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Preface

The International Colloquium on Theoretical Aspects of Computing (ICTAC)
was founded in 2004. In 2014, the 11th edition of ICTAC was organized for the
first time in Europe, namely in Bucharest, Romania. Since its early days, the
study of computer science in Romania has had a strong theoretical component,
owing in part to the mathematical orientation of some of its most notable pio-
neers, such as Professor Grigore Moisil. In modern times, this legacy is proudly
carried on by several prestigious research institutions, such as the University of
Bucharest and the Romanian Academy.

A burgeoning metropolis in recent years, Bucharest is a lively, cosmopolitan
city. Featuring an eclectic mix of architectural styles and traditions, cultural
and artistic life, Bucharest was an ideal setting for the 11th International Col-
loquium on Theoretical Aspects of Computing. The Colloquium aims to bring
together practitioners and researchers from academia, industry, and government,
with the purpose of encouraging the presentation of novel research directions,
through the exchange of both ideas and experience, related to current theoretical
challenges in computing, as well as practical applications of existing theoretical
results. An additional goal is that of promoting wide-reaching forms of coopera-
tion in research and education between participants and their institutions, from
developing and industrial countries.

We were honored to have three distinguished guests as invited speakers: Cris-
tian Calude (University of Auckland, New Zealand), Jin-Song Dong (National
University of Singapore, Singapore), and Razvan Diaconescu (Institute of Math-
ematics of the Romanian Academy, Bucharest). Professor Solomon Marcus was a
special guest, providing a talk on important differences and similarities between
Theoretical Computer Science project and the Bourbaki project in Mathematics.

Professor Cristian Calude presented a talk entitled “Probabilistic solutions
to undecidable problems” which addressed the (in)famous algorithmically un-
decidable halting problem. Undecidability is everywhere: in logic, mathematics,
computer science, engineering, physics, . . . ; the talk revealed how a probabilistic
method can help deal with undecidable problems.

Professor Jin-Son Dong presented a talk entitled “Event Analytic” in which
he described the Process Analysis Toolkit and his vision of event analytics, which
goes beyond data analytics. The event analytics research is based on applying
model checking to event planning, scheduling, prediction, strategy analysis, and
decision making.

Professor Razvan Diaconescu presented a talk entitled “From Universal Logic
to Computer Science, and Back,” focusing on universal logic. He recalled some
important ideas that have shaped the success of institutional model theory in
computer science. Moreover, he showed how insights from computer science have
led (through institutional model theory) to a (sometimes drastic) reformulation
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and novel understanding of several important concepts in logic, resulting in a
set of new and important results.

ICTAC 2014 welcomed submissions pertaining (but not limited) to the fol-
lowing areas:

– Automata theory and formal languages;
– Principles and semantics of programing languages;
– Theories of concurrency, mobility and reconfiguration;
– Logics and their applications;
– Software architectures and their models, refinement, and verification;
– Relationship between software requirements, models, and code;
– Static and dynamic program analysis and verification;
– Software specification, refinement, verification, and testing;
– Model checking and theorem proving;
– Models of object and component systems;
– Coordination and feature interaction;
– Integration of theories, formal methods and tools for engineering computing

systems;
– Service-oriented architectures: models and development methods;
– Models of concurrency, security, and mobility;
– Theories of distributed, grid and cloud computing;
– Real-time, embedded, hybrid and cyber-physical systems;
– Type and category theory in computer science;
– Models for e-learning and education;
– Case studies, theories, tools, and experiments of verified systems;
– Domain-specific modeling and technology: examples, frameworks and prac-

tical experience.
– Challenges and foundations in environmental modeling and monitoring,

healthcare, and disaster management.

We received submissions from 36 countries around the world; initially we
got 93 abstracts, followed by 74 full submissions. The selection process was
rigorous, each paper receiving at least four reviews. We got external reviews
for papers that lacked expertise within the Program Committee. The Program
Committee, after long and careful discussions on the submitted papers, decided
to accept only 25 papers. This corresponds to an overall acceptance rate of
approximately 33.7%. The accepted papers cover several aspects of theoretical
aspects of computing. They provided a scientifically exciting program for the
ICTAC meeting, triggering interesting discussions and exchanges of ideas among
the participants.

We would like to thank all the authors who submitted their work to ICTAC
2014. We are grateful to the Program Committee members and external re-
viewers for their high-quality reviews and discussions. Finally, we wish to thank
the Steering Committee and Organizing Committee members for their excellent
support.

July 2014 Gabriel Ciobanu
Dominique Méry
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Probabilistic Solutions for Undecidable Problems

Cristian S. Calude

Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand

www.cs.auckland.ac.nz/~cristian

There is no algorithm which can be applied to any arbitrary program and input
to decide whether the program stops when run with that input [8, 9]. This is the
most (in)famous (algorithmically) undecidable problem: the halting problem.

Undecidability is everywhere: in logic, mathematics, computer science, engi-
neering, physics, etc. For example, software testing is undecidable: we can never
completely identify all the defects within a given code, hence we cannot establish
that a code functions properly under all conditions.

Instead, various methods have been developed to establish that a code func-
tions properly under some specific conditions. Can we estimate the probabil-
ity that a code—which has been successfully tested under specific conditions—
actually functions correctly under all conditions?

Many practical undecidable problems can be reduced to the halting problem,
that is, they would be solved provided one could solve the halting problem. Hy-
percomputation (see [7]) explores various nature-inspired proposals—physical,
biological—to solve the halting problem. Currently, there is no clear success,
but also no impossibility proof.

Here we take a different approach: we try to solve approximately the halting
problem and evaluate probabilistically the error.

In this talk we present and critically discuss two methods for approximately
solving the halting problem.

1. A probabilistic “anytime algorithm”1 based on the the fact that a program
which is executed up to a certain computable runtime without stoping, can-
not stop at any later algorithmically incompressible time (see [1, 4, 6, 3]).

2. A probabilistic method of approximating the (undecidable) set of programs
which eventually stop (Halt) with a decidable set (see [5, 2]). To this aim we
construct a decidable set R of probability r ∈ (0, 1] such that Halt ∩ R is
decidable. The closer r gets to 1, the better the approximation is.

Developing mathematical models along the ideas above is interesting, but
not the whole story: showing that the models are adequate for different concrete
problems (for example, by choosing the “right” probability) is essential and more
challenging. Much more work has to be done in both directions.

1 That is, an algorithm that can return a valid solution even if it is interrupted any
time after a given time threshold, possibly before the computation ends.
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From Universal Logic to Computer Science,

and Back

Răzvan Diaconescu

Simion Stoilow Institute of Mathematics of the Romanian Academy, Romania
Razvan.Diaconescu@imar.ro

Abstract. Computer Science has been long viewed as a consumer of
mathematics in general, and of logic in particular, with few and minor
contributions back. In this article we are challenging this view with the
case of the relationship between specification theory and the universal
trend in logic.

1 From Universal Logic...

Although universal logic has been clearly recognised as a trend in mathematical
logic since about one decade only, mainly due to the efforts of Jean-Yves Béziau
and his colleagues, it had a presence here and there since much longer. For
example the anthology [9] traces universal logic ideas back to the work of Paul
Herz in 1922. In fact there is a whole string of famous names in logic that have
been involved with universal logic in the last century, including Paul Bernays,
Kurt Gödel, Alfred Tarski, Haskell Curry, Jerzy �Loś, Roman Suszko, Saul Kripke,
Dana Scott, Dov Gabbay, etc.

Universal logic is not a new super-logic, but it is rather a body of general the-
ories of logical structures, in the same way universal algebra is a general theory
of algebraic structures (see [8] for a discussion about what universal logic is and
is not). Within the last century mathematical logic has witnessed the birth of a
multitude of unconventional logical systems, such as intuitionistic, modal, mul-
tiple valued, paraconsistent, non-monotonic logics, etc. Moreover, a big number
of new logical systems have appeared in computer science, especially in the area
of formal methods. The universal logic trend constitutes a response to this new
multiplicity by the development of general concepts and methods applicable to a
great variety of logical systems. One of the aims of universal logic is to determine
the scope of important results (such as completeness, interpolation, etc.) and to
produce general formulations and proofs of such results. This is very useful in
the applications and helps with the distinction between what is and what is not
really essential for a certain particular logical system, thus leading to a better
understanding of that logical system. Universal logic may also be regarded as a
toolkit for defining specific logics for specific situations; for example, temporal
deontic paraconsistent logic. It also helps with the clarification of basic concepts
by explaining what is an extension, or what is a deviation, of a given logic,
what it means for a logic to be equivalent or translatable to another logic, etc.

G. Ciobanu and D. Méry (Eds.): ICTAC 2014, LNCS 8687, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014



2 R. Diaconescu

Paramount researchers in mathematical logic consider universal logic as a true
renaissance of the study of logic, that is based on very modern principles and
methodologies and that responds to the new mathematical logic perspectives.
The dynamism of this area, its clear identity, and its high potential have been
materialized through a dedicated new book series (Studies in Universal Logic,
Springer Basel), a dedicated new journal (Logica Universalis, Springer Basel), a
dedicated corner of Journal of Logic and Computation (Oxford Univ. Press), and
through a dedicated series of world congresses and schools (UNILOG: Switzer-
land 2005, China 2007, Portugal 2010, Brazil 2013; see www.uni-log.org).

The analogy between universal algebra and universal logic however fails in
the area of the supporting mathematical structures. While the former is in fact
a mathematical theory based upon a relatively small set of core mathematical
definitions, this is not the case with the latter. There is not a single commonly
accepted mathematical base for universal logic. Instead the universal trend in
logic includes several theories each of them supported by adequate mathemati-
cal structures that share a non-substantialist view on logic phenomena, free of
commitment to particular logical systems, and consequently a top-down devel-
opment methodology. One of the most famous such theories is Tarski’s general
approach to logical consequence via closure operators [60]. And perhaps now the
single most developed mathematical theory in universal logic is the institution
theory of Goguen and Burstall [39,40].

2 ...to Computer Science,...

2.1 Origins of Institution Theory

Around 1980’s there was already a population explosion of logical systems in use
computer science, especially in the logic-based areas such as specification theory
and practice. People felt that many of the theoretical developments (concepts,
results, etc.), and even aspects of implementations, are in fact independent of the
details of the actual logical systems. Especially in the area of structuring of spec-
ifications or programs, it would be possible to develop the things in a completely
generic way. The benefit would be not only in uniformity, but also in clarity
since for many aspects of specification theory the concrete details of actual log-
ical systems may appear as irrelevant, with the only role being to suffocate the
understanding. The first step to achieve this was to come up with a very general
model oriented formal definition for the informal concept of logical system. The
model theoretic orientation is dictated by formal specification in which seman-
tics plays a primary role. Due to their generality, category theoretic concepts
appeared as ideal tools. However there is something else which makes category
theory so important for this aim: its deeply embedded non-substantialist think-
ing which gives prominence to the relationships (morphisms) between objects in
the detriment of their internal structure. Moreover, category theory was at that
time, and continues even now to be so, the mathematical field of the upmost
importance for computer science. In fact, it was computer science that recov-
ered the status of category theory, at the time much diminished in conventional
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mathematical areas. The article [37] that Joseph Goguen wrote remains one of
the most relevant and beautiful essays on the significance of category theory for
computer science and not only.

The categorical model theories existing at the time, although quite deep the-
oretically, were however unsatisfactory from the perspective of a universal logic
approach to specification. Sketches of [35,44,62] had just developed another lan-
guage for expressing (possibly infinitary) first-order logic realities. The satisfac-
tion as cone injectivity [1,2,3,49,47,46], whilst considering models as objects of
abstract categories, lacks a multi-signature aspect given by the signature mor-
phisms and the model reducts, which leads to severe methodological limitations.
Moreover in both these categorical model theory frameworks, the satisfaction of
sentences by the models is defined rather than being axiomatized, which give
them a strong taste of concreteness in contradiction with universal logic aims
and ideals. On the other hand, the model theory trend known as ‘abstract model
theory’ [4,5] had an axiomatic approach to the satisfaction relation, it also had a
multi-signature aspect, but it was still only concerned with extensions of conven-
tional logic in that the signatures and the models are concrete, hence it lacked
a fully universal aspect.

2.2 The Concept of Institution

The definition of institution [14,40] can be seen as representing a full generali-
sation of ‘abstract model theory’ of [4,5] in a true universal logic spirit by also
considering the signatures and models as abstract objects in categories.

Definition 1 (Institutions). An institution I = (SigI , SenI ,ModI , |=I) con-
sists of

1. a category SigI , whose objects are called signatures,

2. a functor SenI : SigI → Set (to the category of sets), giving for each
signature a set whose elements are called sentences over that signature,

3. a functor ModI : (SigI)op → CAT (from the opposite of SigI to the category
of categories) giving for each signature Σ a category whose objects are called
Σ-models, and whose arrows are called Σ-(model) homomorphisms, and

4. a relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI |, called Σ-satis-

faction,

such that for each morphism ϕ : Σ → Σ′ in SigI, the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=I

Σ ρ

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).
The functions SenI(ϕ) are called sentence translation functions and the func-

tors ModI(ϕ) are called model reduct functors.

The literature (e.g. [22,57]) shows myriads of logical systems from computing
or from mathematical logic captured as institutions. In fact, an informal thesis
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underlying institution theory is that any logic may be captured by the above
definition. While this should be taken with a grain of salt, it certainly applies
to any logical system based on satisfaction between sentences and models of
any kind. However the very process of formalising logical systems as institutions
is not a trivial one as it has to provide precise and consistent mathematical
definitions for basic concepts that are commonly considered in a rather naive
style. Moreover these definitions have to obey the axioms of institution. For
example we will see below how the template given by Def. 1 shapes a drastically
reformed understanding of logical languages (signatures) and variables.

The following example may convey an understanding about the process of
capturing of a logical system as institution.

Example 1 (Many sorted algebra as institution). This is a very common logical
system in computer science, and constitutes the logical basis of traditional alge-
braic specification. It is also used frequently in the literature as an example of
the definition of institution; however there are some slight differences between
various formalisations of many sorted algebra as institution. Here we sketch this
institution in accordance with [22] and other papers of the author in the recent
years.

The signatures (S, F ) consist of a set of sorts (types) S and a family F of func-
tions typed by arities (finite strings of sorts) and sorts, i.e. F = (Fw→s)w∈S∗,s∈s.
Signature morphisms map symbols such that arities are preserved; they can be
presented as families of functions between corresponding sets of function sym-
bols. Given a signature, its modelsM are many-sorted algebras interpreting sorts
s as sets Ms, and function symbols σ ∈ Fs1...sn→s as functions Mσ :Ms1× · · · ×
Msn → Ms. Model homomorphisms are many-sorted algebra homomorphisms.
Model reduct means reassembling the models components according to the sig-
nature morphism, i.e. for any signature morphism ϕ : (S, F ) → (S′, F ′) and
any (S′, F ′)-model M ′ we have Mod(ϕ)(M ′)x = M ′

ϕ(x) for each x sort in S or
function symbol in F . The sentences are first-order formulæ formed from atomic
equations (i.e. equalities between well formed terms having the same sort) by it-
eration of logical connectives (∧,¬) and (first-order) quantifiers ∀X (where X is
a finite block of S-sorted variables). Sentence translation means replacement of
the translated symbols, for example for variables the sort is changed accordingly.

Satisfaction is the usual Tarskian satisfaction of a first-order sentence in a
many-sorted algebra that is defined by induction on the structure of the sen-
tences.

When working out the details of this definition, the Sig, Mod and |= com-
ponents are straightforward. Less so is Sen that requires a careful management
of the concept of variable, an issue that will be discussed below in some detail.
The proof of the Satisfaction Condition is done by induction on the structure
of the sentences, the only non-trivial step corresponding to the quantifications.
This involves some mild form of model amalgamation (see [22]).
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2.3 The Expanse of Institution Theory

Def. 1 constitutes the starting concept of institution theory. Institution theory
currently comprises a rather wide (both in terms of internal developments and
applications) and constitutes a dynamic research area. The relationship between
the concept of institution and institution theory is somehow similar to that
between the concept of group and group theory in algebra. The definition of
group is very simple and abstract and it does not convey the depth and expanse of
group theory; the same holds for institutions and institution theory. The theory
of institutions has gradually emerged as the most fundamental mathematical tool
underlying algebraic specification theory (in its wider meaning) [57], also being
increasingly used in other areas of computer science. And a lot of model theory
has been gradually developed at the level of abstract institutions (see [22]),
with manyfold consequences including a systematic supply of model theories to
(sometimes sophisticated) non-conventional logical systems, but also new deep
results in conventional model theory.

We refrain here from discussing in some details the rather long list of achieve-
ments of institution theory, instead we refer to the survey [26] that gives a brief
account of the development of institution theory both in computer science and
in mathematical logic (model theory).

3 ...and Back

The wide body of abstract model theory results developed within institution
theory (many of them collected in [22]) can be regarded as an important contri-
bution of computer science to logic and model theory in general, and to universal
logic in particular. However here we will set this aside and instead will focus on
something else, which is more basic and subtle in the same time, namely on the
reformed understanding of some important basic concepts in logic. Through our
analysis we will see that this has been made possible not only because of the uni-
versal logic aspect of institution theory, but especially because of its computer
science origins. Computer science in general, and formal methods in particular,
cannot afford a naive informal treatment of logical entities for the simple rea-
son that often these have to be realised directly in implementations. It is thus
no surprise that in many situation issues arising from implementation of formal
specification languages can be very consonant with issues regarding the math-
ematical rigor imposed by the definition of institution and the corresponding
solutions are highly convergent.

In this section we will discuss the new understanding of the concepts of logical
language, variables, quantifiers, interpolation brought in by institution theory.
We conclude with a brief discussion challenging the common view on many sorted
logics.

3.1 On Logical Languages

Logical languages are the primary syntactic concept in mathematical logic. In-
formally they represent structured collections of symbols that, on the one hand
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are used as extra-logical symbols1 in the composition of the sentences or for-
mulæ, and on the other hand are interpreted, often in set theory, in order to get
semantics. In institution theory the logical languages correspond to the objects
of Sig and are called signatures, a terminology that owes to computer science.
Institution theory leads to a more refined understanding of two aspects of logical
languages, namely mappings between languages and variables.

Signature Morphisms and Language Extensions. In Def. 1, Sig is a cat-
egory rather than a class; this means that morphisms between signatures play
a primary role. In fact the category theoretic thinking leans towards morphisms
rather than towards objects, objects are somehow secondary to morphisms. Some
early and courageous presentations of category theory [34] even do it without
the concept of object since objects can be assimilated to identity morphisms. In
concrete situations the fact that Sig is only required to be category gives a lot of
freedom with respect to the choice for an actual concept of signature morphism.
One extreme choice is not to have proper signature morphisms at all or even
that Sig has only one object. The latter situation is common to logical studies
in which no variation in the language is necessary. A less extreme choice is made
in the traditional model theory practice, namely to have only language (signa-
ture) extensions as morphisms. However, mathematically this may be quite an
unconventional choice since usually, in concrete situations, morphisms are struc-
ture preserving mappings between objects and from this perspective signature
extensions represent a rather strong restriction.

With respect to signaturemorphisms the practice of formal specification is quite
different than that of mathematical logic in that it considers more sophisticated
concepts of mappings between languages. The example of the many-sorted algebra
institution given above is quite illustrative in this respect. The practice of alge-
braic specification (especially in the area of parameterised specifications) requires
muchmore than signature extensions, it requires at least the fully general structure-
preserving morphisms as in the aforementioned example. Moreover the literature
(e.g. [57]) considers also an even more complex concept of signature morphism,
the so-called derived signature morphisms that are in fact second-order substitu-
tions replacing function symbols by terms. These of course are also immediately
accommodated by the Sig part of Def. 1. This widening of the concept of language
extension to various forms of signaturemorphisms hasmanyfold implications in all
areas that involve the use of language extensions. For example paramount logical
concepts such as interpolation and definability get a much more general formula-
tion (see [22,59,20,51] etc.) with important consequences in the applications.

The case of the derived signature morphisms shows that in some situations the
simple criterion of preserving themathematical structure is not enough for defining
a fully usable conceptof signaturemorphism.There is alsoanother famous case that
comes from the behavioural specification trend [52,53,41,42,10,45,29,54]. When
defining the corresponding institution(s), the use of the mere structure-preserving

1 Logical symbols are connectors such as ∧, ¬,..., or quantifiers ∀,∃, or modalities
�,�, etc. Sorts (types), function, relations symbols, etc. are extra-logical symbols.
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mappings for the signaturemorphisms leads to the failure of theSatisfactionCondi-
tionofDef. 1. In order to get thatholding, anadditional conditionhas tobe imposed
on the signaturemorphismsknown in the literature as the ‘encapsulation condition’
andwhich in the concrete applications corresponds clearly to an object-orientation
aspect. In both [38] and [41] the authors remark that the derivation of the encapsu-
lation condition on the morphisms of signatures from the meta-principle of invari-
ance of truth under change of notation (the Satisfaction Condition of institutions)
seems to confirm the naturalness of each of the principles. We may add here that
this shows an inter-dependency between the abstract logic level and pragmatical
computer science aspects.

Variables and Quantifiers. The concept of variable is primary when having
to deal with quantifications. Mathematical logic has a common way to treat
variables which has a global aspect to it. A typical example is the following
quotation from [15] that refers to the language of first-order logic.

“To formalize a language L, we need the following logical symbols
parentheses ), (;
variables v0, v1, . . . , vn, . . . ;
connectives ∧ (and), ¬ (not);
quantifier ∀ (for all);

and one binary relation symbol ≡ (identity). We assume, of course, that no

symbol in L occurs in the above list.”

Upon analysis of this text we can easily understand that variables are considered
as logical rather than extra-logical symbols which also implies that, as a collec-
tion, they are invariant with respect to the change of the signature. Moreover
they have to be disjoint from the signatures. And of course, this collection of
variables ought to be infinite.

While such treatment of variables may work well when having to deal only
with ad-hoc signature extensions, as it is the case with conventional model the-
ory. However it rises a series of technical difficulties with the institution theoretic
approach.

1. Having a set of variables χ as logical symbols means that the respective
institution has χ as a parameter. Therefore, strictly speaking, it is improper
to talk, for example, about the institution of first-order logic.

2. In the concrete situations the category Sig is usually defined in the style of
Ex. 1, which means that the individual signatures are set theoretic structures
that are not restricted in any way on the basis of the fixed set of variables.
This of course cannot guarantee the principle of disjointness between the
signatures and the variables. For example it is possible that some signatures
may contain some of the variables as constants.

3. Moreover, the institution-theoretic approach to quantifiers [22,59,19] etc.
abstracts blocks of variables just to signature morphisms ϕ : Σ → Σ′, where
in the concrete situations ϕ stands for the extension of Σ with a respective
block of variables. This means that while the variables have to be disjoint
from the signature Σ, they are actually part of Σ′.
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Unfortunately much of the institution theory literature is quite sloppy about these
issues and adopts the common logic view of variables. However starting with [32]
a series of works in institution theory adopts a view on variables that responds ad-
equately to the aforementioned issues and therefore is mathematically rigorous.
This is based on a local rather than the common global view of variable, drawing
inspiration from the actual implementations of specification languages. For many
sorted algebra (Ex. 1) it goes like this. Given a signature (S, F ), a block of variables
for (S, F ) consists of a finite set of triples (x, s, (S, F )) where x is the name of the
variable and s ∈ S is its sort. It is also required that in any block of variables dif-
ferent variables have different names. Because of the qualification by the signature
(the third component), by axiomatic set theory arguments we get that a variable
for a signature is disjoint from the respective signature. On the other hand, they
can be adjoined to the signature. So, given a blockX of variables for a many sorted
signature (S, F ) let (S, F + X) denote the new signature obtained by adding the
variables of sort s as new constants of sorts s. Then for any (S, F+X)-sentenceρwe
have that (∀X)ρ is a (S, F )-sentence. In thisway satisfactionof quantified sentences
can be defined only in terms of model reducts, without having to resort to tradi-
tional concepts such as valuations of variables that have a strong concrete aspect.
An (S, F )-modelM satisfies (∀X)ρ if and only if for each (S, F+X)-modelM ′ such
thatMod(ϕ)(M ′) =M we have thatM ′ satisfies ρ, where ϕ denotes the signature
expansion (S, F ) → (S, F + X). Note that this definition is institution theoretic
since it does not depend on themany sorted algebra case, it can be formulated in ex-
actly the sameway in abstract institutions. Moreover, our local concept of variable
also behaves well with respect to the sentence translations induced by signature
morphisms. Given a signature morphism χ : (S, F )→ (S′, F ′), any block of vari-
ablesX for (S, F ) translates to a block of variablesX ′ for (S′, F ′) bymapping each
variable (x, s, (S, F )) to (x, χ(s), (S′, F ′)). “Behaves well” here means two things:
(1) that we get a block of variables as required, and (2) that the translation is func-
torial. Then latter aspect is crucial for the functor axioms for Sen.

It is very interesting to note that this local view on variables, necessary to
meet the mathematical rigor of the definition of institution, fits the way logical
variables are treated in actual implementations of specification languages (e.g.
CafeOBJ [28], etc.). There variables are declared explicitly and their scope is
restricted to the module in which they are declared. The way this fits exactly
the aforementioned approach to logical variables is explained by the fact that,
according to works such as [24] the institutions underlying specification lan-
guages have structured specifications or modules as their signatures, so in this
case the qualification by the signature of the institution means qualification by
a corresponding module.

The mathematical properties underlying our local approach to logical vari-
ables are axiomatised by the following abstract notion which has been used in
a series of works (e.g. [23,48,27,31], etc.) for building explicit quantifications in
abstract institutions in a way that it yields another sentence functor (and conse-
quently another institution that shares the signatures and the models with the
original institution).
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Definition 2 (Quantification Space). For any category Sig a subclass of ar-
rows D ⊆ Sig is called a quantification space if, for any (χ : Σ → Σ′) ∈ D and
ϕ : Σ → Σ1, there is a designated pushout

Σ
ϕ ��

χ

��

Σ1

χ(ϕ)

��
Σ′

ϕ[χ]
�� Σ′

1

with χ(ϕ) ∈ D and such that the ‘horizontal’ composition of such designated
pushouts is again a designated pushout, i.e. for the pushouts in the following
diagram

Σ
ϕ ��

χ

��

Σ1

χ(ϕ)

��

θ �� Σ2

χ(ϕ)(θ)

��
Σ′

ϕ[χ]
�� Σ′

1 θ[χ(ϕ)]
�� Σ′

2

ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ), and such that χ(1Σ) = χ and
1Σ[χ] = 1Σ′ .

The use of designated pushouts is required by the fact that quantified sentences
ought to have a unique translation along a given signature morphism. The coher-
ence property of the composition is required by the functoriality of the transla-
tions. For example, in the aforementioned concrete case of many sorted algebra,
D consists of the signature extensions ϕ : (S, F )→ (S, F+X) whereX is a finite
block of variables for (S, F ). For any signature morphism χ : (S, F )→ (S′, F ′)
we define X ′ = {(x, χ(s), (S′, F ′)) | (x, s, (S, F )) ∈ X}, ϕ[χ] to be signature
extension (S′, F ′) → (S′, F ′ + X ′) and χ(ϕ) : (S, F + X) → (S′, F ′ + X ′)
to be the canonical extension of χ that maps each variable (x, x, (S, F )) to
(x, χ(s), (S′, F ′)).

3.2 On Interpolation

Because of its many applications in logic and computer science, interpolation is
one of the most desired and studied properties of logical systems. Although it
has a strikingly simple and elementary formulation as follows,

given sentences ρ1 and ρ2, if ρ2 is a consequence of ρ1 (written ρ1 �
ρ2) then there exists a sentence ρ (called interpolant) in the common
language of ρ1 and ρ2 such that ρ1 � ρ and ρ � ρ2,

in general it is very difficult to establish. The famous result of Craig [16] marks
perhaps the birth of the study of interpolation, proving it for (single sorted)
first-order logic. The actual scope of Craig’s result has been gradually extended
to many other logical systems (for example in the world of modal logics, see
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[36]), a situation that meets the universal character of interpolation that can be
easily detected from its formulation that does not seem to commit inherently to
any particular logical system.

The institution theoretic approach to interpolation has lead to a multi di-
mensional reformation of this important concept that will be discussed below.
However, before that, we note that within institution theory the consequence
relation � from the above formulation of interpolation is interpreted as the se-
mantic consequence |=, i.e. for a given signature Σ and sets E, Γ of Σ-sentences,
E |= Γ when for each Σ-model M if M satisfies each sentence in E then it
satisfies each sentence in Γ too.

From Single Sentences to Sets of Sentences. It has been widely believed
that equational logic, the logical system underlying traditional algebraic speci-
fication, lacks interpolation; likewise for Horn-clause logic and other such frag-
ments of first-order logic. As far as we know, Piet Rodenburg [55,56] was the
first to point out that this is a misconception due to a basic misunderstanding of
interpolation, rooted in the heavy dependency of logic culture on classical first-
order logic with all its distinctive features taken for granted. Then it follows the
grave general fault of exporting a coarse understanding of concepts dependent on
details of a particular logical system to other logical systems of a possibly very
different nature, where some detailed features may not be available. In the case
of interpolation, the gross confusion has to do with looking for an interpolant
as a single sentence. In first-order logic, which has conjunction, looking for in-
terpolants as finite sets of sentences ({ρ1, . . . , ρn}) is just the same as looking
for interpolants as single sentences (ρ1 ∧ · · · ∧ ρn). Hence, the common formu-
lation of interpolation requires single sentences as interpolants. However, this is
not an adequate formulation for equational logic which lacks conjunction, i.e.,
conjunction ρ1 ∧ ρ2 of universally quantified equations ρ1 and ρ2 cannot be cap-
tured as a universally quantified equation in general. Rodenburg [55,56] proved
that equational logic has interpolation with the interpolant being a finite set of
sentences, and this apparently weaker interpolation property is quite sufficient
in both computer science and logic applications.

From Language Extensions to Signature Morphisms. The relationship
between signatures Σ1 (of ρ1), Σ2 (of ρ2) and their union Σ1 ∪ Σ2 (where
the consequence ρ1 � ρ2 happens) and intersection Σ1 ∩ Σ2 (the signature of
the interpolant), is depicted by the following diagram where arrows indicate the
obvious inclusions:

Σ1 ∩Σ2
⊆ ��

⊆
��

Σ1

⊆
��

Σ2 ⊆
�� Σ1 ∪Σ2

While intersections ∩ and unions ∪ are more or less obvious for signatures as
used in first-order logic and in many other standard logics, they are not so in
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some other logical systems, and certainly not at the level of abstract institutions
where signatures are just objects of an arbitrary category. One immediate re-
sponse to this problem would be to add an infrastructure to the abstract category
of signatures that would support concepts of ∩ and ∪; in fact this is already avail-
able in the institution theoretic literature and is called inclusion system [30,22].
Another solution would be, at the abstract level to use arbitrary signature mor-
phisms and in the applications to restrict the signature morphisms only to those
that are required to be, for example, inclusions (i.e. language extensions). Due
to the abstraction involved, this means a lot of flexibility. For instance, in many
computer science applications it is very meaningful to consider non-inclusive
signature morphisms in the role of inclusions in the square above. An example
comes from the practice of parameterised specifications (e.g. [57]) where instanti-
ation of the parameters may involve signature morphisms that collapse syntactic
entities. A generalised form of interpolation involving such non-injective signa-
ture morphisms is needed in order to get the completeness of formal verification
for structured specifications (e.g. [12,11]). This generalisation of interpolation
that relaxes language extensions to arbitrary signature morphisms has been in-
troduced in [59]. The category-theoretic property of the above intersection-union
square that makes things work is that it is a pushout. These considerations lead
to the following abstract formulation of the interpolation property [22].

Definition 3 (Institution-theoretic Craig Interpolation [22]). 2 Given L,
R ⊆ Sig, the institution has Craig (L,R)-interpolation when for each pushout
square of signatures

Σ
ϕ1∈L ��

ϕ2∈R
��

Σ1

θ1
��

Σ2
θ2

�� Σ′

and any finite sets of sentences E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2), if θ1(E1) |=
θ2(E2) then there exists a finite set E of Σ-sentences such that E1 |= ϕ1(E) and
ϕ2(E) |= E2.

The (abstract) restriction to pre-defined classes of signature morphisms, L for
ϕ1 andR for ϕ2, constitutes an essential parameter in the above definition. In its
absence the interpolation concept would be unrealistically too rigid and strong
(for example many-sorted first-order logic would not support it [43,13,22]).

A couple of typical examples of institution-theoretic Craig (L,R)-interpolation
are as follows:

– many-sorted first-order logic for either L or R consisting of the signature
morphisms that are injective on the sorts [43,22]; and

– many-sorted Horn clause logic for R consisting of the signature morphisms
that are injective [20,22].

2 Given a signature morphism ϕ : Σ → Σ′, we abbreviate Sen(ϕ) as ϕ, and so for a set
of sentences E ⊆ Sen(Σ), ϕ(E) is the image of E under Sen(ϕ).
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From Craig to Craig-Robinson Interpolation. There is a variety of situa-
tions in model theory (e.g. Beth definability [7,15]) and in computer science (e.g.
complete calculi for structured specifications [12]) when Craig interpolation is
used together with implication. The latter property is so obvious in some logics
– such as first-order logic – that it is hardly ever mentioned explicitly in concrete
contexts. Its definition at the level of abstract institutions is straightforward [59]:
an institution has implication when for every signature Σ and Σ-sentences ρ1,
ρ2, there exists a Σ-sentence ρ such that for each Σ-model M ,

M |= ρ if and only if M |= ρ2 whenever M |= ρ1.

However, in many contexts we may render implication unnecessary by reformu-
lating the interpolation property. Important applications are definability [51] in
model theory and the completeness of calculus for structured specifications [22]
in computer science. The trick is to ‘parameterise’ each instance of interpolation
by a set of ‘secondary’ premises. In [33,58,61] this is called Craig-Robinson inter-
polation; it also plays an important role in specification theory, e.g. [6,30,33,22].
Let us recall here explicitly its institution-theoretic formulation.

Definition 4 (Institution-Theoretic Craig-Robinson Interpolation). An
institution has Craig-Robinson (L,R)-interpolation when for each pushout
square of signatures with ϕ1 ∈ L and ϕ2 ∈ R

Σ
ϕ1 ��

ϕ2

��

Σ1

θ1
��

Σ2
θ2

�� Σ′

and finite sets of sentences E1 ⊆ Sen(Σ1) and E2, Γ2 ⊆ Sen(Σ2), if θ1(E1) ∪
θ2(Γ2) |= θ2(E2) then there exists a finite set E of Σ-sentences such that E1 |=
ϕ1(E) and ϕ2(E) ∪ Γ2 |= E2.

Clearly, Craig-Robinson interpolation implies Craig interpolation. In any com-
pact institution with implication, Craig-Robinson interpolation and Craig inter-
polation are equivalent [25,22] (so for instance within first-order logic, the two
properties coincide). This means that Craig-Robinson interpolation alone in prin-
ciple is weaker than Craig interpolation and implication. But is it properly so?
Is there a significant example of an institution lacking implication but having
Craig-Robinson interpolation? Through a rather sophisticated technique of so-
called Grothendieck institutions [18,21], a result in [22] gives a general method
to lift Craig interpolation to Craig-Robinson interpolation in institutions that
may not have implication but are embedded in a certain way into institutions
having implication. A concrete consequence of this result based on the Craig in-
terpolation property of many-sorted first-order logic that was mentioned above,
is as follows.
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Corollary 1 (Craig-Robinson Interpolation in Many-Sorted Horn-
clause Logic). Many-sorted Horn-clause logic (with equality) has (L,R)-Craig-
Robinson interpolation when L consists only of signature morphisms ϕ that are
injective on sorts and ‘encapsulate’ the operations.3

One of the important significance of this result can be seen in conjunction
with the upgrade in [22] of the completeness result for structured specifications
of [12], that replaces Craig interpolation and implication by Craig-Robinson
interpolation as one of the conditions. In the light of [12], the lack of implication
has been used in the formal specification community as an argument against the
adequacy of equational logic as a specification formalism. However we can see
that this was only due to a couple of misunderstandings (1) that implication
is not really needed for obtaining the completeness result of [12] and (2) that
equational logic does satisfy the kind of interpolation that is really needed there
and in a form that meets the requirements of the applications. In practice the
only restriction involved by the conditions of Cor. 1 is that all information hidings
have to be done with morphisms from L, something that seem to accord well
with practical intuitions underlying the concept of information hiding.

3.3 A Short Word on Many-Sortedness

Another significance of the aforementioned Craig-Robinson interpolation prop-
erty of many-sorted Horn-clause logic is that, if we reduce the context to condi-
tional equational logic by not considering predicate symbols – which is the logic
underlying the equational logic programming paradigm (e.g. [17]) – it makes
sense only in the many-sorted context. In a single sorted context it is clear
that L collapses to nothing. This is just one of the examples that sharply re-
futes an idea that, in my opinion, is common among mathematical logicians,
namely that many-sorted logics are “inessential” variations of their single-sorted
versions (e.g. [50]). Another example is of course the case of generalised Craig
interpolation in first-order logic; while the single-sorted variant supports it for
all pushout squares of signature morphisms, we have seen that it is not so for
the many-sorted variant.
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Politehnic Iaşi 14(18), 1–14 (1968)
36. Gabbay, D.M., Maksimova, L.: Interpolation and Definability: modal and intuition-

istic logics. Oxford University Press (2005)
37. Goguen, J.: A categorical manifesto. Mathematical Structures in Computer

Science 1(1), 49–67 (1991); Also, Programming Research Group Technical Mono-
graph PRG–72, Oxford University (March 1989)

38. Goguen, J.: Types as theories. In: Reed, G.M., Roscoe, A.W., Wachter, R.F. (eds.)
Topology and Category Theory in Computer Science, Oxford, pp. 357–390 (1991);
Proceedings of a Conference held at Oxford (June 1989)

39. Goguen, J., Burstall, R.: Introducing institutions. In: Clarke, E., Kozen, D. (eds.)
Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)

40. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery 39(1), 95–146
(1992)

41. Goguen, J., Diaconescu, R.: Towards an algebraic semantics for the object
paradigm. In: Ehrig, H., Orejas, F. (eds.) Abstract Data Types 1992 and COM-
PASS 1992. LNCS, vol. 785, pp. 1–34. Springer, Heidelberg (1994)

42. Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1),
55–101 (2000)
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Abstract. The process analysis toolkit (PAT) integrates the expressiveness of 
state, event, time, and probability-based languages with the power of model 
checking. PAT is a self-contained reasoning system for system specification, si-
mulation, and verification. PAT currently supports a wide range of 12 different 
expressive modeling languages with many application domains and has attracted 
thousands of registered users from hundreds of organizations. In this invited talk, 
we will present the PAT system and its vision on “Event Analytics” (EA) which 
is beyond “Data Analytics”. The EA research is based on applying model check-
ing to event planning, scheduling, prediction, strategy analysis and decision  
making. Various new EA research directions will be discussed. 

1 Introduction 

Large complex systems that generate intricate patterns of streaming events arise in many 
domains. These event streams arise from composite system states and control flows 
across many interacting components. Concurrency, asynchrony, uncertain environments -
leading to probabilistic behaviours- and real-time coordination are key features of such 
systems. Many of the functionalities are realized in these systems by embedded software 
(and hardware) that must interact with the physical agents and processes. The proper 
functioning of such systems depends crucially on whether the software-mediated event 
patterns that are generated fulfill the required criteria. For example in a public transport 
system such as the Metro railway systems in large cities the control software must ensure 
that the distances between two trains sharing a track must never fall below a certain thre-
shold and at the same time must optimize the number of trains deployed on track and 
their speeds to cater for increased demand for service during peak hours.  

The key barriers to designing and deploying software-controlled complex systems 
are capturing system requirements and parameters and verifying important reliability, 
security and mission critical properties. There are well known methods (the so-called 
formal methods) for tackling this problem that are based on mathematical modelling 
and logic. The history of formal methods can be traced back to an early paper 
“Checking Large Routine” presented by Alan Turing at a conference on High Speed 
Automatic Calculating Machines at Cambridge University in 1949. More recently one 
particularly successful technique called Model Checking [CE81] was recognized 
through the Turing award being awarded to its creators Clarke, Emerson and Sifakis.  
At a Computer Aided Verification (CAV) conference, a research group from the Intel 
Corporation reported that the entire Intel i7 CPU core execution cluster was verified 
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using model checking without a single test case [KGN+09]. The Static Driver Verifier 
(SDV) [BCLR04] from Microsoft, a model checking system, has been deployed to 
verify Windows driver software automatically. Bill Gates in 2002 stated:  

"For things like software verification, this has been the Holy Grail of computer 
science for many decades. But now, in some very key areas for example driver ve-
rification we're building tools that can do actual proofs of the software and how it 
works in order to guarantee the reliability. "  

These two industrial case studies are particularly exciting because they show that the 
exhaustive search techniques that the model checking method is based on can handle 
systems of large sizes:  Intel i7 has eight cores and millions of registers, whereas 
driver software typically has thousands of lines of code. For a restricted version of 
model checking called bounded model checking, which often suffices in many prac-
tical settings, the scope of applicability is further enhanced by the so called SMT 
solvers [DeB08]. As a result many industries have started to actively invest in model 
checking technology [MWC10]. 

2 PAT Model Checking Systems 

Many model checkers have been developed and successfully applied to practical sys-
tems, among which the most noticeable ones include SPIN, NuSMV, FDR, UPPAAL, 
PRISM and the Java Pathfinder. However those tools are designed for specialized 
domains and are based on restrictive modeling languages. Users of such systems 
usually need to manually translate models from the user’s domain to the target lan-
guage. In contrast, the Process Analysis Toolkit (PAT) [SLDP09] support modelling 
languages that combine the expressiveness of event, state, time and probability based 
modeling techniques to which model checking can be directly applied. PAT currently 
supports 12 different formalisms and languages ranging from graphical Timed Auto-
mata to programming languages for sensor networks. PAT is a self-contained system 
for system specification, simulation, and verification. Its core language is called CSP# 
which is based on Hoare’s event based formalism CSP (Communicating Sequential 
Processes) [Hoare85] and the design of the CSP# is influenced by the integrated spe-
cification techniques (e.g. [MD00, TDC04]). The formal semantics of CSP# 
[SZL+13] is defined in Unified Theory of Programming [HH98]. The key idea is to 
treat sequential terminating programs, which may be as complex as C# programs, as 
events. The resulting modeling language is highly expressive and can cover many 
application domains such as concurrent data structures [LCL+13], web services 
[TAS+13], sensor networks [ZSS+13], multi-agent systems [HSL+12], mobile sys-
tems [CZ13] and cyber security systems [BLM+13]. The PAT system is designed to 
facilitate the development of customized model checkers and analysis tools. It has an 
extensible and modularized architecture to support new languages, reduction, abstrac-
tion and new model checking algorithms [DSL13]. PAT has attracted more than 3,000 
registered users from 800+ organizations in 71 countries, including companies such as 
Microsoft, HP, Sony, Hitachi, Canon and many others. Many universities use PAT for 
teaching advanced courses. The following diagram illustrates the PAT architecture. 
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3.1 Event Analytics 

One of the goals of event analytics is to construct event streams that lead from the 
initial state to the desired goal states. Recently, we investigated the feasibility of using 
model checking to solve classic planning problems [LSD+14]. Our experimental re-
sults indicate that the performance of PAT is comparable to that of state-of-the-art AI 
planners for certain problem categories. In addition, a successful application of PAT 
to an intelligent public transportation management system, called Transport4You, 
won the ICSE 2011 SCORE Competition [LYW11]. In the Transport4You project, 
PAT model checker is used not only as a verification tool but also as a service that 
computes optimal travel plans. PAT’s new real-time and probabilistic verification 
modules can reason about real-time properties and calculate min/max probabilistic 
values for a particular events or states (the methodology and some preliminary results 
are reported in [SSLD12] with fixed value for timing and probability parameters). 
This sets a solid foundation for the proposed EA research. For EA systems to work 
with timed and probabilistic events that can evolve dynamically,  one must develop 
sophisticated algorithms that can synthesizes timing and probabilistic parameter va-
riables for real-time and probabilistic concurrent systems. It is important to conduct 
research to make the techniques scalable by developing new abstraction and reduction 
techniques, and apply multi-core and many-core verification to improve the perfor-
mance. EA systems can then be deployed to assist the decision making and risk analy-
sis in financial systems, and they can also provide context based activity/service  
planning for cyber-physical systems. It will be interesting to investigate the potential 
integration of optimisation techniques from Operations Research into EA systems.  

3.2 Financial Critical Systems Verification 

Financial software systems are critical and thus subject to strict requirements on func-
tional correctness, security and reliability. With the recent development of online banking 
through mobile devices and computerized stock trading, the potential damage which 
could be the result of software vulnerability (e.g., credit card information leakage, finan-
cial loss due to high frequency trading) is high. This is why often strong regulations, e.g., 
Internet Banking and Technology Risk Management Guidelines from the Monetary Au-
thority of Singapore, are imposed on the financial software design/development/testing 
process. While the regulations provide a checklist that could contribute to the quality of 
the software system, there are hardly any formal guarantees. The Mondex project  
on smart cards has been developed by NatWest bank in collaboration with Oxford  

PAT

   Event Analytics with Time & Probability

 Financial Critical Systems Cyber Physical Systems  
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University using formal methods. As a result, Mondex became the first financial product 
to achieve certification at the highest level, namely, ITSEC level E6 [WSC+08]. While 
the Mondex project is a success story, demonstrating that applying formal methods does 
provide a guarantee in terms of system correctness/security, the techniques used in the 
project are rather limited, i.e., primarily formal modeling and manual theorem proving, 
which requires a considerable amount of expertise and time.  

Recently, we have developed a method that combines hypothesis testing and prob-
abilistic reachability analysis to study real-time trading systems. We identified the 
weak components inside the system so that the system designer can improve these 
components to improve the reliability of the whole system (some initial results were 
reported in [GSL+13]). It is important to investigate this further with EA based tech-
niques, along with reliability predictions of other financial critical systems. It will be 
also interesting to investigate event based risk analytics for financial decision making 
which can have potential benefits for e.g., Monetary Authority of Singapore (MAS).  

3.3 Cyber-Physical Systems Verification 

Cyber-physical systems will play important roles in building smart cities. Such systems 
are fully automatic and they are ‘aware’ of their environment and self-adaptive to the 
environment changes. Many successes have been achieved in research laboratories espe-
cially for activity monitoring. However, such systems are not widely deployed due to, not 
only scalability and a lack of guarantees for correctness and reliability, but also the fact 
that those system are designed for demonstration purpose with well controlled scenarios 
in a lab environment. It is important to apply EA technology to analysis real environment 
and deliver highly reliable systems and reduce the prototyping time and cost. We also 
plan to apply event analytics to provide automatic intelligent assistive services in the 
smart city context (initial ideas have been applied to smart transportation systems 
[LYW11]). We have gained substantial experience will be also based on a recent suc-
cessful application of the PAT system to “Activity Monitoring and UI Plasticity for sup-
porting Ageing with Mild Dementia at Home” (AMUPADH 2010-12) [BMD10], a joint 
project with Alexandra Hospital in Singapore. After the Ethics Approval granted in 2011, 
a smart reminding system with cyber connected sensors has been successfully deployed 
in Peacehaven nursing home in 2012. The experience and techniques gained in 
AMUPADH project can certainly be generalized and applied in a wider context. It will 
be interesting to develop domain specific EA techniques that can automatically analysis 
the probabilistic and real-time services rules for smart city systems. Furthermore, para-
meterized probabilistic based verification techniques can be applied to estimate overall 
reliability of the smart city systems based on component subsystem reliabilities. EA 
techniques can also be developed to facilitate service compositions. 

4 Event Analytics vs Data Analytics 

Big Data and Data Analytics have received much hype in recent years. However,  
we surpassed capacity to store all the data we produce while growth in data creation 
has continued at an exponential rate [BSH13]. A recent study suggests we are able to 
analyze only 0.5% of all the data. Another significant limitation of current data analy-
sis technique is the use of black box techniques (which is what Machine Learning 
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techniques are) to generate results that cannot be explained. The ability to extract criti-
cal events from Big Data and to synthesize high-level models from such events can 
allow us to gain insights that are previously unattainable. For instance, better control 
on analysis that offer guarantees in believability or trust, combined with explanation 
can allow more confident decision making that rely on Big Data analysis. Furthermore, 
reducing the reliance on prior training data as is the case with majority of current ap-
proaches, possibly substituted or complemented by use of prior domain knowledge, 
would make Big Data analysis more scalable and robust. One future research can aim 
to combine model checking, machine learning and knowledge representation tech-
niques and create an event analytics-based decision making engine for Big Data.  

4.1 Event Extraction from Big Data 

Model checking has been applied to large systems with more than 10^20 states 
[BCM+92]. However Big Data may still pose challenges to state-of-the-art model check-
ing techniques. It is important to investigate techniques that further improve the scalabili-
ty of model checking-based Event Analytics techniques. Large amounts of data streams 
can be generated from different sources such as social media and sensors. The granularity 
of such data may be too fine, and the quantity may still be too large for model checking 
techniques even with various reduction techniques. The data generated from these 
sources are not random: there is often (implicit or explicit) structure and semantics be-
hind it. In other words, knowledge can be extracted from such data. It is important to 
investigate the integration of data mining techniques to continually extract patterns, con-
tinually from raw data. Such patterns, higher-level summaries, will then be turned into 
event traces which can then be more effectively utilized as inputs to model checking.  

Ontologies have been widely applied as a median for sharing data and knowledge 
within and across domains. Long-standing research on ontologies and knowledge repre-
sentation has developed ontology-based data integration techniques [Len02], which are 
especially suitable for this purpose. It will be interesting to investigate the problems of 
knowledge representation and learning to automatically induce event ontologies from 
raw data. Event ontologies can be supplied to model checking techniques to alleviate the 
data heterogeneity and scalability problems. Further research on ontology-based da-
ta/event integration, optimisation of ontology reasoning and more accurate ontology 
learning that involves more expressive ontology languages is thus required. 

4.2 Model Synthesis from Events 

Events extracted from Big Data are temporal in nature: they occur sequentially or con-
currently, and form concurrent event traces that are interact in complex ways. An ex-
pressive mathematically based model that represents an entire system using states and 
events will enable deep analyses of interacting event traces on a globally level. For 
example, the L_ algorithm [Ang87] is proposed to learn deterministic finite automata 
(DFA) from a set of events. It will be interesting to investigate the problem of synthe-
sizing, or generating appropriate models from event traces which may base on our 
early synthesis and verification work [SD06, LAL+14]. Model checking techniques 
have traditionally been applied to the analysis and verification of software and hard-
ware systems, where complete knowledge of the system and its environment is usually 
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assumed. However, such an assumption is often too strong for open scenarios such as 
emergency response and infectious disease management. It is important to investigate 
novel model checking techniques that are capable of handling such organic systems.  

Acknowledgement. We would like to thank E. Clarke, D. Rosenblum, A.P. Sheth 
P.S. Thiagarajan and many others for insightful discussions on these topics. 
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Abstract. In this paper we introduce a class of descriptors for regular
languages arising from an application of the Stone duality between fi-
nite Boolean algebras and finite sets. These descriptors, called classical
fortresses, are object specified in classical propositional logic and capable
to accept exactly regular languages. To prove this, we show that the lan-
guages accepted by classical fortresses and deterministic finite automata
coincide. Classical fortresses, besides being propositional descriptors for
regular languages, also turn out to be an efficient tool for providing alter-
native and intuitive proofs for the closure properties of regular languages.

Keywords: regular languages, finite automata, propositional logic,
Stone duality.

1 Motivations

Regular languages are those formal languages that can be expressed by Kleene’s
regular expressions [12] and that correspond to Type-3 grammars in Chomsky
hierarchy [13]. As is well-known, there are several ways to recognize if a for-
mal language is either regular or not: regular expressions, regular grammars,
deterministic and non-deterministic finite automata.

The aim of this paper is to present an approach to the problem of recognizing
regular languages introducing a dictionary for translating deterministic finite
automata (DFA) in the language of classical propositional logic. The main idea
underlying our investigation is to regard each DFA as a finite set-theoretical
object and then applying the finite slice of the Stone duality to move from DFA to
algebra and, finally, to logic. The logical objects which arise by this “translation”
are called classical fortresses (for FORmula, TheoRy, SubstitutionS) and the
main result in the paper shows that a language is regular if and only if there
exists a fortress that accepts it.

It is known that if one tries to describe the behavior of DFA using a logical
language, by Büchi-Elgot-Trakhtenbrot Theorem [3,6,14], one comes up with a
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formalization in the monadic fragment of classical second-order logic. Hence, it
is worth to point out that in this paper we address a different problem: we do
not aim at describing DFA using logic, but at introducing logico-mathematical
objects – classical fortresses – capable to mimic them through the mirror of the
Stone duality.

Dualities have already been used to study regular languages. For instance,
the authors of [9,8] extend Stone duality to Boolean algebras with additional
operators to get Stone spaces equipped with Kripke’s style relations, shading thus
new light on the connection between regular languages and syntactic monoids. In
[7], dualities are used to give a nice proof of Brzozowski’s minimisation algorithm
[2]. In this contribution we use the bare minimum needed of Stone duality theory
to point out how a deterministic finite-state automaton can be fully described
in classical propositional logic. The logical description we obtain, the classical
fortress, could, by virtue of its simplicity, prove itself useful in several directions.

In this paper we show that classical fortresses are an efficient and robust
formalism for providing alternative and intuitive proofs for the closure properties
of regular languages. In this setting, we shall provide alternative and easy proofs
of the classical results stating that the class of regular languages is closed under
the usual set theoretical operations of union, intersection and complementation.

Moreover, classical fortresses offer a privileged position to generalize DFA to a
non-classical logical setting, thus providing a uniform and reasonably defensible
way to define models of computation in these non-classical logics. In fact, if L is
any non-classical algebraizable logic for which a Stone-like duality holds between
the finite slice of its algebraic semantics and a target category – which plays the
rôle of finite sets in the classical case –, then, once fortresses have been defined in
L, we can reverse the construction which brings to DFA from classical fortresses
and obtain a notion of “automaton” for L. Although a detailed description of
this generalization is beyond the scope of the present paper, we shall discuss it in
slightly more details in the last section. In the same section we shall also discuss
a further generalization of DFA’s which is obtained by lifting the definition of
fortress by using the full Stone duality between the variety of Boolean algebras
and totally disconnected compact Hausdorff topological spaces.

The paper is structured as follows: Section 2 recalls the necessary preliminary
notions and results about regular languages, deterministic and non-deterministic
finite automata, Boolean algebras and Stone duality, and classical propositional
logic. In Section 3 classical fortresses are introduced. In the same section we
shall also show the main result of this paper, namely that a language is regular
if and only if it is accepted by a classical fortress. The effective procedure to
define a classical fortress from a DFA is presented in Section 4, while in Section
4.1 we show that the runs of an automaton over words can be mimicked in
the corresponding fortress. Section 5 is dedicated to the problem of reducing the
number of variables used by fortresses. In Section 6 we provide alternative proofs
for the closure properties of regular languages through classical fortresses. We
end this paper with Section 7 in which we discuss some possible generalizations
of finite automata taking into account the viewpoints that fortresses offer.
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2 Preliminaries

2.1 Deterministic and Nondeterministic Finite Automata

We refer to [10] for all unexplained notions on the theory of finite automata.
Let Σ be a finite alphabet. A deterministic finite automata (DFA henceforth)

over Σ is a tuple
A = (S, I, δ, F ),

consisting in a finite set S of states, an initial state I ∈ S, a transition relation
δ ⊆ S × Σ × S such that |δ(s, a)| ≤ 1, where δ(s, a) = {s′ ∈ S | (s, a, s′) ∈ δ},
for any s ∈ S, a ∈ Σ, and a set F ⊆ S of final states. A DFA is complete if
|δ(s, a)| = 1, for any s ∈ S, a ∈ Σ.

For a finite word w = a1a2 . . . an ∈ Σ∗, a run of a DFA A over w is a
finite sequence of states s1, . . . , sn+1 such that s1 = I and si+1 ∈ δ(si, a), any
1 ≤ i ≤ n. A run is accepting if sn+1 ∈ F . The language accepted by a DFA
A, denoted by L(A), is the set of all words accepted by A and it is a regular
language. Every incomplete DFA can be transformed into a complete one, while
preserving its language.

2.2 Classical Propositional Logic

We shall work with a finite set of propositional variables V = {v1, . . . , vn}.
Formulas, denoted by lower case greek letters ϕ, ψ, . . ., are built in the signature
{∧,∨,¬,�} of classical propositional logic as usual:

ϕ ::= � | vi | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

Denote by Form(V ) the set of all formulas defined from V . A substitution is a
map σ:V → Form(V ). Given a formula ϕ in the variables v1, . . . , vn, and given
a substitution σ, the formula ϕ[σ] is obtained by replacing in ϕ each occurrence
of a variable vi by the formula σ(vi). Substitutions can be composed: if σ1 and σ2
are two substitutions on the same set of variables, then ϕ[σ1 ◦ σ2] = (ϕ[σ2])[σ1],
for any formula ϕ.

A valuation is any map ρ from V to {0, 1}, which uniquely extends to formulas
by the usual inductive clauses: ρ(�) = 1; ρ(ϕ∧ψ) = min{ρ(ϕ), ρ(ψ)}; ρ(ϕ∨ψ) =
max{ρ(ϕ), ρ(ψ)}; ρ(¬ϕ) = 1− ρ(ϕ). A valuation ρ is a model for a formula ϕ iff
ρ(ϕ) = 1.

The deductive closure 〈Γ 〉 of a set Γ of formulas is the set of all formulas ϕ
such that each model of all formulas in Γ is a model of ϕ, too. We shall write
〈γ〉 instead of 〈{γ}〉. In the following we shall use capital greek letters Θ,Γ, . . .
to denote theories, that is, deductively closed set of formulas, and hence we
shall write Θ |= ϕ iff every valuation ρ which is a model for every ϑ ∈ Θ, is
a model of ϕ, too. Equivalently, Θ |= ϕ iff ϕ ∈ Θ. Two formulas ϕ and ψ are
logically equivalent, and we write ϕ ≡ ψ, if and only if 〈ϕ〉 |= ψ and 〈ψ〉 |= ϕ.
Equivalently, ϕ ≡ ψ if ρ(ϕ) = ρ(ψ) for each valuation ρ. A theory Θ is prime
over V if for every pair of formulas ϕ, ψ ∈ Form(V ), if ϕ ∨ ψ ∈ Θ, then either
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ϕ ∈ Θ or ψ ∈ Θ. In classical propositional logic, prime and maximal theories
coincide, whence, Θ is prime iff for every formula ϕ, either ϕ ∈ Θ or ¬ϕ ∈ Θ.

A min-term is a maximally consistent elementary conjunction of literals from
V , that is, a formula α is a min-term, if

α =

n∧
i=1

(vi)
∗(i),

where ∗(·) : {1, . . . , n} → {0, 1} and, for each variable vi,

(vi)
∗(i) =

{
vi, if ∗ (i) = 1,
¬vi, if ∗ (i) = 0.

For each min-term α, the theory 〈α〉 is prime over V , and every prime theory is
the deductive closure of a min-term.

2.3 Finite Boolean Algebras: Duality and Propositional Logic

We refer to [4] for all unexplained notions on the theory of Boolean algebras and
to [11] for Stone duality.

Let B = (B,∧,∨,¬, 1) be a Boolean algebra. A filter of B is an upward
closed (w.r.t. the lattice order of B) subset ∅ �= f ⊆ B such that x, y ∈ f
implies x ∧ y ∈ f. Filters are in bijection with congruences via the maps f �→
Θ̄f = {(a, b) | (¬a ∨ b) ∧ (¬b ∨ a) ∈ f}, and Θ̄ �→ fΘ̄ = {a | (a, 1) ∈ Θ̄}.
Given a Boolean algebra A and a congruence Θ̄ ⊆ A2, consider the system
A/Θ̄ = ({a/Θ̄ | a ∈ A},∧Θ̄,∨Θ̄,¬Θ̄,�/Θ̄), where a/Θ̄ is the Θ̄-equivalence class
of a, and a/Θ̄ ∧Θ̄ b/Θ̄ = (a ∧ b)/Θ̄, a/Θ̄ ∨Θ̄ b/Θ̄ = (a ∨ b)/Θ̄, ¬a/Θ̄ = (¬a)/Θ̄.
Then A/Θ̄ is a Boolean algebra, called the quotient of A modulo Θ̄.

A prime filter of B is a proper filter p such that x ∨ y ∈ p implies x ∈ p or
y ∈ p. A maximal filter of B is a proper filter which is not included in any other
proper filter. Notice that, for every Boolean algebra B, prime filters and maximal
filters coincide. The set of all prime filters of B is called the prime spectrum of
B and it is denoted by Spec B.

An atom of B is an element a ∈ B such that a �= 0 and if 0 �= c ≤ a (w.r.t.
the lattice order of B), then a = c. Notice that each prime filter p of B is the
upward closure of a unique atom a of B. We say that p is generated by a, and
write p = ↑a.

The free n-generated Boolean algebra is denoted by Fn(B) and it is, up to
isomorphism, the unique Boolean algebra A such that: (i) A is generated by a
set X of n of its elements, (ii) for any Boolean algebra B, each set function
X → B extends uniquely to a homomorphism A → B. The structure Fn(B) is
uniquely determined, up to isomorphisms, as the only Boolean algebra having 2n

atoms and 22
n

elements. Fn(B) is isomorphic to the direct product of 2n copies
of the two-element Boolean algebra {0, 1}, or, equivalently is the algebra of all
functions f : {0, 1}n → {0, 1} endowed with pointwise defined operations. The
(free) generators of Fn(B) are the projection functions πi(t1, t2, . . . , tn) = ti, for
each i = 1, 2, . . . , n.
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Note that Spec F1(B) ∼= {0, 1} as sets, while as Boolean algebras {0, 1} is
isomorphic with F0(B) = {[¬�], [�]}. Moreover, Spec {0, 1} ∼= {[�]}, that is,
Spec {0, 1} is a singleton.

Since classical propositional logic is algebraizable in the sense of [1], all the
logical notions introduced in Section 2.2 have a correspondence at algebraic level.
In fact the free n-generated Boolean algebra is isomorphic with the Lindenbaum
algebra of all classes of logically equivalent formulas over a fixed set of n distinct
variables and, hence, to each formula ϕ we associate its equivalent class modulo
logical equivalence [ϕ] = {ψ | ψ ≡ ϕ} ∈ Fn(B).

An endomorphism of Boolean algebras is a homomorphismmapping a Boolean
algebra into itself. A substitution σ on the n-variables {v1, . . . , vn} uniquely
determines an endomorphism σ̄ of Fn(B), and viceversa. As a matter of fact,
the restriction of each endomorphism of Fn(B) to the class of the variables
[vi]’s clearly determines one substitution, while each substitution from V into
formulas uniquely defines a homomorphism by the very definition of free algebra,
[v1], . . . , [vn] being the generators of Fn(B). Valuations V → {0, 1} can then be
identified with homomorphisms of Fn(B) into {0, 1}. Each min-term α defines
the atom [α] of Fn(B), and each atom is the class of a min-term.

Each theory Θ in a language with n variables corresponds uniquely with the
filter fΘ = {[ϑ] | ϑ ∈ Θ} of Fn(B), and with the congruence Θ̄ = Θ̄fΘ =
{([ϕ], [ψ]) | (¬ϕ∨ψ)∧ (¬ψ ∨ϕ) ∈ Θ}. In particular, a theory Θ is prime iff fΘ is
the filter generated by an atom, that is, it is of the form ↑[α] = {[ψ] | [α] ≤ [ψ]}
for some atom [α]. Finally, each min-term α =

∧n
i=1(vi)

∗(i), and consequently
each atom [α] of Fn(B) and each prime theory Θ = 〈α〉, uniquely determines a
valuation ρΘ: {v1, . . . , vn} → {0, 1} such that ρΘ is the unique model of Θ, by
associating: ρΘ(vi) = ∗(i).

Therefore, prime theories, min-terms, atoms, prime filters and valuations are
in 1-1 correspondence: each prime theory Θ is, up to logical equivalence, the
deductive closure 〈α〉 of a unique min-term α; for each min-term α, the class [α]
is an atom of Fn(B); each prime filter p in Fn(B) is the upward closure ↑[α] of a
unique atom [α]; moreover, ρΘ(α) = 1 and ρΘ(ϑ) = 1 for each ϑ in the uniquely
determined prime theory Θ = 〈α〉.

We shall need the following technical lemma.

Lemma 1. Let V and V ′ be two disjoint sets of variables of cardinality n and
m respectively. Let Θ be a prime theory in V and ϕ a formula in V . Then, for
every prime theory Θ′ in V ′, the following hold:

1. 〈Θ ∪Θ′〉 is prime in (n+m) variables,
2. 〈Θ ∪Θ′〉 |= ϕ iff Θ |= ϕ.

Proof. As we already recalled, each prime theory has exactly one model. Let
hence ρ : {v1, . . . , vn} → {0, 1} and ρ′ : {v′1, . . . , v′m} → {0, 1} be the two models
of Θ and Θ′ respectively.

1. 〈Θ ∪ Θ′〉 is prime in n + m variables. It follows by the observation that its
unique model ρ′′, in n+m variables, is obtained by the disjoint union of ρ and
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ρ′. In details, the map ρ′′ is defined on the variables {v1, . . . , vn, v′1, . . . , v′m} by
setting, for each v ∈ V ∪ V ′,

ρ′′(v) =
{
ρ(vi) if v = vi
ρ′(v′j) if v = v′j .

2. Obviously, if Θ |= ϕ, then 〈Θ ∪ Θ′〉 |= ϕ by monotonicity. Conversely, if
〈Θ∪Θ′〉 |= ϕ, the unique model ρ′′ of 〈Θ∪Θ′〉 we described in 1 is also a model
of ϕ. Since ϕ is written in the variables v1, . . . , vn, then, clearly, the restriction
ρ̂ of ρ′′ to {v1, . . . , vn} coincides with the unique model of Θ and, moreover,
ρ̂(ϕ) = 1. Hence Θ |= ϕ. �

Duality. We recall that two categories � and � are dually equivalent if there
exists a pair of contravariant functors F :�→ � andG:�→ � such that both FG
and GF are naturally isomorphic with the corresponding identity functors, that
is, for each object C in � and D in � there are isomorphisms ηC :GF (C) → C
and κD:FG(D)→ D such that

GF (C1)

ηC1

��

GF (f) �� GF (C2)

ηC2

��
C1

f
�� C2

FG(D1)

κD1

��

FG(g) �� FG(D2)

κD2

��
D1 g

�� D2

for each f :C1 → C2 in � and g:D1 → D2 in �.

Let �fin be the category of finite Boolean algebras and homomorphisms and
���fin the category of finite sets and functions. The categories �fin and ���fin

are dually equivalent via the following pair of contravariant functors

Spec : �fin → ���fin Sub : ���fin → �fin

defined by:

– for each object B of �fin, Spec B is the prime spectrum of B,
– for each h : B1 → B2 ∈ �fin, Spec h : Spec B2 → Spec B1 is the map
p �→ h−1(p),

– for each object S of ���fin, Sub S = (2S ,∩,∪, ·c, S) is the set of all subsets
of S, endowed with intersection, union and complement,

– for each f : S1 → S2 ∈ ���fin, Sub f : Sub S2 → Sub S1 is the map
X �→ f−1(X).

Note that for every finite Boolean algebra B, B ∼= Sub Spec B. The above
duality is the specialization to finitely presented objects of the celebrated Stone
Duality between the category of all Boolean algebras with homomorphisms, and
the category of totally disconnected, compact, Hausdorff spaces with continuous
maps.

Remark 1. The following are applications of duality to basic concepts of ���fin
and �fin, which will be used in the sequel.
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1. The isomorphisms between Fn(B) and Sub Spec Fn(B) are implemented by
the map ηn : Fn(B)→ Sub Spec Fn(B) and its inverse κn : Sub Spec Fn(B)→
Fn(B):

ηn : [ϕ] �→ {↑[α] | α min-term, [α] ≤ [ϕ]}.
and

κn : {↑[αi] | αi min-term, i = 1, . . . , r} �→ [

r∨
i=1

αi].

2. An element of Spec Fn(B) can be clearly identified with a map ι: {[�]} →
SpecFn(B), that is, amap ι: Spec {0, 1} → SpecFn(B).Dually, Sub ι:Fn(B)→
{0, 1}, assigns to each class [ϕ] a truth-value in {0, 1}, whence, once we fix the
variable set V = {v1, . . . , vn}, the homomorphism

Sub ι([ϕ]) = κ0(ι
−1(ηn([ϕ])))

can be identified with a valuation ρ:V → {0, 1}, by setting ρ(ϕ) = Sub ι([ϕ]).
3. Each function λ mapping Spec Fn(B) on itself dually corresponds to an

endomorphism σ̄:Fn(B)→ Fn(B) by putting

σ̄([ϕ]) = κn(λ
−1(ηn([ϕ]))).

4. Each function χ: Spec Fn(B) → Spec F1(B) dually corresponds to a homo-
morphism Sub χ:F1(B) → Fn(B), which is completely determined by the
image [ϕ] ∈ Fn(B) of the generator [v1] of F1(B) under κn ◦ χ−1 ◦ η1.

3 Classical Fortresses

In this section we are going to introduce a logical descriptor for regular languages.
Throughout this section, let Σ be a finite alphabet and V = {v1, . . . , vn} be a
finite set of propositional variables.

Definition 1. A classical fortress in n variables over Σ is a triple of the form

F = (ϕ, {σa}a∈Σ, Θ),

where

– ϕ is a formula in Form(V ),
– for each a ∈ Σ the map σa:V → Form(V ) is a substitution,
– Θ is a prime theory in the variables V .

Definition 2. A classical fortress F = (ϕ, {σa}a∈Σ, Θ) accepts a word w =
a1 · · · ak ∈ Σ∗, denoted by F � w, if

Θ |= ϕ[σa1 ◦ · · · ◦ σak
]. (1)

The language of a classical fortress F is the set of all words accepted by F :

L(F) = {w ∈ Σ∗ | F � w}.
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Remark 2. Note that in (1), given a word w = a1 · · ·ak, the substitutions σai are
applied in the converse order with respect to the occurrences of the corresponding
letters in w.

Notation. If w = a1 · · ·ak ∈ Σ∗, when it is convenient, we will denote the
substitution σa1 ◦ · · · ◦ σak

simply by σw.

Theorem 1. For every complete DFA A with 2n states, there exists a classical
fortress in n-variables FA such that L(A) = L(FA).

Proof. Let A = (S, I, δ, F ) be a finite complete deterministic automaton such
that |S| = 2n. Note that S ∼= Spec Fn(B) and let us denote by f : S →
Spec Fn(B) this isomorphism.

We consider pI = f(I) ∈ Spec Fn(B), where I ∈ S is the initial state of A.
Remark that pI ∈ Spec Fn(B) is uniquely defined by the map

ιI : Spec {0, 1} → Spec Fn(B), ιI([�]) = pI .

We define

χF : Spec Fn(B)→ Spec F1(B), χF (p) =

{
1, if f−1(p) ∈ F
0, if f−1(p) /∈ F ,

for every p ∈ Spec Fn(B), where F is the set of final states of the automaton A.
Furthermore, for every a ∈ Σ, we define the endomorphism

λa : Spec Fn(B)→ Spec Fn(B), λa(p) = f(δ(f
−1(p), a)),

for every p ∈ Spec Fn(B). The map λa is well-defined since A is a complete
deterministic automaton. In conclusion, we defined the following arrows:

Spec {0, 1} Spec Fn(B) Spec Fn(B) Spec F1(B)
ιI λa χF

Using Remark 1, we obtain the following maps corresponding to ιI , λa and χF ,
respectively:

{0, 1} Fn(B) Fn(B) F1(B),
ρΘ σ̄a [ϕ]

where, by Remark 1 (2) we identify ρΘ = κ0 ◦ ι−1
I ◦ ηn with a valuation from

V to {0, 1}. Further, σ̄a = κn ◦ δ−1
a ◦ ηn and finally by [ϕ] we denote the map

determined by [ϕ] = κn ◦ χ−1
F ◦ η1([v1]). Let Θ, σa and ϕ be the prime theory,

the substitution and the formula respectively corresponding to ρΘ, σ̄a and [ϕ].
Therefore we consider the classical fortress in n variables

FA = (ϕ, {σa}a∈Σ, Θ).

In the rest of the proof we show that L(A) = L(FA). Let w = a1 · · · ak ∈ Σ∗.
Since the automaton A is deterministic and complete, there exists a unique finite
sequence of states s1, . . . , sk+1 such that

I = s1
a1−→ s2

a2−→ s3
a3−→ · · · ak−→ sk+1.
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Since δ(si, ai) = si+1, we obtain that λai(f(si)) = f(si+1), for every 1 ≤ i ≤ k.
Also f(s1) = ιI([�]). We have two cases to consider.

– Suppose w ∈ L(A). Therefore sk+1 ∈ F and it follows that

χF (λak
(· · · (λa1(ιI([�]))) · · ·)) = 1, that is, (χF ◦ λak

◦ · · · ◦ λa1)(pI) = 1.

By duality, using Remark 1, we obtain that ρΘ((σa1 ◦ · · · ◦ σak
)(ϕ)) = 1,

which is equivalent with Θ |= ϕ[σa1 ◦ · · · ◦ σak
]. Thus w ∈ L(FA).

– Suppose w /∈ L(A). Therefore sk+1 /∈ F and it follows that

χF (λak
(· · · (λa1(ιI([�]))) · · ·)) = 0, that is, (χF ◦ λak

◦ · · · ◦ λa1)(pI) = 0.

Again, using Remark 1, it follows that ρΘ((σa1 ◦ · · · ◦ σak
)(ϕ)) = 0, which is

equivalent with Θ �|= ϕ[σa1 ◦ · · · ◦ σak
], that is, w /∈ L(FA).

We have proved that L(A) = L(FA). �

Remark 3. Note that, without loss of generality, we can fix, once and for all, a
min-term α and always assume that the isomorphism f : S → Spec Fn(B) is such
that f(I) = ↑[α], and hence Θ = 〈α〉. As the reader can easily verify, this can be
safely assumed for all the results in the paper. Then, we could have simplified
the definition of classical fortress by omitting Θ. We have preferred the present
version, since, as we shall hint in the conclusions, Θ cannot be omitted when
generalizing fortresses to other logics.

Theorem 2. For every classical fortress in n variables F , there exists a com-
plete DFA AF with 2n states such that L(F) = L(AF ).

Proof. Let F = 〈ϕ, {σa}a∈Σ, Θ〉 be a classical fortress in n variables. Referring
to Remark 1, we hence have the following uniquely determined arrows:

{0, 1} Fn(B) Fn(B) F1(B)
ρΘ σ̄a [ϕ]

Reversing the arrows via Remark 1, we obtain

Spec {0, 1} Spec Fn(B) Spec Fn(B) Spec F1(B)
ιI λa χF

where I = ↑[αΘ] for αΘ being the unique min-term such that Θ = 〈αΘ〉 and
hence ιI([�]) = I; F = {↑[α] | α min-term, [ϕ] ∈ ↑[α]} and hence χF is the
characteristic function of F . Now, we take S = Spec Fn(B), and δ(s, a) = λa(s),
for every s ∈ S and a ∈ Σ. Therefore, we can consider the automaton

AF = (S, I, δ, F ).

By the definition of I and δ, AF is a complete DFA with 2n states.
In the sequel, we show that L(F) = L(AF ). Let w ∈ Σ∗, w = a1 · · ·ak. We

have two cases to consider.
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– Suppose w ∈ L(F). Therefore Θ |= ϕ[σa1 ◦ · · · ◦ σak
] and hence, ρΘ((σa1 ◦

· · · ◦ σak
)(ϕ)) = 1. Whence, (χF ◦ λak

◦ · · · ◦ λa1)(pI) = 1, or equivalently,
χF (λak

(· · · (λa1 (ιI([�]))) · · ·)) = 1. Taking into account how I, δ and F were
defined, we obtain that there exists a finite sequence of states s1, . . . , sk+1

such that s1 = ιI([�]) = I, δ(si, ai) = sk+1 and sk+1 ∈ F . Thus w ∈ L(AF ).
– Suppose w /∈ L(F), that is Θ �|= ϕ[σa1 ◦ · · · ◦ σak

]. Therefore, ρΘ((σa1 ◦ · · · ◦
σak

)(ϕ)) = 0. Again by duality, it follows that (χF ◦ λak
◦ · · · ◦ λa1)(pI) = 0,

or equivalently, χF (λak
(· · · (λa1(ιI([�]))) · · ·)) = 0. Therefore, there exists a

finite sequence of states s1, . . . , sk+1 such that s1 = ιI([�]) = I, δ(si, ai) =
sk+1, but sk+1 /∈ F . Thus w /∈ L(AF ).

We have proved that L(F) = L(AF ). �
The next result shows that classical fortresses are indeed another descriptor

for regular languages:

Theorem 3. A language L is regular if and only if there is a classical fortress
F such that L(F) = L.
Proof. A language L is regular if and only if there exists a DFA A such that
L = L(A). Without loss of generality, we can assume that A is a complete DFA
with 2n states. By virtue of Theorems 1 and 2, we know that complete DFA’s
and classical fortresses accept the same languages, and our proof is settled. �

The following table gathers together all the ingredients needed to move from
finite automata to classical fortresses and backwards.

Deterministic Hidden steps Classical
Automaton Fortress

Dual to algebra Algebra

Finite set of states 2n ∼= Spec Fn(B) Fn(B) Form(V ),
S = 2n V = {v1, . . . , vn}

Transition relation Spec Fn(B) λa−→ Spec Fn(B) Fn(B) σ̄a−→ Fn(B) σa substitution,
δ : S ×Σ → S endomorphism, endomorphism, for each a ∈ Σ

for each a ∈ Σ for each a ∈ Σ

The initial state pI ∈ Spec Fn(B) Prime congruence Prime theory
I ∈ S Θ̄ Θ

corresp. to pI over V

Set of final states χ−1
F (1) [ϕ] Formula

F ⊆ S Spec Fn(B)
χF−→ Spec F1(B) an element of Fn(B) ϕ

over V

w = a1 · · · ak w = a1 · · · ak w = a1 · · · ak w = a1 · · · ak

is accepted if is accepted if is accepted if is accepted if
δ(I, w) ∈ F χF ((λak

◦ · · · ◦ λa1 )(pI)) = 1 (σ̄w([ϕ]), [	]) ∈ Θ̄ Θ |= ϕ[σw]

4 Algorithm for Passing from Automata to Fortresses

In this section we present an algorithm that having as input the specification of
a deterministic complete automaton A = (S, I, δ, F ) |S| = 2n builds a fortress
F = (ϕ, {σa}a∈Σ, Θ) in n variables such that L(A) = L(F).
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Algorithm 1

1. [The variables V ]
For each 0 ≤ j ≤ 2n − 1, we represent the state sj ∈ S by the binary

representation of j, that is, sj = k
j
1 · · · k

j
n, where each k

j
i is a bit. We therefore

fix the variable set as V = {v1, . . . , vn}.

2. [The formula ϕ]
For each final state s ∈ F , consider 0 ≤ j ≤ 2n − 1 such that s = sj and
take the formula

αs =

n∧
i=1

(vi)
∗(i),

where ∗(i) = kji , for every 1 ≤ i ≤ n. If F = {sp1 , . . . , spm}, we take the
formula ϕ = αsp1 ∨ · · · ∨ αspm .

3. [The theory Θ]
For the initial state I ∈ S, consider 0 ≤ j ≤ 2n − 1 such that I = sj and
take the formula

αI =

n∧
i=1

(vi)
∗(i),

where ∗(i) = kji , for every 1 ≤ i ≤ n. We take the theory Θ = 〈αI〉.

4. [The substitutions {σa}a∈Σ]
Let a ∈ Σ. For each 0 ≤ j ≤ 2n− 1, we have δ(sj , a) = stj for some 0 ≤ tj ≤
2n − 1. Note that sj = kj1 · · · k

j
n and stj = k

tj
1 · · · k

tj
n . For every 1 ≤ p ≤ n,

we build the formula βap as follows: Let L = {l | 0 ≤ l ≤ 2n − 1, ktlp = 1}.

– For each l ∈ L, we build the formula

αp,l =

n∧
i=1

(vi)
∗(i),

where ∗(i) = kli, for every 1 ≤ i ≤ n.
– Set βap =

∨
l∈L αp,l.

We define the substitution σa(vp) = β
a
p .

Let us investigate how Algorithm 1 works by the following example:

Example 1. Let us consider the complete deterministic automaton A with 22

states depicted as follows:
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s0start s1

s3 s2

a
b

a

b

a
b

a

b

The language accepted by A is L(A) = {(a+b)∗(aa+ab)}. We apply Algorithm
1 to find a fortress F that accepts the language L(A).
1. [The variables V ] We represent the states as in the following table:

sj k
j
1 kj

2

s0 0 0
s1 0 1
s2 1 0
s3 1 1

The variables used by the fortress F are V = {v1, v2}.
2. [The formula ϕ] Since the final states of A are s2 and s3, we consider the

formula αs2 = v1∧¬v2 and αs3 = v1∧v2. We take the formula ϕ = αs2 ∨αs3 ,
that is, ϕ = (v1 ∧ ¬v2) ∨ (v1 ∧ v2).

3. [The theory Θ] Since the initial state of A is s0, we consider the formula
αs0 = ¬v1 ∧ ¬v2 and take the theory Θ = 〈¬v1 ∧ ¬v2〉.

4. [The substitutions {σa}a∈Σ] We have only two letters in the alphabet:

– Case of letter a ∈ Σ. The transitions with a in the automaton A are:

sj δ(sj, a) = stj
s0 s1
s1 s2
s2 s2
s3 s1

sj stj
kj
1 kj

2 k
tj
1 k

tj
2

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

• For p = 1, we obtain α1,1 = ¬v1 ∧ v2 and α1,2 = v1 ∧ ¬v2. We build
βa1 = α1,1 ∨ α1,2 and we set σa(v1) = β

a
1 , that is,

σa(v1) = (¬v1 ∧ v2) ∨ (v1 ∧ ¬v2).
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• For p = 2, we obtain α2,0 = ¬v1 ∧ ¬v2 and α2,3 = v1 ∧ v2. We build
βa2 = α2,0 ∨ α2,3 and we set σa(v2) = β

a
2 , that is,

σa(v2) = (¬v1 ∧ ¬v2) ∨ (v1 ∧ v2).

– Case of letter b ∈ Σ. The transitions with b in the automaton A are:

sj δ(sj,b) = stj
s0 s0
s1 s3
s2 s3
s3 s0

sj stj
ki
1 ki

2 kti
1 kti

2

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

• For p = 1, we obtain α1,1 = ¬v1 ∧ v2 and α1,2 = v1 ∧ ¬v2. We build
βb1 = α1,1 ∨ α1,2 and we set σb(v1) = β

b
1, that is,

σb(v1) = (¬v1 ∧ v2) ∨ (v1 ∧ ¬v2).

• For p = 2, we obtain α2,1 = ¬v1 ∧ v2 and α2,2 = v1 ∧ ¬v2. We build
βb2 = α2,1 ∨ α2,2 and we set σb(v2) = β

b
2, that is,

σb(v2) = (¬v1 ∧ v2) ∨ (v1 ∧ ¬v2).

Using standard logical equivalences, and the derived connective ϕ↔ ψ := (¬ϕ∨
ψ) ∧ (ϕ ∨ ¬ψ), we obtain that

ϕ ≡ v1, σa(v1) = σb(v1) = σb(v2) ≡ ¬(v1 ↔ v2), σa(v2) ≡ v1 ↔ v2.

We have built the fortress F = (ϕ, {σa}a∈Σ, Θ) in the variables {v1, v2}, where:

ϕ = v1,
σa σb

v1 ¬(v1 ↔ v2) ¬(v1 ↔ v2)
v2 v1 ↔ v2 ¬(v1 ↔ v2)

, Θ = 〈¬v1 ∧ ¬v2〉.

4.1 Runs in a Fortress

Given a classical fortress F , we can use duality to implement the computation
deciding whether a word w is accepted by F . Each substitution σa, in fact,
corresponds dually to the map λa : Spec Fn(B) → Spec Fn(B) which moves
prime filters of Fn(B) into prime filters of Fn(B). In other words, via the usual
1-1 correspondences between prime filters of Fn(B), atoms of Fn(B), min-terms
in n variables and valuations in n variables, each σ̄a can be regarded as the
dual of a map moving valuations in valuations, or equivalently, for every a ∈ Σ,
λa : {0, 1}n → {0, 1}n. Given a word w = a1 · · · ak ∈ Σ∗, we denote by λw the
composition map λak

◦ · · · ◦ λa1 dual to σ̄w. Therefore, the lemma below easily
follows.
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Lemma 2. Let F = (ϕ, {σa}a∈Σ, Θ) be a fortress in n-variables and let w ∈ Σ∗.
Let ρΘ(V ) = 〈ρΘ(v1), . . . , ρΘ(vn)〉 ∈ {0, 1}n, and χϕ: {0, 1}n → {0, 1} be the
function 〈t1, . . . , tn〉 �→ ρt(ϕ), where ρt(vi) = ti for each i = 1, 2, . . . , n. Then
F � w iff χϕ ◦ λw ◦ ρΘ(V ) = 1.

Consider the following example:

Example 2. Let Σ = {a, b} and consider the fortress F = (ϕ, {σa}a∈Σ, Θ) in
2-variables obtained in Example 1:

ϕ = v1,
σa σb

v1 ¬(v1 ↔ v2) ¬(v1 ↔ v2)
v2 v1 ↔ v2 ¬(v1 ↔ v2)

, Θ = 〈¬v1 ∧ ¬v2〉.

The valuation ρΘ, being the unique model of Θ, must map to 1 its generating
min-term ¬v1 ∧ ¬v2. Hence, ρΘ(v1) = ρΘ(v2) = 0. The maps λa and λb act on
{0, 1}2 as follows:

λa(x, y) = (max(min(x, 1−y),min(1−x, y)),min(max(1−x, y),max(x, 1−y))),
λb(x, y) = (max(min(x, 1− y),min(1− x, y)),max(min(x, 1− y),min(1− x, y))).

Then:

– F � abaa. Indeed,

χϕ ◦ λabaa ◦ ρΘ(v1, v2) = χϕ ◦ λa ◦ λa ◦ λb ◦ λa(0, 0)
= χϕ ◦ λa ◦ λa ◦ λb(0, 1)
= χϕ ◦ λa ◦ λa(1, 1)
= χϕ ◦ λa(0, 1)
= χϕ(1, 0)
= ρ(1,0)(ϕ) = 1.

– F �� aba. Indeed,

χϕ ◦ λaba ◦ ρΘ(v1, v2) = χϕ ◦ λa ◦ λb ◦ λa(0, 0)
= χϕ ◦ λa ◦ λb(0, 1)
= χϕ ◦ λa(1, 1)
= χϕ(0, 1)
= ρ(0,1)(ϕ) = 0.

5 Reduced Fortresses

As we have seen, a fortress corresponds to a DFA with a number of states which
is a power of 2. This is not a limitation since, as we have already said, each DFA
recognises the same language of a DFA whose number of states is a power of 2.
This notwithstanding, it can be interesting to provide a variant of the notion of
fortress which naturally associates with any complete DFA, with no constraints
on the number of states.
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Definition 3. Let F = (ϕ, {σa}a∈Σ, Θ) be a classical fortress. Assume there is
a theory Γ such that:

1. Γ ⊆ Θ, that is, Θ |= γ for all γ ∈ Γ ;
2. Γ |= ψ implies Γ |= ψ[σa] for all a ∈ Σ and all formulas ψ.

Then the quadruple FΓ = (ϕ, {σa}a∈Σ, Θ, Γ ) is called the Γ -reduction of F .

With each Γ -reduction we associate a regular language.

Lemma 3. Let FΓ = (ϕ, {σa}a∈Σ, Θ, Γ ) be the Γ -reduction of a fortress F .
Then let AΓ = (S, I, δ, F ) be defined as follows.

1. S = {↑[α] | Γ ⊆ 〈α〉, α a min-term};
2. I = ↑[αΘ] for αΘ being the unique min-term such that Θ = 〈αΘ〉;
3. δ(s, a) = δa(s) for each s ∈ S and each a ∈ Σ, where δa = Spec σ̄a;
4. F = {↑[ψ] | [ϕ] ∈ ↑[ψ], ψ a min-term} ∩ S.

Then AΓ is a complete DFA, and L(AΓ ) = L(F).

Proof. Notice that Condition 1 in Definition 3 implies that I = ↑[αΘ] belongs
to S. Condition 2, on the other hand, guarantees that each δa carries S into S.
Indeed, pick ↑[β] ∈ Spec Fn(B) \ S, for some min-term β. Then Γ �⊆ 〈β〉. Since
〈β〉 is maximal, the latter entails Γ |= ¬β, and by Condition 2, Γ |= ¬β[σa], too.
Now, recall that, by duality,

σ̄a([β]) = [
∨
{α | α min-term, δa(↑[α]) = ↑[β]}].

Whence, Γ |= ¬
∨
{α | α min-term, δa(↑[α]) = ↑[β]} and then Γ |= ¬α for each

min-term α such that δa(↑[α]) = ↑[β], and, in turns, Γ �⊆ 〈α〉 for each such min-
term. Then for all min-terms α such that δa(↑[α]) = ↑[β], ↑[α] does not belong
to S, thus proving that δa maps S into S. We conclude that AΓ is a well defined
complete DFA, with S ⊆ Spec Fn(B), which, in turns, is the set of states of the
automaton AF built in Theorem 2 from F . Finally, L(AΓ ) = L(AF ) = L(F). �

Notice that the number |S| of states of AΓ is not constrained to be a power
of 2. From Algorithm 1 it is clear that each DFA arises as AΓ for some theory
Γ providing the Γ -reduction of a suitable fortress F .

An interesting consequence is when the Γ -reduction is a fortress as well, in
the sense made precise by the proof of the following proposition.

Proposition 1. Let FΓ be the Γ -reduction of a fortress F in n variables. If
Fn(B)/Γ̄ is isomorphic with Fk(B) for some k ≤ n, then there is a fortress F ′

in k variables such that L(F ′) = L(F).

Proof. Consider the automaton AΓ built in the proof of Lemma 3. Notice that
AΓ has exactly 2k states as Fn(B)/Γ̄ is isomorphic with Fk(B). Whence, by
Theorem 1, there is a fortress F ′ in k variables such that L(F ′) = L(F). �
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6 Closure Properties of Regular Languages through
Classical Fortresses

In this section we will give alternative proofs for some well-known results on the
closure properties of regular languages in the framework of classical fortresses. By
these alternative proofs, we show that classical fortresses are also a suitable tool
for providing intuitive proofs for some closure properties of regular languages.

Proposition 2. The complement of a regular language is regular.

Proof. Let L be a regular language and let F = (ϕ, {σa}a∈Σ, Θ) be a classical
fortress in n variables such that L(F) = L. We consider the following classical
fortress in n variables:

Fc = (¬ϕ, {σa}a∈Σ , Θ).

Let w ∈ Σ∗. Since the prime theory Θ is maximal, we have the following:

w ∈ Σ∗ \L ⇔ w /∈ L(F) ⇔ Θ �|= ϕ[σw ] ⇔ Θ |= ¬ϕ[σw ] ⇔ w ∈ L(Fc).

Therefore Fc accepts the complement of L. �

Proposition 3. The union of two regular languages is regular.

Proof. Let L1 and L2 be regular languages. Then there is a classical fortress
F1 = (ϕ1, {σa}a∈Σ, Θ1) in n variables V = {v1, . . . , vn} such that L(F1) = L1
and a classical fortress F2 = (ϕ2, {τa}a∈Σ, Θ2) in m variables V ′ = {v′1, . . . , v′m}
such that L(F2) = L2. Possibly by renaming variables, we can safely assume V
and V ′ are disjoint, so V ∪ V ′ is a set of n +m distinct variables. We consider
the following classical fortress:

F∪ = (ϕ1 ∨ ϕ2, {μa}a∈Σ, 〈Θ1 ∪Θ2〉),

in the n +m variables V ∪ V ′, where: μa(vi) = σa(vi) for all i = 1, . . . , n and
μa(v

′
j) = τa(v

′
j) for all j = 1, . . . ,m. By our assumptions on V and V ′, all

substitutions μa are well defined. Let w ∈ Σ∗. By using Lemma 1, we have the
following:

w ∈ L(F∪)⇔ 〈Θ1 ∪Θ2〉 |= (ϕ1 ∨ ϕ2)[μw]
⇔ 〈Θ1 ∪Θ2〉 |= ϕ1[μw] ∨ ϕ2[μw]
⇔ 〈Θ1 ∪Θ2〉 |= ϕ1[σw] ∨ ϕ2[τw]
⇔ 〈Θ1 ∪Θ2〉 |= ϕ1[σw] or 〈Θ1 ∪Θ2〉 |= ϕ2[τw]
⇔ Θ1 |= ϕ1[σw] or Θ2 |= ϕ2[τw]
⇔ w ∈ L(F1) or w ∈ L(F2)
⇔ w ∈ L(F1) ∪ L(F2)

Therefore, F∪ accepts L1 ∪ L2. �

Proposition 4. The intersection of two regular languages is regular.
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Proof. Let L1 and L2 be regular languages. Then there is a classical fortress
F1 = (ϕ1, {σa}a∈Σ, Θ1) in n variables V = {v1, . . . , vn} such that L(F1) = L1
and a classical fortress F2 = (ϕ2, {τa}a∈Σ, Θ2) in m variables V ′ = {v′1, . . . , v′m}
such that L(F2) = L2. Possibly by renaming variables, we can safely assume V
and V ′ are disjoint, so V ∪ V ′ is a set of n +m distinct variables. We consider
the classical fortress

F∩ = (ϕ1 ∧ ϕ2, {μa}a∈Σ, 〈Θ1 ∪Θ2〉),

in the n+m variables V ∪V ′, where, for all a ∈ Σ, the substitution μa is defined
as in the proof of Proposition 3.

Let w ∈ Σ∗. By using Lemma 1, we have the following:

w ∈ L(F∩)⇔ 〈Θ1 ∪Θ2〉 |= (ϕ1 ∧ ϕ2)[μw]
⇔ 〈Θ1 ∪Θ2〉 |= ϕ1[μw] ∧ ϕ2[μw]
⇔ 〈Θ1 ∪Θ2〉 |= ϕ1[σw] ∧ ϕ2[τw]
⇔ 〈Θ1 ∪Θ2〉 |= ϕ1[σw] and 〈Θ1 ∪Θ2〉 |= ϕ2[τw]
⇔ Θ1 |= ϕ1[σw] and Θ2 |= ϕ2[τw]
⇔ w ∈ L(F1) and w ∈ L(F2)
⇔ w ∈ L(F1) ∩ L(F2)

Therefore, F∩ accepts L1 ∩ L2. �

7 Beyond Classical Logic and Finite Automata

The finite slice of Stone duality is the main ingredient which allows the introduc-
tion of classical fortresses from DFA as shown in Section 4. In this section we are
going to swap the perspective which allowed us to introduce classical fortresses
starting from finite automata, and try to make a step forward through two main
generalizations of DFA which will constitute the key arguments of our future
work.

Classical fortresses, as objects specified in classical propositional logic on a
finite number of variables, allow an easy generalization to any non-classical log-
ical setting. In theoretical terms, in fact, given a propositional logical calculus
L, one can easily adapt the definition of classical fortress to the frame of L
and introduce a notion of L-fortress and of language accepted by such an ob-
ject. The converse task, which is not always viable, is to reverse Algorithm 1
and introduce L-automata as the corresponding, computational counterpart of
L-fortresses, and deduce from that a characterisation of the class of languages
accepted by L-automata. In fact, a logic L allows such a turn-about, only if L
enjoys the following, informally stated, properties:

1. L is algebraisable in the sense of [1], its algebraic semantics being �1.
2. � is locally finite and, hence, the n-freely generated �-algebras are finite.

1 Notice that we strongly used the algebraizability of classical logic when passing from
the algebraic view to the logical one.
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3. There is a Stone-type duality between the finite slice of � and a target
category � which plays the same rôle as �etfin does in the classical Stone
duality.

In our future work we shall study the following generalizations of DFA.

1. We aim at generalizing the notion of DFA to several logics, starting from
Gödel propositional logic [5, §VII], the latter being a non-classical logic which
satisfies the above (1)-(3). We explicitly stress that, as we have anticipated in
Remark 3, the specific choice of Θ influences the behavior of a Gödel fortress,
as in general distinct prime congruences give rise to distinct non-isomorphic
quotients of the free Gödel algebras.

2. For every cardinal κ, we shall focus on a further generalization of DFA ob-
tained starting from a fortress in 2κ variables and then applying the full
Stone duality between Boolean algebras and Stone spaces to derive the cor-
responding notion of automaton with κ states. We shall try to identify the
class of languages recognised by such devices.
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Abstract. We introduce the Clock-Aware Linear Temporal Logic (CA-
LTL) for expressing linear time properties of timed automata, and show
how to apply the standard automata-based approach of Vardi andWolper
to check for the validity of a CA-LTL formula over the continuous-time
semantics of a timed automaton. Our model checking procedure employs
zone-based abstraction and a new concept of the so called ultraregions.
We also show that the Timed Büchi Automaton Emptiness problem is
not the problem that the intended automata-based approach to CA-LTL
model checking is reduced to. Finally, we give the necessary proofs of
correctness, some hints for an efficient implementation, and preliminary
experimental evaluation of our technique.

Keywords: Linear Temporal Logic, Timed Automata, Automata-based
Model Checking.

1 Introduction

Model checking [1] is a formal verification technique applied to check for logical
correctness of discrete distributed systems. While it is often used to prove the
unreachability of a bad state (such as an assertion violation in a piece of code),
with a proper specification formalism, such as the Linear Temporal Logic (LTL),
it can also check for many interesting liveness properties of systems, such as
repeated guaranteed response, eventual stability, live-lock, etc.

Timed automata have been introduced in [2] and have become a widely
accepted framework for modelling and analysis of time-critical systems. The for-
malism is built on top of the standard finite automata enriched with a set of real-
time clocks and allowing the system actions to be guarded with respect to the
clock valuations. In the general case, such a timed system exhibits infinite-state
semantics (the clock domains are continuous). Nevertheless, when the guards
are limited to comparing clock values with integers only, there exists a bisimilar
finite state representation of the original infinite-state real-time system referred
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to as the region abstraction. The region abstraction builds on top of the obser-
vation that concrete real-time clock valuations that are between two consecutive
integers are indistinguishable with respect to the valuation of an action guard.
Unfortunately, the size of the region-based abstraction grows exponentially with
the number of clocks and the largest integer number used. As a result, the region-
based abstraction is difficult to be used in practice for the analysis of more than
academic toy examples, even though it has its theoretical value.

A practically efficient abstraction of the infinite-state space came with the so
called zones [3]. Unlike the region-based abstraction, a single state in the zone-
based abstraction is no more restricted to represent only those clock values that
are between two consecutive integers. Therefore, the zone-based abstraction is
much coarser and the number of zones reachable from the initial state is signif-
icantly smaller. This in turns allows for efficient implementation of verification
tools for timed automata, see e.g. UPPAAL [4].

In this paper we solve the model checking problem of linear time properties
over timed automata. To that end we introduce Clock-Aware Linear Temporal
Logic (CA-LTL), which is a linear time logic built from the standard boolean
operators, the standard LTL operator Until, and atomic propositions that are
boolean combinations of comparisons of clock valuations against integer con-
stants and guards over variables of an underlying timed automaton.

The ability to use clock-valuation constraints as atomic propositions makes
the newly introduced logic rather powerful. Note, for example, that in terms of
expressibility, it completely covers the fragment of TCTL as used for specification
purposes by UPPAAL model checker. The non-trivial expressive power of CA-
LTL is also witnessed with a CA-LTL formula FG(x ≤ 3) expressing that the
timed automaton under investigation will eventually come to a stable state where
it is guaranteed that from that time on the clock variable x will never exceed
the value of 3, i.e. a reset of x is going to happen somewhat regularly.

Regarding model checking of CA-LTL we stress that we are aware of the so
called Timed Büchi Automaton Emptiness problem [5,6,7]. Timed Büchi Au-
tomaton Emptiness could be considered as the solution to the problem of LTL
model checking over timed automata provided that the logic used cannot refer to
clock valuations. However, for CA-LTL we believe and show later in this paper
that the solution of CA-LTL model checking does not reduce to the problem of
Timed Büchi Automaton Emptiness.

Contribution. In this paper we define the syntax and the continuous-time se-
mantics of theClock-Aware Linear Temporal Logic (CA-LTL). We then show how
to apply the standard automata-based approach to LTL model checking of Vardi
and Wolper [8] for a CA-LTL formula and a timed automaton. In particular, we
show how to construct a Büchi automaton coming from the CA-LTL specifica-
tion with a zone-based abstraction of a timed automaton representing the system
under verification using the so-called ultraregions. We give the necessary proof
of correctness of our construction and list some hints that lead towards an effi-
cient implementation of it. We also report on the practical impact of introducing
ultraregions on the size of the zone-base abstracted timed automaton graph.
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Outline. The rest of the paper is organised as follows. We first list the prelimi-
naries and define our new CA-LTL in Section 2. Then, we relate CA-LTL with
other logics and explain the motivation behind our approach in Section 3. The
technical core of the synchronised product of a Büchi automaton and a zone-
based abstracted timed automaton is given in Section 4 including the sketch
of the proof of correctness. Section 5 gives some details on the implementation
of our construction and lists some experimental measurements we did. Finally,
Section 6 concludes the paper. Due to space constraints, we did not include the
full technically detailed proofs in this paper. These can be found in the technical
report [9].

2 Preliminaries and Problem Statement

Let X be a finite set of clocks. A simple guard is an expression of the form x ∼ c
where x ∈ X , c ∈ N0, and ∼ ∈ {<,≤,≥, >}. A conjunction of simple guards
is called a guard ; the empty conjunction is denoted by the boolean constant tt.
We use G(X) to denote the set of all guards over a set of clocks X . A clock
valuation over X is a function η : X → R≥0 assigning non-negative real numbers
to each clock. We denote the set of all clock valuations over X by RX

≥0 and the
valuation that assigns 0 to each clock by 0. For a guard g and a valuation η, we
say that η satisfies g, denoted by η |= g, if g evaluates to true when all x in g
are replaced by η(x).

We define two operations on clock valuations. Let η be a clock valuation,
d a non-negative real number and R ⊆ X a set of clocks to reset. We use η+d to
denote the clock valuation that adds the delay d to each clock, i.e. (η + d)(x) =
η(x) + d for all x ∈ X . We further use η[R] to denote the clock valuation that
resets clocks from the set R, i.e. η[R](x) = 0 if x ∈ R, η[R](x) = η(x) otherwise.

Definition 2.1. A timed automaton (TA) is a tuple A = (L, l0, X,Δ, Inv)
where

– L is a finite set of locations,
– l0 ∈ L is an initial location,
– X is a finite set of clocks,
– Δ ⊆ L× G(X)× 2X × L is a finite transition relation, and
– Inv : L→ G(X) is an invariant function.

We use q
g,R−−→Δ q

′ to denote (q, g, R, q′) ∈ Δ.

In the following, we assume that the invariants are upper bounds only, i.e. of the
form x < c or x ≤ c. Note that this is without loss of generality, as lower bound
invariants may be always moved to guards of incoming transitions.

The semantics of a timed automaton is given as a labelled transition system.

Definition 2.2. A labelled transition system (LTS) over a set of symbols Σ is
a triple (S, s0,→), where
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– S is a set of states,

– s0 ∈ S is an initial state, and

– → ⊆ S ×Σ × S is a transition relation.

We use s
a−→ s′ to denote (s, a, s′) ∈ →.

Definition 2.3 (TA Semantics). Let A = (L, l0, X,Δ, Inv) be a TA. The se-
mantics of A, denoted by �A�, is a LTS (S, s0,→) over the set of symbols
{act ,∞} ∪ R≥0, where

– S = {(l, η) ∈ L× RX
≥0 | η |= Inv(l)} ∪ {(l,∞) | Inv(l) = tt},

– s0 = (l0,0),

– the transition relation → is specified for all (q, η), (q′, η′) ∈ S such that η is
a clock valuation as follows:

• (q, η)
d−→ (q′, η′) if q = q′, d ∈ R≥0, and η

′ = η + d,
• (q, η)

∞−→ (q′, η′) if q = q′ and η′ =∞,

• (q, η)
act−−→ (q′, η′) if ∃g,R : q

g,R−−→Δ q
′, η |= g, and η′ = η[R].

The first two kinds of transitions are called delay transitions, the latter are called
action transitions.

In the following, we assume that we only deal with deadlock-free timed automata,
i.e. that the only states without outgoing transitions in �A� are of the form (l,∞).
A deadlock usually signalises a severe error in the model and its (non-)existence
may be ascertained in the standard way.

A proper run of �A� is an alternating sequence of delay and action transitions
that begins with a delay transition and is either infinite or ends with a ∞ delay
transition. The length of a proper run |π| is the number of action transitions it
contains. A proper run is called a Zeno run if it is infinite while the sum of all its
delays is finite. Zeno runs usually represent non-realistic behaviour and it is thus
desirable to ignore them in TA analysis. However, we postpone the question of
dealing with Zeno runs until Section 4.

We now define the syntax and semantics of the clock-aware linear temporal
logic. The atomic propositions of this logic are going to be of two kinds—those
that consider properties of locations and those that consider properties of clocks.
The former ones, which we call location propositions are just arbitrary symbols
that are assigned to locations via a labelling function. The latter ones are simple
guards over the set of clocks.

Definition 2.4 (CA-LTL Syntax). Let Ap = Lp∪G where Lp is a set of loca-
tion propositions and G is a set of simple guards. A clock-aware linear temporal
logic (CA-LTL) formula over Ap is defined as follows:

ϕ ::= l | g | ¬ϕ | ϕ ∨ ϕ | ϕU ϕ

where l ∈ Lp and g ∈ G.



On Clock-Aware LTL Properties of Timed Automata 47

We also use the standard derived boolean operators such as ∧ and ⇒, and the
usual derived temporal operators Fϕ ≡ tt U ϕ, Gϕ ≡ ¬F¬ϕ.

We want our semantics of CA-LTL to reason about continuous linear time.
We thus need a notion of a (continuous) suffix of a proper run. For a proper run

π = (l0, η0)
d0−→ (l0, η0 + d0)

act−−→ (l1, η1)
d1−→ (l1, η1 + d1)

act−−→ · · · we define its
suffix πk,t as follows:

– if |π| > k and t ≤ dk then πk,t = (lk, ηk + t)
dk−t−−−→ (lk, ηk + dk)

act−−→ · · · ,
– if |π| = k then πk,t = (lk, ηk + t)

∞−→ (lk,∞),
– otherwise, πk,t is undefined.

Note that the condition |π| = k implies that π ends with · · · (lk, ηk) ∞−→ (lk,∞).
We further define an ordering on the set of suffixes of π, denoted by �π as follows:
πi,t �π π

j,s if both πi,t and πj,s are defined and either i < j or i = j and t ≤ s.
(The semantics is that πi,t is an “earlier” suffix of π than πj,s.)

Definition 2.5 (CA-LTL Semantics). Let L : L → 2Lp be a function that
assigns a set of location propositions to each location. The semantics of a CA-

LTL formula ϕ on a proper run π = (l0, η0)
d−→ (l0, η0 + d0)

act−−→ (l1, η1)
d1−→ · · ·

with a labelling L is given as follows (the semantics of the boolean operators is
the usual one and is omitted here):

π |= p ⇐⇒ p ∈ L(l0)
π |= g ⇐⇒ η0 |= g
π |= ϕU ψ ⇐⇒ ∃k, t : πk,t is defined, πk,t |= ψ, and

∀j, s such that πj,s �π π
k,t : πj,s |= ϕ ∨ ψ

For a timed automaton A with a location labelling function L, we say that A
with L satisfies ϕ, denoted by (A,L) |= ϕ if for all proper runs π of �A�, π |= ϕ.

The goal of this paper is to solve the following problem.

CA-LTL Model Checking Problem. Given a timed automaton A, a loca-
tion labelling function L, and a CA-LTL formula ϕ, decide whether (A,L) |= ϕ.

3 Related Work and Motivation

There is a plethora of derivatives of linear temporal logics for the specification of
properties of real-time systems, timed automata in particular. To name at least
some of them, we list TPTL [10], MTL [11], MITL [12], RTTL [13], XCTL [14],
CLTL [15], and LTLC [16]. These logics employ various ways of expressing time
aspects of underlying systems including one global time clock, time-bounded
temporal operators, timing variables with quantifiers, and freeze operators. Some
logics are defined with the use of time sampling semantics, which has been shown
to be counter-intuitive [17]. The key aspect differentiating our CA-LTL from the
logics mentioned above is the ability to properly and intuitively reason about
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clock values in the classical continuous-time semantics while still preserving prac-
tical efficiency of the model checking process.

Similar qualities are found in the branching time logic TCTL [18] a subset
of which is actually supported with UPPAAL tool. Our motivation to introduce
CA-LTL was to mimic the branching time TCTL in a linear time setting. We
stress that CA-LTL is able to reason about values of clocks in timed automata
while still being practically simple enough to allow for an efficient model checking
procedure. Note that the inclusion of time-bounded operators, such as the until
operator of TCTL, would lead to the expressive power of at least MTL, model
checking of which is considered computationally infeasible. CA-LTL can thus be
seen as a practically motivated extension of LTL, which is powerful enough to
express the same properties as can be expressed by the specification language of
the world-wide leading timed automata verification tool UPPAAL.1

Timed automata can be defined with different types of semantics. The stan-
dard continuous-time semantics (as used also for the definition of CA-LTL) is in
many cases substituted with the so called sampling semantics. However, it has
been shown in [17] that cycle detection under the sampling semantics of timed
automata with unknown sampling rate is undecidable.

We now use an example of a timed automaton and some CA-LTL formulae
to explain the intricacies of our model checking problem.

Example 3.1. Let us consider a timed automaton as given in Fig. 1 with the
labelling function L assigning to each location its own name only, i.e. L(l) = {l}
for all l. Let us further consider the CA-LTL formulae

ϕ = G(l1 ⇒ ((x ≤ 3 ∧ y ≤ 3)U (x > 3 ∧ y > 3))) and ψ = F l3.

Note that while there exists a run satisfying ϕ and a run satisfying ψ, there is no
run satisfying their conjunction, ϕ ∧ ψ. The reason is that the runs satisfying ϕ
always perform the reset of y at time 0, while the runs satisfying ψ always
perform the reset of y at some other time, to be able to satisfy the guard y < 6
together with x = 6.

First of all, note that there is no obvious way of combining this TA with
a Büchi automaton representing the formula ϕ (or its negation). The reason is
that while staying in l0, the satisfaction of the guards x ≤ 3, y ≤ 3 changes.
We could try splitting each location into several ones such that staying in each
of these new locations ensures no changes of the guards. However, under the
standard TA semantics, such feature is impossible. Indeed, if there were two
locations with invariants x ≤ 3 and x > 3, respectively, no transition between
them could be enabled at any time. There thus appears to be no direct way of
reducing our problem to Timed Büchi Automaton Emptiness.

One way of solving the problem whether a timed automaton satisfies a CA-
LTL formula is to evaluate the formula as a standard LTL formula over the
automaton’s region graph. Suppose that we have the standard region graph
construction [19], in which the maximal bounds on each clock also include the

1 For more details, see Section 6 in [9].
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l0
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Fig. 1. Timed automaton A3.1

bounds appearing in the formula. Then the satisfaction of guards inside a region
never changes. This shows that the CA-LTL problem is in the PSPACE com-
plexity class, as both the region graph and the Büchi automaton for the formula
may be created on the fly. However, it is well known that the number of regions
is impractically large. In the following, we therefore aim to provide a zone-based
model checking approach.

Considering the standard zone-based approach [20], the main issue pointed
out above remains—the satisfaction of the guards differs for various parts of
a zone. Our first idea is to slice (pre-partition) the zones according to the guards
of the formula. In our example, this would mean to slice the zones into one of the
four “quadrants” [0, 3]×[0, 3], (3,∞)×[0, 3], (3,∞)×(3,∞), [0, 3]×(3,∞). These
are illustrated in Fig. 2 and named S0 to S3. Every sliced zone now respects the
guards x ≤ 3, y ≤ 3. Note, however, that this partitioning also comes with the
need of describing new transitions between the newly defined zone slices. These
new transitions correspond to the passage of time within the original zone. Now,
consider again Example 1 and the zone that is created after the transition from
l0 to l1 is taken. The zone is defined as the set of all valuations of clocks ν such
that ν(x)− ν(y) ≥ 0 and ν(x), ν(y) ∈ [0, 6], also illustrated with the greyed area
in Fig. 2.

Let us take the S0 slice of this zone. The next slice is not uniquely determined.
One candidate is the S1 slice as all valuations with ν(x) − ν(y) > 0 will reach
this slice with the passage of time. However, we also have another candidate, the
S2 slice. This is due to the fact that all valuations with ν(x)−ν(y) = 0 reach the
S2 slice immediately after leaving the S0 slice. We cannot take both options with
a nondeterministic choice. This would introduce incorrect behaviour, as then
there would be a run in the zone graph satisfying the conjunction of formulae ϕ∧
ψ. Therefore, we also need to take diagonals into account. The problem here is
very similar to the problem that led to the inclusion of diagonals into standard
region graphs. Our slicing areas thus somehow resemble regions, only much larger.
Also, their count is only dependent on the number of guards appearing in the
CA-LTL formula, and may thus be expected to be reasonable. For their similarity
with regions, we call these areas ultraregions.
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Fig. 2. Illustration of the need to consider diagonals separately

4 Zone-Ultraregion Semantics

In the following, let X be a fixed set of clocks and G a fixed set of simple guards
over X . For a clock x ∈ X , we define Ix to be the coarsest interval partition
of R≥0 that respects the guards in G, i.e. all values in an interval have to satisfy
the same subset of guards of G. Let further Bx denote the set of bounds the
clock x is compared against in the guards of G and let Bx−y = {a − b | a ∈
Bx, b ∈ By}. Let then Ix−y = {(−∞, c0), [c0, c0], (c0, c1), . . . , (ck,∞)} where
Bx−y = {c0, . . . , ck} and c0 < c1 < · · · < ck. For a valuation η ∈ RX

≥0 we use
Ix(η) to denote the interval of Ix that contains the value η(x), similarly for
Ix−y(η). We say that Ix(η) is unbounded if it is of the form [c,∞) or (c,∞),
otherwise we say that it is bounded. We now define an equivalence relation with
respect to a set of simple guards G on clock valuations.

Definition 4.1 (Ultraregions). Let X be a set of clocks, G a set of sim-
ple guards over X. We define an equivalence relation �G on RX

≥0 as follows:
η �G η

′ if for all x, Ix(η) = Ix(η′), and for all y, z such that Iy(η) and Iz(η)
are bounded, Iy−z(η) = Iy−z(η

′). The equivalence classes of �G are called the
ultraregions of G.

Note that every ultraregion is uniquely identified by a choice of intervals from Ix
and Ix−y for all clocks x, y. Also note that a choice in Ix−y always determines
a choice in Iy−x.

Example 4.2. Let G = {x ≤ 3, x < 6, y ≤ 4}. Then Ix = {[0, 3], (3, 6), [6,∞)},
Iy = {[0, 4], (4,∞)}, and Ix−y = {(−∞,−1), [−1,−1], (−1, 2), [2, 2], (2,∞)}.
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The ultraregions of G look as follows:

U1 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y < −1}
U2 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y = −1}
U3 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y ∈ (−1, 2)}
U4 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y = 2}
U5 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y > 2}
U6 = {η = (x, y) | x ∈ [0, 3], y > 4}
U7 = {η = (x, y) | x ∈ (3, 6), y > 4}
U8 = {η = (x, y) | x ∈ (3, 6), y ∈ [0, 4], x− y ∈ (−1, 2)}
U9 = {η = (x, y) | x ∈ (3, 6), y ∈ [0, 4], x− y = 2}
U10 = {η = (x, y) | x ∈ (3, 6), y ∈ [0, 4], x− y > 2}
U11 = {η = (x, y) | x ≥ 6, y ∈ [0, 4]}
U12 = {η = (x, y) | x ≥ 6, y > 4}

These ultraregions are illustrated in Figure 3.

21 3 4 5 6

3

2

1

4

y

x

U5

U9

U1

U6 U7

U8

U2

U3

U4

U11

U12

U10

Fig. 3. Ultraregions of G = {x ≤ 3, x < 6, y ≤ 4}

Let U �= U ′ be ultraregions. We say that U ′ is a successor of U if for all η ∈ U
there exists d ∈ R>0 such that η + d ∈ U ′ and ∀0 ≤ d′ ≤ d : η + d′ ∈ U ∪ U ′.
Lemma 4.3. An ultraregion has at most one successor.

This allows us to denote the successor of U by succ(U). If U has no successor,
we additionally define succ(U) = U . Note that succ(U) = U if and only if all
clocks are unbounded in U , i.e. for every η ∈ U and every d ∈ R≥0, η + d ∈ U .

Let now R ⊆ X be a set of clocks. The reset of U with respect to R, denoted
by U〈R〉, is defined as follows:

U〈R〉 = {U ′ | U ′ is an ultraregion ∧ ∃η ∈ U : η[R] ∈ U ′}



52 P. Bezděk et al.

Example 4.4. Continuing with Example 4.2, we may see that e.g. succ(U8) = U7,
succ(U12) = U12, U11〈x〉 = {U1, U2, U3}, U9〈x, y〉 = {U3}, and U5〈x〉 = {U3}.

We may now define the zone-ultraregion semantics of a timed automaton.
We use the standard notion of clock zones here [20]. Every zone is described
by a set of diagonal constraints of the form xi − xj ≺ij cij where cij ∈ R,
≺ij ∈ {<,≤} for all clocks xi, xj ∈ X ∪ {x0}, and x0 is a special clock that
has always the value 0. We use these standard operations on zones: intersection
Z ∩ Z ′, reset Z[R] = {η[R] | η ∈ Z}, and time passing Z↑ = {η + d | η ∈ Z, d ∈
R≥0}. The zones may be efficiently represented using difference bound matrices
(DBM) [21,22]. Although there may be different representations of the same
zone, it is a standard result that there exists a unique canonical representation
in which the bounds ≺ij cij are as tight as possible.

In order to keep the number of zones finite, we use the standard k-extrapo-
lation construction [20,22,23,24]. Let Z be a zone and let ≺ij cij be the bounds
in its canonical representation. Let M(x) be the highest bound in the guards of
TA and the guards from G that compare against x. The extrapolated zone E(Z)
is defined by the set of diagonal constraints xi − xj ≺′

ij c
′
ij where

≺′
ij c

′
ij =

⎧⎪⎨⎪⎩
<∞ if cij > M(xi),

< −M(xj) if cij < −M(xj),

≺ij cij otherwise.

Note that the ultraregions are a special case of zones (and the extrapolation
does not change them). We may thus also apply the zone operations to ultra-
regions. However, be aware that the ultraregion reset and the zone reset of an
ultraregion are different operations. This is why we use a different notation for
U〈R〉.

Definition 4.5 (Zone-ultraregion Automaton). Let A = (L, l0, X,Δ, Inv)
be a TA and let G be a set of simple guards. The zone-ultraregion automaton
(ZURA) of A with respect to G is a labelled transition system whose states are
triples (l, Z, U) where l ∈ L, Z is a clock zone, and U is a ultraregion of G.

The initial state is (l0, Z0, U0) where Z0 = {0}↑ ∩ Inv(l0) and U0 is the ultra-
region containing the zero valuation 0. The transitions are of two kinds:

– delay transitions: (l, Z, U)
δ−→ (l, Z, succ(U)) whenever Z ∩ succ(U) �= ∅ and

U = succ(U) =⇒ Z = Z↑,

– action transitions: (l, Z, U)
act−−→ (l′, E(Z ′), U ′) whenever l

g,R−−→Δ l
′, U ′ ∈

U〈R〉, Z ′ = ((Z ∩ U ∩ g)[R] ∩ U ′)↑ ∩ Inv(l′), and Z ′ ∩ U ′ �= ∅.

Example 4.6. Continuing with Example 3.1, Fig. 4 represents the ZURA of the
timed automaton A3.1 with respect to G = {x ≤ 3, y ≤ 3}.

A combination of a ZURA with a location labelling function L is interpreted
as a Kripke structure [1]. The states and transitions of this Kripke structure are
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Fig. 4. ZURA state space of timed automaton A3.1 with respect to G = {x ≤ 3, y ≤ 3}
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the states and transitions of the ZURA, forgetting the labels of transitions. The
state labelling function LK is defined as LK(l, Z, U) = L(l) ∪ {g ∈ G | U |= g}.
Here, U |= g denotes that all valuations of U satisfy g. Due to the definition of
ultraregions, this is equivalent to the existence of a valuation in U satisfying g.

In the next subsection, we are going to prove the following theorem. The
theorem gives us a solution to the CA-LTL model checking problem by reducing
it to the problem of standard LTL model checking of a Kripke structure.

Theorem 4.7. Let A be a TA, let AZURA be its zone-ultraregion automaton
with respect to G. Let further ϕ be a CA-LTL formula over G. Then A |= ϕ iff
AZURA |= ϕ.

We finish this section with a remark about Zeno runs. It might sometimes
happen that the model checking algorithm produces a counterexample that is
a Zeno run of the original TA. If ignoring such runs is desirable (as it usually
is), we may extend the original TA with one special clock z, add a loop on
every location with guard z = 1 and reset {z}, and modify the original CA-LTL
formula from ϕ to (GF z ≤ 0 ∧GF z > 0)⇒ ϕ.

4.1 Proof of Theorem 4.7

For the remainder of this section, let us assume a fixed TA A, a fixed set of
guards G, and a fixed location labelling function L.

We show that the proper runs of �A� and the runs of AZURA are, in some
sense, equivalent. In order to do that, we use the notion of a signature of a run.
Intuitively, a signature is a sequence of sets of atomic propositions that hold
along the given run.

We use the fact that all valuations of a given ultraregion satisfy the same set
of guards. For an ultraregion U , we thus use G(U) to denote the set of guards
satisfied by the valuations of U .

Definition 4.8 (Signature). Let G be a set of simple guards, Lp a set of

location propositions, Ap = G ∪ Lp, and let π = (l0, η0)
d0−→ (l0, η0 + d0)

act−−→
(l1, η1) · · · be a proper run of a TA. Let Uj,0 be the ultraregion of G containing

ηj and let Uj,i+1 = succ(Uj,i). For (lj , ηj)
dj−→ (lj , ηj + dj) in π, we define

wj ∈ (2Ap)+:

wj = (L(lj) ∪G(Uj,0)) · (L(lj) ∪G(Uj,1)) · · · (L(lj) ∪G(Uj,k))

where k is the least such that Uj,k = Uj,k+1. For (lj , ηj)
∞−→ (lj ,∞), we define:

wj = (L(lj) ∪G(Uj,0)) · (L(lj) ∪G(Uj,1)) · · ·

In this case, wj ∈ (2Ap)ω. The signature of π with respect to Ap, denoted by
sigAp(π), is defined as the infinite word w = w0w1w2 · · ·wj if π ends with (lj ,∞),
w = w0w1w2 · · · otherwise.
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Our first objective is to show that the runs of AZURA represent exactly the
signatures of all proper runs of A. We then show that the CA-LTL satisfaction
on a proper run can be reduced to the classic LTL satisfaction on its signature.
These results together imply the statement of Theorem 4.7. We only give the
main ideas of the proofs here, more detailed proofs and explanation can be found
in [9].

Lemma 4.9. Let π be a proper run of A with signature sigAp(π). Then there
exists an infinite run (l0, Z0, U0) → (l1, Z1, U1) → · · · such that sigAp(π)(i) =

L(li) ∪G(Ui), where sigAp(π)(i) denotes the ith letter (from 2Ap) of sigAp(π).

Proof idea. We show that every action transition of �A� has its counterpart in
AZURA and that every delay transition of �A� has its counterpart as a sequence
of δ-transitions in AZURA. We then build the run of AZURA inductively.

Lemma 4.10. Let (l0, Z0, U0)
γ0−→ (l1, Z1, U1)

γ1−→ · · · be a run of AZURA with
γi ∈ {act , δ}. Then there exists a proper run π of A such that sigAp(π)(i) =
L(li) ∪G(Ui).

Proof idea. The proof of this lemma is more involved as we cannot map every
transition of AZURA to a counterpart transition or a sequence of transitions
in �A� directly in a forward manner. Instead, we use a trick similar to that used
in [25]. We consider the region graph of A and show the correspondence between
AZURA and this region graph. We then use the fact that the standard region
equivalence is a time-abstracting bisimulation [26] to show the correspondence
between runs of the region graph and proper runs of �A�.

Let us recall that the classic satisfaction relation for LTL on an infinite word
from (2Ap)ω is given by w |= p ∈ Ap if p ∈ w(0), w |= ϕU ψ ⇐⇒ ∃k : wk |= ψ
and for all j < k : wj |= ϕ. Here, w(0) is the first letter of the word w and wk is
the kth suffix of w. We omit the standard boolean operators.

Lemma 4.11. Let π be a proper run of a TA, let G be a set of simple guards,
Lp a set of location propositions, Ap = G∪Lp. Let ϕ be a CA-LTL formula over
Ap. Then π |= ϕ iff sigAp(π) |= ϕ when seen as an LTL formula.

Proof idea. We observe that the suffixes of proper runs correspond to suffixes
of their signatures. The lemma is then proved by induction on the structure of
ϕ, with most cases being trivial and the only interesting case (that of the U
operator) being resolved by the observation about suffixes.

This concludes the proof of Theorem 4.7.

5 Implementation

We first show how to compute the successor of a given fixed ultraregion U . Let
X̂U ⊆ X be the set of all clocks bounded in U, i.e. X̂U = {x ∈ X | ∃d ∈ R≥0 :
∀η ∈ U : η(x) ≤ d}.
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For a clock x ∈ X we define Ux ∈ Ix to be the interval from Ix such that
there exists a valuation η ∈ U with η(x) ∈ Ux. For x, y ∈ X̂U we further define
Ux−y to be the interval from Ix−y such that there exists a valuation η ∈ U with
η(x) − η(y) ∈ Ux−y. Note that the existence and uniqueness of Ux and Ux−y

follow from the definition of ultraregions, and in the latter case, the fact that
we only consider differences of bounded clocks. We further use Ex to denote the
right endpoint of Ux.

To establish the successor of U , we need to find out which clocks leave U
soonest. We thus define the following relation on X̂U :

x �U y ⇐⇒ ∀η ∈ U : ∀d ∈ R≥0 : η(x) + d ∈ Ux ⇒ η(y) + d ∈ Uy

It is easy to see that �U is reflexive, transitive, and that for all x, y ∈ X̂U , either
x �U y or y �U x. This means that�U is a total preorder.We denote the induced
equivalence by ≈U . The following lemma gives us a way of computing �U . Here,
we use the notation a < I with the meaning ∀b ∈ I : a < b, similarly for >.

Lemma 5.1. Let x, y ∈ X̂U . Then x �U y iff either (Ex − Ey) < Ux−y or
(Ex − Ey) ∈ Ux−y ∧ (Ux right-closed =⇒ Uy right-closed).

We can now show the construction of a successor. Let X̃U be the set of the
smallest clocks with respect to �U , i.e. X̃U = {x ∈ X̂U | ∀y ∈ X̂U : x �U y}.
For a bounded interval J ∈ Ix, denote by J↑ the interval in Ix such that the
right endpoint of J is the left endpoint of J↑. For a clock x ∈ X we then define
U ′x as follows:

U ′x =

{
U↑x x ∈ X̃U

Ux x �∈ X̃U

We then define U ′ = {η | ∀x ∈ X : η(x) ∈ U ′x and ∀x, y ∈ X : U ′x and U ′y
bounded ⇒ η(x)− η(y) ∈ Ux−y}. We want to show that U ′ = succ(U). In order
to do that, we first need an auxiliary lemma.

Lemma 5.2. For every η ∈ U there exists d ∈ R>0 such that ∀x ∈ X̃U : η(x) +

d �∈ Ux and ∀y ∈ X̂U \ X̃U : η(y) + d ∈ Uy.

Theorem 5.3. Let U be an ultraregion, let U ′ be defined as above. Then U ′ =
succ(U).

We now show the construction of the reset operation on ultraregions. Let U
be an ultraregion and let R ⊆ X be a set of clocks. As an ultraregion is a special
case of a zone, we may apply the standard zone reset operation on U and then
tighten the constraints using the standard Floyd-Warshall algorithm approach.
The resulting zone can be written as:

U [R] =M = {η | ∀x ∈ R : η(x) = 0; ∀x �∈ R : η(x) ∈Mx

∀x, y �∈ R : η(x)− η(y) ∈Mx−y}
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where Mx ⊆ Ux and Mx−y ⊆ Ux−y for all x, y. The implied constraints are
η(x) − η(y) = 0 for x, y ∈ R and η(x) − η(y) ∈ Mx for x �∈ R and y ∈ R. We
now have to find the set of all ultraregions that intersect M . Clearly, such set is
equal to U〈R〉. For x �∈ R, y ∈ R, let Jx−y = {J ∈ Ix−y | J ∩Mx �= ∅}. Let f
be a choice function that assigns to x, y an interval in Jx−y, i.e. f(x, y) ∈ Jx−y.
Let further Ox ∈ Ix be the interval containing 0, similarly for Ox−y. We then
define:

Uf = {η | ∀x ∈ R : η(x) ∈ Ox; ∀x �∈ R : η(x) ∈ Ux
∀x, y �∈ R : η(x) − η(y) ∈Mx−y

∀x, y ∈ R : η(x) − η(y) ∈ Ox−y

∀x �∈ R, y ∈ R : η(x)− η(y) ∈ f(x, y)}

Clearly, every ultraregion intersecting M is of the form Uf for some choice func-
tion f as define above. However, as we show in the next example, some Uf do
not intersect M .

Example 5.4. Let us now extend our ultraregion example 4.2 by adding another
clock z with the guard z ≤ 0. Then Iz = {[0, 0], (0,∞)}, Ix−z = {(−∞, 3),
[3, 3], (3, 6), [6, 6], (6,∞)}, and Iy−z = {(−∞, 4), [4, 4], (4,∞)}. Let U be the
ultraregion

U = {(x, y, z) | x ∈ [0, 3], y ∈ [0, 4], z ∈ (0,∞), x− y ∈ (−1, 2)}

and let R = {y, z}. Using the zone reset operation and tightening the bounds
givesM = {(x, y, z) | x ∈ [0, 3], y = z = 0}. We then have Jx−y = {(−1, 2), [2, 2],
(2,∞)} and Jx−z = {(−∞, 3), [3, 3]}, which gives six possible choice functions
and thus six candidate ultraregions. It is easy to verify that two of these candi-
dates, namely those corresponding to the choices (−1, 2) ∈ Jx−y, [3, 3] ∈ Jx−z

and [2, 2] ∈ Jx−y, [3, 3] ∈ Jx−z, do not intersect M . The other four candidates
together constitute U〈R〉.

The implementation of U〈R〉 thus works as follows: We first apply the zone
reset operation to U and tighten the bounds. We then create the sets of intervals
Jx−y and iteratively try all choice functions to get all possible candidates. Each
candidate is then intersected with M and checked for emptiness. Those who
intersect M are then the result.

We have shown the implementation of the ultraregion reset and the ultraregion
successor operations. Note that it is possible to pre-compute the ultraregion au-
tomaton with respect to a given G. Such a pre-computed automaton will provide
an efficient way of obtaining the result of the successor and reset operations for
a given ultraregion. Obviously, all other operations required in the construction
of the zone-ultraregion automaton are the standard zone operations. These op-
erations can be computed on the fly, thus allowing to employ efficient on-the-fly
model checking algorithms.
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5.1 Experiments

We have evaluated our method within the parallel and distributed model checker
DIVINE [27]. For the purpose of the evaluation we used several real-time mod-
els, namely 2doors.xml, bridge.xml, fisher.xml, and train-gate.xml, which
are distributed with UPPAAL 4.0.13. We have measured the size of ZURA for
selected instances of the chosen models with the primary interest in the increase
of the state space size with respect to the number of guards used in a specifica-
tion. Therefore, we work directly with different guard sets instead of CA-LTL
formulae. Table 1 shows the growth of zone-ultraregion automaton state space
size with the increasing size of the guard set.

We choose guard sets separately for each model as follows, for 2doors.xml

G1 = {x ≤ 4}, G2 = G1 ∪ {x ≤ 6}, G3 = G2 ∪ {w ≤ 0}, for bridge.xml

G1 = {y ≤ 10}, G2 = G1 ∪ {y ≤ 15}, G3 = G2 ∪ {time ≤ 25}, for fisher.xml
G1 = {x ≤ 1}, G2 = G1 ∪ {x ≤ 2}, G3 = G2 ∪ {x < 2}, for train-gate.xml

G1 = {x ≤ 10}, G2 = G1 ∪ {x ≤ 5}, G3 = G2 ∪ {x < 15}.

Table 1. Experimental evaluation of ZURA state space size

Model
|G| = 0 |G1| = 1 |G2| = 2 |G3| = 3

states trans. states trans. states trans. states trans.

2doors 189 343 294 508 364 636 482 817
bridge 723 1851 1446 3702 2169 5553 4617 11334
fischer4 1792 4912 12159 29808 16688 38337 32124 72668
fischer5 15142 45262 157623 426256 219435 556705 420875 1063796
fischer6 140716 453328 2174673 6424394 3070446 8536643 5817098 16279518

train-gate3 610 1153 3689 7486 11286 23023 28066 60422
train-gate4 9977 18233 98366 187327 351388 674504 936973 1915545
train-gate5 200776 359031 2479343 4589462 9662204 18112439 27159806 54271266

6 Conclusion and Future Work

Model checking of CA-LTL over timed automata provides system engineers with
another powerful formal verification procedure to check for reliability and cor-
rectness of time-critical systems. To our best knowledge we are the first to fully
describe and implement the process of zone-based LTL model checking over
timed automata for a logic that allows clock constraints as atomic propositions.
We again recall that the zone-based solutions to the Timed Büchi Automaton
Emptiness problem known so far have not provided the solution to the CA-LTL
model checking problem as presented in this paper. Our implementation has
been done within the parallel and distributed model checker DIVINE which al-
lows us to employ the aggregate power of multiple computational nodes in order
to deal with a single model checking task.
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We are currently working on several extensions. One of them is to allow atomic
propositions used in CA-LTL formulae to be able to refer to the clock value
differences. Another extension deals with different zone extrapolation methods
and the last one enhances the logic with actions.
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Abstract. Adaptive systems improve their efficiency, by modifying their be-
haviour to respond to changes in their operational environment. Also, security
must adapt to these changes and policy enforcement becomes dependent on the
dynamic contexts. We extend (the core of) an adaptive functional language with
primitives to enforce security policies on the code execution, and we exploit a
static analysis to instrument programs. The introduced checks guarantee that no
violation of the required security policies occurs.

1 Introduction

Context and Adaptivity. Today’s software systems are expected to operate every time
and everywhere. They have to cope with changing environments, and never compromise
their intended behaviour or their non-functional requirements, e.g. security or quality
of service. Therefore, languages need effective mechanisms to sense the changes in the
operational environment, i.e. the context, in which the application is plugged in, and
to properly adapt to changes. At the same time, these mechanisms must maintain the
functional and non-functional properties of applications after the adaptation steps.

The context is a key notion for adaptive software. Typically, a context includes differ-
ent kinds of computationally accessible information coming both from outside (e.g. sen-
sor values, available devices, code libraries offered by the environment), and from inside
the application boundaries (e.g. its private resources, user profiles, etc.).

Context Oriented Programming (COP) [9,15,1,17,3] is a recent paradigm that pro-
poses linguistic features to deal with contexts and adaptivity. Its main construct is be-
havioural variation, a chunk of code to be activated depending on the current context
hosting the application, to dynamically modify the execution.

Security and Contexts. The combination of security and context-awareness requires to
address two aspects. First, security may reduce adaptivity, by adding further constraints
on the possible actions of software. Second, new highly dynamic security mechanisms
are needed to scale up to adaptive software. In the literature, e.g. in [26,6], this duality
is addressed in two ways: securing context-aware systems and context-aware security.

Securing context-aware systems aims at rephrasing the standard notions and tech-
niques for confidentiality, integrity and availability [24], and at developing techniques
for guaranteeing them [26]. The challenge is to understand how to get secure and trusted
context information. Context-aware security is dually concerned with the use of context
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information to dynamically drive security decisions. Consider the usual no flash pho-
tography policy in museums. While a standard security policy never allows people to
use flash, a context-aware security could forbid flash only inside particular rooms.

Yet, there is no unifying concept of security, because the two aspects above are of-
ten tackled separately. Indeed, mechanisms have been implemented at different levels
of the infrastructure, in the middleware [25] or in the interaction protocols [14], that
mostly address access control for resources and for smart things (see e.g. [26,16,27],
and [2,10]). More foundational issues have been less studied within the programming
languages approach we follow; preliminary work can be found, e.g. in [7,23].

Our Proposal. The kernel of our proposal relies on extending MLCoDa, a core ML with
COP features introduced in [13]. Its main novelty is to be a two-component language:
a declarative part for programming the context and a functional one for computing.

The context in MLCoDa is a knowledge base implemented as a Datalog program
(stratified, with negation) [22,19]. To retrieve the state of a resource, programs simply
query the context, in spite of the possibly complex deductions required to solve the
corresponding goal; context is changed by using the standard tell/retract constructs.

Programming adaptation is specified through behavioural variations, a first class,
higher-order MLCoDa construct. They can be referred to by identifiers, and used as a
parameter in functions. This fosters dynamic, compositional adaptation patterns, as well
as reusable, modular code. The chunk of a behavioural variation to be run is selected by
the dispatching mechanism that inspects the actual context and makes the right choices.

Notably, MLCoDa, as it is, offers the features needed for addressing context-aware
security issues, in particular for defining and enforcing access control policies. Our
version of Datalog is powerful enough to express all relational algebras, is fully decid-
able, and guarantees polynomial response time [12]. Furthermore, adopting a stratified-
negation-model is common and many logical languages for defining access control
policies compile in Stratified Datalog, e.g. [5,18,11]. Here, we are only interested in
policies imposed by the system, which are unknown at development time. Indeed the
policies of the application can be directly encoded by the developer as behavioural vari-
ations. The dispatching mechanism then suffices for checking whether a specific policy
holds, and for enabling the chunk of behaviour that obeys it. Our language therefore
requires no extensions to deal with security policies.

Our aim is to handle, as soon as possible, both failures in adaptation to the current
context (functional failure) and policy violations (non-functional failure). Note that the
actual value of some elements in the current context is only known when the application
is linked with it at runtime. Actually, we have a sort of runtime monitor, natively sup-
ported by the dispatching mechanism of MLCoDa, which we switch on and off at need.
To specify and implement the runtime monitor, we conservatively extend the two-phase
verification of [13]. The first phase is based on a type and effect system that, at compile
time, computes a safe over-approximation, call it H, of the application behaviour. Then
H is used at loading time to verify that (i) the resources required by the application
are available in the actual context, and in its future modifications (as done in [13]); and
(ii) to detect within the application where a policy violation may occur, i.e. when the
context is modified through tell and retract actions.
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The loading time analysis requires first to build a graph G , that safely approximates
which contexts the application will pass through, while running. While building the
graph, we also label its edges with the tell/retract operations in the code, exploiting
the approximation H. Before launching the execution, we detect the unsafe operations
by checking the policy Φ on each node of G . Our runtime monitor can guard them,
where it will be switched off for the remaining actions. Actually, we collect the labels
of the risky operations and associate the value on with them, and off with all the others.

To make the above effective, the compiler instruments the code by substituting a
behavioural variation bv for each occurrence of a tell/retract. At runtime, bv checks if
Φ holds in the running context, but only when the value of the label is on.

The next section introduces MLCoDa and our proposal, with the help of a running ex-
ample, along with an intuitive presentation of the various components of our two-phase
static analysis, and the way security is dynamically enforced. The formal definitions and
the statements of the correctness of our proposal will follow in the remaining sections.
The conclusion summarises our results and discusses some future work.

2 Running Example

Consider a multimedia guide to a museum implemented as a smartphone application,
starting from the case study in [13]. Assume the museum has a wireless infrastructure
exploiting different technologies, like WiFi, Bluetooth, Irda or RFID. When a smart-
phone is connected, the visitors can access the museum Intranet and its website, from
which they download information about the exhibit and further multimedia contents.
Each exhibit is equipped with a wireless adapter (Bluetooth, Irda, RFID) and a QR
code. They are only used to offer the guide with the URL of the exhibit, retrievable by
using one of the above technologies, provided that it is available on the smartphone. If
equipped with a Bluetooth adapter, the smartphone connects to that of the exhibit and
directly downloads the URL; if the smartphone has a camera and a QR decoder, the
guide can retrieve the URL by taking a picture of the code and decoding it.

The smartphone capabilities are stored in the context as Datalog clauses. Con-
sider the following clauses defining when the smartphone can either directly down-
load the URL (the predicate device(d) holds when the device d ∈ {irda,bluetooth,
rfid reader} is available), or it can take the URL by decoding a picture (the parame-
ter x in the predicate use qrcode is a handle for using the decoder):

direct_comm () ← device(irda).
direct_comm () ← device(bluetooth ).
direct_comm () ← device(rfid_reader ).
use_qrcode (x) ← user_prefer (qr_code),

qr_decoder(x),
device(camera).

use_qrcode (x) ← qr_decoder(x),
device(camera),
¬ device(irda),
¬ device(rfid_reader ),
¬ device(bluetooth ).
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Contextual data, like the above predicates use qrcode(decoder) and direct comm(),
affect the download. To change the program flow in accordance to the current context,
we exploit behavioural variations. Syntactically, they are similar to pattern matching,
where Datalog goals replace patterns and parameters can additionally occur.
Behavioural variations are similar to functional abstractions, but their application trig-
gers a dispatching mechanism that, at runtime, inspects the context and selects the first
expression whose goal holds.

In the following function getExhibitData, we declare the behavioural variation
url (with an unused argument “ ”), that returns the URL of an exhibit. If the smart-
phone can directly download the URL, then it does, through the channel returned by
the function getChannel(); otherwise the smartphone takes a picture of the QR code
and decodes it. In the last case, the variables decoder and cam will be assigned to the
handles of the decoder and the one of the camera deduced by the Datalog machinery.
These handles are used by the functions take picture and decode qr to interact with
the actual smartphone resources.

fun getExhibitData () =
let url = (_){
← direct_comm ().

let c = getChannel () in
receiveData c,

← use_qrcode (decoder),camera(cam).
let p = take_picture cam in

decode_qr decoder p }
in getRemoteData #url

The behavioural variation (bound to) url is applied before the getRemoteData call
that connects to the corresponding website and downloads the required information
(we use here a slightly simplified syntax, for details see Sect. 3).

By applying the function getExhibitData to unit and assuming n is returned by
getChannel, we have the following computation (C, e→� C′, e′ says that the expres-
sion e in the context C reduces in several steps to e′ changing the context in C′):

C,getExhibitData()→� C,getRemoteData#u→� C,getRemoteData(receiveDatan)

The second configuration above transforms into the third, because C satisfies the goal
← direct comm(), and so the dispatching mechanism selects the first expression of the
behavioural variation u (the one bound to url in getExhibitData).

To dynamically update the context, we use the constructs tell and retract, that add
and remove Datalog facts. In our example the context stores information about the room
in which the user is, through the predicate current room. If the user moves from the
delicate paintings room to the sculptures one, the application updates the context by:

retract current_room (delicate_paintings )
tell current_room (sculptures ).

Assume now that one can take pictures in every room, but that in the rooms with
delicate paintings it is forbidden to use the flash so to prevent the exhibits from dam-
ages. This policy is specified by the museum (the system) and it must be enforced dur-
ing the user’s tour. Since policies predicate on the context, they are easily expressed
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as Datalog goals. Let the fact flash on hold when the flash is active and the fact
button clicked when the user presses the button of the camera. The above policy
intuitively corresponds to the logical condition current room(delicate paintings)⇒
(button clicked ⇒¬ f lash on) and is expressed in Datalog as the equivalent goal

phi ←¬ current_room (delicate_paintings )
phi ←¬ button_clicked
phi ←¬ flash_on

Of course, the museum can specify other policies, and we assume that there is a
unique global policy Φ (referred in the code as phi), obtained by suitably combining
them all. The enforcement is obtained by a runtime monitor that checks the validity of
Φ right before every context change, i.e. before every tell/retract.

An application fails to adapt to a context (functional failure), when the dispatching
mechanism fails. Consider the evaluation of getExhibitData on a smartphone with-
out wireless technology and QR decoder. Since no context will ever satisfy the goals
of url, it gets stuck. Another kind of failure happens when a tell/retract causes a pol-
icy violation (non-functional failure). If the context includes current room(delica−
te paintings), such a violation occurs when attempting to use the flash.

To avoid functional failures and to optimise policy enforcement, we equip MLCoDa

with a two-phase static analysis: a type and effect system, and a control-flow analy-
sis. The analysis checks whether an application will be able to adapt to its execution
contexts, and detects which contexts can violate the required policies.

At compile time, we associate a type and an effect with an expression e. The type
is (almost) standard, and the effect is an over-approximation of the actual runtime be-
haviour of e, called the history expression. The effect abstractly represents the changes
and the queries performed on the context during its evaluation. Consider the expression:

ea = let x =
if always_flash
then let y = tell F1

1 in tell F2
2

else let y = tell F3
1 in tell F4

3
in tell F5

4

For clarity, we show the labels i of tellFi
j in the code, that are inserted by the com-

piler while parsing (same for retract). Let the facts above be F1 ≡ camera on; F2 ≡
flash on; F3 ≡ mode museum activated; F4 ≡ button clicked. The type of ea is
unit, as well as that of tellF4, and its history expression is

Ha = (((tell F1
1 · tell F2

2 )
3 +(tell F4

1 · tell F5
3 )

6)7 · tell F8
4 )

9

(· abstracts sequential composition, + if-then-else). Depending upon the value of
always flash, that records whether the user wants the flash to be always usable, the
expression ea can either perform the action tellF1, followed by tellF2, or the action
tellF1, followed by tellF3, so recording in the context that the flash is on or off.
After that, ea will perform tellF4, no matter what the previous choice was.

The labels of history expressions allow us to link the actions in histories to the cor-
responding actions of the code, e.g. the first tellF11 in Ha, corresponds to the first
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{F5, F8}

{F1, F5, F8}{F1, F2, F5, F8} {F1, F3, F5, F8}

{F1, F2, F4, F5, F8} {F1, F3, F4, F5, F8}

{1, 4}
{2} {5}

{8} {8}

Fig. 1. The evolution graph for the context {F5, F8} and for the history expression
Ha = (((tell F1

1 .tell F2
2 )

3 +(tell F4
1 .tell F5

3 )
6)7.tell F8

4)
9

tellF1 in ea, that is also labelled by 1, while the tellF84 in Ha, is linked to the action
with label 5 in ea. All the correspondences are {1 �→ 1,2 �→ 2,4 �→ 3,5 �→ 4,8 �→ 5} (the
abstract labels that do not annotate tell/retract actions have no counterpart).

Consider now an initial context C that includes the facts F5 (irrelevant here), and F8≡
current room(delicate paintings), but no facts in {F1,F2,F3,F4}. Starting from
C (and from Ha) our loading time analysis builds the graph described in Fig. 1. Nodes
represent contexts, possibly reachable at runtime, while edges represent transitions from
one context to another. Each edge is annotated with the set of actions in Ha that may
cause that transition, e.g. from the context C it is possible to reach a (single) context
that also includes the fact F1, because of the two tell operations labelled by 1 and by 4
in Ha. As a matter of fact, an edge can have an annotation including more than one label
(e.g. the one labelled {1, 4}). Note also that the same label may occur in the annotation
of more than one edge (e.g. the label 8).

By visiting the graph, we observe that the context {F1, F2, F4, F5, F8} (the dotted
node in Fig. 1, red in the pdf) violates our no-flash policy. At runtime the action labelled
with 8 (underlined and in red in the pdf), corresponding to tellF4 must be blocked.
For preventing this violation, all we have to do is activate the runtime monitor, right
before executing this risky operation.

3 MLCoDa

Below, we survey the syntax and the semantics of MLCoDa; for more details see [13].

Syntax. MLCoDa consists of two components: Datalog with negation to describe the
context, and a core ML extended with COP features. The Datalog part is standard: a
program is a set of facts and clauses. We assume that each program is safe, and we
adopt Stratified Datalog, under the Closed World Assumption to deal with negation [8].
Security policies are simply expressed as Datalog goals, the value of which is true only
if the policy holds.

The functional part inherits most of the ML constructs. In addition to the usual ones,
our values include Datalog facts F and behavioural variations. Moreover, we introduce
the set x̃ ∈ DynVar of parameters, i.e. variables that assume values depending on the
properties of the running context, while x, f ∈Var are identifiers for standard variables
and functions, with the proviso that Var∩DynVar = /0. The syntax of MLCoDa is below.
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Va ::= G.e | G.e,Va v ::= c | λ f x.e | (x){Va} | F
e ::= v | x | x̃ | e1 e2 | let x = e1 ine2 | i f e1 thene2 elsee3 |

dlet x̃ = e1 whenGine2 | tell(e1)
l | retract(e1)

l | e1∪ e2 | #(e1,e2)

To facilitate our static analysis (see Sect. 5) we associate each tell/retract with a label
l ∈ LabC (this does not affect the dynamic semantics).

COP-oriented constructs of MLCoDa include behavioural variations (x){Va}, each
consisting of a variation Va, i.e. a list of expressions G1.e1, . . . ,Gn.en guarded by Data-
log goals Gi (x free in ei). At runtime, the first goal Gi satisfied by the context selects
the expression ei to be run (dispatching). Context-dependent binding is the mechanism
to declare variables whose values depend on the context. The dlet construct imple-
ments the context-dependent binding of a parameter x̃ to a variation Va. The tell/retract
constructs update the context by asserting/retracting facts, provided that the resulting
context satisfies the system policy Φ. The append operator e1 ∪ e2 concatenates be-
havioural variations, so allowing for dynamically composing them. The evaluation of a
behavioural variation #(e1,e2) applies e1 to its argument e2. To do so, the dispatching
mechanism is triggered to query the context and to select from e1 the expression to run.

Semantics. The Datalog component has the standard top-down semantics [8]. Given a
context C ∈ Context and a goal G, we let C � Gwithθ mean that the goal G, under a
ground substitution θ, is satisfied in the context C.

The SOS semantics of MLCoDa is defined for expressions with no free variables, but
possibly with free parameters, thus allowing for openness. To this aim, we have an envi-
ronment ρ, i.e. a function mapping parameters to variations DynVar→Va. A transition
ρ � C, e → C′, e′ says that in the environment ρ, the expression e is evaluated in the
context C and reduces to e′ changing C to C′. The initial configuration is ρ0 �C, ep,
where ρ0 contains the bindings for all system parameters, and C results from joining
the predicates and facts of the system and of the application.

Fig. 2 shows the inductive definitions of the reduction rules for our new constructs;
the others ones are standard, and so are the congruence rules that reduce subexpressions,
e.g. ρ �C, tell(e)→C′, tell(e′) if ρ �C, e→C′, e′.

We briefly comment below on the rules displayed. The rules (DLET1) and (DLET2) for
the construct dlet, and the rule (PAR) for parameters implement our context-dependent
binding. For brevity, we assume here that e1 contains no parameters. The rule (DLET1)
extends the environment ρ by appending G.e1 in front of the existent binding for x̃.
Then, e2 is evaluated under the updated environment. Note that the dlet does not eval-
uate e1, but only records it in the environment in a sort of call-by-name style. The rule
(DLET2) is standard: the whole dlet reduces to the value to which e2 reduces.

The (PAR) rule looks for the variation Va bound to x̃ in ρ. Then, the dispatching
mechanism selects the expression to which x̃ reduces. The dispatching mechanism is
implemented by the partial function dsp, defined as

dsp(C, (G.e,Va)) =

{
(e, θ) if C � Gwithθ
dsp(C,Va) otherwise
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(DLET1)

ρ[(G.e1,ρ(x̃))/x̃] �C, e2 →C′, e′2
ρ �C, dlet x̃ = e1 whenGine2 →C′, dlet x̃ = e1 whenGine′2

(DLET2)

ρ �C, dlet x̃ = e1 whenGinv→C, v

(PAR)

ρ(x̃) =Va dsp(C,Va) = (e, θ)
ρ �C, x̃→C, eθ

(VAAPP3)

dsp(C,Va) = (e, {−→c /−→y })
ρ �C, #((x){Va}, v)→C, e{v/x, −→c /−→y }

(TELL2)

dsp(C∪{F}, phi.()) = ((), /0)
ρ �C, tell(F)l →C∪{F}, ()

(RETRACT2)

dsp(C�{F}, phi.()) = ((), /0)
ρ �C, retract(F)l →C�{F}, ()

Fig. 2. The reduction rules for the constructs of MLCoDa concerning adaptation

It inspects a variation from left to right to find the first goal G satisfied by C, under
a substitution θ. If this search succeeds, the dispatching returns the corresponding ex-
pression e and θ. Then, x̃ reduces to eθ, i.e. to e the variables of which are bound by
θ. Instead, if the dispatching fails because no goal holds, the computation gets stuck,
because the program cannot adapt to the current context.

Consider the simple conditional expression if x̃ = F2 then 42 else 51, in an en-
vironment ρ that binds the parameter x̃ to e′ = G1.F5,G2.F2 and in a context C that
satisfies the goal G2, but not G1:

ρ �C, if x̃ = F2 then 42 else 51→C, ifF2 = F2 then 42 else 51→C, 42

where we first retrieve the binding for ~x (recall it is e′), with dsp(C, e′) = (F2,θ), for a
suitable substitution θ. Since facts are values, we can bind them to parameters and test
their equivalence by a conditional expression.

The application of the behavioural variation #(e1,e2) evaluates the subexpressions
until e1 reduces to (x){Va} and e2 to a value v. Then, the rule (VAAPP3) invokes the
dispatching mechanism to select the relevant expression e from which the computation
proceeds after v is substituted for x. Also in this case the computation gets stuck, if the
dispatching mechanism fails. Consider the behavioural variation (x){G1.c1,G2.x} and
apply it to the constant c in a context C that satisfies the goal G2, but not G1. Since
dsp(C,(x){G1.c1,G2.x}) = (x, θ) for some substitution θ, we get

ρ �C, #((x){G1.c1,G2.x},c) → C, c

The rule for tell(e)l /retract(e)l evaluates the expression e until it reduces to a fact F ,
which is a value of MLCoDa. The new context C′, obtained from C by adding/removing
F , is checked against the security policy Φ. Since Φ is a Datalog goal, we can easily
reuse our dispatching machinery, implementing the check as a call to the function dsp
where the first argument is C′ and the second one is the trivial variation phi.(). If this
call produces a result, then the evaluation yields the unit value and the new context C′.

The following example shows the reduction of a retract construct. Let Φ be the
policy of Sect. 2, C be {F3, F4, F5}, and apply f= λx.ife1thenF5elseF4 to unit. If
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e1 evaluates to false (without changing the context), the evaluation gets stuck because
dsp(C� {F4}, phi.()) fails. Since Φ requires the fact F4 to always hold, every attempt
to remove it from the context violates indeed Φ. If, instead, e1 reduces to true, there is
no policy violation and the evaluation reduces to unit.

ρ � C, retract(f())l →∗ C, retract(F4)l �→
ρ � C, retract(f())l →∗ C, retract(F5)l →C�{F5},()

4 Type and Effect System

We now associate an MLCoDa expression with a type, an abstraction called the his-
tory expression, and a function called the labelling environment. During the verification
phase, the virtual machine uses the history expression to ensure that the dispatching
mechanism will always succeed at runtime. Then, the labelling environment drives code
instrumentation with security checks. First, we briefly present History Expressions and
labelling environments, and then the rules of our type and effect system.

History Expressions. A history expression is a term of a simple process algebra that
soundly abstracts program behaviour [4]. Here, they approximate the sequence of ac-
tions that an application may perform over the context at runtime, i.e. asserting/retract-
ing facts and asking if a goal holds. We assume that a history expression is uniquely
labelled on a given set of LabH . Labels link static actions in histories to the correspond-
ing dynamic actions inside the code. The syntax of History Expressions follows:

H ::= � | εl | hl | (µh.H)l | tell Fl | retract Fl | (H1 +H2)
l | (H1 ·H2)

l | Δ
Δ ::=(ask G.H⊗ Δ)l | f aill

The empty history expression abstracts programs which do not interact with the context.
For technical reasons, we syntactically distinguish when the empty history expression
comes from the syntax (εl) and when it is instead obtained by reduction in the seman-
tics (�). With µh.H we represent possibly recursive functions, where h is the recursion
variable; the “atomic” history expressions tell F and retract F are for the analogous
constructs of MLCoDa; the non-deterministic sum H1 +H2 abstracts if -then-else; the
concatenation H1 ·H2 is for sequences of actions, that arise, e.g. while evaluating appli-
cations; Δ mimics our dispatching mechanism, where Δ is an abstract variation, defined
as a list of history expressions, each element Hi of which is guarded by an ask Gi.

The history expression of the behavioural variation url in getExhibitData of
Sect. 2, is Hurl = ask G1.H1⊗ ask G2.H2⊗ f ail, where G1 =← direct comm() and
G2 =← use qrcode (decoder),camera(cam), and Hi is the effect of the expression
guarded by Gi, for i = 1,2. Intuitively, Hurl means that at least one goal between G1

and G2 must be satisfied by the context to successfully apply the behavioural variation
url. Given a context C, the behaviour of a history expression H is formalised by the
transition system inductively defined in Fig. 3. Transitions C,H →C′,H ′ mean that H
reduces to H ′ in the context C and yields the context C′. Most rules are similar to the
ones of [4]: below we only comment on those dealing with the context. An action tell F
reduces to � and yields a context C′, where the fact F has just been added; similarly for
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C, (� ·H)l →C, H

C, εl →C, �

C, tell Fl →C∪{F}, �

C, retract Fl →C\{F}, �

C,H1 →C′, H ′1
C,(H1 +H2)

l →C′, H ′1
C,H2 →C′, H ′2

C,(H1 +H2)
l →C′, H ′2

C, H1 →C′, H ′1
C, (H1 ·H2)

l →C′, (H ′1 ·H2)
l

C,(µh.H)l →C,H[(µh.H)l/h]

C � G

C, (ask G.H⊗Δ)l →C, H
C � G

C, (ask G.H⊗Δ)l →C, Δ

Fig. 3. Semantics of History Expressions

retract F . Differently from what we do in the semantic rules, here we do not consider the
possibility of a policy violation: a history expression approximates how the application
would behave in the absence of any kind of check. The rules for Δ scan the abstract
variation and look for the first goal G satisfied in the current context; if this search
succeeds, the whole history expression reduces to the history expression H guarded by
G; otherwise the search continues on the rest of Δ. If no satisfiable goal exists, the stuck
configuration fail is reached, meaning that the dispatching mechanism fails.

We assume we are given the function h : LabH → H that recovers a construct in
a given history expression h ∈ H from a label l. Below, we specify the link between a
tell/retract in a history expression and its corresponding operation in the code, labelled
on LabC (see Sect 3). Consider, e.g. the history expression Ha of Sect. 2, and the label
correspondence given there: {1 �→ 1,2 �→ 2,4 �→ 3,5 �→ 4,8 �→ 5}.

Definition 1 (Labelling Environment). A labelling environment is a (partial) function
Λ : LabH → LabC, defined only if h(l) ∈ {tell(F), retract(F)}.

Typing Rules. We assume that each Datalog predicate has a fixed arity and a type
(see [20]). From here onwards, we also assume that there exists a Datalog typing func-
tion γ that, given a goal G, returns a list of pairs (x, type-of-x), for all variables x ∈ G.

The rules of our type and effect systems have:

– the usual environment Γ ::= /0 | Γ,x : τ, binding the variables of an expression;
/0 denotes the empty environment, and Γ,x : τ denotes an environment having a
binding for the variable x (x does not occur in Γ).

– a further environment K ::= /0 |K,(x̃,τ,Δ), that maps a parameter x̃ to a pair consist-
ing of a type and an abstract variation Δ, used to solve the binding for x̃ at runtime;
K,(x̃,τ,Δ) denotes an environment with a binding for the parameter x̃ (not in K).

Our typing judgements Γ; K � e : τ�H; Λ, express that in the environments Γ and K the
expression e has type τ, effect H and yields a labelling environment Λ. We have basic
types τc ∈ {int,bool,unit, . . .}, functional types, behavioural variations types, and facts:

τ ::=τc | τ1
K|H−−→ τ2 | τ1

K|Δ
==⇒ τ2 | f actφ φ ∈℘(Fact)
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(TFACT)

Γ; K � F : f act{F} �ε;⊥

(TTELL/TRETRACT)

Γ; K � e : f actφ �H; Λ op ∈ {tell,retract}

Γ; K � op(e)l : unit �

(
H ·

(
∑

Fi∈φ
opFli

i

))l′

; Λ
⊎

Fi∈φ
[li �→ l]

(TLET)

Γ; K � e1 : τ1 �H1; Λ1 Γ, x : τ1; K � e2 : τ2 �H2; Λ2

Γ; K � let x = e1 in e2 : τ2 �H1 ·H2; Λ1 &Λ2

(TVARIATION)

∀i ∈ {1, . . . ,n} γ(Gi) =
−→yi : −→τi

Γ,x : τ1,
−→yi : −→τi ;K′ � ei : τ2 �Hi; ,Λi Δ = ask G1.H1⊗·· ·⊗ask Gn.Hn⊗ f ail

Γ; K � (x){G1.e1, . . . ,Gn.en} : τ1
K ′|Δ
===⇒ τ2 �ε;

⊎
i∈{1,...,n}

Λi

(TDLET)

Γ,−→y :
−→̃
τ ; K � e1 : τ1 �H1; Λ1

Γ; K,(x̃, τ1, Δ′) � e2 : τ�H; Λ2

Γ; K � dlet x̃ = e1 whenGine2 : τ�H; Λ1 &Λ2

where γ(G) =−→y :
−→̃
τ

if K(x̃) = (τ1, Δ) then Δ′ = G.H1⊗Δ
else (if x̃ /∈ K then Δ′ = G.H1⊗ f ail)

Fig. 4. Typing rules for the new constructs implementing adaptation

Some types are annotated for analysis reasons. In factφ, the set φ contains the facts
that an expression can be reduced to at runtime (see the semantics rules (TELL2) and
(RETRACT2)). Here, K stores the types and the abstract variations of the parameters oc-
curring inside the body of f . The history expression H is the latent effect of f , i.e. the
sequence of actions which may be performed over the context during the function eval-

uation. Similarly, in τ1
K|Δ
==⇒ τ2 associated with the behavioural variation bv = (x){Va},

K is a precondition for applying bv, while Δ is an abstract variation, that represents the
information used at runtime by the dispatching mechanism to apply bv.

We now introduce the partial orderings'H ,'Δ,'K ,'Λ on H, Δ, K and Λ, resp. (of-
ten omitting the indexes when unambiguous):

– H1 'H H2 iff ∃H3 such that H2 = H1 +H3;
– Δ1 'Δ Δ2 iff ∃Δ3 such that Δ2 = Δ1⊗Δ3 (note that Δ2 has a single trailing fail);
– K1 'K K2 iff ((x̃, τ1, Δ1) ∈ K1 implies (x̃, τ2, Δ2) ∈ K2 and τ1 ≤ τ2 ∧ Δ1 'Δ Δ2 );
– Λ1 'Λ Λ2 iff ∃Λ3 such that dom(Λ3)∩dom(Λ1) = /0 and Λ2 = Λ1&Λ3.

Most of the rules of our type and effect system are inherited from ML, and those for
the new constructs are in Fig. 4. A few comments are in order.

The rule (TFACT) gives a fact F type fact annotated with {F} and the empty ef-
fect. The rule (TTELL)/(TRETRACT) asserts that the expression tell(e)/retract(e) has type
unit, provided that the type of e is factφ. The overall effect is obtained by combining the
effect of e with the nondeterministic summation of tell F /retract F , where F is any of the
facts in the type of e. In rule (TVARIATION) we determine the type for each subexpres-
sion ei under K′, and the environment Γ, extended by the type of x and of the variables−→yi

occurring in the goal Gi (recall that the Datalog typing function γ returns a list of pairs
(z, type-of-z) for all variables z of Gi). Note that all subexpressions ei have the same
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type τ2. We also require that the abstract variation Δ results from concatenating ask Gi

with the effect computed for ei. The type of the behavioural variation is annotated by
K′ and Δ. Consider the behavioural variation bv1 = (x){G1.e1,G2.e2}. Assume that the
two cases of this behavioural variation have type τ and effects H1 and H2, respectively,
under the environment Γ,x : int (goals have no variables) and the guessed environment

K′. Hence, the type of bv1 will be int
K′|Δ
==⇒ τ with Δ = ask G1.H1⊗ ask G2.H2⊗ fail

and the effect will be empty. The rule (TDLET) requires that e1 has type τ1 in the envi-
ronment Γ extended with the types for the variables −→y of the goal G. Also, e2 has to
type-check in an environment K, extended with the information for parameter x̃. The
type and the effect for the overall dlet expression are the same as e2. The labelling envi-
ronment generated by the rules (TFACT) is ⊥, because there is no tell or retract. Instead
both (TTELL) and (TRETRACT) update the current environment Λ by associating all the
labels of the facts which e can evaluate to, with the label l of the tell(e) (retract(e),
resp.) being typed. The rule (TLET) produces an environment Λ that contains all the
correspondences of Λ1 and Λ2 coming from e1 and e2; note that unicity of the labelling
is guaranteed by the condition dom(Λ1)∩dom(Λ2) = /0.

The correspondence between the labels in the expression ea and those of its history
expression Ha of Sect. 2 are {1 �→ 1,2 �→ 2,4 �→ 3,5 �→ 4,8 �→ 5}, and the other labels
are mapped to ⊥. Note that a labelling environment need not be injective.

Soundness. Our type and effect system is sound with respect to the operational seman-
tics of MLCoDa. First, we introduce the typing dynamic environment and an ordering on
history expressions. Intuitively, the history expression H1 could be obtained from H2 by
evaluation.

Definition 2 (Typing Dynamic Environment). Given the type environments Γ and K,
we say that the dynamic environment ρ has type K under Γ (in symbols Γ � ρ : K) iff
dom(ρ)⊆ dom(K) and ∀x̃ ∈ dom(ρ) . ρ(x) = G1.e1, . . . ,Gn.en K(x̃) = (τ, Δ) and ∀i ∈
{1, . . . ,n} . γ(Gi)=

−→yi :−→τi Γ,−→yi :−→τi ;Kx̃ � ei : τ′�Hi and τ′ ≤ τ and
⊗

i∈{1,...,n}Gi.Hi ' Δ.

Definition 3. Given H1,H2 then H1 � H2 iff one of the following cases holds

(a) H1 ' H2; (b) H2 = H3 ·H1 for some H3;
(c) H2 =

⊗
i∈{1,...,n} ask Gi.Hi⊗ fail ∧ H1 = Hi, i ∈ [1..n].

Theorem 1 (Preservation). Let es be a closed expression; and let ρ be a dynamic envi-
ronment such that dom(ρ) includes the set of parameters of es and such that Γ � ρ : K.
If Γ; K � es : τ�Hs;Λs and ρ �C, es →C′, e′s then
Γ; K � e′s : τ�H ′

s;Λ′s and ∃H, s.t. H ·H ′
s � Hs and C,H ·H ′

s →+ C′, H ′
s and Λ′s ' Λs.

The Progress Theorem assumes that the effect H is viable, i.e. it does not reach fail,
meaning that the dispatching mechanism succeeds at runtime. The control flow analysis
of Sect. 5 guarantees viability (below ρ �C, e � means no transition from C, e). The
next corollary ensures that the effect computed for e soundly approximates the actions
that may be performed over the context during the evaluation of e.
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Theorem 2 (Progress). Let es be a closed expression such that Γ;K � es : τ�Hs;Λs;
and let ρ be a dynamic environment such that dom(ρ) includes the set of parameters of
es, and such that Γ � ρ : K. If ρ �C, es � and H is viable for C (i.e. C, Hs �+ C′, fail)
and there is no policy violation then es is a value.

Corollary 1 (Over-Approximation). Let e be a closed expression.
If Γ;K � e : τ�H;Λs ∧ ρ �C, e→∗ C′, e′, for some ρ such that Γ � ρ : K, then there
exists a computation C, H →∗ C′, H ′, for some H ′.

Note that the type of e′ is the same of e, because of Theorem 1, and the obtained
label environment is included in Λs.

5 Loading-Time Analysis

Our execution model for MLCoDa extends the one in [13]: the compiler produces a
quadruple (Cp, ep, Hp, Λp) given by the application context, the object code, the his-
tory expression over-approximating the behaviour of ep; and the labelling environment
associating labels of Hp with those in the code. Given the quadruple, at loading time,
the virtual machine performs the following two phases:

– linking: to resolve system variables and constructs the initial context C (combining
Cp and the system context); and

– verification: to build from Hp a graph G that describes the possible evolutions of C.

Technically, we compute G through a static analysis, specified in terms of Flow
Logic [21]. To support the formal development, we assume below that all the bound
variables occurring in a history expression are distinct. So we can define a function K
mapping a variable hl to the history expression (µh.Hl1

1 )l2 that introduces it.
The static approximation is represented by a pair (Σ◦,Σ•), called estimate for H,

with Σ◦,Σ• : LabH →℘(Context∪{•}), where • is the distinguished “failure” context
representing a dispatching failure. For each label l,

– the pre-set Σ◦(l) contains the contexts possibly arising before evaluating Hl;
– the post-set Σ•(l) contains the contexts possibly resulting after evaluating Hl .

The analysis is specified by a set of clauses upon judgements (Σ◦,Σ•) � Hl , where
� ⊆ AE ×H and AE = (LabH →℘(Context∪{•}))2 is the domain of the results of
the analysis and H the set of history expressions. The judgement (Σ◦,Σ•) � Hl says that
Σ◦ and Σ• form an acceptable analysis estimate for the history expression Hl .

We will use the notion of acceptability to check whether the history expression Hp,
hence the expression e it is an abstraction of, will never fail in a given initial context C.

In Fig. 5, we give the set of inference rules that validate the correctness of a given es-
timate E = (Σ◦,Σ•). Intuitively, the checks in the clauses mimic the semantic evolution
of the history expression in the given context, by modelling the semantic preconditions
and the consequences of the possible reductions.

In the rule (ATELL), the analysis checks whether the context C is in the pre-set, and
C ∪ {F} is in the post-set; similarly for(ARETRACT), where C\{F} should be in the
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(ANIL)

(Σ◦,Σ•) ��

(ATELL)

∀C ∈ Σ◦(l) C∪{F} ∈ Σ•(l)
(Σ◦,Σ•) � tell Fl

(ARETRACT)

∀C ∈ Σ◦(l) C\{F} ∈ Σ•(l)
(Σ◦,Σ•) � retract Fl

(ASEQ1)

(Σ◦,Σ•) � Hl1
1

(Σ◦,Σ•) � Hl2
2

l
Σ◦(l)⊆ Σ◦(l1)
Σ•(l1)⊆ Σ◦(l2)
Σ•(l2)⊆ Σ•(l)

(Σ◦,Σ•) � (Hl1
1 ·H

l2
2 )l

(ASEQ2)

(Σ◦,Σ•) � Hl2
2

Σ◦(l)⊆ Σ◦(l2)
Σ•(l2)⊆ Σ•(l)

(Σ◦,Σ•) � (� ·Hl2
2 )l

(AEPS)

Σ◦(l)⊆ Σ•(l)
(Σ◦,Σ•) � εl

(ASUM)

(Σ◦,Σ•) � Hl1
1

(Σ◦,Σ•) � Hl2
2

Σ◦(l)⊆ Σ◦(l1)
Σ◦(l)⊆ Σ◦(l2)

Σ•(l1)⊆ Σ•(l)
Σ•(l2)⊆ Σ•(l)

(Σ◦,Σ•) � (Hl1
1 +Hl2

2 )l

(AASK1)

∀C ∈ Σ◦(l) (C � G =⇒ (Σ◦,Σ•) � Hl1 Σ◦(l)⊆ Σ◦(l1) Σ•(l1)⊆ Σ•(l))
(C � G =⇒ (Σ◦,Σ•) � Δl2 Σ◦(l)⊆ Σ◦(l2) Σ•(l2)⊆ Σ•(l))

(Σ◦,Σ•) � (askG.Hl1 ⊗Δl2)l

(AASK2)

• ∈ Σ•(l)
(Σ◦,Σ•) � f aill

(AREC)

(Σ◦,Σ•) � Hl1 Σ◦(l)⊆ Σ◦(l1)
Σ•(l1)⊆ Σ•(l)

(Σ◦,Σ•) � (µh.Hl1 )l

(AVAR)

K(h) = (µh.Hl1 )l′ (Σ◦(l)⊆ Σ◦(l′)
Σ•(l′)⊆ Σ•(l)

(Σ◦,Σ•) � hl

Fig. 5. Specification of the analysis for History Expressions

post-set. The rule (ANIL) says that every pair of functions is an acceptable estimate
for the “semantic” empty history expression �. The estimate E is acceptable for the
“syntactic” εl if the pre-set is included in the post-set (rule (AEPS)). The rules (ASEQ1)
and (ASEQ2) handle the sequential composition of history expressions. The first rule
states that (Σ◦,Σ•) is acceptable for H = (Hl1

1 ·H
l2
2 )l if it is valid for both H1 and H2.

Moreover, the pre-set of H1 must include the pre-set of H and the pre-set of H2 includes
the post-set of H1; finally, the post-set of H includes that of H2. The second rule states
that E is acceptable for H = (� ·Hl2

1 )l if it is acceptable for H1 and the pre-set of H1

includes that of H, while the post-set of H includes that of H1. The rules (AASK1) and
(AASK2) handle the abstract dispatching mechanism. The first states that E is acceptable
for H = (askG.Hl1

1 ⊗Δl2)l , provided that, for all C in the pre-set of H, if the goal G
succeeds in C then the pre-set of H1 includes that of H and the post-set of H includes
that of H1. Otherwise, the pre-set of Δl2 must include the pre-set of H and the post-set
of Δl2 is included in that of H. The second requires • to be in the post-set of f aill . By
the rule (ASUM), E is acceptable for H = (Hl1

1 +Hl2
2 )l if it is valid for each H1 and H2;

the pre-set of H is included in the pre-sets of H1 and H2; and the post-set of H includes
those of H1 and H2. By the rule (AREC), E is acceptable for H = (µh.Hl1

1 )l if it is valid

for Hl1
1 , the pre-set of H1 includes that of H; and the post-set of H includes that of H1.
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The rule (AVAR) says that a pair (Σ◦,Σ•) is an acceptable estimate for a variable hl if
the pre-set of the history expression introducing h, namely K(h), is included in that of
hl , and the post-set of hl includes that of K(h).

Semantic Properties. We now formalise the notion of valid estimate for a history ex-
pression; we prove that there always exists a minimal valid analysis estimate; and that
a valid estimate is correct w.r.t. the operational semantics of history expressions.

Definition 4 (Valid Analysis Estimate). Given H
lp
p and an initial context C, we say

that a pair (Σ◦,Σ•) is a valid analysis estimate for Hp and C iff C∈Σ◦(lp) and (Σ◦,Σ•)�
H

lp
p .

Theorem 3 (Existence of Estimates). Given Hl and an initial context C, the set
{(Σ◦,Σ•) | (Σ◦,Σ•) � Hl} of the acceptable estimates of the analysis for Hl and C is
a Moore family; hence, there exists a minimal valid estimate.

Theorem 4 (Subject Reduction). Let Hl be a closed history expression
s.t. (Σ◦,Σ•) � Hl. If ∀C ∈ Σ◦(l), C,Hl → C′,H ′l′ then (Σ◦,Σ•) � H ′l′ , Σ◦(l) ⊆ Σ◦(l′),
and Σ•(l′)⊆ Σ•(l).

Viability of history expressions. We now define when a history expression Hp is viable
for an initial context C, i.e. when it passes the verification phase. Below, let lfail(H) be
the set of labels of the fail sub-terms in H:

Definition 5 (Viability). Let Hp be a history expression and C be an initial context. We
say that Hp is viable for C if there exists the minimal valid analysis estimate (Σ◦,Σ•)
such that ∀l ∈ dom(Σ•)\lfail(HP) • /∈ Σ•(l).

To illustrate how viability is checked, consider the following history expressions:

Hp = ((tell F1
1 · retract F2

2 )
3 +(ask F5.retract F5

8 ⊗ (ask F3.retract F6
4 ⊗ f ail7)8)4)9

H ′
p = ((tell F1

1 · retract F2
2 )

3 +(ask F3.retract F5
4 ⊗ f ail6)4)7

and the initial context C = {F2, F5, F8}, only consisting of facts.
The left part of Fig. 6 shows the values of Σ1

◦(l) and Σ1
•(l) for Hp. Notice that

the pre-set of tell F1
1 includes {F2, F5, F8}, and the post-set also includes {F1}. Also,

the pre-set of retract F5
8 includes {F2, F5, F8}, while the post-set includes {F2, F5}. The

column describing Σ• contains • only for l = 7, the label of fail, so Hp is viable for C.
However, the history expression H ′

p fails to pass the verification phase, when put in the
initial context C. Since the goal F3 does not hold in C, H ′

p is not viable. This is reflected
by the occurrences of • in Σ2

•(4) and Σ2
•(7), as shown in the right part of Fig. 6.

Now, we exploit the result of the above analysis to build up the evolution graph G .
It describes how the initial context C will evolve at runtime, paving the way to security
enforcement.
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Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {{F2, F5}}
5 {{F2, F5, F8}} {{F2, F5}}
6 /0 /0
7 /0 {•}
8 /0 /0
9 {{F2, F5, F8}} {{F1, F5, F8},{F2, F5}}

Σ2
◦ Σ2

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {•}
5 /0 /0
6 {{F2, F5, F8}} {•}
7 {{F2, F5, F8}} {{F1, F5, F8},•}

{F2, F5, F8}

{F1, F2, F5, F8} {F2, F5}

{F1, F5, F8}

{1} {5}

{2}

{F2, F5, F8}

{F1, F2, F5, F8} •

{F1, F5, F8}

{1} {}

{2}

Fig. 6. The analysis results (top) and the evolution graphs Gp (bottom left) and G ′p (bot-
tom right) for the initial context C = {F2, F5, F8}, and for the history expressions Hp =
((tell F1

1 · retract F2
2 )

3 +(ask F5.retract F5
8 ⊗ ask F3.retract F6

4 ⊗ f ail7)4)8 and H ′p = ((tell F1
1 ·

retract F2
2 )

3 +(ask F3.retract F5
4 ⊗ f ail6)4)7, respectively

Definition 6 (Evolution Graph). Let Hp be a history expression, C be a context, and
(Σ◦,Σ•) be a valid analysis estimate. The evolution graph of C is G = (N,E,L), where

N =
⋃

l∈Lab∗H
(Σ◦(l)∪Σ•(l))

E = {(C1,C2) | ∃F ∈ Fact∗, l ∈ Lab∗H s.t. C1 ∈ Σ◦(l)∧C2 ∈ Σ•(l) ∧
(h(l) ∈ {tell(F), retract(F)}∨ (C2 = •))}

L : E → P (Labels)
∀t = (C1,C2) ∈ E, l ∈ L(t) iff C1 ∈ Σ◦(l)∧C2 ∈ Σ•(l)∧h(l) �= fail

Intuitively, the nodes of G are sets of contexts, and an edge between two nodes C1

and C2 records that C2 is obtained from C1, through a tell/retract. Using the labels of
arcs we can locate the abstract tell/retract that may lead to a context violating a given
policy Φ. By putting guards on the corresponding risky actions in the code (via Λ), we
can enforce Φ. In the following, let Fact∗ and Lab∗H be the set of facts and the set of
labels occurring in Hp, i.e. the history expression under verification.

Consider again the history expressions Hp and H ′
p and their evolution graphs Gp and

G ′
p (Fig. 6, bottom). In Gp, from the initial context C there is an arc labelled {1} to

C∪{F1}, because of tell F1
1 , and there is an arc labelled {5} to the C \F8, because of

retract F5
8 . It is easy to see that Hp is viable for C, because the node • is not reachable

from the initial context C in Gp, However H ′
p is not, because • is reachable in G ′

p.
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6 Code Instrumentation

Once we detected the potentially risky operations through the evolution graph G , we
can instrument the code of an application e and only switch on our runtime monitor to
guard them. First, since a node n of G represents a context reachable while executing
e, we statically verify whether n satisfies Φ. If this is not the case, we consider all the
edges with target n and the set R of their labels. The labelling environment Λ, computed
while type checking e, determines those actions in the code that require monitoring
during the execution, indexed by the set Risky = Λ(R).

In fact we will guard all the tell/retract actions in the code, but our runtime mon-
itor will only be invoked on the risky ones. To do that, the compiler labels the source
code as said in Sect. 2 and generates specific calls to monitoring procedures. We offer
a lightweight form of code instrumentation that does not operate on the object code,
differently from standard instrumentation. In more detail, we define a procedure, called
check violation(l), for verifying if the policy Φ is satisfied. It takes a label l as
parameter and returns the type unit. At loading time, we assign a global mask risky[l]
for each label l in the source code, by using the information in the set Risky.
The procedure code in a pseudo MLCoDa and the definition of risky[l] are as follows:

fun check_violation l =
if risky[l] then ask phi.() else ()

where risky[l] =

{
true if l ∈ Risky

false otherwise

If risky[l] is false, then the procedure returns to the caller and the execution goes
on normally. Otherwise, it calls for a check on Φ, by triggering with the call ask phi.()
the dispatching mechanism: if the call fails then a policy violation is about to occur. In
this case the computation is aborted or a recovery mechanism is possibly invoked.

Our compilation schema needs to replace every tell(e)l (similarly for retract(e)l) in
the source code with the following, where z is fresh.:

let z = tell(e) in check_violation (l)

An easy optimisation is possible when Risky is empty, i.e. when the analysis ensures
that all the tell/retract actions are safe and so no execution paths lead to a policy
violation. To do this, we introduce the flag always ok, whose value will be computed
at linking time: if it is true, no check is needed. The previous compilation schema is
simply refined by testing always ok before calling check violation.

7 Conclusions

We have addressed security issues in an adaptive framework, by extending MLCoDa, a
functional language introduced in [13] for adaptive programming. Our main contribu-
tions can be summarised as follows.
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– We have expressed and enforced context-dependent security policies in Datalog,
originally used by MLCoDa to deal with contexts.

– We have extended the MLCoDa type and effect system for computing a type and a
labelled abstract representation of the overall behaviour of an application. Actually,
an effect over-approximates the sequences of the possible dynamic actions over the
context, and labels link the security-critical operations of the abstraction with those
in the code of the application.

– We have enhanced the static analysis of [13] to identify the operations that may
affect contexts and violate the required policy, besides verifying that the application
can adapt to all the possible contexts arising at runtime.

– Based on the results of the static analysis, we have defined a way to instrument the
code of an application e, so as to introduce an adaptive runtime monitor that stops e
when about to violate the policy to be enforced, and is switched on and off at need.

We plan to investigate richer forms of policies, in particular those having an addi-
tional dynamic scope, and those which are history dependent [4], and study their impact
on adaptivity. A long term goal is extending these policies with quantitative information,
e.g. statistical information about the usage of contexts, reliability of resources therein,
etc. Finally, we are thinking of providing a kind of recovery mechanism for behavioural
variations, to allow the user to undo some actions considered risky or sensible, and force
the dispatching mechanism to make different, alternative choices.
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Abstract. One of the important tasks in model-based testing is check-
ing completeness of test suites. In this paper we first extend some known
sufficient conditions for test suite completeness by also allowing partial
implementations. We also study a new notion of equivalence, and show
that the same conditions are still sufficient when treating complete im-
plementations. But when we also allow for partial implementations under
this new notion of equivalence such conditions are not sufficient anymore
for the completeness of test suites.

Keywords: test suite completeness, partial models, weak equivalence,
confirmed sets.

1 Introduction

Automatic test suite generation for Finite State Machine (FSM) models has been
widely investigated in the literature [1, 3, 4, 7]. Several approaches proposed
conditions and techniques to generate test suites based on FSMs with complete
fault coverage [2, 5, 8–10]. Some of these works have shown sufficient conditions
that guarantee the completeness of the test suites [4, 12].

Simao and Petrenko [11] proposed sufficient conditions for checking test suite
completeness based on a notion of “confirmed sets”. Informally, a set of input
sequences T is confirmed when any two of its sequences lead to a same state in
a specification, and these same sequences also lead to a common state in any
implementation that is T -equivalent to the specification. However, in that ap-
proach, implementation candidates are assumed to be complete models. Further,
specifications and implementations are also required to be reduced and initially
connected FSMs with the same number of states.

In this work we first remove the restriction of implementation machines being
complete models. We also show that the existence of confirmed sets is enough
to guarantee test suite completeness even when the implementations have any
number of states. These relaxations seem natural, given that implementations
are usually treated as black boxes. We proceed to explore a new notion of equiv-
alence, called weak-equivalence, where we treat test cases that may not run to
completion in one or both of the models. This further improves the treatment of
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implementations as real black boxes. It is shown that confirmed sets, under the
new notion of equivalence, are also sufficient to guarantee test suite complete-
ness when implementations are complete models. By contrast, the existence of
confirmed sets is no longer sufficient to ascertain test suite completeness when
implementations may be partial machines under the new notion of equivalence.

This paper is organized as follows. Section 2 gives some important definitions.
In Section 3 we show that confirmed sets are sufficient for test suite complete-
ness under the classical notion of equivalence, and even when implementations
are partial machines. We present an example with partial implementations in
Section 4. In Section 5 we extend this result under a new notion of equivalence,
where implementations are still restricted to being complete FSMs. Test suite
completeness under the new notion of equivalence, but now allowing for partial
implementations, is studied in Section 6. Section 7 ends with some concluding
remarks.

2 Definitions

Let I be an alphabet. We denote by I the set of all finite sequences of symbols
from I. When we write σ = x1x2 · · ·xn ∈ I (n ≥ 0) we mean xi ∈ I (1 ≤ i ≤ n),
unless noted otherwise. The length of any finite sequence of symbols α over I
is indicated by |α|. The empty sequence will be indicated by ε, with |ε| = 0.
Given any two sets of sequences A,B ⊆ I, their symmetric difference will be
indicated by A(B.

Remark 1. A(B = ∅ iff 1 A = B.

Next, we define Finite State Machines (FSMs) [6, 11].

Definition 1. A FSM is a tuple (S, s0, I,O, D, δ, λ) where

1. S is a finite set of states
2. s0 ∈ S is the initial state
3. I is a finite set of input actions or input events
4. O is a finite set of output actions or output events
5. D ⊆ S × I is a specification domain
6. δ : D → S is the transition function
7. λ : D → O is the output function.

All FSMs treated here are deterministic, since δ and λ are functions.
In the sequel, M and N will always denote the FSMs (S, s0, I,O, D, δ, λ) and

(Q, q0, I,O′, D′, μ, τ), respectively. Let σ = x1x2 · · ·xn ∈ I, ω = a1a2 · · ·an ∈
O (n ≥ 0). If there are states ri ∈ S (0 ≤ i ≤ n) such that (ri−1, xi) ∈ D, with
δ(ri−1, xi) = ri and λ(ri−1, xi) = ai (1 ≤ i ≤ n), we may write r0

σ/ω→ rn. When

σ, or ω, or both, is not important, we may write r0
σ/→ rn, or r0

/ω→ rn, or r0 → rn,
respectively. We can also drop the target state, when it is not important, e.g.

1 Here, ‘iff’ is short for ‘if and only if’.
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r0
σ/ω→ or r0 → . It will be useful to extend the functions δ and λ to pairs

(s, σ) ∈ S × I. Let D̂ = {(s, σ) | s σ/→ }. Define the extensions δ̂ : D̂ → S and

λ̂ : D̂ → O by letting δ̂(s, σ) = r and λ̂(s, σ) = ω whenever s
σ/ω→ r. When

there is no reason for confusion, we may write D, δ and λ instead of D̂, δ̂ and
λ̂, respectively. Also, let U(s) = {σ | (s, σ) ∈ D̂} for all s ∈ S.

Remark 2. We always have ε ∈ U(s), for all s ∈ S.

Next we define reachability and completeness for FSMs.

Definition 2. Let M be a FSM, and s, r ∈ S. Then r is reachable from s iff

s
σ/→ r for some σ ∈ I. We say that r is reachable iff it is reachable from s0.

Also, M is complete iff for all reachable s ∈ S and all x ∈ I we have s
x/→ .

From Definition 1, FSMs need not be complete, that is, we may have D �= S×I.
On the other hand, if M is complete then U(s) = I for all s ∈ S.

Observe that when M and N are not complete then there are cases when we
can differentiate two states s ∈ S and q ∈ Q if there is σ ∈ U(s) ( U(q). In
this case, by running σ starting at s and q, one would observe a longer output
sequence from either M or N . The notion of weak equivalence captures this
effect: two FSMs are weakly equivalent when any input sequence that runs in
one also runs in the other. The notion of equivalence is the classical one: any
input sequence that runs on both machines must yield the same behavior.

Definition 3. Let M and N be FSMs and s ∈ S, q ∈ Q. Let C ⊆ I. We say
that s and q are

1. C-weakly-distinguishable iff
(
U(s)(U(q)

)
∩C �= ∅, denoted s �∼C q. Other-

wise they are C-weakly-equivalent, denoted s ∼C q.
2. C-distinguishable iff λ(s, σ) �= τ(q, σ) for some σ ∈ U(s)∩U(q)∩C, denoted
s �≈C q. Otherwise, they are C-equivalent, denoted s ≈C q.

Two FSMs M and N are C-weakly-distinguishable or C-distinguishable iff s0 �∼
q0 or s0 �≈ q0, respectively. Otherwise M and N are C-weakly-equivalent or C-
equivalent, respectively. We will use the same notation for FSM equivalence as
we did for states, e.g., M ≈C N when s0 ≈C q0. When C is not important, or
it is clear from the context, we might drop the index. When there is no mention
to C, we mean C = I.

Remark 3. Weak-distinguishability and weak-equivalence are purely structural
notions. They do not mention the output sequence of the FSMs in any way.

Next we say when FSMs are reduced.

Definition 4. We say that a FSM M is reduced iff every state is reachable and
every two distinct states are distinguishable.

Now we define test cases and test suites.



Partial Models and Weak Equivalence 83

Definition 5. Let M be a FSM. A test suite for M is any finite subset of I.
Any element of a test suite is a test case.

Consider a specificationM , a test suiteT forM , and the notion ofT -equivalence.
Inmany situations, one considers only test suites whose test cases run inM , that is,
withT ⊆ U(s0). It is also common to assume that implementationsN are complete
machines, that is,U(q0) = I.Under these conditionswegetT∩U(s0)∩U(q0) = T ,
and T -equivalence reduces to λ(s0, α) = τ(q0, α), for all α ∈ T , that isM and N
display the same behavior under all tests in T . Another common constraint is to
restrict implementation N to have at most as many states as a specification M .
However, when implementation N is treated as a black box, usually one cannot
guarantee completeness ofN , nor does one control the number of states inN .Many
of the results that followwill establisha contrastbetween this simpler state of affairs
and other, more realistic scenarios, where test suites can be more general sets and
implementations may be partial models with any number of states.

Next, we recall the concept of n-completeness for test suites, under the two
notions of equivalence.

Definition 6. Let M be a FSM, let T be a test suite for M and take n ≥ 1.
Then T is

1. weakly-n-complete for M iff for any FSM N with |Q| ≤ n, if M ∼T N then
M ∼ N .

2. n-complete forM iff for any FSM N with |Q| ≤ n, if M ≈T N then M ≈ N .

3 Equivalence and Partial Implementations

Simão and Petrenko [11] proposed sufficient conditions for checking test suite
n-completeness under a number of restrictions over the specifications and the
implementation models, such as reducibility of both machines and completeness
of the implementations. In this section we extend that result, by showing that
those conditions are also sufficient for checking test suite completeness even when
implementations are not complete. We also do not require that implementations
have no more states than the specifications, nor do we require that both models
be reduced FSMs. We remark that in this section we will be treating only the
classical definition of equivalence. See definition 3(2).

For the ease of reference, we repeat part of [11]. IfM is a FSM and T is a test
suite for M , let )T (M) be the set of all FSMs with the same number of states
as M , and that are reduced, complete and T -equivalent to it, with this notation
as in [11]. Since we will not enforce all of these restrictions, we let ET (M) be the
larger set of all FSMs that are just T -equivalent to M .

Definition 7 ([11]). Let M be a FSM, let T be a test suite for M and K ⊆ T .
The set K is confirmed iff for all s ∈ S there is some α ∈ K such that δ(s0, α) =
s and, further, for each N ∈ ET (M), it holds that

1. K ⊆ U(s0) ∩ U(q0);
2. For all α, β ∈ K, μ(q0, α) = μ(q0, β) if and only if δ(s0, α) = δ(s0, β).
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Remark 4. We note that condition (1) is not explicitly stated in Definition 4
of [11]. Rather, in [11] it is implicitly assumed the slightly stronger condition that
T ⊆ U(s0) ∩ U(q0) or, equivalently T ⊆ U(s0), given that implementations are
always taken as complete models in [11]. Also, we required N ∈ ET (M) in our
Definition 7, and not N ∈ )T (M) as in Definition 4 of [11], since we are not
restricted to only complete and reduced implementations with the same number
of states as M .

Theorem 1 ([11]). Let M be a reduced FSM with n states. When restricted to
reduced and complete implementations, T is n-complete for M if there exists a
confirmed set K ⊆ T such that ε ∈ K and for each (s, x) ∈ D there exist α,
αx ∈ K such that δ(s0, α) = s.

We start by showing that confirmed sets induce certain injective functions
between the states of a specification and an implementation, given that they are
T -equivalent.

Lemma 1. Let M , N be FSMs and let T be a test suite for M . Assume that
M ≈T N , and that K ⊆ T is a confirmed set. Let f = {(δ(s0, α), μ(q0, α)) |α ∈
K}. Then f is an injective function.

Proof. Assume that (s, q1), (s, q2) ∈ f . Then, we must have α1, α2 ∈ K with
δ(s0, α1) = s = δ(s0, α2) and q1 = μ(q0, α1), q2 = μ(q0, α2). But since K is
confirmed, M ≈T N and α1, α2 ∈ K we get μ(q0, α1) = μ(q0, α2). This gives
q1 = q2, showing that f is a function. Let now (s1, q), (s2, q) ∈ f . This gives
α1, α2 ∈ K with δ(s0, α1) = s1, δ(s0, α2) = s2 and μ(q0, α1) = q = μ(q0, α2).
Again, since K is confirmed, M ≈T N and α1, α2 ∈ K we get δ(s0, α1) =
δ(s0, α2). Hence, s1 = s2 and f is injective. *+
Remark 5. The bi-directional requirement in Definition 7(2) was crucial to
show that f is an injective function.

If we take only complete implementations with no more states than the spec-
ification, then f is, in fact, a bijection.

Lemma 2. Let M , N be FSMs and let T be a test suite for M . Assume that
M ≈T N and that K ⊆ T is a confirmed set. Let f be as in Lemma 1. Then, f
is a bijection if N is complete and |Q| ≤ |S|.
Proof. Let s ∈ S. Since K is confirmed, there is some α ∈ K such that δ(s0, α) =
s. Since N is complete, we know that α ∈ U(q0). The definition of f gives
(s, μ(q0, α)) ∈ f , and so f is a total relation. Since, by Lemma 1, f ⊆ S × Q
is also an injective function, we get |S| ≤ |Q|. Thus, |S| = |Q| and so f is also
onto. We conclude that f is a bijection. *+

The next result says that if f is a function and satisfies the hypothesis of
Theorem 1, then its domain includes all of U(s0) ∩ U(q0).
Lemma 3. Let M , N be FSMs and let T be a test suite for M with M ≈T N .
Let K be a confirmed set satisfying the hypothesis of Theorem 1. Assume that
f , as defined in Lemma 1, is a function. Then (δ(s0, ρ), μ(q0, ρ)) ∈ f when
ρ ∈ U(s0) ∩ U(q0).
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Proof. We go by induction on |ρ| ≥ 0. When |ρ| = 0 we get ρ = ε. Hence, by the
hypothesis in Theorem 1, ρ ∈ K. Clearly, we also have ρ ∈ U(s0)∩U(q0) and the
result follows. Inductively, assume the result for all ρ with |ρ| ≤ n. Take ρx, with
x ∈ I, |ρ| = n and such that ρx ∈ U(s0) ∩ U(q0). Then ρ ∈ U(s0) ∩ U(q0) and
the induction hypothesis gives (s, q) ∈ f , where δ(s0, ρ) = s and μ(q0, ρ) = q.
Since ρx ∈ U(s0), we have (s, x) ∈ D. By the hypothesis of Theorem 1 we know
that K is confirmed, which gives α, αx ∈ K with δ(s0, α) = s. Because αx ∈ K,
the definition of f gives (δ(s0, αx), μ(q0, αx)) ∈ f . We conclude the argument by
showing that δ(s0, αx) = δ(s0, ρx) and μ(q0, αx) = μ(q0, ρx), thus extending the
induction. The former follows immediately since δ(s0, ρ) = s = δ(s0, α). For the
latter, since α ∈ K, from the definition of f we also get (δ(s0, α), μ(q0, α)) ∈ f .
But we already know that (s, q) = (δ(s0, α), q) is also in f and so, because f is a
function, we conclude that μ(q0, α) = q = μ(q0, ρ). Hence, μ(q0, αx) = μ(q0, ρx),
as desired. *+

The next result essentially says that states mapped under f will display the
same behavior.

Lemma 4. Let M , N be FSMs, let T be a test suite for M and let K ⊆ T be
a confirmed set satisfying the sufficiency conditions of Theorem 1. Let s ∈ S,
x ∈ I with (s, x) ∈ D, and assume that f , as in Lemma 1, is a function. Then
λ(s, x) = τ(f(s), x) whenever M ≈T N .

Proof. The sufficiency conditions in Theorem 1 give α, αx ∈ K such that
δ(s0, α) = s. From Definition 7 and K ⊆ T , we get αx ∈ U(s0) ∩ U(q0) ∩ T
and so, because M ≈T N , we get λ(s0, αx) = τ(q0, αx) using Definition 3. But

λ(s0, αx) = λ(s0, α)λ(δ(s0, α), x) = λ(s0, α)λ(s, x) and

τ(q0, αx) = τ(q0, α)τ(μ(q0 , α), x).

Hence, λ(s, x) = τ(μ(q0, α), x). Because α ∈ K, the definition of f now yields
(δ(s0, α), μ(q0, α)) = (s, μ(q0, α)) is in f . Since f is a function, f(s) = μ(q0, α).
Thus, λ(s, x) = τ(f(s), x). *+

We are now in a position to extend Theorem 1. We show that the conditions
there required are sufficient to guarantee test suite completeness even when
implementations are not complete and have any number of states.

Theorem 2. Let M be a FSM and let T be a test suite for M . Let K ⊆ T be
a confirmed set such that ε ∈ K, and for each (s, x) ∈ D there exist α, αx ∈ K
such that δ(s0, α) = s. Then T is n-complete for M , for all n ≥ 1.

Proof. Assume that T is not n-complete for M , for some n ≥ 1. Then, by
Definition 6, there is a FSM N , with |Q| ≤ n and such that M �≈ N and
M ≈T N . Using Definition 3 we get ρ ∈ I, x ∈ I with ρx ∈ U(s0) ∩ U(q0),
and such that λ(s0, ρ) = τ(q0, ρ) and λ(s0, ρx) �= τ(q0, ρx). Let s = δ(s0, ρ)
and q = μ(q0, ρ), so that λ(s, x) �= τ(q, x). Let f be the relation defined in
Lemma 1. Since M ≈T N and K is confirmed, Lemma 1 says that f is an
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injective function. Lemma 3 says that f(s) = f(δ(s0, ρ)) = μ(q0, ρ) = q. Clearly.
(δ(s0, ρ), x) = (s, x) ∈ D, and so Lemma 4 gives λ(s, x) = τ(f(s), x), that is,
λ(s, x) = τ(q, x), which is a contradiction. *+

Remark 6. For this proof it is important that f is simply a function, and not
necessarily a bijection, as required in [11]. Also, the fact that |Q| ≤ n was
not important for the proof. This assumption is need in Lemma 2, but not in
Lemma 1.

4 An Example with Partial Implementations

In this section we show an application of Theorem 2, using a simple example
where implementations are partial FSMs.

Let M be the FSM specification depicted in Figure 1, and let T =
{ε, 1, 10, 11, 111, 100, 101, 10110, 10010} be a test suite for M . Note that M is
a partial specification with three states, and assume that we are treating imple-
mentation machines with up to three states.

s0 s1 s2
1/1 1/1

0/0

1/0

0/1

Fig. 1. FSM specification M

We have systematically constructed all FSMs T -equivalent to M with up to
three states. We obtained seven possible implementation FSMs, named N0 to
N6, that is ET (M) = {Ni|0 ≤ i ≤ 6}. Machine N0 is isomorphic to M , and so it
is also a partial model. Machines N1 and N4 are the completely specified FSMs
depicted in Figure 2. They are distinguishable only by the output of the loop
transition at q0. For N1 we let a = 0, and for N4 we let a = 1. Similarly, N2 and
N5 are the complete FSMs depicted in Figure 3, where a = 0 in N2, and a = 1
in N5. Machines N3 and N6 are depicted in Figure 4, where a = 0 and a = 1,
respectively.

Now let K = {ε, 1, 10, 11, 100, 101}. It is a simple matter to check that K ⊆ T ,
and also that for any (s, x) ∈ D there are α, αx ∈ K such that δ(s0, α) = s. In
order to verify that K is a confirmed set forM we need the following conditions,
for each N ∈ ET (M):

1. K ⊆ U(s0) ∩ U(q0); and
2. for all α, β ∈ K, μ(q0, α) = μ(q0, β) if and only if δ(s0, α) = δ(s0, β).

Note that we have T ⊆ U(s0), and also U(s0) ⊆ U(q0), since all input se-
quences that run in the specification M also run in any implementation Ni
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q0 q1 q2

0/a

1/1 1/1

0/0

1/0

0/1

Fig. 2. FSM implementations N1 and N4

q0 q1 q2
1/1

0/a

1/1

0/0

1/0

0/1

Fig. 3. FSM implementations N2 and N5

(0 ≤ i ≤ 6), because they are extensions of M . The second condition is also
easily checked, and so K is a confirmed set forM . We can now apply Theorem 2
and conclude that T is a 3-complete test suite for M .

We also know that if a test suite T is not 3-complete forM then the sufficiency
conditions in Theorem 2 do not hold, that is, there will not be a confirmed set
K for M . To illustrate this, let T ′ = {ε, 1, 10, 11, 111, 100, 101, 110, 10110} be a
new test suite forM . We know that T ′ is not 3-complete forM since there exists
a machine N∗, depicted in Figure 5, that is T ′-equivalent to M but N∗ is not
equivalent to M . In order to see this, we can easily check that both machines
give the same output behavior when we apply all test cases in T ′ to M and N∗.
But, if we apply 10010 to both machines, we get 10110 in M and 10111 in N∗.

Now, suppose that there is K ′ ⊆ T ′ that satisfies the conditions at Theorem 2.
Then, for any (s, x) ∈ D there must be some α, αx ∈ K ′ such that δ(s0, α) = s.
Since we have (s0, 1) ∈ D so we will need α ∈ T ′ such that δ(s0, α) = s0 and

q0 q1 q2
1/1

0/a

1/1

0/0

1/0

0/1

Fig. 4. FSM implementations N3 and N6
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q0 q1 q2
1/1 1/1

0/0

1/0

0/1

Fig. 5. FSM implementation N∗

α1 ∈ T ′. The only such α ∈ T ′ is α = ε. Then, ε, 1 ∈ K ′. Also, (s2, 0) ∈ D.
Then, we would need α, α0 ∈ T ′ with δ(s0, α) = s2. The only possibilities are
α ∈ {10, 11} and α0 ∈ {100, 110}. So, 100 ∈ K ′ or 110 ∈ K ′. But

δ(s0, 1) = s1 �= s0 = δ(s0, 100) = δ(s0, 110), and

μ(q0, 1) = q1 = μ(q0, 100) = μ(s0, 110).

So, there is no K ′ ⊆ T ′ that satisfies the conditions of Theorem 2.

5 Weak-Equivalence and Complete Implementations

In this section we treat the completeness of test suites using the notion of weak
equivalence, when test cases may not run to completion in the specification or
in the implementation models. Here we consider only complete implementations
models.

Let M be a FSM with n states. We denote by W(M) and by WC(M) the sets
of all FSMs and all complete FSMs, respectively, with at most n states. Let T
be a test suite for M . We denote by WT (M), and by WCT (M), the sets of all
FSMs in W(M), and in WC(M), respectively, that are T -weakly-equivalent to
M . See Definition 6 (1).

Next we introduce the definition of confirmed sets over the new notion of weak
equivalence.

Definition 8. Let M be a FSM, let T be a test suite for M and K ⊆ T . The
set K is weak-confirmed for M and T iff for any s ∈ S there is some α ∈ K
such that δ(s0, α) = s and, further, for each N ∈WT (M), it holds that

1. K ⊆ U(s0) ∩ U(q0);
2. For all α, β ∈ K, μ(q0, α) = μ(q0, β) if and only if δ(q0, α) = δ(q0, β).

Remark 7. When using Definition 8 together with the sufficiency conditions in
Theorem 1, it is redundant to require, in Definition 8, that for any s ∈ S there is
some α ∈ K such that δ(s0, α) = s, when M is a reduced machine with at least
two states. To see this, let s ∈ S. Then, (s, x) ∈ D for some x ∈ I because M is
reduced. The sufficiency conditions then give some α ∈ K such that δ(s0, α) = s,
as desired.
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Suppose now that we are treating only complete implementations. In particu-
lar, in Definition 8 we replace WT (M) by WCT (M). The next lemma then states
some important properties that will be useful later.

Lemma 5. Let M and N be FSMs, with N complete, and let T be a test suite
for M . Then

1. M ∼T N iff T ⊆ U(s0).
2. M �∼ N iff U(s0) �= I.

Proof. Follow directly from the definitions. *+

The following result states similar sufficiency conditions as does Theorem 1,
but now under weak-equivalence.

Theorem 3. Assume that we only allow complete implementations. Let M be
a FSM with n ≥ 2 states, and let T be a test suite for M . If there is a weakly-
confirmed set K ⊆ T that also satisfies the sufficiency conditions of Theorem 1,
then T is weak-n-complete for M .

Proof. First assume that T �⊆ U(s0). For the sake of contradiction, assume the
result is false. Then we have a FSMM and a test suite T forM such that there is
a weakly-confirmedK ⊆ T that satisfies the sufficiency conditions of Theorem 1.
Further, we know that M ∼T N and M �∼ N . But Lemma 5 immediately gives
M �∼T N , a contradiction.

Now let T ⊆ U(s0). Lemma 5 immediately gives that M ∼T N for any
complete FSM N . We construct a complete FSM N with Q = S as follows.

Since M has n ≥ 2 states, let s0
x/→
M
s1, for some s1 ∈ S. Fix some a, b ∈ O

with a �= b. Since we also want N to be reduced, construct the cycle si
y/a→
N
si+1,

0 ≤ i < n, and close the cycle with sn
y/b→
N
s0, for all y ∈ I and y �= x. Terminate

the construction with si
x/a→
N
s0, 0 ≤ i ≤ n. Clearly, N is also complete. It is

easy to see that N is reduced, since the input sequence yn starting at state si
gives an−1−ibai, and an−1−ibai �= an−1−jbaj when i �= j. Using Lemma 5 we get
N ∼T M and so N ∈WCT (M). Let K ⊆ T be a weakly-confirmed set that also
satisfies the sufficiency conditions of Theorem 1. Then, since (s0, x) ∈ D, there
are α, αx ∈ K with δ(s0, α) = s0. So, δ(s0, αx) = s1. We also have ε ∈ K. Then,
ε, αx ∈ K, with δ(s0, ε) = s0 �= s1 = δ(s0, αx) in M . But the construction of N
gives μ(s0, ε) = s0 = μ(s0, αx). This contradicts K being weakly-confirmed. *+

6 Weak-Equivalence and Partial Implementations

In this section we show that Theorem 1 does not hold under weak equivalence
when we also allow for partial implementations. We want a (partial) specification
FSMM and a test suite T forM such that T contains a confirmed subset K ⊆ T
which also satisfies the sufficiency conditions of Theorem 1. We then construct
a (partial) implementation FSM N such that M ∼T N , but M �∼ N , thus
establishing that Theorem 1 does not hold under these conditions, as desired.
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Remark 8. Since, in this section, we are treating weak-equivalence only, we
will drop output symbols in transitions. Output symbols could easily be injected
so that all FSM considered here are reduced.

We start with a specification M with n+1 states, where n ≥ 2, that is we let
S = {s0, s1, . . . , sn}. The simpler cases when n = 1 or n = 0 will be dealt with
later. We define machine M as in Figure 6. More formally, we let I = {0, 1},

s0 s1 s2 si sn−1 sn
1/ 0/ 0/ 0/ 0/

0/

1/

Fig. 6. Speficication M

S = {s0, s1, · · · , sn} and

s0
1/→ s1

0/→ s2
0/→ s3

0/→ · · · 0/→ sn−1
0/→ sn

1/→ s1

sn
0/→ sn.

(1)

Next we define a test suite T and a subset K ⊆ T . For the ease of reference,
we let K = K1 ∪K2 with

K1 = {ε} ∪ {10p | 0 ≤ p ≤ n}, and

K2 = {10n−11, 10n+11, 10n−110, 10n10}.
(2)

The test suite T is now given by T = K ∪ T1, where

T1 = {0} ∪ {10p10, 10n−110p10 | 0 ≤ p ≤ n− 2}. (3)

Note that since n ≥ 2, K and T are well defined. Further, we clearly have
T1 ∩K = ∅.

Using K1 it is easy to see that for all states s ∈ S, there is some α ∈ K such
that δ(s0, α) = s, so that K satisfies the reachability condition in Definition 8.
Using K1 again and 10n−11 ∈ K2 it is also a simple matter to verify that K
satisfies the sufficiency conditions of Theorem 1.

To ease the notation, given a FSM M , some s ∈ S and some α ∈ I, we will
say that s runs α if α ∈ U(s), and we will say that M runs α if s0 runs α.

Remark 9. It is easy to verify that K ⊆ U(s0), that is M runs all α ∈ K. It is
also easy to verify that T1 ∩ U(s0) = ∅, that is, M does not run any α ∈ T1.
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Next, in order to verify that K is indeed confirmed, according to Definition 8,
we need to investigate which FSMs are in WT (M). Note that, according to
Definition 3 and Remark 9, for N to be in WT (M) it is necessary and sufficient
that N runs all α ∈ K, and that N does not run any α ∈ T1. We will show that
any FSM in WT (M) has n+1 states and must also have, at least, all transitions
that are in M . More specifically, if N is a FSM in WT (M), then the states in

N can be listed as Q = {q0, q1, . . . , qn}, with the property that if si
x/→ sj in

M , then we also have qi
x/→ qj in N , for all x ∈ I. We establish this result by

proving a series of claims.
Let N be a FSM such that N ∼T M .

Claim 1: We have q0
1/→ q1

0/→ q2, with q0, q1, q2 distinct.

Proof. First note that since M does not run 0, then there is no outgoing
transition on 0 from q0. That is, N does not run 0. Since M runs 100n−21,

then N will also run 1, but we cannot have q0
1/→ q0 because, since N will also

run 10, then it would also run 0, which is a contradiction. We conclude that

we must have q0
1/→ q1, for some q1 ∈ Q, q0 �= q1.

Now, since M runs 1000n−11, so does N . This means that q1 runs 000n−11.

Clearly, we cannot have q1
0/→ q0 because this will make q0 run 0, which cannot

happen.
Next, we show that we cannot have a self-loop on 0 at q1. SinceM runs 100n−21
so would N . Then, q1 would run 1. There are three cases.

Assume that q1
1/→ q2, for some q2 ∈ Q. Since M runs 10n−110, so does N .

But then N would also run α = 110 = 10p10, with p = 0. Since α ∈ T1,
we get a contradiction. Assume that q1

1/→ q1. Then, as before, N would also

run 110, which cannot happen. Finally, assume that q1
1/→ q0. Then, since

α = 10n−110 ∈ K2, N would run α, and so N would also run 0 ∈ T1, a
contradiction.

We conclude that q1
0/→ q2, for some q2 ∈ Q, distinct from q0 and q1. ,

From Claim 1, we have q0
1/→ q1

0/→ q2 in N , with |{q0, q1, q2}| = 3. Next, we
show that this argument can be extended inductively.
Claim 2: Assume that we have qj (0 ≤ j ≤ k) as distinct states in Q, where

2 ≤ k < n, and such that q0
1/→ q1 and

q1
0/→ q2

0/→ q3
0/→ · · · 0/→ qk.

Then there is a new distinct state qk+1 ∈ Q with qk
0/→ qk+1.

Proof. Recall that 10n+11 ∈ K2, and so N runs 10n+11. Since n > k, this

means that qk runs 000n−k1. We cannot have qk
0/→ q0 because then N would

run 0 ∈ T1, which would be a contradiction. There are two other cases: either

qk
0/→ qj , where 1 ≤ j ≤ k, or qk

0/→ qk+1, where qk+1 ∈ Q is a new distinct
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state. We show that the former cannot happen, and so the latter must be true,
establishing the claim.

For the sake of contradiction, assume that qk
0/→ qj , where 1 ≤ j ≤ k. Since

10n−11 ∈ K2, then N must run 10n−11. We have n− 1− (j − 1) = n− j ≥ 1
and so qj must run 0n−j1. Also, n − j ≥ (k + 1)− j = k − j + 1 = �, and so
we have the cycle μ(qj , 0

�) = qj . We can write n− j = c� + r, for some c ≥ 1
and some 0 ≤ r < �. So, because of the cycle, we have

μ(q0, 10
n−1) = μ(qj , 0

n−j) = μ(qj , 0
c�+r)

= μ(qj , 0
r) = qj+r .

Note that 1 ≤ r+j < �+j = k+1, so that 1 ≤ j+r ≤ k. Since μ(q0, 10n−1) =

qj+r and 10n−110 ∈ K2, we know that qj+r
1/→ q, for some q ∈ Q. If q = q0

then N would run 0 ∈ T1, which cannot happen. Then, qj+r
1/→ qi, for some

1 ≤ i ≤ k + 1, where qk+1 ∈ Q is a new distinct state. If this is the case, then
we would get

μ(q0, 10
n−110) = μ(qj+r , 10) = μ(qi, 0).

So, qi runs 0. Since j + r ≤ k, we also have μ(q0, 10
j+r−110) = μ(qj+r , 10) =

μ(qi, 0), and so N would run 10j+r−110 = 10p10, with p = j + r − 1. Since
1 ≤ j + r ≤ k we get 0 ≤ p ≤ k − 1 ≤ n− 2, because k < n. This shows that
N runs 10p10 ∈ T1, which is a contradiction. ,

Now, using Claim 1 as the basis and Claim 2 as the induction step, we have

q0
1/→ q1

0/→ q2
0/→ q3

0/→ · · · 0/→ qn−1
0/→ qn.

But 10n+11 ∈ K2, and we conclude that qn runs 001.

Claim 3: We must have qn
0/→ qn.

Proof. If qn
0/→ q0 we would immediately have N running 0 ∈ T1, which

cannot happen.

Now assume that qn
0/→ qi with 1 ≤ i < n. Recall that because 10n10 ∈ K2,

then N runs 10n10. Hence,

μ(q0, 10
n−1010) = μ(qn, 010) = μ(qi, 10),

and so qi runs 1. We cannot have qi
1/→ q0 because q0 would run 0 ∈ T1, which

is not allowed. If qi
1/→ qj , with 2 ≤ j ≤ n, then we would have

μ(q0, 10
n10) = μ(qi, 10) = μ(qj , 0),

and so qj would run 0. But we also have μ(q0, 10
i−110) = μ(qi, 10) = μ(qj , 0),

and so N would also run 10i−110. Because 0 ≤ i− 1 ≤ n− 2, we get 10i−110 ∈
T1, a contradiction.

The only other possibility is to have qn
0/→ qn, thus establishing the claim. ,
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Using Claim 3, we now have

q0
1/→ q1

0/→ q2
0/→ q3

0/→ · · · 0/→ qn−1
0/→ qn, and qn

0/→ qn.

Claim 4: We must have qn
1/→ q1.

Proof. Observe that 10n−110 ∈ K2, and so N must run 10n−110. Since

μ(q0, 10
n−110) = μ(qn, 10), we conclude that qn runs 10. If qn

1/→ q0 we imme-
diately get that q0 runs 0 ∈ T1, which cannot happen.

Assume now that qn
1/→ qj , with 2 ≤ j ≤ n. Then, qj runs 0. Also,

μ(q0, 10
n−110n−j10) = μ(qn, 10

n−j10) = μ(qj , 0
n−j10)

= μ(qn, 10) = μ(qj , 0).

Thus, N runs α = 10n−110n−j10. Since 2 ≤ j ≤ n, we have 0 ≤ n− j ≤ n− 2
and so α ∈ T1, contradicting N running α.
Since N can have at most n+ 1 states, because N ∈WT (M), the only possi-

bility left is qn
1/→ q1, thus establishing the claim. ,

We now have reached the desired result.
Claim 5: Let N be a FSM. If N ∼T M then N has n+1 states {q0, q1, . . . , qn}
satisfying

q0
1/→ q1

0/→ q2
0/→ q3

0/→ · · · 0/→ qn−1
0/→ qn

1/→ q1

qn
0/→ qn.

(4)

Proof. Use Claims 1–4. ,

We can now argue that K is confirmed for M and T .
Claim 6: Let M , T and K be as given in (1)–(3). Then, K is confirmed for M
and T .

Proof. Let N be a FSM. From Remark 9, we get K ⊆ U(s0). Let N ∈
WT (M). Then, by Claim 5, N satisfies (4), and we clearly get U(s0) ⊆ U(q0).
Hence, K ⊆ U(s0) ∩ U(q0), satisfying the first condition at Definition 8. It is
also easily seen that we have δ(s0, α) = si if and only if μ(q0, α) = qi, for all
α ∈ K and all 0 ≤ i ≤ n. From this, it follows easily that δ(s0, α) = δ(s0, β)
if and only if μ(q0, α) = μ(q0, β), for all α, β ∈ K. Thus, the second condition
at Definition 8 is satisfied and so K is weakly-confirmed for M and T . ,

Finally, we construct the counter-example to Theorem 1. Let N be a FSM
with n+ 1 states and that satisfies (4). To conclude the construction of N , add

the transition q1
1/→ q0 as shown in Figure 7.

Now, we check that N runs any string in K.
Claim 7: N runs all α ∈ K.
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s0 s1 s2 si sn−1 sn
1/ 0/ 0/ 0/ 0/

0/

1/

1/

Fig. 7. Implementation N

Proof. Follows from (1) and (4). ,

Next, we check that N does not run any string in T1.
Claim 8: N does not run α, for any α ∈ T1.

Proof. Clearly, N does not run 0.
Take 10p10 ∈ T1, with 0 ≤ p ≤ n− 2. Then,

μ(q0, 10
p10) = μ(q1, 0

p10) = μ(qp+1, 10).

There are two cases. If 1 ≤ p ≤ n− 2, then 2 ≤ p+1 ≤ n− 1 and from (4) we
get that qp+1 does not run 10, and so N does not run 10p10 either. If p = 0
we get

μ(q0, 10
p10) = μ(q1, 10) = μ(q0, 0).

Again, from (4), q0 does not run 0 and so N does not run 10p10.
Finally, take 10n−110p10 ∈ T1, with 0 ≤ p ≤ n− 2. Now we have

μ(q0, 10
n−110p10) = μ(q1, 0

n−110p10) = μ(qn, 10
p10) = μ(q1, 0

p10),

and we can repeat the previous argument.
This exhausts all of T1 and the claim holds. ,

We have now our negative result.

Theorem 4. Assume that specifications are partial FSMs with n ≥ 3 states,
and implementations are partial FSMs with at most n states. Then Theorem 1
does not hold under weak-equivalence.

Proof. From Claims 7 and 8 we know that N ∼T M . But we can easily check
that N runs 11 and M does not run 11. Hence N �∼M . Since, by Claim 6, K is
confirmed for M and T , we conclude that Theorem 1 does not hold. *+

The particular cases when specifications have 1 or 2 states are easy to treat
separately. First, let M be a two-state FSM with S = {s0, s1}, I = {0, 1} and

s0
1/→ s1

0/→ s1. (5)
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Let T = K ∪ T ′ where

K = {ε, 1, 10, 100}, T ′ = {0}. (6)

Clearly, any state in M is reachable using a string in K. Moreover, it is easy to
check that K satisfies the sufficiency condition at Theorem 1. Let N be a FSM
with at most 2 states and such that N ∼T M . Since M runs 10, so does N . If

q0
1/→ q0 then q0 would also run 0. But this is a contradiction since 0 ∈ T ′ andM

does not run 0. Hence, we must have q0
1/→ q1, with q0 �= q1. Since M also runs

100, so does N . If we had q1
0/→ q0, then q0 would run 0, which can not happen.

We conclude that in N we have

q0
1/→ q1

0/→ q1. (7)

But now it is immediate that δ(s0, α) = δ(s0, β) if and only if μ(q0, α) = μ(q0, β),
for all α, β ∈ K. Since N was any machine in WT (M), we thus conclude that K
is confirmed for M and K. For the desired counter-example, let N ′ be as in (7)

with the added transition q1
1/→ q1. Clearly, N ′ runs all α ∈ K and does not run

0 ∈ T ′. Hence, N ′ ∼T M . But N ′ runs 11 and M does not, so that N ′ �∼ M .
Because K was shown to be weakly-confirmed for M and T , we conclude that
Theorem 1 also does not hold for two-state FSMs under weak-equivalence and
when we allow for partial specifications and partial implementations.

For completeness, we also look at one-state machines. Take M with S = {s0}
and no transitions. Let T = K = {ε}. It is easily checked that K satisfies the
sufficiency conditions at Theorem 1. Since M is a one-state FSM and T = {ε}
we immediately conclude that any one-state FSM is T -weakly-equivalent to M .
From this, and since K = {ε}, it follows easily that K is weakly-confirmed for

M and T . Now take the one-state FSM N where we just let q0
0/→ q0. Then,

N ∼T M but N �∼ M because N runs 0 and M does not. Again, Theorem 1
does not hold for one-state FSMs.

We can now state a more general result, that is Theorem 1 does not hold
under weak-equivalence and for partial implementation models.

Corollary 1. Assume that specifications are partial FSMs with n states, and
implementations are partial FSMs with at most n states. Then Theorem 1 does
not hold under weak-equivalence.

Proof. From Theorem 4 and the preceding discussion. *+

7 Conclusions

In this work we showed that the notion of confirmed sets can be applied to less
restrictive FSM models to check test suite completeness, when we do not re-
quire implementations to be completely specified, an important relaxation when
treating implementations as true black boxes. Further, we showed that neither
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specifications nor implementations need to be reduced FSMs and also implemen-
tation models can have any number of states.

We also investigated the problem of checking test suite completeness under
the notion of weak-equivalence, that is when we have test suites whose test cases
that may not run to completion in specifications or in implementations. This fur-
ther strengths the black box characteristic of implementations. We showed that
confirmed sets, in the presence of weak-equivalence, are still sufficient for check-
ing test suite completeness when we allow for complete implementations only.
In contrast, we also showed that confirmed sets are not sufficient anymore for
checking test suite completeness when we also consider partial implementations.

All statements were proved correct by rigorous arguments.
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Abstract. We show that probabilistic computable functions, i.e., those
functions outputting distributions and computed by probabilistic Turing
machines, can be characterized by a natural generalization of Church
and Kleene’s partial recursive functions. The obtained algebra, follow-
ing Leivant, can be restricted so as to capture the notion of polytime
sampleable distributions, a key concept in average-case complexity and
cryptography.

1 Introduction

Models of computation as introduced one after the other in the first half of the
last century were all designed around the assumption that determinacy is one
of the key properties to be modeled: given an algorithm and an input to it, the
sequence of computation steps leading to the final result is uniquely determined
by the way an algorithm describes the state evolution. The great majority of
the introduced models are equivalent, in that the classes of functions (on, say,
natural numbers) they are able to compute are the same.

The second half of the 20th century has seen the assumption above relaxed in
many different ways. Nondeterminism, as an example, has been investigated as a
way to abstract the behavior of certain classes of algorithms, this way facilitating
their study without necessarily changing their expressive power: think about how
NFAs [15] make the task of proving closure properties of regular languages easier.

A relatively recent step in this direction consists in allowing algorithms’ inter-
nal state to evolve probabilistically: the next state is not functionally determined
by the current one, but is obtained from it by performing a process having pos-
sibly many outcomes, each with a certain probability. Again, probabilistically
evolving computation can be a way to abstract over determinism, but also a
way to model situations in which algorithms have access to a source of true
randomness.

Probabilistic models are nowadays more and more pervasive. Not only are
they a formidable tool when dealing with uncertainty and incomplete informa-
tion, but they sometimes are a necessity rather than an option, like in compu-
tational cryptography (where, e.g., secure public key encryption schemes need
to be probabilistic [9]). A nice way to deal computationally with probabilistic
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models is to allow probabilistic choice as a primitive when designing algorithms,
this way switching from usual, deterministic computation to a new paradigm,
called probabilistic computation.

But what does the presence of probabilistic choice give us in terms of expres-
sivity? Are we strictly more expressive than usual, deterministic, computation?
And how about efficiency: is it that probabilistic choice permits to solve compu-
tational problems more efficiently? These questions have been among the most
central in the theory of computation, and in particular in computational com-
plexity, in the last forty years (see below for more details about related work).
Roughly, while probability has been proved not to offer any advantage in the ab-
sence of resource constraints, it is not known whether probabilistic classes such
as BPP or ZPP are different from P.

This work goes in a somehow different direction: we want to study probabilis-
tic computation without necessarily reducing or comparing it to deterministic
computation. The central assumption here is the following: a probabilistic al-
gorithm computes what we call a probabilistic function, i.e. a function from a
discrete set (e.g. natural numbers or binary strings) to distributions over the
same set. What we want to do is to study the set of those probabilistic functions
which can be computed by algorithms, possibly with resource constraints.

We give some initial results here. First of all, we provide a characterization of
computable probabilistic functions by the natural generalization of Kleene’s par-
tial recursive functions, where among the initial functions there is now a function
corresponding to tossing a fair coin. In the non-trivial proof of completeness for
the obtained algebra, Kleene’s minimization operator is used in an unusual way,
making the usual proof strategy for Kleene’s Normal Form Theorem (see, e.g.,
[18]) useless. We later hint at how to recover the latter by replacing minimization
with a more powerful operator. We also mention how probabilistic recursion the-
ory offers characterizations of concepts like the one of a computable distribution
and of a computable real number.

The second part of this paper is devoted to applying the aforementioned
recursion-theoretical framework to polynomial-time computation. We do that by
following Bellantoni and Cook’s and Leivant’s works [1,12], in which polynomial-
time deterministic computation is characterized by a restricted form of recursion,
called predicative or ramified recursion. Endowing Leivant’s ramified recurrence
with a random base function, in particular, is shown to provide a characteriza-
tion of polynomial-time computable distributions, a key notion in average-case
complexity [2].

Related Work. This work is rooted in the classic theory of computation, and
in particular in the definition of partial computable functions as introduced by
Church and later studied by Kleene [11]. Starting from the early fifties, various
forms of automata in which probabilistic choice is available have been considered
(e.g. [14]). The inception of probabilistic choice into an universal model of com-
putation, namely Turing machines, is due to Santos [16,17], but is (essentially)
already there in an earlier work by De Leeuw and others [5]. Some years later,
Gill [6] considered probabilistic Turing machines with bounded complexity: his
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work has been the starting point of a florid research about the interplay be-
tween computational complexity and randomness. Among the many side effects
of this research one can of course mention modern cryptography [10], in which
algorithms (e.g. encryption schemes, authentication schemes, and adversaries for
them) are almost invariably assumed to work in probabilistic polynomial time.

Implicit computational complexity (ICC), which studies machine-free charac-
terizations of complexity classed based on mathematical logic and programming
language theory, is a much younger research area. Its birth is traditionally made
to correspond with the beginning of the nineties, when Bellantoni and Cook [1]
and Leivant [12] independently proposed function algebras precisely character-
izing (deterministic) polynomial time computable functions. In the last twenty
years, the area has produced many interesting results, and complexity classes
spanning from the logarithmic space computable functions to the elementary
functions have been characterized by, e.g., function algebras, type systems [13],
or fragments of linear logic [7]. Recently, some investigations on the interplay
between implicit complexity and probabilistic computation have started to ap-
pear [3]. There is however an intrinsic difficulty in giving implicit characteriza-
tions of probabilistic classes like BPP or ZPP: the latter are semantic classes
defined by imposing a polynomial bound on time, but also appropriate bounds on
the probability of error. This makes the task of enumerating machines comput-
ing problems in the classes much harder and, ultimately, prevents from deriving
implicit characterization of the classes above. Again, our emphasis is different:
we do not see probabilistic algorithms as artifacts computing functions of the
same kind as the one deterministic algorithms compute, but we see probabilistic
algorithms as devices outputing distributions.

2 Probabilistic Recursion Theory

In this section we provide a characterization of the functions computed by a
Probabilistic Turing Machine (PTM) in terms of a function algebra à la Kleene.
We first define probabilistic recursive functions, which are the elements of our
algebra. Next we define formally the class of probabilistic functions computed
by a PTM. Finally, we show the equivalence of the two introduced classes. In
the following, R[0,1] is the unit interval.

Since PTMs compute probability distributions, the functions that we consider
in our algebra have domain Nk and codomain N → R[0,1] (rather than N as in
the classic case). The idea is that if f(x) is a function which returns r ∈ R[0,1] on
input y ∈ N, then r is the probability of getting y as the output when feeding f
with the input x. We note that we could extend our codomain from N → R[0,1]

to Nm → R[0,1], however we use N→ R[0,1] in order to simplify the presentation.

Definition 1 (Pseudodistributions and Probabilistic Functions). A
pseudodistribution on N is a function D : N→ R[0,1] such that

∑
n∈ND(n) ≤ 1.∑

n∈ND(n) is often denoted as
∑
D. Let PN be the set of all pseudodistribu-

tions on N. A probabilistic function (PF) is a function from Nk to PN, where
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Nk stands for the set of k-tuples in N. We use the expression {np11 , . . . , n
pk
k }

to denote the pseudodistribution D defined as D(n) =
∑

ni=n pi. Observe that∑
D =

∑k
i=1 pi. When this does not cause ambiguity, the terms distribution and

pseudodistribution will be used interchangeably.

Please notice that probabilistic functions are always total functions, but their
codomain is a set of distributions which do not necessarily sum to 1, but rather
to a real number smaller or equal to 1, this way modeling the probability of
divergence. For example, the nowhere-defined partial function Ω : N ⇀ N of
classic recursion theory becomes a probabilistic function which returns the empty
distributions ∅ on any input. The first step towards defining our function algebra
consists in giving a set of functions to start from:

Definition 2 (Basic Probabilistic Functions). The basic probabilistic func-
tions (BPFs) are as follows:
• The zero function z : N→ PN defined as: z(n)(0) = 1 for every n ∈ N;
• The successor function s : N → PN defined as: s(n)(n + 1) = 1 for every
n ∈ N;

• The projection function Πn
m : Nn → PN defined as: Πn

m(k1, · · · , kn)(km) = 1
for every positive n,m ∈ N such that 1 ≤ m ≤ n;

• The fair coin function r : N→ PN that is defined as:

r(x)(y) =

{
1/2 if y = x
1/2 if y = x+ 1

The first three BPFs are the same as the basic functions from classic recursion
theory, while r is the only truly probabilistic BPF.

The next step consists in defining how PFs compose. Function composition
of course cannot be used here, because when composing two PFs g and f the
codomain of g does not match with the domain of f . Indeed g returns a distri-
bution N → R[0,1] while f expects a natural number as input. What we have
to do here is the following. Given an input x ∈ N and an output y ∈ N for the
composition f • g, we apply the distribution g(x) to any value z ∈ N. This gives
a probability g(x)(z) which is then multiplied by the probability that the dis-
tribution f(z) associates to the value y ∈ N. If we then consider the sum of the
obtained product g(x)(z)·f(z)(y) on all possible z ∈ N we obtain the probability
of f •g returning y when fed with x. The sum is due to the fact that two different
values, say z1, z2 ∈ N, which provide two different distributions f(z1) and f(z2)
must both contribute to the same probability value f(z1)(y) + f(z2)(y) for a
specific y. In other words, we are doing nothing more than lifting f to a function
from distributions to distributions, then composing it with g. Formally:

Definition 3 (Composition). We define the composition f • g : N → PN of
two functions f : N→ PN and g : N→ PN as:

((f • g)(x))(y) =
∑
z∈N
g(x)(z) · f(z)(y).
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The previous definition can be generalized to functions taking more than one
parameter in the expected way:

Definition 4 (Generalized Composition). We define the generalized com-
position of functions f : Nn → PN, g1 : Nk → PN, . . . , gn : Nk → PN as the
function f - (g1, . . . , gn) : Nk → PN defined as follows:

((f - (g1, . . . , gn))(x))(y) =
∑

z1,...,zn∈N

⎛⎝f(z1, . . . , zn)(y) · ∏
1≤i≤n

gi(x)(zi)

⎞⎠ .
With a slight abuse of notation, we can treat probabilistic functions as ordinary
functions when forming expressions. Suppose, as an example, that x ∈ N and
that f : N3 → PN, g : N→ PN, h : N→ PN. Then the expression f(g(x), x, h(x))
stands for the distribution in PN defined as follows: (f - (g, id , h))(x), where
id = Π1

1 is the identity PF.
The way we have defined probabilistic functions and their composition is

reminiscent of, and indeed inspired by, the way one defines the Kleisli category
for the Giry monad, starting from the category of partial functions on sets. This
categorical way of seeing the problem can help a lot in finding the right definition,
but by itself is not adequate to proving the existence of a correspondence with
machines like the one we want to give here.

Primitive recursion is defined as in Kleene’s algebra, provided one uses com-
position as previously defined:

Definition 5 (Primitive Recursion). Given functions g : Nk+2 → PN, and
f : Nk → PN, the function h : Nk+1 → PN defined as

h(x, 0) = f(x); h(x, y + 1) = g(x, y, h(x, y));

is said to be defined by primitive recursion from f and g, and is denoted as
rec(f, g).

We now turn our attention to the minimization operator which, as in the
deterministic case, is needed in order to obtain the full expressive power of
(P)TMs. The definition of this operator is in our case delicate and requires some
explanation. Recall that, in the classic case, the minimization operator allows
from a partial function f : Nk+1 ⇀ N, to define another partial function, call it
μf , which computes from x ∈ Nk the least value of y such that f(x, y) is equal to
0, if such a value exists (and is undefined otherwise). In our case, again, we are
concerned with distributions, hence we cannot simply consider the least value
on which f returns 0, since functions return 0 with a certain probability. The
idea is then to define the minimization μf as a function which, given an input
x ∈ Nk, returns a distribution associating to each natural y the probability that
the result of f(x, y) is 0 and the result of f(x, z) is positive for every z < y.
Formally:

Definition 6 (Minimization). Given a PF f : Nk+1 → PN, we define another
PF μf : Nk → PN as follows:

μf(x)(y) = f(x, y)(0) · (
∏
z<y

(
∑
k>0

f(x, z)(k))).
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We are finally able to define the class of functions we are interested in as follows.

Definition 7 (Probabilistic Recursive Functions). The class PR of prob-
abilistic recursive functions is the smallest class of probabilistic functions that
contains the BPFs (Definition 2) and is closed under the operation of General
Composition (Definition 4), Primitive Recursion (Definition 5) and Minimiza-
tion (Definition 6).

It is easy to show that PR includes all partial recursive functions, seen as
probabilistic functions: first, for every partial function f : Nk ⇀ N, define pf :
Nk → PN by stipulating that pf(x)(y) = 1 whenever y = f(x), and pf(x)(y) = 0
otherwise; then, by an easy induction, pf ∈PR whenever f is partial recursive.

Example 1. The following are examples of probabilistic recursive functions:
• The identity function id : N → PN, defined as id(x)(x) = 1. For all x, y ∈ N
we have that

id(x)(y) =

{
1 if y = x
0 otherwise

as a consequence id = Π1
1 , and, since the latter is a BPF (Definition 2) id is

in PR.
• The probabilistic funtion rand : N → PN such that for every x ∈ N,
rand(x)(0) = 1

2 and rand(x)(1) = 1
2 can be easily shown to be recursive,

since rand = r - z (and we know that both r and z are BPF). Actually,
rand could itself be taken as the only genuinely probabilistic BPF, i.e., r can
be constructed from rand and the other BPF by composition and primitive
recursion. We proceed by defining g : N3 → PN as follow:

g(x1, x2, z)(y) =

{
1 if y = z + 1
0 otherwise

g is in PR because g = s - (Π3
3 ). Now we observe that the function add

defined by add(x, 0) = id(x) and add(x1, x2+1) = g(x1, x2, add(x1, x2)) is a
probabilistic recursive function, since it can be obtained from basic functions
using composition and primitive recursion. We can conclude by just observing
that r = add - (Π1

1 , rand).
• All functions we have proved recursive so far have the property that the
returned distribution is finite for any input. Indeed, this is true for every
probabilistic primitive recursive function, since minimization is the only way
to break this form of finiteness. Consider the function f : N → PN defined
as f(x)(y) = 1

2y−x+1 if y ≥ x, and f(x)(y) = 0 otherwise. We define another
function h : N→ PN by stipulating that h(x)(y) = 1

2y+1 for every x, y ∈ N. h
is a probabilistic recursive function; indeed consider the function k : N2 → PN

defined as rand -Π2
1 and build μ k. By definition,

(μ k)(x)(y) = k(x, y)(0) · (
∏
z<y

(
∑
q>0

k(x, z)(q))). (1)
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Then observe that (μ k)(x)(y) = 1
2y+1 : by (1), (μ k)(x)(y) unfolds into a

product of exactly y+1 copies of 1
2 , each “coming from the flip of a distinct

coin”. Hence, h = μ k. Then we observe that

(add - (μ k, id))(x)(y) =
∑
z1,z2

add(z1, z2)(y) · ((μ k)(x)(z1) · id(x)(z2)).

But notice that id(x)(z2) = 1 only when z2 = x (and in the other cases
id(x)(z2) = 0), (μ k)(x)(z1) = 1

2z1+1 , and add(z1, z2)(y) = 1 only when
z1 + z2 = y (and in the other cases, add(z1, z2)(y) = 0). This implies that
the term in the sum is different from 0 only when z2 = x and z1 + z2 = y,
namely when z1 = y− z2 = y− x, and in that case its value is 1

2y−x+1 . Thus,
we can claim that f = (add - (μ k, id)), and that f is in PR.

2.1 Probabilistic Turing Machines and Computable Functions

In this section we introduce computable functions as those probabilistic functions
which can be computed by Probabilistic Turing Machines. As previously men-
tioned, probabilistic computationdevices have received awide interest in computer
science already in the fifties [5] and early sixties [14]. A natural question which
arose was then to see what happened if random elements were allowed in a Turing
machine. This question led to several formalizations of probabilistic Turing ma-
chines (PTMs in the following) [5,16] — which, essentially, are Turing machines
which have the ability to flip coins in order to make random decisions — and to
several results concerning the computational complexity of problems when solved
by PTMs [6].

Following [6], a Probabilistic Turing Machine (PTM)M can be seen as a Tur-
ing Machine with two transition functions δ0, δ1. At each computation step, ei-
ther δ0 or δ1 can be applied, each with probability 1/2. Then, in a way analogous
to the deterministic case, we can define a notion of a (initial, final) configuration
for a PTM M . In the following, Σb denotes the set of possible symbols on the
tape, including a blank symbol �; Q denotes the set of states; Qf ⊆ Q denotes
the set of final states and qs ∈ Q denotes the initial state.

Definition 8 (Probabilistic Turing Machine). A Probabilistic Turing Ma-
chine (PTM) is a Turing machine endowed with two transition functions δ0, δ1.
At each computation step the transition function δ0 can be applied with proba-
bility 1/2 and the transition δ1 can be applied with probability 1/2.

Definition 9 (Configuration of a PTM). Let M be a PTM. We define a
PTM configuration as a 4-tuple 〈s, a, t, q〉 ∈ Σ∗

b ×Σb×Σ∗
b ×Q such that:

• The first component, s ∈ Σ∗
b , is the portion of the tape lying on the left of

the head.
• The second component, a ∈ Σb, is the symbol the head is reading.
• The third component, t ∈ Σ∗

b , is the portion of the tape lying on the right of
the head.

• The fourth component, q ∈ Q is the current state.
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Moreover we define the set of all configurations as CM = Σ∗
b ×Σb ×Σ∗

b ×Q.

Definition 10 (Initial and Final Configurations of a PTM). Let M be a
PTM. We define the initial configuration of M for the string s as the configu-
ration in the form 〈ε, a, v, qs〉 ∈ Σ∗

b × Σb × Σ∗
b ×Q such that s = a · v and the

fourth component, qs ∈ Q, is the initial state. We denote it with IN s
M . Simi-

larly, we define a final configuration of M for s as a configuration 〈s,�, ε, qf〉 ∈
Σ∗

b × Σb × Σ∗
b × Qf . The set of all such final configurations for a PTM M is

denoted by FCsM .

For a function T : N → N, we say that a PTM M runs in time bounded by T
if for any input x, M halts on input x within T (|x|) steps independently of the
random choices it makes. Thus, M works in polynomial time if it runs in time
bounded by P , where P is any polynomial.

Intuitively, the function computed by a PTM M associates to each input s, a
pseudodistribution which indicates the probability of reaching a final configura-
tion ofM from IN s

M . It is worth noticing that, differently from the deterministic
case, since in a PTM the same configuration can be obtained by different com-
putations, the probability of reaching a given final configuration is the sum of
the probabilities of reaching the configuration along all computation paths, of
which there can be (even infinitely) many. It is thus convenient to define the
function computed by a PTM through a fixpoint construction, as follows. First,
we can define a partial order on the string distributions as follows.

Definition 11. A string pseudodistribution on Σ∗ is a function D : Σ∗ → R[0,1]

such that
∑

s∈Σ∗ D(s) ≤ 1. PΣ∗ denotes the set of all string pseudodistributions
on Σ∗. The relation 'PΣ∗⊆ PΣ∗ × PΣ∗ is defined as the pointwise extension of
the usual partial order on R.

It is easy to show that the relation 'PΣ∗ from Definition 11 is a partial order.
Next, we can define the domain CEV of those functions computed by a PTM M
from a given configuration, i.e., the set of those functions f such that f : CM →
PΣ∗ . Inheriting the structure from PΣ∗ , we can obtain a poset (CEV,'CEV),
again by defining 'CEV pointwise. Moreover, it is also easy to show that the two
introduced posets are ωCPOs.

We can now define a functional FM on CEV which will be used to define the
function computed byM via a fixpoint construction. Intuitively, the application
of the functional FM describes one computation step. Formally:

Definition 12. Given a PTM M , we define a functional FM : CEV → CEV as:

FM (f)(C) =

{
{s1} if C ∈ FCsM ;
1
2f(δ0(C)) +

1
2f(δ1(C)) otherwise.

One can show that the functional FM from Definition 12 is continuous on CEV .
A classic fixpoint theorem ensures that FM has a least fixpoint. Such a least
fixpoint is, once composed with a function returning IN s

M from s, the function
computed by the machine M , which is denoted as IOM : Σ∗ → PΣ∗ . The set of
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those functions which can be computed by any PTM is denoted as PC , while
PPC is the set of probabilistic functions which can be computed by a PTM
working in polynomial time. The notion of a computable probabilistic function
subsumes other key notions in probabilistic and real-number computation. As
an example, computable distributions can be characterized as those distributions
on Σ∗ which can be obtained as the result of a function in PC on a fixed input.
Analogously, computable real numbers from the unit interval [0, 1] can be seen
as those elements of R in the form f(0)(0) for a computable function f ∈PC .

2.2 Probabilistic Recursive Functions Equals Functions Computed
by Probabilistic Turing Machines

In this section we prove that probabilistic recursive functions are the same as
probabilistic computable functions, modulo an appropriate bijection between
strings and natural numbers which we denote (as its inverse) with (·).

In order to prove the equivalence result we first need to show that a proba-
bilistic recursive function can be computed by a PTM. This result is not difficult
and, analogously to the deterministic case, is proved by exhibiting PTMs which
simulate the basic probabilistic recursive functions and by showing that PC
is closed by composition, primitive recursion, and minimization. We omit the
details, which can be found in [4].

The most difficult part of the equivalence proof consists in proving that each
probabilistic computable function is actually recursive. Analogously to the classic
case, a good strategy consists in representing configurations as natural numbers,
then encoding the transition functions of the machine at hand, call it M , as
a (recursive) function on N. In the classic case the proof proceeds by making
essential use of the minimization operator by which one determines the number
of transition steps of M necessary to reach a final configuration, if such number
exists. This number can then be fed into another function which simulatesM (on
an input) a given number of steps, and which is primitive recursive. In our case,
this strategy does not work: the number of computation steps can be infinite,
even when the convergence probability is 1. Given our definition of minimization
which involves distributions, this is delicate, since we have to define a suitable
function on the PTM computation tree to be minimized.

In order to adapt the classic proof, we need to formalize the notion of a
computation tree which represents all computation paths corresponding to a
given input string x. We define such a tree as follows. Each node is labelled by
a configuration of the machine and each edge represents a computation step. The
root is labelled with IN x

M and each node labelled with C has either no child
(if C is final) or 2 children (otherwise), labelled with δ0(C) and δ1(C). Please
notice that the same configuration may be duplicated across a single level of the
tree as well as appear at different levels of the tree; nevertheless we represent
each such appearance by a separate node.

We can naturally associate a probability with each node, corresponding to
the probability that the node is reached in the computation: it is 1

2n , where n
is the height of the node. The probability of a particular final configuration is the
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sum of the probabilities of all leaves labelled with that configuration. We also
enumerate nodes in the tree, top-down and from left to right, by using binary
strings in the following way: the root has associated the number ε. Then if b
is the binary string representing the node N , the left child of N has associated
the string b · 0 while the right child has the number b · 1. Note that from this
definition it follows that each binary number associated to a node N indicates a
path in the tree from the root to N . The computation tree for x will be denoted
as CTM (x)

We give now a more explicit description of the constructions described above.
First we need to encode the rational numbers Q into N. Let pair : N× N→ N be
any recursive bijection between pairs of natural numbers and natural numbers
such that pair and its inverse are both computable. Let then enc be just ppair ,
i.e. the function enc : N× N→ PN defined as follows

enc(a, b)(q) =

{
1 if q = pair (a, b)
0 otherwise

The function enc allows to represent positive rational numbers as pairs of natural
numbers in the obvious way and is recursive.

It is now time to define a few notions on computation trees

Definition 13 (Computation Trees and String Probabilities). The func-
tion PTM : N× N→ Q is defined by stipulating that PTM (x, y) is the probability
of observing the string y in the tree CTM (x), namely 1

2|y| .

Of course, PTM is partial recursive, thus pPTM
is probabilistic recursive. Since

the same configuration C can label more than one node in a computation tree
CTM (x), PTM does not indicate the probability of reaching C, even when C is
the label of the node corresponding to the second argument. Such a probabil-
ity can be obtained by summing the probability of all nodes labelled with the
configuration at hand:

Definition 14 (Configuration Probability). Suppose given a PTM M . If
x ∈ N and z ∈ CM , the subset CCM (x, z) of N contains precisely the indices of
nodes of CTM (x) which are labelled by z. The function PCM : N× N → Q is
defined as follows:

PCM (x, z) = Σy∈CCM (x,z)PTM (x, y)

Contrary to PTM , there is nothing guaranteeing that PCM is indeed com-
putable. In the following, however, what we do is precisely to show that this is
the case.

In Figure 1 we show an example of computation tree CTM (x) for an hypo-
thetical PTM M and an input x. The leaves, depicted as red nodes, represent
the final configurations of the computation. So, for example, PCM (x,C) = 1,
while PCM (x,E) = 3

4 . Indeed, notice that there are three nodes in the tree
which are labelled with E, namely those corresponding to the binary strings 00,
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Fig. 1. An Example of a Computation Tree

01, and 10. As we already mentioned, our proof separates the classic part of
the computation performed by the underlying PTM, which essentially computes
the configurations reached by the machine in different paths, from the proba-
bilistic part, which instead computes the probability values associated to each
computation by using minimization. These two tasks are realized by two suitable
probabilistic recursive functions, which are then composed to obtain the function
computed by the underlying PTM. We start with the probabilistic part, which
is more complicated.

We need to define a function, which returns the conditional probability of
terminating at the node corresponding to the string y in the tree CTM (x), given
that all the nodes z where z < y are labelled with non-final configurations. This
is captured by the following definition:

Definition 15. Given a PTM M , we define PT 0
M : N× N → Q and PT 1

M :
N× N→ Q as follows:

PT 1
M (x, y) =

{
1 if y is not a leaf of CTM (x);

1− PT 0
M (x, y) otherwise;

PT 0
M (x, y) =

{
0 if y is not a leaf of CTM (x);

PTM (x,y)∏
k<y PT1

M (x,k)
otherwise;

Note that, according to previous definition, PT 1
M (x, y) is the probability of not

terminating the computation in the node y, while PT 0
M (x, y) represents the

probability of terminating the computation in the node y, both knowing that
the computation has not terminated in any node k preceding y.

Proposition 1. The functions PT 0
M : N× N → Q and PT 1

M : N× N→ Q are
partial recursive.

Proof. Please observe that PTM is partial recursive and that the definitions
above are mutually recursive, but the underlying order is well-founded. Both
functions are thus intuitively computable, thus partial recursive by the Church-
Turing thesis. *+
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The reason why the two functions above are useful is because they associate the
distribution {0PT1

M (x,y), 1PT0
M (x,y)} to each pair of natural numbers (x, y). In

Figure 2, we give the quantities we have just defined for the tree from Figure 1.
Each internal node is associated with the same distribution {00, 11}. Only the
leaves are associated with nontrivial distributions. As an example, the distribu-
tion associated to the node 10 is {01/2, 11/2}, because we have that

PT 0
M (x, 10) =

PTM (x, 10)∏
k<10 PT

1
M (x, k)

=
1

4 · PT 1
M (x, 01) · PT 1

M (x, 00) · PT 1
M (x, 1)·PT 1

M (x, 0) · PT 1
M (x, ε)

=
1

4 · PT 1
M (x, 01) · PT 1

M (x, 00)
.

As it can be easily verified, PT 1
M (x, 00) = 3

4 , while PT 1
M (x, 01) = 2

3 . Thus,

PT 0
M (x, 10) = 1

2 .

{00, 11}
C
ε

{00, 11}
D
0

{01/4, 13/4}
E
00

{01/3, 12/3}
E
01

{00, 11}
F
1

{01/2, 11/2}
E
10

{01, 10}
G
11

Fig. 2. The Conditional Probabilities for the Computation Tree from Figure 1

We now need to go further, and prove that the probabilistic function return-
ing, on input (x, y), the distribution {0PT1

M (x,y), 1PT0
M (x,y)} is recursive. This is

captured by the following definition:

Definition 16. Given a PTM M , the function PTCM : N× N→ PN is defined
as follows

PTCM (x, y)(z) =

⎧⎨⎩
PT 0

M (x, y) if z = 0;

PT 1
M (x, y) if z = 1;

0 otherwise-
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The function PTCM is really the core of our encoding. On the one hand, we will
show that it is indeed recursive. On the other, minimizing it is going to provide
us exactly with the function we need to reach our final goal, namely proving that
the probabilistic function computed by M is itself recursive. But how should we
proceed if we want to prove PTCM to be recursive? The idea is to compose
pPT1

M
with a function that turns its input into the probability of returning 1.

This is precisely what the following function does:

Definition 17. The function I2P : Q→ PN is defined as follows

I2P(x)(y) =

⎧⎨⎩x if (0 ≤ x ≤ 1) ∧ (y = 1)
1− x if (0 ≤ x ≤ 1) ∧ (y = 0)
0 otherwise

Please observe how the input to I2P is the set of rational numbers, as usual
encoded by pairs of natural numbers. Previous definitions allow us to treat (ra-
tional numbers representing) probabilities in our algebra of functions. Indeed:

Proposition 2. The probabilistic function I2P is recursive.

Proof. We first observe that h : N→ PN defined as

h(x)(y) = 1/2y+1

is a probabilistic recursive function, because h = μ (rand-Π2
1 ). Next we observe

that every q ∈ Q ∩ [0, 1] can be represented in binary notation as:

q =
∑
i∈N

cqi
1/2i+1

where cqi ∈ {0, 1} (i.e., cqi is the i-th element of the binary representation of
q). Moreover, a function computing such a cqi from q and i is partial recursive.
Hence we can define b : N× N→ PN as follows

b(q, i)(y) =

{
1 if y = cqi
0 otherwise

and conclude that b is indeed a probabilistic recursive function (because PR
includes all the partial recursive functions, seen as probabilistic functions). Ob-
serve that:

b(q, i)(y) =

{
cqi if y = 1
1− cqi if y = 0

From the definition of composition, it follows that

(b- (id, h))(q)(y) =
∑
x1,x2

b(x1, x2)(y) · id(q)(x1) · h(q)(x2)

=
∑
x2

b(q, x2)(y) · h(q)(x2) =
∑
x2

b(q, x2)(y) ·
1

2x2+1

=

{∑
x2

cqx2

2x2+1 if y = 1∑
x2

1−cqx2

2x2+1 if y = 0
=

{
q if y = 1
1− q if y = 0

.
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This shows that
I2P = b- (id, h),

and hence that I2P is probabilistic recursive. *+

The following is an easy corollary of what we have obtained so far:

Proposition 3. The probabilistic function PTCM is recursive.

Proof. Just observe that PTCM = I2P - pPT1
M
. *+

The probabilistic recursive function obtained as the minimization of PTCM al-
lows to compute a probabilistic function that, given x, returns y with probability
PTM (x, y) if y is a leaf (and otherwise the probability is just 0).

Definition 18. The function CFM : N→ PN is defined as follows

CFM (x)(y) =

{
PTM (x, y) if y corresponds to a leaf
0 otherwise.

Proposition 4. The probabilistic function CFM is recursive.

Proof. The probabilistic function CFM is just the function obtained by minimiz-
ing PTCM , which we already know to be recursive. Indeed, if z corresponds to
a leaf, then:

(μPTCM )(x)(z) = PTCM (x, z)(0) ·
∏
y<z

∑
k>0

PTCM (x, y)(k)

= PTCM (x, z)(0) ·
∏
y<z

PTCM (x, y)(1)

= PT 0
M (x, z) ·

∏
y<z

PT 1
M (x, y)

=
PTM (x, z)∏

y<z PT
1
M (x, y)

·
∏
y<z

PT 1
M (x, y) = PTM (x, z).

If, however, z does not correspond to a leaf, then:

(μPTCM )(x)(z) = PTCM (x, z)(0) ·
∏
y<z

∑
k>0

PTCM (x, y)(k)

= PT 0
M (x, z)(0) ·

∏
y<z

∑
k>0

PTCM (x, y)(k) = 0.

This concludes the proof. *+

We are almost ready to wrap up our result, but before proceeding further, we
need to define the function SPM : N× N→ N that, given in input a pair (x, y)
returns the (encoding) of the string found in the configuration labeling the node
y in CTM (x). We can now prove the desired result:
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Theorem 1. PC ⊆ PR.

Proof. It suffices to note that, given any PTM M , the function computed by M
is nothing more than

pSPM
- (id , CFM ).

Indeed, one can easily realize that a way to simulate M consists in generating,
from x, all strings corresponding to the leaves of CTM (x), each with an appro-
priate probability. This is indeed what CFM does. What remains to be done is
simulating pSPM

along paths leading to final configurations. *+

We are finally ready to prove the main result of this Section:

Corollary 1. PR = PC

Proof. Immediate from Theorem 1, observing that PR ⊆ PC (this implication
is easy to prove). *+

The way we prove Corollary 1 implies that we cannot deduce Kleene’s Normal
Form Theorem from it: minimization has been used many times, some of them
“deep inside” the construction. A way to recover Kleene’s Theorem consists in
replacing minimization with a more powerful operator, essentially corresponding
to computing the fixpoint of a given function (see [4] for more details).

3 Characterizing Probabilistic Complexity by Tiering

In this section we provide a characterization of the probabilistic functions which
can be computed in polynomial time by an algebra of functions acting on word
algebras. More precisely, we define a type system inspired by Leivant’s notion of
tiering [12], which permits to rule out functions having a too-high complexity,
thus allowing to isolate the class of predicative probabilistic functions. Finally,
we give a hint at how the equivalence between polytime probabilistic functions
and predicative probabilistic functions can be proved (more details are in [4]).

The constructions from Section 2 can be easily generalized to a function al-
gebra on strings in a given alphabet Σ, which themselves can be seen as a word
algebra W. Base functions include a function computing the empty string, called
ε, and concatenation with any character a ∈ Σ, called ca. Projections remain
of course available, while the only truly random functions concatenate a symbol
a ∈ Σ to the input, with probability 1

2 , or leave it unchanged, with probability
1
2 . Such a function is denoted as ra. Composition and primitive recursion are
available, although the latter takes the form of recursion on notation. We do not
need minimization: the distribution a polytime computable probabilistic func-
tion returns (on any input) is always finite, and primitive recursion is anyway
powerful enough for our purposes.
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The following construction is redundant in presence of primitive recursion,
but becomes essential when predicatively restricting it:

Definition 19 (Case Distinction). If gε : Wk → PW and for every a ∈ Σ,
ga : Wk+1 → PW, the function h : Wk+1 → PW such that h(ε,y) = gε(y)
and h(a · w,y) = ga(w,y) is said to be defined by case distinction from gε and
{ga}a∈Σ and is denoted as case(gε, {ga}a∈Σ).

The idea behind tiering consists in working with denumerable many copies of the
underlying algebra W, each indexed by a natural number n ∈ N and denoted by
Wn. Judgments take the form f �Wn1 × . . .×Wnk

→Wm, where f : Wk →W.
In the following, with slight abuse of notation, W stands for any expression in
the form Wi1 × · · · ×Wij .

Typing rules are in Figure 3. The idea here is that, when generating functions

ε 	Wk →Wk ra 	Wk →Wk ca 	Wk →Wk Πk
m 	Wn1 × · · · ×Wnk →Wnm

{gi 	Ws1 × · · · ×Wsr →Wmi}1≤i≤p f 	Wm1 × · · · ×Wmp →Wl

f  (g1, . . . , gl) 	Ws1 × · · · ×Wsr →Wl

gε 	W→Wl

{ga 	Wk ×W→Wl}a∈Σ

case(gε, {ga}a∈Σ) 	Wk ×W→Wl

gε 	W→Wk m > k
{ga 	Wk ×Wm ×W→Wk}a∈Σ

rec(gε, {ga}a∈Σ) 	Wm ×W→Wk

Fig. 3. Tiering as a Typing System

by primitive recursion, one goes from a level (tier) m for the domain to a strictly
lower level k for the result. This predicative constraint ensures that recursion
does not cause any exponential blowup, simply because the way one can nest
primitive recursive definitions one inside the other is severely restricted. Please
notice that case distinction, although being typed in a similar way, does not
require the same constraints.

Those probabilistic functions f : Wk → PW such that f can be given a type
through the rules in Figure 3 are said to be predicatively recursive. The class of all
predicatively recursive functions is PT . Actually, the class coincides with the
one of probabilistic functions which can be computed by PTMs in polynomial
time:

Theorem 2. PT = PPC .
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We don’t have enough space to give the details of the proof of Theorem 2. It
however proceeds essentially by showing the following four lemmas, from which
the thesis can be easily inferred:
• On the one hand, one can prove, by a careful encoding, that a form of simul-
taneous primitive recursion is available in predicative recursion.

• On the other hand, PTMs can be shown equivalent, in terms of expressivity,
to probabilistic register machines; going through register machines has the
advantage of facilitating the last two steps.

• Thirdly, any function definable by predicative recurrence can be proved com-
putable by a polytime probabilistic register machine.

• Lastly, one can give an embedding of any polytime probabilistic register
machine into a predicatively recursive function, making use of simultaneous
recurrence.

Characterizing complexity classes of probabilistic functions allows to deal im-
plicitly with concepts like that of a polynomial time samplable distribution [2,8],
which is a family {Dn}n∈N of distributions on strings such that a polytime ran-
domized algorithm produces Dn when fed with the string 1n. By Theorem 2, each
of them is computed by a function in PT and, conversely, any predicatively
recursive probabilistic function computes one such family.

4 Conclusions

In this paper we make a first step in the direction of characterizing probabilistic
computation in itself, from a recursion-theoretical perspective, without reducing
it to deterministic computation. The significance of this study is genuinely foun-
dational: working with probabilistic functions allows us to better understand
the nature of probabilistic computation on the one hand, but also to study the
implicit complexity of a generalization of Leivant’s predicative recurrence, all in
a unified framework.

More specifically, we give a characterization of computable probabilistic func-
tions by a natural generalization of Kleene’s partial recursive functions which
includes, among initial functions, one that returns the uniform distribution on
{0, 1}. We then prove the equi-expressivity of the obtained algebra and the class
of functions computed by PTMs. In the the second part of the paper, we in-
vestigate the relations existing between our recursion-theoretical framework and
sub-recursive classes, in the spirit of ICC. More precisely, endowing predicative
recurrence with a random base function is proved to lead to a characterization
of polynomial-time computable probabilistic functions.

An interesting direction for future work could be the extension of our recursion-
theoretic framework to quantum computation. In this case one should consider
transformations on Hilbert spaces as the basic elements of the computation do-
main. The main difficulty towards obtaining a completeness result for the result-
ing algebra and proving the equivalence with quantum Turing machines seems to
be the definition of suitable recursion and minimization operators generalizing
the ones described in this paper, given that qubits (the quantum analogues of
classical bits) cannot be copied nor erased.
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Abstract. We present an algebra of discrete timed input/output au-
tomata that execute in the context of different clock granularities —
timed machines — as models of systems that can be dynamically inter-
connected at run time in a heterogeneous context. We show how timed
machines can be refined to a lower granularity of time and how timed
machines with different clock granularities can be composed. We propose
techniques for checking whether timed machines are consistent or feasi-
ble. Finally, we investigate how consistency and feasibility of composition
can be proved at run-time without computing products of automata.

1 Introduction

Many software applications operating in cyberspace need to connect, dynam-
ically, to other software systems. For example, in the domain of intelligent
transportation, systems for congestion avoidance or coordination of self-driven
convoys of cars need to be able to accommodate interconnections that are estab-
lished at run time between components that cannot be pre-determined at design
time.

Applications such as these often have real-time requirements, i.e., their cor-
rectness depends not only on what outputs are returned to given inputs, but
also on the time at which inputs are received and corresponding outputs are
produced and communicated. When components of such software applications,
usually written in a high-level programming language and relying on particular
time abstractions, are executed in a given execution platform, their real-time
behaviour is additionally restricted by the clock period of that platform. Com-
ponents interconnected at run time will be likely to operate over different clock
periods, resulting in a timed heterogeneous system.

Existing formalisms for modeling time-constrained systems focus mainly on
mono-periodic systems, i.e., they assume that all system components will operate
over a shared clock period. These models can still be used for timed heteroge-
neous systems whose structure is fixed and known a-priori by modeling the
system components in terms of a global clock that is the least common multiple
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of all local clocks. In the case of systems whose structure is dynamic and defined
at run time, this is no longer possible [3].

In this paper, we propose a formal model for timed heterogeneous systems that
does not require a-priori knowledge of their composition structure. Our model is
based on input/output automata and supports run-time compositionality in the
following sense: it is possible to ensure that components canwork together as inter-
connected over heterogeneous local clocks by relying only on properties of models
of those components, with no need for calculating their composition. More specifi-
cally, we provide the means to determine if the interconnection of two automata is
consistent (there is at least a joint execution) or feasible (there is at least a joint exe-
cution nomatter what inputs the components receive from their environment) not
by calculating and checking properties of their product at run time but by relying
on properties of the individual automata that can be established at design or com-
position time. Those properties ensure that the automata are able to co-operate at
run time without modifying their time domains.

Our starting point is the homogeneous timed component algebra that we pro-
posed in [8] for services. The extension from a homogenous to a heterogeneous set-
ting is not trivial (which justifies this paper)because,where the algebraic properties
of composition in a homogenous-time domain generalise those of the un-timed do-
main, interconnection in a heterogeneous setting is not even always admissible. For
that reason, the algebra that we propose in Sec. 3 separates the space of discrete
timed input/output automata (TIOA) [14,7] from that of their executions over a
given clock: the components of our algebra are pairs of aTIOAanda clockgranular-
ity, what we call timedmachines. Two operations are defined over timedmachines:
heterogeneous composition, which extends the traditional product of TIOA to the
situation inwhich the granularities of the twomachines arenot the same, and refine-
ment, which extends a machine with new states and transitions in order to accom-
modate a finer clock granularity as required to interoperate with other machines.
Still, refinement does not reduce heterogeneous composition to the homogeneous
setting, which leads us to define a notion of ‘best approximation’ throughwhich we
can characterise classes of timedmachines that can be used to reason about or sim-
ulate interconnections of timedmachineswith commensurable clock granularities.

In Sec. 4, we study two important properties when modelling systems: con-
sistency, in the sense that a machine can be ensured to generate a non-empty
language, and feasibility, in the sense that a machine can be ensured to generate
a non-empty language no matter what inputs it receives. Finally, we prove two
compositionality results, one for consistency and the other for feasibility. Those
results rely on a number of properties that can be checked, at design time, over
given timed machines to ensure that their interconnection will be consistent or
feasible without actually having to calculate the product of the corresponding
automata at run time. Those properties ensure that components that implement
the timed machines can work together across different clock granularities.
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2 Preliminaries

2.1 Timed Traces

Although transition systems are typically used as operational semantics of au-
tomata (including timed transitions systems for timed automata as in [13]), we
use instead a trace semantics because the topological properties of trace domains
allow us to provide a finer characterisation of properties such as consistency and
feasibility (cf. Sec. 4). For example, existing transition-system semantics such
as [7] offer a weaker notion of consistency for timed automata because it fails
to enforce time progression and, therefore, an automaton that does not accept
any non-Zeno timed sequence can still be consistent. The proposed operational
semantics is also much closer to the one that we used in the homogeneous-timed
[8] and un-timed [9] domains, thus making it easier to understand the challenges
raised by a heterogeneous domain.

We start by recalling a few concepts related to traces. Given a set A, a trace
λ over A is an element of Aω , i.e., an infinite sequence of elements of A. We
denote by λ(i) the (i+1)-th element of λ. A segment π is an element of A∗, i.e.,
a finite sequence of elements of A.

In our timed model, a trace consists of an infinite sequence of pairs of an
instant of time and of the set of actions that are observed at that instant of
time. Every such set of actions can be empty so that, on the one hand, we can
model components that stop executing after a certain point in time while still
part of a system and, on the other hand, we can model observations that are
triggered by actions performed by components outside the system.

Definition 1 (Timed Traces). Let A be a set (of actions).

– A time sequence τ is a trace over R≥0 such that:
• τ(0) = 0;
• for every i ∈ N, τ(i) < τ(i + 1);
• the set {τ(i) : i ∈ N} is unbounded, i.e., time progresses (also called the
‘non-Zeno’ condition).

– An action sequence σ is a trace over 2A, i.e., an infinite sequence of sets of
actions, such that σ(0) = ∅.

– A timed trace over A is a pair λ = 〈σ, τ〉 of an action and a time sequence.
We denote by Λ(A) the set of timed traces over A and we call any Λ ⊆ Λ(A)
a timed property.

– Given δ∈R>0, the δ-time sequence τδ consists of all multiples of δ — for
every i∈N, τδ(i) = i · δ. A δ-timed trace over A is a timed trace 〈σ, τδ〉.

That is, in δ-timed traces, actions occur according to a fixed period (δ). These
traces are useful to capture the behaviour of discrete systems that execute ac-
cording to a fixed clock granularity.

In order to address heterogeneity, we need a notion of time refinement:

Definition 2 (Time Refinement). Let ρ : N → N be a monotonically in-
creasing function that satisfies ρ(0) = 0.
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– Let τ , τ ′ be two time sequences. We say that τ ′ refines τ through ρ (τ ′ .ρ τ)
iff, for every i ∈ N, τ(i) = τ ′(ρ(i)). We say that τ ′ refines τ (τ ′ . τ) iff
τ ′ .ρ τ for some ρ.

– Let λ = 〈σ, τ〉, λ′ = 〈σ′, τ ′〉 be two timed traces. We say that λ′ refines λ
through ρ (λ′ .ρ λ) iff
• τ ′ .ρ τ ,
• σ(i) = σ′(ρ(i)) for every i ∈ N, and
• σ′(j) = ∅ for every ρ(i) < j < ρ(i+ 1).

We also say that λ′ refines λ (λ′ . λ) iff λ′ .ρ λ for some ρ.
– The r-closure of a timed property Λ is Λr = {λ′ : ∃λ∈Λ(λ′ . λ)}.
– We say that Λ is closed under time refinement, or r-closed, iff Λr ⊆ Λ.

We extend the notion of refinement to timed properties:

– A timed property Λ′ refines a timed property Λ (Λ′ . Λ) iff, for every λ′∈Λ′,
there exists λ∈Λ such that λ′ . λ.

– A timed property Λ′ approximates a timed property Λ (Λ′ � Λ) iff Λ′ . Λ
and, for every λ∈Λ, there exists λ′∈Λ′ such that λ′ . λ.

That is, a time sequence refines another if the former interleaves time observa-
tions between any two time observations of the latter. For instance,

〈∅ · {a, b} · {b, c} . . . , 0 · 2 · 4 · · · 〉

is refined by
〈∅ · ∅ · {a, b} · ∅ · {b, c} . . . , 0 · 1 · 2 · 3 · 4 · · · 〉

Refinement extends to traces by requiring that no actions be observed in the
finer trace between two consecutive times of the coarser. A timed property Λ′

refines Λ if all traces of Λ′ refine some trace of Λ. If all the traces of Λ have a
refinement in Λ′, then Λ′ approximates Λ.

2.2 Timed Input/Output Automata

In order to model machines, we use timed I/O automata as in [7] except that
transitions perform sets of actions instead of single actions. Working with sets
of actions simplifies the treatment of interconnections by introducing synchro-
nisation sets and gives us for free the empty set as an abstraction of actions
performed by the environment that an automaton can observe without being
directly involved.

A timed automaton is defined in terms of a finite set C of clocks. A condition
over C is a finite conjunction of expressions of the form c �� n where c ∈ C,
��∈{≤,≥} and n∈N. We denote by B(C) the set of conditions over C.

Definition 3 (TIOA). A timed I/O automaton A (TIOA) is a tuple

A = 〈Loc, q0,C, E,Act, Inv〉

where:
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– Loc is a finite set of locations;
– q0∈Loc is the initial location;
– C is a finite set of clocks;
– E ⊆ Loc× 2Act × B(C)× 2C × Loc is a finite set of edges;
– Act = ActI ∪ ActO ∪ Actτ is a finite set of actions partitioned into inputs,

outputs and internal actions, respectively;
– Inv: Loc→ B(C) is a mapping that associates an invariant with every loca-

tion.

In addition, we impose that every TIOA is open in the sense of not interfering
with the ability of the environment to make progress: for all l∈Loc, there is an
edge (l, ∅, φ, ∅, l′)∈E for some location l′ such that Inv(l′) is implied by Inv(l)
and for some tautology φ.

Given an edge (l, S, C,R, l′), l is the source location, l′ is the target location, S is
the set of actions executed during the transition, C is a guard (a condition that
determines if the transition can be performed), and R is the set of clocks that
are reset by the transition. The requirement that every location is the source of
a transition labelled by ∅ that is always enabled means that the behavior of A
is always open to the execution of actions in which it is not involved.

A clock valuation over a set C of clocks is a mapping v: C → R≥0. Given
d ∈ R≥0 and a valuation v, we denote by v+d the valuation defined by, for any
clock c∈C, (v+d)(c) = v(c)+d. Given R ⊆ C and a clock valuation v, we denote
by vR the valuation where clocks from R are reset, i.e., such that vR(c)=0 if
c∈R and vR(c)=v(c) otherwise. Given a condition C in B(C), we use v � C to
express that C holds for the clock valuation v.

Definition 4 (Execution). Let A = 〈Loc, q0,C, E,Act, Inv〉 be a TIOA. An
execution of A starting in l0 and valuation v0 is a sequence

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

where, for all i: (1) li∈Loc, vi is a clock valuation over C and di∈R>0; (2) Si⊆Act
and Ri⊆C; (3) for all 0 ≤ t ≤ di, vi + t � Inv(li); (4) vi+1=(vi + di)

Ri ; and
(5) there is (li, Si, C,Ri, li+1)∈E such that vi + di � C. A partial execution is
of the form

(l0, v0, d0)
S0,R0−→ · · · Sn−1,Rn−1−→ (ln, vn, dn)

where (1) and (3) hold for all i∈[0..n], and (2), (4) and (5) for all i∈[0..n− 1].

That is, each triple (li, vi, di) consists of a location, the value of the clocks when
that location is reached at that point of the execution, and the duration for
which the automaton remains at that location before the next transition (which
can leave the automaton in the same location). During this time, the invariant
Inv(li) must hold. A transition out of (li, vi, di) happens at the end of di units
of time and needs to be made by an edge whose guard Ci holds at that time and
leads to a location whose invariant is satisfied. As a result of the transition, the
clocks are updated to (vi + di)

Ri .
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A pair (l, v) where l is a location and v is a clock valuation is said to be reach-
able at time T ∈ R≥0 if either (a) (l, v) = (q0, 0), T = 0 and, there exists d0>0
such that t � Inv(q0) for all 0 ≤ t ≤ d0; or (b) there exists a partial execution
that starts at (q0, 0) and ends at (ln, vn) = (l, v), and T =

∑
i=0···n−1 di.

∅

true

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

a?

x ≤ 6

A B

y ≤ 6

b?

∅
a!, b?
y ≥ 3

y ≥ 3
a!

y := 0
b?

∅

true

21

Fig. 1. Two TIOAs: Ax (left) and Ay (right)

Example 5. Consider the TIOAs in Fig. 1: Ax=〈{A,B}, A, {x}, Ex, Actx, Invx〉
with ActIx = {a} and ActOx = {b}, and Ay = 〈{1, 2}, 1, {y}, Ey, Acty, Invy〉 with
ActIy = {b} and ActOy = {a} (for clarity, inputs are decorated with ? and outputs
with !).

– Ay starts by sending an a within six time units but not before three units
have passed; it then waits for receiving a b to start again and send another
a. More b’s can be received meanwhile (even while sending an a), but they
are all ignored.

– Ax waits for receiving an a, after which it sends a b within six time units
but not before two times units have passed (all a’s received in the meanwhile
being ignored); then, Ax waits for receiving another a.

An example of a partial execution of Ax is

(A, 0, 2)
{a},{x}−→ (B, 0, 3)

{b},∅−→ (A, 3, 5)
{a},{x}−→ (B, 0, 2)

which shows that (B, 0) is reachable at times 2 and 10.

We now recall the classical definition of composition of compatible TIOAs, which
captures partial synchronisation.

Definition 6 (Compatibility). Two TIOAs Ai=〈Loci, qi0,Ci, Ei, Acti, Inv
i〉

are compatible iff C1∩C2=ActI1∩ActI2=ActO1 ∩ActO2 =Actτ1∩Act2=Actτ2∩Act1= ∅.

Definition 7 (Composition). The composition of two compatible TIOAs Ai =
〈Loci, qi0,Ci, Ei, Acti, Inv

i〉 is

A1 ‖ A2 = 〈Loc1 × Loc2, (q10 , q20),C1 ∪ C2, E,Act, Inv〉

where:
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– ActI = (ActI1\ActO2 ) ∪ (ActI2\ActO1 ),
– ActO = (ActO1 \ActI2) ∪ (ActO2 \ActI1),
– Actτ = Actτ1 ∪ Actτ2 ∪ (ActI1∩ActO2 ) ∪ (ActO1 ∩ActI2), and
– for all (q1, q2)∈Loc1×Loc2:

• Inv((q1, q2))=Inv1(q1) ∧ Inv2(q2);
• ((q1, q2), S, C,R, (q

′
1, q

′
2))∈E iff (q1, S1, C1, q

′
1)∈E1, (q2, S2, C2, q

′
2)∈E2,

C = C1 ∧ C2, Si = S ∩ Acti (i = 1, 2) and R = R1 ∪R2.

Notice that, because the guards of transitions are conjoined, for the TIOA that
results from the composition to be open (cf. Def. 3) we need to require the exis-
tence of a transition labeled with ∅ and a tautological guard (instead of simply
true). Notice also that, by construction, whenever S∩Act1 �= ∅ and S∩Act2 �= ∅,
all actions on which A1 and A2 synchronise (those in S ∩Act1∩Act2) are neces-
sarily inputs on one side and outputs on the other; the composition makes those
actions internal. Finally, transitions such that S ∩ Acti = ∅, which are usually
considered as non-synchronising, are in our case handled as synchronising tran-
sitions where Ai performs the empty set of actions (which corresponds to an
open semantics).

3 Timed Machines: Definition and Operations

In order to model systems where applications execute over specific platforms,
which implies that they are subject to the clock granularity of the platform, we
extend TIOAs to what we call timed machines.

3.1 Timed Machines

A timed machine is a TIOA that executes in the context of a clock granularity
δ, i.e., its actions are always executed at instant times that are multiples of δ.

Definition 8 (DTIOM). A discrete timed I/O machine (DTIOM) is a pair

M = 〈δM,AM〉

where δM∈R>0 and AM is a TIOA.
The executions and partial executions of M are those of AM restricted to

transitions at every δM, i.e.,

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

such that all the durations di are δM. Therefore, we represent executions of
DTIOMs as sequences

(l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ . . .

and call each pair (li, vi) an execution state.
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The behaviour �M� ofM is the set of executions such that l0=q0 and v0(c)=0
for all c∈C, i.e., those that start in the initial location with all clocks set to 0.

Every execution of a DTIOM M defines the δM-timed trace λ=〈σ, τδM 〉 over
Act where σ(0)=∅ and, for i ≥ 0, σ(i+1) = Si. We denote by ΛM the r-closure
of the set of timed traces defined by �M�, which we call its language.

The fact that the language of a DTIOM is r-closed means that it contains all
possible interleavings of empty observations, thus capturing the behaviour of the
DTIOM in any possible environment. This notion of closure can be related to
mechanisms that, such as stuttering [1], ensure that components do not constrain
their environment.

Example 9. Consider Mx = 〈δx,Ax〉, andMy = 〈δy ,Ay〉, with δx = 2, δy = 1
and Ax and Ay as in Ex. 5. Notice that the partial execution of Ax given in Ex. 5
is not a partial execution of Mx as it does not respect the granularity δx = 2.
An example of a partial execution of Mx is

(A, 0)
{a},{x}−→ (B, 0)

∅,∅−→ (B, 2)
{b},∅−→ (A, 4)

Note that this means that a was executed at time 2, nothing was executed at time
4 and b was executed at time 6.

3.2 Composition and Refinement of Timed Machines

Composition of DTIOMs with the same clock granularity is as for TIOA:

Definition 10 (Composition). Given two TIOAs A1 and A2 that are com-
patible, we define the composition 〈δ,A1〉‖〈δ,A2〉 = 〈δ,A1‖A2〉.

It is not difficult to prove that the language Λ〈δ,A1‖A2〉 of the composition is the
intersection

Λι1
〈δ,A1〉 ∩ Λ

ι2
〈δ,A2〉

where

– ιi is the inclusion of Acti in Act1∪Act2 and
– Λιi

〈δ,Ai〉 = {λ : ι−1
i (λ)∈Λ〈δ,Ai〉} are the projections of the languages of

the machines to the alphabet of the composition defined by, for every k,
ι−1
i (λ)(k) = ι−1

i (λ(k)).

That is, the language of the composition consists of the timed traces that project
to timed traces of languages of the component DTIOMs. This is what is usually
taken to be the joint behaviour of a system of components in a trace-based se-
mantic domain, meaning that 〈δ,A1‖A2〉 provides a model of the joint behaviour
of two systems of which 〈δ,A1〉 and 〈δ,A2〉 are models.

If 〈δ1,A1〉 and 〈δ2,A2〉 have different clock granularities, we can still calculate
the intersection Λι1

〈δ,A1〉∩Λ
ι2
〈δ,A2〉, which is the joint behaviour of the two machines

synchronising on shared inputs and outputs at times that are multiple of both
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δ1 and δ2. If no such multiples exist, the two machines cannot synchronise and,
therefore, either they do not have liveness requirements, in which case they can
agree on timed traces that only execute the empty set of actions, or they cannot
agree on any timed trace — their interconnection is inconsistent.

If δ1 and δ2 admit a common multiple, i.e., δ1 ·n = δ2 ·m for given n,m ∈ N>0,
then they are commensurable, i.e., they admit a common divisor (δ1/m = δ2/n)
– again, a real number. This is the situation that we characterise now. More
precisely, our aim is to construct a machineM that, although it may not generate
the full set of joint behaviours, i.e., be such that ΛM = Λι1

M1
∩ Λι2

M2
, it will be

the ‘best’ approximation of that set in the sense that ΛM � Λι1
M1

∩ Λι2
M2

and,
for any other machine M′ such that ΛM′ � Λι1

M1
∩ Λι2

M2
, ΛM′ � ΛM. Having

a best approximation is important so that properties of the global behaviour
of the system (such as consistency and feasibility, discussed in Sec. 4) can be
inferred from that of the composed machine or that the behaviour of the system
can be simulated through a machine.

The idea is to refine the timed machines to a common clock granularity and
then compose the refinements: intuitively, given a timed machineM = 〈δ,A〉, we
define its k-refinement Mk = 〈δ/k,Ak〉 by dividing both the clock granularity
and the TIOA A by k so as to produce a TIOA Ak that divides every state in k
copies such that the original transitions are performed in the last ‘tick’, all previ-
ous ‘ticks’ performing no actions and, therefore, being open for synchronisation
with a machine that ticks with a granularity δ/k.

Definition 11 (Refinement). Given a TIOA A = 〈Loc, q0,C, E,Act, Inv〉
and k ∈ N>0, its k-refinement is the TIOA Ak = 〈Lock, qk0,C, Ek, Act, Invk〉
where:

– Lock = Loc× [0..k − 1];
– qk0 = (q0, 0);
– Invk(l, i) = Inv(l);
– for every (l, S, C,R, l′) of E, Ek has the edge ((l, k − 1), S, C,R, (l′, 0)) and

all edges of the form ((l, i), ∅, true, ∅, (l, i+ 1)), i ∈ [0..k − 2].

It is easy to see that ΛMk
. ΛM, i.e., the language ofMk refines that ofM; in

fact, because the languages are r-closed, ΛMk
⊆ ΛM. Because every execution

ofM defines a (unique) execution ofMk, the language ofMk actually approx-
imates that of M, i.e., ΛMk

� ΛM, meaning that all possible behaviours of M
can be accounted for inMk through a refinement: we say thatMk approximates
M and writeMk �M. More generally, for arbitrary DTIOMsM andM′ that
have a common alphabet (i.e., ActM′ = ActM), we define M′ � M to mean
that δM is a multiple of δM′ and ΛM′ � ΛM.

Example 12. Consider the TIOA Ax in Fig. 1 and the corresponding DTIOM
Mx defined in Ex. 9, which has granularity 2. Its refinement to a DTIOM with
granularity 1 is Mx

2 = 〈1,Ax
2〉, with Ax

2 given in Fig. 2. The refinement of the
partial execution of Mx given in Ex. 9 is:

((A, 0), 0)
∅,∅−→ ((A, 1), 1)

{a},{x}−→ ((B, 0), 0)
∅,∅−→ ((B, 1), 1)

∅,∅−→ ((B, 0), 2)
∅,∅−→ ((B, 1), 3)

{b},∅−→ ((A, 0), 4)
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true

∅

true

∅

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

x ≤ 6

∅a?

x ≤ 6

A, 1 B, 0

B, 1A, 0

Fig. 2. The refinement Ax
2 of Ax

∅ ∅

aτ

y ≥ 3, x := 0

∅ ∅

x ≥ 2, y := 0
bτy ≤ 6

y ≤ 6 x ≤ 6

x ≤ 6

(A, 1), 1 (B, 0), 2

(A, 0), 1 (B, 1), 2

Fig. 3. The TIOA Ax,y of Mx‖My

We can now extend the composition of two timed machines to the case where
their clock granularities are commensurable (have a common divisor):

Definition 13 (Heterogeneous Compatibility). Two DTIOMsMi=〈δi,Ai〉,
i = 1, 2, are said to be δ-compatible (where δ ∈ R>0) if (a) A1 and A2 are
compatible, and (b) δ is a common divisor of δ1 and δ2. They are said to be
compatible if they are δ-compatible for some δ.

Definition 14 (Heterogeneous Composition). The δ-composition of two δ-
compatible DTIOMs is

M1 ‖δ M2 =M1(δ1/δ) ‖ M2(δ2/δ) = 〈δ,A1(δ1/δ) ‖ A2(δ2/δ)〉

If δ is the greatest common divisor of δ1 and δ2, we use the notation M1‖M2

and simply refer to the composition of M1 and M2.

Notice that if A1 and A2 are compatible, so are A1(δ1/δ) and A2(δ2/δ).

Example 15. Consider DTIOMs Mx and My from Ex. 9. Because Ax and
Ay are compatible and δx and δy have a common divisor (δ = 1), we can com-
pute their composition. The first step consists in refining Ax into Ax

2 (Fig. 2).
The composition Mx‖My is 〈1,Ax,y〉 where Ax,y = Ax

2‖Ay is given in Fig. 3.
Notice that actions a and b are synchronised and, hence, made internal in the
composition, which we denote by aτ and bτ , respectively.

The language of a heterogeneous composition is not necessarily the intersection
of the languages of the components. However, ifM1 andM2 can be composed,
the machine M1‖M2 approximates Λι1

M1
∩Λι2

M2
, and is a best approximation:

Theorem 16. Let Mi, i = 1, 2, be two compatible DTIOMs. The composition
M1‖M2 is the machine that best approximates Λ = Λι1

M1
∩ Λι2

M2
, i.e.,

– ΛM1‖M2
� Λ and,

– for any other machine M such that ΛM � Λ, M �M1‖M2.
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3.3 Büchi Representation of Timed Machines

In order to check different structural properties of DTIOMs, namely properties
formulated in terms of reachable states, it is useful to be able to construct Büchi-
automata “equivalent”.

Let A = 〈Loc, l0,C, E,Act, Inv〉 be a TIOA. Given a clock c, let MaxA(c) de-
note the maximal constant with which c is compared in the guards and invariants
of A. Let M = 〈δ,A〉 and BM = 〈Q, q0, 2Act,→, Q〉 be the Büchi automaton
such that:

– Q = Loc×
∏

c∈C[0 .. 0
MaxM(c)

δ 1+ 1] (i.e., states consist of a location l and a

natural number nc ≤ 0MaxM(c)
δ 1+ 1, for every c ∈ C);

– q0 = (l0,0);

– (l,ν)
S→ (l′,ν′) iff there exists a transition (l, S, C,R, l′) ∈ E such that:

(i) for all 0 ≤ t ≤ δ, ν · δ + t |= Inv(l),
(ii) ν · δ + δ |= C,

(iii) for all c ∈ C, ν′(c) =

⎧⎨⎩
0 if c ∈ R
ν(c) if c /∈ R and ν(c) = 0MaxA(c)

δ 1+ 1
ν(c) + 1 otherwise

⎫⎬⎭
(iv) ν ′ · δ |= Inv(l′).

Notice that Q involves only natural numbers. The size of BM is in O(|Loc| ·
(0Max

δ 1 + 2)|C|), where |Loc| and |C| are the size of Loc and the number of

clocks, respectively, and Max = max{MaxA(c) | c ∈ C} is the maximal constant
considered in all constraints and invariants of M.

The Büchi automaton BM is equivalent to M in the following sense:

Theorem 17. For all action sequences σ over Act, 〈σ, τδ〉∈�M� iff the infinite
sequence σ(1)σ(2) . . . is in the language of BM.

4 Consistency and Feasibility of Timed Machines

In this section, we investigate two important properties of DTIOMs as models
of systems: consistency (in the sense that they generate a non-empty language)
and feasibility (in the sense that they generate a non-empty language no matter
what inputs they receive). We are especially interested in conditions under which
consistency/feasibility are preserved by composition. This is because, in order
to support run-time interconnections, one should be able to guarantee that a
composition of DTIOMs is consistent/feasible without having to compose them.

4.1 Consistency

Definition 18 (Consistency). A DTIOMM is said to be consistent if ΛM �=∅.

Notice that consistency is preserved by refinement:
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Proposition 19. Let k ∈ N>0. A DTIOM M is consistent iff its k-refinement
Mk is consistent. More generally, for arbitrary DTIOM M and M′,

– if M′ .M and M′ is consistent, then so is M, and
– if M′ �M, then M′ is consistent iff M is consistent.

A sufficient condition for consistency is that the DTIOM is initializable and
makes independent progress. A DTIOM is initializable if it can stay in the initial
state until the first tick of the clock:

Definition 20 (Initializable). A DTIOM M is said to be initializable if, for
all 0 ≤ t ≤ δM, (q0, t) � Inv(q0).
For a machine to make independent progress (which we adapt from [7]), it needs
to make a transition from any reachable state without forcing the environment
to provide any input:

Definition 21 (Independent Progress). A DTIOMM is said to make inde-
pendent progress if, for every reachable state (l, v), there is an edge (l, A, C,R, l′)
such that: (a) A ⊆ ActOM ∪ActτM, (b) v+ δM � C, and (c) for all 0 ≤ t ≤ δM,
(v + δM)R + t � Inv(l′).
As an example, both Mx and My as in Ex. 9 are initializable and make inde-
pendent progress.

Proposition 22. Any initializable DTIOM that makes independent progress is
consistent.

Notice that checking that a timed machine makes independent progress requires
only the analysis of properties of its reachable states. In practice, this can be
done using a syntactic check on the Büchi automaton as constructed in Sec. 3.3:
a given DTIOM M makes independent progress iff all reachable states (l,ν)
of the equivalent Büchi automaton BM have at least one outgoing transition

(l,ν)
A→ (l′,ν′) with A ⊆ ActOM ∪ ActτM. BM has only finitely many states,

denoted by |BM|, and finitely many transitions, denoted by |EM|, and, hence,
this can be checked in time O(|BM| · |EM|).

4.2 Compositional Consistency Checking

In order to investigate conditions that can guarantee compositionality of con-
sistency checking, we start by remarking that the fact that two DTIOMs M1

and M2 are such that δ1 and δ2 are commensurate simply means that we can
find a clock granularity in which we can accommodate the transitions that the
two DTIOMs perform: by itself, this does not ensure that the two DTIOMs can
jointly execute their input/output synchronisation pairs. For example, if δ1 = 2
and δ2 = 3 and M2 only performs non-empty actions at odd multiples of 3,
the two machines will not be able to agree on their input/output synchronisa-
tion pairs. For the DTIOMs to actually interact with each other it is necessary
that their input/output synchronisation pairs can be performed on a common
multiple of δ1 and δ2.
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Definition 23 (Cooperative). A DTIOM M is said to be cooperative in re-
lation to Q⊆ActM and a multiple δ of δM if the following holds for every (l, v)
reachable at a time T such that (T + δM) is not a multiple of δ:

for every edge (l, A, C,R, l′) ∈ EM such that v+δM � C and (v+δM)R+t �
InvM(l′) for all 0 ≤ t ≤ δM — i.e., the machine makes a transition at a
time that is not a multiple of δ — there exists an edge (l, A\Q,C′, R′, l′′)
such that v + δM � C′; for all 0 ≤ t ≤ δM, (v + δM)R

′
+ t � InvM(l′′) —

i.e., the machine can make an alternative transition that does not perform
any actions in Q.

Essentially, being cooperative in relation to Q and δ means that the machine will
not force transitions that perform actions in Q at times that are not multiples
of δ. In practice, this can be verified using a syntactic check on the states of the
equivalent Büchi automaton that can be reached with a number of transitions
n such that n + 1 is not a multiple of δ/δM. This can be done in time in
O( δ

δM · |BM| · |EM|2), with |BM| the size of the Büchi automaton BM defined
in Sec. 3.3.

y ≥ 5

y ≥ 5

y ≤ 5

Fig. 4. The TIOA A′

Example 24. My from Ex. 9 is cooperative in relation to {a, b} and δ = 2. In
constrast, the machine M′ with δ′ = 1 and the TIOA A′ presented in Fig. 4
is not cooperative in relation to {a, b} and δ = 2. Indeed, the fact that the
state corresponding to the location 1 is reached at time 4 enables the transi-
tion (1, a, y ≥ 5, ∅, 2), which cannot be replaced by (1, ∅, true, ∅, 1) because the
last condition — for all 0 ≤ t ≤ 1 = δy, 5 + t ≤ 5 — is violated. Because the
machine M′ forces the output of a at time 5, it is easy to conclude that its com-
position with the machine Mx from Ex. 9 (which has a clock granularity δx = 2)
results in a inconsistent DTIOM.

In relation to the composition of M1 and M2, the idea is to require that a
common multiple of δ1 and δ2 exists such that both DTIOMs are cooperative
in relation to ActM1∩ActM2 . However, this is not enough to guarantee that the
two DTIOMs can actually work together: we need to ensure that if, say, M1

wants to output an action, M2 can accept it.

Definition 25 (DP-enabled). A DTIOM M is said to be DP-enabled in re-
lation to J⊆ActIM and δ multiple of δM if the following property holds for every
B⊆J and state (l, v) reachable at a time T such that (T+δM) is a multiple of δ:
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for every edge (l, A, C,R, l′) ∈ EM such that v+δM � C and, for all 0 ≤ t ≤
δM, (v+ δM)R+ t � InvM(l′) — i.e., the machine can make a transition —
there exists an edge (l, B ∪ (A\J), C′, R′, l′′) such that v + δM � C′ and, for
all 0 ≤ t ≤ δM, (v + δM)R

′
+ t � InvM(l′′) — i.e., the machine can make

an alternative transition that accepts instead B as inputs and still performs
the same outputs (and inputs outside J).

That is, a DTIOM is DP-enabled in relation to a set of inputs J and a multiple
δ of its clock granularity if, whenever it leaves a reachable state at a multiple of
δ, it can do so by accepting any subset of J , and if its outputs are independent
of the inputs in J that it receives. BothMx andMy from Ex. 9 are DP-enabled
in relation to the set of input actions (resp., {a} and {b}) and δx = 2.

Notice that being DP-enabled is different from being input-enabled [14] in that
we work with sets of actions (synchronisation sets), not just individual actions
in the edges. Because, in our case, inputs and outputs can occur simultaneously,
we need to ensure that there is no dependency between those that are included
in the same synchronisation set.

DP-enabledness can be verified using a syntactic check on states of the equiv-
alent Büchi automaton that can be reached in a number of steps n such that

n+1 is a multiple of δ/δM. This can be done in O( δ
δM
· |BM| · |EM|2 · 2|ActIM|),

with |BM| as given in Sec. 3.3.
We now investigate how a composition can be shown to be consistent. We

start by analysing how properties behave under refinement and composition.

Lemma 26. If a DTIOM M is initializable (makes independent progress, is
DP-enabled / cooperative in relation to J and δ′), then so does Mk for all
k ∈ N>0.

That is, refinement preserves initializability, independent progress, DP-
enabledness and cooperativeness.

Lemma 27. Let Mi = 〈δi,Ai〉, i = 1, 2, be two δ-compatible DTIOMs and δ′1
a multiple of δ1.

(a) If M1 and M2 are initializable so is M1 ‖δ M2.
(b) If M1 is DP-enabled in relation to J ⊆ ActI1 and δ′1, then M1 ‖δ M2 is

DP-enabled in relation to J \ActO2 and δ′1.
(c) If M1 is cooperative in relation to Q ⊆ ActO1 \ActI2 and δ′1, then M1 ‖δ M2

is cooperative in relation to Q and δ′1.

Notice that in the preservation of DP-enabledness, we need to remove from J
any actions that were used for synchronisation with M2, which are necessarily
in ActO2 . This is because they become internal to the composition and, therefore,
are no longer available for synchronisation. The preservation of cooperativeness
is relative to set of actions that are not used for synchronisation.

Theorem 28 (Compositionality). Let Mi, i = 1, 2, be two δ-compatible and
initializable DTIOMs that can make independent progress. Let δ′ be a common
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multiple of δ1 and δ2. If M1 is DP-enabled in relation to ActI1 ∩ ActO2 and δ′,
M2 is DP-enabled in relation to ActI2 ∩ActO1 and δ′, and both M1 and M2 are
δ′-cooperative in relation to Act1∩Act2, then M1 ‖δ M2 is initializable and can
make independent progress (and, hence, by Prop. 22, is consistent).

This result allows us to conclude that the machines Mx and My presented in
Ex. 9 can work together (i.e.,Mx ‖ My is consistent). This is because, as noted
before, Mx and My are DP-enabled in relation to δ′ = 2 and {a} and {b},
respectively, and are cooperative in relation to {a, b} and δ′ = 2.

Notice that, from Lemma 27, if Mi is DP-enabled in relation to J ⊆ ActIi
and δ′i is a multiple of δi, the composition M1 ‖δ M2 is DP-enabled in relation
to J \ ActO

i
and δ′i, with 1 = 2 and 2 = 1. Moreover, if Mi is cooperative in

relation to Q ⊆ ActOi \ ActIi and δ′i multiple of δi, M1 ‖δ M2 is cooperative
in relation to Q and δ′i (also a multiple of δ). This implies that, in order to
ensure that the composition of M1 ‖δ M2 with a third machine M3 (which
can itself be the result of a composition) is consistent, we can verify the required
properties (being initializable, DP-enabled and cooperative) over the component
machines: we do not need to make checks over the machines resulting from the
compositions (compositionality).

This result is also important to certify that the behaviour of a system of
interacting components — Λ = Λι1

M1
∩Λι2

M2
in the case of two components that

implementM1 andM2 — is not empty and, hence, the components can indeed
operate together. This is because, by Theo. 16, ΛM1‖M2

� Λ and, hence, if
M1 ‖ M2 is consistent, Λι1

M1
∩ Λι2

M2
is not empty.

4.3 Feasibility

The property of being DP-enabled is related to a stronger notion of consistency
called ‘feasibility’: whereas consistency guarantees the existence an execution,
feasibility requires that, no matter what inputs the machine receives from its
environment, it can produce an execution.

Definition 29 (Feasible). A DTIOM M is said to be feasible in relation to
J ⊆ ActIM and a multiple δ of δM if, for every δ-timed trace λ over J and
state (l, v) reachable at a time T such that (T + δM) is a multiple of δ, there
is an execution starting at (l, v) that generates a δM-timed trace λ′ such that
λ′|J . λ, where λ′|J is the timed trace obtained from λ′ by forgetting the elements
in ActM \ J from the underlying action sequence. A DTIOM M is said to be
feasible if it is feasible in relation to ActIM and δM.

This notion of feasibility is similar to the one use, for example, in [14], which we
have relativised to given sets of input actions in order to account for structured
interactions with the environment.

Proposition 30. A DTIOM M that makes independent progress and is DP-
enabled in relation to J ⊆ ActIM and a multiple δ of δM is feasible in relation
to J and δ.
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In relation to the compositionality of feasibility, we can prove:

Theorem 31. Let Mi, i = 1, 2, be two δ-compatible DTIOMs that can make
independent progress. Let δ′ be a common multiple of δ1 and δ2 and δ′1 a multiple
of δ1 and J ⊆ ActI1. If (a) M1 is DP-enabled in relation to J and δ′1, (b) M1 is
DP-enabled in relation to ActI1 ∩ActO2 and δ′, (c) M2 is DP-enabled in relation
to ActI2 ∩ ActO1 and δ′, and (d) both M1 and M2 are δ′-cooperative in relation
to Act1 ∩ Act2, then M1 ‖δ M2 is feasible in relation to J \ActO2 and δ′1.

5 Related Work

Several researchers have recently addressed discrete timed systems with hetero-
geneous clock granularities. However, the main focus has been either on spec-
ification or on modelling and simulation, not so much on the challenges that
heterogeneity raises on run-time interconnection of systems. For example, For-
get et al. propose in [10] a synchronous data-flow language that supports the
modelling of multi-periodic systems. In this setting, each system has its own
discrete periodic clock granularity; composition is supported by a formal clock
calculus that allows, in particular, for the refinement of clock granularities in a
way that is similar to what we propose in Sec. 3. Aside from the fact that we
adopt an automata-based representation, the main difference with our work is
that they leave open the question of component-based verification of properties
such as consistency.

Similarly, in [6], the authors introduce a formal communication model of be-
haviour for the composition of heterogeneous real-time cyber-physical systems
based on logical clock constraints. Although this model supports the combina-
tion of heterogeneous timed systems, the authors do not consider the particular
case of discrete periodic systems. In [17], the authors present a methodology
(ForSyDe) for high-level modelling and refinement of heterogeneous embedded
systems; whilst the semantics they propose, and the notion of clock-refinement
they introduce, are similar in essence to ours, their main focus is again on mod-
elling and simulation, whereas ours is on the structures that support composi-
tional reasoning over properties of interconnected systems.

To cope with heterogenous time scales, several approaches to the specification
of real-time systems, notably the Timebands Framework [5], have also adopted
an explicit representation of time granularity. That framework, unlike others,
does not require that all descriptions be transformed into the finest granularity.

Some attempts have also been made at addressing compositionality, for ex-
ample in [15] that exploits the concept of tag machines [2]. However, the notion
of composition of systems introduced by the authors (using tag morphisms) is
more relaxed than ours in that it allows for the delay between events to be mod-
ified in given tag machines. A consequence of this generality is that the language
resulting from a composition is not an approximation of the intersection of the
original languages, which, as argued in our paper, is essential for addressing
global properties of interconnected systems as implemented.
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From a practical point of view, some tools have been developed for mod-
elling and simulating heterogeneous systems. For example, Ptolemy Classic [4]
introduced the concept of heterogeneous combinations of semantics such as asyn-
chronous models with timed discrete-events models. The concept was picked up
in other tools such as System C [12], Metropolis [11] and Ptolemy II [16]. The
common characteristics of these tools is that (1) they are based on a model that
is more general than the one we propose in this paper, and (2) they do not
consider composition of discrete timed systems with different periodic clocks. As
a consequence, they are not able to provide results as strong as ours when it
comes to reasoning about specific global properties of interconnected systems.

6 Concluding Remarks

This paper proposes a new theoretical framework for the compositional design
of timed heterogeneous systems based on an extension of timed input/output
automata [14,7] where automata are assigned a clock granularity (what we call
timed machines). Composition is thus extended to cater for automata that op-
erate over different clock granularities.

One key aspect of our work is that we support the design of heterogeneous
timed systems whose clock granularities can be made compatible without modi-
fying the time domains of the individual components. This is important so that
components can be interconnected at run time, not design time, which is essential
for addressing the new generation of systems that are operating in cyberspace,
where they need to be interconnected, on the fly, to other systems. Our ap-
proach is truly compositional in that we can obtain properties of a whole system
of interconnected components without having to compute their composition.

The main properties that we address are consistency (there exists at least
a joint trace on which all components can agree) and feasibility (there exists
at least a joint trace on which all components can agree no matter what input
they receive from their environment). The technical results that support com-
positional verification of consistency and feasibility are based on new notions of
time refinement and of cooperation conditions through which timed components
can be ensured to be open to interactions with other components across different
time granularities.

There are two main directions for future work. The first is to implement
and evaluate our approach on concrete case studies. A possibility would be to
implement the framework as an extension of Ptolemy [4], which would give us
access to industrial-size case studies. The second aims at extending our work to
networks of heterogeneous timed systems that communicate asynchronously by
building on [8] and [9].

Acknowledgments. This work was partially supported by the Royal Society
International Exchange grant IE130154.
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Abstract. The refinement concept provides a formal tool for addressing
the complexity of software-intensive systems, by verified stepwise devel-
opment from an abstract specification towards an implementation. In
this paper we propose a novel notion of refinement for a structured for-
malism dedicated to interactive systems, that combines a data-flow with
a control-oriented approach. Our notion is based on scenarios, extending
to two dimensions the trace-based definition for the refinement of classi-
cal sequential systems. We illustrate our refinement notion with a simple
example and outline several extensions to include more sophisticated
distributed techniques.

Keywords: scenario-based refinement, interactive systems, integration
of data flow and control flow, coordination programming languages, trace
semantics, stuttering equivalence.

1 Introduction

Using the refinement approach, a system can be described at different levels
of abstraction [3], and the consistency in and between levels can be proved
mathematically. Abstraction is a fundamental tool in addressing the ever in-
creasing complexity of contemporary software-intensive systems and it becomes
very attractive in the current context of various platforms (e.g., [2]) that allow
the formal modelling and (semi-) automatic proving of refinement-based system
development.

Interactive computation [32] is an important component of the software-
intensive infrastructures of our society. Often, the term is related to HCI (Human-
Computer Interaction), the particular case when one of the interacting entities is
human. While able to deal with such cases as well, our approach here is process-
to-process interaction oriented.

Classical models for process interaction include, among many other models,
process algebra models [9], Petri nets [33], dataflow networks [11], etc. In these
models, process synchronization is a key feature. For instance, in process alge-
bra models, synchronization is achieved by handshake communications, while in
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Petri nets and dataflow models, explicit transitions and dataflow nodes are re-
spectively used. These models treats interaction as a primary feature, considering
sequential computation to be either derived from communication or implicitly
included in the dataflow node behaviour. A more recent proposal falling into this
class is the ORC programming language [21], based on name-free processes and
structured interaction.

In this paper we propose an extension of the notion of trace refinement [6] in a
novel interaction-oriented formalism. The formalism is called register-voice inter-
active systems [27–29, 25, 17, 18] (rv-IS ) and is a recent approach for developing
software systems using both structural state-based as well as interaction-based
composition operators. One of the most interesting feature of this formalism is
the structuring of the component interactions.

Our work on refinement started from an attempt to get a bidirectional trans-
lation between the Event-B and rv-IS formalisms. Event-B [3] is a state-based
formal method dedicated to the stepwise development of correct systems, ex-
tending the Action Systems [4, 31] and the B-Method [1] formalisms. A central
advantage of Event-B is the associated Rodin tool platform [30, 2] employed in
discharging the proof obligations that ensure this correct development. Event-B
is currently successfully integrated in several industrial developments, for in-
stance at Space Systems Finland [19] and at SAP [13].

Our approach for the integration of the Event-B and rv-IS formalisms is based
on the following working plan: (1) define a notion of refinement for rv-IS mod-
els combining the refinement of state-based systems with Broy-like refinement
of dataflow-based systems; (2) define/use refinement preserving translation be-
tween rv-IS and Event-B models; (3) use these translations, on one hand, to get
tool support to develop and analyse rv-IS models and, on the other hand, to
improve the discharging of proof obligations in Event-B using rv-IS structured
decomposition techniques.

A key element in this approach is to find an appropriate definition of refine-
ment for interactive rv-IS systems, which is the main topic of this paper.

Refinement can be defined in a multitude of ways, e.g., [1, 3, 5, 6, 10, 22].
The refinement definition in this paper is based on the idea of a trace-based
refinement. Traces may be obtained by flattening (two-dimensional) scenarios
used for describing the semantics of rv-IS programs, but they do not faithfully
characterize the execution of these interactive programs. To address this prob-
lem, we first define scenario-equivalence to generalize the “up-to-stuttering trace
equivalence” in two dimensions. Then, we propose a definition for scenario-based
refinement of rv-IS systems.

The paper is organized as follows. In Section 2 we overview the rv-IS formalism
to the extent needed in this paper. In Section 3 we tackle the scenario equivalence
problem, in particular defining a scenario stuttering equivalence. In Section 4 we
introduce the scenario-based notion of refinement for register-voice interactive
systems and discuss the applicability of our approach. Section 5 concludes the
paper.
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x=6 . .

. IL tx=6 IA tx=6 IR .
x=3 y=6 z=6

. P tx=3 D tx=3 M .
x=2 y=6 z=3

. P tx=2 D tx=2 M .
x=1 y=6 z=1

. P tx=1 D tx=1 M .
x=0 y=6 z=0

. TL tx=-1 TA tx=-1 TR .
. . z=0

Fig. 1. A scenario S1 for the Perfect1 program

2 Register-Voice Interactive Systems

The rv-IS formalism is built on top of register machines, closing them with
respect to a space-time duality transformation [28, 25, 17, 8]. In the following,
we shortly overview the approach, following [14, 15].

Scenarios. A scenario is a two-dimensional rectangular area1 filled in with iden-
tifiers and enriched with data around each identifier. In our interpretation the
columns correspond to processes, the top-to-bottom order describing their pro-
gress in time. The left-to-right order corresponds to process interaction in a
nonblocking message passing discipline. This means that a process sends a mes-
sage to the right, then it resumes its execution. (Memory) states are placed at
the north and at the south borders of the identifiers and (interaction) classes are
placed at the west and at the est borders of the identifiers. In Fig. 1 we illustrate
an rv-IS scenario for deciding whether the number 6 is a perfect number (i.e., it
is equal to the sum of its proper divisors). More on these scenarios and an rv-IS
program generating them are included in the last part of this section.

Spatio-Temporal Specifications. A spatio-temporal specification combines con-
straints on both spatial and temporal data. Spatial data are placed on north
and south borders of the scenario cells, while temporal data on the west and
east borders. The later data are pieces of streams recording the communication
messages between processes.

For spatial data we use the common data structures and their natural repre-
sentations in memory. For representing temporal data we use streams: a stream
is a sequence of data ordered in time and is denoted as a0

�a1
�. . . , where

a0, a1, . . . are the data laying on the stream at time 0, 1, . . . , respectively. Most
of the usual data structures have natural temporal representations. Voices are
the temporal dual corresponding to registers [27, 28]. In the following, we will
use spatial and temporal integer types, only.

1 Scenarios of arbitrary shapes may be used, as well; see [7, 8].
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The notation ⊗ is used for the product of states, while � for the product
of classes; N⊗k denotes N ⊗ . . . ⊗ N (k terms) and N�k denotes N�. . .�N (k
terms); the “star” operations are denoted as ( ⊗)∗ and ( �)∗.

A simple spatio-temporal specification S : (m, p) → (n, q), using only integer
types, is a relation S ⊆ (N�m × N⊗p) × (N�n × N⊗q), where m (resp. p) is
the number of input voices (resp. registers) and n (resp. q) is the number of
output voices (resp. registers). More general spatio-temporal specifications may
be introduced using more complex data types.

As an example, we give the semantics for the following simple wiring constants

0 = , = , = , � = , � = , + = .

The natural relational interpretation of these constants is:

0 = ∅ (empty cell); + = {(x, y, x, y) : x ∈ T} (double identity, or cross)

= {(., x, ., x) : x ∈ T} (vertical identity);

= {(x, ., x, .) : x ∈ T} (horizontal identity);
� = {(., x, x, .) : x ∈ T} (speaker, or space-to-time converter);

� = {(x, ., ., x) : x ∈ T} (recorder, or time-to-space converter).

where T is the used type of data and ‘.’ denotes the empty data on a nil interface.

Syntax of structured rv-programs. The syntax of structured rv-programs is:

P ::= X | P % P | P # P | P $ P | if(C) then {P} else {P}

| while_t(C) {P} | while_s(C) {P} | while_st(C) {P}

It uses modules X, if statements, vertical (or temporal) %, horizontal (or spatial)
#, diagonal (or spatio-temporal) $ compositions and their iterated versions.

The starting blocks for the construction of structured rv-programs are called
modules. The syntax of a module is given as follows:

module module name

{listen temporal variables}{read spatial variables}{
code

}{speak temporal variables}{write spatial variables}

The operations on structured rv-programs are briefly described below. More
details and examples may be found in [27, 28, 17, 18].

The type of a structured rv-program P : (w(P ), n(P ))→ (e(P ), s(P )) collects
the types at the west, north, east, and south borders of its scenarios.

1. Composition: Due to their two dimensional structure, programs may be com-
posed horizontally and vertically, as long as their types agree. They can also be
composed diagonally by mixing the horizontal and vertical composition.

(a) For two programs Pi : (wi, ni) → (ei, si), i = 1, 2, the horizontal composition
P1#P2 is well defined only if e1 = w2; the type of the composite is (w1, n1 ⊗
n2)→ (e2, s1 ⊗ s2).

(b) Similarly, the vertical composition P1%P2 is defined only if s1 = n2; the type
of the composite is (w1

	w2, n1)→ (e1
	e2, s2).
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(c) The diagonal composition P1$P2 is a derived operation - it connects the east
border of P1 to the west border of P2 and the south border of P1 to the north
border of P2; it is defined only if e1 = w2 and s1 = n2; the type of the composite
is (w1, n1)→ (e2, s2).

2. If: For the “if” operation, given two programs with the same type P, Q : (w, n) →
(e, s), a new program if(C) then {P} else {Q} : (w, n)→ (e, s) is constructed, for
a condition C involving both, the temporal variables in w and the spatial variables
in n.

3. While: There are three while statements, each being the iteration of the corre-
sponding composition operation.
(a) For a program P : (w, n) → (e, s), the statement while t(C){P} is defined if

n = s and C is a condition on the variables in w ∪ n. The type of the result is
((w	)∗, n)→ ((e	)∗, n).

(b) The case of spatial while while s(C){P} is similar.
(c) If P : (w, n) → (e, s), the statement while st(C){P} is defined if w = e and

n = s and C is a condition on w ∪ n. The type of the result is (w, n)→ (e, s).

Derived statements. Many usual programming idioms may be naturally extended
in this setting; e.g., temporal/spatial for statements, see [15].

Operational semantics of structured rv-programs. The operational semantics is
given in terms of scenarios. Scenarios are built up with the following procedure:

1. Each cell of the scenario has as label a module name.
2. An area around a cell may have additional information. For example, if a

cell has the information x = 2, then in that area x is updated to be 2.
3. The scenario is built from the current rv-program by reducing it to simple

compositions of spatio-temporal specifications w.r.t. the syntax of the pro-
gram, until we reach basic blocks, e.g. modules (see, e.g. [7] for more details
on this relational semantics).

Example. We illustrate the operational semantics with the following structured
rv-program Perfect1 verifying if a number n is perfect - its modules are listed
in Table 1:

(IL # IA # IR) % while_t(x > 0){P # D # M} % (TL # TA # TR)

In our rv-program we can imagine that we have three processes: one generates
all the numbers in the set {n/2, . . . , 1} (module P), one checks if a number is a
divisor of n (module D) and the last one updates a variable z (module M). Modules
IL, IA and IR are used for initializations and TL, TA and TR for termination. At
the end of the program, if the variable z is 0, then the number n is perfect.

The scenario for n = 6 is presented in Fig. 1. In the first line of the scenario
we initialize the processes with the needed informations: module IL is reading
the value n = 6 and provides the first process with x = 3 (= n/2) and declare
a temporal variant of n, namely tn = 6, that will be used by modules IA and
IR for the other initializations; modules IA and IR use the temporal variable tn
for initializing the other two processes with the initial value of n, namely y = 6,
z = 6, respectively. In the next step, module P produces a temporal data tx = 3
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Table 1. The modules of the Perfect1 rv-program

module IL

{listen nil}{read n}{
tn:tInt; x:Int;

tn = n; x = n/2;
}{speak tn}{write x}

module IA

{listen tn}{read nil}{
y:Int;

y = tn;
}{speak tn}{write y}

module IR

{listen tn}{read nil}{
z:Int;

z = tn;
}{speak nil}{write z}

module P

{listen nil}{read x}{
tx:tInt;

tx = x; x = x-1;
}{speak tx}{write x}

module D

{listen tx}{read y}{
if(y % tx !=0){
tx = 0;};

}{speak tx}{write y}

module M

{listen tx}{read z}{
z = z - tx;

}{speak nil}{write z}

module TL

{listen nil}{read x}{
tx:tInt; tx = -1;

}{speak tx}{write nil}

module TA

{listen tx}{read y}{

}{speak tx}{write nil}

module TR

{listen tx}{read z}{

}{speak nil}{write z}

and decrease x. Module D verifies if tx is a divisor of y and, if no, it resets the
value of tx to 0. Finally, module M decreases the value of z by tx. We continue this
steps until the variable x becomes 0. A final line contains terminating modules
that rearrange some interfaces, keeping only the relevant result z.

3 Scenario Equivalence and Refinement

The notion of running scenario for an rv-program is a natural two-dimensional
extension of the notion of running path (or trace) of a sequential program. The
stuttering relation on traces, consisting in state repetition, is easy to understand.
However, defining scenario equality up to a kind of “stuttering scenario equiva-
lence”, where memory state and interaction class repetitions are allowed, is more
challenging. It is not only the case that memory states or interaction classes may
stutter, but also more complex phenomena such as process migration have to be
taken into account.

In this section we introduce a definition for scenario equivalence. This scenario
equivalence obeys the following:

Correctness criterion for scenario equivalence: If two scenarios S1 and S2
are equivalent, then the associated sets of traces $(S1) and $(S2), obtained
using the flattening operator2 $ [27], are stuttering equivalent.

This relation is later used to define scenario refinement between two scenarios S1
and S2; roughly speaking, this means the set of traces associated to S1 includes,
up to the stuttering equivalence, the set of traces associated to S2.

2 For a scenario S, �(S) consists of all traces formed by the cells of S such that the
occurrence of each cell in a trace is preceded in that trace by its left neighbour in
the row and its top neighbour in the column.
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Structural Dependencies. As a first step, we consider the dependence of the
cells in a scenario induces by a set of “wiring constants”.

The components of an atomic scenario cell v =
s

A U B
t

are denoted as

follows (using the north, west, east, south, and center positions):

v.n=s, v.w=A, v.e=B, v.s=t, v.c= U.

Let E be a set of wiring constants (examples will be given below). For a
scenario w, we build up an associated E-dependencies graph DE(w) representing
its cells and their connections as follows:

1. The graph DE(w) has as nodes the inputs of w, the outputs of w, and the
non-constants cells - the latter are the cells with labels not in the given set E
of wiring constants. Each node C corresponding to a cell has four connecting
ports C.α with α ∈ {w, n, e, s}.

2. In DE(w) there is an edge between C1.i and C2.j if the i-th border of C1
is connected with the j-th border of C2 by a wire built up from a chain of
constants in E.

An example is shown below:

w =

XY
�+ � 0 0

+Z � 0

0 �++ �
0 0 �W

;

DE(w) : (2, 2) → (2, 2) is the graph with 2
inputs on each north and west borders, 2 out-
puts on the east and south borders, and the edges:
{(in1.n, X.n), (in2.n, Y.n), (in1.w, X.w), (in2.w, Z.w),

(X.e, Y.w), (X.s, Z.n), (Y.s,W.n), (Z.e,W.w),

(Y.e, out1.e), (W.e, out2.e), (Z.s, out1.s), (W.s, out2.s)}.

DE(w) is

X Y

WZ

The constants used in this example are: empty cell, vertical, horizontal, cross,
speaker and recorder identities - they are formally defined in Sec. 2. For instance,
4 crosses, a speaker and a recorder connect Y.s with W.n in the example above.
We note that we cannot have the edge (Y.s, Z.n) in the graph, because the
cross identity only acts as a (double) skip statement. Similarly, the vertical and
horizontal identities are skip statements, while speaker and recorder identities
change the data representation from space to time and conversely.

Definition 1. Let E be a set of constant cells used for wiring. We say two sce-
narios v, w are =E

struc-equivalent (or E-structurally equivalent) if the associated
E-dependencies graphs DE(v) and DE(v) are isomorphic. �

The definition may be instantiated upon the set of specified connectors E, in
particular for the sets Connect1 and Connect2 below.

The basic set Connect1 consists of the (bijective) connectors in Table 2(a).
In this table, the first column shows the symbols, the next the names, and the
last the relational semantics described as (w, n, e, s) tuples, where w/n/e/s are
the values on the west/north/east/south borders. The extended set Connect2 is
Connect1 completed with the “branching connectors” in Table 2(b).
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Table 2. The set of constants Connect1 and Connect2

(a) The set of (bijective) wiring constants “Connect1”

horizontal line (the message passes); {(x, ., x, .) : x ∈ T}
vertical line (the process stays active, doing nothing); {(., x, ., x) : x ∈ T}

+ cross (the message passes and the process does nothing); {(x, y, x, y) : x ∈ T}
0 empty cell (the process is terminated and no message

passes);
{(., ., ., .) : x ∈ T}

� speaker (the process passes its state as a message and
then it terminates);

{(., x, x, .) : x ∈ T}

� recorder (a terminated process grabs a message and it
becomes active starting from the state specified by the
message).

{(x, ., ., x) : x ∈ T}

(b) The set of additional branching wiring constants for “Connect2”

active speaker (the process passes its state as a message
and it remains active);

{(., x, x, x) : x ∈ T}

transparent recorder (a terminated process sees a mes-
sage, then it becomes active starting from the state spec-
ified by the message, and it also lets the message to pass);

{(x, ., x, x) : x ∈ T}

terminate a process; {(., x, ., .) : x ∈ T}
block a message. {(x, ., ., .) : x ∈ T}

S1 =

1
aXb
2

cY d
3

S2 =

1 .
aX b b
2 .

, � 2∨ � ,
. 2

c c Y d
. 3

(a) Configuration (b) Empty interfaces (c) Detailed scenario (d) Process migration

Fig. 2. Scenarios and configurations

Getting traces from scenarios. In order to compare traces and scenarios, we
recall that a scenario execution starts with the input data placed on the top
and on the left borders and follows the execution of the scenario actions going

top-to-down on columns and left-to-right on rows. A sequential execution c0
X1−→

c1
X2−→ c2

X3−→ . . . is one where no more than one cell is executed at any time. A
configuration c of the system is a sequence of states and classes, displayed from
bottom-left to top-right, that results after a number of steps in the execution
of the scenario have already been applied. An example is shown in Fig. 2(a). A
running step consists of the application of a scenario cell – it changes the current
configuration to a new one. Projecting this sequential execution on the actions
Xi one gets an action trace X1X2X3 . . . ; by projection on configurations ci one
gets a class-and-state trace c0c1c2 . . . . The set of action traces associated to a
scenario S is denoted by $a(S), while the set of class-and-state traces by $cs(S).
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Example: Process migration. An example of structurally equivalent scenarios is
shown in Fig. 2: the scenarios in (c) and (d) are Connect1 -structurally equivalent.

For technical reasons, we distinguish here between the empty state interface
‘.’ and the empty class interface ‘,’. The recorder and speaker constants pass the
information from time to space and conversely and it is convenient to denote by
‘ ∨’ this transformation. E.g., 2∨ denotes a class holding in a temporal form the
spatial information of state 2. This transformation is an involution, i.e., x∨∨ = x,
for all x.

There is only one sequential execution associated to S1

(1) ca1
X−→ c2b Y−→ 3db.

For S2, denoting by 1 and 2 the top-right and bottom-left occurrences of
in S2, there are 5 sequential executions

(2) c, a1.
X−→ c, 2b. 1−→ c, 2.b

�
−→ c.2∨.b �−→ c.2, b 2−→ .c2, b Y−→ .3d, b

(3) c, a1.
X−→ c, 2b. 1−→ c, 2.b

�
−→ c.2∨.b 2−→ .c2∨.b �−→ .c2, b Y−→ .3d, b

(4) c, a1.
X−→ c, 2b.

�
−→ c.2∨b. 1−→ c.2∨.b �−→ c.2, b 2−→ .c2, b Y−→ .3d, b

(5) c, a1.
X−→ c, 2b.

�
−→ c.2∨b. 1−→ c.2∨.b 2−→ .c2∨.b �−→ .c2, b Y−→ .3d, b

(6) c, a1.
X−→ c, 2b.

�
−→ c.2∨b. 2−→ .c2∨b. 1−→ .c2∨.b �−→ .c2, b Y−→ .3d, b.

When comparing traces (2)-(6) and (1), the empty state and class interfaces
(i.e., ‘.’ and ‘,’) are removed from configurations. Notice that the stuttering in
the configurations may change a spatial representation of a value into a temporal
representation or conversely. For instance, after removing the empty interfaces,
(2) gives a class-and-state trace

(ca1)(c2b)(c2b)(c2∨b)(c2b)(c2b)(3db),

which is a stuttering of (ca1)(c2b)(3db), this being the trace associated to (1).
The class-and-state trace associated to (1) and those resulting from the se-

quential executions described in (2)-(6) are the same up to the following trans-
formations

(i) removing of empty interfaces ‘.’ and ‘,’;
(ii) swapping via ∨ between spatial and temporal information;
(iii) repeating/removing information in a configuration; and
(iv) stuttering in a trace.

Example: Read-only variables. If the state variables of a module M are read-

only used in the module code, then M =
�

M +. This type of property needs

constants in the extended set Connect2. A similar analysis as in the previous
example shows this transformation is correct.
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∗ ∗
∗Xb .Yb∗
∗ ∗

∗Xc∗Yc∗
∗ ∗

∗ ∗
∗Xb∗Yb∗
∗ ∗

∗Xc∗Yc∗
∗ ∗

∗ ∗
. .Yb∗
∗ ∗

∗Xb . .
∗ ∗

∗Xc∗Yc∗
∗ ∗

∗ ∗
∗Xb . .
∗ ∗

. .Yb∗
∗ ∗

∗Xc∗Yc∗
∗ ∗

a b c d
e f g h
i j k l
m n o p

a b . c d
e f X g h
. Y Z U .
i j V k l
m n . o p

v0 v1 v2 v3 v w

Fig. 3. Examples for scenario equivalence

Stuttering Equivalence. Next, we consider scenarios stuttering. This allows
to insert or remove sub-scenarios of a scenario, provided the state and class values
on the connecting interfaces of the sub-scenario with the remaining scenario are
preserved.

Definition 2. Let v be a scenario and c a “hole” in v, i.e., a path via neigh-
bouring states and classes with an empty contents. Let w be a scenario with the
same interface as c. By replacing in v the hole c by w we get a scenario v{w/c}
considered to be in a 1-step stuttering relation with v, denoted v =1ss v{w/c}.
The scenario stuttering equivalence =E

ss is the equivalence relation generated by
the 1-step stuttering relation =1ss and =E

struc. �

In fact, the stuttering equivalence =E
ss can be obtained as the symmetric,

reflexive, and transitive closure of =E
1ss ∪ =E

struc. If E is not specified, then it
should be clear form the context if Connect1 or Conncet2 is used.

Example. We consider the scenarios v and w described in the pictures in Fig. 3
(for the sake of simplicity, the data around the cells are omitted). The “hole” in
v consists of a circular line passing the lines inserted in the picture; one possible
description, starting from the center, is: up-down-right-left-down-up-left-right.
Suppose the cross represented by X,Y,Z,U,V in w is such that:

1. X and V have the data on the eastern borders equal to that of their western
borders and, moreover, the northern interface of X and the southern interface
of V are nil; and

2. Y and U have the data on the southern borders equal to that of their northern
borders and the western interface of Y and the eastern interface of U are nil.

Then, w and v are in the 1-step stuttering relation, hence they are stuttering
equivalent.

Scenario Refinement. We now consider the scenario comparison with respect
to a kind of “structural extension” relation, i.e., preparing for the case of more
internal causality structure in a refined model. For instance, a scenario in the
refined model may have a dependency between two cells via a variable which is
hidden in the abstract model. And more dependencies mean less traces.

Definition 3. We say S2 E-structurally extends S1, denoted S1 >E
ref S2, if the

dependencies graph DE(S2) includes DE(S1) and, moreover, DE(S2) has the
same nodes and the same inputs and outputs as DE(S1).
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We say S′′ is an E-refinement of S′, denoted S′ >E
struc S

′′ if there is a an
alternating chain of =E

struc and >E
ref relations S′ =E

struc S1 >
E
ref S2 =E

struc

S3 >E
ref S4 . . . Sn =

E
struc S

′′ connecting them. �

In other words, while having the same non-constants cells (i.e., cells not in E)
and the same inputs and outputs, the “refined” scenario S′′ may have more
internal connections than S′. Notice that f =E

struc g implies f >E
ref g and

g >E
ref f .

As an example, v0 and v1 in Fig. 3 satisfy v0 >
E
ref v1. Indeed, the dependency

graph of v1 includes the dependency graph of v0.

Proposition 1. Scenarios with more dependences have less class-and-state
traces. Formally, if S1 >E

struc S2, then, up to the described trace stuttering equiv-
alence, $cs(S1) ⊇ $cs(S2).
Definition 4. As above, we can combine this relation >E

ref with the sub-

scenario stuttering equivalence =E
ss getting a larger scenario refinement relation

>E
ss, called E(ss)-refinement. �

Section Conclusion. To summarize this section, two scenarios are in the E(ss)-
refinement relation if and only if one only adds connecting interfaces where
there were none and/or one adds local processing where there was no processing,
communication or interfacing, while keeping the values on the existing interfaces
unchanged. This relation obeys the correctness criterion that the refined scenario
has less associated class-and-state traces. We employ this characterization of
the scenario equivalence in the definition of refinement that we propose in the
following section.

4 Refinement of Register-Voice Interactive Systems

The rv-IS model is a combination of state-based and interactive dataflow com-
putations. The rv-IS refinement notion, to be defined below, has the following
properties:

(1) By restriction to systems with no interaction classes it reduces itself to the
usual refinement of classical state-based systems (a presentation of this type
of refinement may be found in [3]);

(2) Similarly, by restriction to systems with no states it produces a refinement
for interactive dataflow networks as the one used in [10].

For usual sequential systems there are several approaches to define refinement
relations. A simple approach is to use traces [3, 6]: in terms of traces, except
for some additional technical conditions, a concrete system C is a refinement of
an abstract system A if the traces of C represent a subset of the traces of A,
modulo a relation connecting the states of C to those of A.

In this section we present a notion of refinement of rv-IS systems in terms of
associated scenarios. Scenarios represent an extension of traces to two dimen-
sions, hence this approach directly lifts the former refinement definition to the
level of rv-IS systems.
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4.1 Refinement in State-Based Computing Systems

Refinement of classical sequential specifications/programs has a long history; see
[1, 22, 10, 6, 5, 3], to mention just a few pointers to this active topic of research.
We outline here the key features of the approach following Abrial’s book [3].

Refinement may be defined using traces. We say a concrete system C is a
refinement of an abstract system A if the following conditions hold:

(TI) - trace inclusion,
(SI) - stuttering invariance, and

(RDF) - relative deadlock freedom.

The basic constraint on refinement is (TI), stating that the traces of the refined
system C are a subset of the traces of the abstract system A. This property
is the cornerstone of the refinement method producing a strategy to develop
correct-by-construction implementations. The approach starts with a general,
abstract, and often non-deterministic, specification. Gradually, refined models
of the system with less degree of non-determinism are produced till the very end
when, hopefully, a deterministic and easy to implement model is obtained.

This straightforward relation has to be extended to cope with data refine-
ment. To this end, trace equality is to be considered up to a stuttering relation
(i.e., state repetition in the traces); this is condition (SI). A simple example is
when a distinction makes sense between “internal” and “external” variables. The
traces in the concrete system C may have details presented in terms of internal
variables, while in the abstract system A one can only see the external ones.
During the projection from C to A a sequence of states in a C trace may have
no visible changes in terms of external variables, hence stuttering states in the
associated A trace may occur.

Technically, one more condition is needed: (RDF). In terms of traces, it says
that whenever a concrete trace is related to an abstract trace and the latter may
be extended in the abstract system, then the former may be correspondingly
extended in the concrete system. Its role is to avoid having deadlock in a state
of C corresponding to a state of A with no deadlock at all.

4.2 Refinement in State- and Interaction-Based Systems

To get a notion of refinement in (state- and interaction-based) rv-IS sytems we
combine the above notion of refinement with a technique used in [10] to de-
fine refinement of dataflow interactive systems. Compared with the independent
state-based or interaction-based refinement, our combined approach here has a
few advantages:

– it gives a better (structured, compositional) way to handle shared events or
shared variables in classical systems using a dataflow-like interaction model;

– it increases the expressivity power of dataflow-like interaction systems by
including complex, structural, state-based control mechanisms.
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Refinement. The definition below of rv-IS systems refinement is a natural
extension of the trace-based definition of state-based systems refinement. Stut-
tering equivalence on traces is replaced by the stuttering scenario equivalence
introduced in the previous section.

Definition 5. Let E be a set of wiring constants. Given two rv-IS systems AIS
and CIS, we say CIS is an E-refinement of AIS if the following conditions hold:

(TI+SI) The scenarios of CIS are a subset of the scenarios of AIS, under the
following assumptions:
1. The scenario equality is up to the E-stuttering equivalence relation de-

fined in the previous section.
2. The scenarios are projected on classes and states, hence the cells’ labels

do not matter.
3. For comparison one uses a gluing correspondence between the state and

the class variables of the CIS and the AIS systems.
(RDF) A scenario in CIS, corresponding to as abstract scenario in AIS, can be

correspondingly extended in CIS, whenever the abstract one can be extended
in AIS. �

We note the condition 2. above, that essentially shows that our refinement
notion is focused on the trace, in terms of states and classes, of a system. We do
not concern ourselves with the code of the modules, but instead with the data
and messages flowing and transmitted throughout our model (together with the
overall structure of our models). The meaning of the condition 3. above is the
following. Suppose G(varA, varC) is a relation connecting the variables in AIS
and CIS. Then, from a scenario in CIS we get a scenario in AIS by replacing
the values α of the variables varC with values β of varA such that G(β, α) holds
true.3

4.3 A Refinement of the Perfect1 Program

We can refine the Perfect1 program, presented in Section 2, when interpret-
ing the process corresponding to the second column in Fig. 1 as a “divisibility
checking service” agent: given a number and an input, it returns that number,
if it is a divisor of the given input, otherwise zero. Then, we consider the whole
system as consisting of a leader (the first process), a worker agent (the second
process) and a result collecting process (the third process).

Based on this idea, in the following we refine the working agent by replacing it
with a pool of k working agents to be used for repeated requests of the divisibil-
ity checking service. The program below implements a round-robin distribution
protocol managed by the turn variable t (and its temporal version tt), i.e., the
tasks are sent to the agents in the order 1,2,..,k,1,2....

3 Often, the states and the classes of the AIS system are also present in the CIS
system. In such a case, the correspondence mentioned in the definition is a simple
projection. This means, by ignoring the new state and class variables used in the
CIS scenarios one gets scenarios written with the AIS variables.
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x=6 . . .

. IL2 tx=6 IA2 tx=6 IA2 tx=6 IR2 .
x=3,t=1 y=6,mid=1 y=6,mid=2 z=6 .

. P2 tx=3,tt=1 D2 tx=3,tt=1 + tx=3,tt=1 M2 .

x=2,t=2 y=6,mid=1 y=6,mid=2 z=3 .

. P2 tx=2,tt=2 + tx=2,tt=2 D2 tx=2,tt=2 M2 .

x=1,t=1 y=6,mid=1 y=6,mid=2 z=1 .

. P2 tx=1,tt=1 D2 tx=1,tt=1 + tx=1,tt=1 M2 .

x=0,t=2 y=6,mid=1 y=6,mid=2 z=0 .

. TL2 tx=-1,tt=2 TA2 tx=-1,tt=2 TA2 tx=-1,tt=2 TR2 .
. . . z=0

Fig. 4. A scenario S2 for Perfect2 program (k = 2)

Table 3. The modules of the Perfect2 program

module IL2
{listen nil}{read n}{

tn:tInt; x,t:Int;
tn = n; x = n/2; t = 1;

}{speak tn}{write x,t}

module IA2
{listen tn,ti}{read nil}{

y,mid:Int;
y = tn; mid = ti;

}{speak tn,ti}{write y,mid}

module IR2
{listen tn}{read nil}{

z:Int;
z = tn;

}{speak nil}{write z}

module P2
{listen nil}{read x,t}{

tx,tt:tInt;
tx = x; tt = t; x = x-1;
t = t+1; if(t>k){t=1};

}{speak tx,tt}{write x,t}

module D2
{listen tx,tt,ti}{read y,mid}{

if(y % tx !=0){
tx = 0;

};
}{speak tx,tt,ti}{write y,mid}

module M2
{listen tx,tt}{read z}{

z = z - tx;

}{speak nil}{write z}

module TL2
{listen nil}{read x,t}{

tx,tt:tInt; tx = -1; tt = t;
}{speak tx,tt}{write nil}

module TA2
{listen tx,tt,ti}{read y,mid}{

}{speak tx,tt,ti}{write nil}

module TR2
{listen tx,tt}{read z}{

}{speak nil}{write z}

The program Perfect2 is

(IL2 # for_s(tInt ti=1;ti=<k;ti++){IA2} # IR2)

% while_t(x > 0){(P2 # for_s(tInt ti=1;ti=<k;ti++){if(tt=mid){D2}} # M2)}

% (TL2 # for_s(tInt ti=1;ti=<k;ti++){TA2} # TR2)

The modules of Perfect2 are shown in Table 3 and a scenario in Fig. 4.

Verifying refinement conditions. We consider the (typical) scenarios S1 in
Fig. 1 and S2 in Fig. 4 of Perfect1 and Perfect2 programs, denoted P1 and
P2. For P2, the particular case of two agents (i.e., k = 2) is presented in Fig. 4.

Proof idea: The scenarios S1 and S2 are =Connect2
ss -equivalent, when consid-

ering the following transformations:

1. the module D uses its state variables in a read-only way, hence it can be

replaced by
�

D +;

2. we consider only the variables in P1, hence the new variables mid,t,tt, used
in the refined model are ignored.
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Table 4. Related Perfect1 and Perfect2 scenarios

S1 =

IL IA IR
P D M
P D M
P D M
TL TA TR

=

IL IR

� . .

P D + M

� .

P D + M

. . �
P D + M

. .
TL TA TR

and S2′ =

IL IA IA IR
P D + M
P + D M
P D + M
TL TA TA TR

=

IL IR

�
P D + + M

P + D M

.
P D + M

.
TL TA TA TR

Indeed, after these transformations, the resulting scenarios have the same Con-
nect2 -dependency graph, so they are Connect2 -stuttering equivalent.

The details are included below. Consider the scenarios in Table 4. In the

transformation of S1, the module D is replaced by D1 =
�

D + and IA by .

After these transformations, one can see that all instances of the D module have
equal values for the state variables at their northern borders. Moreover, these
values are a spatial version of the values on the eastern interface of IL.

The projection of S2 (in Fig. 4) on the variables in P1 is S2′ in Table 4.
Indeed, via this projection, for an X in {IL, IA, IR, P,D,M, TL, TA, TR} a
cell X2 in P2 is identical with a corresponding cell X in P1, hence S2′ has the
above format. Then, the occurrences of IA’s are replaced by and the first
occurrence of D in the second process by D1.

After these transformations of S1 and S2′, allD’s in the corresponding lines in
S1 and S2′ have equal values at their interfaces, hence the Connect2 -dependency
graphs of S1 and S2′ are isomorphic. This concludes the check of the stuttering
equivalence of S1 and S2′.

The proof above is generic and can be extended to all scenarios of P1 and
P2. The last condition (RDF) in Definition 5 can be easily proved, hence P2 is
a refinement of P1, indeed.

4.4 Refinement Strategies

The “divisibility task” used in Perfect1/Perfect2 programs was chosen to
illustrate the method. However, the method may be applied to similar problems
for which a parallel execution may be mandatory for an efficient execution.

Other Static Distribution Policies. The round-robin method used for task
distribution may be replaced by other static master/slave task distribution
policies. The refinement proof is similar, with a slightly more complicated
program and corresponding scenarios, resulting from the implementation of
the chosen distribution method.

Task Refinement. As a further refinement we may consider the case when,
within each worker, the task processing is a sequence R;C1; . . . ;Cp;S of
refined activities: a receiving task step R : (w, n) → (e, s), followed by a
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sequence of internal computations C1; . . . ;Cp, with Ci : (nil, ni)→ (nil, si),
and ending with a sending result step S : (w′, n′)→ (e′, s′). Notice that Ci,
i = 1, ..., p have dummy temporal interfaces, hence they may be shifted up
and down the column of Ci, i = 1, ..., p in the running scenarios, without
interference with the orthogonal message passing activity of the worker.

Dynamic Task Allocation. One can also incorporate dynamic task allocation
policies. In this case, the need for process identifiers, as they were used in the
previous static allocation policies, disappears. One can exploit the structural
interaction approach and use a simple distribution method. Namely, one can
repeat sending the task list via the interaction interfaces to all the workers
ordered in a row; free workers will grab tasks from the list and busy workers
will put tasks into the list.

Termination Detection Protocols. The dynamic task allocation described
above requires more sophisticated termination detection protocols to be im-
plemented and added to the design.

Load Balancing. When the jobs have quite a different time complexity, mi-
grating jobs from a process to another may be worthwhile for getting a
better overall execution. The migration process may be modelled as the one
presented in Section 3, perhaps using the process names as in Perfect2
program.

5 Conclusions

Refinement is a fundamental concept in computer science. It has been studied in
numerous contexts, essentially starting from Dijkstra’s work with weakest pre-
condition calculus [16]. A thorough foundation of refinement calculus is presented
in [5] by Back and von Wright, where its mathematical foundations are laid in
terms of lattice theory as well as formalized in higher-order logic. Morgan [22]
has promoted refinement as a practical method to programming problems, based
on pre- and post-conditions as a contract between customers and programmers.

However, refinement is not the only method for establishing a relation between
different versions (abstraction-wise) of a specification. For instance, in pi-calculus
[20], the notion of weak or strong bisimilarity – a behavioral equivalence – is used
to check that a specification and a concrete system correspond to each other.
In Petri nets [24] one can analyze the current model, so that errors found are
solved, resulting in a new model; this process is repeated iteratively, until the
final model is correct with respect to the initial specification.

As can be seen, a stepwise iterative process is fundamental for software devel-
opment, independently of the approach taken. As a concept, refinement proves
its usability in current popular development methods for software, such as in
Agile development [23]: small, iterative steps are taken, so that the next step
always starts from the assumption that the previous one produced a system that
agrees to some specification.

The main contribution of this paper consists in the introduction of a scenario-
based definition of refinement in the register-voice interactive systems formalism.
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There are several advantages brought by our approach. First, we include the clas-
sical state-base systems as a particular case of our model. In this way, we inherit
a very rich set of results, techniques and applications. As a second strength, we
note the strong mathematical foundation of the model, including natural op-
erational and relational semantics, program transformations, Floyd-Hoare ver-
ification techniques, direct connections with mature mathematical fields such
as logic, regular expressions4, cellular automata, etc. Quite importantly, the in-
creased modularity provided by the structural interaction paradigm has direct
implications in the design of multicore, parallel, component, and service-oriented
systems at a larger scale.

For our future research plans, directly related to the research presented in
this paper, we plan to: (1) propose a concise definition of rv-IS refinement based
on the rv-IS models themselves, not on the associated scenarios; (2) develop
an algebra for representing rv-IS systems and check its compatibility with the
proposed refinement; and (3) provide an automatic translation from rv-IS to
Event-B and use Rodin tool platform for automatic reasoning on the correctness
of the refinement steps.
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Abstract. The Total Store Order memory model is widely implemented by mod-
ern multicore architectures such as x86, where local buffers are used for optimisa-
tion, allowing limited forms of instruction reordering. The presence of buffers and
hardware-controlled buffer flushes increases the level of non-determinism from
the level specified by a program, complicating the already difficult task of con-
current programming. This paper presents a new notion of refinement for weak
memory models, based on the observation that pending writes to a process’ lo-
cal variables may be treated as if the effect of the update has already occurred
in shared memory. We develop an interval-based model with algebraic rules for
various programming constructs. In this framework, several decomposition rules
for our new notion of refinement are developed. We apply our approach to verify
the spinlock algorithm from the literature.

1 Introduction

Logics for reasoning about concurrency in shared memory systems are based on the
assumption that hardware is sequentially consistent [18], guaranteeing that instructions
within each process are never executed out of order in memory. However, modern pro-
cessors have abandoned sequential consistency in favour of weaker memory guarantees,
using local buffers to offer greater scope for optimisation. There are several different
weak memory models [1,2,23]; in this paper, we focus on the most restricted of these:
the Total Store Order (TSO) memory model, which is implemented by architectures
such as x86 (see Fig. 1). Under TSO, instead of committing writes immediately to main
memory, the process executing the write stores it as a pending write in its local buffer.
Pending writes are not visible to other processors until they are flushed, which commits
the write to shared memory. A flush is either programmer controlled (via instructions
such as fence or lock) or hardware controlled. Programmer-controlled flushes are ul-
timately expensive (and inefficient), hence, one would like to keep these to a minimum.
On the other hand, reasoning about hardware-controlled flushes is difficult due to the
increase in non-determinism of a program’s behaviour.

Several approaches to program verification under TSO have been developed; we
provide a brief survey. Researchers have considered direct methods, such as executable
memory models [22], theorems for reduction [9], and identification of race conditions
[20]. Others have linked programs under TSO executions to an abstract specification
using linearizability [7,16], however, these use abstract specifications different from the
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Fig. 1. TSO hardware overview

natural abstractions one would expect; [7] requires buffers to be present in the abstract
specification, while [16] uses a non-deterministic abstract specification.

An issue with many existing approaches is that program semantics is given at a
low level of abstraction of individual read and writes, which means programs must be
understood and analysed using a verbose representation. Our work is based on the desire
to lift reasoning to higher levels of abstraction [15], which in turn improves scalability.
To this end, we develop an interval-based semantics by adapting Interval Temporal
Logic [19]. Such an approach has two distinct advantages: (a) it allows one to define
truly concurrent executions [10,11], providing a more accurate model of TSO-based
hardware; and (b) it is amenable to algebraic reasoning [3,13], which enables one to
develop algebraic laws for syntactically manipulating formulas representing program
behaviour. In this paper, we develop algebraic rules to verify refinement between a
concrete program and its abstract representation. The development of algebraic laws
is non-trivial. However, once available, they provide high-level reusable theories for
verification. We do not claim to have a complete set of laws (this is a topic of future
work), instead, we provide a set of rules that are required for proving the spinlock
example we verify.

Within this interval-based logic, we develop a framework for reasoning on TSO,
simplifying our existing semantics [15] and introducing enhancements specifically de-
signed for reasoning about buffer-based programs. This includes a simplified permis-
sion framework (Section 3.1), a novel methodology for evaluating expressions in the
presence of local buffers (Section 4.3) and a novel notion of local buffer refinement
(Section 5.2). Local buffer refinement is based on the observation that: To show a com-
mand C refines another command A with respect to a process p, the pending writes to
local variables of p may be treated as if they have already taken effect in A. Thus, lo-
cal updates at the concrete level may be treated as if they occur in their program order
(without waiting for their flush to occur). This benefits verification because the non-
determinism from flushes of local variables is resolved earlier. We develop a number of
algebraic transformation laws for both refinement and local buffer refinement.

2 Background

2.1 Total Store Order Example

Total Store Order (TSO) memory allows a process to store a write in its local buffer
and continue processing without waiting for this write to be commited to memory (i.e.,
while the write is pending). The values in the buffer are flushed in a FIFO order. To see
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word x = 1;

void acquire() {
a1 while(1) {
a2 lock;
a3 if (x = 1) {
a4 x := 0;
a5 unlock;
a6 return }
a7 unlock;
a8 while(x = 0);

} }

void release() {
r1 x := 1; }

bool tryacquire() {
t1 lock;
t2 if (x = 1) {
t3 x := 0;
t4 unlock;
t5 return true }
t6 unlock;
t7 return false; }

Fig. 2. Spinlock algorithm

Noncritical section ;
acquire();
Critical section ;
release();

Fig. 3. Spinlock client (a)

Noncritical section;
if tryacquire() {
Critical section ;
release() ;

}

Fig. 4. Spinlock client (b)

the effect of this, consider the following classic example with processes p and q that
modify shared variables x and y, which are initialised to 0. In this paper, we assume
maximum parallelism and that each thread resides in exactly one core, therefore, the
words process and core are used synonymously.

word x=0, y=0;

p { p1: x := 1 ;

p2: r1 := y }

q { q1: y := 1 ;

q2: r2 := x }

Under sequentially consistent memory, at the end of execution, at least one of r1 or r2
would have a value 1. However, in TSO memory, it is possible to end execution so that
both r1 and r2 read the original values of x and y, i.e., both r1 and r2 are 0 at termina-
tion. One such execution is 〈p1, p2, q1, q2, flush(p), flush(p), flush(q), flush(q)〉,
where flush(p) denotes a (hardware-controlled) flush event for process p. The write
to x at p1 is not seen by process q until p’s buffer is flushed, and symmetrically for the
write to y at q1. Hence, it is possible for q to read a value 0 for x at q2 even though q2
is executed after p1.

In addition to the above behaviour, each TSO process reads pending writes from its
own buffer if possible, and hence, may obtain values that are not yet globally visible to
other processes, e.g., if p2 is replaced with r1 := x, process p would read x = 1 even
if the write to x is pending. If there are multiple pending writes to the same location,
then the write value corresponding to the last pending write is returned.

2.2 Case Study: Spinlock

Spinlock [4] is a locking mechanism designed to avoid operating system overhead as-
sociated with process scheduling and context switching. A typical implementation of
spinlock is shown in Fig. 2, where a global variable x represents the lock and is set to 0
when the lock is held by a process, and 1 otherwise. The lock x is itself acquired using a
secondary hardware lock (see Fig. 1), and this hardware lock is acquired/released using
lock/unlock instructions. A process trying to acquire the lock x spins, i.e., waits in a
loop and repeatedly checks the lock for availability.
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Operation acquire only terminates if it successfully obtains the lock x. It will first
lock the hardware so that no other process can access x. If, another process has already
acquired x (i.e., x = 0) then it will release the hardware lock at a7 and spin at a8, i.e.,
loop in the while-loop until x becomes free, before starting over from a2. Otherwise,
it acquires the lock at a4 by setting x to 0, releases the hardware lock at a5 and re-
turns at a6. The operation release releases the lock by setting x to 1. The operation
tryacquire is similar to acquire, but unlike acquire it only makes one attempt to
acquire the lock. If this is successful it returns true, otherwise it returns false. Under
TSO, a process p executing an assignment (e.g., x := 0) places a pending write in p’s
local buffer, which is not visible to other processes until the buffer is flushed.

We refer to processes that use spinlock to provide mutual exclusion to a critical
section of code as its clients. Here, as in [22], we assume that clients of the spinlock
behave either as the program in Fig. 3 or Fig. 4. Thus, one can assume that a client only
calls a release operation when it holds the lock.1 Note however, that the behaviours
in Fig. 3 and Fig. 4 are not exhaustive. To admit other behaviours, one may formalise
the additional client code, then apply our proof methods in this paper to verify this
additional behaviour.

Clients can ensure mutual exclusion in the critical sections if in place of acquire,
release and tryacquire, they use abstract operations AAcq, ARel and ATry below,
respectively, which do not use buffers. We will refer to such clients as abstract clients.

word x = 1;

void AAcq() {
await (x = 1) {

x <== 0

} }

void ARel() {
x <== 1

}

bool ATry() {
if CAS(x, 1, 0) {
return true

else return false } }

Here, statement await denotes a blocking atomic test-and-set statement, e.g., AAcq()
can only execute if x = 1 holds, and its execution atomically sets the value of x to 0.
Unlike the concrete program in Fig. 2, all reads and writes occur directly with main
memory; we use assignments of the form x <== 0 (which directly updates the value of
x in memory) to distinguish this difference. If x = 0, then AAcq() blocks and cannot
execute further until its guard x = 1 is set to true by another process. Operation ATry()
attempts to update x to 0 using a non-blocking atomic compare-and-swap operation
CAS, and returns 1 if the operation is successful and 0, otherwise.2

Our notion of correctness of the spinlock will be to show that every possible execu-
tion of a spinlock client is a possible execution of an abstract client. To this end, we
prove refinement between the behaviour of the two executions (see Section 5.3). Proving
refinement under TSO is difficult; one must not only verify concurrency effects, but addi-
tionally consider the effect of accessing the buffer during a program’s execution. Further-
more, the level of atomicity at which these effects are visible is fine-grained, occuring
at the level of individual reads and writes. This paper develops a high-level approach

1 Such restrictions on client behaviour must be made due to the simplicity of the spinlock al-
gorithm in Fig. 2. Arbitrary client behaviour e.g., two consecutive calls to release without
acquiring the lock will result in incorrect behaviour under TSO.

2 CAS(a, b, c) is equivalent to atomic { if a = b then a := c ; return true
else return false}.
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for proving refinement that avoids the need to consider low-level (fine-grained) effects
whenever possible by developing an interval-based semantics for programs under TSO.
This allows one to view the concurrent execution of two processes as the conjunction of
their behaviours over an interval (as opposed to an interleaving of their traces), reducing
the impact of non-determinism due to concurrency.

3 Interval-Based Reasoning

3.1 Permission Monitoring

Using an interleaved execution semantics, one can guarantee that a variable will not be
simultaneously written, or read and written as part of the same transition. This is not
true for shared-memory true concurrency, where one must model variable access by the
different processes (e.g., two processes simultaneousy modifying variable x in Fig. 2).

Our solution is to explicitly define read/write permissions. To this end, we assume
that programs are executed by processes from a set Proc; each process represents a
concurrent thread which modifies a set of variables from a set Var. The TSO architecture
uses sophisticated coherence protocols to provide an illusion of shared memory. One
may assume the following about read and write instructions:

– Two simultaneous writes (by different processes) to the same variable do not occur.
– A simultaneous read and write of the same variable does not occur.
– A process never has access permission to the local variable of another process.

As we shall see in Sections 4.2 and 4.4, permissions also provide a convenient mecha-
nism for formalising the effect of a lock-unlock block.

In previous work [11], we have modelled permissions using a fractional encoding
(inspired by [5]). Here, we simplify these general notions and define the permission
space as Perm �= Proc → Var → P{wr, rd}, where wr and rd denote write and read
permission, respectively. Using ‘.’ for function application, given π ∈ Perm, we inter-
pret wr ∈ π.p.v (resp., rd ∈ π.p.v) as p ∈ Proc has permission to write to (resp., read
the value of) v ∈ Var.

A system at any time is described by a state of type State �= Var → Val, where
Val is the set of values. The system over time is formalised by a stream, which is a
total function of type Stream �= Z → (State × Perm). Therefore, for each time in
Z, a stream formalises the state of the system and the permissions for each process
and variable. Properties of a system are given by predicates; a predicate of type T is
a member of PT �= T → B, e.g., PState, PStream, and PPerm are state, stream, and
permission predicates, respectively. We assume pointwise lifting of boolean operators
over predicates in the normal manner.

If π ∈ Perm, thenW .p.v.π �= (wr ∈ π.p.v),R.p.v.π �= (rd ∈ π.p.v) andN .p.v.π �=
(π.p.v = ∅) denote permission predicates that hold iff process p has write, read or no
access to v in the permission space π, respectively.

Example 1. Suppose Var = {u, v}, Proc = {p, q} and
π �= �

p �→ {u �→ {rd,wr}, v �→ {rd}}, q �→ {u �→ ∅, v �→ {rd}}
�

Then,W .p.u.π (p has write permission to u), (R.p ∧ R.q).v.π (both p and q have read
permission to v) and N .q.u.π (q has no permission to u) in space π. Note that due to
pointwise lifting (R.p ∧ R.q).v.π = R.p.v.π ∧ R.q.v.π. �
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The assumptions on reads and writes above are then taken into account by assuming
that each valid permission space π satisfies the following, where p and q such that p �= q
are processes, v is a variable, and up is a local variable of process p.

(W .p.v.π ⇒ N .q.v.π) ∧ (R.p.v.π ⇒ ¬W .q.v.π) ∧ π.p.up = {wr, rd} (1)

Note that the third conjunct combined with the first ensures that q does not have read
nor write permission to any local variable of p. This is lifted to the level of streams by
defining a valid stream to be one in which each s.t is valid for t ∈ Z. For the rest of the
paper, we assume each stream is valid.

To simplify the notation, for a state predicate b and permission predicate z, we as-
sume b.(σ, π) = b.σ and z.(σ, π) = z.π, where σ and π are a state and a permission
state, respectively. We assume ‘�’ denotes a projection operator, e.g., (x, y) � 1 = x.

3.2 Interval Predicates

In this section, we provide the basics of interval predicates, which forms the logical
basis of our program semantics. Our logic is an adaptation of Interval Temporal Logic
[19]. An interval is a contiguous set of integers (denoted Z), and hence the set of all
intervals is Intv �= {Δ ⊆ Z | ∀t1, t2:Δ • ∀t:Z • t1 ≤ t ≤ t2 ⇒ t ∈ Δ}.

We let lub.Δ and glb.Δ denote the least upper and greatest lower bounds of an in-
tervalΔ, respectively. Furthermore, we define inf.Δ �= (lub.Δ =∞), fin.Δ �= ¬inf.Δ,
and ε.Δ �= (Δ = ∅). We define an orderingΔ1 < Δ2 �= ∀t1:Δ1, t2:Δ2 • t1 < t2. To
facilitate reasoning about specific parts of a stream, we use interval predicates, which
have type IntvPred �= Intv → PStream [11,13].
Example 2. Given Var, Proc and π as defined in Example 1, we define

σ1 �= {u �→ 500, v �→ 42} s �= λ t • if t ≥ 10 then (σ1, π) else (σ2, π)
σ2 �= {u �→ 0, v �→ 1} g �= λΔ • λ s • ∀t:Δ • ((s.t) � 1).u ≥ 300

b �= λσ • σ.u < σ.v

Then, σ1, σ2 are states, b a state predicate, s is a stream and g is an interval predicate.
Each of (¬b).(σ1, π), b.(σ2, π), ¬g.[−3, 3].s and g.[10, 100).s hold.3 �
We define universal implication g1 	 g2 �= ∀Δ: Intv, s: Stream • g1.Δ.s ⇒ g2.Δ.s for
interval predicates g1 and g2, and write g1 ≡ g2 iff both g1 	 g2 and g2 	 g1 hold.

4 Concurrent Programming with Intervals

4.1 Operators to Model Programming Constructs

In this section, we introduce interval predicate operators used to formalise common
programming constructs: sequential composition, branching, loops, and parallel com-
position. To model sequential composition, we define the chop operator [19,13]. Unlike
Interval Temporal Logic, which requires adjoining intervals to overlap at a single point,
adjoining intervals in our logic are disjoint.

3 Here, [−3, 3] is the closed interval from −3 to 3 and [10, 100) is the right-open interval from
10 to 100.
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(g1 ; g2).Δ.s �= �
∃Δ1, Δ2 • (Δ1 ∪Δ2 = Δ) ∧ Δ1 < Δ2 ∧ g1.Δ1.s ∧ g2.Δ2.s

�
∨

(inf ∧ g1).Δ.s

Thus, (g1 ; g2).Δ.s holds iff either intervalΔ may be split into two adjoining partsΔ1

andΔ2 so that g1 holds forΔ1 and g2 holds forΔ2 in s, or the least upper bound ofΔ
is∞ and g1 holds forΔ in s. Inclusion of the second disjunct (inf ∧ g1).Δ.s enables g1

to model an infinite (divergent or non-terminating) program. We assume that ‘;’ binds
tighter than all other binary operators, e.g., g1 ; g2 ∨ h = (g1 ; g2) ∨ h.

Example 3. For b, g and s as defined in Example 2, if h �= λΔ • λ s • ∃t:Δ • b.(s.t),
then (h ; g).[0, 100).s holds because both h.[0, 10).s and g.[10, 100).s hold. Note that
there may be more than one possible way to split up an interval when applying the
definition of chop. �

Non-deterministic choice is modelled by (lifted) disjunction, and hence, for example,
the behaviour of if b then S1 else S2 is given by test.b ; beh.S1 ∨ test.(¬b) ; beh.S2,
where test.b and beh.S1 are interval predicate formalisations of evaluating b and execut-
ing S1, respectively. The precise value of test.b depends on the atomicity assumptions
of the program under consideration, and hence, the interpretation of test.b is non-trivial
(see [17,13,11]). The value of test.b is modelled by command [b] (see Section 4.2),
whereas at the concrete level its value is formalised by a different command [[b]], which
takes the effect of the buffer into account (see Section 4.3).

Iteration g∗ and gω are the least and greatest fixed points of λ z • gz ∨ ε, respectively
[14], where g∗ allows empty and finite iterations and gω allows empty, finite and infinite
iterations of g. We also define strictly finite and possibly infinite positive iterations.

g∗ �= μ z • ((g ; z) ∨ ε) g+ �= g ; g∗

gω �= νz • ((g ; z) ∨ ε) gω+ �= g ; gω

A thorough algebraic treatment of loops using iteration is given in [3]. For example,
program code while b do S is modelled by (test.b ; beh.S)ω ; test.(¬b). In this paper,
we use the following rule.

Law 1 (Leapfrog [3]). For interval predicates g and h, both g ; (h ; g)ω ≡ (g ; h)ω ; g
and g ; (h ; g)∗ ≡ (g ; h)∗ ; g hold.

We are interested in modelling true concurrency and therefore simply treat the par-
allel composition of two or more processes using (lifted) logical conjunction. For ex-
ample, the behaviour of g1 ; g2 in parallel with h1 ; h2 over an interval Δ in stream
s is given by (g1 ; g2 ∧ h1 ; h2).Δ.s. Using pointwise lifting, this is equivalent to
(g1 ; g2).Δ.s ∧ (h1 ; h2).Δ.s, which holds iff (a)Δ can be split into adjoining intervals
Δ1 andΔ2 such that g1.Δ1.s ∧ g2.Δ2.s holds; and (b)Δ can also be split into adjoin-
ing intervalsΔ3 and Δ4 such that h1.Δ3.s ∧ h2.Δ4.s. Note that there is no immediate
correlation between the lengths of Δ1 and Δ3, i.e. g1 could terminate earlier than h1,
and vice versa.

Modelling Tests. Interval predicates provide a flexible approach to non-deterministic
state predicate evaluation [17], where expression evaluation is assumed to take time (as
opposed to being instantaneous). In this paper, guards and assignments are restricted
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to contain at most one shared variable.4 Given that c is either a state or permission
predicate, andΔ and s are an interval and stream, respectively, we define:

(� c).Δ.s �= ¬ε.Δ ∧ ∀t:Δ • c.(s.t)

Thus, (� c).Δ.s holds iff Δ is non-empty and c holds for each state of s within Δ. For
example,¬ε ∧ g ≡ �(u ≥ 300), where g is the interval predicate defined in Example 2.

Reasoning About Pre/Post Assertions. One may define several additional interval
predicate operators [13]. For the purposes of this paper, we find it useful to reason
about properties that hold in the immediately preceding interval. We therefore define

(� g).Δ.s �= ¬ε.Δ ∧ glb.Δ �= −∞ ∧ g.(prev.Δ).s

where prev.Δ �= {t:Z | ∀u:Δ • t < u} is the interval of all times beforeΔ. If c is a state
or permission predicate, we use notation−→c �= true ; � c, where−→c .Δ states that c holds
at the end ofΔ whenever inf.Δ �=∞. Additionally, we define the following notation to
reason about assertions that immediately precede, or are a result of a computation.

{c}g �= �−→c ∧ g g{c} �= g ∧ −→c
Such a definition of a pre-assertion is necessary because we assume adjoining intervals
do not overlap (unlike [19]). We have the following useful properties, which can be
proved in a straightforward manner.

{c}(g1 ∨ g2) ≡ ({c}g1) ∨ ({c}g2) (2)

g1{c} ; g2 ≡ g1 ; {c}g2 provided g1 ∨ g2 	 ¬ε (3)

4.2 Abstract Commands

Using the interval-based semantic basis from the previous sections, we formalise com-
mands, which describe the behaviours of the system processes. Formally, a command is
of type Cmd �= P1 Proc → IntvPred, mapping non-empty sets of processes to an inter-
val predicate representing their behaviour. We use C.p as shorthand for C.{p}, where C
is a command and p is a process.

The semantics of sequential composition, iteration, non-deterministic choice and par-
allel composition of commands are defined pointwise lifting of the interval predicate
operators, and hence, are given in the same syntax, e.g., (C1 ; C2).p = C1.p ; C2.p. What
remains is to define the commands to model, say, guard evaluation and assignment.

We first present some basic commands that may be used to models the abstract (se-
quentially consistent) specification. In particular, we define idling (denoted id), abstract
guard evaluation (denoted [b]), memory update (denoted v ⇐� e) and locked access (de-
noted v • C ), where v and e denote vectors of variables and expressions, respectively.
We define Deny.v.p �= �(∀q:Proc\{p}, v: v • (¬W ∧ ¬R).q.v), which states that the
variables in v are not accessed by processes other than p. We assume that vars.b denotes
the free variables in b.

nid.p �= ∀v:Var • �¬W .p.v
id.p �= ¬ε⇒ nid.p

[b].p �= �b ∧ nid.p ∧
∀v: vars.b • �R.p.v

(v ⇐� e).p �= ∃k • {e = k}
�(v = k) ∧ �(∀v: v •W .p.v)

v • C .p �= (v �= ∅⇒ Deny.v.p) ∧ C.p ∧
(∀v: v • �(W ∧ R).p.v)

4 This can be extended to handle more complex expressions [17].
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Thus nid.p states that p is write idle i.e., p does not have write access to any variable
during the given (non-empty) interval; id.p states that either p is write idle or the interval
under consideration is empty; [b].p holds iff b holds throughout the given interval and
p is idle; v ⇐� e denotes an instantaneous update, which holds iff e evaluates to a vector
of values k as a pre-assertion, and v is updated to k, where p has write permission to
each v ∈ v; and v • C .p holds iff C.p holds and additionally no process other than p
has permission to access v ∈ v.

Example 4. The abstract specification is formalised as follows, where AAcq and ARel
specify operations AAcq and ARel, respectively, while ATryOK and ATryFl specify ex-
ecution of the ATry operation that succeed and fail to acquire the lock, respectively. We
abbreviate x = 1 and x = 0 to x and ¬x, respectively. The return value of an execution
of tryacquire in process p is modelled by a local variable rp.

AAcq.p �= x • [x] ; (x ⇐� 0) ATryOK.p �= AAcq.p ; id ; (rp ⇐� true)

ARel.p �= x ⇐� 1 ATryFl.p �= x • [¬x] ; id ; (rp ⇐� false)

AExec.p �= ((AAcq ; id ; ARel) ∨ (ATryOk ; id ; ARel) ∨ ATryFl).p

Spec.P �= {x}�p:P((id ; AExec)ω ; id).p

The concurrent execution of abstract clients is modelled by Spec, which begins in a
state in which the lock x is available (i.e., x holds) and consists of a number of (truly)
parallel processes. We assume that each client of the spinlock behaves as either Fig. 3
or Fig. 4, and furthermore, that the critical and non-critical sections do not modify
variables x and rp, and hence, both the critical and non-critical sections are modelled
by id. Therefore, id ; AExec models a single call to the abstract spinlock. Each process
may make multiple (zero or more) calls, followed by no calls, and hence, all possible
behaviours of an abstract client is given by (id ; AExec)ω ; id.

We now explain how each operation is modelled. If AAcq.p.Δ.s holds for intervalΔ
and stream s, then only process p has access to x (i.e., no process q �= p may read or
write to x) and either (i)Δ can be partitioned intoΔ1 andΔ2 withΔ1 < Δ2 such that
x holds in s throughoutΔ1 and x is updated to 0 in s withinΔ2, or (ii)Δ is infinite and
x (i.e., x = 1) holds in s throughout Δ. Because await b blocks until test.b becomes
true, there are no behaviours for AAcq.p when test.(¬b) holds. Operation ARel.p im-
mediately sets x to 1, and by the definition of⇐� together with assumption (1), we have
that no other process reads or writes to x while this update occurs. Operation ATryOK.p
behaves as AAcq.p, performs some idling, then updates rp to true. The idling between
AAcq.p and update to rp provides scope for potential stuttering at the concrete level. Op-
eration ATryFl.p starts by behaving as x • [¬x] , which implies that x is not accessed
by any process q �= p and that ¬x holds throughout the given interval. Then, ATryFl.p
performs some idling and updates the return value rp to false. �

4.3 Reading Variables for Expression Evaluation with Buffer Effects

Section 4.2 provided an interval-based semantics for commands without buffers, which
were in turn used to model the abstract specification. The concrete program executes un-
der TSO memory and contains local buffers, whose effects on the program’s behaviour
must be formalised. In this section, we present a method for evaluating expressions,
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i.e., when processes read variables, in the presence of local buffers. In particular, we
formalise the fact that a TSO process first checks its buffer for pending writes; if a
pending write exists, the last pending value is returned, and otherwise the value from
memory is returned. Using interval-based methods enables one to formalise the effects
of a buffer on the value of an expression at a high level of abstraction [15].

We assume that Bp ∈ Var denotes the buffer for process p, whose value is of type
seq.(Var×Val), representing a pending write. Each buffer may contain multiple pending
writes to the same location, and hence, we define a function cover that returns a set of
mappings to the last pending write in a given buffer. Because seq.X is a partial function
of type N �→ X, we may use dom.z to refer to the indices of z ∈ seq.X.

cover.B �= {B.i | i: dom.B ∧ ∀j: dom.B • j > i ⇒ (B.i � 1) �= (B.j � 1)}
When a process evaluates an expression, the values of pending writes in a process’
buffer mask those in memory, which is modelled formally using functional override
‘⊕’ (see [24] for a formal definition).

Example 5. Suppose B and BB are buffers (BB is not shown below), p and q are pro-
cesses, u, v, and w are variables, and σ is a state such that

B �= 〈(v, 11), (w, 33), (v, 44)〉 σ �= {(Bp,B), (Bq,BB), (u, 0), (v, 1), (w, 2)}
Then we have cover.B = {(w, 33), (v, 44)}, i.e., for each variable in B its last corre-
sponding value in B is picked. Hence, we have

σ ⊕ cover.B = {(Bp,B), (Bq,BB), (u, 0), (v, 44), (w, 33)}
which replaces each mapping in σ by those in cover.B. �

We lift buffer effects to state predicates using (mask.b.B).σ �= b.(σ ⊕ cover.B) , which
states that b holds in a state σ covered by B. For the definitions in Example 5, both
(mask.(u = 0).B).σ and (mask.(w < v).B).σ hold, but (w < v).σ does not.

Processes evaluate state predicates (e.g., as part of a guard), however, in the presence
of permissions and local buffers, evaluation is non-trivial. Firstly, one must ensure that
a process p evaluating state predicate b is able to obtain read permission to each vari-
able of b whenever the variable’s value is fetched from memory. Note that this is only
potentially problematic if the variable in question is shared (i.e., not a local variable of
p) and not in p’s buffer (p may can always access its local buffer). Secondly, the value
of a variable v read by p must be the last value of v in p’s buffer if it exists, and the value
of v in memory, otherwise. Assuming vars.B �= {(B.i) � 1 | i ∈ dom.B} is the set of all
variables in B ∈ seq.(Var × Val), we define:

�p b �= �(mask.b.Bp ∧ ∀v: vars.b\vars.Bp •R.p.v)
Thus, (�p b).Δ.s models the evaluation of state predicate b by the process p, by either
reading variables from p’s buffer (if possible) or from main memory. Here (�p b).Δ.s
holds iff (i) b masked by Bp holds in s throughout Δ, and (ii) p has read permission
to the free variables of b not in vars.Bp throughout Δ in s.5 In Section 4.4, (�p b) is
used to define expression evaluation, which in turn is used to model guards and the right
hand side of assignments.

5 In general, if b contains multiple shared variables, �p b is not an accurate model of evaluation
because the variables in b may be read at different instants [17,10,12]. However, here, we
assume that each expression/guard of each program under consideration contains at most one
shared variable, in which case �p b is accurate (see [17,10,12]).
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4.4 Commands under TSO

As already mentioned, processes that execute under TSO write only to their local
buffers. The effects of these writes are not seen by other processes until a buffer is
flushed, which moves the pending write from a buffer to shared memory. TSO buffers
operate in a FIFO order, and hence, we define the following commands, where Φ mod-
els a single flush, �Φ models a flush or a non-empty idle, and Φall models a complete
buffer flush.

Φ .p �= ∃k • {Bp = k ∧ k �= 〈 〉}
Bp, (k.0 � 1)⇐� tail.k, (k.0 � 2)

�Φ �= Φ ∨ nid
Φall .p �= Φ+.p {Bp = 〈 〉}

Due to the fine-granularity of the concrete implementation, seemingly atomic state-
ments become compound commands under TSO memory. Evaluation of a boolean ex-
pression b (e.g. a guard in an if-then-elseblock) is a compound statement that flushes
or idles (zero or more times), evaluates b using the buffer-based evaluation semantics
defined in Section 4.3, then flushes or idles again (zero or more times). A write of v
with value k appends the pair (v, k) to the end of the local buffer. An assignment to a
constant value k, potentially flushes or idles (zero or more times), appends the value
to the buffer, then potentially flushes or idles (zero or more times). An assignment to
a complex expression e, first evaluates the expression to a value k, then assigns k to v.
Thus, we define:

[[b]].p �= �Φ∗
.p ; (�p b ∧ nid.p) ; �Φ∗

.p

(v ←� k).p �= Bp ⇐� Bp

 〈(v, k)〉

v := e �= if e ∈ Val then �Φ∗
; (v ←� e) ; �Φ∗

else ∃k:Val • [[e = k]] ; v := k

There are several TSO instructions that force the entire buffer to be flushed. These addi-
tionally may lock certain variables from being accessed while the flush all is being exe-
cuted. We therefore define commands preΦ.v.C.p and postΦ.v.C.p, where preΦ.v.C.p
flushes the entire buffer (locking v) before C is executed (and similarly postΦ.v.C.p
flushes all after C).

preΦ.v.C.p �= {Bp = 〈 〉}C.p ∨ ( v • Φall ; C).p

postΦ.v.C.p �= C.p{Bp = 〈 〉} ∨ (C ; v • Φall ).p

Some TSO instructions do not lock the memory while the buffer is being flushed.
These may be modelled using preΦ.∅.C and postΦ.∅.C, which we abbreviate to
preΦ.C and postΦ.C, respectively. A lock (e.g., a2 in Fig. 2) acquires the memory lock
then flushes the entire buffer; an unlock (e.g., a5 in Fig. 2) flushes the entire buffer then
releases the memory lock. Therefore, executing a command C within a lock-unlock
block is modelled by

v • C
Φ
�= preΦ.v.(postΦ.v. v • C )

which executes C and ensures the buffer is empty before and after executing C. In
addition it ensures that no reads and writes to v by other processes occur while C is
being executed. Note however, that if a process p executes v • C

Φ
and a process q �= p

has a pending write to v in its local buffer, then q may read this value of v even while p
is executing v • C

Φ
.
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Example 6. Our modelling notation is used to formalising the behaviour of the concrete
implementation as follows, where Lck.p �= x • [[x]] ; (x := 0)

Φ
.

Acq.p �= �
x • [[¬x]]

Φ
; [[¬x]]ω ; [[x]]

�ω
; Lck.p Rel.p �= x := 1

TryOK.p �= Lck.p ; (rp := true) TryFl.p �= x • [[¬x]]
Φ

; (rp := false)

Exec.p �= (Acq ; id ; Rel ∨ TryOK ; id ; Rel ∨ TryFl).p

Prog.P �= {x}
�

p:P
({Bp = 〈 〉}(�Φ+

; Exec)ω ; postΦ.x.(�Φ+
)).p

Within Acq.p, command x • [[¬x]]
Φ

models an execution consisting of the lock at a2,

failed test at a3, unlock at a7 (see Fig. 2). Command [[¬x]]ω ; [[x]] models the while loop
at a8. Therefore, the outermost ω iteration in Acq.p models executions of the outermost
loop of acquire that fail to acquire the lock. Command Lck.p models the lock at a2,
successful test at a3, assignment at a4, and unlock at a5 followed by the return at a6.
The other operations are similar. �

5 Refinement and Local Refinement for TSO

5.1 Interval-Based Refinement

In this section, we develop a theory for proving that a command C refines another
command A, providing a formal link between the behaviours of C and A. Here, A is an
abstraction and therefore admits more behaviours than C, or conversely, any behaviour
of C must also be a behaviour of A. In an interval-based setting, we use the following
definition of refinement [11]. In the context of our example, if refinement holds, then
whenever a spinlock client is able to enter its critical section, it must also be possible
for the abstract client to enter the critical section.

Definition 1. If C and A are commands, then C refines A with respect to P ⊆ Proc, (de-
noted C 4P A) iff for any interval Δ and stream s, C.P 	 A.P. We say C is equivalent
to A with respect to P (denoted C '4P A) iff both C 4P A and A 4P C.

Refinement is defined in terms of implication, and hence, relation 4P is both reflexive
and transitive. In this paper, we use 4P as a basis for transforming the abstract spec-
ification Spec and the concrete program Prog individually. We use a notion of local
buffer refinement (Definition 2) to relate concrete behaviours (with buffers) to abstract
behaviours (without buffers).

Example 7. We transform the TSO implementation Prog into a form that is more ame-
nable to verification. In particular, a difficulty encountered when verifying Prog in Ex-
ample 6 directly is that for each process, p, command Exec.p is not guaranteed to end
in a flush, and hence changes to x may not be globally visible until the start of the next
iteration (which starts with a lock that performs a flush all). In particular, it is not im-
mediately possible to match the behaviour of Rel with abstract ARel because Rel only
places a pending write in the buffer, whereas ARel modifies the value of x in memory.
Therefore, we aim to transform Prog to Prog′ below (see Proposition 1), where the flush
occurs at the end of execution. We use notation

v • C
Φ
�= postΦ.v. v • C
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Unlike v • C
Φ

, command v • C
Φ

only flushes the buffer at the end of execution.

Below, we have used the property gω ≡ ε ∨ gω+ to split Acq into two cases. Note that
Acq′1 is defined in terms of Acq.

Acq′
1.p �= x • [[¬x]]

Φ
; [[¬x]]∗ ; [[x]] ; Acq.p Acq′

2.p �= x • [[x]] ; (x := 0)
Φ

TryOK′.p �= x • [[x]] ; (x := 0)
Φ

; (rp := true) TryFl′.p �= x • [[¬x]]
Φ

; (rp := false)

Exec′.p �= ((Acq′
1 ; id ; Rel) ∨ (Acq′

2 ; id ; Rel) ∨ (TryOK′ ; id ; Rel) ∨ TryFl′).p

Prog′.P �= {x}
�

p:P

�
id ;

�
{Bp = 〈 〉}Exec′ ; postΦ.x.(�Φ+

)
�ω�

.p �

Clearly, transforming Prog to Prog′ by reasoning at trace-based level of Definition 1 is
infeasible. Therefore, we develop a number of refinement laws that are applied to our
example. First, we have the following; the proof of each equivalence is straightforward.

Law 2. If p ∈ Proc, C and D are commands, each Ci is a command and v is a vector
of variables, then

v • C
Φ
'4p preΦ.v. v • C

Φ
(4)

preΦ.C '4p preΦ.({Bp = 〈 〉}C) (5)

preΦ.v. v • C
Φ

; D '4p preΦ.v.
�

v • C
Φ

; D
�

provided C.p 	 ¬ε (6)	
i preΦ.Ci '4p preΦ.


	
i Ci

�
(7)

C ; preΦ.D '4p postΦ.C ; D provided C.p ∨ D.p 	 ¬ε (8)

To transform Prog to Prog′, we develop a leapfrog theorem analogous to Law 1,
whose proof uses the equivalences defined in Law 2 as well as PF.v �= postΦ.v.�Φ+

.

Theorem 1 (Leapfrog Flush). Suppose p ∈ Proc, each Ci and Di is a command such
that Ci.p 	 ¬ε, and v is a vector of variables. Then��Φ+

;
�	

i
v • Ci Φ

; Di

��ω
; PF.v ��p PF.v ;

�
{Bp = 〈 〉}

�	
i

v • Ci Φ
; Di

�
; PF.v

�ω
The left hand side of Theorem 1 contains a disjunction that executes v • Ci Φ

, which
ensures the buffer is empty (via flushes if necessary) both before and after execution of
Ci. After the end of the iteration, command PF.v is executed, which ensures the buffer
is empty when the process terminates; flushes may be necessary due to the behaviour
of Di. On the right hand side, each iteration is guaranteed to start with an empty buffer
and each disjunct starts with the weaker v • Ci Φ

, which only flushes the buffer at the
end of execution. However, each iteration ends with PF.v. Further note that on the right
hand side, each iteration is guaranteed to begin in a state where the buffer of p is empty.

Proposition 1. Prog 4P Prog′

Proof. Applying Theorem 1 to Prog, we obtain:

Prog′′.P �= {x}
�

p:P



{Bp = 〈 〉}PF.x ; ({Bp = 〈 〉}Exec′ ; PF.x)ω

�
.p

Then, because {Bp = 〈 〉}PF.x 'p id, we have Prog′′ 'P Prog′. �

For the proof in Section 5.3, we find the following laws to be useful, each of which
is proved in a straightforward manner. Note that for (11) and (14), the refinement only
holds in one direction. Of these, (14) states that an assignment {Bp = 〈 〉}v := k either
ends with Bp = 〈(v, k)〉, or the buffer Bp is flushed as part of the assignment semantics.
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Law 3. Suppose C and D are commands, p is a process, v is a variable and k a value.
Then each of the following holds:

{Bp = 〈 〉} v • C
Φ
'4p {Bp = 〈 〉} v • C

Φ
(9)

v • C ; D
Φ
'4p v • C ; v • D

Φ
provided C.p ∨ D.p 	 ¬ε (10)

{Bp = 〈 〉} v • v := k
Φ
4p v • id ; v ⇐� k ; id {Bp = 〈 〉} (11)

v • C ; v • D '4p v • C ; D (12)

{Bp = 〈 〉} v • [[b]] '4p {Bp = 〈 〉} v • [b] (13)

{Bp = 〈 〉}v := k 4p (id ; v ←� k ; id){Bp = 〈(v, k)〉} ; (ε ∨ (Φ ; id)) (14)

5.2 Local Buffer Refinement

In this section, we develop a novel method for proving refinement for TSO architec-
tures, where buffer effects are taken into account. The method allows one to prove that
a (concrete) process with buffer effects has the same behaviour as an (abstract) pro-
cess without the buffer. In essence, one may pretend that the effect of local changes
have already been flushed at the abstract level. This is allowed because in the context
of the overall behaviour of a program, it makes no difference whether a variable local
to process p has a pending write in p’s local buffer, or in shared memory. This essen-
tially removes the potential non-determinism that arises from reasoning about flushes
for local variables. We let

LCover.P.(σ, π) �= �
σ ⊕

�
p:P LVar.p � cover.(σ.Bp), π

�
LBuffer.P.s �= λ t:Z • LCover.P.(s.t)

Here cover.(σ.Bp) generates a set of pairs from σ.Bp and LVar.p�cover.(σ.Bp) restricts
these to the local variables of p. Within LCover.P.(σ, π) such a localised mapping is
generated for each p ∈ P, and then, σ is overwritten by this mapping.

Definition 2. If C and A are commands, and P is a non-empty set of processes, we say
C buffer refines A with respect to P, (denoted C �P A) iff for any intervalΔ and stream
s, (C.P).Δ.s ⇒ (A.P).Δ.(LBuffer.P.s).

Thus, whenever C holds for a set of processes P over intervalΔ in stream s, command
A must hold for P in Δ for the masked stream LBuffer.P.s. In particular, this implies
that A behaves as if the local buffer effects of the concrete command have already been
applied. We write �p for �{p}.

Clearly, reasoning at the level of Definition 2 is infeasible. Instead, we explore some
higher level properties for the programming constructs we use. In general, buffer re-
finement is neither reflexive nor transitive6, e.g., if C always reads from main memory
regardless of the state of the buffer, then reflexivity does not hold. However, �P may
be combined with standard refinement as follows, which holds trivially after expanding
the definitions of 4P and �P.

Theorem 2. If C′ 4P C, C �P A and A 4P A′ then C′ �P A′.
6 Fully exploring the properties of �P lie outside the scope of this paper.
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We immediately have the following laws, which help simplify verification of assign-
ments and buffer flushes.

Law 4. If v ∈ Var, p ∈ Proc, k ∈ Val, P �= Bp �= 〈 〉 ∧ (Bp.0 � 1) ∈ LVar.p, and
Q �= Bp �= 〈 〉 ∧ (Bp.0 � 1) �∈ LVar.p, then

{v ∈ LVar.p}v ←� k �p v ⇐� k (15)

{v �∈ LVar.p}v ←� k �p id (16)

{P}Φ �p id (17)

{Q}Φ �p (Bp.0 � 1)⇐� (Bp.0 � 2) (18)

By conditions (15) and (16), adding a pending write (v, k) to p’s buffer is a local buffer
refinement of a global update to v whenever v ∈ LVar.p, and of id, otherwise. On the
other hand, (17) states that flushing a local variable of process p from p’s buffer has
the same effect as executing id abstractly (because the effect of the variable has already
occurred), and condition (18) states that flushing a global variable has the same effect
as executing the corresponding write in memory at the abstract level.

The laws below allow local buffer refinement to be decomposed, and the pre/post
assertions under local buffer refinement to strengthened.

Law 5. If C �P A, C1 �P A1 and C2 �P A2 for a set of processes P, and b, c are state
predicates such that b ⇒ c and (vars.b ∪ vars.c) ∩ (

�
p:P LVar.p) = ∅, then

C1 ; C2 �P A1 ; A2 (19)

Cω �P Aω (20)

C1 ∧ C2 �P A1 ∧ A2 (21)

C1 ∨ C2 �P A1 ∨ A2 (22)

{b}C �P {c}A (23)

C{b} �P A{c} (24)

Law 6 (Parallel Composition). If C′.P �= �
q:P C.q, A′.P �= �

q:P A.q and C�q A holds
for each for each q ∈ P, then C′ �P A′.

5.3 Application: Spinlock Example

We now apply our rules to the running spinlock example (modelled by Prog), and prove
it to be a refinement of the abstract program (modelled by Spec). Our notion of refine-
ment is local buffer refinement (Definition 2), i.e., we show

Prog �P Spec (25)

for an arbitrarily chosen non-empty set of processes P. Various refinement rules may
be introduced to generalise the theory as needed. By Theorem 2 and Proposition 1, (25)
immediately reduces to a proof of Prog′�P Spec. Using (23), followed by Law 6, proof
of Prog′ �P Spec again reduces to the following for some arbitrarily chosen p ∈ P.

id ;
�
{Bp = 〈 〉}Exec′ ; postΦ.x.(�Φ+

)
�ω

�p (id ; AExec)ω ; id (26)

We use id '4p id ; id to split the first id on the right hand side of (26), then Law 1,
to obtain id ; (id ; AExec.p ; id)ω. Hence, using (19) followed by (20), the proof of (26)
reduces again to a proof of

{Bp = 〈 〉}Exec′ ; postΦ.x.(�Φ+
)�p id ; AExec ; id (27)

Then using (22), condition (2) and the fact that ; distributes over ∨, we are left with a
number of proof obligations for each disjunct of Exec′. Of these, we present the most
complex: the proof obligation for Acq′1.
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{Bp = 〈 〉}Acq′1 ; id ; Rel ; postΦ.x.(�Φ+
) �p id ; AAcq ; id ; ARel ; id (28)

It is trivial to show {Bp = 〈 〉} x • [[¬x]]
Φ

; [[¬x]]∗ ; [[x]] ; Acq 4p id ; {Bp = 〈 〉}Acq,

and using id '4p id ; id the proof of (28) reduces as follows, where the initial part of
Acq′1 is refined to id.

{Bp = 〈 〉}Acq ; id ; Rel ; postΦ.x.(�Φ+
) �p id ; AAcq ; id ; ARel ; id (29)

We now focus on the initial part of the left hand side, where we distinguish between
ALoop �= x • [[¬x]]

Φ
; [[¬x]]ω ; [[x]] and ADo �= x • [[x]] ; (x := 0)

Φ
.

{Bp = 〈 〉}Acq
'4p {Bp = 〈 〉}ADo ∨ {Bp = 〈 〉}ALoopω+ ; ADo defn of Acq, then gω ≡ ε ∨ gω+

Using {Bp = 〈 〉}ALoopω+ �p id{Bp = 〈 〉} (proof elided) condition (29) reduces to

{Bp = 〈 〉}ADo ; id ; Rel ; postΦ.x.(�Φ+
) �p AAcq ; id ; ARel ; id (30)

Again focusing on the initial part of the left hand side, we have:

{Bp = 〈 〉} ADo

'4p {Bp = 〈 〉} x • [[x]] ; (x := 0)
Φ

defn of ADo and by (9)

'4p {Bp = 〈 〉} x • [[x]] ; x • (x := 0)
Φ

by (10)

4p {Bp = 〈 〉} x • [[x]] ; {Bp = 〈 〉} x • (x := 0)
Φ

by logic

4p {Bp = 〈 〉} x • [[x]] ; x • id ; (x ⇐� 0) ; id {Bp = 〈 〉} by (11)

'4p {Bp = 〈 〉} x • [[x]] ; id ; x • (x ⇐� 0) ; id {Bp = 〈 〉} using (12) twice

4p {Bp = 〈 〉} x • [[x]] ; x • (x ⇐� 0) ; id {Bp = 〈 〉} [[x]] ; id '4p [[x]]

4p {Bp = 〈 〉} x • [x] ; x • (x ⇐� 0) ; id {Bp = 〈 〉} by (13)

'4p x • [x] ; (x ⇐� 0) ; id {Bp = 〈 〉} by (12) and weakening

It is straightforward to show x • [x](x ⇐� 0) ; id �p AAcq ; id, which expanding Rel
and using (14) further reduces (30) to a proof of:

(id ; x ←� 1 ; id){Bp = 〈(x, 1)〉} ; (ε ∨ Φ ; id) ; postΦ.x.(�Φ+
) �p id ; ARel ; id

Using id '4p id ; id the right hand side transforms to id ; id ; ARel ; id. Then, using
(16) and Theorem 2, we have id ; x ←� 1 ; id �p id, and hence, using (19), we obtain

{Bp = 〈(x, 1)〉}(postΦ.x.(�Φ+
) ∨ (Φ ; id ; postΦ.x.(�Φ+

)) �p id ; ARel ; id. Finally,

because Φ ; id ; postΦ.x.(�Φ+
) 4p postΦ.x.(�Φ+

), we are left with

{Bp = 〈(x, 1)〉}postΦ.x.(�Φ+
) �p id ; ARel ; id (31)

Because there is exactly one item in the buffer, and because postΦ.x.(�Φ+
) guarantees

that a flush occurs, the left hand side reduces to {Bp = 〈(x, 1)〉}id ; Φ ; id. Finally, using
the fact that Bp is a local variable of p and is not modified by id followed by (18), our
proof is completed.

Notable in our verification is that concurrency aspects hardly need to be considered.
The fact that the locking mechanisms guarantee safety is understood at the level of Spec.
The refinement proof only requires consideration of the local buffer. This is in contrast
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to existing methods which require global conditions to be checked, e.g., [20] checks
race conditions, [7,16,25] check linearizability, and [9] checks reduction. We conjecture
that more complex examples will indeed require consideration of the behaviour of other
processes. To this end, we will integrate compositional methods such as rely/guarantee
into our framework [13,11].

6 Conclusions

Existing approaches to relaxed memory verification (e.g., [6,21,22,9,20,7,16]) focus on
a low-level language (i.e., individual reads/writes), and hence, to perform a verification,
programs need to be observed and understood in their (verbose) low-level represen-
tation. We are not aware of any approach that tries to lift memory model effects to a
higher level of abstraction; our work here is hence unique in this sense [15].

The basic idea is to think of a statements as being executed over an interval of time
or an execution window. Such execution windows can overlap if programs are executed
concurrently and overlapping windows correspond to program instructions that can be
executed in any order, representing the effect of concurrent executions and reorderings
due to TSO. Overlapping execution windows may also interfere with each other and
fixing the outcome of an execution within a window can influence the outcome within
another. This paper presents several advances to the semantics in [15] by simplifying
the interval logic, and program semantics, as well as developing buffer-specific rules
for expression evaluation and refinement. The underlying rules are algebraic in nature,
and hence, we provide generic transformation laws, which are in turn applied to our
running example.

A difficulty when reasoning about TSO memory is that in addition to the normal
non-determinism caused by concurrency, an additional level of non-determinism is in-
troduced via use of local buffers. The methods in this paper allow one to reduce the
non-determinism that must be considered when reasoning about local updates. In par-
ticular, we develop a notion of local buffer refinement, which allows one to proceed
as if pending writes to local variables have already occurred in the abstract level. In
particular, this means that local writes do not appear out of order. A similar observa-
tion is used for local transformation in the context of compilers for weak memory [8],
however, these do not consider higher-level synchronisation instructions such as lock.

As part of future work, we aim to study the connections between local buffer refine-
ment, and existing notions such as triangular race freedom [20] and reduction [9].
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Abstract. We introduce a new notion of structural refinement, a sound
abstraction of logical implication, for the modal nu-calculus. Using new
translations between the modal nu-calculus and disjunctive modal tran-
sition systems, we show that these two specification formalisms are struc-
turally equivalent.

Using our translations, we also transfer the structural operations of
composition and quotient from disjunctive modal transition systems to
the modal nu-calculus. This shows that the modal nu-calculus supports
composition and decomposition of specifications.

1 Introduction

There are two conceptually different approaches for the specification and veri-
fication of properties of formal models. Logical approaches make use of logical
formulae for expressing properties and then rely on efficient model checking algo-
rithms for verifying whether or not a model satisfies a formula. Automata-based
approaches, on the other hand, exploit equivalence or refinement checking for
verifying properties, given that models and properties are specified using the
same (or a closely related) formalism.

The logical approaches have been quite successful, with a plethora of logi-
cal formalisms available and a number of successful model checking tools. One
particularly interesting such formalism is the modal μ-calculus [21], which is
universal in the sense that it generalizes most other temporal logics, yet mathe-
matically simple and amenable to analysis.

One central problem in the verification of formal properties is state space
explosion: when a model is composed of many components, the state space of
the combined system quickly grows too big to be analyzed. To combat this
problem, one approach is to employ compositionality. When a model consists
of several components, each component would be model checked by itself, and
then the components’ properties would be composed to yield a property which
automatically is satisfied by the combined model.

Similarly, given a global property of a model and a component of the model
that is already known to satisfy a local property, one would be able to decompose
automatically, from the global property and the local property, a new property
which the rest of the model must satisfy. We refer to [23] for a good account of
these and other features which one would wish specifications to have.

As an alternative to logical specification formalisms and with an eye to com-
positionality and decomposition, automata-based behavioral specifications were
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AG(req ⇒ AX(work AW grant))

νX.
(
[grant, idle,work]X∧

[req]νY.(〈work〉Y ∨ 〈grant〉X) ∧ [idle, req]ff
)

X
ν
= [grant, idle,work]X ∧ [req]Y

Y
ν
= (〈work〉Y ∨ 〈grant〉X) ∧ [idle, req]ff

req

grant,work, idle

grant
work

Fig. 1. An example property specified in CTL (top left), in the modal μ-calculus (below
left), as a modal equation system (third left), and as a DMTS (right)

introduced in [22]. Here the specification formalism is a generalization of the
modeling formalism, and the satisfaction relation between models and specifica-
tions is generalized to a refinement relation between specifications, which resem-
bles simulation and bisimulation and can be checked with similar algorithms.

For an example, we refer to Fig. 1 which shows the property informally spec-
ified as “after a req(uest), no idle(ing) is allowed, but only work, until grant is
executed” using the logical formalisms of CTL [14] and the modal μ-calculus [21]
and the behavioral formalism of disjunctive modal transition systems [26].

The precise relationship between logical and behavioral specification for-
malisms has been subject to some investigation. In [22], Larsen shows that any
modal transition system can be translated to a formula in Hennessy-Milner logic
which is equivalent in the sense of admitting the same models. Conversely, Boudol
and Larsen show in [11] that any formula in Hennessy-Milner logic is equivalent
to a finite disjunction of modal transition systems.

We have picked up this work in [6], where we show that any disjunctive modal
transition system (DMTS) is equivalent to a formula in the modal ν-calculus, the
safety fragment of the modal μ-calculus which uses only maximal fixed points,
and vice versa. (Note that the modal ν-calculus is equivalent to Hennessy-Milner
logic with recursion and maximal fixed points.) Moreover, we show in [6] that
DMTS are as expressive as (non-deterministic) acceptance automata [30,31]. To-
gether with the inclusions of [7], this settles the expressivity question for behav-
ioral specifications: they are at most as expressive as the modal ν-calculus.

In this paper, we show that not only are DMTS as expressive as the modal
ν-calculus, but the two formalisms are structurally equivalent. Introducing a new
notion of structural refinement for the modal ν-calculus (a sound abstraction of
logical implication), we show that one can freely translate between the modal
ν-calculus and DMTS, while preserving structural refinement.

DMTS form a complete specification theory [2] in that they both admit logical
operations of conjunction and disjunction and structural operations of composi-
tion and quotient [6]. Hence they support full compositionality and decomposi-
tion in the sense of [23]. Using our translations, we can transport these notions
to the modal ν-calculus, thus also turning the modal ν-calculus into a complete
specification theory.
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In order to arrive at our translations, we first recall DMTS and (non-determi-
nistic) acceptance automata in Section 2. We also introduce a new hybrid modal
logic, which can serve as compact representation for acceptance automata and
should be of interest in itself. Afterwards we show, using the translations intro-
duced in [6], that these formalisms are structurally equivalent.

In Section 3 we recall the modal ν-calculus and review the translations be-
tween DMTS and the modal ν-calculus which were introduced in [6]. These in
turn are based on work by Boudol and Larsen in [11,22], hence fairly standard.
We show that, though semantically correct, the two translations are structurally
mismatched in that they relate DMTS refinement to two different notions of
ν-calculus refinement. To fix the mismatch, we introduce a new translation from
the modal ν-calculus to DMTS and show that using this translation, the two
formalisms are structurally equivalent.

In Section 4, we use our translations to turn the modal ν-calculus into a com-
plete specification theory. We remark that all our translations and constructions
are based on a new normal form for ν-calculus expressions, and that turning a
ν-calculus expression into normal form may incur an exponential blow-up. How-
ever, the translations and constructions preserve the normal form, so that this
translation only need be applied once in the beginning.

We also note that composition and quotient operators are used in other log-
ics such as e.g. spatial [13] or separation logics [32,28]. However, in these logics
they are treated as first-class operators, i.e. as part of the formal syntax. In our
approach, on the other hand, they are defined as operations on logical expres-
sions which as results again yield logical expressions (without compositions or
quotients).

Note that some proofs had to be omitted from this paper; these are available
in its long version [17].

2 Structural Specification Formalisms

Let Σ be a finite set of labels. A labeled transition system (LTS) is a structure
I = (S, S0,−→) consisting of a finite set of states S, a subset S0 ⊆ S of initial
states and a transition relation −→ ⊆ S × Σ × S.

Disjunctive Modal Transition Systems. A disjunctive modal transition sys-
tem (DMTS) is a structure D = (S, S0, �,−→) consisting of finite sets S ⊇ S0
of states and initial states, a may-transition relation � ⊆ S × Σ × S, and a
disjunctive must -transition relation −→ ⊆ S × 2Σ×S . It is assumed that for all
(s,N) ∈ −→ and all (a, t) ∈ N , (s, a, t) ∈ �.

As customary, we write s
a� t instead of (s, a, t) ∈ �, s −→ N instead of

(s,N) ∈ −→, s
a� if there exists t for which s

a� t, and s
a�� if there does not.

The intuition is that may-transitions s
a� t specify which transitions are

permitted in an implementation, whereas a must-transitions s −→ N stipulates
a disjunctive requirement: at least one of the choices (a, t) ∈ N must be imple-
mented. A DMTS (S, S0, �,−→) is an implementation if −→ = {(s, {(a, t)}) |
s

a� t}; DMTS implementations are precisely LTS.
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DMTS were introduced in [26] in the context of equation solving, or quotient,
for specifications and are used e.g. in [5] for LTL model checking. They are a
natural closure of modal transition systems (MTS) [22] in which all disjunctive
must-transitions s −→ N lead to singletons N = {(a, t)}.

Let D1 = (S1, S
0
1 , �1,−→1), D2 = (S2, S

0
2 , �2,−→2) be DMTS. A relation

R ⊆ S1 × S2 is a modal refinement if it holds for all (s1, s2) ∈ R that
– for all s1

a� t1 there is t2 ∈ S2 with s2
a� t2 and (t1, t2) ∈ R, and

– for all s2 −→ N2 there is s1 −→ N1 such that for each (a, t1) ∈ N1 there is
(a, t2) ∈ N2 with (t1, t2) ∈ R.

We say that D1 modally refines D2, denoted D1 ≤m D2, whenever there exists
a modal refinement R such that for all s01 ∈ S01 , there exists s02 ∈ S02 for which
(s01, s

0
2) ∈ R. We write D1 ≡m D2 if D1 ≤m D2 and D2 ≤m D1. For states

s1 ∈ S1, s2 ∈ S2, we write s1 ≤m s2 if the DMTS (S1, {s1}, �1,−→1) ≤m
(S2, {s2}, �2,−→2).

Note that modal refinement is reflexive and transitive, i.e. a preorder on
DMTS. Also, the relation on states ≤m ⊆ S1×S2 defined above is itself a modal
refinement, indeed the maximal modal refinement under the subset ordering.

The set of implementations of an DMTS D is �D� = {I ≤m D | I implement-
ation}. This is, thus, the set of all LTS which satisfy the specification given by
the DMTS D. We say that D1 thoroughly refines D2, and write D1 ≤th D2, if
�D1� ⊆ �D2�. We write D1 ≡th D2 if D1 ≤th D2 and D2 ≤th D1. For states
s1 ∈ S1, s2 ∈ S2, we write �s1� = �(S1, {s1}, �1,−→1)� and s1 ≤th s2 if
�s1� ⊆ �s2�.

The below proposition, which follows directly from transitivity of modal re-
finement, shows that modal refinement is sound with respect to thorough re-
finement; in the context of specification theories, this is what one would expect,
and we only include it for completeness of presentation. It can be shown that
modal refinement is also complete for deterministic DMTS [8], but we will not
need this here.

Proposition 1. For all DMTS D1, D2, D1 ≤m D2 implies D1 ≤th D2. *+
We introduce a new construction on DMTS which will be of interest for

us; intuitively, it adds all possible may-transitions without changing the im-
plementation semantics. The may-completion of a DMTS D = (S, S0, �,−→)
is mc(D) = (S, S0, �mc,−→) with

�mc = {(s, a, t′) ⊆ S ×Σ × S | ∃(s, a, t) ∈ � : t′ ≤th t}.

Note that to compute the may-completion of a DMTS, one has to decide thor-
ough refinements, hence this computation (or, more precisely, deciding whether a
given DMTS is may-complete) is EXPTIME-complete [9]. We show an example
of a may-completion in Fig. 2.

Proposition 2. For any DMTS D, D ≤m mc(D) and D ≡th mc(D).
Proof. It is always the case that D ≤m D, and adding may transitions on the
right side preserves modal refinement. Therefore it is immediate that D ≤m
mc(D), hence also D ≤th mc(D).
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Fig. 2. A MTS D (left) and its may-completion mc(D) (right). In mc(D), the semantic
inclusions which lead to extra may-transitions are depicted with dotted arrows.

To prove that mc(D) ≤th D, we consider an implementation I ≤m mc(D); we
must prove that I ≤m D. Write D = (S, S0, �,−→), I = (I, I0, �I ,−→I)
and mc(D) = (S, S0, �mc,−→). Let R ⊆ I×S be the largest modal refinement
between I and mc(D). We now prove that R is also a modal refinement between
I and D. For all (i, d) ∈ R:
– For all i

a�I i′, there exists d′ ∈ S such that d
a�mc d

′ and (i′, d′) ∈ R.
Then by definition of �mc, there exists d′′ ∈ S such that d

a� d′′ and
�d′� ⊆ �d′′�. (i′, d′) ∈ R implies i′ ∈ �d′�, which implies i′ ∈ �d′′�. This means
that i′ ≤m d

′′, and since R is the largest refinement relation in I ×S it must
be the case that (i′, d′′) ∈ R.

– The case of must transitions follows immediately, since must transitions are
exactly the same in D and mc(D). *+

Example 3. The example in Fig. 2 shows that generally, mc(D) �≤m D. First,
t3 ≤th t1: For an implementation I = (I, I0,−→) ∈ �t3� with modal refinement
R ⊆ I × {t3, u3, v3}, define R′ ⊆ I × {t1, u1, u2, v1} by

R′ = {(i, t1) | (i, t3) ∈ R} ∪ {(i, v1) | (i, v3) ∈ R}
∪ {(i, u1) | (i, u3) ∈ R, i a−→}
∪ {(i, u2) | (i, u3) ∈ R, i a�−→},

then R′ is a modal refinement I ≤m t1. Similarly, t′3 ≤th t
′
1 in mc(D).

On the other hand, t3 �≤m t1 (and similarly, t′3 �≤m t
′
1), because neither u3 ≤m

u1 nor u3 ≤m u2. Now in the modal refinement game between mc(D) and D, the
may-transition s′

a� t′3 has to be matched by s
a� t1, but then t′3 �≤m t1, hence

mc(D) �≤m D.
Also, the may-completion does not necessarily preserve modal refinement:

Consider the DMTS D from Fig. 2 and D1 from Fig. 3, and note first that
mc(D1) = D1. It is easy to see that D ≤m D1 (just match states in D with their
double-prime cousins in D1), but mc(D) �≤m mc(D1) = D1: the may-transition
s′

a� t′3 has to be matched by s′′
a� t′′1 and t′3 �≤m t

′′
1 .

Lastly, the may-completion can also create modal refinement: Considering the
DMTS D2 from Fig. 3, we see that D2 �≤m D, but mc(D2) = D2 ≤m mc(D).
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Fig. 3. DMTS D1, D2 from Example 3.

Acceptance Automata. A (non-deterministic) acceptance automaton (AA) is
a structure A = (S, S0,Tran), with S ⊇ S0 finite sets of states and initial states
and Tran : S → 22

Σ×S

an assignment of transition constraints. We assume that
for all s0 ∈ S0, Tran(s0) �= ∅.

An AA is an implementation if it holds for all s ∈ S that Tran(s) = {M}
is a singleton; hence also AA implementations are precisely LTS. Acceptance
automata were first introduced in [30] (see also [31], where a slightly differ-
ent language-based approach is taken), based on the notion of acceptance trees
in [20]; however, there they are restricted to be deterministic. We employ no
such restriction here. The following notion of modal refinement for AA was also
introduced in [30].

Let A1 = (S1, S
0
1 ,Tran1) and A2 = (S2, S

0
2 ,Tran2) be AA. A relation R ⊆

S1×S2 is a modal refinement if it holds for all (s1, s2) ∈ R and allM1 ∈ Tran1(s1)
that there exists M2 ∈ Tran2(s2) such that
– ∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
– ∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R.

As for DMTS, we write A1 ≤m A2 whenever there exists a modal refinement R
such that for all s01 ∈ S01 , there exists s02 ∈ S02 for which (s01, s

0
2) ∈ R. Sets of

implementations and thorough refinement are defined as for DMTS. Note that as
both AA and DMTS implementations are LTS, it makes sense to use thorough
refinement and equivalence across formalisms, writing e.g. A ≡th D for an AA
A and a DMTS D.

Hybrid Modal Logic. We introduce a hybrid modal logic which can serve as
compact representation of AA. This logic is closely related to the Boolean modal
transition systems of [7] and hybrid in the sense of [29,10]: it contains nominals,
and the semantics of a nominal is given as all sets which contain the nominal.

For a finite set X of nominals, let L(X) be the set of formulae generated by
the abstract syntax L(X) 5 φ := tt | ff | 〈a〉x | ¬φ | φ ∧ φ, for a ∈ Σ and
x ∈ X . The semantics of a formula is a set of subsets of Σ×X , given as follows:
	tt
 = 2Σ×X , 	ff
 = ∅, 	¬φ
 = 2Σ×X \ 	φ
, 	〈a〉x
 = {M ⊆ Σ×X | (a, x) ∈M},
and 	φ ∧ ψ
 = 	φ
 ∩ 	ψ
. We also define disjunction φ1 ∨ φ2 = ¬(φ1 ∧ φ2).

An L-expression is a structure E = (X,X0, Φ) consisting of finite sets X0 ⊆ X
of variables and a mapping Φ : X → L(X). Such an expression is an implemen-
tation if 	Φ(x)
 = {M} is a singleton for each x ∈ X . It can easily be shown
that L-implementations precisely correspond to LTS.
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Let E1 = (X1, X
0
1 , Φ1) and E2 = (X2, X

0
2 , Φ2) be L-expressions. A relation

R ⊆ X1 × X2 is a modal refinement if it holds for all (x1, x2) ∈ R and all
M1 ∈ 	Φ1(x1)
 that there exists M2 ∈ 	Φ2(x2)
 such that
– ∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
– ∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R.

Again, we write E1 ≤m E2 whenever there exists such a modal refinement R
such that for all x01 ∈ X0

1 , there exists x02 ∈ X0
2 for which (x01, x

0
2) ∈ R. Sets of

implementations and thorough refinement are defined as for DMTS.

Structural Equivalence. We proceed to show that the three formalisms intro-
duced in this section are structurally equivalent. Using the translations between
AA and DMTS discovered in [6] and new translations between AA and hybrid
logic, we show that these respect modal refinement.

The translations al, la between AA and our hybrid logic are straightforward:
For an AA A = (S, S0,Tran) and all s ∈ S, let

Φ(s) =
∨

M∈Tran(s)

( ∧
(a,t)∈M

〈a〉t ∧
∧

(b,u)/∈M
¬〈b〉u

)
and define the L-expression al(A) = (S, S0, Φ).

For an L-expression E = (X,X0, Φ) and all x ∈ X , let Tran(x) = 	Φ(x)
 and
define the AA la(E) = (X,X0,Tran).

The translations da, ad between DMTS and AA were discovered in [6]. For a
DMTS D = (S, S0, �,−→) and all s ∈ S, let

Tran(s) = {M ⊆ Σ × S | ∀(a, t) ∈M : s
a� t, ∀s −→ N : N ∩M �= ∅}

and define the AA da(D) = (S, S0,Tran).1
For an AA A = (S, S0,Tran), define the DMTS ad(A) = (D,D0, �,−→) as

follows:

D = {M ∈ Tran(s) | s ∈ S}
D0 = {M0 ∈ Tran(s0) | s0 ∈ S0}
−→ =

{(
M, {(a,M ′) |M ′ ∈ Tran(t)}

) ∣∣ (a, t) ∈M}
� = {(M,a,M ′) | ∃M −→ N : (a,M ′) ∈ N}

Note that the state spaces of A and ad(A) are not the same; the one of ad(A)
may be exponentially larger. The following lemma shows that this explosion is
unavoidable:

Lemma 4. There exists a one-state AA A for which any DMTS D ≡th A has
at least 2n−1 states, where n is the size of the alphabet Σ.

We notice that LTS are preserved by all translations: for any LTS I, al(I) =
la(I) = da(I) = ad(I) = I. In [6] it is shown that the translations between
1 Note that there is an error in the corresponding formula in [6].
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AA and DMTS respect sets of implementations, i.e. that da(D) ≡th D and
ad(A) ≡th A for all DMTS D and all AA A. The next theorem shows that
these and the other presented translations respect modal refinement, hence these
formalisms are not only semantically equivalent, but structurally equivalent.

Theorem 5. For all AA A1, A2, DMTS D1,D2 and L-expressions E1, E2:
1. A1 ≤m A2 iff al(A1) ≤m al(A2),
2. E1 ≤m E2 iff la(E1) ≤m la(E2),
3. D1 ≤m D2 iff da(D1) ≤m da(D2), and
4. A1 ≤m A2 iff ad(A1) ≤m ad(A2).

Proof (sketch). We give a few hints about the proofs of the equivalences; the
details can be found in [17]. The first two equivalences follow easily from the
definitions, once one notices that for both translations, 	Φ(x)
 = Tran(x) for all
x ∈ X . For the third equivalence, we can show that a DMTS modal refinement
D1 ≤m D2 is also an AA modal refinement da(D1) ≤m da(D2) and vice versa.

The fourth equivalence is slightly more tricky, as the state space changes. If
R ⊆ S1 × S2 is an AA modal refinement relation witnessing A1 ≤m A2, then
we can construct a DMTS modal refinement R′ ⊆ D1 × D2, which witnesses
ad(A1) ≤m ad(A2), by

R′ = {(M1,M2) | ∃(s1, s2) ∈ R :M1 ∈ Tran1(s1),M2 ∈ Tran(s2),

∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R}.

Conversely, if R ⊆ D1×D2 is a DMTS modal refinement witnessing ad(A1) ≤m
ad(A2), then R′ ⊆ S1 × S2 given by

R′ = {(s1, s2) | ∀M1 ∈ Tran1(s1) : ∃M2 ∈ Tran2(s2) : (M1,M2) ∈ R}
is an AA modal refinement. *+

The result on thorough equivalence from [6] now easily follows:

Corollary 6. For all AA A, DMTS D and L-expressions E, al(A) ≡th A,
la(E) ≡th E, da(D) ≡th D, and ad(A) ≡th A. *+

Also soundness of modal refinement for AA and hybrid logic follows directly
from Theorem 5:

Corollary 7. For all AA A1 and A2, A1 ≤m A2 implies A1 ≤th A2. For all
L-expressions E1 and E2, E1 ≤m E2 implies E1 ≤th E2. *+

3 The Modal ν-Calculus
We wish to extend the structural equivalences of the previous section to the
modal ν-calculus. Using translations between AA, DMTS and ν-calculus based
on work in [22,11], it has been shown in [6] that ν-calculus and DMTS/AA are
semantically equivalent. We will see below that there is a mismatch between
the translations from [6] (and hence between the translations in [22,11]) which
precludes structural equivalence and then proceed to propose a new translation
which fixes the mismatch.
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Syntax and Semantics. We first recall the syntax and semantics of the modal
ν-calculus, the fragment of the modal μ-calculus [33,21] with only maximal fixed
points. Instead of an explicit maximal fixed point operator, we use the represen-
tation by equation systems in Hennessy-Milner logic developed in [24].

For a finite set X of variables, let H(X) be the set of Hennessy-Milner for-
mulae, generated by the abstract syntax H(X) 5 φ ::= tt | ff | x | 〈a〉φ | [a]φ |
φ ∧ φ | φ ∨ φ, for a ∈ Σ and x ∈ X .

A declaration is a mapping Δ : X → H(X); we recall the maximal fixed
point semantics of declarations from [24]. Let (S, S0,−→) be an LTS, then an
assignment is a mapping σ : X → 2S . The set of assignments forms a complete
lattice with order σ1 ' σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and lowest upper
bound

( ⊔
i∈I σi

)
(x) =

⋃
i∈I σi(x).

The semantics of a formula is a subset of S, given relative to an assignment σ,
defined as follows: 	tt
σ = S, 	ff
σ = ∅, 	x
σ = σ(x), 	φ ∧ ψ
σ = 	φ
σ ∩ 	ψ
σ,
	φ ∨ ψ
σ = 	φ
σ ∪ 	ψ
σ, and

	〈a〉φ
σ = {s ∈ S | ∃s a−→ s′ : s′ ∈ 	φ
σ},
	[a]φ
σ = {s ∈ S | ∀s a−→ s′ : s′ ∈ 	φ
σ}.

The semantics of a declaration Δ is then the assignment defined by

	Δ
 = ⊔
{σ : X → 2S | ∀x ∈ X : σ(x) ⊆ 	Δ(x)
σ};

the maximal (pre)fixed point of Δ.
A ν-calculus expression is a structure N = (X,X0, Δ), with X0 ⊆ X sets of

variables and Δ : X → H(X) a declaration. We say that an LTS I = (S, S0,−→)
implements (or models) the expression, and write I |= N , if it holds that for
all s0 ∈ S0, there is x0 ∈ X0 such that s0 ∈ 	Δ
(x0). We write �N � for the
set of implementations (models) of a ν-calculus expression N . As for DMTS,
we write �x� = �(X, {x}, Δ)� for x ∈ X , and thorough refinement of expressions
and states is defined accordingly.

The following lemma introduces a normal form for ν-calculus expressions:

Lemma 8. For any ν-calculus expression N1 = (X1, X
0
1 , Δ1), there exists an-

other expression N2 = (X2, X
0
2 , Δ2) with �N1� = �N2� and such that for any

x ∈ X, Δ2(x) is of the form

Δ2(x) =
∧
i∈I

( ∨
j∈Ji

〈aij〉xij
)
∧

∧
a∈Σ

[a]
( ∨

j∈Ja

ya,j

)
(1)

for finite (possibly empty) index sets I, Ji, Ja, for i ∈ I and a ∈ Σ, and all
xij , ya,j ∈ X2. Additionally, for all i ∈ I and j ∈ Ji, there exists j′ ∈ Jaij for
which xij ≤th yaij ,j′ .

As this is a type of conjunctive normal form, it is clear that translating a
ν-calculus expression into normal form may incur an exponential blow-up.
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We introduce some notation for ν-calculus expressions in normal form which
will make our life easier later. Let N = (X,X0, Δ) be such an expression and
x ∈ X , with Δ(x) =

∧
i∈I

( ∨
j∈Ji

〈aij〉xij
)
∧

∧
a∈Σ[a]

( ∨
j∈Ja

ya,j
)

as in the
lemma. Define ♦(x) = {{(aij , xij) | j ∈ Ji} | i ∈ I} and, for each a ∈ Σ,
�a(x) = {ya,j | j ∈ Ja}. Note that now Δ(x) =

∧
N∈♦(x)

( ∨
(a,y)∈N〈a〉y

)
∧∧

a∈Σ [a]
( ∨

y∈�a(x) y
)
.

Refinement. In order to expose our structural equivalence, we need to intro-
duce a notion of modal refinement for the modal ν-calculus. For reasons which
will become apparent later, we define two different such notions:

Let N1 = (X1, X
0
1 , Δ1), N2 = (X2, X

0
2 , Δ2) be ν-calculus expressions in nor-

mal form and R ⊆ X1 ×X2. The relation R is a modal refinement if it holds for
all (x1, x2) ∈ R that

1. for all a ∈ Σ and every y1 ∈ �a
1(x1), there is y2 ∈ �a

2(x2) for which (y1, y2) ∈
R, and

2. for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) such that for each (a, y1) ∈ N1,
there exists (a, y2) ∈ N2 with (y1, y2) ∈ R.

R is a modal-thorough refinement if, instead of 1., it holds that

1′. for all a ∈ Σ, all y1 ∈ �a
1(x1) and every y′1 ∈ X1 with y′1 ≤th y1, there is

y2 ∈ �a
2(x2) and y′2 ∈ X2 such that y′2 ≤th y2 and (y′1, y

′
2) ∈ R.

We say that N1 refines N2 whenever there exists such a refinement R such that
for every x01 ∈ X0

1 there exists x02 ∈ X0
2 for which (x01, x

0
2) ∈ R. We write N1 ≤m

N2 in case of modal and N1 ≤mt N2 in case of modal-thorough refinement.
We remark that whereas modal refinement for ν-calculus expressions is a sim-

ple and entirely syntactic notion, modal-thorough refinement involves semantic
inclusions of states. Using results in [9], this implies that modal refinement can be
decided in time polynomial in the size of the (normal-form) expressions, whereas
deciding modal-thorough refinement is EXPTIME-complete.

Translation from DMTS to ν-calculus. Our translation from DMTS to ν-
calculus is new, but similar to the translation from AA to ν-calculus given in [6].
This in turn is based on the characteristic formulae of [22] (see also [1]).

For a DMTS D = (S, S0, �,−→) and all s ∈ S, we define ♦(s) = {N | s −→
N} and, for each a ∈ Σ, �a(s) = {t | s a� t}. Then, let

Δ(s) =
∧

N∈♦(s)

( ∨
(a,t)∈N

〈a〉t
)
∧

∧
a∈Σ

[a]
( ∨

t∈�a(s)

t
)

and define the (normal-form) ν-calculus expression dh(D) = (S, S0, Δ).
Note how the formula precisely expresses that we demand at least one of every

choice of disjunctive must-transitions (first part) and permit all may-transitions
(second part); this is also the intuition of the characteristic formulae of [22].
Using results of [6] (which introduces a very similar translation from AA to
ν-calculus expressions), we see that dh(D) ≡th D for all DMTS D.
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Theorem 9. For all DMTS D1 and D2, D1 ≤m D2 iff dh(D1) ≤m dh(D2).

Proof. For the forward direction, let R ⊆ S1×S2 be a modal refinement between
D1 = (S1, S

0
1 , �1,−→1) and D2 = (S2, S

0
2 , �2,−→2); we show that R is also

a modal refinement between dh(D1) = (S1, S
0
1 , Δ1) and dh(D2) = (S2, S

0
2 , Δ2).

Let (s1, s2) ∈ R.
– Let a ∈ Σ and t1 ∈ �a

1(s1), then s1
a�1 t1, which implies that there is

t2 ∈ S2 for which s2
a�2 t2 and (t1, t2) ∈ R. By definition of �a

2, t2 ∈ �a
2(s2).

– LetN2 ∈ ♦2(s2), then s2 −→2 N2, which implies that there exists s1 −→1 N1

such that ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R. By definition of �a
1 ,

N1 ∈ �a
1(s1).

For the other direction, let R ⊆ S1×S2 be a modal refinement between dh(D1)
and dh(D2), we show that R is also a modal refinement between D1 and D2. Let
(s1, s2) ∈ R.
– For all s1

a�1 t1, t1 ∈ �a
1(s1), which implies that there is t2 ∈ �a

2(s2) with
(t1, t2) ∈ R, and by definition of �a

2 , s2
a�2 t2.

– For all s2 −→2 N2, N2 ∈ ♦2(s2), which implies that there is N1 ∈ ♦1(s1)
such that ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R, and by definition of �a

1 ,
s1 −→1 N1. *+

Old Translation from ν-calculus to DMTS. We recall the translation from
ν-calculus to DMTS given in [6], which is based on a translation from Hennessy-
Milner formulae (without recursion and fixed points) to sets of acyclic MTS
in [11]. For a ν-calculus expression N = (X,X0, Δ) in normal form, let

� = {(x, a, y′) ∈ X ×Σ ×X | ∃y ∈ �a(x) : y′ ≤th y},
−→ = {(x,N) | x ∈ X,N ∈ ♦(x)}.

and define the DMTS hdt(N ) = (X,X0, �,−→).
Note how this translates diamonds to disjunctive must-transitions directly,

but for boxes takes semantic inclusions into account: for a subformula [a]y, may-
transitions are created to all variables which are semantically below y. This
is consistent with the interpretation of formulae-as-properties: [a]y means “for
any a-transition, Δ(y) must hold”; but Δ(y) holds for all variables which are
semantically below y.

It follows from results in [6] (which uses a slightly different normal form for
ν-calculus expressions) that hdt(N ) ≡th N for all ν-calculus expressions N .

Theorem 10. For all ν-calculus expressions, N1 ≤mt N2 iffhdt(N1) ≤m hdt(N2).

Proof. For the forward direction, let R ⊆ X1 ×X2 be a modal-thorough refine-
ment between N1 = (X1, X

0
1 , Δ1) and N2 = (X2, X

0
2 , Δ2). We show that R is

also a modal refinement between hdt(N1) = (X1, X
0
1 , �1,−→2) and hdt(N2) =

(X2, X
0
2 , �2,−→2). Let (x1, x2) ∈ R.

– Let x1
a�1 y′1. By definition of �1, there is y1 ∈ �a

1(x1) for which y′1 ≤th
y1. Then by modal-thorough refinement, this implies that there exists y2 ∈
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�a
2(x2) and y′2 ∈ X2 such that y′2 ≤th y2 and (y′1, y

′
2) ∈ R. By definition of

�2 we have x2
a�2 y′2.

– Let x2 −→2 N2, then we have N2 ∈ ♦2(x2). By modal-thorough refinement,
this implies that there is N1 ∈ ♦1(x1) such that ∀(a, y1) ∈ N1 : ∃(a, y2) ∈
N2 : (y1, y2) ∈ R. By definition of −→1, x1 −→1 N1.

Now to the proof that hdt(N1) ≤m hdt(N2) implies N1 ≤mt N2. We have a
modal refinement (in the DMTS sense) R ⊆ X1 ×X2. We must show that R is
also a modal-thorough refinement. Let (x1, x2) ∈ R.
– Let a ∈ Σ, y1 ∈ �a

1(x1) and y′1 ∈ X1 such that y′1 ≤th y1. Then by definition
of �1, x1

a�1 y′1. By modal refinement, this implies that there exists
x2

a�2 y′2 with (y′1, y
′
2) ∈ R. Finally, by definition of �2, there exists

y2 ∈ �a
2(x2) such that y′2 ≤th y2.

– Let N2 ∈ ♦2(x2), then by definition of −→2, x2 −→2 N2. Then, by modal
refinement, this implies that there exists x1 −→1 N1 such that ∀(a, y1) ∈
N1 : ∃(a, y2) ∈ N2 : (y1, y2) ∈ R. By definition of −→1, N1 ∈ �a

1(x1). *+

Discussion. Notice how Theorems 9 and 10 expose a mismatch between
the translations: dh relates DMTS refinement to ν-calculus modal refinement,
whereas hdt relates it to modal-thorough refinement. Both translations are well-
grounded in the literature and well-understood, cf. [6,11,22], but this mismatch
has not been discovered up to now. Given that the above theorems can be un-
derstood as universal properties of the translations, it means that there is no
notion of refinement for ν-calculus which is consistent with them both.

The following lemma, easily shown by inspection, shows that this discrepancy
is related to the may-completion for DMTS:

Lemma 11. For any DMTS D, mc(D) = hdt(dh(D)). *+

As a corollary, we see that modal refinement and modal-thorough refinement
for ν-calculus are incomparable: Referring back to Example 3, we have D ≤m D1,
hence by Theorem 9, dh(D) ≤m dh(D1). On the other hand, we know that
mc(D) �≤m mc(D1), i.e. by Lemma 11, hdt(dh(D)) �≤m hdt(dh(D1)), and then by
Theorem 10, dh(D) �≤mt dh(D1).

To expose an example where modal-thorough refinement holds, but modal re-
finement does not, we note that mc(D2) ≤m mc(D) implies, again using Lemma 11
and Theorem 10, that dh(D2) ≤mt dh(D). On the other hand, we know that
D2 �≤m D, so by Theorem 9, dh(D2) �≤m dh(D).

New Translation from ν-calculus to DMTS. We now show that the mis-
match between DMTS and ν-calculus expressions can be fixed by introducing a
new, simpler translation from ν-calculus to DMTS.

For a ν-calculus expression N = (X,X0, Δ) in normal form, let

� = {(x, a, y) ∈ X ×Σ ×X | y ∈ �a(x)},
−→ = {(x,N) | x ∈ X,N ∈ ♦(x)}.
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and define the DMTS hd(N ) = (X,X0, �,−→). This is a simple syntactic
translation: boxes are translated to disjunctive must-transitions and diamonds
to may-transitions.

Theorem 12. For all ν-calculus expressions,N1 ≤m N2 iff hd(N1) ≤m hd(N2).

Proof. Let R ⊆ X1 ×X2 be a modal refinement between N1 = (X1, X
0
1 , Δ1) and

N2 = (X2, X
0
2 , Δ2); we show thatR is also a modal refinement between hd(N1) =

(S1, S
0
1 , �1,−→1) and hd(N2) = (S2, S

0
2 , �2,−→2). Let (x1, x2) ∈ R.

– Let x1
a�1 y1, then y1 ∈ �a

1(x1), which implies that there exists y2 ∈ �a
2(x2)

for which (y1, y2) ∈ R, and by definition of �2, x2
a�2 y2.

– Let x2 −→2 N2, then N2 ∈ ♦2(x2), hence there is N1 ∈ ♦1(x1) such that
∀(a, y1) ∈ N1 : ∃(a, y2) ∈ N2 : (y1, y2) ∈ R, and by definition of−→1, x1 −→1

N1.
Now let R ⊆ X1 × X2 be a modal refinement between hd(N1) and hd(N2), we

show that R is also a modal refinement betweenN1 andN2. Let (x1, x2) ∈ R,
– Let a ∈ Σ and y1 ∈ �a

1(x1). Then x1
a�1 y1, which implies that there is

y2 ∈ X2 for which x2
a�2 y2 and (y1, y2) ∈ R, and by definition of �2,

t2 ∈ �a
2(s2).

– LetN2 ∈ ♦2(x2), then x2 −→2 N2, so there is x1 −→1 N1 such that ∀(a, y1) ∈
N1 : ∃(a, y2) ∈ N2 : (y1, y2) ∈ R. By definition of −→1,N1 ∈ �a

1(x1). *+

We finish the section by proving that also for the syntactic translation
hd(N ) ≡th N for all ν-calculus expressions; this shows that our translation can
serve as a replacement for the partly-semantic hdt translation from [6,11]. First
we remark that dh and hd are inverses to each other:

Proposition 13. For any ν-calculus expression N , dh(hd(N )) = N ; for any
DMTS D, hd(dh(D)) = D. *+

Corollary 14. For all ν-calculus expressions N , hd(N ) ≡th N . *+

4 The Modal ν-Calculus as a Specification Theory

Now that we have exposed a close structural correspondence between the modal
ν-calculus and DMTS, we can transfer the operations which make DMTS a
complete specification theory to the ν-calculus.

Refinement and Implementations. As for DMTS and AA, we can define an
embedding of LTS into the modal ν-calculus so that implementation |= and re-
finement ≤m coincide. We say that a ν-calculus expression (X,X0, Δ) in normal
form is an implementation if ♦(x) = {{(a, y)} | y ∈ �a(x), a ∈ Σ} for all x ∈ X .

The ν-calculus translation of a LTS (S, S0,−→) is the expression (S, S0, Δ)

in normal form with ♦(s) = {{(a, t)} | s a−→ t} and �a(s) = {t | s a−→ t}. This
defines a bijection between LTS and ν-calculus implementations.

Theorem 15. For any LTS I and any ν-calculus expression N , I |= N iff
I ≤m N .
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Proof. I |= N is the same as I ∈ �N �, which by Corollary 14 is equivalent
to I ∈ �hd(N )�. By definition, this is the same as I ≤m hd(N ), which using
Theorem 12 is equivalent to I ≤m N . *+

Using transitivity, this implies that modal refinement for ν-calculus is sound:

Corollary 16. For all ν-calculus expressions, N1 ≤m N2 implies N1 ≤th N2.�

Disjunction and Conjunction. As for DMTS, disjunction of ν-calculus ex-
pressions is straight-forward. Given ν-calculus expressions N1 = (X1, X

0
1 , Δ1),

N2 = (X2, X
0
2 , Δ2) in normal form, their disjunction is N1∨N2 = (X1∪X2, X

0
1∪

X0
2 , Δ) with Δ(x1) = Δ1(x1) for x1 ∈ X1 and Δ(x2) = Δ2(x2) for x2 ∈ X2.
The conjunction of ν-calculus expressions like above is N1 ∧N2 = (X,X0, Δ)

defined by X = X1 × X2, X0 = X0
1 × X0

2 , �a(x1, x2) = �a
1(x1) × �a

2(x2) for
each (x1, x2) ∈ X , a ∈ Σ, and for each (x1, x2) ∈ X ,

♦(x1, x2) =
{
{(a, (y1, y2)) | (a, y1) ∈ N1, (y1, y2) ∈ �a(x1, x2)}

∣∣ N1 ∈ ♦1(x1)
}

∪
{
{(a, (y1, y2)) | (a, y2) ∈ N2, (y1, y2) ∈ �a(x1, x2)}

∣∣ N2 ∈ ♦2(x2)
}
.

Note that both N1 ∨ N2 and N1 ∧ N2 are again ν-calculus expressions in
normal form.

Theorem 17. For all ν-calculus expressions N1, N2, N3 in normal form,
– N1 ∨ N2 ≤m N3 iff N1 ≤m N3 and N2 ≤m N3,
– N1 ≤m N2 ∧ N3 iff N1 ≤m N2 and N1 ≤m N3,
– �N1 ∨ N2� = �N1� ∪ �N2�, and �N1 ∧ N2� = �N1� ∩ �N2�.

Theorem 18. With operations ∨ and ∧, the class of ν-calculus expressions
forms a bounded distributive lattice up to ≡m.

The bottom element (up to ≡m) in the lattice is the empty ν-calculus expres-
sion ⊥ = (∅, ∅, ∅), and the top element (up to ≡m) is � = ({s}, {s}, Δ) with
Δ(s) = tt.

Structural Composition. The structural composition operator for a specifi-
cation theory is to mimic, at specification level, the structural composition of
implementations. That is to say, if ‖ is a composition operator for implemen-
tations (LTS), then the goal is to extend ‖ to specifications such that for all
specifications S1, S2,

�S1 ‖ S2� = {
I1 ‖ I2 | I1 ∈ �S1�, I2 ∈ �S2�}. (2)

For simplicity, we use CSP-style synchronization for structural composition
of LTS, however, our results readily carry over to other types of composition.
Analogously to the situation for MTS [8], we have the following negative result:

Theorem 19. There is no operator ‖ for the ν-calculus which satisfies (2).
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Proof. We first note that due to Theorem 17, it is the case that implementation
sets of ν-calculus expressions are closed under disjunction: for any ν-calculus
expression N and I1, I2 ∈ �N �, also I1 ∨ I2 ∈ �N �.

Now assume there were an operator as in the theorem, then because of the
translations, (2) would also hold for DMTS. Hence for all DMTS D1,D2, {I1‖I2 |
I1 ∈ �D1�, I2 ∈ �D2�} would be closed under disjunction. But Example 7.8
in [8] exhibits two DMTS (actually, MTS) for which this is not the case, a
contradiction. *+

Given that we cannot have (2), the revised goal is to have a sound composition
operator for which the right-to-left inclusion holds in (2). We can obtain one such
from the structural composition of AA introduced in [6]. We hence define, for
ν-calculus expressions N1 = (X1, X

0
1 , Δ1), N2 = (X2, X

0
2 , Δ2) in normal form,

N1 ‖ N2 = ah(ha(N1) ‖A ha(N2)), where ‖A is AA composition and we write
ah = dh ◦ ad and ha = da ◦ hd for the composed translations.

Notice that the involved translation from AA to DMTS may lead to an expo-
nential blow-up. Unraveling the definition gives us the following explicit expres-
sion for N1 ‖ N2 = (X,X0, Δ):
– X =

{
{(a, (y1, y2)) | ∀i ∈ {1, 2} : (a, yi) ∈ Mi}

∣∣ ∀i ∈ {1, 2} : Mi ⊆
Σ ×Xi, ∃xi ∈ Xi : ∀(a, y′i) ∈Mi : y

′
i ∈ �a

i (xi), ∀Ni ∈ ♦i(xi) : Ni ∩Mi �= ∅
}
,

– X0 =
{
{(a, (y1, y2)) | ∀i ∈ {1, 2} : (a, yi) ∈ Mi}

∣∣ ∀i ∈ {1, 2} : Mi ⊆
Σ ×Xi, ∃xi ∈ X0

i : ∀(a, y′i) ∈Mi : y
′
i ∈ �a

i (xi), ∀Ni ∈ ♦i(xi) : Ni ∩Mi �= ∅
}
,

– ♦(x) =
{
{(a, {(b, (z1, z2)) | ∀i ∈ {1, 2} : (b, zi) ∈ Mi} | ∀i ∈ {1, 2} :

Mi ⊆ Σ × Xi, ∀(a, z′i) ∈ Mi : z′i ∈ �b
i(yi), ∀Ni ∈ ♦i(yi) : Ni ∩Mi �= ∅}

∣∣
(a, (y1, y2)) ∈ x

}
for each x ∈ X , and

– �a(x) = {y | ∃N ∈ ♦(x) : (a, y) ∈ N}.

Theorem 20. For all ν-calculus expressions N1, N2, N3, N4 in normal form,
N1 ≤m N3 and N2 ≤m N4 imply N1 ‖ N2 ≤m N3 ‖ N4.

Proof. This follows directly from the analogous property for AA [6] and the
translation theorems 5, 9 and 12. *+

This implies the right-to-left inclusion in (2), i.e.
{
I1 ‖ I2 | I1 ∈ �N1�, I2 ∈

�N2�} ⊆ �N1 ‖ N2�. It also entails independent implementability, in that the
structural composition of the two refined specifications N1, N2 is a refinement of
the composition of the original specifications N3, N4. Fig. 4 shows an example
of the DMTS analogue of this structural composition.

Quotient. The quotient operator / for a specification theory is used to syn-
thesize specifications for components of a structural composition. Hence it is to
have the property, for all specifications S, S1 and all implementations I1, I2,
that

I1 ∈ �S1� and I2 ∈ �S / S1� imply I1 ‖ I2 ∈ �S�. (3)

Furthermore, S / S1 is to be as permissive as possible.
We can again obtain such a quotient operator for ν-calculus from the one

for AA introduced in [6]. Hence we define, for ν-calculus expressions N1, N2 in



184 U. Fahrenberg, A. Legay, and L.-M. Traonouez

D1

s1

t1

u1

a

b

a

D2

s2 t2

u2

a

a

a

D1 ‖ D2

s′ t′

u′

a

a

a

Fig. 4. DMTS D1, D2 and the reachable parts of their structural composition D1 ‖ D2.
Here, s′ = {(a, (t1, t2)), (a, (t1, u2))}, t′ = {(a, (t1, t2))} and u′ = ∅. Note that D1 ‖ D2

has two initial states.

normal form, N1 / N2 = ah(ha(N1) /A ha(N2)), where /A is AA quotient. We
recall the construction of /A from [6]:

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA and define A1 /A A2 =

(S, {s0},Tran), with S = 2S1×S2 , s0 = {(s01, s02) | s01 ∈ S01 , s02 ∈ S02}, and Tran
given as follows:

Let Tran(∅) = 2Σ×{∅}. For s = {(s11, s12), . . . , (sn1 , sn2 )} ∈ S, say that a ∈ Σ is
permissible from s if it holds for all i = 1, . . . , n that there is M1 ∈ Tran1(s

i
1)

and t1 ∈ S1 for which (a, t1) ∈ M1, or else there is no M2 ∈ Tran2(s
i
2) and no

t2 ∈ S2 for which (a, t2) ∈M2.
For a permissible from s and i ∈ {1, . . . , n}, let {ti,12 , . . . , t

i,mi

2 } = {t2 ∈ S2 |
∃M2 ∈ Tran2(s

i
2) : (a, t2) ∈ M2} be an enumeration of the possible states in

S2 after an a-transition and define pta(s) =
{
{(ti,j1 , t

i,j
2 ) | i = 1, . . . , n, j =

1, . . . ,mi}
∣∣ ∀i : ∀j : ∃M1 ∈ Tran1(s

i
1) : (a, ti,j1 ) ∈ M1

}
, the set of all sets of

possible assignments of next-a states from si1 to next-a states from si2.
Now let pt(s) = {(a, t) | t ∈ pta(s), a admissible from s} and define Tran(s) =

{M ⊆ pt(s) | ∀i = 1, . . . , n : ∀M2 ∈ Tran2(s
i
2) : M � M2 ∈ Tran1(s

i
1)}. Here

� is the composition-projection operator defined by M � M2 = {(a, t � t2) |
(a, t) ∈ M, (a, t2) ∈ M2} and t � t2 = {(t11, t12), . . . , (tk1 , tk2)} � ti2 = ti1 (note that
by construction, there is precisely one pair in t whose second component is ti2).

Theorem 21. For all ν-calculus expressions N , N1, N2 in normal form, N2 ≤m
N / N1 iff N1 ‖ N2 ≤m N .

Proof. From the analogous property for AA [6] and Theorems 5, 9 and 12. *+

As a corollary, we get (3): If I2 ∈ �N /N1�, i.e. I2 ≤m N /N1, then N1‖I2 ≤m
N , which using I1 ≤m N1 and Theorem 20 implies I1 ‖ I2 ≤m N1 ‖ I2 ≤m N .
The reverse implication in Theorem 21 implies that N / N1 is as permissive as
possible.

Theorem 22. With operations ∧, ∨, ‖ and /, the class of ν-calculus expressions
forms a commutative residuated lattice up to ≡m.

The unit of ‖ (up to ≡m) is the ν-calculus expression corresponding to the
LTS U = ({u}, {u}, {(u, a, u) | a ∈ Σ}). We refer to [19] for a good reference on
commutative residuated lattices.
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5 Conclusion and Further Work

Using new translations between the modal ν-calculus and DMTS, we have ex-
posed a structural equivalence between these two specification formalisms. This
means that both types of specifications can be freely mixed; there is no more
any need to decide, whether due to personal preference or for technical reasons,
between one and the other. Of course, the modal ν-calculus can only express
safety properties; for more expressivity, one has to turn to more expressive log-
ics, and no behavioral analogue to these stronger logics is known (neither is it
likely to exist, we believe).

Our constructions of composition and quotient for the modal ν-calculus ex-
pect (and return) ν-calculus expressions in normal form, and it is an interesting
question whether they can be defined for general ν-calculus expressions. (For dis-
junction and conjunction this is of course trivial.) Larsen’s [23] has composition
and quotient operators for Hennessy-Milner logic (restricted to “deterministic
context systems”), but we know of no extension (other than ours) to more gen-
eral logics.

We also note that our hybrid modal logic appears related to the Boolean
equation systems [27,25] which are used in some μ-calculus model checking algo-
rithms. The precise relation between the modal ν-calculus, our L-expressions and
Boolean equation systems should be worked out. Similarly, acceptance automata
bear some similarity to the modal automata of [12].

Lastly, we should note that we have in [4,3] introduced quantitative speci-
fication theories for weighted modal transition systems. These are well-suited
for specification and analysis of systems with quantitative information, in that
they replace the standard Boolean notion of refinement with a robust distance-
based notion. We are working on an extension of these quantitative formalisms
to DMTS, and hence to the modal ν-calculus, which should relate our work to
other approaches at quantitative model checking such as e.g. [16,15,18].
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Abstract. A side-effect analysis computes for each program phrase a set
of memory locations that may be read or written to when executing this
phrase. Our analysis expresses abstract objects, points-to and aliasing
information, escape information, and side effects all in terms of a single
novel abstract domain, generalized access graphs. This abstract domain
represents sets of access paths precisely and compactly. It is suitable for
intraprocedural analysis as well as for constructing method summaries
for interprocedural analysis.

We implement the side-effect analysis for Java on top of the SOOT
framework and report on its application to selected examples.

1 Introduction

A side-effect analysis computes for each program phrase a set of memory loca-
tions that may be read or written to when executing this phrase. The results of
such an analysis have many uses in practice including the identification of pure
methods (that have no side effects), of read-only parameters, and of objects that
escape from a method. A compiler may perform aggressive code motion on a call
to a pure method. Such a method may also be used in a specification [2]. In a
concurrent program, methods with disjoint side effects may run in parallel with-
out interfering [1]. Several program analyses require information on side effects of
method calls to correctly transfer local analysis results across call sites [7,9,16].
Furthermore, the search space of a software model checker may be reduced by
ignoring interleavings of methods with disjoint side effects [5].

Our analysis expresses abstract objects, points-to and aliasing information,
escape information, and side effects all in terms of generalized access graphs, a
novel abstract domain inspired by Deutsch’s symbolic access paths (SAPs) [8]
and Khedker and coworkers’ access graphs [15]. A value in this domain rep-
resents information about heap-allocated objects using a regular language of
access paths in the pre-state of a method. This condensation of information in
one domain facilitates an elegant and economic description of the analysis that
completely fits into this paper and it simplifies its implementation.

The analysis computes context insensitive may-information for method sum-
maries. From the method summary, it is straightforward to determine whether
parameters are read-only, whether a method is pure, and whether any heap-
allocated objects may escape from the method.
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The intraprocedural analysis that computes the method summaries is flow-
sensitive and performs strong updates for local and global variables. The inter-
procedural analysis is an instance of a bottom-up analysis.

We implement the side-effect analysis for Java on top of the SOOT [23] frame-
work and report on preliminary results of its application to selected examples.

1.1 Contributions

– We define the abstract domain of generalized access graphs (GAGs) as an
extension of Khedker and coworkers’ access graphs [15]. In comparison, our
analysis requires fewer and simpler operations on the domain and can make
do with one domain to maintain all kinds of information.

– We specify the intraprocedural GAG-based analysis for a CFG representa-
tion of a method in an object-based language (without pointer arithmetic). It
is integrated with a context-insensitive bottom-up interprocedural analysis.

– We present preliminary results from applying our implementation (see
https://github.com/saffriha/ictac2014) to a range of benchmarks.

1.2 Outline

Section 2 informally presents the GAG-based side-effect analysis and its sup-
porting analyses, in particular, points-to analysis. Section 3 formally defines
the domain of generalized access graphs and its operations and establishes its
basic properties. Section 4 specifies the intraprocedural points-to analysis and
Section 6 extends it to a side-effect analysis. Section 7 sketches the interproce-
dural analysis. Section 8 reports on our experiments with the implementation.
Section 9 discusses related work and Section 10 concludes.

2 Side-Effect Analysis

This section presents motivational examples that demonstrate various aspects
of our side-effect analysis and in particular uses of GAGs in method summaries.

Our running example concerns some methods written for objects of class List,
which represent a node in a linked list with integer elements.

1 class List {
2 int v;
3 List n;
4 List(int v, List n) {
5 this.v = v;
6 this.n = n;
7 }
8 }

2.1 Simple Method

The method foo takes a list as its argument. It modifies the list node and returns
the rest of the argument list.

https://github.com/saffriha/ictac2014
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g1 = l, v, 10 g2 = l, n, 11

Fig. 1. Write effect and abstract return object of foo

9 List foo(List l) {
10 l.v = 0;
11 return l.n;
12 }

The GAG g1 in Fig. 1 describes the write effect of the method whereas g2
describes the returned value (and also the read effect). Both specify the outcome
in isolation, that is, without regard for the calling context of the method.

Each path through a GAG from a root node to an accepting node corresponds
to a potential access path that starts from any object that may be supplied for
the root node later on. Each identifier on this path is interpreted as a component
of the access path. In general, a GAG may represent any number of paths.

In this case, the root node is l in both graphs. It stands for the formal parame-
ter of the method. Further, each graph represents exactly one path, g1 represents
the path l.v whereas g2 represents l.n.

The GAG also includes the program point of each field access in its nodes. The
example uses line numbers to indicate program points. If the program points are
important, then we write access paths with program points as superscripts as in

l.v10. These program point annotations play a crucial role in effectively finding
a fixpoint during the analysis.

Thus, the write effect of foo consists of the potential modification of l.v
whereas the returned object is described by l.n. That is, the GAG describes the
set of parameter rooted SAPs written by the method. The GAG computed by
the analysis yields access paths that are valid in the pre-state of the method,
that is, in the program state at invocation time of the method.

The return value of foo is described by g2 as the abstract object that can

be reached via the path l.n11. Again, the superscript 11 indicates the program
point containing the access to the field n.

2.2 Loops

So far we have seen how GAGs represent summaries of the side effects and
the return value of a simple method. Next, we put the body of foo in a loop to
observe summarization at work. The comments in the listing contain the abstract
object bound to r after analyzing the line in regular expression notation.

13 List loop(List l) { // round 1 // round 2 // round 3
14 List r = l; // r �→ l
15 while (r.v != 42) { // // r �→ l.n? // r �→ l.n∗
16 r.v = 0;
17 r = r.n; // r �→ l.n // r �→ l.n+ // r �→ l.n+
18 } // r �→ l.n∗
19 return r;
20 }
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g0 = l, g0 � l.n17 = l, n, 17 (g0 � l.n17) · n17 = l, n, 17

Fig. 2. GAGs to analyze loop

Before entering line 15, our analysis finds that r points to l. This fact is repre-
sented by an environment that maps r to the abstract object represented by the
GAG g0 (Fig. 2). After line 17, unsurprisingly, r points to the object represented

by l.n17. Then the body of the while loop is reanalyzed with r bound to the

join of g0 and l.n17. By the end of the loop, r is updated to (g0 + l.n17) · n17,
which does not change anymore. This fixpoint is reached because each access
at a particular program point is represented at most once in an access graph.
See Section 3 for the formal definition of the operators. Thus, the return value
corresponds to the path set generated by the regular expression l.n∗. Similarly,
the side effect may be computed as l.n∗.v (see Fig. 4).

2.3 Method Calls

Next, we change the program to call the method foo in the loop.

21 List loopCall(List l) {
22 List r = l;
23 while (r != null)
24 r = foo(r);
25 return r;
26 }

Up to line 24, r is bound to g0 as before. Analyzing the method call just
fetches the return value g2 from foo’s method summary. In general, this value
is phrased in terms of the formal parameters of the callee, so that it must be
translated to the caller. In this case, the translation replaces l by l, so the body
of the while loop is reanalyzed with r bound to g0 + g2 (Fig. 3).

Reanalyzing the call yields the same return value g2, but now the parameter

value g0 + g2 must be substituted for l in g2, which yields (g0 + g2) ·n11 (Fig. 3)

representing the same access paths as (g0 + l.n17) · n17 in the analysis of loop.
The write effect is computed in a similar way. In the first analysis of the

method call, we replace l with l in foo’s summary resulting in a write effect of

l.v10. In the next iteration, g0 + g2 is substituted for the formal parameter in

foo’s summary. The resulting write effect is l.(n11)?.v10. The abstract object

resulting from the return value is l.(n11)+. As seen in Fig. 2, the concatenation
of a field access at the same program point results in a loop on the GAG node

representing this field access. The new environment entry for r is r �→ l.(n11)∗

with the resulting write effect l.(n11)∗.v10.
The next iteration reaches the fixpoint. The method summary for loopCall

consists of the abstract object from r’s environment entry l.(n11)∗ and the write

effect l.(n11)∗.v10 (see Fig. 4).
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g0 � g2 = l, n, 11 (g0 � g2) · n11 = l, n, 11

Fig. 3. GAGs to analyze loopCall

l, n, 11 v, 10 l, n, 11

Fig. 4. loopCall’s write effects (left) and abstract return object (right)

2.4 New Object Abstraction

The next examples deal with allocation and aliasing. They unveil some further
information that is computed by the analysis: points-to and escape information.
To simplify the presentation, we ignore side effects in the following examples.
Thus, for the rest of this section we only regard two components of a method
summary:

1. may-points-to information that describes aliases created by the method and
2. the abstract object returned by the method.

First, we turn to the representation of new objects. Here is a method that
constructs and attaches a new element to a list.

27 List newList(int v, List n) {
28 assert (v < 10);
29 List l = new List(v, n);
30 return l;
31 }

The constructor call on line 29 creates a points-to entry new29.n6 → n (with
the 6 coming from the List constructor) and the assignment on line 29 creates

an environment entry for l of new29. Thus, the method summary consists of the

points-to relation {new29.n6 → n} and the abstract return object new29, which
indicates that this object may escape.

Given the method summary, we consider a method that calls newList in a
loop.

32 List newNList() {
33 int i = 0;
34 List r = null;
35 while (i < 10) {
36 r = newList(i, r);
37 i++;
38 }
39 return r;
40 }
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The points-to relation in the method summary of newNList is new29.n6 → new29

and the abstract return object is new29. We do not explicitly represent null in
the abstract domain as we only consider may-points-to information.

2.5 Aliasing

Another group of examples demonstrates how aliasing is described in terms of
the pre-state of the method. We omit program points and use the symbol • as the
rightmost field selection operator in SAPs describing references. The following
method swaps the first two entries of the passed list and returns the resulting
list.

41 List swap(List l) {
42 List ln = l.n;
43 List lnn = ln.n;
44 l.n = lnn;
45 ln.n = l;
46 return ln;
47 }

The method’s points-to summary is l •n → l.n.n, l.n •n → l. The GAG l.n
describes the returned value. This result demonstrates that the summary consists
of paths that refer to the pre-state of the method.

A final aliasing example illustrates the interaction between the information
from the method summary and the points-to set at the call site. An auxiliary
method depth2 overwrites the n field two elements down the list. Method depth1

overwrites the n field of the first element and then calls depth2.

48 void depth2 (List x, List y) {
49 List v = y.n; // env: v �→ y.n
50 v.n = x; // points-to: {(y.n) •n → x}
51 }
52 void depth1 (List x, List y, List z) {
53 y.n = z; // points-to: {y •n → z}
54 depth2 (x, y); // points-to: {y •n → z, (y.n)•n → x, z •n → x}
55 }

The annotations in the listing state the intermediate results of the analysis after
executing the statement on the line. The annotation env states the binding of
v and points-to states the accumulated points-to set up to that point. Most
annotations are straightforward, except the points-to set on line 54 after the
call to depth2. The first entry, y •n → z, is carried through from the previ-
ous statement. The second entry, (y.n) •n→ x, is obtained by substituting the
abstraction of the formal parameters in the points-to summary of depth2 from
line 50. In this case, the substitution is the identity. The last entry, z •n→ x, is
generated by our resolution algorithm that integrates the points-to information
at the call site with the method summary. The abstract object y.n in the sum-
mary interacts with the first points-to entry that states that y •n may also point
to z. Thus, the last entry results from contracting y.n to z in the summary. No
entry can be removed because the points-to information is not definitive (may-
points-to information).
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2.6 Global Variables

A final example demonstrates side effects on global variables.

56 void setGlobal(List l) {
57 Global.g = l;
58 }

The points-to relation in setGlobal’s summary is Global • g→ l.

3 Abstract Domain: Generalized Access Graphs

A generalized access graph represents a possibly infinite set of access paths rel-
ative to a set of roots. These roots are usually abstract objects like method
parameters or allocation points.

Definition 1. An occurrence of an identifier or an allocation in a program P
is specified with an element from OccP = (IDP & {new}) × PPP where IDP is
the set of identifiers occurring in P and PPP is the set of program points of P .
We write C.x ∈ IDP to refer to static global variable x of class C.

In the rest of this section, we take for granted that all definitions are relative to
an arbitrary, fixed program P and thus drop the P subscript.

Definition 2. A generalized access graph for program P is a tuple 〈N,E,A,R〉

– N ⊆ Occ is a set of identifiers or allocation occurrences of P ,
– E ⊆ N ×N is a set of directed edges,
– A ⊆ N is a set of accepting nodes, and
– R ⊆ N is a set of root nodes.

If g is a generalized access graph, then we sometimes write N(g), E(g), A(g),
and R(g) for its components.

As Occ is finite, the set GAG of all generalized access graphs for P is also
finite. We write id(n) and pp(n) to extract the identifier and program point of a
node n ∈ N .

Khedker et al. proposed a closely related notion of access graphs [15], which
we generalize in several respects: we allow non-accepting nodes, we allow several
root nodes instead of just a single root node, and we do not distinguish between
“normal” access graphs and “remainder” graphs as they do.

We use two notations, a graphical one and another based on regular expres-
sions, to concisely write generalized access graphs. Both are inspired by the close
relationship to nondeterministic finite automata. Consider the access graph with
N = {〈x, 1〉, 〈f, 2〉, 〈f, 3〉}, E = {〈〈x, 1〉, 〈f, 2〉〉, 〈〈f, 2〉, 〈f, 2〉〉, 〈〈f, 2〉, 〈f, 3〉〉},
A = {〈f, 3〉}, and R = {〈x, 1〉}. Its regular expression notation is x1.f2+.f3 and
Fig. 5 shows its graphical representation.

Definition 3. Let g ∈ GAG be an access graph. The indexed path language
Lp(g) ⊆ Occ∗ of g is defined as the language of the nondeterministic finite
automaton 〈N & {q0},Occ, δ, {q0}, A〉 where δ is the smallest relation such that
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x, 1 f, 2 f, 3

Fig. 5. Example access graph

– (q0, 〈x, p〉, 〈x, p〉) ∈ δ, for each 〈x, p〉 ∈ R(g),
– (n, 〈x, p〉, 〈x, p〉) ∈ δ, for each 〈n, 〈x, p〉〉 ∈ E(g).

The path language of g is L(g) = {x1 . . . xn | 〈x1, p1〉 . . . 〈xn, pn〉 ∈ Lp(g)}.

Here are two examples:

L( x, 1 f, 2 g, 3 ) = {x.g, x.f.g} L( x, 1 f, 2 g, 3 ) = x.(f.g)+

Lemma 1. Let g be an access graph. The path language of g, L(g), is regular.

Next, we define a join operation on access graphs that approximates the union
of their path languages.

Definition 4. For i ∈ {1, 2}, let gi = 〈Ni, Ei, Ai, Ri〉 be access graphs. Define
their join g1 + g2 = 〈N1 ∪N2, E1 ∪ E2, A1 ∪ A2, R1 ∪R2〉.

Lemma 2. L(g1 + g2) ⊇ L(g1) ∪ L(g2).

In general, L(g1 + g2) may contain words that are neither in L(g1) nor in L(g2)
because their underlying node sets need not be disjoint. For example, consider

a, 1 b, 2 + b, 2 c, 3 = a, 1 b, 2 c, 3

where the language of the joined graph contains the word a.b.c which is not in
the language of either argument graph: {a.b} and {b.c}, respectively.

Theorem 1. For each program P , the structure 〈GAG,+,*,⊥,�〉 is a finite,
complete lattice. The meet operation * is componentwise intersection, ⊥ =
〈∅, ∅, ∅, ∅〉, and � = 〈N,N ×N,N,N〉 where N = Occ× PP.

The lattice ordering, which corresponds to the componentwise subset ordering,
is defined by g1 ' g2 iff g1+g2 = g2. Furthermore, g1 ' g2 implies L(g1) ⊆ L(g2).

Remark 1. Our analysis does not make use of the meet operation, but it is easy
to see that L(g1 * g2) ⊆ L(g1)∩L(g2): Suppose there is a path in g1 * g2 from a
root node r ∈ R(g1) ∩R(g2) to an accepting node a ∈ A(g1) ∩A(g2). Then this
path exists in g1 and g2, too, as it exists in E(g1) ∩E(g2).

As an example that the inclusion is proper consider g1 = a1 and g2 = a2. It
holds that L(g1 * g2) = ∅ but L(g1) ∩ L(g2) �= ∅.
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The analysis requires one more operation. Concatenation of access graphs
computes an approximation to the concatenation of their languages.

Definition 5. For i ∈ {1, 2}, let gi = 〈Ni, Ei, Ai, Ri〉 be access graphs. Define
their concatenation g1 · g2 = 〈N1 ∪N2, E1 ∪ E2 ∪ (A1 ×R2), A2, R1〉.

Lemma 3. L(g1 · g2) ⊇ L(g1) · L(g2).

As an example that the inclusion may be proper, consider L(a1) = {a} and
L(a1 · a1) = a+ � {a.a}.

Lemma 4. Concatenation is monotone in both arguments.

4 Intraprocedural Points-to Analysis

The first step towards our side-effect analysis is a points-to analysis for an im-
perative core language with objects, which is the essence of an intermediate
representation for Java like Jimple. We consider a program one method at a
time and we assume that each method is given in the form of a control-flow
graph CFG = (V, F ) where the nodes V = PP correspond to program points
and the directed edges F ⊆ V × V correspond to potential control transfers
between program points. The function pred : V → P(V ) maps a node to its set
of predecessors: pred(v) = {v′ | (v′, v) ∈ F}. There are two distinct nodes that
determine the entry point and the exit from the method.

Each node v in the CFG is associated with a statement stm(v) of one of the
following forms, where x, y, . . . range over local variables.

– x = y ⊕ z, primitive operation;
– x = c, constant including null;
– x = y, copy;
– x = newp, allocate a new uninitialized object of type T;
– x = y.a, read field a from object y;
– x.a = y, write field a in object x;
– x = call f(y1, . . . , yn), call method f .

4.1 Memory Abstraction

An abstract object is described by a generalized access graph. We use a different
symbol to emphasize the interpretation of the graph as an abstract object.

o ∈ Obj = GAG

The object o represents the set of objects that can be reached in the pre-state of
a method call via the access paths in L(o). The graphs are anchored either in the
formal parameters of the method, in global variables that can be accessed inside
the method, or in objects newly allocated during the method call. Without loss
of generality, we pretend that all such allocations take place before the method
starts, so that they are representable in the pre-state already.
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To represent points-to information, we need references to fields of abstract
objects. Such a reference is a pair of an abstract object and a field name.

Ref 5 r ::= o • a

Points-to information itself is represented by a points-to set of the form P ∈
P(Ref × Obj). An element 〈r, o〉 ∈ P states that the reference r may point to
abstracted object o. In addition, each reference o • a points to an implicit natural
object, namely o · a, which implements the may-nature of the analysis.

In principle, we might also represent points-to information with a partial
mapping Ref ↪→ Obj by joining multiple target objects for the same reference.
By keeping a set of target objects, we retain some more precision. We have yet
to investigate whether it makes a difference in practice.

4.2 Method Summaries

We assume that, for each method, there is a method summary that describes the
result of a method call and the potential side effects of the method. Specifically,
for a method f

– returns(f) ∈ Obj describes the return value of the method as an abstract
object in terms of f ’s formal parameters;

– exitSet(f) ∈ P(Ref×Obj) describes the potential modification of the points-
to information by calling f ;

– reads(f) ∈ GAG describes the set of objects that may be read during execu-
tion of f ;

– writes(f) ∈ GAG describes the set of objects that may be written to during
execution of f .

These functions do not take into account aliasing that is present at a call site
of the method f . Thus, the method summary needs to be adapted to the cir-
cumstances at each call site. On the positive side, it means that our analysis
is modular, because after generating the method summary for f , all further
analysis can rely on the summary.

4.3 Dataflow Equations

The domain DP of the dataflow analysis consists of a local variable environment
that maps a variable name to an abstract memory location and a points-to
relation P as described above. We model the environment ρ as a partial map
that we consider as a set of pairs when convenient: ρ ∈ Env = Var ↪→ Obj.

DP = Env× P(Ref×Obj)

The dataflow equations for the points-to analysis are typical for a forward analy-
sis. For each node v in the CFG, they determine values inP(v), outP(v) ∈ DP that
accumulate the analysis result and there are functions genP(v), killP(v) ∈ DP
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that compute information to add to or remove from an intermediate result. As a
slight difference to the standard framework, the value of genP(v) often depends
on inP(v).

inP(v) =
⊔

p∈pred(v)
outP(p) outP(v) = (inP(v)− killP(v)) + genP(v) (1)

The join operation on the environment is the pointwise join of the abstract
objects in the range. It is set union on the points-to sets. The “−” operation
computes the set difference on the underlying sets. The initial state is given by
inP(v) = outP(v) = (∅, ∅), with one exception:

outP(entry) = ([x �→ xp | x formal parameter defined at program point p], ∅)

The result of the analysis is the least fixpoint of the equations (1).
The genP and killP functions applied to node v are defined by case analysis

on the statement at node v. If stm(v) has the form x = . . . , then killP(v) =
({(x, o) | o ∈ Obj}, ∅), that is, the previous assignment to x is removed. For
other forms of statements, we specify the kill set explicitly.

Generally, let (ρin, Pin) = inP(v) in the following definition of genP and killP.

– If stm(v) is x = y ⊕ z or x = c, then genP(v) = (∅, ∅).
– If stm(v) is x = y, then genP(v) = ([x �→ ρin(y)], ∅).
– If stm(v) is x = newp, then genP(v) = ([x �→ �p], ∅), so that x points to an

abstract object allocated at program point p.
– If stm(v) is x = y.ap, then genP(v) = ([x �→

⊔
objs(inP(v), y.ap)], ∅). The

function objs : DP×Var×Field×PP→ P(Obj) resolves a field access under
a given points-to set.

objs((ρ, P ), y.ap) = {ρ(y) · ap}∪{o′ | (o • b, o′) ∈ P,mayAlias(o, ρ(y)), a = b}

The first part concerns the direct effect of the field access. It concatenates
the abstract object that is currently stored in the variable with the trivial
access graph to field ap. The second part is the indirect effect. If the points-to
set contains evidence that y.a may also point to some object o′, then that
object is also a potential result.

Checking the last part is more involved than comparing o and ρ(y) for
equality. As both are represented by method-local access graphs, it may be
the case that they are not equal but nevertheless have some access paths in
common. The function mayAlias checks the absence of such common access
paths by checking disjointness of the path languages:

mayAlias(o1, o2) = L(o1) ∩ L(o2) �= ∅

As the path languages are regular (cf. Lemma 1), this check is effective. If we
consider the booleans ordered by false ' true, then mayAlias is monotone
in both arguments and thus objs is also monotone in ρ and P .
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– If stm(v) is x.ap = y, then killP(v) = (∅, ∅) because no local (or global)
variable is overwritten but after the assignment x.a may point to the object
stored in y which must be reflected in the points-to information. Hence,
genP(v) = (∅, refs(ρin, x.ap) × {ρin(y)}). The function refs : Env × Var ×
Field×PP→ Ref resolves a field access to a reference, a symbolic left value.

refs(ρ, x.ap) = ρ(x) • a

– If stm(v) is x = call f(y1, . . . , yk), then we first need to consult the call
graph for the set of possible call targets f1, . . . , ft. The gen-information of the
method call is joined from the individual call targets: genP(v) =

⊔
j dj . For

each target fj with formal parameters x1, . . . , xk, define dj = ([x �→ o′j ], P ′j)
where o′j describes the abstract object returned by the method call and P ′j
describes the potential side-effect of the call on the parameters and global
variables.

We obtain this data from the method summary of fj, but as this summary
contains information that is local to fj, it needs to be translated to the calling
context. In particular, the access graphs in fj ’s summary refer to the xi, the
names of fj ’s formal parameters. They need to be replaced by the abstract
objects ρin(yi), for 1 ≤ i ≤ k, representing the parameters of the call site.

However, this replacement alone is not sufficient, because the access paths
in the result ignore aliasing (points-to information) that is present at the call
site: a method is always analyzed under the assumption that its arguments
are not aliased. This discrepancy has to be corrected by retracing the access
paths in returns(fj) using the points-to information at the call site, which is
represented by Pin. Thus, if o = returns(fj) then

o′j = transo(ρin, Pin, o) =
⊔

n∈A(o)

Q(o, n)

where Q : Obj×Occ→ Obj is the smallest function such that

Q(o, 〈new, p〉) 4 �p if 〈new, p〉 ∈ R(o)
Q(o, 〈xi, p〉) 4 ρin(yi) if 〈xi, p〉 ∈ R(o) substituting formal parameter

Q(o, 〈a, p〉) 4 Q(o, n) · ap +
⊔
{t | 〈o′ • a, t〉 ∈ Pin,mayAlias(o′, Q(o, n))}

for all n such that 〈n, 〈a, p〉〉 ∈ E(o)

A similar transformation has to be applied to the points-to set returned by
the method.

P ′j = {〈transr(ρin, Pin, r), transo(ρin, Pin, o)〉 | 〈r, o〉 ∈ exitSet(f)}

where

transr(ρ, P, o • a) = transo(ρ, P, o) • a
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5 Global Variables

Global variables are straightforward to integrate into the analysis. The environ-
ment ρ also maintains information about the abstract objects contained in the
global variables. That is, the initial environment in outP(entry) also contains
bindings [C.a �→ C.ap], where p is the program point defining a in C.

There are two new cases for genP(v) where (ρin, Pin) = inP(v) and the method
call needs to be extended.

– If stm(v) is x = C.a, then genP(v) = ([x �→ ρin(C.a)], ∅).
– If stm(v) is C.ap = y, then killP(v) = ({(C.a, o) | o ∈ Obj}, ∅) and genP(v) =

([C.a �→ ρin(y)], ∅).
– If stm(v) is x = call f(y1, . . . , yk), then we extend the previous treatment.

Let ρout = globals(f) be the environment at the exit node of f restricted
to the bindings of the global variables (also part of the method summary).
Then the environment part of genP(v) needs to be extended with [C.a �→
transo(ρ, P, ρout(C.a))] for each global variable C.a.1

To transfer these entries successfully, we need to extend the Q function in
the definition of transo by

Q(o, 〈C.a, p〉) 4 ρin(C.a) if 〈C.a, p〉 ∈ R(o)

The treatment of function calls could be improved by additionally keeping track
of which global variables are definitely overwritten by the call. The entries for
these variables could be killed from the environment and replaced by the infor-
mation from the method summary.

6 Intraprocedural Side-Effect Analysis

To perform the side-effect analysis, we assume that the results of the points-to
analysis are available in inP(v) and outP(v), for each CFG node v. The do-
main for this analysis is the product lattice of two access graphs, the first one
summarizing read accesses, the second one write accesses.

DS = GAG×GAG

The analysis is again a forward analysis, but in this case there are no kill sets.

inS(v) =
⊔

p∈pred(v)
outS(p) outS(v) = inS(v) + genS(v) (2)

All values are initialized to the bottom of the lattice inS(v) = outS(v) = (⊥,⊥).
The result of the analysis is the least fixpoint of the equations (2).

Again, we define genS(v) by cases on the statement at node v. Let (ρin, Pin) =
inP(v) be the result of the points-to analysis at node v.

1 In an implementation, it is sufficient to only keep entries for those variables that are
actually used inside f .
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InterProceduralAnalysis()

1 Compute call graph and its SCC tree.
2 for each method f
3 summaries [f ] = (⊥, ∅,⊥,⊥)
4 while an unprocessed SCC exists
5 Choose an unprocessed SCC S where all predecessors are processed.
6 repeat
7 done = true
8 for each method f in S
9 newSummary = IntraProceduralAnalysis(f, summaries)

10 if summaries [f ] �= newSummary
11 summaries [f ] = newSummary
12 done = false
13 until done
14 Mark S as processed.

Fig. 6. Algorithm for interprocedural analysis

– If stm(v) is x = y ⊕ z or x = c or x = y or x = newp, then genS(v) = (∅, ∅).
– If stm(v) is x = y.ap, then genS(v) = (ρin(y) · ap, ∅).
– If stm(v) is x.ap = y, then genS(v) = (∅, ρin(x) · ap).
– If stm(v) is x = call f(y1, . . . , yn), then genS(v) = (gr, gw) where

gr = transo(ρin, Pin, reads(f)) gw = transo(ρin, Pin,writes(f))

As in the points-to analysis, the method summary needs to be translated
into the current environment and aliasing context, and we need to join the
information of the possible call targets for f .

Allocations are not registered as write effects because they do not modify existing
data structures. However, reads and writes to newly allocated data appear as
side-effects. No special treatment is needed to cater for global variables.

7 Interprocedural Analysis

The interprocedural analysis computes the method summaries for the whole
program by repeatedly applying the intraprocedural analysis to the program’s
functions until a fixpoint is reached. We sketch the algorithm in Fig. 6.

At first, the program’s call graph and its strongly connected components
(SCCs) are computed. Next, the SCCs are traversed bottom-up and for each
SCC the fixpoints of its methods’ summaries are computed starting from the
bottom values of the respective domains.

The fixpoint computation recomputes the method summaries for all methods
contained in the current SCC. This computation is repeated until all summaries
stabilize. If any method summary changes, then all summaries in the current
SCC have to be recomputed because they mutually depend on each other.
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8 Experience

We implemented both the points-to analysis and side-effect analysis on top of the
SOOT Java bytecode analysis and transformation framework in version 2.5.0.
To increase the scalability of our analysis points-to pairs with structurally equal
left hand sides are joined into a single pair.

Evaluation. The evaluation concentrates on analysis time and precision of our
analyses. We focus on relatively small benchmark programs from the JOlden [3]
benchmark suite. The suite consists of ten benchmark programs.

We stripped the benchmarks of the time measurement, statistics and print-
ing functionality that is common to all programs in the JOlden suite to avoid
analyzing large parts of the JDK. For example, the unstripped version of the
Bisort benchmark had a call graph containing more than 8000 methods although
Bisort’s functionality is implemented in 11 user methods. All benchmarks were
executed on a machine with AMD Phenom II X6 (2.8 GHz, 6 Cores) processor
and 8 GB RAM on top of Archlinux 64bit, Kernel 3.13.8-1 and OpenJDK 7.0.

We present the results of running our points-to and side-effect analysis on
nine of the JOlden benchmarks in Table 1. In each case, the analysis processed
all methods, user and library, that are reachable from the main method. We ex-
cluded static initializers and external methods (methods without an active body)
from the analysis. For each application, we present the total number of methods
(including library methods) and the number of user methods. We measured the
total run time and the run time of the call graph construction including the cal-
culation of the SCCs. As a quality measure that is independent from our abstract
domain we count the methods that do not introduce new aliases and the pure
methods. Here, “pure” means that a method does not have any write effects on
heap-allocated memory locations in the prestate of the method. Following the
JML convention, we consider constructors that only mutate fields of “this” as
pure.

For the benchmarks marked with ∗ we excluded the JDK methods from the
call graph, as our prototype apparently does not scale to the thousands of library
methods that can be transitively invoked by these benchmarks.

Discussion. The run time of the analysis is within reasonable bounds for small
programs, generally running in a fraction of the time taken for the call graph
construction and finding the SCCs. We still need to gain experience with larger
programs.

For the benchmark programs that we have analyzed our analysis gives useful
results with a precision that is roughly comparable to that of others [21]. In the
best case TreeAdd we can identify roughly 89% of the methods as pure. The
other extreme is MST where we identify 21% of the methods as pure.
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Table 1. Analysis results for the Java Olden benchmarks

Application Methods Run time Method summaries

User All CG+SCC Analysis Total No new aliases Pure

BH 53 68 57.26s 1.17s 58.43s 76.47% 66.18%
BiSort 11 13 5.40s 1.05s 6.45s 61.54% 38.46%
Em3d∗ 16 16 54.50s 0.90s 55.40s 50.00% 37.50%
MST 29 34 55.45s 0.83s 56.28s 85.29% 20.59%
Perimeter 34 36 5.75s 0.95s 6.70s 94.44% 80.56%
Power 26 34 55.65s 2.81s 58.46s 88.24% 50.00%
TreeAdd 3 9 52.67s 0.45s 53.12s 88.89% 88.89%
TSP∗ 12 12 52.05s 1.03s 53.08s 66.67% 33.34%
Voronoi∗ 55 55 58.15s 1.69s 59.84s 89.09% 76.36%

9 Related Work

There is a plethora of literature on effect and points-to analysis for heap-allocated
objects. We therefore focus on the distinguishing features of our abstract domain
and compare our work to selected bottom-up points-to, shape and effect analyses.

Regarding our abstract domain, the most closely related work is by Khedker
et al. [15]. They have introduced access graphs, which include program points
in their nodes to deal with unboundedly large data structures. We extend ac-
cess graphs to GAGs, which facilitate a compact representation of the points-to
relation that cannot be achieved with (sets of) simple access graphs.

While Khedker et al. rely on access graphs for a number of analyses including
alias analysis, they do not employ them for points-to analysis, as we do. In
contrast to our abstract domain, they use partly “unresolved” access graphs to
represent abstract references in their alias sets. That is, their access graphs can
be rooted in a reference that requires further resolution to obtain the abstract
object it stands for, whereas we use “resolved” (up to the unknown context)
abstract objects being rooted in parameters or allocation points. We use such
resolved GAGs, as they avoid repeated resolution of the same access graphs while
preserving precision on updates to references, which we consider as an advantage
in our flow-sensitive analysis.

Most of the following proposals share the property with ours that their ab-
stract domains are based on Larus’ access paths [18] or Deutsch’s SAPs [8].

All data-flow algorithms must deal with the unbounded nature of recursive
data structures. Many proposals [17,4,6] follow the k-limiting approach [12],
which limits access paths by truncation.

While our proposal uses a storeless model (originally proposed by Jonkers [13])
other proposals [18,21] use a store-based model model employing some form of
(rooted) directed graph representation or a compact representation thereof [11]
for points-to or alias information. A store-based model can enable the description
of regular patterns across references and the objects these references refer to.

In their side-effect analysis for Java, Sălcianu and Rinard [21] represent the
points-to relation as a points-to graph, a rooted directed graph representation.
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Their points-to graphs allow multiple root nodes (as our GAGs do), but do
not include program points in their points-to graphs. Larus and Hilfinger’s alias
graphs [18] are similar to Sălcianu’s points-to graphs.

Several authors [14,24] propose scalable bottom-up pointer analyses for C
programs, but ignore heap-allocated data. Matosevic et al. [19] use a SAP-based
abstract domain in their bottom-up side-effect analysis, but their loop abstrac-
tion mechanism can only detect three patterns of iteration. Moreover, they do
not formally describe how they handle method calls. In contrast to our points-to
relation, which can be viewed as a total transfer function, their abstract domain
serves as a partial transfer function [20] that assumes the context to have certain
properties. Partial transfer functions can be considered as an optimization that
is also applicable to our analysis. Gulavani et al. [10] propose a bottom-up shape-
analysis based on separation logic. Their Logic of Iterated Separation Formulae
allows the computation of a loop summary from a loop body summary.

Another widely-used and highly scalable proposal for points-to analysis is
Steensgaard’s [22] type-based analysis using unification, which is most suitable
for statically-typed languages. Our analysis can be combined with type-based
information to improve both precision and scalability.

10 Conclusion

Side-effect analysis is an important tool in the programmer’s toolbox. It aids pro-
gram understanding, supports other program analyses, and it enables advanced
program optimizations and safe parallel execution. Our analysis is based on a
single comprehensive and precise abstract domain of generalized access graphs,
which serve to express abstract objects, points-to information, escape informa-
tion, as well as read and write effects. In our experience, the single abstract
domain simplifies the implementation. The preliminary data gathered from our
implementation shows that our approach is practically feasible, but we believe
that further algorithmic tuning is possible.
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Abstract. Computation can be considered by taking into account two dimen-
sions: extensional versus intensional, and sequential versus concurrent. Tradi-
tionally sequential extensional computation can be captured by the λ-calculus.
However, recent work shows that there are more expressive intensional calculi
such as S F-calculus. Traditionally process calculi capture computation by en-
coding the λ-calculus, such as in the π-calculus. Following this increased expres-
siveness via intensionality, other recent work has shown that concurrent pattern
calculus is more expressive than π-calculus. This paper formalises the relative ex-
pressiveness of all four of these calculi by placing them on a square whose edges
are irreversible encodings. This square is representative of a more general result:
that expressiveness increases with both intensionality and concurrency.

1 Introduction

Computation can be characterised in two dimensions: extensional versus intensional;
and sequential versus concurrent. Extensional sequential computation models are those
whose functions cannot distinguish the internal structure of their arguments, here char-
acterised by the λ-calculus [3]. However, Jay & Given-Wilson show that λ-calculus
does not support all sequential computation [20]. In particular, there are intensional
Turing-computable functions, characterised by pattern-matching, that can be repre-
sented within S F-calculus but not within λ-calculus [20]. Of course λ-calculus can
encode Turing computation, but this is a weaker claim. Ever since Milner et al. showed
that the π-calculus generalises λ-calculus [24, 26], concurrency theorists expect process
calculi to subsume sequential computation as represented by λ-calculus [24, 26, 25].
Following from this, here extensional concurrent computation is characterised by pro-
cess calculi that do not communicate terms with internal structure, and, at least, sup-
port λ-calculus. Intensional concurrent computation is represented by process calculi
whose communication includes terms with internal structure, and reductions that de-
pend upon the internal structure of terms. Here intensional concurrent computation is
demonstrated by concurrent pattern calculus (CPC) that not only generalises inten-
sional pattern-matching from sequential computation to pattern-unification in a process
calculus, but also increases the symmetry of interaction [14, 15].

These four calculi form the corners of a computation square

λv-calculus S F-calculus

π-calculus concurrent pattern calculus
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where the left side is merely extensional and the right side also intensional; the top edge
is sequential and the bottom edge concurrent. All arrows are defined via valid encodings
[18]. The horizontal (solid) arrows are homomorphisms in that they also preserve ap-
plication or parallel composition. The vertical (dashed) arrows are parallel encodings
in that application is mapped to a parallel composition (with some machinery). Each
arrow represents increased expressive power with CPC completing the square.

This paper presents the formalisation of these expressiveness results for the four cal-
culi above. This involves adapting some popular definitions of encodings [16–18] and
then building upon various prior results [8, 24, 26, 14, 20, 11]. These can be combined
to yield the new expressiveness results here captured by the computation square.

The organisation of the paper is as follows. Section 2 reviews prior definitions of
encodings and defines the ones used in this paper. Section 3 reviews λ-calculus and
combinatory logic while introducing common definitions. Section 4 summarises in-
tensionality in the sequential setting and formalises the arrow across the top of the
square. Section 5 begins concurrency through π-calculus and its parallel encoding of
λv-calculus. Section 6 recalls concurrent pattern calculus and completes the results of
the computation square. Section 7 draws conclusions, considers related work, and dis-
cusses future work.

2 Encodings

This section recalls valid encodings [18] for formally relating process calculi and adapts
the definition to define homomorphisms and parallel encodings. The validity of valid
encodings in developing expressiveness studies emerges from the various works [16–
18], that have also recently inspired similar works [22, 23, 31]. Here the adaptations are
precise definitions of homomorphisms that give stronger positive results (the negative
results are not required to be as strong). Also, parallel encodings are defined to account
for the mixture of sequential and concurrent languages considered.

An encoding of a language L1 into another language L2 is a pair ([[ · ]], ϕ[[ ]]) where
[[ · ]] translates every L1-term into an L2-term and ϕ[[ ]] maps every name (of the source
language) into a tuple of k names (of the target language), for k > 0. The translation
[[ · ]] turns every term of the source language into a term of the target; in doing this, the
translation may fix some names to play a precise rôle or may translate a single name
into a tuple of names. This can be obtained by exploiting ϕ[[ ]].

Now consider only encodings that satisfy the following properties. Let a k-ary con-
text C( 1; . . . ; k) be a term with k holes { 1; . . . ; k} that appear exactly once each.
Moreover, denote with �−→i and �=⇒i the relations �−→ (reduction relation) and �=⇒ (the
reflexive transitive closure of �−→) in language Li; denote with �−→ωi an infinite se-
quence of reductions in Li. Moreover, let ≡i denote the structural equivalence relation
for a languageLi, and ∼i denote the reference behavioural equivalence for languageLi.
For simplicity the notation T �−→i≡i T ′ denotes that there exists T ′′ such that T �−→i T ′′
and T ′′ ≡i T ′, and may also be used with �=⇒i or ∼i. Also, let P ⇓i mean that there exists
P′ such that P �=⇒i P′ and P′ ≡i P′′ | √, for some P′′ where

√
is a specific process

to indicate success. Finally, to simplify reading, let S range over terms of the source
language (viz., L1) and T range over terms of the target language (viz., L2).
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Definition 1 (Valid Encoding (from [18])). An encoding ([[ · ]], ϕ[[ ]]) of L1 into L2 is
valid if it satisfies the following five properties:

1. Compositionality: for every k-ary operator op of L1 and for every subset of names
N, there exists a k-ary context CN

op( 1; . . . ; k) of L2 such that, for all S 1, . . . , S k

with fn(S 1, . . . , S k) = N, it holds that [[ op(S 1, . . . , S k) ]] = CN
op([[ S 1 ]]; . . . ; [[ S k ]]).

2. Name invariance: for every S and name substitution σ, it holds that

[[σS ]]

{
= σ′[[ S ]] if σ is injective
∼2 σ

′[[ S ]] otherwise

where σ′ is such that ϕ[[ ]](σ(a)) = σ′(ϕ[[ ]](a)) for every name a.
3. Operational correspondence:

– for all S �=⇒1 S ′, it holds that [[ S ]] �=⇒2∼2 [[ S ′ ]];
– for all [[ S ]] �=⇒2 T, there exists S ′ such that S �=⇒1S ′ and T �=⇒2∼2[[ S ′ ]].

4. Divergence reflection: for every S such that [[ S ]] �−→ ω
2 , it holds that

S �−→ω1 .
5. Success sensitiveness: for every S , it holds that S ⇓1 if and only if [[ S ]] ⇓2.

Observe that the definition of valid encoding is very general and, with the exception
of success sensitiveness, can apply to sequential languages such as λ-calculus as well as
process calculi. (On the understanding that a name substitution for sequential calculi is
a mapping from names/variables to names/variables not terms.) However, the relations
presented in this work bring together a variety of prior results and account for them in
a stronger and more uniform manner. To this end, the following definitions support the
results. The first two define homomorphism in the sequential and concurrent settings.

Definition 2 (Homomorphism (Sequential)). A (sequential) homomorphism is a
translation [[ · ]] from one language to another that satisfies: compositionality, name
invariance, operational correspondence, and divergence reflection; and that preserves
application, i.e. where [[ S 1 S 2 ]] = [[ S 1 ]] [[ S 2 ]].

Definition 3 (Homomorphism (Concurrent)). A (concurrent) homomorphism is a
valid encoding whose translation preserves parallel composition, i.e. [[ P1 | P2 ]] =
[[ P1 ]] | [[ P2 ]].

The next is for encoding sequential languages into concurrent languages and exploits
that [[ · ]]c indicates an encoding from source terms to target terms that is parametrised
by a name c.

Definition 4 (Parallel Encoding). An encoding ([[ · ]]c, ϕ[[ ]]) of L1 into L2 is a parallel
encoding if it satisfies the first four properties of a valid encoding (compositionality,
name invariance, operational correspondence, and divergence reflection) and the fol-
lowing additional property.

5. Parallelisation: The translation of the application MN is of the form [[MN]]c
def
=

(νn1)(νn2)(A(c, n1, n2) | [[M]]n1 | [[N]]n2) where A is a process parametrised by c
and n1 and n2.
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Parallelisation is a restriction on the more general compositionality criteria. Here
this ensures that in addition to compositionality, the translation must allow for inde-
pendent reduction of the components of an application. As the shift from sequential
to concurrent computation can exploit this to support parallel reductions, the definition
of parallel encoding encourages more flexibility in reduction since components can be
reduced independently.

The removal of the success sensitiveness property is for simplicity when using prior
results. It is not difficult to include success sensitiveness, this involves adding the suc-
cess primitive to the sequential languages and defining S ⇓, e.g. S ⇓ means that
S �−→∗ √. Additionally, this requires adding a test process Qc to the definition of par-
allel encoding with success sensitiveness defined by: “for every S , it holds that S ⇓1 if
and only if [[ S ]]c | Qc ⇓2. However, since adding the success state

√
to λ-calculus and

combinatory logics1 would require redoing many existing results, it is easier to avoid
the added complexity since no clarity or gain in significance is made by adding it.

Encodings from concurrent languages into sequential ones have not been defined
specifically here since they prove impossible. The proof of these results relies merely
on the requirement of operational correspondence, and so shall be done on a case-by-
case basis.

3 Sequential Extensional Computation

Both λ-calculus and traditional combinatory logic base reduction rules upon the appli-
cation of a function to one or more arguments. Functions in both models are extensional
in nature, that is a function does not have direct access to the internal structure of its ar-
guments. Thus, functions that are extensionally equal are indistinguishable within either
model even though they may have different normal forms.

The relationship between the λ-calculus and traditional combinatory logic is closer
than sharing application-based reduction and extensionality. There is a homomorphism
from call-by-value λv-calculus into any combinatory logic that supports the combinators
S and K [8, 3]. There is also a homomorphism from traditional combinatory logic to a
λ-calculus with more generous operational semantics [8, 3].

3.1 λ-calculus

The term syntax of the λ-calculus is given by

t ::= x | t t | λx.t .

The free variables of a term are defined in the usual manner. A substitution σ is defined
as a partial function from variables to terms. The domain of σ is denoted dom(σ);
the free variables of σ, written fv(σ), is given by the union of the sets fv(σx) where
x ∈ dom(σ). The variables of σ, written vars(σ), are dom(σ) ∪ fv(σ). A substitution
σ avoids a variable x (or collection of variables μ) if x � vars(σ) (respectively μ ∩

1 The results for intensional combinatory logics require that success behaves as a constructor as
discussed for various combinatory logics in [20].



210 T. Given-Wilson

vars(σ) = {}). Note that all substitutions considered in this paper have finite domain.
The application of a substitution σ to a term t is defined as usual, as is α-conversion =α.

There are several variations of the λ-calculus with different operational semantics.
For construction of the computation square by exploiting the results of Milner et al. [24],
it is necessary to choose an operation semantics, such as call-by-value λv-calculus or
lazy λl-calculus. The choice here is to use call-by-value λv-calculus, although the results
can be reproduced for lazy λl-calculus as well. In addition a more generous operation
semantics for λ-calculus will be presented for later discussion and relations.

To formalise the reduction of call-by-value λv-calculus requires a notion of value v.
These are defined in the usual way, by

v ::= x | λx.t

consisting of variables and λ-abstractions.
Computation in the λv-calculus is through the βv-reduction rule

(λx.t)v �−→v {v/x}t .
When an abstraction λx.t is applied to a value v then substitute v for x in the body t. The
reduction relation (also denoted �−→v) is the smallest that satisfies the following rules

(λx.t)v �−→v {v/x}t
s �−→v s′

s t �−→v s′ t

t �−→v t′

s t �−→v s t′
.

The transitive closure of the reduction relation is denoted �−→∗v though the star may be
elided if it is obvious from the context.

The more generous operational semantics for the λ-calculus allows any term to be
the argument when defining β-reduction. Thus the more generous β-reduction rule is

(λx.s)t �−→ {t/x}s
where t is any term of the λ-calculus. The reduction relation �−→ and the transitive
closure thereof �−→∗ are obvious adaptations from those for the λv-calculus. Observe
that any reduction �−→v of λv-calculus is also a reduction �−→ of λ-calculus.

3.2 Traditional Combinatory Logic

A combinatory calculus is given by a finite collection O of operators (meta-variable O)
that are used to define theO-combinators (meta-variables M,N, X, Y, Z) built from these
by application

M,N ::= O | MN .

The O-combinatory calculus or O-calculus is given by the combinators plus their re-
duction rules.

Traditional combinatory logic can be represented by two combinators S and K [8]
so the S K-calculus has reduction rules

S MNX �−→ MX(NX)
KXY �−→ X .
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The combinator S MNX duplicates X as the argument to both M and N. The combinator
KXY eliminates Y and returns X. The reduction relation �−→ is as for λ-calculus.

Although this is sufficient to provide a direct account of functions in the style of
λ-calculus, an alternative is to consider the representation of arbitrary computable func-
tions that act upon combinators.

A symbolic function is defined to be an n-ary partial functionG of some combinatory
logic, i.e. a function of the combinators that preserves their equality, as determined
by the reduction rules. That is, if Xi = Yi for 1 ≤ i ≤ n then G(X1, X2, . . . , Xn) =
G(Y1, Y2, . . . , Yn) if both sides are defined. A symbolic function is restricted to a set of
combinators, e.g. the normal forms, if its domain is within the given set.

A combinator G in a calculus represents G if

GX1 . . . Xn = G(X1, . . . , Xn)

whenever the right-hand side is defined. For example, the symbolic functions
S(X1, X2, X3) = X1X3(X2X3) and K(X1, X2) = X1 are represented by S and K, re-
spectively, in S K-calculus. Consider the symbolic function I(X) = X. In S KI-calculus
where I has the rule IY �−→ Y then I is represented by I. In both S KI-calculus and
S K-calculus, I is represented by any combinator of the form S KX since

S KXY �−→ KY(XY) �−→ Y .

For convenience define the identity combinator I in S K-calculus to be S KK.

3.3 Relations

One of the goals of combinatory logic is to give an equational account of variable bind-
ing and substitution, particularly as it appears in λ-calculus. In order to represent λ-
abstraction, it is necessary to have some variables to work with. Given O as before,
define the O-terms by

M,N ::= x | O | MN

where x is as in λ-calculus. Free variables, substitutions, and symbolic computations
are defined just as for O-calculus.

Given a variable x and term M define a symbolic function G on terms by

G(X) = {X/x}M .
Note that if M has no free variables other than x then G is also a symbolic computation
of the combinatory logic. If every such function G on O-combinators is representable
then theO-combinatory logic is combinatorially complete in the sense of Curry [8, p. 5].

Given S and K then G above can be represented by a term λ∗x.M given by

λ∗x.x = I
λ∗x.y = Ky if y � x

λ∗x.O = KO
λ∗x.MN = S (λ∗x.M)(λ∗x.N) .

The following lemmas are central results of combinatory logic [8] and Theorem 2.3
of [20]. This is sufficient to show there is a homomorphism from λv-calculus to any
combinatory calculus that represents S and K.
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Lemma 1. For all terms M and N and variables x there is a reduction (λ∗x.M) N �−→∗
{N/x}M.

Lemma 2. Any combinatory calculus that is able to represent S and K is combinato-
rially complete.

Theorem 1. There is a homomorphism (Definition 2) from λ-calculus into S K-
calculus.

Proof. Compositionality, name invariance, and preservation of application hold by con-
struction. Operational correspondence and divergence reflection can by proved via
Lemma 2.

Below is a standard translation from S K-calculus into λ-calculus that preserves re-
duction and supports the following lemma [8, 3].

[[S ]] = λg.λ f .λx.g x ( f x) [[K]] = λx.λy.x [[MN]] = [[M]] [[N]]

Lemma 3 (Theorem 2.3.3 of [11]). Translation from S K-calculus to λ-calculus pre-
serves the reduction relation.

Theorem 2. There is a homomorphism (Definition 2) from S K-calculus into λ-
calculus.

Proof. Compositionality and preservation of application hold by construction. Name
invariance is trivial. Operational correspondence and divergence reflection are proved
via Lemma 3.

Although the top left corner of the computation square is populated by λv-calculus,
the arrows out allow for either λv-calculus or S K-calculus to be used. Indeed, the ho-
momorphisms in both directions between λ-calculus and S K-calculus allow these two
calculi to be considered equivalent.

4 Sequential Intensional Computation

Intuitively intensional functions are more expressive than merely extensional functions,
however populating the top right corner of the computation square requires more for-
mality than intuition. The cleanest account of this is by considering combinatory logic.

Even in S K-calculus there are Turing-computable functions defined upon the combi-
nators that cannot be represented within S K-calculus. For example, consider the func-
tion that reduces any combinator of the form S KX to X. Such a function cannot be
represented in S K-calculus, or λ-calculus, as all combinators of the form S KX repre-
sent the identity function. However, such a function is Turing-computable and defin-
able upon the combinators. This is an example of a more general problem of factorising
combinators that are both applications and stable under reduction.

Exploiting this factorisation is S F-calculus [20] that is able to support intensional
functions on combinators including a structural equality of normal forms. Thus S F-
calculus sits at the top right hand corner of the computation square. The arrow across
the top of the square is formalised by showing a homomorphism from S K-calculus into
S F-calculus. The lack of a converse has been proven by showing that the intensionality
of S F-calculus cannot be represented within S K-calculus, or λ-calculus [20].
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4.1 Symbolic Functions

Symbolic functions need not be merely extensional, indeed it is possible to define sym-
bolic functions that consider the structure of their arguments. Observe that each operator
O has an arity given by the minimum number of arguments it requires to instantiate a
rule. Thus, K has arity 2 while S has arity 3. A partially applied operator is a combina-
tor of the form OX1 . . . Xk where k is less than the arity of O. An operator with a positive
arity is an atom (meta-variable A). A partially applied operator that is an application is
a compound. Hence, the partially applied operators of S K-calculus are the atoms S and
K, and the compounds S M, S MN and KM for any M and N.

Now define a factorisation function F on combinators by

F (A,M,N) �−→ M if A is an atom
F (XY,M,N) �−→ NXY if XY is a compound.

Lemma 4 (Theorem 3.2 of [20]). Factorisation of S K-combinators is a symbolic com-
putation that is not representable within S K-calculus.

Proof. Suppose that there is an S K-combinator F that represents F . Then, for any
combinator X it follows that F(S KX)S (KI) �−→ KI(S K)X �−→ X. Translating this to λ-
calculus as in Lemma 1 yields [[F(S KX)S (KI)]] �−→ [[X]] and also [[F(S KX)S (KI)]] =
[[F]] [[(S KX)]] [[S ]] [[KI]] �−→ [[F]] (λx.x) [[S ]] [[KI]]. Hence, by confluence of reduction
in λ-calculus, all [[X]] share a reduct with [[F]] (λx.x) [[S ]] [[KI]] but this is impossible
since [[S ]] and [[K]] are distinct normal forms. Hence F cannot be represented by an
S K-combinator.

4.2 SF-calculus

When considering intensionality in a combinatory logic it is tempting to specify a fac-
torisation combinator F as a representative for F . However,F is defined using partially
applied operators, which cannot be known until all reduction rules are given, including
those for F. This circularity of definition is broken by beginning with a syntactic char-
acterisation of the combinators that are to be factorable.

The S F-calculus [20] has factorable forms given by S | S M | S MN | F | FM | FMN
and reduction rules

S MNX �−→ MX(NX)
FOMN �−→ M if O is S or F

F(XY)MN �−→ NXY if XY is a factorable form.

The expressive power of S F-calculus subsumes that of S K-calculus since K is here
defined to be FF and I is defined to be S KK as before.

Lemma 5. There is a homomorphism (Definition 2) from S K-calculus into S F-
calculus.

Theorem 3. There is a homomorphism (Definition 2) from λv-calculus to S F-calculus.

Proof. By Theorem 1 and Lemma 5.
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Lemma 6. There is no reduction preserving translation [[ · ]] from S F-calculus to λv-
calculus.

Proof. By Lemma 4.

Theorem 4. There is no homomorphism (Definition 2) from S F-calculus to λv-
calculus.

Proof. Lemma 6 shows that operational correspondence is impossible.

This completes the top edge of the computation square by showing that S F-calculus
subsumes λv-calculus and that the subsumption is irreversible. Indeed, these results hold
for λ-calculus [11, Theorem 5.2.6] and S K-calculus (by Lemma 4) as well.

5 Concurrent Extensional Computation

The bottom left corner of the computation square considers extensional concurrent com-
putation, here defined to be extensional process calculi that subsume λ-calculus. The
π-calculus [26] holds a pivotal rôle amongst process calculi due to popularity, being
the first to represent topological changes, and subsuming λv-calculus [24]. Note that
although there are many π-calculi, the one here is that used by Milner so as to more
easily exploit previous results [24] (and here augmented with a success process

√
).

The processes for the π-calculus are given as follows and exploit a class of names
(denoted m, n, x, y, z, . . . similar to variables in the λ-calculus):

P ::= 0 | P |P | !P | (νa)P | a(b).P | a〈b〉.P | √ .
The names of the π-calculus are used for channels of communication and for informa-
tion being communicated. The free names of a process fn(P) are as usual. Substitutions
in the π-calculus are partial functions that map names to names, with domain, range,
free names, names, and avoidance, all straightforward adaptations from substitutions
of the λ-calculus. The application of a substitution to a process is defined in the usual
manner. Issues where substitutions must avoid restricted or input names are handled
by α-conversion =α that is the congruence relation defined in the usual manner. The
general structural equivalence relation ≡ is defined by:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
!P ≡ P | !P (νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P

P | (νn)Q ≡ (νn)(P |Q) if n� fn(P)

The π-calculus has one reduction rule given by

a(b).P | a〈c〉.Q �−→ {c/b}P | Q .
The reduction rule is then closed under parallel composition, restriction and structural
equivalence to yield the reduction relation �−→ as follows:

P �−→ P′

P | Q �−→ P′ | Q
P �−→ P′

(νn)P �−→ (νn)P′
P ≡ Q Q �−→ Q′ Q′ ≡ P′

P �−→ P′
.
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Now that the π-calculus and process calculus concepts are recalled, it remains to
demonstrate that Milner’s encoding [24] can meet the criteria for a parallel encoding.
As the βv-reduction rule depends upon the argument being a value the translation into
π-calculus must be able to recognise values. Thus, Milner defines the following

[[y := λx.t]]
def
= !y(w).w(x).w(c).[[t]]c [[y := x]]

def
= !y(w).x〈w〉 .

Also the following translation of λv-terms

[[v]]c
def
= (νy)c〈y〉.[[y := v]] y not free in v

[[s t]]c
def
= (νq)(νr)(ap(c, q, r) | [[s]]q | [[t]]r)

ap(p, q, r)
def
= q(y).(νv)y〈v〉.r(z).v〈z〉.v〈p〉 .

Lemma 7. The translation [[ · ]]c preserves and reflects reduction. That is:

1. If s �−→v t then [[ s ]]c �=⇒∼ [[ t ]]c;
2. if [[ s ]]c �−→ Q then there exists Q′ and s′ such that Q �=⇒ Q′ and Q′ ∼ [[ s′ ]]c and

either s �−→v s′ or s = s′.

Proof. The first part can be proved by exploiting Milner’s Theorem 7.7 [24]. The sec-
ond is by considering the reduction [[ s ]]c �−→ Q which must arise from the encoding of
an application. It is then straightforward to show that either: the reductions Q �=⇒ Q′
correspond only to translated applications and thus Q′ ∼ [[ s ]]c; or the reductions are
due to a λv-abstraction and thus Q′ ∼ [[ s′ ]]c and s �−→v s′.

Theorem 5. The translation [[·]]c is a parallel encoding (Definition 4) from λv-calculus
to π-calculus.

Proof. Compositionality, parallelisation, and name invariance hold by construction.
Operational correspondence follows from Lemma 7. Divergence reflection can be
proved by observing that the only reductions introduced in the translation that do not
correspond to reductions in the source language are from translated applications, and
these are bounded by the size of the source term.

There is some difficulty in attempting to define the analogue of a parallel encoding or
homomorphism from a language with a parallel composition operator into a language
without. However, this difficulty can be avoided by observing that any valid encoding,
parallel encoding, or homomorphism must preserve reduction. Reduction preservation
can then be exploited to show when an encoding is impossible. Here this is by exploit-
ing Theorem 14.4.12 of Barendregt [3], showing that λ-calculus is unable to render
concurrency or support concurrent computations.

Theorem 6. There is no reduction preserving encoding of π-calculus into λ-calculus.

Proof. Define the parallel-or function and show that it can be represented in π-calculus
but not λ-calculus. The parallel-or function is a function g(x, y) that satisfies the fol-
lowing three rules g(⊥,⊥) �−→∗ ⊥ and g(T,⊥) �−→∗ T and g(⊥, T) �−→∗ T where
⊥ represents non-termination and T represents true. Such a function is trivial to encode
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in π-calculus by g(n1, n2) = G = n1(x).m〈x〉.0 | n2(x).m〈x〉.0. Consider G in parallel
with two processes P1 and P2 that output their result on n1 and n2, respectively. If either
P1 or P2 outputs T then G will also output T along m. Clearly π-calculus can represent
the parallel-or function, and since Barendregt’s Theorem 14.4.12 shows that λ-calculus
cannot, there cannot be any reduction preserving encoding of π-calculus into λ-calculus.

6 Concurrent Intensional Computation

Intensionality in sequential computation yields greater expressive power so it is natural
to consider intensional concurrent computation. Intensionality in CPC is supported by
a generalisation of pattern-matching to symmetric pattern-unification that provides the
basis for defining interaction.

6.1 Concurrent Pattern Calculus

The patterns (meta-variables p, p′, p1, q, q′, q1, . . .) are built using a class of names fa-
miliar from π-calculus and have the following forms

p ::= λx | x | �x� | p • p

Binding names λx denote an input sought by the pattern. Variable names x may be
output or tested for equality. Protected names �x� can only be tested for equality. A
compound combines two patterns p and q, its components, into a pattern p • q and is
left associative. The atoms are patterns that are not compounds and the atoms x and �x�
are defined to know x. The binding names of a pattern must be pairwise distinct.

A communicable pattern contains no binding or protected names. Given a pattern
p, the binding names bn(p), variable names vn(p), and protected names pn(p), are as
expected, with the free names fn(p) being the union of variable and protected names.

A substitution σ (also denoted σ1, ρ, ρ1, θ, θ1, . . .) is a partial function from names to
communicable patterns. Otherwise substitutions and their properties are familiar from
earlier sections and are applied to patterns in the obvious manner. (Observe that protec-
tion can be extended to a communicable pattern by �p • q� = �p� • �q� in the application
of a substitution to a protected name.)

The symmetric matching or unification {p ‖ q} of two patterns p and q attempts to
unify p and q by generating substitutions upon their binding names. When defined, the
result is some pair of substitutions whose domains are the binding names of p and of q,
respectively. The rules to generate the substitutions are:

{x ‖ x} = {x ‖ �x�} = {�x� ‖ x} = {�x� ‖ �x�} def
= ({}, {})

{λx ‖ q} def
= ({q/x}, {}) if q is communicable

{p ‖ λx} def
= ({}, {p/x}) if p is communicable

{p1 • p2 ‖ q1 • q2} def
= (σ1 ∪ σ2 , ρ1 ∪ ρ2) if {pi ‖ qi} = (σi, ρi) for i ∈ {1, 2}

Two atoms unify if they know the same name. A binding name unifies with any com-
municable pattern to produce a binding for its underlying name. Two compounds unify
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if their corresponding components do; the resulting substitutions are given by taking
unions of those produced by unifying the components. Otherwise the patterns cannot
be unified and the unification is undefined.

The processes of CPC are the same as π-calculus except the input and output are
replaced by the case p→ P with pattern p and body P. A case with the null process as
the body p→ 0 may also be written p when no ambiguity may occur.

The free names of processes, denoted fn(P), are defined as usual for all the traditional
primitives and fn(p → P) = fn(p) ∪ (fn(P)\bn(p)) for the case. As expected the
binding names of the pattern bind their free occurrences in the body. The application
σP of a substitution σ to a process P is defined in the usual manner to avoid name
capture. For cases this ensures that substitution avoids the binding names in the pattern:
σ(p → P) = (σp) → (σP) if σ avoids bn(p). Renaming via α-conversion is defined in
the usual manner [14, 11, 15]. The general structural equivalence relation ≡ is defined
just as in π-calculus.

CPC has one interaction axiom given by

(p→ P) | (q→ Q) �−→ (σP) | (ρQ) if {p ‖ q} = (σ, ρ) .

It states that if the unification of two patterns p and q is defined and generates (σ, ρ), then
apply the substitutions σ and ρ to the bodies P and Q, respectively. If the matching of p
and q is undefined then no interaction occurs. The interaction rule is then closed under
parallel composition, restriction and structural equivalence in the usual manner. The
reflexive and transitive closure of �−→ is denoted �=⇒. Finally, the reference behavioural
equivalence relation ∼ for CPC is already well detailed [11, 13, 15].

6.2 Completing the Square

Support for both intensionality and concurrency places CPC at the bottom right corner
of the computation square. This section shows how S F-calculus and π-calculus can
both be subsumed by CPC, and thus completes the computation square.

Down the right side of the square there is a parallel encoding from S F-calculus into
CPC that also maps the combinators S and F to reserved names S and F, respectively.
The impossibility of finding a parallel encoding of CPC into S F-calculus is proved in
the same manner as the relation between λv-calculus and π-calculus. Interestingly, in
contrast with the parallel encoding of λ-calculus into π-calculus, the parallel encoding
of S F-calculus into CPC does not fix a reduction strategy for S F-calculus. This is
achieved by exploiting the intensionality of CPC to directly encode the reduction rules
for S F-calculus into an S F-reducing process, or S F-machine. In turn, this process can
then operate on translated combinators and so support reduction and rewriting.

The square is completed by showing a homomorphism from π-calculus into CPC,
and by showing that there cannot be any homomorphism (or indeed a more general
valid encoding) from CPC into π-calculus.

SF-calculus. The S F-calculus combinators can be easily encoded into patterns by
defining the construction (| · |), exploiting reserved names S and F, as follows

(|S |) def
= S (|F |) def

= F (|MN|) def
= (|M|) • (|N|) .
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!λc • (S • λm • λn • λx)→ c • (m • x • (n • x))
| !λc • (F • S • λm • λn)→ c • m
| !λc • (F • F • λm • λn)→ c • m
| !λc • (F • (S • λq) • λm • λn)→ c • (n • S • q)
| !λc • (F • (F • λq) • λm • λn)→ c • (n • F • q)
| !λc • (F • (S • λp • λq) • λm • λn)→ c • (n • (S • p) • q)
| !λc • (F • (F • λp • λq) • λm • λn)→ c • (n • (F • p) • q)
| !λc • (λu • λv • λw • λx • λy)
→ (νd)d • (u • v • w • x)→ d • λz→ c • (z • y)

| !λc • (λm • λn • λo • (λu • λv • λw • λx))
→ (νd)d • (u • v • w • x)→ d • λz→ c • (m • n • o • z)

| !λc • (λm • λn • (λu • λv • λw • λx) • λp)
→ (νd)d • (u • v • w • x)→ d • λz→ c • (m • n • z • p)

| !λc • (λm • (λu • λv • λw • λx) • λo • λp)
→ (νd)d • (u • v • w • x)→ d • λz→ c • (m • z • o • p)

Fig. 1. The S F-reducing process R

Observe that the first two rules map the operators to the same names. The third rule
maps application to a compound of the components (|M|) and (|N|).

By representing S F-calculus combinators in the pattern of a CPC case, the reduc-
tion is driven by cases that recognise a reducible structure and perform the appropriate
operations. The reduction rules can be captured by matching on the structure of the left
hand side of the rule and reducing to the structure on the right. So (considering each
possible instance for the F reduction rules) they can be encoded by cases as follows

S • λm • λn • λx → m • x • (n • x)

F • S • λm • λn → m

F • F • λm • λn → m

. . .

F • (F • λp • λq) • λm • λn → n • (F • p) • q .

These processes capture the reduction rules, matching the pattern for the left hand side
and transforming it to the structure on the right hand side. Of course these process do not
capture the possibility of reduction of a sub-combinator, so further rules are required.
Rather than detail them all, consider the example of a reduction MNOP �−→ MN′OP
that can be captured by

λm • (λu • λv • λw • λx) • λo • λp→ u • v • w • x→ λz→ m • z • o • p

This process unifies with a combinator MXOP where X is reducible (observable from
the structure), here binding the components of X to four names u, v, w and x. These
four names are then shared as a pattern, which can then be unified with another process
that can perform the reduction. The result will then (eventually) unify with λz and be
substituted back into m • z • o • p to complete the reduction.

To exploit these processes in constructing a parallel encoding requires the addition
of a name, used like a channel, to control application. Thus, prefix each pattern that
matches the structure of an S F-combinator with a binding name λc and add this to the



Expressiveness via Intensionality and Concurrency 219

result, e.g. λc • (F • S • λm • λn)→ c •m. Now the processes that handle each possible
reduction rule can be placed under a replication and in parallel composition with each
other. This yields the S F-reducing process R as shown in Figure 1 where the last four
replications capture reduction of sub-combinators.

The translation [[·]]c from S F-combinators into CPC processes is here parametrised
by a name c and combines application with a process ap(c,m, n). This is similar to
Milner’s encoding from λv-calculus into π-calculus and allows the parallel encoding to
exploit compositional encoding of sub-terms as processes and thus parallel reduction,
while preventing confusion of application.

The translation [[·]]c of S F-combinators into CPC, exploiting the S F-reducing pro-
cess R and reserved names S and F, is defined as follows:

[[S ]]c
def
= c • S | R [[F]]c

def
= c • F | R

[[MN]]c
def
= (νm)(νn)(ap(c,m, n) | [[M]]m | [[N]]n)

ap(c,m, n)
def
= m • λx→ n • λy→ c • (x • y) | R .

The following lemmas are at the core of the operational correspondence and diver-
gence reflection components of the proof of valid encoding, similar to Milner’s Theo-
rem 7.7 [24]. Further, it provides a general sense of how to capture the reduction of com-
binatory logics or similar rewrite systems. (Note that the results exploit that R | R ∼ R
to remove redundant copies of R [11, Theorem 8.7.2].)

Lemma 8. Given an S F-combinator M the translation [[M]]c has a reduction sequence
to a process of the form c • (|M|) | R.

Proof. The proof is by induction on the structure of M.

Lemma 9 (Theorem 7.1.2 of [11]). Given an S F-combinator M the translation [[M]]c

preserves reduction.

Proof. The proof is routine by considering each reduction rule and Lemma 8.

Lemma 10. The translation [[ · ]]c preserves and reflects reduction. That is:

1. If M �−→ N then [[ M ]]c �=⇒∼ [[ N ]]c;
2. if [[ M ]]c �−→ Q then there exists Q′ and N such that Q �=⇒ Q′ and Q′ ∼ [[ N ]]c and

either M �−→ N or M = N.

Proof. The first part can be proved by exploiting Lemmas 8 and 9. The second is by
considering the reduction [[ M ]]c �−→ Q which must arise from the encoding of an
application. It is then straightforward to show that either: the reductions Q �=⇒ Q′
correspond only to rebuilding the structure as in Lemma 8; or the reductions correspond
to a reduction M �−→ N and Q′ ∼ [[ N ]]c.

Theorem 7. The translation [[·]]c is a parallel encoding from S F-calculus to CPC.

Proof. Compositionality, parallelisation, and name invariance hold by construction.
Operational correspondence follows from Lemma 9. Divergence reflection can be
proved by observing that the only reductions introduced in the translation that do not
correspond to reductions in the source language are from translated applications, and
these are bounded by the size of the source term.
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The lack of an encoding of CPC (or even π-calculus) into S F-calculus can be proved
in the same manner as Theorem 6 for showing no encoding of π-calculus into λ-
calculus.

Theorem 8. There is no reduction preserving encoding from CPC into S F-calculus.

It may appear that the factorisation operator F adds some expressiveness that could
be used to capture the parallel-or function g. Perhaps use F to switch on the result of
the first function so that (assuming true is some operator T then) g(x, y) is represented
by FxT(K(Ky)) that reduces to T when x = T and to K(Ky)MN �=⇒ y when x = MN
that somehow is factorable but not terminating. However, this kind of attempt is equiv-
alent to exploiting factorisation to detect termination and turns out to be paradoxical as
demonstrated in the proof of Theorem 5.1 of [20].

This completes the arrow down the right side of the computation square. The rest of
this section discusses some properties of translations and the diagonal from the top left
to the bottom right corner of the square.

Observe that the parallel encoding from S F-calculus into CPC does not require
the choice of a reduction strategy, unlike Milner’s encodings from λ-calculus into π-
calculus. The structure of patterns and peculiarities of pattern-unification allow the re-
duction relation to be directly rendered by CPC. In a sense this is similar to the approach
in [12] of encoding the S F-combinators as the tape of a Turing Machine, the pattern
(| · |), and providing another process that reads the tape and performs operations upon
it, the S F-reducing process R. This approach can also be adapted in a straightforward
manner to support a parallel encoding of S K-calculus into CPC, that like the encoding
of S F-calculus does not fix a reduction strategy.

Theorem 9. There is a translation [[·]]c that is a parallel encoding from S K-calculus
into CPC.

The translation from S F-calculus to CPC presented here is designed to map appli-
cation to parallel composition (with some restriction and process R) so as to meet the
compositionality and parallelisation criteria for a parallel encoding. However, the con-
struction (| · |) can be used to provide a cleaner translation if these are not required (while
still supporting the other criteria). Consider an alternative translation [[·]]c parametrised

by a name c as usual and defined by [[M]]c def
= c • (|M|) | R.

π-calculus. Across the bottom of the computation square there is a homomorphism
from π-calculus into CPC. The converse separation result can be proved multiple ways
[14, 11, 15].

The translation [[ · ]] from π-calculus into CPC is homomorphic on all process forms
except for the input and output which are translated as follows:

[[a(b).P]]
def
= a • λb • in→ [[P]] [[a〈b〉.P]]

def
= a • b • λin→ [[P]]

Here in is a fresh name (due to the renaming policy to avoid all other names in the
translation) that prevents the introduction of new reductions due to CPC’s unification.
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Lemma 11 (Corollary 7.2.3 of [11]). The translation [[ · ]] from π-calculus into CPC
is a valid encoding.

Theorem 10. There is a homomorphism (Definition 3) from π-calculus into CPC.

Thus the translation provided above is a homomorphism from π-calculus into CPC.
Now consider the converse separation result.

Lemma 12 (Theorem 7.2.5 of [11]). There is no valid encoding of CPC into π-
calculus.

Proof (Sketch). Define the self-reducing CPC process P = n → √. Observe that P �⇓
and P | P ⇓. However, for every π-calculus process T such that T | T ⇓ it holds that T ⇓.
This is sufficient to show contradiction of any possible valid encoding.

Theorem 11. There is no homomorphism (Definition 3) from CPC into π-calculus.

7 Conclusions and Future Work

This work illustrates that there are increases in expressive power by shifting along two
dimensions from: extensional to intensional, and sequential to concurrent. This is seen
in the computation square relating λv-calculus, S F-calculus, π-calculus, and CPC

λv-calculus S F-calculus

π-calculus concurrent pattern calculus

�

�
� �

where the left side is extensional, the right side intensional, the top side sequential,
and the bottom side concurrent. The horizontal arrows are homomorphisms that map
application/parallel composition to itself. The vertical arrows are parallel encodings that
map application to parallel composition (with some extra machinery). Further, there are
no reverse arrows as each arrow signifies an increase in expressive power.

Such a square identifies relations that are more general than simply the choice of
calculi here. The top left corner could be populated by λv-calculus or λl-calculus with
minimal changes to the proofs. Alternatively, choosing λ-calculus or S K-calculus may
also hold, although a parallel encoding into π-calculus requires some work. The top
right corner could be populated by any of the structure complete combinatory log-
ics [20, 11]. It may also be possible to place a pattern calculus [21, 19], at the top
right. The bottom left corner is also open to many other calculi: monadic/polyadic syn-
chronous/asynchronousπ-calculus could replace π-calculus with no significant changes
to the results [11, 15]. Similarly there are, and will be, other process calculi that can take
the place of CPC at the bottom right. For Spi calculus [1] an encoding of S F-calculus
is delicate due to correctly handling reduction and not introducing infinite reductions or
blocking on Spi calculus primitives and reductions. For Psi calculi [4] the encoding can
be achieved very similarly to CPC, although the implicit computation component of Psi
calculi could simply allow for S F-calculus with the rest being moot. Although multi-
ple process calculi may populate the bottom right hand corner, the elegance of CPC’s
intensionality is illustrated by the construction (| · |) for combinatory logics and [12].
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Related Work. The choice of relations here is influenced by existing approaches. Ho-
momorphisms in the sequential setting are typical [8, 3, 10]. Valid encodings are pop-
ular [16–18, 22, 23, 31] albeit not the only approach as other ways to relate process
calculi are also used that vary on the choice to map parallel composition to parallel
composition (i.e. homomorphism here) [28, 6, 9, 27, 31]. Since the choice here is to
build on prior results, valid encodings are the obvious basis but no doubt this could be
formalised under different criteria. Finally, the definition of parallel encodings here is
to exploit the existing encodings in the literature. However, other approaches are pos-
sible [24, 29] and many more as encoding λ-calculus into process calculi is common
[5, 26, 7, 25].

The separation results here build upon results already in the literature. For showing
the inability to encoding concurrent languages into sequential, the work of Abramsky
[2] and Plotkin [30] can also be considered. The impossibility of encoding CPC into
π-calculus can be proved by using matching degree or symmetry [11, proofs for Theo-
rem 7.2.5].

Future Work. Future work may proceed along several directions. The techniques used
to encode S F-calculus (here) and Turing Machines [12] into CPC can be generalised
for any combinatory logic, indeed perhaps a general result can be proved for all similar
rewrite systems. Another path of exploration is to consider intensionality in concurrency
with full results in a general manner, this could include formalising the intensionality
(or lack of) of Spi calculus, Psi calculi, and other popular process calculi.
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Abstract. We study the problem of streaming regular expression pars-
ing: Given a regular expression and an input stream of symbols, how to
output a serialized syntax tree representation as an output stream during
input stream processing.

We show that optimally streaming regular expression parsing, out-
putting bits of the output as early as is semantically possible for any
regular expression of size m and any input string of length n, can be
performed in time O(2m logm + mn) on a unit-cost random-access ma-
chine. This is for the wide-spread greedy disambiguation strategy for
choosing parse trees of grammatically ambiguous regular expressions. In
particular, for a fixed regular expression, the algorithm’s run-time scales
linearly with the input string length. The exponential is due to the need
for preprocessing the regular expression to analyze state coverage of its
associated NFA, a PSPACE-hard problem, and tabulating all reachable
ordered sets of NFA-states.

Previous regular expression parsing algorithms operate in multiple
phases, always requiring processing or storing the whole input string
before outputting the first bit of output, not only for those regular ex-
pressions and input prefixes where reading to the end of the input is
strictly necessary.

1 Introduction

In programming, regular expressions are often used to extract information from
an input, which requires an intensional interpretation of regular expressions as
denoting parse trees, and not just their ordinary language-theoretic interpreta-
tion as denoting strings.

This is a nontrivial change of perspective. We need to deal with grammatical
ambiguity—which parse tree to return, not just that it has one—and memory
requirements become a critical factor: Deciding whether a string belongs to the
language denoted by (ab) + (a+ b) can be done in constant space, but out-
putting the first bit, whether the string matches the first alternative or only
the second, may require buffering the whole input string. This is an instructive
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case of deliberate grammatical ambiguity to be resolved by the prefer-the-left-
alternative policy of greedy disambiguation: Try to match the left alternative;
if that fails, return a match according to the right alternative as a fallback.
Straight-forward application of automata-theoretic techniques does not help:
(ab) + (a+ b) denotes the same language as (a + b), which is unambiguous
and corresponds to a small DFA, but is also useless: it doesn’t represent any
more when a string consists of a sequence of ab-groups.

Previous parsing algorithms [9,3,5,10,13,6] require at least one full pass over
the input string before outputting any output bits representing the parse tree.
This is the case even for regular expressions requiring only bounded lookahead
such as one-unambiguous regular expressions [1].

In this paper we study the problem of optimally streaming parsing. Consider
(ab) + (a+ b), which is ambiguous and in general requires unbounded input
buffering, and consider the particular input string ab . . . abaababababab . . .. An
optimally streaming parsing algorithm needs to buffer the prefix ab . . . ab in some
form because the complete parse might match either of the two alternatives in
the regular expression, but once encountering aa, only the right alternative is
possible. At this point it outputs this information and the output representation
for the buffered string as parsed by the second alternative. After this, it outputs
a bit for each input symbol read, with no internal buffering: input symbols are
discarded before reading the next symbol. Optimality means that output bits
representing the eventual parse tree must be produced earliest possible: as soon
as they are semantically determined by the input processed so far under the
assumption that the parse will succeed.

Outline. In Section 2 we recall the type interpretation of regular expressions,
where a regular expression denotes parse trees, along with the bit-coding of
parse trees.

In Section 3 we introduce a class of Thompson-style augmented nondeter-
ministic finite automata (aNFAs). Paths in such an aNFA naturally represent
complete parse trees, and paths to intermediate states represent partial parse
trees for prefixes of an input string.

We recall the greedy disambiguation strategy in Section 4, which specifies a
deterministic mapping of accepted strings to NFA-paths.

Section 5 contains a definition of what it means to be an optimally streaming
implementation of a parsing function.

We define what it means for a set of aNFA-states to cover another state in
Section 6, which constitutes the computationally hardest part needed in our
algorithm.

Section 7 contains the main results. We present path trees as a way of or-
ganizing partial parse trees, and based on these we present our algorithm for
an optimally streaming parsing function and analyze its asymptotic run-time
complexity.

Finally, in Section 8, the algorithm is demonstrated by illustrative examples
alluding to its expressive power and practical utility.
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2 Preliminaries

In the following section, we recall definitions of regular expressions and their
interpretation as types [10].

Definition 1 (Regular Expression). A regular expression (RE) over a finite
alphabet Σ is an expression E generated by the grammar

E ::= 0 | 1 | a | E1E2 | E1 + E2 | E
1

where a ∈ Σ.

Concatenation (juxtaposition) and alternation (+) associates to the right; paren-
theses may be inserted to override associativity. Kleene star (�) binds tightest,
followed by concatenation and alternation.

The standard interpretation of regular expressions is as descriptions of regular
languages.

Definition 2 (Language Interpretation). Every RE E denotes a language
L�E� ⊆ Σ given as follows:

L�0� = ∅ L�E1E2� = L�E1�L�E2� L�a� = {a}
L�1� = {ε} L�E1 + E2� = L�E1� ∪ L�E2� L�E

1 � = ⋃
n≥0 L�E1�n

where we have A1A2 = {w1w2 | w1 ∈ A1, w2 ∈ A2}, and A0 = {ε} and An+1 =
AAn.

Proviso: Henceforth we shall restrict ourselves to REs E such that L�E� �= ∅.
For regular expression parsing, we consider an alternative interpretation of

regular expressions as types.

Definition 3 (Type Interpretation). Let the syntax of values be given by

v ::= () | inl v1 | inr v1 | 〈v1, v2〉 | [v1, v2, ..., vn]

Every RE E can be seen as a type describing a set T �E� of well-typed values:

T �0� = ∅ T �E1E2� = {〈v1, v2〉 | v1 ∈ T �E1�, v2 ∈ T �E2�}
T �1� = {()} T �E1 + E2� = {inl v | v ∈ T �E1�} ∪ {inr v | v ∈ T �E2�}
T �a� = {a} T �E

1 � = {[v1, . . . , vn] | n ≥ 0 ∧ ∀1 ≤ i ≤ n.vi ∈ T �E1�}
We write |v| for the flattening of a value, defined as the word obtained by doing
an in-order traversal of v and writing down all the symbols in the order they
are visited. We write Tw�E� for the restricted set {v ∈ T �E� | |v| = w}. Regular
expression parsing is a generalization of the acceptance problem of determining
whether a word w belongs to the language of some RE E, where additionally we
produce a parse tree from Tw�E�. We say that an RE E is ambiguous iff there
exists a w such that |Tw�E�| > 1.

Any well-typed value can be serialized into a sequence of bits.
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Definition 4 (Bit-Coding). Given a value v ∈ T �E�, we denote its bit-code
by �v� ⊆ {0, 1}, defined as follows:

�()� = ε �a� = ε �inl v� = 0 �v�
�〈v1, v2〉� = �v1� �v2� �[v1, ..., vn]� = 0 �v1� ... 0 �vn� 1 �inr v� = 1 �v�

We write B�E� for the set {�v� | v ∈ T �E�} and Bw�E� for the set restricted to
bit-codes for values with a flattening w. Note that for any RE E, bit-coding is
an isomorphism when seen as a function �·�E : T �E� → B�E�.

3 Augmented Automata

In this section we recall from [6] the construction of finite automata from regu-
lar expressions. Our construction is similar to that of Thompson [15], but aug-
mented with extra annotations on non-deterministic ε-transitions. The resulting
automata can be seen as non-deterministic transducers which for each accepted
input string in the language of the underlying regular expression outputs the
bit-codes for the corresponding parse trees.

Definition 5 (Augmented Non-deterministic Finite Automaton). An
augmentednon-deterministic finite automaton (aNFA) is a tuple (State, δ, qin, qfin),
where State is a finite set of states, qin, qfin ∈ State are initial and final states, re-
spectively, and δ ⊆ State × Γ × State is a labeled transition relation with labels
Γ = Σ & {0, 1, ε}.

Transition labels are divided into the disjoint sets Σ (symbol labels); {0, 1} (bit-
labels); and {ε} (ε-labels). Σ-transitions can be seen as input actions, and bit-
transitions as output actions.

Definition 6 (aNFA construction). Let E be an RE and define an aNFA
ME = (StateE , δE , q

in
E , q

fin
E ) by induction on E. We give the definition diagram-

matically by cases:

E ME

0 qin qfin

1 qin (qin = qfin)

a qin qfin
a

E1E2 qin q′ qfin
ME1 ME2

E ME

E1 + E2 qin

q1

q2

q′1

q′2

qfin

0

1

ε

ε

ME1

ME2

E
1

qin q′ qfin

q1 q′1
ME1

ε 1

0 ε

In the above, the notation q1 q2M means that q1, q2 are initial and final

states, respectively, in some (sub-)automaton M .

See Figure 1 for an example.
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Fig. 1. Example automaton for the RE (a+ b)�b

Definition 7 (Path). A path in an aNFA is a finite non-empty sequence
α ∈ State of the form α = p0 p1 ... pn−1 such that for each i < n, we have
(pi, γi, pi+1) ∈ δE for some γi. As a shorthand for this fact we might write

p0
α� pn−1 (note that a single state is a path to itself).

Each path α is associated with a (possibly empty) sequence of labels lab(α): we
let read(α) and write(α) refer to the corresponding subsequences of lab(α) filtered

by Σ and {0, 1}, respectively. An automaton accepts a word w iff qin
α� qfin for

some α where read(α) = w. There is a one-to-one correspondence between bit-
codes and accepting paths:

Proposition 1. For any RE E with aNFA ME, we have for each w ∈ L�E�
that

{write(α) | qin α� qfin, read(α) = w} = Bw�E�.
Determinization. Given a state set Q, define its closure as the set closure(Q) =

{q′ | q ∈ Q∧∃α.read(α) = ε∧ q α� q′}. For any aNFA M = (State, δ, qin, qfin), let
D(M) = (DStateM , IM , FM , ΔM ) be the deterministic automaton obtained by
applying the standard subset construction: Here, IM = closure({qin}) is the ini-
tial state, and DStateM ⊆ 2State is the set of states, defined to be the smallest set
containing IM and closed under the transition function ΔM (Q, a) = closure({q′ |
(q, a, q′) ∈ δ, q ∈ Q}). The set of final states FM is the set {Q ∈ DStateM | qfin ∈
Q}.

4 Disambiguation

A regular expression parsing algorithm has to produce a parse tree for an input
word whenever the word is in the language for the underlying RE. In the case
of ambiguous REs, the algorithm has to choose one of several candidates. We do
not want the choice to be arbitrary, but rather a parse tree which is uniquely
identified by a disambiguation policy. Since there is a one-to-one correspondence
between words in the language of an RE E and accepting paths in ME , a dis-
ambiguation policy can be seen as a deterministic choice between aNFA paths
recognizing the same string.

We will focus on greedy disambiguation, which corresponds to choosing the
first result that would have been found by a backtracking regular expression
parsing algorithm such as the one found in the Perl programming language [16].
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The greedy strategy has successfully been implemented in previous work [5,6],
and is simpler to define and implement than other strategies such as POSIX [8,4]
whose known parsing algorithms are technically more complicated [11,13,14].

Greedy disambiguation can be seen as picking the accepting path with the
lexicographically least bitcode. A well-known problem with backtracking parsing
is non-termination in the case of regular expressions with nullable subexpressions
under Kleene star, which means that the lexicographically least path is not
always well-defined. This problem can easily be solved by not considering paths
with non-productive loops, as in [5].

5 Optimal Streaming

In this section we specify what it means to be an optimally streaming implemen-
tation of a function from sequences to sequences.

We write w ' w′′ if w is a prefix of w′′, that is ww′ = w′′ for some w′. Note
that ' is a partial order with greatest lower bounds for nonempty sets:

�
L = w

if w ' w′′ for all w′′ ∈ L and ∀w′.(∀w′′ ∈ S.w′ ' w′′) ⇒ w′ ' w.
�
L is the

longest common prefix of all words in L.

Definition 8 (Completions). The set of completions CE(w) of w in E is the
set of all words in L�E� that have w as a prefix:

CE(w) = {w′′ | w ' w′′ ∧ w′′ ∈ L�E�}.
Note that CE(w) may be empty.

Definition 9 (Extension). For nonempty CE(w) the unique extension ŵE of
w under E is the longest extension of w with a suffix such that all successful
extensions of w to an element of L�E� are also extensions of ŵ:

ŵE =

CE(w).

Word w is extended under E if w = ŵ; otherwise it is unextended.

Extension is a closure operation: ˆ̂w = ŵ; in particular, extensions are extended.

Definition 10 (Reduction). For empty CE(w) the unique reduction w̄E of w
under E is the longest prefix w′ of w such that CE(w

′) �= ∅.

Given parse function PE(·) : L�E� → B�E� for complete input strings, we can
now define what it means for an implementation of it to be optimally streaming:

Definition 11 (Optimally Streaming). The optimally streaming function
corresponding to PE(·) is

OE(w) =

{�
{PE(w

′′) | w′′ ∈ CE(w)} if CE(w) �= ∅
(
�
OE(w̄))' if CE(w) = ∅.
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The first condition expresses that after seeing prefix w the function must output
all bits that are a common prefix of all bit-coded parse trees of words in L�E�
that w can be extended to. The second condition expresses that as soon as it
is clear that a prefix has no extension to an element of L�E�, an indicator ' of
failure must be emitted, with no further output after that. In this sense OE is
optimally streaming: It produces output bits at the semantically earliest possible
time during input processing.

It is easy to check that OE is a streaming function:

w ' w′ ⇒ OE(w) ' OE(w
′)

The definition has the, at first glance, surprising consequence that OE may
output bits for parts of the input it has not even read yet:

Proposition 2. OE(w) = OE(ŵ)

E.g. for E = (a + a)(a + a) we have OE(ε) = 00; that is, OE outputs 00 off
the bat, before reading any input symbols, in anticipation of aa being the only
possible successful extension. Assume the input is ab. After reading a it does
not output anything, and after reading b it outputs ' to indicate a failed parse,
the total output being 00'.

6 Coverage

Our algorithm is based on simulating aNFAs in lock-step, maintaining a set of
partial paths reading the prefix w of the input that has been consumed so far.
In order to be optimally streaming, we have to identify partial paths which are
guaranteed not to be a prefixes of a greedy parse for a word in CE(w).

In this section, we define a coverage relation which our parsing algorithm
relies on in order to detect the aforementioned situation. In the following, fix an
RE E and its aNFA ME = (StateE , δE , q

in
E , q

fin
E ).

Definition 12 (Coverage). Let p ∈ StateE be a state and Q ⊆ StateE a state
set. We say that Q covers p, written Q 4 p, iff

{read(α) | q α� qfin, q ∈ Q} ⊇ {read(β) | p β� qfin} (1)

Coverage can be seen as a slight generalization of language inclusion. That is,
if Q 4 p, then every word suffix read by a path from p to the final state can also
be read by a path from one of the states in Q to the final state.

Let Me refer to the automaton obtained by reversing the direction of all
transitions and swapping the initial and final states. It can easily be verified
that if (1) holds for some Q, p, then the following property also holds in the
reverse automaton ME :

{read(α) | qin α� q, q ∈ Q} ⊇ {read(β) | qin α� p} (2)
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If we consider D(ME), the deterministic automaton generated from ME , then
we see that (2) is satisfied iff

∀S ∈ DStateME
. p ∈ S ⇒ Q ∩ S �= ∅ (3)

This is true since a DFA state S is reachable by reading a word w in D(ME)
iff every q ∈ S is reachable by reading w in ME . Since a DFA accepts the same
language as the underlying aNFA, this implies that condition (2) must hold iff
Q has a non-empty intersection with all DFA states containing p.

The equivalence of (1) and (3) gives us a method to decide 4 in an aNFA M ,
provided that we have computedD(M) beforehand. Checking (3) for a particular
Q and p can be done by intersecting all states of DStateME

with Q, using time

O(|Q||DStateME
|) = O(|Q|2O(m)), where m is the size of the RE E.

The exponential cost appears to be unavoidable – the problem of deciding
coverage is inherently hard to compute:

Proposition 3. The problem of deciding coverage, that is the set {(E,Q, p) |
Q ⊆ StateE ∧Q 4 p}, is PSPACE-hard.

Proof. We can reduce regular expression equivalence to coverage: Given regular
expressions E and F , produce an aNFA ME+F for E + F and observe that ME

andMF are subautomata. Now observe that there is a path qinE+F
α� qfinE (respec-

tively qinE+F

β� qfinF ) inME+F iff there is a path qinE
α′
� qfinE with read(α) = read(α′)

in ME (respectively qinF
β′
� qfinF with read(β) = read(β′) in MF ). Hence, we have

{qinF } 4 qinE in ME+F iff L�E� ⊆ L�F �. Since regular expression containment is
PSPACE-complete [12] this shows that coverage is PSPACE-hard. *+

Even after having computed a determinized automaton, the decision version
of the coverage problem is still NP-complete, which we show by reduction to
and from Min-Cover, a well-known NP-complete problem. Let State-Cover
refer to the problem of deciding membership for the language {(M,D(M), p, k) |
∃Q. |Q| = k ∧ p �∈ Q ∧Q 4 p in M}. Recall that Min-Cover is the problem of
deciding membership for the language {(X,F , k) | ∃C ⊆ F .|C| = k ∧X =

⋃
C}.

Proposition 4. State-Cover is NP-complete.

Proof. State-Cover⇒Min-Cover: Let (M,D(M), p, k) be given. DefineX =
{S ∈ DStateM | p ∈ S} and F = {Rq | q ∈

⋃
X} where Rq = {S ∈ X | q ∈ S}.

Then any k-sized set cover C = {Rq1 , ..., Rqk} gives a state cover Q = {q1, ..., qk}
and vice-versa.

Min-Cover ⇒ State-Cover: Let (X,F , k) be given, where |X | = m and
|F| = n. Construct an aNFA MX,F over the alphabet Σ = X & {$}. Define its
states to be the set {qin, qfin, p} ∪ {F1, ..., Fn}, and for each Fi, add transitions

Fi
$→ qfin and qin

xij→ Fi for each xij ∈ Fi. Finally add transitions p
$→ qfin and

qin
x→ p for each x ∈ X .

Observe that D(MX,F) will have states {{qin}, {qfin}} ∪ {Sx | x ∈ X} where
Sx = {F ∈ F | x ∈ F} ∪ {p}, and Δ({qin}, x) = Sx. Also, the time to
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compute D(MX,F) is bounded by O(|X ||F|). Then any k-sized state cover
Q = {F1, ..., Fk} is also a set cover. *+

7 Algorithm

Our parsing algorithm produces a bit-coded parse tree from an input string w
for a given RE E. We will simulateME in lock-step, reading a symbol from w in
each step. The simulation maintains a set of all partial paths that read the prefix
of w that has been consumed so far; there are always only finitely many paths
to consider, since we restrict ourselves to paths without non-productive loops.
When a path reaches a non-deterministic choice, it will “fork” into two paths
with the same prefix. Thus, the path set can be represented as a tree of states,
where the root is the initial state, the edges are transitions between states, and
the leaves are the reachable states.

Definition 13 (Path Trees). A path tree is a rooted, ordered, binary tree with
internal nodes of outdegrees 1 or 2. Nodes are labeled by aNFA-states and edges
by Γ = Σ ∪ {0, 1} ∪ {ε}. Binary nodes have a pair of 0- and 1-labeled edges (in
this order only), respectively.

We use the following notation:

– root(T ) is the root node of path tree T .
– path(n, c) is the path from n to c, where c is a descendant of n.
– init(T ) is the path from the root to the first binary node reachable or to the

unique leaf of T if it has no binary node.
– leaves(T ) is the ordered list of leaf nodes.
– Trempty is the empty tree.

As a notational convenience, the tree with a root node labeled q and no children
is written q〈·〉, where q is an aNFA-state. Similarly, a tree with a root labeled
q with children l and r is written q〈0 : l, 1 : r〉, where q is an aNFA-state and
l and r are path trees and the edges from q to l and r are labeled 0 and 1,
respectively. Unary nodes are written q〈� : c〉, denoting a tree rooted at q with
only one �-labelled child c.

In the following we shall use Tw to refer to a path tree created after processing
input word w and T to refer to path trees in general, where the input string giving
rise to the tree is irrelevant.

Definition 14 (Path Tree Invariant). Let Tw be a path tree and w a word.
Define I(Tw) as the proposition that all of the following hold:

(i) The leaves(Tw) have pairwise distinct node labels; all labels are symbol
sources, that is states with a single symbol transition, or the accept state.

(ii) All paths from the root to a leaf read w:
∀n ∈ leaves(Tw). read(path(root(Tw), n)) = w.

(iii) For each leaf n ∈ leaves(Tw) there exists w′′ ∈ CE(w) such that the bit-
coded parse of w′′ starts with write(path(root(Tw), n)).
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Algorithm 1. Optimally streaming greedy regular expression parsing algorithm

Require: An aNFA M , a coverage relation �, and an input stream S.
Ensure: The greedy leftmost parse tree, emitted in an optimally-streaming fashion.
1: function Stream-Parse(M , �, S)
2: w← ε
3: (Tε, )← closure(M, ∅, qin) 	 Initialize path tree as the output of closure
4: while S has another input symbol a do
5: if CE(wa) = ∅ then
6: return write(init(Tw)) followed by � and exit.

7: Twa ← Establish-Invariant(Tw, a,�)
8: Output new bits on the path to the first binary node in Twa, if any.
9: w← wa
10: if qfin ∈ leaves(Tw) then
11: return write(path(root(Tw), q

fin))
12: else
13: return write(init(Tw)) followed by �

Algorithm 2. Establishing invariant I(Twa)

Require: A path tree Tw satisfying invariant I(Tw), a character a, and a coverage
relation �.

Ensure: A path tree Twa satisfying invariant I(Twa).
1: function Establish-Invariant(Tw, a, �)
2: Remove leaves from Tw that do not have a transition on a.
3: Extend Tw to Twa by following all a-transitions.
4: for each leaf n in Twa do
5: (T ′, )← closure(M, ∅, n).
6: Replace the leaf n with the tree T ′ in Twa.

7: return prune(Twa,�)

(iv) For each w′′ ∈ CE(w) there exists n ∈ leaves(Tw) such that the bit-coded
parse of w′′ starts with write(path(root(Tw), n)).

The path tree invariant is maintained by Algorithm 2: line 2 establishes part i;
line 3 establishes part ii; and lines 4–7 establish part iii and iv.

Theorem 1 (Optimal Streaming Property). Assume extended w, CE(w) �=
∅. Consider the path tree Tw after reading w upon entry into the while-loop of
the algorithm in Algorithm 1. Then write(init(Tw)) = OE(w).

In other words, the initial path from the root of Tw to the first binary node
in Tw is the longest common prefix of all paths accepting an extension of w.
Operationally, whenever that path gets longer by pruning branches, we output
the bits on the extension.

Proof. Assume w extended, that is w = ŵ; assume CE(w) �= ∅, that is there
exists w′′ such that w ' w′′ and w′′ ∈ L�E�.
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Algorithm 3. Pruning algorithm

Require: A path tree T and a covering relation �.
Ensure: A pruned path tree T ′ where all leaves are alive.
1: function prune(T,�)
2: for each l in reverse(leaves(T )) do
3: S ← {n | n comes before l in leaves(T )}
4: if S � l then
5: p← parent(l)
6: Delete l from T
7: T ← cut(T, p)

8: return T
9: function cut(T, n) 	 Cuts a chain of 1-ary nodes.
10: if |children(n)| = 0 then
11: p← parent(n)
12: T ′ ← T with n removed
13: return cut(T ′, p)
14: else
15: return T

Claim: |leaves(Tw)| ≥ 2 or the unique node in leaves(Tw) is labeled by the
accept state. Proof of claim: Assume otherwise, that is |leaves(Tw)| = 1, but its
node is not the accept state. By i of I(Tw), this means the node must have a
symbol transition on some symbol a. In this case, all accepting paths CE(wa) =
CE(w) and thus ŵ = ŵa; in particular ŵ �= w, which, however, is a contradiction
to the assumption that w is extended.

This means we have two cases. The case |leaves(Tw)| = 1 with the sole node
being labeled by the accept state is easy: It spells a single path from initial to
accept state. By ii and iii of I(Tw) we have that that path is correct for w. By iv
and since the accept state has no outgoing transitions, we have CE(w) = {w},
and the theorem follows for this case.

Let us consider the case |leaves(Tw)| ≥ 2 then. Recall that CE(w) �= ∅ by
assumption. By iv of I(Tw) the accepting path of every w′′ ∈ CE(w) starts with
path(root(Tw), n) for some n ∈ leaves(Tw), and by iii each path from the root
to a leaf is the start of some accept path. Since |leaves(Tw)| ≥ 2 we know that
there exists a binary node in Tw. Consider the first on the path from the root to
a leaf. It has both 0- and 1-labeled out-edges. Thus the longest common prefix
of {write(p) | n ∈ leaves(Tw), p ∈ path(root(Tw), n)} is write(init(Tw)), the bits
on the initial path from the root of Tw to its first binary node. *+

The algorithm, as given, is only optimally streaming for extended prefixes. It
can be made to work for all prefixes by enclosing it in an outer loop that for each
prefix w computes ŵ and calls the given algorithm with ŵ. The outer loop then
checks that subsequent symbols match until ŵ is reached. By Proposition 2 the
resulting algorithm gives the right result for all input prefixes, not only extended
ones.
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Algorithm 4. ε-closure with path tree construction.

Require: An aNFA M , a set of visited states V , and a state q
Ensure: A path tree T and a set of visited states V ′

1: function closure(M,V, q)

2: if q
0→ ql and q

1→ qr then
3: (T l, Vl)← closure(M,V ∪ {q} , ql) 	 Try left option first.
4: (T r, Vlr)← closure(M,Vl, qr) 	 Use Vl to skip already-visited nodes.
5: return (q〈T l : T r〉, Vlr)

6: if q
ε→ p then

7: if p ∈ V then 	 Stop loops.
8: return (Trempty, V )
9: else
10: (T ′, V ′)← closure(M,V ∪ {q} , p)
11: return (q〈ε : T ′〉, V ′)

12: else 	 q is a symbol source or the final state.
13: return (q〈·〉, V )

Theorem 2. The optimally streaming algorithm can be implemented to run in
time O(2m logm +mn), where m = |E| and n = |w|.

Proof (Sketch). As shown in Section 6, we can decide coverage in time O(m2O(m)).
The set of ordered lists leaves(T ) for any T reachable from the initial state can be
precomputed and covered states marked in it. (This requires unit-cost random
access since there are O(2m logm) such lists.) The ε-closure can be computed in
time O(m) for each input symbol, and pruning can be amortized over ε-closure
computation by charging each edge removed to its addition to a tree path. *+

For fixed regular expression E this is linear time in n and thus asymptotically
optimal. An exponential in m as an additive preprocessing cost appears prac-
tically unavoidable since we require the coverage relation, which is inherently
hard to compute (Proposition 3).

8 Example

Consider the RE (aaa + aa). A simplified version of its aNFA is shown in
Figure 2. The following two observations are requirements for an earliest parse
of this expression:

– After one a has been read, the algorithm must output a 0 to indicate that
one iteration of the Kleene star has been made, but:

– five consecutive as determine that the leftmost possibility in the Kleene
star choice was taken, meaning that the first three as are consumed in that
branch.

The first point can be seen by noting that any parse of a non-zero number
of as must follow a path through the Kleene star. This guarantees that if a



236 N.B.B. Grathwohl, F. Henglein, and U.T. Rasmussen

successful parse is eventually performed, it must be the case that at least one
iteration was made.

The second point can be seen by considering the situation where only four
input as have been read: It is not known whether these are the only four or more
input symbols in the stream. In the former case, the correct (and only) parse is
two iterations with the right alternative, but in the latter case, the first three
symbols are consumed in the left branch instead.

These observations correspond intuitively to what “earliest” parsing is; as
soon as it is impossible that an iteration was not made, a bit indicating this fact
is emitted, and as soon as the first three symbols must have been parsed in the
left alternative, this fact is output. Furthermore, a 0-bit is emitted to indicate
that (at least) another iteration is performed.

Figure 2 shows the evolution of the path tree during execution with the RE
(aaa+ aa) on the input aaaaa.

By similar reasoning as above, after five as it is safe to commit to the left
alternative after every third a. Hence, for the inputs aaaaa(aaa)n, aaaaa(aaa)na,
and aaaaa(aaa)naa the “commit points” are placed as follows (· indicate end-
of-input):

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| ·
11

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| a·
01

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| aa·
1011

Complex coverage. The previous example does not exhibit any non-trivial cov-
erage, i.e., situations where a state n is covered by k > 1 other states. One
can construct an expression that contains non-trivial coverage relations by ob-
serving that if each symbol source s in the aNFA is associated with the RE
representing the language recognized from s, coverage can be expressed as a set
of (in)equations in Kleene algebra. Thus, the coverage {n0, n1} 4 n becomes
RE(n0) +RE(n1) ≥ RE(n) in KA, where RE(·) is the function that yields the
RE from a symbol source in an aNFA.

Any expression of the form x1zy1+x2zy2+x3z(y1+y2) satisfies the property
that two subterms cover a third. If the coverage is to play a role in the algorithm,
however, the languages denoted by x1 and x2 must not subsume that of x3,
otherwise the part starting with x3 would never play a role due to greedy leftmost
disambiguation.

Choose x1 = x2 = (aa), x3 = a, y1 = a, and y2 = b. Figure 3 shows the
expression

(aa)(za+ zb) + az(a+ b).

The earliest point where any bits can be output is when the z is reached.
Then it becomes known whether there was an even or odd number of as. Due
to the coverage {8, 13} 4 20 state 20 is pruned away on the input aazb, thereby
causing the path tree to have a large trunk that can be output.
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Fig. 2. Example run of the algorithm on the regular expression E = (aaa + aa)� and
the input string aaaaa. The dashed edges represent the partial parse trees that can be
emitted: thus, after one a we can emit a 0, and after five as we can emit 00 because
the bottom “leg” of the tree has been removed in the pruning step. The automaton for
E and its associated minimal covering relation are shown in the inset.
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Fig. 3. Example run of the algorithm on E = (aa)�(za+ zb) + a�z(a+ b). Note that
state 20 is covered by the combination of states 8 and 13. The earliest time the algo-
rithm can do a commit is when a z is encountered, which decides whether there is an
even or odd number of as. The topmost figure shows the evolution of the path tree on
the input aaazb. There is a long “trunk” from state 1 to state 21 after reading z, as the
rest of the branches have been pruned (not shown). The desired output, corresponding
to taking the rightmost option in the sum, can be read off the labels on the edges.
Likewise in the second figure, we see that if the z comes after an even number of as, a
binary-node-free path from 1 to 7 emerges. Due to the cover {8, 13} � 20, the branch
starting from 20 is not expanded further, even though there could be a z-transition
on it. This is indicated with �. Overall, the resulting parse tree corresponds to the
leftmost option in the sum.
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CSV files. The expression ((a+b)(;(a+b))n) defines the format of a simple
semicolon-delimited data format, with data consisting of words over {a, b} and
rows separated by the newline character, n. Our algorithm emits the partial
parse trees after each letter has been parsed, as illustrated on the example input
below:

a;ba;a

b;;b
a
000
| ;
10
| b
01
| a
00
| ;
10
| a
00
| n
11
| b
001
| ;
10
| ;
10
| a
00
| n
11
| ·
1

Due to the star-height of three, many widespread implementations would not
be able to meaningfully handle this expression using only the RE engine. Cap-
turing groups under Kleene stars return either the first or last match, but not
a list of matches—and certainly not a list of lists of matches! Hence, if using
an implementation like Perl’s [16], one is forced to rewrite the expression by
removing the iteration in the outer Kleene star and reintroduce it as a looping
construct in Perl.

9 Related and Future Work

Parsing regular expressions is not new [6,5,3,10,14], and streaming parsing of
XML documents has been investigated for more than a decade in the context of
XQuery and XPath—see, e.g., [2,7,17]. However, streaming regular expression
parsing appears to be new.

In earlier work [6] we described a compact “lean log” format for storing in-
termediate information required for two-phase regular expression parsing. The
algorithm presented here may degenerate to two passes, but requires often just
one pass in the sense being effectively streaming, using only O(m) work space,
independent of n. The preprocessing of the regular expression and the interme-
diate data structure durig input string processing are more complex, however. It
may be possible to merge the two approaches using a tree of lean log frames with
associated counters, observing that edges in the path tree that are not labeled
0 or 1 are redundant. This is future work.
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Abstract. We consider the problem of learning an unknown context-
free grammar when the only knowledge available and of interest to the
learner is about its structural descriptions with depth at most �. The
goal is to learn a cover context-free grammar (CCFG) with respect to
�, that is, a CFG whose structural descriptions with depth at most �
agree with those of the unknown CFG. We propose an algorithm, called
LA�, that efficiently learns a CCFG using two types of queries: structural
equivalence and structural membership. We show that LA� runs in time
polynomial in the number of states of a minimal deterministic finite cover
tree automaton (DCTA) with respect to �. This number is often much
smaller than the number of states of a minimum deterministic finite tree
automaton for the structural descriptions of the unknown grammar.

Keywords: automata theory and formal languages, structural descrip-
tions, grammatical inference.

1 Introduction

Angluin’s approach to grammatical inference [1] is an important contribution
to computational learning, with extensions to problems, such as compositional
verification and synthesis [4,11], that go beyond the usual applications to natural
language processing and computational biology [5].

Practical concerns, e.g. [9], seem to require going beyond regular languages to
classes of languages with regular tree nature. However, Angluin and Kharitonov
have shown that learning CFGs from membership and equivalence queries is
intractable under plausible cryptographic assumptions [2]. A way out is to learn
structural descriptions of context free languages. Sakakibara has shown that
Angluin’s algorithm extends to this setting [12]. His approach has applications
in learning the structural descriptions of natural languages, which describe the
shape of the parse trees of well chosen CFGs. Often, these structural descriptions
are subject to additional restrictions arising from modelling considerations. For
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instance, in natural language understanding, the bounded memory restriction on
human comprehension seems to limit the recursion depth of such a parse tree to
a constant. A natural example with a similar flavour is the limitation imposed by
the LATEX system, that limits the number of nestings of itemised environments
to a small constant.

Imposing such a restriction leads to the idea of learning cover languages,
that is, languages that are accurate up to an equivalence. For regular languages
modulo a finite prefix such an approach has been pursued by Ipate [8] (see also
[6]).

In this paper, we extend this approach to context-free languages with struc-
tural descriptions. We propose an algorithm called LA� which asks two types
of queries: structural equivalence and structural membership queries, both re-
stricted to structural descriptions with depth at most �, where � is a constant.
LA� stores the answers retrieved from the teacher in an observation table which
is used to guide the learning protocol and to construct a minimal DCTA of the
unknown context-free grammar with respect to �. Our main result shows that
LA� runs in time polynomial in n and m, where n is the number of states of a
minimal DCTA of the unknown CFG with respect to �, and m is the maximum
size of a counterexample returned by a failed structural membership query.

The paper is structured as follows. Section 2 introduces the basic notions and
results to be used later in the paper. It also describes algorithm LA. In Sect.
4 we introduce the main concepts related to the specification and analysis of
our learning algorithm LA�. They are natural generalisations to languages of
structural descriptions of the concepts proposed by Ipate [8] in the design and
study of his algorithm L�. In Sect. 5 we analyse the space and time complexity
of LA� and show that its time complexity is a polynomial in n and m, where n
is the number of states of a minimal deterministic finite cover automaton w.r.t.
� of the language of structural descriptions of interest, and m is an upper bound
to the size of counterexamples returned by failed structural equivalence queries.

2 Preliminaries

We write N for the set of nonnegative integers, A∗ for the set of finite strings
over a set A, and ε for the empty string. If v, w ∈ A∗, we write v ≤ w′ if there
exists w′ ∈ A∗ such that vw′ = w; v < v′ if v ≤ v′ and v �= v′; and v ⊥ w if
neither v ≤ w nor w ≤ v.

Trees, Terms, Contexts, and Context-Free Grammars

A ranked alphabet is a finite set F of function symbols together with a finite
rank relation rk(F) ⊆ F × N. We denote the subset {f ∈ F | (f,m) ∈ rk(F)}
by Fm, the set {m | (f,m) ∈ rk(F)} by ar(f), and

⋃
f∈F ar(f) by ar(F).

The terms of the set T (F) are the strings of symbols defined recursively by
the grammar t ::=a | f(t1, . . . , tm) where a ∈ F0 and f ∈ Fm with m > 0.
The yield of a term t ∈ T (F) is the finite string yield(t) ∈ F∗

0 defined as



Learning Cover Context-Free Grammars from Structural Data 243

follows: yield(a) := a if a ∈ F0, and yield(f(t1, . . . , tm)) := w1 . . . wm where
wi = yield(ti) for 1 ≤ i ≤ m.

A finite ordered tree over a set of labels F is a mapping t from a nonempty
and prefix closed set Pos(t) ⊆ (N \ {0})∗ into F . Each element in Pos(t) is
called a position. The tree t is ranked if F is a ranked alphabet, and t satisfies
the following additional property: For all p ∈ Pos(t), there exists m ∈ N such
that {i ∈ N | pi ∈ Pos(t)} = {1, . . . ,m} and t(p) ∈ Fm.

Thus, any term t ∈ T (F) may be viewed as a finite ordered ranked tree, and we
will refer to it by “tree” when we mean the finite ordered tree with the additional
property mentioned above. The depth of t is d(t) := max{‖p‖ | p ∈ Pos(t)} where
‖p‖ denotes the length of p as sequence of numbers. The size sz(t) of t is the
number of elements of the set {p ∈ Pos(t) | ‖p‖ �= d(t)}, that is, the number of
internal nodes of t.

The subterm t|p of a term t at position p ∈ Pos(t) is defined by the following:
Pos(t|p) := {i | pi ∈ Pos(t)}, and t|p(p′) := t(pp′) for all p′ ∈ Pos(t|p). We
denote by t[u]p the term obtained by replacing in t the subterm t|p with u, that
is: Pos(t[u]p) = (Pos(t)− {pp′ | p′ ∈ Pos(t|p)}) ∪ {pp′′ | p′′ ∈ Pos(u)}, and

t[u]p(p
′) :=

{
u(p′′) if p′ = pp′′ with p′′ ∈ Pos(u),
t(p′) otherwise.

The set C(F) of contexts over F is the set of terms over F ∪ {•}, where:

– • is a distinguished fresh symbol with ar(•) = {0}, called hole,
– rk(F ∪ {•}) = rk(F) ∪ {(•, 0)}, and
– every element C ∈ C(F) contains only one occurrence of •. This is the same

as saying that {p ∈ Pos(C) | C(p) = •} is a singleton set.

If C ∈ C(F) and u ∈ C(F) ∪ T (F) then C[u] stands for the context or term
C[u]p, where C(p) = •. The hole depth of a context C ∈ C(F) is d•(C) := ‖p‖
where p is the unique position of C such that C(p) = •. From now on, whenever
M is a set of terms, P is a set of contexts, and m is a non-negative integer, we
define the sets M[m] := {t ∈M | d(t) ≤ m} and P〈m〉 := {C ∈ P | d•(C) ≤ m}.

We assume that the reader is acquainted with the notions of CFG and the
context-free language L(G) generated by a CFG G, see, e.g., [13]. A CFG is
ε-free if it has no productions of the form X → ε. It is well known [7] that every
ε-free context-free language L (that is, ε �∈ L) is generated by an ε-free CFG.
The derivation trees of an ε-free CFG G = (N,Σ, P, S) correspond to terms from
T (N ∪ Σ) with ar(a) = {0} for al a ∈ Σ and ar(X) = {m | ∃(X → α) ∈ P
with ‖α‖ = m} for all X ∈ N . The sets DG(U) of derivation trees issued from
U ∈ N ∪Σ, and D(G) of derivation trees of G, are defined recursively as follows:

DG(a) := {a} if a ∈ Σ,

DG(X) :=
⋃

(X→U1...Um)∈P
{X(t1, . . . , tm) | t1 ∈ DG(U1) ∧ . . . ∧ tm ∈ DG(Um)},

D(G) := DG(S). Note that L(G) = {yield(t) | t ∈ D(G)}.
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Structural Descriptions and Cover Context-Free Grammars

A skeletal alphabet is a ranked alphabet Sk = {σ}, where σ is a special symbol
with ar(σ) a finite subset of N \ {0}, and a skeletal set is a ranked alphabet
Sk ∪ A where Sk ∩ A = ∅ and ar(a) = {0} for all a ∈ A. Skeletal alphabets are
intended to describe the structures of the derivation trees of ε-free CFGs. For an
ε-free CFG G = (N,Σ, P, S) we consider the skeletal alphabet Sk with ar(σ) :=
{‖α‖ | (X → α) ∈ P}, and the skeletal set Sk ∪ Σ. The skeletal (or structural)
description of a derivation tree t ∈ DG(U) is the term sk(t) ∈ T (Sk ∪Σ) where

sk(t) :=

{
a if t = a ∈ Σ,
σ(sk(t1), . . . , sk(tm)) if t = X(t1, . . . , tm) with m > 0.

For example, if G is the grammar ({S, A}, {a, b}, {S → A, A → aAb, A → ab}, S)
then t = S(A(a, A(a, b), b)) ∈ DG(S) and sk(t) = σ(σ(a, σ(a, b), b)) ∈ T ({σ, a, b}),
where ar(σ) = {1, 2, 3} and ar(a) = ar(b) = {0}. Graphically, we have

t =

S

A

a A

a b

b ⇒ sk(t) =

σ

σ

a σ

a b

b

IfM is a set of ranked trees, then the set of its structural descriptions isK(M) :=
{sk(t) | t ∈M}. Two context-free grammars G1 and G2 over the same alphabet
of terminals are structurally equivalent if K(D(G)) = K(D(G′)).

Definition 1 (cover CFG). Let � be a positive integer and GU be an ε-free
CFG of a language U ⊆ Σ∗. A cover context-free grammar of GU with respect
to � is an ε-free CFG G′ such that K(D(G′))[�] = K(D(GU ))[�].

Tree Automata

The definition of tree automaton presented here is equivalent with that given
in [12]. It is non-standard in the sense that it cannot accept any tree of depth 0.

Definition 2. A nondeterministic (bottom-up) finite tree automaton (NFTA)
over F is a quadruple A = (Q,F ,Qf, Δ) where Q is a finite set of states,
Qf ⊆ Q is the set of final states, and Δ is a set of transition rules of the form
f(q1, . . . , qm)→ q where m ≥ 1, f ∈ Fm, q1, . . . , qm ∈ F0 ∪ Q, and q ∈ Q.

Such an automaton A induces a move relation→A on the set of terms T (F ∪Q)
where ar(q) = {0} for all q ∈ Q, as follows:

t →A t′ if there exist C ∈ C(F ∪ Q) and f(q1, . . . , qm) → q ∈ Δ such that
t = C[f(q1, . . . , qm)] and t′ = C[q].
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The language accepted by A is L(A) := {t ∈ T (F) | t →∗
A q for some q ∈ Qf}

where →∗
A is the reflexive-transitive closure of →A. In this paper, a regular tree

language is a language accepted by such an NFTA. Two NFTAs are equivalent
if they accept the same language.
A = (Q,F ,Qf, Δ) is deterministic (DFTA) if the transition rules ofΔ describe

a mapping δ which assigns to everym ∈ ar(F) a function δm such that δ0 : F0 →
F0, δ0(a) = a for all a ∈ F0, and δm : Fm → (F0 ∪ Q)m → Q if m > 0. This
implies that f(q1, . . . , qm) → q ∈ Δ if and only if δm(f)(q1, . . . , qm) = q. The
extension δ∗ of {δm | m ∈ ar(F)} to T (F) is defined as expected: δ∗(a) = a if
a ∈ F0, and δ

∗(f(t1, . . . , tm)) := δm(f)(δ∗(t1), . . . , δ∗(tm)) otherwise. Note that,
if A is a DFTA then L(A) = {t ∈ T (F) | δ∗(t) ∈ Qf}.

Two DFTAs A1 = (Q,F ,Qf, δ) and A2 = (Q′,F ,Q′
f, δ

′) are isomorphic
if there exists a bijection ϕ : Q → Q′ such that ϕ(Qf) = Q′

f and for every
f ∈ Fm, q1, . . . , qm ∈ F0 ∪ Q, ϕ(δm(f)(q1, . . . , qm)) = δ′m(f)(ϕ(q1), . . . , ϕ(qm)).
A minimum DFTA of a regular tree language L ⊆ T (F) \F0 is a DFTA A with
minimum number of states such that L(A) = L.

There is a strong correspondence between tree automata and ε-free CFGs.
The NFTA corresponding to an ε-free CFG G = (N,Σ, P, S) is NA(G) =
(N,Sk ∪ Σ, {S}, Δ) with Δ := {σ(U1, . . . , Um) → X | (X → U1 . . . Um) ∈ P}.
Conversely, the ε-free CFG corresponding to an NFTA A = (Q, Sk ∪Σ,Qf, Δ)
over the skeletal set Sk ∪ Σ is G(A) = (Q ∪ {S}, Σ, P, S) where S is a fresh
symbol and P := {q → q1 . . . qm | (σ(q1, . . . , qm) → q) ∈ Δ} ∪ {S → q1 . . . qm |
(σ(q1, . . . , qm)→ q) ∈ Δ with q ∈ Qf}. These constructs are dual to each other,
in the following sense:

(A1) If G is an ε-free CFG then L(NA(G)) = K(D(G)). [12, Prop. 3.4]
(A2) If A = (Q, Sk ∪ Σ,Qf, Δ) is an NFTA for the skeletal set Sk ∪ Σ then

K(D(G(A))) = L(A). That is, the set of structural descriptions of G(A)
coincides with the set of trees accepted by A. [12, Prop. 3.6]

We recall the following well-known results: every NFTA is equivalent to an
DFTA [10], and every two minimal DFTAs are isomorphic [3].

Cover Tree Automata

Definition 3 (DCTA). Let � ∈ N+ and A be a tree language over the ranked
alphabet F . A deterministic cover tree automaton (DCTA) of A with respect to
� is a DFTA A over a skeletal set Sk ∪ F0 such that L(A)[�] = K(A)[�].

The correspondence between tree automata and ε-free CFGs is carried over to
a correspondence between cover tree automata and cover CFGs. More precisely,
it can be shown that if GU is an ε-free CFG, then a DFTA A is a DCTA of
K(D(GU )) w.r.t. � if and only if G(A) is a cover CFG of GU w.r.t. �.

3 Learning Context-Free Grammars

In [12], Sakakibara assumes a learner eager to learn a CFG which is structurally
equivalent with the CFG GU of an unknown context-free language U ⊆ Σ∗ by
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asking questions to a teacher. We assume that the learner and the teacher share
the skeletal set Sk∪Σ for the structural descriptions in K(D(GU )). The learner
can pose the following types of queries:

1. Structural membership queries: the learner asks if some s ∈ T (Sk ∪Σ) is in
K(D(GU )). The answer is yes if so, and no otherwise.

2. Structural equivalence queries: The learner proposes a CFG G′ and asks
whether G′ is structurally equivalent to GU . If the answer is yes, the process
stops with the learned answer G. Otherwise, the teacher provides a coun-
terexample s from the symmetric set difference K(D(G′)),K(D(GU )).

This learning protocol is based on what is called minimal adequate teacher in [1].
Ultimately, the learner constructs a minimal DFTA A of K(D(GU )) from which
it can infer immediately the CFG G′ = G(A) which is structurally equivalent
to GU , that is, K(D(G′)) = K(D(GU )). In order to understand how A gets
constructed, we shall introduce a few auxiliary notions.

For any subset S of T (Sk ∪Σ), we define the sets

σ•〈S〉 :=
⋃

m∈ar(σ)

m⋃
i=1

{σ(s1, . . . , sm)[•]i | s1, . . . , sm ∈ S ∪Σ},

X(S) := {C1[s] | C1 ∈ σ•〈S〉, s ∈ S ∪Σ} \ S.

Note that σ•〈S〉 = {C ∈ C(Sk ∪ Σ) \ {•} | C|p ∈ S ∪ Σ ∪ {•} for all p ∈
Pos(C) ∩ N}.

Definition 4. A subset E of C(Sk∪Σ) is •-prefix closed with respect to a set
S ⊆ T (Sk ∪Σ) if C ∈ E \ {•} implies the existence of C′ ∈ E and C1 ∈ σ•〈S〉
such that C = C′[C1]. If E ⊆ C(Sk ∪Σ) and S ⊆ T (Sk ∪Σ) then E[S] denotes
the set of structural descriptions defined by E[S] = {C[s] | C ∈ E, s ∈ S}.

We say that S ⊆ T (Sk ∪ Σ) is subterm closed if d(s) ≥ 1 for all s ∈ S,
and s′ ∈ S whenever s′ is a subterm of some s ∈ S with d(s′) ≥ 1.

An observation table for K(D(GU )), denoted by (S,E, T ), is a tabular repre-
sentation of the finitary function T : E[S ∪X(S)]→ {0, 1} defined by T (t) := 1
if t ∈ K(D(GU )), and 0 otherwise, where S is a finite nonempty subterm closed
subset S of T (Sk ∪ Σ), and E is a finite nonempty subset of C(Sk ∪ Σ) which
is •-prefix closed with respect to S. Such an observation table is visualised as
a matrix with rows labeled by elements from S ∪X(S), columns labeled by el-
ements from E, and the entry for row of s and column of C equal to T (C[s]).
If we fix a listing 〈C1, . . . , Cr〉 of all elements of E, then the row of values of
some s ∈ S ∪X(S) corresponds to the vector row(s) = 〈T (C1[s]), . . . , T (Cr[s])〉.
In fact, for every such s, row(s) is a finitary representation of the function
fs : E → {0, 1} defined by fs(C) = T (C[s]).

The observation table (S,E, T ) is closed if every row(x) with x ∈ X(S) is
identical to some row(s) of s ∈ S. It is consistent if whenever s1, s2 ∈ S such
that row(s1) = row(s2), we have row(C1[s1]) = row(C1 [s2]) for all C1 ∈ σ•〈S〉.
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The DFTA corresponding to a closed and consistent observation table (S,E, T )
is A(S,E, T ) = (Q, Sk∪Σ,Qf, δ) where Q := {row(s) | s ∈ S}, Qf := {row(s) |
s ∈ S and T (s) = 1}, and δ is uniquely defined by

δm(σ)(q1, . . . , qm) := row(σ(r1 , . . . , rm)) for all m ∈ ar(σ),

where ri := a if qi = a ∈ Σ, and ri := si if qi = row(si) ∈ Q.
It is easy to check that, under these assumptions, A(S,E, T ) is well-defined,
and that δ∗(s) = row(s). Furthermore, Sakakibara proved that the following
properties hold whenever (S,E, T ) is a closed and consistent observation table:

1. A(S,E, T ) is consistent with T , that is, for all s ∈ S ∪X(S) and C ∈ E we
have δ∗(C[s]) ∈ Qf iff T (C[s]) = 1. [12, Lemma 4.2]

2. IfA(S,E, T ) = (Q, Sk∪Σ, δ,Qf) has n states, andA′ = (Q′, Sk∪Σ, δ′,Q′
f) is

any DFTA consistent with T that has n or fewer states, thenA′ is isomorphic
to A(S,E, T ). [12, Lemma 4.3]

The LA Algorithm

In this subsection we briefly recall Sakakibara’s algorithm LA. LA extends the
observation table whenever one of the following situations occurs: the table is not
consistent, the table is not closed, or the table is both consistent and closed but
the CFG corresponding to the resulting automaton A(S,E, T ) is not structurally
equivalent to GU (in which case a counterexample is produced). The first two
situations trigger an extension of the observation table with one distinct row.
From properties (A1) and (A2), if n is the number of states of the minimum
bottom-up tree automaton for the structural descriptions ofGU , then the number
of unsuccessful consistency and closedness checks during the whole run of this
algorithm is at most n− 1. For each counterexample of size at most m returned
by a structural equivalence query, at most m subtrees are added to S. Since the
algorithm encounters at most n counterexamples, the total number of elements
in S cannot exceed n+m · n, thus LA must terminate. It also follows that the
number of elements of the domain E[S ∪ X(S)] of the function T is at most
(n + m · n + (l + m · n + k)d) · n = O(md · nd+1), where l is the number of
distinct ranks of σ ∈ Sk, and d is the maximum rank of a symbol in Sk. A
careful analysis of LA reveals that its time complexity is indeed bounded by a
polynomial in m and n [12, Thm. 5,3].

4 Learning Cover Context-Free Grammars

We assume we are given a teacher who knows an ε-free CFG GU for a language
U ⊆ Σ∗, and a learner who knows the skeletal set Sk ∪ Σ for K(D(GU )). The
teacher and learner both know a positive integer �, and the learner is interested to
learn a cover CFG G′ of GU w.r.t. � or, equivalently, a cover DCTA ofK(D(GU ))
w.r.t. �. The learner is allowed to pose the following types of questions:
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1. Structural membership queries: the learner asks if some s ∈ T (Sk ∪ Σ)[�] is
in K(D(GU )). The answer is yes if so, and no otherwise.

2. Structural equivalence queries: The learner proposes a CFG G′, and asks if
G′ is a cover CFG of GU w.r.t. �. If the answer is yes, the process stops with
the learned answer G′. Otherwise, the teacher provides a counterexample
from the set (K(D(GU ))[�] −K(D(G′))) ∪ (K(D(G′))[�] −K(D(GU ))).

We will describe an algorithm LA� that learns a cover CFG of GU with respect
to � in time that is polynomial in the number of states of a minimal DCTA of
the rational tree language K(D(GU )).

4.1 The Observation Table

LA� is a generalisation of the learning algorithm L� proposed by Ipate [8]. Ipate’s
algorithm is designed to learn a minimal finite cover automaton of an unknown
finite language of words in polynomial time, using membership queries and lan-
guage equivalence queries that refer to words and languages of words with length
at most �. Similarly, LA� is designed to learn a minimal DCTA A′ for K(D(GU ))
with respect to � by maintaining an observation table (S,E, T, �) for K(D(GU ))
which differs from the observation table of LA in the following respects:

1. S is a finite nonempty subterm closed subset of T (Sk ∪Σ)[�].
2. E is a finite nonempty subset of C(Sk ∪ Σ)〈�−1〉 ∩ C(Sk ∪ Σ)[�] which is
•-prefix closed with respect to S.

3. T : E[S ∪X(S)[�]]→ {1, 0,−1} is defined by

T (t) :=

⎧⎨⎩ 1 if t ∈ K(D(GU ))[�],
0 if t ∈ T (Sk ∪Σ)[�] \K(D(GU )),
−1 if t �∈ T (Sk ∪Σ)[�].

In a tabular representation, the observation table (S,E, T, �) is a two-dimensional
matrix with rows labeled by elements from S ∪X(S)[�], columns labeled by ele-
ments from E, and the entry corresponding to the row of t and column of C equal
to T (C[t]). If we fix a listing 〈C1, . . . , Ck〉 of all elements from E, then the row
of t in the observation table is described by the vector 〈T (C1[t]), . . . , T (Ck[t])〉
of values from {−1, 0, 1}. The rows of an observation table are used to identify
the states a a minimal DCTA for K(D(GU )) with respect to �. But, like Ipate
[8], we do not compare rows by equality but by a similarity relation.

4.2 The Similarity Relation

This time, the rows in the observation table correspond to terms from S∪X(S)[�],
and the comparison of rows should take into account only terms of depth at
most �. For this purpose, we define a relation ∼k of k-similarity, which is a
generalisation to terms of Ipate’s relation of k-similarity on strings [8].
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Definition 5 (k-similarity). For 1 ≤ k ≤ � we define the relation ∼k on the
elements of the set S ∪X(S) of an observation table (S,E, T, �) as follows:

s ∼k t if, for every C ∈ E〈k−max{d(s),d(t)}〉, T (C[s]) = T (C[t]).

When the relation ∼k does not hold between two terms s, t ∈ S ∪X(S), we write
s 	k t and say that s and t are k-dissimilar. When k = � we simply say that s
and t are similar or dissimilar and write s ∼ t or s 	 t, respectively.

We say that a context C �-distinguishes s1 and s2, where s1, s2 ∈ S, if
C ∈ E〈�−max{d(s1),d(s2)}〉 and T (C[s1]) �= T (C[s2]).
Note that only the contexts C ∈ E〈k−max{d(s),d(t)}〉 with d(C) ≤ � are relevant
to check whether s ∼k t, because if d(C) > � then d(C[s]) > � and d(C[t]) > �,
and therefore T (C[s]) = −1 = T (C[t]). Also, if t ∈ S ∪X(S) with d(t) > � then
it must be the case that t ∈ X(S), and then t ∼k s for all s ∈ S ∪ X(S) and
1 ≤ k ≤ � because E〈k−max d(t),d(s)}〉 = ∅.

The relation of k-similarity is obviously reflexive and symmetric, but not
transitive. The following example illustrates this fact.

Example 1. Let Σ = {a, b}, k = 1, � = 2, S = {σ(a), σ(b), σ(σ(a), b)}, E =
{•, σ(•, b)}, t1 = σ(a), t2 = σ(σ(a), b), t3 = σ(b), and

GU = ({S, A}, {a, b}, {S→ a, S→ b, S→ Ab, A→ a, A→ Ab}, S).

S is a nonempty subterm closed subset of T (Sk ∪ Σ)[�], and E is a nonempty
subset of C(Sk ∪ Σ)〈�−1〉 which is •-prefix closed with respect to S. We have
K(D(GU ))[�] = {t1, t2, t3}, t1 ∼� t2 because E〈�−max{d(t1),d(t2)}〉 = {•} and
T (•[t1]) = 1 = T (•[t2]), and t2 ∼� t3 because E〈�−max{d(t2),d(t3)}〉 = {•} and
T (•[t2]) = 1 = T (•[t3]), However, t1 	� t3 because C = σ(•, b) ∈ E〈1〉 =
E〈�−max{d(t1),d(t3)}〉 and T (C[t1]) = T (σ(σ(a), b)) = T (t2) = 1, but T (C[t3]) =
T (σ(σ(b), b)) = 0. *+
Still, k-similarity has a useful property, captured in the following lemma.

Lemma 1. Let (S,E, T, �) be an observation table. If s, t, x ∈ S ∪ X(S) such
that d(x) ≤ max{d(s), d(t)}, then s ∼k t whenever s ∼k x and x ∼k t.

In addition, we will also assume a total order ≺ on the alphabet Σ, and the
following total orders induced by ≺ on T (Sk ∪Σ) and C(Sk ∪Σ).
Definition 6. The total order ≺T on T (Sk ∪Σ) induced by a total order ≺ on
Σ is defined as follows: s ≺T t if either (a) d(s) < d(t), or (b) d(s) = d(t) and

1. s, t ∈ Σ and s ≺ t, or else
2. s ∈ Σ and t �∈ Σ, or else
3. s = σ(s1, . . . , sm), t = σ(t1, . . . , tn) and there exists 1 ≤ k ≤ min(m,n) such

that sk ≺T tk and si = ti for all 1 ≤ i < k, or else
4. s = σ(s1, . . . , sm) and t = σ(t1, . . . , tn), m < n, and si = ti for 1 ≤ i ≤ m.

The total order ≺C on C(Sk ∪ Σ) induced by a total order ≺ on Σ is defined
as follows: C1 ≺C C2 if either (a) d•(C1) < d•(C2), or (b) d•(C1) = d•(C2)
and C1 ≺T C2 where C1, C2 are interpreted as terms over the signature with Σ
extended with the constant • such that • ≺ a for all a ∈ Σ.
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Definition 7 (Representative). Let (S,E, T, �) be an observation table and
x ∈ S ∪X(S). We say x has a representative in S if {s ∈ S | s ∼ x} �= ∅. If so,
the representative of x is r(x) := min≺T

{s ∈ S | x ∼ s}.

We will show later that the construction of an observation table (S,E, T, �) is
instrumental to the construction of a cover tree automaton, and the states of the
automaton correspond to representatives of the elements from S ∪ X(S). Note
that, if (S,E, T, �) is an observation table and x ∈ S ∪X(S) has d(x) > � then
x ∈ X(S) and x ∼ s for all s ∈ S. Then s ≺T x because d(s) ≤ � < d(x) for all
s ∈ S. Thus x has a representative in S, and r(x) = min≺T

S. For this reason,
only the rows for elements x ∈ S ∪X(S)[�] are kept in an observation table.

4.3 Consistency and Closedness

The consistency and closedness of an observation table are defined as follows.

Definition 8 (Consistency). An observation table (S,E, T, �) is consistent if,
for every k ∈ {1, . . . , �}, s1, s2 ∈ S, and C1 ∈ σ•〈S〉, the following implication
holds: If s1 ∼k s2 then C1[s1] ∼k C1[s2].

The following lemma captures a useful property of consistent observation tables.

Lemma 2. Let (S,E, T, �) be a consistent observation table. Let m ∈ ar(σ),
1 ≤ k ≤ �, and s1, . . . , sm, t1, . . . , tm ∈ S ∪Σ such that, for all 1 ≤ i ≤ m, either
si = ti ∈ Σ, or si, ti ∈ S, si ∼k ti, and d(si) ≤ d(ti), and s = σ(s1, . . . , sm),
t = σ(t1, . . . , tm). Then s ∼k t.

Definition 9 (Closedness). An observation table (S,E, T, �) is closed if, for
all x ∈ X(S), there exists s ∈ S with d(s) ≤ d(x) such that x ∼ s.

The next five lemmata capture important properties of closed observation tables,
which will be used to justify the correctness of the learning algorithm we are
about to introduce.

Lemma 3. If (S,E, T, �) is closed then every x ∈ S∪X(S) has a representative,
and d(r(x)) ≤ d(x).

Lemma 4. If (S,E, T, �) is closed, r1, r2 ∈ {r(x) | x ∈ S ∪X(S)}, and r1 ∼ r2
then r1 = r2.

Lemma 5. If (S,E, T, �) is closed and r ∈ {r(x) | x ∈ S∪X(S)}, then r(r) = r.

Proof. Let r1 = r(r). Then r1 ∼ r and r1, r ∈ {r(x) | x ∈ S ∪ X(S)}. By
Lemma 4, r = r1. *+

Lemma 6. If (S,E, T, �) is closed, then for every x ∈ S∪X(S) and C1 ∈ σ•〈S〉,
there exists s ∈ S such that r(C1[r(x)]) = r(s).

Lemma 7. Let (S,E, T, �) be closed, r ∈ {r(x) | x ∈ S ∪ X(S)}, C1 ∈ σ•〈S〉,
and s ∈ S. If C1[s] ∼ r then d(r) ≤ d(C1[s]).
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The Automaton A(T)

Like L�, our algorithm relies on the construction of a consistent and closed
observation table of the unknown context-free grammar. The table is used to
build an automaton which, in the end, turns out to be a minimal DCTA for the
structural descriptions of the unknown grammar.

Definition 10. Suppose T = (S,E, T, �) is a closed and consistent observation
table. The automaton corresponding to this table, denoted by A(T), is the DFTA
(Q, Sk ∪ Σ,Qf, δ) where Q := {r(s) | s ∈ S}, Qf = {q ∈ Q | T (q) = 1}, and δ
is uniquely defined by δm(σ)(q1, . . . , qm) := r(σ(q1, . . . , qm)) for all m ∈ ar(σ).

The transition function δ is well defined because, for allm ∈ ar(σ) and q1, . . . , qm
from Q, C1 := σ(•, q2, . . . , qm) ∈ σ•〈S〉, thus σ(q1, . . . , qm) = C1[q1] ∈ S ∪X(S)
and r(C1[q1]) = r(s) for some s ∈ S, by Lemma 6. Hence, r(σ(q1, . . . , qm)) ∈ Q.
Also, the set Qf can be read off directly from the observation table because
• ∈ E (since E is •-prefix closed), thus q = •[q] ∈ E[(S ∪X(S)[�]] for all q ∈ Q,
and we can read off from the observation table all q ∈ Q with T (q) = 1.

In the rest of this subsection we assume that T = (S,E, T, �) is closed and
consistent, and δ is the transition function of the corresponding DFTA A(T).

Lemma 8. δ∗(x) ∼ x and d(δ∗(x)) ≤ d(x) for every x ∈ S ∪X(S).

Corollary 1. δ∗(x) = x for all x ∈ {r(s) | s ∈ S ∪X(S)}.

Proof. By Lemma 8, x ∼ δ∗(x). Since both δ∗(x) and x belong to the set of
representatives {r(s) | s ∈ X ∪X(S)}, x = δ∗(x) by Lemma 4. *+

The following theorem shows that the DFTA of a closed and consistent obser-
vation table is consistent with the function T on terms with depth at most �.

Theorem 1. Let T = (S,E, T, �) be a closed and consistent observation table.
For every s ∈ S ∪X(S) and C ∈ E such that d(C[s]) ≤ � we have δ∗(C[s]) ∈ Qf

if and only if T (C[s]) = 1.

Theorem 2. Let T = (S,E, T, �) be a closed and consistent observation table,
and N be the number of states of A(T). If A′ is any other DFTA with N or
fewer states, that is consistent with T on terms with depth at most �, then A′

has exactly N states and L(A(T))[�] = L(A′)[�].

Corollary 2. Let A be the automaton corresponding to a closed and consis-
tent observation table (S,E, T, �) of the skeletons of a CFG GU of an unknown
language U , and N be its number of states. Let n be the number of states of a
minimal DCTA of K(D(GU )) with respect to �. If N ≥ n then N = n and A is
a minimal DCTA of K(D(GU )) with respect to �.
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The LA� Algorithm

The algorithm LA� extends the observation table T = (S,E, T, �) whenever one
of the following situations occurs: the table is not consistent, the table is not
closed, or the table is both consistent and closed but the resulting automaton
A(T) is not a cover tree automaton of K(D(GU )) with respect to �.

The pseudocode of the algorithm is shown below.

ask if ({S}, Σ, ∅, S) is a cover CFG of GU w.r.t. �
if answer is yes then halt and output the CFG ({S}, Σ, ∅, S)
if answer is no with counterexample t then
set S := {s | s is a subterm of t with depth at least 1} and E = {•}
construct the table T = (S,E, T, �) using structural membership queries
repeat
repeat
/* check consistency */
for every C ∈ E, in increasing order of i = d•(C) do

search for s1, s2 ∈ S with d(s1), d(s2) ≤ �− i− 1 and C1 ∈ σ•〈S〉
such that C[C1[s1]]), C[C1[s2]] ∈ T (Sk ∪Σ)[�],

s1 ∼k s2 where k = max{d(s1), d(s2)}+ i+ 1,
and T (C[C1[s1]]) �= T (C[C1[s2]])

if found then
add C[C1] to E
extend T to E[S ∪X(S)[�]] using structural membership queries

/* check closedness */
new row added := false

repeat for every s ∈ S, in increasing order of d(s)
search for C1 ∈ σ•〈S〉 such that C1[s] 	 t for all t ∈ S[d(C1[s])]

if found then
add C1[s] to S
extend T to E[S ∪X(S)[�]] using structural membership queries
new row added := true

until new row added = true or all elements of S have been processed
until new row added = false

/* T is now closed and consistent */
make the query whether G(A(T)) is a cover CFG of GU w.r.t. �
if the reply is no with a counterexample t then
add to S all subterms of t, including t, with depth at least 1,

in the increasing order given by ≺T

extend T to E[S ∪X(S)[�]] using structural membership queries
until the reply is yes to the query if G(A(T)) is a cover CFG of GU w.r.t. �
halt and output G(A(T)).

Consistency is checked by searching for C ∈ E and C1 ∈ σ•〈S〉 such that C[C1]
will �-distinguish two terms s1, s2 ∈ S not distinguished by any other context
C′ ∈ E with d•(C′) ≤ d•(C[C1]). Whenever such a pair of contexts (C,C1) is
found, C[C1] is added to E. Note that C[C1] ∈ C(Sk ∪ Σ)〈�−1〉 ∩ C(Sk ∪ Σ)[�]
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because only such contexts can distinguish terms from S, and the addition of
C[C1] to E yields a •-prefix closed subset of C(Sk ∪Σ)〈�−1〉 ∩ C(Sk ∪Σ)[�].

The search of such a pair of contexts (C,C1) is repeated in increasing order of
the hole depth of C, until all contexts from E have been processed. Therefore,
any context C[C1] with C ∈ E and C1 ∈ σ•〈S〉 that was added to E because of
a failed consistency check will be processed itself in the same for loop.

The algorithm checks closedness by searching for s ∈ S and C1 ∈ σ•〈S〉 such
that C1[s] 	 t for all t ∈ S for which d(t) ≤ d(C1[s]). The search is performed in
increasing order of the depth of s. If s and C1 are found, C1[s] is added to the S
component of the observation table, and the algorithm checks again consistency.
Note that adding C1[s] to S yields a subterm closed subset of T (Sk∪Σ)[�]. Also,
closedness checks are performed only on consistent observation tables.

When the observation table is both consistent and closed, the corresponding
DFTA is constructed and it is checked whether the language accepted by the
constructed automaton coincides with the set of skeletal descriptions of the un-
known context-free grammar GU (this is called a structural equivalence query). If
this query fails, a counterexample from L(A(T))[�],K(D(GU ))[�] is produced,
the component S of the observation table is expanded to include t and all its
subterms with depth at least 1, and the consistency and closedness checks are
performed once more. At the end of this step, the component S of the observation
table is subterm closed, and E is unchanged, thus •-prefix closed.

Thus, at any time during the execution of algorithm LA�, the defining proper-
ties of an observation table are preserved: the component S is a subterm closed
subset of T (Sk ∪ Σ)[�], and the component E is a •-prefix closed subset of
C(Sk ∪Σ)〈�−1〉 ∩ C(Sk ∪Σ)[�].

5 Algorithm Analysis

We notice that the number of states of the DFTA constructed by algorithm
LA� will always increase between two successive structural equivalence queries.
When this number of states reaches the number of states of a minimal DCTA of
K(D(GU )), the constructed DFTA is actually a minimal DCTA of K(D(GU ))
(Corollary 2) and the algorithm terminates.

From now on we assume implicitly that n is the number of states of a minimal
DCTA of K(D(GU )) with respect to �, and that T(t) is the observation table
(St, Et, T, �) before execution step t of the algorithm. By Corollary 2, Qt will
always have between 1 and n elements. Note that the representative of an element
s ∈ S in Qt is a notion that depends on the observation table T(t). Therefore,
we will use the notation rt(s) to refer to the representative of s ∈ St in the
observation table T(t). With this notation, Qt = {rt(s) | s ∈ St}.

Note that the execution of algorithm LA� is a sequence of steps characterised
by the detection of three kinds of failure: closedness, consistency, and structural
equivalence query. The t-th execution step is

1. a failed closedness check when the algorithm finds C1 ∈ σ•〈St〉 and s ∈ St
such that C1[s] 	 t for all t ∈ St with d(t) ≤ d(C1[s]),
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2. a failed consistency check when the algorithm finds C ∈ Et with d•(C) = i,
s1, s2 ∈ St with d(s1), d(s2) ≤ �−i−1, and C1 ∈ σ•〈St〉, such that C[C1[s1]],
C[C1[s2]] ∈ T (Sk ∪Σ)[�], s1 ∼k s2 where k = max{d(s1), d(s2)}+ i+1, and
T (C[C1[s1]]) �= T (C[C1[s2]]),

3. a failed structural equivalence query when the observation table T(t) is
closed and consistent, and the learning algorithm receives from the teacher
a counterexample t ∈ T (Sk ∪ Σ)[�] as answer to the structural equivalence
query with the grammar G(A(St, Et, T, �)).

In the following subsections we perform a complexity analysis of the algorithm by
identifying upper bound estimates to the computations due to failed consistency
checks, failed closeness checks, and failed structural equivalence queries.

5.1 Failed Closedness Checks

We recall that the t-th execution step is a failed closedness check if the algorithm
finds a context C1 ∈ σ•〈S〉 and a term s ∈ St such that C1[s] 	 t for all t ∈ St
with d(t) ≤ d(C1[s]). We will show that the number of failed closedness checks
performed by algorithm LA� has an upper bound which is a polynomial in n.
To prove this fact, we will rely on the following auxiliary notions:

– For r, r′ ∈ Qt, we define r ≺t
T r

′ if either d(r) < d(r′) or d(r) = d(r′) and
there exists t′ < t such that r ∈ Qt′ but r′ �∈ Qt′ (that is, r became a
representative in the observation table before r′).

– To every set of representatives Qt = {r1, . . . , rm} with r1 ≺t
T . . . ≺t

T rm we
associate the tuple tpl(Qt) := (d1, . . . , dn) ∈ {1, . . . , � + 1}n where di :=
d(ri) if 1 ≤ i ≤ m, and di := �+ 1 if m < i ≤ n.

– We consider the following partial order on Nn: (x1, . . . , xn) < (x′1, . . . , x
′
n) iff

there exists i ∈ {1, . . . , n} such that xi < x
′
i and xj ≤ x′j for all 1 ≤ j ≤ n.

– We denote by stt(i) the i-th component of Qt in the order given by ≺t
T.

Lemma 9. Suppose s has been introduced in St+1 as a result of a failed closed-
ness check. There exists p ∈ Pos(s) such that ‖p‖ = d(s) and for every prefix p′

of p different from p, d(rt+1(s|p′)) = d(s|p′).

Corollary 3. Whenever the t-th execution step is a failed closedness check, the
term introduced in St+1 is in Qt+1 \ Qt and its depth is at most j, where j is
the position in Qt+1 of the newly introduced element according to ordering ≺t

T .

Corollary 4. d(s) ≤ n for all s ∈ St which was introduced in the table by a
failed closedness check.

Proof. d(s) ≤ j by Cor. 3, and j ≤ n because |Qt| ≤ n for all t. Thus d(s) ≤ n.

Lemma 10. Let j be the position of the element introduced in Qt+1 by a failed
closedness check. Then tpl(Qt+1) < tpl(Qt) and d(stt+1(j)) < d(stt(j)).

Theorem 3. The number of failed closedness checks performed during the entire
run of LA� is at most n(n+ 1)/2.



Learning Cover Context-Free Grammars from Structural Data 255

5.2 Failed Consistency Checks

The t-th execution step is a failed consistency check if the algorithm finds C ∈ Et

with d•(C) = i, s1, s2 ∈ St with d(s1), d(s2) ≤ �− i− 1, and C1 ∈ σ•〈St〉, such
that C[C1[s1]], C[C1[s2]] ∈ T (Sk∪Σ)[�], s1 ∼k s2 where k = max{d(s1), d(s2)}+
i+ 1, and T (C[C1[s1]]) �= T (C[C1[s2]]). In this case, the context C[C1] is newly
introduced in the component Et+1 of the observation table T(t + 1).

We will show that the number of failed consistency checks performed by the
learning algorithm LA� has an upper bound which is a polynomial in n. To prove
this fact, we rely on the following auxiliary notions:

– For C,C′ ∈ Et, we define C ≺t
C C

′ if either d•(C) < d•(C′) or d•(C) =
d•(C′) and there exists t′ < t such that C ∈ Et′ but C′ �∈ Et′ (that is, C
became an experiment in the observation table before C′).

– We define δt(s1, s2) := min≺C
{C ∈ Et | C �-distinguishes s1 and s2} for

every s1, s2 ∈ St such that s1 	 s2.
– A nonempty subset U of Et induces a partition of a subset R of St into

equivalence classes Q1, . . . , Qm if the following conditions are satisfied:
1.

⋃m
j=1Qj = R and Qi ∩Qj = ∅ whenever 1 ≤ i �= j ≤ m,

2. Whenever 1 ≤ i �= j ≤ m, s1 ∈ Qi, and s2 ∈ Qj , there exists C ∈ U that
�-distinguishes s1 and s2.

3. Whenever s1, s2 ∈ Qj for some 1 ≤ j ≤ m, there is no C ∈ U that
�-distinguishes s1 and s2.

Let Et := {δt(s1, s2) | s1, s2 ∈ St, s1 	 s2}. Since ∼ is not an equivalence, not
every subset of Et induces a partition of St into equivalence classes. However,
the next lemma shows that Et induces a partition of Qt into at least |Et| classes.
Theorem 4. If Et = {C1, . . . , Ck} with C1 ≺C . . . ≺C Ck then, for every 1 ≤
i ≤ k, {C1, . . . , Ci} induces a partition of Qt into at least i classes.

Corollary 5. For any t, Et has at most n elements.

We will compute an upper bound on the number of failed consistency checks by
examining the evolution of Et during the execution of LA�. Initially, E0 = {•}.

Lemma 11. At any time during the execution of the algorithm, if Qt has i ≥ 2
elements, then the hole depth of any context in Et is less than or equal to i− 2.

Let Et = {C′1, . . . , C′k} before some execution step t of the algorithm LA�,
where C′1 ≺C . . . ≺C C

′
k. Then k ≤ n by Cor. 5. We associate to every such Et the

n-tuple tpl(Qt) = (y1, . . . , yn) ∈ {0, 1, . . . , n− 1}n, where, for every 1 ≤ j ≤ n,
yj is defined as follows:

- If Qt has at least j + 1 elements then, if i is the minimum integer such
that {C′1, . . . , C′i} partitions Qt into at least j + 1 classes then yj = d•(C′j).
Since every {C′1, . . . , C′i} partitions Qt into at least i classes (by Lemma 4) and
we assume that Et = {C′1, . . . , C′k} partitions Qt into |Qt| ≥ j + 1 classes, we
conclude that such i exists.

- otherwise yj = n− 1.
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For 1 ≤ j ≤ n we denote the j-th component of tpl(Et) by dht(j). Note
that, for all 1 ≤ i ≤ k, d•(C′i) ≤ |Qt| − 2 by Theorem 11, and |Qt| ≤ n,
hence d•(C′i) ≤ n − 2. Therefore, we can always distinguish the components yi
of tpl(Qt) that correspond to the defining case (1) from those in case (2).

Lemma 12. dht(j) ≤ j − 1 whenever 2 ≤ j ≤ n and dht(j) �= n− 1.

Theorem 5. If Qt has at least 2 elements then the number of failed consistency
checks over the entire run of LA� is at most n(n− 1)/2.

5.3 Failed Structural Equivalence Queries

Every failed structural equivalence query yields a counterexample which in-
creases the number of representatives in Qt. Thus

Theorem 6. The number of failed structural equivalence queries is at most n.

5.4 Space and Time Complexity

We are ready now to express the space and time complexity of LA� in terms of
the following parameters:

- n = the number of states of a minimal DFCA for the language of structural
descriptions of the unknown grammar with respect to �,

- m = the maximum size of a counterexample returned by a failed structural
equivalence query,

- p = the cardinality of the alphabet Σ of terminal symbols, and
- d = the maximum rank (or arity) of the symbol σ ∈ Sk.
First, we determine the space needed by the observation table. The number

of elements in St is initially 0 (i.e., |S0| = 0) and is increased either by a
failed closedness check or by a failed structural membership query. By Theorem
3, the number of failed closedness checks is at most n(n + 1)/2, and each of
them adds one element to S. By Theorem 6, the number of failed structural
equivalence queries is at most n. A failed structural equivalence query which
produces a counterexample t with sz(t) ≤ m, adds at most m terms to St.
Thus, |St| ≤ n(n + 1)/2 + nm = O(mn + n2) and |St ∪ Σ| = O(mn + n2 +
p), therefore |σ•〈St〉| ≤

∑d−1
j=0 (j + 1) |St ∪ Σ|j = O((d + 1) (mn + n2 + p)d)

and |X(S)| ≤
∑d

j=1 |St ∪ Σ|j = O(d (mn + n2 + p)d). Thus St ∪ X(St)[�] has

O(d (mn+ n2 + p)d) elements. By Theorem 5, there may be at most n(n− 1)/2
failed consistency checks, and each of them adds a context to Et. Thus Et has
O(n2) elements and Et[St ∪ X(St)[�]] has O(n2d (mn + n2 + p)d) elements.
By Lemma 12, d•(C) ≤ n − 1 for all C ∈ Et. We also know that, if s ∈ St,
then d(s) ≤ m if it originates from a failed structural equivalence query, and
d(s) ≤ n if it originates from a failed closedness check (by Cor. 4). Therefore
d(s) ≤ max(m,n) for all s ∈ St, and thus d(x) ≤ 1+max(m,n) ≤ 1+m+n for
all x ∈ St ∪ X(St) and d(t) ≤ m + 2n for all t ∈ Et[St ∪ X(St)[�]]. Since the

number of positions of such a term t is
∑m+2n

j=0 dj = O((m + 2n + 1)dm+2n),
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we conclude that the total space occupied by an observation table at any time
is O

(
n2(mn+ n2 + p)d(m+ 2n+ 1)dm+2n+1

)
.

Next, we examine the time complexity of the algorithm by looking at the time
needed to perform each kind of operation.

Since the consistency checks of the observation table are performed in a for
loop which checks the result produced by s1 ∼k s2 (where s1, s2 ∈ St) in in-
creasing order of k, the result produced by s1 ∼k s2 can be reused in checking
s1 ∼k+1 s2 and so the corresponding elements in the rows of s1 and s2 are com-
pared only once. Thus, the total time needed to check if the observation table is
consistent involves at most (|St| · (|St|−1)/2) · |Et| · (1+ |σ•〈St〉|), comparisons.
As σ•〈St〉 has O(d (mn + n2 + p)d) elements, a consistency check of the table
takes O((mn + n2)2n2d (mn + n2 + p)d) = O(n2d (mn + n2 + p)d+2) time. As
there are at most (n (n+1)/2+ 1) (n+1) = O(n3) consistency checks, the total
time needed to check if the table is consistent is O(n5d (mn+ n2 + p)d+2).

Checking if the observation table is closed takes at most |St|2 · |σ•〈St〉| · |Et|
time, which is O((mn+ n2)2d (mn+ n2 + p)dn2) = O(n2d (mn+ n2 + p)d+2).

Extending an observation table T(t) with a new element in St+1 requires the

addition of
∑d

k=2(2
k−1− 1) = 2d− d− 1 contexts to σ•〈St+1〉 \ σ•〈St〉, thus the

addition of at most 2d − d new rows for the new elements of St+1 ∪ X(St+1)
in the observation table T(t + 1). This extension requires at most (2d − d) ·
|Et| · (1 + |σ•〈St〉|) = O(n2d (2d − d) (mn+ n2 + p)d) membership queries. The
number of elements added to St as a result of a failed structural equivalence
query is at most m. As there will be at most n failed structural equivalence
queries and at most n(n+ 1)/2 failed closedness checks, the maximum number
of elements added to St is n(n+1)/2+mn = O(mn+n2). Thus the total time
spent on inserting new elements in the S-component of the observation table is
O(n2d (2d − d) (mn + n2)(mn+ n2 + p)d). Adding a context to Et requires at
most |St+X(St)[�]| = O(d (mn+n2+p)d) membership queries. These additions
are performed only by failed consistency checks, and there are at most n(n−1)/2
of them. Thus, the total time spent to insert new contexts in the E-component
of the observation table is O(n2d (mn + n2 + p)d). We conclude that the total
time spent to add elements to the components S and E of the observation table
is O(n2d (2d − d) (mn+ n2)(mn+ n2 + p)d), which is polynomial.

The identification of the representative rt(s) for every s ∈ St can be done by
performing ((|St|)(St − 1)/2) |Et| = O((mn+ n2)2n2) comparisons.

Thus, all DFCAs A(T(t)) corresponding to consistent and closed observation
tables T(t) can be constructed in time polynomial in m and n. Since the algo-
rithm encounters at most n consistent and closed observation tables, the total
running time of the algorithm is polynomial in m and n.

6 Conclusions and Acknowledgments

We have presented an algorithm, called LA�, for learning cover context-free
grammars from structural descriptions of languages of interest. LA� is an adap-
tation of Sakakibara’s algorithm LA for learning context-free grammars from
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structural descriptions, by following a methodology similar to the design of
Ipate’s algorithm L� as a nontrivial adaptation of Angluin’s algorithm L∗. Like
L∗, our algorithm synthesizes a minimal deterministic cover automaton consis-
tent with an observation table maintained via a learning protocol based on what
is called in the literature a “minimally adequate teacher” [1]. And again, like
algorithm L∗, our algorithm is guaranteed to synthesize the desired automaton
in time polynomial in n and m, where n is its number of states and m is the
maximum size of a counterexample to a structural equivalence query. As the
size of a minimal finite cover automaton is usually much smaller than that of a
minimal automaton that accepts that language, the algorithm LA� is a better
choice than algorithm LA for applications where we are interested only in an
accurate characterisation of the structural descriptions with depth at most �.

This work has been supported by CNCS IDEI Grant PN-II-ID-PCE-2011-3-
0981 “Structure and computational difficulty in combinatorial optimization: an
interdisciplinary approach.”
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Abstract. A sequence w over a finite alphabet A is generated by a
uniform automaton if there exists an automaton labelled on {0, . . . , k−1}
for some k > 1 and recognizing for each output a in A the set of positions
of a in w expressed in base k. Automatic sequences are generated by finite
automata. By considering pushdown automata instead of finite ones,
we generate exactly the context-free sequences. We distinguish the sub-
families of unambiguous, deterministic, real-time deterministic context-
free sequences associated with the corresponding families of pushdown
automata. We study the closure under shift, product, morphisms, inverse
substitutions and various extractions of these four families of context-
free sequences. Additionally, we show that only using multiplicatively
dependent bases yields the same set of context-free sequences.

1 Introduction

Automatic sequences are well known objects appearing in many area of the-
oretical computer science and mathematics [Co 72, AS 03]. To generate these
sequences, one can use finite k-automata. Fixing an integer k greater than 1, a
k-automaton G has states labelled over an alphabet A and edges labelled on
�k� = {0, . . . , k − 1} so that the family of languages L(G, a) recognized by G
from an initial state to a state labelled a in A forms a partition of the set of
words over �k� labelling paths in G. A k-automaton G generates the sequence
w over A when L(G, a) is the set of positions of a in w properly expressed in
base k.

When G is finite, the sequence w is k-automatic. Finite automata are also
well known devices which recognize regular languages [Kl 56].

As automatic sequences can be characterized in several other ways (using reg-
ular languages, uniform morphisms or their kernel finiteness property), there are
different ways to extend this notion: context-free sequences, morphic sequences,
regular sequences (see [AS 03] for example).

One can also extend this notion using a larger class of automata, the most
natural one being, following Chomsky’s hierarchy [Ch 56], k-pushdown automata
(pushdown automata over �k�). It turns out that this generalization of automatic
sequences, also yields to context-free sequences defined in [Ha 98], [Mo 08] and
[AS 03] (open problem 6.3, p 208): a sequence w is k-context-free if and only if

G. Ciobanu and D. Méry (Eds.): ICTAC 2014, LNCS 8687, pp. 259–276, 2014.
c© Springer International Publishing Switzerland 2014
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for each letter a, the set of occurrences in base k of a in w is a context-free
language.

Contrary to finite automata, we obtain distinct sub-families of sequences
by considering only unambiguous, deterministic, or real-time deterministic k-
pushdown automata. These (proper) sub-families are respectively named unam-
biguous, deterministic, real-time deterministic k-context-free sequences.

The closure properties of these four families of sequences are also different.
This fact underlying the different consequences of the considered transformations
(synchronization product, shift, uniform morphism, inverse injective k-uniform
substitution, regular extractions) over the unambiguity and the determinism
of involved languages and automata. They sometimes share the same closure
properties (Propositions 12 and 14) or not (Propositions 13 and 15).

Moreover, tools used to prove these properties depend on the considered fam-
ily: while, for context-free sequences and unambiguous context-free sequences,
closure properties follow from easy considerations over languages, for determinis-
tic context-free sequences and real-time deterministic context-free sequences one
has to use tools from infinite graph theory. Indeed, for these two last subfamilies,
classes of languages associated to involved pushdown automata no longer have
suitable closure properties and the usual internal representation of k-pushdown
automata is not really suitable to compute automaton transformations induced
by the transformations of sequences we consider. Then, we choose to favor their
external representation (by their transition graphs) using the equivalent notion
of regular k-automata [MS 85].

Finally, we investigate base dependence properties of context-free sequences.

2 Generating Sequences with Automata

We recall the general notion of automaton, and the particular cases of unambigu-
ous and deterministic automata. The languages recognized by automata over the
alphabet {0, . . . , k − 1} of k > 1 digits, called k-automata, can be seen as sets
of natural numbers expressed in base k. This in turn allows such automata to
define sequences.

2.1 Automata and Languages Terminology

Let A be an alphabet i.e., a finite set of symbols called letters. A word u over
A of length n ≥ 0 is a mapping from the set �n� = {0, . . . , n− 1} into A which
is denoted by the n-tuple (u(0), . . . , u(n−1)) ∈ An or simply by u = u0· · ·un−1

where ui = u(i) for each i ∈ �n� ; we write |u| the length n of u. The word of
length 0, i.e., the 0-tuple () is the empty word denoted by ε. The set A∗ of words
over A is the free monoid (A∗, ·, ε) generated by A with the concatenation
operator · which can be omitted: u0· · ·um−1 · v0· · ·vn−1 = u0· · ·um−1v0· · ·vn−1.

Any subset of A∗ is a language over A. The family 2A
∗
of languages over A

is a semiring (2A
∗
,∪, ·, ∅, {ε}) for the language concatenation defined by L·M =

{ u·v | u ∈ L∧v ∈M } for any L,M ⊆ A∗. The closure under concatenation of a
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language L is the language L∗ =
⋃
n≥0

Ln for Ln = { u1·. . . ·un | u1, . . . , un ∈ L }

the concatenation n-times of L. Recall that a language is a regular language if
it can be obtained from ∅ and the elementary languages {a} with a ∈ A by
finite application of the operations ∪, ·,∗. The regular languages are also the
languages recognized by finite automata.

We fix a symbol ι. An automaton over A and an alphabet C of colours
(output alphabet) with ι �∈ C, is a directed graph G whose each edge is labelled
by a letter in A and whose vertices can be labelled by letters in C ∪ {ι} :

G ⊆ V×A×V ∪ (C ∪ {ι})×V for some (possibly infinite) set V .

A triple (s, a, t) ∈ G is an edge labelled by a from source s to target t ; it is
identified with the transition s

a−→G t or directly s
a−→ t if G is understood.

A pair (c, s) ∈ G or directly c s ∈ G means that s is labelled by c. A vertex
can be uncoloured. The set of vertices of G is

VG = { s | ∃ c (cs ∈ G) } ∪ { s | ∃ a, t (s a−→G t ∨ t a−→G s) }.
So G is a finite automaton if and only if its vertex set VG is finite. An input
vertex is a vertex s labelled by ι : ι s ∈ G.
The induced automaton G|P of an automaton G to a set P is the restriction
of G to its vertices in P :

G|P = { (s, a, t) ∈ G | s, t ∈ P } ∪ { (c, s) ∈ G | s ∈ P }.
The inverse G−1 of an automaton G is the automaton

G−1 = { (t, a, s) | (s, a, t) ∈ G } ∪ { (c, s) | (c, s) ∈ G }.
The out-degree d+G(s) = |G ∩ {s}×A×VG| and the in-degree d−G(s) = d+G−1(s)
of a vertex s are the number of edges of respectively source and target s ; the
degree of s is d(s) = d+(s) + d−(s). An automaton is of finite (resp. in-, out-)
degree if any vertex is of finite (resp. in-, out-) degree. A finite degree automaton
with finitely many vertex degrees is of bounded degree.

Any tuple (s0, a1, s1, . . ., an, sn) ∈ (V A)∗V for n ≥ 0 with s0
a1−→G s1 , . . . ,

sn−1
an−→G sn is a path from s0 to sn labelled by u = a1· · ·an ; we write

s0
u−→G sn or directly s0

u−→ sn if G is understood; we say that sn is accessible
from s0 and also write s0 −→∗ sn if we do not want to specify a path label.
An accessible automaton G means that any vertex is accessible from an input
vertex: ∀ s ∈ VG ∃ r ∈ VG (ι r ∈ G ∧ r −→∗ s).

We say that G is deterministic if it has a unique input vertex and there are no
two edges with the same source and the same label: (r

a−→ s ∧ r a−→ t) =⇒ s = t.
We also say that G is unambiguous if there is no couple of distinct paths labelled
with the same word from the set of input vertices to the set of coloured vertices.
We abbreviate unambiguous by ‘una.’ and deterministic by ‘det.’.

The language recognized by an automaton G (from ι) to c ∈ C
L(G, c) = { u ∈ A∗ | ∃ s, t ∈ VG (s

u−→G t ∧ ι s , c t ∈ G) }
is the set of words labelling the paths from an input vertex to a vertex coloured
by c. Kleene’s theorem [Kl 56] states that a language is regular if and only if it
is recognized by a finite (resp. and det.) automaton.
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A colouring over (A,C) is a mapping Λ : C −→ 2A
∗
. To any automaton

G, we associate the colouring ΛG defined for any c ∈ C by ΛG(c) = L(G, c).
We say that a colouring Λ is a partition of P ⊆ A∗ if

⋃
c∈C Λ(c) = P and

Λ(c) ∩ Λ(d) = ∅ for any c �= d in C.

2.2 Uniform Automata and Sequences

A sequence w over A is a mapping from the set IN of nonnegative integers into
A denoted by w = (wn)n≥0. Let A

ω be the set of sequences over A.
We fix an integer k > 1. Recall that �k� = {0, . . . , k − 1} and we denote

�k�� = �k�∗ − 0.�k�∗
the set of words over �k� not beginning with 0.

The (proper) representation in base k of any n ∈ IN is the word

(n)k = n0· · ·nr ∈ �k�� such that
∑r

i=0 nik
r−i = n

Conversely to any word u ∈ �k�∗, we associate the integer

[u]k =
∑|u|−1

i=0 uik
|u|−i−1.

So for any n ≥ 0 and u ∈ �k�∗, we have [(n)k]k = n and ([u]k)k is the greatest
suffix of u in �k��. For any w ∈ Aω, we define the k-colouring Λk

w associating
with any a ∈ A the language

Λk
w(a) = { u ∈ �k�� | w[u]

k

= a } = { (n)k | wn = a }
of the representations in base k of the positions of a in w.
So the colouring Λk

w is a partition of �k��.
Definition 1. A k-automaton over A is an accessible automaton G on the
set �k� of edge labels and on the set A of colours such that ΛG is a partition
of �k��. We talk about uniform automaton when k and A are not specified.

Any vertex of a uniform automaton has at most one colour. For a det. uniform
automaton, each vertex has a unique colour and its input vertex has no ingoing
edge. A non-det. uniform automaton can have several paths with same labels
starting from distinct input vertices and leading to vertices possibly coloured
but with the same colour.

Definition 2. A k-automaton G generates the sequence Seq(G) ∈ Aω if for
any integer n, the n-th letter Seq(G)n is the colour a such that (n)k ∈ ΛG(a),
i.e., Λk

Seq(G) = ΛG .

Example 3. Let G be the following det. 2-automaton over {a, b} :

1
ι

b

0

b

ba 1 1

0 0

b

0

b

0

0 0

b b

0, 1 0, 1 0, 1 0, 1

1 11

b b b b

0, 1

a
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The automaton G generates the sequence w = Seq(G) characterized by:

Λw(a) = { 1n0n | n ≥ 0 } and Λw(b) = {0, 1}� − Λw(a),

that is wn = a if and only if there exits p in N such that n = 2p(2p+1 − 1) .

3 Context-Free Sequences

The k-automatic sequences can be characterized using languages. Precisely, a
sequence w is a k-automatic sequence if the colouring Λk

w only contains regu-
lar languages. In [Ha 98] and [AS 03] (open problem 6.3, p 208), authors start
considering the sequences for which the colouring Λk

w is made of context-free
languages [AU 79].

Definition 4. A sequence w over A is a k-context-free sequence if Λk
w(a) is

context-free for all a ∈ A.
Moreover, a sequence w is a k-automatic sequence if and only if it is gener-

ated by a finite k-automaton G : w = Seq(G) [Co 72]. It is natural to expect
that k-context-free sequences are sequences generated by pushdown automata
over �k� (with no 0-edges starting from input vertices), called k-pushdown au-
tomata, as these machines recognize context-free languages. As the usual in-
ternal representation of k-pushdown automata is not really convenient to play
with automata transformations involved by transformations of sequences we will
consider. So we use the equivalent notion (via their transition graphs) of regular
k-automata [MS 85] and we show that k-context-free sequences are sequences
generated by regular k-automata (See Proposition 6).

3.1 Regular Automata

Regular automata, which form a family of infinite automata (including the finite
automata), is the set of finitely decomposable automata.

Let us make precise the notion of decomposition of an automaton G according
to a graduation which is a mapping g : VG −→ IN such that only finitely many
vertices have the same value by g : g−1(n) is finite for every n ≥ 0.

Let Con(G, g, n) be the set of connected components of G|{ s | g(s)≥n } for any
n ≥ 0. In particular Con(G, g, 0) = {G} for G connected.

We complete elements in Con(G, g, n) to obtain a partition Dec(G, g, n) of
G|{ s | g(s)≥n } ∪ { s a−→G t | g(s) > n ∨ g(t) > n } as follows:

Dec(G, g, n) =
⋃

H∈Con(G,g,n)

H ∪
{
s

a−→G t | ∨
(s ∈ VH ∧ g(s) > n)
(t ∈ VH ∧ g(t) > n)

}
The information added in Dec(G, g, n) consists in specifying the way(s) a

graph of Con(G, g, n) can be linked with others connected components in G.
This additionnal information is useful whenG contains at least a vertex of infinite
degree.

The finiteness of the decomposition Dec(G, g) =
⋃

n≥0 Dec(G, g, n) is ex-
pressed by isomorphism respecting the frontiers. The frontier FrG(H) of H ⊆ G



264 D. Caucal and M. Le Gonidec

is the set of vertices common to H and G−H i.e.,

FrG(H) = VH ∩ VG−H .

We say that H,K ⊆ G are strongly isomorphic if there exists a bijection
h : VH −→ VK preserving edges, colouring and frontiers:

h(H) = K and h(FrG(H)) = FrG(K).

An automaton G is finitely decomposable by a graduation g if

Dec(G, g) has finitely many non-strongly-isomorphic automata.

Finally G is a regular automaton if G is finitely decomposable by some gra-
duation.

In particular, a regular automaton has finitely many non-isomorphic con-
nected components but notice that there exists a non-regular automaton G
with a graduation g giving a decomposition Dec(G, g) with finitely many non-
isomorphic components. Moreover, a regular automaton of finite degree is of
bounded degree.

Example 5. Let us consider the following 4-automaton of vertex set ZZ :

G = { n 0−→ − n | n ∈ ZZ−{0} } ∪ { n i−→ n+ i | n ∈ ZZ , i ∈ {1, 2}}
∪ { n 3−→ n− 1 | n ∈ ZZ } ∪ {ι 0} ∪ { a 0 } ∪ { b n | n �= 0 }

This is a 4-automaton which is represented (with vertices in bold faces, with −n
denoted by n) as follows:

1

3

1

3

3 3

1

22

2 2

0 0, 2 0 00 0

2

2

3

1

1

3
a

ι

b1 b3b2

0

b31b2b1

Such an automaton G is regular because it is finitely decomposable by the
graduation g(n) = |n| of the absolute value. In fact, Dec(G, g) has only three
non-strongly-isomorphic automata: G and the following two automata where
the vertices of the frontier are circled:

1

3

1

3

3 3

1 1b b
22

2 2

0 0, 2 0 00 0

2

2

b

and

1

3

b

1

3

3 3

1 1b b
2

2

0 0 00 0

2

2

2

2

0

b bb b b b

For any connected automaton G of finite degree and with finitely many input
vertices i.e., { s | ι s ∈ G } is finite, a standard graduation is the distance from
the input vertices: for any vertex s ∈ VG :

DistG(s) = min{ |u| | ∃ r (ι r ∈ G ∧ r u−→G ∪ G−1 s) }
The decomposition Dec(G,Dist, n) of any automaton G at distance n ≥ 0 is
the set of connected components obtained by removing in G all the vertices at
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distance from ι less than n. For the automaton presented in Example 5, we

have DistG(n) =
⌈
|n|
2

⌉
for any n ∈ ZZ.

The regular k-automata are isomorphic to the transition graphs of k-push-
down automata (ε-transitions in their transition graphs being removed by gluing
vertices, and with regular set of configurations labelled by each colour) [MS 85].
So the languages recognized by the family of regular automata are the context-
free languages. Moreover, det. (resp. det. and of finite degree, resp. una.) regular
k-automata are isomorphic to transition graphs of det. (resp. real-time det., resp.
una.) k-pushdown automata, so these classes of regular k-automata recognizing
respectively the det. context-free languages, the real-time det. context-free lan-
guages, and una. context-free languages of �k�� [Ca 07]. We abbreviate real-time
by ‘rt.’.

3.2 Regular Automata and Context-Free Sequences

We extend the characterization of automatic sequences by finite automata to
context-free sequences using regular k-automata.

Proposition 6. A sequence is a k-context-free sequence if and only if it is gen-
erated by a regular k-automaton G : w = Seq(G).

Proof. Let w be a k-context-free sequence. As context-free languages over �k�
are recognized by pushdown automata over �k�, for any letter a ∈ A, Λk

w(a) =
L(Ga, a) for some regular k-automaton Ga having a unique colour a. Notice
that in general, the usual product of two regular automata is not regular. As
automata Ga can be choosen with distinct vextex sets, w is generated by the
disjoint finite union ∪a∈AGa which remains a regular k-automaton.

For a sequence generated by a regular k-automaton G, the language Λw(a)
with a ∈ A is recognized by the regular k-automaton obtained from G by
removing colours c �= a, so Λw(a) is context-free. *+

It is natural to introduce the sub-families of k-context-free sequences asso-
ciated with the different classes of regular automata/pushdown automata pre-
sented at the end of Section 3.1.

Definition 7. A sequence is a una. (resp. det., rt. det.) k-context-free sequence
if it is generated by a una. (resp. det. , det. and of finite degree) regular k-
automaton.

Let us note RtDetCfk(A
ω), DetCfk(A

ω), UnaCfk(A
ω), Cfk(A

ω) for the re-
spective four families of rt. det., det., una., k-context-free sequences over A.

For any k > 1, we have

RtDetCfk(A
ω) 
 DetCfk(A

ω) 
 UnaCfk(A
ω) 
 Cfk(A

ω)

The strict inclusions follow from these on context-free languages and we can
refine Proposition 6.
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Proposition 8. For any w ∈ Aω and k > 1,

w is a (resp. una.) k-context-free sequence

⇐⇒ Λk
w(a) is (resp. una.) context-free for any a ∈ A.

Furthermore
w is a (resp. rt.) det. k-context-free sequence

=⇒ Λk
w(a) is (resp. rt.) det. context-free for any a ∈ A.

For the unambiguous case, the proof of Proposition 6 holds, as if all automata
Ga are una., the disjoint union ∪a∈AGa remains una. The second implication
comes from the fact that families of det. and rt. det. regular automata recog-
nize respectively det. and rt. det. families of context-free languages [Ca 07]. The
converse of the implication is true for |A| = 2 (because the complement of a
det. context-free language is also context-free) but false in general (see Proposi-
tion 16).

Notice also that the characterization of k-automatic sequences as morphic
sequences obtained with k-uniform morphism [Co 72] can be extended to the
smallest subfamily RtDetk(A

ω) of k-context-free sequences [LeG 12] using a no-
tion of context-free morphic sequence which extend the usual notion of morphic
sequence [Lo 05].

4 Closure Properties

The set of k-automatic sequences is stable by various transformations: regular
modifications of letters, shift, application of a uniform morphism, inverse sub-
stitution, various extractions. It underlies the robustness of this concept, and
one can ask whereas these properties remain true or not for the four families of
k-context-free sequences.

In this section, we present closure properties of Cfk(A
ω) and DetCfk(A

ω)
but these properties and their proofs remain valid by replacing Cfk(A

ω) by
UnaCfk(A

ω) and by replacing DetCfk(A
ω) by RtDetCfk(A

ω).
By Proposition 6, we get closure properties of Cfk(A

ω) and UnaCfk(A
ω)

from the closure properties of context-free languages.We get closure properties of
DetCfk(A

ω) and RtDetCfk(A
ω)) from the preservation of deterministic regular

automata by inverse regular path functions.

4.1 An Important Tool: Regular Path Functions

Let us recall the notion of a path function.
We define the set Exp of regular expressions as the smallest language over

C ∪ A ∪ {ε , ( , ) , −1 , ¬ , ∨ , ∧ , · , +}
such that C ∪ A ∪ {ε} ⊆ Exp and for any u, v in Exp, the expressions
(u−1) , (¬u) , (u ∨ v) , (u ∧ v) , (u · v) , (u+) are in Exp.

We can remove parentheses using the associativity of ∨ , ∧ , · and by assigning
priorities to operators as usual. Finally · can be omitted. The expression u∗

corresponds to ε ∨ u+ and we will use A instead of
∨

a∈A a.
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A finite expression is a regular expression without the operator + and we
denote by FinExp the set of finite expressions.

The label a ∈ A of an edge s
a−→G t from s to t of an automaton G is

extended to a regular expression u ∈ Exp by induction on the length of u : for
any c ∈ C and u, v ∈ Exp,

s
c−→ t if s = t ∧ c s ; s

ε−→ t if s = t

s
u−1

−→ t if t
u−→ s ; s

¬u−→ t if ¬ (s
u−→ t)

s
u∨ v−→ t if s

u−→ t ∨ s v−→ t ; s
u∧ v−→ t if s

u−→ t ∧ s v−→ t

s
uv−→ t if ∃ r (s u−→ r ∧ r v−→ t) ; s

u+

−→ t if s (
u−→)+ t.

A regular expression formalizes a path pattern in a graph.

Example 9. For instance, if u and v are words over A and c in C,

s
ε∧u−→ t means that there is a cycle on vertex s labelled by u;

s
ε∧uu−1

−→ t means that s = t and there is a path labelled by u starting from s;

s
c−→ t or s c−→ s means that the vertex s = t is coloured by c;

s
(ε∧ucu−1)v−→ t means that there is a path labelled by u starting from s and

ending to a vertex coloured with c and a path from s to t labelled by v.

s
A∗cA∗
−→ t means that there is a path labelled from s to t which goes through a

vertex colored by c.

A function h : C ∪ A −→ Exp (resp. FinExp) is called a regular (resp.
finite) path function and is applied by inverse to any automaton G to get the
automaton:

h−1(G) = { s a−→ t | a ∈ A ∧ s h(a)−→G t } ∪ { c s | c ∈ C ∧ s h(c)−→G s }.
That is, the graph h−1(G) is obtained by replacing any path of type h(a) from
s to t by an edge s

a−→ t and colouring of a vertex s by c if a path h(c) loops
on s.

Let us give an example to illustrate the notion of inverse regular path function.

Example 10. For instance we take the following automaton G = { n a−→ n+1 |
n ≥ 0 } depicted as follows:

a a a a

(1)(0) (2) (3) (4)

and the finite path function h defined by h(a) = a and h(ι) = ¬(a−1a).
So h−1(G) is the following automaton:

a a a aι

(1)(0) (2) (3) (4)
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By applying to this automaton by inverse the following regular path function g:

g(ι) = ι ; g(o) = ι ∨ a−1 ι a ;

g(a) = (ε ∧ (a−1)∗ ι (aa)∗) a a ;

g(b) = (ε ∧ (a−1)∗ ι (aa)∗) a−1 ∨ (ε ∧ (a−1)∗ ι a(aa)∗) a−1 a−1 .

we get the following automaton g−1(h−1(G)) depicted as follows:

a a

b b
b boι

o
(3)

(2)(0)

(1)

(4)

The regularity of automata and the finiteness of its degree are preserved by
inverse of regular path function under conditions [CK 01].

Proposition 11. Let G be a regular automaton and h a regular path function.

1. If h−1(G) is deterministic or of finite degree, then h−1(G) is regular.
2. If the degree of G is finite and h is a finite path function, then h−1(G) is

regular and of finite degree.

Notice that h−1(G) is deterministic if it has a unique input vertex and for all a

in A and s in VG, s
h(a)−→G t ∧ s

h(a)−→G t
′ =⇒ t = t′.

4.2 Synchronization Product and Shift

Let us start with a preservation result by regularly modifying letters. Taking
a mapping ∗ : A×A −→ A, the synchronization product w ∗ w′ of sequences
w,w′ ∈ Aω is the sequence w ∗ w′ = (wn ∗ w′n)n≥0.

As the intersection of two rt. det. context-free languages can be context-
sensitive but not context-free, the (resp. det.) k-context-freeness of sequences
is not preserved by synchronization product. We have to restrict one sequence
to be automatic and use the fact that the synchronization product of a (resp.
det.) regular automaton with a finite automaton remains a (resp. det.) regular
automaton [Ca 07].

Proposition 12. The families Cfk(A
ω) and DetCfk(A

ω) are closed under syn-
chronization product with any k-automatic sequence.

In particular, the (resp. det.) k-context-freeness of a sequence is preserved by
modifying finitely many letters.

The (left) shift of a sequence w = (wn)n≥0 is the sequence S(w) = (wn)n>0

obtained from w by removing its first letter. The right shift of a sequence w
by a letter a is the sequence aw, with (aw)0 = a and (aw)n = wn−1 for n > 0.
The shift operations preserve k-automaticity.

Proposition 13. The family Cfk(A
ω) is closed under left and right shifts.

The family DetCfk(A
ω) is not closed under left and right shifts.
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Proof. We check this proposition for the left shift operation S. Let w ∈ Cfk(A
ω).

For each a ∈ A, Λk
w(a) is a context-free language.

The transformation R : (n)k −→ (n− 1)k is realized by the following finite
transducer:

{ p 1/ε−→ r } ∪ { p i/i−→ q | 0 ≤ i < k } ∪ { q i/i−→ q | 0 ≤ i < k }

∪ { q i/i−1−→ r | 0 < i < k } ∪ {r 0/k−1−→ r}
of input state p and of final state r. Hence, the language Λk

S(w)(a) = R(Λk
w(a))

is context-free for each a ∈ A, that is S(w) ∈ Cfk(A
ω).

Note that this transducer also preserves unambiguous context-freeness.
Furthermore letus consider the followingdeterministic regular 2-automaton G :

1
ι

a

b

0

0

1

b

0

0

b

1

1

b

b0

b

1

1

b

0

b0

1

1

b

0

b

1 1 1 1

1

b

1

1

b

0
b

0 0
b

00

b bb

b b

0, 1

0, 1 0, 10, 1

0, 1

So w = Seq(G) ∈ RtDetCf2({a, b}ω) and the language

Λ2
w(a) = {11} ∪ { 10m+n+110n12m0 | m,n ≥ 0 }

is det. context-free. For the shifted sequence S(w), we have:

Λ2
S(w)(a) = {10} ∪ { 10n+21n+1 | n ≥ 0 }

∪ { 10m+n+110n12m−101 | m > 0, n ≥ 0 }
which is not a deterministic context-free language since the language

Λ2
S(w)(a) ∩ (10∗1++10∗1+01) = { 10n+11n | n > 0 } ∪ { 10n+112n01 | n > 0 }

is not deterministic context-free [Yu 89]. So S(w) is not in DetCfk(A
ω). *+

4.3 Morphisms and Inverse Substitutions

A p-uniform morphism over an alphabet A is a function σ : A −→ Ap, extended
to A∗ and Aω by concatenation of images.

Proposition 14. The families Cfk(A
ω) and DetCfk(A

ω) are closed under any
finite p-uniform morphism with p > 0.

Proof. Let w ∈ Cfk(A
ω) and σ : A −→ Ap. Let us show that σ(w) ∈ Cfk(A

ω).
For each a ∈ A, Λk

w(a) is a context-free language and we have to check that
Λk
σ(w) remains a context-free colouring. By denoting ũ the mirror of a (finite)

word u, the relation R = { (u, v) ∈ �k�∗×�k�∗ | [ṽ]k = p× [ũ]k } is recognized
by the following finite transducer [Be 72] :

{ r q/t−→ s | r, s ∈ �p�, q, t ∈ �k�, pq + r = ks+ t }
∪ { r ε/[r]k−→ p | r ∈ �p� } ∪ { p ε/0−→ p }
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of input state 0 and of final state p. So for any context-free language L ⊆ �k�∗,
p× L = { (p× [u]k)k | u ∈ L } = R̃(L̃) ∩ �k�� is a context-free language.

By applying r ≥ 0 right shifts, p × L + r = { (p× [u]k + r)k | u ∈
L } remains context-free (see proof of Proposition 13). Also, note that this
transformation L �→ p× L + r preserves unambiguous context-freeness.

To conclude the proof for Cfk(A
ω), it remains to see that for any a ∈ A,

Λk
σ(w)(a) =

⋃
b∈A , σ(b)r = a p× Λk

w(b) + r.

For the family DetCfk(A
ω), we cannot use the same argument as the family of

det. context-free languages is not stable by mirror image. However, this trans-
formation of context-free sequences is done by inverse of a finite path function
on associated det. regular automata.

Let w ∈ Aω generated by a det. regular k-automaton G. Let σ : A −→ Ap

be a p-uniform morphism.

Let r the initial vertex of G and G0 = G ∪ {r 0−→r} (which is also a regular
automaton). For any s ∈ VG0 and i ∈ �k�, we denote si the i-th successor

of s : s
i−→G0 si.

We start by copying p times each vertex of the automaton G0: we take new
symbols 0′, . . . , (p − 1)′ and to any vertex s ∈ VG0 coloured by a ∈ A, we
associate new vertices s|0′ , s|1′ , . . . , s|(p−1)′ respectively colored by letters σ(a)0,

σ(a)1, . . . , σ(a)p−1 and linked to s by edges s
i′−→ s|i′ in order to complete G0

into the following automaton:

G′ = G0 ∪ { s i′−→ s|i′ | s ∈ VG0 ∧ i ∈ �p� } ∪ { σ(a)i s|i′ | a s ∈ G0 ∧ i ∈ �p� }.
So G′ remains a deterministic regular automaton.

By linking the vertices s|i′ for s ∈ VG and i ∈ �p� with a finite path function
h, we will construct a new k-automaton h−1(G′) generating σ(w).
Let r be the input vertex of G.

In h−1(G′), for any s ∈ VG, the kp successors of s|0′ , . . . , s|(p−1)′ are

s0|0′ , . . . , s0|(p−1)′, s1|0′ , . . . , s1|(p−1)′, . . . , s(k − 1)|0′ , . . . , s(k − 1)|(p−1)′ ,

where the k first are successors of s|0′ ordered by increasing index of edges i ∈ �k�,
the following k are successors of s|1′ ordered by increasing index of edges i ∈ �k�
and so on.

Formally, we can define the finite path function h as follows. We denote

[i, j] = ki+ j for any i ∈ �p� and j ∈ �k�
and the Euclidian division of any integer n ≥ 0 by p is denoted by

n = pqn + rn with 0 ≤ rn < p.
We define h by

for any a ∈ A, h(a)=a and h(ι) = (0′)−1ι0′,
for any j ∈ �k�, j �= 0, h(j) =

∨
i∈ �p�

(i′)−1 · q[i,j] · (r[i,j])′.

and h(0) = (0′)−1 · (¬ι)0 · (0′)′ ∨
∨

i∈ �p�,i�=0

(i′)−1 · q[i,0] · (r[i,0])′.
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For instance for p = 3 and k = 2, the table of q[i,j], r[i,j] for i ∈ �3� and j ∈ �2�
is given by:

i \ j 0 1

0 0, 0 0, 1
1 0, 2 1, 0
2 1, 1 1, 2

hence
h(0) ≡ (0′)−1 · (¬ ι) · 0 · 0′ ∨ (1′)−1 · 0 · 2′ ∨ (2′)−1 · 1 · 1′

h(1) ≡ (0′)−1 · 0 · 1′ ∨ (1′)−1 · 1 · 0′ ∨ (2′)−1 · 1 · 2′

By Propositions 11, h−1(G′) is a det. regular k-automaton. The det. regular
k-automaton h−1(G′) generates σ(w). *+

Let us apply p-uniform morphism by inverse on a sequence: starting from
position 0 each sequence of length p is replaced by a letter. A substitution σ
on a set V is a mapping V −→ 2V

∗
and it is a p-uniform substitution for

p ≥ 0 if σ(s) ⊆ V p for every s ∈ V . A p-uniform substitution σ is total if⋃
s∈V σ(s) = A

p. A substitution σ is injective if σ(s) ∩ σ(t) = ∅ for any s, t ∈ V
with s �= t. We apply by inverse an injective and total p-uniform substitution
σ on any sequence w ∈ Aω to get the sequence σ−1(w) defined by:

σ−1(w) =
(
σ−1(wnp. . .w(n+1)p−1)

)
n≥0

.

Proposition 15. The family DetCfk(A
ω) is closed under inverse of any injec-

tive and total kp-uniform substitution with p ≥ 0.
The family Cfk(A

ω) is not closed under inverse of injective total k-uniform
substitutions.

Proof. Let w = Seq(G) for some det. k-automaton G.
Let p ≥ 0 and σ be an injective and total kp-uniform substitution.

Let G′ = G ∪ { r 0−→ r} for ι r ∈ G. So G′ remains deterministic and regular.
Let h be the finite path function on G′ which renames colours as follows: the
initial vertex does not change h(ι) = ι and for any a ∈ A, a vertex s is relabelled
by a if there exists a word u in σ(a) such that for any v ∈ �k�p, the v-path
from s ends to a vertex coloured by the [v]k-th letter of u, that is, formally:

h(a) =
∨

u∈σ(a)

∧
v ∈ �k�p

(ε ∧ v u[v]
k

v−1) where (v)−1 stands for v−1
p · · · v−1

2 v
−1
1

Finally, the 0-loop on the inital vertex is removed and labels on edges are un-
changed: h(0) = (¬ι)0 and h(i) = i for any 0 < i < k.

Since h is a regular path function, h−1(G′) is a det. regular k-automaton
and we have Seq(h−1(G′)) = σ−1(w).

Let us check the non-closure of Cfk(A
ω) under the inverse of an injective k-

substitution.
We consider the following real-time deterministic context-free languages:

L = 1+·{ 0n1n | n > 0 } and M = { 1n0n | n > 0 }·1+

The language L·0 ∪ M · 1 is context-free but not deterministic [Yu 89].
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Let a, b ∈ A. We define the 2-context-free sequence w ∈ {a, b}ω by

Λk
w(a) = L·0 ∪ M ·1 and Λk

w(b) = �k�� − Λk
w(a).

The letter a appears in w in positions [1m0n1n0]k or [1n0n1m]k for m,n > 0.
Moreover, the pattern aa appears in w in positions [1n0n1n0]k for n > 0.

Let σ be the k-uniform substitution

σ(a) = aabk−2 and σ(b) = Ak − σ(a)
which is total and injective. As Λk

σ−1(w)(a) = L ∩ M = { 1n0n1n | n > 0 }
is not context-free, σ−1(w) is not a k-context-free sequence. *+

A consequence of this last proposition is that the converse of the implication of
Proposition 8 is false:

Proposition 16. There exists a sequence w such that Λk
w(a) is a rt. det.

context-free language for all a, and w is not a deterministic k-context-free
sequence.

Proof. We use the same languages L,M as in the proof of Proposition 15. Let
A = {a, a, b, b, c} be a five letters alphabet. We define w ∈ Aω by

Λk
w(a) = L·0 ; Λk

w(a) = (�k�� − (L ∪ {ε}))·0 ;

Λk
w(b) =M ·1 ; Λk

w(b) = (�k�� −M)·1 ; Λk
w(c) = �k��{2, . . . , k − 1} ∪ {ε}.

For any a ∈ A, the language Λk
w(a) is a rt. det. context-free language and the

pattern ab only appears in w in positions [1n0n1n0]k for n > 0.
Let σ be the k-substitution defined by σ(a) = abck−2 and σ(b) =

Ak − σ(a).
As Λk

σ−1(w)(a) = L ∩ M , the sequence σ−1(w) is not k-context-free.
By Proposition 15, w cannot be a deterministic k-context-free sequence. *+

4.4 1-Context-Free Sequences and Extractions of Ultimately
Periodic Subsequences

The k-automatic sequences are characterized by the finiteness of their k-kernels.
The k-kernel Kk(w) of a sequence w ∈ Aω is the set of subsequences ku(w)
for u ∈ �k�∗ obtained by only picking up letters in positions of type [vu]k, for
v ∈ �k��, that is, ku(w) =

(
wk|u|n+[u]k

)
n≥0

.

Proposition 17. The k-kernel of any (resp. det.) k-context-free sequence only
contains (resp. det.) k-context-free sequence.

Proof. Let i ∈ �k� and w ∈ Cfk(A
ω). As we have kε(w) = w and kuv(w) =

kv(ku(w)) for any u, v ∈ �k�∗, we just need to check that ki(w) ∈ Cfk(A
ω).

As ki(w) = (wkn+i)n≥0, the language Λk
ki(w)(a) = Λk

w(a)i
−1 is the right

residual by i of Λk
w(a), for any a ∈ A, thus context-free. It follows that ki(w)

is a k-context-free sequence.

Now assume that w ∈ DetCfk(A
ω). We define the injective and total k-substi-

tution h by h(a) = Ai−1aAk−i for any a ∈ A. Hence by Proposition 15,
ki(w) = h

−1(w) so ki(w) ∈ DetCfk(A
ω). *+



Context-Free Sequences 273

To generate the ultimately periodic sequences, we extend the definition of a
k-automaton to the case k = 1.

Definition 18. A 1-automaton over A is an accessible automaton G on the
set �1� = {0} of edge labels and on the set A of colours such that ΛG is a
partition of {0}∗.
A 1-automaton G generates the sequence Seq(G) ∈ Aω such that for any n ≥ 0,
its n-th letter Seq(G)n is the colour a such that 0n ∈ ΛG(a).

The 1-colouring Λ1
w of any w ∈ Aω is the mapping associating with any a ∈ A

the language Λ1
w(a) = { 0n | wn = a } of the representations in base 1 of the

positions of a in w.

Definition 19. A sequence w over A is 1-automatic (resp. 1-context-free) if
Λ1
w(a) is a regular (resp. context-free) for all a in A.

Lemma 20. For any w ∈ Aω, the following four statements are equivalent:

a) w is a ultimately periodic sequence,

b) w is a 1-automatic sequence,

c) w is a 1-context-free sequence,

d) Λ1
w(a) is a regular language for any a ∈ A.

Proof. The equivalences a) ⇐⇒ b) ⇐⇒ d) are well known (see [AS 03] for
example) and b) =⇒ c) because any finite automaton is regular.

To show c) =⇒ d) , Let w = Seq(G) for some regular 1-automaton G. For any
a ∈ A, Λ1

w(a) = ΛG(a) is a context-free language over {0}. By Parikh’s lemma,
every context-free language over a unique letter is regular. *+

We can extract ultimately periodic sequences in any k-context-free sequence by
picking k-regularly letters.

Proposition 21. Let w be a k-context-free sequence and u, v1, . . . , vp ∈ �k�∗
with p ≥ 1, uv1 ∈ �k�� and v1, . . . , vp �= ε. For any q ≥ 0 and i ∈ {1, . . . , p},
we denote vq+

i
p = (v1. . .vp)

qv1. . .vi.

The sequence

(
w
[uv

n
p ]

k

)
n≥0

is ultimately periodic.

Proof. We have w = Seq(G) for some regular k-automaton G.
Let h be the finite path function on G defined as follows:

h(ι) = u−1 ι u ; h(a) = a for any a ∈ A ; h(i) = vi for any
1 ≤ i ≤ p.
So h−1(G) is a prefix-recognizable automaton (got from the complete binary
tree by inverse regular path functions).
We take the following finite deterministic automaton:

H = { i i−→ i+1 | 1 ≤ i < p } ∪ {p p−→ 1} ∪ {ι 1} ∪ { a i | a ∈ A ∧ 1 ≤ i ≤ p }
The following synchronisation product of h−1(G) and H
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h−1(G)×H = { (s, p)
0−→ (t, q) | ∃ i (s i−→h−1(G) t ∧ p

i−→H q) }
∪ { a (s, p) | a s ∈ h−1(G) ∧ a p ∈ H }

is a deterministic prefix-recognizable automaton, hence by [CK 01] is a regular
automaton.
Let K be the restriction by accessibility from ι of h−1(G)×H .

So K is a regular 1-automaton generating Seq(K) =

(
w
[uv

n
p ]

k

)
n≥0

.

By Lemma 20, Seq(K) is an ultimately periodic sequence. *+

4.5 About Base Dependence

A famous theorem of Cobham states that sequences which are automatic in
two multiplicatively independent bases are the ultimately periodic ones [Co 69].
This section presents two results in the direction of a possible extension of this
statement for context-free sequences. First, the context-freeness is preserved for
any non-null power of the base (but not the deterministic context-freeness).
Second, we have the same set of context-free sequences only for multiplicatively
dependent bases.

Proposition 22. For every k, p > 1, we have
Cfk(A

ω) = Cfkp(Aω) and DetCfk(A
ω) 
 DetCfkp(Aω).

Proof. Let h : �kp� −→ �k�p be the bijective mapping associating with any
n ∈ �kp� its (n+ 1)-th word of �k�p by (length) lexicographic order:

h(n) = 0p−�logk(n+1)�(n)k for every n ∈ �kp�
which is extended by morphism on �kp�∗. For any w ∈ Aω and a ∈ A, we have

Λk
w(a) = (0∗)−1h

(
Λkp

w (a)
)
∩ �k�� and Λkp

w (a) = h−1
(
0∗Λk

w(a)
)
∩ �kp��

We deduce that Cfk(A
ω) = Cfkp(Aω).

Let w = Seq(G) for some regular deterministic k-automaton G. We complete

G by adding a 0-loop to its input vertex: G′ = G ∪ { r 0−→ r } for ι r ∈ G.
The mapping h is extended to a finite path function by adding its behaviours on

colours h(ι) = ι and h(a) = a for any a ∈ A. Let H = h−1(G′)−{ r 0−→ r }.
We have Seq(H) = Seq(G) and by Proposition 11, H is a regular deterministic
kp-automaton. Thus DetCfk(A

ω) ⊆ DetCfkp(Aω).

Let us check that this inclusion is strict. As k, p > 1, we have kp ≥ 4 and

h(0) = 0p ; h(1) = 0p−11 ; h(k) = 0p−210 ; h(kp−1) = 10p−1

Let a, b ∈ A. We define the sequence w ∈ {a, b}ω by

Λkp

w (a) = 1{ 0n+1(kp−1)2n | n ≥ 0 } ∪ k{ 0n1n+1 | n ≥ 0 },
Λkp

w (b) = �kp�� − Λkp

w (a).

So w ∈ DetCfkp(Aω) and

Λk
w(a) = 1{ (0p)n+1(10p−1)2n | n ≥ 0 } ∪ 10{ (0p)n(0p−11)n+1 | n ≥ 0 }

= { 10pn+p(10p−1)2n | n ≥ 0 } ∪ { 10pn+p(10p−1)n1 | n ≥ 0 }
which is not a deterministic context-free language, so w �∈ DetCfk(A

ω). *+
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Proposition 23. For any p, q > 1,

Cfp(A
ω) = Cfq(A

ω) ⇐⇒ ∃ i, j > 0, pi = qj.

Proof. ⇐= : This implication is straightforward from Proposition 22.

=⇒ : We just transpose the construction given in [Be 72] for the context-free
integer sets.
Let a, b ∈ A. We define the sequence w ∈ {a, b}ω by

Λp
w(a) = 10∗ and Λp

w(b) = �p�� − 10∗.
So w ∈ Cfp(A

ω) = Cfq(A
ω) thus Λq

w(a) is an infinite context-free language.
As a corollary of the pumping lemma on context-free languages, there exists
u, v, x, y, z in �q�∗ such that u �= ε and for every n ≥ 0, xunyvnz ∈ Λq

w(a).

The integer mapping f defined for every n ≥ 0 by [xunyvnz]q = pf(n) is
increasing.
Note that for any s, t ∈ �q�∗, [st]q = [s]q q

|t| + [t]q, hence for any n ≥ 0,

[snt]q = [s]q q
|sn−1t| + . . .+ [s]q q

|st| + [s]q q
|t| + [t]q

= [s]q q
|t| (1 + q|s| + [t]q + . . .+ (q|s|)n−1

)
= [s]q q

|t| qn|s|−1
q−1 + [t]q

Thus for any n ≥ 0, pf(n) = [xunyvnz]q = Aqn|uv| + B qn|v| + C with

A = q|yz|
(
[x]q +

[u]
q

q−1

)
; B = q|z|

(
[y]q +

[v]
q
−q|y| [u]

q

q−1

)
; C = [z]q −

q|z| [v]
q

q−1

hence
pf(n+1)

pf(n) ∼ Aq(n+1)|uv|

Aqn|uv| = q|uv| i.e., limn→∞ pf(n+1)−f(n) = q|uv|.

This last equality on integers implies that there exists n0 such that

pf(n0+1)−f(n0) = q|uv|,
meaning that p and q are multiplicatively dependent. *+

5 Conclusion and Open Problems

Let us mention again that the results of Section 4 remain valid when substituting
UnaCfk for Cfk, and RtDetCfk for DetCfk.

The difference of behaviours of these families of context-free sequences under
transformations and the difference of involved tools (from languages or from gaph
theory) also allows to deeper understand from where come the strong robustness
of automatic sequences, for which concepts of unambiguity of languages and
determinism of automata are totally erased.

Some properties of k-context-free sequences have to be further studied, for in-
stance the structure of their k-kernels, properties of symbolic dynamical systems
associated with these sequences, their degenerated cases (how to decide when-
ever a k-context-free sequence is k-automatic, periodic, etc.). Moreover, results
of Section 4.5 are encouraging for a possible extension of the Cobham’s theorem
on base dependence.
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We expect that the most of presented closure properties extend to similar
constructions of sequences using indexed languages [Ah 68] and higher order
indexed languages following Maslov’s hierarchy of languages [Ma 74]. As regular
and context-free languages are the first two level of this hierarchy, this paper is
a second step towards a theory of the infinite hierarchy of higher order indexed
automatic sequences following Maslov’s hierarchy, the automatic sequences and
context-free automatic sequences being the first two levels.
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Abstract. Verification of concurrent systems is difficult because of the inher-
ent nondeterminism. Modern verification requires better locality and modularity.
Reasoning of shared memory systems has gained much progress in these aspects.
However, modular verification of distributed systems is still in demand. In this
paper, we propose a new reasoning system for message-passing programs. It is
a novel logic that supports Hoare style triples to specify and verify distributed
programs modularly. We concretize the concept of event traces to represent inter-
actions among distributed agents, and specify behaviors of agents by their local
traces with regard to environmental assumptions. Based on trace semantics, the
verification is compositional in both temporal and spatial dimensions. As an ex-
ample, we show how to modularly verify an implementation of merging network.

1 Introduction

With the blossom of multi-core processors, concurrency has become a crucial element
in software systems. In general, concurrency can be roughly categorized into shared
memory model and message-passing model. They are both notoriously difficult to be
verified because of non-deterministic interleaves of memory accesses or message pass-
ing.

Verification of shared memory models has gained great progress since the emergence
of Separation Logic (SL) [16], e.g., Concurrent Separation Logic (CSL) [2], and lots of
other separation-based reasoning [17,18]. On the other hand, although message-passing
programs have been extensively studied using various process calculi [5,11,13], fewer
Hoare type reasoning systems are developed, especially modular reasoning systems. In
this paper, based on a classic graphical semantics (see Lamport [8]) of message-passing
models, we propose a novel modular reasoning system for distributed programs.

Lamport introduced event graphs (or event traces) as a representation for the se-
mantics of message-passing programs. Event graphs are essentially Directed Acyclic
Graphs (DAGs) composed by nodes and directed arrows, where nodes represent atomic
actions (e.g., send/receive events), and directed arrows represent inter-agent commu-
nications. Each event graph is associated with a partial order — happens-before ≺ —
among nodes, which is defined as the transitive closure of agent local order and directed
arrows, to reveal the causality relation among events. This will be formally defined later.

In terms of formal verification, for any semantics based on event graphs, the crux
is to modularly specify the structures of graphs. As a graph represents a collection of
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ordered and correlated events (nodes), the modularity could only be achieved when we
can carve out irrelevant events in reasoning a local behavior. To make this possible, we
view the structure of an event graph from two dimensions: the spatial dimension and
the temporal dimension. We introduce a separating conjunction operator, ∗, to depict
the spatial dimension by specifying separated traces; and an operator, ◦, to represent
sequential conjunction, which defines the temporal dimension based on happens-before
relation, and takes a stronger condition than the spatial one.

Our logic adopts the Hoare style triples to specify message-passing programs, and
makes local reasoning of message-passing programs a reality. Generally, the semantics
of a set of agentsD is specified by a triple as follows:

{r, p}D {r′, q}

where r and r′ specify D’s expectations (or assumptions) about its environment (the
behaviors of other agents), and p and q specify the local states (changes) of D. The
reasoning of D relies on its environmental assumptions, that is, the local behaviors of
D, which are specified by p and q, are correlated with its environmental expectations.
Local agents are able to calculate and strengthen its environmental assumption in r′ in
order to fulfill certain local function that specified by q. Other agents should satisfy the
expectation ofD in order to parallel composite with D.

Now we give a tiny example to show the reasoning in our system and how the spatial
and temporal modularity is achieved. We prove a simple program as follows:

send (2, pt);
send (3, pt);

|| x := recv (pt);
y := recv (pt);

The left agent sends messages 2 and 3 to the port pt sequentially, and the right agent is
the owner of pt, who withdraws the messages and stores them into local variables.

The proof given in Fig. 1 is modular, because the system is proved agent by agent,
and an agent is separately proved command by command.

Lines 1 – 5 are the proof for the first receive command: it starts from {emp, emp},
where no assumption for the environment is made (the first emp) and no local action is
taken (the second emp); then in line 2, we assume the environment sends messageX to
pt (pt!X), whereX is an implicitly existential-quantified logical variable and its scope
is confined within the environmental part; after executing the receive command, there
is a receive event in the local state (pt?Y ∧ x = Y ), where Y is existential-quantified
to represent the message received and its scope is the local state; line 4 is deduced from
line 3 by strengthening the environmental assumption (pt!2 ⇒ ∃X · pt!X); and line 5
comes because a receive should match with its sender (pt!2 ∗ pt?Y ⇒ Y = 2)1.

The other receive is proved separately (lines 6 – 7) which is similar as lines 1 – 5.
Lines 8 – 9 are obtained from lines 6 – 7 by adding a “frame” — pt!2 ∗ pt?2 — ahead
of current event graph, where pt!2 is added ahead of the environment, and pt?2 is ahead
of the local state. Note that the frame does not affect existing proofs and program state.
The “ahead of” relation is formally called “happens-before”, which is served by the

1 This form of writing is just for easy understanding, precisely it should be pt?Y
pt!2
=⇒ pt?2,

which will be formally discussed in Section 5.
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1. {emp, emp}
2. {pt!X, emp}

x := recv (pt);
3. {pt!X, pt?Y ∧ x = Y }
4. {pt!2, pt?Y ∧ x = Y }
5. {pt!2, pt?2 ∧ x = 2}

6. {emp, emp}
y := recv (pt);

7. {pt!3, pt?3 ∧ y = 3}

8. {pt!2, pt?2}
y := recv (pt);

9.

{
pt!2 ◦ pt!3,
pt?2 ◦ pt?3 ∧ y = 3

}

10. {emp, emp}
x := recv (pt);
y := recv (pt);

11.

{
pt!2 ◦ pt!3,
pt?2 ◦ pt?3 ∧ x = 2 ∧ y = 3

}

12. {emp, emp}
13. {emp, emp}

send (2, pt);
send (3, pt);

14. {emp, pt!2 ◦ pt!3}

||

{emp, emp}
x := recv (pt);
y := recv (pt);
{see line 11}

15.

{
emp,
x = 2 ∧ y = 3 ∧ (pt!2 ◦ pt!3) ∗ (pt?2 ◦ pt?3)

}

Fig. 1. Modular Proof of a Tiny Example

operator “◦”. We can add another frame “x = 2” to the local state in line 8 and 9 in
order to ensure line 8 is the same as line 5. This step is trivial and thus omitted.

Having the proofs for the two receives, the whole specification of the first agent is
obtained by sequentially combining the two proofs (lines 10 – 11).

The specification of the sending agent shown in lines 13 – 14 is trivial that need no
explanation. The composition for the two agents is shown in lines 12 – 15. In line 15,
the environmental assumption of the receiver (line 11) is satisfied by the local state of
the sender (line 14), therefore, the environmental part of line 15 is emp. The local part
of line 15 is just the composition of local state of both agents.

In summary, the logic we developed makes the following contributions:

• It concretizes the concept of event graph [8] to represent the interactions among
agents, and proposes a set of trace predicates to specify the properties of traces;

• It supports two-dimensional modularity: temporal modularity, as the separated
proofs of the receives; and spatial modularity, as the separated proofs of the agents;

• Each agent can be proved locally with explicitly calculated assumptions about its
environment, and proofs of separate agents can be combined as long as their local
behaviors could mutually satisfy the environmental assumptions of other agents.

In the rest of the paper, we give a formal definition of event trace, and present a trace
algebra for separating and sequential conjunctions in Section 2; and a formal presenta-
tion for the model and operational semantics in Section 3. The assertion language for
specifying trace structures and the reasoning logic are presented in Section 4 and 5.
Section 6 gives a case study, and Section 7 discusses the related work and concludes.

2 Event Trace

A distributed system is composed by a set of agents, each of which represents a com-
putational process that can own several ports for receiving messages. Each port belongs
to one agent, while an agent can own multiple ports. We adopt asynchronous message
passing: send commands will not be blocked, while receives will be blocked if there
is no message in the designated ports. We assume the state of a port is a queue, and
messages transmitted following the FIFO-principle [3].
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Value = Int AgntID = Nat Port, EvntID : Discrete Types

(Event) (m, pt, pd, sd) : Val× Port × EvntID ∪ {AgntID}
× EvntID∪ {nil}

(EvntTrc) tr : EvntID ⇀fin Event

Fig. 2. Trace State

2.1 Traces

We use event graphs [8] to depict the semantics of distributed programs. The left part of
Fig. 2 shows the trace of a program execution, where solid nodes represent send events
and hollow nodes are receives. The picture also reveals that event traces are time-space
graphs, where space is measured by agents, and time is measured by agent local orders
and inter-agent arrows.

The state of traces is defined formally in Fig. 2 (right part). Each event is a quad
referred by a unique reference, tr(e) = (m, pt, pd, sd), where: m (referred by e.val)
and pt (referred by e.port) are the value and port for the message respectively; pd
(referred by e.pred) is e’s local direct predecessor; and sd (referred by e.send) refers
to e’s corresponding send event when e is a receive. If e is the first event of an agent,
e.pred is the agent ID where e lives in; and e.send = nil if e is a send event. We use
isSend(e) and isRecv(e) to specify the type of e:

isSend(e)
def
= e.send = nil isRecv(e)

def
= e.send �= nil

We recursively define a function agent(e) to return the agent ID of the event referred
by e:

agent(e)
def
=

{
e.pred e.pred ∈ AgntID
agent(e.pred) otherwise

2.2 Well-Formed Traces

Event traces are specific structures to record the communicating history among agents.
In this section we present an axiomatic definition of traces. As Lamport postulated,
events are partially ordered by happens-before relation ≺.

Definition 1 (Happens-Before). The happens-before relation for tr, ≺, is defined as:

e ≺ e′ def= e = e′.pred ∨ e = e′.send ∨ (∃e′′ · e ≺ e′′ ∧ (e′′ = e′.pred ∨ e′′ = e′.send))
where {e, e′} ⊆ dom(tr)

Based on happens-before relation, we define six axioms to specify well-formed traces.
Axioms 1 – 4 are general axioms which are proposed originally in [1]; axioms 5 – 6 are
specifically proposed for our model. We use tr to denote an event trace.
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Axiom 1. tr is self-closed:

∀e ∈ dom(tr) · e.pred /∈ AgntID⇒ e.pred ∈ dom(tr), and
∀e ∈ dom(tr) · e.send �= nil⇒ e.send ∈ dom(tr).

Axiom 2. Relation ≺ is strongly well founded. There exists f : dom(tr)→ Nat that:

∀e, e′ ∈ dom(tr) · e ≺ e′ ⇒ f(e) < f(e′).

Axiom 3. Maps •.pred and •.send are injective:

∀e, e′ ∈ dom(tr) · e.pred = e′.pred⇒ e = e′, and
∀e, e′ ∈ dom(tr) · e.send = e′.send ∧ e.send �= nil⇒ e = e′.

Axiom 4. The send field of a receive event refers to its corresponding send event:

∀e ∈ dom(tr) · isRecv(e)⇒ ∃e′· e.send = e′ ∧ isSend(e′) ∧
e.val = e′.val ∧ e.port = e′.port.

Axiom 5. Communications are robust that there is no lost message. Let e1 and e2 be
two send events:

e1 ≺ e2 ∧ e1.port = e2.port ∧ ∃e′2 · e′2.send = e2 ⇒ ∃e′1 · e′1.send = e1.

That is, if e2 is received, all send events that happen before e2 on the same channel must
have been received.

Axiom 6. Messages are sent and received by the FIFO principle. Let e1 and e2 be two
send events:

e1 ≺ e2 ∧ e1.port = e2.port ∧ e′1.send = e1 ∧ e′2.send = e2 ⇒ ¬(e′2 ≺ e′1).

We useA1, . . . ,A6 to represent the above axioms, andA to denote their conjunction:

A def
= A1 ∧ . . . ∧ A6.

Theorem 1. Let Prop be the type of propositions over tr, then for all P : EvntID →
Prop:

(∀e′ · (∀e · e ≺ e′ ∧ P (e)→ P (e′)))⇒ ∀e · P (e)

Theorem 1 is the induction over event traces: take any event e′ in the trace, if all events
that happen before e′ satisfy P leads the truth of P at e′, then P holds all over the trace.

We use f & g as the union of f and g but require f and g have disjointed domains.

Definition 2 (Well-formed Trace). Trace tr is well-formed, WF (tr), iff there exist tr′

and tr′′ such that:
tr′′ = tr & tr′ ∧ tr′′ |= A

That is, any well-formed trace, tr, is a sub-trace of some “complete” trace tr′′ such that
tr′′ entailsA.
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tr1 = tr2 ⇒ tr1 ∗ tr3 = tr2 ∗ tr3 tr1 ∗ tr2 = tr2 ∗ tr1
tr1 ∗ tr2 = tr1 ∗ tr3 ⇒ tr2 = tr3 tr = tr1 ◦ tr2 ⇒ tr = tr1 ∗ tr2
tr1 ◦ (tr2 ◦ tr3) = (tr1 ◦ tr2) ◦ tr3 tr = tr1 ◦ (tr2 ∗ tr3)⇒ tr = (tr1 ◦ tr2) ∗ tr3
tr1 ∗ (tr2 ∗ tr3) = (tr1 ∗ tr2) ∗ tr3 tr = (tr1 ∗ tr2) ◦ tr3 ⇒ tr = (tr1 ◦ tr3) ∗ tr2

Fig. 3. Selected Properties for Traces

2.3 Trace Separation and Algebra

To structurally specify event traces, we introduce two operators, separating conjunction
∗ and sequential conjunction ◦, where:

tr1 ∗ tr2 is the union of all the events in tr1 and tr2 as long as tr1 and tr2 contain
disjointed set of events.

tr1 ◦ tr2 returns tr1 ∗ tr2 if three additional conditions hold: (1) no event in tr2 hap-
pens before any event in tr1; (2) if e1 (∈ tr1) and e2 (∈ tr2) send messages to a
same port, then e1 happens before e2; and (3) if e1 (∈ tr1) and e2 (∈ tr2) receive
messages from the same port, then e1 happens before e2.

We give the formal definitions of ∗ and ◦ as follows:

tr ∗ tr′ def
= tr & tr′ iff WF (tr & tr′)

tr ◦ tr′ def
= tr ∗ tr′ iff ∀e ∈ dom(tr), e′ ∈ dom(tr′)·

¬(e′ ≺ e) ∧ (isSend(e) ∧ isSend(e′) ∧ e.port = e′.port⇒ e ≺ e′)
∧ (isRecv(e) ∧ isRecv(e′) ∧ e.port = e′.port⇒ e ≺ e′)

In [19], Wehrman et al. defined another semantics for tr ◦ tr′, which only requires
events in tr′ do not happen before events in tr. Our semantic definition of sequential
composition is stronger. Take the trace (pt!88◦pt!14)∗(pt?x◦pt?y) for instance, we can
deduce x = 88∧ y = 14 with the additional conditions, otherwise the x = 14∧ y = 88
is permitted as well. Fig. 3 lists some selected properties for trace structures, which are
sound based on the semantics.

3 Programming Language

In this section, we define a programming language for constructing the distributed pro-
grams (system models) and its operational semantics.

Fig. 4 gives the programming language. We use E and B to denote numerical and
boolean expressions. Command send (E, pt) sends message E to port pt; and x :=
recv (pt) withdraws a message from pt and stores it into the local variable x. A dis-
tributed program is a parallel composition of agents Ci, where each agent is tagged
with a unique agent ID (i1, . . . , ik in Fig. 4). For simplicity, we don’t consider memory
management in our model.

The program state is defined in Fig. 5. A state, σ = (s, tr) is composed by a store
and a trace, where s maps variable names to values, and tr is already defined in Fig. 2.
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(Expr) E ::= x | X | n | E + E | E −E | . . .
(BExp) B ::= true | false | E = E | E �= E | . . .
(Comd) c ::= x := E | skip |

send (E, pt) | x := recv (pt)
(Stmts) C ::= c | C1;C2 | while B do C |

if B then C1 else C2

(Prog) D ::= i1 : C1|| . . . ||ik : Ck

Fig. 4. The Language

Loc = Int Var : Discrete Type

(Store) s : Var ⇀fin Value
(EvntTrc) tr : EvntID ⇀fin Event
(State) σ ::= (s, tr)

Fig. 5. State Definition

We define the predicate fstUnMchd(e, tr, pt) to state that e is the first pending send
event on port pt, that is, e is a send event on pt which has not matched with a receive
yet, and no other unmatched send event on pt happens before e. Formally:

fstUnMchd(e, tr, pt)
def
= isSend(e) ∧ e.port = pt ∧
¬∃e′ ∈ dom(tr) · e′.send = e ∧
¬∃e′ · isSend(e′) ∧ e′.port = pt ∧ e′ ≺ e.

Function last(tr, i) returns the last event of agent i in tr. If there is no event at agent
i, then the function returns “i” since the •.pred field of the first event is an agent ID.

last(tr, i)
def
=

⎧⎨⎩i {e | e ∈ dom(tr) ∧ agent(e) = i} = ∅

max≺

{
e

∣∣∣∣ e ∈ dom(tr)
∧ agent(e) = i

}
otherwise

The operational semantics is defined by a set of rules which describe configuration
transitions caused by program execution. These rules take the following form:

(D, s, tr) � (D′, s′, tr′)

If there is only one agent i (D = i : C), the transition can take the form of:

(C, s, tr) �i (C
′, s′, tr′)

Fig. 6 gives the operational semantics, where {i1 : v1; . . . ; in : vn} denotes a func-
tion f with dom(f) = {i1, . . . , in} and f(ij) = vj ; f{x � v} remaps x of f to v;
f & g is function union when dom(f) ∩ dom(g) = ∅; [[E]]s and [[B]]s evaluate the
numerical and boolean expressions based on store s.

Semantics of local primitives, e.g., assignment, control flow commands are regular.
Rules for send and receive primitives are added, which create new events in the trace.
For receive, it should find the first unmatched send event on the port in tr according to
fstUnMchd(e, tr, pt) and then create a corresponding receive event.

Theorem 2. Let (D, σ) be the initial state, and σtr be the trace of σ, then the execution
traces of any distributed program would entail A:

((D, σ) �∗ (D′, σ′)) ∧ σtr |= A ⇒ σ′tr |= A.
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[[E]]s = n
(x := E, s, tr) �i (skip, s{x � n}, tr)

[[E]]s undefined
(x := E, s, tr) �i abort

fstUnMchd(e, tr, pt) e.val = n e′ = last(tr, i) e′′ /∈ dom(tr)

(x := recv (pt), s, tr) �i (skip, s{x � n}, tr � {e′′ : (n, pt, e′, e)})

[[E]]s = n e = last(tr, i) e′ /∈ dom(tr)
(send (E, pt), s, tr) �i (skip, (s, tr � {e′ : (n, pt, e, nil)}))

[[E]]s undefined
(send (E, pt), s, tr) �i abort

[[B]]σs = true
(ifB thenC1 elseC2, s, tr) �i (C1, s, tr)

[[B]]s = false
(ifB thenC1 elseC2, s, tr) �i (C2, s, tr)

[[B]]s = true
(whileB doC, s, tr) �i (C;whileB doC, s, tr)

[[B]]s = false
(while B do C, s, tr) �i (skip, s, tr)

[[B]]s undefined
(if B then C1 else C2, s, tr) �i abort

[[B]]s undefined
(while B do C, s, tr) �i abort

(C1, σ) �i (C
′
1, σ

′)
(C1;C2, σ) �i (C

′
1;C2, σ

′)
(C1, σ) �i abort

(C1;C2, σ
′) �i abort (skip;C, σ) �i (C, σ)

(D1, σ) � (D′
1, σ

′)
(D1 ||D2, σ) � (D′

1||D2, σ
′)

(D2, σ) � (D′
2, σ

′)
(D1 ||D2, σ) � (D1||D′

2, σ
′)

(D1, σ) � abort or (D2, σ) � abort
(D1 ||D2, σ) � abort

Fig. 6. Operational Semantics

4 Assertion Language

This section defines an assertion language for specifying traces. We assume an infinite
set of logical variables LVar = {X,Y, . . .}. The assertion language is a mixture of
store predicates, and trace predicates with the following syntax:

p, q ::= E = E | E > E | . . . (store predicates)
| emp | true | pt!E | pt?E (trace predicates)
| ¬p | p ∧ q | ∃X · p | p ∗ q | p ◦ q | . . . (connectives)

The semantics of assertions is defined in Fig. 7, where emp and true specify empty
trace and any well-formed trace respectively; pt!E and pt?E specify singleton events,
where pt!E represents sending message E to pt and pt?E says receiving E from pt;
boolean expression holds only if it is true over the state; σ1 & σ2 is the conjunction of
separated states, σ1 and σ2, which have separated traces; σ1 - σ2 is the conjunction of
sequential states which have sequentially connected traces. p∗q says p and q holds over
separated states; p ◦ q holds over sequential states.

Definition 3 (Pure Assertion). Assertion p is pure, Pure(p), iff the validity of p does
not rely on the state of trace, i.e.,

if (s, tr) |= p, then for all tr′, (s, tr′) |= p.

Syntactically, pure assertions do not contain trace predicates.
Fig. 8 lists some selected proof rules, which are sound based on the semantics.
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(s, tr) |= emp iff dom(tr) = ∅ (s, tr) |= true iff WF (tr)
(s, tr) |= B iff [[B]]s = true
(s, tr) |= pt!E iff ∃l, n, e · [[E]]s = n ∧ dom(tr) = {e} ∧ tr(e) = (n, pt, , nil)
(s, tr) |= pt?E iff ∃l, n, e · [[E]]s = n ∧ dom(tr) = {e} ∧ tr(e) = (n, pt, ,¬nil)

(s, tr) � (s′, tr′) def
=

{
(s, tr ∗ tr′) if s = s′ ∧ tr ∗ tr′ defined
undefined otherwise

(s, tr) (s′, tr′) def
=

{
(s, tr ◦ tr′) if s = s′ ∧ tr ◦ tr′ defined
undefined otherwise

tr∗ def
= ∅ ∪ tr ∪ tr ◦ tr ∪ . . . σ∗ def

= (s, tr∗) where σ = (s, tr)

σ |= p1 ∗ p2 iff ∃σ1, σ2 · σ1 � σ2 = σ ∧ σ1 |= p1 ∧ σ2 |= p2
σ |= p1 ◦ p2 iff ∃σ1, σ2 · σ1  σ2 = σ ∧ σ1 |= p1 ∧ σ2 |= p2
σ |= p∗ iff ∃σ′ · σ′ |= p ∧ σs = σ′

s ∧ σtr = σ′
tr

∗

σ |= ¬p iff σ � p σ |= p ∧ q iff σ |= p ∧ σ |= q
σ |= p⇒ q iff if σ |= p, then σ |= q σ |= ∃X · p iff ∃n ∈ Val · σ |= p[n/X]

Fig. 7. Semantics of Assertions

p ∗ q ⇔ q ∗ p p ◦ (q ◦ r)⇔ (p ◦ q) ◦ r (p ∗ q) ◦ r ⇒ (p ◦ r) ∗ q p ◦ q ⇒ p ∗ q

p ◦ (q ∗ r)⇒ (p ◦ q) ∗ r (r1 ∗ p1) ◦ (r2 ∗ p2)⇒ (r1 ◦ r2) ∗ (p1 ◦ p2)

Pure(p) or Pure(q)
p ◦ q ⇔ p ∧ q

Pure(p) or Pure(q)
p ∗ q ⇔ p ∧ q

Pure(p)
p ∧ (q ◦ r)⇒ (p ∧ q) ◦ (p ∧ r)

Pure(r)
p ◦ (q ∧ r)⇔ (p ◦ q) ∧ r

Pure(q)
(p ∧ q) ◦ r ⇔ (p ◦ r) ∧ q

Fig. 8. Selected Proof Rules

5 Inference System

In this section, we introduce our inference system, which is a separation-based system
for reasoning distributed programs.

The inference rules are given in Fig. 9 and 10. In order to avoid tedious side con-
ditions, Syntactic Control of Interference (SCI) [15] is adopted here. There are two
syntactic context:Ovar for variable context, and Oport for port context.

Ovar ::= x1, x2, x3, . . . Oport ::= pt1, pt2, pt3, . . .

Ovar denotes the ownership of a set of variables, and Ovar,O′
var is the conjunctive own-

ership of two separated sets of variables. Oport is a set of port names, which specifies
the access permissions of ports. If pt ∈ Oport, the current agent can withdraw messages
out of pt, and other agents can only send messages to pt. For simplicity, we consider
full permissions. It is possible to extend this definition with fractional permissions [14]
as well. SCI specifies the well-formedness of variables, expressions, assertions, and
programs. The formal definitions are given in the extended technical report [9] .
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x ∈ Ovar pt ∈ Oport x /∈ freeVar(r) ∪ freeVar(p)

Ovar, X;Oport �i {r, p}x := recv (pt) {r, p ◦ pt?X ∧ x = X} (RECV)

x ∈ Ovar pt /∈ Oport

Ovar,Oport �i {r, p} send (x, pt) {r, p ◦ pt!x} (SEND)

Ovar;Oport �i {r, p}C1 {r′, p′} Ovar;Oport �i {r′, p′}C2 {r′′, p′′}
Ovar;Oport �i {r, p}C1;C2 {r′′, p′′}

(SEQ)

Ovar;Oport �i {r, (p ∧B)}C1 {r′, q} Ovar;Oport �i {r, (p ∧ ¬B)}C2 {r′, q}
Ovar;Oport �i {r, p} if B then C1 else C2 {r′, q}

(IF)

Ovar;Oport �i {r∗, p∗ ∧B}C {r∗, p∗}
Ovar;Oport �i {r∗, p∗}whileB doC {r∗, p∗ ∧ ¬B)} (WHILE)

Fig. 9. Selected Inference Rules — Basics

The specification of a message-passing program takes the form as:

Ovar;Oport � {r, p}D {r′, q}

It specifies the partial correctness of D: if D starts from a pre-state satisfying r ∗ p,
where r for the environmental state and p for the local state, thenD will not abort, and
when D terminates, if the environmental state satisfies r′, then the local state satisfies
q. IfD contains only one agent, e.g., i : C, the specification can be written as:

Ovar;Oport �i {r, p}C {r′, q}

It is innovative that we syntactically separate the pre- and post-conditions into two
parts: one assumption for the environment, and one specification for the local state. In
the precondition, r is the environmental assumption before the execution, and p speci-
fies the local pre-state. During execution,D may receive (send) messages from (to) the
environment, so we can calculate the post-assumption of environment from D’s local
requirements. When D terminates, its environmental assumption becomes r′ and local
state becomes q. Clearly, the trace specified by r′ and q will not be shorter than r and p.

Note that we always consider well-formed triples in this paper. Take Ovar;Oport �
{r, p}D {r′, q} for instance, the environmental trace does not receive messages from
Oport, which is the set of ports owned byD, and the local trace does not send messages
to any port in Oport:

r ∨ r′ ⇒ (true ∗ pt? ⇒ pt /∈ Oport) and p ∨ q ⇒ (true ∗ pt! ⇒ pt /∈ Oport)

In Fig. 9, the rule (RECV) for receiving commands is straightforward. In this rule,
variable X is a fresh logical variable to represent the message received by the current
agent. No environmental assumption should be made at this stage. The rule for send
event is similar. Note that no agent can send messages to itself (pt /∈ Oport). Both (SEQ)
for sequential composition and (IF) for conditional are trivial. (WHILE) is normal too,
where each iteration should maintain the validity of loop invariant {r∗, p∗}.
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p
r⇒ p′ q′ r′⇒ q Ovar;Oport � {r, p′}D {r′, q′}

Ovar;Oport � {r, p}D {r′, q}
(CONSEQ-A)

r1 ⇒ r r2 ⇒ r′ Ovar;Oport � {r, p}D {r′, q}
Ovar;Oport � {r1, p}D {r2, q} (CONSEQ-B)

Ovar;Oport � {r, p}D {r1, q1} Ovar;Oport � {r, p}D {r2, q2}
Ovar;Oport � {r, p}D {r1 ∨ r2, q1 ∨ q2}

(DISJ)

Ovar;Oport � {r, p}D {r1, q1} Ovar;Oport � {r, p}D {r2, q2}
Ovar;Oport � {r, p}D {r1 ∧ r2, q1 ∧ q2}

(CONJ)

Ovar;Oport � {r, p}D {r′, q} O′
var � r′′ Assert notInterfere(r′′,Oport)

Ovar,O′
var;Oport � {r ∗ r′′, p}D {r′ ∗ r′′, q}

(FRM-ENV)

Ovar;Oport � {r, p}D {r′, q} O′
var � p′ Assert notInterfere(p′,Oport)

Ovar,O′
var;Oport � {r, p ∗ p′}D {r′, q ∗ p′}

(FRM-LOC)

Ovar;Oport � {r, p}D {r′, q} O′
var � r′′ Assert r′ 	�Oport q

Ovar,O′
var;Oport � {r, p}D {r′ ◦ r′′, q}

(FRM-BHD)

Ovar;Oport � {r, p}D {r′, q} O′
var � r′′, p′ Assert r′′ 	�Oport p

′

Ovar,O′
var;Oport � {r′′ ◦ r, p′ ◦ p}D {r′′ ◦ r′, p′ ◦ q}

(FRM-AHD)

Ovar1;Oport1 � {emp, p1}D1 {r1, q1} q1 ∗ r ⇒ r2 ∗ r′2 notInterfere(r′2,Oport2 )
Ovar2;Oport2 � {emp, p2}D2 {r2, q2} q2 ∗ r ⇒ r1 ∗ r′1 notInterfere(r′1,Oport1 )

Ovar1,Ovar2;Oport1,Oport2 � {emp, p1 ∗ p2}D1||D2 {r, q1 ∗ q2} (PAR)

Fig. 10. Selected Inference Rules — Others

Definition 4 (Hooked Assertions). Assertion p is hooked with q by Oport, p ��Oport q,
iff for any trace tr such that tr |= p∗q, any event e ∈ dom(tr), and any port pt ∈ Oport,
the following conditions hold:

isSend(e) ∧ e.port = pt⇒ ∃e′ ∈ dom(tr) · e′.sender = e, and
isRecv(e) ∧ e.port = pt⇒ ∃e′ ∈ dom(tr) · e.sender = e′.

Intuitively, p ��Oport q says that for any trace tr which satisfies p ∗ q, there is no pending
send or receive event that accesses ports within Oport.

Example 1. Let Oport = {pt}, posiSend = (∃X · pt!X ∧ X > 0)∗, posiRecv =
(∃X · pt?X ∧X > 0)∗, we will have

– posiSend ��Oport posiRecv does not hold, and
– (posiSend ◦ pt!0) ��Oport (posiRecv ◦ pt?0) holds.

Here posiSend is a sequence of events sending positive numbers, and posiRecv is a
sequence of events receiving positive numbers. These two assertions are not hooked,
because there may exist pending events in posiSend. However, the second pair above
is hooked, since each sequence is appended with a sentinel 0 at the end, which enforces
each send to be paired with a receive and vice versa. *+
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There are some rules for hooked assertions, which are useful for program reasoning.

p1 ��Oport q1 p2 ��Oport q2
p1 ◦ p2 ��Oport q1 ◦ q2

p1 ◦ p2 ��Oport q1 ◦ q2 p1 ��Oport q1
p2 ��Oport q2

p1 ��Oport q1 p2 ��Oport q2
p1 ∗ p2 ��Oport q1 ∗ q2

p1 ∗ p2 ��Oport q1 ∗ q2 p1 ��Oport q1
p2 ��Oport q2

Definition 5 (Environmental-Aided Implication). Environmental-aided implication,
written as p

r⇒ p′, implies p′ from p with an extra coupled trace r. It is true when:

∀σ1=(s, tr1), σ2 = (s, tr2)·
σ1 ∗ σ2 |= r ∗ p ∧ σ1 |= r ∧ σ2 |= p
∧ ∀e ∈ tr2 · isRecv(e)⇒ e.send ∈ dom(tr1)

⇒ σ2 |= p′

Environmental-aided implication enables local deduction with the extra knowledge
about environmental state. In this definition, we require all receives in the local state are

matched with some sends in the environment. For instance, we have pt?X
pt!2
=⇒ X = 2,

while pt?X ∗ pt!2⇒ X = 2 is not true since ∗ does not enforce send-receive matches
in the trace.

In Fig. 10, there are two rules of consequences. (CONSEQ-A) is for local deduction.
To weaken a specification, we can either strengthen its local precondition, or weaken
its local postcondition. (CONSEQ-B) is for the environmental state. Different from
(CONSEQ-A), it only allows strengthening the assumption of environment, either at
precondition or postcondition. These two rules are usually applied together with rule
(RECV). (RECV) makes no assumption about the message received. Using (CONSEQ-
B), the current agent can make assumption for the received value by strengthening the
predicate in the assumption part. Then, by using (CONSEQ-A), we can deduce the local
state with the aid of a stronger environmental assumption.

Definition 6 (Non-Interference). For an assertion r, we say that r does not interfere
with Oport, written as notInterfere(r,Oport), when:

r ⇒ (true ∗ (pt! ∨ pt? )⇒ pt /∈ Oport)

Predicate notInterfere(r,Oport) says that the trace specified by r does not interfere with
Oport, that is, it does not send or receive messages via any port in Oport.

Our system supports spatial modularity, because it allows the proof of a local agent
to be extended with a frame by ∗, as long as the frame does not interfere with existing
proofs. This is described by rules (FRM-ENV) and (FRM-LOC) in Fig. 10. Rule (FRM-
ENV) is the frame rule for the environment. It allows the environment to be extended
with frame r′′, as long as r′′ does not interfere with D, i.e., r′′ must not race with r′

by sending messages to D; and not race with q by receiving messages form r′. Rule
(FRM-LOC) is the frame rule for local state. If p′ does not contain any message passing
predicates, this rule is reduced to the standard frame rule in SL. If p′ contains some
message passing events, it must not interfere the existing communication between r′

and q. Note that O′
var � r′′ Assert and O′

var � p′ Assert require all free variables of r′′

and p′ are within O′
var.

On the other hand, we support temporal modularity as well, that is, we allow a trace
to be connected ahead or behind of current trace. Temporal modularity is supported by
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rules (FRM-BHD) and (FRM-AHD). Rule (FRM-BHD) allows appending an extra r′′

to the end of environmental assumption. To ensure soundness, r′ should be hooked with
q′ so that the extra trace r′′ in the environment should not affect the behavior of existing
trace q. Rule (FRM-AHD) allows appending the frame r′′ ∗ p′ ahead of the current
trace, where r′′ is added to the environment, and p′ is added to the local trace. The two
assertions must be hooked together so that they do not affect the communication of later
traces. This rule can be applied when proving sequential programs.

Informally, in order to prove C1;C2, we can prove C1 and C2 independently in the
first to get, e.g., {r1, p1}C1 {r′1, p′1} and {emp, emp}C2 {r′2, p′2}. By applying (FRM-
AHD), C2 satisfies {r′1, p′1}C2 {r′1 ◦r′2, p′1 ◦p′2}. Therefore by rule (SEQ), the conjunct
program can be specified by {r1, p1}C1;C2 {r′1 ◦ r′2, p′1 ◦ p′2}.

Rule (PAR) is for parallel composition of separated agents. For D1||D2, the local
trace of D1 becomes the environment of D2, and vice versa. In the rule, r is the en-
vironment of D1 and D2. Therefore, D1’s environment is r ∗ traceOf(D2), and D2’s
environment is r ∗ traceOf(D1). q1 ∗ r ⇒ r2 ∗ r′2 ensuresD2’s environment is satisfied;
and q2 ∗ r ⇒ r1 ∗ r′1 ensuresD1’s environment is satisfied.

Due to page limit, the semantics of all these rules and their soundness proofs are
given in technical report [9] .

6 Example: Filters

Filters form a common class of distributed systems. A filter is an agent that receives
messages from one or more ports and send messages to some other ports. In this section,
we prove a filter example — Merging Network.

Fig. 11 (upper part) shows the architecture of a merging network. Each agent in
the network is a filter that merges two monotonic positive streams into one monotonic
stream, and 0 marks the end of streams. Fig. 11 (lower part) shows an implementation
of agent 5. Here each port takes a unique ID, and k@i denotes port k of agent i.

Agent 5 owns two variables and two ports, and is sequentially composed by three
while loops. As the proof of the trivial example in Section 1, we prove these loops
separately and then sequentially compose these independent proofs together.

For clarity, we define the following predicates to simplify descriptions:

mono(pt)
def
= (true ∗ pt!X) ◦ (true ∗ pt!Y )⇒ 0 < X ≤ Y

monoEnd(pt)
def
= mono(pt) ◦ pt!0

large(var)
def
= ∀n · (true ∗ 2@6!n⇒ var = 0 ∨ var ≥ n)

eqLast(pt, var)
def
= true ◦ pt?X ⇒ var = X

mono(pt) says the environment send positive monotonic messages to pt, and
monoEnd(pt) additionally says the stream has ended; large(var) says var is either
larger than any message that previously sent to 2@6 or equal to 0; eqlast(pt, var) says
var equals to the last message that received from pt.

Fig. 12 lists the proof for the first loop. Line 1 is the loop invariant. It assumes
that the environment send monotonic streams to 1@5 and 2@5, and its local trace is a
composition of some receive events of that two ports and a set of monotonic sends to
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Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Port: 1

Port: 2

Agent 1

Agent 2

Agent 3

Agent 5

Agent 4

Port: 1

Port: 2

Agent 6

agent5 () {
v1 = recv (1@5); v2 = recv (2@5);
while (v1 �= 0 ∧ v2 �= 0){
if (v1 > v2) {send (v2, 2@6); v2 := recv (2@5);}
else {send (v1, 2@6); v1 := recv (1@5);}}
while (v1 �= 0) {send (v1, 2@6); v1 := recv (2@5);}
while (v2 �= 0) {send (v2, 2@6); v2 := recv (1@5);}
send (0, 2@6);
}

Fig. 11. Merge Sort

1

⎧⎨
⎩monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)
∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)

⎫⎬
⎭

while (v1 �= 0 ∧ v2 �= 0){

2

⎧⎨
⎩monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6) ∧ v1 �= 0
∧ v2 �= 0 ∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)

⎫⎬
⎭

if (v1 > v2){

3

{
monoEnd(2@5),

(2@5? )∗ ∗mono(2@6) ∧ large(v1) ∧ large(v2)
∧ eqLast(2@5, v2) ∧ v1 > v2 > 0

}

send (v2, 2@6);

4

{
monoEnd(2@5),

(2@5? )∗ ∗mono(2@6) ∧ large(v1) ∧ large(v2)
∧ eqLast(2@5, v2) ∧ v1 > v2 > 0

}

v2 := recv (2@5);}
5

{
monoEnd(2@5), (2@5? )∗ ∗mono(2@6) ∧ large(v1) ∧ large(v2) ∧ eqLast(2@5, v2)

}
else{
send (v1, 2@6);
v1 := recv (1@5);}

}

6

⎧⎨
⎩monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)
∧ (v1 = 0 ∨ v2 = 0) ∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)

⎫⎬
⎭

Fig. 12. Proof of the First While-loop

port 2@6. Line 2 is obtained from line 1 by conjoining the boolean condition of the
while. Line 3 falls into a branch of the if statement. In this branch, the agent sends v2
and receives messages from 2@5. Therefore, we treat some assertions about v1 and 1@5
in line 2 as frame, and line 3 is deduced by framing out those irrelevant traces. Line 4
is the same as line 3, because according to large(v2) ∧ v2 �= 0, v2 is larger than any
message that previously sent to 2@6, so mono(2@6) holds in line 4; also since v1 > v2,
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while (v1 �= 0){

7

{
monoEnd(1@5),

(1@5? )∗ ∗mono(2@6) ∧ v1 �= 0 ∧ v2 = 0
∧ large(v1) ∧ eqLast(1@5, v1)

}

send (v1, 2@6);
v1 := recv (2@5);

8

{
monoEnd(1@5),

(1@5? )∗ ∗mono(2@6) ∧ v2 = 0 ∧ large(v1)
∧ eqLast(1@5, v1)

}

}

9

{
monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)
∧ v1 = 0 ∧ v2 = 0

}

Fig. 13. Proof of the Second While-loop

large(v1) remains to be true in line 4. The deduction from line 4 to 5 is also the standard
local deduction. Deductions for the other branch are symmetric and thus omitted. Line
6 is obtained from line 5 by conjoining with the frame that was put aside in line 3.

Proof of the second loop is given in Fig 13. Line 7 is obtained from line 6 by framing
out irrelavent assertions about 2@5 and adjoining the boolean predicate that guarded by
the loop. The proof from line 7 to line 8 is just local reasoning as the proof from line
3 to 5. Line 9 is obtained by conjoining the frame of line 7 back to the post-condition.
The third loop is symmetric with the second, and therefore we omit its proof.

The sketch of the overall proof is given in Fig. 14, where we only present the asser-
tions at the critical places, e.g., the position where a framework is put aside or token
back. As we have already discussed, the overall proof is obtained by sequentially con-
joining several separated proofs of some locally connected commands. The post condi-
tion says if the environment send monotonic streams to the two ports of agent 5, then
the agent will send monotonic streams to 2@6.

Note that the specification of agent 5 can be joined with the specification of other
agents, just like the proof of the tiny example in Section 1. It is feasible if other agents
take different algorithms as long as the assumption of agent 5 is satisfied.

7 Related Work and Conclusions

Now we summarize some related work, and then give a conclusion. Program verifica-
tion has been studied from various standpoints for decades. Verification of concurrent
systems is especially interesting because of their inherent non-determinism.

Process Calculus. For the message-passing models, there exist many famous pro-
cess calculi, e.g., CSP (Communicating Sequential Processes) [5], CCS (Calculus of
Communicating System) [10], π-calculus [12], and KPN (Kahn Process Network) [7].
However, those algebraic systems focus mainly on agent behavior deductions and equiv-
alence, e.g., bi-simulation. It is unclear how to apply those calculi to modularly specify
and reason the properties of local agents, which are written in real code and defined
with stated-based semantics, that is our focus in this work.

Separation Logic. Recently there is a clear trend that concurrency verification should
support better modularity and locality. Modular verification of shared memory models
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agent5 (){
{emp, emp}
v1 = recv (1@5);
v2 = recv (2@5);
{1@5!X ∗ 2@5!Y, 1@5?X ◦ 2@5?Y ∧ v1 = X ∧ v2 = Y }
{monoEnd(1@5) ∗monoEnd(2@5), 1@5?X ◦ 2@5?Y ∧ v1 = X ∧ v2 = Y }⎧⎨
⎩monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)
∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)

⎫⎬
⎭

while (v1 �= 0 ∧ v2 �= 0){
if (v1 > v2){send (v2, 2@6); v2 := recv (2@5);}
else{send (v1, 2@6); v1 := recv (1@5);}
}⎧⎨
⎩monoEnd(1@5) ∗monoEnd(2@5),

(1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6)
∧ (v1 = 0 ∨ v2 = 0) ∧ large(v1) ∧ large(v2)
∧ eqLast(1@5, v1) ∧ eqLast(2@5, v2)

⎫⎬
⎭

while (v1 �= 0){{
monoEnd(1@5),

(1@5? )∗ ∗mono(2@6) ∧ v1 �= 0 ∧ v2 = 0
∧ large(v1) ∧ eqLast(1@5, v1)

}

send (v1, 2@6); v1 := recv (2@5);{
monoEnd(1@5), (1@5? )∗ ∗mono(2@6) ∧ v2 = 0 ∧ large(v1) ∧ eqLast(1@5, v1)

}
}
while (v2 �= 0){send (v2, 2@6); v2 := recv (1@5);}
{monoEnd(1@5) ∗monoEnd(2@5), (1@5? )∗ ∗ (2@5? )∗ ∗mono(2@6) ∧ v1=0 ∧ v2=0}
send (0, 2@6);
{monoEnd(1@5) ∗monoEnd(2@5), (1@5? )∗ ∗ (2@5? )∗ ∗monoEnd(2@6)}
}

Fig. 14. Proof Sketch of Merge Sort

has gained much process since the development of Separation Logic (SL) [16]. SL treats
program state as resource, and modularity is achieved by curving irrelevant resource
(frame) out of the current state and conjoining the frame back when merging the local
state into the environment. A typical shared memory model is defined based on the state
of heap, a mapping from locations to values.

However, in message-passing models, event traces are, unlike heap, well-organized
structures that associate with many add-on restrictions, e.g., acyclic, send-receive match,
etc. The complexity of trace structures impedes state-based Hoare type reasoning. The
challenge (and also a shining spot of our paper) is to structurally specify event traces
so that local reasoning could be achieved by curving out irrelevant events, as in other
SL-related works. Our framework solves this problem by introducing two operators to
depict the separation of traces, so that traces could be either separately connected or
temporally connected; and introducing four frame rules, so that frames could be added
in four ways: adding in environmental or local trace, or adding ahead or behind of the
current trace. These make our system flexible and powerful.

Rely-Guarantee Based Reasoning. Rely-guarantee (RG) reasoning [6] has been extended
with SL to verify concurrent systems, e.g., Vafeiadis et al. [17] and Wehrman et al. [19].
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In RG, rely condition is agents’ local assumption of the environmental interferences, and
guarantee condition is agents’ interference upon other agents. Our system gets clearly
some ideas from RG. However, comparing with the regular RG reasoning, ours has some
innovations: (1) The rely condition of RG should be pre-defined and fixed, here we can
dynamically calculate and alter environmental assumption. (2) Our environmental as-
sumption is hidden once it is satisfied by other agents, rather than remained permanently
as RG reasoning. (3) In RG reasoning, pre- and post-conditions are required to be stable,
i.e., the assertions should remain valid no matter how environmental interferes. Stabil-
ity is a rather strong requirement that requires thoughtful assertion definitions. In our
system, this requirement is eliminated, that makes the reasoning process easier.

Other Works. W.de Roever et al. [4] published a book which made an excellent sum-
marization with good coverage of previous works on the state-based verification of
concurrent programs. The leading theme of the book is compositional techniques for
concurrency verification. The book makes a comprehensive discussion about verifica-
tion of both shared memory and message-passing models, and clearly, our work can be
viewed as a new development on the same theme. However, there are some fundamental
differences and contributions that distinguish our logic from W.de Roever et al.’s and
many others: (1) by our limited knowledge, although Lamport’s trace semantics has
been proposed for decades, there are no state-based reasoning system defined based on
this semantics; (2) the two-dimensional (temporal and spatial) modularity of our work,
which is a benefit extracted from Lamport’s semantics, has not been clearly touched
by others; (3) our logic directly reason about imperative programming language, rather
than high level mathematical descriptions.

There are also many other work aiming at specifying and reasoning message-passing
programs based on trace semantics. For instance, Bickford et al. [1] formally defined the
event trace structures, and gave a minimal set of axioms for trace reasoning. Comparing
with other trace-based reasoning, ours supports better modularity, and allows directly
reasoning over existing code modules and conjoining separated proofs based on several
explicit conditions.

Villard et al. [18] proposed a separation-based logic for copyless message-passing
models. One feature of their work is the support of ownership transfer. It is possible
to extend our logic for ownership transfer, e.g., by adding the notion of “resource” for
each agent and specifying those transmitted resource inside environmental assumptions.
However, this solution is similar with CSL, and not be able to provide many theoretical
innovations. In another aspect, Villard’s method is still defined based on shared memory
models, while ours is for pure message-passing systems.

Conclusion and Future Work. We propose a compositional reasoning system for ver-
ifying distributed programs with asynchronous message passing. The work inherits and
integrates some ideas from SL, RG reasoning, etc., and archives very good modular-
ity in both specification and reasoning. This reasoning framework exhibits two major
contributions: first, we embody the concept of event graphs for distributed systems, and
supports modular specification at both temporal and spatial dimensions; second, we
propose an innovative Hoare triple, which syntactically separates environmental and
local assertions, to better specify and reason interactions between agents and the envi-
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ronment. We have applied this method to reason about some programs, while a proof for
a filter network is presented in this paper. In the future, we will further test its applica-
bility with more applications. It is also interesting to explore the possibility of building
tools to automate the verification process.
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Abstract. Communicating Sequential Processes (CSP) is a well-known
formal language for describing concurrent systems, where transition se-
mantics for it has been given by Brookes, Hoare and Roscoe [1]. In this
paper, we present trace refinement model analysis tools based on a gen-
eralized transition semantics of CSP, which we call HCSP, that merges
the original transition system with ideas from Floyd-Hoare Logic and
symbolic computation. This generalized semantics is shown to be sound
and complete with respect to the original trace semantics. Traces in our
system are symbolic representations of families of traces as given by the
original semantics. This more compact representation allows us to ex-
pand the original CSP systems to effectively and efficiently model check
some CSP programs that are difficult or impossible for other CSP sys-
tems to analyze. In particular, our system can handle certain classes of
non-deterministic choices as a single transition, while the original se-
mantics would treat each choice separately, possibly leading to large or
unbounded case analyses. All the work described in this paper has been
carried out in the theorem prover Isabelle [2]. This then provides us with
a framework for automated and interactive analysis of CSP processes. It
also gives us the ability to extract Ocaml code for an HCSP-based simula-
tor directly from Isabelle. Based on the HCSP semantics and traditional
trace refinement, we develop an idea of symbolic trace refinement and
build a model checker based on it. The model checker was transcribed
by hand into Maude [3] as automatic extraction of Maude code is not
yet supported by the Isabelle system.

1 Introduction

Communicating Sequential Processes (CSP) is a process algebra to describe the
behavior and interactions of concurrent systems. Due to the expressive features
of external and internal choice together with the parallel composition in CSP,
it has been used practically in industry for specifying and verifying concurrent
features of various systems, especially ones combining human operators and au-
tomations, such as the medical mediator system in Gunter et al. [4], the airline
ticket reservation system inWong and Gibbons’ paper [5] and interactive systems
with human error tolerance in Wright et al. [6].

In the traditional semantics of CSP, processes are given semantics via the
set of traces they may generate, the set of sequences of individual actions the
processes may execute. For example, the CSP process c?x : B → P is generally
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modeled as receiving a single value across a channel c from the set {x|B} and
proceeding as P with that value. The set of possible traces will depend on the
size of that set. Previous CSP simulators and model checkers have followed this
semantics by enumerating all traces individually. In practice, if the set {x|B}
is an infinite set, current CSP simulators and model checkers actually create
an endless number of similar processes and wait for other parts of the program
to stop these processes. This affects the efficiency and decreases the scope of
analyzable problems for these tools, particularly for model checking.

In this paper, we present a simulator HSim to effectively generate the behav-
iors of CSP programs, and a model checking tool HMC to check trace refinement
properties of CSP programs based on Holistic CSP (HCSP) semantics, a new
semantics for CSP processes that uses a symbolic representation of actions to
capture a group of properties simultaneously instead of considering only a single
element with a single property. The approach we take in this work is to represent
families of transitions in CSP by a single transition in HCSP. This allows us to
view a set of actions as a whole in some contexts, but also divide it based on
various properties in other contexts.

A. (
�

x:x>0∧x<10

A.x → SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 100}]|(A?x : x > 0 ∧ x < 150 → SKIP)

B. (
�

x:x>0∧x<105

A.x → SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 106}]|(A?x : x > 0 ∧ x < 15 ∗ 105 → SKIP)

C. (
�

x:x>0∧x<10

A.x → SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 100}]|(
�

y:y=1−1

A?x : x > y → SKIP)

D. (
�

x:x>0∧x<10

A.x → SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 100}]| (A?x : x > 0 ∧ x < 100 → SKIP)
�(A?x : x > 99 → SKIP)

Fig. 1. Example

The differences between the original CSP semantics based tools and the HCSP
semantics based tools can be demonstrated by some very simple examples. Four
such examples are shown in Figure 1. Each process is the parallel composition of
a process selecting a value from a range with a process receiving a value restricted
to be in another range, with synchronization requiring the shared value to be in
a third range. For each process, the problem was posed, does the process refine
itself. Logically, the are at most three cases to be considered: is the value chosen
within the range of synchronization, and if so is it in the range to be received.
The model checker FDR2 [7] can handle case A easily, but it fails to terminate
on cases B because of the large data sets for each restricting set, and C because
of the infinite restricting set on the receiving process. On process B it begins to
run, but eventually generates a stack overflow. When process C is directly input
into the CSPM-based simulator ProBE, the whole program crashes. However,
HMC, the HCSP model checker we have derived from the semantics we discuss
in this paper, easily verifies the trace refinement properties of the processes A -
D with respect to themselves in the same amount of time. We will show more
details of the experiments in Section 5, but from these examples, we can clearly
see that the running time of FDR2 depends on the size of the sets bounding
choice and parallel composition in each process.
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These facts reflect, in part, that the original CSP and Machine-Readable
CSP (CSPM) semantics view replicated operators (Replicated Internal Choice,
Replicated External Choice, etc) as macros of their binary versions over sets.
This means that the original CSP and CSPM semantics cannot express a repli-
cated operator if the set of the replicated operator is infinite, such as the second
Replicated Internal Choice operator in process C. Even if the set is finite, the cost
is very expensive for CSP-semantics-based tools to run a small replicated process
in a large macro, such as in the process B. On the other hand, HCSP-semantics-
based tools can overcome this problem and run CSP processes regardless of the
size of sets bounding replicated operators. By using HCSP semantics, the three
processes in the example will have the same number of possible next moves. This
property allows the HCSP-semantics-based tools to run faster than the tradi-
tional CSP-semantics-based tools in some cases. In addition, HCSP-semantics-
based tools can expand the set of possible CSP processes to analyze; processes
B and C above are examples of this fact. We will see that this fact is useful in
some real applications such as the medical mediator system in Gunter et al. [4].

This paper’s contribution is a general methodology for the translation of tra-
ditional transition semantics of a process algebra to its symbolic semantics, and
from that symbolic semantics the derivation of tools for simulation and model
checking, combined with the direct application of this methodology to the pro-
cess algebra CSP and a demonstration of the advantages acquired by the derived
tools. Our methodology replaces transitions between individual processes with
transitions between configurations of parametrized processes and propositions
describing constraints on the process parameters. This generalized framework
allows us to expand the processes given semantics to include those ranging over
infinite or dynamically calculated sets of data (such as actions), including infinite
choice and parallel composition operators. The translated symbolic semantics for
CSP, HCSP is proved to be sound and complete (for the common subset) with
respect to the traditional transition semantics in the theorem prover Isabelle. We
directly extracted the simulator HSim is from the HCSP semantics in Isabelle.
In a similar manner, we define a general symbolic trace refinement relation that
is compatible with the symbolic transition relation, and prove it equivalent to
traditional trace refinement. This symbolic trace refinement property together
with our symbolic transition relation in turn directly translates to the proce-
dures of our model checker HMC. The symbolic nature of HMC allows it to
handle a wider class of processes and to decide trace refinement more efficiently
for processes within scope of existing model checkers, but where the size of the
data causes them to be handle extremely inefficiently or not at all.

2 Syntax and Semantics

The syntax of HCSP and informal meaning is given in Figure 2. For the remain-
der of this paper, the following name conventions will be used. We will use P
and Q for processes. Lower case p refers to an HCSP process name. The letter c
represents an HCSP channel, while the letter a represents an HCSP action. The
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letter B is a proposition describing the property of a set. In HCSP, we include
both variables and parameters, which are distinct types. We use k for variables
ranging over HCSP channels and x for variables over actions. We use U and V to
refer to parameters ranging over channels and actions. Variables and parameters
serve similar functions, but differ as follows: variables may occur free or bound
in HCSP processes and may be replaced by actions or channels by substitution,
while parameters occur essentially as local constants not subject to binding or
substitution. In the rest of the paper, we will use freeParams to refer to a func-
tion returning all free parameters in an expression of arbitrary type. We will use
l to represent a transition label. Finally, the Greek letter ρ refers to an assign-
ment function that assigns values to parameters. To facilitate the application of
HCSP to specific examples, it is parameterized by four user-defined types: a type
of expressions for actions and channels (acts), a type of propositions, a type of
process names and a type of values to be assigned to acts. One remark must
be made here concerning the scope of variables. In the processes c?x : B → P ,
x:B

P and
�
x:B

P , the scope of variable x is both the proposition B and the pro-

cess P , while the scope of the variables k and x is only the proposition B in the
processes P |[{k.x|B}]|Q and P \ {k.x|B}.

P =
Ω Successful termination

| STOP Unexpected termination
| if b then P else Q If statement
| P ;Q Sequential execution
| P �Q Binary internal choice
| c?x : B → P External set prefix
| P |[{k.x|B}]|Q Parallel composition
| let p = P in Q Local process name binding

| SKIP Awaiting successful termination
| c.a → P Prefix by action a on channel c
| $p Process name p as prcoess
| P�Q Binary external choice

|
�

x:B

P Replicated internal choice

|
�

x:B

P Replicated external choice

| P \ {k.x|B} Hiding over a set of actions

Fig. 2. HCSP Syntax

The syntax of HCSP differs from that of CSPM by Bryan Scattergood [8] in
three ways. Firstly, the actions of CSP are explicitly divided into channels and
actions (written c.a) in HCSP syntax. Secondly, for the sets used in constructs
such as the parallel composition of two processes or replicated internal choice, we
use a set comprehension notation. This decomposition of sets into variables and
predicates will facilitate the statement of the transition rules of HCSP semantics.
Finally, HCSP currently lacks the CSP Renaming operator.

Representative rules for the semantics for HCSP is given in Figures 3 - 4. The
semantics is a merge of the original CSP transition semantics given by Brookes
et al. [10] with ideas from Floyd-Hoare Logic [11] and symbolic computation. In
order to describe the HCSP semantics, there are some functions that need to
be supplied for the evaluations of user-defined types. A family of substitution
functions T [a/x] is needed for the replacement of variables by acts in each of acts,
propositions, and process names. Using these, we define the substitution function
for processes. There also needs to be a family of user-defined evaluation functions
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for acts and a “models” function, |=, for checking whether a proposition is
true under a given assignment function. We define the functions sem(ρ, P ) and
sem(ρ, l) as interpretation functions to interpret a given HCSP process or label
as a CSP process or label with respect to valuation ρ. The labels of the HCSP
semantics will be ranged over by l as follows:

l =
√ | τ | (U.V )

The label
√

represents process completion, the label τ represents a process per-
forming an invisible action, and the label (U.V ) represents a pair of parameters,
one for a channel and one for a real action. In any execution of a process in accor-
dance with this semantics, the sequence of transitions is labeled with mutually
distinct pairs of parameters (U.V ), when not labeled by

√
or τ .

Rule Replacement HCSP Corresponding Rule

P �Q
τ−→ P (α, γ, S, P �Q)

τ−→ (α, γ, S, P ) Int choice1

P
(c.a)−→ P ′ (c.a) /∈ {k.x|B}

P |[{k.x|B}]|Q (c.a)−→ P ′|[{k.x|B}]|Q

(α, γ, S,P )
(U.V )−→ (α′, γ′, S′, P ′)

∃ρ . ρ |= (¬B[U/k][V/x] ∧ γ′)
Par out1

(α, γ, S,P |[{k.x|B}]|Q)
(U.V )−→

(α′,¬B[U/k][V/x] ∧ γ′, S′, P ′|[{k.x|B}]|Q)

(c.a) ∈ {k.x|B}
P

(c.a)−→ P ′ Q
(c.a)−→ Q′

P |[{k.x|B}]|Q (c.a)−→ P ′|[{k.x|B}]|Q′

∃ρ . ρ |= (U = U ′ ∧ V = V ′ ∧ B[U/k][V/x] ∧ γ′′)

(α, γ, S, P )
(U.V )−→ (α′, γ′, S′, P ′)

(α′, γ′, S′, Q)
(U′.V ′)−→ (α′′, γ′′, S′′, Q′)

Par in

(α, γ, S,P |[{k.x|B}]|Q)
(U.V )−→ (α′′,

U = U ′ ∧ V = V ′ ∧ B[U/k][V/x] ∧ γ′′, S′′, P ′|[{k.x|B}]|Q′)

Fig. 3. HCSP semantics (part of category One and category Two)

We present a labeled transition system for HCSP over quadruples of the form
(α, γ, S, P ) or (β, φ, T,Q), which are called configurations in this paper, where
P and Q are HCSP processes, γ and φ are environment condition propositions
in HCSP that are intended to state the current requirements for parameters “in
scope”, including those occurring free in P , and α and β are sets of parameters
large enough to contain all parameters occurring free in P or γ. The tuples
(l, α, γ, S, P ) or (l, β, φ, T,Q) are called moves in this paper. We carry α (or
β) with us to allow for the choice of fresh parameter names guaranteed not to
clash with a potentially bigger scope than the one locally presented by P (or
Q) and γ (or φ). S and T are the interpretation functions for interpreting a
process name p in a given HCSP process. The environment conditions γ (or
φ) play the role of providing the pre- and post-condition for each transition.
The values potentially represented by labels of the form (U.V ) are progressively
restricted by the conditions in each of the subsequent quadruples resulting from
each transition in the execution. In this way, a single execution in the transition
semantics of HCSP potentially represents a parameterized family of executions
from the original CSP semantics.
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Rule Replacement HCSP Corresponding Rule

c.a → P
(c.a)−→ P

U /∈ α V /∈ {U} ∪ α

∃ρ . ρ |= (U = c ∧ V = a ∧ γ)
Act prefix

(α, γ, S, c.a → P )
(U.V )−→

({U, V } ∪ α,U = c ∧ V = a ∧ γ, S,P )

Macro Replacement HCSP Corresponding Rule

c?x : B → P =
�

x:B

c.x → P

U /∈ α V /∈ {U} ∪ α

∃ρ . ρ |= (U = c ∧ B[V/x] ∧ γ)
Ext prefix

(α, γ, S, c?x : B → P )
(U.V )−→

({U, V } ∪ α,U = c ∧ B[V/x] ∧ γ, S,P [V/x])

�

x:B

P = P [a1/x] � . . . � P [an/x]

a1 . . . an ∈ {x|B}

U /∈ α

∃ρ . ρ |= (B[U/x] ∧ γ)
Rep int choice

(α, γ, S,
�

x:B

P )
τ−→

({u} ∪ α,B[U/x] ∧ γ, S,P [U/x])

�

x:B

P = P [a1/x]� . . .�P [an/x]

a1 . . . an ∈ {x|B}

U /∈ α ∃ρ . ρ |= γ′

({u} ∪ α,B[U/x] ∧ γ, S,P [U/x])
τ−→ (α′, γ′, S′, P ′)

Rep ext tau
(α, γ, S,

�

x:B

P )
τ−→

(α′, γ′, S′, (
�

x:B∧x �=U

P )�P ′)

�

x:B

P = P [a1/x]� . . .�P [an/x]

a1 . . . an ∈ {x|B}

U /∈ α l �= τ ∃ρ . ρ |= γ′

({u} ∪ α,B[U/x] ∧ γ, S,P [U/x])
l−→ (α′, γ′, S′, P ′)

Rep ext nor
(α, γ, S,

�

x:B

P )
l−→ (α′, γ′, S′, P ′)

Fig. 4. HCSP semantics (category Three)

We describe our translation process by dividing the CSP semantics into three
categories. The first category contains rules for basic operators having no side
conditions other than

√
-τ label constraints. The second category contains rules

with side conditions that need to be translated into the HCSP framework, i.e.,
the operators with set or boolean guard information. The third category includes
rules for operators that are treated as macros in CSP, including all replicated op-
erators. When translating the original CSP semantics into HCSP semantics, the
main task is to merge information about actions and channels into the environ-
ment condition γ. Basically, we do the translation by a two step processes. Step
One is to solve a problem that often arises when translating a substitution-based
semantics to an environment-based semantics. The problem is misinterpreting
free variables via free-variable capture. We divide the identifiers into variables
and parameters to solve the problem. Parameters are used in each rule that in-
volves passing through a variable binding. Those rules will be altered to always
replace existing variables with new fresh parameters when evaluating a given
process.

Step Two is to simultaneously translate a substitution-based semantics of CSP
to an environment-based transition semantics of CSP, and then transform the
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environment-based transition semantics into a symbolic semantics by making the
global environment into a boolean predicate. By this strategy, we can represent
the state as the pre- and post-conditions that appear in Hoare Logic. This can
be seen as a generalization of the environment by treating each assignment of a
variable to an expression (or value) as an equation stating the variable is equal to
that expression. In addition, we can treat every side-condition in the transition
semantics as a constraint and conjoin it to the boolean predicate constraining
the environment.

The HCSP semantics has been proved sound and complete with respect to
the original CSP semantics. We will state only the soundness and relative com-
pleteness theorems below.

Theorem 1 (Soundness). For all HCSP processes P , P ′, assignments ρ, en-
vironment conditions γ, γ′ and process environments S, S′ such that ρ |= γ and
ρ |= γ′, and parameter set α such that freeParams(P ) ∪ freeParams(γ) ⊆ α and

(∀p.p ∈ dom(S)⇒ freeParams(S(p)) = ∅), if (α, γ, S, P ) l−→ (α′, γ′, S′, P ′), then

sem(ρ, P )
sem(ρ,l)−→ sem(ρ, P ′).

Theorem 2 (Relative Completeness). Let P be an HCSP process, ρ be an
assignment, γ be an environment condition, S be a process environment such that
ρ |= γ, and α be a parameter set such that freeParams(P ) ∪ freeParams(γ) ⊆ α
and (∀p.p ∈ dom(S) ⇒ freeParams(S(p)) = ∅), such that sem(ρ, P )

i−→ T in
CSP semantics. Then there exist an HCSP process P ′, an assignment ρ′, an
environment condition γ′, a parameter set α′, a process environment S′, and
a label l such that i = sem(ρ′, l), ρ′|α = ρ|α, T = sem(ρ′, P ′), ρ′ |= γ′ and
(α, γ, S, P )

l−→ (α′, γ′, S′, P ′).

All the work was done in the interactive theorem prover Isabelle/HOL [2] and
can be found at http://www.cs.illinois.edu/ egunter/fms/HCSP/hcsp.

tar.gz. All details of semantics can be found in in the technical report [9].

3 Symbolic Trace Refinement

In order to describe trace refinement model checking in Section 4, we define
trace refinement in Definition 1, which is given by Roscoe in [12]. In implemen-
tations of CSP trace refinement checker, such as FDR2, they actually check the
refinement property by using some relation which is similar to trace simulation.
We list it in Definition 2. This definition is more similar to the trace simulation
definition. Current trace refinement checkers, such as FDR2, use this approach
with memoization to prove the trace refinement between two programs. In Back
and Wright’s paper [13], they actually prove that this relation implies the trace
refinement relation described in Definition 1.

Definition 1 (Trace Refinement). Q 'T P = trace(P ) ⊆ trace(Q).

http://www.cs.illinois.edu/~egunter/fms/HCSP/hcsp.tar.gz
http://www.cs.illinois.edu/~egunter/fms/HCSP/hcsp.tar.gz
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Definition 2 (Simulation Trace Refinement). The relation P trace refines
Q, written Q 'S P , is the smallest relation satisfying the following:

• Ω 'S Ω

• Q 'S STOP

• If there exists Q′ such that Q
τ−→ Q′ and Q′ 'S P , then Q 'S P

• If for all P ′ we have P
l−→ P ′ implies

– either l = τ and Q 'S P
′,

– or l �= τ and there exists Q′ such that Q
l−→ Q′ and Q′ 'S P

′,
then Q 'S P

Definition 2 only works in traditional CSP semantics. In order to describe
the symbolic semantics, we need to be able to connect environment predicates
with processes. Hence, we define symbolic trace refinement in Definition 3. This
definition is actually more similar to the definition of trace simulation, but we call
it symbolic trace refinement here because it is equivalent to the simulation trace
refinement definition above. In this definition, the function η : (φ, β, α)→ (α′, φ′)
is a renaming function to rename all parameters of a given environment predicate
φ that are in the set β to new parameters that are not in the set α ∪ β, and
return the resulting environment condition φ′ and the new parameter set α′

containing all parameters in the set α and the environment condition φ′. This
function is useful in the final rule of symbolic trace refinement. In each inductive
step (βi, φi, Ti, Qi) 'T (α′i, γ

′ ∧φ′i, S′, P ′) for i ∈ [1..n] in the final rule, we want
to bind the environment condition of the implementation configuration γ′ by an
extra constraint φ′i.

Definition 3 (Symbolic Trace Refinement). The relation (β, φ, T,Q) 'ST

(α, γ, S, P ) is the smallest relation satisfying the following:

• (β, φ, T,Ω) 'ST (α, γ, S,Ω)

• (β, φ, T,Q) 'ST (α, γ, S, STOP)

• If there exists (β′, φ′, T ′, Q′) such that (β, φ, T,Q)
τ−→ (β′, φ′, T ′, Q′) and

(β′, φ′, T ′, Q′) 'ST (α, γ, S, P ), then (β, φ, T,Q) 'ST (α, γ, S, P )

• If for all (α′, γ′, S′, P ′) we have (α, γ, S, P )
l−→ (α′, γ′, S′, P ′) implies

– either l = τ and (β, φ, T,Q) 'ST (α′, γ′, S′, P ′),

– or l =
√

and there exists (β′, φ′, T ′, Q′) such that (β, φ, T,Q)
√
−→

(β′, φ′, T ′, Q′) and (β′, φ′, T ′, Q′) 'ST (α′, γ′, S′, P ′),

– or l = (U.V ) and there exists a natural number n, configurations
(βi, φi, Ti, Qi), parameters U ′ and V ′, parameter sets α′i and environ-
ment conditions φ′i such that,

� (α ∪ α′ ∪
⋃n

i=1 α
′
i) ∩ (β ∪

⋃n
i=1 βi) = ∅

�
∧n

i=1((β, φ, T,Q)
(Ui.Vi)−→ (βi, φi, Ti, Qi))
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�
∧n

i=1(∃ρ.ρ |= γ′ ∧ φi[U/Ui][V/Vi])
� (∃ρ′.∀c a .ρ′[U �→ c, V �→ a] |= γ′ ⇒

∨n
i=1 ρ

′[Ui �→ c, Vi �→ a] |= φi)
�

∧n
i=1((α

′
i, φ

′
i) = η(φi[U/Ui][V/Vi], βi, α

′))

�
∧n

i=1((βi, φi, Ti, Qi) 'ST (α′i, γ
′ ∧ φ′i, S′, P ′))

then (β, φ, T,Q) 'ST (α, γ, S, P )

The symbolic trace refinement definition has the following relation with the
original trace refinement definition.

Theorem 3 (Symbolic Trace Refinement Relation). For all HCSP config-
urations (α, γ, S, P ) and (β, φ, T,Q), assignments ρ and δ such that β ∩ α = ∅,
freeParams(P ) ∪ freeParams(γ) ⊆ α, (∀p.p ∈ dom(S) ⇒ freeParams(S(p)) =
∅), ρ |= γ and δ |= φ, we have (β, φ, T,Q) 'S T (α, γ, S, P ) if, and only if
sem(δ,Q) 'T sem(ρ, P ).

Proof. (Sketch) We first do an induction on rules of trace refinement to prove
the ”only if” side of the theorem. We prove this direction by using relatively
completeness described in Theorem 2. We then prove the ”if” side of the theorem
by induction on rules of symbolic trace refinement with the soundness theorem
described in Definition 1 �

4 HCSP Simulator and Model Checker

To put the theory of HCSP into practice, we have specified an HCSP simulator
with a rich mutually recursive datatype for actions and propositions in Isabelle.
OCaml code for the simulator, which we call HSim, is then extracted from the
Isabelle specification directly. The core of HSim is included with the package
for the soundness and completeness theorems. In HSim, we have limited the
propositions to quantifier-free first order logic with Presburger arithmetic in
order to maintain decidability. In doing so, we render the single-step transition
relation computable as a function generating a finite set of possibilities. We then
represent all possible traces with a lazy stream data structure supporting back-
tracking. This enables us to incrementally compute the requirements for a given
trace, which can be inspected at each step, and can be back-tracked when the
requirements are proven to be unsatisfiable. Using the HCSP semantics, we can
indefinitely delay the calculation of a specific trace using trace patterns and pre-
and post-conditions, until one trace pattern / condition is selected. At this point,
satisfiability analysis can be used to generate an instance trace, if such is desired.

In the case of the medical mediator example, we were able to use the simulator
specification in Isabelle to enumerate the possible trace patterns for the System,
and to verify that all traces satisfying each pattern-condition so enumerated
satisfy a pattern-condition of the Safety process.

In addition toHSim, we have implemented in the rewriting logic engine Maude
[3] a model checker HMC to check the trace refinement property of HCSP pro-
grams. This implementation is a hand transcription of the Isabelle specification
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of HMC. Previous model checkers for CSP, including FDR2 and PAT, check
trace refinement between two processes by explicit trace enumeration with cir-
cularity checking. In contrast, as we did with the simulator HSim, the model
checker HMC is based on the symbolic semantics and symbolic trace refinement
described in Section 2 and 3.

Fig. 5. Algorithm Components

We describe the algorithm of HMC by breaking it into four components: the
explorer, the decider, the memoizer and the collector. The explorer is the core of
the trace refinement graph searching algorithm. It controls how we do the trace
refinement at the meta level regardless of the details of the HCSP semantics.
The decider is an auxiliary SMT solver to determine whether a next possible
move of a given HCSP configuration is valid based on the satisfiability of the
constraint in the next possible move. The memoizer controls how we determine
the one configuration is an instance of another configuration that arises during
circularity checking, while the collector controls how we collect the next possible
moves of a given HCSP configuration.

At the explorer level, our algorithm can be generalized as a four-step proce-
dure based on the definition of symbolic trace refinement described in Section 3.
We start with a pair of configurations of the implementation and specification,
two τ -labeled memoizing sets (one for the implementation and one for the spec-
ification) and a configuration-pair memoizing set for checking a pair of configu-
rations. Step One is to get the next possible moves of a given implementation
configuration and a given specification configuration by the collector. Based on
these sets of moves, we remove the inconsequential and invalid moves. A move
is inconsequential if it is a τ -labeled move that is an instance to one in the im-
plementation or specification τ -memoizing set. An invalid move is one with an
unsatisfiable environment condition. In Maude, Step One is implemented by the
Maude function verify.

Step Two is to replace all τ -labeled moves of the implementation from the
set collected in Step One by the set of non-τ -labeled moves that are reachable
by a possibly empty sequence of τ -labeled moves from the τ -labeled move being
replaced. Both the τ -labeled move being replaced and all subsequent τ -labeled
moves transitioned over in a sequence leading to a replacing non-τ -labeled move
are added to the implementation τ -memoizing set, if it is not an instance to one
already present. If it is an instance to one already present, we cut that search
branch and backtrack to look for other τ -labeled sequences. The result of Step
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Two is that the all moves collected for the implementation have the label form
U.V . In Maude, the function verifyTau will handle this step.

Step Three is to check for each move of the implementation if there exists a
move of the specification that refines the given move of the implementation. It
has three operations. The first operation processes the next-moves set for the
specification generated in Step One. This operation preforms the same reduc-
tion/replacement action on τ -labeled moves of the specification as was done in
Step Two for the implementation, except that the replacement is only of a sin-
gle reachable non-τ move, rather than the full set. All τ -labeled moves in the
sequence for the one in the given next-moves set to its replacement are added to
the specification τ -memoizing set. This operation is only performed when there
do not exist any more U.V -labeled moves in the specification next-moves set. We
are repeatedly applying this operation until there is a move of the specification
with the label form U.V , or there are no more moves of the specification. In the
latter case, we answer false.

In the second operation, a move of the specification with the label U ′.V ′ and
environment condition γ′ is selected. For the given move of the implementation
with label U.V and environment condition γ, we check whether or not the formula
∀U.V.γ ⇒ γ′[U/U ′][V/V ′] is satisfiable, using the decider also implemented in
Maude. Here, we are taking advantage of our symbolic semantics for HSCP. If
one such specification move can be found, we can move onto Step Four directly.
If not, we will go to the third operation. In the third operation, we assume
that we have the given move of the implementation (U.V, α, γ, S, P ). We check
whether there is a set of next moves of the specification (U ′i .V

′
i , βi, φi, Ti, Qi) for

i = 1, . . . , n such that for each i the formula γ∧φi[U/U ′i ][V/V ′i ] is satisfiable, and
the formula ∀U V.γ ⇒

∨n
i=1 φi[U/U

′
i ][V/V

′
i ] is satisfiable. If there are such moves

of the specification, we construct the new parameter sets and new environment
conditions as (α′i, φ

′
i) = η(φi[U/U

′
i ][V/V

′
i ], βi, α) for i = 1, . . . , n, where η is the

renaming function of Section 2. We also construct the new pairs of configurations
((α′i, γ ∧ φ′i, S, P ), (βi, φi, Ti, Qi)) for i = 1, . . . , n. We then allocate Step Four
checks for each of these pairs of configurations. If there do not exist such moves
of the specification, we will answer false. Step Three is implemented as functions
verifyAction and verifyActionAux in Maude.

Step Four checks if the new input pair of implementation-specification config-
urations from Step Three is an instance of one in the current configuration-pair
memoizing set. If it is, then we answer true; otherwise, we go back to Step One to
check the new implementation-specification configuration pair with adding the
implementation-specification configuration pair into the current configuration-
pair memoizing set. In Maude, we implement this step by the function preverify.

The four-step procedure is a general framework and specification for the sym-
bolic graph searching algorithm. There are many ways to implement this pro-
cedure. We implement one such transcription in Maude. It is a combination of
a breadth-first search algorithm, a depth-first search algorithm and circularity
checking.
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The memoizer checks when an element is an instance of an element in a given
memoizing set. The memoizer can be easily implemented by checking whether an
element is an instance of a specific element in a set except that we need to define
instance for configurations and extend to configuration pair with covariance in
the first component and contravariance in the second.

Definition 4 (Configuration Instance). We say that ((α, γ, S, P ) is an
instance of (α′, γ′, S′, P ′)) and write (α, γ, S, P ) → (α′, γ′, S′, P ′) if there ex-
ists renaming functions ζ for parameters and ξ for process variables, such that
P = ζ(ξ(Q)), and for all p as process variable, S(p) = ξ(S′(ξ−1(p))) and
γ ⇒ ζ(γ′). A configuration pair ((α, γ, S, P ), (β, φ, T,Q)) is an instance of
((α′, γ′, S′, P ′), (β′, φ′, T ′, Q′)) if (α, γ, S, P )→ (α′, γ′, S′, P ′) and (β′, φ′, T ′, Q′)
→ (β, φ, T,Q).

In the implementation in Maude, rather than using a SMT solver to check
the formula (γ ⇒ ζ(γ′)) in Definition 4, we do a weaker syntactic check on
the formula. This implementation reduces the heavy use of the SMT solver and
might lead to a searching on unnecessary branches, but it will not lead to a false
result.

At the collector level, we first implement our HCSP rules in Maude, then we
collect all next possible moves of an HCSP configuration by unifying the HCSP
configuration with the set of symbolic semantic rules and applying all possible
rules on the configuration and put the results in a set. There is a central problem
in the implementation of the collector: the structures of an environment condi-
tion in an HCSP configuration. we revisit them by borrowing an idea from the
Union Find algorithm and Binary decision diagrams [14] in the implementation
of HMC. In the HCSP semantics, we observe that at each move we only add a
new constraint conjunctively to the current pre-condition. As a result, when we
evaluate an HCSP process long enough, the condition of the environment gets
quite large. Since SMT solvers operate in time exponential in the size o fthe
input problem, it is critical to keep the size of the problems passed to them as
small as possible. The collector serves to accomplish this.

Observation of executing CSP programs indicates that any given conjunct
of the environment condition typically shares parameters with only a very few
other individual conjuncts. We say two predicates satisfy the parameter relation
if they share one or more parameters in common. The collector represents the
environment condition as a set of sets of individual conjuncts, where each set of
individual conjuncts is a connected component of the parameter relation. When
a next move is calculated, the new conjunct it contributes to the environment
condition is merged with the sets of conjuncts with which it satisfies the pa-
rameter relation, forming a new connected component. Since each environment
condition is checked for satisfiability, checking the new environment condition
can be done by checking satisfiability of just the connected component of the
new conjunct contributed by the move. This typically is a much smaller formula
to pass to the SMT solver than the entirety of the new environment condition.

After we have confirmed that the connected component of the new conjunct is
satisfiable, the collector is also used to reduce the environment condition itself.
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This is done by calculating the parameters still present in the process of the
next move, and removing from the new environment condition all those con-
nected components whose parameters are disjoint from the process parameters.
Subsequent moves of a process cannot constraint any previously existing pa-
rameters not present in the process. Therefore, given that the current connected
components of the environment condition are satisfiable, the satisfiability of sub-
sequent environment conditions is not impacted by the connected components
whose parameters are disjoint from the process parameters.

5 Examples and Experiment

Clicker(c, r) =
�

s:s>0∧
s≤N

K.r.c.s → Clicker(c, r)

Broadcast(r) =
�

c:true

K.r.c?s : s > 0 ∧ s ≤ N → Out.r.s → Broadcast(r)

Room(r) = (Clicker(c1r , r)|[{}]|Clicker(c2r, r))|[{k.x|∃c s. hd(k) = K}]|Broadcast(r)

Center = Room(1)|[{}]|Room(2)

ATM1 = Incard?c : (M < c < N) → PIN.c → Req?n : (99 < n) →
�

x:x=n∧bx<2000

Dispense.x → Outcard.c → ATM1

ATM2 = Incard?c : (M < c < N) → PIN.c → Req?n : (99 < n) →
�

x:x=n∧bx<2000

Dispense.x → Outcard.c → ATM2 � (Refuse.1 → ATM2 � Outcard.c → ATM2)

Fig. 6. Examples

HSim keeps track of the constraints of data in an HCSP process, while tradi-
tional CSP simulator, such as ProBE, lists values of data in a CSP process. The
difference between two kinds of simulators is large enough without doing experi-
ment. In this section, we focus on the experiment between HMC and traditional
trace refinement model checker.

Besides the small examples in Fig. 6 and the medical mediator example from
Gunter et al. [4], there are many other real implementations that can benefit
from modeling in the HCSP system. Generally speaking, every real model with
several users trying to access one or more copies of a very large database can
benefit from the HCSP system. A song broadcasting system and an ATM are
two such small examples, which are used to show some systems which cannot be
model checked in current CSP model checkers and can be benefited from HMC.

Song broadcasting systems are used in entertainment businesses such as discos
and karaokes to allow people to select songs from a large database. Such systems
typically have a large collection of songs; a collection in excess of 200,000 would
not be uncommon. A typical karaoke bar has more than twenty rooms for sep-
arate entertainment. Typically, each room has two remote clickers for selecting
the next song to be played. After a user selects a song, the remote clicker will
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send the song selection to the song broadcasting system, which will play it in
the room. Since only one song can be broadcast at a time, if two people send
selections simultaneously, only one signal will be honored immediately, while the
other one will be delayed for later action. We model the karaoke center in CSP
in Figure 6. For simplicity, we assume the Karaoke center only has two rooms.

In Fig. 6, the capital letter N refers to an arbitrary number to represent the
size of the database that contains all songs in the song broadcasting system.
Typically, we know that the number N is a large number, but we do not know
exactly how large it is. In order to verify properties in the system, such as safety
and deadlock-freedom, it is better to leave the number N to be unspecified. We
will set the number N to be 500 and 500,000 as test cases in the experiment.

Likewise, we implement two ATMs in Fig. 6. The two ATM processes are to
describe the procedures of a machine that is receiving commands from humans
and responding to them. One can easily see that ATM1 can refine ATM2 but
not vice versa. We will test positive trace refinement cases of ATM1 to ATM2 as
well as negative trace refinement cases of ATM2 to ATM1. In these ATMs, the
numbers N and M specify the range of the debit or credit cards that can be
read. Typically, a debit or credit card will have sixteen digits. We test the cases
when the numbers N and M are one, four and sixteen digits.

Programs Specifications FDR2 HMC
Process A Process A < 2 secs < 2 secs
Process B Process B N/A < 2 secs
Process C Process C N/A < 2 secs
Process C Process D N/A < 2 secs
ATM1 one digit ATM2 one digit 45 secs < 2 secs
ATM1 four digits ATM2 four digits > 12 hours < 2 secs
ATM1 16 digits ATM2 16 digits N/A < 2 secs
ATM2 one digit ATM1 one digit < 2 secs < 2 sec
ATM2 four digits ATM1 four digits > 12 hours
ATM2 16 digits ATM1 16 digits N/A < 2 secs
Karaoke 5 Karaoke 5 < 2 secs 37 secs
Karaoke 500 Karaoke 500 > 12 hours 37 secs
Karaoke 500,000 Karaoke 500,000 N/A 37 secs
Medical one nurse Safety one nurse 55 mins 3.6 hours
Medical two nurses Safety two nurses N/A 3.8 hours

Fig. 7. Experiment Results

We have compared the efficiencies of FDR2 and HMC in some programs.
The experiment was run on an Intel core i7 machine with eight gigabytes of
memory and a Ubuntu 13.04 system. The testing programs are processes A, B,
C and D from Section 1 and the ATMs with N and M being one, four and
sixteen digits. We have tested positive trace refinement cases of ATM2 to ATM1
and negative ones of ATM1 to ATM2. In addition, we have tested the Karaoke
center examples when N is equal to 500 and 500,000; and the medical mediator
examples in which there are two mediators, one nurse, three patients and three
devices and when there are two mediators, two nurses, three patients and three
devices. The results can be found in Figure 7.
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From the table, we can see that HMC can finish all the jobs, while FDR2 fails
to execute some programs. In most cases, HMC is more efficient at verifying the
trace refinement property of programs than is FDR2. In addition, FDR2 is very
sensitive to the size of the input data, and it cannot recognize the similarity
of different programs. It succeeds in model checking some programs, but fails
when we change them a little bit. For example, FDR2 can execute process A
completely, but fails to even read processes C and D. The medical mediator is
a more representative example. Because of the sensitivity of FDR2 with respect
to the input data, it can finish the job when there is only one nurse, but not
when there are two. On the other hand, even though HMC needs a longer time
to finish a job when the input data is small, it can successfully model check
the trace refinement property no matter how big the input data gets replicated
choice operators.

6 Related Work

Currently, there are several existing CSP simulators and model checkers based
on the original CSP transition semantics. CSPM [8] gives a standard CSP syn-
tax and semantics in machine readable form, introduced by Bryan Scattergood,
which is based on the transition semantics introduced by Brookes and Roscoe
[10]. It provides a standard for many CSP tools, including FDR2 by Formal Sys-
tems (Europe) Ltd., the industry standard for CSP model checkers [7]. ProBE
[15] is a simulator created by the same group, which simulates a CSP process
by listing all the actions and states one by one as a tree structure [15]. Jun
Sun et al. [16] merged partial order reduction with the trace refinement model
checking in the tool called PAT. CSP-Prover is a theorem proving tool built on
top of Isabelle [17]. It provides a denotational semantics of CSP in Higher-Order
Logic. CSPsim [18] is another simulator based on the CSPM standard. Its ma-
jor innovation is the use of “lazy evaluation”. The basic idea of CSPsim is to
keep track of all the current actions, then compare them with the actions of the
outside world and only select the possible executable actions for the very next
step [18]. The phrase “lazy evaluation” refers to a pre-processing step in which
CSPsim selects some processes that contain fewer actions and generates some
conditions in advance. After that, CSPsim evaluates the whole program based
on these conditions.

These tools use the traditional view of actions as single elements, and tend
to generate a large number of states when comparing multiple possibilities for
actions. Additionally they treat some operators, especially replicated operators,
as macros, and hence, even though it is possible for some tools (CSP-Prover) to
analyze some complicated programs, such as medical mediator, by the theorem
proving setting, it is impossible for these tools to generate traces when the repli-
cated set is infinite. The medical mediator project by Gunter et al. [4] provides
an example of the advantages of HCSP over CSP-semantics based tools. The
main goal of the medical mediator project is to prove that the set of traces of
the process System|[Vis ]|Given is a subset of the traces of Safety |[Vis ]|Given ,
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where Vis is a set defined as {y.(∃n d m x. y = RFIDChann,m
d .x) ∨ (∃m z. y =

EHRBEChm .z)}. This requires exploring all possible traces generated by the
System process. Tools based on the original CSP semantics, such as FDR2, fail
when dealing with large or unbounded sets. For example, the Med process as
given does not put any restrictions on the sets of values that may be received
over various channels. The simulator and model checker we have built based on
HCSP semantics benefits from being able to handle such large or unbounded
sets uniformly as single actions, thus avoiding state explosion problems.

Along the way we are writting our paper, FDR3 comes out [19]. FDR3 devel-
ops a parallelized algorithm for model checking trace refinement property over
FDR2. When we use FDR3 to test our programs, the performence is better than
the performence of FDR2. However, it still cannot catch the behavior of infinite
sets in replicated choice operators. For example, when we test the process C and
D in Figure 1, FDR3 fails to terminate.

In terms of symbolic semantics, there are several existing symbolic semantics
for process algebras, mainly, serving process algebras having similar structure
to the Π-calculus. Early work of Hennessy and Lin [20] provides a framework
of symbolic semantics for value-passing process algebras. Later, Sangiorgi ap-
plied this symbolic semantics idea to the Π-calculus [21]. Bonchi and Montanari
revisited the symbolic semantics of the Π-calculus [22], providing a symbolic
transition semantics for the Π-calculus by including the predicate environment
condition as a part of a label in a transition system. In their symbolic transi-
tion semantics, they only discovered the relation in the parallel operator in the
Π-calculus.

LOTOS is a kind of process algebras that contains features from both the
Π-calculus and CSP. Its parallel operator is similar to that of CSP. The parallel
operator contains a middle set to restrict the communication actions between
the left and right processes. Calder and Shankland provided a symbolic seman-
tics for LOTOS [23]. As in the work done by Bonchi and Montanari, Calder and
Shankland both represented their condition in the label position instead of di-
viding it into pre- and post-conditions. Pugliese, Tiezzi and Yoshida proposed a
symbolic semantics for service-oriented computing COWS that is similar to the
Π-calculus [24]. For the works above providing symbolic transition semantics,
the condition is placed in the label instead of dividing it into pre- and post-
conditions, which makes their symbolic semantics fail to answer differently for
different input environments for a same program. In many cases, it is necessary
to consider different initial environment conditions and these different conditions
lead to different results in CSP programs.

mCRL2 is a process algebra designed to execute symbolically [25]. It is a well-
known π-calculus like generic language with symbolic transition semantics to
model point-to-point communication. They claimed that people can catch the
behavior of infinite set in their choice summation operator. However, the set
needs to be determined statically. It means that it cannot catch the behavior
similar to process C in Figure 1. In addition, even though mCRL2 claimed the
language is generic and we can translate other process algebra into mCRL2,



Symbolic Analysis Tools for CSP 311

it is very hard for mCRL2 to model a broadcast communication system with
point-to-group communication, because they need to know the total number of
processes in the universe and send enough messages to each individual process in
a group. However, knowing total number of processes is very hard in some cases.
For example, if we want to model a group of people who are in a conference reach
a consensus at the same time. It is almost impossible for mCRL2 to model this
procedure. On the other hand, we can model this procedure easily by using a
replicated choice operator to select the total number of people in the conference,
then using a replicated parallel operator with consensus value in between to
model the fact that all people communicate with each other by the consensus
value.

7 Conclusion and Future Work

In this paper we have presented a new semantics for CSP, the HCSP semantics.
HSCP provides an alternative way to model CSP processes by viewing transitions
as bundles of the original transitions, where all transitions in the bundle can be
described by a uniform property derived from the process. By this translation,
we can allow HCSP-based tools to run some CSP programs which are not able
to run in the original CSP-based tools. We have shown the HCSP semantics to
be equivalent to the original CSP transition semantics. We have also presented
an HCSP-based simulator, which is extracted directly from the Isabelle code for
the HCSP semantics. We show an HCSP-based model checker to check the trace
refinement of CSP programs and show that the model checker is very efficient
to deal with some CSP programs by experiment. By using several examples
in the experiment, we show that the HCSP semantics based trace refinement
model checker can overcome some difficulties that traditional CSP-semantics-
based tools cannot handle.

For further study, we are interested in adding semantics to deal with the repli-
cated parallel operators in HCSP and use it in the model checker and extending
our trace refinement model checker to check trace failure and failure-divergence
refinement properties of CSP programs. We believe that it will significantly in-
crease the efficiency in the model checker to answer trace refinement problem.
We also want to generalize our framework to deal with other kinds of transition
semantics.
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Abstract. In component-based design, components and communication
mechanisms have a different nature; while the former represent the agents
that cooperate to fulfill a certain goal, the latter formalise the commu-
nication mechanism through which these agents interact. A proper for-
malisation of the heterogeneity that arises from this difference requires
one to employ the most adequate formalism for each of the parts of a
specification and then proceed to merge the parts of the system speci-
fication characterised in different languages. The approach we propose
in this paper is based on the notion of institution, and makes extensive
use of institution representations in order to relate the specifications of
components and communication mechanisms, each of which might be
expressed in different formalisms. The contribution focuses on providing
tools needed to engineer heterogeneous languages arising from particular
choices for the specification of components and communication devices.

1 Introduction

Nowadays, software artefacts are ubiquitous in our lives, being an essential part
of home appliances, cars, cell phones, and even in more critical activities like
aeronautics and health sciences. In this context, software failures may produce
enormous losses, either economical or, in the worst case, in human lives. In
order to provide better guarantees for the correct functioning of software, various
elements are necessary, among which formal foundations, that enable a precise
reasoning about software, and modularity, that helps in dealing with software
complexity, are crucial.

The importance of modularity has been acknowledged since the foundational
work of Parnas, which promoted building software artefacts (and more specif-
ically software specifications) modularly, enhancing reusability of modules and
contributing to a better separation of concerns, and leading to an improved
quality in specification and development. Modularisation is generally under-
stood as the process of dividing a system specification, or implementation, into
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manageable parts: the modules or components. It leads to a structural view of
systems, called architecture, as described in [16], in which the relevance of com-
ponent interaction is brought out. Aside from its crucial relevance for managing
the complexity of systems, a system’s architectural structure also plays an im-
portant role in its functional and non-functional characteristics.

Given the relevance of software architecture, its formal foundations are es-
sential to guarantee the correct functioning of component based systems. There
exist various approaches to formally capture component based systems, which
are either language-specific (e.g., formalisations of schema operators in Z or
structuring mechanisms in B), making its results difficult to generalise to other
component-based settings, or target specific ways of communicating components
(e.g., formalising particular communication mechanisms, such as synchronisation
in process algebra based approaches). Moreover, these approaches support com-
munication mechanisms that are influenced (or defined) by the nature of the
components they communicate (e.g., synchronisation in event based models, or
shared memory in state based models).

In this work, we tackle the above described limitations of existing formalisa-
tions of component based systems by introducing an abstract and heterogeneous
categorical characterisation of component-based systems. Our characterisation
is presented in a logic or language independent setting, by making use of the
notion of institution. Moreover, the approach is heterogeneous, favouring a more
genuine separation of concerns in the specification of components, and that of
the communication mechanisms. Finally, although there exist other abstract and
heterogeneous approaches, most notably the work related to The Heterogeneous
Tool Set HETS [26,27], our approach differs from these in that it focuses on
providing a formal characterisation of the elements of the domain of component-
based software architecture (to be further discussed in Sec. 5).

The practical usefulness of heterogeneous specification formalisms in the con-
text of component-based systems is acknowledged by the existence of languages
such as Acme [17] (and others), designed with the aim of putting together speci-
fications originating in different formalisms. Generally, heterogeneity arises from
two different angles: it arises from the fact that the description of each com-
ponent or module could be given in a different specification language; and as a
consequence of components and communication mechanisms being of a different
nature. The existing literature concentrates on the first kind of heterogeneity;
we will devote this work to providing formal foundations for the second one.

The formal tools we use in this paper are those coming from the field of cat-
egory theory, more specifically from the domain of algebraic specifications [6].
They have been shown to be useful for enabling the formal characterisation of
different kinds of specification structuring mechanisms and refinement in dif-
ferent settings; a few examples are: [7,9,22,33]. We employ a well established
abstract definition of logical systems, known as institutions [18], to achieve gen-
erality (in the sense of the approach being language independent). In order to
appropriately combine different formalisms, we make extensive use of institu-
tion representations [30]. These serve the purpose of relating and, consequently,
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combining different (abstract) logics used for different purposes in a given spec-
ification, e.g., those used for component and connector specifications.

In summary, the main contributions of this work are: a) providing a formal,
and language independent, interpretation of the concepts arising from the field of
software architecture, and b) providing formal foundations for the heterogeneity
observed when components interact through communication channels.

2 Preliminaries

From now on, we assume that the reader has a nodding acquaintance with the
basic definitions of category theory, including the concepts of category, functor,
natural transformation, etc. We mainly follow the notation of [23]: given a cat-
egory C, |C| denotes its collection of objects, while ||C|| denotes its collection
of arrows. g ◦ f : A → C denotes the composition of arrows f : A → B and
g : B → C. Natural transformations will be indicated with the arrow

·→.
The theory of institutions [18] provides a formal definition of logical system,

and of how specifications in a logical system can be put together. They also serve
as a suitable framework for addressing the problem of heterogeneity [27,32].

Definition 1. An institution is a structure of the form 〈Sign,Sen,Mod, {|=Σ

}Σ∈|Sign|〉 satisfying the following conditions: a) Sign is a category of signa-
tures, b) Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) corre-
sponds to the set of Σ-formulae), c) Mod : Signop → Cat is a functor (let
Σ ∈ |Sign|, then Mod(Σ) corresponds to the category of Σ-models), d) {|=Σ

}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| × Sen(Σ), is a family of binary relations.
Such that, for every signature morphism σ : Σ → Σ′ ∈ ||Sign||, φ ∈ Sen(Σ)
and M′ ∈ |Mod(Σ)| the following |=-invariance condition must hold: M′ |=Σ′

Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Institutions are an abstract formulation of the notion of logical system, more
specifically, of its model theory, where the concepts of languages, models and
truth are characterised in a category theoretic way. Examples of institutions
are: propositional logic, equational logic, first-order logic, first-order logic with
equality, dynamic logics and temporal logics (a detailed list is given in [18]).

Let 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 be an institution, Σ ∈ |Sign| and Γ ⊆
Sen(Σ) then, we define the functor Mod(Σ,Γ ) as the full subcategory of
Mod(Σ) determined by those models M ∈ |Mod(Σ)| such that for all γ ∈ Γ ,
M |=Σ γ. We also overload the symbol |=Σ , to define a relation between
sets of formulae and formulae, as follows: Γ |=Σ α if and only if M |=Σ

α for all M ∈ |Mod(Σ,Γ )|. where α ∈ Sen(Σ).

Definition 2. We define the category of theory presentations as the pair 〈O,A〉
(usually denoted as Th) where: O = { 〈Σ,Γ 〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) }, and

A =

{
σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉

∣∣∣∣ 〈Σ,Γ 〉, 〈Σ′, Γ ′〉 ∈ O, σ : Σ → Σ′ ∈ ||Sign||
and Γ ′ |=Σ′

Sen(σ)(Γ )

}
.
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In addition, if a morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 satisfies Sen(σ)(Γ ) ⊆ Γ ′, it
is called axiom preserving. By keeping only those morphisms of Th which are
axiom preserving we obtain the category Th0.

As we mentioned before, an institution is a structure 〈Sign,Sen,Mod, {|=Σ

}Σ∈|Sign|〉 so from now on, whenever we make reference to a given institution I

we will be referring to the structure I = 〈SignI,SenI,ModI, {|=I
Σ}Σ∈|SignI|〉.

Next, we define the notion of institution representation (also find in the liter-
ature under the name of co-morphism)[30, Def. 12, Sec. 5].

Definition 3. Let I and I ′ be institutions then, the structure 〈γSign, γSen, γMod〉 :
I → I ′ is an institution representation if and only if: a) γSign : Sign → Sign′

is a functor, b) γSen : Sen
·→ Sen′ ◦ γSign, is a natural transformation such

that for every Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 ∈ ||Sign||, γSen
Σ2

◦ Sen(σ) =

Sen′(γSign(σ)) ◦ γSen
Σ1

, c) γMod : Mod′ ◦ (γSign)op
·→ Mod, is a natural trans-

formation such that for every Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 ∈ ||Sign||,
Mod(σop)◦γMod

Σ2
= γMod

Σ1
◦Mod′((γSign)op(σop)), such that, for any Σ ∈ |Sign|,

γSen
Σ : Sen(Σ) → Sen′(γSign(Σ)) and γMod

Σ : Mod′(γSign(Σ)) → Mod(Σ)
preserve the following satisfaction condition: for any α ∈ Sen(Σ) and M′ ∈
|Mod(γSign(Σ))|,M′ |=γSign(Σ) γ

Sen
Σ (α) iff γMod

Σ (M′) |=Σ α.

An institution representation intuitively corresponds to the relationship
between a given institution, and how it is interpreted into another one, in a
semantics preserving way. It may be regarded as a realisation for institutions of
the established concept of property preserving translation between two theories
in two different logics.

Property 1. Let I and I′ be institutions, and ρ : I→ I′ an institution represen-
tation. For every signature Σ ∈ |Sign|, set Φ ⊆ Sen(Σ) of Σ-sentences, and
Σ-sentence ϕ ∈ Sen(Σ), if Φ |=Σ ϕ, then ρ

Sen
Σ (Φ) |=′

ρSign(Σ) ρ
Sen
Σ (ϕ).

We will also use a few other categorical concepts, such as that of a bicategory
and a lax functor ; the interested reader is referred to [23].

3 A Characterisation of Component-Based Design

Two main goals of our approach to component-based specification are gener-
ality and abstraction, in the sense that we have designed our characterisation
of component-based systems to be specification language independent. We start
by providing a category theoretic characterisation of the concepts used in the
field of software architecture. There, the building blocks for software design are
components, glues, ports, roles and adaptors.

Components. A component describes an independent computational unit of a
system. They are formally characterised by theories in a given institution. Note
that the approach presented here does not prevent the introduction of another
level of heterogeneity where each component is specified in a different formalism,
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Component: Producer
Attributes: p-current: Bit, p-waiting : Bool,

ready-in: Bool
Actions: produce-0, produce-1 , send-0 , send-1 ,

p-init
Axioms:
1. �(p-init → ©(p-current = 0 ∧ ¬p-waiting))
2. �(produce-0 ∨ produce-1 → ¬p-waiting∧

©p-waiting)
3. �(produce-0 → ©(p-current = 0))
4. �(produce-1 → ©(p-current = 1))
5. �((send-0 → p-current = 0 )∧

(send-1 → p-current = 1 ))
6. �(send-0 ∨ send-1 → p-waiting∧

©¬p-waiting)
7. �(send-0 ∨ send-1 → ready-in∧

p-current = ©p-current)
8. �(send-0 ∨ send-1 ∨ produce-0∨

produce-1 ∨ p-init∨
(p-current = ©p-current∧
p-waiting = ©p-waiting))

Component: Consumer
Attributes: c-current: Bit, c-waiting : Bool,

ready-ext: Bool
Actions: consume, extract-0 , extract-1 , c-init
Axioms:
1. �(c-init → ©(c-current = 0 ∧ c-waiting))
2. �(extract-0 ∨ extract-1 → c-waiting∧

©¬c-waiting ∧ ready-ext)
3. �(extract-0 → ©(c-current = 0))
4. �(extract-1 → ©(c-current = 1))
5. �(consume → ¬c-waiting ∧©c-waiting)
6. �(consume → c-current = ©c-current)
7. �(consume ∨ extract-0 ∨ extract-1 ∨ c-init∨

(c-current = ©c-current∧
c-waiting = ©c-waiting))

Fig. 1. A Producer-Consumer specification

in which case the language must deal with this internally, e.g., by instantiat-
ing the institution for describing components with a Grothendieck institution
formed by all the specification languages needed for the task, as proposed in
[5,27]. Without loss of generality we will assume a single language for compo-
nent specification formalised as an institution, which will be referred to as IComp.

Example 1. (A simple producer and consumer specification) In Fig. 1 we present
a formalisation of a producer and a consumer in propositional temporal logic [13],
a specification language based on linear temporal logic [24]; as a consequence,
our specifications are state-based. For simplicity, we assume that messages are
bits identified by the type Bit . The producer’s state is defined by a bit-typed
attribute p-current to store a produced element, a boolean attribute p-waiting
to indicate whether an item is already produced and ready to be sent (so that
null values for items are not necessary), and a boolean attribute ready-in , so
that a producer is informed by the environment when this is ready to receive
a product. This specification consists of a set of sorts (Bit and Bool, in this
case), a set of attributes (i.e., flexible variables), some of which are supposed
to be controlled by the environment, and a set of action symbols (they are
flexible boolean variables indicating the occurrence of an action). The axioms of
the specification are linear temporal logic formulae characterising the behaviour
of the component, in a rather obvious way. The consumer component can be
specified in a similar way.

Notice that these components are coherent with the notion of component in
software architecture [16]. The theory associated with a component represents
the computational aspects of it, in our case indicating via axioms (and their
corresponding consequences) the behaviour of the actions of the component and
their effect on its state. It is worth noticing that components described below
do not formalise any aspect of the communication between them.
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Ports. Ports constitute the communication interfaces of a component. As in
[13], ports can be captured by using channels, which consist of theories with no

axioms. Given A ∈ |Th0I
Comp

|, a port for A is a morphism σ : Th(Σ) → A ∈
||Th0I

Comp

|| such that Σ ∈ |SignIComp |.1

In software architecture, emphasis is put on the explicit description of com-
munication aspects of a system, separated from the computational, component
related, aspects. Below we define the elements relevant in our formalisation, var-
ious of which are inspired by the formal approach to interaction characterisation
put forward in [12].

Glues. In a communication mechanism between two components, a glue captures
the way in which these components interact, that is, computational aspects of
the interaction, e.g., a protocol. In our setting, glues are also required to be
organised in an institution, thus being theories in a given specification language.
From now on, the institution used to specify glues will be denoted as IGlue. Also
in this case, similarly to components, the use of more than one specification
language can be considered, so different glues can be described by means of
different languages.

Roles. Roles constitute the interfaces of glues. Thus, given G ∈ |Th0I
Glue

|, a role

for G is a morphism π : Th(Σ)→ G ∈ ||Th0I
Glue

|| such that Σ ∈ |SignIGlue |.

Connector. A connector represents a mechanism for interconnecting two compo-
nents, and establishes: a) the roles of the glue, and b) the glue itself. Given a glue

G ∈ |Th0I
Glue

|, and the roles σ1 : Th(Σ1) → G, σ2 : Th(Σ2) → G ∈ ||Th0I
Glue

||
for G, a connector with behaviour G and roles σ1 and σ2, is a structure of the
form 〈σ1, G, σ2〉. If we restrict ourselves to binary connectors, they are required

to be organised as a subcategory of the bicategory co− spans(ThI
Glue

0 ), denoted
by Connector(IGlue). The generalisation to n-ary connectors is straightforward
but their category theoretic characterisation is no longer a bicategory but a gen-
eralised version of it.

As mentioned above, heterogeneity arises, in architecture description lan-
guages, as a reflection of the different nature of components and communication
mechanisms. This led us to the use of separate institutions for formalising com-
ponents (and their ports) and the glues (and their roles). So, we need a way of
establishing the relationship between component and connector specifications,
or more generally, between their corresponding institutions. There exist various
mechanisms for relating institutions, each with a particular meaning when in-
terpreted in the context of software design. The interested reader is referred to
[30,19], where the authors make a thorough study of these mechanisms. We can

1 Th : SignI
Comp → Th0

IComp
is the right adjoint of the forgetful functor Sign : ThI

Comp →
SignI

Comp

.
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use Property 1 to draw the relationship between the institutions IComp and IGlue

needed to be able to obtain a complete description of a system as communicating
components. Such a relationship is captured as follows. Let ISys be an institution,
and let γComp : IComp → ISys and γGlue : IGlue → ISys be institution representa-
tions. Thus, ISys serves as a common formal language, in which the components
and connectors of a system can be interpreted and put together.

Example 2. (Connecting components and connectors directly) A straightforward
way of establishing links between components and connectors is by requiring the
roles and the ports one wants to connect to be equal when they are translated
to the ISys institution. This situation is illustrated in Fig. 2, a) for a component
denoted as A and a glue denoted as G; connections between G and a different
component B are analogous. Observing the upper part of the diagram, compo-
nent A communicates using ports πA → A, using a medium characterised by
the connector formed by the glue G and the role ρl → G, to be attached to
the port πA → A. Dashed arrows express the application of the corresponding
institution representation to the theories and morphisms appearing in the upper
part of the diagram in order to provide a homogeneous description of the whole
system in the institution ISys. The bottom part of the diagram shows how things
are put together in ISys, thus obtaining a diagram, in the usual sense of category
theory, consisting of the behaviour associated with component A and glue G.

This simple way of connecting the components, though correct, has some lim-
itations. The differences between IComp and IGlue might not be merely syntactical,
but sometimes their semantics also need to be “harmonized”. Assume, for in-
stance, that we use Propositional Dynamic Logic (PDL) [20] in order to describe
the components of a system, whereas the glues are formalised in Linear Temporal
Logic (LTL). The models of these two logics have different structures, since LTL
models are interpret formulas along traces, while PDL models have state-based
semantics. Even when a more expressive logic might be capable of interpreting
both PDL and LTL theories, the coordination of the semantic objects cannot
always be obtained merely by a syntactic identification in the more expressive
logic. Following the principles of software architecture, we deal with this problem
using so called adaptors.

Adaptor. An adaptor is a connector in ISys. The intuition behind the inclusion
of adaptors is that roles will interact with ports, not only at a syntactic level as
shown in Ex. 2, but mediated by a semantic synchronisation of models, induced
by the axioms of the theory characterising the connector. Adaptors in software
architecture serve the purpose of solving or alleviating architectural mismatches.
In our case, the (potential) mismatch is related to the difference between the
logics used for the specification of the components and the connectors.

Example 3. Adaptors help in establishing the links between roles and ports. This
situation is illustrated in Fig. 2 b) for a component denoted as A, a glue denoted
as G and an adaptor ΓGA; connections between G and a different component B
are analogous.
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Fig. 2. Connections between components, glues, adaptors, roles and ports.

Note: γC. → γCompTh0 , γG. → γGlueTh0 .

Connection. A connection is formed by a connector together with a pair of
adaptors linking the ports of the components participating in the communica-
tion. Let ISys, IComp and IGlue be institutions, γComp : IComp → ISys and γGlue :
IGlue → ISys be institution representations. Let π = 〈πl : ρl → G,G, πr : ρr →
G〉 ∈ |Connector(IGlue)| and δGA = 〈δGAl : δA → ΓGA, ΓGA, δGAr : δGl

→
ΓGA〉, δGB = 〈δGBl

: δGr → ΓGB, ΓGB, δGBr : δB → ΓGB〉 ∈ |Connector(ISys)|.
Then a connection is a structure of the form 〈δGA, π, δGB〉 such that δGl

=

γGlueTh0(ρl) and δGr = γGlueTh0(ρr). Given the institutions ISys and IGlue such
that γGlue : IGlue → ISys is an institution representation, the connections definable
over these two institutions will be the complete subcategory ofConnector(ISys)×
Connector(IGlue) ×Connector(ISys) whose objects are those triples satisfying
the conditions stated above and will be denoted as Connection(IGlue, ISys).

The previous definitions allow us to formalise in a categorical setting the
main notions involved in component-based designs as a labeled graph. The next
definition formalises graph labelings.

Definition 4. Let ISys, IComp and IGlue be institutions, and γComp : IComp → ISys

and γGlue : IGlue → ISys be institution representations. Let G = 〈V,E〉 be a graph;

then a labeling ι for G is a structure of the form 〈f : V → |Th0I
Comp

|, p : V →
2||Th0

IComp ||, g : E → |Th0I
Comp

| ×Connection(IGlue, ISys)× |Th0I
Comp

|〉 such that:

– p(v) ⊆
{
Th(σ)

∣∣∣σ : Σ → Sign(f(v)) ∈ ||SignIComp ||
}
, for all v ∈ V ,

– let π1, π2 and π3 are the first, second and third projections of a tuple, re-
spectively, and dom retrieves the domain of a morphism, then for all e ∈ E,
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dom(π1(π1(π2(g(e))))) = dom(π1(g(e))) and
dom(π3(π3(π2(g(e))))) = dom(π1(g(e))), and

– π1(g(e)) ∈ p(src(e)) and π3(g(e)) ∈ p(trg(e)), for all e ∈ E.
The intuition behind Def. 4 is that configurations are captured by graphs

whose nodes are interpreted as components, and edges as tuples formed by ports
and connections capable of enabling the communication.

Definition 5. Let ISys, IComp and IGlue be institutions, and γComp : IComp → ISys

and γGlue : IGlue → ISys be institution representations. Let G = 〈V,E〉 be a graph,
and ι a labelling for G according to Def. 4, then a system design is a structure
of the form 〈G, ι〉.

As usual in the field of institutions, a specification of a system will be a
diagram in the category of theories of a given institution, and the composition
of the theories in the system specification will be the co-limit of such a diagram.
This requires the category of theories to be finitely co-complete which, by [18,
Thm. 11], follows directly when the category of signatures is finitely co-complete.
In our case, the diagram is obtained by using the fact that the graph is expressed
in terms of two institutions, IComp and IGlue, for which there exists an institution
ISys and institution representations γComp : IComp → ISys and γGlue : IGlue → ISys,
guaranteeing that a common interpretation is feasible.

The following theorem will be an important tool. Intuitively, this theorem

tells us that whenever a connector (a co-span in Th0
IGlue) is translated from IGlue

to ISys, using an institution representation, it yields a co-span in Th0
ISys , thus

complying with the restrictions associated with composition in the bicategory

co-span(Th0
ISys).

Theorem 1. Let I and I′ be institutions such that SignI and SignI
′
are co-

complete and have pushouts, and let γ : I → I′ be an institution representation.

Then, the pointwise extension of γTh0
I

: Th0
I → Th0

I′ , γ̂Th0
I
: co-span(Th0

I) →
co-span(Th0

I′), is a lax functor.

The following definition is based on the previous result, and enables us to
integrate the computational parts of the glue and the adaptors in a communi-
cation mechanism. As the reader will notice, the connections, which are triples
involving a connector and two adaptors, are translated into a single connector
in the richer institution used to integrate components and connectors.

Definition 6. Let ISys, IComp and IGlue be institutions, and γComp : IComp → ISys

and γGlue : IGlue → ISys be institution representations. Let G = 〈V,E〉 be a graph
and ι = 〈f, p, g〉 an interpretation for G. We define F (〈G, ι〉) = 〈δ0, δ1〉 : Gι →
graph(Th0

ISys) as follows:

Gι = 〈V ∪
⋃

e∈E{r1e , ge, r2e},
⋃

e∈E{e1, e′1, e′2, e2}〉 such that:
src(e1) = r

1
e and trg(e1) = src(e),

src(e′1) = r1e and trg(e′1) = ge,
src(e′2) = r

2
e and trg(e′2) = ge, and

src(e2) = r
2
e and trg(e2) = trg(e),
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δ0(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γCompTh0(f(v)) , if v ∈ V .
dom(π1(π1(π2(g(e))))) , if v = r1e .

π2(π1(π2(g(e))) ;γ̂Glue(π2(g(e))); π3(π2(g(e)))) , if v = ge.
dom(π3(π3(π2(g(e))))) , if v = r2e .

δ1(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γCompTh0 (π1(g(e))) , if src(e) = r1e and trg(e) = a.

π1(π1(g(e)) ;γ̂Glue(π2(g(e))); π3(g(e))) , if src(e) = r1e and trg(e) = ge.

π3(π1(g(e)) ;γ̂Glue(π2(g(e))); π3(g(e))) , if src(e) = r2e and trg(e) = ge.

γCompTh0 (π3(g(e))) , if src(e) = r2e and trg(e) = b.

In order to make the previous construction clearer, we illustrate how this
applies to our previously introduced example of the producer and consumer,
when we interconnect the parts and form a system design.

Example 4. (Putting the producer and the consumer together in a synchronous
way) Putting the Producer and Consumer component specifications together in
a synchronous way requires just coordinating them. As put forward in [9], this
can be achieved by indicating how attributes are “connected” or identified with
attributes of other components, and by synchronising actions.

This is a straightforward way of connecting two components, which simply
expresses a correlation between the symbols of the components. In our ex-
ample, we may want to make the components interact by synchronising the
send-i and extract-i actions, of the producer and consumer, respectively,
and by identifying ready-in and p-waiting, in the producer, with c-waiting

and ready-ext in the consumer, respectively. This situation requires the sys-
tem design to be over a single institution, so components and glues are ex-
pressed in a common language, as theories in ILTL. To make it clearer, Σ =

[Attributes : x,y : Bool;Actions : a,b], and γCompTh0 = γGlueTh0 = id
Th0I

LTL .

Putting together Producer and Consumer in a synchronous way can be
done in a homogeneous setting. Of course, the machinery we have defined will
actually demonstrate its potential when dealing with heterogeneous specifica-
tions. Example 5 generalises the previous one, in which the components need to
be connected asynchronously, and the communication mechanism is specified in
a formalism different from that used for components.

Example 5. (Putting the producer and the consumer together in an asynchronous
way) Consider a more complex communicating scenario for the producer and the
consumer, in which these components need to interact via an asynchronous com-
munication channel. The idea is to maintain the specifications for producer and
consumer, which have already been appropriately characterised, and model the
asynchronous nature of the channel within the communication specification, i.e.,
in the connector. This cannot be captured simply by identification of symbols in
the interconnected parts. We will assume the state of the glue is characterised just
by a queue whose functional behaviour is described in equational logic (Fig. 3).
Now, we put these specifications together, so that the producer and the con-
sumer communicate via a buffer of bit messages specified by the above queue.
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Component: BitQueue
Sorts: Queue
Ops:

empty : Queue,
isEmpty? : Queue → Bool,
enqueue : Queue× Bit → Queue,
dequeue : Queue → Queue,
front : { q : Queue | ¬isEmpty? (q) } → Bit.

Axioms: vars : q : Queue, b, b’ : Bit
1. isEmpty?(empty) = true
2. isEmpty?(enqueue(b, q)) = false
3. front(enqueue(b, empty)) = b
4. front(enqueue(b’, enqueue(b, q))) =

front(enqueue(b, q))
5. dequeue(enqueue(b, empty)) = empty
6. dequeue(enqueue(b, enqueue(b’, q))) =

enqueue(b, dequeue(enqueue(b’, q)))
Vars: q: Queue

Fig. 3. Producer and Consumer with Asynchronous communication

As opposed to the previous example, now we have a different formalism for the
communication specification, i.e., IGlue is Eq (equational logic), and the problem
of putting together the three components cannot be syntactically solved.

We need to find an appropriate institution ISys, expressive enough to inter-
pret, in a semantics preserving way, both linear temporal logic and equational
logic. We will use first-order linear temporal logic [24]. The institution repre-
sentation γComp is the standard embedding of propositional temporal logic into
first-order temporal logic. The institution representation γGlue is the embedding
of equational logic into first-order logic with equality.

The reader should notice that, since the components and the glue are specified
in different logics, we need suitable adaptors to put them together, which have
to be specified in the richer institution ISys. Figs. 4 a) and 4 b) correspond to
the adaptors in first-order LTL. Note that in the axioms q is a flexible variable,
and q′ is a rigid or logical (specification) variable. The reader should notice that
even when the adaptors presented in Figs. 4 a) and 4 b) look complex in rela-
tion to the components being connected, they would remain the same, indepen-
dently of the complexity of the components; this means that one could consider
a more complex specification of the producer and the consumer, including the
formalisation of the internal processes by which the information is produced and
consumed, which could be highly complex. Objects originating ports and roles
are the axiomless theories with signatures: 1. {send-i i=1,2, ready-in , p-init} for
πA, 2. {Bool, q, isEmpty? : Queue → Bool, enqueue : Queue × Bit → Queue}
for ρl, 3. {extract-ii=1,2, ready-ext , c-init} for πB, and 4. {Bool, q, isEmpty? :
Queue → Bool, dequeue : Queue × Bit → Queue, front : Queue → Bit} for ρr.
The morphisms relating πA, ρl, πB and ρr with the corresponding theories asso-
ciated with components, adaptors and glues, are inclusions in the corresponding
category of signatures.

The reader should notice that the way in which the definitions and method-
ology we provided above interpret the elements of an architecture, allowed us
to go from a model of a producer and a consumer connected in a synchronous
way (see Ex. 4) to a model of a producer and a consumer connected in an asyn-
chronous way (see Ex. 5), just by replacing the connection without modifying
the components involved in the architectural design.
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Component: Adapt
Sorts: Queue
Attributes: q: Queue
Actions: p-init , send-0 , send-1 , ready-in
Functions:

enqueue : Queue× Bit → Queue,
isEmpty? : Queue → Bool

Axioms:
1. (∀q′ : Queue)q = q′ ∧ send-0 →

©(q = enqueue(0, q′))
2. (∀q′ : Queue)q = q′ ∧ send-1 →

©(q = enqueue(1, q′))
3. (∀q′ : Queue)q = q′ ∧ ¬send-1 → ¬send-0 →

©(q = q′)
4. p-init → isEmpty? (q)
5. ready-in ↔ true

Component: Adapt’
Sorts: Queue
Attributes: q: Queue
Actions: c-init , extract-0 , extract-1

, ready-ext
Functions:

isEmpty? : Queue → Bool,
dequeue : Queue → Queue,
front : { q : Queue | ¬isEmpty?(q) } → Bit

Axioms:
1. isEmpty? (q) → ¬extract-0 ∧ ¬extract-1
2. (∀q′ : Queue)(q = q′ ∧ extract-0) →

(front(q) = 0 ∧©(q′ = dequeue(q)))
3. (∀q′ : Queue)(q = q′ ∧ extract-1) →

(front(q) = 1 ∧©(q′ = dequeue(q)))
4. (∀q′ : Queue)(q = q′ ∧ ¬extract-1∧

¬extract-0) → ©(q = q′)
5. c-init → isEmpty? (q)
6. ready-ext ↔ ¬isEmpty?(q)

a) A first-order LTL specification of Adapt. b) A first-order LTL specification of Adapt′.

Fig. 4. Specification of an adaptor

4 On the Institutions for Systems

In this section we introduce some results that allow us to obtain an institution
of systems in a systematic way based on suitable specification languages for de-
scribing components and communications. A property that we want for such an
institution is that both components and communications interpreted in the sys-
tem institution can be mapped back to their original languages. This requirement
emerges from the fact that it is often useful to be able to move back and forth
from the (perhaps less expressive) specification languages used for components
and communications to the formalism used to build the complete descriptions
of the system. Moving from the component (resp. communication) specification
language to the system specification language enables one to promote proper-
ties; moving from the system back to the components (resp. communications)
allows us, for instance, to identify problems in the specifications of our “building
blocks” when a counterexample of a property of the (whole) system is found.

Glueing two institutions together in a general way We provide a simple and
general way of glueing two institutions into a new one. The motivation for doing
so is, as we mentioned before, to help the specifier in the development of a
suitable logic in which to express the system description, when one does not
have in hand such a formalism.

Once IComp and IGlue are fixed, it is possible to characterise an institution I#

in which IComp and IGlue can be put together. Furthermore, ISys can be obtained
by extending I# with additional logical structure depending on the properties
required to be expressed. This must be done in such a way that there exists an
institution representation ιC : IComp → I#, ιG : IGlue → I# and ε : I# → ISys.

Let IC and IG be institutions. The following definition provides an institution
constructed out of IC and IG . It is inspired by the construction presented by San-
nella and Tarlecki in [29, Sec. 4.1.2], but it is slightly different. In [29, Ex. 4.1.44]
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and [29, Ex. 4.1.45], Sannella and Tarlecki provide the definitions of co-product
and product of institutions, respectively. In the first case, as explained by the
authors, the construction corresponds to putting two institutions together with
no interaction; in the second case, the construction provides a way of putting
them together but synchronising formulae by means of pairs. In our case, we
need formulae to remain independent (requiring a co-product), but composite
models to be pairs, each model coming from the corresponding institution (re-
quiring a product). This need will become clear in Ex. 6 where we will extend
the institution of the next definition with boolean operators combining formu-
lae coming from any of the two logical systems, thus requiring models to give
semantics to them.

Definition 7. I#(IComp , IGlue) is defined as follows:

– Sign# = SignC × SignG ,
– Sen# =

(
SenC ◦ πleft

)
+

(
SenG ◦ πright

)
,

– Mod# =
(
ModC ◦ πleft

)
×

(
ModG ◦ πright

)
,

– Let α ∈ Sen#(〈ΣC , ΣG〉) and 〈MC ,MG〉 ∈ |Mod#(〈ΣC , ΣG〉)|, then we

say that 〈MC ,MG〉 |=#
〈ΣC ,ΣG〉 α if and only if: 1. ∃αC ∈ SenC (ΣC)|α =

in left(α
C) ∧ MC |=Comp

ΣC αC , or 2. ∃αG ∈ SenG(ΣG)|α = inright(α
G) ∧

MG |=Glue
ΣG αG.

Theorem 2. Let IC and IG be institutions. Then, I#(IC , IG) is an institution.

Property 2. Let IC and IG be institutions such that SignC and SignG are finitely
co-complete. Then Sign# is finitely co-complete.

Definition 8. ιC = 〈γSignC , γSenC , γMod
C 〉 : IC → I#(IC , IG) is defined as follows:

– for Σ ∈ |SignC |, γSignC (Σ) = 〈Σ, ∅G〉, where ∅G is the empty signature in IG,

and if σ ∈ ||SignC ||, then γSignC (σ) = 〈σ, id∅G〉,
– for Σ ∈ |SignC |, we define γSenCompΣ

: SenComp(Σ) → Sen# ◦ γSignC (Σ), as

γSenC Σ = inleft , and

– for Σ ∈ |SignC |, γMod
C Σ : Mod# ◦ (γSignC )

op
(Σ)→ModC (Σ), is defined as

γMod
C Σ = πleft .

ιG = 〈γSignG , γSenG , γMod
G 〉 : IG → I#(IC , IG) is defined in an analogous way.

Theorem 3. Let IC and IG be institutions. Then, ιC and ιG are institution
representations.

So far we have put together components and glues in a single language. However,
it is obvious that we have not achieved any interaction between the languages as
there is no actual “coordination” of their semantics. To deal with this issue, we
can extend I# by adding logical behaviour that “coordinates” elements from IC

and IG . The idea consists of extending I#(IC , IG) to a new institution ISys where
the additional logical behaviour is incorporated, but satisfying the following
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conditions: 1. SignSys = Sign#, 2. for all Σ ∈ |SignSys |, SenSys(Σ) ⊇ Sen#(Σ),
3. for all Σ ∈ |SignSys |, ModSys (Σ) = Mod#(Σ), and 4. for all Σ ∈ |SignSys |,
α ∈ Sen# and M ∈ModSys(Σ): M |=Sys

Σ α iff M |=#
Σ α.

Then, if ISys = 〈SignSys ,SenSys ,ModSys , {|=Sys
Σ }Σ∈|SignSys |〉 is an institution,

we have the guarantee that an institution representation ε exists simply by taking
it to be the trivial inclusion institution representation, which of course satisfies
the satisfaction invariance condition.

The following example shows how to extend an institution with boolean oper-
ators. Our construction, although very similar to the one presented by Sannella
and Tarlecki in [29, Ex. 4.1.41], requires a slightly different treatment of formu-
lae because their satisfaction, as we demonstrated before, must be evaluated in
the corresponding model of the pair. Notice that as we are building composite
formulae out of formulae coming from different institutions, the only way to
assert their satisfaction by a model is by having a notion of model capable of
interpreting every piece, thus justifying the need for a definition of institution
whose formulae is the co-product of the sets of formulae of the two institutions
and whose class of models is the product of the corresponding classes of models.
Extending I#(IC , IG) with boolean operators provides the most basic coordina-
tion of behavior by synchronising models through formulae they must be satisfy.
More complex extensions can be made by choosing other logics to build on top
of I#(IC , IG); some of them also require a more complex class of models.

Example 6. Let IC and IG be institutions. Then, ISys is defined as the structure

〈SignSys ,SenSys ,ModSys , {|=SysΣ}Σ∈|SignSys |〉 where:

– SignSys = Sign#,

– for all ΣC ∈ |SignComp |, ΣG ∈ |SignGlue |:
• inleft (α) ∈ SenSys (〈ΣC , ΣG〉), for all α ∈ SenC (ΣC),

• inright (α) ∈ SenSys (〈ΣC , ΣG〉), for all α ∈ SenG(ΣG),

• if α, β ∈ SenSys (〈ΣC , ΣG〉), then
{¬α, α ∨ β} ∈ SenSys(〈ΣC , ΣG〉).

– ModSys = Mod#, and

– for all 〈ΣC , ΣG〉 ∈ |SignSys |, 〈MC ,MG〉 ∈ |Mod#(〈ΣC , ΣG〉)|:

〈MC ,MG〉 |=#
〈ΣC,ΣG〉 inleft (α

C) iff MC |=C
ΣC αC

〈MC ,MG〉 |=#
〈ΣC,ΣG〉 inright (α

G) iff MG |=C
ΣG α

G

〈MC ,MG〉 |=#
〈ΣC,ΣG〉 ¬α iff not 〈MC ,MG〉 |=#

〈ΣC ,ΣG〉 α
〈MC ,MG〉 |=#

〈ΣC,ΣG〉 α ∨ β iff

〈MC ,MG〉 |=#
〈ΣC,ΣG〉 α or〈MC ,MG〉 |=#

〈ΣC ,ΣG〉 β

Proving that ISys is an institution is simple because I# is an institution and the
boolean addition constitutes no problem in the proof. Equally simple is the proof
that there exists an institution representation ε : I# → ISys .
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Glueing two institutions in a known logic When one has in hand a logical system
I formalised as an institution 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 such that, given IC

and IG as defined in the previous example, there exists institution representations
γC : IC → I and γG : IG → I, part of the problem is already solved. We
however need a way of getting, from a whole system’s specification, the parts
that composed it in their original formalisms. The main technical difficulty at
this point arises from the fact that symbols coming from components and glues
may be identified as a single symbol in the system’s language.

Definition 9. Let SignC and SignG have pushouts of arbitrary co-spans and
have initial objects ∅C and ∅G respectively; and suppose γSignC (∅C) = γSignG (∅G).
Then, we define ISys(I) in the following way:

– SignSys = 〈O,A〉 such that:

• O =
{〈
σc : Σ

C → Σ′, σg : ΣG → Σ′〉 pushout in Sign
}
,

• A =
{〈
σl : Σ

C → ΣC ′
, σs : Σ

S → ΣS ′, σr : ΣG → ΣG′〉 |
〈σc, σg〉 , 〈σc′, σg ′〉 ∈ O and σc

′ ◦ σl = σs ◦ σc, σs ◦ σg = σg
′ ◦ σr}

Identities and composition are defined component-wise.
– for all 〈σc : ΣC → Σ′, σg : ΣG → Σ′〉 ∈ |SignSys | and
〈σl : ΣC → ΣC ′

, σs : Σ
S → ΣS ′, σr : ΣG → ΣG′〉 ∈ ||SignSys ||:

SenSys (〈σc, σg〉) = Sen(Σ′), SenSys (〈σl, σs, σr〉) = Sen(σs),

– for all 〈σc : ΣC → Σ′, σg : ΣG → Σ′〉 ∈ |SignSys | and
〈σl : ΣC → ΣC ′

, σs : Σ
S → ΣS ′, σr : ΣG → ΣG′〉 ∈ ||SignSys ||:

ModSys (〈σc, σg〉) = Mod(Σ′) and ModSys (〈σl, σs, σr〉) = Mod(σs),

– for all 〈σc : ΣC → Σ′, σg : ΣG → Σ′〉 ∈ |SignSys |, α ∈ SenSys (〈σc, σg〉) and

M ∈ModSys (〈σc, σg〉), M |=Sys
〈σc,σg〉 α iff M |=Σ′ α.

Notice that the definition of ISys (I) only differs from I in the category of sig-
natures. This is because having pushouts as signatures opens up the possibility
of tracing back the source of the objects we are dealing with. In the case of
sentences and models, we only consider the signature that is in the target of the
morphisms constituting the pushout. This construction is particularly useful in
the cases there is a need to identify both the common part of the partial descrip-
tions of the system (the fraction of the description on which the synchronisation
of the languages takes place), and the elements that correspond to only one of
the descriptions2.

Theorem 4. Let I be an institution. Then, ISys (I) is an institution.

Theorem 5. Let I be an institution such that Sign has an initial object ∅I and
pushouts for arbitrary co-spans. Then, SignSys is finitely co-complete.

2 In [3] we use institution representations to give semantics to schema promotion in Z
notation. There, whenever a manager for the whole system is constructed, the only
way to prove the commutativity of the diagrams (see [3, Sec. 4.1]) is by preserving
the information revealing the language from which each of the elements originates.
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Definition 10. Let SignC and SignG have pushouts of arbitrary co-spans and
have initial objects ∅C and ∅G respectively, and γSignC (∅C) = γSignG (∅G). Then,
we define ιC = 〈ιSignC , ιSenC , ιMod

C 〉 : IC → ISys(I) as follows:

– if Σ ∈ |SignC |, then ιSignC (Σ) = 〈σC , σG〉 such that 〈σC , σG〉 is the pushout

of 〈γSignC (∅C → Σ), γSignG (id∅G)〉; if σ ∈ ||SignC ||, then
ιSignC (σ) = 〈γSignC (σ), γSignC (σ), γSignG (id∅G)〉,

– if Σ ∈ |SignC |, then we define ιSenC Σ : SenC (Σ) → SenSys ◦ ιSignC (Σ), as
ιSenC Σ = γSenC Σ,

– we define ιMod
C Σ : ModSys ◦ (ιSignC )

op
(Σ)→ModC (Σ), as ιMod

C Σ = γMod
C Σ.

ιG = 〈γSignG , γSenG , γMod
G 〉 : IG → ISys (I) is defined analogously.

Theorem 6. Let SignC and SignC have pushouts of arbitrary co-spans and have
initial objects ∅C and ∅G respectively, and γSignC (∅C) = γSignG (∅G). Then, ιC and
ιG are institution representations.

5 Conclusions and Related Work

We have presented an abstract and heterogeneous categorical characterisation of
component-based systems. Our characterisation is logic/language independent,
based on the categorical notion of institution. The heterogeneity of the approach
is aimed at favouring a more genuine separation of concerns in the specification
of components, and how these communicate. Our characterisation is based on
the view that the different elements of a software architecture, such as compo-
nents, connectors, roles, ports and adaptors, may be more faithfully specified in
different formalisms, which have then to be put together into a setting in which
one can reason about these parts and the whole system in a coordinated way.
While institutions are used to abstractly capture specification formalisms, we
employ institution representations to relate the different formalisms. In particu-
lar, we show how to build a system institution, in which the various parts of the
specification can be represented as identifiable pieces of the overall specification,
and we can reason about system properties by performing relevant formal anal-
yses over it. Our contribution involves then a the formal characterisation of the
conditions to combine formalisms in a heterogeneous setting, heavily relying on
the notions of institution and institution representation.

Our work is related to various formalisms for the specification of component-
based systems, in particular those seeking heterogeneity and abstraction. A main
source of inspiration is the categorical approach put forward by Fiadeiro et al
[9,15,11] in relation to the architecture description language CommUnity [15,13].
CommUnity comprises a specific component-based design language, in which
components and connectors are specified in a particular way. In our approach,
components and connectors might be defined in any formalism, CommUnity
being a particular case. Acme [17] seeks similar objectives; it is defined as an in-
terchange architecture description language, a setting where different formalisms
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might be combined. However, Acme has no actual formal semantics, and the
examples of translations from particular architecture description languages to
Acme are defined in an ad-hoc manner, generally dealt with only at a syntactic
level. Thus, questions such as the coherence of resulting Acme specifications,
cannot be answered in Acme’s context.

CASL [2] is an algebraic language for formal specification, which uses the no-
tion of institutions to achieve a high degree of abstraction. Architectural specifi-
cations in CASL [1] are built by using basic relationships between modules like
refinement or extension, i.e., the architectural structure of a system in terms of
components and connections are not explicitly captured in CASL.

In [21] an heterogeneous approach for specifying service-oriented systems is
presented. The basic idea is to use two different institutions to capture the dif-
ferent levels involved in a service-oriented system. One institution is used to
specify the local behaviour of services, while the other institution is used as a
global logic to describe the orchestration of services. The two levels are related
via a co-morphism (or institution representation). Notice that the global logic
is used for the description of the common behaviour of components, but it is
not used for describing coordination mechanisms in an abstract way, as is done
by glues in the present paper. Also notice that this approach is heterogeneous
but not language independent. HETS [26,27] is a framework for integrating dif-
ferent institutions to support heterogeneous specifications of systems. We share
the interest in heterogeneous frameworks of institutions, but our focus is on for-
malising the notions from software architecture and the corresponding kinds of
entities, namely components, connectors, roles, ports, and adaptors, to struc-
ture heterogeneous system specifications. Nevertheless, we are committed to the
HETS view that whenever the design requires the use of different languages for
describing components (reap. glues) Grothendieck institutions provide the most
suitable tool to deal with that level of heterogeneity. In [28], Mossakowski and
Tarlecki presented a framework meant to be a tool for heterogeneous software
specification. This framework exploits the use of morphisms and co-morphisms
between institutions in a coordinated way, not only allowing moving a specifica-
tion to a more expressive language, but also to project a part of the system into
a less expressive one. Differences and similarities between their framework and
ours are essentially the same as mentioned in the comparison above with HETS.
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Abstract. Real time logics such as Metric Temporal Logic, MTL and
Timed Propositional Temporal Logic (TPTL) exhibit considerable diver-
sity in expressiveness and decidability properties based on the permitted
set of modalities, the nature of time interval constraints and restriction
on models. We study the expressiveness and decidability properties of
various unary fragments of MTL incorporating strict as well as non-
strict modalities. We show that, from the point of view of expressive
power, MTL[ I ] 
 MTL[ s

I ] 
 MTL[ I , ] ≡ MTL[ s
I , ] 
 MTL[Us

I ], in
pointwise semantics. We also sharpen the decidability results by showing
that, in the pointwise semantics, MTL[ I ] (which is the least expres-
sive amongst the unary fragments considered) already has non-primitive-
recursive complexity and is Fωω -hard for satisfiability checking over finite
timed words, and that MTL[ I , -

I ] is undecidable and Σ0
1 -hard. Next

we explore, in the pointwise models, the decidability of TPTL[ I ] (unary
TPTL) and show that 2-variables unary TPTL has undecidable satisfiabil-
ity, while the single variable fragment TPTL[Us] incorporating even the
most expressive operator Us operator is decidable over finite timed words.
We provide a comprehensive picture of the decidability and expressive-
ness properties of unary fragments of TPTL and MTL over pointwise
time.

1 Introduction

Temporal Logics are a well established formalism for specifying ordering con-
straints on a sequence of events. Timed Temporal Logics extend this by allowing
to specify quantitative constraints between events. Metric Temporal Logic (MTL)
introduced by Koymans [12] and Timed Propositional Temporal Logic (TPTL)
introduced by Alur and Henzinger [1] are two prominent linear time temporal
logics. The logic TPTL[U, S] makes use of freeze quantifiers along with untimed
temporal modalities and explicit constraints on frozen time values; the logic
MTL[UI , SI ] uses time interval constrained modalities UI and SI . For example,
the TPTL[U, S] formula x.(aU(b ∧ 0 < x < 1)) and the MTL[UI , SI ] formula
aU(0,1)b both characterize the set of timed behaviours that have a symbol b at
a time point < 1, such that the only letters preceding this b are a. Timed logics
are defined over timed words (also called pointwise time models) or over signals

G. Ciobanu and D. Méry (Eds.): ICTAC 2014, LNCS 8687, pp. 333–350, 2014.
c© Springer International Publishing Switzerland 2014
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(also called continuous time models). A finite timed word is a finite sequence of
letters each of which carries a time stamp giving the time of its occurrence. Weak
monotonicity (as against strict monotonicity) of timed words allows a sequence
of events to occur at the same time point. In this paper we confine ourselves to
logics interpreted over finite timed words as models.

MTL[ I ]

MTL[UI ]
MTL[ s

I ]
MTL[ I , -

I ]
MTL[ I , ] ≡ MTL[ s

I , ]

MTL[ s
I ,

- s
I ]

MTL[Us
I ]

MTL[UI , SI ]

MTL[Us
I , S

s
I ]

Fig. 1. Expressiveness without restriction of strict monotonicity on finite timed words

In their full generality, MTL[UI , SI ] and TPTL[U, S] both have undecidable
satisfiability even for finite timed words. Several restrictions have been proposed
to get decidable subclasses (see Ouakinine and Worrel for a recent survey)[3]. In
their seminal paper, Alur and Henzinger [1] proposed a subclass MITL of MTL
having only non-punctual intervals, where the satisfiability is decidable with
EXPSPACE complete complexity. The satisfiability of MTL[UI ] was considered
to be undecidable for a long time, until Ouaknine and Worrell proved that the
satisfiability of MTL[UI ] over finite timed words is decidable, albeit with a non-
primitive recursive lower bound. Subsequently, in [16], it was shown that over
infinite timed words, the satisfiability of MTL[UI ] is undecidable. The satisfiabil-
ity of MTL[UI ] over continuous time models is also undecidable. In this paper,
we sharpen the known undecidability results for MTL, by showing that over fi-
nite timed words, the full unary fragment MTL[ I , -

I ] is undecidable. Further,
we also show that checking satisfiability of the unary fragment MTL[ I ] over
finite timed words has a non primitive recursive lower bound. Hence, restriction
of unariness in modalities does not simplify the satisfiability problem of MTL.
Our decidability and complexity results are established for the unary fragments
of MTL with “non-strict” modalities, interpreted over weakly monotonic timed
words. A strict modality is more expressive as it guarantees that it accesses a
time point strictly in future (or past).

In order to study the expressive power of various unary fragments of MTL
(with both strict and nonstrict modalities respectively), we use the tool of EF
games for MTL introduced in [17].

We show that from the point of expressiveness, working on weakly monotonic
timed words,MTL[ I ] is strictly contained in MTL[ s

I ] as it cannot specify strict
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monotonicity on the underlying models. Moreover,MTL[ s
I ] is strictly contained

in MTL[ I , ] as unary operators cannot say anything about the next time point.
Also, MTL[ I , ] is equivalent to MTL[ s

I , ], and MTL[ s
I , ] is a strict subset

of MTL[Us
I ]. Note that over strictly monotonic timed words, the unary fragment

of MTL with strict operators collapses to the unary fragment of MTL with non-
strict operators, while this is not true of MTL with binary operators, until and
since. Logic MTL with strict until (since) is more expressive than non strict until
(since) due to its ability of encoding next (previous).

Figure 1 shows the expressiveness relationship between fragments ofMTL over
arbitrary timed words, where as Figure 2 shows these relationship when models
are confined to strictly monotonic timed words. In these figures, X → Y means
X is contained in Y , and if there does not exist a path between 2 classes then
they are incomparable. We also indicate the subclasses which have decidable
satisfiability: these are contained within dotted polygon. All these decidable
logics have non primitive recursive decision complexity. Indeed, it is rare to
find a timed logic with elementary decision complexity [18]. We believe that
this paper gives a comprehensive characterization of the decidability as well as
expressiveness of unary fragments of MTL.

Investigating the logic TPTL, we show that over finite timed words, the unary
fragment TPTL[ ] is undecidable with two freeze variables, while the one vari-
able fragment of TPTL[Us

I ] is decidable. The rest of the paper is organized as
follows: In Section 2, we give all the preliminaries required for the further sec-
tions. Section 3 discusses the expressiveness of unary fragments of MTL. Section
4 discusses the decidability and complexity of unary MTL, as well as TPTL.

MTL[ I ] ≡ MTL[ s
I ]

MTL[UI ]
MTL[ I , ] ≡ MTL[ s

I , ]
MTL[ s

I ,
- s
I ]≡

MTL[ I , -
I ]

MTL[Us
I ]

MTL[UI , SI ]

MTL[Us
I , S

s
I ]

Fig. 2. Expressiveness assuming strict monotonicity on finite timed words

2 Preliminaries

Timed Word: Let Σ be a finite set of propositions. A finite timed word over
Σ is of the form ρ = (σ1, t1)(σ2, t2) . . . (σn, tn), where σi ⊆ Σ and ti ∈ R≥0. We
also represent ρ by the tuple (σ, τ) where σ = σ1σ2 . . . σn and τ = t1t2 . . . tn.
The positions {1, 2, . . . , n} in the word ρ is denoted by dom(ρ). If ti < tj for all
i, j ∈ dom(ρ) with i < j, the word ρ is said to be strictly monotonic; if ti ≤ tj ,
ρ is weakly monotonic. Let TΣ∗ denote the set of all timed words over Σ.



336 K. Madnani, S.N. Krishna, and P.K. Pandya

Metric Temporal Logic: In this section, we describe the syntax and semantics
of MTL in the point-wise sense. Given Σ, the formulae of MTL are built from
Σ using boolean connectives and time constrained versions of the modalities U
and S as follows:

ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕUIϕ | ϕSIϕ | Iϕ | - Iϕ

where I is an open, half-open or closed interval with end points in N ∪ {∞}.
Semantics : Given a finite timed word ρ over Σ, and an MTL formula ϕ, in
the point-wise semantics, the temporal connectives of ϕ quantify over a finite
set of positions in ρ. For an alphabet Σ, a timed word ρ = (σ, τ), a position
i ∈ dom(ρ), and an MTL formula ϕ, the satisfaction of ϕ at a position i of ρ is
denoted (ρ, i) |= ϕ, and is defined as follows:
ρ, i |= a ↔ a ∈ σi,
ρ, i |= ¬ϕ ↔ ρ, i � ϕ,
ρ, i |= ϕ1 ∧ ϕ2 ↔ ρ, i |= ϕ1 and ρ, i |= ϕ2,
ρ, i |= Iϕ ↔ ρ, i+ 1 |= ϕ and ti+1 − ti ∈ I,
ρ, i |= ϕ1UIϕ2 ↔ ∃j ≥ i, ρ, j|=ϕ2, tj − ti ∈ I, and ρ, k|=ϕ1 ∀ i ≤ k < j,
ρ, i |= - Iϕ ↔ ρ, i− 1 |= ϕ and ti − ti−1 ∈ I,
ρ, i|=ϕ1SIϕ2 ↔ ∃j ≤ i, ρ, j|=ϕ2, ti − tj ∈ I, and ρ, k|=ϕ1 ∀ j < k ≤ i.
We say that ρ satisfies ϕ denoted ρ |= ϕ iff ρ, 1 |= ϕ. Let L(ϕ) = {ρ |
ρ, 1 |= ϕ}. Additional temporal connectives are defined in the standard way:
we have the constrained future and past eventuality operators Ia ≡ trueUIa
and - Ia ≡ trueSIa, and their duals �Ia ≡ ¬ I¬a, �Ia ≡ ¬ - I¬a. We denote
by MTL[UI , SI , I , - I ] the class of all MTL formulae in the pointwise sense, with
modalities UI , SI , I , - I . MTL[list] denotes the fragment of MTL using modali-
ties specified in list.

Strict Modal Operators: In the above section, we have introduced the non-
strict semantics of U and S. The strict semantics of U and S inMTL are as follows:
ρ, i|=ϕ1Us

Iϕ2 ↔ ∃j > i, ρ, j|=ϕ2, tj − ti ∈ I, and ρ, k|=ϕ1 ∀ i < k < j.
ρ, i|=ϕ1SsIϕ2 ↔ ∃j < i, ρ, j|=ϕ2, ti − tj ∈ I, and ρ, k|=ϕ1 ∀ j < k < i.
It has been shown that the strict semantics of until(since) is more expressive than
the non-strict semantics since they can encode the next (previous) operators [5].
For instance, Iϕ = ⊥Us

Iϕ, and - Iϕ = ⊥SsIϕ. The corresponding unary opera-
tors s and -

s talk about strict future and past as follows: s
Iϕ = �Us

Iϕ, while
-
s
Iϕ = �SsIϕ. Expressiveness of strict and non-strict modalities are compared

in section 3.

Timed Propositional Temporal Logic: In this section, we define the syntax
and semantics of TPTL in the point-wise sense.

ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕUϕ | ϕSϕ | ϕ | - ϕ | y.ϕ | y ∈ I
where C is the set of clock variables progressing at same rate, y ∈ C, and I is an
open, half-open or closed interval with end points in N ∪ {∞}.

Semantics : Given a finite timed word ρ over Σ, and an TPTL formula ϕ, in the
point-wise semantics, the truth of a formula is interpreted at a position i ∈ N
along the word. We define the satisfiability relation, ρ, i, ν |= ϕ saying that the
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formula ϕ is true at position i of the timed word ρ with valuation ν of all the
clock variables.
ρ, i, ν |= a ↔ a ∈ σi,
ρ, i, ν |= ¬ϕ ↔ ρ, i, ν � ϕ,
ρ, i, ν |= ϕ1 ∧ ϕ2 ↔ ρ, i, ν |= ϕ1 and ρ, i, ν |= ϕ2,
ρ, i, ν |= x.ϕ ↔ ρ, i, ν[x← ti] |= ϕ,
ρ, i, ν |= x ∈ I ↔ ti − ν(x) ∈ I,
ρ, i, ν |= ϕ ↔ ρ, i+ 1, ν |= ϕ,
ρ, i, ν |= ϕ1Uϕ2 ↔ ∃j ≥ i, ρ, j, ν |= ϕ2, and ρ, k, ν |= ϕ1 ∀ i ≤ k < j,
ρ, i, ν |= - ϕ ↔ ρ, i− 1, ν |= ϕ,
ρ, i, ν |= ϕ1Sϕ2 ↔ ∃ j ≤ i, ρ, j, ν |= ϕ2, and ρ, k, ν |= ϕ1 ∀ j < k ≤ i.
We say that ρ satisfies ϕ denoted ρ |= ϕ iff ρ, 1, 0̄ |= ϕ. Here 0̄ is the valua-

tion obtained by setting all clock variables to 0. We denote by TPTL[U, S, , - ]
the class of all TPTL formulae in the pointwise sense, with modalities U, S, , - .
TPTL[list] denotes the fragment of TPTL using modalities specified in list. Strict
modalities Us and Ss can be defined for TPTL in a way similar to that done for
MTL.

Ehrenfeucht Fräıssé Games for MTL: In this section, we recall EF games
[17], used in separating various fragments of MTL based on the expressive power.
EF games for First-Order Logic defined by Ehrenfeucht and Fräıssé [22] is a
very useful tool for characterizing FO-definable languages; Etessami and Wilke
defined EF games for LTL [8]. These EF-games for LTL were extended to MTL
in [17] over the pointwise and continuous semantics. We discuss EF Games for
MTL on point-wise semantics only. Our expressiveness results in section 3 use
these games.

A n-roundMTLEF game is played between two players (Spoiler andDuplicator)
on a pair of timed words (ρ0, ρ1). A configuration of the game is pair of points i0, i1
where i0 ∈ domain(ρ0) and i1 ∈ domain(ρ1). A configuration is called partially
isomorphic, denoted isop(i0, i1) iff σi0 = σi1 . From a starting configuration (i0, i1),
the game is defined as follows:

– Either Spoiler or Duplicator eventually wins the game.
– A 0-round EF game is won by the Duplicator iff isop(i0, i1).
– The n round game is played by first playing one round from the starting

position. Either the Spoiler wins the round, and the game is terminated or
the Duplicator wins the round, and now the second round is played from this
new configuration and so on. The Duplicator wins the game only if it wins
all the rounds. Following are the rules of game starting configuration being
(i0, i1).
• If isop(i0, i1) is not true, then Spoiler wins the 0 round game.
• The Spoiler chooses one of the words by choosing ρx, x ∈ {0, 1}.Duplicator
has to play on the other word ρy, x �= y. Then Spoiler chooses one of the
UI , SI , U

s
I , S

s
I move, along with the interval I (such that the end points of

the intervals are non-negative integers). Given the current configuration
as (ix, iy), the rest of the round is played as follows:



338 K. Madnani, S.N. Krishna, and P.K. Pandya

∗ If the chosen move of Spoiler is UI , then Spoiler chooses a position
i′x ∈ dom(ρx) such that ix ≤ i′x and (ti′x−tix) ∈ I (in case the chosen
move is Us

I , then ix < i
′
x)

∗ The Duplicator responds to the UI move by choosing i′y ∈ dom(ρy)
in the other word such that iy ≤ i′y and (ti′y − tiy ) ∈ I. (In case of
Us
I move, iy < i

′
y). If the Duplicator cannot find such a position, the

Spoiler wins the round and the game. Otherwise, the game continues
and Spoiler chooses one of the following options.

∗ Part: The round ends with the configuration (i′0, i
′
1).

∗ U Part: Spoiler chooses a position i′′y in ρy such that iy ≤ i′′y < i′y (in
case of Us move iy < i

′′
y < i

′
y). The Duplicator responds by choosing

a position i′′x in ρx such that ix ≤ i′′x < i′x (in case of Us move
ix < i

′′
x < i

′
x). The round ends with the configuration (i′′0 , i

′′
1). If the

Duplicator cannot choose an i′′x , the game ends and the Spoiler wins.
• SI (and the corresponding strict since) move is analogous to UI move
described above. The only difference is the Spoiler and the Duplicator
choose points in the past of the present configuration. In this case, the

or U parts are replaced with the - or S parts.
• We can restrict various moves according to the modalities provided by
the logic. For example, if we restrict ourselves to playing an EF game
for MTL[ I , -

I ], then given a configuration (ix, iy), a round will simply
consist of Spoiler choosing a I or -

I move, and a position i′x ∼ ix in
his word ρx, while Duplicator has to respond with a suitable choice of
position i′y ∼ iy in his word ρy. ∼=≤ for a -

I move, and is < for a -
s
I

move; we have ∼∈ {≥, >} for a I or s
I move. The game proceeds to

the configuration (i′x, i
′
y); in case Duplicator is unable to produce a i′y,

Spoiler wins.

– Game equivalence: (ρ0, i0) ≈k (ρ1, i1) iff for every k-round MTL[UI , SI ]
EF-game over the words ρ0, ρ1 starting from the configuration (i0, i1), the
Duplicator always has a winning strategy.

– Formula equivalence: (ρ0, i0) ≡k (ρ1, i1) iff for every MTL[UI , SI ] formula
φ of modal depth ≤ k, ρ0, i0 |= φ ⇐⇒ ρ1, i1 |= φ

Theorem 1. (ρ0, i0) ≈k (ρ1, i1) iff (ρ0, i0) ≡k (ρ1, i1)

Given 2 fragments M1,M2 of MTL, we use the above theorem to prove results
of the form M1 −M2 �= φ. For instance, M1 = MTL[UI ], while M2 = MTL[ I ].
First, Duplicator chooses a formula ϕ ∈M1. In response, Spoiler choses a number
n which indicates the maximum number of rounds that can be played before
Duplicator can win. In response to n, Duplicator choses a pair of words ρ0, ρ1
such that one of the words satisfies ϕ while the other does not. Now we play
n-round EF game using the modalities of M2 (for the instance chosen above, we
play a I game) on these words as explained above. If we prove that for any
n ∈ N Duplicator has a winning strategy, then according to the theorem 1, we
cannot have a formula of modal depth n in logic M2 which can distinguish ρ0
and ρ1. This shows that ϕ has no equivalent formula in M2.
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Counter Machines: Our undecidability results in section 4 are obtained by
reduction of the halting problem of two counter machines. A deterministic 2-
counter machine is a 3 tuple M = (P,C1, C2), where

1. C1, C2 are counters taking values in N (their initial values are set to zero);
2. P is a finite set of n instructions. Let p1, . . . , pn−1, pn be the unique labels

of these instructions. There is a unique instruction labeled HALT. For E ∈
{C1, C2}, the instructions P are of the following forms:
(a) pi: Inc(E), goto pj ,
(b) pi: If E = 0, goto pj , else go to pk,
(c) pi: Dec(E), goto pj ,
(d) pn: HALT.

A configurationW = (i, c1, c2) ofM is given by the value of the current program
counter i and valuation c1, c2 of the counters C1, C2. A move of the counter
machine (l, c1, c2)→ (l′, c′1, c′2) denotes that configuration (l′, c′1, c′2) is obtained
from (l, c1, c2) by executing the lth instruction pl.

Theorem 2. [14] The halting problem for 2-counter machines is undecidable.

Insertion Channel machine With Emptiness Testing: In section 4, we
show that the complexity of satisfiability checking MTL[ I ] in the pointwise
sense has a non-primitive recursive lower bound and is Fωω -hard. This is shown
by a reduction from the reachability problem for Insertion Channel machine
With Emptiness Testing (ICMET), which is NPR and Fωω -complete [20].

A channel machine consists of a finite-state automaton acting on finite set of
unbounded FIFO channels, or queues. More precisely, a channel machine is a
tuple C = (S,M,Δ,C), where S is a finite set of control states, C is a finite set
of channels, M is a finite set of messages, and Δ ⊆ S × Σ × S is the transition
relation over the label set Σ = {c!m, c?m, c = ∅ | m ∈ M, c ∈ C}. A transition
labelled c!m writes message m to the tail of the channel c, and a transition
labelled c?m reads message m from the head of the channel c. The transition
c = ∅ checks that channel c is empty. c?m is only enabled when the channel c is
non-empty, while the emptiness check c = φ is only enabled when the channel
c is empty. A global state of the channel machine at any point of time is given
by the contents of all the channels and the current state si. A global state is
written as

〈si, (c1 = (mh1 . . .mt1), c2 = (mh2 . . .mt2), . . . , ck = (mhk
. . .mtk))〉

where mhi refers to head of the ith channel and mti refers to the tail of the ith

channel. A transition of the channel machine is defined as :

1. Write to channel i:
〈s, (c1, . . . , ci = x, . . . , ck)〉

ci!m−−−→ 〈s′, (c1, . . . , ci = xm, . . . , ck)〉
2. Read from channel i:
〈s, (c1, . . . , ci = m.x, . . . , ck)〉

ci?m−−−→ 〈s′, (c1, . . . , ci = x, . . . , ck)〉
3. Emptiness check for channel i:

〈s, (c1, . . . , ci = ∅, . . . , ck)〉
ci=φ−−−→ 〈s′, (c1, . . . , ci = ∅, . . . , ck)〉
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If we only allow the transitions indicated above, then we call C an error-free chan-
nel machine. A computation of such a machine is a finite sequence of transitions
of the above kind. We also consider channel machines that are subject to inser-
tion errors. Given x, y ∈M∗, define an ordering x ' y if x can be obtained from y
by deletion of any number of characters. For example, PL ' PROLOG. Insertion
errors are modelled by extending the transitions as follows: If (s, x1)

α−→ (s′, y1),
and x2 ' x1,y1 ' y2 then (s, x2)

α−→ (s′, y2). Transitions in an ICMET allow such
transitions with insertion errors. A run in ICMET is a finite or infinite sequence
of transitions between global states (s0, C0)

α0−→ (s1, C1)
α1−→ (s2, C2)

α2−→ . . .,
with s0 = init and Ci is the of contents of all the channels at transition i.

The control-state reachability problem asks, given a channel machine C =
(S,M,Δ,C) and two distinct control states s, s′ ∈ S, whether there is a finite
computation of C starting in global state 〈s, (ε, . . . , ε)〉 and ending in global state
〈s′, (x1, . . . , xk)〉 for some xi ∈ M∗. This problem was proved to be decidable
for ICMETs with NPR lower bound by Schnoebelen [21]. The recurrent-state
problem, on the other hand, asks whether C has an infinite computation that
visits some state infinitely often, irrespective of channel contents. This was shown
to be undecidable in [16].

Theorem 3. The control state reachability problem for ICMETs is decidable
with non - primitive recursive complexity [21] and is Fωω -complete [20]. The
recurrent state problem for ICMETs is undecidable and is Π0

1 -hard [16].

3 Expressiveness

In this section we study the expressiveness of different classes of unary MTL in
the pointwise sense. The unary fragment of MTL is the one which uses only the
modalities I , - I ; recall that the full MTL uses UI , SI .

Lemma 1. MTL[ s
I ] is strictly more expressive than MTL[ I ].

Proof. Any formula in MTL[ I ] can be expressed in MTL[ s
I ] as follows: For an

interval of the form I ′ = [0, l〉, we have I′(ϕ) = ϕ ∨ s
I′(ϕ). For intervals I

which are not of the form [0, l〉, we have I(ϕ) =
s
I(ϕ).

Next, we show that MTL[ s] − MTL[ I , -
I ] �= φ by playing an EF game

with modalities I , - I . Consider the candidate formula ϕ = a ∧ s
[0,0]a. The

formula says that there are at least 2 a’s at 0. This cannot be expressed with
non strict unary modalities. Consider words ρ1 = (a, 0) and ρ2 = (a, 0)(a, 0).
Clearly ρ1 � ϕ while ρ2 |= ϕ.

If Spoiler starts on ρ1, he will have to stay at the start position irrespective
of [0,x〉 or -

[0,x〉 move chosen, and the Duplicator can easily replicate the move
on ρ2. Assume now that the game begins by Spoiler choosing ρ2. For any choice
of moves [0,x〉 or -

[0,x〉 of Spoiler in ρ2, it is possible for Duplicator to stay at
the ony position in ρ1. Thus, Duplicator will always win a I , - I game on these
words. *+

Lemma 2. MTL[ I , ] is more expressive than MTL[ s
I , -

s
I ].
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Proof. We first show that MTL[ I , ]−MTL[ s
I , -

s
I ] �= φ. Consider the formula

ϕ = �(a→ b). Playing a s
I , -

s
I EF game for any n > 0 rounds, we show that

ϕ has no equivalent formula in MTL[ s
I , -

s
I ].

Choose some m ∈ N and δ such that 0 < 4mδ < 1 and m >> n.
Consider words ρ1 = (a, δ)(b, 2δ) . . . (a, (2m − 1)δ)(b, 2mδ) . . . (a, (4m − 1)δ)
(b, 4mδ), and ρ2 = (a, δ)(b, 2δ) . . . (a, (2m − 1)δ)(a, θ)
(b, 2mδ) . . . (a, (4m − 1)δ)(b, 4mδ). ρ2 differs from ρ1 only with respect to the
extra (a, θ) inserted between (a, (2m − 1)δ) and (b, 2mδ). Clearly ρ1 |= ϕ while
ρ2 does not.

Spoiler can choose to be on any word to begin with. If Spoiler is at a position
other than (a, θ) on either word, Duplicator can play copy cat for any move
chosen. Consider the case when Spoiler comes on (a, θ). In this case, Duplicator
can come to (a, (2m− 1)δ) or (a, (2m+ 1)δ) in the other word. If Spoiler moves
to any previous/future a, b in ρ2, Duplicator can also move to a corresponding
a, b by choosing the same move. Thus, Duplicator wins the the n round game
with s

I , -
s
I moves.

Next, we see that s can be easily encoded using , . For intervals I not
of the form [0, y〉, s

Iand I are equivalent. Note that s
[0,y〉(ϕ) = [0,y〉(ϕ).

Note that this also implies that MTL[ I , ] = MTL[ s
I , ]. *+

Lemma 3. MTL[ I , I ] ≡ MTL[ I , ]

Proof. We need to encode I using I and . A formula [l,u](ϕ) can be written
as ¬ [0,l)(�) ∧ [l,u](�) ∧ (ϕ). *+

Lemma 4. MTL[ I , I ] and MTL[UI ] are incomparable.

Proof. We first show that LTL[U]−MTL[ I , I ] �= φ. LTL[U] is the fragment of
MTL[UI ] where the intervals I are only of the form [0,∞).

By Lemma 3, we need to only consider the untimed operator. Consider the
formula ϕ = aUb ∈ LTL[U]. We show that for any n > 0, Duplicator can win an n
round I , I game. Pickm >> n and δ, κ such that 0 < mδ+2mκ < 1. Consider
the words ρ1 = A(0)A′(δ)A′(2δ) . . . A′(mδ) and ρ2=A′(0)A′(δ)A′(2δ) . . . A′(mδ).
Here, A(t) = (a, t)(a, t + κ) . . . (b, t + 2mκ) and A′(t) = (a, t)(a, t + κ) . . . (a, t+
mκ)(c, t+ θ)(a, t + (m+ 1)κ) . . . (b, t+ 2mκ). Clearly, ρ1 |= ϕ and ρ2 � ϕ.

For any I , I move of Spoiler landing on an a or a b, Duplicator can play
copy cat. When Spoiler visits the c at t+ θ for t ≥ 0, Duplicator can visit a c at
t + θ + pδ, p ≥ 1. Spoiler cannot achieve anything using the move since the
number of a’s before the c is much more than n, the number of rounds. Any I

move of Spoiler can be duplicated with the gap of at most (2m+ 1)δ difference
in time-stamp. Hence, Duplicator wins the n round I , I game.

We next show that MTL[ I , I ] − MTL[UI , SI ] �= φ. Consider the formula
ϕ = �(a → b) and words ρ1 and ρ2 from Lemma 2. Consider an n round
UI , SI EF-game on those pair of words. An interesting move for Spoiler is to
come to (a, (2m− 1)δ) in ρ2. Duplicator is on some (a, (2k− 1)δ) in ρ1. If Spoiler
swaps words, and invokes an UI move coming to (b, 2kδ) in ρ1, then Duplicator
comes to (b, 2mδ) in ρ2. Spoiler can now pick the (a, θ) in duplicator’s word in
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between the positions (a, (2m − 1)δ) and (b, 2mδ). In response, Duplicator can
always pick the position (a, (2k − 1)δ) in ρ1, since the until move is non-strict.
Note that if the until move was a strict one, Duplicator would have to pick a
position strictly in between (2k − 1)δ and 2kδ, and would have lost. Similar
argument will work for since moves. Hence, Duplicator wins the n round UI , SI
game. *+

Lemma 5. MTL[ s
I , I ] is strictly contained in MTL[Us

I ].

Proof. By lemma 3 we can eliminate timed and by lemma 4 we can say that
MTL[ s

I , I ] cannot simulate U. By the equivalences Iϕ = ⊥Us
Iϕ and sϕ =

�Usϕ, Us can simulate both , . Hence proved. *+

Lemma 6. MTL[ s
I , Δ] is equivalent to MTL[ I , Δ] where Δ is any list of

operators if the models are restricted to be strictly monotonic words.

Proof. For strictly monotonic words, any two points i, j with i > j has ti > tj .
We know that s

I(ϕ) = I(ϕ) for any interval I not of the form of [0, u〉. Also,
for intervals of type I ′= [0, u〉, I′ϕ = ϕ ∨ s

I′(ϕ). Due to strict monotonicity
of the underlying model, s

[0,u〉(ϕ) =
s
(0,u〉(ϕ) = (0,u〉(ϕ). Hence proved. *+

4 Unary MTL and Undecidability

In this section, we explore the decidability and complexity of the satisfiability
of the unary fragment of MTL in the pointwise sense. The undecidability of
MTL[ I , - I ] follows by construction of an appropriate MTL formula ϕ simulat-
ing a deterministic 2-counter machine M such that ϕ is satisfiable iff M halts.
Since the non-emptiness problem for two counter machines is Σ0

1 -complete, we
obtain the Σ0

1 -hardness of the satisfiability for MTL[ I , -
I ]. We also show the

non primitive recursive lower bound for satisfiability of MTL[ I ] by reduction of
reachability problem for ICMETs. Since the reachability problem for ICMETs
is Fωω -complete, we obtain the Fωω -hardness of the satisfiability of MTL[ I ].

Encoding Minsky Machines in MTL[ I , -
I ]

We encode each computation of a 2-counter machine M using timed words
over the alphabet ΣM = {b1, b2, . . . , bn, a}. We then generate a formula ϕM ∈
MTL[ I , - I ] such that LM = L(ϕM). The encoding is done in the following way:
A configuration 〈i, c1, c2〉 of the counter machine is represented by equivalence
class of the words of the form (b+i , t0)(a

+, t1) . . . (a
+, tc1)(a

+, t′1) . . . (a
+, t′c2),

where for any time-stamp t, (x+, t) is some element of (X+, t) =
⋃

i>0{(x, t)i}
for any x ∈ Σ. Thus, (x+, t) denotes a sequence of one or more symbols of the
form (x, t). For brevity, we will denote (x+, t) with x+. Note that we are working
on words that are not strictly monotonic : hence, we allow several symbols x at
the same time stamp.

A computation ofM is encoded by concatenating sequences of individual con-
figurations. We encode the jth configuration ofM in the time interval [5j, 5(j +
1)) as follows: For j ∈ N,
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1. b+ij (representing instruction pij ) occurs at time 5j;

2. The value of counter Cq, q ∈ {1, 2}, in the jth configuration is given by the
number of a+’s with distinct time stamps in the interval (5j+2q−1, 5j+2q);

3. The a’s can appear only in the intervals (5j + 2q − 1, 5j + 2q), q ∈ {1, 2};
4. The intervals (5j, 5j+1), (5j+2, 5j+3) and (5j+4, 5j+5) have no events.

Thus, after any unit interval encoding the value of a counter, the next unit
interval has no events. The computation must start with initial configuration
and the final configuration must be the HALT instruction.

ϕM is obtained as a conjunction of several formulae. Let B be a shorthand
for

∨
i∈{1,...,n} bi. The interesting part is to encode precise copy, increment and

decrement of counters in the successive configurations. We define the macros
COPYi, INCi, DECi for copying, incrementing and decrementing the contents
of counter Ci in successive configurations.

bi
y = a+

5j 5j + 1 5j + 2 5j + 3 5j + 4

bi+1

5j + 5 5j + 6 5j + 7 5j + 8 5j + 9 5j + 10

y y y y y y y y y y y y y y y

Fig. 3. bi: Decrement counter C2 and move next

bi

5j

y = a+

5j + 1 5j + 2 5j + 3 5j + 4

bi+1

5j + 5 5j + 6 5j + 7 5j + 8 5j + 9 5j + 10

y y y y y y y y y y y y y y y yy

Fig. 4. bi: Increment counter C2 and move next

bi

5j

y = a+

5j + 1 5j + 2 5j + 3 5j + 4

bh

5j + 5 5j + 6 5j + 7 5j + 8 5j + 9 5j + 10

y y y y y y y y y y

Fig. 5. bi: If counter C2 = 0 then move to bh

– COPYi: Every (a+, t) occurring in the interval (5j + 2i − 1, 5j + 2i) has a
copy at a future distance 5, and every (a+, t) occurring in the next interval
has an a+ at a past distance 5. That is, corresponding to all the time stamps
t1, . . . , tci ∈ (5j+2i− 1, 5j+2i) where a+ holds, we have precisely and only
time stamps t1 + 5, . . . , tci + 5 ∈ (5(j + 1) + 2i − 1, 5(j + 1) + 2i) where
a+, for i ∈ {1, 2}. This ensures the absence of insertion errors. COPYi =
�(2i−1,2i)[(a⇒ [5,5]a)] ∧�(5+2i−1,5+2i)[(a⇒ -

[5,5]a)].
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– INCi: All a
+’s in the current configuration are copied to the next, at a future

distance 5; in the next configuration, every a+ except the last, has an a+ at
past distance 5. This corresponds to propagating time stamps t1, . . . , tci to
t1 + 5, . . . , tci + 5. Also, there is a tci+1 + 5 which has no counterpart tci+1

in the previous configuration.
INCi = �(0,5){ [a⇒ [5,5]a]

∧[(a ∧ ¬ (0,1)a)⇒ ( (5,6)a ∧�(5,6)(a⇒ �(0,1)(false)))] }
∧�(5+2i−1,5+2i)[(a ∧ [0,1](a))⇒ -

[5,5]a]
– DECi: All the a

+’s in the current configuration, except the last, have a
copy at future distance 5. All the a+’s in the next configuration have a copy
at past distance 5. That is, all the time stamps t1, . . . , tci−1 in the interval
(5j + 2i− 1, 5j + 2i) have corresponding time stamps t1 + 5, . . . , tci−1 + 5 in
(5(j + 1) + 2i− 1, 5(j + 1) + 2i). Moreover, tci−1 + 5 is the last time stamp
in (5(j + 1) + 2i− 1, 5(j + 1) + 2i).
DECi = �(2i−1,2i){[(a ∧ (0,1)a) ⇒ [5,5]a] ∧ [(a ∧ ¬ [0,1]a) ⇒
¬ [5,5]a]} ∧�(5+2i−1,5+2i)[(a⇒ -

[5,5]a)].

These macros helps in simulating all type of instructions. The zero-check
instruction px: If Ci = 0 goto py, else goto pz is encoded as ϕx,i=0

3 = �{bx ⇒
(
∧

i∈{1,...,n} COPYi ∧ [�(2i−1,2i)(¬a)⇒ ( [5,5]by)] ∧ [ (2i−1,2i)(a)⇒ ( [5,5]bz)]}.
The final formula we construct is ϕM =

∧6
i=0 ϕi, where ϕ3 is the conjunction of

formulae ϕx,inci3 , ϕx,deci3 , ϕx,i=0
3 . We thus obtain:

Lemma 7. Let M be a 2-counter Minsky machine. Then, we can synthesize a
formula ϕM ∈ MTL[ I , - I ] in the pointwise sense, such that M halts iff ϕM is
satisfiable.

Theorem 4. Satisfiability checking for MTL[ I , -
I ] is undecidable.

We next look at the fragment MTL[ I ]. The decidability of this fragment
follows from the decidability of the more general class MTL[UI ] [15]. Further,
[16] established a non-primitive recursive (NPR) lower bound for satisfiability
of the class MTL[UI ]. The encoding in [16] showing the NPR lower bound of
MTL[UI ] makes use of the modality . Here, we show that, without using either

or UI , the subclass MTL[ I ] itself has an NPR lower bound, by reducing the
reachability problem of ICMETs to satisfiability of some formulae in MTL[ I ].

Encoding ICMET in MTL[ I ]

Consider an ICMET C = (S,M,Δ,C). For encoding configurations of ICMETs,
let us work with the alphabet Σ = M ∪Δ ∪ S ∪ b. Here is how we encode the
jth configuration of the ICMET in a timed word:

1. A configuration j, j ≥ 1 is encoded in the interval [(2k+2)j, (2k+2)(j+1)]
where k refers to number of channels.

2. At time (2k + 2)j, the current state of the ICMET at configuration j is
encoded.
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3. At intervals (2i − 1, 2i), i ≥ 1, from the start of the jth configuration, the
contents of ith channel are encoded as shown in the figure below.

4. The first string m+
hi

in the interval (2i − 1, 2i) is the head of the channel i
and denotes that mhi is the message stored at the head of the channel. The
last string m+

ti in the interval is the tail of the channel, and denotes that
message mti is the message stored at the tail of the channel.

5. The Intervals (2i− 2, 2i− 1) from the start of the jth configuration are “no
action” intervals.

6. Exactly at 2k+1 time unit after the start of the jth configuration, α+i holds.
αi encodes the transition from the state at jth configuration([(2k+2)j, (2k+
2)(j+1)) to the (j+1)st configuration([(2k+2)j, (2k+2)(j+1)). Note that
α has the form (s, c!m, s′) or (s, c?m, s′) or (s, c = ∅, s′).

7. We introduce a special symbol b, which acts as separator between the head
of the message and the remaining contents, for each channel.

Messages that are not falsely inserted while this execution

Messages that are falsely inserted while this execution

Special Symbol b separating head of the channel from rest of its contents

β = 2k + 2, where k denoted number of channels

j′ = (j + 1)

Sa

βj βj + 1 βj + 2 βj + 3 βj + 4 βj + 5 βj + 6 βj + 7 βj + 8

m

αa,b Sb

βj′ βj′ + 1 βj′ + 2 βj′ + 3 βj′ + 4 βj′ + 5 βj′ + 6 βj′ + 7 βj′ + 8

Fig. 6. Si, ?m, Sj

Messages that are not falsely inserted while this execution

Messages that are falsely inserted while this execution

Special Symbol b separating head of the channel from rest of its contents

β = 2k + 2, where k denoted number of channels

j′ = (j + 1)

Sa

βj βj + 1 βj + 2 βj + 3 βj + 4 βj + 5 βj + 6 βj + 7 βj + 8

αa,b Sb

βj′ βj′ + 1 βj′ + 2 βj′ + 3 βj′ + 4 βj′ + 5 βj′ + 6 βj′ + 7 βj′ + 8

m

Fig. 7. Si, !m ,Sj
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Messages that are not falsely inserted while this execution

Messages that are falsely inserted while this execution

Special Symbol b separating head of the channel from rest of its contents

β = 2k + 2, where k denoted number of channels

j′ = (j + 1)

Sa

βj βj + 1 βj + 2 βj + 3 βj + 4 βj + 5 βj + 6 βj + 7 βj + 8

αa,b Sb

βj′ βj′ + 1 βj′ + 2 βj′ + 3 βj′ + 4 βj′ + 5 βj′ + 6 βj′ + 7 βj′ + 8

Fig. 8. Si, C2 = φSj

Here we use MTL[ I ] formulae to specify the working of ICMET using timed
words as discussed above. We use S =

∨n
i=0 si to denote any of the states si of

the ICMET, α =
∨m

i=0 αi, action = true and M =
∨

m∈M (m). Note that each
αi has the form (s, c!m, s′) or (s, c?m, s′) or (s, c = ∅, s′).

1. All the states must be at distance 2k + 2 from the previous state (first one
being at 0).

ϕS = s0 ∨�[S ⇒ { [2k+2,2k+2](S) ∧�(0,2k+2)(¬S)∧
[2k+1,2k+1]α ∧�[0,2k+1)(¬α) ∧ (2k+1,2k+2)(¬α)}]

2. All the messages are in the interval (2i−1, 2i) from the start of configuration,
and in (2i− 2, 2i− 1) there is no action taking place.

ϕm = �{S ⇒
∧k

i=1 �(2i−1,2i)(M ∨ b) ∧�(2i−2,2i−1)(¬action)}
3. Consecutive source and target states must be in accordance with a transition
α. For example, sj appears consecutively after si reading αi iff αi is of the
form (si, y, sj) ∈ Δ, with y ∈ {ci!m, ci?m, ci = ∅}.
ϕΔ =

∧
s,s′∈S �{(s∧ [2k+2,2k+2]s

′)⇒ ( [2k+1,2k+1]

∨
Δs,s′ )} where

Δs,s′ are possible αi between s, s
′.

4. As we do not have operator, it is hard to pin point the first symbol in
every integral interval(head of the channel). For this purpose, we introduce a
special symbol b along with other channel contents which acts as a separator
between the head of the channel and rest of the contents. Thus b has the
following properties:
– There is one and only one time-stamp in the interval (2i−1, 2i) from the

start of the configuration where b appears. The following formula says
that there is an occurrence of a b+:
ϕb1 = �[S ⇒ (

∧k
i=1 (2i−1,2i)(b))]

The following formula says that there can be only one b+:
ϕb2 = �(b⇒ ¬ (0,1)b)

– If the channel is not empty (there is at least one message m in the in-
terval (2i− 1, 2i) corresponding to channel i contents) then there is one
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and only one m before b. The following formula says that there can be
at most one m before b.
ϕb3 = �[¬{M ∧ (0,1)(M ∧ (0,1)(b)}]
The following formula says that there is a message m in the
channel, if the channel is non-empty.
ϕb4 = �[S ⇒ {

∧k
j=1( (2j−1,2j)(M)⇒ (2j−1,2j)(M∧ (0,1)b))}]

Let ϕb = ϕb1 ∧ ϕb2 ∧ ϕb3 ∧ ϕb4 . The formula ϕb encodes the
behaviour of b as described above.

5. Encoding transitions:

– If the transition is of the form ci = φ. The following formulae checks that
there is no event in the interval (2i − 1, 2i) corresponding to channel i,
while all the other channel contents are copied. If there was some m+ at
time t, it is copied to t+2k+2, representing the channel contents in the
next configuration.

ϕci=φ = S∧�(2i−1,2i)(¬action)∧�(0,2k+2)(
∧

m∈M (m⇒ [2k+2,2k+2](m))

– If the transition is of the form ci!m where m ∈M . An extra message is
appended to the tail of channel i, and all the m+’s are copied to the next
configuration.M ∧�(0,1)(¬M)) denotes the last message of channel i; if
this occurs at time t, we know that this is copied at a distance 2k+2+ t,
now we assert that from 2k + 2 + t, we see a message in (0,1).
ϕci!m = S ∧�(0,2k+2){

∧
m∈M (m⇒ [2k+2,2k+2](m))}

∧ [2i−1,2i){(M ∧�(0,1)(¬M))⇒ [2k+2,2k+2]( (0,1)(m))}
– If the transition is of the form ci?m where m ∈ M . The contents of all

channels other than i are copied at a distance 2k+2 corresponding to the
next configuration. We check the existence of a first message in channel
i; such a message has a b at distance (0, 1) from it. The rest of channel
i contents are copied at distance 2k + 2.

ϕci?m = S ∧
∧k

j �=i,j=1 �[2j−1,2j]{
∧

m∈M m⇒ [2k+2,2k+2](m)} ∧
(2i−1,2i){m ∧ (0,1)(b)} ∧ �[2i−1,2i]{

∧
m∈M (m ∧ ¬ (0,1)b) ⇒

[2k+2,2k+2](m)}
6. Channel contents must change in accordance to the relevant transition. Let
l ∈ L and αl be a transition labeled l.

ϕC = �[S ⇒
∧

l∈L( [2k+1,2k+1](
∨
αl ⇒ φl))] where φl are the for-

mulae encoding transitions.

7. Let t be a state of the ICMET whose reachability we are interested in. Check
t is reachable from s0.

φreach = (t)

8. Mutual Exclusion: There is only one type of event taking place at any par-
ticular time-stamp

ϕmutex =
∧

y∈Σ(y ⇒ ¬ [0,0](
∨

x∈Σ\{y}(x))
Thus the formula encoding ICMET is:

ϕ3 = ϕS ∧ ϕΔ ∧ ϕm ∧ ϕb ∧ ϕC ∧ ϕreach ∧ ϕmutex

Lemma 8. Let M be a ICMET . Then, we can synthesize a formula ϕM ∈
MTL[ I ] such that M reaches a state t starting with s0 iff ϕM is satisfiable.
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Theorem 5. Satisfiability checking for MTL[ I ] has non-primitive recursive
complexity over finite words and is undecidable for infinite words.

Proof. Lemma 8 and Theorem 3 together say that satisfiability of MTL[ I ] is
non primitive recursive. The Fωω -hardness of MTL[ I ] over finite words follows
from the Fωω -completeness of the reachability problem for ICMETs [20].

It follows from Lemma 8 that the recurrent state problem of ICMET can also
be encoded. Due to the Π0

1 -hardness of the recurrent-state problem for ICMETs,
the satisfiability ofMTL[ I ] over infinite words is Π

0
1 -hard. Consider the formula

ϕ4 = ϕS∧ϕΔ∧ϕm∧ϕb∧ϕC∧ϕrec∧ϕmutex where all the RHS formula are from
the section 4 (except ϕrec) and ϕrec = � (t). Thus ϕ4 is satisfiable iff the state
t occurs infinitely often. Hence MTL[ I ] is undecidable over infinite words. *+

We next show the undecidability of the unary fragment of TPTL with only 2
variables. This is done by encoding two counter machines.

Encoding Minsky Machines in TPTL[ ] with 2 Clock Variables

The timed word used for encoding, as well as the formulae are similar to the one
used for proving undecidability of MTL[ I , -

I ]. The only difference is that we
explicitly write formulae to copy all the non-last a+ to optimize the number of
freeze variables. We only give the formula COPY which tells about copying all
the non-last a+’s without any insertion errors. All other formulae are there in
the appendix. Note that a non-last a+ in an interval means the bunch of a’s that
have the same time-stamp t, and there is no other time-stamp in that interval
greater than t where a holds. Let x, y be the freeze variables.
COPY : All the non-last a+ should be copied precisely at distance 5. Also, if
(a+, t1) and (a+, t2) denote two consecutive a blocks, that is, there is no time
stamp t′ such that t1 < t

′ < t2, then we must see a+ at t1 + 5 as well as
t2 + 5. Also, there must not be a time stamp t′′ + 5 such that t1 + 5 < t′′ + 5 <
t2 + 5. We separate the copying of non-last symbols to optimize the number
of clock variables (or freeze variables). Thus, the COPY formulae is COPY =
COPY1∧COPY2. COPY1 specifies that all the non-last a+’s are copied precisely
at distance 5, possibly with insertion errors. COPY2 ensures that there is no
insertion error. It says freeze x at every non-last a+ and freeze y at some a+

in the future within (0, 1) of freezing x. Then assert that there is no a+ in the
region [T −x+5, T − y+5]. This is only possible if the point where y is frozen is
consecutive to the point where x was frozen (other wise COPY1 will be violated).
Thus COPY2 ensures that there is no insertion in between the copied a+’s.

– COPY1 = �x.[(a ∧ (a ∧ x ∈ (0, 1)))⇒ (a ∧ x ∈ [5, 5])].
– COPY2 = �x.[(a ∧ (a ∧ x ∈ (0, 1))) ⇒ ( y.(a ∧ x ∈ (0, 1) ∧ ¬ (a ∧ x ∈
(5,∞) ∧ y ∈ (0, 5))))].

Lemma 9. Let M be a 2-counter Minsky machine. Then, we can synthesize
a formula ϕM ∈ TPTL[ ] with 2 clock variables such that M halts iff ϕM is
satisfiable.



On Unary Fragments of MTL and TPTL over Timed Words 349

Theorem 6. Satisfiability checking for TPTL[ ] with 2 freeze variables is un-
decidable (Σ0

1 -hard), but with 1 freeze variable is decidable.

Proof. Lemma 9 along with theorem 2 proves that TPTL[ ] with 2 freeze vari-
ables is undecidable. The main idea of the proof for lemma 9 is shown in the
encoding of COPY formula given above. Decidability of TPTL[ ] with 1 freeze
variable relies on the conversion of any given formula to 1-clock Alternating
Timed Automata, shown to be decidable [15]. *+

5 Discussion

In this paper, we sharpen some decidability and complexity results pertaining
to MTL. We show that MTL[ I ] over finite weakly monotonic words has a NPR
lower bound and MTL[ I ] over infinite weakly monotonic words is undecidable.
An examination of the NPR lower bound of MTL over finite words of Ouaknine
and Worrell show that they actually prove the NPR lower bound for MTL[ I , ]
for finite strictly monotonic words. Their results carry over to weakly monotonic
time as well, since strict monotonicity can be defined using I , . In our case, we
show that MTL[ I ] is sufficient to encode lossy channel machines over weakly
monotonic time although strict monotonicity cannot be defined in the logic.
Our encoding is therefore, more complex. We can also show that over finite
words, satisfiability of MTL[ I ] over continuous time, is undecidable. This is
also an improvement of the known result that MTL[UI ] is undecidable over finite
continuous time.

Coming to expressiveness, Pandya and Shah [18] explored the expressive-
ness and decidability of unary MITL but the case of unary MTL was not ad-
dressed. [18] showed that the unary fragment with only lower bound constraints
MITL[ ∞, - ∞] has NP-complete satisfiability, while the bounded unary frag-
ment MITL[ b, -

b] has NEXPTIME-complete satisfiability. It is henceforth, an
interesting question to explore restrictions on unary MTL which still allows punc-
tual time intervals, but has efficient satisfiability checking and model checking
properties. Just as we show here that MTL[ I , -

I ] cannot express the restric-
tion of strict monotonicity, it would be interesting to characterize the limits of
expressiveness of different fragments of MTL. Regarding logic TPTL, apart from
the positive fragment [4] of TPTL, not much is known about decidable subclasses
of TPTL with n > 1 clocks over finite and infinite words. Exploring the n-clock
fragment of TPTL which is decidable is an interesting question and a future
work.
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Abstract. Concurrent constraint programming (ccp) is a well-established model
of concurrency for reasoning about systems of multiple agents that interact with
each other by posting and querying partial information on a shared space. (Weak)
bisimilarity is one of the most representative notions of behavioral equivalence
for models of concurrency. A notion of weak bisimilarity, called weak saturated
bisimilarity (≈̇sb), was recently proposed for ccp. This equivalence improves on
previous bisimilarity notions for ccp that were too discriminating and it is a con-
gruence for the choice-free fragment of ccp. In this paper, however, we show that
≈̇sb is not a congruence for ccp with nondeterministic choice. We then introduce
a new notion of bisimilarity, called weak full bisimilarity (≈f ), and show that it
is a congruence for the full language of ccp. We also show the adequacy of≈f by
establishing that it coincides with the congruence induced by closing ≈̇sb under
all contexts. The advantage of the new definition is that, unlike the congruence
induced by ≈̇sb, it does not require quantifying over infinitely many contexts.

1 Introduction

The Context. Concurrency theory studies the description and the analysis of systems
made of interacting processes. Processes are typically viewed as infinite objects, in
the sense that they can produce arbitrary and possibly endless interactions with their
environment. Process calculi treat these processes much like the λ-calculus treats com-
putable functions. They provide a formal language in which processes are represented
by terms, and a set of rewriting rules to represent process evolution (or transitions). For
example, the term P ‖ Q represents the process that results from the parallel composi-
tion of the processes P andQ. A (labeled) transition P

α−→ P ′ represents the evolution
of P into P ′ given an interaction α with the environment.

Concurrent Constraint Programming (ccp) [25,26] is a well-established formalism
that combines the traditional algebraic and operational view of process calculi with a
declarative one based upon first-order logic. Ccp processes can then be seen as com-
puting agents as well as first-order logic formulae. In ccp, processes interact asyn-
chronously by posting (or telling) and querying (or asking) information, traditionally
referred to as constraints, in a shared-medium referred to as the store. Furthermore,
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ccp is parametric in a constraint system indicating interdependencies (entailment) be-
tween constraints and providing for the specification of data types and other rich struc-
tures. The above features have recently attracted a renewed attention as witnessed by
the works [21,9,5,4] on calculi exhibiting data-types, logic assertions as well as tell and
ask operations. More recently in [14] the authors proposed the post and ask interaction
model of ccp as an abstraction of social networks.

In any computational model of processes, a central notion is that of behavioral
equivalences [11]. These equivalences determine what processes are deemed indistin-
guishable and they are expected to be congruences. The congruence issue is of great
importance for algebraic and compositional reasoning: If two processes are equivalent,
one should be able to replace one with the other in any context and preserve the equiva-
lence (see e.g, [13]). For example, if �� is a behavioral congruence, then P �� Q should
imply P ‖ R �� Q ‖ R.

Reasoning on processes and their equalities therefore means dealing with, and com-
paring, infinite structures. For this, a widely used mathematical tool is coinduction (see
e.g. [1]). Coinduction is the dual of induction; while induction is a pervasive tool to
reason about finite and stratified structures, coinduction offers similar strengths on
structures that are circular or infinite. The most widely applied coinductive concept
is bisimulation: bisimilarity is used to study behavioral equivalences, and the bisimula-
tion proof method is used to prove such equivalences. In fact, most process calculi are
equipped with a notion of bisimilarity.

The Problem. There have been few attempts to define notions of bisimilarity equiva-
lence for ccp processes. These equivalences are, however, not completely satisfactory:
As shown in [2], the one in [25] is too fine grained; i.e. it may tell apart processes whose
logic interpretation is identical. The one in [16] quantifies over all possible inputs from
the environment, and hence it is not clear whether it can lead to a feasible proof tech-
nique. The notion introduced in [2], called (weak) saturated barbed bisimilarity (≈̇sb),
solves the above-mentioned issues and it is a congruence for ccp without nondetermin-
istic choice. Unfortunately, as we will show in this paper, it is not a congruence for the
full language of ccp. In particular, in ccp with nondeterministic choice, P ≈̇sb Q does
not imply P ‖ R ≈̇sb Q ‖ R.

The goal of this paper is therefore to provide ccp with an adequate behavioral con-
gruence based on the bisimulation proof method.

Our Approach. We build on a result of [2] showing that ≈̇sb can be characterized by a
novel bisimulation game (called, for simplicity, weak bisimulation) which relies at the
same time on both barbs and labeled transitions. Barbs are basically predicates on the
states, processes or configuration stating the observation we can make of them. This
is rather peculiar with respect to the existing notions of bisimulations introduced for
other process calculi where one usually exploits labeled transitions to avoid thinking
about barbs and contexts. Indeed, labeled transitions usually capture barbs, in the sense
that a state exposes a certain barb if and only if it performs a transition with a certain
label. This is not the case of ccp, where barbs are observations on the store, while
labeled transitions are determined by the processes. A more abstract understanding of
this peculiarity of ccp can be given within the framework of [7] which is an extension
of [15] featuring barbs and weak semantics.
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As it is customary for weak barbed equivalences, in our weak bisimulation game
whenever a player exposes a barb ↓e, the opponent should expose the weak barb ⇓e,
i.e. it should be able to reach a state satisfying ↓e, but then the game restarts from the
original state ignoring the arriving state. One of our contributions is to show that for ccp
the arriving state cannot be ignored.

Our Contributions. In this work, we prove that ≈̇sb is a congruence for ccp without non-
deterministic choice but not for the full language of ccp. We then propose a new notion
of bisimilarity, called (weak) full bisimilarity (≈f ). We show that≈f is a congruence for
the full language of ccp. We also show the adequacy of the new notion by establishing
that it is the largest congruence included in ≈̇sb. In other words ≈f coincides with the
congruence induced by closing ≈̇sb under all contexts. Beyond being a congruence, the
advantage of ≈f is that it does not require quantifying over infinitely many contexts.
This is also important as it may simplify decision procedures for the equivalence. To the
best of our knowledge, this is the first behavioral equivalence, which does not appeal to
quantification over arbitrary process contexts in its definition, that is a congruence for
ccp with nondeterministic choice.

A technical report with detailed proofs of this paper can be found in [22].

Structure of the paper. The paper is organized as follows: In Section 2 we recall the ccp
formalism. In Section 3 we introduce the standard notion of observational equivalence
(∼o) for ccp (from [26]), we then show its relation with the weak saturated barbed
bisimilarity (≈̇sb) (from [2]) for ccp with nondeterministic choice. We also prove that
≈̇sb is not a congruence for the full ccp. In Section 4 we introduce our new notion ≈f ,
and we prove that (i) ≈f coincides with ≈̇sb in the choice-free fragment of ccp; (ii) ≈f

is a congruence for ccp with summation; and (iii) ≈f coincides with the equivalence
obtained after closing ≈̇sb under any context. In Section 5 we present our conclusions
and future work.

2 Background

We begin this section by recalling the notion of constraint system. We then present the
concurrent constraint programming (ccp) formalism.

2.1 Constraint Systems

The ccp model is parametric in a constraint system (cs) specifying the structure and in-
terdependencies of the information that processes can ask or and add to a central shared
store. This information is represented as assertions traditionally called constraints.

Following [10,16] we regard a cs as a complete algebraic lattice in which the ordering
' is the reverse of an entailment relation: c ' dmeans d entails c, i.e., d contains “more
information” than c. The top element false represents inconsistency, the bottom element
true is the empty constraint, and the least upper bound + is the join of information.
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Definition 1 (Constraint Systems). A constraint system (cs) C is a complete algebraic
lattice (Con ,Con0,',+, true, false) where Con , the set of constraints, is a partially
ordered set w.r.t. ', Con0 is the subset of compact elements of Con , + is the lub
operation defined on all subsets, and true, false are the least and greatest elements of
Con , respectively.

Recall that C is a complete lattice if every subset of Con has a least upper bound in
Con . An element c ∈ Con is compact if for any directed subset D of Con , c '

⊔
D

implies c ' d for some d ∈ D. C is algebraic if each element c ∈ Con is the least
upper bound of the compact elements below c.

In order to model hiding of local variables and parameter passing, in [25,26] the
notion of constraint system is enriched with cylindrification operators and diagonal
elements, concepts borrowed from the theory of cylindric algebras [20].

Let us consider a (denumerable) set of variablesVar with typical elements x, y, z, . . .
and let us define ∃Var as the family of operators ∃Var = {∃x | x ∈ Var} (cylindric
operators) andDVar as the set DVar = {dxy | x, y ∈ Var} (diagonal elements).

A cylindric constraint system over a set of variablesVar is a constraint system whose
underlying support set Con ⊇ DVar is closed under the cylindric operators ∃Var and
quotiented by Axioms C1− C4, and whose ordering' satisfies Axioms C5− C7:

C1. ∃x∃yc = ∃y∃xc C2. dxx = true
C3. if z �= x, y then dxy = ∃z(dxz � dzy) C4. ∃x(c � ∃xd) = ∃xc � ∃xd
C5. ∃xc � c C6. if c � d then ∃xc � ∃xd
C7. if x �= y then c � dxy � ∃x(c � dxy)

where c and d indicate compact constraints, and ∃xc + d stands for (∃xc) + d. For our
purposes, it is enough to think the operator ∃x as existential quantifier and the constraint
dxy as the equality x = y.

Cylindrification and diagonal elements allow us to model the variable renaming of a
formula φ; in fact, by the aforementioned axioms, we have that the formula ∃x(dxy+φ)
can be depicted as the formula φ[y/x], i.e., the formula obtained from φ by replacing
all free occurrences of x by y.

We assume notions of free variable and of substitution that satisfy the following
conditions, where c[y/x] is the constraint obtained by substituting x by y in c and
fv(c) is the set of free variables of c: (1) if y /∈ fv(c) then (c[y/x])[x/y] = c; (2)
(c + d)[y/x] = c[y/x] + d[y/x]; (3) x /∈ fv(c[y/x]); (4) fv(c + d) = fv (c) ∪ fv (d).

We now illustrate a constraint system for linear-order arithmetic.

Example 1 (A Constraint System of Linear Order Arithmetic). Consider the following
syntax:

φ, ψ . . . := t = t′ | t > t′ | φ ∨ ψ | ¬φ
where the terms t, t′ can be elements of a set of variables Var , or constant symbols
0, 1, . . .. Assume an underlying first-order structure of linear-order arithmetic with the
obvious interpretation in the natural numbers ω of =, > and the constant symbols.

A variable assignment is a function μ : Var −→ ω. We use A to denote the set of
all assignments; P(X) to denote the powerset of a set X , ∅ the empty set and ∩ the
intersection of sets. We use M(φ) to denote the set of all assignments that satisfy the
formula φ, where the definition of satisfaction is as expected.



A Behavioral Congruence for Concurrent Constraint Programming 355

We can now introduce a constraint system as follows: the set of constraints is P(A),
and define c ' d iff c ⊇ d. The constraint false is ∅, while true is A. Given two
constraints c and d, c+d is the intersection c∩d. By abusing the notation, we will often
use a formula φ to denote the corresponding constraint, i.e., the set of all assignments
satisfying φ. E.g. we use x > 1 ' x > 5 to mean M(x > 1) ' M(x > 5). For this
constraint system one can show that e is a compact constraint (i.e., e is in Con0) iff e
is a co-finite set in A (i.e., iff the complement of e in A is a finite set). For example,
x > 10 ∧ y > 42 is a compact constraint for Var = {x, y}.

From this structure, let us now define the cylindric constraint system S as follows.
We say that an assignment μ′ is an x-variant of μ if ∀y �= x, μ(y) = μ′(y). Given
x ∈ Var and c ∈ P(A), the constraint ∃xc is the set of assignments μ such that exists
μ′ ∈ c that is an x-variant of μ. The diagonal element dxy is x = y. *+

Assumption 1. We shall assume that the constraint system is well-founded and, for
practical reasons, that its ordering' is decidable. Well-foundedness is needed for tech-
nical reasons in the definition of the labeled transition semantics in Section 3.2.

2.2 Syntax of CCP

Let C = (Con ,Con0,',+, true, false) be a constraint system. The ccp processes are
given by the following syntax:

P,Q, . . . ::= tell(c) |
∑
i∈I

ask (ci) → Pi | P ‖ Q | ∃xP | p(z)

where I is a finite set of indexes and c, ci ∈ Con0. We use Proc to denote the set of all
processes.

Finite processes. Intuitively, the tell process tell(c) adds c to the global store. The
addition is performed regardless the generation of inconsistent information. The process
P ‖ Q stands for the parallel execution of P and Q.

The guarded-choice
∑

i∈I ask (ci) → Pi where I is a finite set of indexes, repre-
sents a process that can nondeterministically choose one of the Pj (with j ∈ I) whose
corresponding guard constraint cj is entailed by the store. The chosen alternative, if any,
precludes the others. We shall often write ask (ci1) → Pi1 + . . .+ ask (cin) → Pin
if I = {i1, . . . , in}. If no ambiguity arises, we shall omit the “ ask(c) → ” when
c = true. The blind-choice process

∑
i∈I ask (true) → Pi, for example, can be

written
∑

i∈I Pi. We shall omit the “
∑

i∈I” when I is a singleton. We use stop as an
abbreviation of the empty summation

∑
i∈∅ Pi.

∃x is a hiding operator, namely it indicates that in ∃xP the variable x is local to P .
The occurrences of x in ∃xP are said to be bound. The bound variables of P , bv (P ),
are those with a bound occurrence in P , and its free variables, fv(P ), are those with an
unbound occurrence1.

1 Notice that we also defined fv(.) on constraints in the previous section.
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Infinite processes. To specify infinite behavior, ccp provides parametric process def-
initions. A process p(z) is said to be a procedure call with identifier p and actual
parameters z. We presuppose that for each procedure call p(z1 . . . zm) there exists a

unique procedure definition possibly recursive, of the form p(x1 . . . xm)
def
= P where

fv(P ) ⊆ {x1, . . . , xm}. Furthermore we require recursion to be guarded: I.e., each
procedure call within P must occur within an ask process. The behavior of p(z1 . . . zm)
is that of P [z1 . . . zm/x1 . . . xm], i.e., P with each xi replaced with zi (applying α-
conversion to avoid clashes). We shall use D to denote the set of all process definitions.

Remark 1 (Choice-free fragment of ccp). Henceforth, we use ccp\+ to refer to the frag-
ment of ccp without nondeterministic choice. More precisely ccp\+ processes are those
in which every occurrence of

∑
i∈I ask (ci) → Pi has its index set I of cardinality 0

or 1.

2.3 Reduction Semantics

A configuration is a pair 〈P, d〉 representing a state of a system; d is a constraint rep-
resenting the global store, and P is a process, i.e., a term of the syntax given above.
We use Conf with typical elements γ, γ′, . . . to denote the set of all configurations. We
will use Conf ccp\+ for the configurations whose processes are in the ccp\+ fragment.

The operational semantics of ccp is given by an unlabeled transition relation between
configurations: a transition γ −→ γ′ intuitively means that the configuration γ can
reduce to γ′. We call these kind of unlabeled transitions reductions and we use −→∗ to
denote the reflexive and transitive closure of −→.

Formally, the reduction semantics of ccp is given by the relation−→ defined in Table
1. Rules R1 and R2 are easily seen to realize the intuitions described in Section 2.2.
Rule R3 states that

∑
i∈I ask (ci) → Pi can evolve to Pj whenever the global store

d entails cj and j ∈ I .
Rule R4 is somewhat more involved, first we extend the syntax by introducing a

process ∃e
xP representing the evolution of a process of the form ∃xP , where e is the

local information (local store) produced during this evolution. The process ∃xP can be
seen as a particular case of ∃e

xP : it represents the situation in which the local store is
empty. Namely, ∃xP = ∃true

x P .
Intuitively, ∃e

xP behaves like P , except that the variable x possibly present in P
must be considered local, and that the information present in e has to be taken into
account. It is convenient to distinguish between the external and the internal points of
view. From the internal point of view, the variable x, possibly occurring in the global
store d, is hidden. This corresponds to the usual scoping rules: the x in d is global,
hence “covered” by the local x. Therefore, P has no access to the information on x in
d, and this is achieved by filtering d with ∃x. Furthermore, P can use the information
(which may also concern the local x) that has been produced locally and accumulated
in e. In conclusion, if the visible store at the external level is d, then the store that is
visible internally by P is e+ ∃xd. Now, if P is able to make a step, thus reducing to P ′

and transforming the local store into e′, what we see from the external point of view is
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Table 1. Reduction semantics for ccp (symmetric rule for R2 is omitted). D is the set of process
definitions.

R1 〈tell(c), d〉 −→ 〈stop, d � c〉 R2
〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉

R3
j ∈ I and cj � d

〈
∑

i∈I ask (ci) → Pi, d〉 −→ 〈Pj , d〉
R4

〈P, e � ∃xd〉 −→ 〈P ′, e′ � ∃xd〉
〈∃e

xP, d〉 −→ 〈∃e′
x P ′, d � ∃xe′〉

R5
〈P [z/x], d〉 −→ γ′

〈p(z), d〉 −→ γ′ where p(x)
def
= P is a process definition in D

that the process is transformed into ∃e′
x P

′, and that the information ∃xe present in the
global store is transformed into ∃xe′.2

2.4 Barbed Semantics

In [2], the authors introduced a barbed semantics for ccp. Barbed equivalences have
been introduced in [19] for CCS, and have become a classical way to define the seman-
tics of formalisms equipped with unlabeled reduction semantics. Intuitively, barbs are
basic observations (predicates) on the states of a system. In the case of ccp, barbs are
taken from the underlying set Con0 of the constraint system.

Definition 2 (Barbs). A configuration γ = 〈P, d〉 is said to satisfy the barb c, written
γ ↓c, iff c ∈ Con0 and c ' d. Similarly, γ satisfies a weak barb c, written γ ⇓c, iff there
exist γ′ s.t. γ −→∗ γ′ ↓c.

Example 2. Consider the constraint system from Example 1 and let Vars = {x}. Let
γ = 〈ask (x > 10) → tell(x > 42), x > 10〉. We have γ ↓x>5 since (x > 5) ' (x >
10) and γ ⇓x>42 since γ −→ 〈tell(x > 42), x > 10〉 −→ 〈stop, (x > 42)〉 ↓x>42.

*+

In this context, the equivalence proposed is the saturated bisimilarity [8,6]. Intu-
itively, in order for two states to be saturated bisimilar, then (i) they should expose the
same barbs, (ii) whenever one of them moves then the other should reply and arrive at
an equivalent state (i.e. follow the bisimulation game), (iii) they should be equivalent
under all the possible contexts of the language.

Using this idea, in [2], the authors propose a saturated bisimilarity for ccp where
condition (iii) requires the bisimulations to be upward closed instead of closing under
any process context. A process context C is a term with a single hole • such that if we
replace •with a processP , we obtain a process termC[P ]. For example, for the parallel
context C = • ‖ R we obtain C[P ] = P ‖ R.

2 For more details about the operational semantics we refer the reader to [2].
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Definition 3 (Saturated Barbed Bisimilarity). A saturated barbed bisimulation is a
symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉
and γ2 = 〈Q, d〉 implies that:

(i) if γ1 ↓e then γ2 ↓e,
(ii) if γ1 −→ γ′1 then there exists γ′2 s.t. γ2 −→ γ′2 and (γ′1, γ

′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, c + a〉, 〈Q, d + a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar (γ1 ∼̇sb γ2) if there is a saturated
barbed bisimulationR s.t. (γ1, γ2) ∈ R. We write P ∼̇sbQ iff 〈P, true〉∼̇sb〈Q, true〉.

We shall prove that the closure condition (iii) is enough to make ≈̇sb a congruence
in ccp\+. This means that P ≈̇sbQ implies C[P ] ≈̇sb C[Q] for every process context.
However, this is not the case for ccp with nondeterministic choice as we shall demon-
strate later on.

Weak saturated barbed bisimilarity (≈̇sb) is obtained from Definition 3 by replacing
the strong barbs in condition (i) for its weak version (⇓) and the transitions in condition
(ii) for the reflexive and transitive closure of the transition relation (−→∗).

Definition 4 (Weak Saturated Barbed Bisimilarity). A weak saturated barbed bisim-
ulation is a symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R with
γ1 = 〈P, c〉 and γ2 = 〈Q, d〉 implies that:

(i) if γ1 ⇓e then γ2 ⇓e,
(ii) if γ1 −→∗ γ′1 then there exists γ′2 s.t. γ2 −→∗ γ′2 and (γ′1, γ′2) ∈ R,

(iii) for every a ∈ Con0, (〈P, c + a〉, 〈Q, d + a〉) ∈ R.

We say that γ1 and γ2 are weak saturated barbed bisimilar (γ1 ≈̇sb γ2) if there exists
a weak saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We shall write P ≈̇sbQ iff
〈P, true〉≈̇sb〈Q, true〉.

We now illustrate ∼̇sb and ≈̇sb with the following two examples.

Example 3. Consider the constraint system from Example 1 and let Vars = {x}. Take
P = ask (x > 5) → stop and Q = ask (x > 7) → stop. One can check that
P �∼̇sb Q since 〈P, x > 5〉 −→, while 〈Q, x > 5〉 �−→. Then consider 〈P+Q, true〉 and
observe that 〈P + Q, true〉∼̇sb〈P, true〉. Indeed, for all constraints e, s.t. x > 5 ' e,
both the configurations evolve into 〈stop, e〉, while for all e s.t. x > 5 �' e, both
configurations cannot proceed. Since x > 5 ' x > 7, the behavior of Q is somehow
absorbed by the behavior of P . *+
Example 4. Take P and Q as in Example 3. One can check that P ≈̇sbQ. First notice
that 〈P, true〉 �−→ and also 〈Q, true〉 �−→. Now note that for all e it is the case that
both configurations evolve to a γ where γ ⇓e. Intuitively, none of the configurations
adds information to the store and, since ≈̇sb does not care about the silent transitions,
then P and Q should be weakly bisimilar. *+

Finally, notice that in ccp\+ configurations are confluent in the following sense.

Proposition 1 (Confluence [26]). Let γ ∈ Conf ccp\+. If γ −→∗ γ1 and γ −→∗ γ2
then there exists γ′ such that γ1 −→∗ γ′ and γ2 −→∗ γ′.

The proposition above will be a cornerstone for the results we shall obtain in ccp\+.
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3 Congruence Issues

A typical question in the realm of process calculi, and concurrency in general, is whether
a given process equivalence is a congruence. In other words, whether the fact that P and
Q are equivalent implies that they are still equivalent in any context. More precisely, a
given equivalence �� is said to be a congruence if P �� Q implies C[P ] �� C[Q]
for every process context C3. The congruence issue is fundamental for algebraic as
well as practical reasons; one may not be content with having P �� Q equivalent but
R ‖ P ��� R ‖ Q. Nevertheless, some of the representative equivalences in concur-
rency are not congruences. For example, in CCS [17], trace equivalence and strong
bisimilarity are congruences but weak bisimilarity is not because it is not preserved by
summation contexts. So given a notion of equivalence one may wonder in what contexts
the equivalence is preserved. For instance, the problem with weak bisimilarity can be
avoided by using guarded-summation (see [18]).

We shall see that ≈̇sb is a congruence for ccp\+. However, this is not the case in the
presence of nondeterministic choice. Moreover, unlike CCS, the problem arises even in
the presence of guarded summation/choice. In fact, our counterexample reveals that the
problem is intrinsic to ccp.

3.1 Observational Equivalence

In this section we shall introduce the standard notion of observational equivalence (∼o)
[26] for ccp as well as its relation with ≈̇sb.

The notion of fairness is central to the definition of observational equivalence for
ccp. We introduce this notion following [12]. Any derivation of a transition involves an
application of R1 or R3. We say that P is active in a transition t = γ −→ γ′ if there
exists a derivation of t where rule R1 or R3 is used to produce a transition of the form
〈P, d〉 −→ γ′′. Moreover, we say that P is enabled in γ if there exists γ′ such that P
is active in γ −→ γ′. A computation γ0 −→ γ1 −→ γ2 −→ . . . is said to be fair if
for each process enabled in some γi there exists j ≥ i such that the process is active in
γj −→ γj+1.

Note that a finite fair computation is guaranteed to be maximal, namely no outgoing
transitions are possible from its last configuration.

The standard notion of observables for ccp are the results computed by a process for
a given initial store. The result of a computation is defined as the least upper bound of
all the stores occurring in the computation, which, due to the monotonic properties of
ccp, form an increasing chain. More formally:

Definition 5 (Result). Given a finite or infinite computation ξ of the form:

ξ = 〈Q0, d0〉 −→ 〈Q1, d1〉 −→ 〈Q2, d2〉 −→ . . .

The result of ξ, denoted by Result(ξ), is the constraint
⊔

i di.

3 Recall that the expression C[P ] denotes the process that results from replacing in C, the hole
• with P . For example C = R ‖ • then C[P ] = R ‖ P .
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Note that for a finite computation the result coincides with the store of the last con-
figuration. Now since ccp\+ is confluent (Proposition 1), the following theorem from
[26] states that all the fair computations of a configuration have the same result.

Proposition 2 ([26]). Let γ be ccp\+ configuration and let ξ1 and ξ2 be two computa-
tions of γ. If ξ1 and ξ2 are fair, then Result(ξ1) = Result(ξ2).

Before introducing the notion of observational equivalence we need some notation.
Below we define the set of possible computations of a given configuration.

Definition 6 (Set of Computations). The set of computations starting from γ, denoted
Comp(γ), is defined as:

Comp(γ) = {ξ | ξ = γ −→ γ′ −→ γ′′ −→ . . .}

Now we introduce the notion of observables. Intuitively, the set of observables of γ
is the set of results of the fair computations starting from γ.

Definition 7 (Observables). Let O : Proc → Con0 → 2Con be given by:

O(P )(d) = {e | ξ ∈ Comp(〈P, d〉), ξ is fair and Result(ξ) = e}.

Using these elements we define the notion of observational equivalence. Two con-
figurations are deemed equivalent if they have the same set observables for any given
store.

Definition 8 (Observational Equivalence). We say that P and Q are observational
equivalent, written P ∼o Q, iff O(P ) = O(Q).

Notice that in the case of ccp\+, as defined in [26], the set of observables is a single-
ton because of Proposition 2.

Remark 2. Let 〈P, d〉 ∈ Conf ccp\+. Note that O : Proc → Con0 → Con because of
Proposition 2 and it is defined asO(P )(d) = Result(ξ) where ξ is any fair computation
of 〈P, d〉.

In [2] it was shown that, in ccp\+, weak saturated barbed bisimilarity and observation
equivalence coincide. Recall that P ≈̇sb Q means 〈P, true〉 ≈̇sb 〈Q, true〉.

Proposition 3 ([2]). Let P andQ be ccp\+ processes. Then P ∼o Q iff P ≈̇sb Q.

Nevertheless, the above theorem does not hold for ccpwith nondeterministic choice.
We can show this by using a counter-example reminiscent from the standard one for
CCS. Let P = (ask (b) → tell(c)) + (ask (b) → tell(d)) and Q = ask (b) →
((ask (true) → tell(c)) + (ask (true) → tell(d))). One can verify that P ∼oQ
but P � ≈̇sbQ. However, the (⇐) direction of the theorem does hold as we show next.

Theorem 1. If P ≈̇sb Q then P ∼o Q.
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Table 2. Labeled semantics for ccp (symmetric rule for LR2 is omitted)

LR1 〈tell(c), d〉 true−→ 〈stop, d � c〉 LR2
〈P, d〉 α−→ 〈P ′, d′〉

〈P ‖ Q, d〉 α−→ 〈P ′ ‖ Q, d′〉

LR3
j ∈ I and α ∈ min{a ∈ Con0 | cj � d � a}
〈
∑

i∈I ask (ci) → Pi, d〉 α−→ 〈Pj , d � α〉

LR4
〈P [z/x], e[z/x] � d〉 α−→ 〈P ′, e′ � d � α〉

〈∃e
xP, d〉

α−→ 〈∃e′[x/z]
x P ′[x/z], ∃x(e′[x/z]) � d � α〉

with x �∈ fv(e′), z �∈ fv(P ) ∪ fv(e � d � α)

LR5
〈P [z/x], d〉 α−→ γ′

〈p(z), d〉 α−→ γ′ where p(x)
def
= P is a process definition in D

3.2 Congruence

We begin this section by showing that weak bisimilarity is a congruence in a restricted
sense: It is preserved by all the contexts from the choice-free fragment. For this purpose
it is convenient to recall the labeled semantics of ccp as well as the (labeled) weak
bisimilarity introduced in [2].

Labeled Semantics. In a labeled transition of the form

〈P, d〉 α−→ 〈P ′, d′〉

the label α ∈ Con0 represents a minimal information (from the environment) that needs
to be added to the store d to reduce from 〈P, d〉 to 〈P ′, d′〉, i.e., 〈P, d+α〉 −→ 〈P ′, d′〉.
As a consequence, the transitions labeled with the constraint true are in one to one
correspondence with the reductions defined in the previous section. For this reason,

hereafter we will sometimes write −→ to mean
true−→.

The LTS (Conf ,Con0,−→) is defined by the rules in Table 2. The rule LR3, for
example, says that 〈

∑
i∈I ask (ci) → Pi, d〉 can evolve to 〈Pj , d+α〉 if j ∈ I and the

environment provides a minimal constraint α that added to the store d entails the guard
cj , i.e., α ∈ min{a ∈ Con0 | cj ' d + a}. Notice that Assumption 1 guarantees the
existence of α. The rule LR4 follows the same approach as R4, however it uses variable
substitution instead of hiding with the existential operator.4 The other rules are easily
seen to realize the intuition given in Section 2.2.

We can now introduce the notion of weak bisimilarity (≈̇) from [2]. In [2] it is shown
that ≈̇ coincides with ≈̇sb and, by exploiting the labeled semantics, avoids the upward
closure from condition (iii) in ≈̇sb.

4 See [2] for a detailed explanation of the rule LR4.
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Definition 9 (Weak Bisimilarity). A weak bisimulation is a symmetric relation R on
configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and γ2 = 〈Q, d〉 :

(i) if γ1 ↓e then γ2 ⇓e,
(ii) if γ1

α−→ γ′1 then ∃γ′2 s.t. 〈Q, d + α〉 −→∗ γ′2 and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are weakly bisimilar, written γ1 ≈̇ γ2, if there exists a weak
bisimulationR such that (γ1, γ2) ∈ R. We write P ≈̇ Q iff 〈P, true〉≈̇〈Q, true〉.

To illustrate this definition consider the following example.

Example 5. Let γ1 = 〈tell(true), true〉 and γ2 = 〈ask (c) → tell(d), true〉. We
can show that γ1 ≈̇ γ2 when d ' c. Intuitively, this corresponds to the fact that the
implication c ⇒ d is equivalent to true when c already entails d. The LTSs of γ1 and
γ2 are the following: γ1 −→ 〈stop, true〉 and γ2

c−→ 〈tell(d), c〉 −→ 〈stop, c〉. It is
now easy to see that the symmetric closure of the relation

R = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉), (〈stop, c〉, 〈stop, c〉)}

is a weak bisimulation as in Definition 9. *+

The following result from [2] states that weak bisimilarity coincides with weak sat-
urated barbed bisimilarity (Definition 4).

Proposition 4 ([2]). ≈̇sb = ≈̇.

We can now prove that ≈̇sb is a congruence in ccp\+.

Theorem 2. LetP andQ be ccp\+ processes and assume thatP ≈̇sbQ. Then for every
process context C[•] in ccp\+ we have C[P ] ≈̇sb C[Q].

Notice that this result implies that observational equivalence (∼o) is a congruence.
Unfortunately the theorem above does not hold for ccp with nondeterministic choice,
as shown next.

Theorem 3. There exists P ′, Q,R in ccp s.t. (a) P ′ ≈̇sb Q but (b) P ′ ‖ R �≈̇sb Q ‖ R.

Proof. To prove this claim we let P = (ask (true) → tell(c)) + (ask (true) →
tell(d)), P ′ = P ‖ tell(e) and Q = (ask (true) → tell(c + e)) + (ask (true) →
tell(d + e)) with c �' d, c �' e, d �' c, d �' e, e �' c, e �' d.

For (a) we can show that 〈P ′, true〉≈̇sb 〈P, e〉 ≈̇sb 〈Q, true〉. The first equation is
trivial. For the second we define a relation on configurationsR. The set of pairs in R
are those linked in Figure 1. It can easily be verified that (the symmetric closure of) R
is a weak bisimulation (see Definition 9). The point (a) then follows from Proposition 4.

For proving the part (b) of the above claim, we let R = (ask (e) → tell(α)) +
(ask (e) → tell(β)). We shall prove that no weak bisimulation can contain the pair
(〈P ‖ R, e〉, 〈Q ‖ R, true〉). The results then follows from Proposition 4 and the fact
that 〈P ′ ‖ R, true〉≈̇sb 〈P ‖ R, e〉 which can be easily verified.

Consequently, let us assume that 〈P ‖ R, e〉 −→ 〈P ‖ tell(α), e〉 by executing the
left summand of R. By condition (ii) of weak bisimulation 〈Q ‖ R, true〉 must match
the move. We have two cases:
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〈P, e〉

〈tell(c), e〉 〈tell(d), e〉

〈stop, c � e〉 〈stop, d � e〉

〈Q, true〉

〈tell(c � e), true〉 〈tell(d � e), true〉

〈stop, c � e〉 〈stop, d � e〉

Fig. 1. Let P = (ask (true) → tell(c))+(ask (true) → tell(d)) and Q = (ask (true) →
tell(c � e)) + (ask (true) → tell(d � e)). The linked configurations are weakly bisimilar.

– 〈Q ‖ R, true〉 does not make a transition. And now let us suppose that 〈Q ‖
R, true〉 e−→ 〈Q ‖ tell(β), true〉. This means that 〈P ‖ tell(α), e〉 now has to
match this transition. However 〈Q ‖ tell(β), true〉 −→ 〈Q, β〉 ⇓β while 〈P ‖
tell(α), e〉 �⇓β . Thus we cannot satisfy condition (i) of weak bisimulation.

– 〈Q ‖ R, true〉 makes a transition. To match the move it should also execute the
left summand of R. However, since e is not the store of 〈Q ‖ R, true〉, Q must be
executed first. and this means executing of one of summands in Q to be able to add
e to the store. If the left summand of Q is executed, we get 〈Q ‖ R, true〉 −→∗

〈tell(α), c + e〉. In this case we could then take the move 〈P ‖ tell(α), e〉 −→
〈tell(d) ‖ tell(α), e〉. But then 〈tell(α), c + e〉 ⇓c and notice that 〈tell(d) ‖
tell(α), e〉 �⇓c, thus we cannot satisfy condition (i) of weak bisimulation. The case
where the right summand of Q is executed is symmetric.

4 Weak Full Bisimilarity

In the previous section we showed that ≈̇ (and ≈̇sb) for the full ccp is not entirely sat-
isfactory since it is not a congruence. By building on ≈̇, in this section we propose a
new equivalence which we call (weak) full bisimilarity, written ≈f . This new equiva-
lence does not quantify over infinitely many process contexts in its definition yet we
will show that is a congruence. Furthermore, we will also prove that adequacy of≈f by
showing that it is the largest congruence included in ≈̇sb.

4.1 More Than Weak Barbs

The key to figure out the element missing in the definition of ≈̇sb (Definition 4) lies in
Figure 1. If we look at the configurations in the figure we can see that while 〈P, e〉 is able
to produce a barb e without choosing between c and d, 〈Q, true〉 is not. The definition
of ≈̇sb tries to capture this in the condition (i), namely by checking that 〈P, e〉 ⇓e then
requiring that 〈Q, true〉 ⇓e. However, this condition does not capture the fact that in
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order to produce e, 〈Q, true〉 may have to evolve into a configuration which can no
longer produce some of the weak barbs 〈Q, true〉 can produce. 5

Using this insight, we shall define a new notion of weak bisimilarity that changes
condition (i) in ≈̇ (Definition 9) in order to deal with the problem present in Figure
1. More concretely, condition (i) requires that whenever 〈P, c〉 ↓α then 〈Q, d〉 ⇓α,
〈Q, d〉 −→∗ 〈Q′, d′〉 ↓α without imposing any condition between 〈P, c〉 and 〈Q′, d′〉.
This makes it possible that 〈P, c〉 ↓β and 〈Q′, d′〉 does not: indeed, it might be the case
that that 〈Q, d〉 −→∗ 〈Q′′, d′′〉 ↓β for some other branch 〈Q′′, d′′〉. Hence 〈P, c〉 and
〈Q, d〉 would pass condition (i) as in Figure 1.

Weak full bisimilarity deals with this problem by adding a condition between 〈P, c〉
and 〈Q′, d′〉, namely 〈Q, d〉 ⇓c has to hold by reaching a bisimilar configuration: 〈P, c〉
has to be weakly bisimilar 〈Q′, d′〉.

Definition 10 (Weak Full Bisimilarity). A weak full bisimulation is a symmetric rela-
tionR on configurations s.t. whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and γ2 = 〈Q, d〉
implies that:

(i) there is γ′2 = 〈Q′, d′〉 such that 〈Q, d〉 −→∗ γ′2 where c ' d′ and (γ1, γ
′
2) ∈ R,

(ii) if γ1
α−→ γ′1 then there exists γ′2 = 〈Q′, d′〉 s.t. 〈Q, d + α〉 −→∗ γ′2 where c′ ' d′

and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are weak fully bisimilar (γ1 ≈f γ2) if there exists a weak full
bisimulationR s.t. (γ1, γ2) ∈ R. We write P ≈f Q iff 〈P, true〉 ≈f 〈Q, true〉.

In the definition above, the fist condition states that 〈Q, d〉 has to produce c by reach-
ing a (weakly) bisimilar configuration. The second condition is the bisimulation game
from ≈̇ (Definition 9) plus a condition requiring the store c′ to be matched too.

To better explain this notion consider again the counterexample to ≈̇ from Figure 1.

Example 6. Let 〈P, e〉, 〈Q, true〉 as in Figure 1. Let us build a relationR that is a weak
full bisimulation where (〈P, e〉, 〈Q, true〉) ∈ R. By condition (i) in Definition 10 we
need a γ′2 = 〈Q′, d′〉 s.t. 〈Q, d〉 −→∗ γ′2 and e ' d′ and (γ1, γ

′
2) ∈ R. We have two

optionsQ′ = stop and d′ = c+ e or d′ = d+ e.6 However, if we take (〈P, e〉, 〈stop, c+
e〉) ∈ R we have that 〈P, e〉 ⇓d while 〈stop, c + e〉 �⇓d. A similar argument works
for 〈stop, d + e〉. Therefore, no weak full bisimulation may contain (〈P, e〉, 〈Q, true〉).
Hence 〈P, e〉 �≈f 〈Q, true〉. *+

4.2 Congruence Issues

We shall now prove that full bisimilarity is a congruence w.r.t all possible contexts in
ccp. Namely, whenever γ and γ′ are in ≈f then they can be replaced for one another in
any context.

Theorem 4. Let P and Q be ccp processes and assume that P ≈f Q. Then for every
process context C[•] we have that C[P ] ≈f C[Q].

5 In the case of ccp\+ this is not a concern given that in this fragment weak barbs are always
preserved during evolution.

6 The cases for Q′ = tell(c � e) or Q′ = tell(d � e) with d′ = true are equivalent.
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Proof. Here we consider the parallel case; the other cases are trivial or easier to verify.
We shall prove that R = {(〈P ‖ R, c〉, 〈Q ‖ R, d〉) | 〈P, c〉 ≈f 〈Q, d〉} is a weak full
bisimulation as in Definition 10. To prove (i), since 〈P, c〉 ≈f 〈Q, d〉 we have that
〈Q, d〉 −→∗ 〈Q′, d′〉 where c ' d′ and 〈Q′, d′〉≈̇〈P, c〉 (1). Therefore by R2 we get
〈Q ‖ R, d〉 −→∗ 〈Q′ ‖ R, d′〉 and by (1) we can conclude that (〈Q′ ‖ R, d′〉, 〈P ‖
R, c〉) ∈ R. To prove (ii) let us assume that 〈P ‖ R, c〉 α−→ 〈P1, c1〉. We proceed
by induction (on the depth) of the inference of 〈P ‖ R, c〉 α−→ 〈P1, c′〉. Using LR2
(left), then P1 = (P ′ ‖ R) with 〈P, c〉 α−→ 〈P ′, c′〉 by a shorter inference. Since
〈P, c〉 ≈f 〈Q, d〉 then 〈Q, d + α〉 −→∗ 〈Q′, d′〉 where 〈P ′, c′〉 ≈f 〈Q′, d′〉 and c′ ' d′
(3). By R2 we have 〈Q ‖ R, d + α〉 −→∗ 〈Q′ ‖ R, d′〉 and from (3) we can conclude
that (〈P ′ ‖ R, c〉, 〈Q′ ‖ R, d′〉) ∈ R. Using LR2 (right), then P1 = (P ‖ R′) and
c′ = (c+α+ e) with 〈R, c〉 α−→ 〈R′, c′〉 by a shorter inference. From (1) we know that
〈Q, d〉 −→∗ 〈Q′, d′〉 where c ' d′ and 〈Q′, d′〉≈̇〈P, c〉. Hence 〈Q ‖ R, d + α〉 −→∗

〈Q′ ‖ R, d′+α〉. Now since c ' d′ then by monotonicity 〈R, d′+α〉 −→ 〈R, d′′〉 where
d′′ = d′ + α + e. Therefore by R2 we get 〈Q ‖ R, d + α〉 −→∗ 〈Q′ ‖ R′, d′′〉 and from
(1) and monotonicity 〈P, c′〉 = 〈P, c + α + e〉≈̇〈Q′, d′ + α + e〉 = 〈Q′, d′′〉. Using this
we can conclude that (〈P ‖ R′, c′〉, 〈Q′ ‖ R′, d′′〉) ∈ R.

Note that≈f is more distinguishing than ≈̇ and the result above shows that this level
of granularity is needed to obtain a weak bisimilarity that is a congruence for ccp.

4.3 Relation with Observational Equivalence

In section 3.1 we described the relation between weak (saturated) bisimilarity (≈̇sb,
Definition 4) and the standard observational equivalence (∼o, Definition 8) for ccp.
Concretely, we know that, in ccp\+, ≈̇sb coincides with ∼o, while for the full ccp ≈̇sb

implies ∼o but the converse does not hold. In this section we shall see the relation
between weak full bisimilarity (≈f , Definition 10) and ∼o. We shall prove that ≈f

coincides with ∼o in ccp\+ by proving that ≈f corresponds to ≈̇sb in the choice-free
fragment of ccp. Furthermore, for the full language of ccp, we shall prove that ≈f

implies ∼o again by showing that ≈f implies ≈̇sb in ccp.
Let us start by showing that ≈f and ≈̇ coincide in ccp\+. This theorem strongly

relies on the confluent nature of ccp\+ (Proposition 1).

Theorem 5. Let γ, γ′ ∈ Conf ccp\+, γ ≈f γ
′ iff γ ≈̇ γ′.

The corollary below follows from Proposition 3 and 4, and Theorem 5.

Corollary 1. Let P and Q be ccp\+ processes. Then P ≈f Q iff P ∼o Q.

We shall now prove that ≈f implies ∼o for the full ccp. In order to do this we first
prove that ≈f implies ≈̇sb.

Theorem 6. If γ ≈f γ
′ then γ ≈̇ γ′.

The corollary below follows from Theorem 1 and 6, and Proposition 4.

Corollary 2. If P ≈f Q then P ∼o Q.

The above statement allows us to use the co-inductive techniques of full bisimulation
to prove observational equivalence.
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Table 3. Summary of the contributions. Recall that ≈̇sb stands for the weak saturated barbed
bisimilarity (Definition 4), ∼o is the standard observational equivalence (Definition 8), ≈̇ repre-
sents weak bisimilarity (Definition 9), ≈f is the notion of weak full bisimilarity proposed in this
paper (Definition 10) and ∼̇= stands for the behavioral congruence (Definition 11). C[•]\+ stands
for the contexts where the summation operator does not occur, while C[•] represents any possi-
ble context, hence the summation operator may occur in C[•]. For this reason we put N/A (Not
Applicable) in the row corresponding to ccp\+. Notice that the correspondence ≈̇ = ≈̇sb = ∼o

comes from [2].

Language Relation among equivalences
Congruence w.r.t.

C[•] C[•]\+

ccp\+ ∼̇= =≈f= ≈̇ = ≈̇sb = ∼o N/A ∼̇=,≈f , ≈̇, ≈̇sb,∼o

ccp ∼̇= =≈f⊆ ≈̇ = ≈̇sb ⊆ ∼o
∼̇=,≈f

∼̇=,≈f , ≈̇, ≈̇sb

4.4 Behavioral Congruence

Finally, we prove that ≈f is the largest congruence included in ≈̇ by showing that it
coincides with the congruence ∼̇= defined next.

Definition 11 (Behavioral Congruence). We say that P is behaviorally congruent to
Q, denoted P ∼̇=Q, iff for every process context C[•] we have C[P ] ≈̇ C[Q]. We use
〈P, e〉∼̇=〈Q, d〉 to denote (P ‖ tell(e))∼̇=(Q ‖ tell(d)).

We now state that ≈f coincides with ∼̇= for ccp with nondeterministic choice.

Theorem 7. 〈P, e〉 ≈f 〈Q, d〉 iff 〈P, e〉∼̇=〈Q, d〉.

5 Conclusions and Related Work

In this paper we showed that the weak saturated barbed bisimilarity (≈̇sb) proposed in
[2] is not a congruence for ccp. Nevertheless, we also showed that the upward closure,
i.e. condition (iii), is enough to make ≈̇sb a congruence in the choice-free fragment
(ccp\+). We then proposed a new notion of bisimilarity, called weak full bisimilarity
(≈f ), and we proved that it is a congruence for the full ccp despite the fact that ≈f

does not require any quantification over a (potentially) infinite number of contexts in its
definition. Furthermore, we showed that ≈f implies the standard observational equiva-
lence (∼o) for ccp from [26]. Finally we demonstrated that ≈f is not too restrictive by
showing that it is the largest congruence included in ≈̇sb. See Table 3 for a summary
of the contributions of this paper. This is the first weak behavioral ccp congruence for
ccp with nondeterministic choice that does not require implicit quantification over all
contexts.

Most of the related work has already been discussed in the introduction (Section 1).
There has been other attempts for finding a good notion of bisimilarity for ccp such as
[25] and [16]. In [25] the authors propose a ccp bisimilarity that requires processes to
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match the exact label in the bisimulation game, a condition which is standard in process
calculi realm, however this notion is known to be too distinguishing for ccp as shown in
[2]. As for [16], their notion of (strong) bisimilarity resembles to the saturated barbed
bisimilarity from [2] and, although they do not give a notion of weak bisimilarity, the
results in this paper can be related directly.

We plan to adapt the algorithms from [3,23] to verify ≈f . We conjecture that the
decision procedure for ≈̇sb can be exploited to check ≈f by modifying the way the
(weak) barbs are considered. Furthermore, in this paper we obtained a notion of weak
bisimilarity that is a congruence even if we do not consider a label for observing the
tell actions. Since ccp is an asynchronous language, not observing the tell follows the
philosophy of considering as labels the minimal information needed to proceed, namely
a tell process does not need a stimulus from the environment to post its information in
the store. Following the same reasoning, we plan to investigate whether it is possible
to define a labeled semantics for the asynchronous π-calculus (Aπ) [18,24] with a τ
label for the output transitions, instead of a co-action, and we shall check if a notion of
bisimilarity similar to ours would also be a congruence.
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Abstract. The ioco relation has become a standard in model-based
conformance testing. The co-ioco conformance relation is an extension
of this relation to concurrent systems specified with true-concurrency
models. This relation assumes a global control and observation of the
system under test, which is not usually realistic in the case of physically
distributed systems. Such systems can be partially observed at each of
their points of control and observation by the sequences of inputs and
outputs exchanged with their environment. Unfortunately, in general,
global observation cannot be reconstructed from local ones, so global
conformance cannot be decided with local tests. We propose to append
time stamps to the observable actions of the system under test in order
to regain global conformance from local testing.

1 Introduction

The aim of testing is to execute a software system, the implementation, on a set
of input data selected so as to find discrepancies between actual behavior and
intended behavior described by the specification. Model-based testing requires a
behavioral description of the system under test. One of the most popular for-
malisms studied in conformance testing is that of input output labeled transition
systems (IOLTS). In this framework, the correctness (or conformance) relation
the system under test (SUT) and its specification must verify is formalized by
the ioco relation [1]. This relation has become a standard, and it is used as a
basis in several testing theories for extended state-based models: restrictive tran-
sition systems [2, 3], symbolic transition systems [4, 5], timed automata [6, 7],
multi-port finite state machines [8].

Model-based testing of concurrent systems has been studied in the past
[9–11], but mostly in the context of interleaving, or trace, semantics, which
is known to suffer from the state space explosion problem. Concurrent systems
are naturally modeled as a network of finite automata, a formal class of models
that can be captured equivalently by safe Petri nets. Partial order semantics of
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Fig. 1. The global and distributed testing architectures

a Petri net is given by its unfolding [12, 13]. Test case generation for concurrent
systems based on unfoldings has been studied in [14, 15]. In the same direction,
we proposed an extension of the ioco conformance relation to concurrent sys-
tems, called co-ioco, using both interleaving and partial order semantics [16].
We developped a full testing framework for co-ioco [17], but in this work, con-
currency is only interpreted as independence between actions: actions specified
as independent cannot be implemented by interleavings. We introduced a new
semantics for unfoldings [18], allowing some concurrency to be implemented by
interleavings, while forcing other concurrency to be preserved. The kind of con-
currency we consider in this article arises from the distribution of the system,
for this reason we restrict to partial order semantics only.

Our previous work [16–18] assume a global tester which controls and observes
the whole system (see Fig. 1.a). If the system is distributed, the tester interacts
with every component, but the observation of such interaction is global. When
global observation of the system cannot be achieved, the testing activity needs
to be distributed. In a distributed testing environment (see Fig. 1.b), the testers
stimulate the implementation by sending messages on points of control and ob-
servation (PCOs) and partially observe the reactions of the implementation on
these same PCOs. It is known that, in general, global traces cannot be recon-
structed from local observations (see for example [19]). This reduces the ability
to distinguish different systems. There are three mainly investigated solutions
to overcome this problem: (i) the conformance relation needs to be weaken con-
sidering partial observation [8, 20]; (ii) testers are allowed to communicate to
coordinate the testing activity [21]; (iii) stronger assumptions about the imple-
mentations are needed. In this paper, we follow the third approach and assume
that each component has a local clock.

Related Work. According to these three directions, the following solutions have
been proposed for testing global conformance in distributed testing architectures.

(i) Hierons et al. [8] argue that when the SUT is to be used in a context
where the separate testers at the PCOs do not directly communicate with one
another, the requirements placed on the SUT do not correspond to traditional
implementation relations. In fact, testing the SUT using a method based on a
standard implementation relation, such as ioco, may return an incorrect verdict.
The authors of [8] consider different scenarios, and a dedicated implementation
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relation for each of them. In the first scenario, there is a tester at each PCO,
and these testers are pairwise independent. In this scenario, it is sufficient that
the local behavior observed by a tester is consistent with some global behavior
in the specification: this is captured by the p-dioco conformance relation. In
the second scenario, a tester may receive information from other testers, and the
local behaviors observed at different PCOs could be combined. Consequently,
a stronger implementation relation, called dioco, is proposed. They show that
ioco and dioco coincide when the system is composed of a single component,
but that dioco is weaker than ioco when there are several components. Similar
to this, Longuet [20] studies different ways of globally and locally testing a
distributed system specified with Message Sequence Charts, by defining global
and local conformance relations. Moreover, conditions under which local testing
is equivalent to global testing are established under trace semantics.

(ii) Jard et al. [21] propose a method for constructing, given a global tester, a
set of testers (one for each PCO) such that global conformance can be achieved
by these testers. However, they assume that testers can communicate with each
other in order to coordinate the testing activity. In addition, they consider the
interaction between testers and the SUT as asynchronous.

(iii) Bhateja and Mukund [22] propose an approach where they assume each
component has a local clock and they append tags to the messages generated
by the SUT. These enriched behaviors are then compared against a tagged ver-
sion of the specification. Hierons et al. [23] make the same assumption about
local clocks. If the clocks agree exactly then the sequence of observations can be
reconstructed. In practice the local clocks will not agree exactly, but some as-
sumptions regarding how they can differ can be made. They explore several such
assumptions and derive corresponding implementation relations. In this article,
we also assume local clocks, but we use partial order semantics.

Contribution. The aim of this paper is to propose a formal framework for the dis-
tributed testing of concurrent systems from network of automata specifications,
without relying on communications between testers. We show that some, but
not all, situations leading to non global conformance w.r.t co-ioco can be de-
tected by local testers without any further information of the other components;
moreover we prove that, when vector clocks [24, 25] are used, the information
held by each component suffices to reconstruct the global trace of an execution
from the partial observations of it at each PCO, and that global conformance
can thus be decided by distributed testers.

The paper is organized as follows. Section 2 recalls basic notions about net-
work of automata and Petri nets, while Section 3 introduces their partial order
semantics. Section 4 introduces the testing hypotheses and our co-ioco con-
formance relation. Finally, in Section 5, we distribute the testing architecture
and show how global conformance can be achieved locally using time stamped
traces.
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Fig. 2. Network of automata composed of 3 components

2 Model of the System

A sound software engineering rule for building complex systems is to divide the
whole system in smaller and simpler components, each solving a specific task.
This means that, in general, complex systems are actually collections of simpler
components running in parallel. We use automata to model local behaviors, while
global behaviors are modeled by networks of automata. We show that networks
of automata are captured equivalently by Petri nets where explicit representation
of concurrency avoids the state space explosion produced by interleavings.

Network of Automata. We consider a distributed system composed of n com-
ponents that communicate with each other synchronizing on communication
actions. The local model of a component is defined as a deterministic finite au-
tomaton (Q,Σ,Δ, q0), where Q is a finite set of states, Σ is a finite set of actions,
Δ : Q × Σ → Q is the transition function and q0 ∈ Q is the initial state. We
distinguish between the controllable actions ΣIn (inputs proposed by the envi-
ronment), the observable ones ΣOut (outputs produced by the system), and com-
munication actions ΣC (invisible for the environment), i.e. Σ = ΣIn&ΣOut&ΣC .
Several components can communicate over the same communication action, but
we assume that observable actions from different components are disjoint,1 i.e.
components only share communication actions.

Example 1. Fig. 2 shows a network of automata with three components A1, A2

and A3. Input and output actions are denoted by ? and ! respectively. Compo-
nents A1 and A2 communicate by synchronizing over c12 while A2, A3 do it over
c23. Components A1 and A3 do not communicate.

I/O Petri Nets. A net is a tuple N = (P ,T ,F ) where (i) P �= ∅ is a set of places,
(ii) T �= ∅ is a set of transitions such that P∩T = ∅, (iii) F ⊆ (P×T )∪(T×P)
is a set of flow arcs. A marking2 is a set M of places which represents the
current “state” of the system. Let In and Out be two disjoint non-empty sets

1 Action a from component Ai is labeled by ai if necessary.
2 We restrict to 1-safe nets.
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of input and output labels respectively. A labeled Petri net is a tuple N =
(P ,T ,F , λ,M0), where (i) (P ,T ,F ) is a finite net; (ii) λ : T → (In&Out) labels
transitions by input/output actions; and (iii) M0 ⊆ P is an initial marking.
Denote by TIn and TOut the input and output transition sets, respectively;
that is, TIn � λ−1(In) and TOut � λ−1(Out). Elements of P ∪ T are called
the nodes of N . For a transition t ∈ T , we call •t = {p | (p, t) ∈ F} the
preset of t, and t• = {p | (t, p) ∈ F} the postset of t . These definitions can be
extended to sets of transitions. In figures, we represent as usual places by empty
circles, transitions by squares, F by arrows, and the marking of a place p by

black tokens in p. A transition t is enabled in marking M , written M
t−→, if

∀p ∈ •t , M (p) = 1. This enabled transition can fire, resulting in a new marking

M ′ = (M \•t) ∪ t•. This firing relation is denoted by M
t−→ M ′. A marking

M is reachable from M0 if there exists a firing sequence, i.e. transitions t0 . . . tn

such that M0
t0−→ M1

t1−→ . . . tn−→ M . The set of markings reachable from M0 is
denoted R(M0).
N is called deterministically labeled iff no two transitions with the same label

are simultaneously enabled, i.e. for all t1, t2 ∈ T and M ∈ R(M0) we have

(M
t1−→ ∧ M

t2−→ ∧ λ(t1) = λ(t2))⇒ t1 = t2. Deterministic labeling ensures
that the system behavior is locally discernible through labels, either through
distinct inputs or through observation of different outputs.

When testing reactive systems, we need to differentiate situations where the
system can still produce some outputs and those where the system cannot evolve
without an input from the environment. Such situations are captured by the
notion of quiescence [26]. A marking is said quiescent if it only enables input

transitions, i.e. M
t−→ implies t ∈ TIn.

From Automata to Nets. The translation from an automaton A = (Q,Σ,Δ, q0)
to a labeled Petri net NA = (P ,T ,F , λ,M0) is immediate: (i) places are the
states of the automaton, i.e. P = Q; (ii) for every transition (si, a, s

′
i) ∈ Δ we

add t to T and set •t = {si}, t• = {s′i} and λ(t) = a; (iii) the initial state is the
only place marked initially, i.e. M0 = {q0}.

The joint behavior of a system composed of automata A1, . . . , An is modeled
by NA1 × · · · × NAn where × represents the product of labeled nets [27] and
we only synchronize on communication transitions (which are invisible for the
environment and thus labeled by τ). As different components are deterministic
and they only share communication actions, the net obtained by this product
is deterministically labeled. Product of nets prevents the state space explosion
problem, as the number of places in the final net is linear w.r.t the number
of components while product of automata produces an exponential number of
states. Product of nets naturally allows to distinguish its components by means
of a distribution [28]. A distribution D : P ∪ T → P({1, . . . , n}) is a function
that relates each place/transition with its corresponding automata. In the case
of communication actions, the distribution relates the synchronized transition
with the automata that communicate over it.
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Fig. 3. Distributed Petri net

Example 2. Fig. 3 shows the net obtained from the automata in Fig. 2 and its
distribution D represented by colors. The transition corresponding to action ?i1
corresponds to the first component, i.e. D(?i1) = {1}, while communication
between A1 and A2 is converted into a single transition τ1 with D(τ1) = {1, 2}.

Proposition 1. For every component A and its corresponding net NA we have
∀t ∈ T : |•t| = 1. In the net obtained by the product between components, this
property is only violated by communication transitions. Therefore, any input or
output event is enabled by exactly one place.

Proof. Immediate from construction. *+

3 Partial Order Semantics

The partial order semantics associated to a Petri net is given by its unfolding
where execution traces are not sequences but partial orders, in which concurrency
is represented by absence of precedence. We recall here the basic notions.

3.1 Unfoldings of Petri Nets

The unfolding of a net [13] is an acyclic (and usually infinite) structure that
represents the behavior of a system by explicit representation of its branching.
Unfolding can be expressed by event structures in the sense of Winskel et al [29].
An input/output labeled event structure (IOLES) over an alphabet L = In&Out
is a 4-tuple E = (E,≤,#, λ) where (i) E is a set of events, (ii) ≤ ⊆ E × E is a
partial order (called causality) satisfying the property of finite causes, i.e. ∀e ∈
E : |{e′ ∈ E | e′ ≤ e}| <∞, (iii) # ⊆ E×E is an irreflexive symmetric relation
(called conflict) satisfying the property of conflict heredity, i.e. ∀e, e′, e′′ ∈ E :
e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′, (iv) λ : E → (In & Out) is a labeling mapping. In
addition, we assume every IOLES E has a unique minimal event ⊥E .



Distributed Testing of Concurrent Systems: Vector Clocks to the Rescue 375

?i1

τ

!o1

?i2 ?i3

!o2 ?i2 ?i3

?i4

τ

!o4

?i1

τ

!o1

?i2 ?i3

!o2

. . . . . .

. . .

. . .

. . . . . .

UA1×A2×A3

Fig. 4. Unfolding as an event structure

An event structure together with a distribution form a distributed IOLES.
In such structures, we can distinguish events of different components, i.e. Ed �
{e ∈ E | d ∈ D(e)} for d ∈ {1, . . . , n}. Such a distinction allows to project
the unfolding onto a single component by just considering the events in Ed,
and the restrictions of ≤,# and λ to Ed. The projection of an event structure to
component d ∈ {1, . . . , n} is denoted by Ed. We denote the class of all distributed
input/output labeled event structures over L by IOLES(L).

Example 3. Fig. 4 shows the initial part of the unfolding of the net NA1×NA2×
NA3 given as a distributed event structure with its distribution represented by
colors. As usual, we represent events by rectangles, causality by arrows and direct
conflict with dashed lines. As in the case of the net in Fig. 3, communication
events belong to more than one component.

The local configuration of an event e in E is defined as [e]E � {e′ ∈ E | e′ ≤ e},
and its set of causal predecessors is 〈e〉E � [e]\{e}. Two events e, e′ ∈ E are said
to be concurrent (e co e′) iff neither e ≤ e′ nor e′ ≤ e nor e # e′ hold; e, e′ ∈ E
are in immediate conflict (e1 #

μ e2) iff [e1]×[e2]∩# = {(e1, e2)}. A configuration
of an IOLES is a non-empty set C ⊆ E that is (i) causally closed, i.e. e ∈ C
implies [e] ⊆ C, and (ii) conflict-free, i.e. e ∈ C and e#e′ imply e′ �∈ C. Note
that we define, for technical convenience, all configurations to be non-empty; the
initial configuration of E , containing only ⊥E and denoted by ⊥E , is contained
in every configuration of E . We denote the set of all configurations of E by C(E).

Unfoldings are usually represented by a subclass of Petri nets called occur-
rence nets. Occurrence nets are isomorphic to event structures [29]: one can
easily forget about places of the net by adding conflict whenever two transitions
compete for a resource, i.e. their presets intersect. Most of the notions presented
in this paper are explained in terms of event structures since they facilitate
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the presentation. However, for some technical notions, we will use the occur-
rence net representation. For further details about occurrence nets, see [13].

Remark 1. As shown in Proposition 1, input and output transitions are enabled
by only one place in the net of a distributed system. The same is true for the
occurrence net representing the unfolding of such a net.

Remark 2. The notion of configuration can be defined directly over occurrence
nets. Thus, in a distributed system, every configuration C generates a marking
of the form C• = {q1, . . . , qn} where each place qd represents the current state
of component Ad.

3.2 Executions

We are interested in testing distributed systems where concurrent actions occur
in different components of the system. That is, the specifications we consider do
not impose any order of execution between concurrent events. Labeled partial
orders can then be used to represent executions of such systems.

Labeled Partial Orders. A labeled partial order (lpo) is a tuple lpo = (E,≤, λ)
where E is a set of events, ≤ is a reflexive, antisymmetric, and transitive relation,
and λ : E → L is a labeling mapping to a fix alphabet L. We denote the class
of all labeled partial orders over L by LPO(L). Consider lpo1 = (E1,≤1, λ1)
and lpo2 = (E2,≤2, λ2) ∈ LPO(L). A bijective function f : E1 → E2 is an
isomorphism between lpo1 and lpo2 iff (i) ∀e, e′ ∈ E1 : e ≤1 e

′ ⇔ f(e) ≤2 f(e
′)

and (ii) ∀e ∈ E1 : λ1(e) = λ2(f(e)). Two labeled partial orders lpo1 and lpo2

are isomorphic if there exists an isomorphism between them. A partially ordered
multiset (pomset) is an isomorphism class of lpos. We will represent such a class
by one of its objects. Denote the class of all non empty pomsets over L by
POMSET (L).

The observable behavior of a system can be captured by abstracting the inter-
nal actions from the executions of the system. A pomset ω is the τ -abstraction of
another pomset μ, denoted by abs(μ) = ω, iff there exist lpoμ = (Eμ,≤μ, λμ) ∈ μ
and lpoω = (Eω ,≤ω, λω) ∈ ω such that Eω = {e ∈ Eμ | λμ(e) �= τ} and ≤ω and
λω are the restrictions of ≤μ and λμ to this set. Pomsets are observations; the
observable evolution of the system is captured by the following definition:

Definition 1. For E = (E,≤,#, λ) ∈ IOLES(L), ω ∈ POMSET (L) and
C,C′ ∈ C(E), define3

C
ω

=⇒ C′ � ∃lpo = (Eμ,≤μ, λμ) ∈ μ : Eμ ⊆ E\C,C′ = C ∪ Eμ,
≤ ∩ (Eμ × Eμ) = ≤μ and λ|Eμ

= λμ and abs(μ) = ω

C
ω

=⇒ � ∃C′ : C ω
=⇒ C′

3 The notation λ|E denotes the restriction of λ to the set E.
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We can now define the notions of traces and of configurations reachable from
a given configuration by an observation. Our notion of traces is similar to that
of Ulrich and König [15].

Definition 2. For E ∈ IOLES(L), ω ∈ POMSET (L), C, C′ ∈ C(E), define

traces(E) � {ω ∈ POMSET (L) |⊥E
ω

=⇒}
C after ω � {C′ | C ω

=⇒ C′}

Note that for deterministically labeled I/O Petri nets, the corresponding
IOLES is deterministic and the set of reachable configurations is a singleton.

In a distributed system, global observation of the whole system is not avail-
able in general, i.e. the system is partially observed. This partial observation is
captured by the projection of a global execution onto one of its component. As in
the case of event structures, the projection of an execution only considers events
belonging to a single component and restricts ≤ and λ to it. The projection of
an execution ω onto component Ad is denoted by ωd.

4 Testing Framework for I/O Petri Nets

4.1 Testing Hypotheses

We assume that the specification of the system under test is given as a network
of deterministic automata A1, . . . , An over alphabet L = In&Out, whose global
behavior is given by the distributed I/O Petri net N = NA1 × · · · × NAn . To
be able to test an implementation against such a specification, we make a set of
testing assumptions, the first one being usual in testing. See [17, 18] for more
details on these assumptions.

Assumption 1. The behavior of the SUT can be modeled by a distributed I/O
Petri net over alphabet L.

In order to detect outputs depending on extra inputs, we also assume that
the specification does not contain cycles of outputs actions, so that the number
of expected outputs after a given trace is finite.

Assumption 2. The net N has no cycle containing only output transitions.

Third, in order to allow the observation of both the outputs produced by
the system and the inputs it can accept, markings where conflicting inputs and
outputs are enabled should not be reachable.4 Such markings prevent from ob-
serving the inputs enabled in a given configuration, which we will see is one of
the key points of our conformance relation.

Assumption 3. The unfolding of the net N has no immediate conflict between
input and output events, i.e. ∀e1 ∈ EIn, e2 ∈ EOut : ¬(e1 #μ e2).

4 Gaudel et al [3] assume a similar property called IO-exclusiveness.
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4.2 Conformance Relation

A formal testing framework relies on the definition of a conformance relation to
be satisfied by the SUT and its specification. Our conformance relation is defined
in terms of the inputs refused and the outputs produced by the system.

In partial order semantics, we need any set of outputs to be entirely produced
by the SUT before we send a new input; this is necessary to detect outputs
depending on extra inputs. For this reason we define the expected outputs from
a configuration C as the pomset of outputs leading to a quiescent configuration.
Such a configuration always exists, and must be finite by Assumption 2.

The notion of quiescence is inherited from nets, i.e. a configuration C is qui-
escent iff C

ω
=⇒ implies ω ∈ POMSET (In). By abuse of notation we denote by

δ the pomset reduced to only one event labeled by δ, and assume as usual that

quiescence is observable by this pomset, i.e. C is quiescent iff C
δ

=⇒.

Definition 3. For E ∈ IOLES(L), C ∈ C(E), the outputs produced by C are

outE(C) � {!ω ∈ POMSET (Out) | C !ω
=⇒ C′ ∧ C′ δ

=⇒} ∪ {δ | C δ
=⇒}.

The ioco theory assumes input enabledness of the implementation [1], i.e. in
any state of the implementation, every input action is enabled. By constrast, we
do not make this assumption, which is not always realistic [2, 3], and extend our
conformance relation to consider refusals of inputs. For further discussion about
the consequences of dropping the input-enabledness assumption, see [18].

Definition 4. For E ∈ IOLES(L) and C ∈ C(E), the possible inputs in C are

possE(∅) � POMSET (In)
possE(C) � {?ω ∈ POMSET (In) | C ?ω

=⇒}

Remark 3. We intend our conformance relation to be conservative w.r.t ioco for
systems with just one component. In order to compare the possible inputs of the
specification with those of the SUT after a trace that cannot be executed in the
SUT, we define possE(∅) as the set of all possible inputs. To overcome the same
problem, Gaudel et al [3] consider only traces of the specification that can also
be executed in the implementation.

Consider a given marking C• = {q1, . . . , qn} and a configuration Cd of a
component Ad with d ∈ {1, . . . , n} such that C•d = {qd}. An event which is not
enabled in Cd cannot be enabled in C. The following result is central and will
help proving that global conformance can be achieved by local testers.

Proposition 2. Let C (Cd) be a configuration of a distributed system (of the
system component Ad) with the corresponding cut C• = {q1, . . . , qn} (C•d =
{qd}). Then:

1. if ?i �∈ possEd
(Cd), then ?i �∈ possE(C),

2. if !o �∈ outEd
(Cd), then for all !ω ∈ outE(C) we have !ωd �= !o.
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Proof. If an input or output event is not enabled in configuration Cd, then by
Remark 1, there is no token in condition qd. This absence prohibits such an event
to be part of an execution of any larger configuration (w.r.t set inclusion). *+

Notice the distinction between possible inputs and produced outputs. When-
ever the system reaches a configuration C that enables input actions in every
component, i.e. ?id ∈ possEd

(Cd) for all d ∈ {1, . . . , n}, from the global point of
view, not only ?i1 co . . . co ?in is possible for the system, but also every single
input, i.e. ?id ∈ possE(C). The same is not true for produced outputs. Consider
a system that enables output !od in component Ad, leading to a quiescent con-
figuration in Ad, i.e. !od ∈ outEd

(Cd). If other components also enable outputs
actions, !od �∈ outE(C) as the global configuration after !od is not quiescent.

Our co-ioco conformance relation for labeled event structures can be infor-
mally described as follows. The behavior of a correct co-ioco implementation
after some observations (obtained from the specification) should respect the fol-
lowing restrictions: (1) the outputs produced by the implementation should be
specified; (2) if a quiescent configuration is reached, this should also be the case
in the specification; (3) any time an input is possible in the specification, this
should also be the case in the implementation. These restrictions are formalized
by the following conformance relation.

Definition 5 ([17]). Let S and I be respectively the specification and imple-
mentation of a distributed system; then

I co-ioco S ⇔ ∀ω ∈ traces(S) :
possS(⊥ after ω) ⊆ possI(⊥ after ω)
outI(⊥ after ω) ⊆ outS(⊥ after ω)

Non conformance of the implementation is given by the absence of a given
input or an unspecified output or quiescence in a configuration of the implemen-
tation. In a distributed system, a configuration defines the local state of each
components as shown in Remark 2. Thus, non conformance of a distributed
system is due to one of the following reasons:

(NC1) An input which is possible in a state of a component in the specification
is not possible in its corresponding state in the implementation,

(NC2) A state of a component in the implementation produces an output or is
quiescent while the corresponding state of the specification does not,

(NC3) The input (resp. output) actions that the configuration is ready to ac-
cept (resp. produce) are the same in both implementation and specification,
but they do not form the same partial order, i.e. concurrency is added or
removed.

The next section shows how we can detect these situations in a distributed
testing environment.

5 Global Conformance by Distributed Testers

The co-ioco framework assumes a global view of the distributed system. In
practice this assumption may not be satisfied and we can only observe the system
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partially, i.e. only the behavior of a local component in its PCO is observed. In a
distributed testing environment, we place a local tester at each PCO. In a pure
distributed testing setting, these testers cannot communicate with each other
during testing, and there is no global clock. We propose here a method allowing
to decide global conformance by the conformance of every single component.

5.1 Local Testing

The last section described the three possible reasons for which a system may not
conform to its specification. Non-conformance resulting from (NC1) and (NC2)
can be locally tested under co-ioco by transforming each component into a net.

Theorem 1. If S and I are, respectively, the specification and implementation
of a distributed system, then I co-ioco S implies that for every d ∈ {1, . . . , n},
Id co-ioco Sd.

Proof. Assume there exists d ∈ {1, . . . , n} for which ¬(Id co-ioco Sd), then
there exists σ ∈ traces(Sd) such that one of the following holds:

– There exists ?i ∈ possSd
(⊥ after σ), but ?i �∈ possId

(⊥ after σ). Consider
the global trace ω = 〈?i〉S which enables ?i in S, i.e. ?i ∈ possS(⊥ after ω).
As ?i is not possible in Id, by Proposition 2 we have ?i �∈ possI(⊥ after ω),
and therefore ¬(I co-ioco S).

– There exists !o ∈ outId
(⊥ after σ) such that !o �∈ outSd

(⊥ after σ). Con-
sider the global trace ω = 〈!o〉I which enables !o in I, i.e. there exists
!ω ∈ outI(⊥ after ω) such that !ωd = !o. As !o is not enabled in Sd, by
Proposition 2 we know that !o cannot be enabled after ω in S. Therefore,
!ω �∈ outS(⊥ after ω) and ¬(I co-ioco S).

– δ ∈ outId
(⊥ after σ), while δ �∈ outSd

(⊥ after σ). Let Cd be the configu-
ration reached by component Ad of the implementation after σ and denote
C•d = {qd}. Consider ω such that it leads the implementation to a quiescent
configuration C with qd ∈ C• (such configuration always exists by Assump-
tion 2); we have δ ∈ outI(⊥ after ω). As the reached configuration in Sd
is not quiescent, it enables some output and δ �∈ outS(⊥ after ω), therefore
¬(I co-ioco S). *+

The simplest kind of conformance relations that we can obtain in a distributed
architecture are those that only consider the observation of the system executions
at each PCO without any further information. Such kind of relations include
p-dioco [8], where the local behavior need to be consistent only with some
global behavior. Stronger relations can be obtained if consistency between local
observations is considered, as in the case of dioco [8] where local behaviors must
be projections of the same global behavior. However, even this kind of relations
do not test the dependencies between actions occurring on different components.
Relations that assume global observation are usually stronger, as it is shown by
the implication ioco ⇒ p-dioco or by the theorem above.
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Fig. 5. Non conformant implementation

Example 4. Consider a component A′2 where inputs ?i2 and ?i3 are not possible
before this component synchronizes with A1 and therefore they cannot occur
before ?i1 occurs in A1. Let I = A1×A′2×A3 and S = A1×A2×A3. Component
A′2, its unfolding and the unfolding of I are shown in Fig. 5. Component A′2
conforms to A2 as every possible input and produced outputs are implemented
(only the order of synchronization events change, but those are not observable).
Therefore, I2 co-ioco S2 and clearly, as co-ioco is reflexive, I1 co-ioco S1 and
I3 co-ioco S3. In addition, the local behaviors ?i1!o1?i1!o1 and ?i2!o2?i2 from
components A1 and A′2, respectively, are projections of the same global behavior
in S, even if the causalities between components are not preserved. The co-
ioco relation preserves causalities between actions in different components: the
possible input of the specification ?i1 co ?i2 ∈ possS(⊥) is not possible in the
implementation, the actions are the same, but there is extra causality between
them, i.e. ?i1?i2 ∈ possI(⊥). We can conclude that ¬(I co-ioco S) even if every
component of the implementation conforms to the specification w.r.t co-ioco
and local behaviors are projections of the same global behavior.

5.2 Adding Time Stamps

The example above shows that global conformance cannot always be achieved
by local testers that do not communicate between themselves. This is exactly
what happens in situation (NC3). However, as components of the implementa-
tion need to synchronize, we propose to use such synchronization to interchange
some information that allows the testers to recompute the partial order between
actions in different components using vector clocks [24, 25].

We assume each component Ad has a local clock that counts the number of
interactions between itself and the environment, together with a local table of the
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Fig. 6. Part of the time stamped unfolding S and I′

form [td1, . . . , t
d
n] with information about the clocks of every component (informa-

tion about other components may not be updated). Each time two components
communicate via synchronization, their local tables are updated.

We add the information about the tables to the model, i.e. events of the
unfolding are tuples representing both the actions and the current values of the
table. The unfolding structure allows to compute such tables very efficiently:
when event e occurs in Ad, the value of the clock j in the table of Ad is equal
to the number of input and outputs events from component j in the past of e,
i.e. tdj =| [e] ∩ (EInj & EOut

j ) |. The unfolding algorithm [13] can be modified to

consider time stamps as it is shown in Algorithm 1.5 The behavior of system E
where time stamps are considered is denoted by Ets.

Example 5. Consider the time stamped unfolding U ts
A1×A2×A3

on Fig. 6. The first
occurrence of action !o1 is stamped by [2, 1, 0], meaning that it is the second
interaction with the environment in component A1, and at least there was one
interaction between the environment and component A2 before the occurrence of
!o1. The information of component A2 is propagated to the table of component
A1 after their synchronize over the first occurrence of τ .

The global trace of an execution of the system can be reconstructed from the
local traces of this execution observed in PCOs using the information provided
by time stamps.

Example 6. Consider Fig. 7 and the time stamped local traces σ1 and σ2 of the
first and second components. From event (!o2, 1, 2, 0), we know that at least one
event from the first component precedes !o2, and as ?i1 is the first action in this
component, we can add the causality (?i1, 1, 0, 0) ≤ (!o1, 1, 2, 0) as shown in the
partial order ω.

5 PE(B) are the events that can be added to the unfolding based on the current prefix,
see [13] for more details.
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Algorithm 1. Time stamped unfolding algorithm

Require: A I/O Petri net N = (T, P, F,M0, λ) where M0 = {s1, . . . , sn} and a distri-
bution D : T ∪ P → {1, . . . , n}.

Ensure: The time stamped unfolding of N
1: B := (s0, ∅), . . . , (sk, ∅)
2: E = ∅
3: pe := PE(B)
4: while pe �= ∅ do
5: choose an event e = (t, •t) in pe
6: for d ∈ {1, . . . , n} do
7: td(e) := |{(t′, •t′) ∈ E | D(t′) = d ∧ λ(t) �= τ}|+ 1
8: end for
9: append to E the event e× t1(e)× · · · × tn(e)
10: for every place s in t• add to B a condition (s, e)
11: pe := PE(B);
12: end while
13: return (B,E)

Given two time stamped LPOs ωi = (Ei,≤i, λ1) and ωj = (Ej ,≤j , λ2), their
joint causality is given by the LPO ωi + ωj = (Ei & Ej ,≤ij , λ1 & λ2) where for
each pair of events e1 = (a, ti1, . . . , t

i
n) ∈ Ei and e2 ∈ Ei & Ej , we have

e2 ≤ij e1 ⇔ e2 ≤i e1 ∨ |[e2]j | ≤ tij

In other words, e2 globally precedes e1 either if they belong to the same compo-
nent and e2 locally precedes e1 or if e2 is the kth event in component j and e1
is preceded by at least k events in component j according to time stamps.

When communication between components is asynchronous, a configurationC
is called consistent if for every sending message in C, its corresponding receive
message is also in C. Mattern [24] shows that consistent configurations have
unambiguous time stamps; hence global causality can be reconstructed from
local observations in an unique way. Under synchronous communication, the
send and receive actions are represented by the same event, and therefore every
configuration is consistent.

Proposition 3. When the communication between components is synchronous,
the partial order obtained by + is unique.

Proof. Since every configuration is consistent, the result is immediate [24]. *+

Non conformance coming from (NC3) can be detected by testing the time
stamped system in a distributed way.

Theorem 2. If S and I are, respectively, the specification and implementa-
tion of a distributed system, then ∀d ∈ {1, . . . , n} : Itsd co-ioco Sts

d implies
I co-ioco S.

Proof. Assume Itsd co-ioco Sts
d for every d ∈ {1, . . . n}. Let ω ∈ traces(S) and

consider the following situations:
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(?i1, 1, 0, 0)

(!o1, 2, 1, 0)

(?i1, 3, 1, 0)

(!o1, 4, 3, 0)

σ1

(?i2, 0, 1, 0)

(!o2, 1, 2, 0)

(?i2, 1, 3, 0)

(!o2, 3, 4, 0)

σ2

(?i1, 1, 0, 0)

(!o1, 2, 1, 0)

(?i1, 3, 1, 0)

(!o1, 4, 3, 0)

(?i2, 0, 1, 0)

(!o2, 1, 2, 0)

(?i2, 1, 3, 0)

(!o2, 3, 4, 0)

ω

Fig. 7. From local traces to partial orders using time stamps

– If ?ω ∈ possS(⊥ after ω), then for every d there exists a time stamped
input (?id, t

d
1, . . . , t

d
n) ∈ possSts

d
(⊥ after ωd) such that ?ωd = ?id and ?ω =

?i1+ · · ·+ ?in. As for all d, we have Itsd co-ioco Sts
d , then (?id, t

d
1, . . . , t

d
n) ∈

possIts
d
(⊥ after ωd). By Proposition 3, ?ω ∈ possI(⊥ after ω).

– If !ω ∈ outI(⊥ after ω), then for every d there exists a time stamped out-
put (!od, t

d
1, . . . , t

d
n) ∈ outIts

d
(⊥ after ωd) such that !ωd = !od and !ω =

!o1 + · · ·+ !on. As every component of the implementation conforms to its
specification, we have (!od, t

d
1, . . . , t

d
n) ∈ outSts

d
(⊥ after ωd). By Proposi-

tion 3, we have !ω ∈ outS(⊥ after ω).
– If δ ∈ outI(⊥ after ω), let C be the configuration reached by the implemen-

tation after ω and denote C• = {q1, . . . , qn}. Configuration C is quiescent, so
is each configuration Cd such that C•d = {qd} and δ ∈ outIts

d
(⊥ after ωd).

Since Itsd co-ioco Sts
d for each d, we have δ ∈ outSts

s
(⊥ after ωd). This

implies that the local configurations of the specification do not enable any
output; by Remark 1, there is no output enabled in the global configuration
and δ ∈ outS(⊥ after ω).

These three cases allow us to conclude that I co-ioco S. *+

From a global test case to local test cases. We have shown that global confor-
mance can be achieved by distributed testers. However testers need to consider
time stamp information which cannot be computed locally. The test case gen-
eration algorithm that we proposed for concurrent systems [17] can easily be
adapted to consider the time stamped unfolding presented in this article. The
global test case obtained is a distributed IOLES and can therefore be projected
to each component to obtain a distributed test case, i.e. a set of local test cases.

Example 7. Fig. 8 shows the initial part of global time stamped test case (re-
stricted to components A1 and A2) and its projections T1, T2 over those compo-
nents. These local test cases are supposed to be executed in parallel.

Consider the incorrect implementation U ts
A1×A′

2×A3
. If ?i2 is sent to A2 before

?i1 in A1, the implementation refuses the input and we detect the non confor-
mance. However, as there is no interaction between T1 and T2, it can be the
case that ?i2 is always sent after ?i1 and this refusal is never detected. If this
is the case, after sending ?i1, the implementation produces !o1 with time stamp
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?i1[1, 0, 0]

τ[1, 1, 0]

!o1[2, 1, 0]

?i2 [0, 1, 0]

!o2 [1, 2, 0]

?i3 [1, 3, 0]

T

?i1[1, 0, 0]

!o1[2, 1, 0]

?i2[0, 1, 0]

!o2[1, 2, 0]

?i3[1, 3, 0]

T1 T2

Fig. 8. Initial part of a global test case and its projections

[2, 0, 0] which is not the time stamp expected by T1. Thus, non conformance is
also detected.

We gave a sound and exhaustive test set for co-ioco [17]. The set of dis-
tributed test cases obtained by projecting global test cases of this complete test
set naturally is also complete for co-ioco by Theorem 2. Therefore, it allows to
decide global conformance w.r.t. co-ioco by distributed testing, with indepen-
dent local testers.

6 Conclusion

We presented a distributed testing framework for concurrent systems specified as
networks of automata or, equivalently, as 1-safe Petri nets. The co-ioco confor-
mance relation introduced in our previous work is put into a distributed testing
architecture, where nets are distributed, observation of the system is partial, and
global configurations are represented by the collection of local states of compo-
nents. When the implementation is equipped with local clocks, a global test case
can be constructed adapting the test generation algorithm for co-ioco for han-
dling time stamps. Global test cases can be projected into local test cases, which
allow to achieve global conformance via conformance of local components.

This approach considers synchronous communication. Future work includes
the extension to asynchronous communication not only between components,
but also between the testers and the SUT.
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Abstract. The total correctness of sequential computations can be es-
tablished through different isomorphic models, such as monotonic pre-
dicate transformers and binary multirelations, where both angelic and
demonic nondeterminism are captured. Assertional models can also be
used to characterise process algebras: in Hoare and He’s Unifying The-
ories of Programming, CSP processes can be specified as the range of
a healthiness condition over designs, which are pre and postcondition
pairs. In this context, we have previously developed a theory of angelic
designs that is a stepping stone for the natural extension of the concept of
angelic nondeterminism to the theory of CSP. In this paper we present
an extended model of upward-closed binary multirelations that is iso-
morphic to angelic designs. This is a richer model than that of standard
binary multirelations, in that we admit preconditions that rely on later
or final observations as required for a treatment of processes.

Keywords: semantics, refinement, binary multirelations, UTP.

1 Introduction

In the context of sequential programs, their total correctness can be characterised
through well-established models such as monotonic predicate transformers [1].
This model forms a complete lattice, where demonic choice corresponds to the
greatest lower bound, while angelic choice is the least upper bound.

In [2] Rewitzky introduces the concept of binary multirelations, where the
initial state of a computation is related to a set of final states. Amongst the
different models studied [2,3], the theory of upward-closed binary multirelations
is the most important as it has a lattice-theoretic structure. In this case, the set
of final states corresponds to choices available to the angel, while those over the
value of the set itself correspond to demonic choices.

The UTP of Hoare and He [4] is a predicative theory of relations suitable
for the combination of refinement languages catering for different programming
paradigms. In this context, the total correctness of sequential computations is
characterised through the theory of designs, which are pre and postcondition
pairs. Since the concept of angelic nondeterminism cannot be captured directly,
binary multirelational encodings have been proposed [5,6,7].

While sequential computations can be given semantics using a relation between
their initial and final state, reactive systems require a richer model that accounts
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for the interactions with their environment. This is achieved in the UTP through
the theory of reactive processes [4,8]. The combination of this theory and that of
designs enables the specification of CSP processes in terms of designs that charac-
terise the pre and postcondition of processes. We observe, however, that the theory
of designs encompasses programs whose preconditions may also depend on the fi-
nal or later observations of a computation. As a consequence, the general theory
of designs allows these observations to be ascertained irrespective of termination.
For instance, the precondition of the CSP process a → Chaos requires that no
after observation of the trace of events is prefixed by event a.

In order to extend the concept of angelic nondeterminism to CSP, we have
previously developed a theory of angelic designs. The most challenging aspect
tackled pertains to the treatment of sequential composition, where it departs
from the norm for UTP theories: instead of sequential composition being rela-
tional composition we have a different treatment [5] inspired on the definition of
sequential composition for binary multirelations.

The main contribution of this work is a new theory of binary multirelations
that caters for sets of final states where termination may not be necessarily en-
forced. Thus is in line with the general notion of UTP designs, with the added
benefit that binary multirelations can handle both angelic and demonic non-
determinism. Our contribution is not only an extended model of upward-closed
binary multirelations isomorphic to angelic designs, but also a solid basis for un-
derstanding the treatment of sequential composition in such models. To facilitate
this analysis here, we also present links, Galois connections and isomorphisms,
between the theories of interest. The links validate our new theory, and identify
its potential role in a treatment of CSP processes.

Our long term aim is the development of a model of CSP where the an-
gelic choice operator is a counterpart to that of the refinement calculus, that
is, it avoids divergence [9]. For example, if we consider the angelic choice a →
Chaos +a → Skip, then this would ideally be resolved in favour of a → Skip. An
application of this notion is found, for instance, in the context of a modelling
approach for the verification of implementations of control systems [10].

The structure of this paper is as follows. In section 2 we introduce the UTP
and the theories of interest. In section 3 the main contribution of this paper is
discussed. In section 4 we establish the relationship between the new model and
the theory of angelic designs. Finally in section 5 we present our conclusions.

2 Preliminaries

As mentioned before, the UTP is an alphabetized, predicative theory of relations
suitable for modelling different programming paradigms [4]. UTP theories are
characterised by three components: an alphabet, a set of healthiness conditions
and a set of operators. The alphabet α(P) of a relation P can be split into inα(P),
which contains undashed variables corresponding to the initial observations of a
computation, and outα(P) containing dashed counterparts for the after or final
observations. Refinement is defined as universal reverse implication.
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2.1 Designs

In the UTP theory of designs [4,11] the alphabet consists of program variables
and two auxiliary Boolean variables ok and ok ′ that record when a program
starts, and when it terminates. A design is specified as follows.

Definition 1 (Design). (P � Q) =̂ (ok ∧ P)⇒ (Q ∧ ok ′)
P and Q are relations that together form a pre and postcondition pair, such that
if the program is started, that is ok is true, and P is satisfied, then it establishes
Q and terminates successfuly, with ok ′ being true.

A design can be expressed in this form if, and only if, it is a fixed point
of the healthiness conditions H1 and H2 [4], whose functional composition is
reproduced below, where Po = [o/ok ′], that is o is substituted for ok ′, with t
corresponding to true and f to false.

Theorem 1. H1 ◦ H2(P) = (¬ P f � Pt)

The healthiness condition H1 states that any observations can be made before a
program is started, while H2 requires that if a program may not terminate, then
it must also be possible for it to terminate. In other words, it is not possible to
require nontermination explicitly. The healthiness conditions of the theory are
monotonic and idempotent, and so the model is a complete lattice [4].

When designs are used to model sequential computations, the precondition
¬ P f of a design P is in fact not a relation, but rather a condition that only
refers to undashed variables. Designs that observe this property are fixed points
of the healthiness condition H3, whose definition is reproduced below [4].

Definition 2. H3(P) = P ; IID
This is a healthiness condition that requires the skip of the theory, defined below
as IID [4,11], to be a right-unit for sequential composition.

Definition 3. IID =̂ (true � x ′ = x)
The design IID once started keeps the value of every program variable x un-
changed and terminates successfuly. In order to discuss the consequences of
designs that do not satisfy H3, we consider the following example.

Example 1. (x ′ �= 2 � x ′ = 1) = ok ⇒ ((x ′ = 1 ∧ ok ′) ∨ x ′ = 2)

This is a design that once started can either establish the final value of the pro-
gram variable x as 1 and terminate, or alternatively can establish the final value
of x as 2 but then termination is not necessarily required. This is unexpected
behaviour in the context of a theory for sequential programs. However, in the
theory of CSP [4,8], processes are expressed as the image of non-H3 designs
through the function R that characterises reactive programs.

2.2 Binary Multirelations

As mentioned before, the theory of binary multirelations as introduced by Re-
witzky [2] is a theory of relations between an initial state and a set of final states.
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We define these relations through the following type BM , where State is a type
of records with a component for each program variable.

Definition 4 (Binary Multirelation). BM =̂ State ↔ P State

For instance, the program that assigns the value 1 to the only program variable
x when started from any initial state is defined as follows.

Example 2. x :=BM 1 = {s : State, ss : PState | (x �→ 1) ∈ ss}

Following [5], (x �→ 1) denotes a record whose only component is x and its
respective value is 1. For conciseness, in the definitions that follow, the types of
s and ss may be omitted but are exactly the same as in example 2.

The target set of a binary multirelation can be interpreted as either encod-
ing angelic or demonic choices [2,5]. We choose to present a model where the
set of final states encodes angelic choices. This choice is justified in [12,5] as
maintaining the refinement order of the UTP theories.

Demonic choices are encoded by the different ways in which the set of final
states can be chosen. For example, the program that angelically assigns the value
1 or 2 to the only program variable x is specified by the following relation, where
+BM is the angelic choice operator for binary multirelations.

Example 3. x :=BM 1 +BM x :=BM 2 = {s, ss | (x �→ 1) ∈ ss ∧ (x �→ 2) ∈ ss}

This definition allows any superset of the set {(x �→ 1), (x �→ 2)} to be chosen.
The choice of values 1 and 2 for the program variable x are available in every
set of final states ss, and so are available in every demonic choice.

The subset of BM of interest is that of upward-closed multirelations [2,3]. The
following predicate [5] characterises this subset for a relation B.

Definition 5. BMH =̂ ∀ s, ss0, ss1 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

If a particular initial state s is related to a set of final states ss0, then it is also
related to any superset of ss0. This means that if it is possible to terminate in
some final state that is in ss0, then the addition of any other final states to that
same set does not change the final states available for angelic choice, which cor-
respond to those in the distributed intersection of all sets of final states available
for demonic choice. Alternatively, the set of healthy binary multirelations can
be characterised by the fixed points of the following function.

Definition 6. bmhup(B) =̂ {s, ss | ∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss}

This equivalence is established by the following lemma 1.

Lemma 1. BMH ⇔ bmhup(B) = B

Proof of these and other results can be found in [7].
The refinement order for healthy binary multirelations B0 and B1 is given by

subset inclusion [5], as reproduced below.

Definition 7 ('BM). B0 'BM B1 =̂ B0 ⊇ B1
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This partial order over BM forms a complete lattice. It allows an increase in the
degree of angelic nondeterminism and a decrease in demonic nondeterminism,
with angelic choice as set intersection and demonic choice as set union.

For binary multirelations that are upward-closed, that is, which satisfy BMH,
the definition of sequential composition is as follows.

Lemma 2. Provided B0 satisfies BMH.

B0 ;BM B1 = {s0 : State, ss : PState | (s0, {s1 : State | (s1, ss) ∈ B1}) ∈ B0}

It considers every initial state s0 in B0 and set of final states ss of B1, such
that ss is a set that could be reached through some initial state s1 of B1 that is
available to B0 as a set of final states.

2.3 Angelic Designs

As discussed earlier, both angelic and demonic nondeterminism can be modelled
in the UTP through a suitable encoding of multirelations. The first of these has
been proposed in [5], where the alphabet consists of input program variables and
a sole output variable ac′, a set of final states. Those states in ac′ correspond to
angelic choices, while the choice over the value of ac′ itself corresponds to de-
monic choices. Upward closure is enforced by the following healthiness condition,
where v and v′ refer to every variable other than ac and ac′.

Definition 8. PBMH(P) =̂ P ; ac ⊆ ac′ ∧ v′ = v

PBMH requires that if it is possible for P to establish a set of final states ac′,
then any superset can also be established. (In the theory of [5], there are no
other variables v′, while here we consider a more general theory.)

Following the approach in [5] we have previously developed a theory of angelic
designs [6]. The alphabet includes the variables ok and ok ′ from the theory
of designs, a single input state s and a set of final states ac′. The healthiness
conditions are H1 and H2 and A, whose definition is the functional composition
of A0 and A1 as reproduced below [6].

Definition 9.

A0(P) =̂ P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ �= ∅))
A1(P) =̂ (¬ PBMH(P f ) � PBMH(Pt))

A(P) =̂ A0 ◦ A1(P)

The healthiness condition A0 requires that when a design terminates success-
fully, then there must be some final state in ac′ available for angelic choice. A1
requires that the final set of states in both the postcondition and the negation of
the precondition are upward closed. We observe that A1 can also be expressed
as the application of PBMH to the whole of the design P.

Since all of the healthiness conditions of the theory commute, and they are all
idempotent and monotonic [6], so is their functional composition. Furthermore,
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because the theory of designs is a complete lattice and A is both idempotent
and monotonic, so is the theory of angelic designs.

The theory of angelic designs is based on non-homogeneous relations. As a
consequence the definition of sequential composition departs from the norm for
other UTP theories, where usually sequential composition is relational composi-
tion. Instead, the definition is layered upon the sequential composition operator
;A of [5], whose definition in the context of this theory, we reproduce below.

Definition 10. P ;A Q =̂ P[{s | Q}/ac′]

The resulting set of angelic choices is that of Q, such that they can be reached
from an initial state of Q that is available for P as a set ac′ of angelic choices.
This is a result that closely resembles that for binary multirelations, except for
the fact that it is expressed using substitution. In the next section, we present a
set-theoretic model of binary multirelations, like that in section 2.2, but extended
to cater for angelic designs.

3 Extending Binary Multirelations

Based on the theory of binary multirelations, we introduce a new type of relations
BM⊥ by considering a different type State⊥ for the target set of states.

Definition 11. State⊥ == State ∪ {⊥}, BM⊥ == State ↔ P State⊥

Each initial state is related to a set of final states of type State⊥, a set that may
include the special state ⊥, which denotes that termination is not guaranteed.
If a set of final states does not contain ⊥, then the program must terminate.

For example, consider the program that assigns the value 1 to the variable x ,
but may or may not terminate. This is specified by the following relation, where
:=BM⊥ is the assignment operator that does not require termination.

Example 4. x :=BM⊥ 1 = {s : State, ss : P State⊥ | s ⊕ (x �→ 1) ∈ ss}

Every initial state s is related to a set of final states ss where the state obtained
from s by overriding the value of the component x with 1 is included. Since ss
is of type State⊥, all sets of final states in ss include those with and without ⊥.

In the following section 3.1 we define the healthiness conditions of the new
theory of binary multirelations of type BM⊥. In section 3.2 we explore important
properties of the new model. Finally in section 3.3 we explore the relationship
between the new model and the original theory of binary multirelations.

3.1 Healthiness Conditions

Having defined a new type of relations, in what follows we introduce the health-
iness conditions that characterise the relations in the theory.
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BMH0. The first healthiness condition of interest enforces upward closure [2]
for sets of final states that are necessarily terminating, and in addition enforces
the same property for sets of final states that are not required to terminate.

Definition 12 (BMH0).

∀ s : State, ss0, ss1 : PState⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))⇒ (s, ss1) ∈ B

It states that for every initial state s, and for every set of final states ss0 in a
relation B, any superset ss1 of that final set of states is also associated with s as
long as ⊥ is in ss0 if, and only if, it is in ss1. That is, BMH0 requires upward
closure for sets of final states that terminate, and for those that may or may
not terminate, but separately. The definition of BMH0 can be split into two
conjunctions as shown in the following lemma 3.

Lemma 3

BMH0 ⇔

⎛⎜⎜⎝
(
∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧
BMH

⎞⎟⎟⎠
This confirms that for sets of final states that terminate this healthiness condition
enforces BMH exactly as in the original theory of binary multirelations [2].

BMH1. The second healthiness condition BMH1 requires that if it is possible
to choose a set of final states where termination is not guaranteed, then it must
also be possible to choose an equivalent set of states where termination is guar-
anteed. This healthiness condition is similar in nature to H2 of the theory of
designs.

Definition 13 (BMH1)

∀ s : State, ss : PState⊥ • (s, ss ∪ {⊥}) ∈ B ⇒ (s, ss) ∈ B

This healthiness condition excludes relations that only offer sets of final states
that may not terminate. Consider the following example.

Example 5. {s : State, ss : P State⊥ | (x �→ 1) ∈ ss ∧ ⊥ ∈ ss}

This relation describes an assignment to the only program variable x where
termination is not guaranteed. However, it discards the inclusive situation where
termination may indeed occur. The inclusion of a corresponding final set of states
that requires termination does not change the choices available to the angel as
it is still impossible to guarantee termination.
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BMH2. The third healthiness condition reflects a redundancy in the model,
namely, that both the empty set and {⊥} characterise abortion.

Definition 14 (BMH2). ∀ s : State • (s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B

Therefore we require that every initial state s is related to the empty set of final
states if, and only if, it is also related to the set of final states {⊥}.

If we consider BMH1 in isolation, it covers the reverse implication of BMH2
because if (s, {⊥}) is in the relation, so is (s, ∅). However, BMH2 is stronger than
BMH1 by requiring (s, {⊥}) to be in the relation if (s, ∅) is also in the relation.
The reason for this redundancy is to facilitate the linking between theories, in
particular with the original theory. We come back to this point in section 3.3.

The new model of binary multirelations is characterised by the conjunction
of the healthiness conditions BMH0, BMH1 and BMH2, which we refer to as
BMH0,1,2. An alternative characterisation in terms of fixed points is available
in [7]. That characterisation has enabled us, for instance, to establish that all
healthiness conditions are monotonic.

BMH3. The fourth healthiness condition characterises a subset of the model
that corresponds to the original theory of binary multirelations.

Definition 15 (BMH3)

∀ s : State • (s, ∅) /∈ B ⇒ (∀ ss : PState⊥ • (s, ss) ∈ B ⇒ ⊥ /∈ ss)

If an initial state s is not related to the empty set, then it must be the case that
for all sets of final states ss related to s, ⊥ is not included in the set ss.

This healthiness condition excludes relations that do not guarantee termina-
tion for particular initial states, yet establish some set of final states. example 4
is an example of such a relation. This is also the case for the original theory of
binary multirelations. If it is possible for a program not to terminate when star-
ted from some initial state, then execution from that state must lead to arbitrary
behaviour. This is the same intuition for H3 of the theory of designs [4].

This concludes the discussion of the healthiness conditions. The relationship
with the original model of binary multirelations is discussed in section 3.3.

3.2 Operators

Having defined the healthiness conditions, in this section we introduce the most
important operators of the theory. These enable the discussion of interesting
properties observed in the new model.

Assignment. In this model there is in fact the possibility to define two distinct
assignment operators. The first one behaves exactly as in the original theory of
binary multirelations x :=BM e. This operator does not need to be redefined,
since BM ⊆ BM⊥. The new operator that we define below, however, behaves
rather differently, in that it may or may not terminate.
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Definition 16. x :=BM⊥ e =̂ {s : State, ss : PState⊥ | s ⊕ (x �→ e) ∈ ss}

This assignment guarantees that for every initial state s, there is some set of
final states available for angelic choice where x has the value of expression e.
However, termination is not guaranteed. While the angel can choose the final
value of x it cannot possibly guarantee termination in this case.

Angelic Choice. Angelic choice is defined as set intersection just like in the
original theory of binary multirelations.

Definition 17. B0 +BM⊥ B1 =̂ B0 ∩ B1

For every set of final states available for demonic choice in B0 and B1, only those
that can be chosen both in B0 and B1 are available. As the refinement ordering
in the new model is exactly the same as in the theory of binary multirelations,
the angelic choice operator, being the least upper bound, has the same properties
with respect to the extreme points of the lattice.

An interesting property of angelic choice that is observed in this model is
illustrated by the following lemma 4. It considers the angelic choice between two
assignments of the same expression, yet only one is guaranteed to terminate.

Lemma 4. (x :=BM⊥ e) +BM⊥ (x :=BM e) = (x :=BM e)

This result can be interpreted as follows: given an assignment which is guaranteed
to terminate, adding a corresponding angelic choice that is potentially non-
terminating does not in fact introduce any new choices.

Demonic Choice. The demonic choice operator is defined by set union, exactly
as in the original theory of binary multirelations.

Definition 18. B0 *BM⊥ B1 =̂ B0 ∪ B1

For every initial state, a corresponding set of final states available for demonic
choice in either, or both, of B0 and B1, is included in the result.

Similarly to the angelic choice operator, there is a general result regarding
the demonic choice over the two assignment operators, terminating and not
necessarily terminating. This is shown in the following lemma 5.

Lemma 5. (x :=BM e) *BM⊥ (x :=BM⊥ e) = (x :=BM⊥ e)

If there is an assignment for which termination is not guaranteed, then the
demonic choice over this assignment and a corresponding one that is guaranteed
to terminate is the same as the assignment that does not require termination. In
other words, if it is possible for the demon to choose between two similar sets of
final states, one that is possibly non-terminating and one that terminates, then
the one for which termination is not guaranteed dominates the choice.
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Sequential Composition. The definition of sequential composition in this new
model is not immediately obvious. In fact, one of the reasons for developing this
theory is that it provides a more intuitive approach to the definition of sequential
composition in the theory of angelic designs. To illustrate the issue, we consider
the following example from the theory of designs, where a non-H3-design is
sequentially composed with IID, the Skip of the theory.

Example 6.

(x ′ = 1 � true) ; IID {Definition of IID}
= (x ′ = 1 � true) ; (true � x ′ = x) {Sequential composition for designs}
= (¬ (x ′ �= 1 ; true) ∧ ¬ (true ; false) � true ; x ′ = x){Sequential composition}
= (¬ (∃ x0 • x0 �= 1 ∧ true) ∧ ¬ (∃ x0 • true ∧ false) � ∃ x0 • true ∧ x ′ = x0)

{Predicate calculus and one-point rule}
= (¬ true ∧ ¬ false � true) {Predicate calculus and property of designs}
= true

The result is true, the bottom of designs [4], whose behaviour is arbitrary. This
result can be generalised for the sequential composition of any non-H3-design.

The behaviour just described provides the motivation for the definition of
sequential composition in the new binary multirelational model.

Definition 19

B0 ;BM⊥ B1 =̂

⎧⎨⎩
s0 : State, ss0 : PState⊥∣∣∣∣∃ ss : P State⊥ • (s0, ss) ∈ B0 ∧
(⊥ ∈ ss ∨ ss ⊆ {s1 : State | (s1, ss0) ∈ B1})

⎫⎬⎭
For sets of final states where termination is guaranteed, that is, ⊥ is not in the
set of intermediate states ss, this definition matches that of the original theory.
If ⊥ is in ss, and hence termination is not guaranteed, then the result of the
sequential composition is arbitrary as it can include any set of final states.

If we assume that B0 is BMH0-healthy, then the definition of sequential
composition can be split into the set union of two sets as shown in theorem 2.

Theorem 2. Provided B0 is BMH0-healthy.

B0 ;BM⊥ B1 =

⎛⎝{s0, ss0 | (s0, State⊥) ∈ B0}
∪
{s0, ss0 | (s0, {s1 | (s1, ss0) ∈ B1}) ∈ B0}

⎞⎠

The first set considers the case when B0 leads to sets of final states where ter-
mination is not required (State⊥). The second set considers the case where ter-
mination is required and matches the result of lemma 2. This concludes our
discussion of the main results regarding the operators of the theory.
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3.3 Relationship with Binary Multirelations

Having presented the most important operators of the theory, in this section we
focus our attention on the relationship between the new model and the original
theory of binary multirelations. The first step consists in the definition of a pair
of linking functions, bmb2bm that maps from the new model into the original
theory of binary multirelations, and bm2bm, a mapping in the opposite direction.

The relationship between the theories of interest is illustrated in fig. 1 where
each theory is labelled according to its healthiness conditions. In addition to the

Fig. 1. Theories and links

relationship between both models of binary multirelations, fig. 1 also shows the
relationship between the new model of binary multirelations and the theory of
angelic designs characterised by A. The latter is the focus of section 4.

From BM⊥ to BM . The function bmb2bm, defined below, maps binary mul-
tirelations in the new model, of type BM⊥, to those in the original model.

Definition 20 (bmb2bm)

bmb2bm : BM⊥ �→ BM
bmb2bm(B) =̂ {s : State, ss : P State⊥ | ((s, ss) ∈ B ∧ ⊥ /∈ ss)}

It is defined by considering every pair (s, ss) in B such that ⊥ is not in ss.
We consider the following example, where bmb2bm is applied to the potentially
non-terminating assignment of e to the program variable x .

Example 7. bmb2bm(x :=BM⊥ e) = (x :=BM e)

The results corresponds to assignment in the original theory. theorem 3 shows
that the application of bmb2bm to an BMH0,1,2,3-healthy relation yields a
BMH-healthy relation.

Theorem 3. Provided B is BMH0,1,2,3-healthy.

bmhup ◦ bmb2bm(B) = bmb2bm(B)

This result confirms that bmb2bm yields relations that are in the original theory.
The proof of this theorem and other proofs omitted below are found in [7].
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From BM to BM⊥. The function bm2bmb maps from relations in the original
model, of type BM , into the new theory. Its definition is presented below.

Definition 21 (bm2bmb)

bm2bmb : BM �→ BM⊥
bm2bmb(B) =̂ { s : State, ss : PState⊥ | ((s, ss) ∈ B ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ B }

It considers every pair (s, ss) in a relation B where ⊥ is not in the set of final
states ss, or if B is aborting for a particular initial state s, then the result is
the universal relation of type BM⊥. A similar result to theorem 3 exists for the
application of bm2bmb [7], where it yields BMH0,1,2,3-healthy relations.

Based on these results we can establish that bm2bmb and bmb2bm form a
bijection for healthy relations as ascertained the following theorems 4 and 5.

Theorem 4. Provided B is BMH0,1,2,3-healthy. bm2bmb ◦ bmb2bm(B) = B

Theorem 5. Provided B is BMH-healthy. bmb2bm ◦ bm2bmb(B) = B

These results show that the subset of the theory that is BMH0-BMH3-healthy
is isomorphic to the original theory of binary multirelations [2]. This confirms
that while our model is more expressive, it is still possible to express every
program that could be specified using the original model. This concludes the
discussion of the new theory. In the following section we discuss the relationship
with the theory of angelic designs.

4 Relationship with UTP Designs

In this section we establish that the predicative model of A-healthy designs is
isomorphic to the new theory of binary multirelations. We begin our discussion
by defining a pair of linking functions: d2bmb, that maps from A-healthy designs
into the new model of binary multirelations, and bmb2d, mapping in the opposite
direction. The relationship between the theories is illustrated in fig. 1.

4.1 From Designs to Binary Multirelations

The first function of interest is d2bmb, whose definition is presented below.

Definition 22 (d2bmb)

d2bmb : A �→ BM⊥

d2bmb(P) =̂

⎧⎨⎩ s : State, ss : P State⊥

∣∣∣∣∣∣
((¬ P f ⇒ Pt)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(P f [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)

⎫⎬⎭
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For a given design P = (¬ P f � Pt), the set construction of d2bmb(P) is split
into two disjuncts. In the first disjunct, we consider the case where P is started
and terminates successfully, with ok and ok ′ both being substituted with true.
The resulting set of final states ss, for which termination is required (⊥ /∈ ss)
is obtained by substituting ss for ac′ in P. The second disjunct considers the
case where ok is also true, but ok ′ is false. This corresponds to the situation
where P does not terminate. In this case, the set of final states is obtained by
substituting ss \ {⊥} for ac′ and requiring ⊥ to be in the set of final states ss.

As a consequence of P satisfying H2, we ensure that if there is some set of final
states captured by the second disjunct with ⊥, then there is also a corresponding
set of final states without ⊥ that is captured by the first disjunct.

In order to illustrate the result of applying d2bmb, we consider the follow-
ing example 8. It specifies a program that either assigns the value 1 to the sole
program variable x and successfully terminates, or assigns the value 2 to x , in
which case termination is not required.

Example 8

d2bmb((x �→ 2) /∈ ac′ � (x �→ 1) ∈ ac′) {Definition of d2bmb and designs}

=

⎧⎪⎪⎨⎪⎪⎩
s : State, ss : PState⊥∣∣∣∣∣∣
((x �→ 2) /∈ ac′ ⇒ (x �→ 1) ∈ ac′)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(((x �→ 2) ∈ ac′)[ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)

⎫⎪⎪⎬⎪⎪⎭
{Predicate calculus and substitution}

=

⎧⎪⎪⎨⎪⎪⎩
s : State, ss : PState⊥∣∣∣∣∣∣
((x �→ 2) ∈ ss ∧ ⊥ /∈ ss) ∨ ((x �→ 1) ∈ ss ∧ ⊥ /∈ ss)
∨
((x �→ 2) ∈ (ss \ {⊥}) ∧ ⊥ ∈ ss)

⎫⎪⎪⎬⎪⎪⎭
{Property of sets and predicate calculus}

= {s : State, ss : PState⊥ | (x �→ 2) ∈ ss ∨ ((x �→ 1) ∈ ss ∧ ⊥ /∈ ss)}
{Definition of *BM⊥ and :=BM⊥ and :=BM}

= (x :=BM⊥ 2) *BM⊥ (x :=BM 1)

The function d2bmb yields a program with the same behaviour, but specified
using the binary multirelational model. It is the demonic choice over two assign-
ments, one requires termination while the other does not.

The following theorem 6 establishes that the application of d2bmb to A-
healthy designs yields relations that are BMH0-BMH2-healthy.

Theorem 6. bmh0,1,2 ◦ d2bmb(A(P)) = d2bmb(A(P))

This concludes our discussion regarding the linking function d2bmb.

4.2 From Binary Multirelations to Designs

The second linking function of interest is bmb2d, which maps binary multirela-
tions to A-healthy predicates. Its definition is presented below.
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Definition 23 (bmb2d)

bmb2d : BM⊥ �→ A bmb2d(B) =̂ ((s, ac′ ∪ {⊥}) /∈ B � (s, ac′) ∈ B)

It is defined as a design, such that for a particular initial state s, the precondition
requires (s, ac′ ∪ {⊥}) not to be in B, while the postcondition establishes that
(s, ac′) is in B. This definition can be expanded into a more intuitive represent-
ation, by expanding the design, according to the following lemma 6.

Lemma 6. bmb2d(B) = ok ⇒

⎛⎝ ((s, ac′) ∈ B ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
(s, ac′ ∪ {⊥}) ∈ B

⎞⎠
The behaviour of bmb2d is defined by two disjuncts. The first one considers the
case where B requires termination, and hence ⊥ is not part of the set of final
states of the pair in B. The second disjunct considers sets of final states that do
not require termination, in which case ok ′ can be either true or false.

The following theorem 7 establishes that bmb2d(B) yields A-healthy designs
provided that B is BMH0-BMH2-healthy.

Theorem 7. Provided B is BMH0,1,2-healthy. A ◦ bmb2d(B) = bmb2d(B)

This result confirms that bmb2d is closed with respect to A when applied to rela-
tions that are BMH0-BMH2-healthy. This concludes our discussion of bmb2d.
In the following section 4.3 we focus our attention on the isomorphism.

4.3 Isomorphism

In this section we show that d2bmb and bmb2d form a bijection. The follow-
ing theorem 8 establishes that d2bmb is the inverse function of bmb2d for rela-
tions that are BMH0-BMH2-healthy. While theorem 9 establishes that bmb2d
is the inverse function of d2bmb for designs that are A-healthy. Together these
results establish that the models are isomorphic.

Theorem 8. Provided B is BMH0-BMH2-healthy. d2bmb ◦ bmb2d(B) = B

Theorem 9. Provided P is A-healthy. bmb2d ◦ d2bmb(P) = P

These results establish that the same programs can be characterised using two
different approaches. The binary multirelational model provides a set-theoretic
approach, while the predicative theory proposed can easily be linked with other
UTP theories of interest. This dual approach enables us to justify the definitions
of certain aspects of the theory. This includes the healthiness conditions, and
the operators, which we discuss in the following section 4.4. The most intuitive
and appropriate model can be used in each case. The results obtained in either
model can then be related using the linking functions.

4.4 Linking Results

In this section we discuss the most important results obtained from linking both
the theory of angelic designs and the new model of binary multirelations.
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Refinement. As discussed earlier, the theory of angelic designs [6] is a complete
lattice under the refinement ordering, here denoted by 'D, which is universal
reverse implication. In the theory of binary multirelations, refinement is subset
inclusion, as denoted by 'BM⊥ . theorem 10 establishes their correspondence.
Theorem 10. Provided B0 and B1 are BMH0-BMH2-healthy.

bmb2d(B0) 'D bmb2d(B1)⇔ B0 'BM⊥ B1

It is reassuring to find that the refinement ordering of the theory of angelic
designs corresponds to the subset ordering in the binary multirelational model.

Sequential Composition. Amongst the operators discussed in the context of
the theories of interest, sequential composition is, perhaps, the most challenging.
In the new model of binary multirelations, this is due to the addition of potential
non-termination, while in the theory of angelic designs, the difficulty pertains to
the use of non-homogenenous relations and the definition of ;A.

In the theory of angelic designs, sequential composition is defined as follows.
Definition 24. P ;Dac Q =̂ ∃ ok0 • P[ok0/ok ′] ;A Q[ok0/ok]
As discussed earlier, this is a definition that is layered upon ;A [6]. It resembles
relational composition, with the notable difference that instead of conjunction we
use the operator ;A. When considering A-healthy designs, sequential composition
can be expressed as an A-healthy design as established by theorem 11.
Theorem 11. Provided P and Q are A-healthy designs.

P ;Dac Q = (¬ (P f ;A true) ∧ ¬ (Pt ;A Qf ) � Pt ;A (¬ Qf ⇒ Qt))

This is a result similar to the one for designs [4,11], except for the use of the
operator ;A and the postcondition, which is different. The implication in the
postcondition acts as a filter that eliminates final states of P that fail to satisfy
the precondition of Q. We consider the following example, where there is an
angelic choice between assigning 1 and 2 to the only program variable b, followed
by the program that maintains the state unchanged provided b is 1.
Example 9.⎛⎝ (true � {b �→ 1} ∈ ac′)
+
(true � {b �→ 2} ∈ ac′)

⎞⎠ ;Dac (s.b = 1 � s ∈ ac′) = (true � {b �→ 1} ∈ ac′)

The angelic choice is resolved as the assignment of 1 to b, which avoids aborting.
Finally, we have established through theorem 12 that the sequential compos-

ition operators of our theories are in correspondence.
Theorem 12. Provided P and Q are A-healthy designs.

bmb2d(d2bmb(P) ;BM⊥ d2bmb(Q)) = P ;Dac Q

This is a reassuring result that provides a dual characterisation for the sequential
composition of angelic designs, both in a predicative model and in terms of sets.
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Demonic Choice. The demonic choice operator of angelic designs (*Dac) defined
as disjunction, corresponds exactly to the demonic choice operator (*BM⊥) of the
binary multirelational model, defined as set union.
Theorem 13. bmb2p(B0 *BM⊥ B1) = bmb2p(B0) *Dac bmb2p(B1)

This result confirms the correspondence of demonic choice in both models.

Angelic Choice. Similarly, the angelic choice operator (+Dac), defined as con-
junction, is in correspondence with that of binary multirelations, (+BM⊥) which
is defined as set intersection.
Theorem 14. bmb2p(B0 +BM⊥ B1) = bmb2p(B0) +Dac bmb2p(B1)

Proof.

bmb2p(B0) +Dac bmb2p(B1) {Definition of bmb2p}

=

⎛⎝ ((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ � (s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
+Dac
((s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′ � (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)

⎞⎠
{Definition of +Dac}

=

⎛⎜⎜⎜⎜⎝
((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′)
�⎛⎝ ((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′)⇒ ((s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
∧
((s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′)⇒ ((s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)

⎞⎠
⎞⎟⎟⎟⎟⎠

{Predicate calculus}

=

⎛⎜⎜⎜⎜⎝
((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)
�⎛⎝ ((s, ac′ ∪ {⊥}) ∈ B0 ∨ (s, ac′) ∈ B0)
∧
((s, ac′ ∪ {⊥}) ∈ B1 ∨ (s, ac′) ∈ B1)

⎞⎠ ∧ ⊥ /∈ ac′

⎞⎟⎟⎟⎟⎠
{Assumption: B0 and B1 are BMH1-healthy}

=

⎛⎜⎜⎜⎜⎝
((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)
�⎛⎝ (((s, ac′ ∪ {⊥}) ∈ B0 ∧ (s, ac′) ∈ B0) ∨ (s, ac′) ∈ B0)
∧
(((s, ac′ ∪ {⊥}) ∈ B1 ∧ (s, ac′) ∈ B1) ∨ (s, ac′) ∈ B1)

⎞⎠ ∧ ⊥ /∈ ac′

⎞⎟⎟⎟⎟⎠
{Predicate calculus: absorption law}

=

⎛⎝ ((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)
�
(s, ac′) ∈ B0 ∧ (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′

⎞⎠
{Predicate calculus and property of sets}

= ((s, ac′ ∪ {⊥}) /∈ (B0 ∩ B1) ∨ ⊥ ∈ ac′ � (s, ac′) ∈ (B0 ∩ B1) ∧ ⊥ /∈ ac′)
{Definition of bmb2p and +BM⊥}

= bmb2p(B0 +BM⊥ B1) *+
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In [7] we have established a number of other properties regarding the angelic
choice operator and sequential composition, namely that sequential composition
does not, in general, distribute through angelic choice from neither the left nor
the right, and that angelic and demonic choice distribute through one another.
The latter follows directly from the properties of sets and the characterisation
of angelic and demonic choice in the binary multirelational model.

5 Conclusion

Angelic nondeterminism has traditionally been considered in the context of the-
ories of total correctness for sequential computations. Amongst these, isomorphic
models include the universal monotonic predicate transformers of the refinement
calculus [1,13,14], and binary multirelations [2], where both angelic and demonic
nondeterminism are captured. The corresponding characterisation in a relational
setting, such as the UTP, has been achieved via multirelational encodings [5,6].

Morris and Tyrrel [15,16], and Hesselink [17], have considered angelic non-
determinism in the context of functional languages, by characterising it at the
expression or term level. A generalised algebraic structure has been proposed by
Guttmann [18], where both the monotonic predicate transformers and multire-
lations are characterised as instances.

Tyrrell et al. [19] have proposed an axiomatized algebra of processes resem-
bling CSP where external choice is angelic choice, however, in their model dead-
lock is indistinguishable from divergence. Roscoe [20] has proposed an angelic
choice operator in the context of an operational combinator semantics for CSP.
However, its semantics is far from being a counterpart to the angelic choice
operator of the refinement calculus, where, if possible, abortion can be avoided.

The theory that we have introduced here presents itself as a natural extension
of Rewitzky’s [2] binary multirelations, by including information pertaining to
the possibility for non-termination. This is a concept found in the general theory
of UTP designs, where preconditions can refer to the value of later or final states,
an essential property for the characterisation of CSP processes.

The development of links between the new theory and angelic designs provides
two complementary views of the same computations. This dual approach has
enabled us to characterise certain aspects more easily by choosing the most
appropriate model. It is reassuring that the healthiness conditions and operators
of both models are in correspondence. Our long term aim is the definition of a
UTP theory of CSP that includes all standard CSP operators, and, additionally,
an angelic choice operator that avoids divergence.
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Abstract. We study arithmetic properties of a new tree-based canonical
number representation, recursively run-length compressed natural num-
bers, defined by applying recursively a run-length encoding of their bi-
nary digits.

We design arithmetic operations with recursively run-length com-
pressed natural numbers that work a block of digits at a time and are
limited only by the representation complexity of their operands, rather
than their bitsizes.

As a result, operations on very large numbers exhibiting a regular
structure become tractable.

In addition, we ensure that the average complexity of our operations is
still within constant factors of the usual arithmetic operations on binary
numbers.

Keywords: run-length compressed numbers, hereditary numbering sys-
tems, arithmetic algorithms for giant numbers, representation complexity
of natural numbers.

1 Introduction

Notations like Knuth’s “up-arrow” [1] have been shown to be useful in describing
very large numbers. However, they do not provide the ability to actually compute
with them, as, for instance, addition or multiplication with a natural number
results in a number that cannot be expressed with the notation anymore.

The main focus of this paper is a new tree-based numbering system that al-
lows computations with numbers comparable in size with Knuth’s “up-arrow”
notation. Moreover, these computations have worst and average case complexity
that is comparable with the traditional binary numbers, while their best case com-
plexity outperforms binary numbers by an arbitrary tower of exponents factor.

For the curious reader, it is basically a hereditary number system [2], based
on recursively applied run-length compression of the usual binary digit notation.
It favors giant numbers in neighborhoods of towers of exponents of two, with
super-exponential gains on their arithmetic operations. Moreover, the proposed
notation is canonical i.e., each number has a unique representation (contrary to
the traditional one where any number of leading zeros can be added).
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We adopt a literate programming style, i.e. the code described in the paper
forms a self-contained Haskell module (tested with ghc 7.6.3), also available as
a separate file at http://www.cse.unt.edu/~tarau/research/2014/RRL.hs .
We hope that this will encourage the reader to experiment interactively and
validate the technical correctness of our claims.

The code in this paper can be seen as a compact and mathematically obvious
specification rather than an implementation fine-tuned for performance. Faster
but more verbose equivalent code can be derived in procedural or object ori-
ented languages by replacing lists with (dynamic) arrays and some instances of
recursion with iteration.

We mention, for the benefit of the reader unfamiliar with Haskell, that a
notation like f x y stands for f(x, y), [t] represents sequences of type t and a
type declaration like f :: s -> t -> u stands for a function f : s× t→ u.

Our Haskell functions are always represented as sequences of recursive equa-
tions guided by pattern matching, conditional to constraints (simple relations
following | and before the = symbol). Locally scoped helper functions are defined
in Haskell after the where keyword, using the same equational style.

The composition of functions f and g is denoted f . g. Note also that the
result of the last evaluation is stored in the special Haskell variable it.

The paper is organized as follows. Section 2 discusses related work. Section 3
introduces our tree represented recursively run-length compressed natural num-
bers. Section 4 describes constant time successor and predecessor operations on
tree-represented numbers. Section 5 describes novel algorithms for arithmetic
operations taking advantage of our number representation. Section 6 defines a
concept of representation complexity and studies best and worst cases. Section 7
describes an example of computation with very large numbers using recursively
run-length compressed numbers. Section 8 concludes the paper.

2 Related Work

The first instance of a hereditary number system, at our best knowledge, occurs
in the proof of Goodstein’s theorem [2], where replacement of finite numbers on a
tree’s branches by the ordinal ω allows him to prove that a “hailstone sequence”
visiting arbitrarily large numbers eventually turns around and terminates.

Conway’s surreal numbers [3] can also be seen as inductively constructed trees.
While our focus will be on efficient large natural number arithmetic, surreal
numbers model games, transfinite ordinals and generalizations of real numbers.

Several notations for very large numbers have been invented in the past. Ex-
amples include Knuth’s up-arrow notation [1], covering operations like the tetra-
tion (a notation for towers of exponents). In contrast to the tree-based natural
numbers we propose in this paper, such notations are not closed under addition
and multiplication, and consequently they cannot be used as a replacement for
ordinary binary or decimal numbers.

This paper is similar in purpose with [4] which describes a more complex
hereditary number system (based on run-length encoded “bijective base 2” num-
bers, introduced in [5] pp. 90-92 as “m-adic” numbers). In contrast to [4], we are

http://www.cse.unt.edu/~tarau/research/2014/RRL.hs
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using here the familiar binary number system, and we represent our numbers as
the free algebra of ordered rooted multiway trees, rather than the more complex
data structure used in [4].

The tree representation that we will use is a representative of the Catalan
family of combinatorial objects [6], on which, in [7], arithmetic operations are
seen as operating on balanced parenthesis languages.

An emulation of Peano and conventional binary arithmetic operations in Pro-
log, is described in [8]. Their approach is similar as far as a symbolic represen-
tation is used. The key difference with our work is that our operations work on
tree structures, and as such, they are not based on previously known algorithms.

In [9] a binary tree representation enables arithmetic operations which are
simpler but limited in efficiency to a small set of “sparse” numbers.

In [10] integer decision diagrams are introduced providing a compressed repre-
sentation for sparse integers, sets and various other data types. However likewise
[9] and [11], and in contrast to those proposed in this paper, they only compress
“sparse” numbers, consisting of relatively few 1 bits in their binary representa-
tion.

3 The Data Type of Recursively Run-length Compressed
Natural Numbers

First, we define a data type for our tree represented natural numbers, that we
call recursively run-length compressed numbers to emphasize that binary rather
than unary encoding is recursively used in their representation.

Definition 1. The data type T of the set of recursively run-length compressed
numbers is defined by the Haskell declaration:

data T = F [T] deriving (Eq,Show,Read)

that automatically derives the equality relation “==”, as well as reading and string
representation. The data type T corresponds precisely to ordered rooted multiway
trees with empty leaves, but for shortness, we will call the objects of type T terms.
The “arithmetic intuition” behind the type T is the following:

– the term F [] (empty leaf) corresponds to zero
– in the term F xs, each x on the list xs counts the number x+1 of b ∈ {0, 1}

digits, followed by alternating counts of 1-b and b digits, with the convention
that the most significant digit is 1

– the same principle is applied recursively for the counters, until the empty
sequence is reached.

One can see this process as run-length compressed base-2 numbers, unfolded as
trees with empty leaves, after applying the encoding recursively. Note that we
count x+1 as we start at 0. By convention, as the last (and most significant)
digit is 1, the last count on the list xs is for 1 digits. For instance, the first level
of the encoding of 123 as the (big-endian) binary number 1101111 is [1,0,3].

The following simple fact allows inferring parity from the number of subtrees
of a tree.
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Proposition 1. If the length of xs in F xs is odd, then F xs encodes an odd
number, otherwise it encodes an even number.

Proof. Observe that as the highest order digit is always a 1, the lowest order
digit is also 1 when length of the list of counters is odd, as counters for 0 and 1

digits alternate.

This ensures the correctness of the Haskell definitions of the predicates odd and
even .

odd_ :: T → Bool

odd_ (F []) = False

odd_ (F (_:xs)) = even_ (F xs)

even_ :: T → Bool

even_ (F []) = True

even_ (F (_:xs)) = odd_ (F xs)

Note that while these predicates work in time proportional to the length of the
list xs in F xs, with a (dynamic) array-based list representation that keeps track
of the length or keeps track of the parity bit explicitly, one can assume that they
are constant time, as we will do in the rest of the paper.

Definition 2. The function n : T→ N shown in equation (1) defines the unique
natural number associated to a term of type T.

n(a) =

⎧⎪⎨⎪⎩
0 if a = F [],

2n(x)+1n(F xs) if a = F (x:xs) is even ,

2n(x)+1n(F xs)− 1 if a = F (x:xs) is odd .

(1)

For instance, the computation of n(F [F [],F [F [],F []]]) using equation
(1) expands to (20+1(2(2

0+1(20+1−1))+1 − 1)) = 14, which, in binary, is [0,1,1,1]
where the first level expansion [0,2], corresponds to F [] → 0 and F [F [],F

[]] → 2. The Haskell equivalent1 of equation (1) is:

n (F []) = 0

n a@(F (x:xs)) | even_ a = 2^(n x + 1)∗(n (F xs))

n a@(F (x:xs)) | odd_ a = 2^(n x + 1)∗(n (F xs)+1)-1

The following example illustrates the values associated with the first few natural
numbers.

0: F []

1: F [F []])

2: F [F [],F []]

3: F [F [F []]]

One might notice that our trees are in bijection with objects of the Catalan
family, e.g., strings of balanced parentheses, for instance 0→ F [] → (), 1→ F

[F []] → (()), 14→ F [F [],F [F [],F []]] → (()(()())).

1 As a Haskell note, the pattern a@p indicates that the parameter a has the same value
as its expanded version matching the patten p.
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Definition 3. The function t : N→ T defines the unique tree of type T associated
to a natural number as follows:

t 0 = F []

t k | k>0 = F zs where

(x,y) = split_on (parity k) k

F ys = t y

zs = if x==0 then ys else t (x-1) : ys

parity x = x ‘mod‘ 2

split_on b z | z>0 && parity z == b = (1+x,y) where

(x,y) = split_on b ((z-b) ‘div‘ 2)

split_on _ z = (0,z)

It uses the helper function split on, which, depending on parity b, extracts
a block of contiguous 0 or 1 digits from the lower end of a binary number. It
returns a pair (x,y) consisting of a count x of the number of digits in the block,
and the natural number y representing the digits left over after extracting the
block. Note that div, occurring in both functions, is integer division.

The following holds:

Proposition 2. Let id denote λx.x and ◦ function composition. Then, on their
respective domains:

t ◦ n = id, n ◦ t = id . (2)

Proof. By induction, using the arithmetic formulas defining the two functions.

4 Successor (s) and Predecessor (s’)

We will now specify successor and predecessor on data type T through two mu-
tually recursive functions, s and s’.

s :: T → T

s (F []) = F [F []] -- 1

s (F [x]) = F [x,F []] -- 2

s a@(F (F []:x:xs)) | even_ a = F (s x:xs) -- 3

s a@(F (x:xs)) | even_ a = F (F []:s’ x:xs) -- 4

s a@(F (x:F []:y:xs)) | odd_ a = F (x:s y:xs) -- 5

s a@(F (x:y:xs)) | odd_ a = F (x:F []:(s’ y):xs) -- 6

s’ :: T → T

s’ (F [F []]) = F [] -- 1

s’ (F [x,F []]) = F [x] -- 2

s’ b@(F (x:F []:y:xs)) | even_ b = F (x:s y:xs) -- 6

s’ b@(F (x:y:xs)) | even_ b = F (x:F []:s’ y:xs) -- 5
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s’ b@(F (F []:x:xs)) | odd_ b = F (s x:xs) -- 4

s’ b@(F (x:xs)) | odd_ b = F (F []:s’ x:xs) -- 3

Note that the two functions work on a block of 0 or 1 digits at a time. They
are based on simple arithmetic observations about the behavior of these blocks
when incrementing or decrementing a binary number by 1. The following holds:

Proposition 3. Denote T+ = T − {F []}. The functions s : T → T+ and s′ :
T+ → T are inverses.

Proof. It follows by structural induction after observing that patterns for rules
marked with the number -- k in s correspond one by one to patterns marked
by -- k in s’ and vice versa.

More generally, it can be shown that Peano’s axioms hold and as a result
< T, F[], s > is a Peano algebra.

Note also that if parity information is kept explicitly, the calls to odd and
even are constant time, as we will assume in the rest of the paper.

Proposition 4. The worst case time complexity of the s and s’ operations on
n is given by the iterated logarithm O(log∗2(n)), where log

∗
2 counts the number

of times log2 can be applied before reaching 0.

Proof. Note that calls to s and s’ in s or s’ happen on terms at most logarithmic
in the bitsize of their operands. The recurrence relation counting the worst case
number of calls to s or s’ is: T (n) = T (log2(n)) +O(1), which solves to T (n) =
O(log∗2(n)).

Note that this is much better than the logarithmic worst case for binary umbers
(when computing, for instance, binary 111...111+1=1000...000).

Proposition 5. s and s’ are constant time, on the average.

Proof. Observe that the average size of a contiguous block of 0s or 1s in a
number of bitsize n has the upper bound 2 as

∑n
k=0

1
2k

= 2 − 1
2n < 2. As on

2-bit numbers we have an average of 0.25 more calls, we can conclude that the
total average number of calls is constant, with upper bound 2 + 0.25 = 2.25.

A quick empirical evaluation confirms this. When computing the successor on
the first 230 = 1073741824 natural numbers, there are in total 2381889348 calls
to s and s’, averaging to 2.2183 per computation. The same average for 100
successor computations on 5000 bit random numbers oscillates around 2.22.

5 Arithmetic Operations

We will now describe algorithms for basic arithmetic operations that take ad-
vantage of our number representation.
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5.1 A Few Other Average Constant Time Operations

Doubling a number db and reversing the db operation (hf) are quite simple. For
instance, db proceeds by adding a new counter for odd numbers and incrementing
the first counter for even ones.

db (F []) = F []

db a@(F xs) | odd_ a = F (F []:xs)

db a@(F (x:xs)) | even_ a = F (s x:xs)

hf (F []) = F []

hf (F (F []:xs)) = F xs

hf (F (x:xs)) = F (s’ x:xs)

Note that such efficient implementations follow directly from simple number
theoretic observations.

For instance, exp2, computing an exponent of 2 , has the following definition
in terms of s’.

exp2 (F []) = F [F []]

exp2 x = F [s’ x,F []]

As log2 shows, exp2 is also easy to invert with a similar amount of work:

log2 (F [F []]) = F []

log2 (F [y,F []]) = s y

Note that this definition works on powers of 2, see subsection 5.4 for a general
version.

Proposition 6. The operations db, hf, exp2 and log2 are average constant-
time and iterated logarithm in the worst case.

Proof. At most 1 call to s or s’ is made in each definition therefore these oper-
ations have the same worst and average complexity as s and s’.

5.2 Optimizing Addition and Subtraction for Numbers with few
Large Blocks of 0s and 1s

We derive efficient addition and subtraction that work on one run-length com-
pressed block at a time, rather than by individual 0 and 1 digit steps. The func-
tions leftshiftBy, leftshiftBy’ and respectively leftshiftBy” correspond
to 2nk, (λx.2x+ 1)n(k) and (λx.2x+ 2)n(k).

leftshiftBy :: T → T → T

leftshiftBy (F []) k = k

leftshiftBy _ (F []) = F []

leftshiftBy x k@(F xs) | odd_ k = F ((s’ x):xs)

leftshiftBy x k@(F (y:xs)) | even_ k = F (add x y:xs)

leftshiftBy’ x k = s’ (leftshiftBy x (s k))

leftshiftBy’’ x k = s’ (s’ (leftshiftBy x (s (s k))))
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The last two are derived from the identities:

(λx.2x + 1)n(k) = 2n(k + 1)− 1 (3)

(λx.2x + 2)n(k) = 2n(k + 2)− 2 (4)

They are part of a chain of mutually recursive functions as they are already
referring to the add function, to be implemented later. Note also that instead of
naively iterating, they implement a more efficient algorithm, working “one block
at a time”. For instance, when detecting that its argument counts a number of
1s, leftshiftBy’ just increments that count. As a result, the algorithm favors
numbers with relatively few large blocks of 0 and 1 digits.

We are now ready for defining addition. The base cases are

add :: T → T → T

add (F []) y = y

add x (F []) = x

In the case when both terms represent even numbers, the two blocks add up to
an even block of the same size.

add x@(F (a:as)) y@(F (b:bs)) |even_ x && even_ y = f (cmp a b) where

f EQ = leftshiftBy (s a) (add (F as) (F bs))

f GT = leftshiftBy (s b) (add (leftshiftBy (sub a b) (F as)) (F bs))

f LT = leftshiftBy (s a) (add (F as) (leftshiftBy (sub b a) (F bs)))

In the case when the first term is even and the second odd, the two blocks add
up to an odd block of the same size.

add x@(F (a:as)) y@(F (b:bs)) |even_ x && odd_ y = f (cmp a b) where

f EQ = leftshiftBy’ (s a) (add (F as) (F bs))

f GT = leftshiftBy’ (s b) (add (leftshiftBy (sub a b) (F as)) (F bs))

f LT = leftshiftBy’ (s a) (add (F as) (leftshiftBy’ (sub b a) (F bs)))

In the case when the second term is even and the first odd the two blocks also
add up to an odd block of the same size.

add x y |odd_ x && even_ y = add y x

In the case when both terms represent odd numbers, we use the identity (5):

(λx.2x+ 1)k(x) + (λx.2x + 1)k(y) = (λx.2x+ 2)k(x+ y) (5)

add x@(F (a:as)) y@(F (b:bs)) | odd_ x && odd_ y = f (cmp a b) where

f EQ = leftshiftBy’’ (s a) (add (F as) (F bs))

f GT = leftshiftBy’’ (s b) (add (leftshiftBy’ (sub a b) (F as)) (F bs))

f LT = leftshiftBy’’ (s a) (add (F as) (leftshiftBy’ (sub b a) (F bs)))

Note the presence of the comparison operation cmp, to be defined later, also part
of our chain of mutually recursive operations. Note also the local function f that
in each case ensures that a block of the same size is extracted, depending on
which of the two operands a or b is larger. The code for the subtraction function
sub is similar:
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sub :: T → T → T

sub x (F []) = x

sub x@(F (a:as)) y@(F (b:bs)) | even_ x && even_ y = f (cmp a b) where

f EQ = leftshiftBy (s a) (sub (F as) (F bs))

f GT = leftshiftBy (s b) (sub (leftshiftBy (sub a b) (F as)) (F bs))

f LT = leftshiftBy (s a) (sub (F as) (leftshiftBy (sub b a) (F bs)))

The case when both terms represent 1 blocks the result is a 0 block

sub x@(F (a:as)) y@(F (b:bs)) | odd_ x && odd_ y = f (cmp a b) where

f EQ = leftshiftBy (s a) (sub (F as) (F bs))

f GT = leftshiftBy (s b) (sub (leftshiftBy’ (sub a b) (F as)) (F bs))

f LT = leftshiftBy (s a) (sub (F as) (leftshiftBy’ (sub b a) (F bs)))

The case when the first block is 1 and the second is a 0 block:

sub x@(F (a:as)) y@(F (b:bs)) | odd_ x && even_ y = f (cmp a b) where

f EQ = leftshiftBy’ (s a) (sub (F as) (F bs))

f GT = leftshiftBy’ (s b) (sub (leftshiftBy’ (sub a b) (F as)) (F bs))

f LT = leftshiftBy’ (s a) (sub (F as) (leftshiftBy (sub b a) (F bs)))

Finally, when the first block is 0 and the second is 1 an identity dual to (5) is
used:

sub x@(F (a:as)) y@(F (b:bs)) | even_ x && odd_ y = f (cmp a b) where

f EQ = s (leftshiftBy (s a) (sub1 (F as) (F bs)))

f GT =
s (leftshiftBy (s b) (sub1 (leftshiftBy (sub a b) (F as)) (F bs)))

f LT =
s (leftshiftBy (s a) (sub1 (F as) (leftshiftBy’ (sub b a) (F bs))))

sub1 x y = s’ (sub x y)

Note that these algorithms collapse to the ordinary binary addition and sub-
traction most of the time, given that the average size of a block of contiguous
0s or 1s is 2 bits (as shown in Prop. 4), so their average performance is within
a constant factor of their ordinary counterparts. On the other hand, the algo-
rithms favor deeper trees made of large blocks, representing giant “towers of
exponents”-like numbers by working (recursively) one block at a time rather
than 1 bit at a time, resulting in possibly super-exponential gains.

5.3 Comparison

The comparison operation cmp provides a total order (isomorphic to that on
N) on our type T. It relies on bitsize computing the number of binary digits
constructing a term in T. It is part of our mutually recursive functions, to be
defined later.

We first observe that only terms of the same bitsize need detailed compar-
ison, otherwise the relation between their bitsizes is enough, recursively. More
precisely, the following holds:
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Proposition 7. Let bitsize count the number of digits of a base-2 number,
with the convention that it is 0 for 0. Then bitsize(x) <bitsize(y)⇒ x < y.

Proof. Observe that their lexicographic enumeration ensures that the bitsize of
base-2 numbers is a non-decreasing function.

The comparison operation also proceeds one block at a time, and it also takes
some inferential shortcuts, when possible.

cmp :: T → T → Ordering

cmp (F []) (F []) = EQ

cmp (F []) _ = LT

cmp _ (F []) = GT

cmp (F [F []]) (F [F [],F []]) = LT

cmp (F [F [],F []]) (F [F []]) = GT

cmp x y | x’ /= y’ = cmp x’ y’ where

x’ = bitsize x

y’ = bitsize y

cmp (F xs) (F ys) =
compBigFirst True True (F (reverse xs)) (F (reverse ys))

The function compBigFirst compares two terms known to have the same bitsize.
It works on reversed (highest order digit first) variants, computed by reverse and
it takes advantage of the block structure using the following proposition:

Proposition 8. Assuming two terms of the same bitsizes, the one with its first
before its highest order digit 1 is larger than the one with its first before its highest
order digit 0.

Proof. Observe that “highest order digit first” numbers are lexicographically
ordered with 0 < 1.

As a consequence, cmp only recurses when identical blocks lead the sequence
of blocks, otherwise it infers the LT or GT relation.

compBigFirst _ _ (F []) (F []) = EQ

compBigFirst False False (F (a:as)) (F (b:bs)) = f (cmp a b) where

f EQ = compBigFirst True True (F as) (F bs)

f LT = GT

f GT = LT

compBigFirst True True (F (a:as)) (F (b:bs)) = f (cmp a b) where

f EQ = compBigFirst False False (F as) (F bs)

f LT = LT

f GT = GT

compBigFirst False True x y = LT

compBigFirst True False x y = GT

5.4 Bitsize

The function bitsize computes the number of digits, except that we define it as
F [] for F [], corresponding to 0. It concludes the chain of mutually recursive
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functions starting with the addition operation add. It works by summing up
(using Haskell’s foldr) the counts of 0 and 1 digit blocks composing a tree-
represented natural number.

bitsize :: T → T

bitsize (F []) = (F [])

bitsize (F (x:xs)) = s (foldr add1 x xs)

add1 x y = s (add x y)

It follows that the base-2 integer logarithm is then computed as

ilog2 = s’ . bitsize

The iterated logarithm log∗2 can be also defined as

ilog2star :: T → T

ilog2star (F []) = F []

ilog2star x = s (ilog2star (ilog2 x))

5.5 Multiplication, Optimized for Large Blocks of 0s and 1s

Devising a similar optimization as for add and sub for multiplication is actually
easier.

When the first term represents an even number we apply the leftshiftBy

operation and we reduce the other case to this one.

mul :: T → T → T

mul x y = f (cmp x y) where

f GT = mul1 y x

f _ = mul1 x y

mul1 (F []) _ = F []

mul1 a@(F (x:xs)) y | even_ a = leftshiftBy (s x) (mul1 (F xs) y)

mul1 a y | odd_ a = add y (mul1 (s’ a) y)

Note that when the operands are composed of large blocks of alternating 0 and 1
digits, the algorithm is quite efficient as it works (roughly) in time depending on
the the number of blocks in its first argument rather than the the number of dig-
its. The following example illustrates a blend of arithmetic operations benefiting
from complexity reductions on giant tree-represented numbers:

*RRL> let term1 = sub (exp2 (exp2 (t 12345))) (exp2 (t 6789))

*RRL> let term2 = add (exp2 (exp2 (t 123))) (exp2 (t 456789))

*RRL> bitsize (bitsize (mul term1 term2))

F [F [],F [],F [],F [F [],F []],F [F [],F [],F []],F [F []]]

*RRL> n it

12346

This hints toward a possibly new computational paradigm where arithmetic
operations are not limited by the size of their operands, but only by their rep-
resentation complexity. We will make this concept more precise in section 6.
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5.6 Power

After specializing our multiplication for a squaring operation,

square x = mul x x

we can implement a simple but efficient “power by squaring” operation for xy ,
as follows:

pow :: T → T → T

pow _ (F []) = F [F []]

pow a@(F (x:xs)) b | even_ a = F (s’ (mul (s x) b):ys) where

F ys = pow (F xs) b

pow a b@(F (y:ys)) | even_ b = pow (superSquare y a) (F ys) where

superSquare (F []) x = square x

superSquare k x = square (superSquare (s’ k) x)

pow x y = mul x (pow x (s’ y))

It works well with fairly large numbers, by also benefiting from efficiency of
multiplication on terms with large blocks of 0 and 1 digits:

*RRL> n (bitsize (pow (t 10) (t 100)))

333

*RRL> pow (t 32) (t 10000000)

F [F [F [F [],F [F []]],F [F [F []],F []],F [F [F []]],

F [],F [],F [],F [F [F []],F []],F [],F []],F []]

5.7 Division Operations

An integer division algorithm is given here, but it does not provide the same
complexity gains as, for instance, multiplication, addition or subtraction.

div_and_rem :: T → T → (T, T)

div_and_rem x y | LT == cmp x y = (F [],x)

div_and_rem x y | y /= F [] = (q,r) where

(qt,rm) = divstep x y

(z,r) = div_and_rem rm y

q = add (exp2 qt) z

The function divstep implements a step of the division operation.

divstep n m = (q, sub n p) where

q = try_to_double n m (F [])

p = leftshiftBy q m

The function try to double doubles its second argument while smaller than its
first argument and returns the number of steps it took. This value will be used
by divstep when applying the leftshiftBy operation.

try_to_double x y k =
if (LT==cmp x y) then s’ k

else try_to_double x (db y) (s k)

Division and remainder are obtained by specializing div and rem.
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divide n m = fst (div_and_rem n m)

remainder n m = snd (div_and_rem n m)

6 Representation Complexity

While a detailed analysis of our algorithms is beyond the scope of this paper,
arguments similar to those about the average behavior of s and s’ can be carried
out to prove that their average complexity matches their traditional counterparts,
using the fact, shown in the proof of Prop. 4, that the average size of a block of
contiguous 0 or 1 bits is at most 2.

6.1 Complexity as Representation Size

To evaluate the best and worst case space requirements of our number represen-
tation, we introduce here a measure of representation complexity, defined by the
function tsize that counts the nodes of a tree of type T (except the root).

tsize :: T → T

tsize (F xs) = foldr add1 (F []) (map tsize xs)

It corresponds to the function c : T→ N defined as follows:

c(t) =

{
0 if t = F [],∑

x∈xs (1 + c(x)) if t = F xs.
(6)

The following holds:

Proposition 9. For all terms t ∈ T, tsize t ≤ bitsize t.

Proof. By induction on the structure of t, observing that the two functions have
similar definitions and corresponding calls to tsize return terms inductively
assumed smaller than those of bitsize.

The following example illustrates their use:

*RRL> map (n.tsize.t) [0,100,1000,10000]

[0,7,9,13]

*RRL> map (n.tsize.t) [2^16,2^32,2^64,2^256]

[5,6,6,6]

*RRL> map (n.bitsize.t) [2^16,2^32,2^64,2^256]

[17,33,65,257]

6.2 Best and Worst Cases

Next we define the higher order function iterated that applies k times the
function f.

iterated f (F []) x = x

iterated f k x = f (iterated f (s’ k) x)
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We can exhibit, for a given bitsize, a best case

bestCase k = iterated wTree k (F []) where wTree x = F [x]

and a worst case

worstCase k = iterated f k (F []) where f (F xs) = F (F []:xs)

The function bestCase computes the iterated exponent of 2 and then applies
the predecessor to it. For k = 4 it corresponds to

(2(2
(2(2

0+1−1)+1−1)+1−1)+1 − 1) = 22
22 − 1 = 65535.

The following examples illustrate these functions:

*RRL> bestCase (t 4)

F [F [F [F [F []]]]]

*RRL> n it

65535

*RRL> n (bitsize (bestCase (t 4)))

16

*RRL> n (tsize (bestCase (t 4)))

4

*RRL> worstCase (t 4)

F [F [],F [],F [],F []]

*RRL> n it

10

*RRL> n (bitsize (worstCase (t 4)))

4

*RRL> n (tsize (worstCase (t 4)))

4

Our concept of representation complexity is only a weak approximation of
Kolmogorov complexity [12]. For instance, the reader might notice that our worst
case example is computable by a program of relatively small size. However,
as bitsize is an upper limit to tsize, we can be sure that we are within
constant factors from the corresponding bitstring computations, even on random
data of high Kolmogorov complexity. Note also that an alternative concept of
representation complexity can be defined by considering the (vertices+edges)
size of the DAG obtained by folding together identical subtrees.

6.3 A Concept of Duality

As our multiway trees with empty leaves are members of the Catalan family of
combinatorial objects, they can be seen as binary trees with empty leaves, as
defined by the bijection toBinView and its inverse fromBinView.
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toBinView :: T → (T, T)

toBinView (F (x:xs)) = (x,F xs)

fromBinView :: (T, T) → T

fromBinView (x,F xs) = F (x:xs)

Therefore, we can transform the tree-representation of a natural number by
swapping left and right branches under a binary tree view, recursively. The
corresponding Haskell code is:

dual (F []) = F []

dual x = fromBinView (dual b, dual a) where (a,b) = toBinView x

As clearly dual is an involution (i.e., dual ◦ dual is the identity of Cat), the cor-
responding permutation of N will bring together huge and small natural numbers
sharing representations of the same size, as illustrated by the following example.

*RRL> map (n.dual.t) [0..20]

[0,1,3,2,4,15,7,6,12,31,65535,16,8,255,127,5,11,8191,4294967295,32,65536]

For instance, 18 and 4294967295 have dual representations of the same size,
except that the wide tree associated to 18 maps to the tall tree associated to
4294967295, as illustrated by Fig. 1, with trees folded to DAGs by merging
together shared subtrees. As a result, significantly different bitsizes can result
for a term and its dual.

0

1

0

18

3 1 0

2

(a) t 18

0

1

0

4

1

0

31

0

4294967295

0

(b) dual (t 18)

Fig. 1. Duals, with trees folded to DAGs
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*RRL> t 18

F [F [],F [],F [F []],F []]

*RRL> dual (t 18)

F [F [F [F [F []],F []]]]

*RRL> n (bitsize (t 18))

5

*RRL> n (bitsize (dual (t 18)))

32

It follows immediately from the definitions of the respective functions, that as
an extreme case, the following holds:

Proposition 10. ∀ x dual (bestCase x) = worstCase x.

The following example illustrates this equality, with a tower of exponents 1000
tall, reached by bestCase.

*Cats> dual (bestCase (t 10000)) == worstCase (t 10000)

True

Note that these computations run easily on objects of type T, while their equiv-
alents would dramatically overflow memory on bitstring-represented numbers.

7 A Case Study: Computing the Collatz/Syracuse
Sequence for Huge Numbers

An application that achieves something one cannot do with traditional arbi-
trary bitsize integers is to explore the behavior of interesting conjectures in the
“new world” of numbers limited not by their sizes but by their representation
complexity. The Collatz conjecture states that the function

collatz(x) =

{
x
2 if x is even,

3x+ 1 if x is odd.
(7)

reaches 1 after a finite number of iterations. An equivalent formulation, by group-
ing together all the division by 2 steps, is the function:

collatz′(x) =

{
x

2ν2(x) if x is even,

3x+ 1 if x is odd.
(8)

where ν2(x) denotes the dyadic valuation of x, i.e., the largest exponent of 2 that
divides x. One step further, the syracuse function is defined as the odd integer k′

such that n = 3k + 1 = 2ν2(n)k′. One more step further, by writing k′ = 2m+ 1
we get a function that associates k ∈ N to m ∈ N.

The function tl computes efficiently the equivalent of

tl(k) =
k

2ν2(k) − 1

2
(9)
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Together with its hd counterpart, it is defined as

hd = fst . decons

tl = snd . decons

decons a@(F (x:xs)) | even_ a = (s x,hf (s’ (F xs)))

decons a = (F [],hf (s’ a))

where the function decons is the inverse of

cons (x,y) = leftshiftBy x (s (db y))

corresponding to 2x (2y + 1). Then our variant of the syracuse function corre-
sponds to

syracuse(n) = tl(3n+ 2) (10)

which is defined from N to N and can be implemented as

syracuse n = tl (add n (db (s n)))

The function nsyr computes the iterates of this function, until (possibly) stop-
ping:

nsyr (F []) = [F []]

nsyr n = n : nsyr (syracuse n)

It is easy to see that the Collatz conjecture is true if and only if nsyr termi-
nates for all n, as illustrated by the following example:

*RRL> map n (nsyr (t 2014))

[2014,755,1133,1700,1275,1913,2870,1076,807,1211,1817,2726,1022,383,

575,863,1295,1943,2915,4373,6560,4920,3690,86,32,24,18,3,5,8,6,2,0]

The next examples will show that computations for nsyr can be efficiently carried
out for giant numbers, that, with the traditional bitstring-representation, would
easily overflow the memory of a computer with as many transistors as the atoms
in the known universe.

And finally something we are quite sure has never been computed before, we
can also start with a tower of exponents 100 levels tall:

*RRL> take 100 (map(n.tsize) (nsyr (bestCase (t 100))))

[100,199,297,298,300,...,440,436,429,434,445,439]

Note that we have only computed the decimal equivalents of the representation
complexity tsize of these numbers, that obviously would not fit themselves in
a decimal representation.

8 Conclusion

We have provided in the form of a literate Haskell program a specification of
a tree-based number system where trees are built by recursively applying run-
length encoding on the usual binary representation until the empty leaves cor-
responding to 0 are reached.
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We have shown that arithmetic computations like addition, subtraction, mul-
tiplication, bitsize, exponent of 2, that favor giant numbers with low represen-
tation complexity, are performed in constant time, or time proportional to their
representation complexity. We have also studied the best and worst case repre-
sentation complexity of our representations and shown that, as representation
complexity is bounded by bitsize, computations and data representations are
within constant factors of conventional arithmetic even in the worst case.
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Abstract. In this paper we extend PALPS, a process calculus proposed for the
spatially-explicit, individual-based modeling of ecological systems, with a syn-
chronous parallel operator. The semantics of the resulting calculus, S-PALPS, is
defined at the level of populations as opposed to the level of individuals as was the
case with PALPS, thus, allowing a considerable reduction in a system’s state space.
Furthermore, we provide a translation of the calculus into the model checker
PRISM for simulation and analysis. We apply our framework to model and study
the population dynamics of the Eleonora’s falcon in the Mediterranean sea.

1 Introduction

Population ecology is a sub-field of ecology that studies changes in the size and age
composition of populations, and the biological and environmental processes influenc-
ing those changes. Its main aim is to gain a better understanding of population dynam-
ics and make predictions about how populations will evolve and how they will respond
to specific management schemes. To achieve this goal, scientists have been construct-
ing models of ecosystems. These models are abstract representations of the systems in
question which are studied to gain understanding of the real systems (see, e.g. [4]).

Recently, we have witnessed an increasing trend towards the use of formal frame-
works for reasoning about biological and ecological systems [20,15,7]. In our work,
we are interested in the application of process algebras for studying the population dy-
namics of ecological systems. Process algebras provide a number of features that make
them suitable for capturing these systems. In contrast to the traditional approach to mod-
eling ecological systems using ordinary differential equations which describe a system
in terms of changes in the population as a whole, process algebras are suited towards
the so-called individual-based approach of modeling populations, as they enable one
to describe the evolution of each individual of the population as a process and, subse-
quently, to compose a set of individuals (as well as their environment) into a complete
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G. Ciobanu and D. Méry (Eds.): ICTAC 2014, LNCS 8687, pp. 424–441, 2014.
c© Springer International Publishing Switzerland 2014



Synchronous Parallel Composition in a Process Calculus for Ecological Models 425

ecological system. Features such as time, probability and stochastic behavior, which
have been extensively studied within the context of process algebras, can be exploited
to provide more accurate models. Furthermore, following a model construction formal
frameworks such as process algebras can be used in association with model-checking
tools for automatically analyzing properties of models as opposed to just simulating
trajectories as is typically carried out in ecological studies.

In our previous work we presented PALPS, a process algebra developed for modeling
and reasoning about spatially-explicit individual-based systems [14]. In PALPS, individ-
uals are modeled as processes consisting of a species and a location that may change
dynamically. Individuals may engage in any of the basic processes of reproduction, dis-
persal, predation and death and they may communicate with other individuals residing
at the same location. We have also associated PALPS with a translation to the proba-
bilistic model checker PRISM with the prospect of making more advanced analysis of
ecological models as opposed to just simulations. Our initial experiments of [14,13] de-
livered promising results via the use of statistical model checking provided by PRISM.
However, it also revealed two limitations of our approach.

The first limitation regards reproduction and the dynamic evolution of the size of a
population. In particular, given a system consisting of a set of individuals, our PRISM

translation associated one PRISM module to each individual. Given this, when an indi-
vidual produces an offspring, one would require that a new module would be created
dynamically. However, PRISM does not support the dynamic creation of modules. Thus,
we resorted to placing a limit max on the maximum number of individuals that could
be active at any point in time and definingmax modules which oscillated between the
active and the inactive state as individuals are born and die, respectively.

The second weakness of PALPS relates to the semantics of the parallel composition
operator. To begin with, the interleaving nature of parallel composition comes in con-
trast to the usual approach of modeling adopted by ecologists where it is considered
that execution evolves in phases during which all individuals of a population engage in
some process, such as birth, dispersal, reproduction, etc. For instance, given a species
which first migrates and then reproduces, it would be expected that all individuals of
the population migrate before reproduction takes place. However, in PALPS, it would be
possible to interleave actions so that some individuals reproduce before the whole pop-
ulation engages in the migration process. In addition, the high level of nondeterminism
of the semantics leads to a state-space explosion. For instance, consider individuals Pi,
1 ≤ i ≤ 5, of species s at some location �, each executing an action ai and then be-

comingQi. In PALPS we would write this system as S
def
= P1:〈s, �〉| . . . |P5:〈s, �〉, where

Pi
def
= ai.Qi. Then, according to the operational semantics of PALPS, S may execute the

5 actions a1, . . . , a5 in any order. As a result, there exist 5! possible executions of these

actions eventually leading to state S′ def
= Q1:〈s, �〉| . . . |Q5:〈s, �〉. This phenomenon

leads to a very quick explosion of the state space. To alleviate this problem, in [13], we
proposed the use of policies within the PALPS framework. Policies were defined as an
entity that may place a priority on the order of execution between actions. On the one
hand, they enable the modeling of process ordering often used in ecological models as
described above and, on the other hand they reduce the state space. In the example, if
we consider a policy that assigns increasing priorities to actions a1 to a5, then, there is
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only one possible execution to reach state S′. Note, however, that this method will give
reduced or no benefits in the case where some or all of the ai’s coincide.

In this work, our goal has been to address the above-mentioned issues by proposing
a new semantics of PALPS and an associated PRISM translation that disassociates the
number of modules from the maximum number of individuals, while capturing more
faithfully the synchronous evolution of populations and removing as much unneces-
sary nondeterminism as possible. Our proposal, consists of a synchronous extension
S-PALPS which features the following two key design decisions.

1. To address the first problem relating to the dynamic evolution of population sizes,
we structure our calculus at the level of local populations, grouping together identi-
cal individuals located at the same location. This is achieved by the introduction of
the new construct P :〈s, �, q〉 which refers to q individuals of species s at location �.

2. To address the second problem, we provide a synchronous semantics of PALPS

which implements the concept of maximum parallelism: at any given time all indi-
viduals that may execute an action will do so simultaneously. For example, system
S considered above, will evolve to state S′ in just one step, during which the actions
a1, . . . , a5 will be executed concurrently. As a result, the new parallel composition
construct achieves a reduction in the state space while enabling the process-based
execution adopted by ecologists.

We provide S-PALPS with an encoding to the PRISM language and we prove its cor-
rectness. In this translation, it is natural to define one module for each component of the
form P :〈s, �, q〉. As a result, the number of modules of which the model is comprised
is independent of the number of existing individuals.

As an example, we study the Eleonora’s Falcon (falco eleonorae) [22] in S-PALPS.
Eleonora’s falcon is a migrant species that breeds on Mediterranean islands and win-
ters on islands of the Indian Ocean and along the eastern African coast. A large part of
the world population concentrates on a small number of islands in the Aegean Sea. In
Europe, the species is considered as rare and hence of local conservation importance.
because its survival in Europe is highly dependent on the breeding conditions on the
islands on which it concentrates. We employ our methodology to investigate the popu-
lation dynamics of the species by statistical model checking in PRISM.

Various formal frameworks have been proposed in the literature for modeling ecosys-
tems. One strand is based, like PALPS, on process calculi such as WSCCS [20]. WSCCS

is a probabilistic extension of CCS [11] with synchronous communication that has been
employed in various ecological studies by the author and others [19,9]. Like PALPS,
it follows the discrete-time approach to modeling but does not include the notion of
space. A different approach is that of P systems [15], conceived as a class of distributed
and parallel computing inspired by the compartmental structure and the functioning
of living cells. P-systems fall in the category of rewriting systems, where a structure
may evolve by the application of rewriting rules. The semantics of P-systems is closely
related to S-PALPS: rules are usually applied with maximal parallelism while several
proposals have been considered on resolving the nondeterminism that may arise when
more than one combination of rules is possible, e.g. [12,6]. Probabilistic P systems have
been applied to model the population dynamics of various ecosystems [5,3,6] as well
as to study evolution problems [2]. Finally, we mention that Stochastic P systems have
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been translated into PRISM in [18]. However, as far as we know, there has been no work
on the use of model checking for probabilistic P-Systems.

The structure of the remainder of the paper is as follows. In Section 2 we present the
syntax and the semantics of S-PALPS. In Section 3 we present a translation of S-PALPS

into the Markov-decision-process component of the PRISM language and we state the
correctness of the translation. We then apply our techniques to study the population
dynamics of the Eleonora’s falcon in Sections 4 and 5. Section 6 concludes the paper.

2 Synchronous PALPS

In this section we introduce Synchronous PALPS, S-PALPS. S-PALPS extends PALPS in
two ways. Firstly, S-PALPS differs with PALPS in the treatment of the parallel composi-
tion: in the semantics of S-PALPS this is treated synchronously, in the sense that in any
composition P |Q the actions of P and Q are taken simultaneously. Secondly, S-PALPS

offers a new construct for modeling multiplicity of individuals: we write P :〈s, �, q〉 for
q copies of individual P of species s and location �. Other changes implemented to
S-PALPS are the removal of the nondeterministic choice at the individual level, which
is replaced by a conditional choice, and the inclusion of the parallel composition at the
individual level which allows an explicit modeling of reproduction.

2.1 Syntax

Similarly to PALPS, in S-PALPS we consider a system as a set of individuals operating
in space, each belonging to a certain species and inhabiting a location. Individuals who
reside at the same location may communicate with each other upon channels, e.g. for
preying, or they may migrate to a new location. S-PALPS models probabilistic events
with the aid of a probabilistic operator and uses a discrete treatment of time.

The syntax of S-PALPS is based on the following basic entities: (1) S is a set of
species ranged over by s, s′. (2) Loc is a set of locations ranged over by �, �′. The
habitat is then implemented via a relation Nb, where (�, �′) ∈ Nb exactly when � and �′

are neighbors. (3) Ch is a set of channels ranged over by lower-case strings.
The syntax of S-PALPS is given at two levels, the individual level ranged over by P

and the system level ranged over by S. Their syntax is defined via the following BNFs.

P ::= 0 | η.P | •
∑
i∈I
pi:Pi | γ? (P1, P2) | P1|P2 | C

S ::= 0 | P :〈s, �, q〉 | S1 ‖S2 | S\L

where L ⊆ Ch, I is an index set, pi ∈ (0, 1] with
∑

i∈I pi = 1, C ranges over a set of

process constants C, each with an associated definition of the form C
def
= P , and

η ::= a | a | go � | √ γ ::= a | a

Beginning with the individual level, P can be one of the following: Process 0
represents the inactive individual, that is, an individual who has ceased to exist.
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Process η.P describes the action-prefixed process which executes action η before pro-
ceeding as P . In turn, an activity η can be an input action on a channel a, written simply
as a, a complementary output action on a channel a, written as a, a movement action
with destination �, go �, or the time-passing action,

√
. Actions of the form a, and a,

a ∈ Ch, are used to model arbitrary activities performed by an individual; for instance,
eating, preying and reproduction. The tick action

√
measures a tick on a global clock.

Process •
∑

i∈Ipi:Pirepresents the probabilistic choice between processes Pi, i ∈ I .
The process randomly selects an index i ∈ I with probability pi, and then evolves to
process Pi. We write p1:P1 ⊕ p2:P2 for the binary form of this operator.

Operator γ? (P1, P2), is an operator new to S-PALPS. Its behavior depends on the
availability of a communication on a certain channel as described by γ. Specifically, if
a communication is available according to γ then the flow of control proceeds according
to P , if not, the process proceeds as Q. This operator is a deterministic operator as, in
any scenario, the process γ? (P,Q) proceeds as either P or Q but not both, depending
on the availability of the complementary action of γ in the environment in which the
process is running. This construct has in fact replaced the nondeterministic choice of
PALPS with the intention of yielding more tractable models. We believe this construct
to be sufficient and appropriate for modeling ecosystems where choices are typically
resolved either probabilistically or based on some precedence relation.

Moving on to the population level, population systems are built by composing in
parallel sets of located individuals. A set of q individuals of species s located at location
� is defined as P :〈s, �, q〉. In a composition S1‖S2 the components may proceed while
synchronizing on their actions following a set of restrictions. These restrictions enforce
that probabilistic transitions take precedence over the execution of other actions and
that time proceeds synchronously in all components of a system. That is, for S1‖S2 to
execute a

√
action, both S1 and S2 must be willing to execute

√
. Action

√
measures

a tick on a global clock. These time steps are abstract in the sense that they do not
necessarily have a defined length and, in practice,

√
is used to separate the rounds of

an individual’s behavior. In the case of multi-species systems these actions must be
carefully placed in order to synchronize species with possibly different time scales.

Finally, S\L models the restriction of channels in L within S. This construct plays
an important role in defining valid systems: We define a valid system to be any process
of the form S\L where, for all of S’s subprocesses of the form a?(P,Q) and a?(P,Q)
we have that a ∈ L. Hereafter, we consider only processes that are valid systems.

Example 1. Let us consider a species s where individuals cycle through a dispersal
phase followed by a reproduction phase. In S-PALPS, we may model s by P0, where

P0
def
= •

∑
�∈Nb(myloc)

1

4
: go �.

√
.P1 P1

def
= p:

√
.(P0|P0) ⊕ (1− p):√.(P0|P0|P0)

According to the definition, during the dispersal phase, an individual moves to a
neighboring location which is chosen probabilistically among the neighboring locations
of the current location (myloc) of the individual. Subsequently, the flow of control pro-
ceeds according to P1 which models the probabilistic production of one (case of P0|P0)
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or two offspring (case of P0|P0|P0). A system that contains two individuals at a location
� and one at location �′ can be modeled as

System
def
= (P0:〈s, �, 2〉|P0:〈s, �′, 1〉).

Let us now extend the example into a two-species system. In particular, consider a
competing species which preys on s defined as:

Q0
def
= prey ?(

√
.Q1,

√
.Q2) Q1

def
= Q0|Q0 Q2

def
= prey ?(

√
.Q1,0)

An individual of species s′ looks for a prey. This is implemented by the conditional
process prey ?(

√
.Q1,

√
.Q2). If it succeeds in communicating on channel prey, which

implies that a prey is available, the individual will produces an offspring. If it fails for
two consecutive time units it dies.

To implement the possibility of preying on the side of species s, the definition must
be extended by introducing the complementary input actions on channel prey at the
appropriate places:

P0
def
= prey? (0, •

∑
�∈Nb(myloc)

1

4
: go �.

√
.P1)

P1
def
= prey? (0, p:(

√
.(P0|P0)) ⊕ (1− p) : √.(P0|P0|P0))

2.2 Semantics

We may now define the semantics of S-PALPS. This is defined in terms of a structural
congruence, ≡, presented in Table 1 and a structural operational semantics presented
in Tables 2 and 3. Beginning with Table 1, of greatest interest are the following con-

Table 1. Structural congruence relation

(I1) P ≡ P |0 (S1) S ≡ S‖0

(I2) P1|P2 ≡ P2|P1 (S2) S1‖S2 ≡ S2‖S1

(I3) (P1|P2)|P3 ≡ P1|(P2|P3) (S3) (S1‖S2)‖S3 ≡ S1‖(S2‖S3)

(S4) (P1|P2):〈s, �, q〉 ≡ P1:〈s, �, q〉 ‖ P2 :〈s, �, q〉 (S5) P :〈s, �, 0〉 ≡ 0

(S6) P :〈s, �, q〉 ‖P :〈s, �, r〉 ≡ P :〈s, �, q + r〉 (S7) 0:〈s, �, q〉 ≡ 0

gruences: Equivalence (S4) states that operator “:〈. . .〉” distributes over the parallel
composition construct and equivalence (S6) states that the parallel composition of q in-
dividuals of type P of species s at location � and r of the same individuals is equivalent
to a system with q + r individuals.
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Moving on to the structural operational semantics of S-PALPS, this is given in terms
of two transition relations: the non-deterministic relation −→n and the probabilistic re-
lation −→p. A transition of the form S

μ−→n S
′ means that a system S may execute

action μ and become S′. A transition of the form S
w−→p S

′ means that a configura-
tion S may evolve into configuration S′ with probability w. Whenever the type of the
transition is irrelevant to the context, we write S

α−→ S′ to denote either S
μ−→n S

′ or
S

w−→p S
′. We write μ to range over system non-probabilistic activities, which we call

actions. Actions are built based on activities of individuals which we call events and
denote by β. Events β may have one of the following forms:

– a�,s and a�,s denote the execution of a and a respectively at location � by individuals
of species s.

– a?�,s and a?�,s denote the conditional execution of a and a respectively at location
� by individuals of species s. (This arises in processes of the form γ?(P,Q).)

– τa,�,s denotes an internal action that has taken place on channel a at location �where
the output was carried out by an individual of species s. This may arise when two
complementary actions take place at the same location � or when a move action
takes place at location � by an individual of species s.

–
√

denotes the time passing action.

In turn μ can have one of the following forms:

– βk1
1 # . . .#βkn

n where for all 1 ≤ i ≤ n, βi �=
√

, ki ≥ 1 and n ≥ 1, denotes the
simultaneous execution of ki actions of type βi for 1 ≤ i ≤ n, and

–
√

denotes the time passing action.

We may now move on to the semantics of S-PALPS. We begin with the semantics of
processes of the form P :〈s, �, q〉. We discuss these rules separately below:

– Rule (Act) states that a system composed of q individuals, where each can perform
an action η, can perform simultaneously q times the action η.

– Rule (Tick) states that a system of q individuals, where each can perform action
√

,
can also perform action

√
.

– Rule (Go) states that a system of q individuals, where each individual can perform
a movement action, can perform simultaneously q times the action τgo,�,s.

– Rule (Choice) states that a system of q individuals, executing the conditional choice
γ?(P,Q) may have any number m ≤ q of its components executing the action
(γ?�,s)

m and proceedings to state P whereas the remaining q − m of its compo-
nents will proceed to Q. Note that the nondeterminism apparent in this rule will
be resolved once this process is placed in a wider system context. Recall that a
valid system including this process would have the form (γ?(P,Q)‖S)\L, where
the channel of action γ belongs to L. As a result, the semantics of the hiding oper-
ator \L will resolve the nondeterminism by selecting the value m where m is the
number of times action γ is available in S.

– Rule (PSum) says that a system of q individuals each consisting of the proba-
bilistic choice •

∑
1≤i≤npi:Pi, can evolve into a parallel composition of qi instances
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Table 2. Transition rules for single populations

(Act) (η.P ):〈s, �, q〉
(η�,s)

q

−→n P :〈s, �, q〉 η �= go �′,
√

(Tick) (
√
.P ):〈s, �, q〉

√
−→n P :〈s, �, q〉

(Go) (go �′.P ):〈s, �, q〉
(τgo,�,s)

q

−→n P :〈s, �′, q〉 (�, �′) ∈ Nb

(Choice) (γ?(P,Q)):〈s, �, q〉
(γ?�,s)

m

−→n P :〈s, �,m〉||Q:〈s, �, q −m〉, 0 ≤ m ≤ q

(PSum) ( •
∑

1≤i≤npi:Pi):〈s, �, q〉
w〈p1:q1,...,pn:qn〉−→p P1:〈s, �, q1〉‖ . . . ‖Pn:〈s, �, qn〉,

∑
qi = q

(RConst) P :〈s, �, q〉 α−→ P ′:〈s, �, q〉
C:〈s, �, q〉 α−→ P ′:〈s, �, q〉

C
def
= P :〈s, �, q〉

of process Pi for each 1 ≤ i ≤ n, for all combinations of the qi ≥ 0, where∑
1≤i≤n qi = q, with probability w given as

w〈p1:q1,...pn:qn〉 =
∏

1≤i≤n

pqii ·
(
q −

∑
1≤j≤i−1 qj
qi

)
– Rule (RConst) expresses the semantics of process constants in the expected way.

Recall that
α−→ ranges over both

μ−→n and
w−→p.

We point that we have not included a rule for the process (P1|P2):〈s, �, q〉 as its se-
mantics is given using structural congruence via equivalence (S4) and rule (Struct)
presented below. We may now define the semantics for general systems in Table 3:

– Rule (Time) specifies that if two systems may execute a timed action then their
parallel composition may also execute a timed action.

– Rule (Par1) considers the case where one of the components in a parallel compo-
sition may execute a timed action and the other a non-timed action. According to
the rule the non-timed action takes precedence over the timed action. The latter is
postponed until both processes may execute the timed action. Note that this as well
as the previous rule ensure that time evolves according to a global clock.

– Rules (Par2) and (Par4) consider probabilistic actions of a parallel composition.
The first one specifies that if both components of the composition may execute
a probabilistic transition then the composition executes a probabilistic transition
with probability the product of the two probabilities. The second rule states that if
exactly one of the processes may execute a probabilistic transition then the parallel
composition may also execute the transition.

– Rule (Par3) says that if two systems can perform non-deterministic actions βk and
μ, respectively, then their parallel composition can perform the combination of the
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two actions assuming that neither of them is the
√

action. The combination of these
actions is defined according to Definition 1 below.

– Rule (Res) states that a restricted process may only execute actions involving chan-
nels that do not belong to the restriction set L.

– Rule (Struct) specifies that congruent processes have the same transitions.

Table 3. Transition rules for systems

(Time) S1

√
−→n S′

1, S2

√
−→n S′

2

S1‖S2

√
−→n S′

1‖S′
2

(Par1)
S1

μ1−→n S′
1, S2

√
−→n S′

2, μ1 �=
√

S1‖S2
μ1−→n S′

1‖S2

(Par2) S1
w1−→p S′

1, S2
w2−→p S′

2

S1‖S2
w1·w2−→ p S′

1‖S′
2

(Par3)
S1

βk

−→n S′
1, S2

μ−→n S′
2, μ �=

√

S1‖S2
βk�μ−→n S′

1‖S′
2

(Par4)
S1

w−→p S′
1, S2 �−→p

S1‖S2
w−→p S′

1‖S2

(Res)
S

α−→ S′, {a|as,�, as,� ∈ α} ∩ L = ∅
S\L α−→ S′\L

(Struct) S ≡ S′, S′ α−→ S′′

S
α−→ S′′

We conclude the semantics with the definition of operator 9. This operation combines
a species action βk and an action μ by grouping together all actions that are the same
and turning complementary transitions into τ actions. Formally:

Definition 1. Consider actions βk and μ �= √ then

βk 9 μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(τa,�,s)
k#μ′ if β = as,�, μ = (as,�)

k#μ′

(τa,�,s)
k#(as,�)

k′−k#μ′ if β = as,�, μ = (as,�)
k′
#μ′, k < k′

(τa,�,s)
k′
#(as,�)

k−k′
#μ′ if β = as,�, μ = (as,�)

k′
#μ′, k > k′

(as,�)
k+k′

#μ′ if β = as,�, μ = (as,�)
k′
#μ′, k′ ≥ 0

(as,�)
k+k′

#μ′ if β = as,�, μ = (as,�)
k′
#μ′, k′ ≥ 0

(τa,�,s)
k+k′

#μ′ if β = τa,�,s, μ = (τa,�,s)
k′
#μ′, k′ ≥ 0

(τa,�,s)
k#μ′ if β = a?s,�, μ = (as,�)

k′
#μ′, k′ ≥ k

(τa,�,s)
k#μ′ if β = a?s,�, μ = (as,�)

k′
#μ′, k′ ≥ k

⊥ otherwise

Example 2. Consider P1
def
= a?(P2, P3), Q1

def
= a.Q2 and R1

def
= a.R2. Further,

suppose that S
def
= (P1:〈s1, �, 3〉‖Q1:〈s2, �, 4〉‖R1:〈s3, �, 5〉)\{a}. Then we have:

P1:〈s1, �, 3〉
(a?�,s1 )

i

−→n P2:〈s1, �, i〉‖P3:〈s1, �, 3− i〉, 0 ≤ i ≤ 3

Q1:〈s2, �, 4〉
(a�,s2

)4

−→n Q2:〈s2, �, 4〉 R1:〈s3, �, 5〉
(a�,s3

)5

−→n R2:〈s3, �, 5〉
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Additionally,

Q1:〈s2, �, 4〉‖R1:〈s3, �, 5〉
(τα,�,s3

)4#(a�,s3
)1

−→n Q2:〈s2, �, 4〉‖R2:〈s3, �, 5〉

and now P1:〈s, �, 3〉, by the definition of 9, may only communicate with the system
above via its action (a?�,s1)

1, thus yielding:

S
(τα,�,s3

)5

−→n (P2:〈s1, �, 1〉‖P3:〈s1, �, 2〉‖Q2:〈s2, �, 4〉‖R2:〈s3, �, 5〉)\{a}

3 Translating S-PALPS into PRISM

In this section we turn to the problem of model checking S-PALPS. As is the case of
PALPS, the operational semantics of S-PALPS gives rise to transition systems that can
be easily translated to Markov decision processes (MDPs). As such, model checking
approaches that have been developed for MDPs can also be applied to S-PALPS models.
PRISM is one such tool developed for the analysis of probabilistic systems. Specifically,
it is a probabilistic model checker for Markov decision processes, discrete time Markov
chains, and continuous time Markov chains. For our study we are interested in the MDP
support of the tool which offers model checking and simulation capabilities.

In [14] we defined a translation of PALPS into the MDP subset of the PRISM lan-
guage and we explored the possibility of employing PRISM to perform analysis of the
semantic models derived from PALPS processes. In this paper, we redefine a translation
which implements the synchronous parallel operator of S-PALPS. In the remainder of
this section, we give a brief presentation of the PRISM language, sketch an encoding of
S-PALPS into PRISM and state its correctness. The full details can be found in [21].

3.1 The PRISM Language

The PRISM language is a simple, state-based language, based on guarded commands.
A PRISM model consists of a set of modules which can interact with each other on
shared actions following the CSP-style of communication [1]. Each module possesses
a set of local variables which can be written by the module and read by all modules.
In addition, there are global variables which can be read and written by all modules.
The behavior of a module is described by a set of guarded commands. When modeling
Markov decision processes, these commands take the form:

[act] guard -> p1 : u1 + ... + pm :um;

where act is an optional action label, guard is a predicate over the set of variables,
pi ∈ (0, 1] and ui are updates of the form: (x′1 = ui,1) & ... & (x′k = ui,k)
where ui,j is a function over the variables. Intuitively, such an action is enabled in
global state s if s satisfies guard. If a command is enabled then it may be executed
in which case, with probability pi, the update ui is performed by setting the value of
each variable xj to ui,j(s) (where x′j denotes the new value of variable xj). We refer
the reader to [1] for the full description and the semantics of the PRISM language.
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3.2 Encoding S-PALPS into the PRISM Language

Consider an S-PALPS model. This consists of a set of locations, the neighborhood
relation Nb and a process System. In turn, the process System satisfies System ≡
(P1:〈s1, �1, q1〉‖ . . . ‖Pn:〈sn, �n, qn〉)\L, where each Pi is a process that may evolve to
a set of states, say P j

i , 1 ≤ j ≤ mi. This allows us to conclude that in any state System ′

reachable from System, we have System ′ ≡ (
∏

i∈I,j∈J,�∈Loc P
j
i :〈si, �, qi,j,�〉)\L, that

is, at any point in time, there may be an arbitrary number of individuals in each location
and of each of the reachable states of the populations.

Based on this observation, our translation of System in PRISM consists of a set of
(m1 + . . .+mn) ·K modules, whereK is the total number of locations. Each module
captures the behavior of the individuals in the specific state and location. Note that the
total number of modules is stable and independent of the precise number of individuals
existing in the model. This comes in contrast with our PALPS translation of [14] where
the translation of a model contained one module for each individual a fact that resulted
in restrictions in space and expressiveness.

In addition to these module definitions, a system translation in PRISM should contain
the following global information relating to the system.

– For each species si and each state j in the process description of si, the model
contains theK global variables si,j,k 1 ≤ k ≤ K capturing the number of individ-
uals of species si in state j for location k. The variables should be appropriately
initialized based on the definition of System.

– For each channel a on which synchronization may take place we introduce a vari-
able ay which counts the number of available inputs on a at location y and a variable
ay which counts the number of available outputs on a at location y.

– There exists a global variable pact which may take values from {0, 1} and ex-
presses if there is a probabilistic action enabled. It is used to give precedence to
probabilistic actions over nondeterministic actions. Initially, pact = 0. Further-
more, all non-probabilistic actions have pact = 0 as a precondition.

– There exists a global variable tact which may take values from {0, 1} and expresses
whether a timed action may take place. For such an action to take place it must be
that tact = 1. If any process is unable to execute the

√
action then it sets tact to 0.

As an example, consider processes P1, Q1, R1 and System of Example 2 and sup-
pose that our the system is located on a habitat consisting of 2 patches {1, 2}. Then the
system’s PRISM translation should contain the following global variables:

global s1,1,1 : [0, max] init 3;
global s2,1,1 : [0, max] init 4;
global s3,1,1 : [0, max] init 5;
global s1,1,2, s2,1,2, s3,1,2, s1,2,1, s2,2,1, s3,2,1, s1,2,2, s2,2,2, s3,2,2 : [0, max] init 0;
global a1, a1, a2, a2 : [0,max] init 0;
global pact , tact : [0, 1] init 0;

We now continue to describe how a specific module is described by considering the

above example. Specifically, consider process Q1
def
= a.Q2 and an initial population
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Q1:〈s2, �, 4〉. Then, according to the semantics of S-PALPS, these 4 individuals should
synchronize on channel a and become individuals in state Q2. To model this in PRISM

these 4 individuals should flow from their current state to their next state. To achieve
this we need to make the necessary updates on the global variables s2,1,1 and s2,2,1:
s′2,1,1 = s2,1,1 − 4 and s′2,2,1 = s2,2,1 + 4. Furthermore, if state Q2 is a probabilistic
state, the module should set pact ′ = 1.

Now to implement the synchronization of the module with all other modules execut-
ing an action we need to execute a sequence of actions as illustrated below:

module S2,1,1

st2,1,1 : [0..5] init 1;
n2,1,1 : [0..max]

[ ] (st2,1,1 = 1)&(s2,1,1 > 0) −→ (st′2,1,1 = 2)&(tact ′ = 0)&(n′
2,1,1 = s2,1,1);

[ ] (st2,1,1 = 1)&(s2,1,1 = 0) −→ (st′2,1,1 = 2)&(n′
2,1,1 = s2,1,1);

[synch ] (st2,1,1 = 2) −→ (st′2,1,1 = 3);
[ ] (st2,1,1 = 3)&(pact = 0) −→ (a′

� = a� + n2,1,1)&(st′2,1,1 = 4);
[a�] (st2,1,1 = 4) −→ (st′2,1,1 = 5);
[ ] (st2,1,1 = 5) −→ (a′

� = 0)&updates(Q1, Q2)&(st′2,1,1 = 1);
[prob] (st2,1,1 = 3)&(pact = 1) −→ (st′2,1,1 = 1)

endmodule

Variable st2,1,1 in module S2,1,1 (initially set to 1) will guide the flow of execution
through a sequence of actions. It begins by testing whether there are active individuals
of this module and then proceeds to synchronize with the other modules. This synchro-
nization will take place on action synch . Subsequently, if there are 1 or more modules in
a probabilistic state the module will synchronize with them via action prob, otherwise,
the module will proceed to make its necessary updates: s′2,1,1 = s2,1,1−n2,1,1&s′2,2,1 =
s2,2,1 + n2,1,1. Furthermore, if Q2 =

√
.Q3 then the update tact = 1 is included,

whereas if Q2 = p1 : T1 ⊕ . . . pn : Tn, then the update pact = 1 is included.
Let us now discuss some characteristics of the above translation which are also rele-

vant to the translations of process constructs other than a.P . To begin with, the module
begins by setting tact = 0, assuming that there are active individuals in this state.
Thus, it is ensured that nondeterministic actions take precedence over timed actions. In
addition, variable n2,1,1 is used to store the initial population of the module. This is
necessary because other processes may ‘flow’ into this module and the value of s2,1,1
may not correctly reflect the initial size of the population. Furthermore, we point out
that if a probabilistic action is available (pact = 1) then the process will synchronize
on this action and return to its initial state. We also note that it is not possible to collapse
e.g. states 2 and 3 of the module because PRISM does not allow to execute updates on
global variables within synchronization actions. Finally, we observe that in the case of
channel communication, the module records the number of available inputs and outputs
on a channel at a certain location (update a′� = a�+n) and continues to synchronize on
action a�. This is required for translating the restriction construct where we must check
that the number of inputs and outputs performed on the channel are equal.

In a similar manner we may translate all constructs of the S-PALPS syntax by al-
lowing processes to flow from one module to the next. The only source of additional
complexity concerns the probabilistic operator. This is because, given a set of q individ-
uals executing a probabilistic action, the set of possible resulting locations is dependent
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on q (see rule (Prob) in the semantics). To address this point, in a translation of a prob-
abilistic choice, we enumerate the possible outcomes for all possible values of q.

Regarding the correctness of the proposed translation, we have proved the corre-
spondence between an S-PALPS model S and its PRISM translation, denoted by [[S]],
by showing that a move of S can be simulated by its translation [[S]] in a finite num-
ber of steps and vice versa. In proving this we employ the following notation: Given
a PRISM model M , we write M

α,pi−→ M ′ if M contains an action [α] guard ->
p1 : u1+ . . .+pm : um where guard is satisfied in modelM and execution of ui gives
rise to modelM ′. If a command has no label α and pi = 1 then we writeM −→M ′. Fi-

nally, we writeM
α1#...#αn

=⇒ M ′ ifM(−→)∗
α1,1−→ (−→)∗ . . . (−→)∗

αm,1−→ (−→)∗M ′.

Theorem 1. For any PALPS process S and its PRISM translation [[S]] we have:

1. If S
√
−→n S

′ then [[S]]
synch
=⇒ tick

=⇒ [[S′]].

2. If S
μ−→n S

′ then [[S]]
synch
=⇒ μ

=⇒ [[S′]].

3. If S
w−→p S

′ then [[S]]
synch
=⇒ prob,w−→ [[S′]].

Theorem 1 establishes that each transition of S can be mimicked by its translation
in a sequence of steps. A similar result holds in the opposite direction. The details and
proofs of these results can be found in [21].

4 Case Study: Eleonora’s Falcon Population Dynamics

In this section we study the Eleonora’s Falcon [22] using S-PALPS. Eleonora’s falcon
is a migrant species that breeds on Mediterranean islands and winters on islands of the
Indian Ocean and along the eastern African coast. A large part of the world population
concentrates on a small number of islands in the Aegean Sea [8]. In Europe, the species
is considered as rare and hence of local conservation importance because, although not
globally threatened, its world population is below 10,000 breeding pairs and its survival
in Europe is highly dependent on the breeding conditions on the islands on which it con-
centrates. In particular, the breeding calendar of the Eleonora’s falcon overlaps with the
summer months when tourism peaks in most Mediterranean islands while the climatic
changes may also have consequences on the reproduction of the species.

The life cycle of the Eleonora’s Falcon is defined as follows. The juveniles disperse
from the island during their first year of life. It takes them approximately four years
to achieve sexual maturity and they only come back to the island once they reach this
age. When they return, they choose a nest. For the sake of model simplicity we consider
two types of nests in terms of provision of shelter to the breeding pairs and their young:
exposed nests (e.g., to predators, sun, humans and wind) and less-exposed nests. The
choice of the nest determines the survival probability of the offspring. According to
studies, first-year breeders usually do not choose less-exposed nests. This choice is
reserved for mature adults, who are not guaranteed to acquire a less-exposed nest due
to the limited number of such nests [17]. In what follows we construct a model of the
Eleonora’s falcon ecosystem in S-PALPS.
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Spatial domains. We consider two spatial domains which we model as two S-PALPS

locations: The island where the colony lives, �1, and the territory outside the island, �2.
The spatial location of the nests on the island is not crucial for our model, hence the use
of a single breeding location.

Species. To enable the modeling of the system we define two S-PALPS species in our
model: the Eleonora’s falcon (f ) and the less-exposed nests (le). We then model the
selection of less-exposed nests as a predator-prey problem.

Processes. We associate each of the above species with an S-PALPS description. To
model nests, we create a group of n less-exposed nests as LeNest :〈le, l1, n〉 such that

LeNest
def
= prey .LeNest ′ +

√
.LeNest LeNest ′ def

= release.LeNest +
√
.LeNest ′

The life cycle of a falcon begins in the newborn/juvenile state (process J0 below).
In this state an individual disperses to location �2 and waits for 4 years which, in our
model, consists of 4 occurrences of action

√
, before becoming a first-year breeder adult

(processA�
1 below). Note that not all juveniles will mature to adults. In fact, a juvenile

may die with a mortality rate of 78% [16].

J0
def
= go �2.

√
.
√
.
√
.
√
.J4 J4

def
= (0.78 : 0⊕ 0.22 : A�

1 )

Moving on to the adult population, we observe that while male adults are responsible
for choosing the nest and the female, and to hunt, in our model, for the sake of sim-
plicity, we have opted to abstract away from a falcon’s gender. We believe that this
simplification does not affect the faithfulness of the model as there is no indication that
the percentages of males and females differ significantly, nor that the probability to die
during dispersal depends on the gender, and also because adult males and females live
in pairs and are considered monogamous.

Thus we model by A the notion of an adult pair. There are two types of such adult
pairs: first-year breeders who have no experience in choosing less-exposed nests and
second-year or older adult pairs whose experience allows them to select less-exposed
nests, if such nests are available [17]. Depending on the nest that a pair chooses, there
are different probabilities to have an offspring of size 0,1,2 or 3 during the breeding
season. We adopt the reproduction rates from [22] appropriately weighted so that only
half of the offspring is produced (to account for pairs). In the model below we write
εi for the probability that an offspring of size i is produced in an exposed nest and
λi for the probability that an offspring of size i is produced in a less-exposed nest.
Furthermore, we write A1, A and M for a first-year breeder pair, a mature pair in the
phase of reproduction and a mature pair in the phase of possible mortality, respectively.
Finally, we use the superscripts �, � and � to denote a state of no nest, an exposed
nest and a less-exposed nest, respectively.

The behavior of a pair proceeds as follows. A first-year breeder pair, returns to the
island. It chooses an exposed nest and proceeds as a mature adult pair in an exposed
nest. A mature adult pair selects a less-exposed nest, if one is available (i.e. there is
an input available on channel prey) and an exposed nest, otherwise. It then produces
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offspring, leaves the island and goes through a mortality phase. If it survives it executes
action

√
and returns to its initial phase. The mortality rate of an adult pair is equal to

13%. Note that, in the mortality phase, a pair in a less-exposed nest releases its nest.

A�
1

def
= go �1.A

�
A� def

= prey?(A�, A�)

A� def
= ε0 :M� ⊕ ε1 : J0|M� ⊕ ε2 : J0|J0|M� ⊕ ε3 : J0|J0|J0|M�

A� def
= λ0 :M� ⊕ λ1 : J0|M� ⊕ λ2 : J0|J0|M� ⊕ λ3 : J0|J0|J0|M�

M� def
= go �2.(0.13 : 0⊕ 0.87 :

√
.A�)

M� def
= release.go �2. (0.13 : 0⊕ 0.87 :

√
.A�)

Our system is defined below. It consists of n nests andm adult pairs with no nest.

System
def
= (LeNest :〈le, l1, n〉|A�:〈f, l1,m〉)\{prey}

5 Analysis in PRISM

In this section, we report on some of the results we obtained by applying our method-
ology for studying the population dynamics of the Eleonora’s falcon. To begin with we
translated our PALPS model into PRISM by following the encoding presented in Sec-
tion 3. For our experiments, we took advantage of the model checking capabilities of
PRISM and we checked properties by using the model-checking by simulation option, re-
ferred to as confidence interval (CI) simulation method. The property we experimented
with is R =?[I = k]. This property is a reward-based property that computes the
average state instant reward at time k. We were interested to study the expected size of
the population. For this, we associate to each state a reward representing this size.

We were interested in studying various properties of this model. One of these proper-
ties involved assessing the stability of the model for different sizes of the initial popula-
tion. To achieve this, we considered initial populations of 20, 40 and 60 adult pairs and
we studied the growth of the population for a duration of approximately 10 years. These
results are reported in Figure 1. Subsequently, we were interested to study the compo-
sition of the population in terms of juvenile and adult pairs. In Figure 2 we present the
results obtained for an initial population of 40 adult pairs.

Another property we were interested to study is the sensitivity of the population to
changes in the local conditions. These conditions may affect the probabilities associated
with reproduction and, in particular, the survival rate of the offspring of a falcon pair. To
study this property we analyzed the impact of changing the reproduction rates in both
exposed and less-exposed nests. Specifically, we increased (decreased) the probabilities
of 0 fledglings surviving by 3% and 6% while appropriately decreasing (increasing) the
probabilities of 1, 2 and 3 fledglings surviving. These results are presented in Figure 3.
We observe that the results reveal a fair degree of stability in the evolution of the species
and a relative insensitivity to small changes in the local conditions. For a complete
presentation of the results obtained we refer the reader to [21].
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Fig. 1. Expected number of total pairs (juveniles and adults) vs time for an initial population of
20, 40 and 60 pairs of adults

Fig. 2. Expected number of total pairs, juveniles pairs and adult pairs vs time for an initial popu-
lation of 40 pairs of adults

Fig. 3. Expected number of pairs of adults vs time with an initial population of 40 pairs of adults,
for different values of the probability p that zero fledglings survive from an offspring of a pair
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6 Conclusions

In this paper we presented S-PALPS, an extension of PALPS with synchronous parallel
composition. Furthermore, we described a translation of S-PALPS into the PRISM lan-
guage and we proved its correctness. This encoding can be employed for simulating and
model checking S-PALPS systems using the PRISM tool. Furthermore, we applied our
methodology for studying the population dynamics of the Eleonora’s falcon, a species
of local conservation interest in the Mediterranean sea. We point out that for the sake
of simplicity, in this paper we have not considered the conditional construct of PALPS.
We note that the development of the synchronous semantics is orthogonal to this con-
struct. This can be observed in [21] where we present the complete framework where
synchronous parallelism and conditional behaviors are combined.

We have observed that the adoption of a synchronous parallel composition in S-
PALPS enables a more faithful model of our case study: The use of the synchronous par-
allel composition was especially useful as it separated the phases of migration (action
go �1) from the reproduction-related actions. Note that if these actions were allowed to
interleave, as in [14], the correctness of the obtained results would not be affected: in the
context of the case study, any interleaved execution is equivalent to some synchronous
execution. Nonetheless, this approach would include a lot of redundant nondeterminism.
Regarding the treatment of the multiplicity of individuals in S-PALPS, this proved to be
beneficial in the context of our case study as it allowed a more efficient translation of
populations (as opposed to individuals) into PRISM modules and it removed restrictions
that were present in our previous work.

As far as our experiments are concerned, we point out that our findings appear to
be compatible to field data collected to date. Currently, we are in the process of further
calibrating our model based on a wider range of field data and extending our analysis
on the population dynamics of the species. Furthermore, we are implementing a tool to
automatically translate PALPS systems into PRISM models. Our intention is to provide a
complete methodology that allows the user to model check classes of properties using
PRISM without the need of the user manually manipulating the PRISM code.

As future work, we are interested in applying our methodology to other case studies
from the local habitat and, in particular, to employ model checking for studying their
behavior. Finally, an interesting future research direction would be extend the work
of [10] towards the development of mean-field analysis to represent the average behav-
ior of systems within a spatially-explicit framework.
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Abstract. In this paper we use finite vector spaces (finite dimension, over finite
fields) as a non-standard computational model of linear logic. We first define
a simple, finite PCF-like lambda-calculus with booleans, and then we discuss
two finite models, one based on finite sets and the other on finite vector spaces.
The first model is shown to be fully complete with respect to the operational
semantics of the language. The second model is not complete, but we develop an
algebraic extension of the finite lambda calculus that recovers completeness. The
relationship between the two semantics is described, and several examples based
on Church numerals are presented.

1 Introduction

A standard way to study properties of functional programming languages is via denota-
tional semantics. A denotational semantics (or model) for a language is a mathematical
representation of its programs [32], and the typical representation of a term is a func-
tion whose domain and codomain are the data-types of input and output. This paper is
concerned with a non-standard class of models based on finite vector spaces.

The two languages we will consider are based on PCF [27] – the laboratory mouse
of functional programming languages. PCF comes as an extension of simply-typed
lambda-calculus with a call-by-name reduction strategy, basic types and term con-
structs, and can be easily extended to handle specific effects. Here, we define PCFf as
a simple lambda-calculus with pairs and booleans, and PCFalg

f , its extension to linear
combinations of terms.

There has been much work and progress on various denotational models of PCF,
often with the emphasis on trying to achieve full abstraction. The seminal works are
using term models [21], cpos [22] or game semantics [1], while more recent works use
quantitative semantics of linear logic [12] and discuss probabilistic extensions [10] or
non-determinism [6].

As a category, a model for a PCF language is at least required to be cartesian closed
to model internal morphisms and pairing. An expressive class of cartesian closed cat-
egories can be made of models of linear logic, by considering the (co)Kleisli category
stemming from the modality “!”. Although the models that are usually considered are
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rich and expressive [6,9,10], “degenerate” models nevertheless exist [15,24]. The con-
sequences of the existence of such models of PCF have not been explored thoroughly.

In this paper, we consider two related finitary categories: the category of finite sets
and functions FinSet and the category of finite vector spaces and linear functions
FinVec, i.e. finite-dimensional vector spaces over a finite field. The adjunction between
these two categories is known in the folklore to give a model of linear logic [23], but
the computational behavior of the corresponding coKleisli category FinVec! as a model
of PCF has not been studied until now.

The primary motivation for this work is simple curiosity: What do the vectors inter-
preting lambda calculus terms look like? Though not the focus of this paper, one could
imagine that the ability to encode programming language constructs in the category of
vector spaces might yield interesting applications. For instance, a Matlab-like program-
ming language that natively supports rich datatypes and first-class functions, all with the
same semantic status as “vectors” and “matrices.” A benefit of this design would be the
possibility of “typed” matrix programming, or perhaps sparse matrix representations
based on lambda terms and their semantics. The algebraic lambda calculus sketched in
this paper is a (rudimentary) first step in this direction. Conversely, one could imagine
applying techniques from linear algebra to lambda calculus terms. For instance, finite
fields play a crucial role in cryptography, which, when combined with programming
language semantics, might lead to new algorithms for homomorphic encryption.

The goal here is more modest, however. The objective of the paper is to study how
the two models FinSet and FinVec! fit with respect to the language PCFf and its al-
gebraic extension PCFalg

f . In particular, we consider the usual three gradually more
constraining properties: adequacy, full abstraction and full completeness. A semantics
is adequate if whenever terms of some observable type (Bool for example) are opera-
tionally equivalent then their denotations match. An adequate semantics is “reasonable”
in the sense that programs and their representations match at ground type. The seman-
tics is fully abstract if operational equivalence and equality of denotation are the same
thing for all types. In this situation, programs and their denotations are in correspon-
dence at all types, but the model can contain non-representable elements. Finally, the
semantics is fully complete if moreover, every element in the image of a type A is rep-
resentable by a term in the language. With such a semantics, the set of terms and its
mathematical representation are fully correlated. If a semantics is fully complete, then
it is fully abstract and if it is fully abstract, then it is adequate.
Results. This paper presents the first account of the interpretation of two PCF-like
languages in finite vector spaces. More specifically, we show that the category of finite
sets FinSet forms a fully complete model for the languagePCFf , and that the coKleisli
category FinVec! is adequate but not fully-abstract: this model has too many points
compared to what one can express in the language. We present several examples of
the encoding of Church numerals to illustrate the model. We then present an algebraic
extension PCFalg

f of PCFf and show that FinVec! forms a fully complete model for
this extension. We discuss the relationship between the two languages and show how to
encode the extension within PCFf .

Related Works. In the literature, finite models for lambda-calculi are commonly used.
For example, Hillebrand analyzes databases as finite models of the simply-typed lambda
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calculus [14]. Salvati presents a model based on finite sets [25], while Selinger presents
models based on finite posets [28]. Finally, Solovev [29] relate the equational theory of
cartesian closed categories with the category of finite sets.

More general than vector spaces, various categories of modules over semirings, as
standard models of linear logic have been studied as computational models: sets and
relations [6], finiteness spaces [9], probabilistic coherent spaces [10], etc.

As models of linear logic, finite vector spaces are folklore [23] and appear as side
examples of more general constructions such as Chu spaces [24] or glueing [15]. Com-
putationally, Chu spaces (and then to some extent finite vector spaces) have been used
in connection with automata [24]. Finally, recently finite vector spaces have also been
used as a toy model for quantum computation (see e.g. [16, 26]).

Algebraic lambda-calculi, that is, lambda-calculi with a vectorial structure have been
first defined in connection with finiteness spaces [11,31]. Another approach [2,3] comes
to a similar type of language from quantum computation. The former approach is call-
by-name while the latter is call-by-value. A general categorical semantics has been
developed [30] but no other concrete models have been considered.

Plan of the paper. The paper is shaped as follows. Section 2 presents a finite PCF-
style language PCFf with pairs and booleans, together with its operational semantics.
Section 3 presents the category FinSet of finite sets and functions, and discusses its
properties as a model of the language PCFf . Section 4 describes finite vector spaces
and shows how to build a model of linear logic from the adjunction with finite sets.
Section 4.4 discusses the corresponding coKleisli category as a model of PCFf and
presents some examples based on Church numerals. As PCFf is not fully-abstract,
Section 5 explains how to extend the language to better match the model. Finally, Sec-
tion 6 discusses various related aspects: the relationship between PCFf and its exten-
sion, other categories in play, and potential generalization of fields.

2 A Finite PCF-Style Lambda Calculus

We pick a minimal finite PCF-style language with pairs and booleans. We call it PCFf :
it is intrinsically typed (i.e. Church-style: all subterms are defined with their type) and
defined as follows.

M,N,P ::= x | λx.M |MN | πl(M) | πr(M) | 〈M,N 〉 | � |
tt | ff | ifM thenN elseP | let � =M inN

A,B ::= Bool | A→ B | A×B | 1.

Values, including “lazy” pairs (that is, pairs of arbitrary terms, as opposed to pairs of
values), are inductively defined by U, V ::= x | λx.M | 〈M,N 〉 | � | tt | ff. The
terms consist of the regular lambda-terms, plus specific term constructs. The terms tt
and ff respectively stand for the booleans True and False, while if− then− else−
is the boolean test operator. The type Bool is the type of the booleans. The term � is the
unique value of type 1, and let � = − in− is the evaluation of a “command”, that is,
of a term evaluating to �. The term 〈−,−〉 is the pairing operation, and πl and πr stand
for the left and right projections. The type operator (×) is used to type pairs, while (→)
is used to type lambda-abstractions and functions.
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Table 1. Typing rules for the language PCFf

Δ,x : A � x : A Δ � � : 1 Δ � tt, ff : Bool

Δ,x : A �M : B

Δ � λx.M : A→ B

Δ �M : Al × Ar

Δ � πi(M) : Ai

Δ �M : A→ B
Δ � N : A

Δ �MN : B

Δ �M : A
Δ � N : B

Δ � 〈M,N 〉 : A×B

Δ �M : Bool
Δ � N1, N2 : A

Δ � ifM thenN1 elseN2 : A

Δ �M : 1
Δ � N : A

Δ � let � = M inN : A

A typing judgment is a sequent of the formΔ �M : A, whereΔ is a typing context:
a collection of typed variables x : A. A typing judgment is said to be valid when there
exists a valid typing derivation built out of the rules in Table 1.

Note that since terms are intrinsically typed, for any valid typing judgment there is
only one typing derivation. Again because the terms are intrinsically typed, by abuse of
notation when the context is clear we useM : A instead ofΔ �M : A.

Notation 1. When considering typing judgments such as x : A � M : B and y : B �
N : C, we use categorical notation to denote the composition: M ;N stands for the

(typed) term x : A � (λy.N)M : C, also written as A
M−→ B

N−→ C. We also ex-
tend pairs to finite products as follows: 〈M1,M2, . . . 〉 is the term 〈M1, 〈M2, 〈 . . . 〉 〉 〉.
Projections are generalized to finite products with the notation πi projecting the i-th
coordinate of the product. Types are extended similarly: A × · · · × A, also written as
A×n, is defined as A× (A× (· · · )).

2.1 Small Step Semantics

The language is equipped with a call-by-name reduction strategy: a termM reduces to
a termM ′, denoted withM → M ′, when the reduction can be derived from the rules
of Table 2. We use the notation→∗ to refer to the reflexive transitive closure of→.

Lemma 2. (1) For any well-typed term M : A, either M is a value or M reduces to
some term N : A. (2) The only closed value of type 1 is � and the only closed values
of type Bool are tt and ff. (3) The language PCFf is strongly normalizing.

Proof. The fact that the language PCFf is strongly normalizing comes from the fact
that it can be easily encoded in the strongly normalizing language system F [13].

Table 2. Small-step semantics for the language PCFf

(λx.M)N → M [N/x]
let � = � inM → M

πl〈M,N 〉 → M
πr〈M,N 〉 → N

if tt thenM elseN → M
if ff thenM elseN → N

M →M ′

MN →M ′N
M →M ′

πl(M)→ πl(M
′)

M →M ′

πr(M)→ πr(M
′)

M →M ′

ifM thenN1 elseN2 → ifM ′ thenN1 elseN2

M →M ′

let � = M inN → let � = M ′ inN
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Table 3. Denotational semantics for the language PCFf

[[Δ, x : A � x : A]]set : (d, a) #−→ a

[[Δ � tt : Bool]]set : d #−→ tt

[[Δ � ff : Bool]]set : d #−→ ff

[[Δ � � : 1]]set : d #−→ �

[[Δ � 〈M,N 〉 : A×B]]set : d #−→ 〈 [[M ]]set(d), [[N ]]set(d) 〉
[[Δ �MN : B]]set : d #−→ [[M ]]set(d)([[N ]]set(d))

[[Δ � πl(M) : A]]set = [[M ]]set ;πl

[[Δ � πr(M) : B]]set = [[M ]]set ;πr

[[Δ � λx.M : A→ B]]set = d #−→ (a #→ [[M ]]set(d, a)) [[Δ � let � = M inN : A]]set = [[N ]]set

[[Δ � ifM thenN elseP : A]]set = d #−→
{
[[N ]]set(d) if [[M ]]set(d) = tt,
[[P ]]set(d) if [[M ]]set(d) = ff.

2.2 Operational Equivalence

We define the operational equivalence on terms in a standard way. A context C[−] is a
“term with a hole”, that is, a term consisting of the following grammar:

C[−] ::= x | [−] | λx.C[−] | C[−]N |MC[−] | πl(C[−]) | πr(C[−]) | 〈C[−], N 〉 |
〈M,C[−] 〉 | � | tt | ff | ifC[−] thenN elseP | ifMthenC[−] elseP |
ifM thenNelseC[−] | let � = C[−] inM | let � =M inC[−].

The hole can bind term variables, and a well-typed context is defined as for terms. A
closed context is a context with no free variables.

We say that Δ � M : A and Δ � N : A are operationally equivalent, written
M �op N , if for all closed contexts C[−] of type Bool where the hole bindsΔ, for all
b ranging over tt and ff, C[M ]→∗ b if and only if C[N ]→∗ b.

2.3 Axiomatic Equivalence

We also define an equational theory for the language, called axiomatic equivalence and
denoted with�ax, and mainly used as a technical apparatus. The relation�ax is defined
as the smallest reflexive, symmetric, transitive and fully-congruent relation verifying the
rules of Table 2, together with the rules λx.Mx �ax M and 〈πl(M), πr(M) 〉 �ax M .
A relation ∼ is said to be fully-congruent on PCFf if whenever M ∼ M ′, for all
contexts C[−] we also have C[M ] ∼ C[N ]. The two additional rules are standard
equational rules for a lambda-calculus [17].

Lemma 3. IfM : A andM → N thenM �ax N .

3 Finite Sets as a Concrete Model

Finite sets generate the full sub-category FinSet of the category Set: objects are fi-
nite sets and morphisms are set-functions between finite sets. The category is cartesian
closed [29]: the product is the set-product and the internal hom between two setsX and
Y is the set of all set-functions fromX to Y . Both sets are finite: so is the hom-set.
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We can use the category FinSet as a model for our PCF language PCFf . The de-
notation of types corresponds to the implicit meaning of the types: [[1]]set := { � },
[[Bool]]set := { tt, ff }, the product is the set-product [[A×B]]set := [[A]]set × [[B]]set,
while the arrow is the set of morphisms: [[A→ B]]set := FinSet([[A]]set, [[B]]set). The
set {tt, ff} is also written Bool. Similarly, the set {�} is also written 1. The denotation
of a typing judgment x1 : A1, . . . xn : An � M : B is a morphism [[A1]]

set × · · · ×
[[An]]

set → [[B]]set, and is inductively defined as in Table 3. The variable d is assumed to
be an element of [[Δ]]set, while a and b are elements of [[A]]set and [[B]]set respectively.

This denotation is sound with respect to the operational equivalence.

Lemma 4. IfM �ax N : A then [[M ]]set = [[N ]]set.

Theorem 5. The model is sound with respect to the operational equivalence: Suppose
thatΔ �M,N : A. If [[M ]]set = [[N ]]set thenM �op N .

Proof. Suppose thatM ��op N and let Δ be {xi : Ai}i. Then, because of Lemma 2,
there exists a context C[−] such that C[M ] →∗ tt and C[N ] →∗ ff. It follows
that (λz.C[z x1 . . . xn])(λx1 . . . xn.M)�ax tt and (λz.C[z x1 . . . xn])(λx1 . . . xn.N)
�ax ff. If the denotations ofM and N were equal, so would be the denotations of the
terms (λx1 . . . xn.M) and (λx1 . . . xn.N). Lemmas 3 and 4 yield a contradiction.

FinSet and the language PCFf are somehow two sides of the same coin. Theorems
6 and 7 formalize this correspondence.

Theorem 6 (Full Completeness). For every morphism f : [[A]]set → [[B]]set there ex-
ists a valid judgment x : A �M : B such that f = [[M ]]set.

Proof. We start by defining inductively on A two families of terms Ma : A and δa :
A→ Bool indexed by a ∈ [[A]]set, such that [[Ma]]

set = a and [[δa]]
set sends a to tt and

all other elements to ff. For the types 1 and Bool, the termsM,Mtt andMff are the
corresponding constants. The term δ is λx.�, δtt is λx.x while δff is the negation. For
the type A × B, one trivially calls the induction step. The type A → B is handled by
remembering that the set [[A]]set is finite: if g ∈ [[A→ B]]set, the termMg is the lambda-
term with argument x containing a list of if-then-else testing with δa whether x is
equal to a, and returningMg(a) if it is. The term δg is built similarly. The judgement
x : A �M : B asked for in the theorem is obtained by settingM to (Mf )x.

Theorem 7 (Equivalence). Suppose that Δ � M,N : A. Then [[M ]]set = [[N ]]set if
and only ifM �op N .

Proof. The left-to-right implication is Theorem 5. We prove the right-to-left implication
by contrapositive. Assume that [[M ]]set �= [[N ]]set. Then there exists a function f : 1→
[[A]]set and a function g : [[B]]set → [[Bool]]set such that the boolean f ; [[M ]]set; g is
different from f ; [[N ]]set; g. By Theorem 6, the functions f and g are representable by
two termsNf andNg. They generate a context that distinguishesM andN : this proves
thatM ��op N .

Corollary 8. Since it is fully complete, the semantics FinSet is also adequate and fully
abstract with respect to PCFf .
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Example 9. Consider the Church numerals based over 1: they are of type (1→ 1)→
(1 → 1). In FinSet, there is only one element since there is only one map from 1
to 1. As a consequence of Theorem 7, one can conclude that all Church numerals
λfx.f(f(· · · (fx) · · · )) of type (1 → 1) → (1 → 1) are operationally equivalent.
Note that this is not true in general as soon as the type is inhabited by more elements.

Example 10. How many operationally distinct Church numerals based over Bool are
there ? From Theorem 7, it is enough to count how many distinct denotations of Church
numerals there are in [[(Bool→ Bool)→ (Bool→ Bool)]]set. There are exactly 4 dis-
tinct maps Bool → Bool. Written as pairs (x, y) when f(tt) = x and f(ff) = y, the
maps tt , tf , ft and ff are respectively (tt, tt), (tt, ff), (ff, tt) and (ff, ff).

Then, if the Church numeral n̄ is written as a tuple (n̄(tt), n̄(tf ), n̄(ft), n̄(ff )), we
have the following equalities: 0̄ = (tf , tf , tf , tf ), 1̄ = (tt , tf , ft ,ff ), 2̄ = (tt , tf , tf ,ff ),
3̄ = (tt , tf , ft ,ff ), and one can show that for all n ≥ 1, [[n̄]]set = [[ ¯n+ 2]]set. There are
therefore only 3 operationally distinct Church numerals based on the type Bool: the
number 0̄, then all even non-null numbers, and finally all odd numbers.

4 Finite Vector Spaces

We now turn to the second finitary model that we want to use for the language PCFf :
finite vector spaces. We first start by reminding the reader about this algebraic structure.

4.1 Background Definitions

A field [19]K is a commutative ring such that the unit 0 of the addition is distinct from
the unit 1 of the multiplication and such all non-zero elements of K admit an inverse
with respect to the multiplication. A finite field is a field of finite size. The characteristic
q of a fieldK is the minimum (non-zero) number such that 1+ · · ·+1 = 0 (q instances
of 1). If there is none, we say that the characteristic is 0. For example, the field of real
numbers has characteristic 0, while the field F2 consisting of 0 and 1 has characteristic
2. The order of a finite field is the order of its multiplicative group.

A vector space [18] V over a field K is an algebraic structure consisting of a set
|V |, a binary addition + and a scalar multiplication (·) : K × V → V , satisfying the
equations of Table 6 (taken unordered). The dimension of a vector space is the size
of the largest set of independent vectors. A particular vector space is the vector space
freely generated from a space X , denoted with 〈X〉: it consists of all the formal finite
linear combinations

∑
i αi · xi, where xi belongs toX and αi belongs to K . To define

a linear map f on 〈X〉, it is enough to give its behavior on each of the vector x ∈ X :
the image of

∑
i αi · xi is then by linearity imposed to be

∑
i αi · f(xi).

In this paper, the vector spaces we shall concentrate on are finite vector spaces, that
is, vector spaces of finite dimensions over a finite field. For example, the 2-dimensional
space F2 × F2 consists of the four vectors ( 00 ) , (

0
1 ) , (

1
0 ) , (

1
1 ) and is a finite vector

space. It is also the vector space freely generated from the 2-elements set {tt, ff}: each
vectors respectively corresponds to 0, tt, ff, and tt+ ff.
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Once a given finite fieldK has been fixed, the category FinVec has for objects finite
vector spaces over K and for morphisms linear maps between these spaces. The cate-
gory is symmetric monoidal closed: the tensor product is the algebraic tensor product,
the unit of the tensor is I = K = 〈�〉 and the internal hom between two spaces U and
V is the vector space of all linear functionsU�V between U and V . The addition and
the scalar multiplication over functions are pointwise.

4.2 A Linear-Non-Linear Model

It is well-known [20] that the category of finite sets and functions and the category of
finite vector spaces and linear maps form an adjunction

FinSet
F ��

FinVec.
G

�� (1)

The functor F sends the set X to the vector space 〈X〉 freely generated from X and
the set-map f : X → Y to the linear map sending a basis element x ∈ X to the base
element f(x). The functor G sends a vector space U to the same space seen as a set,
and consider any linear function as a set-map from the corresponding sets.

This adjunction makes FinVec into a model of linear logic [23]. Indeed, the adjunc-
tion is symmetric monoidal with the following two natural transformations:

mX,Y : 〈X × Y 〉 → 〈X〉 ⊗ 〈Y 〉
(x, y) �→ x⊗ y,

m1 : 〈1〉 → I
� �→ 1.

This makes a linear-non-linear category [4], equivalent to a linear category, and is a
model of intuitionistic linear logic [5].

4.3 Model of Linear Logic

The adjunction in Eq. (1) generates a linear comonad on FinVec. If A is a finite vector
space, we define the finite vector space !A as the vector space freely generated from the

Table 4. Modeling the language PCFf in FinVec

[[Δ,x : A � x : A]]vec : d⊗ ba #−→ a

[[Δ � tt : Bool]]vec : d #−→ tt

[[Δ � ff : Bool]]vec : d #−→ ff

[[Δ � � : 1]]vec : d #−→ �

[[Δ � 〈M,N 〉 : A×B]]vec : d #−→ [[M ]]vec(d)⊗ [[N ]]vec(d)

[[Δ �MN : B]]vec : d #−→ [[M ]]vec(d)([[N ]]vec(d))

[[Δ � πl(M) : A]]vec = [[M ]]vec ;πl

[[Δ � πr(M) : B]]vec = [[M ]]vec ;πr

[[Δ � λx.M : A→ B]]vec = d #−→ (ba #→ [[M ]]vec(d⊗ ba))

[[Δ � let � = M inN : A]]vec = d #−→ α · [[N ]]vec(d) where [[M ]]vec(d) = α · �.

[[Δ � ifM thenN elseP : A]]vec = d #−→ α · [[N ]]vec(d) + β · [[P ]]set(d)

where [[Δ �M : Bool]]vec(d) = α · tt+ β · ff.
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set {bv}v∈A: it consists of the space 〈bv | v ∈ A〉. If f : A → B is a linear map, the
map !f : !A → !B is defined as bv �→ bf(v). The comultiplication and the counit of
the comonad are respectively δA :!A → !!A and εA : !A → A where δA(bv) = bbv
and εA(bv) = v. Every element !A is a commutative comonoid when equipped with the
natural transformationsΔA : !A→ !A⊗ !A and ♦A : !A→ I whereΔA(bv) = bv⊗bv
and ♦(bv) = 1. This makes the category FinVec into a linear category.

In particular, the coKleisli category FinVec! coming from the comonad is cartesian
closed: the product of A and B is A × B, the usual product of vector spaces, and
the terminal object is the vector space 〈0〉. This coKleisli category is the usual one: the
objects are the objects of FinVec, and the morphisms FinVec!(A,B) are the morphisms
FinVec(!A,B). The identity !A→ A is the counit and the composition of f : !A→ B
and !B → C is f ; g := !A

δA−−→ !!A
!f−→ !B

g−→ C.
There is a canonical full embedding E of categories sending FinVec! on FinSet.

It sends an object U to the set of vectors of U (i.e. it acts as the forgetful functor on
objects) and sends the linear map f : !U → V to the map v �→ f(bv).

This functor preserves the cartesian closed structure: the terminal object 〈0〉 of
FinVec! is sent to the set containing only 0, that is, the singleton-set 1. The product
space U × V is sent to the set of vectors {〈u, v 〉 | u ∈ U, v ∈ V }, which is exactly the
set-product of U and V . Finally, the function space !U → V is in exact correspondence
with the set of set-functions U → V .

Remark 11. The construction proposed as side example by Hyland and Schalk [15]
considers finite vector spaces with a field of characteristic 2. There, the modality is
built using the exterior product algebra, and it turns out to be identical to the functor we
use in the present paper. Note though, that their construction does not work with fields
of other characteristics.

Remark 12. Quantitative models of linear logic such as finiteness spaces [9] are also
based on vector spaces; however, in these cases the procedure to build a comonad does
not play well with the finite dimension the vector spaces considered in this paper: the
definition of the comultiplication assumes that the space !A is infinitely dimensional.

4.4 Finite Vector Spaces as a Model

Since FinVec! is a cartesian closed category, one can model terms of PCFf as linear
maps. Types are interpreted as follows. The unit type is [[1]]vec := {α · � | α ∈ K }.
The boolean type is [[Bool]]vec := {

∑
iαi · tt + βi · ff | αi, βi ∈ K }. The product is

the usual product space: [[A×B]]vec := [[A]]vec × [[B]]vec, whereas the arrow type is
[[A→ B]]vec := FinVec(![[A]]vec, [[B]]vec). A typing judgment x1 : A1, . . . , xn : An �
M : B is represented by a morphism of FinVec of type

![[A1]]
vec ⊗ · · · ⊗ ![[An]]

vec −→ [[B]]vec, (2)

inductively defined as in Table 4. The variable d stands for a base element bu1⊗. . .⊗bun

of [[Δ]]vec, and ba is a base element of [[A]]vec. The functions πl and πr are the left and
right projections of the product.
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Note that because of the equivalence between !(A×B) and !A ⊗ !B, the map in
Eq. (2) is a morphism of FinVec!, as desired.

Example 13. In FinSet, there was only one Church numeral based on type 1. In
FinVec!, there are more elements in the corresponding space !(!1 � 1) � (!1 � 1)
and we get more distinct Church numerals.

Assume that the finite field under consideration is the 2-elements field F2 = {0, 1}.
Then [[1]]vec = 1 = {0 · �, 1 · �} = {0, �}. The space !1 is freely generated from the
vectors of 1: it therefore consists of just the four vectors {0, b0, b, b0 + b}. The space
of morphisms [[1→ 1]]vec is the space !1 � 1. It is generated by two functions: f0
sending b0 to � and b to 0, and f sending bv to v. The space therefore also contains 4
vectors: 0, f0, f and f0+f. Finally, the vector space !(!1�1) is freely generated from
the 4 base elements b0, bf0 , bf� and bf0+f� , therefore containing 16 vectors. Morphisms
!(!1 � 1) � (!1 � 1) can be represented by 2 × 4 matrices with coefficients in F2.

·
( ·

·
·
·
·
·
· )

f�

f0

b0 bf0bf�bf0+f�

The basis elements bv are ordered as above, as are the basis el-
ements fw, as shown on the right. The Church numeral 0̄ sends
all of its arguments to the identity function, that is, f. The
Church numeral 1̄ is the identity. So their respective matrices
are ( 0 0 0 0

1 1 1 1 ) and ( 0 1 0 1
0 0 1 1 ). The next two Church numerals are

2̄ = ( 0 0 0 1
0 1 1 1 ) and 3̄ = ( 0 1 0 1

0 0 1 1 ), which is also 1̄. So FinVec! with the field of charac-
teristic 2 distinguishes null, even and odds numerals over the type !1.

Note that this characterization is similar to the FinSet Example 10, except that there,
the type over which the Church numerals were built was Bool. Over 1, Example 9
stated that all Church numerals collapse.

Example 14. The fact that FinVec! with the field of characteristic 2 can be put in
parallel with FinSet when considering Church numerals is an artifact of the fact that
the field has only two elements. If instead one chooses another field K = Fp =
{0, 1, . . . , p − 1} of characteristic p, with p prime, then this is in general not true
anymore. In this case, [[1]]vec = {0, �, 2 · �, . . . , (p − 1) · �}, and !1 � 1 has di-
mension p with basis elements fi sending bi· �→ � and bj· �→ 0 when i �= j. It
therefore consists of pp vectors. Let us represent a function f : !1� 1 with x0 . . .xp−1

where f(bi·) = xi · �. A morphism !(!1 � 1) � (!1 � 1) can be represented with
a pp × p matrix. The basis elements bx0...xp−1

of !(!1 � 1) are ordered lexicographi-
cally: b0...00, b0...01, b0...02, . . . , b0...0(p−1), . . . , b(p−1)...(p−1), as are the basis elements
f0, f1, . . . , fp−1.

The Church numeral 0̄ is again the constant function returning the identity, that is,∑
i i ·fi. The numeral 1̄ sends x0 · · · xp−1 onto the function sending bi· onto xi ·�. The

numeral 2̄ sends x0 · · · xp−1 onto the function sending bi· onto xxi · �. The numeral 3̄
sends x0 · · ·xp−1 onto the function sending bi· onto xxxxi

· �. And so on.
In particular, each combination x0 · · · xp−1 can be considered as a function x :

{0, . . . p − 1} → {0, . . . p − 1}. The sequence (x0, x1, x2, . . .) eventually loops. The
order of the loop is lcm(p), the least common multiple of all integers 1, . . . , p, and for
all n ≥ p − 1 we have xn = xn+lcm(p): there are lcm(p) + p − 1 distinct Church
numerals in the model FinVec! with a field of characteristic p prime.

For p = 2 we recover the 3 distinct Church numerals. But for p = 3, we deduce that
there are 8 distinct Church numerals (the 8 corresponding matrices are reproduced in
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Table 5. The 8 Church numerals over type 1 in FinVec! with K = F3

0 =(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

) 1 =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 2 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

)

2 + 6n =(
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 0 1 2 1 1 1 1 1 1 0 1 2 2 2 2 1 1 1 0 1 2
0 0 2 0 1 2 0 2 2 1 0 2 1 1 2 1 2 2 2 0 2 2 1 2 2 2 2

) 3 + 6n =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 2 0 2 2 1 2 2 2 2
0 0 0 1 1 1 0 2 2 0 0 0 1 1 1 1 2 2 0 1 2 1 1 1 2 2 2
0 0 2 0 1 2 0 1 2 0 1 2 1 1 2 2 1 2 0 2 2 0 1 2 0 1 2

)

4 + 6n =(
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 0 2 2 0 1 2 0 1 2
0 0 0 1 1 1 0 1 2 1 1 1 1 1 1 2 1 2 2 0 2 1 1 1 0 1 2
0 0 2 0 1 2 0 2 2 1 0 2 1 1 2 0 2 2 2 1 2 2 1 2 2 2 2

) 5 + 6n =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 1 2 2 1 2 2 1 2 2 2 2
0 0 0 1 1 1 0 2 2 0 0 0 1 1 1 0 2 2 0 2 2 1 1 1 2 2 2
0 0 2 0 1 2 0 1 2 0 1 2 1 1 2 1 1 2 0 0 2 0 1 2 0 1 2

)

6 + 6n =(
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 2 0 0 2 0 1 2 0 1 2
0 0 0 1 1 1 0 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 0 1 2
0 0 2 0 1 2 0 2 2 1 0 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 2

) 7 + 6n =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 2 2
0 0 0 1 1 1 0 2 2 0 0 0 1 1 1 2 2 2 0 0 2 1 1 1 2 2 2
0 0 2 0 1 2 0 1 2 0 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 1 2

)

Table 5). As there is almost a factorial function, the number of distinct Church numerals
grows fast as p grows: With F5, there are 64 distinct numerals, and with F7 there are
426 distinct numerals.

Example 15. Let us briefly reprise Example 10 in the context of FinVec!. Even with
a field of characteristic 2, the vector space [[(Bool→ Bool)→ (Bool→ Bool)]]vec

is relatively large: Bool has dimension 2 and consists of 4 vectors, !Bool then has
dimension 4 and consists of 16 vectors. The dimension of the homset !Bool� Bool

is 8, and it contains 28 = 256 vectors. Using the representation of the two previous
examples, a Church numeral is then a matrix of size 256× 8.

Let us represent a function !Bool � Bool as a tuple (xkij)i,j,k lexicographically
ordered x000, x

1
00, x

0
01, x

1
01, x

0
10, x

1
10, x

0
11, x

1
11, representing the map sending bi·tt+j·ff to

x0ij · tt+ x1ij · ff. These form the basis elements of the range of the matrix. The domain
of the matrix consists of all the 256 combinations of 0/1 values that these can take.
Ordered lexicographically, they form the basis of the domain of the matrix.

As before, the Church numeral 0̄ is constant while 1̄ is the identity. The numeral 2̄
sends each of the 8-tuples (xkij)i,j,k to the 8-tuple (x0

x0
a,b,x

1
a,b
, x1

x0
a,b,x

1
a,b

)a,b∈{0,1}, and

so forth. So for example, the negation sending ba·tt+b·ff to a · ff + b · tt is the 8-tuple
(0, 0, 1, 0, 0, 1, 1, 1) and is sent by 2̄ to the tuple (0, 0, 0, 1, 1, 0, 1, 1) which is indeed
the identity.

If one performs the calculation, one finds out that in FinVec!, over the type Bool,
there are exactly 15 distinct Church numerals. The numerals 0̄, 1̄ and 2̄ are uniquely
determined, and then the semantics distinguishes the equivalence classes {i+12n | n ∈
N}, for i = 3, 4, . . .14.

4.5 Properties of the FinVec Model

As shown in the next results, this semantics is both sound and adequate with respect
to the operational equivalence. Usually adequacy uses non-terminating terms. Because
the language is strongly normalizing, we adapt the notion. However, because there are
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usually more maps between [[A]]vec and [[B]]vec than between [[A]]set and [[B]]set (as
shown in Examples 13, 14 and 15), the model fails to be fully abstract.

Lemma 16. IfM �ax N : A then [[M ]]vec = [[N ]]vec.

Theorem 17. If Δ �M,N : A and [[M ]]vec = [[N ]]vec thenM �op N .

Proof. The proof is similar to the proof of Theorem 5 and proceeds by contrapositive,
using Lemmas 2, 2, 3 and 16.

Theorem 18 (Adequacy). Given two closed termsM and N of type Bool, [[M ]]vec =
[[N ]]vec if and only ifM �op N .

Proof. The left-to-right direction is Theorem 17. For the right-to-left direction, since
the terms M and N are closed of type Bool, one can choose the context C[−] to be
[−], and we haveM →∗ b if and only if N →∗ b. From Lemma 2, there exists such a
boolean b: we deduce from Lemma 3 thatM �ax N . We conclude with Lemma 16.

Remark 19. The model FinVec! is not fully abstract. Indeed, consider the two valid
typing judgments x : Bool � tt : Bool and x : Bool � ifx then tt elsett : Bool.
The denotations of both of these judgments are linear maps ![[Bool]]vec → [[Bool]]vec.
According to the rules of Table 4, the denotation of the first term is the constant function
sending all non-zero vectors b− to tt.

For the second term, suppose that v ∈ ![[Bool]]vec is equal to
∑

i γi · bαi·tt+βi·ff.
Let ν =

∑
i γi(αi + βi). Then since [[x : Bool � x : Bool]]vec(v) = ν, the denotation

of the second term is the function sending v to ν · [[x : Bool � tt : Bool]]vec(v), equal
to ν · tt from what we just discussed. We conclude that if v = b0, then ν = 0: the
denotation of x : Bool � ifx thentt elsett : Bool sends b0 to 0.

Nonetheless, they are clearly operationally equivalent in PCFf since their deno-
tation in FinSet is the same. The language is not expressive enough to distinguish be-
tween these two functions. Note that there exists operational settings where these would
actually be different, for example if we were to allow divergence.

Remark 20. Given a term A, another question one could ask is whether the set of
terms M : A in PCFf generates a free family of vectors in the vector space [[A]]vec.
It turns out not: The field structure brought into the model introduces interferences,
and algebraic sums coming from operationally distinct terms may collapse to a repre-
sentable element. For example, supposing for simplicity that the characteristic of the
field is q = 2, consider the terms Ttt,tt, Tff,ff, Ttt,ff and Tff,tt defined as Ty,z =
λx.if x theny elsez, all of types Bool → Bool. They are clearly operationally dis-
tinct, and their denotations live in !Bool � Bool. They can be written as a 2 × 4
matrices along the bases (b0, btt, bff, btt+ff) for the domain and (tt, ff) for the range.
The respective images of the 4 terms are ( 0 1 1 0

0 0 0 0 ) , ( 0 0 0 0
0 1 1 0 ), (

0 1 0 1
0 0 1 1 ), (

0 0 1 1
0 1 0 1 ) and

clearly, [[Ttt,tt]]vec = [[Tff,ff]]
vec + [[Ttt,ff]]

vec + [[Tff,tt]]
vec.

So if the model we are interested in is FinVec!, the language is missing some struc-
ture to correctly handle the algebraicity.
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Table 6. Rewrite system for the algebraic fragment of PCFalg
f

α ·M + β ·M → (α+ β) ·M M +N → N +M (M +N) + P →M + (N + P )

α ·M +M → (α+ 1) ·M 0 ·M → 0 1 ·M →M α · (M +N)→ α ·M + α ·N
M +M → (1 + 1) ·M α · 0→ 0 0 +M →M α · (β ·M)→ (αβ) ·M

5 An Algebraic Lambda Calculus

To solve the problem, we extend the language PCFf by adding an algebraic structure
to mimic the notion of linear distribution existing in FinVec!. The extended language
PCFalg

f is a call-by-name variation of [2, 3] and reads as follows:

M,N,P ::= x | λx.M |MN | πl(M) | πr(M) | 〈M,N 〉 | � | tt | ff |
ifM thenN elseP | let� =M inN | 0 |M +N | α ·M,

A,B ::= 1 | Bool | A→ B | A×B.

The scalar α ranges over the field. The values are now U, V ::= x |λx.M | 〈M,N 〉 |
� | tt | ff | 0 |U + V |α · U.. The typing rules are the same for the regular constructs.
The new constructs are typed as follows: for all A, Δ � 0 : A, and provided that
Δ � M,N : A, then Δ � M + N : A and Δ � α ·M : A. The rewrite rules are
extended as follows.

1) A set of algebraic rewrite rules shown in Table 6. We shall explicitly talk about
algebraic rewrite rules when referring to these extended rules. The top row consists of
the associativity and commutativity (AC) rules. We shall use the term modulo AC when
referring to a rule or property that is true when not regarding AC rules. For example,
modulo AC the term � is in normal form and α ·M + (N +α ·P ) reduces to α · (M +
P ) +N . The reduction rules from Γ will be called non-algebraic.

2) The relation between the algebraic structure and the other constructs: one says
that a construct c(−) is distributive when for allM,N , c(M +M) → c(M) + c(N),
c(α ·M)→ α · c(M) and c(0) → 0. The following constructs are distributive: (−)P ,
if (−) thenP1 elseP2, πi(−), let� = (−) inN , and the pairing construct factors:
〈M,N 〉 + 〈M ′, N ′ 〉 → 〈M +M ′, N +N ′ 〉, α · 〈M,N 〉 → 〈α ·M,α ·N 〉 and
0A×B → 〈 0A, 0B 〉.
3) Two congruence rules. IfM →M ′, thenM +N →M ′+N and α ·M → α ·M ′.

Remark 21. Note that if (M1+M2)(N1+N2) reduces toM1(N1+N2)+M2(N1+
N2), it does not reduce to (M1 +M2)N1 + (M1 +M2)N2. If it did, one would get
an inconsistent calculus [3]. For example, the term (λx.〈x, x 〉)(tt+ ff) would reduce
both to 〈 tt, tt 〉+〈 ff, ff 〉 and to 〈 tt, tt 〉+〈 ff, ff 〉+〈 tt, ff 〉+〈 ff, tt 〉. We’ll come
back to this distinction in Section 6.3.

The algebraic extension preserves the safety properties, the characterization of values
and the strong normalization. Associativity and commutativity induce a subtlety.

Lemma 22. The algebraic fragment of PCFalg
f is strongly normalizing modulo AC.
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Proof. The proof can be done as in [3], using the same measure on terms that decreases
with algebraic rewrites. The measure, written a, is defined by a(x) = 1, a(M +N) =
2 + a(M) + a(N), a(α ·M) = 1 + 2a(M), a(0) = 0.

Lemma 23 (Safety properties mod AC). A well-typed termM : A is a value or, if not,
reduces to some N : A via a sequence of steps among which one is not algebraic.

Lemma 24. Any value of type 1 has AC-normal form 0, � or α · �, with α �= 0, 1.

Lemma 25. Modulo AC, PCFalg
f is strongly normalizing.

Proof. The proof is done by defining an intermediate language PCFf int where scalars
are omitted. Modulo AC, this language is essentially the language λ−wLK→ of [7], and
is therefore SN. Any term of PCFalg

f can be re-written as a term of PCFf int . With

Lemma 23, by eliminating some algebraic steps a sequence of reductions in PCFalg
f

can be rewritten as a sequence of reductions in PCFf int . We conclude with Lemma 22,
saying there is always a finite number of these eliminated algebraic rewrites.

5.1 Operational Equivalence

As for PCFf , we define an operational equivalence on terms of the language PCFalg
f .

A context C[−] for this language has the same grammar as for PCFf , augmented with
algebraic structure: C[−] ::= α · C[−] | C[−] +N |M + C[−] | 0.

For PCFalg
f , instead of using closed contexts of type Bool, we shall use contexts

of type 1: thanks to Lemma 24, there are distinct normal forms for values of type 1,
making this type a good (and slightly simpler) candidate.

We therefore say that Δ � M : A and Δ � N : A are operationally equivalent,
writtenM �op N , if for all closed contextsC[−] of type 1 where the hole bindsΔ, for
all b normal forms of type 1, C[M ]→∗ b if and only if C[N ]→∗ b.

5.2 Axiomatic Equivalence

The axiomatic equivalence on PCFalg
f consists of the one of PCFf , augmented with

the added reduction rules.

Lemma 26. IfM : A andM → N thenM �ax N .

5.3 Finite Vector Spaces as a Model

The category FinVec! is a denotational model of the language PCFalg
f . Types are inter-

preted as for the language PCFf in Section 4.4. Typing judgments are also interpreted
in the same way, with the following additional rules. First, [[Δ � 0 : A]]vec = 0. Then
[[Δ � α ·M : A]]vec = α · [[Δ �M : A]]vec. Finally, we have [[Δ �M +N : A]]vec =
[[Δ �M : A]]vec + [[Δ � N : A]]vec.

Remark 27. With the extended term constructs, the language PCFalg
f does not share

the drawbacks of PCFf emphasized in Remark 19. In particular, the two valid typing
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judgments x : Bool � tt : Bool and x : Bool � ifx thentt elsett : Bool are now
operationally distinct. For example, if one chooses the context C[−] = (λx.[−])0, the
term C[tt] reduces to tt whereas the term C[ifx then tt elsett] reduces to 0.

Lemma 28. IfM �ax N : A in PCFalg
f then [[M ]]vec = [[N ]]vec.

Theorem 29. Let Δ � M,N : A be two valid typing judgments in PCFalg
f .

If [[M ]]vec = [[N ]]vec then we also haveM �op N .

Proof. The proof is similar to the proof of Theorem 5: Assume M ��op N . Then
there exists a context C[−] that distinguishes them. The call-by-name reduction pre-
serves the type from Lemma 23, and C[M ] and C[N ] can be rewritten as the terms
(λy.C[y x1 . . . xn])λx1 . . . xn.M and (λy.C[y x1 . . . xn])λx1 . . . xn.N , and these are
axiomatically equivalent to distinct normal forms, from Lemmas 25 and 26. We con-
clude from Lemmas 26 and 28 that the denotations ofM andN are distinct.

5.4 Two Auxiliary Constructs

Full completeness requires some machinery. It is obtained by showing that for every
typeA, for every vector v in [[A]]vec, there are two termsMA

v : A and δAv : A→ 1 such
that [[MA

v ]]vec = v and [[δAv ]]
vec sends bv to � and all other b−’s to 0.

We first define a family of terms expi : 1 → 1 inductively on i: exp0 = λx.� and
expi+1 = λx.let � = x in expi(x). One can show that [[expi(α · �)]]vec = αi · �.
Then assume that o is the order of the field. Let iszero : 1→ 1 be the term expo. The
denotation of iszero is such that [[izero(α · �)]]vec = 0 if α = 0 and � otherwise.

The mutually recursive definitions of δAv andMA
v read as follows.

At type A = 1. The termM1
α· is simply α · �. The term δ1α· is λx.iszero(x−α · �).

At type A = Bool. As for the type 1, the term M Bool
α·tt+β·ff is simply α · tt +

β · ff. The term δBoolα·tt+β·ff is reusing the definition of δ1: it is the term λx.let � =

δ1α·(ifx then � else0) in δ
1
β·(ifx then 0 else�).

At type A = B × C. If v ∈ [[A]]vec = [[B]]vec × [[C]]vec, then v = 〈u,w 〉, with
u ∈ [[B]]vec and w ∈ [[C]]vec. By induction, one can constructMB

u andMC
w : the term

MB×C
v is 〈MB

u ,M
C
w 〉. Similarly, one can construct the terms δBu and δCw : the term

δB→C
v is λx.let � = δBu πl(x) in δ

C
w πr(x).

At type A = B → C. Consider f ∈ [[A]]vec = ![[B]]vec � [[C]]vec. The domain of
f is finite-dimensional: let {bui}i=1...n be its basis, and let wi be the value f(bui).
Then, using the terms δBui

andMC
wi

, one can defineMB→C
v as the term

∑
i λx.let � =

δBui
x inMC

wi
. Similarly, one can construct δCwi

and MB
ui

, and from the construction in

the previous paragraph we can also generate δC
×n

〈w1,...wn 〉 : C×n → Bool. The term

δB→C
v is then defined as λf.δC

×n

〈w1,...wn 〉 〈 f MB
u1
, . . . , f MB

u1
〉.

5.5 Full Completeness

We are now ready to state completeness, whose proof is simply by observing that any
v ∈ [[A]]vec can be realized by the termMA

v : A.
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Theorem 30 (Full Completeness). For any type A, any vector v of [[A]]vec in FinVec!
is representable in the language PCFalg

f .

Theorem 31. For allM andN ,M �op N if and only if [[M ]]vec = [[N ]]vec.

A corollary of the full completeness is that the semantics FinVec is also adequate
and fully abstract with respect to PCFalg

f .

6 Discussion

6.1 Simulating the Vectorial Structure

As we already saw, there is a full embedding of category E : FinVec! ↪→ FinSet. This
embedding can be understood as “mostly” saying that the vectorial structure “does not
count” in FinVec!, as one can simulate it with finite sets. Because of Theorems 7 and 31,
on the syntactic side algebraic terms can also be simulated by the regular PCFf .

In this section, for simplicity, we assume that the field is F2. In general, it can be any
finite size provided that the regular lambda-calculus PCFf is augmented with q-bits,
i.e. base types with q elements (where q is the characteristic of the field).

Definition 32. The vec-to-set encoding of a type A, written VtoSA, is defined induc-
tively as follows: VtoS(1) = Bool, VtoS(Bool) = Bool × Bool, VtoS(A × B) =
VtoS(A)×VtoS(B), and VtoS(A→ B) = VtoS(A)→ VtoS(B).

Theorem 33. There are two typing judgments x : A � φvecA : VtoS(A) and x :

VtoS(A) � φ̄vecA : A, inverse of each other, in PCFalg
f such that any typing judg-

ment x : A � M : B can be factored into A
φvec
A−−−→ VtoS(A)

M̃−→ VtoS(B)
φ̄vec
B−−−→ B,

where M̃ is a regular lambda-term of PCFf .

Proof. The two terms φvecA and φ̄vecA are defined inductively on A. For the definition of
φvecBool we are reusing the term δv of Section 5.4. The definition is in Table 7

6.2 Categorical Structures of the Syntactic Categories

Out of the language PCFf one can define a syntactic category: objects are types and
morphisms A → B are valid typing judgments x : A � M : B modulo operational

Table 7. Relation between PCFf and PCFalg
f

φvec
1 = let � = δ0x in tt+ let � = δ�x in ff φ̄vec

1 = ifx then 0 else �
φvec
Bool = let � = δ0x in 〈 tt, tt 〉 + let � = δttx in 〈 tt, ff 〉

+ let � = δffx in 〈 ff, tt 〉+ let � = δtt+ffx in 〈 ff, ff 〉
φ̄vec
Bool = if (πlx) then (if (πrx) then 0 else tt)else (if (πrx) then ff else tt+ ff)

φvec
B×C = 〈 x;πl;φ

vec
B , x;πr;φ

vec
C 〉,

φ̄vec
B×C = 〈 x;πl; φ̄

vec
B , x;πr; φ̄

vec
C 〉,

φvec
B→C = λy.x(y; φ̄vec

B );φvec
C ,

φ̄vec
B→C = λy.x(y;φvec

B ); φ̄vec
C .
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equivalence. Because of Theorem 7, this category is cartesian closed, and one can easily
see that the product of x : A � M : B and x : A � N : C is 〈M,N 〉 : B × C, that
the terminal object is � : 1, that projections are defined with πl and πr, and that the
lambda-abstraction plays the role of the internal morphism.

The language PCFalg
f almost defines a cartesian closed category: by Theorem 31,

it is clear that pairing and lambda-abstraction form a product and an internal hom.
However, it is missing a terminal object (the type 1 doesn’t make one as x : A � 0 : 1
and x : A � � : 1 are operationally distinct). There is no type corresponding to the
vector space 〈0〉. It is not difficult, though, to extend the language to support it: it is
enough to only add a type 0. Its only inhabitant will then be the term 0: it make a
terminal object for the syntactic category.

Finally, Theorem 33 is essentially giving us a functor PCFalg
f → PCFf corre-

sponding to the full embedding E. This makes a full correspondence between the two
models FinSet and FinVec!, and PCFf and PCFalg

f , showing that computationally
the algebraic structure is virtually irrelevant.

6.3 (Co)Eilenberg-Moore Category and Call-by-value

From a linear category with modality ! there are two canonical cartesian closed cate-
gories: the coKleisli category, but also the (co)Eilenberg-Moore category: here, objects
are still those of FinVec, but morphisms are now !A→ !B.

According to [30], such a model would correspond to the call-by-value (or, as coined
by [8] call-by-base) strategy for the algebraic structure discussed in Remark 21.

6.4 Generalizing to Modules

To conclude this discussion, let us consider a generalization of finite vector spaces to
finite modules over finite semi-rings.

Indeed, the model of linear logic this paper uses would work in the context of a finite
semi-ring instead of a finite field, as long as addition and multiplication have distinct
units. For example, by using the semiring {0, 1} where 1 + 1 = 1 one recover sets
and relations. However, we heavily rely on the fact that we have a finite field K in the
construction of Section 5.4, yielding the completeness result in Theorem 30.

This particular construction works because one can construct any function between
any two finite vector spaces as polynomial, for the same reason as any functionK → K
can be realized as a polynomial.
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Abstract. In this paper we develop and study the Recursive Weighted Logic
(RWL), a multi-modal logic that expresses qualitative and quantitative properties
of labelled weighted transition systems (LWSs). LWSs are transition systems la-
belled with actions and real-valued quantities representing the costs of transitions
with respect to various resources. RWL uses first-order variables to measure lo-
cal costs. The main syntactic operators are similar to the ones of timed logics
for real-time systems. In addition, our logic is endowed, with simultaneous re-
cursive equations, which specify the weakest properties satisfied by the recursive
variables. We prove that unlike in the case of the timed logics, the satisfiability
problem for RWL is decidable. The proof uses a variant of the region construction
technique used in literature with timed automata, which we adapt to the specific
settings of RWL. This paper extends previous results that we have demonstrated
for a similar but much more restrictive logic that can only use one variable for
each type of resource to encode logical properties.

Keywords: labelled weighted transition system, multi-modal logic, maximal
fixed point computation.

1 Introduction

For industrial practice, especially in the area of embedded systems, an essential prob-
lem is how to deal with the high complexity of the systems, while still meeting the
requirements of correctness, predictability, performance and also resource constraints.
In this respect, for embedded systems, verification should not only consider functional
properties but also non-functional properties such as those related to resource con-
straints. Within the area of model checking a number of state-machine based mod-
elling formalisms have emerged, which allow for such quantitative properties to be
expressed. For instance, the timed automata [AD90] and its extensions to weighted
timed automata [BFH+01, ATP01] allow time-constraints to be modelled and efficiently
analysed.

In order to specify and reason about not only the qualitative behaviours of (embed-
ded) systems but also about their quantitative consumptions of resources, we consider a
multi-modal logic – Recursive Weighted Logic (RWL) – defined for a semantics based
on labelled weighted transition systems (LWS). Our notion of weighted transition sys-
tems is more than a simple instance of weighted automata [DKV09], since an LWS can
also be infinite or/and infinitely branching. The transitions of LWSs are labelled with
both actions and real numbers. The numbers represent the costs of the corresponding
transitions in terms of resources. In order to use a variant of the region construction
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technique developed for timed automata in [AD90, ACD90], we only consider non-
negative labels in this paper.

RWL is an extension of the weighted modal logic [LM13] with only maximal fixed
points. The maximal fixed points which are defined by simultaneous recursive equations
[Lar90, CKS92, CS93], allows us to encode properties of infinite behaviours including
safety and cost-bounded liveness. They specify the weakest properties satisfied by the
recursive variables. RWL is also endowed with modal operators that predicate about the
values of resource-variables, which allow us to specify and reason about the quantitative
properties related to resources, e.g., energy and time. While in an LWS we can have
real-valued labels, the modalities of the logic only encode rational values. This will not
restrict too much the expressive power of RWL, since we can characterize a transition
using an infinite convergent sequences of rationals that approximate the real-valued
resource.

To encode various resource-constrains in RWL, we use resource-variables, similar
to the clock-variables used in the timed logics [ACD93a, HNSY92, AILS07]. We use
resource valuation to assign non-negative real values to resource-variables. Previously,
we restricted our attention to only one resource-variable for each type of resources
[LMX14]. This guaranteed the decidability of the logic and the finite model property.
However, this restriction bounds the expressiveness of the logic. For example, consider
a system where one cannot consume one or more than one unit of energy. On the other
hand, the system is required to do some action infinitely often which costs non-zero
amount of energy. This system cannot be specified in the logic with only one resource-
variable for each type of resources, because we need two resource-variables to measure
the same resource – energy in this example. Here, we allow multiple resource-variables
for each type of resource, which measure the resource in different ways. In this paper
we only discuss the event related resource-variables. More precisely, for each type of
resource and each action, we associate one resource-variable. Every time the system
performs this action, all the resource-variables associated to this action are reset after the
corresponding transition, meaning that the resource valuation will map those resource-
variables to zero. This is useful for encoding various interesting scenarios.

Even though RWL does not enjoy the finite model property, we may apply a variant
of the region construction technique developed for timed automata [AD90, ACD90,
LLW95], to obtain symbolic LWSs of the satisfiable formulas. These symbolic LWSs
provide an abstract semantics for LWSs, allowing us to reason about satisfiability by
investigating these symbolic models that are finite. We propose a model construction
algorithm, which constructs a symbolic LWS for a given satisfiable (consistent) RWL
formula. The symbolic model can be eventually used to decide the existence of the
concrete LWSs and generate them – possibly infinite – which are models of the given
formula.

Our decidability result is important and, in a sense surprising, being that the satisfia-
bility problem is known to be undecidable for logics very similar to ours, such as TCTL
[ACD93b], Tμ [HNSY92], Lν [LLW95] and timed modal logic (TML) [LMX].

The paper is organized as follows: in the following section we present the notion of
labelled weighted transition system; in Section 3 we introduce the recursive weighted
logic with its syntax and semantics; Section 4 is dedicated to the region construction
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technique and the symbolic models of LWSs; in Section 5 we prove the decidability of
the satisfiability problem for RWL. The paper also includes a conclusive section where
we summarize the results and describe future research directions.

2 Labelled Weighted Transition Systems

A labelled weighted transition system (LWS) is a transition system that has several
types of resources and the transitions labelled both with actions and (non-negative) real
numbers. In Figure 1 is represented such a system in which there are three types of
resource; each number is used to represent the costs of the corresponding transitions in
terms of one type of resource, e.g., energy or time.

Definition 1 (Labelled Weighted Transition System). A LWS is a tuple

W = (M,K , Σ, θ)
where M is a non-empty set of states, K = {e1, . . . , ek} is the finite set of (k types of)
resources, Σ a non-empty set of actions and θ : M × (Σ × (K → R≥0)) → 2M is the
labelled transition function.

For simplicity, hereafter we use a vector of real numbers instead of the function from
the set of the resources K to real numbers, i.e., for f : K → R≥0 defined as f (ei) = ri

for all i = 1, . . . , k, we write u = (r1, . . . , rk) ∈ Rk
≥0 instead. On the other hand, for a

vector of real numbers u ∈ Rk
≥0, u(ei) denotes the i-th number of the vector u, which

represents the cost of the resource ei during the transition.

Instead of m′ ∈ θ(m, a, u) we write m
u−→a m′.

To clarify the role of the aforementioned concepts consider the following exam-
ple.

Example 1. In Figure 1, we show the LWS

W = (M, Σ,K , θ),
where M = {m0,m1,m2}, K = {e1, e2, e3}, Σ = {a, b}, and θ defined as follows:

m0
(3,4,5)−−−−−→a m1, m0

(π,π,0)−−−−−→b m2 and m1
(
√

2,1.9,7)−−−−−−−→a m2.
W has three states m0,m1,m2, three kinds of resource e1, e2, e3 and two actions a, b.

The state m0 has two transitions: one a-transition – which costs 3 units of e1, 4 units
of e2 and 5 units of e3 – to m1 and one b-transition – which costs π units of e1 and
e2 respectively (and does not cost any e3) – to m2. If the system does an a-transition
from m0 to m1, the amounts of the resource e1, e2 and e3 increase with 3, 4 and 5 units
respectively – that the system gains by doing the a-transition.

In the rest of this paper, we fix a set Σ of actions, and for simplicity we omit it in the
description of LWSs and the logic defined in the next section.

The concept of weighted bisimulation is a relation between the states of a given LWS
that equates states with identical (action- and weighted-) behaviors.
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m0

m1 m2

(3
, 4
, 5

)
a

(π, π, 0)b

(
√

2, 1.9, 7)
a

W

Fig. 1. Labelled Weighted Transition System

Definition 2 (Weighted Bisimulation). Given a LWS W = (M,K , θ), a weighted
bisimulation is an equivalence relation R ⊆ M × M such that whenever (m,m′) ∈ R,

- if m
u−→a m1, then there exists m′1 ∈ M s.t. m′

u−→a m′1 and (m1,m′1) ∈ R;

- if m′
u−→a m′1, then there exists m1 ∈ M s.t. m

u−→a m1 and (m1,m′1) ∈ R.
If there exists a weighted bisimulation relation R such that (m,m′) ∈ R, we say that

m and m′ are bisimilar, denoted by m ∼ m′.

As for the other types of bisimulation, the previous definition can be extended to
define the weighted bisimulation between distinct LWSs by considering bisimulation
relations on their disjoint union. Weighted bisimilarity is the largest weighted bisimula-
tion relation; ifWi = (Mi,Ki, θi), mi ∈ Mi for i = 1, 2 and m1 and m2 are bisimilar, we
write (m1,W1) ∼ (m2,W2).

The next examples shows the role of the weighted bisimilarity.

Example 2. In Figure 2,W1 = (M1,K1, θ1) is a LWS with five states and one type of

resources, where M1 = {m0,m1,m2,m3,m4}, K1 = {e} and θ1 is defined as: m0
3−→a m1,

m0
2−→b m2, m1

0−→d m2, m1
3−→c m3, m2

0−→d m1 and m2
3−→c m4.

It is easy to see that m3 ∼ m4 because both of them can not do any transition. Besides,
m1 ∼ m2 because both of them can do a c-transition with cost 3 to some states which
are bisimilar (m3 and m4), and a d-action transition with cost 0 to each other. m0 is not
bisimilar to any states inW1.
W2 = (M2,K2, θ2) is a LWS with three states, where M2 = {m′0,m′1,m′2}, K2 = K1

and θ2 is defined as: m′0
3−→a m′1, m′0

2−→b m′1, m′1
0−→d m′1 and m′1

3−→c m′2.
We can see that: (m0,W1) ∼ (m′0,W2), (m1,W1) ∼ (m′1,W2), (m2,W1) ∼

(m′1,W2),
(m3,W1) ∼ (m′2,W2), (m4,W1) ∼ (m′2,W2).

Notice that (m′′0 ,W3) � (m′0,W2), because (m′′1 ,W3) � (m′1,W2). Besides, m′′1 �
m′′2 , because m′′1 can do a d-action with weight 2 while m′′2 cannot and m′′2 can do a
d-action with weight 1 while m′′1 cannot.
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Fig. 2. Weighted Bisimulation

3 Recursive Weighted Logic

In this section we introduce a multi-modal logic that encodes properties of LWSs called
Recursive Weighted Logic (RWL).

To encode various resource-constrains in RWL, we use resource-variables, similar
to the clock-variables used in timed logics [ACD93a, HNSY92, AILS07]. In this paper,
we introduce event related resource-variables to measure the resources in different ways
corresponding to different actions, i.e., for each action a ∈ Σ, we associate resource-
variables x1

a, . . . , x
k
a for each types of resource e1, . . . , ek respectively. In the following,

we use Vi = {xi
a | a ∈ Σ} to denote the set of the resource-variables associated for the

type of resource ei, Va = {xi
a | i = 1, . . . , k} to denote the set of the resource-variables

associated with the action a andV = ⋃i=1,...,kVi =
⋃

a∈ΣVa to denote the set of all the
resource-variables. Note that for any i, j such that i � j, Vi ∩ V j = ∅, and for any a, b
such that a � b,Va ∩Vb = ∅.

In addition to the classic boolean operators (except negation), our logic is firstly en-
dowed with a class of recursive (formula) variables X1, . . . , Xn, which specify properties
of infinite behaviours. We denote by X the set of recursive formula variables.

Secondly, RWL is endowed with a class of modalities of arity 1, named transition
modalities, of type [a] or 〈a〉, for a ∈ Σ, which are defined as the classical transition
modalities with reset operation of all the resource-variables associated with the corre-
sponding action followed. More precisely, every time the system does an a-action, all
the resource-variables x ∈ Va will be reset after this transition, i.e., x is interpreted to
zero after every a-action, for all x ∈ Va.

Besides, our logic is also endowed with a class of modalities of arity 0 called state
modalities of type x �� r, for �� ∈ {≤,≥, <, >}, r ∈ Q≥0 and x ∈ V, which predicates
about the value of the resource-variable x at the current state.

Before proceeding with the maximal fixed points, we define the basic formulas of
RWL and their semantics firstly. Based on them, we will eventually introduce the re-
cursive definitions - the maximal equation blocks - which extend the semantics of the
basic formulas.
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Definition 3 (Syntax of Basic Formulas). For arbitrary r ∈ Q≥0, a ∈ Σ, x ∈ V,
�� ∈ {≤,≥, <, >} and X ∈ X, let

L : φ := � | ⊥ | x �� r | φ ∧ φ | φ ∨ φ | [a]φ | 〈a〉φ | X .
Before looking at the semantics for the basic formulas, we define the notion of re-

source valuation and extended states.

Definition 4 (Resource Valuation). A resource valuation is a function l : V → R≥0

that assigns (non-negative) real numbers to the resource-variables inV.

A resource valuation assigns non-negative real values to all the resource-variables
and the assignment is interpreted as the amount of resources measured by the corre-
sponding resource-variable in a given state of the system. We denote by L the class of
resource valuations.

We write li to denote the valuation for all resource-variables x ∈ Vi under the re-
source valuation l, i.e., for any x ∈ V,

li(x) =

{
l(x), x ∈ Vi

undefined, otherwise

Similarly, we write la to denote the valuation for all resource-variables x ∈ Va under
the resource valuation l, i.e., for any x ∈ V,

la(x) =

{
l(x), x ∈ Va

undefined, otherwise

If l is a resource valuation and x ∈ V, s ∈ R≥0 we denote by l[x �→ s] the resource valu-
ation that associates the same values as l to all variables except x, to which it associates
the value s, i.e., for any y ∈ V,

l[x �→ s](y) =

{
s, y = x
l(y), otherwise

Moreover, forV′ ⊆ V and s ∈ R≥0, we denote by l[V′ �→ s] the resource valuation that
associates the same values as l to all variables except those inV′, to which it associates
the value s, i.e., for any y ∈ V,

l[V′ �→ s](y) =

{
s, y ∈ V′
l(y), otherwise

For u ∈ Rk
≥0, l + u is defined as: for any i ∈ {1, . . . , k}, for any x ∈ Vi,

(l + u)(x) = l(x) + u(ei).

A pair (m, l) is called extended state of a given LWSW = (M,K , θ), where m ∈ M and
l ∈ L. Transitions between extended states are defined by:

(m, l) −→a (m′, l′) iff m
u−→a m′ and l′ = l + u.



466 K.G. Larsen, R. Mardare, and B. Xue

Given a LWSW = (M,K , θ), we interpret the RWL basic formulas over an extended
state (m, l) and an environment ρ which maps each recursive formula variables to sub-
sets of M × L. The LWS-semantics of RWL basic formulas is defined inductively as
follows.
W, (m, l), ρ |= � – always,
W, (m, l), ρ |= ⊥ – never,
W, (m, l), ρ |= x �� r iff l(x) �� r,
W, (m, l), ρ |= φ ∧ ψ iffW, (m, l), ρ |= φ andW, (m, l), ρ |= ψ,
W, (m, l), ρ |= φ ∨ ψ iffW, (m, l), ρ |= φ orW, (m, l), ρ |= ψ,
W, (m, l), ρ |= [a]φ iff for arbitrary (m′, l′) ∈ M × L such that (m, l) −→a (m′, l′),

W, (m′, l′[Va �→ 0]), ρ |= φ,
W, (m, l), ρ |= 〈a〉φ iff exists (m′, l′) ∈ M × L such that (m, l) −→a (m′, l′) and

W, (m′, l′[Va �→ 0]), ρ |= φ,
W, (m, l), ρ |= X iff (m, l) ∈ ρ(X).

Definition 5 (Syntax of Maximal Equation Blocks). Let X = {X1, . . . , Xn} be a set of
recursive formula variables. A maximal equation block B is a list of (mutually recursive)
equations:

X1 = φ1
...

Xn = φn

in which Xi are pairwise-distinct over X and φi are basic formulas over X, for all
i = 1, . . . , n.

Each maximal equation block B defines an environment for the recursive formula
variables X1, . . . , Xn, which is the weakest property that the variables satisfy.

We say that an arbitrary formula φ is closed with respect to a maximal equation block
B if all the recursive formula variables appearing in φ are defined in B by some of its
equations. If all the formulas φi that appears in the right hand side of some equation in
B is closed with respect to B, we say that B is closed.

Given an environment ρ and Υ = 〈Υ1, . . . , Υn〉 ∈ (2M×L)n, let

ρΥ = ρ[X1 �→ Υ1, . . . , Xn �→ Υn]

be the environment obtained from ρ by updating the binding of Xi to Υi.
Given a maximal equation block B and an environmentρ, consider the function

f ρB : (2M×L)n −→ (2M×L)n

defined as follows:
f ρB (Υ) = 〈�φ1�ρΥ, . . . , �φn�ρΥ〉,

where �φ�ρ = {(m, l) ∈ M × L | W, (m, l), ρ |= φ}.
Observe that (2M×L)n forms a complete lattice with the ordering, join and meet op-

erations defined as the point-wise extensions of the set-theoretic inclusion, union and
intersection, respectively. Moreover, for any maximal equation block B and environ-
ment ρ, f ρB is monotonic with respect to the order of the lattice and therefore, according
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to the Tarski fixed point theorem [Tar55], it has a greatest fixed point that we denote by
νX. f ρB . This fixed point can be characterized as follows:

νX. f ρB =
⋃
{Υ | Υ ⊆ f ρB (Υ)}.

Consequently, a maximal equation block defines an environment that satisfies all its
equations, i.e.,

�B�ρ = νX. f ρB .

When B is closed, i.e. there is no free recursive formula variable in B, it is not difficult
to see that for any ρ and ρ′, �B�ρ = �B�ρ′. So, we just take ρ = 0 and write �B� instead
of �B�0. In the rest of the paper we will only discuss this kind of equation blocks. (For
those that are not closed, we only need to have the initial environment which maps the
free recursive variables to subsets of M × L.)

Now we are ready to define the general semantics of RWL: for an arbitrary LWS
W = (M,K , θ) with m ∈ M, an arbitrary resource valuation l ∈ L and arbitrary RWL-
formula φ closed w.r.t. a maximal equation block B,

W, (m, l) |=B φ iff W, (m, l), �B� |= φ.
The symbol |=B is interpreted as satisfiability for the block B. Whenever it is not the case
thatW, (m, l) |=B φ, we writeW, (m, l) �|=B φ. We say that a formula φ is B-satisfiable
if there exists at least one LWS that satisfies it for the block B in one of its states under
at least one resource valuation; φ is a B-validity if it is satisfied in all states of any LWS
under any resource valuation - in this case we write |=B φ.

To exemplify the expressiveness of RWL, we propose the following example of sys-
tem with recursively-defined properties.

Example 3. Consider a system which only has one type of resource, e.g., energy. It
involves three actions: a, b and c, to which three resource-variables xa, xb and xc are
associated respectively. Those resource-variables are used to measure the amount of
energy in the system. The specifications of the system are as follows:

– The system cannot cost one or more than one unit of energy;
– The system has the following (action) trace: abcbcbc . . ., i.e., it does an a-action

followed by infinitely repeating the sequence bc of actions, during which both b
and c will have some non-zero cost.

In our logic the above mentioned requirements can be encoded as follows:

φ = 〈a〉X,
B =

{
X = xa < 1 ∧ 〈b〉(Y ∧ xc > 0),
Y = xa < 1 ∧ 〈c〉(X ∧ xb > 0)

}

4 Regions and Symbolic Models

Before proceeding with the definitions of regions and symbolic models, we take a fur-
ther look at Example 3 in the above section. It is not difficult to see that there exists
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a model satisfying the formula φ under the maximal equation block B, but it must be
infinite. This is because xa is synchronised with xb and xc, which are constantly grow-
ing, while xa is bounded by 1. This example proves that RWL does not enjoy the finite
model property.

In this section we introduce the region technique for LWS, which is inspired by that
for timed automata of Alur and Dill [AD90, ACD90]. It provides an abstract semantics
of LWSs in the form of finite labelled transition systems with the truth value of RWL
formulas being maintained.

Here we introduce the regions defined for a given maximal constant N ∈ N. For the
case where the maximal constant is a rational number p

q , where p, q ∈ N, we only need
to get the regions for the maximal constant pi first and divide all the regions by q. In
fact for this case we could, alternatively, assume that all the constraints involve natural
numbers, since the constraints that occur in one formula are finitely many (for instance,
we can multiply all the rationals with the same well-chosen integer; by this operation
the truth values of the correspondingly modified formulas are preserved).

For r ∈ R≥0, let �r� def
= max{z ∈ Z | z ≤ r} denote the integral part of r, and let {r} =

r − �r� denote its fractional part. Moreover, we have �r� def
= min{z ∈ Z | z ≥ r}.

Definition 6. Let N ∈ N be a given maximal constant and let Vi be a set of resource-
variables for resource ei. Then li, l′i : Vi → R≥0 are equivalent with respect to N,
denoted by li

.
= l′i iff:

1. ∀x ∈ Vi, li(x) > N iff l′i (x) > N;
2. ∀x ∈ Vi s.t. 0 ≤ li(x) ≤ N, �li(x)� = �l′i(x)� and {li(x)} = 0⇔ {l′i(x)} = 0;
3. ∀x, y ∈ Vi s.t. 0 ≤ li(x), li(y) ≤ N, {(li(x)} ≤ {li(y)} ⇔ {(l′i (x)} ≤ {l′i (y)}.

The equivalence classes under
.
= are called regions. [li] denotes the region which

contains the labelling li for resource-variables x ∈ Vi and RVi
Ni

denotes the set of all
regions for the set Vi of resource-variables for resource ei and the constant Ni. Notice
that for a given Ni ∈ N, RVi

Ni
is finite.

For a region δ ∈ RVi
Ni

, we define the successor region as the region δ′ – denoted by
δ� δ′ – iff:

for any li ∈ δ, there exists d ∈ R≥0 s.t. li + d ∈ δ′.
As we mentioned before, for the case where the maximal constant is a rational num-
ber pi

qi
where pi, qi ∈ N, we only need to get the regions for the maximal constant

p first and divide all the regions by qi to achieve the set of all regions for the set
Vi of resource-variables for resource ei and the constant pi

qi
– denoted by RVi

pi/qi

. Let

RV = {[l] = ([l1], . . . , [lk]) | [li] ∈ RVi
pi/qi
,

pi

qi
∈ Q≥0 for any i ∈ {1, . . . , k}}.

We will now define the fundamental concept of a symbolic model of LWS. Every
extended state (m, l) is replaced by a so-called extended symbolic state (m, [l]). When-
ever we have transition between two extended states, there should also be a transition
between the corresponding symbolic states, i.e.:

(m, [l]) −→a (m′, [l′]) iff (m, l) −→a (m′, l′).

Definition 7. Given RV and a non-empty set of states Ms, a symbolic LWS is a tuple

Ws = (Π s, Σ s, θs)
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where Π s ⊆ Ms ×RV is a non-empty set of symbolic states πs = (m, δ), Σ s a non-empty
set of actions and θs : Π s × (Σ s) → 2Π

s
is the symbolic labelled transition function,

which satisfies the following:

if (m′, δ′) ∈ θ((m, δ), a), then δ� δ′.

Given a symbolic LWS, we can define the symbolic satisfiability relation |=s with
π = (m, δ) ∈ Π s as follows:
Ws, π, ρs |=s � – always,
Ws, π, ρs |=s ⊥ – never,
Ws, π, ρs |=s x �� r iff for any w ∈ δ(x), w �� r,
Ws, π, ρs |=s φ ∧ ψ iffWs, π, ρs |=s φ andWs, π, ρs |=s ψ,
Ws, π, ρ |=s φ ∨ ψ iffWs, π, ρs |=s φ orWs, π, ρs |=s ψ,
Ws, π, ρs |=s [a]φ iff for any π′ = (m′, δ′) ∈ Π s s.t. π →a π

′, Ws, (m′, δ′[Va �→
0]), ρs |=s φ,
Ws, π, ρs |=s 〈a〉φ iff there existsπ′= (m′, δ′) ∈ Π s s.t. π→a π

′ andWs, (m′, δ′[Va �→
0]), ρs |=s φ,
Ws, π, ρs |=s X iff m ∈ ρs(X),
where δ[Va �→ 0] is defined as δ[Va �→ 0](x) = 0 for any x ∈ Va and δ[Va �→

0](y) = δ(y) for any y ∈ V/Va.
Similarly we can define the symbolic B-satisfiability relation |=s

B as in Section 3:

Ws, π |=s
B φ iff Ws, π, �B� |=s φ.

Lemma 1. Let φ be a RWL formula closed w.r.t a maximal equation block B. If it is
satisfied by a symbolic LWSWs = (Π s, Σ s, θs) i.e.Ws, π |=s

B φ with π = (m, δ) ∈ Π s,
then there exists a LWS W = (M, Σ,K , θ) and a resource valuation l ∈ L such that
W, (m, l) |=B φ with m ∈ M.

Proof. Let Σ = Σ s, K be the set of the resources appearing in RV and l ∈ δ. The

transition function is defined as: (m1, δ1, l1)
u−→a (m2, δ2, l2) iff,

(m1, δ1) −→a (m2, δ2), for i = 1, 2, li ∈ δi and l2 = (l1 + u)[Va �→ 0].

We define the transition relation starting from (m, δ, l). Let M be the set of all the
states in the form of (m′, δ′, l′) defined for the transitions as the above. Note that it
might be infinite. It is easy to verify thatW, ((m, δ, l), l) |=B φ.

5 Satisfiability of Recursive Weighted Logic

In this section, we prove that it is decidable whether a given formula φ which is closed
w.r.t. a maximal equation block B of RWL is satisfiable. We also present a decision
procedure for the satisfiability problem of RWL. The results rely on a syntactic char-
acterization of satisfiability that involves a notion of mutually-consistent sets that we
define later.

Consider an arbitrary formula φ ∈ L which is closed w.r.t. a maximal equation block
B. In this context we define the following notions:
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- Let Σ[φ, B] be the set of all actions a ∈ Σ such that a appears in some transition
modality of type 〈a〉 or [a] in φ or B.

- For any ei ∈ K and x ∈ Vi, let Qi[φ, B] ⊆ Q≥0 be the set of all r ∈ Q≥0 such that
r is in the label of some state or transition modality of type x �� r that appears in the
syntax of φ or B.

- We denoted by gi the granularity of ei in φ, defined as the least common denomi-
nator of the elements of Qi[φ, B]. Let RVi

pi/gi

[φ, B] be the set of all regions for resource ei,
where pi

gi
= max Qi[φ, B]. Let

RV[φ, B] = {δ = (δ1, . . . , δk) | δi ∈ RVi
pi/gi

[φ, B] for any i ∈ {1, . . . , k}}.

For r ∈ R≥0, we use r ∈ δ(x) to denote r ∈ δi(x), for any i ∈ {1, . . . , k} and x ∈ Vi.
Observe thatΣ[φ, B], Qi[φ, B], RVi

pi/gi

[φ, B] andRV[φ, B] are all finite (or empty).
At this point we can start our model construction. We fix a formula φ0 ∈ L that is

closed w.r.t. a given maximal equation block B and, supposing that the formula admits
a model, we construct a model for it. Let

L[φ0, B] = {φ ∈ L | Σ[φ, B] ⊆ Σ[φ0, B],Qi[φ, B] ⊆ Qi[φ0, B]}.
Here we are going to construct a symbolic model first. To construct the symbolic model
we will use as symbolic states tuples of type (Γ, δ) ∈ 2L[φ0,B] × RV[φ0, B], which are
required to be maximal in a precise way. The intuition is that a state (Γ, δ) ⊆ 2L[φ0,B] ×
RV[φ0, B] shall symbolically satisfy the formula φ in our model, whenever φ ∈ Γ. From
this symbolic model we can generalize a LWS - might be infinite - which is a model
of the given RWL formula. Our construction is inspired from the region construction
proposed in [LLW95] for timed automata, which adapts of the classical filtration-based
model construction used in modal logics [HC96, HKT01, Wal00].

Let Ω[φ0, B] ⊆ 2L[φ0,B] × RV[φ0, B]. Since L[φ0, B] and RV[φ0, B] are both finite,
Ω[φ0, B] is finite.

Definition 8. For any (Γ, δ) ⊆ Ω[φ0, B], (Γ, δ) is said to be maximal iff:
1. � ∈ Γ, ⊥ � Γ;
2. x �� r ∈ Γ iff for any w ∈ R≥0 s.t. w ∈ δ(x), w �� r;
3. φ ∧ ψ ∈ Γ implies φ ∈ Γ and ψ ∈ Γ;
φ ∨ ψ ∈ Γ implies φ ∈ Γ or ψ ∈ Γ;

4. X ∈ Γ implies φ ∈ Γ, for X = φ ∈ B.

The following definition establishes the framework on which we will define our
model.

Definition 9. Let C ⊆ 2Ω[φ0,B]. C is said to be mutually-consistent if for any (Γ, δ) ∈ C,
whenever 〈a〉ψ ∈ Γ, then there exists (Γ′, δ′) ∈ C s.t.:
1. there exists δ′′ s.t. δ� δ′′ and δ′ = δ′′[Va �→ 0];
2. ψ ∈ Γ′;
3. for any [a]ψ′ ∈ Γ, ψ′ ∈ Γ′.

We say that (Γ, δ) is consistent if it belongs to some mutually-consistent set.
The following lemma proves a necessary precondition for the model construction.
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Lemma 2. Let φ ∈ L be a formula closed w.r.t. a maximal equation block B. Then φ
is satisfiable iff there exist Γ ⊆ L[φ0, B] and δ ∈ RV[φ0, B] s.t. (Γ, δ) is consistent and
φ ∈ Γ.

Proof. (=⇒): Suppose φ is satisfied in the LWSW = (M, Σ,K , θ) under the resource
valuation l ∈ L, i.e., there exists m ∈ M s.t.W, (m, l) |=B φ. We construct

C = {(Γ, δ) ∈ Ω[φ0, B] | ∃m ∈ M s.t. for any ψ ∈ Γ,∃l ∈ δ s.t.W, (m, l) |=B ψ}.
It is not difficult to verify that C is a mutually-consistent set.

(⇐=): Let C be a mutually-consistent set.
We construct a symbolic LWSWs = (Π s, Σ s, θs), where Π s = C, Σ s = Σ[φ0, B] and

for (Γ, δ), (Γ′, δ′) ∈ C, the transition relation (Γ, δ) −→a (Γ′, δ′) is defined iff
1. there exists δ′′ ∈ RV[φ0, B] s.t. δ� δ′′ and δ′ = δ′′[Va �→ 0];
2. whenever [a]ψ ∈ Γ then ψ′ ∈ Γ′.
Let ρs(X) = {(Γ, δ) | X ∈ Γ} for X ∈ X. With this construction we can prove the

following implication by a simple induction on the structure of φ, where (Γ, δ) ∈ Π s:

φ ∈ Γ impliesWs, (Γ, δ), ρs |=s φ.

We prove that ρs is a fixed point of B under the assumption that X = φX ∈ B:
Γ ∈ ρs(X) implies (X, δ) ∈ Γ by the construction of ρs, which implies (φX , δ) ∈ Γ by

the definition of Ω[φ0, B]. Then, by the implication we just proved,Ws, Γ, ρs |=s φX .
Thus ρs is a fixed point of B. Since �B� is the maximal fixed point, ρs ⊆ �B�.
Then for any (φ, δ) ∈ Γ ∈ C, we have Ws, (Γ, δ), ρs |=s φ, which further implies

Ws, (Γ, δ), �B� |=s φ because ρs ⊆ �B�.
Hence, φ ∈ Γ and (Γ, δ) ∈ C impliesWs, Γ |=s

B φ.
By Lemma 1, there exists a LWSW = (M, Σ,K , θ) and a resource valuation l ∈ L

such thatW, (m, l) |=B φ with m ∈ M.

To summarize, the above lemmas allow us to conclude the model constructions.

Theorem 1. For any satisfiable RWL formula φ closed w.r.t. a maximal equation block
B, there exists a finite symbolic LWS Ws = (Π s, Σ s, θs) such that Ws, π |=s

B φ for
some π ∈ Π s. Reversely, if a RWL formula φ is satisfied by a symbolic model, then it
is satisfiable, i.e., there exists a LWSW = (M, Σ,K , θ) and a resource valuation l ∈ L
such thatW, (m, l) |=B φ for some m ∈ M.

Lemma 2 and Theorem 1 provide a decision procedure for the satisfiability prob-
lem of RWL. Given a RWL formula φ0 closed w.r.t. a maximal equation block B, the
algorithm constructs the model

W = (M, Σ,K , θ).
To do this, we first construct the symbolic LWS

Ws = (Π s, Σ s, θs)

where Σ s = Σ[φ0, B], with φ0 is satisfied in some state π ∈ Π s, i.e.Ws, π |=s
B φ0.
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If φ0 is satisfiable, then it is contained in some maximal set Γ, where (Γ, δ) is con-
sistent together with some δ ∈ RV[φ0, B]. Hence, φ0 will be satisfied at some state π of
Ws. If φ0 is not satisfiable, then the attempt to construct a model will fail; in this case
the algorithm will halt and report the failure.

We start with a superset of the set of states ofW, then repeatedly delete states when
we discover some inconsistency. This will give a sequence of approximations

Ws
0 ⊇ Ws

1 ⊇ Ws
2 ⊇ . . .

converging toWs.
The domains Π s

i , i = 0, 1, 2, . . ., of these structures are defined below and they are
s.t.

Π s
0 ⊇ Π s

1 ⊇ Π s
2 ⊇ . . . .

The transition relation for Ws
i are defined as follows: for any (Γ, δ), (Γ′, δ′) ∈ Π s

i ,
(Γ, δ) −→a (Γ′, δ′) iff
1. there exists δ′′ ∈ RV[φ0, B] s.t. δ� δ′′ and δ′ = δ′′[Va �→ 0];
2. whenever [a]ψ ∈ Γ then ψ ∈ Γ′.

Here is the algorithm for constructing the domains Π s
i ofWs

i .
Algorithm

– Step 1: Construct Π s
0 = Ω[φ0, B].

– Step 2: Repeat the following for i = 0, 1, 2, . . . until no more states are deleted.
Find a formula [a]φ ∈ L[φ0, B] and a state (Γ, δ) ∈ Π s

i violating the following
property

[∀(Γ′, δ′) ∈ Π s
i , (Γ, δ) −→a (Γ′, δ′) ⇒ φ ∈ Γ′] implies [a]φ ∈ Γ.

that is, such that 〈a〉¬φ ∈ Γ, but for no Γ′ and δ′ such that (Γ, δ) −→a (Γ′, δ′) is it
the case that ¬φ ∈ Γ′.
Pick such an [a]φ and (Γ, δ). Delete (Γ, δ) from Π s

i to get Π s
i+1.

Step 2 can be justified intuitively as follows. To say that (Γ, δ) violates the above
mentioned condition, it means that (Γ, δ) requires an a-transition to some state that does
not satisfy φ; however, the left-hand side of the condition above guarantees that all the
outcomes of an a-transition satisfy φ. This demonstrates that (Γ, δ) can not be in Π s,
since every state (Γ, δ) in Π s satisfies ψ, whenever ψ ∈ Γ.

The algorithm must terminate, since there are only finitely many states initially, and
at least one state must be deleted during each iteration of step 2 in order to continue.
Then, φ is satisfiable if and only if, upon termination there exists (Γ, δ) ∈ Π s such that
φ ∈ Γ. Obviously, Π s is a mutually-consistent set upon termination.

The correctness of this algorithm follows from the proof of Lemma 2. The direction
(⇐) of the proof guarantees that all formulas in any Γ with (Γ, δ) ∈ Π s are satisfiable.
The direction (⇒) of the proof guarantees that all satisfiable Γ will not be deleted from
Π s.

After we get the symbolic LWSWs, we can use the technique in Lemma 1 to gen-
eralize a LWSW = (M, Σ,K , θ), which might be infinite.

Suppose φ is satisfied by (Γ, δ) ∈ Π s, i.e.,Ws, (Γ, δ) |=s
B φ0. Let Σ = Σ s, K be the

set of the resources appearing in RV[φ0, B] and l ∈ δ. The transition function is defined
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as: (Γ1, δ1, l1)
u−→a (Γ2, δ2, l2) iff,

(Γ1, δ1) −→a (Γ2, δ2), for l1 ∈ δ1, l2 ∈ δ2 and l2 = (l1 + u)[Va �→ 0].

We define the transition relation starting from (Γ, δ, l). Let M be the set of all the states
in the form of (Γ′, δ′, l′) defined for the transitions as the above. Note that the model
defined as above might be infinite. It is easy to verify thatW, ((Γ, δ, l), l) |=B φ0.

Theorem 1, also supported by the above algorithm, demonstrates the decidability of
the B-satisfiability problem for RWL.

Theorem 2 (Decidability of B-Satisfiability). For an arbitrary maximal equation block
B, the B-satisfiability problem for RWL is decidable.

Example 4. Now we can discuss the satisfiability of the formula φ in Example 3.

φ = 〈a〉X,
B =

{
X = xa < 1 ∧ 〈b〉(Y ∧ xc > 0),
Y = xa < 1 ∧ 〈c〉(X ∧ xb > 0)

}

In Figure3 is the symbolic LWS for the above formula φ w.r.t B by applying our algo-
rithm. Here the details of using the algorithm to get the model are not presented, limited
by the length of the paper, which is very technical.
Γ0 = {φ, 〈a〉X}

Γ1 = {X, xa < 1, 〈b〉(Y ∧ xc > 0)}
Γ2 = {Y, xc > 0, xa < 1, 〈c〉(X ∧ xb > 0)}
Γ3 = {X, xb > 0, xa < 1, 〈b〉(Y ∧ xc > 0)}
δ0 = [xa = xb = xc = 0]

δ1 = [xa = 0, 0 < xb = xc < 1]
δ2 = [xb = 0, 0 < xa = xc < 1]
δ3 = [xb = 0, 0 < xa < xc < 1]
δ4 = [xc = 0, 0 < xb < xa < 1]
δ5 = [xb = 0, 0 < xc < xa < 1]

(Γ0, δ0)

(Γ1, δ0)

(Γ1, δ1)

(Γ2, δ2)

(Γ2, δ3)

(Γ3, δ4) (Γ2, δ5)

a

a

b

b

c

c

b

c

Fig. 3. Symbolic LWS for φ
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From the symbolic model in Figure 3, one can generate a LWS, which in this case is
infinite, where φ is satisfied in some state of it. In Figure 4, we show part of this infinite
model.

l0 = (0, 0, 0) l5 = (0.2, 0, 0.3)
l1 = (0.1, 0.1, 0) l6 = (0.5, 0.2, 0)
l2 = ( π4 ,

π
4 , 0) l7 = (0.4, 0.2, 0)

l3 = (0.3, 0, 0.3) l8 = (0.6, 0, 0.1)
l4 = ( π4 , 0,

π
4 ) l9 = (0.5, 0, 0.1)

. . . . . .

(Γ0, δ0, l0)

(Γ1, δ0, l0) . . . (Γ1, δ1, l1) . . . (Γ1, δ1, l2) . . .

(Γ2, δ2, l3) . . . (Γ2, δ2, l4) . . .

...

...
(Γ2, δ3, l5) . . .

(Γ3, δ4, l6) . . .

...

... (Γ3, δ4, l7) . . .

(Γ2, δ5, l8) . . .

...

...

(Γ2, δ5, l9) . . .

...

...

0
a

0.1
a

0.3
b

π
10 a

π
10 b 0.2 b

0.2 c 0.2 c

0.1 b 0.1 b

Fig. 4. Generalizing LWS from the symbolic model

6 Conclusion

In this paper we develop a recursive version of the weighted modal logic [LM13] that we
call Recursive Weighted Logic (RWL). It uses a semantics based on labelled weighted
transition systems (LWSs). This type of transition systems describes systems where
the transitions are labelled with actions and non-negative real numbers. The numbers
represent the costs of the corresponding transitions in terms of resources.

RWL encodes qualitative and quantitative properties of LWSs. With respect to the
weighted logics studied before, RWL has recursive variables that allow us to encode
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circular properties of infinite behaviours including safety and cost-bounded liveness
properties.

Even though RWL does not enjoy the finite model property, we proved that the sat-
isfiability problem for our logic is still decidable. By adapting a variant of region con-
struction technique for timed automata, we constructed a symbolic LWS for a given
satisfiable RWL formula. This allows us to decide the existence of a concrete LWS
and generate it. The system is possibly infinite but nevertheless it is a model for the
given formula. Our decidability result is important and somehow surprising, being that
the satisfiability problem is undecidable for the similar timed logics for real-time sys-
tems.
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Xue, Bingtian 460

Zdancewic, Steve 442
Zuppiroli, Sara 97


	Preface
	Colloquium Organization
	Probabilistic Solutions for Undecidable Problems
	References

	Table of Contents
	From Universal Logic to Computer Science,and Back
	1 From Universal Logic...
	2 ...to Computer Science,...
	2.1 Origins of Institution Theory
	2.2 The Concept of Institution
	2.3 The Expanse of Institution Theory

	3 ...and Back
	3.1 On Logical Languages
	3.2 On Interpolation
	3.3 A Short Word on Many-Sortedness

	References

	Event Analytics
	1 Introduction
	2 PAT Model Checking Systems
	3 Event Analytics : A New Proposal
	3.1 Event Analytics
	3.2 Financial Critical Systems Verification
	3.3 Cyber-Physical Systems Verification

	4 Event Analytics vs Data Analytics
	4.1 Event Extraction from Big Data
	4.2 Model Synthesis from Events

	References

	A Logical Descriptor for Regular Languagesvia Stone Duality
	1 Motivations
	2 Preliminaries
	2.1 Deterministic and Nondeterministic Finite Automata
	2.2 Classical Propositional Logic
	2.3 Finite Boolean Algebras: Duality and Propositional Logic

	3 Classical Fortresses
	4 Algorithm for Passing from Automata to Fortresses
	4.1 Runs in a Fortress

	5 Reduced Fortresses
	6 Closure Properties of Regular Languages through Classical Fortresses
	7 Beyond Classical Logic and Finite Automata
	References

	On Clock-Aware LTL Propertiesof Timed Automata
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Related Work and Motivation
	4 Zone-Ultraregion Semantics
	4.1 Proof of Theorem 4.7

	5 Implementation
	5.1 Experiments

	6 Conclusion and Future Work
	References

	Linguistic Mechanisms for Context-Aware Security
	1 Introduction
	2 Running Example
	3 MLCoDa
	4 Type and Effect System
	5 Loading-Time Analysis
	6 Code Instrumentation
	7 Conclusions
	References

	Partial Models and Weak Equivalence
	1 Introduction
	2 Definitions
	3 Equivalence and Partial Implementations
	4 An Example with Partial Implementations
	5 Weak-Equivalence and Complete Implementations
	6 Weak-Equivalence and Partial Implementations
	7 Conclusions
	References

	Probabilistic Recursion Theoryand Implicit Computational Complexity
	1 Introduction
	2 Probabilistic Recursion Theory
	2.1 Probabilistic Turing Machines and Computable Functions
	2.2 Probabilistic Recursive Functions Equals Functions Computed by Probabilistic Turing Machines

	3 Characterizing Probabilistic Complexity by Tiering
	4 Conclusions
	References

	Heterogeneous Timed Machines
	1 Introduction
	2 Preliminaries
	2.1 Timed Traces
	2.2 Timed Input/Output Automata

	3 Timed Machines: Definition and Operations
	3.1 Timed Machines
	3.2 Composition and Refinement of Timed Machines
	3.3 B¨uchi Representation of Timed Machines

	4 Consistency and Feasibility of Timed Machines
	4.1 Consistency
	4.2 Compositional Consistency Checking
	4.3 Feasibility

	5 Related Work
	6 Concluding Remarks
	References

	Refinement of Structured Interactive Systems
	1 Introduction
	2 Register-Voice Interactive Systems
	3 Scenario Equivalence and Refinement
	4 Refinement of Register-Voice Interactive Systems
	4.1 Refinement in State-Based Computing Systems
	4.2 Refinement in State- and Interaction-Based Systems
	4.3 A Refinement of the Perfect1 Program
	4.4 Refinement Strategies

	5 Conclusions
	References

	Reasoning Algebraically About Refinement on TSO Architectures
	1 Introduction
	2 Background
	2.1 Total Store Order Example
	2.2 Case Study: Spinlock

	3 Interval-Based Reasoning
	3.1 Permission Monitoring
	3.2 Interval Predicates

	4 Concurrent Programming with Intervals
	4.1 Operators to Model Programming Constructs
	4.2 Abstract Commands
	4.3 Reading Variables for Expression Evaluation with Buffer Effects
	4.4 Commands under TSO

	5 Refinement and Local Refinement for TSO
	5.1 Interval-Based Refinement
	5.2 Local Buffer Refinement
	5.3 Application: Spinlock Example

	6 Conclusions
	References

	Structural Refinement for the Modal nu-Calculus
	1 Introduction
	2 Structural Specification Formalisms
	3 The Modal ν-Calculus
	4 The Modal ν-Calculus as a Specification Theory
	5 Conclusion and Further Work
	References

	Precise Interprocedural Side-Effect Analysis
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Side-Effect Analysis
	2.1 Simple Method
	2.2 Loops
	2.3 Method Calls
	2.4 New Object Abstraction
	2.5 Aliasing
	2.6 Global Variables

	3 Abstract Domain: Generalized Access Graphs
	4 Intraprocedural Points-to Analysis
	4.1 Memory Abstraction
	4.2 Method Summaries
	4.3 Dataflow Equations

	5 Global Variables
	6 Intraprocedural Side-Effect Analysis
	7 Interprocedural Analysis
	8 Experience
	9 Related Work
	10 Conclusion
	References

	Expressiveness via Intensionality and Concurrency
	1 Introduction
	2 Encodings
	3 Sequential Extensional Computation
	3.1 λ-calculus
	3.2 Traditional Combinatory Logic
	3.3 Relations

	4 Sequential Intensional Computation
	4.1 Symbolic Functions
	SF-calculus

	5 Concurrent Extensional Computation
	6 Concurrent Intensional Computation
	6.1 Concurrent Pattern Calculus
	6.2 Completing the Square

	7 Conclusions and Future Work
	References

	Optimally StreamingGreedy Regular Expression Parsing
	1 Introduction
	2 Preliminaries
	3 Augmented Automata
	4 Disambiguation
	5 Optimal Streaming
	6 Coverage
	7 Algorithm
	8 Example
	9 Related and Future Work
	References

	Learning Cover Context-Free Grammarsfrom Structural Data
	1 Introduction
	2 Preliminaries
	3 Learning Context-Free Grammars
	4 Learning Cover Context-Free Grammars
	4.1 The Observation Table
	4.2 The Similarity Relation
	4.3 Consistency and Closedness

	5 Algorithm Analysis
	5.1 Failed Closedness Checks
	5.2 Failed Consistency Checks
	5.3 Failed Structural Equivalence Queries
	5.4 Space and Time Complexity

	6 Conclusions and Acknowledgments
	References

	Context-Free Sequences
	1 Introduction
	2 Generating Sequences with Automata
	2.1 Automata and Languages Terminology
	2.2 Uniform Automata and Sequences

	3 Context-Free Sequences
	3.1 Regular Automata
	3.2 Regular Automata and Context-Free Sequences

	4 Closure Properties
	4.1 An Important Tool: Regular Path Functions
	4.2 Synchronization Product and Shift
	4.3 Morphisms and Inverse Substitutions
	4.4 1-Context-Free Sequences and Extractions of Ultimately Periodic Subsequences
	4.5 About Base Dependence

	5 Conclusion and Open Problems
	References

	Modular Reasoning for Message-Passing Programs
	1 Introduction
	2 EventTrace
	2.1 Traces
	2.2 Well-Formed Traces
	2.3 Trace Separation and Algebra

	3 Programming Language
	4 Assertion Language
	5 Inference System
	6 Example: Filters
	7 Related Work and Conclusions
	References

	Symbolic Analysis Tools for CSP
	1 Introduction
	2 Syntax and Semantics
	3 Symbolic Trace Refinement
	4 HCSP Simulator and Model Checker
	5 Examples and Experiment
	6 Related Work
	7 Conclusion and Future Work
	References

	A Heterogeneous Characterisationof Component-Based System Designin a Categorical Setting
	1 Introduction
	2 Preliminaries
	3 A Characterisation of Component-Based Design
	4 On the Institutions for Systems
	5 Conclusions and Related Work
	References

	On Unary Fragments of MTL and TPTLover Timed Words
	1 Introduction
	2 Preliminaries
	3 Expressiveness
	4 Unary MTL and Undecidability
	5 Discussion
	References

	A Behavioral Congruence for Concurrent Constraint Programming with Nondeterministic Choice
	1 Introduction
	2 Background
	2.1 Constraint Systems
	2.2 Syntax of CCP
	2.3 Reduction Semantics
	2.4 Barbed Semantics

	3 Congruence Issues
	3.1 Observational Equivalence
	3.2 Congruence

	4 Weak Full Bisimilarity
	4.1 More ThanWeak Barbs
	4.2 Congruence Issues
	4.3 Relation with Observational Equivalence
	4.4 Behavioral Congruence

	5 Conclusions and RelatedWork
	References

	Distributed Testing of Concurrent Systems:Vector Clocks to the Rescue
	1 Introduction
	2 Model of the System
	3 Partial Order Semantics
	3.1 Unfoldings of Petri Nets
	3.2 Executions

	4 Testing Framework for I/O Petri Nets
	4.1 Testing Hypotheses
	4.2 Conformance Relation

	5 Global Conformance by Distributed Testers
	5.1 Local Testing
	5.2 Adding Time Stamps

	6 Conclusion
	References

	UTP Designs for Binary Multirelations
	1 Introduction
	2 Preliminaries
	2.1 Designs
	2.2 Binary Multirelations
	2.3 Angelic Designs

	3 Extending Binary Multirelations
	3.1 Healthiness Conditions
	3.2 Operators
	3.3 Relationship with Binary Multirelations

	4 Relationship with UTP Designs
	4.1 From Designs to Binary Multirelations
	4.2 From Binary Multirelations to Designs
	4.3 Isomorphism
	4.4 Linking Results

	5 Conclusion
	References

	The Arithmetic of Recursively Run-LengthCompressed Natural Numbers
	1 Introduction
	2 Related Work
	3 The Data Type of Recursively Run-length Compressed Natural Numbers
	4 Successor (s) and Predecessor (s’)
	5 Arithmetic Operations
	5.1 A Few Other Average Constant Time Operations
	5.2 Optimizing Addition and Subtraction for Numbers with few Large Blocks of 0s and 1s
	5.3 Comparison
	5.4 Bitsize
	5.5 Multiplication, Optimized for Large Blocks of 0s and 1s
	5.6 Power
	5.7 Division Operations

	6 Representation Complexity
	6.1 Complexity as Representation Size
	6.2 Best and Worst Cases
	6.3 A Concept of Duality

	7 A Case Study: Computing the Collatz/Syracuse Sequence for Huge Numbers
	8 Conclusion
	References

	Synchronous Parallel Composition in a Process Calculus for Ecological Models
	1 Introduction
	2 Synchronous PALPS
	2.1 Syntax
	2.2 Semantics

	3 Translating S-PALPS into PRISM
	3.1 The PRISM Language
	3.2 Encoding S-PALPS into the PRISM Language

	4 Case Study: Eleonora’s Falcon Population Dynamics
	5 Analysis inPRISM
	6 Conclusions
	References

	Finite Vector Spaces as Model of Simply-Typed Lambda-Calculi
	1 Introduction
	2 A Finite PCF-Style Lambda Calculus
	2.1 Small Step Semantics
	2.2 Operational Equivalence
	2.3 Axiomatic Equivalence

	3 Finite Sets as a Concrete Model
	4 Finite Vector Spaces
	4.1 Background Definitions
	4.2 A Linear-Non-Linear Model
	4.3 Model of Linear Logic
	4.4 Finite Vector Spaces as a Model
	4.5 Properties of the FinVec Model

	5 An Algebraic Lambda Calculus
	5.1 Operational Equivalence
	5.2 Axiomatic Equivalence
	5.3 Finite Vector Spaces as a Model
	5.4 Two Auxiliary Constructs
	5.5 Full Completeness

	6 Discussion
	6.1 Simulating the Vectorial Structure
	6.2 Categorical Structures of the Syntactic Categories
	6.3 (Co)Eilenberg-Moore Category and Call-by-value
	6.4 Generalizing to Modules

	References

	A Decidable Recursive Logic forWeighted Transition Systems
	1 Introduction
	2 Labelled Weighted Transition Systems
	3 Recursive Weighted Logic
	4 Regions and Symbolic Models
	5 Satisfiability of RecursiveWeighted Logic
	6 Conclusion
	References


	Author Index



