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Abstract. The total correctness of sequential computations can be es-
tablished through different isomorphic models, such as monotonic pre-
dicate transformers and binary multirelations, where both angelic and
demonic nondeterminism are captured. Assertional models can also be
used to characterise process algebras: in Hoare and He’s Unifying The-
ories of Programming, CSP processes can be specified as the range of
a healthiness condition over designs, which are pre and postcondition
pairs. In this context, we have previously developed a theory of angelic
designs that is a stepping stone for the natural extension of the concept of
angelic nondeterminism to the theory of CSP. In this paper we present
an extended model of upward-closed binary multirelations that is iso-
morphic to angelic designs. This is a richer model than that of standard
binary multirelations, in that we admit preconditions that rely on later
or final observations as required for a treatment of processes.
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1 Introduction

In the context of sequential programs, their total correctness can be characterised
through well-established models such as monotonic predicate transformers [1].
This model forms a complete lattice, where demonic choice corresponds to the
greatest lower bound, while angelic choice is the least upper bound.

In [2] Rewitzky introduces the concept of binary multirelations, where the
initial state of a computation is related to a set of final states. Amongst the
different models studied [2,3], the theory of upward-closed binary multirelations
is the most important as it has a lattice-theoretic structure. In this case, the set
of final states corresponds to choices available to the angel, while those over the
value of the set itself correspond to demonic choices.

The UTP of Hoare and He [4] is a predicative theory of relations suitable
for the combination of refinement languages catering for different programming
paradigms. In this context, the total correctness of sequential computations is
characterised through the theory of designs, which are pre and postcondition
pairs. Since the concept of angelic nondeterminism cannot be captured directly,
binary multirelational encodings have been proposed [5,6,7].

While sequential computations can be given semantics using a relation between
their initial and final state, reactive systems require a richer model that accounts

G. Ciobanu and D. Méry (Eds.): ICTAC 2014, LNCS 8687, pp. 388–405, 2014.
c© Springer International Publishing Switzerland 2014



UTP Designs for Binary Multirelations 389

for the interactions with their environment. This is achieved in the UTP through
the theory of reactive processes [4,8]. The combination of this theory and that of
designs enables the specification of CSP processes in terms of designs that charac-
terise the pre and postcondition of processes. We observe, however, that the theory
of designs encompasses programs whose preconditions may also depend on the fi-
nal or later observations of a computation. As a consequence, the general theory
of designs allows these observations to be ascertained irrespective of termination.
For instance, the precondition of the CSP process a → Chaos requires that no
after observation of the trace of events is prefixed by event a.

In order to extend the concept of angelic nondeterminism to CSP, we have
previously developed a theory of angelic designs. The most challenging aspect
tackled pertains to the treatment of sequential composition, where it departs
from the norm for UTP theories: instead of sequential composition being rela-
tional composition we have a different treatment [5] inspired on the definition of
sequential composition for binary multirelations.

The main contribution of this work is a new theory of binary multirelations
that caters for sets of final states where termination may not be necessarily en-
forced. Thus is in line with the general notion of UTP designs, with the added
benefit that binary multirelations can handle both angelic and demonic non-
determinism. Our contribution is not only an extended model of upward-closed
binary multirelations isomorphic to angelic designs, but also a solid basis for un-
derstanding the treatment of sequential composition in such models. To facilitate
this analysis here, we also present links, Galois connections and isomorphisms,
between the theories of interest. The links validate our new theory, and identify
its potential role in a treatment of CSP processes.

Our long term aim is the development of a model of CSP where the an-
gelic choice operator is a counterpart to that of the refinement calculus, that
is, it avoids divergence [9]. For example, if we consider the angelic choice a →
Chaos �a → Skip, then this would ideally be resolved in favour of a → Skip. An
application of this notion is found, for instance, in the context of a modelling
approach for the verification of implementations of control systems [10].

The structure of this paper is as follows. In section 2 we introduce the UTP
and the theories of interest. In section 3 the main contribution of this paper is
discussed. In section 4 we establish the relationship between the new model and
the theory of angelic designs. Finally in section 5 we present our conclusions.

2 Preliminaries

As mentioned before, the UTP is an alphabetized, predicative theory of relations
suitable for modelling different programming paradigms [4]. UTP theories are
characterised by three components: an alphabet, a set of healthiness conditions
and a set of operators. The alphabet α(P) of a relation P can be split into inα(P),
which contains undashed variables corresponding to the initial observations of a
computation, and outα(P) containing dashed counterparts for the after or final
observations. Refinement is defined as universal reverse implication.
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2.1 Designs

In the UTP theory of designs [4,11] the alphabet consists of program variables
and two auxiliary Boolean variables ok and ok ′ that record when a program
starts, and when it terminates. A design is specified as follows.

Definition 1 (Design). (P � Q) =̂ (ok ∧ P) ⇒ (Q ∧ ok ′)

P and Q are relations that together form a pre and postcondition pair, such that
if the program is started, that is ok is true, and P is satisfied, then it establishes
Q and terminates successfuly, with ok ′ being true.

A design can be expressed in this form if, and only if, it is a fixed point
of the healthiness conditions H1 and H2 [4], whose functional composition is
reproduced below, where Po = [o/ok ′], that is o is substituted for ok ′, with t
corresponding to true and f to false.

Theorem 1. H1 ◦ H2(P) = (¬ P f � Pt)

The healthiness condition H1 states that any observations can be made before a
program is started, while H2 requires that if a program may not terminate, then
it must also be possible for it to terminate. In other words, it is not possible to
require nontermination explicitly. The healthiness conditions of the theory are
monotonic and idempotent, and so the model is a complete lattice [4].

When designs are used to model sequential computations, the precondition
¬ P f of a design P is in fact not a relation, but rather a condition that only
refers to undashed variables. Designs that observe this property are fixed points
of the healthiness condition H3, whose definition is reproduced below [4].

Definition 2. H3(P) = P ; IID

This is a healthiness condition that requires the skip of the theory, defined below
as IID [4,11], to be a right-unit for sequential composition.

Definition 3. IID =̂ (true � x ′ = x)
The design IID once started keeps the value of every program variable x un-
changed and terminates successfuly. In order to discuss the consequences of
designs that do not satisfy H3, we consider the following example.

Example 1. (x ′ �= 2 � x ′ = 1) = ok ⇒ ((x ′ = 1 ∧ ok ′) ∨ x ′ = 2)

This is a design that once started can either establish the final value of the pro-
gram variable x as 1 and terminate, or alternatively can establish the final value
of x as 2 but then termination is not necessarily required. This is unexpected
behaviour in the context of a theory for sequential programs. However, in the
theory of CSP [4,8], processes are expressed as the image of non-H3 designs
through the function R that characterises reactive programs.

2.2 Binary Multirelations

As mentioned before, the theory of binary multirelations as introduced by Re-
witzky [2] is a theory of relations between an initial state and a set of final states.
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We define these relations through the following type BM , where State is a type
of records with a component for each program variable.

Definition 4 (Binary Multirelation). BM =̂ State ↔ P State

For instance, the program that assigns the value 1 to the only program variable
x when started from any initial state is defined as follows.

Example 2. x :=BM 1 = {s : State, ss : PState | (x �→ 1) ∈ ss}
Following [5], (x �→ 1) denotes a record whose only component is x and its
respective value is 1. For conciseness, in the definitions that follow, the types of
s and ss may be omitted but are exactly the same as in example 2.

The target set of a binary multirelation can be interpreted as either encod-
ing angelic or demonic choices [2,5]. We choose to present a model where the
set of final states encodes angelic choices. This choice is justified in [12,5] as
maintaining the refinement order of the UTP theories.

Demonic choices are encoded by the different ways in which the set of final
states can be chosen. For example, the program that angelically assigns the value
1 or 2 to the only program variable x is specified by the following relation, where
�BM is the angelic choice operator for binary multirelations.

Example 3. x :=BM 1 �BM x :=BM 2 = {s, ss | (x �→ 1) ∈ ss ∧ (x �→ 2) ∈ ss}
This definition allows any superset of the set {(x �→ 1), (x �→ 2)} to be chosen.
The choice of values 1 and 2 for the program variable x are available in every
set of final states ss, and so are available in every demonic choice.

The subset of BM of interest is that of upward-closed multirelations [2,3]. The
following predicate [5] characterises this subset for a relation B.

Definition 5. BMH =̂ ∀ s, ss0, ss1 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1) ⇒ (s, ss1) ∈ B

If a particular initial state s is related to a set of final states ss0, then it is also
related to any superset of ss0. This means that if it is possible to terminate in
some final state that is in ss0, then the addition of any other final states to that
same set does not change the final states available for angelic choice, which cor-
respond to those in the distributed intersection of all sets of final states available
for demonic choice. Alternatively, the set of healthy binary multirelations can
be characterised by the fixed points of the following function.

Definition 6. bmhup(B) =̂ {s, ss | ∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss}
This equivalence is established by the following lemma 1.

Lemma 1. BMH ⇔ bmhup(B) = B

Proof of these and other results can be found in [7].
The refinement order for healthy binary multirelations B0 and B1 is given by

subset inclusion [5], as reproduced below.

Definition 7 (�BM). B0 �BM B1 =̂ B0 ⊇ B1



392 P. Ribeiro and A. Cavalcanti

This partial order over BM forms a complete lattice. It allows an increase in the
degree of angelic nondeterminism and a decrease in demonic nondeterminism,
with angelic choice as set intersection and demonic choice as set union.

For binary multirelations that are upward-closed, that is, which satisfy BMH,
the definition of sequential composition is as follows.

Lemma 2. Provided B0 satisfies BMH.

B0 ;BM B1 = {s0 : State, ss : PState | (s0, {s1 : State | (s1, ss) ∈ B1}) ∈ B0}
It considers every initial state s0 in B0 and set of final states ss of B1, such
that ss is a set that could be reached through some initial state s1 of B1 that is
available to B0 as a set of final states.

2.3 Angelic Designs

As discussed earlier, both angelic and demonic nondeterminism can be modelled
in the UTP through a suitable encoding of multirelations. The first of these has
been proposed in [5], where the alphabet consists of input program variables and
a sole output variable ac′, a set of final states. Those states in ac′ correspond to
angelic choices, while the choice over the value of ac′ itself corresponds to de-
monic choices. Upward closure is enforced by the following healthiness condition,
where v and v′ refer to every variable other than ac and ac′.

Definition 8. PBMH(P) =̂ P ; ac ⊆ ac′ ∧ v′ = v

PBMH requires that if it is possible for P to establish a set of final states ac′,
then any superset can also be established. (In the theory of [5], there are no
other variables v′, while here we consider a more general theory.)

Following the approach in [5] we have previously developed a theory of angelic
designs [6]. The alphabet includes the variables ok and ok ′ from the theory
of designs, a single input state s and a set of final states ac′. The healthiness
conditions are H1 and H2 and A, whose definition is the functional composition
of A0 and A1 as reproduced below [6].

Definition 9.

A0(P) =̂ P ∧ ((ok ∧ ¬ P f ) ⇒ (ok ′ ⇒ ac′ �= ∅))
A1(P) =̂ (¬ PBMH(P f ) � PBMH(Pt))

A(P) =̂ A0 ◦ A1(P)

The healthiness condition A0 requires that when a design terminates success-
fully, then there must be some final state in ac′ available for angelic choice. A1
requires that the final set of states in both the postcondition and the negation of
the precondition are upward closed. We observe that A1 can also be expressed
as the application of PBMH to the whole of the design P.

Since all of the healthiness conditions of the theory commute, and they are all
idempotent and monotonic [6], so is their functional composition. Furthermore,
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because the theory of designs is a complete lattice and A is both idempotent
and monotonic, so is the theory of angelic designs.

The theory of angelic designs is based on non-homogeneous relations. As a
consequence the definition of sequential composition departs from the norm for
other UTP theories, where usually sequential composition is relational composi-
tion. Instead, the definition is layered upon the sequential composition operator
;A of [5], whose definition in the context of this theory, we reproduce below.

Definition 10. P ;A Q =̂ P[{s | Q}/ac′]

The resulting set of angelic choices is that of Q, such that they can be reached
from an initial state of Q that is available for P as a set ac′ of angelic choices.
This is a result that closely resembles that for binary multirelations, except for
the fact that it is expressed using substitution. In the next section, we present a
set-theoretic model of binary multirelations, like that in section 2.2, but extended
to cater for angelic designs.

3 Extending Binary Multirelations

Based on the theory of binary multirelations, we introduce a new type of relations
BM⊥ by considering a different type State⊥ for the target set of states.

Definition 11. State⊥ == State ∪ {⊥}, BM⊥ == State ↔ P State⊥

Each initial state is related to a set of final states of type State⊥, a set that may
include the special state ⊥, which denotes that termination is not guaranteed.
If a set of final states does not contain ⊥, then the program must terminate.

For example, consider the program that assigns the value 1 to the variable x ,
but may or may not terminate. This is specified by the following relation, where
:=BM⊥ is the assignment operator that does not require termination.

Example 4. x :=BM⊥ 1 = {s : State, ss : P State⊥ | s ⊕ (x �→ 1) ∈ ss}
Every initial state s is related to a set of final states ss where the state obtained
from s by overriding the value of the component x with 1 is included. Since ss
is of type State⊥, all sets of final states in ss include those with and without ⊥.

In the following section 3.1 we define the healthiness conditions of the new
theory of binary multirelations of type BM⊥. In section 3.2 we explore important
properties of the new model. Finally in section 3.3 we explore the relationship
between the new model and the original theory of binary multirelations.

3.1 Healthiness Conditions

Having defined a new type of relations, in what follows we introduce the health-
iness conditions that characterise the relations in the theory.
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BMH0. The first healthiness condition of interest enforces upward closure [2]
for sets of final states that are necessarily terminating, and in addition enforces
the same property for sets of final states that are not required to terminate.

Definition 12 (BMH0).

∀ s : State, ss0, ss1 : PState⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)) ⇒ (s, ss1) ∈ B

It states that for every initial state s, and for every set of final states ss0 in a
relation B, any superset ss1 of that final set of states is also associated with s as
long as ⊥ is in ss0 if, and only if, it is in ss1. That is, BMH0 requires upward
closure for sets of final states that terminate, and for those that may or may
not terminate, but separately. The definition of BMH0 can be split into two
conjunctions as shown in the following lemma 3.

Lemma 3

BMH0 ⇔

⎛

⎜

⎜

⎝

(∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1) ⇒ (s, ss1) ∈ B

)

∧
BMH

⎞

⎟

⎟

⎠

This confirms that for sets of final states that terminate this healthiness condition
enforces BMH exactly as in the original theory of binary multirelations [2].

BMH1. The second healthiness condition BMH1 requires that if it is possible
to choose a set of final states where termination is not guaranteed, then it must
also be possible to choose an equivalent set of states where termination is guar-
anteed. This healthiness condition is similar in nature to H2 of the theory of
designs.

Definition 13 (BMH1)

∀ s : State, ss : PState⊥ • (s, ss ∪ {⊥}) ∈ B ⇒ (s, ss) ∈ B

This healthiness condition excludes relations that only offer sets of final states
that may not terminate. Consider the following example.

Example 5. {s : State, ss : P State⊥ | (x �→ 1) ∈ ss ∧ ⊥ ∈ ss}

This relation describes an assignment to the only program variable x where
termination is not guaranteed. However, it discards the inclusive situation where
termination may indeed occur. The inclusion of a corresponding final set of states
that requires termination does not change the choices available to the angel as
it is still impossible to guarantee termination.
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BMH2. The third healthiness condition reflects a redundancy in the model,
namely, that both the empty set and {⊥} characterise abortion.

Definition 14 (BMH2). ∀ s : State • (s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B

Therefore we require that every initial state s is related to the empty set of final
states if, and only if, it is also related to the set of final states {⊥}.

If we consider BMH1 in isolation, it covers the reverse implication of BMH2
because if (s, {⊥}) is in the relation, so is (s, ∅). However, BMH2 is stronger than
BMH1 by requiring (s, {⊥}) to be in the relation if (s, ∅) is also in the relation.
The reason for this redundancy is to facilitate the linking between theories, in
particular with the original theory. We come back to this point in section 3.3.

The new model of binary multirelations is characterised by the conjunction
of the healthiness conditions BMH0, BMH1 and BMH2, which we refer to as
BMH0,1,2. An alternative characterisation in terms of fixed points is available
in [7]. That characterisation has enabled us, for instance, to establish that all
healthiness conditions are monotonic.

BMH3. The fourth healthiness condition characterises a subset of the model
that corresponds to the original theory of binary multirelations.

Definition 15 (BMH3)

∀ s : State • (s, ∅) /∈ B ⇒ (∀ ss : PState⊥ • (s, ss) ∈ B ⇒ ⊥ /∈ ss)

If an initial state s is not related to the empty set, then it must be the case that
for all sets of final states ss related to s, ⊥ is not included in the set ss.

This healthiness condition excludes relations that do not guarantee termina-
tion for particular initial states, yet establish some set of final states. example 4
is an example of such a relation. This is also the case for the original theory of
binary multirelations. If it is possible for a program not to terminate when star-
ted from some initial state, then execution from that state must lead to arbitrary
behaviour. This is the same intuition for H3 of the theory of designs [4].

This concludes the discussion of the healthiness conditions. The relationship
with the original model of binary multirelations is discussed in section 3.3.

3.2 Operators

Having defined the healthiness conditions, in this section we introduce the most
important operators of the theory. These enable the discussion of interesting
properties observed in the new model.

Assignment. In this model there is in fact the possibility to define two distinct
assignment operators. The first one behaves exactly as in the original theory of
binary multirelations x :=BM e. This operator does not need to be redefined,
since BM ⊆ BM⊥. The new operator that we define below, however, behaves
rather differently, in that it may or may not terminate.
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Definition 16. x :=BM⊥ e =̂ {s : State, ss : PState⊥ | s ⊕ (x �→ e) ∈ ss}
This assignment guarantees that for every initial state s, there is some set of
final states available for angelic choice where x has the value of expression e.
However, termination is not guaranteed. While the angel can choose the final
value of x it cannot possibly guarantee termination in this case.

Angelic Choice. Angelic choice is defined as set intersection just like in the
original theory of binary multirelations.

Definition 17. B0 �BM⊥ B1 =̂ B0 ∩ B1

For every set of final states available for demonic choice in B0 and B1, only those
that can be chosen both in B0 and B1 are available. As the refinement ordering
in the new model is exactly the same as in the theory of binary multirelations,
the angelic choice operator, being the least upper bound, has the same properties
with respect to the extreme points of the lattice.

An interesting property of angelic choice that is observed in this model is
illustrated by the following lemma 4. It considers the angelic choice between two
assignments of the same expression, yet only one is guaranteed to terminate.

Lemma 4. (x :=BM⊥ e) �BM⊥ (x :=BM e) = (x :=BM e)

This result can be interpreted as follows: given an assignment which is guaranteed
to terminate, adding a corresponding angelic choice that is potentially non-
terminating does not in fact introduce any new choices.

Demonic Choice. The demonic choice operator is defined by set union, exactly
as in the original theory of binary multirelations.

Definition 18. B0 �BM⊥ B1 =̂ B0 ∪ B1

For every initial state, a corresponding set of final states available for demonic
choice in either, or both, of B0 and B1, is included in the result.

Similarly to the angelic choice operator, there is a general result regarding
the demonic choice over the two assignment operators, terminating and not
necessarily terminating. This is shown in the following lemma 5.

Lemma 5. (x :=BM e) �BM⊥ (x :=BM⊥ e) = (x :=BM⊥ e)

If there is an assignment for which termination is not guaranteed, then the
demonic choice over this assignment and a corresponding one that is guaranteed
to terminate is the same as the assignment that does not require termination. In
other words, if it is possible for the demon to choose between two similar sets of
final states, one that is possibly non-terminating and one that terminates, then
the one for which termination is not guaranteed dominates the choice.
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Sequential Composition. The definition of sequential composition in this new
model is not immediately obvious. In fact, one of the reasons for developing this
theory is that it provides a more intuitive approach to the definition of sequential
composition in the theory of angelic designs. To illustrate the issue, we consider
the following example from the theory of designs, where a non-H3-design is
sequentially composed with IID, the Skip of the theory.

Example 6.

(x ′ = 1 � true) ; IID {Definition of IID}
= (x ′ = 1 � true) ; (true � x ′ = x) {Sequential composition for designs}
= (¬ (x ′ �= 1 ; true) ∧ ¬ (true ; false) � true ; x ′ = x){Sequential composition}
= (¬ (∃ x0 • x0 �= 1 ∧ true) ∧ ¬ (∃ x0 • true ∧ false) � ∃ x0 • true ∧ x ′ = x0)

{Predicate calculus and one-point rule}
= (¬ true ∧ ¬ false � true) {Predicate calculus and property of designs}
= true

The result is true, the bottom of designs [4], whose behaviour is arbitrary. This
result can be generalised for the sequential composition of any non-H3-design.

The behaviour just described provides the motivation for the definition of
sequential composition in the new binary multirelational model.

Definition 19

B0 ;BM⊥ B1 =̂

⎧

⎨

⎩

s0 : State, ss0 : PState⊥
∣

∣

∣

∣

∃ ss : P State⊥ • (s0, ss) ∈ B0 ∧
(⊥ ∈ ss ∨ ss ⊆ {s1 : State | (s1, ss0) ∈ B1})

⎫

⎬

⎭

For sets of final states where termination is guaranteed, that is, ⊥ is not in the
set of intermediate states ss, this definition matches that of the original theory.
If ⊥ is in ss, and hence termination is not guaranteed, then the result of the
sequential composition is arbitrary as it can include any set of final states.

If we assume that B0 is BMH0-healthy, then the definition of sequential
composition can be split into the set union of two sets as shown in theorem 2.

Theorem 2. Provided B0 is BMH0-healthy.

B0 ;BM⊥ B1 =

⎛

⎝

{s0, ss0 | (s0, State⊥) ∈ B0}
∪
{s0, ss0 | (s0, {s1 | (s1, ss0) ∈ B1}) ∈ B0}

⎞

⎠

The first set considers the case when B0 leads to sets of final states where ter-
mination is not required (State⊥). The second set considers the case where ter-
mination is required and matches the result of lemma 2. This concludes our
discussion of the main results regarding the operators of the theory.
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3.3 Relationship with Binary Multirelations

Having presented the most important operators of the theory, in this section we
focus our attention on the relationship between the new model and the original
theory of binary multirelations. The first step consists in the definition of a pair
of linking functions, bmb2bm that maps from the new model into the original
theory of binary multirelations, and bm2bm, a mapping in the opposite direction.

The relationship between the theories of interest is illustrated in fig. 1 where
each theory is labelled according to its healthiness conditions. In addition to the

Fig. 1. Theories and links

relationship between both models of binary multirelations, fig. 1 also shows the
relationship between the new model of binary multirelations and the theory of
angelic designs characterised by A. The latter is the focus of section 4.

From BM⊥ to BM . The function bmb2bm, defined below, maps binary mul-
tirelations in the new model, of type BM⊥, to those in the original model.

Definition 20 (bmb2bm)

bmb2bm : BM⊥ �→ BM
bmb2bm(B) =̂ {s : State, ss : P State⊥ | ((s, ss) ∈ B ∧ ⊥ /∈ ss)}

It is defined by considering every pair (s, ss) in B such that ⊥ is not in ss.
We consider the following example, where bmb2bm is applied to the potentially
non-terminating assignment of e to the program variable x .

Example 7. bmb2bm(x :=BM⊥ e) = (x :=BM e)

The results corresponds to assignment in the original theory. theorem 3 shows
that the application of bmb2bm to an BMH0,1,2,3-healthy relation yields a
BMH-healthy relation.

Theorem 3. Provided B is BMH0,1,2,3-healthy.

bmhup ◦ bmb2bm(B) = bmb2bm(B)

This result confirms that bmb2bm yields relations that are in the original theory.
The proof of this theorem and other proofs omitted below are found in [7].
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From BM to BM⊥. The function bm2bmb maps from relations in the original
model, of type BM , into the new theory. Its definition is presented below.

Definition 21 (bm2bmb)

bm2bmb : BM �→ BM⊥
bm2bmb(B) =̂ { s : State, ss : PState⊥ | ((s, ss) ∈ B ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ B }

It considers every pair (s, ss) in a relation B where ⊥ is not in the set of final
states ss, or if B is aborting for a particular initial state s, then the result is
the universal relation of type BM⊥. A similar result to theorem 3 exists for the
application of bm2bmb [7], where it yields BMH0,1,2,3-healthy relations.

Based on these results we can establish that bm2bmb and bmb2bm form a
bijection for healthy relations as ascertained the following theorems 4 and 5.

Theorem 4. Provided B is BMH0,1,2,3-healthy. bm2bmb ◦ bmb2bm(B) = B

Theorem 5. Provided B is BMH-healthy. bmb2bm ◦ bm2bmb(B) = B

These results show that the subset of the theory that is BMH0-BMH3-healthy
is isomorphic to the original theory of binary multirelations [2]. This confirms
that while our model is more expressive, it is still possible to express every
program that could be specified using the original model. This concludes the
discussion of the new theory. In the following section we discuss the relationship
with the theory of angelic designs.

4 Relationship with UTP Designs

In this section we establish that the predicative model of A-healthy designs is
isomorphic to the new theory of binary multirelations. We begin our discussion
by defining a pair of linking functions: d2bmb, that maps from A-healthy designs
into the new model of binary multirelations, and bmb2d, mapping in the opposite
direction. The relationship between the theories is illustrated in fig. 1.

4.1 From Designs to Binary Multirelations

The first function of interest is d2bmb, whose definition is presented below.

Definition 22 (d2bmb)

d2bmb : A �→ BM⊥

d2bmb(P) =̂

⎧

⎨

⎩

s : State, ss : P State⊥

∣

∣

∣

∣

∣

∣

((¬ P f ⇒ Pt)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(P f [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)

⎫

⎬

⎭
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For a given design P = (¬ P f � Pt), the set construction of d2bmb(P) is split
into two disjuncts. In the first disjunct, we consider the case where P is started
and terminates successfully, with ok and ok ′ both being substituted with true.
The resulting set of final states ss, for which termination is required (⊥ /∈ ss)
is obtained by substituting ss for ac′ in P. The second disjunct considers the
case where ok is also true, but ok ′ is false. This corresponds to the situation
where P does not terminate. In this case, the set of final states is obtained by
substituting ss \ {⊥} for ac′ and requiring ⊥ to be in the set of final states ss.

As a consequence of P satisfying H2, we ensure that if there is some set of final
states captured by the second disjunct with ⊥, then there is also a corresponding
set of final states without ⊥ that is captured by the first disjunct.

In order to illustrate the result of applying d2bmb, we consider the follow-
ing example 8. It specifies a program that either assigns the value 1 to the sole
program variable x and successfully terminates, or assigns the value 2 to x , in
which case termination is not required.

Example 8

d2bmb((x �→ 2) /∈ ac′ � (x �→ 1) ∈ ac′) {Definition of d2bmb and designs}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s : State, ss : PState⊥
∣

∣

∣

∣

∣

∣

((x �→ 2) /∈ ac′ ⇒ (x �→ 1) ∈ ac′)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(((x �→ 2) ∈ ac′)[ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

{Predicate calculus and substitution}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s : State, ss : PState⊥
∣

∣

∣

∣

∣

∣

((x �→ 2) ∈ ss ∧ ⊥ /∈ ss) ∨ ((x �→ 1) ∈ ss ∧ ⊥ /∈ ss)
∨
((x �→ 2) ∈ (ss \ {⊥}) ∧ ⊥ ∈ ss)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

{Property of sets and predicate calculus}
= {s : State, ss : PState⊥ | (x �→ 2) ∈ ss ∨ ((x �→ 1) ∈ ss ∧ ⊥ /∈ ss)}

{Definition of �BM⊥ and :=BM⊥ and :=BM}
= (x :=BM⊥ 2) �BM⊥ (x :=BM 1)

The function d2bmb yields a program with the same behaviour, but specified
using the binary multirelational model. It is the demonic choice over two assign-
ments, one requires termination while the other does not.

The following theorem 6 establishes that the application of d2bmb to A-
healthy designs yields relations that are BMH0-BMH2-healthy.

Theorem 6. bmh0,1,2 ◦ d2bmb(A(P)) = d2bmb(A(P))

This concludes our discussion regarding the linking function d2bmb.

4.2 From Binary Multirelations to Designs

The second linking function of interest is bmb2d, which maps binary multirela-
tions to A-healthy predicates. Its definition is presented below.
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Definition 23 (bmb2d)

bmb2d : BM⊥ �→ A bmb2d(B) =̂ ((s, ac′ ∪ {⊥}) /∈ B � (s, ac′) ∈ B)

It is defined as a design, such that for a particular initial state s, the precondition
requires (s, ac′ ∪ {⊥}) not to be in B, while the postcondition establishes that
(s, ac′) is in B. This definition can be expanded into a more intuitive represent-
ation, by expanding the design, according to the following lemma 6.

Lemma 6. bmb2d(B) = ok ⇒
⎛

⎝

((s, ac′) ∈ B ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
(s, ac′ ∪ {⊥}) ∈ B

⎞

⎠

The behaviour of bmb2d is defined by two disjuncts. The first one considers the
case where B requires termination, and hence ⊥ is not part of the set of final
states of the pair in B. The second disjunct considers sets of final states that do
not require termination, in which case ok ′ can be either true or false.

The following theorem 7 establishes that bmb2d(B) yields A-healthy designs
provided that B is BMH0-BMH2-healthy.

Theorem 7. Provided B is BMH0,1,2-healthy. A ◦ bmb2d(B) = bmb2d(B)

This result confirms that bmb2d is closed with respect to A when applied to rela-
tions that are BMH0-BMH2-healthy. This concludes our discussion of bmb2d.
In the following section 4.3 we focus our attention on the isomorphism.

4.3 Isomorphism

In this section we show that d2bmb and bmb2d form a bijection. The follow-
ing theorem 8 establishes that d2bmb is the inverse function of bmb2d for rela-
tions that are BMH0-BMH2-healthy. While theorem 9 establishes that bmb2d
is the inverse function of d2bmb for designs that are A-healthy. Together these
results establish that the models are isomorphic.

Theorem 8. Provided B is BMH0-BMH2-healthy. d2bmb ◦ bmb2d(B) = B

Theorem 9. Provided P is A-healthy. bmb2d ◦ d2bmb(P) = P

These results establish that the same programs can be characterised using two
different approaches. The binary multirelational model provides a set-theoretic
approach, while the predicative theory proposed can easily be linked with other
UTP theories of interest. This dual approach enables us to justify the definitions
of certain aspects of the theory. This includes the healthiness conditions, and
the operators, which we discuss in the following section 4.4. The most intuitive
and appropriate model can be used in each case. The results obtained in either
model can then be related using the linking functions.

4.4 Linking Results

In this section we discuss the most important results obtained from linking both
the theory of angelic designs and the new model of binary multirelations.
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Refinement. As discussed earlier, the theory of angelic designs [6] is a complete
lattice under the refinement ordering, here denoted by �D, which is universal
reverse implication. In the theory of binary multirelations, refinement is subset
inclusion, as denoted by �BM⊥ . theorem 10 establishes their correspondence.
Theorem 10. Provided B0 and B1 are BMH0-BMH2-healthy.

bmb2d(B0) �D bmb2d(B1) ⇔ B0 �BM⊥ B1

It is reassuring to find that the refinement ordering of the theory of angelic
designs corresponds to the subset ordering in the binary multirelational model.

Sequential Composition. Amongst the operators discussed in the context of
the theories of interest, sequential composition is, perhaps, the most challenging.
In the new model of binary multirelations, this is due to the addition of potential
non-termination, while in the theory of angelic designs, the difficulty pertains to
the use of non-homogenenous relations and the definition of ;A.

In the theory of angelic designs, sequential composition is defined as follows.
Definition 24. P ;Dac Q =̂ ∃ ok0 • P[ok0/ok ′] ;A Q[ok0/ok]
As discussed earlier, this is a definition that is layered upon ;A [6]. It resembles
relational composition, with the notable difference that instead of conjunction we
use the operator ;A. When considering A-healthy designs, sequential composition
can be expressed as an A-healthy design as established by theorem 11.
Theorem 11. Provided P and Q are A-healthy designs.

P ;Dac Q = (¬ (P f ;A true) ∧ ¬ (Pt ;A Qf ) � Pt ;A (¬ Qf ⇒ Qt))

This is a result similar to the one for designs [4,11], except for the use of the
operator ;A and the postcondition, which is different. The implication in the
postcondition acts as a filter that eliminates final states of P that fail to satisfy
the precondition of Q. We consider the following example, where there is an
angelic choice between assigning 1 and 2 to the only program variable b, followed
by the program that maintains the state unchanged provided b is 1.
Example 9.
⎛

⎝

(true � {b �→ 1} ∈ ac′)
�
(true � {b �→ 2} ∈ ac′)

⎞

⎠ ;Dac (s.b = 1 � s ∈ ac′) = (true � {b �→ 1} ∈ ac′)

The angelic choice is resolved as the assignment of 1 to b, which avoids aborting.
Finally, we have established through theorem 12 that the sequential compos-

ition operators of our theories are in correspondence.
Theorem 12. Provided P and Q are A-healthy designs.

bmb2d(d2bmb(P) ;BM⊥ d2bmb(Q)) = P ;Dac Q

This is a reassuring result that provides a dual characterisation for the sequential
composition of angelic designs, both in a predicative model and in terms of sets.
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Demonic Choice. The demonic choice operator of angelic designs (�Dac) defined
as disjunction, corresponds exactly to the demonic choice operator (�BM⊥) of the
binary multirelational model, defined as set union.
Theorem 13. bmb2p(B0 �BM⊥ B1) = bmb2p(B0) �Dac bmb2p(B1)

This result confirms the correspondence of demonic choice in both models.

Angelic Choice. Similarly, the angelic choice operator (�Dac), defined as con-
junction, is in correspondence with that of binary multirelations, (�BM⊥) which
is defined as set intersection.
Theorem 14. bmb2p(B0 �BM⊥ B1) = bmb2p(B0) �Dac bmb2p(B1)

Proof.

bmb2p(B0) �Dac bmb2p(B1) {Definition of bmb2p}

=

⎛

⎝

((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ � (s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
�Dac
((s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′ � (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)

⎞

⎠

{Definition of �Dac}

=

⎛

⎜

⎜

⎜

⎜

⎝

((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′)
�
⎛

⎝

((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′) ⇒ ((s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
∧
((s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′) ⇒ ((s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎠

{Predicate calculus}

=

⎛

⎜

⎜

⎜

⎜

⎝

((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)
�
⎛

⎝

((s, ac′ ∪ {⊥}) ∈ B0 ∨ (s, ac′) ∈ B0)
∧
((s, ac′ ∪ {⊥}) ∈ B1 ∨ (s, ac′) ∈ B1)

⎞

⎠ ∧ ⊥ /∈ ac′

⎞

⎟

⎟

⎟

⎟

⎠

{Assumption: B0 and B1 are BMH1-healthy}

=

⎛

⎜

⎜

⎜

⎜

⎝

((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)
�
⎛

⎝

(((s, ac′ ∪ {⊥}) ∈ B0 ∧ (s, ac′) ∈ B0) ∨ (s, ac′) ∈ B0)
∧
(((s, ac′ ∪ {⊥}) ∈ B1 ∧ (s, ac′) ∈ B1) ∨ (s, ac′) ∈ B1)

⎞

⎠ ∧ ⊥ /∈ ac′

⎞

⎟

⎟

⎟

⎟

⎠

{Predicate calculus: absorption law}

=

⎛

⎝

((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)
�
(s, ac′) ∈ B0 ∧ (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′

⎞

⎠

{Predicate calculus and property of sets}
= ((s, ac′ ∪ {⊥}) /∈ (B0 ∩ B1) ∨ ⊥ ∈ ac′ � (s, ac′) ∈ (B0 ∩ B1) ∧ ⊥ /∈ ac′)

{Definition of bmb2p and �BM⊥}
= bmb2p(B0 �BM⊥ B1) ��
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In [7] we have established a number of other properties regarding the angelic
choice operator and sequential composition, namely that sequential composition
does not, in general, distribute through angelic choice from neither the left nor
the right, and that angelic and demonic choice distribute through one another.
The latter follows directly from the properties of sets and the characterisation
of angelic and demonic choice in the binary multirelational model.

5 Conclusion

Angelic nondeterminism has traditionally been considered in the context of the-
ories of total correctness for sequential computations. Amongst these, isomorphic
models include the universal monotonic predicate transformers of the refinement
calculus [1,13,14], and binary multirelations [2], where both angelic and demonic
nondeterminism are captured. The corresponding characterisation in a relational
setting, such as the UTP, has been achieved via multirelational encodings [5,6].

Morris and Tyrrel [15,16], and Hesselink [17], have considered angelic non-
determinism in the context of functional languages, by characterising it at the
expression or term level. A generalised algebraic structure has been proposed by
Guttmann [18], where both the monotonic predicate transformers and multire-
lations are characterised as instances.

Tyrrell et al. [19] have proposed an axiomatized algebra of processes resem-
bling CSP where external choice is angelic choice, however, in their model dead-
lock is indistinguishable from divergence. Roscoe [20] has proposed an angelic
choice operator in the context of an operational combinator semantics for CSP.
However, its semantics is far from being a counterpart to the angelic choice
operator of the refinement calculus, where, if possible, abortion can be avoided.

The theory that we have introduced here presents itself as a natural extension
of Rewitzky’s [2] binary multirelations, by including information pertaining to
the possibility for non-termination. This is a concept found in the general theory
of UTP designs, where preconditions can refer to the value of later or final states,
an essential property for the characterisation of CSP processes.

The development of links between the new theory and angelic designs provides
two complementary views of the same computations. This dual approach has
enabled us to characterise certain aspects more easily by choosing the most
appropriate model. It is reassuring that the healthiness conditions and operators
of both models are in correspondence. Our long term aim is the definition of a
UTP theory of CSP that includes all standard CSP operators, and, additionally,
an angelic choice operator that avoids divergence.
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