogether and hires a fixed number of servers, n∗, regardless of the
system state. This is, in fact, the policy often adopted in practice. To avoid
saturating the queue, n∗ should be chosen so that the average long-term server
occupancy is less than 100%. For example, one could aim for an occupancy
of 70%. In the case of batch arrivals, bearing in mind that the offered load is
ρ = λb/μ, where b is the average batch size, the above condition implies:

n∗ =

⌈
λb

0.7μ

⌉
. (19)

For the second model, the offered load is ρ = λ/μ, so the allocation becomes:

n∗ =

⌈
λ

0.7μ

⌉
. (20)

That policy will be referred to as the ‘fixed policy’.
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Figure 1 illustrates and compares the behaviour of the three policies for the
batch arrivals model, in the case where batch sizes are distributed geometrically
with parameter α. That is, the probability that a batch contains j jobs is α(1−
α)j−1. The average batch size is b = 1/α. The offered load is increased by
decreasing α, and the long-term average cost, g, is plotted against the average
batch size. The average service time is 1/μ = 1, while the batch arrival rate is
λ = 0.1. In this experiment, it was assumed that the unit holding cost and the
unit server cost are equal: c1 = c2 = 1.

The bound on the number of jobs in the system was taken as J = 100. Under
all three policies, the probability of reaching that bound is small. For example,
when the average batch size is 50, the probability that a batch of size 100 will
be submitted is about 0.1.

A notable feature of the figure is that the greedy heuristic is almost optimal
over the entire range of offered loads. One would therefore be justified in us-
ing the heuristic in practice, knowing that its performance cannot be improved
significantly. By contrast, the costs of the fixed policy are considerably higher.
That remains the case if the 70% occupancy of the servers is replaced by 80%
occupancy. Of course, the more the fixed policy over-provides servers unneces-
sarily, the poorer its performance would be. The non-monotone character of the
graph for the fixed policy is due to the rounding-up operation in (19).

Next, we experiment with a batch size distribution that has been constructed
to have a large coefficient of variation. More precisely, batches consist of a single
job with probability 0.7, and B jobs with probability 0.3. The average batch size
is b = 0.7 + 0.3B. The coefficient of variation grows roughly linearly with B.
In figure 2, B is varied between 20 and 100, and the average achieved cost is
plotted against b.
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Fig. 1. Batch arivals: geometric batch sizes
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Fig. 2. Batch arrivals: skewed batch size distribution

It seems that large coefficients of variation do not prevent the greedy heuristic
from performing well. Its costs are almost indistinguishable from those of the
optimal policy. On the other hand, the fixed policy is, if anything, worse than
before in comparison.

In the third experiment, the characteristics of the demand are held fixed, at
λ = 0.1, μ = 1, α = 0.04 (i.e., average batch size of 25). Also, the unit server
cost is fixed at c2 = 10. What is varied is the unit holding cost, from c1 = 5 to
c1 = 20. That is, the relative cost of keeping jobs in the system is varied from
half to double the cost of a server.

The results are shown in figure 3, where the average long-term costs g achieved
by the optimal policy, the greedy heuristic and the fixed policy are plotted
against c1.

Again, it is notable that the greedy heuristic achieves nearly optimal costs over
the entire range of c1 values. By contrast, the performance of the fixed policy is
rather poor. Moreover, whereas the cost of the fixed policy grows linearly with
c1 (as can be expected), those of the optimal and greedy policies grow slower
than linearly.

It is perhaps worth pointing out that, for all points in these three figures, the
policy improvement algorithm took no more than 3 iterations to find the optimal
policy.

The remaining experiments concern the model with fixed hire periods. In
figure 4, the offered load is increased from ρ = 10 to ρ = 18 by varying the job
arrival rate. The service rate is kept at μ = 1, and the unit holding cost is half
of the server cost: c1 = 0.5, c2 = 1. The bound on the number of jobs is J = 50.
The hire period length is τ = 4, meaning on average, between 40 and 72 jobs
arrive during a decision period. The fixed policy is based on equation (20).
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Fig. 3. Batch arrivals: varying unit holding cost

We observe that the difference between the worst policy (fixed) and the best
one (optimal) is now much narrower. This is due to the fact that jobs continue
to arrive throughout a decision period, and the rate of arrivals does not depend
on the action taken. This reduces the advantages derived from making dynamic
decisions. The costs achieved by the optimal policy are about 15% lower than
those of the fixed policy. The greedy heuristic still performs quite well, but its
costs are now about 10% higher than those of the optimal policy.
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In figure 5, the job arrival rate is kept fixed at λ = 12. The service rate, server
cost and decision period length have the same values as before, μ = 1, c2 = 1,
τ = 4, while the unit holding cost is varied from half to twice the server cost:
0.5 ≤ c1 ≤ 2.

The average costs achieved by the three policies are quite close over the en-
tire range of c1 values. Moreover, it is notable that the higher the value of c1
relative to c2, the closer those costs are, i.e. the lower the benefit of dynamic
decision-making. Indeed, one could have expected that when the dominant factor
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is customer performance, the most important part of the policy is to always
maintain enough servers to cope with the load.

In the final experiment, traffic characteristics and unit costs are kept fixed
(λ = 12, μ = 1, c1 = c2 = 1), while the length of the decision interval is varied
from τ = 2 to τ = 10. That is, the average number of arrivals during a decision
interval varies from 24 to 120.

The fixed policy is independent of τ , so its graph is a horizontal line. The
optimal and greedy policies also approach a horizontal asymptote. This is pre-
dictable, since the system tends to reach steady state during a large decision
interval, and the distribution at the next decision epoch becomes independent of
the current state. For the same reason, the greedy heuristic, whose performance
can be worse than that of the fixed policy for very short decision intervals, be-
comes not only ’nearly optimal’, but optimal, in the limit τ → ∞.

For all points in the last three figures, the policy improvement algorithm again
took no more that 3 iterations to find the optimal policy.

6 Conclusions

The problem of minimizing costs in a system where servers are hired dynamically
was considered in the context of two traffic and hiring regimes: batch arrivals
with arbitrary hiring intervals and Poisson arrivals with fixed hiring intervals.
In both cases, the optimal hiring policy can be computed by applying a policy
improvement algorithm. In addition, greedy heuristic policies are available which
are often almost indistinguishable from the optimal policy.

One can envisage extending the models in several directions. For example,
there may be jobs of different types, with different arrival and service charac-
teristics and different holding and server costs. The system state at a decision
epoch would then be a vector (j1, j2, . . . , jk), where ji is the number of jobs of
type i present. The action taken at a decision epoch would also be a vector of
server allocations, (n1, n2, . . . , nk), where ni is the number of servers hired to
serve jobs of type i. The methodology described here would still apply, but the
computation of the optimal policy would be considerably more complex. An-
other generalization would be to allow the traffic parameters λ and μ to change
between decision intervals. They may depend on the current state, and possi-
bly on the action taken, or may be controlled by a changing environment. Such
systems could also be handled by the methods proposed here.
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Abstract. NoSQL databases have emerged as a backend to support Big
Data applications. NoSQL databases are characterized by horizontal scal-
ability, schema-free data models, and easy cloud deployment. To avoid
overprovisioning, it is essential to be able to identify the correct number
of nodes required for a specific system before deployment. This paper
benchmarks and compares three of the most common NoSQL databases:
Cassandra, MongoDB and HBase. We deploy them on the Amazon EC2
cloud platform using different types of virtual machines and cluster sizes
to study the effect of different configurations. We then compare the be-
havior of these systems to high-level queueing network models. Our re-
sults show that the models are able to capture the main performance
characteristics of the studied databases and form the basis for a capacity
planning tool for service providers and service users.

1 Introduction

Recently NoSQL databases have become widely adopted on cloud platforms due
to their horizontal scalability, schema-free data model and the capability to man-
age large amounts of data. Huge amounts of data require systems that are able
not only to retrieve information in very short timescales, but also to scale at
the same rate as the data increases. The growing importance of Big Data appli-
cations [15] has driven the development of a wide variety of NoSQL databases,
e.g. Google’s BigTable [5], Amazon’s Dynamo [10], Facebook’s Cassandra [16],
Oracle’s NoSQL DB [20], MongoDB [18] and Apache’s HBase [14].

One of the main features of NoSQL databases is horizontal scalability [4]; that
is, the capacity to scale in performance when the number of machines added to
an existing cluster increases. This capability potentially wastes resources due
to over-provisioning. Thus, being able to identify the correct number of nodes
required for a specific workload is important. Moreover, correctly adding or re-
moving nodes from a distributed database is often a time-consuming operation
whose impact can be minimised by proper planning.

The purpose of this work is to benchmark three of the most common NoSQL
databases [9], namely Cassandra, MongoDB and HBase in order to provide in-
sights about their behavior under various settings. We deploy them on the Ama-
zon EC2 cloud platform using different types of virtual machines (in term of
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CPUs, memory, I/O speed, etc.) and variable number of nodes, in order to
study the effect of different configurations on the performance of these systems.
Finally, we present two simple high-level queuing network models that are able
to capture the main features of the considered databases. These models are able
to provide insight into suitable cluster sizes for NoSQL applications and form
the basis of a capacity planning tool for service providers.

To date there has been limited work in benchmarking the performance of
NoSQL datastores. Rabl et al. [25] benchmark six NoSQL datastores, identi-
fying their ability to support application performance management tools. The
authors report response times and throughput for workloads that scale as the
number of nodes increases in a configuration. The experiments are conducted
on a fixed physical hardware architecture. By contrast, the present work bench-
marks three popular datastores on a visualized architecture and explores their
performance under different hardware, software and workload configurations. In
[8], the authors evaluate and compare the performances of four different NoSQL
systems (Cassandra and HBase among them) when used for RDF processing.
Their work is mainly aimed at characterizing the differences between NoSQL
systems and native triple stores.

In terms of modelling efforts, the performance community has concentrated
on the modelling of traditional relational databases [23], using mainly queueing
networks, e.g. [19, 12, 11, 21] and more recently queueing Petri nets, e.g. [22, 7].
In [3] Mean Field analysis is used to model the replication of resources in a
NoSQL application, while [1] uses a multi-formalism approach to model queries
in the Apache Hive data warehousing NoSQL solution. The authors in [24],
use queueing Petri nets to study the replication performance of the Cassandra
NoSQL datastore. We are unaware of previous work that attempts to depict the
main characteristics of multiple NoSQL datastores in one model as presented in
this paper.

The remainder of this paper is organized as follows. Section 2 explains the ar-
chitecture and primary characteristics of our target NoSQL databases. Section 3
discusses the experimental setup, Section 4 presents benchmarking results, and
Section 5 introduces our queueing models. Finally, Section 6 concludes and con-
siders avenues for future work.

2 NoSQL Database Architecture

Here we give a brief introduction to the main characteristics of the NoSQL
databases considered, highlighting those aspects that impact on performance:

Cassandra [13] belongs to the wide-column store NoSQL family [26] and pro-
vides an extended key-value store method built on a column-oriented structure.
Its architecture, shown in Fig. 1a, is based on a ring topology, in which every
node is identical to the others, guaranteeing that the system has no single point
of failure. Each record inserted in the database has an associated hash value
called token. The range of tokens is partitioned among the nodes to balance the
ring. Cassandra allows replication among the nodes in the cluster by duplicating
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Cassandra MongoDB

a. b.
HBase

c.

Fig. 1. The architectures of our target NoSQL Databases

data from a node to subsequent nodes on the ring. The number of replicas for
each data item can be controlled by a parameter set by the user, called the repli-
cation factor. The consistency level defines the number of replicas that should
respond to a data request. It is also possible to define which nodes communicate
outside the ring. Such nodes are called entry points.

MongoDB [18] belongs to the document-store NoSQL family. As shown in
Fig. 1b, the main components of the system are:
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– mongod: data nodes for storing and retrieving data.
– mongos: the only instances able to communicate outside of the cluster.
– config-server: the containers of the metadata about the objects stored in
the mongod. The metadata is used in case of a node failure. A cluster allows
only one or three config-server instances.

Each running component constitutes one node in the MongoDB cluster.
Replication is achieved by means of shards. Every shard is a group of one or

more nodes. The number of nodes in a shard determines the replication factor
of the system: each member of the shard contains a copy of the data, creating
a so-called replica set. Nodes belonging to the same shard have the same data.
Within a shard only one node can be a master, able to execute write and read
tasks; the others are considered slaves and can only perform read operations.

HBase [14] is based on the Hadoop map-reduce framework and Hadoop Dis-
tributed File System (HDFS). It belongs to the wide-column store NoSQL family.
As shown in Fig. 1c, HBase relies on two supporting applications:
– Hadoop: a distributed map-reduce framework that provides high-throughput
access to application data and which manages replication.

– Zookeeper: provides a distributed configuration and synchronization service
for large distributed systems.

HBase has two main types of nodes: the master, that accounts for the nodes
that are alive and which provides communication services, the zookeeper cluster
and clients; and the region servers, which distribute data using the notion of
regions. Regions are initially allocated to a node and split when they become
too large. Thus, HBase tends to accumulate data on some nodes with a non-
uniform distribution of data, especially when the system is lightly loaded.

3 Experimental Setup

We used the Yahoo! Cloud Serving Benchmark (YCSB) [6], a workload generator
developed by Yahoo!, as our benchmarking framework. YCSB provides means to
stress-test multiple databases and compare them in a fair and consistent way. It
operates in two phases: first, data is loaded onto the data nodes (the ones responsi-
ble for storing actual data, irrespective of the naming convention of each database
architecture). In our experiments, the data was generated randomly and stored by
the database in its specific data format. In the second phase, YCSB executes the
actual tests, in which random key requests are sent to the data nodes. The re-
quests are randomly mixed with 50% reads and 50% writes for each client thread.
The number of client threads concurrently querying the database is either var-
ied to simulate different workload levels, or fixed to a value that saturates the DB
servers. For each execution, the benchmarkmeasures the latency (in microseconds
per operation) and throughput (in operations per second).

The servers used for the tests are provided by the Amazon EC2 cloud platform.
Table 1 presents the virtual hardware specifications of the machines employed
for the benchmarking experiments. All nodes of a database, independently of
their role in the architecture, are run on a virtual machine with the same spec-
ification during a given test to allow for a fair comparison. To ensure that the
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Table 1. Virtual Hardware Specifications

Instance Type vCPU Physical Processor Memory(GiB)

m1.large 2 Intel Xeon Family 7.5

c1.xlarge 8 Intel Xeon Family 7

c3.2xlarge 8 Intel Xeon E5-2680 v2 15

benchmark application does not affect the performance of the database under
test, it is hosted on a dedicated machine that is not part of the DB cluster. We
will refer to this machine as the ycsb client. We used the m1.large virtual ma-
chine specification for the machines hosting the nodes of the database and the
ycsb client for most of our experiments. The m1.large virtual machines were
chosen since they offer a good trade-off between cost and available memory. In
particular, it satisfies the minimum memory requirement of HBase which is at
least 7 GiB. When the number of cores per server became the focus of the tests,
we switched to c1.xlarge instances to have a larger number of cores available.
During some of the tests, due to the high number of client threads required for
the total number of nodes, the ycsb client became the bottleneck of the system.
In those cases, we switched the ycsb client machine to a c3.2xlarge instance.
Every machine runs the Ubuntu Server 12.04 operating system release provided
by Amazon. In order to reduce the variability inherent to the cloud environment
on the measured results, some tests were performed during particular time slots
when we observed that the provisioned servers showed more stability.

Each test is performed using a specific DB configuration in terms of active cores
per server, number of nodes and data replication. The ycsb tool is executed at
least 20 times for each configuration before collecting the average values for re-
sponse time and throughput. In addition to the performance indexes collected by
the benchmark, we used several bash scripts to track the cpu utilization of every
single node in the cluster. Testing the scalability of MongoDBwas not as straight-
forward as for the other databases. For this DB we had to experimentally deter-
mine which of its configurations was able to scale more uniformly. For MongoDB
both mongos and mongod instances run on every node, while the config-server
(that has a negligible load) runs in addition to the other two services on a ran-
domly chosen node. However, the ycsb tool is not able to setmore than one mongos
connection at a time; therefore we perform the tests on MongoDB by scaling the
number of clients to be equal to the number of nodes. In addition, the number of
client threads running on one node is scaled by an appropriate factor to maintain
the same average load used for Cassandra and HBase.

4 Benchmarking Results

Our initial tests focused on infrastructure-dependent parameters that influence
the performance of a NoSQL database. We began with investigating the effect of
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node capacity, i.e. number of cores, on performance. The impact of the number
of nodes in a cluster and the number of threads (workload) on the client was
then studied. Finally, we examined the effect of the replication factor.

4.1 Number of Cores

The first set of experiments measure the database performance as the number
of cores on a single node is increased. The number of client threads was fixed
at 50 threads irrespective of the number of cores. These tests are performed on
a single machine of the c1.xlarge type for both Cassandra and MongoDB, in
which each was configured with one node only. For HBase, the region server
was hosted on a single machine of the c1.xlarge type, and the master and the
zookeeper were each hosted on a different m1.xlargeVM. In Fig. 2a, we show the
total throughput as function of the number of cores active on a single node. It is
evident that HBase is able to take advantage of the number of cores better than
the other databases, scaling almost linearly. MongoDB scales well initially but
then it shows a plateau at around 6 cores. Such a tendency seems absent from
Cassandra which, although significantly slower that HBase in absolute terms,
also scales quite linearly. Fig. 2b shows the mean update latency as function
of the number of cores. In this case the mean response time required for write
operations is more or less constant for both Cassandra and HBase, showing,
presumably that this task is mainly I/O bound on these databases. HBase shows
an extremely low update latency, benefiting from its client-side write buffer.
MongoDB shows an improvement in performance when the number of cores
increases from one to three, then stabilizes. This is due to the fact that the
data node must communicate updates with the config-server. For the read
operations in Fig. 2c, the behavior is more hyperbolic, as read operations are
more likely to benefit from parallelization. In this case, MongoDB has the lowest
latency; Cassandra shows the highest latency when running on a VM with a low
number of cores. HBase has a much lower performance for read requests than
for write requests since the former do not exploit a client-side buffer.

a. b. c.

Fig. 2. System throughput and latencies as a function of the number of cores
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4.2 Number of Nodes

Distributed database performance is strongly affected by the size of the cluster
and the workload it has to handle. To investigate the effect of the number of
nodes on performance we simulate higher workload intensities by increasing the
number of threads running simultaneously on the client for each request. For
Cassandra and MongoDB, the number of entry points is scaled to match the
number of nodes; for HBase the number of entry points is not configurable. For
the single node case, we consider the performance of both on a single and a
double core CPU. For more than one node, we only present results considering
VMs with two cores.

Cassandra MongoDB HBase

a. b. c.

Fig. 3. Throughput as a function of the number of nodes

The throughput of Cassandra is considered in Fig. 3a. The throughput gen-
erally increases with an increase in the number of nodes. Fig. 3a shows the
saturation point of the database, that is the point at which the database is fully
utilized and throughput does not increase along with the number client threads.
Configurations with 8 nodes and above do not saturate the system even at 30
threads. Similar results are shown for MongoDB in Fig. 3b and for HBase in
Fig. 3c. Note that, in terms of absolute performance, HBase presents higher
throughput than Cassandra and MongoDB. However, its scalability is less pre-
dictable. This is due to the non-uniform distribution of data among the nodes,
in contrast to Cassandra and MongoDB.

Read and write latencies for the three DBs are reported in Fig. 4. Cassandra
does not show a significant gain when the number of nodes jumps from eight
to sixteen: this might be an indication of some scalability issues for very large
configurations. MongoDB does not saturate with the considered workloads when
distributed on four or eight nodes. HBase presents an almost linear behavior for
all the considered configurations.

4.3 Replication

Replication of data in a DB cluster introduces yet another performance impact-
ing factor. A replication factor equal to one, means that there is only one copy
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Cassandra MongoDB HBase

Fig. 4. Latency for the three databases with different number of nodes

Cassandra MongoDB HBase

a. b. c.

Fig. 5. Mean throughput for different replication factor

of the data item among all the nodes of the cluster. Higher replication factors
means that, aside from the original data, copies are stored on different nodes.

Fig. 5a shows that increased replication in the cluster produces degradation
of throughput. This degradation increases as more copies of the same data are
requested in order to achieve consistency within the database. Fig. 5b shows the
behavior of MongoDB when the replication factor is set to values higher than
one. In this case, having replicas of data decreases the throughput, but differently
from Cassandra, having more than one replica does not decrease performance.
This is due to the fact that increase of replication in MongoDB consists in having
more than one data node belonging to a shard, which basically distributes the
nodes to more than one master. In Fig. 5c the effects of replication in HBase
are shown. Because of the architecture of HBase, the behavior is not what was
expected. There was no noted decrease in performance, nor in throughput, nor
in response time. This is due to the fact that Hadoop is responsible for data
allocation in a process transparent to the user. Moreover, HBase packs its data
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regions and splits data among its nodes randomly, hence no uniform architecture
for data distribution exists.

5 Modeling a NoSQL Database

Informed by the results of Section 4, we now show how some high level features
of NoSQL databases can be captured using simple queueing network models [17].
Here we present two models aimed at capturing the effect of the number of nodes
in the system and of the selected replication factor.

5.1 Characterizing the Workload

We start by modelling YCSB and a system deployed on a single node (see Fig. 6).
As described in Section 3, YCSB is composed of a fixed number of threads (set
as a parameter of the benchmark) that concurrently perform both read and write
requests with equal probability. As seen in Section 4, read and write present differ-
ent performance characteristics. Moreover, write requests are subject to caching
and delayed write operation, both at the client interface (HBase) and at the server
(Cassandra), and thus experience a high variability in their service time.

Each client thread performs a very large number of read/write operations;
hence we have modeled the entire system with a closed queueing network, where
each circulating job models a YCSB thread. Read and write operations are
modeled with two different classes of jobs. To reflect the random requests, we
have added a class switching feature in the model of Fig. 6, such that each
job has a 50% probability at each iteration of becoming of a different class.
The database nodes are each modeled by two resources: one representing the
CPU and the other representing the disk. Since VMs running the servers may
have more than one core, the number of servers in the CPU station is set to
the actual number of cores, which in this case is 2 virtual cores. The resource
representing the disks are single-server with FIFO service discipline to represent
the serial access that characterizes storage components. Clients are modeled by
a queueing station whose number of servers is set to the number of cores of the
VMs where the YCSB client are executed. This is done to reflect the resource
contention of the YCSB threads. The network latency is explicitly included in
the model as a infinite-server delay station as it directly affects read and write
response times.

The service time of read requests is not affected by caching; therefore, read
requests are executed by all the resources when submitted by the client (i.e.,
the network, the server CPU and the server disk). Write requests can be cached
either at the client side (do not enter the network after being produced in the
client, e.g., the write buffer in HBase), or at the server side (requests are not
immediately written to the disk, as in Cassandra). The write behavior is modeled
by class-dependent routing that connects the client to itself immediately after the
class switching (caching at the client), and by the route that immediately returns
to the client after the server cpu (caching at the server). We then determined
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Fig. 6. Queueing network model representing a single node architecture

Fig. 7. Queueing network model representing a multi-node architecture

the service demands to use in the models. Network delay was measured using
the ping command on the client machine, and estimated to be 0.45375ms. The
read and write service times for the disks were determined by benchmarking the
I/O operations of the VMs and determined to be approximately 170ms (read)
and 200ms (write). The CPU requirements and the caching probability are the
parameters that reflect the behaviour of the considered NoSQL databases.

Tables 2, 3 and 4 show in the first column the estimated CPU demands for
the read and write classes for Cassandra, MongoDB and HBase, respectively.
For HBase, since it buffers write requests before sending them to the server,
Table 4 has an extra column called P (flush). It represents the probability that
the generated request fills the buffer and that its content is sent to the server by
routing it through the route that connects the class-switch node to the network
delay. With probability 1−P (flush), requests are not sent to the servers, so the
corresponding job is immediately routed back to the client. For the other DBs,
since they do not have client-side buffering, P (flush) = 1. To include server side
caching of write commands, the probability of accessing the disk has been set to
10% on the DB: i.e. 90% of the write requests are served by the CPU only, and
immediately return to the client.

The models have been analyzed using the JMT (Java Modeling Tool) [2].
The mean total throughput and mean read and write throughput for the single
node configuration are shown in Fig. 8 for Cassandra, MongoDB and HBase. The
JSimGraph component was used to solve the models by discrete event simulation.
Confidence intervals were set to 95%; the resulting confidence intervals were too
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Table 2. Model Parameters for Cassandra

node(s) replication cpu demand cpu demand

factor (write) (read)

1 - 0.075 1.15

4 1 0.8 1.25

4 4 0.15 0.55

Table 3. Model Parameters for MongoDB

node(s) replication cpu demand cpu demand

factor (write) (read)

1 - 0.42 0.28

4 1 0.7 0.3

4 4 0.42 0.9

Table 4. Model Parameters for HBase

node(s) cpu demand cpu demand P(flush)

(write) (read)

1 0.25 0.43 0.03

4 0.2 0.87 0.01

Fig. 8.Mean throughput and latency for one node for Cassandra, MongoDB and HBase

tight to appear on the graphs. Table 5 shows the relative error in the first line.
From the results, the model captures the system mean throughput and the mean
response times of the read and of the write operations for both Cassandra and
MongoDB. For HBase, the model has a large error for the throughput. HBase is
in fact the most complex of the three DBs, so a simple queuing network cannot
accurately capture all its features and produce acceptable results.

5.2 Configurations with Multiple Nodes

We then model the configurations with more than one node with the queueing
network model, as shown in Fig. 7. In this case we have several groups of two
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Fig. 9. Mean throughput and latency for four nodes and replication factor set to one
for Cassandra, MongoDB and HBase

Fig. 10. Mean throughput and latency for four nodes and replication factor set to
four for Cassandra, MongoDB and HBase

Table 5. Relative errors of the proposed models: throughput (th), write latency (wr),
read latency (re)

node(s) Cassandra MongoDB HBase

repl. (th/wr/re) (th/wr/re) (th/wr/re)

1 / 1 4% / 14% / 8.4% 12.2% / 16.9% / 21.9% 24.4% / 10.7% / 9%

4 / 1 15.1% / 19.7% / 23.4% 7.5% / 6.3% / 16.3% 19.6% / 33% / 30.5

4 / 4 19.3% / 23.8% / 22.4% 8.7% / 23.4% / 2.4% N.A.

queueing stations per node, representing respectively the CPU and the disk. A
router models the choice of the node that will serve the requests: for Cassandra
and HBase it implements a random selection policy. For MongoDB, it behaves
differently for the read and for the write class. Read requests are randomly sent
to the nodes. Write requests are sent to a single node (the topmost node of
the model) to represent single-master replication of this specific database. We
assume that network latency is the same for all the nodes: in this way we can
model the network delay with a single delay station inserted before the router.
Since the presence of more nodes introduces extra overhead in the computations
necessary to serve the requests, we have to estimate a different service demand
for each of the considered DB, as shown in the second line of Tables 2, 3 and 4.
Fig. 9 compares the model results with the measurement of Section 4, and the
second line of Table 5 reports the relative errors. The model performs quite well
for high loads, but it presents larger errors for a small number of client threads.



28 A. Gandini et al.

Finally we consider the effect of replication in both Cassandra and MongoDB:
we do not include HBase since that DB does not have a specific replication
feature, and instead relies on the underlying Hadoop infrastructure. We model
replication with the fork and join feature of queueing networks (nodes Fork and
Join in Figure 7). We fork each job based on the number of replicas, and join
them again before continuing to the client. In this case, we have to estimate
the demands for the CPU operations to account for the overheads required to
consider this additional feature. These corresponding values are presented in
the last line of Tables 2 and 3. Results are compared with measurements in
Fig. 10 and relative errors are reported in the last line of Table 5. The results
are acceptable for high loads, but are inaccurate for the lower loads. In this
case, replication at high loads produces high replica requests between nodes
causing bottlenecks similar to the previous case. The model inaccuracies at low
loads is due to the fact that the fork and join feature approximates replication
synchronization, as it is not symmetric as in the fork and join queue. Therefore,
the model sends requests to all nodes, which in reality does not happen.

6 Conclusion

This paper has presented benchmarks and models for three of the most com-
mon NoSQL databases: Cassandra, MongoDB and HBase. We deployed them on
the Amazon EC2 cloud platform using different types of virtual machines and
cluster sizes to study the effect of different configurations and to characterize
the performance behavior of the databases. Using a high-level queueing network
model we represented these characteristics. Our results showed that the models
are able to capture much of the main performance characteristics of the stud-
ied databases at high workloads. Further investigation into modelling complex
replication is required to accurately reflect the performance of replicated data.
Future work includes benchmarking other NoSQL databases and providing a
generic modelling framework.
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Abstract. A software design often does not describe the software infrastructure 
it will need to run, but a performance analysis must account for its effects. “Per-
formance completions” represent the infrastructure and must be incorporated in 
the application performance model. This paper considers completions for mid-
dleware. It proposes a unified framework for describing all kinds of middleware 
in the Layered Queuing Network (LQN) model, based on a generic template 
and elaborations for middleware features. The template is applied to several 
common request-reply middleware systems. A process is given for building a 
new middleware completion model and for incorporating it into a LQN model.  

Keywords: Performance analysis, middleware, role-based modeling, layered 
queuing network, aspect-oriented modeling, performance completion. 

1 Introduction 

Application models for software products describe the functional properties of the 
application being developed. In distributed systems, application software runs on a 
platform of third-party software (e.g., middleware, operating systems) and networks, 
which are usually not modeled by the system designer. For performance analysis this 
infrastructure needs to be added to the application software model. This issue was 
identified by Woodside et al. in [ 1] and the authors called these added performance 
model elements performance completions. A key completion for a distributed applica-
tion is its middleware (See Fig. 1). As described in [ 2], middleware is software that 
masks the heterogeneity of the underlying networks, hardware, operating systems and 
programming language by providing a higher level of abstraction for communication.  

There may be options for middleware which can significantly impact the perfor-
mance, as described in [ 3,  4,  5]. In [ 3], the authors showed that the transferred mes-
sage sizes depend on the middleware and also on its features (e.g., security). SOAP 
messages were observed to be on average ~4.3 times larger than RMI JRMP messag-
es. In the same work Web services were found to be ~9.6 times slower than RMI for 
simple data types (e.g., boolean, integer etc.) and strings, and ~14% slower for instan-
tiation. These examples underline the importance of modeling the particular middle-
ware used. If the performance analyst can estimate the performance effect of various 
middleware products, the system designer can make platform decisions that meet both 
functional and Quality of Service (QoS) requirements.  
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Fig. 1. Roles [ 17] that participate in a typical distributed method invocation are shown in rec-
tangles. The communication infrastructure includes middleware (here RMI), operating system 
and network elements.   

This paper proposes a systematic approach for generating middleware sub-models 
as performance completions and composing them with performance models of soft-
ware. The performance models can come from any model-creation process, but here 
they are assumed to be layered queuing network (LQN) models [ 6]. The proposed 
systematic approach reduces the time and effort required to evaluate the performance 
of an application under different middleware and different deployments. The ap-
proach is scalable too, because the middleware and their features are always com-
posed locally in any model.   

Three lines of research which have addressed parts of this problem will be identi-
fied as A, B, and C. In A, an approach and tool for composing subsystems into LQN 
models was described by Wu et al. [ 7,  8]. Subsystem models may have numerical 
parameters, but this is the only form of variability. While this capability may be used 
to model some kinds of middleware, it has a limited ability to adapt to the context of 
each interaction.  

In approach B, Verdickt et al. [ 9,  10] modeled CORBA middleware (by hand) at 
the UML level, automatically combined it with a UML model of the application, and 
finally derived LQN performance models (by hand). That is, they solved only the 
automatic composition problem, and did that at the UML level. While this has the 
advantage it can address middleware issues within the software design, it has the dis-
advantage that the performance model must come from UML (our process can exploit 
LQN models from any source). Approach B did not consider middleware in general, 
only CORBA. 



32 A. Faisal, D. Petriu, and M. Woodside 

 

In approach C, Reussner and his co-workers have addressed communications infra-
structure within a Component Based Software Engineering framework called the 
Palladio Component Model (PCM) [ 11]. Completions are components with variants 
defined by a feature model, with applications to Message Oriented Middleware 
(MOM). In [ 12] this idea gave pattern-based performance completions for MOM, 
with annotations to drive a model-to-model transformation to configure the comple-
tion. In [ 13,  14] coupled transformations are used to compose completions into both 
generated code and a performance model. In [ 16], an abstract connector model was 
developed into a particular communications infrastructure in PCM using completions 
and feature models. In [ 15] variability is incorporated in the model transformation 
process (rather than just in the model instances), using generators based on higher-
order transformation patterns (configured transformations). These PCM-related works 
form the most general effort on the problem. 

The present work is different in two important ways from its predecessors. First, it 
considers pure performance model completions, not completions as components as in 
approaches A and C. A model completion is both more general and simpler than a 
component or connector completion, in that it often penetrates and modifies the model 
of the software entities that use it, besides possibly providing additional components. 
A component is both a system structural object and a model object; here the comple-
tion is only considered in the performance model and its implementation is not a 
complicating concern. The second difference is that (unlike as done in B or C) the 
completion is defined and composed at the performance model level, not in the soft-
ware specification. This is often simpler because the performance model is at a more 
abstract level than a design model defined in PCM or UML.  

These differences give two advantages. First, the resulting performance model is 
smaller and simpler. Second, design details may be confidential or simply unavaila-
ble, and for such cases a performance model may be constructed as a “black box” and 
its middleware then composed using the methods proposed here. 

The main contribution of this paper is a general systematic process to represent the 
performance impact of most kinds of middleware, including optional features. This is 
achieved by identifying and grouping the different roles that take part in various mid-
dleware products into two categories: mandatory roles and optional roles (Section  3). 
A base middleware sub-model (Section  4) is proposed that can represent the architec-
ture of many middleware products, which are defined as variations on it, using feature 
models and realizations (Section  5). A kind of aspect composition for LQN (which 
has not previously been defined) is used to compose the feature realizations into the 
base sub-model, and the middleware sub-models into the primary LQN model (Sec-
tions 5 and  6). The method is demonstrated by an example in Section  7.      

2 Layered Queuing Network (LQN) Performance Models 

The LQN performance models [ 6] used here offer the advantage that they directly 
represent the software components and their deployment, treat software entities as 
resources, and capture inter-component communications, and resource interactions 
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between layers of the application. They behave like ordinary queuing networks where 
that is appropriate. 

Fig. 2 shows two LQN models, without and with network latency for a web service 
application. Each concurrent entity (called a task) is represented by a bold rectangle 
showing its name and a parameter for its thread-pool multiplicity (e.g. {$N}, {inf}). It 
has attached rectangles that represent its operations, called entries and labeled with 
the host (CPU) demand for one invocation of the entry (e.g. [$web], [20 ms] etc.). 

 

 

(a) LQN model for a web application (b) Model with network latencies 

Fig. 2. LQN models of a generic 3-tier web application 

Each task has a host processor drawn as an oval, with a multiplicity (e.g., {32}, 
{$N} etc.) which can represent multiple cores. A call from one entry to another is 
represented by an arrow labeled with the average number of calls.  

An infinite server provides a pure time delay and is modeled as an infinite task 
running on an infinite host (using the multiplicity {inf}). Infinite servers represent 
network latencies in Fig. 2(b). 

3 Roles in Middleware  

This paper considers middleware products which support remote service invocations 
through request-reply interactions and implement some of the roles in Fig. 1. This 
section describes these roles along with the components/processes of three different 
kinds of middleware (RMI, CORBA and SOAP) [ 2] that realize them. Note that roles 
do not correspond directly to software modules or components, one of which may 
realize multiple roles. There are Mandatory roles and Optional roles, as follows. 
 
Mandatory Roles (always present): 

Client and Servant: the originator and responder of a remote invocation.  
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4 The Base Middleware LQN Sub-model 

The base LQN sub-model for middleware (BaseSM for brevity) in Fig. 4 has host, 
component (task) and operation (entry) roles (following concepts of role-based mod-
eling as in [ 17]). It provides concurrent components for the client-side and server-side 
operations |cOP and |sOp, which combine the stub/skeleton, remote reference and 
transport layer roles in Fig. 1. These mandatory roles construct the essential parts of 
most middleware, including RMI, CORBA and SOAP.  Their execution demand is 
defined by expressions with a fixed part ($cFix per request) and a part proportional to 
message size with multiplier $cVar. $msgSize, which is a parameter of each applica-
tion call, is the sum of the call and reply message sizes. The sum of call and reply 
processing is included in the operation demands. 

 

Fig. 4. BaseSM, the base middleware sub-model in LQN 

The tasks in BaseSM are called role-tasks; they have role-entries which make role-
calls and run on hosts we call role-hosts. Role names are preceded by a single bar (for 
a role that must be explicitly bound to some entity in the application model, possibly 
one created for the purpose) or by double bars (for a role that is bound implicitly, so 
the modeler need not specify it). The role-entry ||makeCall is implicitly bound to the 
operation that makes the remote invocation, and the role-entry ||doOp is implicitly 
bound to the remote operation. The role-tasks ||Client, ||Servant and role-hosts ||CH, 
||SH are defined implicitly as the task and host for the two role-entries. The |Network 
role-task is a place-holder for the network delay. 

When a feature is added to the base sub-model it replaces a role-call or a role-
entry, which are called join-calls and join-entries (because they function like join-
points in aspect weaving) respectively. To identify such a call, we specify the pair 
(callingEntry, calledEntry). For example, in Fig. 4, |fromCall can be specified by 
(||makeCall, |cOp). 

Although BaseSM represents middleware, it can also model a style without explicit 
middleware, such as REST (which uses HTTP without marshalling/unmarshalling). 
The wrappers then would include only the HTTP and TCP/UDP overhead.   



36 A. Faisal, D. Petriu, and M. Woodside 

 

5 Middleware Features 

Most middleware has additional features, which may be optional (e.g. encryption) or 
intrinsic to the middleware (e.g. a location server for CORBA). Features are orga-
nized in a feature model and defined in LQN notation by feature realizations. 

5.1 Feature Models to Represent Variability 

As a foundation, BaseSM is defined as a feature called Middleware, with a Wrapper 
feature realized by the role-tasks |ClientWrapper and |ServantWrapper. In the feature 
model of Fig. 5(a), a directed arc labelled “º” indicates an optional feature that can be 
nested within its parent feature, whereas “•” indicates a mandatory feature. Thus 
Middlware may include the NameService or ServiceManager features. Fig. 5(b) 
shows features that may extend the Wrapper feature of the base sub-model, and sub-
features of ServiceManager.  

  

  

(a) Middleware features (b) ServiceManager and Wrapper features 

Fig. 5. Feature model for optional features 

5.2 Library of Feature Realizations   

The features are specified in a feature library. A feature has four attributes: 
• compositionType = one of  InFlowStruct , OutOfFlowStruct, Value; InFlow-

Struct and OutOfFlowStruct are called Structure-type Features. 
• joinList  = a list of join-calls (for InFlowStruct types) or join-entries (otherwise); 
• realization = a LQN feature submodel (for structural types) or an expression for 

an added CPU demand value in a join-entry (for the Value type); 
• parameterList = parameters of the realization, which may be expressions. 

The feature realization is composed at each join-call or join-entry, by binding the 
roles in the realization with roles in BaseSM for structural types, or by modifying 
role-entry demand values, for the Value type. Each feature realization begins with a 
dummy role-task ||Requester with role-entry ||makeCall, and ends with dummy role-
task ||Replier with role-entry ||doOp. 
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Security 
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The compositionType describes how the feature is composed:  

• InFlowStruct features replace each join-call by a copy of the submodel (with role-
entry feature.||makeCall replaced by joinCall.callingEntry, and role-entry fea-
ture.||doOp replaced by joinCall.calledEntry);  

• OutOfFlowStruct features add one or more calls to each join-entry;  
• Value-type features add the amount feature.value to the demand of each identified 

join-entry. For example the Compression feature might add a CPU demand to the 
ClientWrapper task defined by a linear function of the form:  

  Compression.value =  

baseSM.$msgSize * Compression.$compressionFactor 

A feature may have two alternative specifications, one for a Value type and one for a 
structure type. Fig. 6(a), 6(b) and 6(c)  show realizations for three structure-modify-
ing features: Encryption, NameService and ServiceManager. The first two are of type 
InFlowStruct and are composed into the message flow, while the last is of type Out-
OfFlowStruct and adds a call to the calling role-entry. 
 
 

 
 

 

(a) Encryption.realization (b) ServiceManager 
.realization

(c) NameService.realization 

Fig. 6. Feature realizations in LQN 

5.3 Obtaining the Specialized Middleware LQN Sub-model 

Given a set of features, their realizations are composed with the basic sub-model  
as directed by a Feature Composition Descriptor. It specifies the starting model  
(BaseSM), a list of features to be composed, and the resulting specialized submodel.  

Consider a ServiceManager with encryption (call it EJB+E). To add encryption and 
a service manager as features, and call the result MWSubModel, the Feature Compo-
sition Descriptor would be: 

ComposeFeatures (BaseSM -> MWSubModel) 

  feature Encryption 

  feature ServiceManager 

end 
 

For bindings, the composition is directed by the joinList for each feature, which 
identifies all the joinCalls/joinEntries in BaseSM where it is to be composed. It is 
bound as follows:  
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For this feature type     This roleEntry      Is bound to this BaseSM.roleEntry 
InFlowStruct      feature.||makeCall joinCall.callingEntry 
InFlowStruct           feature.||doOp  joinCall.calledEntry 
OutOfFlowStruct feature.||makeCall joinEntry 
  
When a feature role-entry is bound to a role-entry of BaseSM, it is merged with and 
takes on the identity of the latter, and its task and host are bound to the task and host 
of the BaseSM entity. The calls and model-entities between the two entries ||makeCall 
and ||doOp for each feature are added to the base sub-model.  

The added entities of the feature can be bound differently to BaseSM entities by 
optional binding overrides, using statements of form: 

(bind feature-entity baseModel-entity)  

For example the EJB+E feature composition descriptor given above introduces a new 
role-task |Encryption and a new host |EncryptionH. But, the following descriptor 
causes the |Encryption task to be deployed instead on its caller’s host: 
 

ComposeFeatures (baseSM -> MWSubModel) 

  feature Encryption 

   (bind |EncryptionH ||CallerH) 

  feature ServiceManager 

  end 
 
The resulting MWSubModel is shown in Fig. 7(b), which shows the newly added 
tasks with dotted borders. Fig. 7(a) shows the intermediate result after binding only 
the Encryption, which (with appropriate parameters) models RMI with encryption. 
The Encryption feature is composed twice as its joinList is {fromClientOp, fromSer-
verOp}. Call multiplicity is assumed to be 1 where it is not specifically mentioned.  

Note that, though in a functional specification the order of operations by the fea-
tures is important, for a performance model it is sufficient to capture the total work-
load and its concurrency (attachment to tasks) and host loading (deployment).  Thus 
having the encryption called by the sWrapper (rather than executing before the wrap-
per) is backwards in execution order but gives a correct performance model. 

A high-level algorithm for composing realization fragments is: 

FEATURE-COMPOSITION(fcd:featureCompositionDescriptor) 
BEGIN  FOR every feature feature in array fcd 
   IF feature.compositionType is InFlowStruct  
     GET its join-calls array feature.joinList  
     FOR every element joinCall in feature.joinList 
       REPLACE joinCall with feature 
     ENDFOR 
  BIND hosts of feature 
   ELSEIF feature.compositionType is OutOfFlowStruct  
     GET its join-entry array feature.joinList  
     FOR every element joinEntry in feature.joinList 
       ADD feature 
     ENDFOR 
 



 A Systematic Approach for Composing General Middleware Completions 39 

 

  BIND hosts of feature 
   ELSE  /* feature.compositionType is Value*/ 
     UPDATE service demands 

   ENDIF  ENDFOR  END    

 

  
  

(a) Encryption is Composed with BaseSM first, 
giving RMI with Encryption (RMI+E) 

(b) then Service Manager is added to give the 
EJB+E specialized sub-model 

Fig. 7. Specialization of the base sub-model  

As indicated in this example, standard types of middleware are modeled by adding 
their features to BaseSM. For example, RMI and REST have a basic version which is 
the same as the base sub-model (with appropriate parameter values); they can also 
have additional features.  

6 Obtaining the Final Composed LQN Model 

The same approach can be used to compose the appropriate middleware submodels 
with the application LQN model. Each call in the application that uses middleware 
becomes a join-call for the specialized submodel for that middleware, which is com-
posed with the call in the same way as an InFlowStruct feature. The choice of mid-
dleware for each call is specified by a set of records of the form (call-specification 
MWSubModel). To simplify cases where many calls use the same middleware, the 
following rules apply: 
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(1) Sets of application calls can be specified by a generalized call specification: 
    generalized-call-specification = (set of calling entries, set of called entries) 

which defines the set of all calls between entries in the first set, and entries in the 
second. The following special designations for sets of entries are used:  

• AllEntries, for all entries in the application model,  
• EntriesT(task), for all entries of the given task, and  
• EntriesH(host), for all entries of tasks deployed on the given host. 

(2) Sets are defined hierarchically, so that later specifications override earlier ones. 
 

For example, suppose middleware with the specialized sub-model m1 is used for the 
entire application, except for using m2 for calls from task t1 to task t2, and (within 
that group) m3 for calls from entry e1 to e2. The specification is: 

MiddlewareSpec 
 (AllEntries, AllEntries) m1 
 (EntriesT(t1), EntriesT(t2)) m2 
 (e1, e2) m3 
end 

The process for binding a particular MWSubModel at a joinCall of the applicationn is 
the same as for the feature binding in Section 5.3. Its role-entries ||makeCall and 
||doOp are bound to joinCall.callingEntry and joinCall.calledEntry (respectively), and 
the entities between them are instantiated as new entities unless they are explicitly 
bound to existing entities. Just as for features, tasks and hosts in the MWSubModel 
may be bound to entities in the application model by a bind directive following the 
join-call specification. The following example specifies completion of the application 
model of Fig. 2(b) with the RMI sub-model of Fig. 4 over the whole application, ex-
cept for RMI+E (RMI with encryption, as in Fig. 7(a)) for calls between tasks User 
and WebServer. The encryption hosts are bound to the hosts of the client and servant. 

MiddlewareSpec 
 (*, *) RMI 
 (EntriesT(User), EntriesT(WebServer)) RMIPlusEnc 
 (bind |EncryptionCH UserH) 
 (bind |EncryptionSH WSH) 
end 

The MiddlewareSpec above is converted into a Middleware Composition Description 
(analogous to the Feature Composition Description) with a join-call list for each spe-
cialized submodel, and an algorithm outlined as follows is applied:  

MIDDLEWARE-COMPOSITION(mcd:MiddlewareCompositionDescriptor) 
BEGIN  FOR every MWSubModel m in mcd   
  GET all JoinCalls where m is to be applied 
  FOR every JoinCall c 
   ADD tasks of m at c 
   ADD AND BIND calls and hosts of the added tasks 
  ENDFOR   ENDFOR  END 

The resulting model is called the final model and is shown in Fig. 8. 
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Fig. 8. RMI middleware in the application model of Figure 2(b), with  encryption of user messages. 
All unmentioned call multiplicities are 1. 

7 Experimental Results 

This section describes an example of a 3-tier web application for the management of a 
medium-size hospital. The application designers must determine how many users it 
can support while keeping the mean response time below 2 seconds, and must make a 
decision regarding what middleware to use. The LQN of Fig. 2(b) shows the applica-
tion architecture and the high-level LQN performance model, and this table gives the 
application model parameters: 
 

Application Model parameter Value 
User external delay (think time) 3000 ms 
Message size for call (request, webOp) 200 KB 
 webOp CPU demand 20 ms 
Message size for call (webOp, dbOp) 300 KB 
dbOp CPU demand 14 ms 
Internet latency 60 ms 

Lan latency 10 ms 
Host (WSH and DSH) multiplicity 32 
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  To make performance comparisons, six different kinds of middleware were 
composed with the primary model of Fig. 2(b): RMI, RMI with encryption (RMI+E), 
REST, EJB, EJB with encryption (EJB+E) and SOAP. The middleware parameters 
were assigned as in the following table: 

 

Middleware Parameter Value for call 
(request, webOp) 

Value for call 
(webOP, dbOp) 

RMI Overhead added to msgSize 120 KB 200KB 
 cFix, cVar 2 ms, 0.005 ms/KB 

RMI+E Overhead added to msgSize 480 KB 800 KB 
 cFix, cVar 2 ms, 0.005 ms/KB 

REST Overhead added to msgSize 120 KB 200 KB 
 cFix, cVar 2.4 ms, 0.012 ms/KB 

EJB Overhead added to msgSize 200 KB 800 KB 
 cFix, cVar 2 ms, 0.005 ms/KB 
 cFixServMan, cVarServMan 1 ms. 0.0015 ms/KB 

EJB+E …as EJB except for cVarServMan = 0.005 ms/KB 

SOAP Overhead added to msgSize 120 KB 200 KB 
 cFix, cVar 4 ms, 0.023 ms/KB 

 

Fig. 9. System Response Time [ms] for various middleware compositions 

The performance models were solved for a user think time of 3000 ms and a number 
of users ranging from 50 to 900, with the results in Fig. 9 and Fig. 10. From Fig. 9, the 
system response time is small (about half a second) for all cases, up to about 400 users. 
Above this number the curves turn up at a point we will call the point of contention, 
which is different for different middleware.  SOAP and EJB+E saturate first, due to the 
large XML messages of SOAP and to the overheads caused by the ServiceManager and 
encryption in EJB+E. At the opposite extreme “no middleware” enters contention last, 
preceded by RMI, RMI+E and REST. RMI is fastest among all the middleware but 
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unlike the others, is not language-independent.  REST and (RMI+E) are similar be-
cause the marshalling plus encryption overhead in RMI have a similar effect to the ex-
change of ‘resources’ as large messages in REST. The ‘No MW’ line shows the ‘ideal’ 
case with only network latency as in Fig. 2(b), to compare with the cases with middle-
ware overhead and additional messages. Fig. 10 shows the corresponding throughputs, 
saturating at values ranging from below 500 to 900 requests/s. 

To keep the response time below 2 seconds, the number of users for SOAP, 
EJB+E, EJB, REST, RMI+E must be kept below 700, 750, 800, 900 and 950 respec-
tively. For all these cases it was observed that the DataBase host is the bottleneck, and 
the critical middleware overhead is in the features executed on that host. 

 

Fig. 10. System Throughput [requests/ms] for various middleware compositions 

8 Conclusion 

This paper presents a systematic approach for adding existing or to-be-created mid-
dleware completions in a LQN performance model of an application. The generic 
base middleware sub-model encapsulates any kind of functionality which is inter-
posed in the message flow. For specific middleware it is customized both in structure 
and in value. Customization can represent any infrastructure which transparently con-
veys messages. Customization incorporates the features offered by the middleware, as 
additional components and modified performance parameters, within a specialized 
middleware sub-model that is finally composed with the application model. The com-
posed models are correct by construction, as long as the specifications given by the 
user were correct. 

The authors are currently extending the library of middleware to include group 
communication and implementing an automated process on the Eclipse platform. 
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Abstract. We study a vacation-type queueing model, and a single-
server multi-queue polling model, with the special feature of retrials.
Just before the server arrives at a station there is some deterministic
glue period. Customers (both new arrivals and retrials) arriving at the
station during this glue period will be served during the visit of the
server. Customers arriving in any other period leave immediately and
will retry after an exponentially distributed time. Our main focus is on
queue length analysis, both at embedded time points (beginnings of glue
periods, visit periods and switch- or vacation periods) and at arbitrary
time points.

Keywords: Vacation queue, polling model, retrials.

1 Introduction

Queueing systems with retrials are characterized by the fact that arriving cus-
tomers, who find the server busy, do not wait in an ordinary queue. Instead of
that they go into an orbit, retrying to obtain service after a random amount of
time. These systems have received considerable attention in the literature, see
e.g. the book by Falin and Templeton [7], and the more recent book by Artalejo
and Gomez-Corral [3].

Polling systems are queueing models in which a single server, alternatingly,
visits a number of queues in some prescribed order. Polling systems, too, have
been extensively studied in the literature. For example, various different service
disciplines (rules which describe the server’s behaviour while visiting a queue)
and both models with and without switchover times have been considered. We
refer to Takagi [20,21] and Vishnevskii and Semenova [22] for some literature
reviews and to Boon, van der Mei and Winands [5], Levy and Sidi [12] and
Takagi [18] for overviews of the applicability of polling systems.

In this paper, motivated by questions regarding the performance modelling of
optical networks, we consider vacation and polling systems with retrials. Despite
the enormous amount of literature on both types of models, there are hardly any
papers having both the features of retrials of customers and of a single server
polling a number of queues. In fact, the authors are only aware of a sequence
of papers by Langaris [9,10,11] on this topic. In all these papers the author

A. Horváth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 45–58, 2014.
c© Springer International Publishing Switzerland 2014
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determines the mean number of retrial customers in the different stations. In
[9] the author studies a model in which the server, upon polling a station, stays
there for an exponential period of time and if a customer asks for service before
this time expires, the customer is served and a new exponential stay period
at the station begins. In [10] the author studies a model with two types of
customers: primary customers and secondary customers. Primary customers are
all customers present in the station at the instant the server polls the station.
Secondary customers are customers who arrive during the sojourn time of the
server in the station. The server, upon polling a station, first serves all the
primary customers present and after that stays an exponential period of time to
wait for and serve secondary customers. Finally, in [11] the author considers a
model with Markovian routing and stations that could be either of the type of
[9] or of the type of [10].

In this paper we consider a polling station with retrials and so-called glue
periods. Just before the server arrives at a station there is some deterministic
glue period. Customers (both new arrivals and retrials) arriving at the station
during this glue period ”stick” and will be served during the visit of the server.
Customers arriving in any other period leave immediately and will retry after
an exponentially distributed time.

The study of queueing systems with retrials and glue periods is motivated by
questions regarding the performance modelling and analysis of optical networks.
Performance analysis of optical networks is a challenging topic (see e.g. Maier [13]
and Rogiest [17]). In a telecommunication network, packets must be routed from
source to destination, passing through a series of links and nodes. In copper-based
transmission links, packets from different sources are time-multiplexed. This is
often modeled by a single server polling system. Optical fibre offers some big
advantages for communication w.r.t. copper cables: huge bandwidth, ultra-low
losses, and an extra dimension – the wavelength of light. However, in an optical
routing node, opposite to electronics, it is difficult to store photons, and hence
buffering in optical routers can only be very limited. Buffering in these networks
is typically realized by sending optical packets into fibre delay loops, i.e., let-
ting them circulate in a fibre loop and extracting them after a certain number
of circulations. This feature can be modelled by retrial queues. Recent experi-
ments with ‘slow light’, where light is slowed down by significantly increasing
the refractive index in waveguides, have up to now shown very modest buffering
times [8]. It should be noted that with the very high speeds achievable in fibre,
packet durations are very short, so that small buffering times may already allow
sufficient storage of small packets. We represent the effect of slowing down light
by introducing a glue period at a queue just before the server arrives.

The paper is organized as follows. In Section 2 we consider the case of a single
queue with vacations and retrials; arrivals and retrials only ”stick” during a
glue period. We study this case separately because (i) it is of interest in its own
right, (ii) it allows us to explain the analytic approach as well as the probabilistic
meaning of the main components in considerable detail, (iii) it makes the analysis
of the multi-queue case more accessible, and (iv) results for the one-queue case
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may serve as a first-order approximation for the behaviour of a particular queue
in the N -queue case, switchover periods now also representing glue and visit
periods at other queues. In Section 3 the two-queue case is analyzed. We do
not have the space to treat the N -queue case in this paper, but the analysis in
Sections 2 and 3 lays the groundwork for analyzing the N -queue case. Section 4
presents some conclusions and suggestions for future research.

2 Queue Length Analysis for the Single-Queue Case

2.1 Model Description

In this section we consider a single queueQ in isolation. Customers arrive atQ ac-
cording to a Poisson process with rate λ. The service times of successive customers
are independent, identically distributed (i.i.d.) random variables (r.v.), with dis-
tribution B(·) and Laplace-Stieltjes transform (LST) B̃(·). A generic service time
is denoted by B. After a visit period of the server at Q it takes a vacation. Suc-
cessive vacation lengths are i.i.d. r.v., with S a generic vacation length, with dis-
tribution S(·) and LST S̃(·). We make all the usual independence assumptions
about interarrival times, service times and vacation lengths at the queues. After
the server’s vacation, a glue period of deterministic (i.e., constant) length begins.
Its significance stems from the following assumption. Customers who arrive at Q
do not receive service immediately. When customers arrive atQ during a glue pe-
riod G, they stick, joining the queue of Q. When they arrive in any other period,
they immediately leave and retry after a retrial interval which is independent of
everything else, and which is exponentially distributed with rate ν. The glue pe-
riod is immediately followed by a visit period of the server at Q.

The service discipline at Q is gated: During the visit period at Q, the server
serves all ”glued” customers in that queue, i.e., all customers waiting at the end
of the glue period (but none of those in orbit, and neither any new arrivals).

We are interested in the steady-state behaviour of this vacation model with
retrials. We hence make the assumption that ρ := λEB < 1; it may be verified
that this is indeed the condition for this steady-state behaviour to exist.

Some more notation:
Gn denotes the nth glue period of Q.
Vn denotes the nth visit period of Q (immediately following the nth glue period).
Sn denotes the nth vacation of the server (immediately following the nth visit
period).
Xn denotes the number of customers in the system (hence in orbit) at the start
of Gn.
Yn denotes the number of customers in the system at the start of Vn. Notice
that here we should distinguish between those who are queueing and those who

are in orbit: We write Yn = Y
(q)
n +Y

(o)
n , where q denotes queueing and o denotes

in orbit.
Finally,
Zn denotes the number of customers in the system (hence in orbit) at the start
of Sn.
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2.2 Queue Length Analysis at Embedded Time Points

In this subsection we study the steady-state distributions of the numbers of
customers at the beginning of (i) glue periods, (ii) visit periods, and (iii) vacation
periods. Denote by X a r.v. with as distribution the limiting distribution of Xn.
Y and Z are similarly defined, and Y = Y (q) + Y (o), the steady-state numbers
of customers in queue and in orbit at the beginning of a visit period (which
coincides with the end of a glue period). In the sequel we shall introduce several
generating functions, throughout assuming that their parameter |z| ≤ 1. For
conciseness of notation, let β(z) := B̃(λ(1 − z)) and σ(z) := S̃(λ(1 − z)). Then
it is easily seen that

E[zX ] = σ(z)E[zZ ], (2.1)

since X equals Z plus the new arrivals during the vacation;

E[zZ ] = E[β(z)Y
(q)

zY
(o)

], (2.2)

since Z equals Y (o) plus the new arrivals during the Y (q) services; and

E[zY
(q)

q zY
(o)

o ] = e−λ(1−zq)GE[{(1− e−νG)zq + e−νGzo}X ]. (2.3)

The last equation follows since Y (q) is the sum of new arrivals during G and
retrials who return during G; each of the X customers which were in orbit at
the beginning of the glue period have a probability 1− e−νG of returning before
the end of that glue period.

Combining Equations (2.1)-(2.3), and introducing

f(z) := (1− e−νG)β(z) + e−νGz, (2.4)

we obtain the following functional equation for E[zX ]:

E[zX ] = σ(z)e−λ(1−β(z))G
E[f(z)X ].

Introducing K(z) := σ(z)e−λ(1−β(z))G and X(z) := E[zX ], we have:

X(z) = K(z)X(f(z)). (2.5)

This is a functional equation that naturally occurs in the study of queueing
models which have a branching-type structure; see, e.g., [6] and [16]. Typically,
one may view customers who newly arrive into the system during a service as
children of the served customer (”branching”), and customers who newly arrive
into the system during a vacation or glue period as immigrants. Such a functional
equation may be solved by iteration, giving rise to an infinite product – where
the jth term in the product typically corresponds to customers who descend
from an ancestor of j generations before. In this particular case we have after n
iterations:

X(z) =

n∏
j=0

K(f (j)(z))X(f (n+1)(z)), (2.6)

where f (0)(z) := z and f (j)(z) := f(f (j−1)(z)), j = 1, 2, . . . . Below we show that
this product converges for n → ∞ iff ρ < 1, thus proving the following theorem:
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Theorem 1. If ρ < 1 then the generating function X(z) = E[zX ] is given by

X(z) =

∞∏
j=0

K(f (j)(z)). (2.7)

Proof. Equation (2.5) is an equation for a branching process with immigration,
where the number of immigrants has generating functionK(z) and the number of
children in the branching process has generating function f(z). Clearly, K ′(1) =
λES + λρG < ∞ and f ′(1) = e−νG +

(
1− e−νG

)
ρ < 1, if ρ < 1. The result of

the theorem now follows directly from the theory of branching processes with
immigration (see e.g., Theorem 1 on page 263 in Athreya and Ney [4]).

Having obtained an expression for E[zX ] in Theorem 1, expressions for E[zZ ]

and E[zY
(q)

q zY
(o)

o ] immediately follow from (2.2) and (2.3). Moments of X may
be obtained from Theorem 1, but it is also straightforward to obtain EX from
Equations (2.1)-(2.3):

EX = λES + EZ, (2.8)

EZ = ρEY (q) + EY (o), (2.9)

EY (q) = λG+ (1− e−νG)EX, (2.10)

EY (o) = e−νG
EX, (2.11)

yielding

EX =
λES + λρG

(1− ρ)(1 − e−νG)
. (2.12)

Hence

EY (q) = λG+ (1− e−νG)
λES + λρG

(1 − ρ)(1− e−νG)
=

λES + λG

1− ρ
, (2.13)

EY (o) = e−νG λES + λρG

(1− ρ)(1 − e−νG)
, (2.14)

EZ =
λρG+ λES[ρ(1 − e−νG) + e−νG]

(1− ρ)(1− e−νG)
. (2.15)

Notice that the denominators of the above expressions equal 1 − f ′(1). Also
notice that it makes sense that the denominators contain both the factor 1 − ρ
and the probability 1− e−νG that a retrial returns during a glue period.

In a similar way as the first moments of X , Y (q), Y (o) and Z have been
obtained, we can also obtain their second moment. Here we only mention EX2:

EX2 =
K′′(1)

(1 − ρ)(1 − e−νG)(1 + ρ(1 − e−νG) + e−νG)
(2.16)

+
K′(1)[1 − (ρ(1 − e−νG) + e−νG)2 + 2K′(1)(ρ(1 − e−νG) + e−νG) + (1 − e−νG)λ2

EB2]

(1 − ρ)2(1 − e−νG)2(1 + ρ(1 − e−νG) + e−νG)
,

where K ′(1) = λES+λρG and K ′′(1) = λ2ES2+2ρλ2GES+λ3GEB2+(λGρ)2.
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Remark 1. Special cases of the above analysis are, e.g.:
(i) Vacations of length zero. Simply take σ(z) ≡ 1 and ES = 0 in the above
formulas.
(ii) ν = ∞. Retrials now always return during a glue period. We then have
f(z) = β(z), which leads to minor simplifications.

Remark 2. It seems difficult to handle the case of non-constant glue periods, as
it seems to lead to a process with complicated dependencies. If G takes a few dis-
tinct values G1, . . . , GN with different probabilities, then one might still be able
to obtain a kind of multinomial generalization of the infinite product featuring
in Theorem 1. One would then have several functions fi(z) := (1− e−νGi)β(z)+
e−νGiz, and all possible combinations of iterations fi(fh(fk(. . . (z)))) arising in
functions Ki(z) := σ(z)e−λ(1−β(z))Gi , i = 1, 2, . . . , N . By way of approxima-
tion, one might stop the iterations after a certain number of terms, the number
depending on the speed of convergence (hence on 1− ρ and on 1− e−νGi).

2.3 Queue Length Analysis at Arbitrary Time Points

Having found the generating functions of the number of customers at the be-

ginning of (i) glue periods (E[zX ]), (ii) visit periods (E[zY
(q)

q zY
(o)

o ]), and (iii)

vacation periods (E[zZ ]), we can also obtain the generating function of the num-
ber of customers at arbitrary time points.

Theorem 2. If ρ < 1, we have the following results:

a) The joint generating function, Rva(zq, zo), of the number of customers in
the queue and in the orbit at an arbitrary time point in a vacation period is
given by

Rva(zq, zo) = E[zZo ] ·
1− S̃(λ(1 − zo))

λ(1 − zo)ES
. (2.17)

b) The joint generating function, Rgl(zq, zo), of the number of customers in the
queue and in the orbit at an arbitrary time point in a glue period is given by

Rgl(zq, zo) =

∫ G

t=0

e−λ(1−zq)tE[{(1− e−νt)zq + e−νtzo}X ]
dt

G
. (2.18)

c) The joint generating function, Rvi(zq, zo), of the number of customers in the
queue and in the orbit at an arbitrary time point in a visit period is given by

Rvi(zq, zo) =
zq

[
E[zY

(q)

q zY
(o)

o ]− E[B̃(λ(1 − zo))
Y (q)

zY
(o)

o ]
]

E[Y (q)]
(
zq − B̃(λ(1− zo))

) · 1− B̃(λ(1− zo))

λ(1− zo)EB
.

(2.19)
d) The joint generating function, R(zq, zo), of the number of customers in the

queue and in the orbit at an arbitrary time point is given by

R(zq, zo) = ρRvi(zq, zo) + (1− ρ) G
G+ESR

gl(zq, zo) + (1− ρ) ES
G+ESR

va(zq, zo).
(2.20)
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Proof.

a) Follows from the fact that during vacation periods the number of customers
in the queue is 0 and the fact that the number of customers at an arbitrary
time point in the orbit is the sum of two independent terms: The number
of customers at the beginning of the vacation period and the number that
arrived during the past part of the vacation period. The generating function
of the latter is given by

1− S̃(λ(1 − zo))

λ(1− zo)ES
.

b) Follows from the fact that if the past part of the glue period is equal to t,
the generating function of the number of new arrivals in the queue during
this period is equal to e−λ(1−zq)t and each customer present in the orbit at
the beginning of the glue period is, independent of the others, still in orbit
with probability e−νt and has moved to the queue with probability 1− e−νt.

c) During an arbitrary point in time in a visit period the number of customers
in the system consists of two parts:
• the number of customers in the system at the beginning of the service
time of the customer currently in service, leading to the term

zq

(
E[zY

(q)

q zY
(o)

o ]− E[B̃(λ(1 − zo))
Y (q)

zY
(o)

o ]
)

E[Y (q)]
(
zq − B̃(λ(1 − zo))

) ;

(see Takagi [19], formula (5.14) on page 206, for a similar formula in the
ordinaryM/G/1 vacation queue with gated service but without retrials).

• the number of customers that arrived during the past part of the service
of the customer currently in service, leading to the term

1− B̃(λ(1 − zo))

λ(1 − zo)EB
.

d) Follows from the fact that the fraction of time the server is visiting Q is
equal to ρ, and if the server is not visiting Q, with probability ES/(G+ES)
the server is on vacation and with probability G/(G+ ES) the system is in
a glue phase.

From Theorem 2, we now can obtain the steady-state mean number of cus-
tomers in the system at arbitrary time points in vacation periods (E[Rva]), in
glue periods (E[Rgl]), in visit periods (E[Rvi]) and in arbitrary periods (E[R]).
These are given by

E[Rva] = E[Z] + λE[S2]
2E[S] ,

E[Rgl] = E[X ] + λG
2 ,

E[Rvi] = 1 + λE[B2]
2E[B] +

E[Y (q)Y (o)]
E[Y (q)]

+ (1+ρ)E[Y (q)(Y (q)−1)]
2E[Y (q)]

,

E[R] = ρE[Rvi] + (1− ρ) G
G+ESE[Rgl] + (1− ρ) ES

G+ESE[Rva].
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Remark that the quantities E[Y (q)Y (o)] and E[Y (q)(Y (q) − 1)] can be obtained
using (2.3):

E[Y (q)Y (o)] = λGe−νG
E[X ] +

(
1− e−νG

)
e−νG

E[X(X − 1)],

E[Y (q)(Y (q) − 1)] = (λG)2 +
(
1− e−νG

)2
E[X(X − 1)] + 2λG

(
1− e−νG

)
E[X ].

Finally, the mean sojourn time of an arbitrary customer now immediately follows
from Little’s formula. The results of this section can, e.g., be used to determine
the value of G which minimizes the mean sojourn time of an arbitrary customer.

3 Queue Length Analysis for The Two-Queue Case

3.1 Model Description

In this section we consider a one-server polling model with two queues, Q1 and
Q2. Customers arrive at Qi according to a Poisson process with rate λi; they
are called type-i customers, i = 1, 2. The service times at Qi are i.i.d. r.v.,
with Bi a generic r.v., with distribution Bi(·) and LST B̃i(·), i = 1, 2. After a
visit of the server at Qi, it switches to the other queue. Successive switchover
times from Qi to the other queue are i.i.d. r.v., with Si a generic r.v., with
distribution Si(·) and LST S̃i(·), i = 1, 2. We make all the usual independence
assumptions about interarrival times, service times and switchover times at the
queues. After a switch of the server to Qi, there first is a deterministic (i.e.,
constant) glue period Gi, i = 1, 2, before the visit of the server at Qi begins. As
in the one-queue case, the significance of the glue period stems from the following
assumption. Customers who arrive at Qi do not receive service immediately.
When customers arrive at Qi during a glue period Gi, they stick, joining the
queue of Qi. When they arrive in any other period, they immediately leave and
retry after a retrial interval which is independent of everything else, and which
is exponentially distributed with rate νi, i = 1, 2.

The service discipline at both queues is gated: During the visit period at Qi,
the server serves all ”glued” customers in that queue, i.e., all type-i customers
waiting at the end of the glue period – but none of those in orbit, and neither
any new arrivals.

We are interested in the steady-state behaviour of this polling model with
retrials. We hence assume that the stability condition

∑2
i=1 ρi < 1 holds, where

ρi := λiEBi.
Some more notation:

Gni denotes the nth glue period of Qi.
Vni denotes the nth visit period of Qi.
Sni denotes the nth switch period out of Qi, i = 1, 2.

(X
(i)
n1 , X

(i)
n2 ) denotes the vector of numbers of customers of type 1 and of type 2

in the system (hence in orbit) at the start of Gni, i = 1, 2.

(Y
(i)
n1 , Y

(i)
n2 ) denotes the vector of numbers of customers of type 1 and of type 2

in the system at the start of Vni, i = 1, 2. We distinguish between those who are
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queueing in Qi and those who are in orbit for Qi: We write Y
(1)
n1 = Y

(1q)
n1 +Y

(1o)
n1

and Y
(2)
n2 = Y

(2q)
n2 + Y

(2o)
n2 , where q denotes queueing and o denotes in orbit.

Finally,

(Z
(i)
n1 , Z

(i)
n2 ) denotes the vector of numbers of customers of type 1 and of type 2

in the system (hence in orbit) at the start of Sni, i = 1, 2.

3.2 Queue Length Analysis

In this section we study the steady-state joint distribution of the numbers of
customers in the system at beginnings of glue periods. This will also immedi-
ately yield the steady-state joint distributions of the numbers of customers in
the system at the beginnings of visit periods and of switch periods. We follow
a similar generating function approach as in the one-queue case, throughout
making the following assumption regarding the parameters of the generating
functions: |zi| ≤ 1, |ziq| ≤ 1, |zio| ≤ 1. Observe that the generating func-
tion of the vector of numbers of arrivals at Q1 and Q2 during a type-i service
time Bi is βi(z1, z2) := B̃i(λ1(1 − z1) + λ2(1 − z2)). Similarly, the generating
function of the vector of numbers of arrivals at Q1 and Q2 during a type-i
switchover time Si is σi(z1, z2) := S̃i(λ1(1 − z1) + λ2(1 − z2)). We can succes-

sively express (in terms of generating functions) (X
(2)
n1 , X

(2)
n2 ) into (Z

(1)
n1 , Z

(1)
n2 ),

(Z
(1)
n1 , Z

(1)
n2 ) into (Y

(1q)
n1 , Y

(1o)
n1 , Y

(1)
n2 ), and (Y

(1q)
n1 , Y

(1o)
n1 , Y

(1)
n2 ) into (X

(1)
n1 , X

(1)
n2 );

etc. Denote by (X
(i)
1 , X

(i)
2 ) the vector with as distribution the limiting distribu-

tion of (X
(i)
n1 , X

(i)
n2 ), i = 1, 2, and similarly introduce (Z

(i)
1 , Z

(i)
2 ) and (Y

(i)
1 , Y

(i)
2 ),

with Y
(1)
1 = Y

(1q)
1 + Y

(o)
1 and with Y

(2)
2 = Y

(2q)
2 + Y

(o)
2 , for i = 1, 2. We have:

E[z
X

(2)
1

1 z
X

(2)
2

2 ] = σ1(z1, z2)E[z
Z

(1)
1

1 z
Z

(1)
2

2 ]. (3.1)

E[z
Z

(1)
1

1 z
Z

(1)
2

2 |Y (1q)
1 = h1q, Y

(1o)
1 = h1o, Y

(1)
2 = h2] = zh1o

1 zh2
2 β

h1q

1 (z1, z2), (3.2)

yielding

E[z
Z

(1)
1

1 z
Z

(1)
2

2 ] = E[β1(z1, z2)
Y

(1q)
1 z

Y
(1o)
1

1 z
Y

(1)
2

2 ]. (3.3)

Furthermore,

E[z
Y

(1q)
1

1q z
Y

(1o)
1

1o z
Y

(1)
2

2 |X(1)
1 = i1, X

(1)
2 = i2]

= zi22 e−λ2(1−z2)G1e−λ1(1−z1q)G1 [(1 − e−ν1G1)z1q + e−ν1G1z1o]
i1 , (3.4)

yielding

E[z
Y

(1q)
1

1q z
Y

(1o)
1

1o z
Y

(1)
2

2 ] = e−λ2(1−z2)G1e−λ1(1−z1q)G1

×E[[(1− e−ν1G1)z1q + e−ν1G1z1o]
X

(1)
1 z

X
(1)
2

2 ]. (3.5)

It follows from (3.1), (3.3) and (3.5), with

f1(z1, z2) := (1− e−ν1G1)β1(z1, z2) + e−ν1G1z1, (3.6)

that
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E[z
X

(2)
1

1 z
X

(2)
2

2 ] = σ1(z1, z2)e
−λ1(1−β1(z1,z2))G1−λ2(1−z2)G1

×E[f1(z1, z2)
X

(1)
1 z

X
(1)
2

2 ]. (3.7)

Similarly we have, with

f2(z1, z2) := (1− e−ν2G2)β2(z1, z2) + e−ν2G2z2, (3.8)

that

E[z
X

(1)
1

1 z
X

(1)
2

2 ] = σ2(z1, z2)e
−λ1(1−z1)G2−λ2(1−β2(z1,z2))G2

×E[z
X

(2)
1

1 f2(z1, z2)
X

(2)
2 ]. (3.9)

It follows from (3.7) and (3.9) that

E[z
X

(1)
1

1 z
X

(1)
2

2 ] = σ1(z1, f2(z1, z2))σ2(z1, z2)e
−λ1(1−z1)G2−λ2(1−β2(z1,z2))G2

×e−λ1(1−β1(z1,f2(z1,z2))G1−λ2(1−f2(z1,z2))G1

×E[f1(z1, f2(z1, z2))
X

(1)
1 f2(z1, z2)

X
(1)
2 ]. (3.10)

We can rewrite this, with

h1(z1, z2) := f1(z1, f2(z1, z2)), h2(z1, z2) := f2(z1, z2), (3.11)

and

X(z1, z2) := E[z
X

(1)
1

1 z
X

(1)
2

2 ], (3.12)

and with an obvious definition of K(·, ·), as

X(z1, z2) = K(z1, z2)X(h1(z1, z2), h2(z1, z2)). (3.13)

Define

h
(0)
i (z1, z2) := zi, h

(n)
i (z1, z2) := hi(h

(n−1)
1 (z1, z2), h

(n−1)
2 (z1, z2)), i = 1, 2.

(3.14)

Theorem 3. If ρ1 + ρ2 < 1, then the generating function X(z1, z2) is given by

X(z1, z2) =
∞∏

m=0

K(h
(m)
1 (z1, z2), h

(m)
2 (z1, z2)). (3.15)

Proof. Equation (3.15) follows from (3.13) by iteration. We still need to prove
that the infinite product converges if ρ1 + ρ2 < 1. Equation (3.13) is an equa-
tion for a multi-type branching process with immigration, where the number of
immigrants of different types has generating function K(z1, z2) and the number
of children of different types of a type 1 individual in the branching process has
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generating function h1(z1, z2) and the number of children of different types of
a type 2 individual in the branching process has generating function h2(z1, z2).
An important role in the analysis of such a process is played by the mean matrix
M of the branching process,

M =

(
m11 m12

m21 m22

)
, (3.16)

wheremij represents the mean number of children of type j of a type i individual.
In our case, the elements of the matrix M are given by

m11 = e−ν1G1 +
(
1− e−ν1G1

)
ρ1 +

(
1− e−ν1G1

) (
1− e−ν2G2

)
ρ1ρ2, (3.17)

m12 =
(
1− e−ν1G1

)
λ2EB1

(
e−ν2G2 +

(
1− e−ν2G2

)
ρ2
)
, (3.18)

m21 =
(
1− e−ν2G2

)
λ1EB2, (3.19)

m22 = e−ν2G2 +
(
1− e−ν2G2

)
ρ2. (3.20)

For example, formula (3.18) can be explained as follows. A type 1 customer
present in the system at the beginning of a glue period of Q1 is served with
probability 1 − e−ν1G1 . If he is served, on average λ2EB1 type 2 customers
will arrive during his service time. During the visit period of Q2 each of these
customers is not served with probability e−ν2G2 or served with probability 1 −
e−ν2G2 , in which case on average ρ2 type 2 customers will arrive during this
service time.

The theory of multitype branching processes with immigration (see Quine [15]
and Resing [16]) now states that if (i) the expected total number of immigrants
in a generation is finite and (ii) the maximal eigenvalue λmax of the mean matrix
M satisfies λmax < 1, then the generating function of the steady state distribu-
tion of the process is given by (3.15). To complete the proof of Theorem 3, we
shall now verify (i) and (ii).

Ad (i): The expected total number of immigrants in a generation is

(λ1 + λ2)ES2 + λ1G2 + λ2G2(λ1 + λ2)EB2

+λ1ES1 + λ2ES1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

)
+λ1G1

(
λ1EB1 + λ2EB1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

))
+λ2G1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

)
, (3.21)

and hence indeed finite. Here, the term (λ1 + λ2)ES2 corresponds to the cus-
tomers arriving during the switch period out of Q2. The term λ1G2 corre-
sponds to the type 1 customers arriving during the glue period of Q2. The
term λ2G2(λ1 + λ2)EB2 corresponds to the type 2 customers arriving during
the glue period of Q2. These customers are served during the visit period of
Q2 and during their service time other customers will arrive. The term λ1ES1

corresponds to the type 1 customers arriving during the switch period out of Q1.
The term λ2ES1

(
e−ν2G2 +

(
1− e−ν2G2

)
(λ1 + λ2)EB2

)
corresponds to the type
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2 customers arriving during the switch period out of Q1. These customers are
served during the visit period of Q2 with probability 1 − e−ν2G2 (in which case
again other customers will arrive during their service time) and with probability
e−ν2G2 they are not served during this visit period. The last two terms in (3.21)
correspond to the type 1 and type 2 customers arriving during the glue period
of Q1.

Ad (ii): Define the matrix

H =

(
e−ν1G1 +

(
1− e−ν1G1

)
ρ1

(
1− e−ν1G1

)
λ2EB1(

1− e−ν2G2
)
λ1EB2 e−ν2G2 +

(
1− e−ν2G2

)
ρ2

)
, (3.22)

where the elements hij of the matrix H represent the mean number of type j
customers that replace a type i customer during a visit period of Qi (either new
arrivals if the customer is served, or the customer itself if it is not served). We
have that

H

(
EB1

EB2

)
=

([
e−ν1G1 +

(
1− e−ν1G1

)
(ρ1 + ρ2)

]
EB1[

e−ν2G2 +
(
1− e−ν2G2

)
(ρ1 + ρ2)

]
EB2

)
<

(
EB1

EB2

)
(3.23)

if and only if ρ1+ρ2 < 1. Using this result and following the same line of proof as
in Section 5 of Resing [16], we can show that the stability condition ρ1 + ρ2 < 1
implies that also the maximal eigenvalue λmax of the mean matrix M satisfies
λmax < 1. This concludes the proof.

4 Conclusions and Suggestions for Future Research

In this paper we have studied vacation queues and two-queue polling models
with the gated service discipline and with retrials. Motivated by optical com-
munications, we have introduced a glue period just before a server visit; during
such a glue period, new customers and retrials ”stick” instead of immediately
going into orbit. For both the vacation queue and the two-queue polling model,
we have derived steady-state queue length distributions at an arbitrary epoch
and at various specific epochs. This was accomplished by establishing a relation
to branching processes. We have thus laid the groundwork for the performance
analysis of an N -queue polling model with retrials.

In future studies, we shall not only turn to that N -queue model; we also
would like to consider other service disciplines. Furthermore, the following model
variants seem to fall within our framework: (i) customers may not retry with a
certain probability; (ii) the arrival rates may be different for visit, vacation and
glue periods; (iii) one might allow that new arrivals during a glue period are
already served during that glue period.

We would also like to explore the possibility to study the heavy traffic behavior
of these models via the relation to branching processes, cf. [14].
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Finally, we would like to point out an important advantage of optical fibre: the
wavelength of light. A fibre-based network node may thus route incoming pack-
ets not only by switching in the time-domain, but also by wavelength division
multiplexing. In queueing terms, this gives rise to multiserver polling models,
each server representing a wavelength. We refer to [1] for the stability analy-
sis of multiserver polling models, and to [2] for a mean field approximation of
large passive optical networks. It would be very interesting to study multiserver
polling models with the additional features of retrials and glue periods.
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Abstract. In this paper we analyze a fluid vacation model with exhaus-
tive discipline, in which the fluid source is modulated by a background
continuous-time Markov chain and the fluid is removed by constant rate
during the service period. Due to the continuous nature of the fluid the
state space of the model becomes continuous, which is the major novelty
and challenge of the analysis. We adapt the descendant set approach used
in polling models to the fluid vacation model. We provide steady-state
vector Laplace Transform and mean of the fluid level at arbitrary epoch.

1 Introduction

Fluid vacation model is an extension of the classical vacation model (see in [2],
[7]), in which fluid takes the role of the customer of the classical model. Due
to the the continuous nature of the fluid, the flow in and the removal of fluid
are characterized by rates. Hence the state space becomes continuous, which is
a challenge in the analysis comparing to that of the discrete state space of the
classical vacation model. This requires different analysis techniques.

In this paper we investigate a fluid vacation model with exhaustive service
when the fluid source is modulated by a background Markov chain. The main
idea of the analysis is the extension of the descendant set approach (see in
[1]) to the continuous fluid model context. This together with the transient
analysis of the input fluid flow enable to describe the evolution of the joint fluid
level and the state of the background Markov chain between the vacation end
and vacation start epochs - on the Laplace transform (LT) level. The resulted
relations are called as governing equations. From them we determine the steady-
state probability vector of the background Markov chain at the vacation start
epochs. In the course of the analysis we derive a relation for the steady-state
vector LT and vector mean of the fluid level at arbitrary epoch in terms of the
previously mentioned steady-state probability vector. We also derive the steady-
state LT of the service time, which is the counterpart of the busy period analysis
in the classical vacation queue.

The rest of the paper is organized as follows. In section 2 we present the
fluid vacation model and the concept of embedding matrix LTs, which is needed
to the extension of the descendant set approach to fluid model. In section 3

A. Horváth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 59–73, 2014.
c© Springer International Publishing Switzerland 2014
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we establish the governing equations of the model. The derivation of steady-
state results follows in section 4. A section with numerical example is omitted
here by space limitation.

2 Model and Notation

2.1 Model Description

We consider a fluid vacation model with Markov modulated load and exhaustive
discipline. The model has an infinite fluid buffer.

The input fluid flow of the buffer is determined by a modulating CTMC
(Ω(t) for t ≥ 0) with state space S = {1, . . . , L} and generator Q. When this
Markov chain is in state j (Ω(t) = j) then fluid flows to the buffer at rate rj for
j ∈ {1, . . . , L}. We define the diagonal matrix R = diag(r1, . . . , rL). During the
service period the server removes fluid from the fluid buffer at finite rate d > 0.
Consequently, when the overall Markov chain is in state j (Ω(t) = j) then the
fluid level of the buffer during the service period changes at rate rj−d, otherwise
during the vacation periods it changes at rate rj , because there is no service. In
the vacation model the length of the service period is determined by the applied
discipline. In this work we consider the exhaustive discipline. Under exhaustive
discipline the fluid is removed during the service period until the buffer becomes
empty. Each time the buffer becomes empty the server takes a vacation period.
During vacation periods there is no service thus the fluid level of the buffer is
increasing by the actual flowing rates. The consecutive vacation times are inde-
pendent and identically distributed (i.i.d.). The random variable of the vacation
time, its probability distribution function (pdf), its Laplace transform (LT) and
its mean are denoted by σ̃, σ(t) = d

dtPr(σ̃ < t) and σ∗(s) = E(e−sσ̃), σ = E(σ̃),
respectively. We define the cycle time (or simple cycle) as the time between just
after the starts of two consecutive service periods.

We set the following assumptions on the fluid vacation model:

– A.1 The generator matrix Q of the modulating CTMC is irreducible.
– A.2 The fluid rates are positive and finite, i.e. rj > 0 for j ∈ {1, . . . , L}.
– A.3 The fluid is removed from the buffer according to the FCFS discipline.
– A.4 The fluid level decreases during the service period, i.e., rj < d for

j ∈ {1, . . . , L}.

Let π be the stationary probability vector of the modulating Markov chain.
Due to assumption A.1 the equations

πQ = 0, πe = 1. (1)

uniquely determine π, where e is the L×1 column vector of ones. The stationary
fluid flow rate, λ, and and the utilization ρ, is given as

λ = πRe, ρ =
λ

d
, (2)
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respectively. The necessary condition of the stability of the fluid vacation model
is that mean fluid arrival rate λ = πRe is less than d, which is equivalent with
ρ < 1.

If the amount of fluid served during a service period were limited, like e.g.
in case of a model with time-limited discipline, then further restriction would
be needed for the sufficiency. However the model with the exhaustive discipline
does not have any load-independent limitation for a service period, therefore the
above necessary condition is also a sufficient one for the stability of the system.

For the i, j-th element of the matrix Z the notations Zij or [Z]ij are used.
Similarly zj and [z]j denote the j-th element of vector z. When X∗(s), Re(s) ≥ 0
is a matrix LT, X(k) denotes its k-th (k ≥ 1) derivative at s = 0, i.e., X(k) =
dk

dsk
X∗(s)|s=0 and X(0) denotes its value at s = 0, i.e., X(0) = X∗(0). Similar

notations are applied for vector LT x∗(s) and scalar LT x∗(s).

2.2 Embedded Matrix LTs

Let Z be an L× L rate matrix which has the following properties:

– the diagonal elements are negative (Zi,i < 0) and the other elements are
non-negative (Zi,j ≥ 0, for i 	= j),

– the row sums are zero.

For Re(v) ≥ 0 let

H(v) = Tv − Z, (3)

be a linear L × L matrix function of the complex variable v, where Z is a rate
matrix and T is diagonal and its diagonal elements are positive, i.e. [T]j,j > 0
for j ∈ {1, . . . , L}. That is Z and T are real. The matrix function −H(v) has
the following properties:

– P.1 it is analytic for Re(v) ≥ 0,
– P.2 it is a rate matrix when v = 0,
– P.3 the real part of its diagonal elements are negative for Re(v) ≥ 0, i.e.

(Re(−Hj,j(v)) < 0) ,
– P.4 it is a diagonal dominant matrix for Re(v) ≥ 0, i.e., |Re(−Hj,j(v))| ≥∑

k,k �=j | −Hj,k(v))|.
We define the operator O() on a complex variable v and on a linear matrix

function G(v) = G1v + G2 as the operator performing the substitution v →
H(v). That is O(v) = H(v) = Tv−Z and O(G(v)) = G1H(v)+G2 = G1Tv−
G1Z+G2, which are linear matrix functions as well. The order of non-commuting
matrices are kept according to this definition. The multifold operator Ok(•) is
defined recursively as Ok(•) = O(Ok−1(•)), k ≥ 2, where O1(•) = O(•) by
definition. Additionally, we introduce O0(•) = •. Starting from (3), the L × L
linear matrix function Ok(v) can be expressed recursively as

Ok(v) = Tkv −
k−1∑
i=0

TiZ, (4)
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The matrix function −Ok(v) has the following properties:


 −Ok(v) is analytic for Re(v) ≥ 0 (due to P.1 of H(v)),

 −Ok(v)

∣∣
v=0

is also a rate matrix (P.2), since multiplying rate matrix Z any
times by positive diagonal matrices from left results in a rate matrix and the
sum of L× L rate matrices is also an L× L rate matrix,


 −Ok(v) has also the properties P.3 and P.4.

It follows from the recursive definition of the multifold operator Ok() that

the matrix LT
∫∞
x=0 p(x)e

−Ok(v)xdx is created by consecutive embedding of the
matrix H(v) in the previous matrix LT and therefore we call this matrix LT as
embedded matrix LT. If p(x) ≥ 0 for x ≥ 0 and v is the complex argument of the
LT

∫∞
x=0 p(x)e

−vxdx then∫ ∞

x=0

p(x)e−O(v)xdx =

∫ ∞

x=0

p(x)e−H(v)xdx (5)

is an L × L matrix LT. According to the Gerschgorin Circle Theorem [3] each
eigenvalue of −H(v) is in one of the disks {z : |z − (−Hj,j(v))| ≤

∑
k �=j | −

Hj,k(v)|} (i.e. disks in complex z-plane with center at (−Hj,j(v)) and radius∑
k �=j | −Hj,k(v)|), for ∀j ∈ {1, . . . , L}. This together with properties P.3 and

P.4 imply that the eigenvalues of −H(v) have negative or zero real part for
Re(v) ≥ 0. The matrix function e−H(v)x can be written in Lagrange matrix
polynomial form as

(ex)−H(v) =
K∑

k=1

(ex)γkLk(−H(v)), (6)

where K is the number of different eigenvalues of matrix (−H(v)), γk and Lk(v),
for k = 1, . . . ,K denotes the different eigenvalues of matrix (−H(v)) and the
finite Lagrange-polynomials belonging to the roots of the minimal-polynomial of
matrix (−H(v)), respectively. Applying (6) in (5) and rearranging it yields∫ ∞

x=0

p(x)e−O(v)xdx =
K∑

k=1

Lk(−H(v))

∫ ∞

x=0

p(x)eγkxdx

Recall that the eigenvalues γk have negative or zero real part for Re(v) ≥ 0.
Consequently (5) is finite when the LT

∫∞
x=0

p(x)e−vxdx is finite for Re(v) ≥ 0.

The same argument holds also for the matrix LT
∫∞
x=0

p(x)e−Ok(v)xdx, since

the utilized properties P.3 and P.4 of (−H(v)) hold also for −Ok(v). We remark
here that the order of matrix and scalar Tv in the definition of H(v) is crucial in
order to ensure the validity of the properties P.2 and P.4 for the matrix function
Ok(v).

3 The Governing Equations of the System

3.1 Transient Analysis of the Arriving Fluid

In this section we consider the accumulated fluid during time t ≥ 0. More pre-
cisely we derive the matrix LT of the fluid flowing into the buffer as a function
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of time, where the rows and columns of the matrix LT represent the initial and
the final states of the modulating Markov chain.

Let Y (t) ∈ R+ be the accumulated fluid arrived at the buffer until time
t, A(t, y) be the transition density matrix composed by elements Aj,k(t, y) =
∂
∂yPr(Ω(t) = k, Y (t) < y|Ω(0) = j, Y (0) = 0) and its Laplace transform be

A∗(t, v) =
∫∞
y=0A(t, y)e−vydy.

Proposition 1. The matrix LT of the fluid generated by the Markov modulated
fluid source in interval (0, t] can be expressed as

A∗(t, v) = e−t(Rv−Q). (7)

The proof of the proposition is provided in [6].

3.2 The Descendant Fluid

We extend the concept of descendant set (see in Borst and Boxma [1]) to fluid
model and describe the exhaustive service period as consecutive gated service
intervals without vacations. We define the 1-st descendant fluid level of the given
fluid amount as the fluid flowing into the buffer during the service of the given
fluid amount. This is similar to the descendant set of a customer in the regular
vacation model, which consists of the group of customers arrived during the
service of the original customer. Similarly we define the k-th descendant fluid
level of the given fluid amount recursively as the fluid accumulated during the
service of the k − 1-th descendant fluid level. This is the same as the fluid level
after k cycles in a gated system without vacation initiated by the given fluid
amount. By definition the 0-th descendant fluid level of a given fluid amount
equals to itself. The k-th descendant period is defined as the removal time of the
k-th descendant fluid for k ≥ 0. Moreover we consider the evolution of the fluid
level jointly with the evolution of the state of the modulating Markov chain. This
joint evolution is described by the help of matrix LT formalism. When g∗(v) is
the vector LT of a given initial fluid density then the pdf and the vector LT of
its k-th descendant fluid level, for k ≥ 1, are denoted by g<k>(x) and g∗<k>(v).
Furthermore g<0>(x) = g(x) and g∗<0>(v) = g∗(v). Let

O(v) = H(v) =
Rv −Q

d
, (8)

that is T = R
d and Z = Q

d in (3).
Furthermore we introduce a notation for the LT with respect to the L × L

matrix function H(v) as follows

g∗(H(v)) =

∫ ∞

x=0

g(x)e−H(v)xdx, (9)

where g() is an 1× L vector function.
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Proposition 2. Starting from the initial fluid amount whose vector LT is g∗(v)
the vector LT of the k-th (k ≥ 0) descendant fluid can be expressed as

g∗<k>(v) = g∗(Ok(v)) . (10)

Proof. The k-th descendant fluid is defined as the fluid accumulated during the
service of the k− 1-th descendant fluid for k ≥ 1. The fluid density vector of the
k− 1-th descendant fluid is g<k−1>(ξ). When the k− 1-th descendant fluid is ξ,

then its service duration is ξ
d , from which we can express [g<k>(x)]k as

[g<k>(x)]k =
L∑

j=1

∫ ∞

ξ=0

[g<k−1>(ξ)]jAjk(
ξ

d
, x)dξ , (11)

whose vector-matrix form is

g<k>(x) =

∫ ∞

ξ=0

g<k−1>(ξ)A(
ξ

d
, x)dξ .

Applying (7) the LT of g<k>(x) with respect to x is

g∗<k>(v) =

∫ ∞

ξ=0

g<k−1>(ξ)A∗(
ξ

d
, v)dξ =

∫ ∞

ξ=0

g<k−1>(ξ)e−
ξ
d (Rv−Q)dξ .(12)

Utilizing that the right hand side of (12) is a matrix LT according to (9) and
using (8) we have

g∗<k>(v) = g∗<k−1>

(
Rv −Q

d

)
= g∗<k−1>(H(v)) = g∗<k−1>(O(v)). (13)

Using the definition g∗<0>(v) = g∗(v) for k = 1 we get

g∗<1>(v) = g∗(O(v)). (14)

Applying (14) recursively in (13) gives the proposition for k ≥ 2. For k = 0 the
proposition follows from the definitions g∗<0>(v) = g∗(v) and O0(v) = v. �

Proposition 3. If the diagonal elements of R
d are less than one then

limk→∞ Ok(v) exists, finite, independent of v and it is

O∞(v) = lim
k→∞

Ok(v) =

(
R

d
− I

)−1
Q

d
. (15)

Proof. Applying T = R
d and Z = Q

d in (4) gives

Ok(v) =

(
R

d

)k

v −
k−1∑
i=0

(
R

d

)i
Q

d
. (16)

When the diagonal elements of R
d are less than one then limk→∞ (Rd )

k
= 0

and limk→∞
∑k−1

i=0 (Rd )
i
= (I − R

d )
−1. Applying them in (16) results in the

proposition. �
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Proposition 4. Starting from the initial fluid amount whose vector LT is g∗(v)
the limiting vector LT of the k-th descendant fluid as k tends to infinity can be
expressed as

lim
k→∞

g∗<k>(v) = g∗(O∞(v)) = g∗

((
R

d
− I

)−1
Q

d

)
. (17)

Proof. Applying (10) and the operator limit (15) we have

lim
k→∞

g∗<k>(v) = g∗( lim
k→∞

Ok(v)) = g∗(O∞(v)) = g∗

((
R

d
− I

)−1
Q

d

)
. �

3.3 The Governing Equations of the System at Vacation Start and
End Epochs

Let X(t) ∈ R+ denote the fluid level in the buffer at time t and tf (�) for � ≥ 1
be the time at the end of the vacation in the �-th cycle. We define the 1×L row
vector f(�, x) by its elements as

[f(�, x)]j =
d

dx
Pr(Ω(tf (�)) = j,X(tf (�)) < x), j ∈ Ω,

and its LT as f∗(�, v) =
∫∞
x=0

f(�, x)e−vxdx.We also define the steady-state vector
LT of the fluid level at end of vacation, the 1 × L row vector f∗(v) as f∗(v) =
lim�→∞ f∗(�, v). Analogously let tm(�) be the time at the start of vacation in the
�-th cycle. The 1× L row vector m(�, x) is defined by its elements as

[m(�, x)]j =
d

dx
Pr(Ω(tm(�)) = j,X(tm(�)) < x), j ∈ Ω,

and its LT and embedded steady-state vector are m∗(�, v) =
∫∞
x=0

m(�, x)e−vxdx
and m∗(v) = lim�→∞ m∗(�, v).

Due to the exhaustive discipline the buffer is idle at the start of the vacation
period. This implies that m∗(�, v) is independent of v, which is the phase dis-
tribution of the background Markov chain at the beginning of the �th vacation.
Thus we introduce m(�) = m∗(�, v).

Theorem 1. In the fluid vacation model with exhaustive discipline the vector
LTs of the fluid level at the end of the �th vacation, f∗(�, v), � ≥ 0, and at the
start of the �th vacation, m(�), � ≥ 1, satisfy

m(�) = f∗(�− 1,O∞(v)) = f∗

(
�− 1,

(
R

d
− I

)−1
Q

d

)
, (18)

f∗(�, v) = m(�)σ∗(Rv −Q). (19)
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Proof. The k-th descendant fluid as limk→∞ gives the fluid at the end of the
exhaustive service period. Hence starting a service period with initial joint fluid
level and phase distribution g∗(v) at the end of the service period the joint
fluid level and phase distribution is limk→∞ g∗<k>(v). Proposition 4 states that

g∗(O∞(v)) = g∗
((

R
d − I

)−1 Q
d

)
. (18) comes from the fact that the joint fluid

level and phase distribution at the end of the �−1th vacation period is f∗(�−1, v).
In the exhaustive system the fluid level at the end of the �th vacation equals

the fluid flowed into the buffer during the �th vacation, since the buffer is idle at
the start of the �th vacation. Taking into account also the state of the modulating
Markov chain we have

[f(�, x)]k =
L∑

j=1

∫ ∞

t=0

[m(�)]jAjk(t, x)σ(t)dt. (20)

Rearranging (20) to matrix form we get

f∗(�, v) =

∫ ∞

t=0

m(�)A∗(t, v)σ(t)dt = m(�)

∫ ∞

t=0

e−t(Rv−Q)σ(t)dt, (21)

where the explicit form of A∗(t, v) is taken from (7). Rearranging (21) results in
(19). �

In the rest of the paper we avoid the scalar versions of the equations like (11)
and (20) and directly write their matrix versions.

4 The Steady-State Behavior of the Fluid Vacation
Model

The main goal of this section is to compute the time stationary distribution of
the fluid vector in transform domain. To this end we first provide the stationary
distribution in service start and end epochs in Sec. 4.1, collect some subsequently
used general properties of fluid vacation models in Sec. 4.2, compute the service
time distribution in Sec. 4.3 and finally evaluate the time stationary behavior in
Sec. 4.4.

4.1 Steady-State Behavior at Start and End of Vacation

We define m as m = lim�→∞ m(�) and e as the column vector of ones.

Theorem 2. The stationary behavior of the stable fluid vacation model with
exhaustive discipline is characterized by m and f∗(v) where m is the solution of
the linear system

m = mσ∗

((
R

d
− I

)−1

Q

)
, (22)

me = 1,
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and

f∗(v) = mσ∗(Rv −Q). (23)

Proof. Applying (19) in (18) gives

m(�) = m(�− 1)σ∗(RO∞(v)−Q). (24)

Taking the limit � → ∞ in (24) and rearranging it leads to

m = mσ∗(d
RO∞(v)−Q

d
) = mσ∗(dO(O∞(v))) = mσ∗(dO∞(v)). (25)

Applying (15) in (25) results in the first equation of (22). The normalizing
condition of the system of linear equations comes from the fact that m is the
phase distribution of the background Markov chain of the fluid source at service
completion. Finally (23) comes by taking the limit � → ∞ in (19). �

4.2 Equilibrium Relationships

Let S(�) be the service time in the �-th cycle, C(�) be the cycle time between two
consecutive service starts in the �-th cycle, Z(�) be the amount of fluid served
in the �-th cycle, and Zi(�) be the amount of fluid served in the i-th descendant
period of the �-th service period. The related lim�→∞ stationary quantities are
S, C, Z, and Zi, their LTs are s∗(v), c∗(v), z∗(v), z∗i (v), and their means are
s, c, z, zi, respectively. The definitions imply that Sd = Z, C = S + σ̃ and
Z =

∑∞
i=0 Zi hold as well as these relations hold for their respective means.

Let Y (t) be the accumulated fluid flowed into the buffer in interval (0, t] and
a be the mean amount of fluid, which flows into the buffer during a cycle in
steady state. That is

a = lim
k→∞

∑k
�=1 E[Y (tf (�+ 1))− Y (tf (�))]

k
,

whose right hand side can be rearranged as

a = lim
k→∞

E[
∑k

�=1 Y (tf (�+ 1))− Y (tf (�))]

E[
∑k

�=1C(�)]
lim
k→∞

E[
∑k

�=1 C(�)]

k
= λc. (26)

Corollary 1. In the stable fluid vacation model the steady-state mean cycle time
can be expressed as

c =
σ

1− ρ
. (27)

Proof. In the stable fluid vacation model the amount of fluid flowing into the
buffer during a cycle equals the amount of fluid removed during the service
period, that is a = sd. From this and a = λc we get s = λ

d c = ρc and c = σ+s =
σ + ρc, which gives the statement. �
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4.3 The Steady-State Distribution of the Service Time

Theorem 3. The amount of fluid served in a service period and the length of
the service period satisfy

z∗(v) = f∗

((
I− R

d

)−1(
vI− Q

d

))
e, (28)

s∗(v) = z∗ (v/d) . (29)

Proof. Let fZ0,Z1,...,Zk
(x0, x1, . . . , xk) denote the joint density of Z0, Z1, . . . , Zk.

Furthermore let the matrix A(xi

d , xi+1) stand for the state dependent density
of the fluid arrived to the buffer during the xi

d long i-th descendant period for
i = 0, . . . , k − 1.

The fluid served in the i-th descendant period is the fluid flowed into the
buffer during the i− 1-th descendant period for i = 1, . . . , k. Using it and taking
into account also the evolution of the modulating Markov state the joint density
fZ0,Z1,...,Zk

(x0, x1, . . . , xk) can be given as

fZ0,Z1,...,Zk
(x0, x1, . . . , xk) = f(x0)A(

x0

d
, x1) . . .A(

xk−1

d
, xk)e. (30)

By the help of (30) the mean E(e−v
∑k

i=0 Zi) can be expressed as

E(e−v
∑k

i=0 Zi) =∫
x0

∫
x1

. . .

∫
xk

E(e−v
∑k

i=0 Zi |Z0 = x0, Z1 = x1, . . . , Zk = xk)

× fZ0,Z1,...,Zk
(x0, x1, . . . , xk)dxk . . . dx1dx0 =∫

x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk

A(
xk−1

d
, xk)e

−vxkdxk︸ ︷︷ ︸
A∗(

xk−1
d ,v)

. . . e−vx1dx1e
−vx0dx0e =

∫
x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk−1

A(
xk−2

d
, xk−1) e

−xk−1
Rv−Q

d e−vxk−1︸ ︷︷ ︸
e−xk−1(O(v)+Iv)

dxk−1

︸ ︷︷ ︸
A∗(

xk−2
d ,O(v)+Iv)

. . . e−vx1dx1e
−vx0dx0e =∫

x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk−2

A(
xk−3

d
, xk−2)e

−xk−2
R(O(v)+Iv)−Q

d e−vxk−2dxk−2︸ ︷︷ ︸
A∗(

xk−3
d ,O2(v)+R

d v+Iv)

. . . e−vx1dx1e
−vx0dx0e =

. . . = f∗

(
Ok(v) +

k−1∑
i=0

(
R

d

)i

v

)
e.
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This together with (15) yields

z∗(v) = E(e−v
∑∞

i=0 Zi) = f∗

(
O∞(v) +

∞∑
i=0

(
R

d

)i

v

)
e =

= f∗

((
R

d
− I

)−1
Q

d
+

(
I− R

d

)−1

v

)
e,

from which rearrangement results in the first statement of the theorem. For the
service time distribution we have

s∗(v) = E(e−vS) = E(e−vZ/d) = E(e−(v/d)Z) = z∗(v/d). �

4.4 The Steady-State Vector LT of the Fluid Level

The steady-state joint distribution of the fluid level and the state of the mod-
ulating Markov chain at an arbitrary epoch is defined by the 1 × L row vector
q(x) whose j-th element is

[q(x)]j = lim
t→∞

d

dx
Pr(Ω(t) = j,X(t) < x), j ∈ Ω.

The LT of q(x) is q∗(v) =
∫∞
x=0 q(x)e

−vxdx.
Let dk be the start time of the kth descendant service period for k ≥ 0, where

d0 = 0. The steady-state joint density of the fluid level and the state of the
modulating Markov chain at an arbitrary epoch in the kth (k ≥ 0) descendant
service period, the 1× L row vector qk(x) is defined by its j-th element as

[qk(x)]j = lim
t→∞

d

dx
Pr(Ω(t) = j,X(t) < x | t ∈ (dk, dk+1)), j ∈ Ω.

and corresponding LT is q∗
k(v).

Let 1(con) denote the indicator of condition ”con”. Furthermore let ej =
(0, . . . , 0, 1, 0, . . . , 0) be the 1 × L vector with 1 at the j-th position. We define

the 1× L indicator vector 1(Ω(t)) as 1(Ω(t)) =
∑L

j=1 1(Ω(t)=j)ej.

Proposition 5. For k ≥ 0 the LT of the mean fluid level for the kth descendant

interval, E[
∫ dk+1

t=dk
e−X(t)v1(Ω(t))dt], satisfies

E[

∫ dk+1

t=dk

e−X(t)v1(Ω(t))dt] ((R− dI)v −Q) = f∗(Ok(v))− f∗(Ok+1(v)). (31)

Proof. If the fluid level at the beginning of the k-th descendant period is xk

then the fluid level after time t in the k-th descendant period is xk − td+ A(t)
where A(t) denotes the amount of fluid arrived in (0, t) in the k-th descendant
period. The LT of this quantity is E(e−v(xk−td+A(t))) = E(e−vA(t))e−v(xk−td),
where the first term is the LT of A(t). Considering the state dependency of fluid
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level at the beginning of the k-th descendant period and the fluid arrival process
for k ≥ 0 we have

E[

∫ dk+1

t=dk

e−X(t)v1(Ω(t))dt] =

∫
x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk

A(
xk−1

d
, xk)

∫ xk/d

t=0

A∗(t, v)e−(xk−td)v dt dxk . . . dx0 =

∫
x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk

A(
xk−1

d
, xk)

∫ xk/d

t=0

e−t((R−dI)v−Q) dt︸ ︷︷ ︸ e
−xkv dxk . . . dx0.

The underbraced integral can be evaluated by means of the following relation∫ x

t=0

e−tZdtZ = I− e−xZ, (32)

which leads to

E[

∫ dk+1

t=dk

e−X(t)v1(Ω(t))dt] ((R− dI)v −Q) =∫
x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk

A(
xk−1

d
, xk)

(
I−e−

xk
d (R−dI)v−Q)

)
e−xkv dxk . . . dx0 =∫

x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk−1

A(
xk−2

d
, xk−1)(∫

xk

A(
xk−1

d
, xk)e

−xkvdxk−
∫
xk

A(
xk−1

d
, xk)e

− xk
d (Rv−Q)dxk

)
dxk−1 . . . dx0 =∫

x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk−1

A(
xk−2

d
, xk−1)(

A∗(
xk−1

d
, v)−A∗(

xk−1

d
,O(v))

)
dxk−1 . . . dx0 =∫

x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk−1

A(
xk−2

d
, xk−1)(

e−xk−1O(v) − e−xk−1O2(v)
)

dxk−1 . . . dx0 =∫
x0

f(x0)

∫
x1

A(
x0

d
, x1) . . .

∫
xk−2

A(
xk−3

d
, xk−2)(

A∗(
xk−2

d
,O(v)) −A∗(

xk−2

d
,O2(v))

)
dxk−2 . . . dx0 =

. . . =

∫
x0

f(x0)
(
A∗(

x0

d
,Ok−1(v)) −A∗(

x0

d
,Ok(v))

)
dx0 =

f∗(Ok(v))− f∗(Ok+1(v)),

which completes the proof of the proposition. �
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Theorem 4. In the stable fluid vacation model with exhaustive discipline the
following relation holds for the steady-state vector LT of the fluid level at arbi-
trary epoch

q∗(v)(Rv −Q) ((R− dI)v −Q) = vd
c (f∗(v)−m) . (33)

Proof. The fluid level at arbitrary epoch can be expressed by the help of the
fluid level at the last service start on LT level by utilizing the transient behavior
of the arrived fluid (relation (7)) and taking into account that it can fall either
in service or vacation period as well as its position in the actual period. Thus
it is enough to average over a cycle for determining the behavior at arbitrary
epoch.

q∗(v) =
1

c
E

[∫ C

t=0

e−X(t)v1(Ω(t))dt

]
(34)

=
1

c

( ∞∑
k=0

E

[∫ dk+1

t=dk

e−X(t)v1(Ω(t))dt

]
+ E

[∫ C

t=S

e−X(t)v1(Ω(t))dt

])
.

From Proposition 5 we have

E[

∫ S

t=0

e−X(t)v1(Ω(t))dt] ((R− dI)v −Q) =

∞∑
k=0

E[

∫ dk+1

t=dk

e−X(t)v1(Ω(t))dt] ((R− dI)v −Q) =

∞∑
k=0

f∗(Ok(v)) − f∗(Ok+1(v)) = f∗(v)− f∗(O∞(v)) = f∗(v)−m, (35)

where we used the stationary version of (18) in the last step. For the evaluation

of E
[∫ C

t=S
e−X(t)v1(Ω(t))dt

]
it is enough to originate the fluid level from the start

of the vacation instead of the last service start. This is because (34) expresses
q∗(v) as sum of expected values. Relying on this and using again (32) we get for
the vacation period

E

[∫ C

t=S

e−X(t)v1(Ω(t))dt

]
(Rv−Q) =

∫ ∞

t=0

∫ t

x=0

mA∗(x, v)dxσ(t)dt (Rv−Q) =

m

∫ ∞

t=0

∫ t

x=0

e−x(Rv−Q)dxσ(t)dt (Rv−Q) = m

∫ ∞

t=0

(
I− e−t(Rv−Q)

)
σ(t)dt =

m−mσ∗(Rv −Q) = m− f∗(v), (36)

where we used (23) in the last step.
Multiplying both sides of (34) by (Rv−Q) ((R− dI)v −Q) and substituting

(35) and (36) we get statement of the theorem. �
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5 Moments of the Stationary Performance Measures

The goal of this section is to obtain computable moments expressions based on
the transform domain expressions of the previous section.

Lemma 1. In the stable fluid vacation model with exhaustive discipline the
steady-state vector mean of the fluid level at arbitrary epoch is

q(1) = q(1)eπ +
(
πRQ+ d

c (f
(0) −m)

) (
Q2 + eπ

)−1
, (37)

where

q(1)e = 1
λ

(
1
2t

(2)e−
(
πR− t(1)

)
(Q+ eπ)

−1
Re
)
, (38)

t(1)e = 1
λ−d

(
1
2r

(2)e+ r(1) (Q+eπ)−1 (R−dI)e
)
,

t(1) = t(1)eπ − r(1) (Q+ eπ)
−1

,

t(2)e = 1
λ−d

(
1
3r

(3)e−
(
2t(1)−r(2)

)
(Q+eπ)−1 (R−dI)e

)
,

and

r(1)= d
cm(σ∗(−Q)−I), r(n)= nd

c m dn−1σ∗(Rv−Q)
dvn−1

∣∣∣
v=0

∀n>1. (39)

Proof. The derivative of (33) at v = 0 gives

q(1)Q2 − q(0)RQ− q(0)Q(R− dI) = d
c (f

(0) −m).

Since (Q + eπ) as well as
(
Q2 + eπ

)
are nonsingular [4,5], using q(0) = π,

πQ = 0, π
(
Q2 + eπ

)−1
= π and adding and subtracting q(1)eπ we obtain

(37), where the only remaining unknown is the scalar q(1)e, because according
to (23) f (0) = mσ∗(−Q).

Unfortunately the computation of q(1)e is not that straight forward. To derive
it we adopt a two step method. According to the structure of (33) we introduce
t∗(v) = q∗(v)(Rv − Q) and r∗(v) = t∗(v)((R − dI)v − Q) and express the
moments of q∗(v) by the moment of t∗(v) in the first step and express the
moments of t∗(v) by the moment of r∗(v) in the second step. Considering q(0) =
π, the first two derivatives of t∗(v) = q∗(v)(Rv −Q) at v = 0 are

t(1) = −q(1)Q+ πR, (40)

t(2) = −q(2)Q+ 2q(1)R. (41)

Adding and subtracting q(1)eπ to (40) and using π (Q+ eπ)
−1

= π leads to

q(1) =
(
q(1)e

)
π +

(
πR− t(1)

)
(Q+ eπ)

−1
. (42)
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Post-multiplying (41) by e, post-multiplying (42) by Re using πRe = λ and
substituting the q(1)Re term from one equation to the other we obtain (38),
where the unknowns are t(2)e and t(1). Similarly, the nth derivative of r∗(v) =
t∗(v)((R − dI)v −Q) at v = 0 is

r(n) = −t(n)Q + nt(n−1)(R− dI). (43)

Applying the same steps as in the transformation of (40) to (42) we obtain

t(n) = t(n)eπ +
(
nt(n−1)(R− dI) − r(n)

)
(Q+ eπ)

−1
, (44)

and applying the same steps as in the derivation of (38) based on (41) and (42)
we obtain

t(n)e =
1

λ−d

(
1

n+1
r(n+1)e−

(
nt(n−1)−r(n)

)
(Q+eπ)

−1
(R−dI)e

)
. (45)

Considering that t(0) = −q(0)Q = 0, (44) and (45) allows the consecutive
computation of t(n)e and t(n). Finally, using (33) and (23) the derivatives of
r∗(v) = vd

c (f∗(v) −m) at v = 0 gives (39). �

6 Conclusion

Finally, the steady-state mean vector q(1) can be computed by the following
steps.

1. Calculation of the steady-state phase distribution of the background Markov
chain at start of vacation, m, form the system of linear equations (22).

2. Computation of π, λ, ρ and c by applying (1), (2) and (27), respectively.
3. Computation of the steady-state mean q(1) by applying Lemma 1.
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Abstract. Minor variations in execution time can lead to out-sized ef-
fects on the behavior of an application as a whole. There are many sources
of such variation within modern multi-core computer systems. For an
otherwise deterministic application, we would expect the execution time
variation to be non-existent (effectively zero). Unfortunately, this expec-
tation is in error. For instance, variance in the realized execution time
tends to increase as the number of processes per compute core increases.
Recognizing that characterizing the exact variation or the maximal vari-
ation might be a futile task, we take a different approach, focusing in-
stead on the best case variation. We propose a modified (truncated) Levy
distribution to characterize this variation. Using empirical sampling we
also derive a model to parametrize this distribution that doesn’t require
expensive distribution fitting, relying only on known parameters of the
system. The distributional assumptions and parametrization model are
evaluated on multi-core systems with the common Linux completely fair
scheduler.

1 Introduction and Background

Understanding the performance of software systems is often accomplished with
the help of stochastic queueing models. These models typically require knowledge
of the distributions for inputs such as arrival rate and service rate for compute
kernels within an application. Directly influencing the aforementioned values is
the execution time distribution of each compute kernel. Complete knowledge of
the distribution is generally futile for modern systems. Yet understanding it,
however incompletely, is critical to selecting proper model formulations. When
understanding complex phenomena, it is often the practice to find a useful bound.
We contend that the minimal expected execution time variation of a system, or
best case execution time variation (BCETV), is such a bound. By forecasting
BCETV for a particular software and hardware combination, we hope to improve
the a priori knowledge of a models’ applicability. This paper introduces the use of
a modified Levy distribution for characterizing the BCETV of short execution,
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compute bound kernels. A closed form expression for the probability density
function as well as it’s first and second moments are derived. The distributional
assumptions and model are evaluated via empirical evaluation.

Several references simply assume that the distribution of a series of execution
times should be Gaussian [7]. Other works (e.g., [10]) have shown some examples
of successive execution times that are not Gaussian with any high probability.
Other phenomena such as worst case execution time have been modeled with
the Gumbel distribution [5]. Empirically measured execution time noise for a
minimal workload of “no-op” instructions (the difference between the nominal
and measured execution times, plotted in Figure 1) exhibits a heavily skewed
distribution. Simply assuming a Gaussian distribution (green line) overestimates
the mass of one tail while underestimating the other. A Gumbel distribution
(blue line) is arguably even worse. Some might posit that a Gamma distribution
is a good fit, however the support exists only for x ≥ 0 which fits neither reality
or our use case as a noise model. A modified Levy distribution (red line, exact
modifications to be discussed) is plotted against the same data, visually it is the
best fit to the observed data.

Fig. 1. Histogram of the discrete PDF for a simple “no-op” workload execution time
absolute error (light blue bars) in μs plotted against the PDFs of a fitted Gaussian
distribution (green line), a Gumbel distribution (blue line) and a modified Levy distri-
bution (red line). Visually it is easy to see that the modified Levy distribution is the
best fit for this data set.

Many performance models require details of the inner workings of the target
processor [6]. When empirical evaluation is performed, often the results obtained
are still uncertain. How well did the empirical evaluation sample the distribution
of execution times? Even when detailed knowledge is assumed, or empirical eval-
uation is performed, there is still uncertainty in the values obtained. Causes of
this execution time uncertainty can include cache behavior, interrupts, schedul-
ing uncertainty as well as countless other factors. Distributional uncertainty can
lead to poor stochastic model performance. Instead of focusing on the worst or
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even average case, our approach focuses on the best case and what this bound
can do for the model decision making process. As an example, Figure 2(a) shows
the distribution that a simple M/M/k queueing model assumes for its inter-
arrival distribution whereas Figure 2(b) might be closer to reality given a noisy
system. One application of BCETV is to estimate how close a models’ input
assumptions will line up with reality assuming a best case variance. This could
allow quick rejection of models whose assumptions are violated.

(a) Exponential distribution (λ = .5) (b) Exponential distribution (λ = .5) with
additive Gaussian noise

Fig. 2. Stochastic models often make simplifying distributional assumptions about the
modeled system. One common assumption is that of a Poisson arrival process (i.e.,
exponentially distributed inter-arrival times). This assumption is often violated by
the “noise” that the hardware, operating system and environment impose upon the
application. Figure 2(a) shows a nominal exponential distribution, while Figure 2(b)
shows an example of a realized distribution.

BCETV is the minimum variation (error relative to the mean) which can
be expected from any single observation of execution time. We assert that the
minimal “no-op” workload can be used as a proxy for determining BCETV for
short execution, compute bound kernels. In principle, these workloads should be
quite deterministic in execution time, but clearly are not. We will show that the
distribution of BCETV experienced by these workloads represents a reasonable
lower bound “noise” model for nominal execution time. Utilizing empirical data,
the modified Levy distribution is revised in terms of system parameters (i.e.,
processes per core, nominal execution time). Evidence is provided that the mod-
ified Levy distribution is a good match for BCETV, especially as the number of
processes per core grows.

2 Methodology

The motivation to use a Levy distribution to model the best case execution time
variation (BCETV) came from empirical observation. Ultimately we must jus-
tify that decision by comparing model predictions to experimental observations.
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To that end we start by describing the process through which these data are
collected. This is followed by the description of the modified Levy distribution
that we propose to use, and how to parametrize it.

2.1 Synthetic Workload

Our focus is the uncertainty in execution time of a running process due to factors
other than the process itself. As such, we use an intentionally simple nominal
workload so that the observed variation is due not to the application itself,
but to other system related factors (e.g., operating system, hardware, etc.). Our
nominal workload is the execution of a fixed number of null operations or “no-op”
instructions. Aside from no instructions at all, we assume that a null operation
is the least taxing instruction. It follows from this logic that a series of null
operations should present the most consistent execution time out of any real
executable instruction sequence.

One aspect under study is how changing the nominal workload time changes
the observed variation in actual execution times. In order to produce a workload
of “no-op” instructions that is calibrated to a specific nominal execution time we
use sequences of instructions of various lengths which are timed and then used
as input for regression to produce an equation for the number of instructions to
use for each nominal execution time. Calibration timing is performed while the
timed process is assigned to a single core and executing with no other processes.

In theory any duration of workload could be created using this method, how-
ever in practice the file sizes become prohibitively large proportionate with the
frequency of the processor and the desired running time (e.g., platorm A from
Table 2 requires approximately 10 million“no-op” instructions for each second of
execution time). Other approaches that reduce the file size could be used such as
looping over a calibrated number of “no-op” instructions, however we’ve chosen
to use the simpler aforementioned approach because it reduces the possibility
of variation due to other factors, such as branching. Our method also assumes
that cache pre-fetching will eliminate virtually all instruction cache misses which
should then have no appreciable effect on the actual run time. One concern with
huge numbers of instructions is that translation lookaside buffer (TLB) misses
might increase the observed variation. With TLB misses we would expect an
increase in the overall observed variation with longer duration executions with a
random pattern (dependent on other processes operating on the same core, TLB
algorithm, etc.). As we will show below, this is not the case; more variation is
observed for short execution times.

2.2 Hardware, Software, and Data Collection

At the core of our efforts is empirical data collection. The distributional choice
and subsequent verification depend upon it. To enable empirical data collection,
a test harness was created that executes the synthetic “no-op” workloads while
varying numbers of processes per core, nominal execution times, and execution
platforms. As the synthetic workload processes are executing, the parameters in
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Table 1 are collected. In order to reduce the possibility that results gleaned from
this study might be an artifact of a particular hardware platform or operating
system, two different platforms are used as shown in Table 2 (two of platform A
and seven of platform B). All platforms support a version of the Linux completely
fair scheduler [9] which will be exclusively used during data collection.

Table 1. Experimental Parameters

Parameter Symbol

Nominal Execution Time tN
# Processes per Core p

Voluntary Context Swaps v
Non-Voluntary Context Swaps nv

Actual Execution Time tA
Execution Time Noise (tA − tN) Δ

Table 2. Hardware and Operating Systems

Label Processor Operating System

A Intel E3 1220 Fedora 19, Linux Kernel v. 3.10.10

B 2 x AMD Opteron 2431 CentOS 5.9, Linux Kernel v. 3.0.27

Each data point collected consists of the dimensions outlined in Table 1.
Nominal execution times vary from 0.25μs through 3.7ms with observations at
an interval of 0.25μs throughout the range. The number of workload processes
per core varies from 1 through 20 processes. Each sharing and nominal execution
time pair is executed 1000 times to ensure a good distribution sample. The
synthetic workloads are run on one of two of platform A or on one of seven
of platform B from Table 2. In total 100+ million observations are made. Two
factors limited the range of viable execution times: the lower bound on timer
resolution (see below) and the memory needed to generate workloads of longer
lengths (disk to store and physical memory to compile).

Generated data is divided into two sets. The first, a “training” set (of size 106)
is segregated using uniform random sampling. The rest of the data is used for
model evaluation and will be referred to as the “evaluation” set. We specifically
want to judge the applicability of this noise model to multiple hardware types
and operating systems using the same scheduler.

There has been much discussion about the best and most accurate way to
time a section of code [3]. There are many methods including processor cycle
counters and operating system “wall-clock” time. Given our reliance on empirical
data for modeling and evaluation we feel it is important to cover how our timing
measurements are made. In many cases, the use of a simple time stamp counter
is effective assuming that the process will never migrate to another core. Another
issue to consider is frequency scaling which can lead to wildly inaccurate timings
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when utilizing the processor cycle counter. To alleviate some of those concerns
and provide a relatively universal timing interface we developed a system timer
thread that utilizes the x86 time stamp counter instruction on a single reference
core to update a user space timer. When a process or thread requests the current
time, an in-lined function copies the current time struct which has two time
references and it compares the two times. If they are the same then the calling
code can be sure that the time has been fully updated and the function returns,
if not the code loops until the values match. Frequency scaling is turned off for
the time update thread.

This timing method has several advantages: (1) it is entirely in user space, (2)
it is lock-free, and (3) it is monotonic even when the timed thread is shifted to
a new core. Two concerns with this approach stem from the copying operation.
How long does it take to copy the timer struct on a target system and what
happens when there are multiple Non-uniform Memory Access (NUMA) nodes?
To test the latter of these concerns a benchmark was constructed to ascertain
how long a copy operation takes when the copy is from the same NUMA node
as the calling process and when the timer thread and requester thread are on
differing NUMA nodes. The results of this are shown in Figure 3 for platform B
from Table 2. What we’ve found is that reading memory allocated on a NUMA
node other than the one closest to the time requesting process the access times
can vary somewhat. To eliminate this issue, all subsequent experiments only use
a single NUMA node.

A common problem with highly accurate timing via software is determin-
ing what is ground truth. Short of an external atomic clock, there are only
varying degrees of truth. In order to determine the precision and accuracy of
our measurements, a standardized workload is created with a series of “no-op”
instructions of varying lengths. Each “no-op” length is timed using either the
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Fig. 3. Smooth histogram of 106 data points each representing timed averages of 500
copy operations, first on the same NUMA node (red line) and then across different
NUMA nodes (blue line). The performance of a copy on the same NUMA node seems
to be much more consistent.
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x86 rdtsc instruction or the POSIX.1-2001 clock gettime() function. Figure 4
shows the inter-quartile range (25th to 75th percentiles) difference of each tim-
ing measurement as a function of the length of the “no-op” instruction sequence,
This plot informs us about the stability of the two timing methods. The system
call to clock gettime() is more stable than the rdtsc instruction, especially
for these small workloads. A hypothesis as to why it is more stable is that the
measurement of actual workload time is small relative to the time it takes to
perform a system call. To test this theory the timing methods themselves are
timed by executing five hundred of each method (either the rdtsc insn. or the
clock gettime() function) and using the average execution time of all five hun-
dred to extrapolate the time to execute a single instruction. In this experiment
the rdtsc instruction is used as the reference timer on platform A from Ta-
ble 2. As expected (and shown in Figure 5) the system call to clock gettime()

takes almost 3× as long on average compared to the x86 rdtsc instruction. For
this reason, we exclusively use the rdtsc instruction for all empirical timing
measurements in this work.
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Fig. 4. Interquartile range difference (IQRD = 75th − 25th) in nanoseconds for the
times measured for each set of “no-op” instructions (number instructions listed on x-
axis). Each instruction length was executed 106× for each method. The IQR gives a
visual representation to the stability of measurements for these two timing methods.

2.3 Distribution

Figure 1 provides a qualitative indication that a Levy distribution makes a good
choice for modeling the noise present in execution times of a nominally fixed min-
imal workload (the proxy for BCETV). Quantitatively Table 3 summarizes the
p-values for each distribution (higher is better), the table shows the minimum,
maximum and mean values. The Levy distribution is the only distribution with
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Fig. 5. Box and whisker plot showing a speed comparison of the rdtsc x86 assembly
instruction compared to a clock gettime() call to the Linux real-time clock. The rdtsc
instruction’s 25th − 75th percentiles are almost identical at the nanosecond scale. The
clock gettime() function overall takes much more time (approximately 3×).

Table 3. Summary of Anderson-Darling Goodness of Fit Test

Distribution Min 10th 50th 90th Max Mean

Gaussian Distribution 0 1.17 × 10−15 1.68 × 10−14 3.0 × 10−5 .719 .002

Levy Distribution 0 2.11 × 10−15 2.15 × 10−14 .038 .803 .025

Gumbel Distribution 0 8.93 × 10−16 1.97 × 10−14 6.39× 10−06 .357 .002

Cauchy Distribution 0 3.89 × 10−16 1.34 × 10−14 .002 .771 .009

greater than 10% of the data having a p-value ≥ .01. Next, we will quantitatively
describe the modified Levy distribution that we use.

Realized execution time is the sum of a nominal (mean) execution time and a
noise term. If the nominal execution time is represented by a random variable N ,
and the noise is represented by a random variable V , then the realized execution
time R ∼ N + V . The goal of this work is to find a distribution to represent a
lower bound for V which we term BCETV.

The Levy distribution [11] has a closed form probability density function
(PDF, shown in Equation (1)), however in general it has no defined moments.
Observations from the empirical data lead to a solution. Whereas the tail of the
Levy distribution is infinite, the noise present within the real execution times has
a limit. The limit, not surprisingly, is correlated with both the nominal length of
execution and the number of processes assigned to a single compute core. This
leads to the consideration of a variation of the Levy distribution that is truncated
at a point represented by a new parameter Ω. The modified Levy distribution
is defined using the truncation method of Equation (2) as Equation (3) where
F (·) is the CDF of the PDF denoted by f(·). (Note: erfc(x) is the compliment of
the Error Function, 1 − erf(x), and Ei is the exponential integral function [1].)
In order to make the equations more concise, w = β

2(α−Ω) and z = β
2(x−α) .
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fL(x;α, β) =
e−z (2z)3/2√

2πβ
(1)

fmL(x;α, β,Ω) =
fL(x;α, β)

FL(Ω;α, β)− FL(−∞;α, β)
(2)

fmL(x;α, β,Ω) =

√
βe−z

√
2π(x− α)3/2

(
erfc

√
−w
) (3)

Restricting the use of the modified Levy distribution, mL, to x ≤ Ω and x > α
leads to a closed form expression of the mean as shown in Equation (4). Lastly,
a variance is also defined as Equation (5).

μmL[α, β,Ω] =
βΓ
(
− 1

2 ,−w
)

2
√
πerfc

(√
−w
) + α (4)

σ2
mL[α, β,Ω]

=

(α− Ω)2

⎛
⎝E 5

2
(−w)

(√
2πβ3/2erfc(

√−w)+3(Ω−α)3/2
(
4ew−3E 5

2
(−w)

))
√

Ω−α
+ 4(α−Ω)e2w

⎞
⎠

2πβerfc2
(√−w

)
(5)

Our next task is to determine an appropriate parametrization of the modified
Levy distribution. We accomplish this task by fitting a model to empirical mea-
surements. The “training” data are sorted into groups Wp,tN which are indexed
by the number of processes sharing a core, p, and the nominal execution time, tN
(see Equation (6a)). Within each group, the execution time noise is computed
for each observation as in Equation (6b).

Wp,tN =
⋃
i

obsi ∈ p, tN (6a)

Δ = tA − tN (6b)

Separately for each group W , Maximum Likelihood (ML) techniques are used
to find the best parameters for a number of distributions, including the modified
Levy distribution that we are proposing. The quality of the distributions’ fit to
the empirical data is judged via an Anderson-Darling [2] goodness of fit test
as shown in Table 3 (chosen because of the weight given to the tails of the
distributions compared to other tests such as the Kolmogorov-Smirnov test [4]).
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2.4 Parameterization

While the ML techniques used above can yield a parametrization for the modified
Levy distribution that is well matched to the data, in general ML techniques
are quite computationally expensive and also require substantial support to be
effective. An alternative is to redefine the modified Levy distribution parameters,
α, β, and Ω, in terms of a subset of the parameters in Table 4.

The selection of parameters from Table 4 is reduced based on the intuition
that the nominal execution time and number of processes sharing a core will have
the largest impact on the true execution time. Given the design of the minimal
compute kernel, it is expected (and confirmed) that there are zero voluntary
context swaps allowing the variable to be discarded. A Pearson correlation co-
efficient between the target variables and the training data (Table 4) quantifies
the intuition about the remaining parameters.

Table 4. Correlation Between Target Predictors

nv tN p

Δ .508 .771 -.0056

Table 4 summarizes the correlations within the training set between the exe-
cution time noise, Δ, and the other parameters. For the entire training set there
is a weak correlation between the number of processes sharing a core and the
execution time noise. There is a strong correlation between the nominal execu-
tion time and the noise. Not shown is the co-variance between the non-voluntary
context swaps and the number of processes per core which implies a lack of inde-
pendence. The models considered therefore consist only of the two independent
parameters p and tN .

Using simple linear regression to find coefficients for p and tN that best fit
the parameters for α, β and Ω found by ML, the relationships in Equation (7)
are found with the following assumptions: p ∈ Z ∧ p > 1 and tN ∈ R ∧ tN > 0.
To parametrize the modified Levy distribution as defined in Equation 3, several
other constraints must be added, namely: Equation (7a) is expected to have a
negative range for the entire domain, Equation (7b) is positive for the entire
domain and Equation (7c) is greater than α for the entire domain. A limitation
of these equations is the range of data used to create them. It is expected that α
will not continue to decrease as tN → ∞ and the β,Ω parameters probably have
limitations as well; however these equations are supported through the range of
data specified in Section 2.2.

α = 4.75× 10−9p− 0.220tN (7a)

β = 4.19× 10−10p+ 0.007tN (7b)

Ω = 3.19× 10−6p+ 0.742tN (7c)

Using Equations (7), which predict α, β and Ω based on p and tN , the PDF and
mean of the modified Levy distribution can now be described in terms of p and
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tN as shown in Equations (8) and (9), respectively. The variance of Equation (8)
is a straightforward algebraic manipulation of Equation (5).

fmL(x; p, tN ) =
8.2× 10−6(

√
1p+ 1.6× 107tN )e

0.044p+6.98×105tN
p−4.6×107tN−2.1×108x

(−4.8× 10−9p+ 0.22tN + x)3/2erfc
(√

0.003 − 0.003p
p+3.02×105tN

)
(8)

(9)μmL[p, tN ] =
(1.2× 10−10p+ 0.002tN)Γ

(
− 1

2 , 0.003−
0.003p

p+3.02×105tN

)
erfc

(√
0.003,− 0.003p

p+3.02×105tN

)
+ 4.8× 10−9p− 0.22tN

3 Results

How well does the modified Levy distribution approximate the actual BCETV
observed while executing a nominally deterministic compute bound kernel? We
will focus our evaluation on the PDF expressed in terms of processor sharing, p,
and nominal execution time, tN , presented above as Equation (8).

The Anderson-Darling (AD) goodness of fit test of Table 3 is, frankly, not
very promising. Yet, we already know from Table 3 that the modified Levy is
the best out of the listed distributions used to model the training data. It is
not at all surprising that our overall p-value when using AD is not very high
ranging from 0 to 0.73. What is welcome news is that AD is not the only metric
available, as it is relatively ineffective at identifying portions of the parameter
space that have a good vs. a poor fit.

A second measure of how well the modified Levy distribution fits empirical
data is how well the moments match. When comparing the mean of the empirical
data sets to that predicted by Equation (9), the differences are effectively below
our ability to differentiate based on the techniques described in Section 2.2 (i.e.,
the difference is� 10−12s). Comparing the variance for the modified Levy vs. the
empirical measurements results in an r-squared value of 0.69, which indicates
a reasonable degree of correlation between model and data, but the alignment
between the two is clearly not perfect.

While the above quantitative assessments of the modified Levy distribution’s
match with empirical measurements make it clear that the model is far from
perfect, we must keep in mind the fact that modelers can often exploit indi-
vidual models that are far from perfect, and given prior use of models that are
much more divergent from reality than our proposed modified Levy distribution
there is the real potential for benefit from the ability to use a distribution that
more closely matches empirical measurement than previous models and also has
relatively simple expressions of its first two moments.

We continue the assessment of how well the modified Levy distribution charac-
terizes the noise in execution times by presenting QQ-plots for three distributions
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relative to the empirical data (see Figure 6). The first column of plots is the
modified Levy distribution of Equation (8), the second column is a Gaussian
distribution, and the third column is a Cauchy distribution. The latter two dis-
tributions are parametrized by fitting to the data using ML techniques. For each
distribution, 4 distinct QQ-plots are shown, separating the processor sharing
variable, p, into quartiles. The first (top) row represents the range 1 ≤ p ≤ 5, the
second row represents the range 6 ≤ p ≤ 10, the third row represents the range
11 ≤ p ≤ 15, and the fourth (bottom) row represents the range 16 ≤ p ≤ 20.

First consider the results in Figure 6(g) and (j), which include the modified
Levy distribution and significant processor sharing. Here, we see quite nice align-
ment between the model and the empirical data, the best evidence yet that the
modified Levy is a good execution time noise model. Next consider the results
in Figure 6(a) and (d), which include the modified Levy distribution and little
processor sharing. In this case, there is reasonably good alignment at the low end
of the range, but the empirical data has slightly less variation than the model
at the high end of the range. Finally, note that the alignment between model
and empirical data is noticeably worse for both the Gaussian and the Cauchy
distributions across the entire range of p.

From the above we conclude that the modified Levy distribution is a relatively
good proxy for BCETV. The distribution of BCETV can in turn be used in many
ways. To demonstrate the utility of BCETV, we explore the mean queue occu-
pancy (MQO) of a single queue system when noise is added as in Figure 2. The
single queue system operates as two threads with one way communication that
is designed to have an exponentially distributed inter-arrival and service time
distribution (i.e., workload is dependent upon an exponential random number
source). A simple model for MQO is the M/M/1 queueing model, it expects
the inter-arrival times to be exponentially distributed. We posit that the farther
from this distribution the actual system is, the greater the model’s predictions
will differ from empirical reality. The Kullback-Leibler (KL) divergence [8] is
a measure of the divergence between two distributions (zero being a perfect
match). We are interested in how far the distributional lower bound as pre-
dicted by the convolution of the exponential distribution and Equation 8 differs
from that expected by the M/M/1 MQO model. With a divergence of zero we
should expect to find a very close match between modeled and experimental
MQO. At higher divergences (the exact amount is an open question) we don’t
expect the M/M/1 model to be very accurate. Figure 7 is a summary of me-
dian KL divergences (y-axis) separated by percent model accuracy (calculated as
|modeled MQO−measured MQO|

measured MQO × 100, x-axis) for 6000+ separate executions

of the single queue system described above on the platforms shown in Table 2. It
shows that lower KL divergence (green bar) between the expected exponential
and that convolved with the BCETV distribution, is associated with more ac-
curate MQO predictions. This implies that BCETV can be used as a predictor
for model choice (at least with a Markovian arrival process).
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Fig. 6. QQ-plots comparing empirical data (vertical axis) to the analytic distributions
(horizontal axis). The dashed line shows the ideal response.
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Fig. 7. The y-axis shows the median KL divergence between the M/M/1’s expected
exponential inter-arrival distribution and the lower bound predicted by convolving the
exponential distribution with Equation 8. The x-axis is the percent difference between
the mean queue occupancy predicted by an M/M/1 model and the actual measure-
ments from a single queue system designed to have a perfectly exponential workload.
The lowest KL divergence (green bar) is associated with more accurate predictions.

4 Conclusions and Future Work

We’ve demonstrated a noise model that appears to work far better than a simple
Gaussian assumption, in fact far better than multiple other distributions. It has
also been shown to work for at least two differing platform types (see Table 2)
using the same fair scheduling algorithm. First, we’ve shown expressions for the
PDF and first two moments of a Levy distribution that has been modified to
have bounded moments. Through empirical data collection, a model is derived
that can be used to parametrize the modified Levy distribution relatively well
without resorting to computationally expensive parameter fitting.

In Figure 6 we showed how well the quantiles of the modified Levy distribu-
tion match to the quantiles of the empirical data. We’ve also noted that the fit
between the model and empirical data gets better as more processes are added
per core. This is in keeping with our original assumption that a single process
on a single core should exhibit its native distribution, in our case purely deter-
ministic, or close to the nominal mean, tN . The models demonstrated here are
only validated over the range of empirical data that we’ve collected. For future
work, we would like to extend the parameter estimators for p > 20 and higher
nominal execution times tN .

One concern with our approach is also one of its strengths, that it is based
on wide empirical sampling. Is this noise model really applicable to multiple
hardware types, or were our choices simply judicious? Could other parameters
in addition to nominal execution time, tN , and the number of processes per core,
p, provide a better estimate on other platforms (e.g., alternative instruction sets).
One potential application of this noise model is as a minimal expected noise for
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all workloads.We are also interested in investigating variability in execution time
due to the nature of the application itself, e.g., including the effects of caching,
branching, etc.). We will investigate these options in future work.
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Abstract. Building an analytical performance model is a challenge when
little is known about the functionality and behavior of the system being
modeled and/or when obtainingmodel parameters throughmeasurements
is difficult. This paper addresses this problem by presenting an approach
that derives analytic model parameters by observing the input-output re-
lationships of a real system. More specifically, input (i.e., arrival rates for
each job class) and output (i.e., average response time for each job class)
measurements are used to estimate the per-class service demands andnum-
ber of servers for a Queuing Network model of the system. This model,
called the computed model (CM), provides the same output values for the
same input values used to derive the CM. The important question is
whether the CM has predictive power, i.e., can the CM predict the out-
put values that would be observed in the real system for different values
of the input? The CM’s parameters are obtained by solving a non-linear
optimization problem. The paper shows through experiments that the CM
is relatively robust and has predictive power over a range of input values.

Keywords: Queuing network models, parameter estimation, non-linear
optimization.

1 Introduction

Analytical performance models, such as Queuing Network (QN) models, are
essential for performance prediction as well as understanding the qualitative
characteristics of a computer system. Developing these models requires intimate
knowledge of the computer system and the availability of a number of perfor-
mance measurements to estimate the model’s input parameters. However, there
are cases when performance prediction is needed for computer systems whose
functionality and behavior are not fully understood.

For example, Internet data centers with virtualized environments, such as
cloud computing providers, are capable of hosting multiple heterogeneous ap-
plication systems of different sizes and complexities. Therefore, it is practically
impossible for such data centers to adequately understand the functionality of-
fered by all hosted application systems in order to develop precise performance
models.
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The issue we address in this paper is the ability to derive QN models for com-
puter systems where little is known about the internal architecture or behavior
of the system. We view the system as a “grey” box where input parameters (e.g.,
arrival rates) and output parameters (e.g., average response time) are known, in
addition to some internal structural information about the system (e.g., num-
ber and function of each layer in a multi-tiered system, but not necessarily the
number of servers of each type). We then derive a QN model, which we call the
Computed Model (CM), that closely approximates the computer system. Such
model will be of benefit only if it proves capable of predicting the behavior of
the real system as the workload intensity changes over time.

Our approach for deriving QN performance models uses a non-linear opti-
mization technique to determine the parameters of the CM. We conducted a
number of experiments to evaluate the ability of the CM to predict the behavior
of the real system as workload intensity changes. In order to test the viability of
our approach, we initially, conducted a number of controlled experiments with
an analytical QN model acting as a proxy for a real system. Our results showed
that our approach is capable of producing computed QN models that have a ro-
bust predictive power. We then conducted two experiments using Apache OFBiz
(Open For Business) ERP system; one in which the number of servers per tier
is known a priori (Static-N) and one in which the number of servers per tier is
inferred by the optimization technique (Variable-N). Both OFBiz experiments
show results consistent with the controlled experiments.

A few prior efforts are related to our research. It is important to note that this
paper is not about parameterizing QN models of real systems. There is a vast
body of literature on that. In that context, the system components are totally
visible to the modeler and therefore can be instrumented. What is of interest
to the work in this paper is a situation where the modeler either has no access,
is unwilling, or does not have the resources to conduct measurements on the
internal components of a computer system. In that case, the work in [2,3] used
a customized non-linear optimization technique to approximate unknown model
parameters when the queuing model is already known. However, their technique
is applied to a limited set of single queue models. Also, [11] proposed a black-box
approach to calculating unknown input parameters in open multi-class queuing
networks given that some service demands are known.

Our optimization technique is simple and efficient and can be applied to open
multi-class QN models, where the workload intensity and the response time
of the modeled system are known, in addition to minimal internal structure
information.

Autonomic computing environments can benefit the most from our approach
of deriving performance model parameters dynamically [6]. These environments
rely heavily on optimal resource allocation through performance prediction,
where the internal architecture of the hosted application systems is not fully
understood. The technique presented here does not apply when one is interested
in predicting metrics internal to a system (e.g., CPU and disk queue lengths)
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The rest of the paper is organized as follows. Section 2 includes the prob-
lem definition and notation used throughout the rest of the paper. Section 3
discusses the methodology and algorithm used. The next section shows experi-
mental results. Section 5 discusses some related work. Finally, section 6 presents
discussions and concluding remarks.

2 Problem Definition

In model-based performance engineering, real computer systems are abstracted
using analytical models, which can be used by performance engineers to answer
“what if” questions related to predicting system performance. Queuing network
(QN) models have been used quite often for that purpose. Such models have two
types of parameters: workload intensity (e.g., arrival rates) and resource service
demands (i.e., the average total time spent by a transaction using a resource).
Service demands do not include the time waiting to use a resource. See e.g. [12]
for details on QN models.

As discussed before, in virtualized environments, the internal architecture
of hosted application systems may not be readily available. However, it is a
common practice for such environments to provide monitoring tools that can
easily record and analyze input and output parameters, such as the transaction
arrival and departure rates as well as the time taken to process each transaction.
Such monitoring is readily available in operating systems as well as virtualization
software, and should be adequate, in our opinion, to develop an overall model
that approximates the behavior of the application system.

Figure 1 demonstrates the problem we address in this paper. To derive an
approximate analytical model of the system, we treat it as a“gray box,” where
the input and output parameters are known, as well as minimal information
about the internal structure of the system (e.g., number of tiers in a multi-tiered
system). The QN Parameter Estimator takes average arrival rates λ (input)
and average response times TAS (output) and establishes a relationship between
them in order to estimate the parameters of the Computed QN Model (CM).
The relationship between the input and output parameters is formulated as a
non-linear optimization problem that can be solved using a non-linear solver.

After the Computed QN Model is parameterized, the behavior of the actual
system and the corresponding QN model need to be compared frequently to
ensure that the QN model accurately represents the actual system, which is
important if the model is to be used for performance prediction. This comparison
process is demonstrated in Figure 2, where the observed response time, TAS, of
the actual system and the computed response time, TCM, of the Computed QN
Model are compared for the same arrival rate. The question we pose in our
experiments is how accurate is the response time of the CM when compared to
the observed response time of the actual system.

This paper considers the problem of deriving and parameterizing a QN model
given that the arrival rate (input) and the response time (output) of the actual
system can be measured at regular intervals. We focus primarily on multi-tier
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Fig. 1. Parameterizing the Computed QN Model
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λ

λ

Fig. 2. Maintaining the Accuracy of the Computed QN Model

application systems, in which transactions are processed by one of several servers
at each tier and passed on to the next tier. This architecture is typical of online
transaction processing systems such as e-commerce application systems. How-
ever, our approach can be applied to a host of architectures and application
systems.

Figure 3 shows a sample computed QN Model that would be used to represent
an actual system with a 3-tier architecture. We will use this architecture to
demonstrate our methodology and experimental results. It would be obvious to
one skilled in QNs that our approach can be generalized to any number of tiers.
In this architecture, transactions are submitted to the web server tier, which
may consist of a number of servers that are load balanced. Transactions are
passed from the web server tier to the application server tier, which may also
consist of a number of load balanced servers. If the transaction needs to access
the database, it will be passed on to the database server tier, which will process
the transaction and return the results back to the application server tier and
then to the web server tier.

We assume throughout the paper that the number of tiers in the actual system
is known (we call this internal structural information). But, we assume we do
not know the number of servers in each tier, their internal components, nor
the service demands at these components for each transaction class. In order to
parameterize the computed QN Model, we need to find the service demands for
each tier for each class. Consider the following notation:
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Fig. 3. Computed QN Model Topology in a 3-tier Architecture

– R: number of transaction classes in the queuing network
– λr: arrival rate of class r transactions (r = 1, · · · , R)
– Nw, Na, Ndb: number of servers in the web, application, and database tiers,

respectively
– DAS

w,r, D
AS
a,r, D

AS
db,r: average class r (r = 1, · · · , R) service demands at each of

the three tiers for the actual system.
– DCM

w,r , D
CM
a,r , D

CM
db,r: average class r (r = 1, · · · , R) service demands at each of

the three tiers for the computed model
– DAS: matrix of service demands for the actual system. The rows correspond

to the web server, application server, and database server tier, respectively,
and the columns correspond to the classes.

– DCM: matrix of service demands for the computed system. The rows corre-
spond to the web server, application server, and database server tier, respec-
tively, and the columns correspond to the classes.

– Tw,r, Ta,r, Tdb,r: average class r (r = 1, · · · , R) response times at each of the
three tiers

– TAS
r : average class r (r = 1, · · · , R) response time for the actual system

– TCM
r : average class r (r = 1, · · · , R) response time for the computed model

3 Methodology

The goal of our methodology is to derive service demands at all tiers and all
classes, for the Computed Model (CM) using only the inputs (average arrival
rates) and outputs (average response times) of the Actual System (AS).

The average response time of the Actual System for class r transactions is a
function fAS

r of the vector λ = (λ1, · · · , λR) of average arrival rates, the vector
N = (Nw, Na, Ndb), and of the matrix of service demands DAS.

Hence,

TAS
r = fAS

r (λ,N ,DAS). (1)

The values of TAS
r , r = 1, · · · , R, can be obtained using standard measuring tools.
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The class r response times of the computed model are a function fCM
r of the

vector λ = (λ1, · · · , λR) of arrival rates, the vector N = (Nw, Na, Ndb), and of
the matrix of service demands DCM. Thus,

TCM
r = fCM

r (λ,N ,DCM). (2)

The function fCM
r in Eq. (2) is the function (or algorithm) used to solve a

queuing network model given its parameters [12]. The matrix DCM is unknown
and it is a goal of this work to estimate DCM from λ and TAS

r in a way that
TCM
r ≈ TAS

r , for r = 1, · · · , R, for a wide range of values of λ.
Before we discuss how we estimate DCM, we need to provide a formulation for

the function fCM
r for the QN of Fig. 3. We use Seidmann’s approximation [14]

to model the multiple-server queues in this QN.
This approximation replaces a multiple-server queue by a sequence of a delay

device and a load-independent queuing device with properly adjusted service
demands. Then, the response time of an N -server single queue with service
demand equal to D in each server is approximated as

T = D
N − 1

N
+

D/N

1− λ×D/N
. (3)

Therefore, the function fCM
r with input parameters λ,N , and DCM is

Tw,r = DCM
w,r

Nw − 1

Nw
+

DCM
w,r /Nw

1−
∑R

r=1 λrDCM
w,r /Nw

(4)

Ta,r = DCM
a,r

Na − 1

Na
+

DCM
a,r /Na

1−
∑R

r=1 λrDCM
a,r /Na

(5)

Tdb,r = DCM
db,r

Ndb − 1

Ndb
+

DCM
db,r/Ndb

1−
∑R

r=1 λrDCM
db,r/Ndb

(6)

TCM
r = Tw,r + Ta,r + Tdb,r (7)

The problem of obtaining DCM can be cast as the following non-linear opti-
mization problem.

Find the service demands in DCM (i.e., the values of the variables DCM
w,r , D

CM
a,r ,

DCM
db,r ∀ r) that minimize MAXDIFF, the maximum value of the absolute differ-

ences between the response times of the actual system and that of the computed
model.

Minimize MAXDIFF =
R

max
r=1

| TAS
r − TCM

r | (8)

subject to the following constraints:

1. DCM
w,r , D

CM
a,r , D

CM
db,r ≥ 0 r = 1, · · · , R

2. DCM
w,r +DCM

a,r +DCM
db,r ≤ TCM

r r = 1, · · · , R
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3.
∑R

r=1 λr
DCM

w,r

Nw
< 1,

∑R
r=1 λr

DCM
a,r

Na
< 1,

∑R
r=1 λr

DCM
db,r

Ndb
< 1 r = 1, · · · , R

4. TCM
r = Tw,r + Ta,r + Tdb,r where

Tw,r = DCM
w,r

Nw−1
Nw

+
DCM

w,r/Nw

1−
∑R

r=1 λrDCM
w,r/Nw

, Ta,r = DCM
a,r

Na−1
Na

+
DCM

a,r /Na

1−
∑R

r=1 λrDCM
a,r /Na

,

and

Tdb,r = DCM
db,r

Ndb−1
Ndb

+
DCM

db,r/Ndb

1−
∑R

r=1 λrDCM
db,r

/Ndb

The first constraint says that all service demands must be non-negative, the
second constraint says that the response time of each class must be at least equal
to the sum of all service demands at all tiers for transactions of that class (this
is the zero congestion case). The third constraint indicates that the utilization
of the web server tier, application tier, and database tier have to be less than
100%. Finally, the fourth constraint provides the function fCM

r used to compute
TCM
r as a function of λ,N , and the service demands in DCM.
The above discussion assumes that the number of servers per tier is known a

priori. However, one can extend this formulation, as done in the experiments, by
including Nws, Na, and Ndb as decision variables with the following constraints:
Nws ∈ N, Na ∈ N, and Ndb ∈ N (where it is understood that 0 	∈ N).

This non-linear optimization problem can be solved using available solvers, in-
cluding Microsoft’s Excel Solver Add-in that uses the Generalized Reduced Gra-
dient (GRG2) method or NEOS solvers (www.neos-server.org/neos/solvers/).
We used the Excel Solver in the results reported in this paper.

The solution of this optimization problem provides the necessary service de-
mands to solve the QN model given the arrival rates measured in the actual sys-
tem. As discussed at the outset of the paper, the question of interest is whether
the computed model CM has predictive power over a range of arrival rate values.
Given a certain threshold ε for the maximum percent absolute relative difference
(MPARD) between the actual response time and that predicted by the computed
model, the process of recomputing the service demands DCM should be repeated
when the MPARD exceeds the threshold. Therefore, the computed model may
have to be re-calibrated when

MPARD =
R

max
r=1

{| (TAS
r − TCM

r )/TAS
r × 100 |} > ε. (9)

4 Experimental Results

The first subsection of this section discusses experiments, called “controlled ex-
periments,” in which we use an open QN model as a proxy for the actual system.
The following subsection reports on experiments conducted with a real system.

4.1 Controlled Experiments

The controlled experiments use an open QN model, referred to as the Actual
Model (AM), as a proxy for an actual system. The parameters of the AM, such
as the service demands at all tiers, are known. Note that these known parameters
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of the AM are used only for the purpose of solving the AM and obtaining its
response time as a proxy for measuring the response time in the actual system.
The service demands of the AM are not used in any way to derive parameters
for the CM.

The actual system (represented by the Actual Model) is a 3-tier web-based
application system with two classes of transactions and includes a load balancer
at each tier (See Fig. 3). In our experiments, we test the ability of the CM to
predict the response time of the AM (i.e., the proxy for the AS) with varying
average arrival rates and number of load-balanced servers per tier. This is a
typical configuration in elastic cloud computing environments in which resources
are allocated and de-allocated depending on the workload.

Figures 4-5 show results for 3 servers and 5 servers per tier, respectively. The
top graph in each figure shows the value ofMPARD (see Eq. (9)) versus the scaling
factor used to vary average arrival rates. The scaling factor is a multiplier used to
scale up by the same factor the arrival rate of both classes. The initial arrival rates
are 0.3 tps and 0.4 tps for classes 1 and 2, respectively. The scaling factor varies
over a very wide range: up to 180 for the 2-server case, 210 for the 3-server case,
and 400 for the 5-server case. For example, a scaling factor of 20 indicates that
the arrival rates for classes 1 and 2 are 6 (= 20× 0.3) tps and 8 (=20× 0.4) tps,
respectively. The threshold ε in the experiments is set to 3% (a low value for the
threshold). As shown in the MPARD graphs, re-calibration was able to bring the
error rate back to zero after it first surpassed the threshold ε.

As Figs. 4-5 demonstrate, the number of times that MPARD exceeds the
threshold is pretty low despite the wide variation of the scaling factor. For ex-
ample, the threshold was exceeded twice for the 3-server case and six times for
the 5-server case.

The three bottom graphs of each figure show the average response times with
increasing scaling factors, which illustrates the ability of the CM to predict the
response times of the AM. The figures show two curves for each transaction class;
one for AM and another for CM. The curves show that the CM is capable of
tracking very closely (i.e., within the 3% threshold) the response times of the AM.
The following ranges of the scaling factor exhibited no need for recalibration:
(a) 3-server case: 1-149, 160-200; and (b) 5-server case: 1-50, 60-90, 100-130,
140-290, 300-360, 370-390.

Table 1 shows the service demands at each of the three tiers for classes 1 and
2 for the AM and CM models, 5 servers per tier, and a scaling factor of 180.
The table also shows the response times for each class for AM and CM. The
results are very close even though the computed and actual service demands are
significantly different. The value of MAXDIFF is 1.5× 10−4.

We also observed that the timing and frequency of model calibration is hard
to predict as the number of servers per tier increases because the individual
service demands of the actual system and computed model may be different, as
shown in Table 1. Therefore, when the curves for AM and CM response times
take longer time to diverge, that is an indication that the corresponding service
demands for the different servers in AM and CM are accurate. In Figure 4,
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Table 1. Service demands and response times for the AM and CM models for 5 servers
per tier and scaling factor equal to 180

AM CM

Service Demands

Tier Class 1 Class 2 Class 1 Class 2

Web 0.010 0.013 0.008 0.016
Application 0.012 0.016 0.021 0.015
DB 0.015 0.018 0.008 0.016

Response Times

0.0414 0.0525 0.0415 0.0524

this occurs when the arrival rates are low, which results in fewer calibrations.
When the resources are close to saturation, the frequency of calibration increases
though. In Fig. 5, however, the service demands are more accurate right after the
fourth calibration, but the frequency of calibration still increases as the system
approaches saturation levels.

As noted above, the error threshold ε used in the previous experiments was
rather low (i.e., 3%). We investigated the impact of increasing ε to 5%. Figure 6
shows the variation of MPARD and the average response time for 3 servers per
tier and ε = 5%. The corresponding figure for ε = 3% is Fig. 4. The first re-
calibration for ε = 5% occurred for a scaling factor of 200 while for ε = 3% it
occurred much earlier, at a scaling factor of 160.

4.2 Experiments with an Actual System

The controlled experiments helped validate the proposed methodology by vary-
ing number of servers per tier and the calibration threshold ε while monitoring
the response time of the CM compared to the AM representing the actual system.
To validate the proposed methodology on a real system we used the Apache OF-
Biz ERP system and Apache JMeter to generate various workloads. OFBiz was
installed on two load-balanced Apache Tomcat servers with two load-balanced
MySQL database servers, and a single Apache web server receiving JMeter re-
quests and routing these requests to the load-balanced OFBiz Tomcat servers.

Figure 7 shows the results when the number of servers per tier is static (1 web
server, 2 OFBiz Tomcat application servers and 2 MySQL database servers) and
the recalibration threshold is set to 25%. In this case, the CM closely predicted
the OFBiz response time within the recalibration threshold, and only needed
six model calibrations before system resource saturation. Similar to the con-
trolled experiments, the variation in response time between the actual system
and the computed model tends to diverge faster as system resources are close to
saturation.

Figure 8 shows the results when the number of servers per tier is variable. This
test case investigates the ability of our methodology to infer more information
about the system architecture components by predicting the optimal number of
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servers per tier that should be used in the CM to accurately represent the actual
system. In this experiment, the optimizer was used to perform six model calibra-
tions for the CM, and predicted the following number of web servers, application
servers and database servers for each of the six calibrations, respectively: (1,1,2),
(1,2,3), (1,2,3), (2,2,2), (2,2,2), (1,2,2), (1,1,2).

5 Related Work

Much of the related work in the fields of performance engineering and capacity
planning is focused on dynamic resource allocation when a performance model
is fully or partially known a priori. In this paper, we treat the system and its
components as black boxes and we try to establish a relationship between system
input and output in order to estimate and parameterize an analytical model that
closely approximates the behavior of the system.

Some of the prior work that tackled the parameterization of analytical mod-
els includes [2,3,4], where the problem of estimating known model parameters is
treated as an optimization problem that is solved using derivative-free optimiza-
tion. The objective function to be optimized is based on the distance between the
observed measurements and the corresponding points derived from the model.
The authors point out that the main problem is determining how to couple these
two sets of points in order to arrive at an objective function to be minimized.
The proposed approach is applied to a small set of single queue models.
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Fig. 7. Static N - Top: MPARD vs. Arrival Rate. Middle: Class 1 Transactions. Bottom:
Class 2 Transactions. ε = 25%.

Menascé tackled the issue of model parameterization when some input pa-
rameters are already known [11]. The author proposed a closed-form solution
to the case when a single service demand value is unknown, and a constrained
non-linear optimization solution when a feasible set of service demands are un-
known. However, that work did not propose a solution when none of the service
demands are known a priori.

In [9], the authors presented a survey of performance modeling approaches
focusing mainly on business information systems. The authors described the
general activities involved in workload characterization, especially estimating
service demands, and the various methods and approaches used to estimate it.
Some of these methods include general optimization techniques, linear regression,
and Kalman filters.
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Fig. 8. Variable N - Top: MPARD vs. Arrival Rate. Middle: Class 1 Transactions.
Bottom: Class 2 Transactions. ε = 25%.

In [7], the authors presented a method for extracting architecture level perfor-
mance models in distributed component-based systems using tracing informa-
tion and instrumentation to infer system components, their connections and the
(probabilistic) dependency of their parameters. In contrast, our approach does
not require such knowledge of system components or their relationships.

In [13], the authors presented an iterative methodology for building perfor-
mance models in virtualized environments with a focus on the I/O function of
storage systems. The method implemented in that paper focused on the stor-
age component of a particular IBM mainframe system. Our approach addresses
a higher level of system abstraction where the internal structure of individual
servers, such as the storage system, is unknown.
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In [8], the authors presented Modellus; a system for automated web-based
application modeling that uses workload characterization, data mining and ma-
chine learning techniques. Our focus in this paper is on gray box modeling, where
detailed web server logs and database logs may not be available.

The work in [1] used Kalman Filters to estimate resource service demands for
the purpose of system performance testing. The authors attempted to find the
workload mix that would eventually saturate a certain system resource in a test
environment in order to determine the system’s bottlenecks.

The work in [10,15,16] addressed the problem of estimating model parameters
in highly dynamic autonomic environments in which Service Level Agreements
(SLAs) (in the form of Quality of Service (QoS)) have to be maintained while
offering optimal use of data center resources. The authors proposed the use of
a model-based estimator based on Extended Kalman Filters, where the current
state depends on prior knowledge of previous states. Our approach, on the other
hand, relies on solving an optimization problem where only the current input
and output values are know and where the decision to recalibrate only depends
on the level of divergence between observed measurements and model estimated
measurements.

6 Conclusions

Building an analytical performance model is a challenge when little is known
about the functionality and behavior of the system being modeled and/or when
obtaining model parameters through measurements is difficult. This paper ad-
dresses this problem by presenting an approach that derives analytic model
parameters by observing the input-output relationships of a real system. This
model, called the computed model (CM), provides the same output values for
the same input values used to derive the CM. The CM is obtained by solving a
non-linear optimization problem. The results showed that the CM is quite robust
and has predictive power over a wide range of input values. For example, as the
arrival rate of transactions for both classes was scaled by a factor varying from 1
to 400, the response times predicted by the CM only exceed the 3% error thresh-
old six times. When the error threshold was increased to 5% (still a very low
value), only two re-calibrations were needed. The ability of the CM to model the
number of servers per tier of a multi-tier system is of a particular interest since it
proves the ability of the CM to model system components previously unknown
to it by knowing only the input and output parameters of a real information
system, such as Apache OFBiz.
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Abstract. The performance of an enterprise application (e.g. response
time, throughput, or resource utilization) is an important quality at-
tribute that can have a significant impact on a company’s success. When
a performance problem such as a performance bottleneck has been de-
tected, the root cause identified and a solution proposed, developers have
to identify the elements of the application often manually that will un-
dergo changes and determine how these elements must be changed in
order to implement the solution. Many existing approaches are able to
identify the elements that have to be modified but only few are able
to determine the necessary types of changes on these elements. Neither
of the approaches supports developers with a work plan sketching the
implementation steps. In this paper, we propose an approach to point
developers the way torwards an implementation of a performance or scal-
ability solution with an ordered set of work activities. Rules are used to
derive a work plan sketching the implementation of a solution for the
particular application based on an initial set of work activities. The rule-
based approach identifies impacted elements and determines how they
should be changed. We demonstrate the proposed approach with a solu-
tion of a performance bottleneck as an example.

Keywords: Software Performance Engineering, Solution Implementa-
tion Support, Rules, Impact Propagation.

1 Introduction

The performance (i.e. resource usage, timing behaviour and throughput) of an
information system directly influences the total cost of ownership (TCO) as well
as the user satisfaction which are highly business critical metrics. Performance
problems can be caused by various modifications such as error corrections, im-
provements, extensions or variations in user quantity and behaviour as well as
changing requirements. After a performance problem has been detected and the
root cause has been isolated, a performance expert often proposes a solution in
form of abstract work activities like spliting an interface that have to be im-
plemented in order to solve the problem. A solution can affect various parts of
the application such as the architecture, implementation and/or configuration.
Therefore, all elements (including possible side-effects) have to be identified that
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will undergo changes as well as the necessary types of changes for these elements.
This time-consuming task is often done manually by developers or performance
experts in advance to get an understanding of the implementation effort of a
solution. Such cost factors can then be considered to select the most appropriate
solution when a variety of solutions exists.

Currently, developers are not supported in this regard at the implementa-
tion level. Existing approaches for solving performance problems, for exam-
ple [10,5,28,31], are model-based. Only Jing Xu considers in [31] to use the
effort estimation of the designer for the necessary design model changes in se-
lecting a solution among alternatives and suggests what should be changed, and
in what way, but not how to do it. The approaches neither consider an existing
code base nor support of the developer for implementing a solution at the imple-
mentation level. Existing impact propagation approaches on the other hand can
identify and classify following changes and the impacted elements (side-effects)
based on an initial set of changes [19] but neither of the approaches determines
a work plan for developers describing the essential work activities of a change’s
implementation.

In light of these observations, we propose an approach to support develop-
ers in implementing a performance or scalability solution at the implementation
level by deriving a work plan for the particular solution and application based
on an initial set of work activities as a part of Vergil. Vergil is an approach to
guide developers from a performance or scalability issue to solutions, by pro-
viding hypotheses about what to change, evaluating the changes in the context
of the particular application and ranking the solutions to support developers in
making a decision. The two major challenges in building a work plan are to iden-
tify the impacted elements and to determine how they are actually impacted;
respectively how they should be changed. Vergil considers changes on the ar-
chitecture level, implementation level and configuration level of the application.
Architecture level changes are evaluated with architecture level peformance mod-
els, like the Palladio Component Model [7] or Marte [1] for UML, in contrast to
implementation level changes that are evaluated with a system under test and
measurement-based experiments. Due to the different levels of abstraction, work
activities have to be traced down from the architecture level to the implemen-
tation level while developers are often most familiar with the implementation
artifacts of an application.

The proposed approach for building work plans uses rules to propagate the
impact within and between the architecture performance model and the source
code model of an application. The impact propagation uses a correspondence
model describing the equality of elements in the architecture performance model
and the source code model. Work plans describe which elements of the applica-
tion are impacted and how they should be changed. This offers three benefits
for developers: (1) they are aware of how to change the application, (2) they
are able to estimate the implementation effort based on work activities, and (3)
they can discuss alternative solutions based on the type and number of impacted
elements, and the types of changes required to implement a certain solution.
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We demonstrate the approach using the solution of the “GOD” class antipat-
tern [25] as an example in the context of the MediaStore [7] application. We
use the Palladio Component Model as the architecture performance model and
Java as programming language. Both are established and relevant technologies in
industrial practice. Overall, in this paper, we make the following contributions:

1) We propose an approach to derive work activities sketching the implemen-
tation of a solution based on impact propagation between model elements.

2) We demonstrate the applicability of the approach with an example.

The remainder of the paper is structured as follows: In Section 2, we present
the foundations of our approach. In Section 3, we give an overview of Vergil
to position the content of this paper in the overall approach. In Section 4, we
introduce the MediaStore example. We present the approach for building Vergil’s
work plans in Section 5. In Section 6, we discuss related work and conclude the
paper in Section 7.

2 Foundations

The concept of work plans is inspired by the idea of the Karlsruhe Architectural
Maintainability Prediction (KAMP) [26,27] approach to estimate the change
effort based on a work plan. The goal of KAMP is to compare architectural de-
sign alternatives, which are represented by instances of the Palladio Component
Model (PCM) [7], by estimating the effort of a change request in the context of
each alternative. PCM is a software architecture simulation approach to analyze
software at the model level for performance bottlenecks and scalability issues.
It enables software architects to test and compare various design alternatives
without the need to fully implement the application or buying expensive execu-
tion environments. PCM has already been used to detect and solve performance
problems [28].

KAMP combines a top-down phase to determine the work activities and to
create the work plan, with a bottom-up phase in which developers assign an
effort estimation to each work activity in the plan. A work plan is a hierarchical
structured collection of work activities and is stepwise refined into small tasks by
identifying resulting changes and describing high-level changes on a lower level of
abstraction. KAMP relies on the following assumptions: (a) change efforts must
take into account all artifacts of system development and operation. Focusing
only on code is not sufficient, (b) there are specified change scenarios, and (c)
it is easier to estimate costs of small specific tasks than of coarse-grained tasks.
We also rely on this assumptions.

The change estimation process starts with identifying model elements directly
affected by a change request, such as an interface or component. To identify
resulting changes, the direction of the change propagation is reversed to the di-
rection of the reference-relation of architectural elements (architectural elements
which refer to (or use) other elements are related by a reference-relation). In the
case of include-/contains-relations (architectural elements which are contained
in each other), a change of the inner element is propagated to the outer element



Deriving Work Plans for Solving Performance and Scalability Problems 107

and any change of the outer element is propagated to inner elements resulting in
a refined set of work activities. Additionally, KAMP considers also other work
activities like running unit or integration tests or deploying components [26].

The major difference between KAMP and our proposed approach is that
KAMP operates on models only while our approach also considers the code
basis. This allows for traceability and change impact propagation covering both,
code and models. KAMP results in an unsorted set of tasks that have to be exe-
cuted to realize a certain change request. As KAMP targets at effort estimation,
there is no need to arrange the tasks in an order. In contrast, the proposed ap-
proach aims at creating a work plan that can be followed by developers through
an ordered list of work activities.

3 Vergil Overview

We are currently developing the Vergil approach. The main goal of Vergil is
the provisioning of solutions (e.g. to split an interface or to move functionality
to a certain component) to developers for solving performance and scalabil-
ity problems. Vergil combines the advantages of model-based performance im-
provement approaches like [10,31,5] and extends them with the introduction of
measurement-based performance problem solution at the implementation level
by means of monitoring-driven testing techniques and work plans sketching the
implementation of the solution at the implementation level. The knowledge of
how to change a system is formalized in rules (henceforth called change hypothe-
ses) that are explored, evaluated and rated. The process consists of four major
activities as shown in Figure 1 as BPMN diagram [14]. In the context of this
paper, we are focussing only on the concepts of the work plans and the activities
Propagate Work Activities and Estimate Effort of Work Plans.

The process starts with the Extract Models activity [22] that takes the source
code of the application as input. The source code is parsed into the Source
Code Model (SCM). An architecture performance model (APM) is extracted
from the source code or when such a model already exists an existing one is
imported. The APM provides an architectural view of the application and is
used to evaluate architectural change hypotheses in the remainder of the process.
During extraction, a correspondence model (COM) is build that links model
elements in the APM and SCM that correspond to each other like interfaces. The
extracted models are forwarded to the Explore Change Hypotheses subprocess.

The Explore Change Hypotheses subprocess takes the SCM, COM, APM and
the Performance Problem Model (PPM) as input. The performance problem is
formalized as symptom trace through the application and results in the PPM.
A symptom like high response time or high CPU utilization references an SCM
element where it can be observed such as a method and a description of the
workload and usage profile as formalized in [29]. The subprocess starts with
the Test Change Hypotheses activity that takes the change hypotheses, the per-
formance requirements, the test environment and the models as input. In this
activity, the applicability of change hypotheses is tested and the effect of change
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Fig. 1. Vergil Overview

hypotheses is evaluated to build solutions [31]. Change hypotheses provide the
knowledge about what can be changed to solve a performance problem. It con-
sists of a precondition that must be fulfilled in order to be applicable and a set of
transformation rules that apply the changes on the defined level of abstraction
(e.g. APM, SCM, etc.). Each change hypothesis also has a postcondition testing
if the desired effect has taken place as well as the work plan model template. A
condition can consist of any number of structural (on the SCM, PPM and APM
model) and behavioral (on measurement or prediction results) conditions test-
ing static and dynamic requirements of the hypothesis. The conditions are rules
expressed in first-order logic. First-order logic has already been used before in
literature to formalize performance antipatterns [11]. The exploration algorithm
selects sets of change hypotheses with fulfilled precondition and evaluates their
effect through instantiating the changes in the context of the particular appli-
cation and on the hypothesis’ level of abstraction (e.g. APM, SCM, etc.) and
evaluates the performance. To give an example, two approaches for automated
model refactoring for solving performance problems are presented in [4] and [31].
The performance evaluation is done by calibrating and simulating the APM in-
stance or executing measurements with the system under test. The postcondition
is tested with the returned results and if fulfilled, the impacted elements of the
application are identified as well as how they are actually impacted building the
Work Plan Models (WPMs) and its initial work activities based on the tem-
plates. The performance evaluation and the postcondition also ensure, that the
changes do not lead to a performance degradation [3]. If the evaluation results
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of a single change hypothesis do not satisfy the performance requirements (for
example response time, throughput, or CPU utilization), the current algorithm
uses backtracking (as suggested by Arcelli and Cortellessa [3]) to find composite
solutions (combinations of two or more change hypotheses) that fulfill the per-
formance requirements. The solutions and the corresponding WPMs fulfilling
the requirements are forwarded to the Propagate Work Activities activity. Prop-
agation rules and the WPM of each solution are used to identify all impacted
elements of a solution and to determine the necessary type of work activity for
each element to complete the WPM.

The solutions and completed WPMs are forwarded to the Evaluate Work Ac-
tivities activity. In this activity, the work activities and their referenced elements
are validated that they can be changed [3] based on the information in the devel-
oper’s preferences. In the developer’s preferences, developers express what they
prefer to change (e.g. configuration of a component, implementation etc.) and
what they are unwilling to change (or cannot change), for example the archi-
tecture or particular parts of the application. If elements are impacted that the
developer is unwilling to change or cannot change such as legacy systems or the
architecture, the solution is discarded. Arcelli and Cortellessa raised the con-
cern to take constraints such as costs and legacy constraints (e.g. the database
cannot be changed) into account when proposing solutions [3]. The remaining
solutions and WPMs are forwarded to the Extract Work Plans activity in which
the WPMs are translated from their graph-based structure into an ordered list
of work activities for the developers. The solutions and work plans are then
forwarded to the Estimate Effort of Work Plans activity.

In the Estimate Effort of Work Plans activity, the developers are asked for
an estimation of the effort they will need to complete the work plan. The effort
estimation is a manual task done by the developers themself. The effort can
vary between individual developers depending on their knowledge, experience
and practice. Hence, it is possibly unreliable when done automatically. The ef-
fort is provided as unitless quantities, leaving the decision of the concrete unit
of measurement by the developers, and is provided for all atomic work activi-
ties. The unit of measurement has to be the same for all work activities. The
effort can be estimated, for example, in person (-hours, -days, or -months) [31],
or story points (in the context of agile development such as SCRUM [24]) as
well as function points which is also an established means for effort estima-
tion [2]. In the case of experienced development teams, that have historic data
from previous development projects for cost model calibration, the usage of a
cost model such as COCOMO [8] is also possible. The process uses the given
unitless quantities of each atomic work activity such as adding a method to an
interface as input to compute the total effort estimation for a work plan. The
estimated effort addresses the concern of taking the costs of solution alternatives
into account [3,31]. The solutions and the work plans with estimated effort are
forwarded to the Rank Solutions activity.

In the Rank Solutions activity, a multi-criteria decision analysis to rank the
solutions is done. This activity addresses the issue of taking costs and constraints
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into account in deciding on an appropriate solution when a variety of choices
exist [3,31]. The solution rating is done with a combination of the Simple Multi-
Attribute Rating Technique (SMART) [12] and the Analytic Hierarchy Process
(AHP) [23] taking the performance impact, cost factors, constraints and the
developer’s preferences into account. Developers are then able to discuss the
proposed solutions based on the work plans, the impacted elements—and how
they are actually impacted, the costs, and the estimated performance improve-
ment. The selected solution and its work plan are the final result of the process.

4 MediaStore Example

One of the 14 notion- and domain-independent software performance antipat-
tern defined by Smith and Williams is the “GOD” class [25]. The antipattern de-
scribes the problem of poorly distributed application intelligence when one class
is performing all the work or contains all the application’s data. A proposed so-
lution [25] is to employ the locality principle and to move the functionality close
to where it is needed. We have already investigated the “GOD” class antipattern
and shown how it is automatic detectable with systematic experiments based on
measurements in our previous work [30].

In this section, we use the “GOD” class as motivating example with the Medi-
aStore [7] application. The MediaStore allows its users to upload and store audio
files as well as to download audio files encoded in a less or equal audio bit rate
compared to the uploaded one. The MediaStore is implemented with Java En-
terprise Edition. The “GOD” class in the example is the MediaStoreBean that
is accessed from the WebGUIBean and provides all the functionality as shown in
Figure 2 (the Java source code elements are shown in UML notation for the
sake of illustration). We omitted other components of the MediaStore applica-
tion which are irrelevant for the example for the sake of simplicity. A detailed
overview on the application is given in [7]. Figure 2 is devided into the Current
State and Current Deployment showing the state of the application with the
problem and the Target State and Target Deployment showing the application
with the solution. The WebGUIBean and the MediaStoreBean are deployed on
different servers. The WebGUIBean has to communicate with the MediaStoreBean
to register or login users causing high response times for both operations. The
change hypothesis of Vergil is to split the interface IMediaStoreBean and to
move the functionality closer to the WebGUIBean. The hypothesis evaluates the
changes on a higher level of abstraction for simplicity and uses a PCM of the
MediaStore application. The automated refactoring of architectural models for
solving performance problems has been shown, for example, in [4]. The change
hypothesis provides the work activities to split the IMediaStoreBean interface,
to add a new interface (in this example the IUserManagementBean interface), to
move the methods register and logIn to the new interface, and to update the
deployment descriptor of the application. The propagation of the provided work
activities in the source code adds the work activities to split the MediaStoreBean
class, to add a new class (in this example the UserManagementBean), to move
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Fig. 2. MediaStore Example Overview

the methods implementing interface methods to the new class, and to update
the methods of the WebGUIBean to call the corresponding methods of the new
interface. The necessary work activities and their proposed order are shown in
Figure 2. The determined work plan for the refactoring is shown in Table 1.

In this work plan, there are composite activities (split, move), that can consist
of other composite activities or atomic activities (add, update, delete). All com-
posite activities are broken down until they are expressed by atomic activities.
The follow-up activities (test and deploy) result from the atomic and composite
work activities.

In the scenario above, we initially have an architectural change proposed and
embodied in the change hypothesis. Vergil uses the PCM as starting point for
building the work plan of architectural changes. We propagate the impact to the
implementation using the correspondence between model elements and source
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Table 1. Work Plan MediaStore Example

Work Activity Effort [Minutes]

Split interface IMediaStoreBean
Add NewInterface 10

Move method register to NewInterface
Add method register to NewInterface 5
Delete method register from IMediaStoreBean 5

Update method register of WebGUIBean 15

Move method logIn to NewInterface
Add method logIn to NewInterface 5
Delete method logIn from IMediaStoreBean 5

Update method logIn of WebGUIBean 15

Split class MediaStoreBean
Add class NewClass 10

Move method register to NewClass
Add method register to NewClass 10
Delete method register from MediaStoreBean 5

Move method logIn to NewClass
Add method logIn to NewClass 10
Delete method logIn from MediaStoreBean 5

Update Deployment Descriptor 5
Test application 30
Deploy application 60

Estimated Effort 195

code elements. Therefore, we extract a model from the source code (for ex-
ample with a tool such as the Java Model Parser and Printer [15]). A corre-
spondence, for example, describes the equality relation of the element of type
interface IMediaStoreBean in the PCM instance of the application and the
IMediaStoreBean interface in the source code.

5 Vergil’s Work Plans

A work plan sketches what essentially needs to be done to implement the solution
by modelling abstract work activities without prescribing (and limiting the devel-
oper) on how the solution is concretely implemented in the application. A work
plan is an ordered set of work activities. A work acitivity can be atomic such as
add, delete, or update an element like a class, interface, or method, or composite
such as split, move, merge, swap, or replace elements. The concept of work activ-
ities is inspired by the taxonomy of change types which has been introduced by
Lehnert et al. in [18]. This taxonomy is similar to the work activity concept used
in KAMP. Both approaches consider a graph-based representation of the software
artifacts and use atomic operations and composite operations to categories modi-
fications. The formalization of the work plan is shown in Figure 3. The work plan
also lists follow-up activities such as redeployment or testing activities.

A composite activity can be composed of other composite and atomic activ-
ities. Refinement rules are used to break composite activities in the work plan
down into atomic activities. For example, the composite work activity “Move”
to move a method from one interface to a new one consists of the atomic work
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Fig. 3. Work Plan meta-model

activities “Add” to add the method to the new interface and “Delete” to delete
the method from the old interface. The evolution of the work plan model through
the application of such a refinement rule for the latter work activitiy is shown as
an example in Figure 4. The underlying graph transformation rule matches ele-
ments of type Method in the SCM that are referenced from aMove work activitiy
but are not already referenced by a Delete work activitiy. For all matches, the
rule adds the Delete work activity as refinement expressed through the added
refinedBy relation to the work plan.

The refinedBy and dependsOn relations between work activities in the work
plan model instance are used to extract the ordered list of work activities for the
developers. An activity like “Split” that has a refinedBy relation to an “Move”
activity is added as child of that activitiy in the work plan. An activitiy like
“Split” that has a dependsOn relationship to another “Split” activity is added
after that activity in the work plan.

WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

Delete
refinedBy

Evolution

After Rule Application

Before Rule Application

Fig. 4. Refinement Rule “Delete Method” Example

The initial work activities are provided by the change hypothesis as work plan
template and the impacted elements are determined by the instantiation of the
changes.

The impact on an element can cause an impact on other elements that are
in a relation. To identify all elements and how they are impacted, Vergil uses
impact propagation rules to identify additional impacted elements that are in a
relation to already impacted elements and the work aktivities in the work plan
referencing the impacted elements. The propagation uses the work plan model
as starting point and correspondences of elements in different model instances
for propagation between APM and SCM (vertical propagation) and the relation
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within APM and SCM for propagation wihtin the models (horizontal propaga-
tion). The correspondence model describes the equality relation (One-To-One
relation) of elements from different model instances and meta models but the
same underlying application. The correspondences are described in the corre-
spondence model. The correspondence model is independent from other meta
models. It only references elements from other model instances. For each im-
pacted element, the rule knows the resulting work activitiy and adds it to the
work plan together with a reference on the impacted element. Rules are also used
to conclude follow-up activities such as adding tests when a new interface is cre-
ated or the redeployment of components when elements of the implementation
of that component are impacted.

For example, when an interface in SCM is referenced from a Split work ac-
tivity, then the rule knows that a class implementing that interface has to be
splitted too. Figure 5 shows the evolution of the work plan model through apply-
ing the rule for the split interface work activity as an example. The rule matches
all classes that are not referenced from a Split work activity and that implement
the interface which is referenced from a Split work activity. For all matches, the
rule adds the Split work activity to the work plan model and a reference to the
impacted class.

WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

Delete

refinedBy

Evolution

Before Rule Application WorkPlan

SplitIMediaStoreBean:Interface

Moveregister:Method

refinedBy

Delete

refinedBy

After Rule Application

SplitMediaStoreBean:Class

dependsOn

Fig. 5. Horizontal Propagation Rule “Split Interface” Example

6 Related Work

In this section, we review impact propagation approaches for their support of
determining work plans to implement solutions and we discuss common effort
estimation approaches.

Impact Propagation. Most approaches that have been proposed to assess the
propagation of change impacts are limited to source code as shown by a re-
cent study [17] and are often able to identify impacted elements only. Some of
the proposed rule-based approaches, such as the approaches of Keller et al. [16]
or Briand et al. [9], are able to classify how the impacted element is actually
impacted and has to be changed while others are not able to detect impacts
in heterogeneous software artefacts like source code and models. The research
conducted by Lindvall and Sandahl [20] outlines the applicability of traceability
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relations for impact analysis. The use of correspondence relations between dif-
ferent views and viewpoints has been shown by Eramo et al. in [13]. A more
detailed review of existing approaches and their limitations is provided in [19].
An introduction to the topic of change impact analysis discussing techniques
and problems is given in [6].

The impact analysis approach of Lehnert et al. [19] combines impact analysis,
multi-perspective modelling, and horizontal traceability to determine further
change propagation. The impact propagation technique is based on the type
of dependency which exists between EMF-based models and the type of change
which is applied on one of the model elements. The underlying hypothesis is that
the change type, dependency type and the types of involved artifacts determine
if and how a change ripples to related artifacts. Therefore, a set of impact propa-
gation rules is used to identify all impacted elements in a recursive manner. The
rules are derived, as example, from relations defined in the meta-models of ar-
tifacts such as inheritance-relations between classes or implementation-relations
between classes and interfaces as well as from Correspondences according to de-
sign methodologies such as the equivalence between UML and Java classes or
between UML and Java packages [19]. The type of changes is expressed through a
taxonomy of change types comprising of atomic operations (add, delete, update)
and composite operations (move, replace, split, merge, swap), where the latter
can consist of sequences of atomic and composite operations. Each rule receives
the changed element, the type of change, and a list of all related elements as
input. From this input, a list of all impacted element(s) along with the result-
ing change type(s) is computed. This output is then again fed into the impact
analysis process. The propagation takes the dependency relation into account
to limit the size of impact sets. The rules determine how impacted elements are
actually impacted [19].

The main objective of impact propagation approaches is to identify the im-
pacted elements. Few of them also deal with the determination of how an element
must be changed. Neither of the approaches has the objective to build a model
that abstractly models the implementation of the changes with the necessary
work activities. Our proposed approach extends the concepts of existing impact
propagation approaches, i.e. [19], by building such a model describing the refac-
toring of the application that can be transfered into a work plan for developers.

Effort Estimation. Three categories of related work on change effort estima-
tions can be distinguished – complexity metrics (esp. of source code), estima-
tions based on the extent of changes in requirements, and architecture-based
procedures. One of the most common complexity metric for software systems is
the cyclomatic complexity [21]. Complexity metrics only take into account the
structure of the system. They can be elicited automatically but their conversion
into effort or costs is unclear and empirically not consistent proven. There are
various approaches to initial effort estimation of software development projects
based on requirements, cf. algorithmic effort estimation and effort-based project
planning [8]. Changes to requirements are triggers for changes in the system but
drawing inference from the extent of changes in requirements about efforts for
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implementing the changes is not possible without considering the system archi-
tecture. Some existing approaches target at scenario-based software architecture
analysis but lack a formalized architecture description or are limited to soft-
ware development but do not take into account management tasks. An overview
of related work on architecture-based effort estimation is given in [26]. KAMP
combines several strengths of existing approaches. It makes explicit use of formal
software architecture models, provides guidance and automation via tool sup-
port, and considers development as well as management effort. KAMP evaluates
maintainability for concrete change requests. It estimates change efforts using
semi-automatic derivation of work plans, bottom-up effort estimation, and guid-
ance in investigation of estimation supports (e.g., design and code properties,
team organization, development environment, and other influence factors).

In our proposed approach, we use the work plan-based concept of KAMP
as the foundation for effort estimation by developers to consider cost factors
in making a decision among solution alternatives as well as to build a model
of the refactoring. We apply the concept of work activities not only on the
architecture performance model as it is currently provided by KAMP but also
on implementation level artifacts. We also introduce relations in the work plan
model that are used to extract an ordered list of work activities.

7 Conclusion

Sketching the implementation of a solution is an essential part of guiding de-
velopers to the solution of performance and scalability problems. Vergil’s work
plans aim to provide this support for the proposed solutions. The work plans
as an ordered list of work activities guide developers without prescribing how
the implementation is concretely realized. Developers are able to discuss and
compare solution alternatives based on the impacted elements and the necessary
type of change, they are aware of how they have to change the application and
which parts of the application are affected and they can estimate the imple-
mentation effort for each solution before making a decision on which solution
will be implemented. Vergil uses rules and a graph-based representation of the
application to determine the necessary work activities and to build the work
plans. We demonstrated the approach with an example while the validation of
the approach is part of our current research. We plan to conduct an emperical
case study to validate the approach with a group of developers at SAP.

Due to the graph-based approach, we are not limited to a particular archi-
tecture performance model like the Palladio Component Model or to a specific
programming language like Java as long as a graph-based representation is avail-
able. Rules may have to be adjusted and new ones have to be created in order
to take other models such as UML or Entity Relationship diagrams into account
that describe the application from a different perspective.

We plan to implement the proposed approach in the context of Vergil’s frame-
work that is currently under development. Vergil’s automated work plan builder
will then be used in the validation of the overall approach.
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Abstract. Every probability distribution can be approximated up to a given pre-
cision by a phase-type distribution, i.e. a distribution encoded by a continuous
time Markov chain (CTMC). However, an excessive number of states in the cor-
responding CTMC is needed for some standard distributions, in particular most
distributions with regions of zero density such as uniform or shifted distributions.
Addressing this class of distributions, we suggest an alternative representation by
CTMC extended with discrete-time transitions. Using discrete-time transitions
we split the density function into multiple intervals. Within each interval, we
then approximate the density with standard phase-type fitting. We provide an ex-
perimental evidence that our method requires only a moderate number of states
to approximate such distributions with regions of zero density. Furthermore, the
usage of CTMC with discrete-time transitions is supported by a number of tech-
niques for their analysis. Thus, our results promise an efficient approach to the
transient analysis of a class of non-Markovian models.

1 Introduction

In the area of performance evaluation and probabilistic verification, discrete-event
systems (DES) are a prominent modelling formalism. It includes models such as
continuous-time Markov chains, stochastic Petri nets, or generalized semi-Markov pro-
cesses. A DES is a random process that is initialized in some state and then moves from
state to state in continuous-time whenever an event occurs. Every time a state is entered,
some of the events get initiated. An initiated event then occurs after a delay chosen ran-
domly according to its distribution function. When no restrictions on the distribution
functions are imposed, analysis of these models is complicated [8,21], one often resorts
to simulation [17]. When all the distributions Fe are exponential, the DES is then called
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Fig. 1. Three usages of the discrete-time events for PH approximation. In the figures there are
the densities (with thick grey lines), their standard PH approximations with 4 and 40 phases, and
their IPH approximation with 30 phases. On the left, the discrete-time event d postpones the start
of the CTMC C fitted to the area of positive density. On the right, the discrete-time event can
be used directly, instead of its continuous approximation. In the middle, 3 discrete-time events
split the support into 4 intervals with different approximations C1, C2, C3, and C4. Note that for
a distribution with a steep change in density at its upper bound (such as the uniform distribution),
PH fitting performs well on the first half of the support; logarithmic partitioning into intervals
works better than equidistant.

a continuous-time Markov chain (CTMC) for which many efficient analysis methods
exist [26,4] thanks to the memoryless property of the exponential distribution. Hence,
an important method for analysing DES is to approximate it by a CTMC using phase-
type (PH) approximation and to solve resulting CTMC analytically. Roughly speaking,
each event e such that its distribution function is not exponential is replaced by a small
CTMC Ce. This CTMC has a designated absorbing state such that the time it takes to
reach the absorbing state is distributed as closely as possible to the given distribution
function. A well known result [34] states that any continuous probability distribution
can be fitted up to a given precision by the PH approximation. Nevertheless, the closer
the approximation, the more states it requires in the CTMC. For some lower bounds on
the number of required states see, e.g., [1,35,13,12].

In this paper we propose another approach for approximating probability distribu-
tions where phase-type requires extreme amount of states to be fitted precisely [35,12].
In particular, we deal with distributions often encountered in practice that we call inter-
val distributions and that are supported on a proper subinterval of [0,∞). For example
distributions of events that cannot occur before time l > 0 such as due to physical lim-
its when sending a packet; or that cannot occur after time u <∞ such as waiting for
a random amount of time in a collision avoidance protocol; or that occur exactly af-
ter time l = u such as timeouts. We address these interval distributions by an approach
that we call Interval phase-type (IPH) approximation. The crucial point is that it allows
to separate the discrete and the continuous nature of these distributions by enriching
the output formalism. Along with the exponential distribution of the CTMC we al-
low discrete-time events (also called fixed-delay, deterministic, or timeout events) and
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denote it as d-CTMC.1 As illustrated in Figure 1, the usage of discrete-time events for
approximating a non-exponential distribution is threefold:

1. For an event e with occurrence time bounded from below by l > 0, an occurrence
of a discrete-time event d splits the waiting into two parts – an initial part of length
l where the event e cannot occur and the rest that can be more efficiently approxi-
mated by a CTMC C using standard PH methods.

2. For an event e with occurrence time bounded from above by u < ∞, a series of
discrete-time events partition the support of its distribution into n subintervals. The
system starts in the chain C1 which is the standard PH approximation of the whole
density. In parallel to movement in C1 a discrete-time event d1 is awaited with its
occurrence set to the beginning of the second interval. If the absorbing state in C1

is not reached before d1 occurs, the system moves to C2. The chain C2 is fitted to
the whole remaining density conditioned by the fact that the event does not occur
before the beginning of the second interval. Similarly, another discrete-time event
d2 is awaited in C2 with its occurrence set to the beginning of the third interval, etc.
The last interval is not ended by any discrete-time event; occurrence of the event e
thus corresponds to reaching any absorbing state in any of C1, . . . ,Cn.

3. An event with constant occurrence time (� = u) is directly a discrete-time event.

Example. As our running example, we consider the Alternating bit protocol. Via a lossy
FIFO channel, a transmitter attempts to send a sequence of messages, each endowed
with a one-bit sequence number – alternating between 0 and 1. The transmitter keeps
resending each message until it is acknowledged by its sequence number (the receiver
sends back the sequence number of each incoming message). As resending of messages
is triggered by a timeout, setting an appropriate value for the timeout is essential in
balancing the performance of the protocol and the network congestion. For a given
timeout, one may ask, e.g., what is the probability that 10 messages will be successfully
sent in 100ms? In the next section we show a simple DES model of this protocol.
Subsequently, we show the CTMC model yielded by a PH approximation of individual
events, and the d-CTMC model obtained by our proposed IPH approximation.

Our Contribution. We propose an alternative approach to PH approximation, resulting
in a CTMC enriched with fixed-delay events. Our approach is tailored to interval proba-
bility distributions that are often found in reality and for which the standard continuous
PH approximation requires a substantial amount of states. We performed an experimen-
tal evaluation of our approach. In the evaluation, we represent (1) the lower-bounded
distributions by the distribution of the transport time in network communication and (2)
the upper-bounded distributions by the uniform distribution. For both cases, we show that
our approach requires only a moderate number of states to approximate these distribu-
tions up to a given error. Thus, for DES models with interval distributions our approach
promises a viable method for transient analysis as also indicated by our experiments.

1 Note that the formalism of d-CTMC is inspired by the previously studied similar formalisms
of deterministic and stochastic Petri nets [32] and delayed CTMC [16].
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Related Work. Already in the original paper of Neuts [34], the fixed-delay and shifted
exponential distributions have been found difficult to fit with a phase-type approxi-
mation. This fact was explicitly quantified by Aldous and Shepp [1] showing that the
Erlang distribution is the best PH fitting for the fixed-delay distributions. A notoriously
difficult example of a shifted distribution is the data set measuring the length of erup-
tions of a geyser in the Yellowstone National Park [38] whose PH approximation has
been discussed in, e.g., [3,13]. Also heavy tailed distributions often found in telecom-
munication systems are hard to fit; similarly to our method, separate fitting of the body
and the tail of such distributions is used [14,23].

Apart from continuous PH fitting, there are several other methods applicable to anal-
ysis of DES with interval distributions. First, there are several symbolical solution meth-
ods [2,5,20,21] for direct analysis of DES with non-exponential events. Usually, ex-
polynomial distributions are allowed; non-expolynomial distributions need to be fitted
by expolynomials – a problem far less studied than standard PH fitting. Our approach
can be understood as a specific fitting technique that uses a limited subclass of expoly-
nomial distributions (resulting in models with a wider range of analysis techniques).
Second, interval distributions can be efficiently fitted by discrete phase-type approxima-
tion [6]. Instead of a CTMC, this method yields a discrete-time Markov chain (DTMC)
where each discrete step corresponds to elapsing some fixed δ time units. Note however
that this method usually requires to discretize all the events of a DES into a DTMC.
To analyse faithfully a DES with many parallel events one either needs to use a very
small δ [40] or to allow occurrence of multiple events within each δ-time step [33,19],
exponentially increasing the amount of states or transitions in the DTMC, respectively.
Third, similarly to our approach, ideas for combining discrete PH approximation with
continuous PH approximation have already appeared [27,18]. To the best of our knowl-
edge, no previous work considers combining these two approaches on one distribution
having both discrete and continuous “nature”. Expressing the continuous part of such
a distribution using continuous PH again decreases the coincidence of parallel discrete
events discussed above. Note that with d-CTMC, one can freely combine continuous
PH, discrete PH, and interval PH for approximation of different events of a DES.

Organization of the Paper. In Section 2, we define the necessary preliminaries. In Sec-
tion 3, we describe the IPH approximation method and briefly review the analysis tech-
niques for d-CTMC. The paper is concluded by an experimental evaluation in Section 4.

2 Preliminaries

We denote by N, Q, and R the sets of natural, rational, and real numbers, respectively.
For a finite set X,D(X) denotes the set of all discrete probability distributions over X.

Modelling Formalisms. There are several equivalent formalisations of DES. Here
we define generalized-semi Markov processes that contain both CTMC and d-CTMC
as subclasses. Let E be a finite set of events where each event is either a discrete-time
event or a continuous-time event. To each discrete-time event e we assign its delay
delay(e) ∈ Q. To each continuous-time event e we assign a probability density function
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fe : R→ R such that
∫ ∞

0
fe(x)dx = 1. An event is called exponential if it is a continuous-

time event with density function f (x) = λ · e−xλ where λ > 0 is its rate.

Definition 1. A generalized semi-Markov process (GSMP) is a tuple (S ,E,E,Succ,α0)
where

– S is a finite set of states,
– E is a finite set of events,
– E : S → 2E assigns to each state s a set of events active in s,
– Succ : S ×E→D(S ) is the successor function, i.e. it assigns a probability distribu-

tion specifying the successor state to each state and event that occurs there,
– α0 ∈ D(S ) is the initial distribution.

We say that a GSMP is a continuous-time Markov chain (CTMC) if every events of E is
exponential. We say that a GSMP is a continuous-time Markov chain with discrete-time
events (d-CTMC) if every event of E is either exponential or discrete-time.

The run of a GSMP starts in a state s chosen randomly according to α0. At start, each
event e ∈ E(s) is initialized, i.e. the amount of time remain(e) remaining until it occurs
is (1) set to delay(e) if e is a discrete-time event, or (2) chosen randomly according to
the density function fe if e is a continuous-time event. Let the process be in a state s and
let the event e have the minimal remaining time t = remain(e) among all events active
in s. The process waits in s for time t until the event e occurs, then the next state s′
is chosen according to the distribution Succ(s,e)2. Upon this transition, the remaining
time of each event of E(s)�E(s′) which is not active any more is discarded, and each
event of E(s′)�E(s) is initialized as explained above. Furthermore if the just occurred
event e belongs to E(s′), it is also initialized. For a formal definition we refer to [8].

Example (continued) To illustrate the definition, Figure 2 shows on the left a simplified
GSMP model of the Alternating bit protocol. The transmitter sending a message cor-
responds to the exponential event send. The whole remaining process of the message
being transported to the receiver, the receiver sending an acknowledgement message
and the acknowledgement message being transported back to the transmitter is mod-
elled using one continuous-time event ack. In parallel with the event ack, there is a
discrete-time event timeout and an exponential event err representing a packet loss.

To exemplify the semantics, assume the process is in the state sent with
remain(timeout) = 10, remain(ack) is chosen randomly to 12.6 and remain(err) is cho-
sen randomly to 7.2. Hence, after 7.2 time units the event err occurs and the process
moves to the state lost with remain(timeout) = 2.8. After further 2.8 time units, the
timeout elapses and the process moves to the state init where remain(send) is chosen
randomly to 0.8. After this time, the process moves to send where remain(timeout) is
again set to 10 and remain(ack) and remain(err) are again sampled according to their
densities and so on. In the next section, we show the PH approximation of this model.

2 For the sake of simplicity, when multiple events X = {e1, . . . ,en} occur simultaneously, the
successor is determined by the minimal element of X according to some fixed total order on E.
A more general definition [8] allows to specify different behaviour for simultaneous occurrence
of any subset of events.
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Fig. 2. On the left, there is a GSMP model of sending a single message using the the Alternating
bit protocol. The set of events active in a state corresponds to the edges outgoing from that state.
The event timeout is discrete-time with delay 10 ms, send is exponential with rate 2 meaning
that it takes 0.5 ms on average to send a message, err is exponential with rate 0.01 corresponding
to a packet being lost each 100 ms of network traffic on average, and ack is continuous-time with
density displayed in Figure 4 on the left. In the middle, there are 2-phase PH approximations of
events ack and timeout. On the right, there is a PH approximation of the GSMP model obtained
roughly speaking as a product of the GSMP and the two PH components.

Continuous PH Approximation. Continuous PH can be viewed as a class of algorithms

– which take as input the number of phases n ∈ N and a probability density function
f of a positive random variable, and

– output a CTMC C with states {0,1, . . . ,n} where 0 is an absorbing3 state.

Any such CTMC C defines a positive random variable X expressing the time when the
absorbing state 0 is reached in C. Let f̂ denote the probability density function of X. A
possible goal of a PH algorithm is to minimize the absolute density difference [7]4

∫ ∞

0
| f (x)− f̂ (x)| dx. (Err)

Example (continued) When building a CTMC model of the Alternating bit protocol
from the GSMP model, we need to approximate the non-exponential events ack and
timeout. Their simple approximation and the whole CTMC model of the system is
depicted in Figure 2 on the right. Observe that each state of the whole model needs to
be enriched with the phase-number of every non-exponential event scheduled in this
state. The events are then defined in a natural way on this product state space.

3 We say that a state s is absorbing if there are no outgoing transitions, i.e. E(s) = ∅.
4 Note that there are PH methods that do not allow specifying the number of phases. For further

metrics for evaluating quality of PH approximation, see, e.g., [7].
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Fig. 3. On the left, there is an IPH approximation of the event ack using the algorithm
IPH-shift[PhFit] with 3 phases. The discrete event d has delay 4.05. On the right, there is
the whole d-CTMC with discrete-time events timeout and d. The model is obtained similarly as
the CTMC in Figure 2.

In the next section we describe our extension of PH fitting with discrete-time events.

3 Interval Phase-Type Approximation

The Interval phase-type (IPH) approximation addresses the interval probability distri-
butions which are supported on a proper subinterval of [0,∞). Similarly as above,

– it takes as input the number of phases n ∈ N and a probability density function f of
a positive random variable, and

– outputs a d-CTMCD with states {0,1, . . . ,n} where 0 is absorbing.

The goal is again to minimize (Err) for f̂ being the probability density function5 of the
random variable X expressing the time when the absorbing state 0 is reached inD.

3.1 Constructing d-CTMC

As the first step in this alternative direction, we provide two basic techniques that sig-
nificantly decrease the error for interval distributions (compared to standard PH algo-
rithms that are by definition IPH algorithms as well). The first technique deals with
interval distributions bounded from below.

Delay Bounded from Below. For an event that cannot occur before some l> 0 and for a
given number of phases n> 1, our algorithm works as follows. LetC= (S ,E,E,Succ,α0)
be a chain with n−1 phases fitted by some other tool FIT to the density on the interval
[l,∞). We output a d-CTMC (S � {s0},E � {d},E′,Succ′,α′0) with n states that starts
with probability α′0(s0) = 1 in the newly added state s0 in which only the newly added
event d is scheduled, i.e. E′(s0) = {d}; the event d has delay delay(d) = l and after it
occurs, the chain moves according to the initial distribution of C, i.e. Succ′(s0,d) = α0;
E′ and Succ′ coincide with E and Succ elsewhere. A pseudo-code for this algorithm
IPH-shift[FIT] is given in [28].

5 For the error metrics (Err) we assume that the algorithm outputs a d-CTMC such that X has a
density (which holds for our algorithms presented later).
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Fig. 5. The comparison of the approximations of the distribution uniform on [0,2] using the al-
gorithms PhFit and IPH-slice[PhFit]. It goes along the same lines as in Figure 4.

Example (continued). To obtain the d-CTMC approximation of the GSMP model of
the Alternating bit protocol, we only need to approximate the event ack since timeout
is a discrete-time event. To show an example of the technique, the approximation of the
event ack using the algorithm IPH-shift[PhFit] as well as the whole resulting d-
CTMC is depicted in Figure 3. Since IPH-shift is using the phase-type approximation
only on the “simple” part of the density function, it gets much better results. For instance
for 30 phases it yields approx. 4x smaller error compared to the best results of PH
algorithms. In Figure 4 we provide a more detailed comparison.

Delay Bounded from Above. For an event that cannot occur after some u <∞, our
algorithm IPH-slice[FIT,p] slices the interval [0,u] using discrete-time events into

p subintervals [0, 12 u], [ 1
2 u, 3

4 u], [ 3
4 u, 7

8 u], . . . , [(1− 1
2

p−2
)u, (1− 1

2
p−1

)u], [(1− 1
2

p−1
)u,u].

Their length decreases exponentially with the last two subintervals having the same
length. Corresponding to these intervals, we build a sequence of components C1, . . . ,Cp

that is traversed by a sequence of discrete-time events d1, . . . ,dp−1 as the time flows.
The component of each subinterval [a,b] has n/p phases and is fitted by FIT to the
conditional density of the remaining delay given the event has not occurred on [0,a).
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Fig. 6. On the left, the uniform distribution on [0,2] is sliced into three subintervals. With the
solid line, there is the whole density and its PH approximation corresponding to the CTMC below.
With the dashed and dotted line, there are the conditional densities given the event does not occur
before 1 and 1.5, and their PH approximations. Their corresponding CTMC are the same as the
CTMC below, only with rates 2x and 4x larger, respectively. This is clarified on the right, in the
complete d-CTMC approximation with all 3 components (sharing the absorbing state).

Consider the example from Figure 6. The uniform distribution on [0,2] has density
0.5 in this interval and 0 elsewhere. When already 1.5 time units pass, the conditional
density of the remaining delay equals 2 on [0,0.5] and 0 elsewhere.

This algorithm IPH-slice[FIT,p] is formally described in [28]. Example output
of IPH-slice[PhFit,3] on the above mentioned uniform distribution is depicted in
Figure 6. Similarly to the previous technique, it provides approximately 8x better re-
sults than the standard PH fitting as demonstrated in Figure 5. Note that we can easily
combine the two techniques for distributions bounded both from below and above such
as uniform on [5,6]. It suffices to apply IPH-shift[IPH-slice[FIT,slices]].

Let us provide two remarks on this technique. First, notice that a standard fitting tool
is applied on the conditional densities. However, a standard fitting tool tries to minimize
the error also beyond the subinterval we are dealing with which may lead to subopti-
mal approximation on the subinterval. Modification of a PH algorithm addressing this
issue might decrease the error of IPH-slice even more. Second, dividing the support
of the distribution into subintervals of exponentially decreasing length is a heuristic
that works well for distributions where the density does not vary much. For substantial
discontinuities in the density, one should consider dividing the support in the points of
discontinuity. Next, we briefly review the analysis methods for d-CTMC.

3.2 Analysing d-CTMC

The existing theory and algorithms applicable to analysis of d-CTMC are a crucial part
of our alternative IPH approximation method. Extending the knowledge in this direction
is out of scope of this paper, here we only summarize the state-of-the-art of transient
and stationary analysis.
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Table 1. The (Err) errors and CPU time for different PH tools fitting by 30 phases

PH fitting tool (Err) for event ack (Err) for uniform distribution CPU time

EMpht 1.7957 1.8980 over one day
G-FIT 1.6100 0.1603 4 min 49 s
momfit 1.8980 0.5820 1 day
PhFit 1.6518 0.1868 4.33 s

The method of supplementary variables [11,15,31] analyses the continuous state-
space S × (R≥0)E extended by the remaining times remain(e) until each currently active
discrete-time event e occurs. The system is described by partial differential equations and
solved by discretization in the tool DSPNExpress 2.0 [30]. A more elaborate method of
stochastic state classes [37,2,22,21] implemented in the tool Oris [9] studies the contin-
uous state-space model at moments when events occur (defining an embedded Markov
chain). In each such moment, multidimensional densities over remain(e) are symboli-
cally derived. The embedded chain is finite iff the system is regenerative, approximation
is applied otherwise.

If the d-CTMC has at most one discrete-time event active at a time (e.g. when
only one event is approximated by IPH), one can apply the efficient method of sub-
ordinated Markov chains [32]. It builds the embedded Markov chain using transient
analysis of CTMC, similarly to the analysis of CTMC observed by a one-clock timed
automaton [10]. In the tool Sabre [16], this method is extended to parallel discrete-
time events by approximating them using one discrete-time event Δ [18] that is ac-
tive in all states and emulates other discrete-time events. An event e occurs with the

delay(e)/delay(Δ)�-th occurrence of Δ after initialization of e. Note that this corre-
sponds to discretizing time for the discrete-time events while leaving the exponential
events intact.

As some of the methods are recent, no good comparison of these methods exists.
Based on our preliminary experiments, we apply in Section 4 the tool Sabre.

4 Experimental Evaluation

In this section we evaluate the reduction of the state space and hence the reduction of the
time needed for the analysis when using IPH compared to PH. Precisely, (1) we inspect
the growth of the state space of both IPH and PH approximations when decreasing the
tolerated error; (2) for a fixed tolerated error, we examine the growth of the state space
of the PH approximation when increasing the shift of a shifted distribution; and (3) for
a fixed model and a fixed PCTL property we compare the running time of the analysis
of d-CTMC yielded by IPH and the running time of the analysis of CTMC yielded by
PH when increasing the number of phases.

We consider the distributions from the previous sections, namely the shifted distri-
bution of the event ack addressed by the IPH-shift algorithm and the distribution
uniform on [0,2] addressed by the IPH-slice algorithm. The uniform distribution is
specified simply by its formula whereas the density of the event ack is based on real
data. Using the Unix ping command, we collected 10000 successful ICMP response
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Fig. 7. The (logarithmically scaled) relationship between the size of the state space and the error
obtained. For the uniform distribution, we show the results for different numbers of slices, each
with the same number of phases. The plotted number of phases is the sum of the phases within
all used slices. The error for the optimal number of slices is plotted in bold.

times of a web server (www.seznam.cz, the most visited web portal in the Czech Re-
public). The data set has mean 4.19 ms, standard deviation 0.314 ms, variance 0.0986,
coefficient of variation 0.075 ms, and the shortest time is 4.06 ms (see Figure 4).

To get reliable results, we need to compare IPH with state-of-the-art tools for contin-
uous PH fitting. For our experiments, we considered the tools EMpht [3], G-FIT [39],
momfit [25], and PhFit [24] (an extended comparison including the tool HyperStar [36]
is in [28]). We ran the tools to produce PH approximations of the two events with 30
phases (we chose such a small number of phases because for some tools it already took
a substantial amount of time). Based on the results shown in Table 1, we have selected
PhFit as the baseline tool. Most of the tools achieve similar precision, however PhFit
significantly outperforms all others regarding the CPU time6.

4.1 Growth of the State Space When Decreasing Error

In the first experiment, we focus on the size of the state space necessary to fit the dis-
tributions up to a decreasing error. The decreasing errors (Err) when increasing the
number of phases, i.e. the state space, are shown in Figure 7. Both our IPH algorithms
exhibit a fast decrease of the error (note that the scales are logarithmic). Observe that
the continuous PH method does not perform particularly well on the event ack obtained
as a real-world example since the absolute density difference of two densities can never
exceed 2. For the uniform distribution, we show the results for different numbers of
slices used in the IPH-slice algorithm. According to our experiments on the uniform
distribution, a finer slicing with less phases in each slice is better than a coarser one
with more phases in each slice, whenever each slice is fitted by at least 4 phases.
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4.2 Growth of the State Space When Increasing the Shift
In the second experiment, we analyse the growth of the state space when increasing
the shift of a shifted distribution. In other words, how much larger model we get when
we try to fit with a fixed error an event with lower coefficient of variation? We took
the distribution of the ack event and shifted the data to obtain a sequence of events
ack0.15 , · · · ,ack4, · · ·ack32 where acki has zero density on the interval [0, i]. Note that
compared to ack we shifted the data in both directions as ack ≈ ack4. The results in
Figure 8 confirm a quadratic relationship between the shift and the necessary number
of phases for the PH approximation [16].

The quadratic relationship can be supported by the following explanation. Assume
we want to approximate a discrete distribution with shift s by a PH distribution. Due to
[1], the best PH distribution for this purpose is the Erlang distribution, the chain of k
phases with exit rates k/s. Since (Err) does not work in this setting (density is not de-
fined for discrete distributions), we use another common metric - matching moments.
Here the goal is to exactly match the mean and minimize the difference of variance.
Since the variance of the discrete distribution is zero, the error for k phases is the vari-
ance of the Erlang distribution, i.e. s2/k. To get the same error for a discrete distribution
with n-times increased shift n · s, we need n2 · k phases as (n · s)2/(n2 · k) = s2/k.

4.3 Time Requirements and Error Convergence When Increasing State Space
So far, we studied how succinct the IPH approximations are compared to PH. One can
naturally dispute the impact of IPH approximation by saying that the complexity of
d-CTMC analysis is higher that the complexity of CTMC analysis. Here, we show an
example where IPH in fact leads to a lower overall analysis time.

6 The analysis has been performed on Red Hat Enterprise Linux 6.5 running on a server with 8
processors Intel Xeon X7560 2.26GHz (each with 8 cores) and shared 448 GiB DDR3 RAM.
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Table 2. Probability of collision computed by unbounded reachability in CTMC derived using
PH and in d-CTMC derived using IPH. The exact probability of collision is 0.7753.

PRISM on CTMC Sabre on d-CTMC
phases result CPU time phases result CPU time

100 0.527 6.37 s 5 0.695 41s
200 0.541 14.92 s 10 0.730 1 min 24 s
500 0.562 47.74 s 20 0.745 3 min 37 s

1000 0.585 2 min 55 s 30 0.758 10 min 30 s
2000 0.629 9 min 20s
3000 0.680 50 min 49s
5030 0.705 3h 14 min
10030 0.731 32 h 2 min

We model two workstations competing for a shared channel. Each workstation wants
to transmit its data for which it needs 1.2 seconds of an exclusive use of the channel.
Each workstation starts the transmission at a random time. If one workstations starts its
transmission when the other is transmitting, a collision occurs. Our goal is to compute
the probability of collision. For the transmission initiations, we again used the ping
command (for two different servers) and obtained two distributions with zero density in
the first 4.1 seconds and the first 5.51 seconds, respectively.

We approximated the model using both PH and IPH and subsequently run analysis
in the tools PRISM [29] and Sabre [16] that are according to our knowledge the best
tools for analysing large CTMC and d-CTMC models, respectively 7 we used IPH ap-
proximation for both transmission initiating distributions and a discrete-time event for
the 1.2 seconds of transmission. The probability of collision was computed by reacha-
bility analysis. In the CTMC model for PRISM, we used PH approximations for both
transmission initiating distributions. Furthermore, as PRISM does not support nesting
of time bounded until operator into until operator, we again needed to transform the
problem into (unbounded) reachability analysis by incorporating the 1.2 seconds of
transmission time in the model. We approximated the time by Erlang distribution with
1000 phases (using different number of phases causes at most 1% error in the result).

The results of our experiments are shown in Table 2. The exact probability of colli-
sion is 0.7753 as computed directly from the data sampled by ping using a LibreOffice
spreadsheet. Due to some numerical errors in the version of Sabre that we used, we
were not able to get a lower error than 2% even when using more than 30 phases. Note
that the results we were able to obtain from PRISM have a more then twice as high
error8. Moreover, the immense analysis times shown in Table 2 do not include the du-
rations of PH approximations. The largest approximation we were able to obtain using
PhFit was for 3000 phases as for 4000 phases it did not finish within 5 days. For 5030
and 10030 phases we thus constructed the approximations by concatenating an Erlang

7 To eliminate the effects of the implementation, we also run the CTMC analysis in Sabre. How-
ever, it is much slower than PRISM. Full details are in [28].

8 We did our best to make CTMC analysis as quick as possible, we used parameters -s -gs
-maxiters 1000000 -cuddmaxmem 18000000 and set PRISM_JAVAMAXMEM to 200000m.
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approximation of the shift with the 30 phases PH approximation of the remaining part
(as it was obtained during IPH). Overall, the results indicate that for models that are
sensitive to precise approximation of the distributions, the IPH approximation can lead
to a significantly faster analysis compared to PH approximation.

5 Future Work

There are several directions for future work. First, a comparison of the existing algo-
rithms [16,31,21] that can be applied to the transient analysis of d-CTMC would be
highly welcome. Furthermore, for the best algorithm for d-CTMC, one can perform a
more detailed comparison of its running times on the d-CTMC obtained by the IPH fit-
ting with the analysis times of other available methods (such as the standard PH fitting).
Second, we believe that further heuristics can increase the efficiency of IPH or its ap-
plicability to a wider class of distributions. Finally, our method justifies the importance
of research on further analysis algorithms for d-CTMC.

Acknowledgement. We would like to thank Vojtěch Forejt, András Horváth, David
Parker, and Enrico Vicario for inspiring discussions.
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Abstract. The modern world features a plethora of social, technolog-
ical and biological epidemic phenomena. These epidemics now spread
at unprecedented rates thanks to advances in industrialisation, trans-
port and telecommunications. Effective real-time decision making and
management of modern epidemic outbreaks depends on the two factors:
the ability to determine epidemic parameters as the epidemic unfolds,
and the ability to characterise rigorously the uncertainties inherent in
these parameters. This paper presents a generic maximum-likelihood-
based methodology for online epidemic fitting of SIR models from a
single trace which yields confidence intervals on parameter values. The
method is fully automated and avoids the laborious manual efforts tra-
ditionally deployed in the modelling of biological epidemics. We present
case studies based on both synthetic and real data.

Keywords: Epidemics, Compartmental disease models, SIR models,
Maximum likelihood estimation.

1 Introduction

I have called the uncertainty that surrounds any response to a
microbial outbreak the Fog of Epidemics, analogous to the Fog of
War of which historians speak.

Richard M. Krause

In this modern era, technological advances enable a deadly disease to spread
across the globe in just a few days. If during the times of the Black Death
people typically travelled less than 10 miles in a day, nowadays 14 000 miles can
be covered in a day, resulting in unprecedented rates of infection spreading [19].
In addition to biological epidemics, phenomena such as social and technological
epidemics have emerged due to the extensive coverage and penetration of the
Internet and social media [3,14,23,4]. Online phenomena are characterised by
a rapid, exponential spread through the population and are often triggered by
seemingly inconsequential causes compared to the magnitude of their effects.
The ability to predict and control such events is a topic of increasing interest.

Several formal quantitative approaches are available for making predictions
about infectious disease. Although widely used in contingency planning, pre-
dictive modelling is still “the art of possible”. The key requirement for a good
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model is to provide accurate predictions, although it is already well established
that such predictions cannot achieve perfect accuracy. This uncertainty arises
due to two main factors: (i) the transmission of infection is stochastic in nature,
making it very unlikely that one observes identical dynamic disease trajectories,
even when the underlying epidemic processes are parameterically identical; (ii)
models are an approximation, and rare or unforeseen behavioural patterns can-
not be captured, but can have a significant impact on the disease dynamics [16].
Uncertainty can also result from assumptions made about the infectious agent
and the environment, or even the technical details of the model.

The main contribution of this paper is a generic methodology for on-the-
fly epidemic fitting of a classical compartmental epidemiological model, namely
Susceptible-Infected-Recovered (SIR) [17], with inbuilt characterisation of pa-
rameter uncertainty. Given a single data trace of an evolving outbreak, a tech-
nique is developed for the fitting of SIR model parameters using an optimization
method that employs a maximum-likelihood-based objective function. The out-
put is a set of confidence intervals on key parameter values. In contrast with
traditional approaches deployed in biological epidemics, which require laborious
manual work for index case identification, lab testing and contact tracing, this
method is fully automated.

A novel aspect of this research is connected to one of the major challenges:
not knowing or being able to estimate from past data the initial number of
susceptible and infected individuals. These initial conditions cause potentially
large uncertainties in the estimation procedure. Our previous attempts to address
this challenge using a least-squares fitting procedure yielded point estimates for
parameters without any characterisation of related uncertainty [21].

The rest of this paper is organised as follows. Section 2 presents background
information regarding infectious disease modelling. Section 3 describes the main
optimisation methods used for fitting the models, estimating the parameters and
setting confidence intervals to capture their uncertainty. Section 4 presents some
example analyses on synthetic and real disease data. Section 5 concludes.

2 Background

Improved sanitation, antibiotics and vaccination programs created a confidence
in the 1960s that infectious disease spreading would be eliminated. However, in-
fectious disease agents adapt and evolve over time, so that new infectious diseases
have emerged and some existing diseases have re-emerged. Mathematical models
have become important tools in planning, implementing, evaluating and optimiz-
ing various detection, prevention, therapy and control programs. Epidemiology
modelling can contribute to the design and analysis of epidemiological surveys,
suggest crucial data that should be collected, identify trends, make forecasts and
estimate the uncertainty in forecasts [15,13,6,9,11].

An epidemic is defined as a widespread occurrence of an infectious disease in
a community at a particular time. Real-time forecasts of epidemic spread using
data-driven models have been hindered by technical challenges posed by param-
eter estimation and validation [21]. Furthermore, traditional approaches rely on
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laborious and often infeasible approaches to initial estimates for parameters,
such as studying in detail the index cases of the outbreak to infer, for example,
the recovery rate as the reciprocal of the average infectious period [7].

In 1927 Kermack and McKendrick proposed one of the classical compartmen-
tal models most widely used in epidemiology, namely SIR [17]. Using Ordinary
Differential Equations (ODEs), this models the evolution of an epidemic over
time in terms of the number of Susceptible, Infected and Recovered individuals.
Given a closed population of individuals, it defines

– S(t) = individuals not yet infected at time t, but susceptible to infection
– I(t) = individuals infected at time t by contact with susceptibles at a rate β
– R(t) = individuals recovered at time t at a constant rate γ

We assume that the size of each compartment is a differentiable function of
time. We ignore intricacies related to the pattern of contact between individuals,
considering the instantaneous rate of new infections to be βSI. The recovery
rate γ is proportional to the number of infected individuals, as each individual
is assumed to recover at a constant rate γ.

These assumptions lead to the set of differential equations:

dS

dt
= −βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI (3)

The initial values of the SIR model must satisfy the following conditions:

S(0) = S0 > 0 (4)

I(0) = I0 > 0 (5)

R(0) = 0 (6)

and at any time, t, S(t)+ I(t)+R(t) = N , where N is the total population size.
Such compartmental models can forecast the disease spread between individ-

uals, not only in one population but also in various subpopulations and across
localities [20,2]. An outbreak originating in a seed subpopulation could poten-
tially lead to a global-scale epidemic. A computational model called the Global
Epidemic and Mobility model (GLEAM) is capable of integrating high-resolution
data on human demography and mobility on a global scale in a metapopulation
stochastic epidemic framework. GLEAM can simulate the global spread of in-
fluenza in order to provide insights on intervention strategies including vaccina-
tions, antiviral treatment and travel restrictions [22].
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A compelling interdisciplinary analysis of methods through which model un-
certainty can be negotiated is presented in [9]. The study shows that many
models provide only cursory reference to the uncertainties of the information and
data, or the parameters used, concluding that a more careful consideration of the
limitations and uncertainties present in modelling epidemic phenomena would
drastically improve its value. It is therefore essential to implement a rigorous
and transparent technique that can provide confidence intervals on parameters
for a clear understanding of evolving scenarios.

3 Methodology

Given a data set, we estimate the parameters using a two-pass methodology
that combines least squares (LS) and maximum likelihood (ML) based optimi-
sation techniques. Uncertainty quantification is then performed using the profiles
obtained from the ML estimates.

3.1 Model Fitting Procedure

Mathematical modelling of infectious disease dynamics relies on a series of as-
sumptions regarding key parameters that cannot be measured directly. We dis-
cuss here the technique used to fit the parameters of our model as an outbreak
unfolds over time. In particular, we consider the challenges of estimating the
initial number of susceptible and infected individuals in the target population,
when these values are unknown. Currently, there is no principled way of doing
this, as traditionally they are either known or can be estimated from the context
[21]. However, in an era of social and technological epidemics, we argue that time
and speed of movement make it infeasible to obtain accurate manual estimates.

3.1.1 Online Model Fitting. We attempt to account for uncertainty as each
outbreak unfolds, over time. To achieve this, we apply our fitting methodology
on truncated data sets. We initially consider the first 10 observations from the
outbreak. We then create new truncated datasets by adding each subsequent
observation as the outbreak unfolds.

Using the SIR model, we propose two methodologies, one for estimating the
parameters β, γ, S0, and another for estimating β, γ, S0 and I0. By definition, all
these quantities are positive, allowing us to apply a log transformation, yielding
an unconstrained optimisation landscape with no possibility to explore infeasible
values. Similarly a scaled logistic transformation can be applied to the initial
number of susceptibles S0 and infecteds I0 when these are known to be bounded
above by some constant C. The transformation function is:

trans(x) = log(
x

C − x
) (7)

and its corresponding inverse is:

trans−1(y) =
C

1 + e−y
(8)
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3.1.2 Parameter Estimation Using Maximum Likelihood. The Maxi-
mum Likelihood method is an analytic procedure for finding parameter vectors
which maximise the likelihood of a dataset of iid observations. The likelihood
function is defined as:

L(θ |x1, . . . , xn) = f(x1, x2, . . . , xn|θ) =
n∏

i=1

f(xi|θ) (9)

where f(x1, x2, . . . , xn|θ) is the joint density function of the observations and

θ the vector of unknown parameters. The maximum likelihood estimator θ̂ is
then:

θ̂ = arg max
θ

L(θ |x1, . . . , xn) (10)

Equivalently, one can minimise the negative log likelihood:

θ̂ = arg min
θ

(
− logL(θ |x1, . . . , xn)

)
= arg min

θ

(
−

n∑
i=1

log f(xi|θ)
)

(11)

In the present work we assume the observations to be Poisson distributed.
Typically, epidemiologists model variability in disease occurrence using either
Binomial, Poisson or Exponential distributions. [12] argues that the three dis-
tributions have common attributes and underlying assumptions that tend to
yield similar results. They also state that the Poisson distribution is widely used
by epidemiologists when the data involves summary counts of cases. Moreover,
since we deal with discrete observations, the variance is expected to scale with
the number of infected individuals [5,10].

The estimates are computed using the mle2 function in the bbmle R pack-
age, which requires a negative log-likelihood function and starting values for
the initial parameters to be specified. A computational challenge arises through
the calculation of confidence intervals within mle2. This requires calculating the
covariance matrix for the parameters, which is done by inversion of the Hes-
sian matrix at the optimum and can be unsuccessful depending on the initial
parameters. To overcome this, we first applied a Least Square based fitting pro-
cedure and used the estimates provided as starting values in order to be able to
successfully estimate the confidence intervals.

The set of parameters that gives the best Maximum Likelihood based fit to
the data is found using the Nelder-Mead algorithm, a widely used gradient-free
method for unconstrained multidimensional optimization [18]. The first-order
ODEs are solved using the lsoda R package. For optimal results, it is important
to specify a small threshold for the absolute error tolerance.

3.1.3 Confidence Intervals. We make use of profile confidence intervals to
indicate how reliable the estimate for a parameter is. The level of confidence
is taken to be the probability that the interval contains the true value of the
parameter, given a distribution of samples.
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Traditionally, Wald-type confidence intervals are used as an approximation
to profile intervals. The standard procedure for computing such a confidence
interval is:

estimate± (percentile× SE(estimate)) (12)

where SE is the standard error and the percentile represents the desired con-
fidence level with respect to some reference distribution. Although easier to
compute for complex models, it performs poorly when the likelihood surface is
not quadratic.

A more robust technique for constructing confidence regions can be derived
from the asymptotic χ2 distribution of the likelihood ratio test statistic. Given a
maximum likelihood estimate θ̂ of a parameter vector θ0, an approximate (1−α)
confidence interval for θ0 is the set of values of satisfying:

{θ : 2[l(θ̂)− l(θ0)] ≤ ck;1−α} (13)

where ck;1−α is the (1 − α)th quantile of the χ2 distribution with k degrees
of freedom. Confidence intervals for individual parameters can be obtained by
treating the others as “nuisance parameters” and maximising over them [24].

We compute two-sided confidence intervals using the confint function in the
bbmle R package, at various confidence levels: 99%, 95%, 90%, 80% and 50%.
In addition, we provide a 3D visualisation of the confidence intervals for the
case when the unknown parameters vector is β, γ and S0. This representation
takes the shape of an ellipsoid, with each of the axis corresponding to one of the
parameters to estimate. Note that the semi-axes may be unequal due to their
asymmetric confidence intervals.

4 Results

In order to illustrate key aspects of the proposed approach we use both syn-
thetic and a real-world datasets. The synthetic datasets were generated based
on Gillespie’s Stochastic Simulation Algorithm, using the ssa function in the
GillespieSSA R package. The real dataset represents positive laboratory tests for
influenza summed over all subtypes of the flu virus, as reported to the Centre of
Disease Control (CDC) during the 2012/2013 flu season (starting in September
2012). The data were obtained via the FluView Web Portal1.

4.1 Synthetic Data

The synthetic data set used in this section was generated by simulating an SIR
epidemic with known parameters β = 0.001, γ = 0.1 and initial conditions
S0 = 500, I0 = 10, R0 = 0.

Synthetic Data with β, γ, S0 Unknown. We fitted truncated datasets
obtained of 25%, 50%, 75% and 100% of the data in order to analyse the uncer-
tainty in the parameters as more data becomes available. As time progresses, we
observe that our fits become more and more stable as illustrated in Figure 1.

1 http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Fig. 1. Fitting of SIR model with β, γ, S0 unknown to synthetic data

Figure 2 shows the profiles obtained from the ML estimate at various confi-
dence levels for log-based transformations of each of the unknown parameters β,
γ and S0. For example we see that the 95% confidence interval for log(β) is (-
7.083,-6.962), yielding a 95% confidence interval for β as (8.39e-04, 9.47e-04). As
expected, the estimated range of possible values is wider as the confidence level
increases. This is illustrated in the isosurface plot extended to three dimensions
to visually represent the uncertainty inherent in the parameters.

Table 1 shows the lower and upper bounds on each parameter when the data is
fitted over time. We observe the uncertainty of the parameters tends to decrease
as more observations are considered.

Table 1. 95% Confidence Intervals for synthetic data

Data% β γ S0

Lower Upper Lower Upper Lower Upper

25% 5.66e-04 8.47e-04 1.08e-01 1.93e-01 569 962

50% 7.17e-04 8.36e-04 1.17e-01 1.35e-01 590 692

75% 7.62e-04 8.68e-04 1.13e-01 1.26e-01 568 646

100% 8.39e-04 9.47e-04 1.03e-01 1.14e-01 519 582
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Fig. 2. Likelihood profile plots and corresponding isosurface plot for the estimated con-
fidence intervals of transformed parameters when β, γ and S0 are unknown (synthetic
data)

Synthetic Data with β, γ, S0, I0 Unknown. Figure 3 captures the un-
certainty characterised over the parameters β, γ, and the initial conditions S0,
I0, where I0 is bounded by S0 using a logistic based transformation. The un-
certainty ranges and estimated values are similar to the ones computed by the
optimisation with known I0, demonstrating the robustness of the optimisation.

True Value Recoverability Rate for Parameters. For a known set of
ground truth parameters, we use Gillespie’s stochastic simulation algorithm to
generate 1 000 sample trajectories of the number of infected individuals over
time. For each trajectory, we apply our methodology to obtain 95% confidence
intervals for each parameter. We might have expected that 95% of the time,
the true values of the parameters should lie within the 95% confidence interval.
However, Table 2 shows that this is not the case. This emphasises how difficult
it is to obtain accurate estimates of the uncertainty of the parameters from a
single data trace. Such traces may be heavily affected by stochastic variation,
especially in cases like our example where there are a relatively small number
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Fig. 3. Likelihood profile plots for the estimated confidence intervals of transformed
parameters when β, γ, S0 and I0 are unknown (synthetic data)

Table 2. True value recoverability rate for unknown parameters β, γ and S0 (left) and
for β, γ, S0 and I0 (right)

Parameter Recoverability rate

β 26.59%
γ 26.28%
S0 31.82%

β, γ, S0 8.86%

Parameter Recoverability rate

β 41.99%
γ 26.28%
S0 34.44%
I0 48.04%

β, γ, S0, I0 9.46%

of initial susceptibles [1]. We also note the improvement in recovery rates for β
and S0 when I0 is included as an unknown parameter, showing the benefits of
maintaining flexibility with respect to this critical initial condition.

4.2 CDC Influenza Data

We used data regarding positive lab-based influenza tests reported to the Center
of Disease Control and Prevention (CDC) during the 2012/2013 influenza season.
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Fig. 4. Fitting of SIR model with β, γ, S0 unknown to real influenza data

Figure 4 shows the fitting over time of truncated datasets, illustrating that
the algorithm is robust enough to be applied to real data.

Figure 5, Figure 6 and Table 3 characterise the uncertainty of the parameters
for the real data set. The similar behaviour to the synthetic data reinforces our
results and methodology.

Table 3. 95% Confidence intervals for influenza data (* - non convergence)

Data% β γ S0

Lower Upper Lower Upper Lower Upper

25% * * * * * *

50% 2.95e-05 3.22e-05 3.46e-01 3.81e-01 26769 30118

75% 3.50e-05 3.69e-05 2.90e-01 3.06e-01 22091 23515

100% 3.53e-05 3.70e-05 2.90e-01 3.03e-01 22031 23292
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Fig. 5. Likelihood profile plots and corresponding isosurface plot for the estimated con-
fidence intervals of transformed parameters when β, γ and S0 are unknown (influenza
data)

5 Conclusion

In this paper we provided a generic maximum-likelihood-based approach towards
the on-the-fly epidemic fitting of SIR models from a single trace, which yields
confidence intervals on parameter values. In contrast to traditional biological
epidemiological modelling techniques, our approach is fully automated and the
parameters to be estimated include the number of initial susceptibles and the
initial number of infected in the population. Visualising the fitted parameters
gives rise an isosurface plot of the feasible parameter ranges corresponding to
each confidence level.

We generated multiple synthetic disease outbreak trajectories via stochastic
simulation and fitted parameters to those trajectories. The “true” parameters
were contained in the corresponding confidence bounds only for a relatively
low proportion of the time, emphasising (a) the difficulty of obtaining accurate
parameter estimations from a single epidemic trace and (b) the large potential
impact of small random variations, especially those occurring early on in a trace.
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Fig. 6. Likelihood profile plots for the estimated confidence intervals of transformed
parameters when β, γ, S0 and I0 are unknown (influenza data)

It is expected that real systems are likely to exhibit different characteris-
tics than the ideal ones assumed by the classical SIR model; for example real
systems may feature time-varying parameters and the homogeneous mixing as-
sumption may not apply. Nevertheless, the models may have utility in predicting
the stochastic impact of candidate interventions in real systems with bounds [8];
a simulation-based methodology for this will be the focus of our future work.
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Abstract. The performance analysis of the car parking process in a
parking lot with various levels of assistance is considered in the paper.
The input of the model is the description of the parking lot and a Marko-
vian description for the driver behavior, the set of computable perfor-
mance measures contains the average time necessary for the user to reach
the desired destination, the amount of cars moving in the parking lot at
the same time (thus, the environmental strain), etc. To overcome the
state space expansion, that makes the direct analysis of the model com-
putationally infeasible, we apply a mean field limit based approximation
whose accuracy is investigated with discrete event simulation.

1 Introduction

Since its introduction at the beginning of the century [2], the smart city concept
enjoys an enormous attention from the research and development community,
e.g., real-time traffic monitoring based car routing (i.e., Personal Navigation
Assistant (PNA) devices with Traffic Message Channel (TMC) support) are
commonly used in several countries, as well as the real-time tracking of Global
Positioning System (GPS) equipped public transport devices. Intelligent parking
systems, which we investigate in this paper belong to this category as well. In
an intelligent car parking system the driver selects its destination on a smart-
phone application when entering the parking garage, and the parking system
selects the optimal parking field and provides navigation aid to it, considering
the occupancy situation.

Several such systems have been introduced in the literature in the recent years,
e.g. [3], [1] or [5]. All these papers are focusing on the technical and implemen-
tation aspects of the problem, while in this paper, we focus on the stochastic
performance analysis of such a parking system and calculate performance mea-
sures like the mean time spent by searching for a parking place and by walking
to the destination, and the mean number of cars rambling around to find a place.
The results can be used to quantify the benefits of an intelligent parking system.

The direct analysis of the overall parking system including the state of each
individual car is inhibitory complex and that is why we propose a mean field
limit based efficient approximate analysis [4].
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The rest of the paper is organized as follows. Section 2 introduces the con-
sidered model. Section 3 provides the description of the behavior of the drivers,
both in the un-assisted and in the assisted cases. The mean field model is defined
in Section 4, and some numerical examples are investigated in Section 5.

2 Model Description

2.1 The Floor Plan

The architectural plan of the studied parking lot (Figure 1) contains a grid
divisions which we use for representing the position of the cars in the garage
by a discrete variable. These rectangular fields are identified by their row and
column position p = (r, c), and are held by set P = {p}.

Entrances

Exits Escalators (targets)

Examples of
transit only

fields
(Np=0)

Field with Np=8

Fig. 1. Floor plan of the parking garage of the Allee mall in Budapest

Some fields contain a number of parking places, while others are serving as
transit only. The maximal number of cars that can park at position p is denoted
by Np, from which the free ones are denoted by Kp. The ”transit only” and
the ”transit+parking” type fields are distinguished by Np = 0 and Np > 0
respectively. Additionally, there are fields with special purposes (see Figure 1).

– Set E contains the positions of the entrances of the garage.
– Set T contains the positions of the possible targets of the drivers.
– Set X contains the exit positions (to leave the garage).

The roads in the garage can be either one- or two-ways. The set of neighboring
positions where a car can proceed after leaving p is denoted by N (p), from
which succ(p) represents the one that can be reached without changing direction.
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The shortest path between two fields will be used frequently in the sequel. When
a tagged car is located at field a ∈ P we denote the next field along the shortest

path towards field b by
−→
d a,b if the driving directions on the roads are respected,

and by da,b, if they are not respected. The corresponding distances along the

shortest path are denoted by −→c a,b and ca,b, respectively, where
−→
d a,b and −→c a,b

applies to cars, while da,b and ca,b applies to pedestrians.

2.2 Behavior of the Cars

The life cycle of a car consists of the following four phases.

1. It enters the garage at one of the entrances;
2. it searches for a free parking field, preferably as close to the target destination

as possible;
3. it selects a free parking field and parks. The driver leaves the car behind

proceeds the trip on foot.
4. Finally, after some time, the driver returns to the car and leaves the garage.

We assume that the selection of the entrance and the target is done by a
random choice. The behavior of the drivers can be very different depending on
their experiences. how much information the drivers have on the floor plan of the
parking garage. Completely uninformed drivers have no information on the floor
plan, and no clue on their target destination, whereas returning drivers know
the floor plan and are able to take the distance information into consideration.
In case of intelligent parking systems the occupancy information of the parking
fields is available, too. The measurement based car behavior description is not
available yet, thus our motion models are based on intuition. We are using the
following four different motion models.

– Uninformed drivers.
In this case the motion of the cars is similar to a random walk. The actions
the driver can take are:
• Stop and park. The more free places are in the current position, the
easier is to park the car, thus the higher is the probability of parking.

• Change direction. The probability of choosing a direction is proportional
with the number of parking places available in that direction.

• Go forward, without changing direction. It is not typical that a car
changes direction at every possible places, thus this action has a higher
probability than changing direction.

– Returning (distance aware) drivers.
If the driver has prior knowledge on the parking garage, apart of the available
positions he/she can utilize the distance from the selected target destination.
Thus, the probabilities associated with the three actions above will decrease
with the distance from the destination.
If the utilization of the garage is high and parking fields close to the target are
all occupied, distance aware drivers have a hard time to find an appropriate
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place to park. To avoid unrealistically long search phase, we introduce the
patience of the drivers, which is a random variable. Once a driver becomes
impatient, it gives up the distance preference and acts like an uninformed
driver.

– Intelligent parking assist systems.
If an intelligent assist system is installed, the number and the distribution
of the free parking places can be used in proposed guidance. When entering
the garage, the driver selects the desired destination and the system direc-
tions to the best possible parking field. Due to the dynamic evolution of the
occupancy of parking fields the parking assist system must re-calculate the
optimal parking field and the corresponding directions continuously. We are
considering two possible assist strategies:

• solely based on the distance from the desired destination, to minimize
the walking distance,

• based on the distance from the desired destination and the driving dis-
tance, to minimize the driving plus walking time.

Regarding the departure phase of the life-cycle of a car, we assume that in-
formative traffic signs guide the cars towards the exits on the shortest path.

3 Formalizing the Car Motion Models

The entrance, target and exit selections are assumed to be random choice with
the following distributions.

– q
(E)
i is the probability that the car enters at entrance i ∈ E ,

– q
(T )
j is the probability that the driver intends to visit target j ∈ T ,

– q
(X)
k is the probability that the driver chooses exit k ∈ X to leave.

3.1 Parking Preference Functions

We introduce two functions to characterize the parking preference of the drivers.

Function f
(F )
p represents the parking preference based on Kp, the number of free

parking fields at position p. Obviously, if Kp = 0 (all fields are occupied at p)

we have that f
(F )
p = 0, and f

(F )
p is monotonously increasing with Kp, reflecting

the observation that drivers prefer to park at positions where more free fields

are available. If f
(F )
p = 1, position p is ideal for parking and every driver wants

to take it. This function is approximated by a complementary Gaussian curve
according to

f (F )
p = 1− e−K2

p/σ
2
F , (1)

where the variance parameter σ2
F will be used to tune the shape of this func-

tion. The choice of Gaussian curve is motivated by its frequent appearance in
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Fig. 2. Parking preference functions

stochastic models and its simplicity. We do not have experimental data (at all)
to validate this choice.

Function f
(D)
p,j represents the parking preference at position p based on the

distance of p from the desired destination j. If the distance is 0 (p = j), we

have that f
(D)
p,j = 1. Furthermore, f

(D)
p,j decreases monotonously to zero with the

distance cp,j , since every driver wants to find a place as close to its destination as

possible. Function f
(D)
p,j is approximated by a Gaussian function (with the same

lack of experimental data)

f
(D)
p,j = e−c2p,j/σ

2
D , (2)

where the variance parameter σ2
D controls how important the distance is to the

drivers. The shapes of the functions with the parameters used in the upcoming
numerical example are depicted in Figure 2.

3.2 Motion Model for Uninformed Drivers

Our model for the uninformed driver is based on intuition, and might seem to
be a bit artificial. We hope to improve it in the future based on empirical mea-
surements. The reason to include it in this paper is to have a less sophisticated
driver behavior in the comparison with the assisted case, for which we have an
accurate model.

In our simple model, an uninformed driver can take one of the following actions
while being at position p ∈ P :

– It can park with probability qp, where qp = f
(F )
p . The σ2

F parameter (corre-

sponding to f
(F )
p , see (1)) depends on the average occupancy of the parking

fields at position p, which the driver can estimate by looking around. The
higher the occupancy of the parking lot is, the smaller σ2

F is, thus it gets
more likely that the driver takes every single empty parking place it encoun-
ters. σ2

F → 0 corresponds to the case where the driver selects the first free
place it encounters. With this setting the garage is filled up along concentric
circles around the entrances. We use σ2

F >> 0, thus uninformed drivers just
drive for a while to choose a place.
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– With probability rp,i, i 	= succ(p) the driver decides to move on and change
direction to a neighboring position i ∈ N (p). Choosing a direction where no
free field is visible (e.g., because that field is for traversal only) has a non-zero
probability as well (denoted by 1−γ). Accordingly, the weight corresponding

to rp,i is rp,i = γ f
(F )
i + 1− γ.

– With probability rp,succ(p) the driver decides to move on to the next posi-
tion without changing direction. Not changing direction is more probable
than changing direction, thus the weight assigned to this case is larger, it is

W (γ f
(F )
succ(p) + 1− γ), W > 1.

Thus, the probability of moving from position p to position i ∈ N (p) is

rp,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ϕ1

(γf
(F )
i + 1− γ), i 	= succ(p),

1
ϕ1

W (γf
(F )
succ(p) + 1− γ), i = succ(p),

0 otherwise,

(3)

where ϕ1 =
∑

j∈N (p),j �=succ(p)

γf
(F )
j + 1 − γ + W (γf

(F )
succ(p) + 1 − γ). Hereafter we

assume that a car does not turn over 180◦ and go back to its preceding position
unless this is the only possibility to proceed.

3.3 Motion Model for Distance Aware Drivers

In case of returning drivers the distance information is also available when mak-
ing the parking decision. The probability that the driver stops and parks at
position p depends both on the number of free parking fields Kp and on the

distance to the destination j as qp = f
(F )
p · f (D)

p,j . The variance parameters σ2
F

and σ2
D of distance aware drivers are less than the ones in the uninformed case,

as returning drivers are more determined.
If the driver decides not to park, the distance information plays a role in the

distribution of the next position of the car, too, according to

rp,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ϕ2

(γf
(F )
i + 1− γ)f

(D)
i,j , i 	= succ(p),

1
ϕ2

W (γf
(F )
i + 1− γ)f

(D)
succ(p),j, i = succ(p),

0 otherwise,

(4)

where ϕ2 =
∑

j∈N (p),m �=succ(p)

(γf
(F )
m + 1− γ)f

(D)
m,j +W (γf

(F )
succ(p) + 1− γ)f

(D)
succ(p),j.

To avoid endless rambling the patience of the drivers has to be included in
the model as well. We assume that the patience follows a discrete phase-type
(DPH) distribution defined by initial probability vector α and transient transi-
tion probability matrix A, yielding P (patience = k) = αAk−1(I − A)1. Once
the patience of the driver is over, it gives up optimizing on the distance and
switches to the uninformed strategy defined in Section 3.2.
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3.4 Motion Model in the Presence of Intelligent Parking Systems

The intelligent parking system continuously sends the suggested driving direction
towards the most appealing parking field to the driver. Given that the car is cur-
rently at position p and the desired destination is target j, the appeal of a field at

position i (denoted by ap,j,i) is derived from the parking preference function f
(F )
i

and f
(D)
p,j,i

′
, which depends on the distance to be driven from p to i and the walking

distance from i to the destination j, that is f
(D)
p,j,i

′
= e−(ξd

−→c p,i+ξwci,j)
2/σ2

D , where
ξd and ξw determine the weights of driving and walking distance in the decision,
respectively. If the parking system optimizes on solely the walking distance, we
have that ξd = 0 and ξw = 1.

The appeal ap,j,i is then modeled by ap,j,i = f
(F )
i ·f (D)

p,j,i

′
, and the best position

popt is selected according to popt = argmini∈P ap,j,i. We also take into account
that there are drivers that do not follow the guidance of the parking system till

the end, but with probability U · f (F )
p · f (D)

p,j can park to a parking field even if
it is not the recommended one (parameter U stands for drivers independence).
All in all, an assisted car at position p heading to target j can take the following
actions.

– A car stops and park with probability

qp =

⎧⎨⎩1, if p = popt,

U · f (F )
p · f (D)

p,j , otherwise.
(5)

– Given that the car did not park, it moves forward to position i with proba-
bility

rp,i =

⎧⎨⎩1, if i =
−→
d p,popt ,

0, otherwise.
(6)

3.5 Distribution of the Parking Time

The duration of parking is modeled by a discrete phase type distribution with
initial probability vector and transient transition probability matrix denoted by
β and B, respectively, that is P (parking time = k) = βBk−1(I −B)1.

After parking the cars leave the garage along the shortest path to the selected
exit. In the considered closed system scenario when a car leaves the garage, a
new car enters immediately to keep the number of cars in the garage constant.
We apply the closed system scenario to eliminate the randomness caused by
the randomly changing load (number of cars) and to amplify the performance
implications of the considered driver behavior.
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4 The Mean-Field Model

We introduce a discrete time model in this section to characterize the state of
the parking garage. Each car being in search or leaving phase moves exactly one
field along the grid in each time step.

4.1 The State Space of the System

Cars in the garage are either search for a parking field, or parked, or leaving.
For cars in the search phase we need to keep track of

– the current position p,
– the desired target destination j,
– the current orientation of the car o (to avoid complete turn-overs),
– and, in case of the distance-aware strategy,

• the phase of the DPH distribution representing the patience n.
• a flag f indicating that the car lost patience and gave up optimizing on
distance

For parked cars we have to follow the

– the position of the car p,
– the phase of the DPH corresponding to the parking time m.

Finally, for leaving cars we have to include into the state space

– the current position of the car p,
– and the selected exit where the car is heading to x.

Thus, the state of a car at time k can be represented by

Sk ∈ {(search, p, j, o, n, f)} ∪ {(parked, p,m)} ∪ {(leaving, p, x)}.

if the cars are using a distance aware strategy, otherwise it can be represented
by

Sk ∈ {(search, p, j, o)} ∪ {(parked, p,m)} ∪ {(leaving, p, x)}.

4.2 State Transitions

The possible state transitions of cars being in the search phase at time n are the
following in case of the uninformed and the assisted case.

P (Sk+1 = (parked, p,m)|Sk = (search, p, j, o, n, f)) = qpeffβm,

P (Sk+1 = (search, i, j, o′, n, f)|Sk = (search, p, j, o, n, f)) = rp,i

where qp and rp,i depends on the car motion model (see Section 3), and o′ is the
orientation of the car after moving from p to i. Note that instead of the parking
probability qp, a modified quantity, the effective parking probability qpeff is
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used in the formula to ensure that the parking capacity Np of field p is never
exceeded (in the mean sense). If there are Sp cars on the same position, and each
individual car wants to park with probability qp, the mean number of parking
cars in the next step would be Spqp, that can be larger than the capacity of p.
Therefore the effective parking probability is given by

qpeff =

⎧⎨⎩qp, if Spqp ≤ Np,

qpKp/Np otherwise,
=

⎧⎨⎩qp, if spqp ≤ np,

qpkp/np otherwise,
(7)

where Sp denotes the number of cars being in the search phase at position p and
sp = Sp/N , np = Np/N , kp = Kp/N are the population normalized parameters
which equally define the transition probability.

If the cars are moving according to the distance aware strategy, the patience
information needs to be taken into account as well, hence we have

P (Sk+1 = (parked, p,m)|Sk = (search, p, j, o, n, false)) = qp
(DA)
eff βm,

P (Sk+1 = (parked, p,m)|Sk = (search, p, j, o, n, true)) = qp
(UI)
eff βm,

P (Sk+1 = (search, i, j, o′, n, true)|Sk = (search, p, j, o, n, true)) = r
(UI)
p,i ,

P (Sk+1 = (search, i, j, o′, n′, false)|Sk=(search, p, j, o, n, false)) = r
(DA)
p,i An,n′ ,

P (Sk+1 = (search, i, j, o′, n, true)|Sk = (search, p, j, o, n, false))

= r
(DA)
p,i

(
1−

∑
n′

An,n′

)
where qp

(UI)
eff and qp

(DA)
eff are the effective parking probabilities associated with

the uninformed and distance aware case, respectively, and the routing probabil-

ities r
(UI)
p,i and r

(DA)
p,i are distinguished in the same way.

Cars being in the parked phase can either stay parked or enter to the leaving
state according to

P (Sk+1 = (parked, p,m′)|Sk = (parked, p,m)) = Bm,m′ ,

P (Sk+1 = (leaving, p, x)|Sk = (parked, p,m)) =

(
1−

∑
m′

Bm,m′

)
· q(X)

x .

Finally, the state transition probabilities corresponding to leaving cars are

P (Sk+1 = (leaving,
−→
d p,x, x)|Sk = (leaving, p, x)) = 1, if p 	= x,

P (Sk+1=(search, e, j, oe, n, false)|Sk = (leaving, p, x)) = q(E)
e q

(T )
j αn, if p = x,

given that the orientation of the cars entering at entrance e is oe.

4.3 The Occupancy Vector and Its Mean Field Limit

Let XN
n (k), n = 1, . . . , N denote the state of car n at time step k, where N

is the (constant and finite) number of cars in the garage. The state transition
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probabilities given in Section 4.2 define a discrete time Markov chain (DTMC)
for a given number of cars, where the DTMC keeps track of the states of all
the cars in the garage. In this Markov chain the stochastic behavior of cars are
interdependent because the movement (the state transition probabilities) of a
given car depends on the positions of the other cars, but it is important to note
that the state transition probabilities do not depend on the position of particular
cars XN

n (k), but only on the number of cars which stay in the grids (i.e., vector
MN defined below). We refer to this property as density dependence.

When N is large (≥ several tens), which is the common case in practice,
the state space of the DTMC gets extremely large and the analysis of this large
DTMC becomes infeasible. To overcome this limitations we can approximate the
DTMC which describe the behavior of N (finite) cars in the parking lot with its
mean field limit, which is obtained when the number of cars increases to infinity,
due to the density dependence of the model.

In order to evaluate the mean field limit we introduce the occupancy measure
([4]) which is a row vector MN(k) = [MN

i (k), i ∈ S] where MN
i (k) is the propor-

tion of cars being in state i at time step k which isMN
i (k) = 1

N

∑N
n=1 I{XN

n (k)=i},
with I{} being the indicator function, and introduce the normalized versions of
the transition probability functions.

The state transitions probabilities given in Section 4.2 depend on the number
of cars which stay in the grids. E.g., qpeff depends on Kp which is the number of
free parking fields at position p, and on Sp which is the number of cars searching a
parking field at p. The population normalized versions of these quantities can be
expressed from the occupancy vector as kp(k) = np −

∑
i∈{(parked,p,m)} M

N
i (k),

sp(k) =
∑

i∈{(search,p,j,o,n,f)}M
N
i (k). Let Π̄(MN (k)) denote the state transition

probability matrix containing the state transitions probabilities given in Section
4.2 as a function of the population normalized number of cars in different states.
The mean field limit of the occupancy vector MN(k), denoted by M(k), satisfies
the difference equation M(k + 1) = M(k)Π̄(M(k)) [4]. This difference equation
is much less expensive to compute than the direct analysis of the large DTMC
model representing the product space of the states of all cars in the garage.

The mean field limit is obtained when the number of cars and the capacity
of the parking lot increases proportionally (i.e., the ”size” of the cars decreases
to zero). However, the mean field model gives an approximate analysis of the
system, since the number of cars being in state i calculated by N · Mi(k) is a
real number, while it is an integer variable in the reality.

4.4 Performance Measures

We evaluate the following performance measures based on the occupancy mea-
sure M(k), the mean driving time to parking, LS , the mean walking distance
from the selected parking field to the target destination, LW , the mean of the
total latency including the driving and walking time. LT , and the ratio of cars
moving in the garage at the same time (either in search or leaving phase), C.
At time k C is obtained as C(k) =

∑
i∈{(search,p,j,o,n,f)}∪{(leaving,p,x)} Mi(k).
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To compute the rest of the performance measures we introduce �j,p(t), which is
the probability that a car heading to target j finds a parking field at time t and po-
sition p. For �j,p(t) we have �j,p(t) = a · (Π̄search,search)

t−1 · bj,p, where row vector
a reflects the starting state of an individual car. The entries of a are given by

ai =

⎧⎨⎩q
(E)
e q

(T )
j , if i = (search, e, j, oe, n, f),

0, otherwise.

Furthermore, Π̄search,search is derived from limk→∞ Π̄(M(k)) by setting en-
tries but the ones belonging to the search phases to zero. Thus, the entries
of (Π̄search,search)

t are the probabilities that the car is still in the search phase
after time t with the corresponding state transitions. Finally, bj,p is a column
vector whose entry i is the probability that a car in a search phase heading to
target j being at position p stops and selects a parking field. It can be obtained
as

(bj,p)i =

⎧⎪⎨⎪⎩
∑
∀m

P (Sk+1 = (parked, p,m)|Sk = i), if i = (search, p, j, o, n, f),

0, otherwise.

With �j,p(t) the mean search time is LS =
∑∞

t=0 t ·
∑

∀j∈T ,p∈P �j,p(t), and the

mean walking distance to the target is LW =
∑

∀j∈T ,p∈P cp,j
∑∞

t=0 �j,p(t).
To calculate LT we have to take into consideration that walking is slower

than driving. By denoting the time required to walk through a field in the grid
relative to the driving time by R the total time to target is given by LT =∑

∀j∈T ,p∈P
∑∞

t=0(t+ cp,jR) · �j,p(t).

5 Numerical Experiments

We implemented the mean field method in C++ environment and compared the
performance of the parking strategies discussed in the paper1. The floor plan
corresponds to the ”Allee” shopping mall in Budapest. The parameters of the
model have been determined by intuition due to the lack of real data according
to Table 1. The DPH distribution generating the parking time has a mean of
4000 seconds and the squared coefficient of variation is 1.5. The corresponding
parameters are

β =
[
0.16 0.84 0

]
,B =

⎡⎢⎣0.99988 0.00012 0

0 0.99925 0.00075

0 0 0.99925

⎤⎥⎦ . (8)

1 The software is open source and can be downloaded from
http://www.hit.bme.hu/~ghorvath/software

http://www.hit.bme.hu/~ghorvath/software
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Table 1. Values of the parameters used in the examples

Strategy Parameters

Uninformed σ2
F = 6; γ = 0.3; W = 3

Distance aware

σ2
F = 2; γ = 0.2; W = 1.5; σ2

D = 16;

α =
[
0.321 0.379 0

]
; A =

⎡
⎢⎢⎣
0.99679 0.00321 0

0 0.99 0.01

0 0 0.99

⎤
⎥⎥⎦

(Mean patience=300 seconds, squared coefficient of variation=0.8)

Assisted, case 1. σ2
F = 2; σ2

D = 36; U = 0.05; ξd = 0; ξw = 1

Assisted, case 2. σ2
F = 2; σ2

D = 36; U = 0.05; ξd = 0.2; ξw = 0.8

5.1 Distribution of the Occupied Parking Fields

Figure 3 compares the mean occupancy of the parking fields under light load
(N = 250). When the drivers are uninformed, they choose lightly occupied fields
for parking along the main roads on the garage, instead of the ones located close
to the targets.

In the distance aware case it is visible that the cars are parking around the
three escalator entrances of the garage. Observe, however, that the garage can be
divided into two main parts, and there is only a single possibility to move to the
left part from the right one. Therefore there are drivers who choose sub-optimal
parking field at the right part because they do not find the way to the less loaded
left part. This situation is reflected on the heat map as well, the circular region
corresponding to the more occupied parking fields is asymmetric, there are much
more cars parking at the right side.

The occupancy of the parking fields is better distributed around the targets
in the first assisted case (where only the walking distance is the subject of op-
timization), since the intelligent parking system is able to guide the cars to the
left part if there are more free parking fields there.

The heat map belonging to the second assisted case (where the driving time
and the walking time are both optimized) does not differ too much in this par-
ticular example.

The execution times were 2ms, 8ms, 2ms, 21ms per iteration in the unin-
formed, distance aware, the first and the second assisted case, respectively on
an average PC with a 3.4 GHz CPU and 4 GB of memory.

5.2 Comparing the Uninformed Model with Simulation

To assess the precision of the mean field approximation we implemented the
uninformed driver case in OMNeT++ [6], which is a C++ based framework for
discrete event simulation.
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Uninformed drivers Distance aware drivers

Assisted case 1. Assisted case 2.

Fig. 3. The distribution of the occupied parking fields

We examined the mean occupancy of the parking fields as well as the average
searching times and walking distances of the drivers. The simulations were run
for a total of 106 parking events, of which the first 105 were considered a warm-
up period thus they were not taken into account in the statistics calculations.
Between several test runs the difference in mean occupancy was less than 0.005
for more than 90% of the parking fields (with an average less than 0.002), while
the maximum difference was around 0.02. The relative differences between the
searching and walking times were both less than 0.2% for every test run.

In the comparison we made the inspection for four different loads (N =
100, 300, 400, 500). To demonstrate the transition between the simulation and
the mean field model we introduce the ω scaling parameter (1 ≤ ω < ∞). The
meaning of this parameter in the simulation is the following. If ω > 1, the number
of cars in the system and the parking fields at each position are multiplied by ω.

Furthermore, to compensate the scaling f
(F )
p becomes f

(F )
p,ω = 1 − e−K2

p/(ωσF )2 .
For ω = 1 the model corresponds to the original physical realization. When
ω → ∞ the behavior converges to the mean field model. Figure 4 shows the
cumulative distribution functions of the errors of the mean occupancy for light
and heavy loads. In accordance with the expectations the errors decrease when
increasing ω. It can also be seen, that the precision of the mean field model
decreases with the increasing load. Table 2 shows the performance measures of
interest. The same tendency can be observed in this case as well, however, the
error is small except for the mean search time in the N = 500 case, therefore the
mean field approximation proved to be quite precise for low and medium load.
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Table 2. Performance measures of simulation and mean field model

Number of cars in the garage

100 300 400 500

Simulation
Mean search time 7.57176 12.1356 16.411 37.8561

Mean walking distance 8.97576 10.3427 10.8522 10.7663

Mean field model
Mean search time 7.61508 12.5713 16.9241 47.2762

Mean walking distance 9.00815 10.5659 10.8671 10.948
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Fig. 4. The effect of scaling to the error of mean occupancy

5.3 The Effect of the Load of the Garage

Figure 5 depicts the performance measures as the function of the load. To record
the results 5 · 105 iterations were executed, which was enough to get high preci-
sion results in the cases where the iteration converged. In the uninformed and the
distance aware cases the convergence was fast and found a (supposedly) global
at attractor from any random initial states. However, with the assisted strate-
gies the mean field iteration did not converge, it had an oscillating behavior.
The corresponding plots on the figures show the average of the results from 10
different random initial points and also have error bars indicating the minimum
and maximum values obtained.

With the increase of the load, the performance of both the informed and dis-
tance aware strategies drop sharply. Cars spend too much time rambling around
to find a position where the number of free spaces and the distance from the tar-
get is appropriate. To be fair, our model did not include an important factor: in
the reality the behavior of the drivers (in particular the σF and σD parameters)
depends on the utilization of the garage.

Nevertheless, the results make it clear that the intelligent parking systems can
be really efficient. Both variants were able to reduce the time to reach the target,
including the search phase and the walking time. Especially the ”assisted case
2.”, that takes the total time to target into account, was successful in reducing
the number of moving cars in the garage even at high load, which is beneficial
from the environmental protection point of view as well.
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Fig. 5. The performance measures as the function of the load
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3. Gódor, G., Huszák, Á., Farkas, K.: Intelligent indoor parking. In: Proc. of Global

Virtual Conference, GV-CONF (2013)
4. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A generic mean field convergence

result for systems of interacting objects. In: Quantitative Evaluation of Systems,
QEST, pp. 3–18. IEEE (2007)

5. Liu, J., Chen, R., Chen, Y., Pei, L., Chen, L.: iParking: An intelligent indoor
location-based smartphone parking service. Sensors 12(11), 14612–14629 (2012)

6. Varga, A.: The OMNeT++ discrete event simulation system. In: Proceedings of the
European Simulation Multiconference (ESM 2001), vol. 9, p. 185. sn (2001)



Formal Punctuality Analysis of Frequent Bus
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Abstract. We evaluate the performance of frequent bus services in Ed-
inburgh using the punctuality metrics identified by the Scottish Govern-
ment. We describe a methodology for evaluating each of these metrics
that only requires measurements of bus ‘headways’ — the time between
subsequent bus arrivals. Our methodology includes Monte Carlo simu-
lation and time series analysis. Since one metric is given in ambiguous
language, we provide a formal description of the two most plausible inter-
pretations. The automated nature of our method allows public transport
operators to continuously assess whether the performance of their net-
work meets the targets set by government regulators. We carry out a
case study using Automatic Vehicle Location (AVL) data involving two
frequent services, including the AirLink service to and from Edinburgh
airport.

Keywords: Public transportation, punctuality, headways.

1 Introduction

A key feature of a sustainable city is a well-run public transportation network.
This is witnessed, among other reasons, by the fact that satisfaction with public
transport quality is included as an indicator for a ‘smart’ city [4]. One important
measure for the performance of a public transport network is its punctuality,
as this has been observed to be a major factor in passenger satisfaction and
perceived service quality [3]. However, a formal definition of punctuality is not
straightforward to give, partially because passenger perception of punctuality
may depend on the nature of the service. In particular, for a non-frequent service
(e.g., one bus departure every 30 minutes) strict timetable adherence is the main
factor for punctuality. However, strict timetable adherence is less relevant for
frequent services, which are defined as those with one bus departure every ten
minutes or less. Punctuality metrics for frequent services are primarily dependent
on the probability distribution of the times between departures — the so-called
‘headways’. In general, less headway variance means better punctuality.
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A. Horváth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 164–178, 2014.
c© Springer International Publishing Switzerland 2014



Formal Punctuality Analysis of Frequent Bus Services 165

Several punctuality metrics have been proposed in the scientific literature;
[9] and [11] are two recent papers that present an overview. In this paper, we
focus on the three punctuality metrics for frequent services identified in the guid-
ance document on Bus Punctuality Improvement Partnerships by the Scottish
Government [12]; all of these depend on the headways. Two of these metrics
coincide with the metrics identified in [9] and [11].1 The third metric does not;
furthermore, it is ambiguously worded, so we formalise the two most plausible
interpretations, resulting in a total of four metrics. We then provide a formal
methodology for the evaluation of the four metrics that only requires headway
measurements. The methodology is statistical in nature, so we particularly focus
on providing approximate confidence intervals for the estimates of the metrics.
This is a challenge because the probability distributions of some of the quanti-
ties under consideration are unclear. The evaluation of the two new metrics in
particular is non-trivial, and we apply a range of statistical techniques including
time series analysis, bootstrapping [6] and Monte Carlo simulation. Finally, we
apply our methodology to a real-world set of headway measurements obtained
using low-frequency Automatic Vehicle Location (AVL) data provided to us by
the Lothian Buses company, based in Scotland and operating an extensive bus
network in Edinburgh.

The outline of the paper is as follows. In Section 2, we discuss the routes
considered and the datasets used. In Section 3, we formally define the three
bus punctuality metrics used by the Scottish Government. We discuss a time
series model for sequences of headway measurements in Section 4, and discuss
the bootstrapping method for constructing approximate confidence intervals in
Section 5. In Section 6, we evaluate the performance of two services operated by
Lothian Buses using the punctuality metrics of Section 3. Section 7 concludes
the paper.

2 Description and Visualisation of Routes and Data

In this section we explain the data processing that was applied to the raw AVL
data before using it to compute the punctuality measures of interest. We had
six datasets available: three for Route 100 (the AirLink service) and three for
Route 31. For Route 100, three bus stops are of interest: the airport, the zoo, and
George Street in Edinburgh city centre. For Route 31, the bus stops of interest
are East Craigs, the zoo, and the Scott Monument on Princes Street in the city
centre. The number of observations in each dataset is specified in Table 1.

The AVL data records the position of each bus in the fleet. Each bus has a
unique identifier called a fleet number, and the assignment of buses to routes
is captured in a schedule which is drawn up before the bus service begins for
the day. The bus schedule maps buses by fleet number to routes but it can

1 In particular, the metric of Section 6.1 is also mentioned in [9], while the related
notion of the headway coefficient of variation is preferred in [11]. The metric of
Section 6.2 is related to what is identified as an “Extreme-Value based” waiting time
measure in [9]; it is also related to the Earliness Index of [11].
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Table 1. Overview of the dataset sizes n1, . . . , n6. Measurements were collected be-
tween 28th January 2014 at 11:31:14 and 30th January 2014 at 12:38:31.

Route 100 (AirLink) 31

Stop Airport Zoo George St East Craigs Zoo Princes St

# measurements 127 126 128 102 102 105

change dynamically during the day in response to unpredictable problems such
as mechanical failures of vehicles, or unexpectedly high or low levels of passenger
demand. Thus the bus schedule serves as a guide for interpreting the AVL data
but is not always accurate because it has not always been updated to record all
unexpected events which occurred during the day. To address this problem, we
use our custom visualisation tool [16] to plot buses on a map of Edinburgh. This
allows us to check that they are serving the routes which we believe they are. If
this was not done, incorrectly assigned buses would invalidate the computation
of headway on routes. One Route 31 bus had to be identified manually. Fur-
thermore, we suspect that one or two of the measurements in the Princes Street
dataset correspond to wrongly assigned buses, but we have no evidence of this.

The schedule changes which make headway computation more difficult tend to
occur at the start and the end of the day, when bus services have low frequency
and the same bus is being used to serve several different routes. To eliminate
this potential source of error in our interpretation of the data we restricted our
observations to lie only between 9:00 and 17:00, when buses are frequent and
rarely subject to route reassignments.

We linearly interpolate the AVL measurement data down to a granularity of
one second between data points, and we detect departures from stops by dividing
bus routes into zones and counting a departure as occurring when a bus moves
from a zone containing a stop to the subsequent zone, using interpolated data.
The bus stop zones were chosen such that they did not contain traffic lights.

3 Punctuality Measures

As mentioned in the introduction, we focus on the punctuality metrics set out by
the Scottish government in [12]; we formalise these metrics in this section. Since
buses are subject to a variety of unpredictable influences such as the number
of passengers at bus stops and road congestion, the requirements are inherently
stochastic. The randomness of the system is modelled through the headway,
denoted by a random variable Y which takes values from R+ and is measured
in seconds. The kth dataset, k = 1, . . . , 6, is then a sequence (yk1, yk2, . . . , yknk

)
of realisations of Yk, where nk is as given in Table 1 (in the paper, we often
leave out the dataset index k for brevity). Let μ = E(Y ) and σ2 = Var(Y ). The
requirements are then as follows.

In §2.13 of [12], which is under the header “Starting point of the journey”, we
find the following. “For frequent services it is expected that on at least 95% of
occasions:
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(b) Realisation of the Z−process, Princes Street
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Fig. 1. Realisations of the process Z on 29th January 2014 for the airport bus stop
dataset (left) and the Princes Street dataset (right)

– Six or more buses will depart within any period of 60 minutes; and
– The interval between consecutive buses will not exceed 15 minutes.”

Using seconds as the granularity, the latter requirement can be expressed as
P(Y ≤ 900) ≥ 95%. We will call the probability P(Y ≤ 900) the Extreme-Value
Waiting Time (EVWT).

The former requirement is more intricate: given a sequence of headway mea-
surements (y1, y2, . . . , ynk

), define for t ∈ R+

u(t) = max

{
j :

j∑
i=1

yi ≤ t

}
and d(t) = max

{
j :

j∑
i=1

yi ≤ t− 3600

}
.

Let z(t) = u(t) − d(t), then z(t) denotes the number of buses that departed in
the hour prior to t. By construction, u(t) ≥ d(t) for all t so z is defined on R+.
Figure 1 depicts the evolution of z for two of the six datasets.

The requirement that on 95% of “occasions” there must be six or more buses
departures “within any period of 60 minutes” is slightly ambiguous; we will
consider two interpretations. First, if we focus on the word “any”, we could say
that an “occasion” represents a time interval [a, b] (a reasonable assumption
would be that a denotes an hour after the departure of the first bus and b
the departure of the last bus in a single day), and that z(t) needs to be at
least 6 at “any” point t ∈ [a, b]. The full requirement can then be expressed as:
P(∀t ∈ [a, b] : z(t) ≥ 6) ≥ 0.95. We will call this requirement the Day-Long
Buses-per-Hour Requirement (DLBHR).

The second interpretation is in terms of steady-state probabilities: for any
measurement (assumed to be conducted when z is in steady-state) the probability
that z is at least 6 needs to be at least 95%. To express this formally, define for
any Boolean expression A

1(A) =

{
1 if A,

0 otherwise,
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and

πz(j) = lim
t→∞

1

t

∫ t

0

1(z(τ) = j)dτ, ∀j ∈ N,

assuming that this distribution exists and is independent from z(0). Then the
latter requirement could be read as

∑∞
j=6 πz(j) ≥ 95%. We will call this require-

ment the Steady-State Buses-per-Hour Requirement (SSBHR).
Both the DLBHR and the SSBHR are hard to evaluate numerically, so we use

simulation. To do this, we assume that the observations of z are realisations of a
stochastic process Z; we then draw samples from Z to get probability estimates.

The final requirement is in §2.14 of [12], which is under the header ‘Subsequent
timing points ’. It reads as follows. “For frequent services, measurement will be
based upon Transport for London’s concept of Excess Waiting Time (EWT). This
is the difference between the average waiting time expected from the timetable,
and what is actually experienced by passengers on the street. TC standards specify
that EWT should not exceed 1.25 minutes.”

The “average waiting time expected from the timetable” is assumed to be 1
2μ,

2

while the average waiting that “is actually experienced by passengers on the
street” is given by 1

2 (μ
2 + σ2)/μ (see [7] or [14]). Hence, the Excess Waiting

Time equals 1
2σ

2/μ. The maximum, according to the standards of the Traffic
Commissioner (TC), is 1.25 minutes, or, equivalently, 75 seconds.

In summary, the EVWT, SSBHR and DLBHR are relevant only at journey
starting points (which in our case study refers to the airport for Route 100 and
to East Craigs for Route 31), while the EWT is relevant at all subsequent timing
points. However, the former three metrics are also evaluated at the other timing
points in Section 6 ; this is done for illustrative purposes.

4 Time Series Modelling

As we discussed in the previous section, the stochasticity of the headway be-
tween frequent buses is modelled using the random variable Y . To investigate
whether the four requirements are satisfied, varying degrees of knowledge of the
distribution of Y are needed. To calculate the EWT, we only need to know the
expectation and variance of Y . To calculate whether the requirement on the time
between subsequent bus departures is valid, we need to know the 95th percentile
(i.e., the value x such that P(Y < x) = 95%; the requirement is satisfied if x is
below 900). This is known if we know the quantiles and, hence, the entire prob-
ability distribution. To evaluate the requirements on the Z-process, we need to
know the distribution of vectors (Y1, Y2, . . .) of measurements. This would be as
hard as knowing the distribution of individual samples from Y if the samples
that make up the vector were mutually independent. We will argue later in this
section that they are not.

2 There is no official scheduled headway for the AirLink service because the timetable
for this service only says: “at least every 10 minutes”. For Route 31, the difference
between the timetabled and average observed headway is negligible (600 vs. roughly
580 seconds).
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(a) Normal Q−Q plot, Princes Street
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(b) Normal Q−Q plot, East Craigs
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Fig. 2. Normal distribution Q-Q plots for the Princes Street dataset (left) and the
East Craigs dataset (right)

In this paper, we assume that individual samples drawn from Y have a normal
(Gaussian) distribution. To visualise whether the normality assumption is valid,
we use normal Q-Q plots, i.e., plots of the quantiles of the empirical distribution
against those of the normal distribution. This is done in Figure 2 for two datasets.
A formal measure of the resemblance of an empirical distribution to the normal
distribution is the Shapiro-Wilk test statistic, which assigns a value between 0
and 1 to an empirical distribution such that high values of the statistic represent
close resemblance to the normal distribution. As the name suggests, it is used for
the Shapiro-Wilk test [5] in which the null hypothesis that the sample has been
drawn from the normal distribution is evaluated. The key result of the test is
its p-value, which is the confidence in the validity of the null hypothesis. Values
below 5% imply that the null hypothesis can be rejected at the 95% level. As we
can see in Table 2, this only happens for the East Craigs dataset because of its fat
(compared to the normal distribution) tails, especially on the left. Assuming that
Y is normally distributed, the probability of interest can be computed using the
normal cumulative distribution function, which is implemented in the statistical
package R [13].

To generate a sample (y1, y2, . . .), we need to incorporate the correlation be-
tween measurements. Figure 3(a) depicts an Autocorrelation Function (ACF)
plot for the dataset for the airport bus stop. The lag one autocorrelation is
especially visible. The correlation is due to at least three sources:

1. Dependence by construction. Consider three buses with μ time units between
departures; if the second is ε time units late, then the first headway will be
μ+ ε and the second headway μ− ε (negative correlation). This affects the
lag one AC.

2. If a bus is late, then the number of passengers at the stop will be greater
than normal, causing an additional delay. The next bus will need to pick
up fewer passengers and may start to run early (negative correlation). This
phenomenon is also mentioned in [1], and affects the lag one AC.
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(a) Headway process ACF, airport bus stop
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(b) Headway residual process ACF, airport bus stop

Fig. 3. ACF plots for the headway process (y1, . . . , yn) of the airport bus stop dataset
(left) and its residual process (ε̂1, . . . , ε̂n) after MA(1) fitting (right). The blue lines
represent the levels at which the ACs are significant at the 5% level. Note that with
20 ACs plotted, the expected number of false positives at the 5% level is 1 (this could
explain the seemingly significant lag 9 AC in both graphs).

3. Factors that cause headway variation may persist: if one bus is late due to
heavy traffic, then this traffic may have an influence on the next bus as well
(positive correlation). This affects all ACs, in a decreasing fashion as the lag
becomes bigger.

The lag one autocorrelation between the headways can be modelled using a
Moving Average MA(1) time series model:

Yi = μ+ εi + θεi−1, where εi ∼ N(0, σ2
ε ) ∀i = 1, . . . , n.

The parameter θ captures the three forms of lag one correlation. The estimates
of θ — denoted by θ̂ — for each of the six datasets are displayed in Table 2.
Since the values θ̂ are estimates, we include the confidence in the null hypothesis
that the true value θ equals 0. In each case, this is below 5%. Low values indicate
that the time series model has a low explanatory power.

The ε’s are commonly termed the error terms ; the estimates ε̂1, . . . , ε̂n of
these error terms based on a time series fit are called the residuals. We display
an ACF plot for the residuals of the MA(1) model in Figure 3(b); as we can see,
the lag one autocorrelation observed in Figure 3(a) is not present here. MA(1)
models are part of the wider class of Autoregressive Moving Average ARMA(p,q)
models. In general, these can be expressed as

Yi = μ+

p∑
j=1

φjYi−j +

q∑
j=0

θjεi−j , where εi ∼ N(0, σ2
ε ) ∀i = 1, . . . , n,

with θ0 = 1. The autoregressive terms (i.e., the ones that depend on the φj ’s) are
well-suited to capture the effect of the third source of correlation on the higher
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lag ACs. However, if the higher lag ACs are small then little explanatory power
is added while the effect of the MA-terms becomes harder to isolate, so the net
effect of adding these terms need not be positive. We have observed that MA(1)
provides the best fit for all datasets, except the Princes Street dataset for Route
31. In this case the Autoregressive AR(1) process is best, although the differ-
ence is rather small (in terms of the Akaike Infomation Criterion). The MA(1)
parameters θ and σε can be estimated using methods of the tseries package in
R. Given estimates of θ and σε, we can draw realisations of (Y1, Y2, . . .) by draw-
ing realisations of ε; methods for drawing standard normal random variables are
implemented in R and the SSJ package in Java.3 Realisations of Z can then be
drawn analogously.

Table 2. Estimates of θ. Note that the values for θ̂ are negative because the first
two sources of correlation mentioned in Section 4 apparently outweigh the third. The
p-values of the t-test for θ = 0 and the Shapiro-Wilk normality test for Y are given in
the final two columns.

# Stop θ̂ t-test p-value SW p-value

100

Airport -0.74903 < 2·10−16 0.1615

Zoo -0.68416 < 2·10−16 0.0912

George St -0.56441 2.22·10−16 0.4436

31

East Craigs -0.21045 2.07·10−2 0.0047

Zoo -0.36521 6.24·10−5 0.3439

Princes St -0.24497 2.62·10−3 0.1783

5 The Bootstrapping Method for Confidence Intervals

In the previous section, we described how to estimate the punctuality metrics
used by the Scottish government. The estimates are based on realisations of
(Y1, . . . , Yn), and will typically be different when the experiment is repeated. To
account for the variation in the estimates, the estimates are given in the form of
an interval estimate called the confidence interval. The interpretation of a (1−α)
confidence interval for a statistic is as follows: if the experiment is repeated N
times, then the number of confidence intervals that do not contain the true value
of the statistic is expected to be αN . Throughout this paper we use α = 5%.

Whether a confidence interval for a statistic can be computed analytically
(or approximated numerically) depends on how easy it is to express the proba-
bility distribution of the statistic. For some commonly-used test statistics their
distribution is known explicitly, which means that confidence intervals can be
constructed using methods implemented in common statistical tools such as R.
However, even when nothing is known about the probability distribution of the
test statistic, one can construct approximate confidence intervals using the boot-
strapping method. A broad variety of bootstrapping methods exist; we use two

3 www.iro.umontreal.ca/~simardr/ssj/indexe.html

www.iro.umontreal.ca/~simardr/ssj/indexe.html
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of them, namely the non-parametric method of case resampling (through Monte
Carlo simulation) and parametric bootstrapping.

5.1 Case Resampling (Monte Carlo)

Case resampling is one of the most general forms of bootstrapping; given a
sample x = (x1, . . . , xn) of independent and identically distributed realisations
of some random variable X , and a test statistic f that is a function of x, the
approach is as follows. Let b be some positive integer. For each j ∈ {1, . . . , b},
randomly draw n elements of x with replacement; let the new sample be xj and
fj = f(xj). Let f (i) be the ith smallest element obtained this way; an (1 − α)
confidence interval is then given by

[f (bα/2)+1, f (b(1−α/2))], (1)

assuming that bα/2 and b(1 − α/2) are integers (we would use the floor and
ceiling functions otherwise). The approximation gets better when the sample
(empirical) distribution more closely resembles the true distribution of X .

5.2 Parametric Bootstrap

Parametric bootstrapping works the same way as case resampling, with the
exception that we now have a stochastic model that allows us to draw random
samples from X . The bootstrapping samples xj , j = 1, . . . , n, are then obtained
directly from the distribution of X . We still use (1) as the confidence interval.

6 Results

In this section, we discuss the results for the four performance metrics and re-
quirements discussed in the previous sections: the Excess Waiting Time (EWT),
the Extreme-ValueWaiting Time (EVWT), the Steady-State Buses-per-Hour Re-
quirement (SSBHR) and the Day-Long Buses-per-Hour Requirement (DLBHR).
Each of these has its own subsection.

6.1 Excess Waiting Time

The Excess Waiting Time is relatively easy to evaluate: its computation only
requires knowledge of μ and σ. These basic statistics are displayed for each of
the six datasets in Table 3. Note that AirLink buses depart roughly every eight
minutes, whereas Route 31 buses depart roughly every 10 minutes. We note that
despite difference in means, the headway variance in related stops is very close.
Consequently, the EWT is higher for the AirLink service than for Route 31. We
further observe that the variance increases as the buses complete a larger part of
the route, and with it the excess waiting time, which is what one would expect
(as a bus completes its route it is increasingly subjected to sources of journey
time variation, e.g., passenger numbers at stops).
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Table 3. EWT for each dataset, together with estimates of μ and σ. Confidence
intervals were obtained using a parametric bootstrap with b = 10 000.

# Stop μ̂ σ̂ EWT EWT c.i.

100

Airport 477.2047 87.2564 7.9773 [5.182, 9.417]

Zoo 475.2381 129.0810 17.5301 [12.261, 22.226]

George St 473.5781 183.5627 35.5752 [26.087, 46.722]

31

East Craigs 585.7255 88.2538 6.6488 [5.261, 9.350]

Zoo 588.7157 119.5863 12.1458 [9.231, 16.954]

Princes St 568.8952 170.6736 25.6018 [19.156, 34.388]

In each dataset, the EWT is below the 75 second threshold. However, as men-
tioned in Section 5, the EWT estimates are subject to uncertainty because they
are based on random samples. The empirical EWT can be computed from the
sample variance and sample mean of a set of headway measurements (Y1, . . . , Yn).
However, to generate a bootstrapped confidence interval for this statistic, we can-
not use case resampling, as the measurements are correlated (although the effect
of the correlation would vanish in larger samples). To remedy this, we conduct
a parametric bootstrap using the time series model. The error terms ε are as-
sumed not to have autocorrelation, so we could either use case resampling using
the empirical dataset or draw samples directly from the normal distribution. The
confidence intervals in Table 3 were obtained using the latter approach. In all
datasets, the EWT is well below the 75 second mark with 95% confidence.

6.2 Extreme-Value Waiting Time

Table 4 summarises the results for the EVWT, i.e., the probability of a headway
of over 900 seconds. As with the EWT, an estimate for the EVWT is easy to
obtain; we only have to count the number of times this event occurred in the
empirical dataset. Since this number is approximately binomially distributed,
we can construct Clopper-Pearson confidence intervals [6] for the true probabil-
ity. These intervals are very broad, owing to the small number of samples. For
example, the upper bound of the confidence interval for the airport dataset is
2.863%, even though one would expect a much smaller probability based on the
fact that the variance of Y is very small (as can be seen in Table 3). Using the
assumption that Y is normally distributed, we can construct an estimate of the
EVWT by using the normal distribution function combined with the estimates
for μ and σ of Table 3. The results are in the ‘P(Y > 900)’ column of Table 4.
Note that for East Craigs, the probability will be underestimated because this
dataset differs so much from one with a normal distribution because it contains
many more extreme values than one would expect.

Based on the binomial confidence intervals, we can conclude that for all
datasets except George Street, the requirement on the EVWT is met with more
than 95% confidence. Based on the assumption of normality, the requirement is
met for all datasets.
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Table 4. Probability of over 15 minute headway for each dataset. The first two nu-
merical columns contain empirical estimates of these probabilities and exact (binomial
/ Clopper-Pearson) confidence intervals. In the final column we display the exact prob-
abilities based on the normal distribution.

# Stop EVWT EVWT c.i. P(Y > 900)

100

Airport 0 [0, 2.863] ·10−2 6.3166·10−7

Zoo 0 [0, 2.885] ·10−2 4.9976·10−4

George St 2.344·10−2 [0.486, 6.697] ·10−2 1.0089·10−2

31

East Craigs 0 [0, 3.552] ·10−2 1.8470·10−4

Zoo 0 [0, 3.552] ·10−2 4.6205·10−3

Princes St 0 [0, 3.452] ·10−2 2.6191·10−2

6.3 Steady-State Buses-per-Hour Requirement

An empirical estimate of the SSBHR for a given service is easy to obtain; in the
realisation of z in this dataset (as is visualised in Figure 1), count the amount of
time that z is lower than 6 and divide this by the total time. Formally, given a
realisation of z on [0, t], this means that the estimate π̂z(k) for the steady-state
probability of being in state k can be computed as

π̂z(k) =
1

t

∫ t

0

1(z(τ) = k)dτ. (2)

The results are given in Table 5; instead of just the percentage of time that
z spends below 6, the entire empirical steady-state distribution is given. For a
given day, we start observing z one hour after the first bus departure (we assume
that the process has approximately reached steady-state by then), and stop at
the final bus departure.

Table 5. Empirical steady-state distributions of z for each of the six datasets

# Stop π̂z(5) π̂z(6) π̂z(7) π̂z(8) π̂z(9)

100

Airport 0 3.431·10−4 0.460 0.540 0

Zoo 0 1.292·10−3 0.472 0.525 1.702·10−3

George St 0 3.336·10−2 0.483 0.454 2.927·10−2

31

East Craigs 3.001·10−2 0.753 0.215 1.573·10−3 0

Zoo 5.540·10−2 0.705 0.240 0 0

Princes St 8.765·10−2 0.675 0.233 5.167·10−3 0

Again, the empirical steady-state distribution is subject to variation, so we
want to construct confidence intervals for these values. We have two options.
First, we can use the time series model to generate long-run realisations of Z
and use this to construct a parametric bootstrapping interval. Unfortunately,
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we have found that the parametric model is not well-suited for estimating the
relatively small steady-state probabilities of low values of Z. Reaching the lower
values of Z is particularly influenced by tail behaviour that is not captured
well by the time series model, which tries to capture the dependence between
subsequent headways in a single parameter (even though this dependence may
vary throughout the day).
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Fig. 4. ACF plot (see also Figure 3) for
the series (Ij1, . . . , Ijm) for j = 7 for the
airport bus stop

Therefore, we aim to use case
resampling to construct a bootstrap-
ping confidence interval. The ques-
tion is what values to resample; ob-
viously, sampling from the realisations
(y1, . . . , yn) directly cannot be expected
to work well because this would ig-
nore the correlation between these re-
alisations and the behaviour of Z de-
pends on the behaviour of sequences
of realisations of Y . Hence, we ap-
ply a renewal-like argument to esti-
mate πz(j). Given a realisation of Z
on [0, t] and m, l ∈ N, we parti-
tion [0, t] into intervals (Ij1, . . . , Ijm) =
([Ij1, Ij1], . . . , [Ijm, Ijm]), when z equals

j, and intervals [Jj1, Jj1], . . . , [Jjl, Jjl],
when z does not equal j. It follows triv-
ially from (2) that

π̂z(j) =
1

t

m∑
i=1

(Iji − Iji).

The idea is then to resample from the vector (Ij1, . . . , Ijm) to construct a
bootstrapping confidence interval. The key observation is that the intervals
(Ij1, . . . , Ijm) do have autocorrelation, but 1) that this is significantly less than
for the headways and that 2) the effect of the correlation vanishes in large samples
while the autocorrelation between the headways has an impact on the probabil-
ity distribution of Z. The autocorrelation between the intervals for j = 7 for the
airport dataset is displayed in Figure 4.

The results of the bootstrapping procedure are displayed in Table 6. Note that
we have also resampled the values for [Jj1, Jj1], . . . , [Jjl, Jjl], to obtain the total
times; again the correlation between measurements of I and J vanishes asymp-
totically. The confidence intervals for different values of j are not independent
because they are implicitly based on the same samples. We observe that the
AirLink seems to always satisfy the SSBHR. However, based on the confidence
intervals for z = 5, we cannot conclude with 95% confidence for the Route 31
that the requirement will be satisfied. In fact, for Princes Street we can conclude
with 95% confidence that the requirement will not be satisfied. We note that
this is not necessarily a problem, as the SSBHR is only imposed on the starting
points of the routes.
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Table 6. Confidence intervals for steady-state distributions of z for each of the six
datasets, generated using bootstrapping with case resampling with b = 1000 000

# Stop π̂z(5) π̂z(6) π̂z(7) π̂z(8) π̂z(9)

100

Airport 0

[
2.875·10−4 ,

4.253·10−4

] [
0.434,

0.485

] [
0.513,

0.566

]
0

Zoo 0

[
7.660·10−4 ,

2.921·10−3

] [
0.439,

0.505

] [
0.493,

0.557

] [
6.200·10−4 ,

4.298·10−3

]

George St 0

[
1.524·10−2 ,

8.018·10−2

] [
0.437,

0.53

] [
0.374,

0.528

] [
1.450·10−2 ,

9.070·10−2

]

31

East Craigs

[
1.819·10−2 ,

5.060·10−2

] [
0.698,

0.807

] [
0.157,

0.288

] [
4.511·10−4 ,

3.502·10−3

]
0

Zoo

[
3.294·10−2 ,

0.101

] [
0.662,

0.747

] [
0.186,

0.32

]
0 0

Princes St

[
6.044·10−2 ,

0.13

] [
0.631,

0.717

] [
0.184,

0.291

] [
1.547·10−3 ,

1.580·10−2

]
0

6.4 Day-Long Buses-Per-Hour Requirement

Table 7 summarises the results for the DLBHR. Note that it is impossible to
estimate this measure from our current dataset without assuming an underlying
time series model, as we only have a single measurement of an entire day (29th
January). Hence, we draw realisations from Z by simulating the underlying time
series model despite the weaknesses of this approach discussed in Section 6.3.

Confidence intervals are easy to generate because in a sample of day-long
executions of Z, the number of days in which the process did not drop below 6
is binomially distributed. Hence, we can construct Clopper-Pearson confidence
intervals using R. We conclude that, assuming that our time series model is
correct, the requirement is met for all the AirLink stops with over 95% confidence
(although it just barely holds for George Street), and the requirement is met at
none of the Route 31 stops. This is not surprising; because the Route 31 service
operates slightly over six buses per hour, even small deviations from the schedule
cause a violation. The AirLink service, which runs about 7.5 buses per hour, is
much more robust in terms of the DLBHR.

To construct the Clopper-Pearson confidence intervals for Table 7, it is nec-
essary to fix a sample size beforehand. We have used 100 000 samples for the
results in Table 7, but this choice is typically non-trivial; to evaluate whether
the true probability is smaller than or greater than 95%, larger sample sizes
are needed when the true probability is closer to 95%. A solution is to use the
conceptual framework of hypothesis testing for statistical model checking [8]. In
particular, we can use sequential tests that are able to terminate the simulation
procedure as soon as enough evidence has been collected to make a statement
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Table 7. Whole day probability estimates, based on 100 000 samples. We also include
Clopper-Pearson confidence intervals and the sample sizes N needed by the SPRT to
reach a conclusion (which was correct in all of our experiments).

# Stop p̂ 95% C.I. SPRT N

100

Airport 1 [0.9999631, 1] 1399

Zoo 0.99999 [0.9999443, 0.9999997] 1399

George St 0.95256 [0.9512243, 0.9538694] 12701

31

East Craigs 0.00159 [1.352615, 1.857001] ·10−3 75

Zoo 0.00022 [1.378778, 3.330638] ·10−4 74

Princes St 0.00229 [2.003263, 2.606186] ·10−3 75

about whether the requirement has been satisfied. We use the Sequential Proba-
bility Ratio Test (SPRT) [15] with indifference level δ = 0.001 and β = α = 5%.4

As we can see in the table, the requirement is the hardest to check for George
Street; in all other cases, fewer than 10 000 samples were needed.

7 Conclusions

In this paper we have formalised the bus punctuality metrics used by the Scottish
government. We investigated the performance of two services operated by Loth-
ian Buses using these metrics. To do this, we have applied a number of statistical
techniques such as time series modelling, bootstrapping and the sequential test-
ing framework that is also employed in statistical model checking. Route 31,
which operates six buses per hour, does better in terms of Excess Waiting Time,
while the AirLink service, which runs over seven buses per hour, does better in
terms of the Steady-State and Day-Long Buses-per-Hour Requirement.

A key feature of our methodology is its automated nature. Currently, when
bus networks are subjected to a formal review by traffic regulators, the headway
data is gathered manually by inspectors who are physically sent to the selected
bus stops. Since AVL data is gathered systematically to aid live bus arrival time
prediction at bus stops, an automated methodology for using the data to evaluate
punctuality allows the traffic operator to detect potential shortcomings prior to
the review, meaning that a fine can be avoided. This is of particular interest to
Lothian Buses, which has been fined by regulators in the past [2].

As part of further research, we aim to improve our model by incorporating
the non-Gaussian tail behaviour of the East Craigs dataset. We also hope to
investigate possible time dependence (within the day) of θ and the error terms.
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600708. The authors thank Bill Johnston of Lothian Buses and Stuart Lowrie of
4 Note that the SPRT’s assumptions with δ = 0.001 are only just valid for the George
Street dataset; for a discussion of the effect of the parameter choice on the test’s
output, see [10].
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Abstract. We investigate the control problem of the optimal choice
of idle server (if any) for arriving customer in order to minimize
the mean system time (waiting time + service time). The considered
MAP/MAP/N queue consists of a common infinite buffer and multi-
ple identical servers with MAP service processes whose phases (internal
states) are known. Customers arrive according to a MAP (whose phase
is also known) and are served with work conserving policy. Idle servers
preserve their phases.

We transform the obtained infinite state optimization problem to a
finite state one and apply two optimization procedures, policy iteration
of finite state MDP and linear programming.

Keywords: Markov arrival process, Markov decision process, MAP/
MAP/N queue.

1 Introduction

Suboptimal control of multi-server systems may result in lower utilisation and,
consequently, higher system time, therefore finding the optimal control scheme
in these systems may be critical. Different types of queueing systems have been
analysed from the point of view of optimal control. Earlier works typically con-
sider Poisson arrival process and exponential service time, see e.g. [11] for a
survey. The work dealing with problems closest to our topic is probably that
of Efrosinin [5], which analyses several types of queueing systems including the
MAP/PH/K/B-K structure. Efrosinin uses Markov decision processes (MDPs)
to investigate various multi-server systems with a common finite queue and inde-
pendent service times. In our work we consider an infinite queue with correlated
arrival and service times, characterised by Markov arrival processes (MAPs).

The direct Markov chain description of the infinite queueing system contains
infinite states, for which the classical MDP and linear programming (LP) solution
techniques cannot be applied. With the use of the matrix analytic methodology,
however, we have derived two finite state formalizations of the optimization prob-
lem which can be used to find the optimal policy of the infinite system employing
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finite MDP solvers and LP, respectively. According to [6], the finite MDP for-
malization of the problem ensures that a pure stationary optimal control policy
exists. The LP formalization is an alternative description of the optimization
problem which is more efficient in certain cases.

The rest of the paper is organised as follows. In Section 2 we present the
necessary theoretical background on MAPs and MDPs. In Section 3 we provide
the matrix analytic description of the MAP/MAP/N system. Based on this
description we give the finite state MDP model and the LP description of the
problem in Section 4 and 5. Section 6 presents some numerical results, finally
Section 7 concludes the paper.

2 Background

In the following we will use the form M to denote matrices without and Mk

with an index. For their elements in position (i, j) we will use notations M i,j

and Mki,j respectively. Furthermore we will use � to denote a column vector
of 1s and ei to denote a column vector for which eij = δi,j , where δi,j is the

Kronecker delta.

2.1 Markov Arrival Processes

The standard description of a MAP is given using the square matrix pair
(D0,D1), whereD0+D1 is the infinitesimal generator of the background CTMC
[8]. D0 describes state transitions without arrival and D1 with an arrival. The
average arrival intensity of a MAP is μ = 1

v(−D0)−1�
, where v is the solution of

the system of linear equation v
(
(−D0)

−1D1 − I
)
= 0 and v� = 1.

2.2 Markov Decision Processes

Definition 1. Let us consider a process X(k) on a discrete time Markov chain
with state space S, a set of decisions A, a set of transition probability matrices
P = {Pa, a ∈ A} such that Pai,j = Pr(X(k + 1) = j|X(k) = i, ak = a), ∀i, j ∈
S, a ∈ A, k ∈ N and a set of cost functions C = {Ca(s), a ∈ A, s ∈ S}. We
say that the tuple (S,A, P, C) is a Markov decision process.

MDPs are powerful tools for optimal control of Markovian systems [11]. The
previous definition stands only for discrete time homogeneous MDPs and can be
generalised to continuous time and heterogeneous cases, but the above definition
is sufficient in the current discussion. We also note that S can be finite or infinite,
however the common algorithms are only applicable for the finite case.

Any function π(s) that assigns an a ∈ A to every s ∈ S is called a strategy.
The standard problem of MDPs is to find an optimal strategy, i.e. a π(s)∗ that
minimizes a given objective function. The objective function used in this paper
is the average cost per step in steady state, thus the optimal policy is

π∗ = argmin
π

Eπ

[
lim
k→∞

1

k

k∑
i=1

Cπ(X(i))(X(i))

]
, (1)
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or equivalently

π∗ = argmin
π

∑
s∈S

απ(s)Cπ(s)(s), (2)

where απ(s) is the steady state probability of being in state s for policy π.
The previous description stands for pure strategies (i.e. we always make the

same decision in a state with 1 probability). In general a convex combination of
pure strategies (called mixed strategies) can be considered as well, however, as
shown in [6], there always exists a pure strategy that gives the optimum for the
average cost per step problem.

3 Infinite State Description of the Queueing System

The service processes of the N servers of a MAP/MAP/N queue are stochastically
identical, but in the considered control problem apart of the pair of matrices
characterizing the MAP service process the phase of the individual servers are
also known and the available idle servers (if any) are distinguished based on this
information at customer arrival. The goal is to find the policy for assigning the
arriving customer with the optimal idle server.

The natural structured representation of the MDP characterizing the
MAP/MAP/N queue with this control option is presented below for N = 2.
Extension to more servers is quite straightforward, but would needlessly com-
plicate the description. We refer to the totality of states that have k customers
in the system as level k and denote state i of level k as (k, i). Levels for which
the number of customers in the system is higher than the number of servers are
called regular the others are called irregular. Let the MAP describing the inter-
arrival times be of size na and defined by (A0,A1) and the MAP describing
the service times be of size ns and defined by (S0,S1). We recall again that we
consider only work conserving schemes. Thus the MAP/MAP/2 queue can be
described as a continuous time Markov chain that has the standard structure of
a quasi birth-death (QBD) process [8] with infinitesimal generator

Q =

⎛⎜⎜⎜⎜⎜⎜⎝

L0 F 0 0 · · ·
B1 L1 F 1 0 · · ·
0 B2 L F 0
... 0 B L F

. . .

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , (3)

where

L0 = A0 ⊗ I(n2
s), F0 =

(
Δ(A1 ⊗ I(n2

s) | (I(na)−Δ)(S1 ⊗ I(n2
s))
)
,

F1 =

(
A1 ⊗ I(n2

s)
A1 ⊗ I(n2

s)

)
, B1 =

(
I(nans)⊗ S1

I(na)⊗ S1 ⊗ I(ns)

)
,
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L1 =

(
A0 ⊗ I(n2

s) + I(nans)⊗ S0 | 0
0 | A0 ⊗ I(n2

s) + I(na)⊗ S0 ⊗ I(ns)

)
,

B2 =
(
I(nans)⊗ S1 | I(na)⊗ S1 ⊗ I(ns)

)
, L = A0 ⊕ S0 ⊕ S0,

F = A1 ⊗ I(n2
s), B = I(na)⊗ S1 ⊗ I(ns) + I(nans)⊗ S1,

and I(x) is the identity matrix of size x.
As the system is work conserving (i.e. servers can only be idle, if the queue

is empty), decisions have to be made at the arrival of a new customer on levels
i = 0, . . . , N − 2, that is, when 2 or more servers are empty at the time of an
arrival. For the considered N = 2 case this means only the 0th level. The specific
control here is determined by diagonal matrix Δ. Assuming that the size of the
arrival MAP is na and the size of the service MAP is ns Δ has the following
special structure (for N=2):

Δi,i =

⎧⎨⎩
pj,k,k = 0.5, if i = (j − 1) ∗ n2

s + (k − 1) ∗ ns + k,
pj,k,l, if i = (j − 1) ∗ n2

s + (k − 1) ∗ ns + l,
1− pj,k,l, if i = (j − 1) ∗ n2

s + (l − 1) ∗ ns + k,

where j = 1, . . . , na and k, l = 1 . . . , ns, with k < l. Parameter pj,k,l is the
probability, that we choose the first server if the MAP of the arrival is in phase
j, the MAP of the first server is in phase k, and the MAP of second server
is in phase l. From this 0 ≤ pj,k,l ≤ 1. If both servers are in the same state
we choose both with the same 0.5 probability. Otherwise, the only constraint
is that pj,k,l = 1 − pj,l,k for any given j, k, l set. This constraint corresponds to
the assumption that the probability of choosing the server in phase k does not
depend on whether it is labeled first or second.

The steady state solution of the system is partitioned according to the levels
as α =

(
α0 α1 α2 . . .

)
. Due to the level independent behaviour of (3) for i ≥ 2

we have
αi = α2R

i−2, (4a)

where R is the minimal non-negative solution of the quadratic matrix equation
[8]

0 = F +RL+R2B.

Matrix R can be determined using efficient numerical methods [8]. Based on
(3) and using matrix R, the irregular part of the steady state distribution is the
solution of the linear system

(
α0 α1 α2

)⎛⎝L0 F0 0
B1 L1 F1

0 B2 L+RB

⎞⎠ = 0, (4b)

with normalization condition

α0�+α1�+α2 (I −R)
−1

� = 1. (4c)



Markov Decision Process and Linear Programming 183

Using the steady state distribution (4c), the mean number of customers in
the system can be expressed as

E (n) =

∞∑
i=0

iαi� = α1�+

∞∑
i=2

iα2R
i−2

� (5)

= α1�+ 2α2 (I −R)
−1

�+α2R (I −R)
−2

�,

and, applying Little’s law, the mean system time can be calculated as

T =
E (n)

λ
, (6)

where λ is the expected value of the inter-arrival time. Based on the connection
between T and E(n) it is clear that optimizing one is equivalent with optimiz-
ing the other. In the following we will use E(n) as objective function in the
optimization.

These equations can be easily extended for the N > 2 case. Doing so we get

E (n) =

N−1∑
i=1

iαi�+NαN (I −R)
−1

�+αNR (I −R)
−2

�. (7)

Equation (5) and (6) is relatively simple, however in the expression of the
αi vectors terms including p−1

j,k,l and (1 − pj,k,l)
−1 will appear. This makes the

straightforward optimisation a non-linear problem.

4 Finite State MDP Formalization of the Problem

In this section we present a finite state MDP formalization of the queueing system
control problem. This formalization is based on the following observations:

– Decisions have to be made only on levels 0, . . . , N − 2.
– The objective function of the optimization is (7), which has a similar form

to the objective function of the MDP (2) and contains only αi, i = 1, . . .N .

Using these our goal is to make an MDP for which (2) (the objective function of
the MDP) is identical to (7) (the objective function of the optimization problem).
To achieve this we use the following method.

In the first step we apply the simple transformation: P = 1
γQ + I, where

γ = max
i,j

|Qi,j |, i.e., the absolute value of the element of Q with the largest

absolute value. This ensures that P is a valid DTMC transition matrix.
Furthermore αQ = 0 (where α is the steady state probability vector of Q), thus
αP = α 1

γQ+αI = α, consequently α is the steady state probability vector of the
new DTMC as well. Note that this transformation is the same as the one used
in randomization [7]. It is easy to see that this DTMC defines the S,A, P sets
of an infinite state MDP, where decisions correspond to possible server choices
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upon arrival. For example in the two server example: A = {1, 2}, and if i =
(j − 1) ∗ n2

s + (k − 1) ∗ ns + l, then pj,k,l = 1 if π(i) = 1 and pj,k,l = 0 if
π(i) = 0, in other words P1 is P with pj,k,l = 1, ∀j, k, l and P2 is P with
pj,k,l = 0, ∀j, k, l. Note that the resulting DTMC is a discrete time QBD with
Bi

′ = 1
γBi, Fi

′ = 1
γFi and Li

′ = 1
γLi + I for all i, where Mi

′ denotes the
discrete time pair of the continuous time QBD’s Mi matrix.

In the second step we change the infinite state regular part to a finite set of
states and transitions while keeping the steady state probabilities of the irregular
part unaffected. This step will be discussed in more detail shortly.

In the third step we assign the costs to the states based on objective function of
the original optimization problem (7). This assignment is fairly straightforward.
The cost of state i of level k is

C(k,i) =

⎧⎪⎨⎪⎩
k, for k = 0, 1, . . . , N − 1,

ei
T
(
N (I −R)−1 +R (I −R)−2

)
�, for k = N,

0, otherwise.

(8)

We would like to stress that the dynamic behaviour of the MDP, i.e., the
cost collected in a state of the MDP, does not have to be proportional to the
waiting time accumulated in the corresponding state of the CTMC. The only
important thing is that the irregular part of the MDP has the same steady state
probabilities as the irregular part of original CTMC. Consequently, using the
appropriate costs, the MDP has the same objective function - thus the same
optimum - as the original problem.

The main question of the above procedure is how to carry out step two, i.e.,
how to substitute the infinite state regular part of the DTMC so that the steady
state probabilities of the irregular part remain the same. For this we need to
introduce two new matrices, G and H. Gi,j shows the probability that, starting
from (k, i), k > N we reach k − 1 and the first time this occurs we arrive in
(k − 1, j), i.e.,

Gi,j = Pr(τ < ∞, X(τ) = (k − 1, j)|X(0) = (k, i)), (9)

where τ is the time of the first arrival to level k−1. Hi,j is the the expected time
(number of steps) of reaching level k − 1 (k > N) if we start in (k, i) supposing
we arrive in phase (k − 1, j), multiplied by Gi,j , i.e.,

Hi,j = E[τIX(τ)=(k−1,j)|X(0) = (k, i)], (10)

where again τ is the time of the first arrival to level k−1 and I is the indicator
function. It can be shown that G and H are the solutions of

B′ + (L′ − I)G+ F ′G2 = 0 (11)

and

G+ (L′ − I)H + F ′GH + F ′HG = 0, (12)
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respectively. Equation (11) can be solved numerically using efficient numerical
methods, while (12) is a Sylvester equation, which is linear in the elements of
H thus can be solved analytically if G is known. More details, including the
derivation of the equations and the applicable numerical procedures for (11) can
be found in [8].

Using G and H a finite state equivalent of the infinite QBD can be given.
The irregular part of the DTMC consists of the 0th to Nth level. These are left
unchanged during the transformation process. The regular part is substituted by
M2 states, where M is the size of one level. The probability of the event that the
process, starting from (N, i) goes up to any phase of level N +1 in the next step
and reaches level N again in phase j for the first time (after possibly multiple
transitions on higher levels) is

bi,j =

M∑
k=1

F ′
i,kGk,j . (13)

Let the random variable τi,j be τi,j =
(
τIX(τ)=(k−1,j)|X(0) = (k, i)

)
/Gi,j . Note

that E[τi,j ] =
H i,j

Gi,j
. For solving the optimization problem we only have to know

the steady state probabilities of states on the irregular levels, therefore we do not
need to distinguish states of the regular levels, thus we can modify the system the
following way. From level 0, . . . , N to level 0, . . . , N transitions happen as before.
We substitute the regular part (levels N+1 and above) of the DTMC with a level
ofM2 states denoted by si,j , i, j = 1, . . . ,M . From state (N, i) transition to state
si,j happens with bi,j probability. If the process reaches si,j it transitions to (N, j)
after staying in si,j for τi,j time. This structure has the following interpretation.
The instant the process would enter the regular part of the DTMC we determine
the first state it arrives to upon first reaching the irregular part again. Instead
of moving on to a state of the regular part the process moves to an intermediate
state where it stays for the random time which is the same as the time needed in
the original DTMC to go back to level N conditional on the fact that it arrives
to state (N, j). It is clear, that the substitution does not make a difference
from the irregular part’s point of view. This new structure, however, is not
Markovian as the distributions of transition times from si,j are not memoryless.
Processes where transition probabilities are according to a transition matrix,
but transition times may have a general distribution are called semi-Markov
processes. For semi-Markov processes the steady state distribution depends only
on the expected value of the transition times. For proof see e.g. [3]. Thus, without
affecting the steady state probabilities of the irregular part we can change τi,j

to the geometrically distributed τ ′i,j if E[τ ′i,j ] = E[τi,j ] =
H i,j

Gi,j
. This geometrical

distribution can be achieved using a feedback in si,j with probability qi,j and

transition to (N, j) with probability 1 − qi,j , where qi,j =
H i,j−Gi,j

H i,j
. Now the

modified system is a DTMC and its irregular part has the same steady state
probability distribution as the original CTMC. In the following we will denote the
transition matrix of this DTMC by P ∗. Matrix P ∗ coupled with the previously
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defined costs and actions form a finite state MDP that can be optimized using
standard methods (e.g. linear programming, value iteration, policy iteration) and
has the same optimal strategy and optimal cost as the original infinite continuous
time system.

Using the description of Section 3, the size of level 0, . . . , N is nan
N
s each,

while the size of level N +1 is (nan
N
s )2 consequently the size of P ∗ is Nnan

N
s +

(nan
N
s )2. To improve the speed of the optimization this size has to be reduced,

which can be done using two methods. The first one is the reduction of the
original QBD, the second one is the reduction of the part used for substituting
the regular part of the QBD.

We will not discuss the first method in detail just present its basic idea. It
is easy to see, that the labelling of the servers is arbitrary, i.e., while in the
description in Section 3 the phase of every server is followed individually, it is
enough to keep track of the number of empty and busy servers at each point
(and the phase of the arrival process of course). Consequently the irregular levels
(where the buffer is empty) can be described using a set of 2ns+1 numbers. The
first element of the set indicates the phase of the arrival and can be between 1
and ns, the next ns elements show the number of empty servers in each of the
service phases, the final ns elements show the number of occupied servers in each
of the service phases. As there are a total of N servers, the sum of the last 2ns

elements of the set is N . E.g. if the queueing system has three servers (N = 3),
the service process is described by a size 3 MAP and the arrival process by a
size 4 MAP, then (4|0, 1, 1|0, 0, 1) denotes the state where the arrival process is
in phase 4, there are two empty servers, one in phase 2 one in phase 3, and there
is one working server in phase 3. It can be easily seen that there are a total
of na

((
2ns

N

))
different configurations for the set, where

((
n
k

))
=
(
n+k−1

k

)
is the

k combination of n with repetition. Using the above idea a more efficient QBD
description can be constructed where each state of the irregular part corresponds
to a specific configuration of the set. This construction is done by combining
multiple equivalent states into one, which is called lumping and is a standard
method for state space reduction. The previously described method of making a
finite state MDP from the infinite QBD can still be applied without any changes.
Using the same thought process the finite state substitute of the regular part

can be reduced to
(
na

((
ns

N

)))2
states.

The second improvement can be made by realizing that there are a few con-
straints that the regular part of the original CTMC and its substitute has
to satisfy. If these requirements are met, the size of the substituted part and
its exact structure are not important. These constraints come from αQ = 0,
N−1∑
i=0

αi� + αN (I −R)− � = 1 and the general Markovian constraints of a

CTMC. For simplicity’s sake we discuss the N = 2 case, from which the general
case can be easily derived. Let us consider the modified CTMC with generator
Q̂ that has the following structure
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Q̂ =

⎛⎜⎜⎝
L0 F 0 0 0
B1 L1 F 1 0
0 B2 L F ∗

0 0 B∗ L∗

⎞⎟⎟⎠ . (14)

We have to keep the steady state probabilities of level 0, 1, 2 the same, but
the new part can have a different α∗

3, α∗
3 	= α3 steady state probability vector.

First of all, from α∗
� = α� = 1 using α3 = α2R we get

α∗
3� = α2R(I −R)−1

�. (15)

From αQ = 0 we have α1F1 + α2L + α3B = 0 and from α∗Q̂ = 0 we have
α1F1 + α2L + α∗

3B
∗ = 0. By subtracting these equations from each other and

using αi = α2R
i−2 we get

α∗
3B

∗ = α2RB. (16)

Furthermore from α∗Q̂ = 0 and Q̂� = 0 we get

α2F
∗ + α∗

3L
∗ = 0, (17)

(B2L+ F ∗)� = 0, (18)

(B∗ +L∗)� = 0. (19)

Finally, we have the standard sign constraints, i.e. all elements of B∗, L∗, F ∗

are non-negative, except for the diagonal of L∗ which is strictly negative.
These constraints give a constrained linear equation system if we first tie α∗

3.
We can assign values to α∗

3 randomly or e.g. make all the elements equal. This
system can be solved using linear programming if a solution does exist. In general
it is not guaranteed that a constrained linear equation system has a solution,
however the method presented previously in this section gives one where the size
of L∗ is M2 ×M2 if M is the size of the last irregular level. Thus one possible
method is to start by trying to find a solution to the above equations with an
L∗ of size n×n, n = 1 (the size of B∗ and F ∗ are n× 1 and 1×n respectively)
and increase the size until the system can be solved or n = M2 is reached. After
this the optimization problem can be solved (after transforming the CTMC with
generator Q̂ into a DTMC) using standard MDP methods.

5 Linear Programming Solution of the Problem

In this section we give a method for solving the queueing system control opti-
mization problem using linear programming (LP). First we mention that linear
programming is one of the classical ways to optimize a finite state MDP. As
such, the last step of the optimization after the transformation of the infinite
state MDP to a finite state one could be using LP to find the optimal strategy.
In this section, however, we make use of the flexibility of LP to describe the
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problem without forming a finite MDP, although the description will be based
on the LP formalization of MDP optimization. Consequently we first present the
LP formalization of the general average cost MDP problem. We will follow the
same thought process as in [1] with different notations. After that we make the
necessary customization for the problem at hand.

Let us take an MDP with the previously introduced (S,A, P, C) notation, but
consider also mixed strategies. In case of a mixed strategy decision a ∈ A is
made at state i ∈ S with probability ui,a, i.e., u(i, a) = Pr(ak = a|X(k) = i),
with

∑
a∈A

u(i, a) = 1, ∀i ∈ S. The goal is to optimize u(i, a) for all i ∈ S, a ∈ A

according to the given objective function. Let us define U such that U i,a =
u(i, a), ∀ i ∈ S and a ∈ A and Pu such that Pui,j =

∑
a∈A

u(i, a)Pai,j . Now

the objective function in (2) changes to
∑
i∈S

α(u)i
∑
a∈A

U i,aCa(i). From these the

optimization problem can be given in a form that is similar to the standard LP
form as

min
∑
i∈S

αi

∑
a∈A

Ui,aCa(i),

s.t. α(Pu − I) = 0,

U� = �, (20)

where the variables are the elements of α and U . This problem is non-linear
because Pu depends on the elements of U , thus the products of the elements of
α and U appear in the constraints, however, it can be linearised by introducing
new variables xi,a = αiui,a. That is, xi,a is the steady state probability that the
process is in state i and decision a is made. Let us introduce matrix X with
Xi,a = xi,a, ∀ i ∈ S and a ∈ A and denote its ith column by X∗,i. Notice that
(X�)T = α. As such the optimization problem can now be defined as an LP as

min
∑
i∈S

∑
a∈A

Xi,aCa(i),

s.t.
∑
a∈A

XT
∗,aPa − (X�)T = 0,

∑
i∈S

∑
a∈A

Xi,a = 1,

Xi,a ≥ 0, ∀i ∈ S, ∀a ∈ A. (21)

Here Xi,aPai,j is the steady state probability that the process is in state i,
decision a is made, and as a result the process transitions to state j.

As mentioned before, the above introduced LP could be used to solve the finite
state MDP of Section 3. Instead we make use of the fact that the LP optimiza-
tion is a general purpose tool unlike methods that are particularly developed
to solve MDPs, e.g. value and policy iteration. The MAP/MAP/N optimization
problem can be formalized using LP by noticing that equations (4b) and (4c)
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(more precisely their N server generalizations) are sufficient constraints to solve
the optimization problem. To be consistent with the previous discrete time de-
scription we use the discrete time counterpart of (4c), i.e., P = 1

γQ+ I just as
in Section 3. Thus, for the N = 2 case for example

α =
(
α0 α1 α2

)
, (22)

P =
1

γ

⎛⎝L0 F0 0
B′

1 L′
1 F ′

1

0 B′
2 L′ +RB′

⎞⎠+ I. (23)

These can be substituted into (21). The only difference is in the last normaliza-

tion constraint. This changes to α0�+α1�+α2 (I −R)
−1

� = 1 according to
(4c). Finally the cost vector is the same as in Section 3, thus, when the index of
the last state of level i is ki, the LP problem is

min
∑
i∈S

∑
a∈A

Xi,aCa(i),

s.t.
∑
a∈A

XT
∗,aPa − (X�)T = 0,

k1∑
i=1

∑
a∈A

Xi,a +

k2∑
i=k1+1

k2∑
j=k1+1

∑
a∈A

Xi,a(I −R)−1
i−k1,j−k1

= 1,

Xi,a ≥ 0, ∀i ∈ S, ∀a ∈ A. (24)

As in the previous section P1 and P2 can be obtained by using substitu-
tion pj,k,l = 1 and pj,k,l = 0 respectively ∀j, k, l. If, for a given i ∈ S and
a1, a2, a1 	= a2 we get ui,a1 , ui,a2 > 0, then the optimization gives a mixed strat-
egy as optimum. In that case choosing either of the decisions with 1 probability
gives the same optimum. The significance of enabling mixed strategies is that
it makes the optimization an ordinary LP problem instead of the integer LP
problem that results from considering only pure strategies.

6 Numerical Experiments

6.1 Computational Complexity

The computational complexity of building up the QBD, finding its G and H
matrices and transforming the problem to finite state is negligible compared to
the one of the solution of the resulting MDP or LP problem, therefore we only
consider complexity of the solution the finite MDP and LP.

The complexity of the basic MDP solution methods is summarized in [9]. Let
|S| be the number of states and |A| be the number of possible decisions. We
upper bound the number of decisions by |A| = ns, which means that there is
an empty server in every phase for all the states of the MDP. Policy iteration
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has a complexity O(|S|3) per step and requires O(|A|) steps in the average case.

As seen in Section 4 |S| = na

((
2ns

N

))
+
(
na

((
ns

N

)))2
- or less, if the substitute

of the regular part can be further reduced. The second term of the expression
is usually higher than the first one, for the computationally tractable cases the
difference is 0− 2 orders of magnitude.

For the LP approach the number of variables is |X | = na

((
2ns

N

))
ns and the

number of constraints (from (24)) is nc = |X | + na

((
2ns

N

))
+ 1. There is a vast

number of algorithms for solving LP problems. The simplest and most frequently
used are probably the simplex and the revised simplex methods. For the latter the
average computational cost is O(|X |3) (see e.g. [10]). Using more involved meth-
ods this cost can be reduced. See [4] for example for a comprehensive summary.

In general the two methods have similar computational costs. The MDP ap-
proach is better if the substitute of the regular part can be reduced, while the LP
approach is more efficient if this is not possible and a more involved LP solver
is used.

6.2 Numerical Examples

M/MAP(2)/2 Systems. First we discuss the simplest interesting case, the
M/MAP(2)/2 queue, in which arrivals happen according to a Poisson process,
and the service is carried out by two servers that have the same order 2 MAP
service time. The first part of this segment is the reiteration of the results of the
corresponding section in [2].

In the M/MAP(2)/2 queue there is one simple question to be answered: If
both servers are idle, one of them is in phase 1 and the other one is in phase
2, which server has to process the next arriving customer to have a minimal
average system time? In other words, what is the optimal value of p1,1,2? It
seems natural, and from the first part of the paper we already know, that a pure
strategy is optimal, i.e., p1,1,2 is either 1 or 0. The intuitive answer is to choose
the server which can serve the customer faster. This means that we compare
the mean service time starting from phase 1 and phase 2, i.e., e1

T (−S0)
−1
� and

e2
T (−S0)

−1
�, and if the first expression is smaller, we choose the server in phase

1 (p1,1,2 = 1), otherwise the one in phase 2 (p1,1,2 = 0).
This greedy decision can be motivated by the fact that we would like to serve

the customer as fast as possible to have an idle queue as soon as possible. For the
examined system, however, the numerical results show that the opposite choice
is better, i.e., it is better to choose the server which serves the customer slower.
This counter-intuitive result can be interpreted the following way. If we use the
faster server for the first customer, the probability of finishing the service before
a new arrival is high, as the mean service time of the faster state is smaller than
the mean inter-arrival time of a new customer. Upon service there is a chance
that the server moves to the slower state, leaving the system with two servers
in the phase with higher service time. In this state there is a higher chance
that more than 2 consecutive customers arrive before the first customer can be
served, which leads to a higher average system time. In other words, assigning the
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customer with the faster server leads to a more deteriorated state after service
completion, while assigning the customer with the server in the slower phase,
there is a chance that the server will move to the faster state upon service, thus
the state of the system improves. One can think of this effect as the repair of
the server at the cost of a slower service. Our extensive numerical investigations
suggest that choosing the server with higher service time is optimal for MAP(2)
servers regardless of their other characteristics and the intensity of arrivals.

A natural question to ask is what does the possible gain, i.e., the magnitude
of the difference between the worst and best strategies, depend on. In other
words, how can we characterize systems where the best strategy is significantly
better then the worst. In the following we denote by ga the absolute value of the
maximum gain, and by gr its ratio to the cost of the best strategy. That is, ga =

E−
π (n)−E+

π (n), gr =
E−

π (n)−E+
π (n)

E+
π (n)

, where Eπ(n) is the mean number of customers

for policy π, and π+ and π− are the optimal and worst strategy respectively.
According to our experiments, classic statistical measures of the service MAP
such as its autocorrelation or the moments of its marginal distribution cannot
be used to characterize the gain in the general case. This can be understood by
knowing that different MAPs can have the same exact statistical properties. We
have found that it is best to consider the following simple characteristics:

– The ratio of the mean arrival (λ) and service rate (μ (see Section 2.1 for
computation)), r1 = λ

μ . (To have a stable queue r1 < N has to hold.)
– The ratio of mean service times of the server starting from the different

phases of the MAP, i.e. r2 = max(m1,m2)
min(m1,m2)

, with m1 = e1
T (−S0)

−1
�, m2 =

e2
T (−S0)

−1
�.

– The steady state probability vector of the phases embedded to the arrivals
of the service MAP, v = {v1, v2} (see Section 2.1).

Intuitively the higher r1, the bigger the difference is. This is true for the absolute
gain ga but not for the relative gain gr. Figure 1 shows the relative gain versus
the arrival intensity for the M/MAP(2)/2 queue with service MAP

S0 =

(
−1/10 1/20

0 −100

)
, S1 =

(
1/20 0
5 95

)
, (25)

It can be seen that gr has a maximum around λ ≈ 0.44. Based on our exper-
iments this behaviour is typical, i.e., the relative gain is the highest for medium
load. Intuitively, the higher r2, the bigger the gr is, as there is a more significant
difference between the possible decisions. This time the intuition is correct. Fi-
nally we found that gr can get higher if the MAP is more ”balanced”, i.e. both
elements of the v embedded probability vector are high enough.

The above observations for the M/MAP(2)/2 case are reflected in Figure
2, where 1000 service MAPs with a given mean and completely random ele-
ments were taken and their relative gains gr were plotted against flexibility
f that represents the randomness due to the embedded stationary vector and
the difference of the mean service times starting from different initial states as
f(r2, v) =

√
(r2 − 1) ∗ v1 ∗ v2. The correlation between f and gr was ≈ 0.98.
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Fig. 2. Relative gain in mean system
time as the function of flexibility f

We examined more special types of random MAPs as well, the correlation be-
tween f and gr was always > 0.9.

More Complex Systems. Intuitive understanding of the optimal control of
more complex systems becomes increasingly hard. Again we refer back to [2],
where it was demonstrated that for M/MAP(3)/2 queues already the optimal
strategy cannot be explained as simply as for the M/MAP(2)/2 case. For example
let us take the service MAP with

S0 =

⎛⎝−1 0 0
0 −2.3 0
0 0 −100

⎞⎠ , S1 =

⎛⎝ 0 1 0
0 0 2.3
100 0 0

⎞⎠ .

For λ = 1.5 the optimal strategy is to always prioritize the server in phase 1 and
choose the server in phase 3 over the one in phase 2. For λ = 1.2 the priority
of phase 2 and phase 3 are swapped. The r1, r2, v factors introduced for the
M/MAP(2)/2 queue can still be used to roughly evaluate the system.

For N > 2 using simple intuitive rules gets even harder. In these cases the
optimal server choice can even depend on the phase of the servers that are occu-
pied at the time of a new arrival. For example let us consider an M/MAP(3)/3
queue with arrival intensity λ = 3.6 and service MAP

S0 =

⎛⎝−0.76 0 0
0 −10 0
0 0 −1

⎞⎠ , S1 =

⎛⎝0 0.76 0
0 0 10
1 0 0

⎞⎠ .

If the queue is on level 1, the empty servers are in phase 1 and 3 and the occupied
server is in phase 1, the optimal decision is to process the new customer by the
server in phase 3. However if the occupied server is in phase 3, the optimal choice
is the server in phase 1.

Finally, we have to stress that the intuitive explanations of the optimal control
are only conjectures based on numerical experiments, and that in spite of the
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relatively efficient optimization techniques the proposed methods can only be
used for relatively small systems (depending on the size service and arrival MAPs
for N = 2, . . . , 10 servers) due to the multiplicative increase of the state space.

7 Conclusion

In this paper we presented two procedures for finding the optimal policy in
MAP/MAP/N queues. Both procedures are based on the matrix analytic meth-
ods, which make an efficient treatment possible. Using these procedures we
demonstrated some of the characteristics of the MAP/MAP/N systems. We
showed that even the simplest queues have counter intuitive behaviour and il-
lustrated the lack of simple intuitive rules in case of more complex systems (e.g.
N ≥ 3), which makes the use of a computational approach is necessary.
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Abstract. Information security decisions typically involve a trade-off
between security and productivity. In practical settings, it is often the
human user who is best positioned to make this trade-off decision, or in
fact has a right to make its own decision (such as in the case of ‘bring your
own device’), although it may be responsibility of a company security
manager to influence employees choices. One of the practical ways to
model human decision making is with multi-criteria decision analysis,
which we use here for modeling security choices. The proposed decision
making model facilitates quantitative analysis of influencing information
security behavior by capturing the criteria affecting the choice and their
importance to the decision maker. Within this model, we will characterize
the optimal modification of the criteria values, taking into account that
not all criteria can be changed. We show how subtle defaults influence
the choice of the decision maker and calculate their impact. We apply
our model to derive optimal policies for the case study of a public Wi-Fi
network selection, in which the graphical user interface aims to influence
the user to a particular security behavior.

1 Introduction

People continuously make information security decisions: should I use this wire-
less, should I put this person’s USB stick in my laptop, how do I choose and
memorize passwords? Almost always, the decision involves a trade-off between
security and other concerns, such as being able to complete an important task
or being able to easily do something that otherwise could be cumbersome. The
decisions are often complex, with several objectives to be considered simultane-
ously, and the optimal decision may very much depend on the specific situation:
while using a stranger’s USB stick is not advisable, the importance of the job to
be completed and/or knowledge about the owner of the USB stick may make it
advisable to put the USB stick in one’s laptop, despite the associated information
security risks.

In situations such as above, a simple compliance policy (such as, not to al-
low USB sticks at all) would be suboptimal. Instead, one would want to allow
some freedom for the owner of the laptop to decide the best course of action.

A. Horváth and K. Wolter (Eds.): EPEW 2014, LNCS 8721, pp. 194–208, 2014.
c© Springer International Publishing Switzerland 2014
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In general terms, unless one can specify a compliance policy that is optimal un-
der all possible circumstances (which is a rare real-world case), there is room
for improvement by allowing the user to make the final decision. There exist
other situations, in which the user should play a role in the security decision
making. For instance, in case of BYOD (bring your own device) [7], where the
device owner uses their own device for work-related activities, the fact that the
user owns the device puts certain restrictions on what the employer can decide
without the owner’s input. However, an employer might still want to influence
the decisions of its employees, since the employer is impacted by these decisions.

In all these situations the end user is involved in the information security
decision making, and is in fact responsible for the final choice. Then, and this is
key for this paper, it may be advisable that service providers (telecoms, online
banks), device vendors, employers, or other parties are able to influence the
decision making, without restricting the end user. In the literature, this is often
referred to as nudging [22] implemented widely in healthcare and social policies,
see e.g. [21]. Nudging leaves the choice with the user, but aims to influence
the decision so that the user is more likely to make a beneficial decision, e.g., by
presenting choices in a particular manner that aims to impact the choice a person
ends up making. There are many aspects to nudging that deserve discussion, but,
in this paper, we do not debate the specific approach, but aim to derive results
for influencing in general.

In [17] a first formalization of the concept of influencing was provided assuring
it is as general as possible, but at the same time is intuitive and useful. Ear-
lier, Heilmann [11] presented schematically the nudge success conditions from
perspective of influencing autonomous system, also called System 1 (and not re-
flective, also called System 2) [13], and showed the difference of these conditions
for different types of nudges with respect to taxonomy of Bovens [4].

In this paper, we provide a model for influencing human decision making
in security contexts. A model aim to analyze users’ decisions and behavior in
order to be able to define better security policies and procedures from both an
employer and its employees points of view. In particular, it gives an opportunity
to an employer to influence decisions of its employees; however, leaving the final
choice and responsibility for the decision to the employee who made it.

We believe such a model is necessary to enable a solid quantitative evaluation
of influence. In particular, we want to be able to apply mathematical optimiza-
tion to decision making as well as to the decision on how to influence, and for
that we need a rigorous underpinning and understanding of the problem at hand.

Finally, we want to be able to evaluate the level of success of influencing
behaviors, be it experimentally or theoretically–again, a formal model allows us
to define the experimental or theoretical setting under which we carry out the
evaluation. This paper will not reach all these goals, but provide the underlying
quantitative model for human decision making evaluation for security decisions.

Our model is based on a well-known practical approach to modeling human
decision making, multicriteria decision analysis, see e.g. [2], in particular, on
multiattribute utility theory [15] presented in Section 2. We assume that such a
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model can be used both for the decision maker (e.g., the employee of a company),
and for the stakeholder (e.g., the company). Given a set of alternatives evaluated
on a set of criteria, we can define a policy that represents the choice of optimal
decisions by the decision maker, and we can calculate the optimal modification
of these criteria with respect to the stakeholder. A particular contribution of this
work is to model the freedom of choice left by the stakeholder to the decision
maker by considering that only a subset of all criteria are modifiable. We illus-
trate in Section 4 the case, where a stakeholder is effectively unable to influence
the decision maker.

We illustrate each stage of our model and its merits using a public Wi-Fi se-
lection scenario taken from [23] in each section. In the Wi-Fi example, a device
user decides between networks and the device presents choices so as to influence
the decision of the device user. In this case, the decision maker represents the de-
vice user and the stakeholder represents the company of the user. We show how
changing presentation of some Wi-Fi’s may alter the choice of decision maker.
However, the approach is designed generally enough to be applied to other case
studies, e.g. for choosing among access control policies [18]. Finally, Section 5
discusses possible extensions of the framework, in particular, considering influ-
encing populations.

2 Decision Making

In order to model human decision making and to evaluate the different alterna-
tives for a decision maker, we consider Multi-Criteria Decision Analysis (MCDA).
MCDA is particularly useful in situations, where alternatives are evaluated on
multiple, often conflicting, criteria, and in search of solutions that represent the
best trade-off(s) between these criteria. In information security, this trade-off
is usually between security and productivity/usability, for instance, a decision
maker has to select between a more secure network and a faster one.

When compared to other approaches to model security decision making, e.g.
through Markov Decision Process and reward models [3] or using the experience,
e.g. by reinforcement learning [20], MCDA provides transparency to the process
of making decisions and illustrates explicitly how trading-off between criteria is
obtained. Transparency of the decision making process is desirable by both deci-
sion makers and stakeholders, who are interested in seeing how their preferences
with respect to criteria are considered within a model. Moreover, MCDA allows
for possible behavioral biases to be taken into account within a model, e.g. in a
similar way as in [14].

For selecting a set of criteria that influence security decisions, it may be ad-
visable to look at attributes related to technology, to management, to economy,
to culture and to personal preferences. However, the general MCDA recommen-
dation is to consider a set of criteria most relevant to a particular problem to be
solved [10] from [15].

Here, by making a decision, we assume choice of an alternative among available
ones. A decision maker is responsible for selecting an alternative a. We write A
for the set of alternatives available to the decision maker.
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In MCDA, alternatives are evaluated and compared using a set of criteria G,
such that each criterion should be either minimized or maximized (the direction
of optimization). Each criterion comes with a scale, in which alternatives can
be compared. Typical scales include real numbers, intervals, ratios, binary or
verbal values (qualitative descriptions), which are ordered with respect to the
optimization direction. Each criterion g ∈ G is, therefore, associated with a scale
Kg, and we write gmin ∈ Kg and gmax ∈ Kg for the minimal and maximal
values of g, respectively. We write K =

⋃
g∈G Kg for the set of all possible scales,

and without any loss of generality, we assume that all criteria are maximized
(minimized criteria can simply be multiplied by −1).

Each alternative is evaluated on each criterion g ∈ G by means of an eval-
uation function σg : A → Kg. We write Σg for all possible σg functions, and
ΣG =

∏
g∈G Σg for the cartesian product of all criteria evaluation functions.

When no confusion can arise, we write σ = (σg1 , . . . , σgn) for a vector of evalu-
ation functions, and σ[g] for the evaluation function of σ corresponding to the
criterion g.

We now present the basics of MCDA and Multi-Attribute Utility Theory, in
particular. We then detail how to define the policy of a decision maker, and we
illustrate this approach for selection of a public Wi-Fi case study.

2.1 Multi-Attribute Utility Theory

Multi-Attribute Utility Theory (MAUT) [15] is an MCDA approach, which as-
sumes that decision makers aim to maximize their implicit utility function.
MAUT is a compensatory technique, since it allows smaller values on a sub-
set of criteria to be compensated by a large value on a single criterion, and is
based on expected utility theory with some strong technical assumptions related
to comparability, transitivity, continuity, and independence of outcomes (that
assumes independence of criteria). MAUT is attractive because of its sound the-
oretical foundations (based on expected utility theory), its non-monetary nature
and its applicability to be used as a basis for comparison of new, not yet consid-
ered alternatives with the same utility function constructed for the same decision
maker. In addition, its natural approach to modeling risk behavior is particularly
attractive for designing security decisions, where risk attitude of decision makers
plays crucial role in their decision patterns.

The global utility of an alternative is obtained by aggregating individual crite-
ria values amplified by criteria weights for all criteria. However, before aggrega-
tion, these criteria values must be normalized, in order to provide a fair basis for
comparison. A normalization function, which in MAUT corresponds to marginal
utility function, is a function ng : Kg → [0, 1]. This function can change from one
decision maker to another, thus, encoding some notion of preference/meaning
interpretation.

In addition, preferences can be encoded using criteria weights, which in MAUT
represent trade-offs between criteria. Here, a weight shows the relative impor-
tance of the criterion, when compared to other criteria. In particular, it defines
how many units of one criterion can be traded-off for a unit of another criterion.
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Here, we assume deterministic criteria weights defined by the decision maker
with a criteria function w : G → [0, 1] such that

∑
w(g)∈W w(g) = 1.

Determining weights explicitly may be difficult for decision makers. It may
be cognitively hard to quantify weights also due to the meaning of weights may
not be straightforward and even differ in different MCDA methods [2].

We can now define the notion of MAUT model.

Definition 1. A MAUT model is a tuple M = (A,G, ΣG , n, w), where A is
a set of alternatives, G is a set of criteria, ΣG is a set of criteria evaluation
functions, n is a set of normalization functions with ng : Kg → [0, 1] for each g,
and w : G → [0, 1] is a weights function, such that

∑
w(g)∈W w(g) = 1.

After mapping all criteria utilities to their scales, normalizing them and defin-
ing weights, the alternatives can be evaluated. For aggregating marginal criteria
utilities for each alternative some form of aggregation function should be used,
e.g. multiplicative, additive or some combination of both is usually applied.
When compared to additive aggregation function, which allows some criteria
for alternatives to be of zero value, multiplicative aggregation function requires
presence of non-zero values for all criteria to make alternative useful.

For now, we introduce one of simplest forms of aggregating evaluations on all
criteria values for each alternative, weighted sum, which we will also use for the
Wi-Fi case study:

Definition 2 (Utility function). Given a model M = (A,G, ΣG , n, w), the
utility of an alternative a ∈ A, is defined as:

v(a, w, σ) =
∑
g∈G

w(g) · ng(σg(a)).

Note that for the sake of simplicity, we consider that the normalization function
is unique for all criteria, and therefore we do not pass it as an argument of v.

We now assume that decision makers base their decision making process using
a MAUTmodel1. Given a vector of evaluation functions σ, and a weights function
w, the policy of a decision maker is defined as:

π(w, σ) = argmax
a∈A

v(a, w, σ).

Note that in order for a decision maker to be deterministic, we assume the ex-
istence of an arbitrary ordering over alternatives, so that if there are several
alternatives maximizing the utility function, the decision maker selects the high-
est one according to that ordering.

1 We are aware of strong assumptions of MAUT and biases from rational behavior
of the decision makers studied, e.g. by Kahneman and Tversky [13], [14], and here
establish a basic model for influencing human decision making in security context
also to initiate investigation of these biases.
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2.2 Case Study: Selection of a Wi-Fi Network

As a case study, let us consider an example of influencing a choice of a publicly
available wireless network (Wi-Fi). The dangers of choosing non-secureWi-Fi are
well documented: it exposes device and transmitted data to increased chances
of spoofing and man-in-the-middle attacks [1], [5], and new attacks appear reg-
ularly.

For instance, recently, it was reported that the penetration testing tool BDF-
Proxy (BackdoorFactory Proxy), which acts as a proxy for network commu-
nication, has the capability to infect any binary executable download the user
makes with a Metasploit malware [16]. Thus, it can compromise the user’s device
with malicious software and gain control over the device. This attack is particu-
larly problematic for untrusted Wi-Fi’s as the Wi-Fi router can engage in ARP
(Address Resolution Protocol) spoofing (i.e., by manipulating the lowest-level
address resolution to make the user’s client go through the proxy without the
user’s knowledge: The Wi-Fi can make the client fall for the trap without the
user noticing anything.

Ability to influence choice of trusted Wi-Fi is of special interest in the context
of recent consumerization of IT trend [24] and BYOD, in particular, since em-
ployees work on their own devices and define security protection of their devices
by themselves, thus, potentially, exposing sensitive information [19]. In general,
over one billion workers will work remotely by 2015, over a third of the total
worldwide workforce [12]. A company that allows BYOD may want to influence
the employee so that the trade-off decision between security and productivity is
done in the company’s interest. Alternatively, users may want to have influencing
software on their phone to assist in making the information security decisions
for work as well as home use.

Influencing was earlier introduced in the security context of Wi-Fi selection
in [23]. There, the focus is on introducing the user interface design nudges, and
on evaluating them with a user group. Here, we want to model human behavior
further when modifying context of decision making by introducing an affect in-
fluencing factor, color, and by computing impact of such or another modification
of the context on the decision to be made. In particular, a traffic light effect [8] is
used with red-green colors (and associated emotions and meanings), which was
also applied for framing choices to nudge individuals away from privacy-invasive
applications in [6].

Let us consider a user in a coffee-shop having to choose between two different
public wireless networks A = {s, f}: s is a secure Wi-Fi with weak signal; f
is a Wi-Fi of the coffee shop, with strong signal, but not necessarily safe. We
want to illustrate with this example the trade-off between security and produc-
tivity/usability, and therefore consider the set of criteria G = {t, r, l}, indicating
the trust of the network, its strength and color in which its name is drawn,
respectively. For the sake of simplicity, we assume that the scales for the trust
and strength criteria are defined as Kt = Kr = {0, 1, 2} (the higher the bet-
ter). For the color criterion, a scale is defined as Kl = {R,N,G}, corresponding
to red, neutral and green colors of paint used for drawing names of networks,
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Table 1. Decision matrix for σ = [s �→ (1, 1, N), f �→ (0, 2, N)]

criteria

trust strength color
{0, 1, 2} {0, 1, 2} {R,N,G} (scale)
t → max r → max l → max (direction)

0.5 0.3 0.2 (weights)

alternative
s 1 1 N
f 0 2 N

π(w, σ) f

respectively. This categorical scale can be mapped into a scale of quantitative
values Kl = {0, 0.5, 1}, taking into account traffic light similar effect, with red
color associated with danger, green color – with no danger, and neutral color,
e.g. white, with no special affect on users (when compared to a standard amber
color with attention bringing effect).

Note that here, we consider a simple and abstract notion of trust, and, in prac-
tice, this notion can be defined using the presence of Wi-Fi network providers in
a white list predefined by security officer or system administrator of the company
or by the employee him-/herself. More sophisticated evaluation of ‘trust’ crite-
rion may take into account other aspects, e.g. current location of an employee
[9].

Finally, the decision maker has to define the criteria weights w = (0.5; 0.3; 0.2),
meaning that connecting to a trusted Wi-Fi is more important for the decision
maker than choosing a Wi-Fi with strong signal. The color of the presented name
of a Wi-Fi is less significant for the decision maker than the two other criteria.

In the following, for the sake of compactness,we write σ = [s �→ (v1, v2, v3), f �→
(v4, v5, v6)], associating s Wi-Fi with a trust of v1, a strength of v2 and a color of
v3 values, respectively; and f Wi-Fi with a trust of v4, a strength of v5 and a color
of v6 values, respectively. Table 1 represents the traditional decision matrix [2] for
a decision maker, evaluation of a set of alternatives on a set of criteria. Assuming
that a decision maker uses a linear normalization function of the following form:

ng(σ) =
g − gmin

gmax − gmin
, (1)

we can calculate the utility for each alternative as follows:

v(s, w, σ) = 0.5 ∗ 0.5 + 0.3 ∗ 0.5 + 0.2 ∗ 0.5 = 0.5

v(f, w, σ) = 0.5 ∗ 0 + 0.3 ∗ 1 + 0.2 ∗ 0.5 = 0.4.

From these calculations it follows that the decision maker selects π(w, σ) = s.
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3 Decision Evaluation

3.1 Impact

To be able to measure the efficiency of an alternative, we introduce an impact
function such that, given an alternative a, a weight function w and evaluation
functions σ, ρ(a, w, σ) represents the impact of criteria weights and criteria eval-
uations of alternative on selection of that alternative as the final choice of the
decision maker. In the rest of the paper, we consider that the impact function
intuitively represents a benefit for the system, and as such, the aim of a stake-
holder is to maximize the impact, i.e., a higher impact is ‘better’. Note, the
impact function should be seen as an ideal valuation of the possible alternatives,
and as a way to evaluate the behavior of the decision makers, rather than as a
way to define the behavior of the decision makers.

In general, this function can be defined in many different ways (for instance,
through an access control policy stating which alternatives are secure [18]). We
propose here to define it using a MAUT model, which is however slightly different
from the one defined above. The impact function can be defined directly as the
utility function v of M . However, in the context of information security, we
want to clearly distinguish the alternatives, so that there are ‘good’ and ‘bad’
alternatives. Hence, given an alternative a, a weight function w and a set of
criteria evaluation functions σ, we define the impact function as:

ρ(a, w, σ) =

{
1 if v(a, w, σ) ≥ v(a′, wi, σ) for any a′,

0 otherwise.

In other words, an alternative has an impact if, and only if, it is maximal ac-
cording to the utility function. Note that more complex impact functions can be
considered, for instance, when different levels of security can be defined.

3.2 Utility Function Parameters

To evaluate the efficiency of a decision made by a decision maker, a stakeholder
may compare it to his own choice or a choice of an ‘ideal’ decision maker from a
company perspective in the same situation. Four cases are possible here: In ideal
case, the stakeholder would wish the decision maker behaving in an optimal way
from the stakeholder’s point of view. This would mean the decision maker (user
/ employee) having the same with stakeholder (or company) preferences, or the
same weight function wc = wu, where wc is a stakeholder’s weight function and
wu is a user’s weight function, and at the same time having the same set of
criteria evaluation functions: σc = σu, where σc is a stakeholder’s set of criteria
functions and σu is a set of user’s criteria evaluation functions.

However, the reality might be different with the most general case with both
sets of evaluation functions σc 	= σu and weighting functions wc 	= wu being
different for a stakeholder and a decision maker. The two special cases with ei-
ther different weights or different criteria evaluation functions will be considered
below.
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3.3 Evaluation in Case Study: Selection of a Wi-Fi Network

To illustrate decision evaluation scenarios for the case of public Wi-Fi selec-
tion, let us consider the stakeholder and the decision maker having the same
weight functions wc = wu = (0.5; 0.3; 0.2). However, they have different evalua-
tion functions: σc = [s �→ (1, 1, N), f �→ (0, 2, N)] for stakeholder and σu = [s �→
(1, 1, N), f �→ (1, 2, N)] for the decision maker. Indeed, the decision maker con-
siders the alternative f as being more trusted, with σu[t](f) = 1, when compared
to the company, which assigns to it a smaller trust value with σc[t](f) = 0. This
small difference results in the different utilities of the alternatives v(s, wu, σu) =
0.5 and v(f, wu, σu) = 0.65, and leads to the decision maker choosing f =
π(wu, σu), while ρ(f, wc, σc) = 0, meaning that the decision maker selects an
alternative that is suboptimal for the stakeholder.

We may also consider another case of the company and the user having the
same set of criteria evaluation functions σc = σu, but different preferences with
respect to criteria weights. For instance, the stakeholder considers trust being
more important wc(t) = 0.5, when compared to the decision maker wu(t) = 0.3.
They may also have different opinions about importance of the strength of the
Wi-Fi signal: the stakeholder assumes it is as less important wc(r) = 0.4, when
compared to the decision maker wu(r) = 0.6. But they agree on color being
not very important wc(l) = wu(l) = 0.1. Here, again π(wu, σu) = f , while
ρ(f, wc, σc) = 0.

4 Influencing Decisions

As said in the introduction section, in the BYOD context, companies allow their
employees to use personal devices for work (or company devices for personal pur-
poses), and the border between personal and company data becomes blurred.
In such situations, companies may try to take some control over personal de-
vices for better protection of their data. Applying strong security policies for
such personal devices may meet opposition reaction from their employees, since
employees ownership perception of devices will be disturbed, which may push
employees towards overriding such security policies. Therefore, companies must
search for ‘softer’ ways of influencing their employees behavior.

In this work, we suggest a ‘soft’ strategy for stakeholders to assist in secu-
rity decisions by their employees with limited changes to the information taken
into account by the decision maker, based on the idea that even small changes
can influence final choices of decision makers [13], [14]. Such an approach was
considered widely for health and social solutions, see e.g. [21], [22], and recently
studied in the context of security and privacy decision making [6].

Next, we examine an example of a company adopted BYOD strategy or stake-
holder, which wants to protect its employees, users of devices, from non secure
behavior and emphasize safer choices for them. Note, that we assume here a
‘good’ stakeholder, who wants to help and protect a user in a paternalistic way,
and exclude a ‘bad’ influencer, for instance, aiming to attack users and manip-
ulate their choices motivated by ‘bad’ incentives, leaving this special case as a
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future work. As our working case study for demonstrating influencing effect, we
keep selection of a Wi-Fi to connect to in a public place among several available
ones. We consider when influencing may be beneficial to both a stakeholder and
a user, and how it may be performed, assuming MAUT model as a basis for
human decision making.

4.1 Influence

Given a MAUT model M = (A,G, ΣG , n, w), we can consider ways, in which
a stakeholder may influence choices of a decision maker. By definition of the
model, there are two ways to affect the result of the model evaluation: either by
affecting a weighting function, and corresponding set of weights, or by affecting
a set of criteria evaluation functions, and corresponding set of criteria values for
alternatives.

Influencing weighting of criteria means influencing implicit trade-off prefer-
ences of decision makers with respect to different criteria. In principle, this ap-
proach may be efficient, but, in practice, it is time-consuming, since it requires
training and education of users and their subsequent conscious reflection on the
issues they were taught. For instance, for security decisions, it would require
training sessions on the security policy of the company to increase employees
awareness of risks; their education on the security issues related to the policy
of their company and on possible consequences of such decisions for them and
their company; and promoting a security culture, e.g., with rewards for secure
behavior. These are efficient, but long-term approaches, which require time and
involve user awareness and conscious decision making. Moreover, while users may
be aware and intend to behave securely, these intentions do not always translate
into actual behavior.

Therefore, an alternative and/or complementary approach would be to try to
influence the behavior of decision makers directly at the moment of the decision
making. This approach would involve changing values for some criteria. Having
possibility to change all criteria would be ideal for a stakeholder. However, there
are different reasons why it may not be possible in most cases; to name a few:
it may not be legal or ethical to change values for some criteria or too costly
for the company to do it. However, a stakeholder may still be able to change
values for some ‘modifiable’ criteria via a set of evaluation functions, assuming
the values for the rest of criteria are non-changeable.

Given a set of criteria G, we consider a subset of ‘modifiable’ criteria M ⊆ G,
for which stakeholder can change criteria values. The exact definition of this
subset depends of course on the context, but intuitively, it corresponds to the
aspects taken into account by the decision maker that are controlled by the
stakeholder. Given a vector of evaluation functions σ, we define the set of possible
modified functions as:

PM(σ) = {σ′ | ∀g ∈ (G \M) σ′[g] = σ[g]}.
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Table 2. Impact of all modifications to the color criterion for initial alternatives
evaluations σu = [s �→ (1, 1, N), f �→ (1, 2, N)] and criteria weights wu = (0.3; 0.5; 0.2)
of the decision maker with ρ(f,wc, σc) = 1 and ρ(s,wc, σc) = 0

σxy v(s, wu, σxy) v(f, wu, σxy) a = π(wu, σxy) ρ(a,wc, σc)

σNN 0.5 0.6 f 0
σNR 0.5 0.5 f 0
σNG 0.5 0.7 f 0
σGN 0.6 0.6 f 0
σRN 0.4 0.6 f 0
σGR 0.6 0.5 s 1
σRG 0.4 0.7 f 0
σRR 0.4 0.5 f 0
σGG 0.6 0.7 f 0

In general, more complex restrictions on PM can be defined, for instance, reflect-
ing an incremental change in the values of criteria (e.g., the value of a criterion
can only be incremented or decremented by a given factor).

Hence, we assume that there is an influence, if and only if, the decision maker
would behave differently without being influenced. The raw impact of an influ-
ence can be measured in a differential way: given a vector of evaluation functions
σ and a weight function w, we say that the decision maker was influenced when-
ever π(w, σ) 	= π(w, σ′). Note that the set of alternatives A does not change with
the application of criteria evaluation modifications. In other words, influencing
a decision maker does not change the set of alternatives available to the decision
maker.

We are now in position to define the optimal modification possible by a stake-
holder over a decision maker.

Definition 3. Given a stakeholder with a weights function wc and a vector of
evaluation functions σc, and a decision maker with a weights function wu and
a vector of evaluation functions σu, the optimal vector of modified evaluation
functions for the decision maker is given by:

opt(wu, wc, σu, σc) = arg max
σ′
u∈PM(σu)

ρ(π(wu, σ
′
u), wc, σc).

4.2 Influence in Case Study: Selection of a Wi-Fi Network

Let us consider a subset of modifiable criteria M = {l}, i.e., only the color, in
which a network is displayed, can be modified. We now illustrate the optimal
modification of the criteria evaluations opt for the influencing strategy applied
by the stakeholder. Having a set of criteria weights wc = (0.5; 0.4; 0.1) and
criteria evaluations of alternatives σc = [s �→ (1, 1, N), f �→ (0, 2, N)], we have
ρ(s, wc, σc) = 1 and ρ(f, wc, σc) = 0. In other words, the stakeholder wants to
influence the decision maker towards selecting a more secure Wi-Fi s.
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Let us consider now that the decision maker has different criteria weights wu =
(0.3; 0.5; 0.2) and different criteria evaluations σu = [s �→ (1, 1, N), f �→ (1, 2, N)],
which leads to the decision maker choosing a faster network π(wu, σu) = f . Since
M = {l}, only the color criterion value can be modified. Table 2 details all the
possible cases, where, for the sake of compactness, we write σxy for the evaluation
function σxy = [s �→ (1, 1, x), f �→ (1, 2, y)]. We also consider that when s and f
have the same value, the decision maker selects f by default.

In other words, opt(wu, σu, wc, σc) = [s �→ (1, 1, G), f �→ (1, 2, R)], i.e., chang-
ing the color of s to green, and that of f to red, results in the influencing effect
making the decision maker to swap his/her choice and to select an alternative
preferred by the stakeholder.

However, note the impact of this modification depends on the set of non-
modifiable criteria {t, r}. For instance, if the utility of f is null and of s is
maximal, there is no effect that will make a decision maker with a weight on
l 	= 1 and additive aggregation function to change its decision from s to f .
Similarly, if the decision maker has a weight equal to 0 on the criterion t, then
all effects have no impact. See details of the last case in Table 3 for the same set
of criteria evaluations σu = [s �→ (1, 1, N), f �→ (1, 2, N)] of the decision maker
as in the previous example, but different set of weights wu = (0; 0.8; 0.2). This
case demonstrates that if decision makers do not care about the trust of the
network, there is no chance to make them to select a more secure alternative
whatever modifications are applied to the modifiable criteria.

Table 3. Impact of all modifications to the color criterion for initial alternatives eval-
uations σu = [s �→ (1, 1, N), f �→ (1, 2, N)] and criteria weights wu = (0; 0.8; 0.2) of the
decision maker with ρ(f, wc, σc) = 1 and ρ(s, wc, σc) = 0

σxy v(s, wu, σxy) v(f, wu, σxy) a = π(wu, σxy) ρ(a,wc, σc)

σNN 0.5 0.9 f 0
σNR 0.5 0.8 f 0
σNG 0.5 1 f 0
σGN 0.6 0.9 f 0
σRN 0.4 0.9 f 0
σGR 0.6 0.8 f 0
σRG 0.4 1 f 0
σRR 0.4 0.8 f 0
σGG 0.6 1 f 0

5 Influencing Population

In all previous sections, we have considered a deterministic decision maker by
default. To allow modeling groups of users rather than single users, we may
consider a probabilistic decision maker. We model this aspect by considering a
probability distribution over weights, such that given a weight function w, ψ(w)
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represents the probability of w. From a statistical point of view, ψ(w) represents
the percentage of the population with the weight distribution w.

The policy of the entire population can therefore be defined as given a MAUT
model M = (A,G, ΣG , n, ψ(w)):

π(ψ, σ, a) =
∑
w∈W

{ψ(w) | π(w, σ, ) = a}. (2)

For influencing a population of users, a stakeholder needs to look for an alter-
native (or subset of alternatives) with highest impact and a subset of modifiable
criteria that makes this alternative (preferred by the stakeholder) to be selected
by the majority of population.

opt(wc, σc, ψu, σu) = arg max
σ′∈PM(σu)

∑
a∈A

ρ(a, wc, σc)π(ψu, σ
′
u, a).

5.1 Population in Case Study: Selection of a Wi-Fi Network

As an example of population modeling, we can consider examples of three types
of decision makers with the same criteria evaluation functions σu = [s �→
(1, 1, N), f �→ (1, 2, N)], but different criteria weights w1 = (0.3; 0.5; 0.2), w2 =
(0; 0.8; 0.2), and w3 = (0.8; 0; 0.2). Let us also consider a probability distri-
bution ψ such that ψ(w1) = ψ(w2) = ψ(w3) = 1/3. We can calculate that
π(w1, σu) = f , π(w2, σu) = f , π(w3, σu) = s, and therefore, following Equa-
tion 2, we have π(f, σ, ψ) = 2/3 and π(s, σ, ψ) = 1/3.

If a stakeholder wants to shift choices of a population of users, he/she may
consider similar strategy as one proposed for influencing choice of individual
decision makers, but taking into account weights of different groups of users.

6 Conclusion

In this work, we have proposed a model for influencing human decision making
in security context. We have illustrated the approach with a case study of a
public Wi-Fi selection, and have shown how optimal influence may be selected.
Even though the resented multi-criteria model is simplified, when compared to
possible real-life scenario, however, it establishes a basis for developing a more
complex framework, which we consider as our future work.

The first step will be to consider more than two alternatives to select from.
Moreover, it will be interesting to investigate more complex impact functions
(e.g. non-monotonic), which may lead to a backfire of influencing, with decision
maker selecting a worse alternative when compared to his/her initial intention.
Another interesting aspect is related to studying different normalization func-
tions and their interpretation by different decision makers. For instance, it was
observed in [23] that a padlock sign, usually assigned to trusted Wi-Fi’s, may
be perceived as blocking of access by some users, who misinterpret, and, conse-
quently, normalize differently evaluation of Wi-Fi’s. Interesting aspects to study
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are dependence between different security decisions and applying a sequence or
combinations of influencing effects. For instance, in [23], it was shown that the
color effect has a higher impact when applied in combination with ordering effect
of different networks presented to the decision maker by default.

Taking into account complexity of different criteria, such as ‘trust’ criterion,
MAUT contribution may be further investigated by modeling more complex
shapes of marginal utility functions, such as convex or concave utility functions
corresponding to risk (risk-prone or risk-averse) attitude of decision maker, when
compared to the linear marginal utility functions modeled here. Moreover, the
quantities obtained through MAUT can be used to characterize the strength of
the effect applied, following, for instance, the recent approach in the context of
quantitative access control policies [18].

Finally, the Wi-Fi scenario provides an interesting basis for future work. The
importance of name when choosing a Wi-Fi was studied in the context of trust
in [9]. The ‘trust’ criterion is interesting as it may take into account various
information, e.g. about decision maker’s location, to avoid situations, where the
most trusted network for a researcher located in a coffee shop far away from
universities appears to be the ‘eduroam’ Wi-Fi, an international network for all
university staff of universities provided within campuses of universities only.
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Abstract. Capacity planning is concerned with the provisioning of sys-
tems in order to ensure that they meet the demand or performance re-
quirements of users. Currently for PEPA models, a modeller who wishes
to solve a capacity planning problem has to either carry out a manual
search for an optimal configuration or work outside the provided tool
suite. We present a new extension to the Eclipse Plug-in for PEPA which
integrates automated capacity planning into the functionality of the tool,
thus allowing optimal configurations of large scale PEPA models to be
found.

1 Introduction

Performance analysis occurs in many guises during system development. One
important role of a performance analyst is as a capacity planner, helping the
system developers to appropriately dimension their system in order to meet
user demand in a satisfactory manner. This involves choosing the appropriate
number of copies for each type of component within the system, for both software
components (e.g. threads) and hardware components (e.g. database servers).
This can involve running models of the system with many different configurations
to thoroughly explore the parameter space to find an optimum. There is often a
tension between the number of components and the user perceived performance,
as system managers wish to limit the number of components for a variety of
reasons, including economic, efficiency and maintainability considerations.

The Eclipse PEPA Plug-in is a mature analysis tool supporting the PEPA
modelling language, and offering a number of different solution techniques. Whilst
it does offer an experimentation facility, this is intended for varying one or two
parameters within a model and all results are returned to the modeller. In con-
trast, in capacity planning the modeller will typically want to thoroughly ex-
plore a multi-dimensional parameter space but only be presented with results
for those points in parameter space which are optimal with respect to some
modeller-defined performance and population target. Currently a modeller who
wishes to conduct such an exploration must manually search parameter space,
or export their model to another format such as Matlab and then code up a
search algorithm themselves.

In this paper we present an extension of the Eclipse PEPA Plug-in which
incorporates an automated capacity planning tool which addresses this problem.
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The modeller can specify their optimisation problem and let the tool search
for a model configuration which best matches the performance target whilst
also keeping the number of components minimal. In the current implementation
this is aimed at scalable PEPA models amenable to solution based on ordinary
differential equations, making interactive capacity planning possible. But the
developed framework is flexible and now that the feasibility of the approach has
been established, could be readily extended to a broader class of PEPA models
and other solution techniques.

1.1 Related Work

Hillston et al. suggested the feasibility of a capacity planning tool for PEPA
in [1]. Within that paper, the parameter space of a moderately-sized example
is explored by hand to find a configuration which matches a target average re-
sponse time, when one population size is fixed and all others are allowed to
vary. This paper provided inspiration for our current work. Genetic algorithms
and genetic programming metaheuristics have previously been used in conjunc-
tion with PEPA and Bio-PEPA models by Marco et al. [2,3]. In that work they
sought to find model parameters which give optimal fit of model output to a
given time series of biological data. Both activity rates and model structure
make up the search space for the metaheuristic. Similarly Karaman et al. use
genetic algorithms to construct a process algebra model satisfying a path opti-
misation property, again focussing on the time series view of the process algebra
model output [4]. In contrast our work identifies emergent global properties of
the process algebra model as the goal. Like Karaman et al. our primary fo-
cus is on investigating model with different structures, i.e. different numbers
of components in this case. The work of Geisweiller also sought to match to
given performance characteristics but by finding optimal rate parameters for a
PEPA model with fixed structure, using expectation-maximisation techniques
[5]. More generally, in [6], Cerotti et al. present a general capacity planning tool
for dimensioning in Cloud systems, based on simple queueing abstractions.

1.2 Structure of the Paper

The rest of this paper is organised as follows. In Section 2, we present the nec-
essary background. In Section 3 we describe the basic functionality of the tool
and how a user can specify a search based on a performance target and cost re-
quirements. The search procedure is sensitive to the settings of the algorithm, so
we additionally offer a driven search in which another, simpler, metaheuristic, is
used to find the best settings for the intended search. This is explained in detail
in Section 4. In the following section, Section 5 we present some results from the
tool, run on a number of different models, and in particular show how the Par-
ticle Swarm Optimisation (PSO) search compares with simpler metaheuristics
such as hill-climbing and a genetic algorithm. In Section 6, the paper concludes
with a summary of the results and a discussion of how the work can be developed
further.
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2 Background

In this section we give a brief overview of the background to the project, re-
viewing the PEPA modelling language, and specifically the fluid approximation
which allows large scale models to be rapidly solved via a set of ordinary dif-
ferential equations. In this work we choose this solution technique to underlie
our capacity planning because we envisage a tool which the user will engage and
experiment with. However, the same framework could be used with alternative
solution methods albeit with slower response time and the capacity planning
would no longer be interactive. Finally in this section we describe the meta-
heuristic that is the principal focus of our work.

2.1 PEPA

PEPA is a CSP-like process calculus extended with the notion of exponentially
distributed activities [7]. A PEPA model consists of a collection of components
or processes, which undertake actions. A component may perform an action au-
tonomously, independent actions, or in synchronisation with other components,
shared actions. PEPA models are generated by the following two-level grammar:

S ::= (α, r).S | S + S | AS ,AS
def
= S

C ::= S | C ��
L

C | C/L | AC ,AC
def
= C

The first production defines sequential components, i.e., processes which only
exhibit sequential or branching behaviour (by means of prefix, “.”, or choice,
“+”, respectively). The second production defines model components, in which
the interactions between the sequential components are expressed through the
cooperation (“ ��

L
”) and hiding (“/”) operators. Within a cooperation, the set

L specifies which action types must be shared; components can proceed inde-
pendently and concurrently on other action types. A system equation specifies
all the components within a system and how they must interact.

Typically, each sequential component corresponds to a component of the sys-
tem and the performance of the system is constrained by the interactions between
components as imposed by the cooperations. For example for a client-server sys-
tem, some number of clients may compete for access to a limited number of
servers. This may be written as the system equation

Client [Nc] ��
{request} Server [Ns]

where Client [Nc] is shorthand for Client ��∅ · · · ��∅ Client for a population of

Nc clients, and similarly for Server [Ns].
The capacity planning problem is to find appropriate population sizes for the

components in the system equation which allow the system to meet a perfor-
mance target. For example this might be response time should be on average less
than 2s when there are 100 clients in the system. Some populations, such as the
clients, may be fixed as they are specified by the requirement, whereas others
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Fig. 1. The model life cycle in the capacity planning tool. The square boxes represent
classes of models, the arrowed boxes represent a conversion method.

may vary, allowing the modeller to explore a parameter space. In this simple
case, the parameter space is one-dimensional and capacity planning amounts to
finding the number of servers which is sufficient to meet the response time target.
However, in general the search space will be multi-dimensional as the system will
be made up of many different interacting populations of components.

The original structured operational semantics for PEPA [7], gives rise to a
continuous time Markov chain (CTMC) via a labelled multi-transition system.
In [8], an alternative symbolic semantics in terms of generating functions is
presented, which allows a fluid approximation of large scale PEPA models to be
derived automatically. This derivation is incorporated in the tool which supports
PEPA modelling, the PEPA Eclipse Plug-in tool [9]. Thus the PEPA Eclipse
Plug-in supports numerical solution of the CTMC, stochastic simulation and
ODE numerical simulation.

Our capacity planning currently focuses on this latter approach: the scalability
and efficiency of the ODE-based fluid approximation means that many model
instances can be solved relatively quickly, providing an interactive experience
for the user. Moreover, the large scale models amenable to this approach are
typically those for which it is difficult to predict the relative influence of one
individual over all the interacting populations.

To evaluate a PEPA Model using ODEs, the PEPA Eclipse Plug-in first con-
verts the String model class (PepaModel — the model as input by the mod-
eller) into a Graph model class (Graph), via an abstract syntax tree termed the
ModelNode. Once the model is a graph, the ODEs can be evaluated, return-
ing performance measure results as an array of floats. Fig. 1 shows the PEPA
Eclipse Plug-in methods used by the capacity planning tool, and the life cycle
of a model.

The intervention of the capacity planning tool, compared with a regular ODE
solution of a PEPA model, is that the capacity planning tool manipulates model
configurations during step 3 of the lifecycle. Using a Visitor pattern and a Java
class called ASTHandling, the capacity planning tool can operate on models,
and change the population value of one or more components. This updated AST
is then built into a Graph (step 5) and evaluated using ODEs. This will be
explained in more detail in Section 3.
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Fig. 2. Schematic view of a metaheuristic

2.2 Particle Swarm Optimization (PSO)

Metaheuristics are a class of general algorithms which may be used to find
optimised solutions to a large class of problems. Examples include hill-climbing,
genetic algorithms, simulated annealing, ant colony optimisation and particle
swarm optimisation (PSO). These can be thought of as strategies for guiding
a search, and they do not typically guarantee convergence or optimality. But
in many practical situations they have been found to perform well, both with
respect to optimality and efficiency compared with brute-force or manual search.
During the course of developing the capacity planning tool we implemented and
experimented with a number of different metaheuristics: hill-climbing, a genetic
algorithm and PSO. The experimentation suggested that the PSO was the most
successful in the sense of both efficiency and optimality. Thus in the final version
of the tool this is the offered algorithm, and in this paper we focus on that due
to space limitations, although we will present some of the experimental results
in Section 5.

Initiation of variables

generation = user defined value //number of iterations
candidatePopulation = user defined value //how many candidates
localBest = user defined value //weight of local best in new velocity
globalBest = user defined value //weight of global best in new velocity
originalVelocity = user defined value //weight of original velocity in new velocity

Scattering of candidates

bestCandidate = null

arrayOfCandidates = []

for candidatePopulation do:

newCandidate = (new candidate) //candidate random position and velocity
arrayOfCandidates = arrayOfCandidates ∪ newCandidate

Fig. 3. PSO initiation
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Iterative search

for generation do:

//find fittest
for each candidate in arrayOfCandidates do:

fitnessFunction(candidate) //use system equation fitness function to assess fitness
if(candidate ’is better than’ bestCandidate) do:

bestCandidate = candidate

//update each candidate
for each candidate in arrayOfCandidates do:

currentPosition ← candidate’s position // the system equation
previousVelocity ← candidate’s velocity

localBestPosition ← candidate’s previous best position

globalBestPosition ← bestCandidate’s best position

newVelocity = (originalVelocity * previousVelocity) +

localBest * (localBestPosition - currentPosition) +

globalBest * (globalBestPosition - currentPosition)

candidate’s velocity ← newVelocity //the candidate gets a new velocity vector

//move each candidate
for each candidate in arrayOfCandidates do:

candidate’s current position ←
floor(candidate’s current position + candidate’s velocity)

Fig. 4. PSO search

PSO is a stochastic optimisation algorithm modelled after flocking or swarm-
ing agents [10]. A PSO works by scattering a number of candidates (or particles)
in some search space and providing each with a random velocity. Each genera-
tion, or iteration, of the optimisation method, each candidate moves according
to its velocity. Then the best candidate of that iteration, called the global best, is
found and its position is made known to all other candidates. Each agent then
uses this global best, its own velocity, and its own best position historically, to
create a new velocity vector which it uses in the next step. After a number of
iterations the PSO should converge on an optimum position in the search space.
(See Figs. 3 and 4 for pseudocode inspired by Luke [11].)

3 Simple Search

In the basic use-case for our tool, the modeller uses the capacity planning tool
to set up a search directly. In this case the modeller establishes a fitness function
with the aid of wizard in the Eclipse Plug-in. As will be explained later in this
section, the fitness function is constructed of a number of components, allowing
a target performance measure, and the population sizes to be taken into consid-
eration. The wizard also allows the modeller to choose the setting for the PSO
algorithm, such as how much weight should be given to the global best posi-
tion in the definition of a new velocity for each candidate. In this simple search
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Fig. 5. Steps in the use of the capacity planning tool. Input is a PEPA model from
the Editor, the output is displayed in a Viewer pane within Eclipse.

Fig. 6. A high level picture of the capacity planning wizard

each candidate in the PSO corresponds to a system equation, or configuration
of the system. Once the search is fully specified, one run of the PSO algorithm
is used to explore parameter space and return the candidate which gives the
best value of the fitness function. The parameter space is defined by the range
of populations considered for each of the component types in the PEPA model.

The steps in the use of the capacity planning tool are depicted in Fig. 5. We
will focus on steps 2, 3 and 4.

3.1 Capacity Planning Wizard

An Eclipse wizard is provided to support the modeller in the set up and initiation
of a capacity planning job. A Wizard is a Java class and is used to present a
logical ordering of more Java classes called WizardPages. WizardPages are used
to guide the user in entering the parameters, the input and settings, required
for a capacity planning search. Fig. 6 shows the steps of the capacity planning
wizard pages.

1. Input is a model created in the PEPA editor.
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2. The user starts the capacity planning tool by selecting the appropriate action
in the PEPA menu: the wizard picks up the PEPA model from the editor.
Each of the following steps corresponds to a page in the wizard.

3. The user sets the type of search, driven or single (explained in the following
section), and the kind of performance target they seek to address: currently
either response time or throughput.

4. Driven or single search are specified separately. Here the user can change the
number of experiments (explained in the following section) and algorithm
settings.

5. This page is for the specification of the performance targets, selecting actions
in the case of throughput, and agent states for response time. Settings for
the ODE solution function are also selected.

6. This and the following pages specify the form of the fitness function. Here
the relative weights of the population and performance are set.

7. The modeller specifies the performance target values, and the relative weight-
ing of the performance targets, if there is more than one.

8. Here the modeller sets the possible population range for each component type
in the model and so determines the parameter space for the search.Weighting
can be assigned for each component type, allowing higher populations for
some components to be penalised more than for others.

9. Completion of the previous page finishes the specification of the capacity
planning job. Data is passed to the solution engine and search is initiated.

3.2 Capacity Planning Job

General Design. The capacity planning wizard passes all data to the capacity
planning Job, and then starts the search. A capacity planning job is created as
a separate thread and so runs separately from the Eclipse user interface. Fig. 7
presents a schematic view of a capacity planning job. As the metaheuristics
which we have considered are stochastic, in order to increase the likelihood of
finding a good result, a number of searches are run serially; each run is termed
an experiment, and each set of experiments is termed a Lab. Each experiment is
a run of the metaheuristic with a randomly seeded candidate population.

Each candidate corresponds to a point in the parameter space, i.e. an instan-
tiation of the system equation for the model, and each will have a corresponding
value of the fitness function. Since the fitness function has an element correspond-
ing to the performance target, each model instance must be solved. Currently
the existing ODE solver within the PEPA Eclipse Plug-in is used for this, but
the architecture has been designed so that a metaheuristic can run on any type
of candidate, and with any of the solvers present in the tool.

Fitness Function Evaluation. The fitness function, built by the modeller
with the aid of the wizard, determines the search that is carried out. The PSO
seeks to minimise the value of the fitness function, by seeking candidates which
have the following characteristics:
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Fig. 7. Schematic view of a capacity planning job

Fig. 8. Recording output

– Good performance with regards to the target. This will be based on the
result of the performance measures from the ODE function.

– Minimal total component population (componentPopulation), i.e. the num-
ber of components in the system equation.

– There will typically be a trade-off between performance and population so
the modeller gives a relative weight to these objectives (performanceWeight
vs. populationWeight ).

– Component weighting (componentPopulation i): similarly within a system, it
might be more important to minimise the population size of some component
types than others, for example due to cost or other considerations.

– Performance target weighting (performanceTargetWeight i): when the mod-
eller has specified a performance target with multiple elements they can give
relative weights to those elements.

These five elements collectively build up the fitness value, which determines
how good one system equation candidate is relative to another1. The fitness is
better the lower it is. Thus for each iteration of the PSO we construct:
1 Here we use a weighted sum, but of course, a weighted product could also be used.
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1. The result of the performance evaluations from the ODE function

The performance results, ODEResulti , is returned by the ODE solver after it
has evaluated a model instance. There will be one ODEResulti for each user
defined performance target, performanceTargeti , for each performance measure
specified by the modeller in the capacity planning wizard. Any result that is
better than the target is given a value of 0. A scaledPerformanceValue is created
for each target so that it can be used later in the fitness function:

scaledPerformanceValuei = |(100− (ODEResulti/performanceTargeti )× 100)|

2. The number of components in a system equation

In the wizard themodeller defines theminimum andmaximumpopulation for each
component type in the system equation:minPopulationi andmaxPopulationi , and
from these we derive the range: populationRangei . Each system equation candi-
date has a population for each component componentPopulationi. Then a value,
scaledPopulationV aluei, is created for each population:

scaledPopulationValuei = |((componentPopulationi/populationRangei )× 100)|

3. The weighting of components in terms of population

The modeller also specifies the weight for each component, componentWeighti ,
which gives the fitness function some notion of cost per component. From
these values we derive the total population weight (totalCWeight =∑n

0 (componentWeighti)) and the contribution of the population of this
candidate to the fitness function:

weightedPopResult =

n∑
0

(scaledPopulationValuei × (
componentWeighti

totalCWeight
))

4. The weighting of performance targets across all selected performance targets

Similarly we construct the contribution of the performance target to the fit-
ness function by defining totalPWeight =

∑n
0 (performanceTargetWeighti ) and

weightedPerfResult :

weightedPerfResult =
n∑
0

(scaledPerformanceValue i ×
performanceTargetWeight i

totalPWeight
)

This allows the user to put more importance on finding one performance target
over any others.
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5. The balance between performance targets and population size

Finally we use the weights for population and performance entered by the mod-
eller, populationWeight and performanceWeight to combine these values in the
final fitness value. Here totalWeight = populationWeight + performanceWeight

fitnessValue = weightedPopResult × (populationWeight/totalWeight)

+ weightPerfResult × (performanceWeight/totalWeight)

In summary, this creates a fitness value such that the smaller the value, the lower
the number of components used, and the closer the performance evaluation will
be to the user defined target.

3.3 Capacity Planning Viewer

The capacity planning viewer is a viewer pane in the Eclipse environment. At
the end of each run of the metaheuristic it is passed the ten top candidates by
fitness value and displays them in order in the view pane.

To keep track of all the experiments and candidates we use a Java class
RecorderManager. A RecorderManager is created with every Lab, and every
experiment has a Recorder. It is the Recorder’s role to track the progress of an
experiment, and it is the task of the RecorderManager to collect all Recorders
and pass the results to the capacity planning Viewer.

4 Driven Search

As will be discussed in the next section the simple search proved effective for find-
ing a model configuration satisfying the performance targets, whilst minimising
the number of components. But in testing users had difficulties in choosing the
best settings for the PSO algorithm to achieve the best results. These settings
include the initial population and velocity of components, weightings for global
and local best as well as the number of generations and experiments. There-
fore we experimented with using another metaheuristic to find the settings for
a metaheuristic search over the parameter space. We term this driven search:
a driving metaheuristic is used to find the best settings for the second driven
metaheuristic. After some investigation we found that this works well when a
hill-climbing algorithm is used to find the best settings for a PSO algorithm.

In a driven search the candidate is itself a Lab, as defined for single search;
this is termed a Lab candidate. Each experiment consists of a single search
Lab, and so one driven experiment, consists of many Lab experiments. This is
represented schematically in Fig. 9.

Lab Fitness Function. In order to evaluate the fitness of a Lab candidate, we
construct a Lab fitness function. This Lab fitness function calls the RecordManager
from the underlying single search (Fig. 10) to return four values;
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Fig. 9. Schematic view of a driven search

Fig. 10. Lab candidate calling a fitness update

– Top fitness from the underlying experiments (topFitness);
– Mean fitness of all experiments in this Lab candidate (meanFitness);
– Standard deviation of the best values found for this Lab candidate

(standardDeviation);
– Average response timeof theunderlying experiments (averageResponseTime)2.

The lower a lab fitness value is, the better the underlying single search will be at
finding the optimal candidate. Getting the best fitness has the highest priority
and is reflected in the fitness function by having a weight of 0.6, next priority is
finding a single search that on average returns a high value and therefore it uses
a weight of 0.2. In order to break any ties between Lab candidates, accuracy
(standard deviation) and response time each are given weights of 0.1. These
weights were arrived at through experimentation.

2 How long an experiment took to run, not to be confused with the average response time
performance measure evaluated on the model.
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fitnessValue = (0.6× topFitness) + (0.2×meanFitness)

+ (0.1× standardDeviation) + (0.1× averageResponseTime)

5 Evaluation

As mentioned previously, our initial implementation offered three different meta-
heuristics. In addition to PSO we implemented a stochastic hill climbing (HC)
and a genetic algorithm (GA). Table 1 shows the results of experimentation
with these different search algorithms over a variety of models3. The model sizes
ranged from 2 populations (Simple) to 9 populations (E University), with com-
ponents from 2 local states (Traffic) up to 18 local states (E University).

Table 1. Evaluation results for Top fitness (to 6 s.f.) and Response time in milliseconds
(RT). Best values highlighted in each row.

GA HC PSO

Model Top fitness RT Top fitness RT Top fitness RT

Brewery 21.1459 31.49 23.7710 46.15 22.6990 29.075

Brewery2 18.8109 220.39 16.3775 217.16 14.1821 208.05

E University 11.8022 1723.17 10.5644 1327.02 5.22160 1653.36

Example System 8.26005 46.14 7.33108 46.75 3.91710 43.98

Example System2 6.58843 75.75 7.65840 75.67 1.75361 71.2

Large-t 2 120.71 2 122.68 2 119.95

Simple 8.00494 29.17 7.50368 33.02 7.25008 30.10

Simple2 9.03451 33.82 11.0040 28.45 4.86591 26.70

Traffic 34.2665 33.05 34.4215 33.32 32.9015 30.87

It can be seen from Table 1 that the PSO algorithm is generally achieving the
best result and often in the shortest time. This is the reason why we decided to
only include PSO in the final implementation of the tool.

Figs. 11(a) and 11(b) show what happens to fitness over generations with
PSO and GA. Each algorithm was run 1000 times on the same model and the
average fitness of each generation was calculated. An effective algorithm should
improve (decrease) the average fitness through the generations. Figs. 11(a) shows
the average fitness and the variance of fitness over generations of the PSO on
our example model, Example.pepa. On average the PSO has converged after 8
generations — there is no significant improvement in average fitness after that.
In contrast, GA convergence appears to happen around the 5th generation, but
there is much wider variance, indicating that there are better candidates found
but not consistently. The width of the variance shows GA has different behaviour
on each run, whereas PSO has much less variance in the final generations. The
results for HC exhibited even greater variability and much less convergence.
These results show that the PSO has the same behaviour on average indepen-
dently of how the algorithm was started. Thus it is more predictable.
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(a) PSO (b) GA

Fig. 11. Graph showing the average fitness and variance of fitness over generations of
PSO (left) and GA (right)

Table 2. The top fitness results of the driven PSO against the single PSO

Model Driven fitness Single fitness

Simple ab 5.00523 6.30427

Simple a 7.25008 7.25008

Brewery ab 18.6424 15.1921

Brewery a 22.3579 23.1876

E University 5.11754 6.06217

Example system a 3.82410 5.21521

Example system ab 2.78335 4.90980

Finally in Table 2 we show the results of a comparison of a single PSO search,
against a driven PSO search on each of our example models. Note that the driven
search achieves a better fitness result in the majority of models.

6 Conclusions

In this paper we have presented the new capacity planning facility within the
Eclipse Plug-in for PEPA. This tool offers both a fast single search and a slower
driven search. The former requires the modeller to understands the heuristic
and how to appropriately choose settings, the latter has only two settings. Ex-
perimentation suggests that the PSO metaheuristic offers the best compromise
between speed of convergence and satisfaction of requirements. The heuristic’s
optimisation method manages the candidate search, how the candidates com-
municate, how the candidates are created and mutated, but the fitness function

3 More details of this evaluation and the models used can be found in [12].
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defines the search. The capacity planning wizard enables and supports the user
to define an appropriate fitness function.

Future work can proceed in a number of directions. For example, we aim to
generalise the tool to work with other solvers within the PEPA Eclipse Plug-in
tool suite. Whilst this is likely to be much more computationally expensive, it
will be suitable for a broader range of models. Currently activity rates can only
be searched through cloning subpopulations of components with different rates,
but in the future we will extend the support for activity rates in the search
parameter space. Furthermore, we will also allow more general specification of
performance targets to be logic-based.
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Abstract. Complex computer systems, from peer-to-peer networks to
the spreading of computer virus epidemics, can often be described as
Markovian models of large populations of interacting agents. Many prop-
erties of such systems can be rephrased as the computation of time
bounded reachability probabilities. However, large population models
suffer severely from state space explosion, hence a direct computation
of these probabilities is often unfeasible. In this paper we present some
results in estimating these probabilities using ideas borrowed from Fluid
and Central Limit approximations. We consider also an empirical im-
provement of the basic method leveraging higher order stochastic ap-
proximations. Results are illustrated on a peer-to-peer example.

Keywords: Stochastic model checking, reachability, hitting times, fluid
approximation, central limit approximation, linear noise approximation.

1 Introduction

Recent years have seen an impressively growing complexity of computer systems
being engineered and deployed, from cloud computing to smart cities, resulting
in a stringent need for model-based design. However, describing such systems
and analysing the so-obtained models in a mathematically sound and computa-
tionally efficient way is extremely challenging. These systems are often described
as population models, which naturally capture the complexity in terms of interac-
tions between relatively simple heterogeneous sets of components. Examples in-
clude peer-to-peer networks [20], epidemic spreading in computer networks [21],
but also models of smart city scenarios like bike sharing [12]. Population models
are usually given a semantics in terms of Continuous Time Markov Chains, and
many tools have been developed in the past years for their analysis. Here we
recall model checkers [17, 18], taking as input complex queries specified as tem-
poral logic formulae and returning their satisfaction probability, using numerical
routines to compute transient and steady state probabilities [3, 4].
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These analysis techniques, however, suffer from scalability issues caused by
the state space explosion of population models, which is severe even for popu-
lations of the order of few hundreds. A growing trend to tackle this challenge
is the use of stochastic approximations to simplify model complexity, predomi-
nantly in the form of Fluid (or Mean-Field) Approximation [8]. These methods
have been employed successfully to capture mean transient behaviour [8], but
also to estimate passage times [15,16] and for stochastic model checking [6,9]. In
particular, Fluid Approximation has been used to estimate passage times [15,16]
and for model checking [6, 7] of properties of individual agents in large popu-
lation models. These local specifications have been lifted to the collective level
by considering the fraction of agents satisfying a local specification, expressed
as a deterministic automaton [15] or a deterministic timed automaton [9], and
bounding [15,16] or approximating their probability by exploiting a second order
Gaussian approximation [9].

In this paper we continue along this direction, applying stochastic approxima-
tion ideas to a different class of global properties, namely reachability properties
at the collective population level. Specifically, we are interested in the fast com-
putation of the (approximate) probability with which the system can reach a
certain region of the state space, defined by a non-linear inequality of popula-
tion variables, within a given time horizon T < ∞. Examples of such properties
are the probability that a large fraction of users of a peer-to-peer network has
an updated piece of information, or the probability with which a given fraction
of computers in a LAN becomes infected by a virus. Reachability queries are im-
portant in many respects: safety properties are of this kind and they constitute
the core subroutine to check time-bounded CSL properties [4].

The main idea of our approach to approximate such probabilities is to exploit
second order stochastic approximations of hitting time probabilities [11]. Con-
sider the Fluid Approximation, which is a deterministic process described by a
set of ODE, and assume their solution enters the region R of interest at a given
time tR. Then, tR is an estimate of the hitting time of R also for the stochastic
model with a very large population. However, for populations of the order of
hundreds of individuals, a typical size in heterogeneous models, this approxi-
mation is too crude, as stochastic effects cannot be easily neglected. Hence, our
idea is to exploit the Central Limit Approximation [9]: by replacing the CTMC
with a Gaussian process, we can obtain a Gaussian approximation of the time
to reach R, and therefore of the reachability probability. The effectiveness of
this approach will be illustrated in the paper discussing an example of software
update in a peer to peer network, inspired by [14].

We consider also improvements of this estimate. The idea is to define a higher
order approximation of the moments of the hitting time distribution, leverag-
ing a recently developed approach for chemical reaction networks [13], and use
this information to reconstruct a plausible distribution, within a moment recon-
struction scheme based on the maximum entropy principle [1]. In this paper, we
illustrate this idea focusing on the first two moments, but higher order approxi-
mations can be easily obtained as well.
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The paper is organised as follows. In Section 2, we introduce the modelling
language for Markov population models, the running example, and the Fluid and
Central Limit Approximations. In Section 3, we present the global reachability
problem, and its Gaussian approximation. Section 4 discusses the higher order
approximation, while Section 5 shows the method in practice on the peer-to-peer
example. The final discussion can be found in Section 6.

2 Background

2.1 Markov Population Models

A Markov population model is a system comprised of a large number of interact-
ing entities, or agents. Each agent is an instance of an agent class, which defines
its (finite) state space and the set of its possible actions (the local transitions).

Definition 1 (Agent class). An agent class A is a pair (S,E) in which S =
{1, . . . , n} is the state space and E = {ε1, . . . , εm} ⊆ S×A×S is the set of local

transitions of the form εi = si
αi−→ s′i, where si, s

′
i ∈ S are the initial and arrival

states, and αi ∈ A is an action label belonging to the action set A.

The evolution in time of an agent belonging to a class A = (S,E) is described
by a random variable Y (t) ∈ S, that denotes the state of the agent at time t.

To ease the notation, in this work, we consider populations whose agents Yj ,
j = 1, 2, . . . all belong to the same class A = (S,E) with S = {1, . . . , n}. The
extension of the method to multiple classes is straightforward.We further assume
that agents in the same state are indistinguishable and we define the collective
variables Xi(t) =

∑
j 1{Yj(t) = k}, Xi ∈ {0, 1, . . .}, i = 1, . . . , n, which count

how many agents are in each state 1, . . . , n at time t. In this way, the vector of
collective variables X = (X1, . . . , Xn) can be used to describe the state of the
population. Formally, we define a population model in the following way.

Definition 2 (Population model). A population model X is a tuple X =
(A , T , x0), where:

– A is an agent class, as in Definition 1;
– T = {τ1, . . . , τ�} is the set of global transitions of the form τi = (Si, fi),

where:
• Si = {s1

α1−→ s′1, . . . , sp
αp−−→ s′p} is the (finite) set of local transitions

synchronized by τi;
• fi : R

n −→ R≥0 is the (Lipschitz continuous) global rate function.
– x0 = X(0) is the initial state.

The set T of global transitions identifies all the events that can change the
stateX of the population model. Intuitively, when a global transition τi = (Si, fi)

with Si = {s1
α1−→ s′1, . . . , sp

αp−−→ s′p} occurs, the local transitions s1
α1−→

s′1, . . . , sp
αp−−→ s′p fire and p agents change state accordingly. The expected fre-

quency of τi is given by global rate fi as a function of the state vector X.
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To describe the evolution in time of a population model X = (A , T ,x0),
we define the associated CTMC as follows. For each global transition τ ∈ T ,

τ = (Sτ , fτ ) with Sτ = {s1
α1−→ s′1, . . . , sp

αp−−→ s′p}, we encode the net change in
the state X due to τ in the update vector vτ =

∑p
i=1(es′i − esi), where esi is

the unit vector equal to 1 in position si and zero elsewhere. Then, the CTMC
X(t) associated with X has state space S ⊂ Zn, initial probability distribution
concentrated on x0, and is uniquely characterised by the infinitesimal generator
matrix Q whose component qx,x′ for x,x′ ∈ S, x 	= x′, is defined by qx,x′ =∑

τ∈T |vτ=x′−x fτ (x).

2.2 Running Example

To illustrate the method of the paper, we consider a simple variant of the peer-
to-peer software update process introduced in [14]. In the modelled network, a
node can be old, meaning that it has an old version of the software, or updated,
when it has been able to receive the update. In both cases, the node can be
switched ON and OFF, and an old node can update only when it is on. The
search for the update in the network lasts until a certain timeout is reached,
after which the old node gives up and reaches a oldOUT state from which it
can be eventually switched off. Finally, we mimic also the possibility that an
oldOUT node obtains the update from an external source (extO) and that the
license of the updated version of the software eventually expires or a new version
is released (expU ).

The agent class Anode = (Snode, Enode) of the network nodes can be easily de-
rived from the automaton representation depicted in Figure 1. The population
model Xnetwork = (Anode, T ,x0) is described by the vector of counting vari-
ables X = (XoldOFF , XoldON , XoldOUT , XupdatedOFF , XupdatedON ) and the set
of global transition is given by T = {τonO

, τoffO
, τoutO , τoffT

, τextO , τoffU
, τonU

,
τupdate, τexpU

}. For example, the switching on of an old node is described by

τonO
= {{oldOFF

onO−−−→ oldON}, fonO
}, where the synchronisation set spec-

ifies that only one (old) node is involved and changes state from oldOFF to
oldON at an expected rate given by the function fonO

(X) = λonO
XoldOFF ,

in which λonO
is the constant indicating the rate of switching on of old nodes

per single unit. The global transitions τoffO
, τoutO , τoffT

, τextO , τoffU
, τonU

, τexpU

have a similar form (with λextO and λexpU
having low values to implement

the fact that extO and expU happen on a much lower time-scale than the oth-
ers). The global transition τupdate, instead, synchronises two local transitions.

In particular, τupdate = {{oldON
updateO−−−−−→ updatedON, updatedON

updateU−−−−−→
updatedON}, fupdate} and involves an oldON -node and an updatedON -node.
In this case, we assume that an updatedON -node sends the update to an oldON -
one at an instantaneous rate given by λupdate and the rate function has the

classical mass action form fupdate(X) = λupdateXoldONXupdatedON , depending

on the number of pairs of nodes that are ready to communicate [2].
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oldOFFoldOUT

oldON

updatedOFF

updatedON

offT

onO extOoutO

offO

updateO

onU

expU

offU

updateU

Fig. 1. The automaton representation of the peer-to-peer software update process of
Section 2.2

2.3 Fluid and Central Limit Approximations

To introduce the Fluid and Central Limit approximations, we first need to define
a notion of size γX associated with a population model X = (A , T ,x0). In the
context of this paper, γX will be the initial number of agents in the population,
i.e. γX =

∑
i Xi(0), but in general, the size is just a suitable constant positive

integer number N > 0, which is by no means limited to the population size. For
example, in queueing models, γX can be the arrival rate or, in other context,
the size can refer to an environmental factor (like the volume of the container in
a biochemical mixture model). For a more detailed discussion on the notion of
size, see [8].

Given a population model X = (A , T ,x0) with population size γX = N , the
Fluid Approximation of X [6–8] provides a deterministic estimation of its dynam-
ics, exact in the limit of an infinite population. To define such approximation, we
consider a sequence (X (N))N∈N of population models that have the same struc-
ture of X for increasing values of population size N . To compare the dynamics of
the models in the sequence, we define the normalised counting variables X̂ = 1

NX
(also known as population densities or occupancy measures, see [8] for further de-

tails) and we consider the normalized population models X̂ (N) = (A , T̂ (N), x̂
(N)
0 ),

obtained by making the rate functions f
(N)
τ (X̂), τ ∈ T̂ (N), depend on the nor-

malised variables and rescaling the initial state, i.e. x̂
(N)
0 = 1

N x0. We assume

that there exist a compact set D ⊆ [0, 1]n such that
⋃

N Ŝ(N) ⊆ D and a point

x̂0 ∈ D such that x̂0 = limN→∞ x̂
(N)
0 . For each transition τ ∈ T̂ (N), we re-

quire that the density dependent condition 1
N f

(N)
τ (X̂) = fτ (X̂) holds true for

some Lipschitz function fτ : D −→ R≥0. Furthermore, we define the drift F of
X (N) to be the mean instantaneous net change in the normalised counting vari-
ables, i.e. F(X̂) =

∑
τ∈T̂ (N) vτfτ (X̂). Then, the unique solution1 Φ : D −→ Rn

(independent of N) of the differential equation

1 The drift F is Lipschitz continuous, since we assume that every fτ is. Hence, the
solution Φ : R≥0 → Rn exists and is unique.
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dΦ(t)

dt
= F(Φ(t)), with Φ(0) = x̂0, (1)

is the Fluid Approximation of the CTMC X̂
(N)

(t) associated with X̂ (N). A limit

theorem by Kurtz [8,11] states that, for any T < ∞, supt∈[0,T ] ‖X̂
(N)

(t)−Φ(t)‖
converges to zero (almost surely) as N goes to infinity, hence the approximation
is exact in the limit of an infinite number of agents.

The Fluid Approximation can be successfully implemented to estimate the dy-
namics of large population models [8]. However, whenever X (N) is a mesoscopic
population model, meaning that its population is in the order of hundreds of
agents, the behaviour of X (N) remains intrinsically probabilistic, hampering the

accuracy of the deterministic estimation Φ(t) of X̂
(N)

(t). For this reason, in this
work, we consider an alternative probabilistic approximation, the Central Limit
Approximation (CLA) [9], which takes into account the probabilistic fluctuations

X̂
(N)

(t) around the deterministic average behaviour described by the fluid limit
Φ(t), and can be successfully applied also in the case of mesoscopic populations.

Consider the (normalised) stochastic process Z(N)(t) := N
1
2 (X̂

(N)
(t)−Φ(t)),

which captures the noise of X̂
(N)

(t) around the deterministic fluid estimation
Φ(t). Let {Z(t) ∈ Rn | t ∈ R} be the Gaussian process (independent of N) with
mean E(t) and covariance C(t) given by

∂E(t)

∂t
= JF(Φ(t))E(t), with E(0) = 0, (2)

and

∂C(t)

∂t
= JF(Φ(t))C(t) +C(t)JT

F(Φ(t)) +G(Φ(t)), with C(0) = 0, (3)

where JF(Φ(t)) is the Jacobian of F calculated along the deterministic fluid limit

Φ : D −→ Rn, and G(X̂) =
∑

τ∈T̂ (N) vτv
T
τ fτ (X̂) is called the diffusion term.

Then, the following result holds true [11].

Theorem 1. Assume that limN→∞ Z(N)(0) = Z(0). Then, Z(N)(t) converges

in distribution to Z(t) (Z(N)(t) ⇒ Z(t)).

The stochastic process given by

Φ(t) +N− 1
2Z(t) (4)

is the Central Limit Approximation of the CTMC X̂
(N)

(t) and Theorem 1 guar-
antees that the approximation is exact in the limit of an infinite population
size.



230 L. Bortolussi and R. Lanciani

3 Stochastic Approximation of Reachability Probabilities

3.1 The Reachability Problem

In this paper, we introduce a model checking procedure for the validation of
reachability properties. In particular, we consider instances of global reachability
properties, describing the dynamics of the system at the population level, i.e.
characterising the collective behaviour of all agents. In order to verify such re-
quirements, we compute the probability of reaching, within a given time horizon
T , a specific target region R ⊂ S of the state space S of the population model,
starting from the initial state x0:

PR(T ) = P{X(t) ∈ R | t ∈ [0, T ]}. (5)

Reachability is a fundamental notion in the analysis and verification of complex
systems and it has been widely studied in many disciplines, including physics, bi-
ology and computer science. In the latter community, the investigation of reacha-
bility has been usually motivated by the safety verification problem, that checks
the performance of a model by computing the probability associated with its
failure, i.e. with those trajectories that end up in a dead-lock or error state. This
type of analysis is indeed fundamental for a sound and reliable verification of
software and hardware systems, and in recent years great variety of stochastic
model checking techniques have been developed in order to efficiently tackle the
problem [10].

The standard stochastic model checking procedures address the reachability
problem (5) by making absorbing the states in the target region R and com-
puting the transient probability of being in such states at time T . However, all
these methods severely suffer by the state space explosion of population models,
which hampers the computability of transient and steady-state probabilities. In
this paper, we introduce a model checking procedure, which tackles the prob-
lem of the state space explosion by considering scalable approximations of the
population dynamics.

In the following, we will reformulate the reachability problem (5) as a hitting
time problem. In particular, instead of computing the probability of reaching
the target region R before time T , we consider the hitting time tR, the instant
in which the trajectory of the population model enters R, and we compute the
probability that tR < T :

P
hit
R (T ) = P{tR ≤ T } with tR = inf{t > 0 | X(t) ∈ R}. (6)

It is straightforward to prove that PR(T ) = Phit
R (T ).

To compute the reachability probability PR(T ), we will define a Gaussian
estimation of the hitting time tR, starting from the Central Limit Approximation
of the dynamics of the population model X . Hence, following the procedure
illustrated in Section 2.3, we define the sequence of population models (X (N))N∈N

and, normalising with respect to the population size N , we consider the following
reachability probability:

P
(N)
R (T ) = P{t(N)

R ≤ T } with t
(N)
R = inf{t > 0 | X̂(N)

(t) ∈ R}.
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Moreover, we assume that the (normalised) target region R is defined by an in-
equality on population variables. Formally, we introduce a suitable target func-
tion ρ : D → R, such that R is the subset of D where ρ is negative. The
function ρ is defined on the compact set D ⊆ [0, 1]n such that

⋃
N Ŝ(N) ⊆ D

(see Section 2.3) and comes in the form of a nonlinear differentiable function of
the normalised counting variables X̂1(t), . . . , X̂n(t). Hence, the final form of the
reachability problem we want to solve is given by

P
(N)
R (T ) = P{t(N)

R ≤ T } with t
(N)
R = inf{t > 0 | ρ(X̂(N)

(t)) < 0}. (7)

Example 1. As an example, consider the peer-to-peer software update process
described in Section 2.2 in a network with 100 nodes, i.e. the population size is
N=100. We can validate the performance of the model by considering the simple
reachability property which controls the time in which 95% of the nodes have
been updated. In this case, the target region R is that in which the number of
agents that have received the update, i.e. XupdatedOFF +XupdatedON , is greater
or equal to 95% of the population, i.e. 0.95 · 100. Hence,

R := {X(t) ∈ S | XupdatedOFF (t) +XupdatedON (t) ≥ 0.95 · 100},

and the target function ρ : D → R is given by

ρ(X̂
(N)

(t)) := 0.95− X̂updatedOFF (t)− X̂updatedON (t).

3.2 Central Limit Approximation of the Hitting Time Distribution

To compute the cumulative probability distribution associated with the reacha-
bility problem (7), the model checking procedure that we are presenting exploits

a Corollary of Theorem 1, which provides a Gaussian estimation of t
(N)
R based

on the Fluid and Central Limit Approximations of X̂
(N)

(t). In this section, we
review how to define this estimation.

The Fluid Approximation of X̂
(N)

(t) provides a deterministic approximation

tR (independent of N) of the hitting time t
(N)
R of the reachability problem (7),

namely

tR = inf{t > 0 | Φ(t) ∈ R}. (8)

As a direct consequence of Kurtz’s Theorem on the fluid limit, such an approx-
imation is exact in the limit of an infinite population. Consider now the (nor-

malised) stochastic variable ε(N) :=
√
N(t

(N)
R − tR), which captures the noise of

t
(N)
R around the deterministic fluid estimation tR. Let {Z(t) ∈ Rn | t ∈ R} be the
Gaussian noise of the Central Limit Approximation with mean and covariance
given by (2) and (3) respectively, and let ε be the random variable given by

ε := − ∇ρ(Φ(tR)) · Z(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
,
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where ρ : D → R is the target function identifying the (normalised) target
region R̂ in (7), ∇ is the gradient, and · is the Euclidean scalar product. Then,
the following result holds true ( [11], Ch 11, Theorem 4.1).

Theorem 2. Assume that limN→∞ Z(N)(0) = Z(0) as in Theorem 1. If tR < ∞
and ∇ρ(Φ(tR)) ·F(Φ(tR)) < 0, then ε(N)(t) converges in distribution to ε(t).

In conclusion, the Gaussian approximation of the hitting time t
(N)
R that we will

consider in our model checking procedure is given by

tR − 1√
N

∇ρ(Φ(tR)) · Z(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
(9)

and Theorem 2 guarantees that the estimation is exact in the limit of an infinite
population size.

3.3 The Algorithm

The algorithm of our model checking procedure for the verification of reachability
properties over Markov population models has the following form.

Input:

• an agent class A = (S,E) as described in Definition 1;
• a Markov population model X = (A , T ,x0) as described in Definition 2;
• a global reachability property with target region R identified by a target
function ρ : D → R.

Steps:

1. Integration of the Fluid and Central Limit differential equations. Numerically
solve the ODE systems (1) for the Fluid ApproximationΦ(t), and (2) and (3)
for the mean E(t) and covariance C(t) of the Gaussian noise of the Central
limit Approximation;

2. Computation of the fluid estimation tR. Compute the fluid estimation tR of
the hitting time by solving tR = inf{t > 0 | ρ(Φ(t)) < 0};

3. Computation of the mean and covariance of the Gaussian approximation.
Identify the mean μhit and variance σ2

hit of the Gaussian approximation of
the hitting time defined in (9) by solving

μhit = tR − 1√
N

∇ρ(Φ(tR)) ·E(tR)

∇ρ(Φ(tR)) ·F(Φ(tR))

and

σ2
hit = − 1√

N

∇ρ(Φ(tR)) · diag(C(tR))

∇ρ(Φ(tR)) ·F(Φ(tR))
,

where diag(C(tR)) is the vector of diagonal elements of C(tR).
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4. Computation of the reachability probability. Let f(t | μ, σ2) be the probability
density function of a Gaussian distribution in t with mean μ and variance

σ2. Approximate the global reachability probability P
(N)
R (T ) by

P
(N)
R (T ) ∼

∫ T

−∞
f(t | μhit, σ

2
hit)dt. (10)

The asymptotic correctness of the approximation of the reachability proba-
bility PR(T ) is guaranteed by the following result, which is a straightforward
corollary of Theorem 2.

Theorem 3. Let P
(N)
R (T ) be the exact value of the global reachability probability

defined in (7), and let P̃
(N)
R (T ) =

∫ T

0 f(t | μhit,σ
2
hit)dt be the Gaussian approx-

imation computed in (10). Then, under the assumptions of Theorem 2, it holds

that limN→∞|| P(N)
R (T )− P̃

(N)
R (T ) || = 0.

4 Higher-Order Approximation

As discussed in Section 2.3, the Central Limit Approximation (CLA) is an es-
timation of the behaviour of a population model which is exact in the limit of
an infinite population size, but can be efficiently applied even when consider-
ing mesoscopic systems. Indeed, the CLA provides a Gaussian estimation of the
stochastic fluctuations of the dynamics of the population model around the (de-
terministic) average behaviour described by the fluid limit. Again, such Gaussian
approximation is asymptotically correct, but in the case of mesoscopic popula-
tions it can happen that even the CLA fails to properly describe the dynamics
of the population model: the fluid limit itself may indeed fail to accurately de-
scribe the average behaviour of the system and/or the stochastic fluctuations
around the fluid estimation could be not normally distributed. In these cases, to
tackle the error in the estimation of the CLA, higher-order approximations of the
system behaviour have been proposed and applied in the literature [13]. In this
section, we exploit these higher-order approximations to improve the accuracy
of Kurtz’s Gaussian estimation of the hitting time (9).

Let us first introduce the higher-order approximation of the CTMC X(N)(t)
of a population model X (N). To ease the presentation, we will describe just
the fundamental steps of the definition, leaving aside most of the mathematical
prone details (the interested reader can refer to [13] and [22]). As in the case of

the CLA, we are interested in estimating the (normalised) process Z(N)(t) :=

N
1
2 (X̂

(N)
(t) − Φ(t)), capturing the noise of X̂

(N)
(t) around the deterministic

Fluid Approximation Φ(t) given by (1). To achieve this, we write X̂
(N)

(t) =

Φ(t) + N− 1
2Z(N)(t) and we substitute this formula in an expansion in pow-

ers of N of the Master Equation associated with X̂
(N)

(t) [19] , describing the

evolution in time of the probability Π(Z(N)(t)) of being in state X̂
(N)

(t) =

Φ(t) + N− 1
2Z(N)(t) at time t. By dropping high order terms in N in the so
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obtained form of the Master Equation, we can control the level of accuracy and

define different higher-order approximations of X̂
(N)

(t). The simplest correction
to the CLA, following [13], defines a stochastic process Z ∗ (t) whose first and
second moments are given by:

∂E∗(t)

∂t
= J(Φ(t))E∗(t) +N−1/2Δ(C∗(t)) +O(N−1), E∗(0) = 0, (11)

and

∂C∗(t)

∂t
= J(Φ(t))C∗(t)+C∗(t)JT (Φ(t))+G(Φ(t))+O(N− 1

2 ), C∗(0) = 0, (12)

where F and G are the drift and diffusion respectively, J is the Jacobian of F,
and Δ(C∗(t)) is the vector whose i-th component is given by:

Δi(C
∗(t)) = −1

2

⎛⎝∑
j,k

∂2

∂Φj∂Φk
Fi(Φ)C∗

ij −
∑
j

Φj
∂2

∂Φj
2Fi(Φ)

⎞⎠ . (13)

Notice that Z∗(t) depends on N , and moreover, if in Equation (11) we drop
the term that is O(N−1/2), Equations (11) and (12) describe the mean and
covariance of the Central Limit Approximation (i.e. they correspond to the ODE
systems (2) and (3)).

The higher-order approximation Z∗(t) of the noise around the fluid limit Φ(t)

of X̂
(N)

(t) can be used to define the higher-order approximation t̃
(N)
R of the

hitting-time t
(N)
R given by

t̃
(N)
R = tR − 1√

N

∇ρ(Φ(tR)) · Z∗(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
. (14)

While in (9) the CLA guarantees that Z(t) is a Gaussian process [11], in
(14) there is no limit result that characterises the nature of the distribution
of the higher-order approximation Z∗(t) (and, thus, of the stochastic variable

t̃
(N)
R defined in (14)). To tackle this problem and construct a plausible proba-

bility density function for t̃
(N)
R , we leverage an advanced information theoretic

moment-reconstruction technique based on the maximum entropy principle [1].
This computational method is used to design smooth approximations of multidi-
mensional probability distributions by maximising the Shannon entropy subject
to taking the moments as constraints. Hence, to improve the estimation of the

hitting time tR given by (9), we consider the first and second moments of t̃
(N)
R ,

which are given by

E
[
t̃
(N)
R

]
= tR − 1√

N

∇ρ(Φ(tR)) · E∗(tR)

∇ρ(Φ(tR)) · F(Φ(tR))
(15)

and

C
[
t̃
(N)
R

]
= tR − 1√

N

∇ρ(Φ(tR)) · diag(C∗(tR))

∇ρ(Φ(tR)) ·F(Φ(tR))
. (16)
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Fig. 2. Results of the experimental analysis of the running example with ρ(X̂) =
0.95 − X̂oldON − X̂upON and x̂0 = (0.9, 0, 0, 0.1, 0). Left: Comparison of reachability
probabilities obtained by Central Limit Approximation (CLA) and Gillespie’s statisti-
cal algorithm (SSA) N = 20 and N = 200. Right: Comparison of reachability proba-
bilities obtained by CLA, SSA and the higher-order approximation of Section 4 (HOA)
for N = 100

Then, the moment-reconstruction maximum entropy principle states that the
best approximation (in terms of the Shannon entropy) for a one-dimensional
probability distribution given its first and second moments, μ and σ2 respec-

tively, is the Gaussian distribution N (μ, σ2). Hence, we conclude that t̃
(N)
R ∼

N (μ∗
hit, σ

2∗
hit), where μhit = E[t̃

(N)
R ] and σ2∗

hit = C[t̃
(N)
R ] are the mean (15) and

the variance (16), respectively.

In conclusion, if we consider the higher-order approximation t̃
(N)
R of the hitting

time t
(N)
R defined in (14), the algorithm of our model checking procedure keeps

the form described in Section 3.3, substituting the occurrences of the mean E(t)
and covariance C(t) of the Central Limit Approximation with the mean E∗(t)
and covariance C∗(t) of the higher-order approximation given by (12) and (11).

Remark 1. Since by definitionC(t) = C∗(t), in practice the higher-order approx-
imation (14) improves the estimation given by the Central Limit Approximation
(9) by subtracting an N -dependent correction term to its mean, which was ac-
tually equal to the Fluid estimation tR (indeed, by integration of (2), we have
that E(t) ≡ 0).

5 Experimental Analysis

In the following, we describe the experimental results obtained on the peer-to-
peer software update process introduced in Section 2.2 where we set λonO

=
λoffO

= λoffT
= λonU

= λoffU
= 0.4, λoutO = 0.9, λextO = 0.008, λexpU

= 0.001
and λupdate = 1.
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Table 1. Maximum and mean absolute error on the reachability probability estima-
tions obtained by the Central Limit Approximation (max(errCLA), E[errCLA]) and
the higher-order approximation of Section 4 (max(errHOA), E[errHOA]) in the exper-
iments of Figure 2

N max(errCLA) E[errCLA] max(errHOA) E[errHOA]

20 0.1453 0.0443 0.0908 0.0313

100 0.0931 0.0128 0.0415 0.0066

200 0.0623 0.0063 0.0171 0.0023

First, we considered reachability properties characterised by linear target
functions. In particular, we chose ρ(X̂) = 0.95− X̂oldON − X̂upON , which is used
to check whenever the number of updated nodes reaches 95% of the network

size (see Example 1). Figure 2 shows the reachability probabilities P
(N)
R (T ) =

P{t(N)
R ≤ T } for three population sizes: N = 20, 100, 200. On the left of Figure

2, the Gaussian estimation (9) obtained by the Central Limit Approximation
(CLA) is compared with a statistical estimation (the Gillespie’s Stochastic Sim-
ulation Algorithm (SSA)) computed over 10000 simulation runs. As expected
the accuracy of the estimation increases with N and is already very good for
N = 200. On the right of Figure 2, for the case N = 100, we show also the
higher-order approximation defined in Section 4, which corrects the mean ob-
tained by the CLA, improving the quality of the approximation. In Table 1, we
report the maximum and mean absolute errors obtained by the CLA and the
higher-order approximation. Again as expected, the results improve with N and
the quality is already quite good for N = 100. Moreover, when N = 100 and
N = 200, the higher-order approximation reduces the errors of more than 50%.

In the second set of experiments, instead, we considered reachability proper-
ties identified by non-linear target functions. We chose to verify the efficiency
of the communication across the network by checking whenever the through-
put XoldON ∗XupON gets below a certain N -dependent threshold. In particular,

we set ρ(X̂) = X̂oldON ∗ X̂upON − 0.006. In this case, the experimental results
showed that, to reach a good level of accuracy in the approximation, much larger
population sizes have to be considered (probably due to the fact that the error
in the estimation of gets amplified by the product X̂oldON ∗ X̂upON , hence larger
N are needed for the method to converge). Indeed, Figure 3 compares the re-
sults obtained by the CLA, the SSA and the higher-order approximation for two
population sizes: N = 1000 and N = 10000. When N = 1000, the CLA performs
poorly in estimating the reachability probability and the quality of the approx-
imation slightly improves when we compute the higher-order approximation of
Section 4, which however still fails to capture the slope of the cumulative dis-
tribution function obtained by the SSA, due to an inaccuracy in the prediction
of the variance. Only when we consider population sizes of the order of 10000,
the method starts to converge and the higher-order approximation is finally
able to efficiently predict the (estimated) true reachability probability. Including
higher-order terms in the method of Section 4 may improve this scenario, too.



Stochastic Approximation of Global Reachability Probabilities 237

Fig. 3. Results of the experimental analysis of the running example with ρ(X̂) =
X̂oldON ∗ X̂upON − 0.006 and x̂0 = (0, 0.9, 0, 0, 0.1). Comparison of reachability proba-
bilities obtained by Central Limit Approximation (CLA), Gillespie’s simulation algo-
rithm (SSA) and the higher-order approximation of Section 4 (HOA) for N = 1000
(left) and N = 10000 (right).

6 Conclusion

In this paper, we presented a model checking procedure for global reachability
properties of Markov population models based on stochastic approximations of
the system behaviour. In particular, we exploited the CLA as in [9], but for a
considerably larger class of global reachability properties. Indeed, in [9] we con-
sidered queries based on counting how many agents satisfy a local specification,
resulting in a reachability problem in which the target region R is guaranteed
to be absorbing. Here, instead, we consider arbitrary regions R, defined by dif-
ferentiable functions on collective variables, which cannot be made absorbing in
a consistent way with the CLA. Hence, we relied on a different mathematical
machinery, based on a Gaussian approximation of the time instant in which the
trajectory of the population model enters R. Moreover, we improved the accu-
racy of the estimation considering higher-order approximations of the (first two)
moments of the reachability probability distribution. The method was experi-
mentally validated on a peer-to-peer software update process.

The main limitation of our methodology is that it requires the fluid limit tra-
jectory to enter the target region R associated with the reachability constraint.
And even when this happens, the quality of our approximation is correlated with
the unimodality of the hitting time distribution: if the true distribution is multi-
modal, then the accuracy of our method will be hampered [5]. This can happen
if the fluid trajectory passes close to the boundary of R without crossing it. We
are currently investigating possible ways of overcoming these limitations.

Other directions for future work are the release of an implementation, the
investigation and characterisation of the effect of higher-order approximations on
the estimate of the reachability probability, and the application of the framework
on larger case studies.
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Abstract. Various forms of decision diagrams have been successfully
used for quite some time to generate the state space and Markov chain
from models expressed in some high–level formalism. A variety of effi-
cient, “symbolic” algorithms, which manipulate sets of states instead of
individual states, are known for this purpose. However, there are cases
where explicit generation algorithms are still used. This paper seeks to
efficiently use decision diagrams as replacement data structures within an
existing explicit generation implementation. The necessary decision dia-
gram algorithms are presented, and small changes to the explicit gener-
ation algorithm are suggested to improve the overall generation process.
The efficiency of the new algorithms is illustrated using several models.

Keywords: Quantitative model checking, Markov chain generation,
Markov chain storage, decision diagrams

1 Introduction

Generating the state space and underlying Markov chain from a model described
in a high–level formalism, such as a Petri net, is a necessary first step for many
types of analysis. Important applications that utilize this information include
performance evaluation (e.g., [22,23]) and stochastic model checking (e.g., [3]).
The well–known state explosion problem, in which a “small” high–level model
may describe a huge state space and Markov chain, effectively limits the size
and complexity of systems that may be analyzed in this manner.

A successful approach to help manage the state explosion problem has been
the use of so–called “symbolic” or implicit algorithms, which utilize decision
diagrams (DDs) (e.g., [4,16]), a structure that represents finite sets of integer
vectors compactly for many (but not all) practical sets. As the symbolic al-
gorithms work directly with DDs, by building a transition relation from the
high level model and constructing the state space by a sequence of operations on
DDs, they are limited by the sizes of the DDs generated, which can remain small
even for huge state spaces. Once this was realized [5], many other researchers
adopted the idea and expanded upon it; for example, by applying it to Petri nets
[24], by developing generation algorithms [9], or by proposing variants of DDs
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[12,17,20,30]. In particular, several variants [15,19,26] have been proposed for
representing Markov chains by including the rate information in the transitions
relations.

While symbolic generation algorithms have enjoyed widespread success, they
have not completely replaced explicit algorithms. For Markov chain analysis in
particular, there are cases where explicit algorithms are often still used in prac-
tice. Notably, algorithms that exploit symmetry, such as the generation algo-
rithms for Stochastic Well–Formed Nets [8] that immediately build a lumped
process, remain explicit, despite preliminary work to make them symbolic [13].
For models containing immediate events, it is non-trivial to symbolically con-
struct a Markov chain over the “tangible” states (e.g., [20]). Finally, even when
DDs compactly represent large Markov chains, since the numerical solution of
the Markov chain usually requires one or more explicit solution vectors [18], in
practice, explicit generation algorithms are often considered “good enough”.

In this paper, we propose the use of DDs as data structures to represent
the state space and underlying Markov chain while using explicit generation
algorithms. This approach is not intended to compete with symbolic genera-
tion algorithms (although, for certain models, symbolic generation can be slow
and explicit generation is a viable alternative); rather, the intention is to al-
low cases that cannot (or for various reasons, do not) use symbolic generation,
such as those discussed above, to utilize DDs. As DDs are usually much more
compact than traditional explicit data structures, the goal is to reduce the mem-
ory requirements during generation, and to do so without greatly increasing the
generation times. Once the state space and underlying Markov chain have been
generated as DDs, the numerical solution algorithms in [18], using explicit solu-
tion vectors and the DD representation of the Markov chain, may be invoked.

In addition to numerical solution, there are other instances when explicit al-
gorithms are used with DDs. Algorithms for classifying the states of a Markov
chain, stored using DDs, into recurrent and transient classes, are partly explicit:
the initial “seed” states are chosen, one at a time, at random; each seed state
and potentially a large set of other states may then be classified using symbolic
operations [29]. The “symblicit” approach for analyzing Markov Decision Pro-
cesses presented in [27] is a combination of explicit and symbolic approaches.
Similarly, the lumping algorithm in [14] contains explicit loops over states.

However, for state space and Markov chain or reachability graph generation,
most algorithms are either completely explicit or completely symbolic. We are
only aware of a few exceptions to this rule, and these previous works are most
relevant to this paper. In [19], a type of DD called matrix diagram is used to
store the Markov chain, and an explicit algorithm is used to generate the Markov
chain. However, this work assumes that the state space is already known and
is represented using a DD. Recently, in [1], an explicit state space generation
algorithm was integrated into GreatSPN [6]; however, this uses a fairly simple
algorithm. This paper builds upon these works, with extensions and generaliza-
tions over [19], and algorithm improvements over [1].
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The remainder of this paper is organized as follows. Section 2 briefly recalls
the traditional, explicit generation algorithms and motivates the data structure
requirements. Section 3 formally defines DDs and some variants, and reviews
some necessary, known algorithms. Section 4 describes how DDs can be efficiently
integrated into explicit generation algorithms, and discusses some improvements
to make this more efficient. Section 5 gives experimental results for our new
algorithms, and section 6 concludes the work.

2 Background

Instead of a specific high–level formalism, we use an abstract model definition,
and treat the model as a “black box”. We assume that a model consists of:

– A set of L state variables, xL, . . . , x1. Each state variable may assume a
finite number of possible values; for simplicity, we assume these are the first
naturals, i.e., xl ∈ Sl = {0, 1, . . . , nl − 1}. The possible states of the model
are therefore Ŝ = SL × · · · × S1; a finite set. While we assume the existence
of bounds nL, . . . , n1, we do not require that these are known a priori.

– An initial distribution, π0 : Ŝ → [0, 1], with the restriction
∑

s∈Ŝ π0(s) = 1.

– A next–state function,N : Ŝ → 2Ŝ×IR+

, where IR+ denotes the set of positive
reals. The meaning of (s′, r) ∈ N (s) is that the model can change from state
s to state s′ in one step, with rate r.

The state space of the model, S, is the set of all states that can be reached from
the initial states, when zero or more actions occur. Formally, the set of initial
states may be defined as I = {s : π0(s) > 0}, and S is the smallest superset of I
that satisfies s ∈ S ⇒ ∀(s′, r) ∈ N (s), s′ ∈ S. The (reachable) Markov chain of
the model, R : S × S → IR≥0, where IR≥0 denotes the set of non-negative reals,
is defined as R(s, s′) =

∑
(s′,r)∈N (s) r.

A traditional algorithm to generate the state space and Markov chain from
a model is shown in Figure 1(a). Sometimes, it may be useful to generate the
Markov chain after the state space is known (for example, by collecting informa-
tion while generating the state space, a more compact data structure may be used
for the Markov chain); this may be done using the two–pass algorithm shown
in Figure 1(b). Both algorithms require data structures for S, the currently–
known state space; U , a set of states that still need to be explored; and R, the
currently–known Markov chain. Note that each algorithm terminates if and only
if the state space is finite. After termination, S and R will respectively hold the
complete state space and Markov chain, and U will be empty.

From a data structure perspective, the critical operations for S are adding
states (cf. line 8) and determining if a given state is contained in the set (cf. line 7).
The critical operations for U are checking if the set is empty (cf. line 4), adding
states (cf. line 9), and removing some state (cf. line 5). Note that if U removes
states in FIFO order (i.e., U is a queue), then the generation algorithm uses
breadth–first search; however, this is not required. A critical operation applica-
ble only to the two–pass algorithm is enumeration (cf. line 13). The only critical
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1. S ← {s : π0[s] > 0};
2. U ← S ;
3. R ← 0;
4. while U �= ∅ do
5. Remove some s from U ;
6. for all (s′, r) ∈ N (s) do
7. if s′ �∈ S then
8. S ← S ∪ {s′};
9. U ← U ∪ {s′};
10. end if
11. R(s, s′) ← R(s, s′) + r;
12. end for
13. end while

1. S ← {s : π0[s] > 0};
2. U ← S ;
3. R ← 0;
4. while U �= ∅ do
5. Remove some s from U ;
6. for all (s′, r) ∈ N (s) do
7. if s′ �∈ S then
8. S ← S ∪ {s′};
9. U ← U ∪ {s′};
10. end if
11. end for
12. end while
13. for all s ∈ S do
14. for all (s′, r) ∈ N (s) do
15. R(s, s′) ← R(s, s′) + r;
16. end for
17. end for

(a) One–pass algorithm (b) Two–pass algorithm

Fig. 1. Algorithms to generate the state space and Markov chain from a model

operation for R is to add edges; note that this operation should allow for the
destination state to appear more than once, i.e., we could have a model with
(s′, r1), (s

′, r2) ∈ N (s).

3 Decision Diagrams

There are many possible data-structures that can be used for storing S, U , and
R, and the design choice for one usually affects the others. A traditional strategy
for the generation of S and R, is:

– store an explicit (but compressed) representation of the states so that each
state has a unique index that coincides with the discovery order of the states;

– use a classical dictionary data structure (such as a splay tree or hash table)
to determine if states are already contained in S;

– use an integer u for U , to specify that all states with an index greater than
or equal to u are yet to be explored;

– and use a dynamic data structure for directed, weighted, sparse graphs, such
as adjacency lists, for R.

See, for example, [7] for a survey of efficient techniques for explicit generation.
This paper proposes the use of Decision Diagrams (DDs) instead of the explicit

structures mentioned above to store S, U andR. A DD is a directed acyclic graph
used to represent a function on a finite number of variables, where each variable
can assume a finite number of values. To simplify the discussion, we assume that
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the DD variables exactly match the state variables of the model. However, this is
not required; it is possible (and often desired) to split a single model variable into
several DD variables (e.g., [15]), or conversely to group several model variables
into a single DD variable (e.g., [9]).

Each DD node is either terminal, with no outgoing edges, or non-terminal,
labeled with a variable xl and containing nl outgoing edges to other nodes. For a
given non-terminal node p, we use p[i] to denote the ith outgoing edge. Ordered
DDs require a total ordering � on the variables such that any outgoing edge
from a node labeled xl must go to either a terminal node or to a node labeled
xk with xl � xk. In this paper, we assume that all DDs are Ordered.

DDs employ reduction rules to eliminate duplicate nodes, and to determine
cases in which nodes are eliminated; done carefully, this ensures that each DD
variant is a canonical representation. Two non-terminal nodes p and q are du-
plicates if they have the same variable label xl, and the same outgoing edges:
p[i] = q[i], ∀ 0 ≤ i < nl. All DDs in this paper eliminate duplicate nodes.
Additional reduction rules, combined with different variable types and ranges,
produce a variety of DDs:

– Multiway Decision Diagrams (MDDs) are used to represent functions of the
form f : Ŝ → {0, 1}, and are typically fully–reduced, eliminating the pattern
of a variable that does not matter. If each variable is boolean (nl = 2, ∀ l)
then these become classical BDDs [4]. An MDD can represent a set of model
states, by encoding the characteristic function of the set.

– Matrix Diagrams (MxDs) are used to represent functions of the form f :
Ŝ × Ŝ → {0, 1}, using an “interleaved” ordering xL � x′

L � · · · � x1 � x′
1.

These are typically identity–reduced, eliminating the pattern of a variable
that does not change (e.g., xl = x′

l) [20].
– Multi–terminal Matrix Diagrams (MTMxDs) are used to represent functions

of the form f : Ŝ × Ŝ → IR, and are essentially the same as MxDs except
the terminal nodes are labeled with real values.

– Multiplicative Edge-Valued Matrix Diagrams (EV∗MxDs) also represent
functions of the form f : Ŝ × Ŝ → IR, but store real values along each
edge in the DD, and values are multiplied along the path from the root to
the terminal node to obtain the encoded value. A normalization rule (e.g.,
“the first non-zero edge value must be 1.0”) is necessary to preserve canon-
icity. EV∗MxDs are essentially EV∗MDDs [26] that utilize the notions of
interleaved variable ordering and identity reductions from MxDs.

– Canonical Matrix Diagrams (CMDs) [19] are an earlier version of EV∗MxDs,
where each node is a matrix of outgoing edges; effectively, a node for variable
xl in a CMD corresponds (roughly) to nodes for variables xl and x′

l in an
EV∗MxD. Note that the CMDs of [19] did not utilize the identity reduction.

As a simple example, consider an open network of 3 bounded queues, where
arrivals enter queue 3, queue 3 feeds into queue 2, queue 2 feeds into queue 1,
and departures from queue 1 exit the system. If each queue can contain at most
two customers, then the model has S3 = S2 = S1 = {0, 1, 2}. Figure 2 shows the
MTMxD, EV∗MxD, and CMD representations for the underlying Markov chain
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(a) MTMxD (b) EV∗MxD (c) CMD

Fig. 2. Comparison of DDs encoding the same Markov chain

for this system, using an arrival rate of 3.0, and service rates of 4.0, 3.2, and 3.6
for queues 3, 2, and 1, respectively. In the illustrations, edges to terminal node 0
are omitted for clarity. For the CMD illustration, edges with the same edge value
are clustered together, with only the common edge value drawn. EV∗MxD and
CMD use the normalization rule: “the largest edge value out of a node is 1.0”.

There are a variety of operations that may be performed on DDs. Typically
these operations traverse the DDs recursively, and utilize a compute table to
avoid duplication of work since the recursion could visit the same node several
times. For the purpose of this work, we note that for MDDs encoding sets of
states, there are efficient operations to take the union or difference of two sets,
determine the cardinality of a set, or enumerate the elements of a set. For an
EV∗MxD, MTMxD, or CMD representation of a Markov chain, it is possible
to compute measures of interest (e.g., the steady–state distribution) using an
explicit solution vector of size |S|. For more details, please refer to [18].

4 Explicit Generation with Decision Diagrams

Our goal is to use either the one–pass or two–pass algorithm shown in Figure 1,
with MDDs for S and U , and EV∗MxDs, MTMxDs, or CMDs for R. To do so,
we must address the critical operations discussed in Section 2, namely: adding
elements, removing elements, checking if s ∈ S, and checking if U 	= ∅.

Because any given DD node can have several incoming edges, most DD al-
gorithms do not modify DDs in place, but rather construct entirely new DDs.
Thus, a statement such as “S ← S ∪ {s′}” would require constructing an MDD
encoding the set {s′} (which can be done using procedure state2MDD shown in
Figure 3), and then invoking a union operation on two MDDs. Since the union
operation can be rather heavy, we instead use a fixed–size state buffer to collect
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node states2MDD(var L, state buffer b) node state2MDD(var L, state s)

1. if L = 0 then
2. return terminal node 1;
3. end if
4. if b has only one state then
5. return state2MDD(L,b[0]);
6. end if
7. RadixSort b using variable xL;
8. p ← new node at level L;
9. for all values v for xL in b do
10. b′ ← states in b with xL = v;
11. p[v] ← states2MDD(L− 1,b′);
12. end for
13. return Reduce(p);

1. p ← terminal node 1;
2. for all l ∈ {1, . . . , L} do
3. q ← new node at level l
4. q[s[l]] ← p;
5. p ← Reduce(q);
6. end for
7. return p;

Fig. 3. Algorithm to build an MDD from an array of states

states, so that we can reduce the number of union operations. Thus, we need
an algorithm to efficiently build an MDD encoding a set {s1, s2, . . . , sb} where
each state si is stored explicitly in an array. This can be done using procedure
“states2MDD” shown in Figure 3. The procedure is recursive by variable num-
ber. The state array is sorted by the current variable (c.f. line 7), and the node
at the current level is constructed by building the children recursively based on
the sub-arrays grouped by variable value (c.f. lines 10 and 11). Note that these
states are contiguous because of the sort, so in practice b′ can be built from b
inexpensively. Recursion continues until either the bottom level is reached, or
the array of states shrinks down to a single state. It can be shown that, because
the states are sorted, MDD nodes are created bottom–up without creating any
intermediate nodes. In other words, every node that is created, will appear in
the “final” MDD, unless it is eliminated by the reduction step (c.f., line 13). The
algorithm can be modified as appropriate to add matrix elements to an EV∗MxD
or MTMxD; we call that procedure “rates2MxD”.

One way to implement the statement “Remove some s from U”, is to find a
state s ∈ U by modifying the algorithm to enumerate elements of an MDD (stop-
ping after the first element), build an MDD for the set {s} using “state2MDD”,
and invoke the set difference operation. Taking this approach, and combining it
with the “batch addition” idea discussed above, we can modify the one–pass al-
gorithm to obtain the “Single Removal” algorithm shown in Figure 4(a). “U 	= ∅”
can be determined easily due to the fact that MDDs are a canonical representa-
tion, and “s ∈ S” can be determined by following the appropriate path through
the MDD for S, until a terminal node is reached, 0 for s 	∈ S, and 1 for s ∈ S.
Note that the state buffer, bS , must be flushed whenever the set U becomes
empty (c.f. lines 22—24), otherwise the algorithm may terminate prematurely.
Similarly, the rate buffer bR must be flushed before terminating (c.f. line 27).

Performing a set difference operation for each element of U (i.e. every dis-
covered state) could be expensive. We might save time by removing states in
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1. S ← {s : π0[s] > 0};
2. U ← S ; bS ← ∅; bR ← 0;
3. while U �= ∅ do
4. s ← FindFirstElement(U);
5. U ← U \ state2MDD(L, s);
6. for all (s′, r) ∈ N (s) do
7. if s′ �∈ S then
8. Add s′ to bS ;
9. if bS is full then
10. S ′ ← states2MDD(L,bS);
11. S ← S ∪S ′; U ← U ∪S ′;
12. bS ← ∅;
13. end if
14. end if
15. Add (s, s′, r) to bR;
16. if bR is full then
17. R ← R+rates2MxD(L,bR);
18. bR ← 0;
19. end if
20. end for
21. if U = ∅ then
22. S ′ ← states2MDD(L,bS);
23. S ← S ∪ S ′; U ← U ∪ S ′;
24. bS ← ∅;
25. end if
26. end while
27. R ← R+ rates2MxD(L,bR);

1. S ← {s : π0[s] > 0};
2. U ← S ; bS ← ∅; bR ← 0;
3. while U �= ∅ do
4. U ′ ← U ; U ← ∅;
5. for all s ∈ U ′ do
6. for all (s′, r) ∈ N (s) do
7. if s′ �∈ S then
8. Add s′ to bS;
9. if bS is full then
10. S ′ ← states2MDD(L,bS);
11. S ← S∪S ′; U ← U ∪S ′;
12. bS ← ∅;
13. end if
14. end if
15. Add (s, s′, r) to bR;
16. if bR is full then
17. R ← R+rates2MxD(L,bR);
18. bR ← 0;
19. end if
20. end for
21. end for
22. S ′ ← states2MDD(L,bS);
23. S ← S ∪ S ′; U ← U ∪ S ′;
24. bS ← ∅;
25. end while
26. R ← R+ rates2MxD(L,bR);

(a) Single Removal (b) Batch Removal

Fig. 4. One–pass algorithm, modified to use batch addition

batches. As described earlier, the single–removal algorithm removes a state s
from U and uses it to discover new states. We need a procedure to obtain s from
U without performing a set difference operation on U , while permitting U to be
updated within the loop (Figure 4(a), line 11). Our solution is to copy U into
another MDD U ′ and then enumerate the elements in U ′. This gives us all the
elements in U (via U ′), eliminates the set difference operation, and allows U to
be modified as needed. Note that copying an MDD as described above is a trivial
operation. The “Batch Removal” algorithm is shown in Figure 4(b).

We now make several observations about these algorithms. First, note that
the choice of removing the “first element” from U in the single–removal algo-
rithm is arbitrary; any element will work. The order of the traversal of U ′ in the
batch–removal algorithm is also arbitrary, but efficient algorithms exist [18] for
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Table 1. Markov chain sizes for the models

Model |S| |R| Model |S| |R|
Courier 3 999,450 5,544,240 Kanban 5 2,546,432 24,460,016
Courier 4 5,133,600 31,392,540 Kanban 6 11,261,376 115,708,992
FMS 8 4,459,455 42,302,007 Kanban 7 41,644,800 450,455,040
FMS 9 11,058,190 108,084,295 QN 60 11,510,083 74,544,210
FMS 10 25,397,658 234,523,289 QN 80 58,214,137 384,196,600

lexicographical or reverse lexicographical order. Changing these could affect the
order in which states are explored. Second, the order in which states are dis-
covered and added to the batches could affect both the “intermediate” MDDs
representing S (it does not affect the final MDD for S due to MDD canonicity),
and the overall computational cost, since the union operations will be performed
on different sets. Thus, while the procedure “states2MDD” is optimal for build-
ing an MDD from a set of states, the same cannot be said for the single–removal
and batch–removal algorithms. More precisely: there is at least one order of
state exploration that will be optimal in terms of size of the largest intermediate
MDD, and it is unknown whether either of the algorithms in Figure 4 uses such
an order. Third, note that it is possible to add the same unexplored state to the
batch bS more than once; this happens when a state is discovered again before
the batch is added to S. Since each reachable state is guaranteed to be explored
exactly once, the overhead of duplication is somewhat contained, and we sus-
pect that this overhead is much smaller than the overhead of a mechanism to
detect duplicate states in a batch. Finally, Figure 4 gives the modifications for
single removal and batch removal for the one–pass algorithm only; the analogous
two–pass algorithms easily follow from this, and are omitted for space.

5 Experimental Results

The DD algorithms discussed in Section 4 are implemented in Meddly [2], and
our explicit generation algorithms based on DDs are implemented in SMART
[10]. Experiments are based on version 3.2.1411 of SMART and version 0.12.526
of Meddly, and were run on a typical desktop machine: a 2.7 GHz Intel Core i5
processor with 8 Gb of 1333 MHz DDR3 memory, running Mac OS 10.8.5.

5.1 Models

We tested our algorithms on a variety of models, mostly taken from the literature,
described below. Table 1 shows, for each model, the size of the Markov chain
described by the model, where |S| denotes the number of states in the Markov
chain, and |R| denotes the number of non-zero entries in the rate matrix.

The Courier model [28] describes a communications protocol, where model
parameter N corresponds to the window size and transport space parameters in
[28] (i.e., we use M = N). This Petri Net contains 45 places, and we use a single
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place for each MDD variable. Some places may contain up to N tokens, while
other places may contain only up to 1 token.

The FMS model [11] describes a flexible manufacturing system where model
parameter N specifies the number of pallets to move parts. The model is parti-
tioned into 19 MDD variables, where the number of possible values for most of
the state variables grows with N , while the rest are fixed. The Petri Net for this
system utilizes marking–dependent arc cardinalities, marking–dependent firing
rates, and immediate transitions.

The Kanban model [25] describes a manufacturing system. The model param-
eter, N , determines the number of parts circulating in the system. This Petri
net contains 16 places, and we assign each place to its own MDD variable.

QN is a classless, closed queueing network model. Initially, N customers are in
an infinite–server queue, “pool”. From this queue, customers arrive into a single–
server “dispatcher” queue, which quickly sends customers to a “back end” queue
with shortest queue length. Each of the 5 single–server “back end” queues process
customers, and send them back into the “pool”. All queues have exponentially–
distributed service, with different rates, and process customers on a first come,
first served policy. We use a decomposition of 7 MDD variables, one for each
queue.

We also present some preliminary results obtained by incorporating the one-
pass algorithm into GreatSPN [6]. The following colored nets were used: (a)
CSRepititions [21]: a client/server application where communications from clients
to servers is unreliable and requests are buffered, (b) DrinkVendingMachine [21]:
a symmetric net modeling a hot drink vending machine, and (c) GlobalResAllo-
cation [21]: a resource management model that prevents deadlocks.

5.2 Results

Table 2 shows the generation times and memory required to generate the state
space S and Markov chain R for each model, using the one–pass algorithm,
which constructs S and R simultaneously. Table 3 shows similar information
for the two–pass algorithm, which constructs S first, and then constructs R.
Generation times are based on CPU usage and are reported in seconds. Memory
requirements are based on “peak” sizes of the data structure, and are reported
in appropriate units (“k” for 1024 bytes, and “m” for 10242 bytes).

In both tables, “BST” uses a balanced binary search tree (splay tree) for S,
and an explicit sparse matrix representation for R; both are typical choices in
practice. “EV∗” uses an MDD for S, and an EV∗MxD for R, as implemented in
Meddly. “MT” uses an MDD for S, and an MTMxD for R, as implemented in
Meddly. “CMD” uses an MDD for S as implemented in Meddly, and a Canonical
Matrix Diagram for R, using the implementation from [19] with some changes
(discussed below). Finally, “br” stands for “batch removal”, and “sr” stands for
“single removal”. We use a batch size of 1024 for all experiments.

In Table 2, the CMD implementation was modified to construct CMD nodes
from a batch of entries, namely, an array of source states, destination states,
and rates. This modification allows the use of CMDs without knowledge of S,
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Table 4. Generation using GreatSPN (time in seconds, peak memory in MB)

One-Pass EV∗ WNRG
No Batches sr br

Model Time Memory Time Memory Time Memory Time

CSRepetitions 13 10.92 4 2.09 1 1.40 3
DrinkVendingMachine 28 77.22 5 5.97 2 5.45 4
GlobalResAllocation 144 109.07 38 14.49 9 4.86 8

as required in [19]. However, as the CMD implementation is rather specialized,
it requires a known bound for each MDD variable a priori. In contrast, the
EV∗MxD and MTMxD implementations in Meddly are designed to be more
robust and general–purpose; these instead allow the MDD variable bounds to
expand as needed. Looking at the generation times, we see that “BST” is always
the fastest, followed by “EV∗” and then “CMD” using batch removal, which
are quite close except for large models. Batch removal tends to be faster than
single removal, except for some models when MTMxDs are used. Recall from
the discussion in Section 4, that the order in which states are explored can af-
fect the computational cost of the batch additions in the DDs; it must be the
case for these models that single removal happens to result in a significantly
better order for MTMxDs, enough to offset the performance improvement of
removing states in batch. Looking instead at memory usage, we see that “BST”
always uses orders of magnitude more memory than “EV∗”, “MT”, or “CMD”.
In particular, for several models, “BST” required more memory than was avail-
able on the machine, and could not complete; these cases are marked with the
entries “—”. Also, we note that, with some exceptions, “EV∗” tends to have
the smallest memory requirement, followed by “MT” and then “CMD”. How-
ever, assuming the ultimate goal is to analyze the Markov chain numerically, it
is perhaps unnecessary to compare peak memory usage between “EV∗”, “MT”,
and “CMD”, since any of these should require a fraction of the memory needed
during numerical solution. For example, the largest memory requirement is 54m
for model FMS 10 using “br CMD”; in this case, one double–precision solution
vector will require about 203m. Using MDDs for S and EV∗MxDs, MTMxDs, or
CMDs for R, the bottleneck becomes the memory required for solution vectors.

In Table 3, we split generation of S and R into separate steps. When building
only S, we compare BSTs with MDDs. Perhaps surprisingly, there are a few
cases where MDDs are faster than splay trees. For all cases, using batch removal
is faster than using single removal. Again, MDDs require orders of magnitude
less memory than BSTs. The memory requirements for batch removal are higher
than for single removal; one cause for this is the fact that batch removal keeps
two MDDs for unexplored states, while single removal keeps only one. Once
S is built, we construct R by examining each state in S and determining its
outgoing edges based on the model. For BSTs, we examine states of S in the
order in which they were originally discovered; for MDDs instead, we efficiently
enumerate the MDD which will visit states in lexicographical order. We believe



252 J. Babar and A.S. Miner

that this leads to a good, but probably not optimal, order for adding rates to R.
For “EV∗” and “MT”, we add entries in batch as usual. For CMDs, we can either
use our new batch–based implementation, or the original implementation of [19].
The table shows results for both: “bat.” is the batch–based implementation, and
“f =” is the original implementation, which merges the CMDs every time the
MDD enumeration crosses level f . For all cases, “EV∗” is faster than “CMD”,
and batch–based CMD is faster than MT. Note that setting the f parameter
can be tricky and model–dependent, while a fixed batch size of 1024 gives fairly
consistent results. Also note that, except for the Courier model, “EV∗” is faster
than BST, and for models FMS and Kanban, BST is actually the slowest to
generate R. For many of the models and for EV∗s, MTMxDs, and CMDs, the
total time for the two–pass algorithm is lower than the total time for the one–
pass algorithm. As for memory, the trends noted in the “one–pass” table are also
seen in the “two–pass” table: BST requires orders of magnitude more memory
than the others, with “EV∗” requiring the least, followed by “MT”. “—” are cases
where BST needed more memory than was available, and did not complete.

In Table 4, we report our preliminary results obtained by incorporating the
one–pass algorithms into GreatSPN. There is a clear improvement in CPU and
peak memory usage as we progress from “No batches” to “sr” and then to
“br”. Note that the CPU usage of “br” for EV∗ is close to GreatSPN’s BST
implementation (WNRG). The peak memory usage of WNRG was not available
but we expect it to be similar to the BST implementation used for Table 2.

6 Conclusion

In this paper, we have examined the use of DDs for efficiently storing the state
space and Markov chain of a high–level model. We have presented algorithms
that improve the performance of DDs when used by traditional explicit genera-
tion algorithms. We have also presented small changes to the traditional explicit
generation algorithms to take advantages of efficient DD operations.

Our experimental results show that DDs can greatly reduce the peak memory
requirements of traditional explicit generation algorithms. There is often the
typical time–space tradeoff between a classical BST–based implementation and
the DD–based implementations. For the models we tested, BSTs can be nearly
a factor of 4 faster than the fastest DD implementation, but at the expense of
using on the order of 1000 times as much memory. Models for which traditional
explicit implementations exceed the available memory are prime candidates for
the DD–based explicit generation. Additionally, for applications where a two–
pass generation algorithm is used anyway, we find that DDs are quite competitive
with BSTs, sometimes even outperforming them in generation times.

An unexpected result is that EV∗MxDs tend to be faster than MTMxDs. It is
possible that the cost of the expensive EV∗MxD reduction rules is insignificant
compared to the cost of accessing more memory (EV∗MxDs tend to be more
compact than MTMxDs); further analysis of this phenomenon is needed.

Our preliminary tests with GreatSPN using the one–pass algorithm, indicate
a clear improvement over previous work in [1]. Once fully integrated we plan on
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further experiments with generating lumped Markov chains, where the compu-
tational cost of determining the next (abstract) state from the high–level model
is significantly higher.

Another direction for further work is to study different state exploration orders
and develop heuristics for selecting an order that is good in terms of the union
operations, and efficient in enumerating an MDD of unexplored states.

Acknowledgment. The authors thank Elvio Amparore and Marco Beccuti for
implementing the one–pass algorithms in GreatSPN and running experiments.
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Abstract. In distributed contexts such as Cloud computing, the relia-
bility and availability of the provided resources and services have to be
assured in order to meet user requirements. At the infrastructure level,
this specification is translated into tighter ones on the datacenter hosting
physical resources. In this paper, starting from a real case study of the
IBM BladeCenter, we provide a technique for the quantitative evaluation
of datacenter infrastructure availability. The proposed technique allows
one to take into account both aging phenomena and multiple operating
conditions. In particular, one subsystem of the BladeCenter, the chassis
midplane, is studied. Indeed, based on the stochastic characterization of
the midplane reliability through statistic measurements, a model dealing
with the non-exponential failure time distribution thus obtained is evalu-
ated to demonstrate the suitability and the effectiveness of the proposed
technique.

1 Introduction

New technologies and applications strongly impact on everyday life, aiming at
improving quality standards. IT infrastructure lies at the heart of such tech-
nologies, acting as the engine of the digital “revolution”. Blade server systems
are becoming a de-facto standard architecture in distributed computing infras-
tructure. Indeed, they are used in many academic and business contexts, such
as e-commerce, banking, financial, stock trading, and telephone communications
as well as in research applications, in addition to several types of life-critical and
safety-critical systems and services. Furthermore, blade server systems are the
pillars on which Cloud, Web, and social network technologies are based.

A primary requirement a blade server has to fulfill is related to its availability
(and associated downtime). A common practice is to consider server modules
(blades) as stand-alone servers with shared services rather than the blade server
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system as a whole. Several techniques to achieve high availability are known [1,2].
Analytical models can be used for quantifying computer system characteristics
such as reliability and availability, specifically in the Cloud context [3]. Relia-
bility block diagrams or fault trees are often used to formulate and solve blade
server availability models because of their simplicity and efficiency [4]. But non-
state-space methods cannot easily incorporate realistic system behavior such as
(imperfect) fault coverage, multiple failure modes, hot-swap components, and so
on [5]. By contrast, such dependencies and multiple failure modes can be easily
captured by state-space models such as Markov chains, semi-Markov processes,
and Markov regenerative processes [6,7]. However, the computational require-
ments for building, storing, and solving state space models for real systems can
lead to a state space explosion, and could be mitigated by using symbolic tech-
niques and Kronecker algebra [8,9,10]. But a more practical alternative is to use
a hierarchical approach where a judicious combination of state space and non-
state-space methods is utilized. In particular, an analytical approach has been
applied in [11] to the evaluation of an IBM BladeCenter system availability.
A two-level hierarchical technique was adopted, modeling each subsystem as a
Markov chain and the entire system as a fault tree. This way, both the limitation
of Markov chain (state space explosion) and that of fault trees (dependencies’
representation) are overcome.

Even if the technique proposed in [11] is effective in dealing with complexity,
it is based on the strong assumption that component times to failure are all ex-
ponentially distributed. However, actual behaviour, representing complex, even
dependent, phenomena and composite workflow have by nature age-dependent
hazard rates. In line with that, here, starting from an in depth analysis and re-
gression of the statistical data related to the BladeCenter components’ reliability,
which identify Weibull distributions associated with their times to failure, we de-
velop a non-Markovian model dealing with the issues related to age dependent
behaviors. This way, though an in depth evaluation of the BladeCenter compo-
nents and subsystems, we can numerically evaluate the quality of the exponential
approximation in dealing with the BladeCenter system availability evaluation.
More specifically, we investigate a specific component of the BladeCenter sys-
tem, the chassis midplane, which provides interconnection paths to the blade
servers, managed by a specific logic deployed on-board. The model allows us to
take into account repair facilities and common mode faults. Furthermore, in the
non-Markovian version of the model we also consider load sharing effects.

In order to evaluate the non-Markovian model some elaborations on the orig-
inal state space model to deal with common mode faults and load sharing phe-
nomena are required. Starting from a technique we specified in [12,13] for eval-
uating the longevity of a wireless sensor node subject to sleep-wakeup cycles,
in this paper we extend and adapt it to the BladeCenter availability modelling,
adding specific features able to deal with common mode faults and load-sharing
effects.
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2 Description of the System

The blade server technology have been widely adopted in recent years both
in academia and in the industry for server deployment, thanks to its modular
design, which is based on industry-standard racks and provides denser packaging
thanks to the possibility to share services such as power and cooling among
the servers housed in the same chassis. Integrated network switches provide
additional space saving and significant reduction in cabling.

The IBM BladeCenter E chassis1 is one of the most widely spread server
infrastructure implementing the blade architecture. It supports up to 14 com-
puting elements, known as blade servers. From the front side, access is provided
to the control panel, removable media devices, and the blade servers. Network
switch modules, power supplies, cooling devices, and management modules are
located at the rear of the chassis. All these devices plug into a central midplane
that provides power distribution, sideband management buses, and network in-
terconnections. The midplane follows a redundant, fail-in-place design. Power
domain 1 consists of power supplies 1 and 2. These power supplies are designed
to provide redundancy, i.e., all devices attached to power domain 1 remain op-
erational if one of the power supplies fails. Similarly, power domain 2 consists of
the redundant power supplies 3 and 4 and supplies blades 7–14. Everything else
in the BladeCenter chassis is supplied by power domain 1.

In [11], a typical configuration consisting of a chassis with redundant blow-
ers, two power domains each containing two redundant power supply modules,
redundant management modules, redundant Ethernet switches, and redundant
Fiber Channel network switches along with 14 blade servers has been modeled
from the availability point of view. However, the main assumption in such a
work is that failure and repair times are exponentially distributed. Thus, the
sub-models described in [11] are continuous time Markov chains. The advantage
of such an approach is the possibility of analyzing the model through simple,
well-known methods. However, the results provided by the models may not be so
accurate especially if the distributions associated with the time of event occur-
rence are proved not to be exponential. In fact, experimental results demonstrate
that failure time distribution stochastically characterising the components of a
BladeCenter system are Weibull distributed.

Aim of this work is to take into account one of the BladeCenter subsystem,
the chassis midplane, as represented in [11], modifying the model there specified
to consider Weibull distributed failure time and to demonstrate that the simpli-
fying assumption of exponentially distributed events leads to inaccurate results.
Moreover, we show how the use of a non-Markovian approach allows us to deal
with more complex phenomena such us load sharing and aging.

2.1 BladeCenter Chassis Midplane

A BladeCenter E chassis contains a midplane that provides the interconnection
paths among the blade servers, the network switches, the management modules,

1 http://www-03.ibm.com/systems/bladecenter/hardware/chassis/bladee/

http://www-03.ibm.com/systems/bladecenter/hardware/chassis/bladee/


258 S. Distefano et al.

and the other components. The midplane is designed to minimize the probability
to cause a blade server outage since: (i) the midplane contains only a few active
components; (ii) it provides two independent sets of interconnects to each blade;
(iii) it has two independent connectors to each set of interconnects. Thus, the
chassis midplane follows a fail-in-place design, allowing the chassis to tolerate
failure of half of the midplane and the blade servers to continue functioning
without an operational outage by utilizing the redundant communication paths.
In the latter case, the still operating part has to deal with the whole load, which
is initially shared with the other part of the system while operating. This could
result in a kind of load sharing phenomenon, which could impact on the system
reliability. In any case, as soon as a failure occurs, a midplane replacement is
requested and a repairman is summoned to perform it. The time that is needed
for the repairman to start the maintenance is considered as an uptime but,
of course, while maintenance is in progress the whole BladeCenter experiences
a downtime because the chassis must be taken out of service to replace the
midplane. In practice, the midplane replacement is usually scheduled and the
load is moved to other blade servers in a different chassis while the maintenance
is performed to minimize such an outage time.

During the time required to start the maintenance, the redundant communi-
cation paths may still fail bringing the whole chassis to a downtime. Moreover,
the failover of the communication path after the first failure may also be unsuc-
cessful. In fact, any not-covered case, such as any common mode failure, may
cause the entire chassis to fail and the blade servers to experience a downtime.

3 The State Space Model

In this section, we first report the midplane homogeneous continuous time Markov
chain (CTMC) model as described in [11]. Then, we introduce our non-Markovian
extensions pointing out the main differences against the homogeneous CTMC
model. Both of them are characterized according to the state space model defined
in [11] and generalized here as reported in Figure 1. The states there reported
are tagged with a combination of two characters. The first character indicates
the condition of the chassis midplane as active (A) if properly operating, covered
fault (C) if still operating although a fault has been experienced, and failed (F)
after an not-covered fault. The second character, is instead associated with the
status of the repairman as not yet summoned (unsummoned - U), summoned
(S), or while repairing (R).

This way, state AU represents the fault-free state of the midplane. State CS
represents the midplane that is still operational after a fault has been detected.
At this point, failover of a communication path, if necessary, was successful and
midplane repair/replacement was requested and the repairmen summoned. This
may trigger load sharing effects on the part of the system that is operating
after this kind of fault, e.g., the working connector, since it has to deal with the
whole load, before shared with the other connector. Indeed, the midplane has a
transition from state AU to state CS for most of the faults (event ecov), which
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Fig. 1. State space model for the BladeCenter midplane

are mainly covered. Any not-covered case, such as any common mode failure,
are represented by the transition to state FS (event eunc). In both state CS and
state FS, the system requires to be repaired but CS is a up state while FS is a
down state considering the midplane functionalities. The midplane model shows
a transition to state FR on the arrival of the repairman (event esum). State FR
is a down state because the chassis must be taken out of service to replace the
midplane. As soon as the replacement is performed the model transits back to
state AU (event erep). The availability of the midplane is the probability that
the system is in operational states AU or CS.

3.1 The Original Homogeneous CTMC Model

In [11], the following assumptions are taken into account with respect to the
state space model reported in Figure 1:

i all the events in the model are associated with exponential distributions;
ii the midplane fails with a mean time to failure (MTTF) of MTTFmp;
iii the transition rate to state FS is determined by a common mode factor fm so

that the actual rate associated with event eunc is given by fm · 1/MTTFmp;
iv alternatively, all covered cases are considered in event ecov whose actual rate

is (1− fm) · 1/MTTFmp;
v no load sharing behaviors are taken into account in state AU, thus the same

failure rate (fm·1/MTTFmp) characterizes states AU and CS sojourn times;
vi thus in state CS, the midplane can experience additional faults that, if not

covered, can bring the midplane in state FS with a rate fm · 1/MTTFmp;
vii the repairman arrives with a mean response time (MRT) of MRTsp;
viii the midplane is replaced with a mean time to repair (MTTR) of MTTRmp.

Thus, in the original model proposed in [11] only exponentially distributed
events are considered and the overall model is a CTMC. This brings to ad-
vantages in terms of simplicity of the model solution. However, experimental
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results through collection and regression of statistical data show that the failure
events of the IBM BladeCenter midplane are characterised by Weibull distri-
butions. This way, the state space model of Figure 1 has to be considered as
non-Markovian, implying to adequately deal with the corresponding memory
phenomena and effects as discussed in the following sections.

3.2 The Non-markovian Model

Aim of our work is to evaluate the accuracy of the results shown in [11], ob-
tained by the Markov chain described above, by providing a more accurate,
non-Markovian, model overcoming some issues and relaxing some assumptions
of the homogeneous CTMC one. In particular, we focus on event ef , i.e., the
event associated with the BladeCenter midplane failure, which is not explicitly
shown in the model of Figure 1 even if the statistical data collected are referred to
it. Indeed, experiments conducted by IBM prove that the BladeCenter midplane
failure time is associated with a Weibull distribution in the form:

Ff (t) = 1− e−(t/ηf )
βf

In particular, IBM provides the parameters related to the BladeCenter midplane
failure time both for the exponential and the Weibull distributions in the form
of ranges (upper and lower limits) as reported in Table 1.

Table 1. BladeCenter midplane failure time parameters

Exponential distribution Weibull distribution

Low MTTFmp High MTTFmp Low βf High βf Low ηf High ηf
310,000 420,000 0.424 0.574 4,237,335 5,732,865

Referring to the state space model of Figure 1, we split the midplane failure
event into two derived events, the covered ecov and not-covered eunc fault events.
This way, we have to characterize such events with the corresponding distribution
functions starting from the common mode failure behavior. In the homogeneous
CTMC model it is easy to represent common mode failure by just multiplying
and splitting the rates according to the common mode factor fm. More com-
plex is instead the case of non-Markovian model. In particular, being events ecov
and eunc strictly related to event ef , we associate with the corresponding state
transitions three general distributions Fcov(t), Func(t), and F ′

unc(t), respectively.
The latter distributions Func(t), and F ′

unc(t), both characterize event eunc, since
the event can be associated with different distributions representing different
operating conditions due to load sharing phenomena. More specifically, Func(t)
stochastically characterizes the unreliability of the BladeCenter midplane due to
not-covered fault when all the midplane components, also the redundant ones
such as the connection paths, are operating thus sharing the load. Then, F ′

unc(t)
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stochastically represents the unreliability of the BladeCenter midplane due to
not-covered fault after some covered fault occurred, also including those related
to the redundant parts. In the latter case, after a fault on a redundant compo-
nent, the still operating component that performs the same function of the faulty
one has to manage the whole load, before shared with the former. In terms of
reliability, this may imply that, after a covered fault, the midplane could have
a different probability to fault, represented by F ′

unc(t). Furthermore, keeping
the assumption that events esum and erep are associated with exponential dis-
tributions, the other state transitions in the non-Markovian model have rates
corresponding to the homogeneous CTMC ones.

In the following section, we provide insights about how to compute distribu-
tions Fcov(t), Func(t), and F ′

unc(t) starting from the knowledge of distribution
Ff (t) and of the common mode factor fm. Moreover, we show how distribution
F ′
unc(t) could take into consideration load sharing phenomena between the two

set of midplane interconnects. Finally, we provide few details about how the
non-Markovian model can be solved through the use of continuous phase type
(CPH) distributions and Kronecker algebra.

4 The Non-markovian Evaluation

In this section we discuss on how to deal with the specific problems raised by the
BladeCenter midplane modelling when considering non-Markovian behaviors. In
particular two main issues have to be addressed in the modelling, common mode
faults and load sharing, also describing how to represent the aging/memory
process and to solve the model thus obtained.

4.1 Computing Covered and Not-Covered Failure Distributions

In order to show how to compute distributions Fcov(t), Func(t), and F ′
unc(t) as

functions of Ff (t) and fm as discussed in Sections 3.2, we start by the case in
which an event, whose duration is generally distributed, produces a transition
into a vanishing state upon its occurrence. A vanishing state is a state of a state
space model in which the sojourn time is null and the evolution of the process
towards other states is instantaneous and probabilistically determined.

As an example we propose the stochastic process χ depicted in Figure 2a.
When the process is in the state 0 only one event can stochastically occur accord-
ing to the CDF F (t). At the event occurrence the process transits into state 1. In
the latter (vanishing) state no timed event is enabled and the state 2 or 3 can be
reached with probability p and 1−p, respectively. The time evolution of the pro-
cess is completely known when the state probabilities over the time are known.
Let πi(t), i = 0, . . . , 3 be the state probabilities of χ and π(t) = (π0(t), . . . , π3(t))
its probability vector. This way we have that π0(t) = 1−F (t). Then, since state
1 is a vanishing state we have that π1(t) = 0, and the following relations hold

π2(t) = p · (1− π0(t)) = p · F (t) (1)

π3(t) = (1− p) · (1− π0(t)) = (1 − p) · F (t) (2)
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Fig. 2. Original (a) and equivalent (b) stochastic process

In order to reduce process χ into an equivalent one where the vanishing state
1 is removed, let us consider the process χ′ depicted in Figure 2b, obtained by
deleting the vanishing state 1 of χ and directly connecting its outgoing arcs to
state 0. Let π′(t) be the probability vector of χ′. We say χ′ is time equivalent to
χ if ⎧⎪⎨⎪⎩

π0(t) = π′
0(t)

π2(t) = π′
2(t)

π3(t) = π′
3(t)

(3)

According to this definition χ′ could be used to derive the state probabilities
of the non-vanishing states of χ. Indeed, χ′ is characterized by two concurrent
events, e1 and e2, in state 0, whose sojourn time random variables ξ1 and ξ2
are distributed according the CDFs F1(t) and F2(t), respectively. The process
transits in either state 2 or state 3 depending on the first occurring event between
e1 and e2. This way π′

0(t) = (1−F1(t))(1−F2(t)) = 1−F1(t)−F2(t)+F1(t)F2(t).
To compute the probability π′

2(t) that χ′ is in the state 2 at time t, two
different cases have to be considered:

1. ξ2 > t: in this case χ′ transits in state 2 before time t when event e1 occurs
and the related probability is

π
′1
2 (t) = F1(t) · (1− F2(t)) (4)

2. ξ2 ≤ t: in this case event e1 must happen before e2 to be χ′ in state 2; let
us suppose ξ2 = x2 therefore

π
′2
2 (t|ξ2 = x2) = F1(x2) (5)

and by deconditioning on ξ2

π
′2
2 (t) =

∫ t

0

π
′2
2 (t|ξ2 = x2)dF2(x2) =

∫ t

0

F1(x2)dF2(x2) =

∫ t

0

F1(x2)f2(x2)dx2

(6)

where f2(x) =
dF2(x)

dx is the probability density function of ξ2.
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Since the two cases are mutually exclusive the probability π′
2(t) is computed by

summing π
′1
2 and π

′2
2 by obtaining

π′
2(t) = F1(t) · (1− F2(t)) +

∫ t

0

F1(x)dF2(x) (7)

Following a similar reasoning we have that

π′
3(t) = F2(t) · (1− F1(t)) +

∫ t

0

F2(x)dF1(x) (8)

Since we are looking for F1(t) and F2(t) such that χ′ is time equivalent to
χ (in the sense before introduced), equation (3) must hold and the following
ordinary differential (integral) equations’ system can be written:⎧⎪⎨⎪⎩

1− F1(t)− F2(t) + F1(t)F2(t) = 1− F (t)

F1(t) · (1− F2(t)) +
∫ t

0
F1(x)f2(x)dx = p · F (t)

F2(t) · (1− F1(t)) +
∫ t

0 F2(x)f1(x)dx = (1− p) · F (t)

(9)

with boundary conditions F1(0) = 0, F2(0) = 0. Since F1(t) and F2(t) are non-
decreasing functions-CDFs the following property holds:

lim
t→+∞

F1(t) = lim
t→+∞

F2(t) = 1

The failure behavior of the BladeCenter midplane can be stochastically rep-
resented by the process depicted in Figure 2a, with e1 = ecov and e2 = eunc,
thus having F1(t) = Fcov(t), F2(t) = Func(t) and p = fm. Moreover, given that
Ff (t) is a Weibull distribution, it is easy to demonstrate by substitution in the
system of equation (9) that Fcov and Func are both still Weibull distributions,
with βcov = βunc = βf and ηcov = ηf/fm

(1/βf ) and ηunc = ηf/(1 − fm)(1/βf ),
respectively.

4.2 Modeling Aging and Load Sharing

The non-exponential distributions in the model of Figure 1 lead to address com-
plex issues while dealing with the solution. In particular, during the transition
from state AU to state CS, the wear out of the BladeCenter chassis midplane has
to be taken into account at state changing. Moreover, since covered faults could
imply higher load on the operating components, reflecting on its reliability, load
sharing effects, if present, have to be adequately modeled.

Let us consider the lifetime of the BladeCenter midplane as stochastically
modeled by a continuous random variable X . Moreover, let us assume the values
ofX also depend on a conditioning event characterizing and influencing the event
associated with X according to different operating conditions assumed by the
conditioning event random variable Y . In the BladeCenter chassis midplane two
operating conditions can be identified, the fully operating (state AU) and, after
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a covered fault, the partially operating (state CS) ones. Then, X is characterized
by a CDF

F a
X(x) = Pr{X ≤ x | The midplane is fully operating} = 1−Ra

X(x),

where Ra
X(x) is the reliability of the fully operating midplane. In fact, F a

X(x) =
F (x) as introduced in the previous section. In the partially operating condition,
X is instead characterized by

F f
X(x) = Pr{X ≤ x | The midplane is partially operating} = 1−Rf

X(x).

In fact, F f
X(x) = F ′(x) as introduced in the previous section. This way, we have

a couple of CDFs for X , F a
X and F f

X , depending on the operating condition
of the midplane. Since in our model we are specifically interested in evaluating
such phenomenon for not-covered faults, we can just focus on the eunc event
thus obtaining F a

X = Func and F f
X = F ′

unc. Let us assume both Func and F ′
unc

are continuous and strictly increasing.
This way, the switching between Func and F ′

unc is governed by the first covered
fault event ecov, associated with the random variable Y stochastically character-
ized by the CDF Fcov(t). Y influences the behavior of X , i.e., X depends on Y .
We are therefore interested in obtaining FX(x) = Pr{X ≤ x} that stochastically
characterizes the event related to X when the operating condition varies. Since
the condition changes are related to Y , FX could be considered as a joint CDF
of X and Y , i.e. FX,Y (x, y).

The main requirement we impose on FX,Y is that it must be a continuous
function at changing point y. This choice implements the conservation of reli-
ability principle [14]. As a consequence, at the condition changing points there
must not be a probability mass for FX,Y . The problem is to express FX,Y in
terms of its marginal distributions Fcov, Func and F ′

unc. Thus, assuming the
midplane is initially fully operating, we have that

FX,Y (x, y) =

{
Func(x) x ≤ y

F ′
unc(x+ τ) x > y

(10)

where τ is a constant depending on the changing point, i.e. such that FX,Y (x, y)
is continuous at y. It is therefore necessary to understand what happens at y in
order to quantify τ . Given that Func and F ′

unc must be continuous and strictly
increasing (and thus invertible), by equation (10) at y we have that:

Func(y) = F ′
unc(y + τ) ⇒ τ = F

′(−1)
unc (Func(y))− y (11)

where F
′(−1)
unc is the inverse function of F ′

unc.
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By applying the law of total probability we can express FX,Y (x, y) in terms
of a unique variable

FX,Y (t) =

∫ +∞

−∞
Pr(X ≤ t|Y = y)fcov(y)dy

=

∫ t

0

Pr(X ≤ t|Y = y)fcov(y)dy +

∫ +∞

t

Pr(X ≤ t|Y = y)fcov(y)dy =

=

∫ t

0

(1− Pr(X > t|Y = y))fcov(y)dy + Func(t)(Fcov(y)|∞t ) (12)

This way, considering y ≤ t, Pr(X > t|Y = y) = 1 − F ′
unc(t + τ) = 1 −

F ′
unc

(
t+ F

′(−1)
unc (Func(y))− y

)
and thus by equation (12) we can de-condition

on Y obtaining

FX(t) = Func(t)(1 − Fcov(t)) +
∫ t

0
F ′
unc

(
t+ F

′(−1)
unc (Func(y))− y

)
fcov(y)dy

(13)
which represents the distribution of the midplane not-covered faults when the
operating conditions change due to covered faults.

4.3 Solution Technique

As detailed in the previous sections, the state space model we propose to rep-
resent the BladeCenter midplane availability is not trivial to manage since it
includes complex phenomena that should be dealt with through specific tech-
niques. In particular, two main aspects should be addressed: i) representation of
the Weibull distributed r.v., ii) memory management issues related to the aging
phenomenon and the load sharing behavior. In order the overall distribution is
continuous the evolution of the underlying stochastic process restarts in the new
condition from the reliability/age level reached at changing point in the previous
condition.

In [13], we proposed a solution technique for evaluating distributed systems
affected by non-Markovian behaviors and changing conditions. This solution is
based on a Markovization step, where we exploit the phase type (PH) approach
taking into account the nature of the changing quantities as well as the way
they are represented. In particular, starting from a state space model repre-
senting the system under exam, we propose a technique able to approximate
non-exponentially distributed events through CHPs and to adequately manage
memory conservation during changing conditions through an ad-hoc fitting al-
gorithm.

Since the distribution or the function describing the observed phenomenon
changes according to some events into different conditions it is necessary to
know the lifetime CDFs of the observed system both in isolation or in the initial
working condition (without dependencies or in the baseline environment), and
in the new environments or after the application of a dependency. This way, by
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representing the lifetime CDFs as CPHs, it is possible to specify how the sys-
tem jumps from one of such CPHs to the others by preserving, in the transition
between two conditions, the lifetime or the reliability. The expansion technique
can be thus used to numerically study the model, obtaining a CTMC where the
states of the original stochastic process are expanded into set of states. The main
drawback of this approach is the memory consumption since the space complex-
ity grow up very quickly with the number of system states and the events there
enabled. The adopted solution technique tackles this issue by using Kronecker
algebra to generate the transition rates among the states of the expanded pro-
cess. The system state space is described by using a two layer symbolic approach
allowing a very compact representation of it. The Kronecker expressions involv-
ing CPHs matrices are similar to that presented in [9] and are not reported here
for lack of space.

5 Analysis and Results

In order to demonstrate the effectiveness of our technique and to evaluate the
quality of its accuracy, in this section we show the results obtained from the anal-
ysis of our BladeCenter midplane non-Markovian model comparing them against
the exponential one obtained in [11]. The parameters adopted during the anal-
ysis that are related to the distribution associated with the midplane failure
event have been reported in Table 1. Table 2 reports the coverage factor (fm)
and the parameters related to the repairman arrival, the midplane maintenance,
and the load-sharing behavior. In particular, we suppose the events associated
with the repairman arrival and the midplane maintenance are exponentially dis-
tributed thus we only report the corresponding rates, i.e., λsum = 1/MRTsp and
λrep = 1/MTTRmp, respectively. On the other hand, the load-sharing behavior
(if present) is modeled by assuming that the midplane failure time distributions
F (t) and F ′(t) can be framed into the accelerated life model (ALM) class such
that η′f = l · ηf , where the ηf and η′f are the shape parameters of the Weibull
distributions as specified in Section 3.2 and 0 < l < 1 is the load sharing param-
eter, quantifying the effect of load sharing in terms of the shape parameter. In
case of Weibull distributions, this is equivalent to a proportional hazard model
where h′(t) = (1/l)βfh(t).

As a first step, we performed a transient analysis of our BladeCenter midplane
non-Markovian model with the aim of computing the midplane point availability

Table 2. BladeCenter midplane non-Markovian model parameters

Parameter Values

fm [0.5,0.99]

λsum 0.4

λrep 0.4

l 0.7
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Fig. 3. Comparison of homogeneous CTMC model’s and non-Markovian model’s
Amid(t)

Amid(t). Such a metric can be calculated as the sum of the transient probabilities
for the model to be in states AU and CS. The non-Markovian model has been
solved comparing the cases in which the low parameters for the failure time
distributions have been adopted with the purpose to analyzing the differences
between exponentially and Weibull distributed failure times

Figure 3 shows Amid(t) in all the above described cases in the time interval
[0, 5000]. From these results we can observe and quantify the quality of the
exponential approximation against the Weibull one in transient evaluation. Both
exponential and Weibull models have similar trends but different slopes, thus
amplifying the gap between corresponding results by increasing the time. This
trend is also highlighted by the steady state evaluation as shown in Figure 4
where the midplane steady state availability Amid = lim

t→∞
Amid(t) is reported

by varying the coverage factor fm. Such a measure could allow to understand
and quantify the improvement in terms of system availability of empowering the
software/hardware fault coverage. Figure 4a provides the results obtained by
analyzing the model with exponential failure distributions against the Weibull
one. Since we obtained very small differences when the exponential distributions
characterized by the parameters of Table 1 are used, we depict only one of the
two (Low and High) sets of results (Exponential curve). For similar reason, only a
set of results related to the Weibull distributed failure model is reported (Weibull
curve).

We can therefore argue that the exponential approximation under estimates
the BladeCenter midplane availability, both in transient and steady state. As
a consequence, it is necessary to carefully evaluate the quality of the approxi-
mation, the tolerance of the model when choosing to adopt exponential models.
Indeed, the use of Weibull distributions allows a better approximation, showing
some properties and behaviours of the system that are not caught by the homo-
geneous CTMC model. For example, from the non-Markovian model results we
can observe that the system is highly available independently on the coverage
factor value, since at least a 6-nine availability Amid is obtained (Low Weibull
and High Weibull curves). Moreover, when a load-sharing phenomena is expe-
rienced that modifies the Weibull distribution’s shape parameters an improving
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Fig. 4. Amid in the homogeneous CTMC model and non-Markovian model (a) and
(b), respectively

of the availability is obtained (Low Weibull - LS and High Weibull LS curves).
This is mainly due to the decreasing failure rate (DFR) distributions considered
in the model (Weibull with β = 0.5 < 1), since the load impacts on the sys-
tem accelerating in time the aging process, as in ALM. In terms of failure rate
this means that, being the Weibull DFR, this phenomenon accelerates the de-
creasing failure rate process. This is a common behavior for DFR distributions,
which however could be considered as a bit strange. Basically, this is due to the
choice of DFR Weibull distributions, which however have been obtained through
statistical experiments.

6 Conclusions

In this paper, we proposed an analytical non-Markovian technique based on
CPH distributions and Kronecker algebra for the modeling of an IBM Blade-
Center system with particular attention to the chassis midplane evaluation. We
compare the results of our model with the ones obtained from a homogeneous
CTMC one, already proposed in a previous work. Results demonstrate how the
capability to deal with non-exponentially distributed events and the correspond-
ing aging phenomena allows our technique to be more accurate with respect to
reality. Moreover, being able to model common mode faults and load sharing be-
haviors, our technique candidates itself as a powerful tool for assessing, ensuring,
and enforcing reliability and availability of resources and services in distributed
computing systems, both in transitory and steady-state.
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