Precise Interprocedural Side-Effect Analysis

Manuel Geffken, Hannes Saffrich, and Peter Thiemann

Universitat Freiburg, Germany
{geffken,saffriha,thiemann}@informatik.uni-freiburg.de

Abstract. A side-effect analysis computes for each program phrase a set
of memory locations that may be read or written to when executing this
phrase. Our analysis expresses abstract objects, points-to and aliasing
information, escape information, and side effects all in terms of a single
novel abstract domain, generalized access graphs. This abstract domain
represents sets of access paths precisely and compactly. It is suitable for
intraprocedural analysis as well as for constructing method summaries
for interprocedural analysis.

We implement the side-effect analysis for Java on top of the SOOT
framework and report on its application to selected examples.

1 Introduction

A side-effect analysis computes for each program phrase a set of memory loca-
tions that may be read or written to when executing this phrase. The results of
such an analysis have many uses in practice including the identification of pure
methods (that have no side effects), of read-only parameters, and of objects that
escape from a method. A compiler may perform aggressive code motion on a call
to a pure method. Such a method may also be used in a specification [2]. In a
concurrent program, methods with disjoint side effects may run in parallel with-
out interfering [1]. Several program analyses require information on side effects of
method calls to correctly transfer local analysis results across call sites [7,9,16].
Furthermore, the search space of a software model checker may be reduced by
ignoring interleavings of methods with disjoint side effects [5].

Our analysis expresses abstract objects, points-to and aliasing information,
escape information, and side effects all in terms of generalized access graphs, a
novel abstract domain inspired by Deutsch’s symbolic access paths (SAPs) [8]
and Khedker and coworkers’ access graphs [15]. A value in this domain rep-
resents information about heap-allocated objects using a regular language of
access paths in the pre-state of a method. This condensation of information in
one domain facilitates an elegant and economic description of the analysis that
completely fits into this paper and it simplifies its implementation.

The analysis computes context insensitive may-information for method sum-
maries. From the method summary, it is straightforward to determine whether
parameters are read-only, whether a method is pure, and whether any heap-
allocated objects may escape from the method.

G. Ciobanu and D. Méry (Eds.): ICTAC 2014, LNCS 8687, pp. 188-205, 2014.
© Springer International Publishing Switzerland 2014

Precise Interprocedural Side-Effect Analysis 189

The intraprocedural analysis that computes the method summaries is flow-
sensitive and performs strong updates for local and global variables. The inter-
procedural analysis is an instance of a bottom-up analysis.

We implement the side-effect analysis for Java on top of the SOOT [23] frame-
work and report on preliminary results of its application to selected examples.

1.1 Contributions

— We define the abstract domain of generalized access graphs (GAGs) as an
extension of Khedker and coworkers’ access graphs [15]. In comparison, our
analysis requires fewer and simpler operations on the domain and can make
do with one domain to maintain all kinds of information.

— We specify the intraprocedural GAG-based analysis for a CFG representa-
tion of a method in an object-based language (without pointer arithmetic). It
is integrated with a context-insensitive bottom-up interprocedural analysis.

— We present preliminary results from applying our implementation (see
https://github.com/saffriha/ictac2014) to a range of benchmarks.

1.2 Outline

Section 2 informally presents the GAG-based side-effect analysis and its sup-
porting analyses, in particular, points-to analysis. Section 3 formally defines
the domain of generalized access graphs and its operations and establishes its
basic properties. Section 4 specifies the intraprocedural points-to analysis and
Section 6 extends it to a side-effect analysis. Section 7 sketches the interproce-
dural analysis. Section 8 reports on our experiments with the implementation.
Section 9 discusses related work and Section 10 concludes.

2 Side-Effect Analysis

This section presents motivational examples that demonstrate various aspects
of our side-effect analysis and in particular uses of GAGs in method summaries.

Our running example concerns some methods written for objects of class List,
which represent a node in a linked list with integer elements.

1 class List {

2 int v;

3 List n;

4 List(int v, List n) {
5 this.v = v;
6 this.n = n;
7}
8 }

2.1 Simple Method

The method foo takes a list as its argument. It modifies the list node and returns
the rest of the argument list.

https://github.com/saffriha/ictac2014

190 M. Geftken, H. Saffrich, and P. Thiemann

Fig. 1. Write effect and abstract return object of foo

9 List foo(List 1) {

10 1l.v = 0;
11 return l.n;
12 }

The GAG g; in Fig. 1 describes the write effect of the method whereas g
describes the returned value (and also the read effect). Both specify the outcome
in isolation, that is, without regard for the calling context of the method.

Each path through a GAG from a root node to an accepting node corresponds
to a potential access path that starts from any object that may be supplied for
the root node later on. Each identifier on this path is interpreted as a component
of the access path. In general, a GAG may represent any number of paths.

In this case, the root node is [in both graphs. It stands for the formal parame-
ter of the method. Further, each graph represents exactly one path, g; represents
the path [.v whereas go represents [.n.

The GAG also includes the program point of each field access in its nodes. The
example uses line numbers to indicate program points. If the program points are
important, then we write access paths with program points as superscripts as in
LoV, These program point annotations play a crucial role in effectively finding
a fixpoint during the analysis.

Thus, the write effect of foo consists of the potential modification of [.v
whereas the returned object is described by [.n. That is, the GAG describes the
set of parameter rooted SAPs written by the method. The GAG computed by
the analysis yields access paths that are valid in the pre-state of the method,
that is, in the program state at invocation time of the method.

The return value of foo is described by g» as the abstract object that can
be reached via the path Lnll. Again, the superscript 11 indicates the program
point containing the access to the field n.

2.2 Loops

So far we have seen how GAGs represent summaries of the side effects and
the return value of a simple method. Next, we put the body of foo in a loop to
observe summarization at work. The comments in the listing contain the abstract
object bound to r after analyzing the line in regular expression notation.

13 List loop(List 1) { // round 1 // round 2 // round 3

14 List r = 1; /] r—l

15 while (r.v !'=42) { // // r—=1ln? [/ r— lnx
16 r.v. = 0;

17 r =r.n; // r—ln // r—lnt+ // r—l.nt
18} // T lnx
19 return r;

20 }

Precise Interprocedural Side-Effect Analysis 191

Fig. 2. GAGs to analyze loop

Before entering line 15, our analysis finds that r points to . This fact is repre-
sented by an environment that maps r to the abstract object represented by the
GAG go (Fig. 2). After line 17, unsurprisingly, r points to the object represented
by 1n17. Then the body of the while loop is reanalyzed with r bound to the
join of go and 1nl7. By the end of the loop, r is updated to (go U l.n17) ~n17,
which does not change anymore. This fixpoint is reached because each access
at a particular program point is represented at most once in an access graph.
See Section 3 for the formal definition of the operators. Thus, the return value
corresponds to the path set generated by the regular expression [.n*. Similarly,
the side effect may be computed as l.n*.v (see Fig. 4).

2.3 Method Calls

Next, we change the program to call the method foo in the loop.

21 List loopCall(List 1) {
22 List r = 1;
23 while (r !'= null)

24 r = foo(xr);
25 return r;
26 }

Up to line 24, r is bound to gg as before. Analyzing the method call just
fetches the return value go from foo’s method summary. In general, this value
is phrased in terms of the formal parameters of the callee, so that it must be
translated to the caller. In this case, the translation replaces [by [, so the body
of the while loop is reanalyzed with r bound to go U g2 (Fig. 3).

Reanalyzing the call yields the same return value go, but now the parameter
value go Ll g2 must be substituted for [in go, which yields (go Ll g2) il (Fig. 3)
representing the same access paths as (go U l.n”) 17 in the analysis of loop.

The write effect is computed in a similar way. In the first analysis of the
method call, we replace [with [in foo’s summary resulting in a write effect of
1010, In the next iteration, gg LI g2 is substituted for the formal parameter in
foo’s summary. The resulting write effect is l.(nll)?.vlo. The abstract object
resulting from the return value is l.(n11)+. As seen in Fig. 2, the concatenation
of a field access at the same program point results in a loop on the GAG node
representing this field access. The new environment entry for ris r — l.(nll)*
with the resulting write effect £(n11)* 410,

The next iteration reaches the fixpoint. The method summary for loopCall
consists of the abstract object from r’s environment entry l.(nll)* and the write
effect l.(nll)*.vlo (see Fig. 4).

192 M. Geftken, H. Saffrich, and P. Thiemann

gougz (goUgo) - nll =

Fig. 3. GAGs to analyze loopCall

SO0

Fig. 4. loopCall’s write effects (left) and abstract return object (right)

2.4 New Object Abstraction

The next examples deal with allocation and aliasing. They unveil some further
information that is computed by the analysis: points-to and escape information.
To simplify the presentation, we ignore side effects in the following examples.
Thus, for the rest of this section we only regard two components of a method
summary:

1. may-points-to information that describes aliases created by the method and
2. the abstract object returned by the method.

First, we turn to the representation of new objects. Here is a method that
constructs and attaches a new element to a list.

27 List newList(int v, List n) {
28 assert (v < 10);

29 List 1 = new List(v, n);

30 return 1;

31}

The constructor call on line 29 creates a points-to entry new2?.n8 — n (with
the 6 coming from the List constructor) and the assignment on line 29 creates
an environment entry for [of new?d. Thus, the method summary consists of the
points-to relation {new29.n6 — n} and the abstract return object new?Y, which
indicates that this object may escape.

Given the method summary, we consider a method that calls newList in a
loop.

32 List newNList() {
33 int i = 0;

34 List r = null;
35 while (i < 10) {

36 r = newList(i, r);
37 i++;
38}

39 return r;

Precise Interprocedural Side-Effect Analysis 193

The points-to relation in the method summary of newNList is new??.n0 — new??

and the abstract return object is new?Y. We do not explicitly represent null in
the abstract domain as we only consider may-points-to information.

2.5 Aliasing

Another group of examples demonstrates how aliasing is described in terms of
the pre-state of the method. We omit program points and use the symbol e as the
rightmost field selection operator in SAPs describing references. The following
method swaps the first two entries of the passed list and returns the resulting
list.

41 List swap(List 1) {

42 List 1n = 1l.n;

43 List 1lnn = 1n.n;

44 l.n = 1lnn;

45 ln.n = 1;

46 return 1n;

a7 }

The method’s points-to summary is [en — [.n.n, [.nen — [. The GAG Il.n
describes the returned value. This result demonstrates that the summary consists
of paths that refer to the pre-state of the method.

A final aliasing example illustrates the interaction between the information
from the method summary and the points-to set at the call site. An auxiliary
method depth2 overwrites the n field two elements down the list. Method depth1
overwrites the n field of the first element and then calls depth2.

48 void depth2 (List x, List y) {

49 List v = y.n; // env: v y.n

50 v.n = Xx; // points-to: {(y.n)en — z}

51 }

52 void depthl (List x, List y, List z) {

53 y.n = z; // points-to: {yen — z}

sa depth2 (x, y); // points-to: {yen — z,(y.n)en — z,zen — x}
55 }

The annotations in the listing state the intermediate results of the analysis after
executing the statement on the line. The annotation env states the binding of
v and points-to states the accumulated points-to set up to that point. Most
annotations are straightforward, except the points-to set on line 54 after the
call to depth2. The first entry, yen — z, is carried through from the previ-
ous statement. The second entry, (y.n) en — x, is obtained by substituting the
abstraction of the formal parameters in the points-to summary of depth2 from
line 50. In this case, the substitution is the identity. The last entry, zen — z, is
generated by our resolution algorithm that integrates the points-to information
at the call site with the method summary. The abstract object y.n in the sum-
mary interacts with the first points-to entry that states that y e n may also point
to z. Thus, the last entry results from contracting y.n to z in the summary. No
entry can be removed because the points-to information is not definitive (may-
points-to information).

194 M. Geftken, H. Saffrich, and P. Thiemann

2.6 Global Variables

A final example demonstrates side effects on global variables.

56 void setGlobal(List 1) {
57 Global.g = 1;
58 }

The points-to relation in setGlobal’s summary is Globale g — .

3 Abstract Domain: Generalized Access Graphs

A generalized access graph represents a possibly infinite set of access paths rel-
ative to a set of roots. These roots are usually abstract objects like method
parameters or allocation points.

Definition 1. An occurrence of an identifier or an allocation in a program P
is specified with an element from Occp = (IDp W {new}) x PPp where IDp is
the set of identifiers occurring in P and PPp is the set of program points of P.
We write C.x € IDp to refer to static global variable = of class C.

In the rest of this section, we take for granted that all definitions are relative to
an arbitrary, fixed program P and thus drop the p subscript.

Definition 2. A generalized access graph for program P is a tuple (N, E, A, R)

— N C Occ is a set of identifiers or allocation occurrences of P,
— E C N x N is a set of directed edges,

— A C N is a set of accepting nodes, and

— R C N is a set of root nodes.

If g is a generalized access graph, then we sometimes write N(g), E(g), A(g),
and R(g) for its components.

As Occ is finite, the set GAG of all generalized access graphs for P is also
finite. We write i¢d(n) and pp(n) to extract the identifier and program point of a
node n € N.

Khedker et al. proposed a closely related notion of access graphs [15], which
we generalize in several respects: we allow non-accepting nodes, we allow several
root nodes instead of just a single root node, and we do not distinguish between
“normal” access graphs and “remainder” graphs as they do.

We use two notations, a graphical one and another based on regular expres-
sions, to concisely write generalized access graphs. Both are inspired by the close
relationship to nondeterministic finite automata. Consider the access graph with
N = {{z,1), (£,2), (£:3)}, E = {1}, (£.20), ((£.2), (£,20), ({£,2),(F,3)},
A= {{f,3)}, and R = {(x,1)}. Its regular expression notation is z'. f2+.f3 and
Fig. 5 shows its graphical representation.

Definition 3. Let ¢ € GAG be an access graph. The indexed path language
LP(g) C Occ® of g is defined as the language of the nondeterministic finite
automaton (N W {qo}, Occ,0,{qo}, A) where § is the smallest relation such that

Precise Interprocedural Side-Effect Analysis 195

Fig. 5. Example access graph

— (qo, (x,p), (x,p)) €4, for each {x,p) € R(g),
— (n,{x,p), (x,p)) €46, for each (n,{(x,p)) € E(g).

The path language of g is L(g) = {x1...xpn | (x1,p1) ... {Tn,pn) € LP(g)}.

Here are two examples:

L ()) = {wg, v.f.9} L

Lemma 1. Let g be an access graph. The path language of g, L(g), is reqular.

Next, we define a join operation on access graphs that approximates the union
of their path languages.

Definition 4. For i € {1,2}, let g; = (N;, E;, A;, R;) be access graphs. Define
their join g1 U go = (N1 U Na, By U E9, A1 U Ag, Ry U Ry).

Lemma 2. L(g1 Uga) 2 L(g1) U L(g2).

In general, L(g1 Ll g2) may contain words that are neither in L(gy) nor in L(gz)
because their underlying node sets need not be disjoint. For example, consider

) - T

where the language of the joined graph contains the word a.b.c which is not in
the language of either argument graph: {a.b} and {b.c}, respectively.

Theorem 1. For each program P, the structure (GAG,U,MN, L, T) is a finite,
complete lattice. The meet operation T is componentwise intersection, | =
0,0,0,0), and T =(N,N x N,N,N) where N = Occ x PP.

The lattice ordering, which corresponds to the componentwise subset ordering,
is defined by g1 C g2 iff g1Uge = go. Furthermore, g1 C g2 implies L(g1) € L(g2).

Remark 1. Our analysis does not make use of the meet operation, but it is easy
to see that L(g1 Mga2) C L(g1) N L(g2): Suppose there is a path in g1 Mgy from a
root node r € R(g1) N R(g2) to an accepting node a € A(g1) N A(g2). Then this
path exists in g; and g2, too, as it exists in E(g1) N E(g2).

As an example that the inclusion is proper consider g; = a
holds that L(g; M ge) = 0 but L(g1) N L(g2) # 0.

Land go = a®. It

196 M. Geftken, H. Saffrich, and P. Thiemann

The analysis requires one more operation. Concatenation of access graphs
computes an approximation to the concatenation of their languages.

Definition 5. For i € {1,2}, let g; = (N;, Fy, A;, R;) be access graphs. Define
their concatenation g1 - g2 = (N1 U No, B3 U Eo U (A X Ra), As, Ry).

Lemma 3. L(g1 - g2) 2 L(g1) - L(g2).

As an example that the inclusion may be proper, consider L(a') = {a} and
L(a'-a') = a™ 2 {a.a}.

Lemma 4. Concatenation is monotone in both arguments.

4 Intraprocedural Points-to Analysis

The first step towards our side-effect analysis is a points-to analysis for an im-
perative core language with objects, which is the essence of an intermediate
representation for Java like Jimple. We consider a program one method at a
time and we assume that each method is given in the form of a control-flow
graph CFG = (V, F) where the nodes V' = PP correspond to program points
and the directed edges F' C V x V correspond to potential control transfers
between program points. The function pred : V' — P(V) maps a node to its set
of predecessors: pred(v) = {v' | (v,v) € F}. There are two distinct nodes that
determine the entry point and the exit from the method.

Each node v in the CFG is associated with a statement stm(v) of one of the
following forms, where z,y, ... range over local variables.

— x =y @ z, primitive operation;

— x = ¢, constant including null;

- T =Y, Copy;

— x = new”, allocate a new uninitialized object of type T;
— x = y.a, read field a from object y;

— z.a =y, write field a in object x;
— x=call f(y1,...,Yn), call method f.

4.1 Memory Abstraction

An abstract object is described by a generalized access graph. We use a different
symbol to emphasize the interpretation of the graph as an abstract object.

0€ Obj= GAG

The object o represents the set of objects that can be reached in the pre-state of
a method call via the access paths in L(0). The graphs are anchored either in the
formal parameters of the method, in global variables that can be accessed inside
the method, or in objects newly allocated during the method call. Without loss
of generality, we pretend that all such allocations take place before the method
starts, so that they are representable in the pre-state already.

Precise Interprocedural Side-Effect Analysis 197

To represent points-to information, we need references to fields of abstract
objects. Such a reference is a pair of an abstract object and a field name.

Refsr:=o0eaqa

Points-to information itself is represented by a points-to set of the form P €
P(Ref x Obj). An element (r,o) € P states that the reference r may point to
abstracted object o. In addition, each reference o @ a points to an implicit natural
object, namely o - a, which implements the may-nature of the analysis.

In principle, we might also represent points-to information with a partial
mapping Ref < Obj by joining multiple target objects for the same reference.
By keeping a set of target objects, we retain some more precision. We have yet
to investigate whether it makes a difference in practice.

4.2 Method Summaries

We assume that, for each method, there is a method summary that describes the
result of a method call and the potential side effects of the method. Specifically,
for a method f

— returns(f) € Obj describes the return value of the method as an abstract
object in terms of f’s formal parameters;

— exitSet(f) € P(Refx Obj) describes the potential modification of the points-
to information by calling f;

— reads(f) € GAG describes the set of objects that may be read during execu-
tion of f;

— writes(f) € GAG describes the set of objects that may be written to during
execution of f.

These functions do not take into account aliasing that is present at a call site
of the method f. Thus, the method summary needs to be adapted to the cir-
cumstances at each call site. On the positive side, it means that our analysis
is modular, because after generating the method summary for f, all further
analysis can rely on the summary.

4.3 Dataflow Equations

The domain DP of the dataflow analysis consists of a local variable environment
that maps a variable name to an abstract memory location and a points-to
relation P as described above. We model the environment p as a partial map
that we consider as a set of pairs when convenient: p € Env = Var — Obj.

DP = Env x P(Ref x Obj)

The dataflow equations for the points-to analysis are typical for a forward analy-
sis. For each node v in the CFG, they determine values inP(v), outP(v) € DP that
accumulate the analysis result and there are functions genP(v), killP(v) € DP

198 M. Geftken, H. Saffrich, and P. Thiemann

that compute information to add to or remove from an intermediate result. As a
slight difference to the standard framework, the value of genP(v) often depends
on inP(v).

inP(v) = |_| outP(p) outP(v) = (inP(v) — killP(v)) U genP(v) (1)
pEpred(v)

The join operation on the environment is the pointwise join of the abstract
objects in the range. It is set union on the points-to sets. The “—” operation
computes the set difference on the underlying sets. The initial state is given by
inP(v) = outP(v) = (0,0), with one exception:

outP(entry) = ([x — 2P | z formal parameter defined at program point p|, ?)

The result of the analysis is the least fixpoint of the equations (1).

The genP and killP functions applied to node v are defined by case analysis
on the statement at node v. If stm(v) has the form = = ..., then killP(v) =
({(z,0) | 0 € Obj},0), that is, the previous assignment to z is removed. For
other forms of statements, we specify the kill set explicitly.

Generally, let (pin, Pin) = inP(v) in the following definition of genP and killP.

— If stm(v) isx =y ® z or x = ¢, then genP(v) = (0,0).

— If stm(v) is © = y, then genP(v) = ([x — pin(y)], D).

— If stm(v) is = new”, then genP(v) = ([x — (P],0), so that = points to an
abstract object allocated at program point p.

— If stm(v) is * = y.a?, then genP(v) = ([x — |] objs(inP(v),y.a?)],?). The
function objs : DP x Varx Field x PP — P(Obj) resolves a field access under
a given points-to set.

objs((p, P),y.a”) = {p(y) - a’}U{d" | (0eb,0") € P, mayAlias(o, p(y)),a = b}

The first part concerns the direct effect of the field access. It concatenates
the abstract object that is currently stored in the variable with the trivial
access graph to field a?. The second part is the indirect effect. If the points-to
set contains evidence that y.a may also point to some object o', then that
object is also a potential result.

Checking the last part is more involved than comparing o and p(y) for
equality. As both are represented by method-local access graphs, it may be
the case that they are not equal but nevertheless have some access paths in
common. The function mayAlias checks the absence of such common access
paths by checking disjointness of the path languages:

mayAlias(o1,02) = L(01) N L(o2) # 0

As the path languages are regular (cf. Lemma 1), this check is effective. If we
consider the booleans ordered by false C true, then mayAlias is monotone
in both arguments and thus objs is also monotone in p and P.

Precise Interprocedural Side-Effect Analysis 199

— If stm(v) is z.a? = y, then killP(v) = (0,0) because no local (or global)
variable is overwritten but after the assignment x.a may point to the object
stored in y which must be reflected in the points-to information. Hence,
genP(v) = (0, refs(pin, x.aP) X {pin(y)}). The function refs : Fnv x Var x
Field x PP — Refresolves a field access to a reference, a symbolic left value.

refs(p, z.aP) = p(z)ea

— If stm(v) is © = call f(y1,...,yr), then we first need to consult the call
graph for the set of possible call targets f1, ..., fi. The gen-information of the
method call is joined from the individual call targets: genP(v) = | |; d;. For
each target f; with formal parameters z1, ..., zy, define d; = ([z — o}], P})
where 0;- describes the abstract object returned by the method call and P]f
describes the potential side-effect of the call on the parameters and global
variables.

We obtain this data from the method summary of f;, but as this summary
contains information that is local to f;, it needs to be translated to the calling
context. In particular, the access graphs in f;’s summary refer to the x;, the
names of f;’s formal parameters. They need to be replaced by the abstract
objects pin(y;), for 1 < i < k, representing the parameters of the call site.

However, this replacement alone is not sufficient, because the access paths
in the result ignore aliasing (points-to information) that is present at the call
site: a method is always analyzed under the assumption that its arguments
are not aliased. This discrepancy has to be corrected by retracing the access
paths in returns(f;) using the points-to information at the call site, which is
represented by Pj,. Thus, if o = returns(f;) then

0;, = transo(pm,Pm,O) = |_| Q(o,n)
neA(o)

where @ : Obj x Occ — Obj is the smallest function such that

Q(o, (new,p)) J ¢¥ if (new,p) € R(0)
Q(o,{xi,p)) 3 pinly:) if (x;,p) € R(0) substituting formal parameter
Q(o,{a,p)) 3 Q(o,n) - a? LI |_|{t | (o' ®a,t) € Py, mayAlias(o’,Q(o,n))}
for all n such that (n, (a,p)) € E(0)

A similar transformation has to be applied to the points-to set returned by
the method.

P]{ = {{trans, (pin, Pin,T), trans,(pin, Pin, 0)) | (r,0) € exitSet(f)}

where

trans,(p, P,o e a) = trans,(p, P,o) e a

200 M. Geftken, H. Saffrich, and P. Thiemann

5 Global Variables

Global variables are straightforward to integrate into the analysis. The environ-
ment p also maintains information about the abstract objects contained in the
global variables. That is, the initial environment in outP(entry) also contains
bindings [C.a — C.a?], where p is the program point defining a in C.

There are two new cases for genP(v) where (pjn, Pin) = inP(v) and the method
call needs to be extended.

— If stm(v) is © = C.a, then genP(v) = ([x — pin(C.a)], D).

— If stm(v) is C.a? = y, then killP(v) = ({(C.a,0) | 0 € Obj},0) and genP(v) =
(G0 pin(w)],0).

— If stm(v) is x = call f(y1,...,yr), then we extend the previous treatment.
Let pout = globals(f) be the environment at the exit node of f restricted
to the bindings of the global variables (also part of the method summary).
Then the environment part of genP(v) needs to be extended with [C.a +—
trans,(p, P, pout(C.a))] for each global variable C.a.!

To transfer these entries successfully, we need to extend the @) function in
the definition of trans, by

Q(o,{C.a,p)) 3 pin(C.a) if (C.a,p) € R(0)

The treatment of function calls could be improved by additionally keeping track
of which global variables are definitely overwritten by the call. The entries for
these variables could be killed from the environment and replaced by the infor-
mation from the method summary.

6 Intraprocedural Side-Effect Analysis

To perform the side-effect analysis, we assume that the results of the points-to
analysis are available in inP(v) and outP(v), for each CFG node v. The do-
main for this analysis is the product lattice of two access graphs, the first one
summarizing read accesses, the second one write accesses.

DS = GAG x GAG

The analysis is again a forward analysis, but in this case there are no kill sets.

inS(v) = |_| outS(p) outS(v) = inS(v) U genS(v) (2)

pEpred(v)

All values are initialized to the bottom of the lattice inS(v) = outS(v) = (L, L1).
The result of the analysis is the least fixpoint of the equations (2).

Again, we define genS(v) by cases on the statement at node v. Let (pin, Pin) =
inP(v) be the result of the points-to analysis at node wv.

! In an implementation, it is sufficient to only keep entries for those variables that are
actually used inside f.

Precise Interprocedural Side-Effect Analysis 201

INTERPROCEDURALANALYSIS()
1 Compute call graph and its SCC tree.

2 for each method f
3 summaries|f] = (L,0, L, 1)
4 while an unprocessed SCC exists
5 Choose an unprocessed SCC S where all predecessors are processed.
6 repeat
7 done = true
8 for each method f in S
9 newSummary = INTRAPROCEDURALANALYSIS(f, summaries)
10 if summaries(f] # newSummary
11 summaries[f] = newSummary
12 done = false
13 until done
14 Mark S as processed.

Fig. 6. Algorithm for interprocedural analysis

— If stm(v) isz =y @ z or x = c or & =y or = new”, then genS(v) = (0,0).
— If stm(v) is © = y.a?, then genS(v) = (pin(y) - aP,).

— If stm(v) is z.a? = y, then genS(v) = (0, pin(x) - aP).

— If stm(v)

)
is x = call f(y1,...,Yn), then genS(v) = (gr, gw) where
)

gr = transy(pin, Pin, reads(f) Gw = transy(pin, Pin, writes(f))

As in the points-to analysis, the method summary needs to be translated
into the current environment and aliasing context, and we need to join the
information of the possible call targets for f.

Allocations are not registered as write effects because they do not modify existing
data structures. However, reads and writes to newly allocated data appear as
side-effects. No special treatment is needed to cater for global variables.

7 Interprocedural Analysis

The interprocedural analysis computes the method summaries for the whole
program by repeatedly applying the intraprocedural analysis to the program’s
functions until a fixpoint is reached. We sketch the algorithm in Fig. 6.

At first, the program’s call graph and its strongly connected components
(SCCs) are computed. Next, the SCCs are traversed bottom-up and for each
SCC the fixpoints of its methods’ summaries are computed starting from the
bottom values of the respective domains.

The fixpoint computation recomputes the method summaries for all methods
contained in the current SCC. This computation is repeated until all summaries
stabilize. If any method summary changes, then all summaries in the current
SCC have to be recomputed because they mutually depend on each other.

202 M. Geftken, H. Saffrich, and P. Thiemann

8 Experience

We implemented both the points-to analysis and side-effect analysis on top of the
SOOT Java bytecode analysis and transformation framework in version 2.5.0.
To increase the scalability of our analysis points-to pairs with structurally equal
left hand sides are joined into a single pair.

Evaluation. The evaluation concentrates on analysis time and precision of our
analyses. We focus on relatively small benchmark programs from the JOlden [3]
benchmark suite. The suite consists of ten benchmark programs.

We stripped the benchmarks of the time measurement, statistics and print-
ing functionality that is common to all programs in the JOlden suite to avoid
analyzing large parts of the JDK. For example, the unstripped version of the
Bisort benchmark had a call graph containing more than 8000 methods although
Bisort’s functionality is implemented in 11 user methods. All benchmarks were
executed on a machine with AMD Phenom IT X6 (2.8 GHz, 6 Cores) processor
and 8 GB RAM on top of Archlinux 64bit, Kernel 3.13.8-1 and OpenJDK 7.0.

We present the results of running our points-to and side-effect analysis on
nine of the JOlden benchmarks in Table 1. In each case, the analysis processed
all methods, user and library, that are reachable from the main method. We ex-
cluded static initializers and external methods (methods without an active body)
from the analysis. For each application, we present the total number of methods
(including library methods) and the number of user methods. We measured the
total run time and the run time of the call graph construction including the cal-
culation of the SCCs. As a quality measure that is independent from our abstract
domain we count the methods that do not introduce new aliases and the pure
methods. Here, “pure” means that a method does not have any write effects on
heap-allocated memory locations in the prestate of the method. Following the
JML convention, we consider constructors that only mutate fields of “this” as
pure.

For the benchmarks marked with * we excluded the JDK methods from the
call graph, as our prototype apparently does not scale to the thousands of library
methods that can be transitively invoked by these benchmarks.

Discussion. The run time of the analysis is within reasonable bounds for small
programs, generally running in a fraction of the time taken for the call graph
construction and finding the SCCs. We still need to gain experience with larger
programs.

For the benchmark programs that we have analyzed our analysis gives useful
results with a precision that is roughly comparable to that of others [21]. In the
best case TreeAdd we can identify roughly 89% of the methods as pure. The
other extreme is MST where we identify 21% of the methods as pure.

Precise Interprocedural Side-Effect Analysis 203

Table 1. Analysis results for the Java Olden benchmarks

Application Methods Run time Method summaries
User All CG+SCC Analysis Total No new aliases Pure
BH 53 68 57.26s 1.17s 58.43s 76.47% 66.18%
BiSort 11 13 5.40s 1.05s 6.45s 61.54% 38.46%
Em3d” 16 16 54.50s 0.90s 55.40s 50.00% 37.50%
MST 29 34 55.45s 0.83s 56.28s 85.29% 20.59%
Perimeter 34 36 5.75s 0.95s 6.70s 94.44% 80.56%
Power 26 34 55.65s 2.81s 58.46s 88.24% 50.00%
TreeAdd 3 9 52.67s 0.45s 53.12s 88.89% 88.89%
TSP~ 12 12 52.05s 1.03s 53.08s 66.67% 33.34%
Voronoi* 55 55 58.15s 1.69s 59.84s 89.09% 76.36%

9 Related Work

There is a plethora of literature on effect and points-to analysis for heap-allocated
objects. We therefore focus on the distinguishing features of our abstract domain
and compare our work to selected bottom-up points-to, shape and effect analyses.

Regarding our abstract domain, the most closely related work is by Khedker
et al. [15]. They have introduced access graphs, which include program points
in their nodes to deal with unboundedly large data structures. We extend ac-
cess graphs to GAGs, which facilitate a compact representation of the points-to
relation that cannot be achieved with (sets of) simple access graphs.

While Khedker et al. rely on access graphs for a number of analyses including
alias analysis, they do not employ them for points-to analysis, as we do. In
contrast to our abstract domain, they use partly “unresolved” access graphs to
represent abstract references in their alias sets. That is, their access graphs can
be rooted in a reference that requires further resolution to obtain the abstract
object it stands for, whereas we use “resolved” (up to the unknown context)
abstract objects being rooted in parameters or allocation points. We use such
resolved GAGs, as they avoid repeated resolution of the same access graphs while
preserving precision on updates to references, which we consider as an advantage
in our flow-sensitive analysis.

Most of the following proposals share the property with ours that their ab-
stract domains are based on Larus’ access paths [18] or Deutsch’s SAPs [8].

All data-flow algorithms must deal with the unbounded nature of recursive
data structures. Many proposals [17,4,6] follow the k-limiting approach [12],
which limits access paths by truncation.

While our proposal uses a storeless model (originally proposed by Jonkers [13])
other proposals [18,21] use a store-based model model employing some form of
(rooted) directed graph representation or a compact representation thereof [11]
for points-to or alias information. A store-based model can enable the description
of regular patterns across references and the objects these references refer to.

In their side-effect analysis for Java, Salcianu and Rinard [21] represent the
points-to relation as a points-to graph, a rooted directed graph representation.

204 M. Geftken, H. Saffrich, and P. Thiemann

Their points-to graphs allow multiple root nodes (as our GAGs do), but do
not include program points in their points-to graphs. Larus and Hilfinger’s alias
graphs [18] are similar to Sdlcianu’s points-to graphs.

Several authors [14,24] propose scalable bottom-up pointer analyses for C
programs, but ignore heap-allocated data. Matosevic et al. [19] use a SAP-based
abstract domain in their bottom-up side-effect analysis, but their loop abstrac-
tion mechanism can only detect three patterns of iteration. Moreover, they do
not formally describe how they handle method calls. In contrast to our points-to
relation, which can be viewed as a total transfer function, their abstract domain
serves as a partial transfer function [20] that assumes the context to have certain
properties. Partial transfer functions can be considered as an optimization that
is also applicable to our analysis. Gulavani et al. [10] propose a bottom-up shape-
analysis based on separation logic. Their Logic of Iterated Separation Formulae
allows the computation of a loop summary from a loop body summary.

Another widely-used and highly scalable proposal for points-to analysis is
Steensgaard’s [22] type-based analysis using unification, which is most suitable
for statically-typed languages. Our analysis can be combined with type-based
information to improve both precision and scalability.

10 Conclusion

Side-effect analysis is an important tool in the programmer’s toolbox. It aids pro-
gram understanding, supports other program analyses, and it enables advanced
program optimizations and safe parallel execution. Our analysis is based on a
single comprehensive and precise abstract domain of generalized access graphs,
which serve to express abstract objects, points-to information, escape informa-
tion, as well as read and write effects. In our experience, the single abstract
domain simplifies the implementation. The preliminary data gathered from our
implementation shows that our approach is practically feasible, but we believe
that further algorithmic tuning is possible.

References

1. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli,
R., Overbey, J., Simmons, P., Sung, H., Vakilian, M.: A type and effect sys-
tem for deterministic parallel Java. In: Arora, S., Leavens, G.T. (eds.) OOPSLA,
pp. 97-116. ACM (2009)

2. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf. 7(3), 212-232 (2005)

3. Cahoon, B., McKinley, K.S.: Data flow analysis for software prefetching linked data
structures in java. In: IEEE PACT, pp. 280-291. IEEE Computer Society (2001)

4. Cherem, S., Rugina, R.: A practical escape and effect analysis for building
lightweight method summaries. In: Adsul, B., Odersky, M. (eds.) CC 2007. LNCS,
vol. 4420, pp. 172-186. Springer, Heidelberg (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Precise Interprocedural Side-Effect Analysis 205

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Zheng, H.:
Bandera: Extracting finite-state models from Java source code. In: Ghezzi, C.,
Jazayeri, M., Wolf, A.L. (eds.) ICSE, Limerick, Ireland, pp. 439-448. ACM (June
2000)

Dasgupta, S., Karkare, A., Reddy, V.K.: Precise shape analysis using field sensi-
tivity. ISSE 9(2), 79-93 (2013)

DeLine, R., Fahndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465-490. Springer, Heidelberg (2004)

Deutsch, A.: Interprocedural alias analysis for pointers: Beyond k-limiting. In:
Sarkar, V., Ryder, B.G., Soffa, M.L. (eds.) PLDI, pp. 230-241. ACM (1994)
Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Knoop, J., Hendren, L.J. (eds.) PLDI, Berlin,
Germany, pp. 234-245. ACM Press (2002)

Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis using lisf. ACM Trans. Program. Lang. Syst. 33(5), 17 (2011)

Hind, M., Burke, M.G., Carini, P.R., Choi, J.-D.: Interprocedural pointer alias
analysis. ACM Trans. Program. Lang. Syst. 21(4), 848-894 (1999)

Jones, N.D.; Muchnick, S.S.: A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures. In: Proc. of the 9th ACM Symp.
POPL, Albuquerque, New Mexico, USA, pp. 66-74. ACM Press (1982)

Jonkers, H.B.M.: Abstract storage structures. In: de Bakker, van Vllet (eds.) Al-
gorithmic Languages. IFIP, pp. 321-343 (1981)

Kang, H.-G., Han, T.: A bottom-up pointer analysis using the update history.
Information & Software Technology 51(4), 691-707 (2009)

Khedker, U.P.; Sanyal, A., Karkare, A.: Heap reference analysis using access graphs.
ACM TOPLAS 30(1) (2007)

Kuncak, V., Lam, P., Rinard, M.C.: Role analysis. In: Launchbury, J., Mitchell,
J.C. (eds.) POPL, pp. 17-32. ACM (2002)

Landi, W., Ryder, B.G., Zhang, S.: Interprocedural modification side effect analysis
with pointer aliasing. In: Cartwright, R. (ed.) PLDI, pp. 56-67. ACM (1993)
Larus, J.R., Hilfinger, P.N.: Detecting conflicts between structure accesses. In: Wex-
elblat, R.L. (ed.) PLDI, pp. 21-34. ACM (1988)

Matosevic, 1., Abdelrahman, T.S.: Efficient bottom-up heap analysis for symbolic
path-based data access summaries. In: Eidt, C., Holler, A.M., Srinivasan, U., Ama-
rasinghe, S.P. (eds.) CGO, San Jose, CA, USA, pp. 252263 (March 2012)
Murphy, B.R., Lam, M.S.: Program analysis with partial transfer functions. In:
Lawall, J.L. (ed.) PEPM, pp. 94-103. ACM (2000)

Salcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199-215. Springer, Heidelberg
(2005)

Steensgaard, B.: Points-to analysis in almost linear time. In: Proc. 1996 ACM
Symp. POPL, St. Petersburg, FL, USA, pp. 32-41. ACM Press (January1996)
Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java optimization framework. In: Proc. CASCON 1999, pp. 125-135 (1999)

Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow- and
context-sensitive pointer analysis scalable for millions of lines of code. In: Moshovos,
A., Steffan, J.G., Hazelwood, K.M., Kaeli, D.R. (eds.) CGO, pp. 218-229. ACM
(2010)

	Precise Interprocedural Side-Effect Analysis
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Side-Effect Analysis
	2.1 Simple Method
	2.2 Loops
	2.3 Method Calls
	2.4 New Object Abstraction
	2.5 Aliasing
	2.6 Global Variables

	3 Abstract Domain: Generalized Access Graphs
	4 Intraprocedural Points-to Analysis
	4.1 Memory Abstraction
	4.2 Method Summaries
	4.3 Dataflow Equations

	5 Global Variables
	6 Intraprocedural Side-Effect Analysis
	7 Interprocedural Analysis
	8 Experience
	9 Related Work
	10 Conclusion
	References

