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Timişoara RO-300223, Romania

mmarin@info.uvt.ro
2 e-Austria Research Institute,
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Abstract. We consider the problem of learning an unknown context-
free grammar when the only knowledge available and of interest to the
learner is about its structural descriptions with depth at most �. The
goal is to learn a cover context-free grammar (CCFG) with respect to
�, that is, a CFG whose structural descriptions with depth at most �
agree with those of the unknown CFG. We propose an algorithm, called
LA�, that efficiently learns a CCFG using two types of queries: structural
equivalence and structural membership. We show that LA� runs in time
polynomial in the number of states of a minimal deterministic finite cover
tree automaton (DCTA) with respect to �. This number is often much
smaller than the number of states of a minimum deterministic finite tree
automaton for the structural descriptions of the unknown grammar.

Keywords: automata theory and formal languages, structural descrip-
tions, grammatical inference.

1 Introduction

Angluin’s approach to grammatical inference [1] is an important contribution
to computational learning, with extensions to problems, such as compositional
verification and synthesis [4,11], that go beyond the usual applications to natural
language processing and computational biology [5].

Practical concerns, e.g. [9], seem to require going beyond regular languages to
classes of languages with regular tree nature. However, Angluin and Kharitonov
have shown that learning CFGs from membership and equivalence queries is
intractable under plausible cryptographic assumptions [2]. A way out is to learn
structural descriptions of context free languages. Sakakibara has shown that
Angluin’s algorithm extends to this setting [12]. His approach has applications
in learning the structural descriptions of natural languages, which describe the
shape of the parse trees of well chosen CFGs. Often, these structural descriptions
are subject to additional restrictions arising from modelling considerations. For
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instance, in natural language understanding, the bounded memory restriction on
human comprehension seems to limit the recursion depth of such a parse tree to
a constant. A natural example with a similar flavour is the limitation imposed by
the LATEX system, that limits the number of nestings of itemised environments
to a small constant.

Imposing such a restriction leads to the idea of learning cover languages,
that is, languages that are accurate up to an equivalence. For regular languages
modulo a finite prefix such an approach has been pursued by Ipate [8] (see also
[6]).

In this paper, we extend this approach to context-free languages with struc-
tural descriptions. We propose an algorithm called LA� which asks two types
of queries: structural equivalence and structural membership queries, both re-
stricted to structural descriptions with depth at most �, where � is a constant.
LA� stores the answers retrieved from the teacher in an observation table which
is used to guide the learning protocol and to construct a minimal DCTA of the
unknown context-free grammar with respect to �. Our main result shows that
LA� runs in time polynomial in n and m, where n is the number of states of a
minimal DCTA of the unknown CFG with respect to �, and m is the maximum
size of a counterexample returned by a failed structural membership query.

The paper is structured as follows. Section 2 introduces the basic notions and
results to be used later in the paper. It also describes algorithm LA. In Sect.
4 we introduce the main concepts related to the specification and analysis of
our learning algorithm LA�. They are natural generalisations to languages of
structural descriptions of the concepts proposed by Ipate [8] in the design and
study of his algorithm L�. In Sect. 5 we analyse the space and time complexity
of LA� and show that its time complexity is a polynomial in n and m, where n
is the number of states of a minimal deterministic finite cover automaton w.r.t.
� of the language of structural descriptions of interest, and m is an upper bound
to the size of counterexamples returned by failed structural equivalence queries.

2 Preliminaries

We write N for the set of nonnegative integers, A∗ for the set of finite strings
over a set A, and ε for the empty string. If v, w ∈ A∗, we write v ≤ w′ if there
exists w′ ∈ A∗ such that vw′ = w; v < v′ if v ≤ v′ and v �= v′; and v ⊥ w if
neither v ≤ w nor w ≤ v.

Trees, Terms, Contexts, and Context-Free Grammars

A ranked alphabet is a finite set F of function symbols together with a finite
rank relation rk(F) ⊆ F × N. We denote the subset {f ∈ F | (f,m) ∈ rk(F)}
by Fm, the set {m | (f,m) ∈ rk(F)} by ar(f), and

⋃
f∈F ar(f) by ar(F).

The terms of the set T (F) are the strings of symbols defined recursively by
the grammar t ::=a | f(t1, . . . , tm) where a ∈ F0 and f ∈ Fm with m > 0.
The yield of a term t ∈ T (F) is the finite string yield(t) ∈ F∗

0 defined as
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follows: yield(a) := a if a ∈ F0, and yield(f(t1, . . . , tm)) := w1 . . . wm where
wi = yield(ti) for 1 ≤ i ≤ m.

A finite ordered tree over a set of labels F is a mapping t from a nonempty
and prefix closed set Pos(t) ⊆ (N \ {0})∗ into F . Each element in Pos(t) is
called a position. The tree t is ranked if F is a ranked alphabet, and t satisfies
the following additional property: For all p ∈ Pos(t), there exists m ∈ N such
that {i ∈ N | pi ∈ Pos(t)} = {1, . . . ,m} and t(p) ∈ Fm.

Thus, any term t ∈ T (F) may be viewed as a finite ordered ranked tree, and we
will refer to it by “tree” when we mean the finite ordered tree with the additional
property mentioned above. The depth of t is d(t) := max{‖p‖ | p ∈ Pos(t)} where
‖p‖ denotes the length of p as sequence of numbers. The size sz(t) of t is the
number of elements of the set {p ∈ Pos(t) | ‖p‖ �= d(t)}, that is, the number of
internal nodes of t.

The subterm t|p of a term t at position p ∈ Pos(t) is defined by the following:
Pos(t|p) := {i | pi ∈ Pos(t)}, and t|p(p′) := t(pp′) for all p′ ∈ Pos(t|p). We
denote by t[u]p the term obtained by replacing in t the subterm t|p with u, that
is: Pos(t[u]p) = (Pos(t)− {pp′ | p′ ∈ Pos(t|p)}) ∪ {pp′′ | p′′ ∈ Pos(u)}, and

t[u]p(p
′) :=

{
u(p′′) if p′ = pp′′ with p′′ ∈ Pos(u),
t(p′) otherwise.

The set C(F) of contexts over F is the set of terms over F ∪ {•}, where:

– • is a distinguished fresh symbol with ar(•) = {0}, called hole,
– rk(F ∪ {•}) = rk(F) ∪ {(•, 0)}, and
– every element C ∈ C(F) contains only one occurrence of •. This is the same

as saying that {p ∈ Pos(C) | C(p) = •} is a singleton set.

If C ∈ C(F) and u ∈ C(F) ∪ T (F) then C[u] stands for the context or term
C[u]p, where C(p) = •. The hole depth of a context C ∈ C(F) is d•(C) := ‖p‖
where p is the unique position of C such that C(p) = •. From now on, whenever
M is a set of terms, P is a set of contexts, and m is a non-negative integer, we
define the sets M[m] := {t ∈ M | d(t) ≤ m} and P〈m〉 := {C ∈ P | d•(C) ≤ m}.

We assume that the reader is acquainted with the notions of CFG and the
context-free language L(G) generated by a CFG G, see, e.g., [13]. A CFG is
ε-free if it has no productions of the form X → ε. It is well known [7] that every
ε-free context-free language L (that is, ε �∈ L) is generated by an ε-free CFG.
The derivation trees of an ε-free CFG G = (N,Σ, P, S) correspond to terms from
T (N ∪ Σ) with ar(a) = {0} for al a ∈ Σ and ar(X) = {m | ∃(X → α) ∈ P
with ‖α‖ = m} for all X ∈ N . The sets DG(U) of derivation trees issued from
U ∈ N ∪Σ, and D(G) of derivation trees of G, are defined recursively as follows:

DG(a) := {a} if a ∈ Σ,

DG(X) :=
⋃

(X→U1...Um)∈P

{X(t1, . . . , tm) | t1 ∈ DG(U1) ∧ . . . ∧ tm ∈ DG(Um)},

D(G) := DG(S). Note that L(G) = {yield(t) | t ∈ D(G)}.
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Structural Descriptions and Cover Context-Free Grammars

A skeletal alphabet is a ranked alphabet Sk = {σ}, where σ is a special symbol
with ar(σ) a finite subset of N \ {0}, and a skeletal set is a ranked alphabet
Sk ∪ A where Sk ∩ A = ∅ and ar(a) = {0} for all a ∈ A. Skeletal alphabets are
intended to describe the structures of the derivation trees of ε-free CFGs. For an
ε-free CFG G = (N,Σ, P, S) we consider the skeletal alphabet Sk with ar(σ) :=
{‖α‖ | (X → α) ∈ P}, and the skeletal set Sk ∪ Σ. The skeletal (or structural)
description of a derivation tree t ∈ DG(U) is the term sk(t) ∈ T (Sk ∪Σ) where

sk(t) :=

{
a if t = a ∈ Σ,
σ(sk(t1), . . . , sk(tm)) if t = X(t1, . . . , tm) with m > 0.

For example, if G is the grammar ({S, A}, {a, b}, {S → A, A → aAb, A → ab}, S)
then t = S(A(a, A(a, b), b)) ∈ DG(S) and sk(t) = σ(σ(a, σ(a, b), b)) ∈ T ({σ, a, b}),
where ar(σ) = {1, 2, 3} and ar(a) = ar(b) = {0}. Graphically, we have

t =

S

A

a A

a b

b ⇒ sk(t) =

σ

σ

a σ

a b

b

IfM is a set of ranked trees, then the set of its structural descriptions isK(M) :=
{sk(t) | t ∈ M}. Two context-free grammars G1 and G2 over the same alphabet
of terminals are structurally equivalent if K(D(G)) = K(D(G′)).

Definition 1 (cover CFG). Let � be a positive integer and GU be an ε-free
CFG of a language U ⊆ Σ∗. A cover context-free grammar of GU with respect
to � is an ε-free CFG G′ such that K(D(G′))[�] = K(D(GU ))[�].

Tree Automata

The definition of tree automaton presented here is equivalent with that given
in [12]. It is non-standard in the sense that it cannot accept any tree of depth 0.

Definition 2. A nondeterministic (bottom-up) finite tree automaton (NFTA)
over F is a quadruple A = (Q,F ,Qf, Δ) where Q is a finite set of states,
Qf ⊆ Q is the set of final states, and Δ is a set of transition rules of the form
f(q1, . . . , qm) → q where m ≥ 1, f ∈ Fm, q1, . . . , qm ∈ F0 ∪ Q, and q ∈ Q.

Such an automaton A induces a move relation →A on the set of terms T (F ∪Q)
where ar(q) = {0} for all q ∈ Q, as follows:

t →A t′ if there exist C ∈ C(F ∪ Q) and f(q1, . . . , qm) → q ∈ Δ such that
t = C[f(q1, . . . , qm)] and t′ = C[q].
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The language accepted by A is L(A) := {t ∈ T (F) | t →∗
A q for some q ∈ Qf}

where →∗
A is the reflexive-transitive closure of →A. In this paper, a regular tree

language is a language accepted by such an NFTA. Two NFTAs are equivalent
if they accept the same language.

A = (Q,F ,Qf, Δ) is deterministic (DFTA) if the transition rules ofΔ describe
a mapping δ which assigns to everym ∈ ar(F) a function δm such that δ0 : F0 →
F0, δ0(a) = a for all a ∈ F0, and δm : Fm → (F0 ∪ Q)m → Q if m > 0. This
implies that f(q1, . . . , qm) → q ∈ Δ if and only if δm(f)(q1, . . . , qm) = q. The
extension δ∗ of {δm | m ∈ ar(F)} to T (F) is defined as expected: δ∗(a) = a if
a ∈ F0, and δ∗(f(t1, . . . , tm)) := δm(f)(δ∗(t1), . . . , δ∗(tm)) otherwise. Note that,
if A is a DFTA then L(A) = {t ∈ T (F) | δ∗(t) ∈ Qf}.

Two DFTAs A1 = (Q,F ,Qf, δ) and A2 = (Q′,F ,Q′
f, δ

′) are isomorphic
if there exists a bijection ϕ : Q → Q′ such that ϕ(Qf) = Q′

f and for every
f ∈ Fm, q1, . . . , qm ∈ F0 ∪ Q, ϕ(δm(f)(q1, . . . , qm)) = δ′m(f)(ϕ(q1), . . . , ϕ(qm)).
A minimum DFTA of a regular tree language L ⊆ T (F) \F0 is a DFTA A with
minimum number of states such that L(A) = L.

There is a strong correspondence between tree automata and ε-free CFGs.
The NFTA corresponding to an ε-free CFG G = (N,Σ, P, S) is NA(G) =
(N,Sk ∪ Σ, {S}, Δ) with Δ := {σ(U1, . . . , Um) → X | (X → U1 . . . Um) ∈ P}.
Conversely, the ε-free CFG corresponding to an NFTA A = (Q, Sk ∪Σ,Qf, Δ)
over the skeletal set Sk ∪ Σ is G(A) = (Q ∪ {S}, Σ, P, S) where S is a fresh
symbol and P := {q → q1 . . . qm | (σ(q1, . . . , qm) → q) ∈ Δ} ∪ {S → q1 . . . qm |
(σ(q1, . . . , qm) → q) ∈ Δ with q ∈ Qf}. These constructs are dual to each other,
in the following sense:

(A1) If G is an ε-free CFG then L(NA(G)) = K(D(G)). [12, Prop. 3.4]
(A2) If A = (Q, Sk ∪ Σ,Qf, Δ) is an NFTA for the skeletal set Sk ∪ Σ then

K(D(G(A))) = L(A). That is, the set of structural descriptions of G(A)
coincides with the set of trees accepted by A. [12, Prop. 3.6]

We recall the following well-known results: every NFTA is equivalent to an
DFTA [10], and every two minimal DFTAs are isomorphic [3].

Cover Tree Automata

Definition 3 (DCTA). Let � ∈ N
+ and A be a tree language over the ranked

alphabet F . A deterministic cover tree automaton (DCTA) of A with respect to
� is a DFTA A over a skeletal set Sk ∪ F0 such that L(A)[�] = K(A)[�].

The correspondence between tree automata and ε-free CFGs is carried over to
a correspondence between cover tree automata and cover CFGs. More precisely,
it can be shown that if GU is an ε-free CFG, then a DFTA A is a DCTA of
K(D(GU )) w.r.t. � if and only if G(A) is a cover CFG of GU w.r.t. �.

3 Learning Context-Free Grammars

In [12], Sakakibara assumes a learner eager to learn a CFG which is structurally
equivalent with the CFG GU of an unknown context-free language U ⊆ Σ∗ by
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asking questions to a teacher. We assume that the learner and the teacher share
the skeletal set Sk∪Σ for the structural descriptions in K(D(GU )). The learner
can pose the following types of queries:

1. Structural membership queries: the learner asks if some s ∈ T (Sk ∪Σ) is in
K(D(GU )). The answer is yes if so, and no otherwise.

2. Structural equivalence queries: The learner proposes a CFG G′ and asks
whether G′ is structurally equivalent to GU . If the answer is yes, the process
stops with the learned answer G. Otherwise, the teacher provides a coun-
terexample s from the symmetric set difference K(D(G′))�K(D(GU )).

This learning protocol is based on what is called minimal adequate teacher in [1].
Ultimately, the learner constructs a minimal DFTA A of K(D(GU )) from which
it can infer immediately the CFG G′ = G(A) which is structurally equivalent
to GU , that is, K(D(G′)) = K(D(GU )). In order to understand how A gets
constructed, we shall introduce a few auxiliary notions.

For any subset S of T (Sk ∪Σ), we define the sets

σ•〈S〉 :=
⋃

m∈ar(σ)

m⋃

i=1

{σ(s1, . . . , sm)[•]i | s1, . . . , sm ∈ S ∪Σ},

X(S) := {C1[s] | C1 ∈ σ•〈S〉, s ∈ S ∪Σ} \ S.

Note that σ•〈S〉 = {C ∈ C(Sk ∪ Σ) \ {•} | C|p ∈ S ∪ Σ ∪ {•} for all p ∈
Pos(C) ∩ N}.

Definition 4. A subset E of C(Sk∪Σ) is •-prefix closed with respect to a set
S ⊆ T (Sk ∪Σ) if C ∈ E \ {•} implies the existence of C′ ∈ E and C1 ∈ σ•〈S〉
such that C = C′[C1]. If E ⊆ C(Sk ∪Σ) and S ⊆ T (Sk ∪Σ) then E[S] denotes
the set of structural descriptions defined by E[S] = {C[s] | C ∈ E, s ∈ S}.

We say that S ⊆ T (Sk ∪ Σ) is subterm closed if d(s) ≥ 1 for all s ∈ S,
and s′ ∈ S whenever s′ is a subterm of some s ∈ S with d(s′) ≥ 1.

An observation table for K(D(GU )), denoted by (S,E, T ), is a tabular repre-
sentation of the finitary function T : E[S ∪X(S)] → {0, 1} defined by T (t) := 1
if t ∈ K(D(GU )), and 0 otherwise, where S is a finite nonempty subterm closed
subset S of T (Sk ∪ Σ), and E is a finite nonempty subset of C(Sk ∪ Σ) which
is •-prefix closed with respect to S. Such an observation table is visualised as
a matrix with rows labeled by elements from S ∪X(S), columns labeled by el-
ements from E, and the entry for row of s and column of C equal to T (C[s]).
If we fix a listing 〈C1, . . . , Cr〉 of all elements of E, then the row of values of
some s ∈ S ∪X(S) corresponds to the vector row(s) = 〈T (C1[s]), . . . , T (Cr[s])〉.
In fact, for every such s, row(s) is a finitary representation of the function
fs : E → {0, 1} defined by fs(C) = T (C[s]).

The observation table (S,E, T ) is closed if every row(x) with x ∈ X(S) is
identical to some row(s) of s ∈ S. It is consistent if whenever s1, s2 ∈ S such
that row(s1) = row(s2), we have row(C1[s1]) = row(C1 [s2]) for all C1 ∈ σ•〈S〉.
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The DFTA corresponding to a closed and consistent observation table (S,E, T )
is A(S,E, T ) = (Q, Sk∪Σ,Qf, δ) where Q := {row(s) | s ∈ S}, Qf := {row(s) |
s ∈ S and T (s) = 1}, and δ is uniquely defined by

δm(σ)(q1, . . . , qm) := row(σ(r1 , . . . , rm)) for all m ∈ ar(σ),

where ri := a if qi = a ∈ Σ, and ri := si if qi = row(si) ∈ Q.

It is easy to check that, under these assumptions, A(S,E, T ) is well-defined,
and that δ∗(s) = row(s). Furthermore, Sakakibara proved that the following
properties hold whenever (S,E, T ) is a closed and consistent observation table:

1. A(S,E, T ) is consistent with T , that is, for all s ∈ S ∪X(S) and C ∈ E we
have δ∗(C[s]) ∈ Qf iff T (C[s]) = 1. [12, Lemma 4.2]

2. IfA(S,E, T ) = (Q, Sk∪Σ, δ,Qf) has n states, andA′ = (Q′, Sk∪Σ, δ′,Q′
f) is

any DFTA consistent with T that has n or fewer states, thenA′ is isomorphic
to A(S,E, T ). [12, Lemma 4.3]

The LA Algorithm

In this subsection we briefly recall Sakakibara’s algorithm LA. LA extends the
observation table whenever one of the following situations occurs: the table is not
consistent, the table is not closed, or the table is both consistent and closed but
the CFG corresponding to the resulting automaton A(S,E, T ) is not structurally
equivalent to GU (in which case a counterexample is produced). The first two
situations trigger an extension of the observation table with one distinct row.
From properties (A1) and (A2), if n is the number of states of the minimum
bottom-up tree automaton for the structural descriptions ofGU , then the number
of unsuccessful consistency and closedness checks during the whole run of this
algorithm is at most n− 1. For each counterexample of size at most m returned
by a structural equivalence query, at most m subtrees are added to S. Since the
algorithm encounters at most n counterexamples, the total number of elements
in S cannot exceed n+m · n, thus LA must terminate. It also follows that the
number of elements of the domain E[S ∪ X(S)] of the function T is at most
(n + m · n + (l + m · n + k)d) · n = O(md · nd+1), where l is the number of
distinct ranks of σ ∈ Sk, and d is the maximum rank of a symbol in Sk. A
careful analysis of LA reveals that its time complexity is indeed bounded by a
polynomial in m and n [12, Thm. 5,3].

4 Learning Cover Context-Free Grammars

We assume we are given a teacher who knows an ε-free CFG GU for a language
U ⊆ Σ∗, and a learner who knows the skeletal set Sk ∪ Σ for K(D(GU )). The
teacher and learner both know a positive integer �, and the learner is interested to
learn a cover CFG G′ of GU w.r.t. � or, equivalently, a cover DCTA of K(D(GU ))
w.r.t. �. The learner is allowed to pose the following types of questions:
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1. Structural membership queries: the learner asks if some s ∈ T (Sk ∪ Σ)[�] is
in K(D(GU )). The answer is yes if so, and no otherwise.

2. Structural equivalence queries: The learner proposes a CFG G′, and asks if
G′ is a cover CFG of GU w.r.t. �. If the answer is yes, the process stops with
the learned answer G′. Otherwise, the teacher provides a counterexample
from the set (K(D(GU ))[�] −K(D(G′))) ∪ (K(D(G′))[�] −K(D(GU ))).

We will describe an algorithm LA� that learns a cover CFG of GU with respect
to � in time that is polynomial in the number of states of a minimal DCTA of
the rational tree language K(D(GU )).

4.1 The Observation Table

LA� is a generalisation of the learning algorithm L� proposed by Ipate [8]. Ipate’s
algorithm is designed to learn a minimal finite cover automaton of an unknown
finite language of words in polynomial time, using membership queries and lan-
guage equivalence queries that refer to words and languages of words with length
at most �. Similarly, LA� is designed to learn a minimal DCTA A′ for K(D(GU ))
with respect to � by maintaining an observation table (S,E, T, �) for K(D(GU ))
which differs from the observation table of LA in the following respects:

1. S is a finite nonempty subterm closed subset of T (Sk ∪Σ)[�].
2. E is a finite nonempty subset of C(Sk ∪ Σ)〈�−1〉 ∩ C(Sk ∪ Σ)[�] which is

•-prefix closed with respect to S.
3. T : E[S ∪X(S)[�]] → {1, 0,−1} is defined by

T (t) :=

⎧
⎨

⎩

1 if t ∈ K(D(GU ))[�],
0 if t ∈ T (Sk ∪Σ)[�] \K(D(GU )),

−1 if t �∈ T (Sk ∪Σ)[�].

In a tabular representation, the observation table (S,E, T, �) is a two-dimensional
matrix with rows labeled by elements from S ∪X(S)[�], columns labeled by ele-
ments from E, and the entry corresponding to the row of t and column of C equal
to T (C[t]). If we fix a listing 〈C1, . . . , Ck〉 of all elements from E, then the row
of t in the observation table is described by the vector 〈T (C1[t]), . . . , T (Ck[t])〉
of values from {−1, 0, 1}. The rows of an observation table are used to identify
the states a a minimal DCTA for K(D(GU )) with respect to �. But, like Ipate
[8], we do not compare rows by equality but by a similarity relation.

4.2 The Similarity Relation

This time, the rows in the observation table correspond to terms from S∪X(S)[�],
and the comparison of rows should take into account only terms of depth at
most �. For this purpose, we define a relation ∼k of k-similarity, which is a
generalisation to terms of Ipate’s relation of k-similarity on strings [8].
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Definition 5 (k-similarity). For 1 ≤ k ≤ � we define the relation ∼k on the
elements of the set S ∪X(S) of an observation table (S,E, T, �) as follows:

s ∼k t if, for every C ∈ E〈k−max{d(s),d(t)}〉, T (C[s]) = T (C[t]).

When the relation ∼k does not hold between two terms s, t ∈ S ∪X(S), we write
s �k t and say that s and t are k-dissimilar. When k = � we simply say that s
and t are similar or dissimilar and write s ∼ t or s � t, respectively.

We say that a context C �-distinguishes s1 and s2, where s1, s2 ∈ S, if
C ∈ E〈�−max{d(s1),d(s2)}〉 and T (C[s1]) �= T (C[s2]).

Note that only the contexts C ∈ E〈k−max{d(s),d(t)}〉 with d(C) ≤ � are relevant
to check whether s ∼k t, because if d(C) > � then d(C[s]) > � and d(C[t]) > �,
and therefore T (C[s]) = −1 = T (C[t]). Also, if t ∈ S ∪X(S) with d(t) > � then
it must be the case that t ∈ X(S), and then t ∼k s for all s ∈ S ∪ X(S) and
1 ≤ k ≤ � because E〈k−max d(t),d(s)}〉 = ∅.

The relation of k-similarity is obviously reflexive and symmetric, but not
transitive. The following example illustrates this fact.

Example 1. Let Σ = {a, b}, k = 1, � = 2, S = {σ(a), σ(b), σ(σ(a), b)}, E =
{•, σ(•, b)}, t1 = σ(a), t2 = σ(σ(a), b), t3 = σ(b), and

GU = ({S, A}, {a, b}, {S→ a, S → b, S → Ab, A → a, A → Ab}, S).

S is a nonempty subterm closed subset of T (Sk ∪ Σ)[�], and E is a nonempty
subset of C(Sk ∪ Σ)〈�−1〉 which is •-prefix closed with respect to S. We have
K(D(GU ))[�] = {t1, t2, t3}, t1 ∼� t2 because E〈�−max{d(t1),d(t2)}〉 = {•} and
T (•[t1]) = 1 = T (•[t2]), and t2 ∼� t3 because E〈�−max{d(t2),d(t3)}〉 = {•} and
T (•[t2]) = 1 = T (•[t3]), However, t1 �� t3 because C = σ(•, b) ∈ E〈1〉 =
E〈�−max{d(t1),d(t3)}〉 and T (C[t1]) = T (σ(σ(a), b)) = T (t2) = 1, but T (C[t3]) =
T (σ(σ(b), b)) = 0. ��
Still, k-similarity has a useful property, captured in the following lemma.

Lemma 1. Let (S,E, T, �) be an observation table. If s, t, x ∈ S ∪ X(S) such
that d(x) ≤ max{d(s), d(t)}, then s ∼k t whenever s ∼k x and x ∼k t.

In addition, we will also assume a total order ≺ on the alphabet Σ, and the
following total orders induced by ≺ on T (Sk ∪Σ) and C(Sk ∪Σ).

Definition 6. The total order ≺T on T (Sk ∪Σ) induced by a total order ≺ on
Σ is defined as follows: s ≺T t if either (a) d(s) < d(t), or (b) d(s) = d(t) and

1. s, t ∈ Σ and s ≺ t, or else
2. s ∈ Σ and t �∈ Σ, or else
3. s = σ(s1, . . . , sm), t = σ(t1, . . . , tn) and there exists 1 ≤ k ≤ min(m,n) such

that sk ≺T tk and si = ti for all 1 ≤ i < k, or else
4. s = σ(s1, . . . , sm) and t = σ(t1, . . . , tn), m < n, and si = ti for 1 ≤ i ≤ m.

The total order ≺C on C(Sk ∪ Σ) induced by a total order ≺ on Σ is defined
as follows: C1 ≺C C2 if either (a) d•(C1) < d•(C2), or (b) d•(C1) = d•(C2)
and C1 ≺T C2 where C1, C2 are interpreted as terms over the signature with Σ
extended with the constant • such that • ≺ a for all a ∈ Σ.
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Definition 7 (Representative). Let (S,E, T, �) be an observation table and
x ∈ S ∪X(S). We say x has a representative in S if {s ∈ S | s ∼ x} �= ∅. If so,
the representative of x is r(x) := min≺T

{s ∈ S | x ∼ s}.

We will show later that the construction of an observation table (S,E, T, �) is
instrumental to the construction of a cover tree automaton, and the states of the
automaton correspond to representatives of the elements from S ∪ X(S). Note
that, if (S,E, T, �) is an observation table and x ∈ S ∪X(S) has d(x) > � then
x ∈ X(S) and x ∼ s for all s ∈ S. Then s ≺T x because d(s) ≤ � < d(x) for all
s ∈ S. Thus x has a representative in S, and r(x) = min≺T

S. For this reason,
only the rows for elements x ∈ S ∪X(S)[�] are kept in an observation table.

4.3 Consistency and Closedness

The consistency and closedness of an observation table are defined as follows.

Definition 8 (Consistency). An observation table (S,E, T, �) is consistent if,
for every k ∈ {1, . . . , �}, s1, s2 ∈ S, and C1 ∈ σ•〈S〉, the following implication
holds: If s1 ∼k s2 then C1[s1] ∼k C1[s2].

The following lemma captures a useful property of consistent observation tables.

Lemma 2. Let (S,E, T, �) be a consistent observation table. Let m ∈ ar(σ),
1 ≤ k ≤ �, and s1, . . . , sm, t1, . . . , tm ∈ S ∪Σ such that, for all 1 ≤ i ≤ m, either
si = ti ∈ Σ, or si, ti ∈ S, si ∼k ti, and d(si) ≤ d(ti), and s = σ(s1, . . . , sm),
t = σ(t1, . . . , tm). Then s ∼k t.

Definition 9 (Closedness). An observation table (S,E, T, �) is closed if, for
all x ∈ X(S), there exists s ∈ S with d(s) ≤ d(x) such that x ∼ s.

The next five lemmata capture important properties of closed observation tables,
which will be used to justify the correctness of the learning algorithm we are
about to introduce.

Lemma 3. If (S,E, T, �) is closed then every x ∈ S∪X(S) has a representative,
and d(r(x)) ≤ d(x).

Lemma 4. If (S,E, T, �) is closed, r1, r2 ∈ {r(x) | x ∈ S ∪X(S)}, and r1 ∼ r2
then r1 = r2.

Lemma 5. If (S,E, T, �) is closed and r ∈ {r(x) | x ∈ S∪X(S)}, then r(r) = r.

Proof. Let r1 = r(r). Then r1 ∼ r and r1, r ∈ {r(x) | x ∈ S ∪ X(S)}. By
Lemma 4, r = r1. ��

Lemma 6. If (S,E, T, �) is closed, then for every x ∈ S∪X(S) and C1 ∈ σ•〈S〉,
there exists s ∈ S such that r(C1[r(x)]) = r(s).

Lemma 7. Let (S,E, T, �) be closed, r ∈ {r(x) | x ∈ S ∪ X(S)}, C1 ∈ σ•〈S〉,
and s ∈ S. If C1[s] ∼ r then d(r) ≤ d(C1[s]).
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The Automaton A(T)

Like L�, our algorithm relies on the construction of a consistent and closed
observation table of the unknown context-free grammar. The table is used to
build an automaton which, in the end, turns out to be a minimal DCTA for the
structural descriptions of the unknown grammar.

Definition 10. Suppose T = (S,E, T, �) is a closed and consistent observation
table. The automaton corresponding to this table, denoted by A(T), is the DFTA
(Q, Sk ∪ Σ,Qf, δ) where Q := {r(s) | s ∈ S}, Qf = {q ∈ Q | T (q) = 1}, and δ
is uniquely defined by δm(σ)(q1, . . . , qm) := r(σ(q1, . . . , qm)) for all m ∈ ar(σ).

The transition function δ is well defined because, for allm ∈ ar(σ) and q1, . . . , qm
from Q, C1 := σ(•, q2, . . . , qm) ∈ σ•〈S〉, thus σ(q1, . . . , qm) = C1[q1] ∈ S ∪X(S)
and r(C1[q1]) = r(s) for some s ∈ S, by Lemma 6. Hence, r(σ(q1, . . . , qm)) ∈ Q.
Also, the set Qf can be read off directly from the observation table because
• ∈ E (since E is •-prefix closed), thus q = •[q] ∈ E[(S ∪X(S)[�]] for all q ∈ Q,
and we can read off from the observation table all q ∈ Q with T (q) = 1.

In the rest of this subsection we assume that T = (S,E, T, �) is closed and
consistent, and δ is the transition function of the corresponding DFTA A(T).

Lemma 8. δ∗(x) ∼ x and d(δ∗(x)) ≤ d(x) for every x ∈ S ∪X(S).

Corollary 1. δ∗(x) = x for all x ∈ {r(s) | s ∈ S ∪X(S)}.

Proof. By Lemma 8, x ∼ δ∗(x). Since both δ∗(x) and x belong to the set of
representatives {r(s) | s ∈ X ∪X(S)}, x = δ∗(x) by Lemma 4. ��

The following theorem shows that the DFTA of a closed and consistent obser-
vation table is consistent with the function T on terms with depth at most �.

Theorem 1. Let T = (S,E, T, �) be a closed and consistent observation table.
For every s ∈ S ∪X(S) and C ∈ E such that d(C[s]) ≤ � we have δ∗(C[s]) ∈ Qf

if and only if T (C[s]) = 1.

Theorem 2. Let T = (S,E, T, �) be a closed and consistent observation table,
and N be the number of states of A(T). If A′ is any other DFTA with N or
fewer states, that is consistent with T on terms with depth at most �, then A′

has exactly N states and L(A(T))[�] = L(A′)[�].

Corollary 2. Let A be the automaton corresponding to a closed and consis-
tent observation table (S,E, T, �) of the skeletons of a CFG GU of an unknown
language U , and N be its number of states. Let n be the number of states of a
minimal DCTA of K(D(GU )) with respect to �. If N ≥ n then N = n and A is
a minimal DCTA of K(D(GU )) with respect to �.
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The LA� Algorithm

The algorithm LA� extends the observation table T = (S,E, T, �) whenever one
of the following situations occurs: the table is not consistent, the table is not
closed, or the table is both consistent and closed but the resulting automaton
A(T) is not a cover tree automaton of K(D(GU )) with respect to �.

The pseudocode of the algorithm is shown below.

ask if ({S}, Σ, ∅, S) is a cover CFG of GU w.r.t. �
if answer is yes then halt and output the CFG ({S}, Σ, ∅, S)
if answer is no with counterexample t then
set S := {s | s is a subterm of t with depth at least 1} and E = {•}
construct the table T = (S,E, T, �) using structural membership queries
repeat
repeat
/* check consistency */
for every C ∈ E, in increasing order of i = d•(C) do

search for s1, s2 ∈ S with d(s1), d(s2) ≤ �− i− 1 and C1 ∈ σ•〈S〉
such that C[C1[s1]]), C[C1[s2]] ∈ T (Sk ∪Σ)[�],

s1 ∼k s2 where k = max{d(s1), d(s2)}+ i+ 1,
and T (C[C1[s1]]) �= T (C[C1[s2]])

if found then
add C[C1] to E
extend T to E[S ∪X(S)[�]] using structural membership queries

/* check closedness */
new row added := false

repeat for every s ∈ S, in increasing order of d(s)
search for C1 ∈ σ•〈S〉 such that C1[s] � t for all t ∈ S[d(C1[s])]

if found then
add C1[s] to S
extend T to E[S ∪X(S)[�]] using structural membership queries
new row added := true

until new row added = true or all elements of S have been processed
until new row added = false

/* T is now closed and consistent */
make the query whether G(A(T)) is a cover CFG of GU w.r.t. �
if the reply is no with a counterexample t then
add to S all subterms of t, including t, with depth at least 1,

in the increasing order given by ≺T

extend T to E[S ∪X(S)[�]] using structural membership queries
until the reply is yes to the query if G(A(T)) is a cover CFG of GU w.r.t. �
halt and output G(A(T)).

Consistency is checked by searching for C ∈ E and C1 ∈ σ•〈S〉 such that C[C1]
will �-distinguish two terms s1, s2 ∈ S not distinguished by any other context
C′ ∈ E with d•(C′) ≤ d•(C[C1]). Whenever such a pair of contexts (C,C1) is
found, C[C1] is added to E. Note that C[C1] ∈ C(Sk ∪ Σ)〈�−1〉 ∩ C(Sk ∪ Σ)[�]
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because only such contexts can distinguish terms from S, and the addition of
C[C1] to E yields a •-prefix closed subset of C(Sk ∪Σ)〈�−1〉 ∩ C(Sk ∪Σ)[�].

The search of such a pair of contexts (C,C1) is repeated in increasing order of
the hole depth of C, until all contexts from E have been processed. Therefore,
any context C[C1] with C ∈ E and C1 ∈ σ•〈S〉 that was added to E because of
a failed consistency check will be processed itself in the same for loop.

The algorithm checks closedness by searching for s ∈ S and C1 ∈ σ•〈S〉 such
that C1[s] � t for all t ∈ S for which d(t) ≤ d(C1[s]). The search is performed in
increasing order of the depth of s. If s and C1 are found, C1[s] is added to the S
component of the observation table, and the algorithm checks again consistency.
Note that adding C1[s] to S yields a subterm closed subset of T (Sk∪Σ)[�]. Also,
closedness checks are performed only on consistent observation tables.

When the observation table is both consistent and closed, the corresponding
DFTA is constructed and it is checked whether the language accepted by the
constructed automaton coincides with the set of skeletal descriptions of the un-
known context-free grammar GU (this is called a structural equivalence query). If
this query fails, a counterexample from L(A(T))[�] �K(D(GU ))[�] is produced,
the component S of the observation table is expanded to include t and all its
subterms with depth at least 1, and the consistency and closedness checks are
performed once more. At the end of this step, the component S of the observation
table is subterm closed, and E is unchanged, thus •-prefix closed.

Thus, at any time during the execution of algorithm LA�, the defining proper-
ties of an observation table are preserved: the component S is a subterm closed
subset of T (Sk ∪ Σ)[�], and the component E is a •-prefix closed subset of
C(Sk ∪Σ)〈�−1〉 ∩ C(Sk ∪Σ)[�].

5 Algorithm Analysis

We notice that the number of states of the DFTA constructed by algorithm
LA� will always increase between two successive structural equivalence queries.
When this number of states reaches the number of states of a minimal DCTA of
K(D(GU )), the constructed DFTA is actually a minimal DCTA of K(D(GU ))
(Corollary 2) and the algorithm terminates.

From now on we assume implicitly that n is the number of states of a minimal
DCTA of K(D(GU )) with respect to �, and that T(t) is the observation table
(St, Et, T, �) before execution step t of the algorithm. By Corollary 2, Qt will
always have between 1 and n elements. Note that the representative of an element
s ∈ S in Qt is a notion that depends on the observation table T(t). Therefore,
we will use the notation rt(s) to refer to the representative of s ∈ St in the
observation table T(t). With this notation, Qt = {rt(s) | s ∈ St}.

Note that the execution of algorithm LA� is a sequence of steps characterised
by the detection of three kinds of failure: closedness, consistency, and structural
equivalence query. The t-th execution step is

1. a failed closedness check when the algorithm finds C1 ∈ σ•〈St〉 and s ∈ St

such that C1[s] � t for all t ∈ St with d(t) ≤ d(C1[s]),
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2. a failed consistency check when the algorithm finds C ∈ Et with d•(C) = i,
s1, s2 ∈ St with d(s1), d(s2) ≤ �−i−1, and C1 ∈ σ•〈St〉, such that C[C1[s1]],
C[C1[s2]] ∈ T (Sk ∪Σ)[�], s1 ∼k s2 where k = max{d(s1), d(s2)}+ i+1, and
T (C[C1[s1]]) �= T (C[C1[s2]]),

3. a failed structural equivalence query when the observation table T(t) is
closed and consistent, and the learning algorithm receives from the teacher
a counterexample t ∈ T (Sk ∪ Σ)[�] as answer to the structural equivalence
query with the grammar G(A(St, Et, T, �)).

In the following subsections we perform a complexity analysis of the algorithm by
identifying upper bound estimates to the computations due to failed consistency
checks, failed closeness checks, and failed structural equivalence queries.

5.1 Failed Closedness Checks

We recall that the t-th execution step is a failed closedness check if the algorithm
finds a context C1 ∈ σ•〈S〉 and a term s ∈ St such that C1[s] � t for all t ∈ St

with d(t) ≤ d(C1[s]). We will show that the number of failed closedness checks
performed by algorithm LA� has an upper bound which is a polynomial in n.
To prove this fact, we will rely on the following auxiliary notions:

– For r, r′ ∈ Qt, we define r ≺t
T r′ if either d(r) < d(r′) or d(r) = d(r′) and

there exists t′ < t such that r ∈ Qt′ but r′ �∈ Qt′ (that is, r became a
representative in the observation table before r′).

– To every set of representatives Qt = {r1, . . . , rm} with r1 ≺t
T . . . ≺t

T rm we
associate the tuple tpl(Qt) := (d1, . . . , dn) ∈ {1, . . . , � + 1}n where di :=
d(ri) if 1 ≤ i ≤ m, and di := �+ 1 if m < i ≤ n.

– We consider the following partial order on N
n: (x1, . . . , xn) < (x′

1, . . . , x
′
n) iff

there exists i ∈ {1, . . . , n} such that xi < x′
i and xj ≤ x′

j for all 1 ≤ j ≤ n.
– We denote by stt(i) the i-th component of Qt in the order given by ≺t

T.

Lemma 9. Suppose s has been introduced in St+1 as a result of a failed closed-
ness check. There exists p ∈ Pos(s) such that ‖p‖ = d(s) and for every prefix p′

of p different from p, d(rt+1(s|p′)) = d(s|p′).

Corollary 3. Whenever the t-th execution step is a failed closedness check, the
term introduced in St+1 is in Qt+1 \ Qt and its depth is at most j, where j is
the position in Qt+1 of the newly introduced element according to ordering ≺t

T .

Corollary 4. d(s) ≤ n for all s ∈ St which was introduced in the table by a
failed closedness check.

Proof. d(s) ≤ j by Cor. 3, and j ≤ n because |Qt| ≤ n for all t. Thus d(s) ≤ n.

Lemma 10. Let j be the position of the element introduced in Qt+1 by a failed
closedness check. Then tpl(Qt+1) < tpl(Qt) and d(stt+1(j)) < d(stt(j)).

Theorem 3. The number of failed closedness checks performed during the entire
run of LA� is at most n(n+ 1)/2.
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5.2 Failed Consistency Checks

The t-th execution step is a failed consistency check if the algorithm finds C ∈ Et

with d•(C) = i, s1, s2 ∈ St with d(s1), d(s2) ≤ �− i− 1, and C1 ∈ σ•〈St〉, such
that C[C1[s1]], C[C1[s2]] ∈ T (Sk∪Σ)[�], s1 ∼k s2 where k = max{d(s1), d(s2)}+
i+ 1, and T (C[C1[s1]]) �= T (C[C1[s2]]). In this case, the context C[C1] is newly
introduced in the component Et+1 of the observation table T(t + 1).

We will show that the number of failed consistency checks performed by the
learning algorithm LA� has an upper bound which is a polynomial in n. To prove
this fact, we rely on the following auxiliary notions:

– For C,C′ ∈ Et, we define C ≺t
C C′ if either d•(C) < d•(C′) or d•(C) =

d•(C′) and there exists t′ < t such that C ∈ Et′ but C′ �∈ Et′ (that is, C
became an experiment in the observation table before C′).

– We define δt(s1, s2) := min≺C
{C ∈ Et | C �-distinguishes s1 and s2} for

every s1, s2 ∈ St such that s1 � s2.
– A nonempty subset U of Et induces a partition of a subset R of St into

equivalence classes Q1, . . . , Qm if the following conditions are satisfied:
1.

⋃m
j=1 Qj = R and Qi ∩Qj = ∅ whenever 1 ≤ i �= j ≤ m,

2. Whenever 1 ≤ i �= j ≤ m, s1 ∈ Qi, and s2 ∈ Qj , there exists C ∈ U that
�-distinguishes s1 and s2.

3. Whenever s1, s2 ∈ Qj for some 1 ≤ j ≤ m, there is no C ∈ U that
�-distinguishes s1 and s2.

Let Et := {δt(s1, s2) | s1, s2 ∈ St, s1 � s2}. Since ∼ is not an equivalence, not
every subset of Et induces a partition of St into equivalence classes. However,
the next lemma shows that Et induces a partition of Qt into at least |Et| classes.
Theorem 4. If Et = {C1, . . . , Ck} with C1 ≺C . . . ≺C Ck then, for every 1 ≤
i ≤ k, {C1, . . . , Ci} induces a partition of Qt into at least i classes.

Corollary 5. For any t, Et has at most n elements.

We will compute an upper bound on the number of failed consistency checks by
examining the evolution of Et during the execution of LA�. Initially, E0 = {•}.

Lemma 11. At any time during the execution of the algorithm, if Qt has i ≥ 2
elements, then the hole depth of any context in Et is less than or equal to i− 2.

Let Et = {C′
1, . . . , C

′
k} before some execution step t of the algorithm LA�,

where C′
1 ≺C . . . ≺C C

′
k. Then k ≤ n by Cor. 5. We associate to every such Et the

n-tuple tpl(Qt) = (y1, . . . , yn) ∈ {0, 1, . . . , n− 1}n, where, for every 1 ≤ j ≤ n,
yj is defined as follows:

- If Qt has at least j + 1 elements then, if i is the minimum integer such
that {C′

1, . . . , C
′
i} partitions Qt into at least j + 1 classes then yj = d•(C′

j).
Since every {C′

1, . . . , C
′
i} partitions Qt into at least i classes (by Lemma 4) and

we assume that Et = {C′
1, . . . , C

′
k} partitions Qt into |Qt| ≥ j + 1 classes, we

conclude that such i exists.
- otherwise yj = n− 1.
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For 1 ≤ j ≤ n we denote the j-th component of tpl(Et) by dht(j). Note
that, for all 1 ≤ i ≤ k, d•(C′

i) ≤ |Qt| − 2 by Theorem 11, and |Qt| ≤ n,
hence d•(C′

i) ≤ n − 2. Therefore, we can always distinguish the components yi
of tpl(Qt) that correspond to the defining case (1) from those in case (2).

Lemma 12. dht(j) ≤ j − 1 whenever 2 ≤ j ≤ n and dht(j) �= n− 1.

Theorem 5. If Qt has at least 2 elements then the number of failed consistency
checks over the entire run of LA� is at most n(n− 1)/2.

5.3 Failed Structural Equivalence Queries

Every failed structural equivalence query yields a counterexample which in-
creases the number of representatives in Qt. Thus

Theorem 6. The number of failed structural equivalence queries is at most n.

5.4 Space and Time Complexity

We are ready now to express the space and time complexity of LA� in terms of
the following parameters:

- n = the number of states of a minimal DFCA for the language of structural
descriptions of the unknown grammar with respect to �,

- m = the maximum size of a counterexample returned by a failed structural
equivalence query,

- p = the cardinality of the alphabet Σ of terminal symbols, and
- d = the maximum rank (or arity) of the symbol σ ∈ Sk.

First, we determine the space needed by the observation table. The number
of elements in St is initially 0 (i.e., |S0| = 0) and is increased either by a
failed closedness check or by a failed structural membership query. By Theorem
3, the number of failed closedness checks is at most n(n + 1)/2, and each of
them adds one element to S. By Theorem 6, the number of failed structural
equivalence queries is at most n. A failed structural equivalence query which
produces a counterexample t with sz(t) ≤ m, adds at most m terms to St.
Thus, |St| ≤ n(n + 1)/2 + nm = O(mn + n2) and |St ∪ Σ| = O(mn + n2 +

p), therefore |σ•〈St〉| ≤
∑d−1

j=0 (j + 1) |St ∪ Σ|j = O((d + 1) (mn + n2 + p)d)

and |X(S)| ≤
∑d

j=1 |St ∪ Σ|j = O(d (mn + n2 + p)d). Thus St ∪ X(St)[�] has

O(d (mn+ n2 + p)d) elements. By Theorem 5, there may be at most n(n− 1)/2
failed consistency checks, and each of them adds a context to Et. Thus Et has
O(n2) elements and Et[St ∪ X(St)[�]] has O(n2d (mn + n2 + p)d) elements.
By Lemma 12, d•(C) ≤ n − 1 for all C ∈ Et. We also know that, if s ∈ St,
then d(s) ≤ m if it originates from a failed structural equivalence query, and
d(s) ≤ n if it originates from a failed closedness check (by Cor. 4). Therefore
d(s) ≤ max(m,n) for all s ∈ St, and thus d(x) ≤ 1+max(m,n) ≤ 1+m+n for
all x ∈ St ∪ X(St) and d(t) ≤ m + 2n for all t ∈ Et[St ∪ X(St)[�]]. Since the

number of positions of such a term t is
∑m+2n

j=0 dj = O((m + 2n + 1)dm+2n),
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we conclude that the total space occupied by an observation table at any time
is O

(
n2(mn+ n2 + p)d(m+ 2n+ 1)dm+2n+1

)
.

Next, we examine the time complexity of the algorithm by looking at the time
needed to perform each kind of operation.

Since the consistency checks of the observation table are performed in a for
loop which checks the result produced by s1 ∼k s2 (where s1, s2 ∈ St) in in-
creasing order of k, the result produced by s1 ∼k s2 can be reused in checking
s1 ∼k+1 s2 and so the corresponding elements in the rows of s1 and s2 are com-
pared only once. Thus, the total time needed to check if the observation table is
consistent involves at most (|St| · (|St|−1)/2) · |Et| · (1+ |σ•〈St〉|), comparisons.
As σ•〈St〉 has O(d (mn + n2 + p)d) elements, a consistency check of the table
takes O((mn + n2)2n2d (mn + n2 + p)d) = O(n2d (mn + n2 + p)d+2) time. As
there are at most (n (n+1)/2+ 1) (n+1) = O(n3) consistency checks, the total
time needed to check if the table is consistent is O(n5d (mn+ n2 + p)d+2).

Checking if the observation table is closed takes at most |St|2 · |σ•〈St〉| · |Et|
time, which is O((mn+ n2)2d (mn+ n2 + p)dn2) = O(n2d (mn+ n2 + p)d+2).

Extending an observation table T(t) with a new element in St+1 requires the

addition of
∑d

k=2(2
k−1 − 1) = 2d− d− 1 contexts to σ•〈St+1〉 \ σ•〈St〉, thus the

addition of at most 2d − d new rows for the new elements of St+1 ∪ X(St+1)
in the observation table T(t + 1). This extension requires at most (2d − d) ·
|Et| · (1 + |σ•〈St〉|) = O(n2d (2d − d) (mn+ n2 + p)d) membership queries. The
number of elements added to St as a result of a failed structural equivalence
query is at most m. As there will be at most n failed structural equivalence
queries and at most n(n+ 1)/2 failed closedness checks, the maximum number
of elements added to St is n(n+1)/2+mn = O(mn+n2). Thus the total time
spent on inserting new elements in the S-component of the observation table is
O(n2d (2d − d) (mn + n2)(mn+ n2 + p)d). Adding a context to Et requires at
most |St+X(St)[�]| = O(d (mn+n2+p)d) membership queries. These additions
are performed only by failed consistency checks, and there are at most n(n−1)/2
of them. Thus, the total time spent to insert new contexts in the E-component
of the observation table is O(n2d (mn + n2 + p)d). We conclude that the total
time spent to add elements to the components S and E of the observation table
is O(n2d (2d − d) (mn+ n2)(mn+ n2 + p)d), which is polynomial.

The identification of the representative rt(s) for every s ∈ St can be done by
performing ((|St|)(St − 1)/2) |Et| = O((mn+ n2)2n2) comparisons.

Thus, all DFCAs A(T(t)) corresponding to consistent and closed observation
tables T(t) can be constructed in time polynomial in m and n. Since the algo-
rithm encounters at most n consistent and closed observation tables, the total
running time of the algorithm is polynomial in m and n.

6 Conclusions and Acknowledgments

We have presented an algorithm, called LA�, for learning cover context-free
grammars from structural descriptions of languages of interest. LA� is an adap-
tation of Sakakibara’s algorithm LA for learning context-free grammars from
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structural descriptions, by following a methodology similar to the design of
Ipate’s algorithm L� as a nontrivial adaptation of Angluin’s algorithm L∗. Like
L∗, our algorithm synthesizes a minimal deterministic cover automaton consis-
tent with an observation table maintained via a learning protocol based on what
is called in the literature a “minimally adequate teacher” [1]. And again, like
algorithm L∗, our algorithm is guaranteed to synthesize the desired automaton
in time polynomial in n and m, where n is its number of states and m is the
maximum size of a counterexample to a structural equivalence query. As the
size of a minimal finite cover automaton is usually much smaller than that of a
minimal automaton that accepts that language, the algorithm LA� is a better
choice than algorithm LA for applications where we are interested only in an
accurate characterisation of the structural descriptions with depth at most �.

This work has been supported by CNCS IDEI Grant PN-II-ID-PCE-2011-3-
0981 “Structure and computational difficulty in combinatorial optimization: an
interdisciplinary approach.”
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