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Abstract. At FOCS’99, Dwork et al. put forth the notion of ‘selective-
-opening attacks’ (SOAs, for short). In the literature, security against
such attacks has been formalized via indistinguishability-based and
simulation-based notions, respectively called IND-SO-CPA security and
SIM-SO-CPA security. Furthermore, the IND-SO-CPA notion has been
studied under two flavors – weak-IND-SO-CPA and full-IND-SO-CPA
security. At Eurocrypt’09, Bellare et al. showed the first positive results
on SOA security of encryption schemes: 1) any lossy encryption scheme is
weak-IND-SO-CPA secure; 2) any lossy encryption scheme with efficient
openability is SIM-SO--CPA secure.

Despite rich further work on SOA security, the (un)feasibility of
full--IND-SO-CPA remains a major open problem in the area of SOA
security. The elusive nature of the full-IND-SO-CPA notion of security
is attributed to a specific aspect of the security game, namely, the
challenger requiring to perform a super-polynomial time task. Not only
do we not know whether there exists a scheme that is full-IND-SO-CPA
secure, but we also do not know concrete attacks against popular
schemes such as the ElGamal and Cramer-Shoup schemes in the
full-IND-SO-CPA model.

The contribution of our work is three-fold.

1. Motivated by the difficulty in understanding (un)feasibility of the
full-IND-SO-CPA notion, we study a variant of this notion that is
closer in spirit to the IND-CPA notion but still embodies the security
captured by the full-IND-SO-CPA notion. We observe that the weak
form of our variation does not introduce any significant change to
the weak-IND-SO-CPA notion; that is, the weak form of our notion
is equivalent to the weak-IND-SO-CPA notion.

2. Interestingly, we can show that a large class of encryption schemes can
be proven insecure for the full form of our notion. The large class
includes most known constructions of weak-IND-SO-CPA secure
schemes and SIM-SO-CPA secure schemes and also popular schemes
like the ElGamal and Cramer-Shoup schemes.

3. Our third contribution studies the complexity of SIM-SO-CPA security.
Complementing the result of Bellare et al., we show that lossiness is
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not necessary to achieve SIM-SO-CPA security. More specifically, we
present a SIM-SO-CPA scheme that is not a lossy encryption scheme
(regardless of efficient openability). Since SIM-SO-CPA security
implies weak-IND-SO-CPA security, it follows as a corollary that
the converses of both the implications proved by Bellare et al. do
not hold. Furthermore, as a corollary of our techniques, on a slightly
unrelated but useful note, we obtain that lossiness is not required
to obtain non-committing encryption. Previously, at Eurocrypt’09,
Fehr et al. showed a construction of a non-committing encryption
scheme from trapdoor permutations and this scheme was, as noted
by the authors, possibly not lossy. Our scheme amounts to the first
construction of a non-committing encryption scheme that is provably
not lossy.

1 Introduction

Public-key encryption (PKE, for short) notion forms one of the most principal
cryptographic notions. For PKE schemes, indistinguishability of ciphertexts
under chosen-plaintext attacks (IND-CPA) and chosen-ciphertext attacks
(IND-CCA) are usually viewed as strong notions of security both conceptually
and in practical applications. However, there is a natural setting where these
standard notions do not necessarily imply security. Namely, note that on one
hand it is easy to see that a PKE scheme continues to be IND-CPA secure even
if an adversary is given multiple ciphertexts of multiple plaintexts; however, on
the other hand, if the adversary sees openings (that is, not only the plaintexts
but also the coins used) of some subset of the ciphertexts of its choice, then,
somewhat surprisingly, it is not known whether IND-CPA security is sufficient
to ensure privacy of the unopened plaintexts. This subtlety was first pointed
out by Dwork et al. in [DNRS99], and such an adversarial attack is called a
selective-opening attack (SOA, for short).

Dwork et al. [DNRS99], besides bringing to light the subtlety of SOA, also
investigated SOA security of commitment schemes. SOA security of PKE schemes
was studied by Bellare et al. in [BHY09].

The three flavors of SOA security. SOA security of PKE schemes has been
studied under various notions in the literature. The simulation-based security
notion is dubbed SIM-SO-CPA security. The two indistinguishability-based
notions are dubbed weak-IND-SO-CPA security and full-IND-SO-CPA security;
the two indistinguishability-based notions are together dubbed IND-SO-CPA
security. In this work, we study certain aspects of both the simulation-based and
the indistinguishability-based security notions. Below, we provide a quick and
pertinent glimpse on the state-of-the-art for these notions to keep in mind; then
we explain these notions informally.

Bellare et al. [BHY09] solved a longstanding open problem by showing how
to construct SIM-SO-SOA schemes. In fact, they showed that every lossy
encryption scheme is SIM-SO-SOA secure and that SIM-SO-SOA security implies
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weak-IND--SO-CPA security. However, despite much work in the area, we still do
not know whether or not full-IND-SO-CPA security is feasible and, in particular,
if existing techniques to build weak-IND-SO-CPA schemes and SIM-SO-CPA
schemes can be useful to achieve full-IND-SO-CPA security. It is also not known
whether lossiness is necessary for SOA security. Thus, SOA notion still houses
many more challenging open questions.

IND-SO-CPA security. Let us review the structure of IND-SO-CPA security.
At a high level, the adversary gets a vector of ciphertexts. Then, the adversary
chooses a subset of ciphertexts of which it receives openings. For the rest of
the ciphertexts, the adversary gets either the actual plaintexts or randomly
chosen messages (conditioned on the revealed plaintexts), and he is challenged
to tell them apart. More specifically, the IND-SO-CPA challenger first chooses
a public-key/secret-key pair and gives the adversary the public key. Then the
adversary presents a description of a joint distribution over message vectors.
Then the challenger would sample a message vector from this distribution,
encrypt each message component, and give the adversary the resulting vector
of ciphertexts. Next, the adversary chooses a subset of the ciphertexts to be
opened (where, ‘opening’ corresponds to revealing both the plaintext and the
random coins used in generating the ciphertext). The adversary, then, besides
the openings to the chosen subset of ciphertexts, is given either the plaintexts of
the remaining ciphertexts or a message vector that is freshly sampled from the
specified (joint) message distribution, conditioned on the message components
already opened to. The objective of the adversary is to tell them apart.

Note that depending on the message distribution, sampling conditioned on
an arbitrary subset of messages can be an inefficient process that could render
the IND-SO-CPA security experiment inefficient. It is easily conceivable that
achieving IND-SO-CPA security when the message distribution does not have
an efficient resampling algorithm can be challenging: in its proof of security,
the reduction to some underlying hardness assumption might have the onus of
providing resampled message vectors, a computationally inefficient task. This
gives rise to two flavors of IND-SO-SOA-security: one, where it is required
that the message distribution specified by the adversary has efficient resampling
algorithm this flavor of security is called weak -IND-SO-CPA security; the other,
where there is no such requirement on message distributions this flavor of
security is called full -IND-SO-CPA security1.

SIM-SO-CPA security. The aforementioned technicality in the definition of
the indistinguishability based notion of IND-SO-CPA security (namely, the
full-IND -SO-CPA notion), and the fact that there is no known full-IND-SO-CPA
secure PKE scheme, motivated continuation of the study of the alternative
formulation of SOA security: the simulation-based SOA security notion by
Bellare et al. [BHY09].

1 The nomenclature ‘weak’ and ‘full’ were already used in earlier works such
as [BHK12].
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State-of-the-art. With multiple flavors of SOA security taking shape in the
literature, Böhl et al. pursued an important and useful question, in this line
of research, of relationship between the many flavors of SOA security [BHK12].
In detail, they showed that SIM-SO-CPA security and full-IND-SO-CPA security
are isolated. In other words, they showed a SIM-SO-CPA secure scheme that is
not full-IND-SO-CPA secure, and (under the assumption that a full-IND-SO-CPA
secure scheme exists) a full-IND-SO-CPA secure scheme that is not SIM-SO-
-CPA secure. On the positive side, as mentioned above, after many years for
which achieving SOA security eluded researchers, Bellare et al. showed that
SIM-SO-CPA security is already enjoyed by every lossy encryption scheme with
efficient openability [BHY09]. Furthermore, they also showed that weak-IND-SO-
-CPA security (which is trivially implied by SIM-SO-CPA security) is enjoyed
by every lossy encryption scheme.

Discussion. Owing to the complex state-of-the-art of full-IND-SO-CPA security,
SIM-SO-CPA seems to be better understood, achievable, and thus preferable to
use in practice. However, on the other hand, there exists no proof of unfeasibility
of full-IND-SO-CPA security. Thus, there is no concrete reason to forgo this
notion entirely, and it thus becomes an important and intriguing open problem
to either construct a full-IND-SO-CPA secure scheme if one exists, or to discover
further evidences of unfeasibility of full-IND-SO-CPA security.

The above discussion pertains to the motivation of our first result that we
will discuss in Section 1.1. For the second question that we pursue, we continue
to study the complexity of SOA security, now in relation to the perhaps most
related primitive, lossy encryption [Hof12]. Towards better understanding the
complexity of SOA security, a natural question is whether the ‘lossiness’ is
necessary for SOA security. In particular, we question whether the converses
of the implications proved by Bellare et al. hold.

1.1 Our Contributions

Result 1. Variant of full-IND-SO-CPA closer in spirit to IND-CPA. Motivated
by the elusive nature of full-IND-SO-CPA notion, we study a variant notion that
is closer in spirit to the IND-CPA notion but still embodies the security captured
by the IND-SO-CPA notion. We observe that the weak form of our variation does
not introduce any significant change to the weak-IND-SO-CPA notion; that is,
the weak form of our notion is equivalent to the weak- IND-SO-CPA notion.

Result 2. Insecurity of standard schemes like ElGamal and Cramer-Shoup and
of known weak-IND-SO-CPA secure and SIM-SO-CPA secure schemes w.r.t.
variant full-IND-SO-CPA notion. Surprisingly, although the variation on the
weak-IND-SO-CPA notion showed no significant change, we show that a large
class of PKE schemes, namely the class of PKE schemes with public-key space
having a Σ-protocol (formalized later), can be proven insecure for the full form
of our variant of IND-SO-CPA notion. This class subsumes many popular PKE
schemes such as the ElGamal [Gam84] and the Cramer-Shoup [CS98] schemes
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and most known constructions of weak-IND-SO-CPA secure and SIM-SO-CPA
[BHY09, HLOV09, PVW08, Hof12] secure schemes.

Details on Result 2. In the IND-CPA notion due to Goldwasser and Micali
[GM84], the adversary is challenged upon two messages; then it gets a ciphertext
encrypting one of the messages chosen at random; the adversary’s objective is
to guess the plaintext from that known set of two messages. On the other hand,
in the IND-SO-CPA notion recalled earlier in the Section, the challenger first
chooses a vector of messages from an adversary-specified distribution, and gives
the adversary their encryptions; the adversary then gets to see openings of a
subset of the ciphertexts it chooses; for the remaining ones, he is given only one
of the following two: either the plaintexts of all the unopened ciphertexts or a
freshly resampled messages conditioned on the opened plaintexts.

Observe here that the message distribution specified from the adversary is
possibly of ‘high’ min-entropy. Hence, in the event that an adversary against
full-IND-SO-CPA security is given a resampled message vector, the vector of
actual plaintexts is ‘hidden’. This is in contrast with the IND-CPA game where
the adversary gets both messages (including the actual plaintext) that it is
challenged upon.

In this work, we study an alternative formulation of IND-SO-CPA security
notion that is a more natural extension of the IND-CPA game, and study the
new notion, more specifically in relation to the existing notions. To distinguish
between the new and the existing notions, we rename the existing weak and full
notions as ‘weak single-vector-given IND-SO-CPA’ and ‘full single-vector-given
IND-SO-CPA’ games, respectively. We present the corresponding two new
notions as ‘weak both-vectors-given IND-SO-CPA’ and ‘full both-vectors-given
IND-SO- -CPA’ games.

To corroborate the already acquired intuition that the variation is not drastic,
we also observe that, just like full single-vector-given IND-SO-CPA and SIM-SO-
-CPA security notions are separated [BHK12], the new full both-vectors-given
IND-SO-CPA and SIM-SO-CPA security notions are also separated. We provide
a detailed note on the separation in the full version.

[BHK12] offers an informative inference that, given the separation result
in [BHK12] combined with the positive state-of-the-art on SIM-SO-CPA security
[BHY09], simulation-based notion is perhaps the ‘more appropriate’ formulation.
From the separation between full both-vectors-given IND-SO-CPA security and
SIM-SO-CPA security and our evidence of unfeasibility of full both-vectors-given
IND-SO-CPA security further corroborates the above inference in [BHK12].

Result 3. Lossiness vs. SOA security. For our final result, we continue the study
of complexity of SOA security, now in relation to perhaps the most related and
better studied primitive, lossy encryption [BHY09, HLOV09, PVW08, Hof12].
As mentioned earlier, Bellare et al. showed that

1. every lossy encryption scheme is weak-IND-SO-CPA secure;
2. every lossy encryption scheme with efficient openability is SIM-SO-CPA

secure.
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Thus, towards understanding the complexity of SOA security, a natural question
is whether lossiness is necessary to achieve SOA-security; that is, do the converses,
stated below, of the implications proved by [BHY09] hold:

1. “Is every weak-IND-SO-CPA secure scheme also a lossy encryption scheme?”
2. “Is every SIM-SO-CPA secure scheme also a lossy encryption scheme with

efficient openability?”

We answer both the questions in the negative.

Details on Result 3. Most existing constructions of weak-IND-SO-CPA secure
and SIM-SO-CPA secure schemes follow the general paradigm of lossy encryption
[BHY09, HLOV09] (except for the constructions that aim to achieve special
additional features such as CCA, identity-based encryption (IBE, for short),
etc. [FHKW10, BWY11], since some of the instantiations of the generic solutions
provided in [FHKW10, BWY11] may not be known to be lossy; we shall expand
on this later in the full version).

While at the face value of the definitions of SOA security and lossy encryption
it seems that the answers to the above questions are affirmative, as mentioned
above, we prove otherwise. In fact we prove a stronger result: we show a SIM-SO-
-CPA secure scheme that is not a lossy encryption scheme (even without efficient
openability). Since simulation-based security implies weak-IND-SO-CPA security,
the negative result proves that the converses of both the implications proven
by [BHY09] do not hold.

Furthermore, as a corollary of our techniques, on a slightly unrelated but
useful note, we obtain that lossiness is not required to obtain non-committing
encryption. We remark that [FHKW10] gave a generic construction of NC-CPA
secure scheme from trapdoor permutations; as remarked by the authors, this
construction is possibly not lossy. We give a first construction of NC-CPA secure
scheme that is provably not lossy.

1.2 Our Techniques

We now present at a high level our technical approach in achieving the
aforementioned results (ignoring some of the subtleties that are handled in the
proofs).

Equivalence of the existing and new notions for weak-IND-SO-CPA security.
The fact that weak both-vectors-given IND-SO-CPA notion is equivalent to weak
single-vector-given IND-SO-CPA notion follows trivially from their definitions.

(Un)feasibility of new notion of full-IND-SO-CPA security. We show that if a
PKE scheme has a public-key space {pk} for which there exists a Σ-protocol,
then the scheme is not full both-vectors-given IND-SO-CPA. To prove this,
we construct an adversary which specifies the following particular distribution:
Given the public key pk, the adversary specifies the distribution as a uniform
distribution over the Σ-protocol transcripts for the statement pk ∈ {pk}. Then,
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once the adversary receives a vector of three ciphertexts (corresponding to the
three messages of a Σ-protocol transcript), it opens only the first ciphertext.
Later upon given the actual plaintext and resampled message vectors, the
adversary runs the special-soundness extractor of the Σ-protocol to recover
the witness, namely, the secret-key. The adversary consequently will be able
to decrypt every ciphertext, thus breaking full both-vectors-given IND-SO-CPA
security of the scheme in question. All known schemes achieving (the existing
notion of) IND-SO-CPA security [BHY09, HLOV09, Hof12, PVW08, FHKW10,
BWY11], which are based on the general theme of lossiness, (except for
the schemes that aim to achieve additional features such as CCA, IBE,
etc. [FHKW10, BWY11], since some instantiations of the generic solutions
provided in [FHKW10, BWY11] may not be known to be lossy) are subsumed
by our negative result.

Complexity of SIM-SO-CPA security with respect to lossy encryption. For the
second result, we first give a very simple counterexample. Namely, we construct
an ElGamal-like SIM-SO-CPA scheme that is not a lossy encryption scheme.
However, one can argue here that this scheme satisfies some sort of ‘computational
lossiness’ (which shall formally define later), and, for all practical purposes,
this computational lossiness is all that is required of a lossy encryption scheme.
In light of this argument, we present another, but more technically involved
counterexample. The core idea for this construction stems from the following
observation. For a PKE scheme to be a lossy encryption scheme, the following
condition, called ‘lossiness of ciphertexts’, needs to hold: there exist special public
keys (called lossy public keys) such that for any such public key, and anymessage, a
ciphertext – called ‘lossy ciphertext’ – generated to encrypt that message is lossy.
That is, such a ciphertext can be opened to any plaintext message. The crucial
point here is that lossiness needs to hold even for the ciphertexts that are honestly
generated using the encryption algorithm (but with a lossy public key). On the
other hand, in the SIM-SO-CPA security definition, the simulator is required to be
able to open the ciphertexts to any givenplaintextmessage; however, the simulator
needs to be able to do so only for the ciphertexts that are generatedby the simulator
himself. Thus, it is conceivable that there could exist a simulator that generates
malicious ciphertexts and that it is able to equivocate only those ciphertexts. This
is the subtlety we build upon to construct a SIM-SO-CPA secure scheme with a
simulator that works by building malicious ciphertexts. Furthermore, we show for
this scheme that for honestly generated ciphertexts, for any malicious public key,
there does not exist an opening for at least one message, with some non-negligible
probability thus disqualifying the scheme from being a lossy encryption scheme.

Other related works. In [BDWY12], Bellare et al. studied the complexity of
SIM-SO-CPA security with respect to IND-CPA security of PKE schemes. They
showed that a large class of IND-CPA secure PKE schemes, including ElGamal,
do not achieve SIM-SO-CPA security. In [HR14], Hofheinz et al. studied the
relationship between IND-CPA security (resp., IND-CCA security) and IND-SO-
-CPA (respectively, IND-SO-CCA security); they showed that while IND-CPA
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and IND-SO-CPA notions are equivalent in a generic model of computation,
IND-CCA security does not suffice to achieve IND-SO-CCA security. It has also
been shown how to achieve SOA-secure encryption with additional features such
as IND-CCA security [HLOV09, FHKW10] and IBE [BWY11]. SOA security
for commitments is also an active area of research and there had been many
advancements in understanding the complexity of this primitive in terms of
feasibility and impossibility results [BHY09, DNRS03, ORSV13, Xia11].

2 Background

Notations. In this paper, we usually consider vectors of lengthN , for N ∈ N, and
we point at the components of such vectors at indices i with the set of indices in
question, called the ‘index-set ’. Also, we denote the set [N ] \ I as I. If a vector
of messages m = (m[1], . . . ,m[N ]) is specified only at indices specified by an
index-set I ⊆ [N ], then we call such a partially specified message vector as a
‘partial vector ’ and denote it by mI = (m[i])i∈I ∈ ({0, 1}λ)|I|. For any I ∈ [N ],
let m0I and m1

I be two partial vectors. Then the (whole) vector resulting by
placing m0[i] at the ith index if i ∈ I and by placing m1[j] at the jth index if
j ∈ I, is denoted by m0I ||m1

I . Let M be a distribution over ({0, 1}λ)N . We
say that a partial vector m0I ∈ Supp(M) iff ∃ m1

I := (m1[i])i∈I such that
m0I ||m1

I ∈ Supp(M).
Below we recall the definition of efficiently resamplable distributions. At a

high level, these are joint distributionsM over components of message vectors
with the following property: Conditioned on any subset of the components, the
rest of the components are efficiently samplable as perM. More precisely:

Definition 1 (Efficiently resamplable distribution). Let N = N(λ) > 0,
and let M be a joint distribution over ({0, 1}λ)N . We say that M is efficiently
resamplable if there exists a PPT algorithm ReSampM such that, for any I ⊆ [N ]
and any partial vector mI := (m[i])i∈I ∈ Supp(M), ReSampM(mI) samples
from M|mI (i.e., from the distribution M conditioned on the ith component
being m[i] for all i ∈ I).

Opening oracles. In our definitions, like in [BHK12], upon providing the adversary
with a public key and a vector of ciphertexts, we provide him with an opening
oracle to allow adaptive queries. Such an oracle is a stateful functionality that
takes one argument. When queried with a set of indices, it responds via the
corresponding openings of the ciphertexts (i.e., the plaintexts encrypted in the
ciphertexts at the specified indices and the randomnesses used in generating
these ciphertexts). When queried with the string ‘get queries’, it returns the set
of all indices it has provided openings for since its instantiation.

Plaintext vector, Resampled message vector. LetM be a joint distribution over
vectors of messages. Let m0 := (m0[i])i∈[N ] ← M and let c := (c[i])i∈[N ] be
such that c[i] is and n encryption of m0[i] (under some public key). Under this
notation:
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1. we call m0 as the plaintext vector.

2. Let I ⊆ [N ] be a subset of the indices. Consider a message vector m1 such
that m1I = (m0[i])i∈I ; let the rest of the components of m1 be sampled
according to M conditioned on the components at i ∈ I being m1I . We
denote the way m1 is sampled via m1 ← M|m0I and we call m1 as the
resampled message vector.

2.1 Existing SOA Definitions

We now recall the existing definitions for various flavors of IND-SO-CPA security.
All the definitions here below are taken almost verbatim from [BHK12]. However,
the definitions have been slightly renamed in order to emphasize the difference
between the existing and the new notions. The new definitions are described
below2.

Definition 2 (Weak Single-vector-given Indistinguishability-based
SOA Security). For a PKE scheme PKE = (KeyGen,Enc,Dec), a polynomially
bounded function N = N(λ) > 0, an opening oracle O, and a stateful PPT
adversary A, consider the following experiment:

Experiment Exptweak−singleVect−ind−so
PKE,A,b :

1. (pk, sk)← KeyGen
2. (M,ReSampM)← A(pk)
3. m0 := (m0[i])i∈[N ] ←M
4. (r[i])i∈[N ] ← (CoinsEnc)

N

5. c := (Enc(pk,m0[i]; r[i]))i∈[N ]

6. O := (m0[i], r[i])i∈[N ]

7. AO(·)(select, c)
8. I := O(get queries)
9. m1 ←M|m0I
10. outA ← A(output,mb)
11. if outA = b, then return 1; otherwise return 0

where, the oracle O uses O to answer the queries of A. We say that PKE is
weak single-vector-given IND-SO-CPA secure if, for any A that always outputs
an efficiently resamplable distribution M over ({0, 1}λ)N with corresponding
efficient resampling algorithm ReSampM, the following is negligible:

Advweak−singleVect−ind−so
PKE,A (1)

:=
∣
∣
∣Pr[Exptweak−singleVect−ind−so

PKE,A,1 = 1]− Pr[Exptweak−singleVect−ind−so
PKE,A,0 = 1]

∣
∣
∣ . (2)

2 We recall that CoinsA denotes the space of randomness of an algorithm A.
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Definition 3 (Full Single-vector-given Indistinguishability-based SOA
Security). For a PKE scheme PKE = (KeyGen,Enc,Dec), polynomially bounded
N = N(λ) > 0, an opening oracle O, and a stateful PPT adversary A, we define

experiment Exptfull−singleVect−ind−so
PKE,A,b (λ) analogously to Exptweak−singleVect−ind−so

PKE,A,b (λ)
with the only change the adversary is not required to provide a resampling
algorithm; i.e., A(pk) just outputs a message distributionM. We say that PKE is
full single-vector-given IND-SO-CPA if, for any such A, the following is
negligible.

Advfull−singleVect−ind−so
PKE,A (3)

:=
∣
∣
∣Pr[Exptfull−singleVect−ind−so

PKE,A,1 = 1]− Pr[Exptfull−singleVect−ind−so
PKE,A,0 = 1]

∣
∣
∣ . (4)

Definition 4 (Simulation-based SOA Security). For a PKE scheme PKEsoa
2

= (KeyGensoa2 ,Encsoa2 ,Decsoa2 ), a polynomially bounded function N = N(λ) > 0,
an opening oracle O, and a stateful PPT adversary A, a PPT distinguisher D
with a boolean output, consider the following experiments:

Experiment Exptsim−so−real
PKE,A,D :

1. (pk, sk)← KeyGen
2. M←A(pk)
3. m := (m[i])i∈[N ] ←M
4. (r[i])i∈[N ] ← (CoinsEnc)

N

5. c := (Enc(pk,m[i]; r[i]))i∈[N ]

6. O := (m[i], r[i])i∈[N ]

7. outA ← AO(·)(select, c)
8. I := O(get queries)
9. return D(m,M, I, outA)

Experiment Exptsim−so−ideal
PKE,A,D :

1. M← Sim;
2. m := (m[i])i∈[N ] ←M
3. outSim ← SimO(·)(select)
4. I := O(get queries)
5. return D(m,M, I, outSim)

where, the oracle O uses O to answer the queries of A in Exptsim−so−real
PKE,A,D and

uses only m in Exptsim−so−ideal
PKE,A,D . We say that the scheme is SIM-SO-CPA secure

if for every adversary A there is a PPT algorithm called the simulator Sim such
that, for all PPT distinguishers D, the distributions induced by the experiments
Exptsim−so−real

PKE,A,D and Exptsim−so−ideal
PKE,A,D are statistically close. That is,

Advsim−so−cpa
PKE,A,D := |Pr[Exptsim−so−real

PKE,A,D → 1]−Pr[Exptsim−so−ideal
PKE,A,D → 1]| ≤ negl(λ).

Assuming knowledge of the standard definition of lossy encryption (the
definition is recalled in the full version), we provide here a new definition of
lossiness, called ‘computational lossiness’, that we informally define below. A
formal definition appears in the full version.

Definition 5 (Computational lossy encryption (Informal)). A scheme
PKElosPKE = (KeyGenlosPKE, FakeKeyGenlosPKE, EnclosPKE, DeclosPKE, Opener)
is said to be a computational lossy encryption scheme if it satisfies all the
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properties of a lossy encryption scheme except for the following: for every ‘lossy
ciphertext’, the randomness output by the opening algorithm Opener needs to be
only computationally indistinguishable from the actual distribution of the random
coins for ciphertext.

2.2 PKE with Pseudorandom Ciphertexts

We now define PKE schemes with pseudorandom ciphertexts [CLOS02, BC05].
Roughly, these are the schemes with a property that for any plaintext message
a randomly generated ciphertext is computationally indistinguishable from a
uniform random string of the same length.

Definition 6 (PKE with pseudorandom ciphertexts). A PKE scheme

PKE$ = (KeyGen$, Enc$,Dec$) is said to have pseudorandom ciphertexts if,

for (pk$, ·)← KeyGen$, for any plaintext message m, the distribution ensembles

Enc$(pk$,m) and UcipherLen are all computationally indistinguishable, where the

ciphertexts of PKE$ are of length cipherLen.

In [CLOS02], Canetti et al. also provide a simple construction of such schemes
based on trapdoor permutations. Briefly, the construction in [CLOS02] is as
follows. With the public key as the description f of a trapdoor function,
encryption of a bit b is: f(x), b ⊕ HC(x), where x is chosen at random from
the domain of f and HC(·) is a hard-core predicate of f . Notice that for this
scheme, the distribution of encryption of a random bit b is itself a uniform
distribution over strings of the same length as the ciphertexts.

We now define PKE schemes with decidable public-key space. Roughly, for
such schemes, it is easy to verify whether a given string is a ‘valid’ public key;
i.e., whether a given string lies in the public-key space or not.

Definition 7 (PKE with decidable public-key space). A PKE scheme
PKEdeci is said to be public-key decidable if there exists a PPT algorithm that
given a string pkdeci outputs 1 if there exists some randomness with which the
key-generation algorithm outputs pkdeci as a public key, and outputs 0 otherwise
(that is, the public-key space is efficiently decidable).

We will be interested in PKE schemes with decidable public-key space and
pseudorandom ciphertexts. We shall denote such a PKE scheme by PKE$,deci.
Note that if we use certified3 trapdoor permutations instead of any permutations
in the construction of [CLOS02] discussed above, we get a scheme that enjoys
both – decidable public-key space and pseudorandom ciphertexts.

3 New IND-SO-CPA Definitions

In this section, we propose our new definitions for indistinguishability-based SOA
security. In comparison with the existing definitions, the new ones differ from the

3 A trapdoor permutation [BY96] is certified if one can verify from its description that
it is indeed a permutation.



On Selective-Opening Attacks against Encryption Schemes 589

existing ones in the following respect: in the existing definitions, corresponding
to the ciphertext vector given to the adversary, the adversary is given only either
the actual plaintext vector or the resampled message vector; on the other hand,
in the new definitions the adversary is given both the vectors that it is challenged
upon, thus being closer in spirit to the IND-CPA notion as discussed earlier.

Definition 8 (Weak Both-vectors-given Indistinguishability-based
SOA Security). For a PKE scheme PKE = (KeyGen,Enc,Dec), a polynomially
bounded function N = N(λ) > 0, an opening oracle O, and a stateful PPT
adversary A, consider the experiment that is identical to Exptweak−bothVect−ind−so

PKE,A,b

except for the following modification in Exptweak−bothVect−ind−so
PKE,A,b : 1. outA ←

A(output,mb,mb).
We say that PKE is weak both-vectors-given IND-SO-CPA secure if, for any

A that always outputs efficiently resamplable M over ({0, 1}λ)N with
corresponding efficient re-sampling algorithm ReSampM, the following is
negligible:

Advweak−bothVect−ind−so
PKE,A

:=
∣
∣
∣Pr[Exptweak−bothVect−ind−so

PKE,A,1 = 1]− Pr[Exptweak−bothVect−ind−so
PKE,A,0 = 1]

∣
∣
∣ .

Definition 9 (Full Both-vectors-given Indistinguishability-based SOA
Security). Given PKE scheme PKE = (KeyGen,Enc,Dec), a polynomially
bounded function N = N(λ) > 0, an opening oracle O, and a stateful PPT
adversary A, the experiment Exptfull−bothVect−ind−so

PKE,A (λ) is defined as

Exptweak−bothVect−ind−so
PKE,A (λ) with the only change that we do not require the

adversary to provide an algorithm for re-sampling; i.e., A(pk) just outputs a
message distribution M. We say that PKE is full both-vectors-given if, for any
PPT adversary A, the following is negligible:

Advfull−bothVect−ind−so
PKE,A

:=
∣
∣
∣Pr[Exptfull−bothVect−ind−so

PKE,A,1 = 1]− Pr[Exptfull−bothVect−ind−so
PKE,A,0 = 1]

∣
∣
∣ .

4 Equivalence of Weak Notions and (Im)possibility of
Full Notion

In this section we give a strong evidence of (un)feasibility of the new notion.
Namely, we show that every PKE scheme that has public-key space that has
a Σ-protocol is not fully secure under the new notion. Thus, our tweak on the
security definition has made it easier to prove (un)feasibility for full security.
On the other hand, for weak security, we show that the new notion is in fact
equivalent to the old notion.
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4.1 Equivalence Between Old And New (Weak) Notions

Theorem 1 (weak-bothVect-IND-SO-CPA ⇒ weak-singleVect-IND-
SO-CPA). If PKE is weak both-vectors- given IND-SO-CPA secure then it is
also weak single-vector-given IND-SO-CPA secure.

This implication is almost trivial and the proof appears in the full version.

Theorem 2 (weak-singleVect-IND-SO-CPA ⇒ weak-bothVect-IND-
SO-CPA). If PKE is weak single-vector- given IND-SO-CPA secure then it is
also weak both-vectors-given IND-SO-CPA secure.

Proof Sketch: This implication also almost immediately follows from the
definitions. However, for completeness, we present a proof. Briefly, the
implication is derived from the following two facts about the experiments
in question. Firstly, since both the experiments concern the weak model, in
each of the experiments, an adversary also presents an efficient algorithm for
resampling. Secondly, the only difference in the two experiments is the following.
An adversary in the singleVect experiment receives only one message vector
(namely, either the actual plaintext vector or the resampled message vector);
on the other hand, an adversary in the bothVect experiment receives both the
message vectors (in a random order). Thus, in our reduction, an adversary
in the weak-singleVect-IND-SO-CPA experiment, who gets only one vector of
messages, can sample the other vector of messages by itself. However, note that
the reduction cannot identically simulate the bothVect experiment since among
the two message vectors an adversary receives in the bothVect experiment one
is definitely the actual message vector, and in the event that the only message
vector received by our reduction is the resampled message vector (from its own
experiment), it can never give the adversary in the bothVect experiment the
actual message vector. This difficulty can however be easily overcome via a hybrid
argument using two more hybrid games. A more detailed proof appears in the
full version. 
�
Theorem 3 (full-bothVect-IND-SO-CPA ⇒ full-singleVect-IND-SO-
CPA). If PKE is a weak both-vectors- given IND-SO-CPA secure then it is
also weak single-vector-given IND-SO-CPA secure.

Proof Sketch: The proof is similar to the proof of (Theorem 1). 
�

4.2 Impossibility of Full Security

We show that any public key encryption scheme for which the public-key space
has a Σ-protocol is not full-bothVect-IND-SO-CPA secure.

If {pk} has a Σ-protocol, then the PKE scheme is not full-bothVect-IND-SO-
CPA secure. At a high level, we prove this negative result by showing an explicit
full-bothVect-IND-SO-CPA attack on any PKE scheme with a public-key space
that has a Σ-protocol. The attack stems from the idea that upon receiving
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the public key pk from the challenger, the adversary can specify the message
distribution to be a distribution that is statistically close to uniform proof-of-
knowledge (via the Σ-protocol) of a secret key corresponding to the public key pk.
It specifies this distribution simply as the output distribution of the simulator
of the Σ-protocol. Now, the core idea crucially relies on the special-soundness
property of the Σ-protocol. (Recall that special-soundness implies existence of an
efficient extractor that, for any theorem statement, given two proof transcripts
with the same first-round message but with distinct second-round messages and
corresponding third-round messages, the extractor computes a valid witness to
the theorem statement.) The rest of the idea then is for the adversary to ask
to open the ciphertext corresponding to only the first-round message. Then
the two vectors of messages given by the challenger would be two random
Σ-protocol proof-of-knowledge transcripts with the same first-round message,
and, with all but negligible probability, with distinct second-round messages and
corresponding third-round messages. Then the adversary can run the Σ-protocol
extractor to compute the witness, which in fact is a secret key corresponding to
the pk in question. Then the adversary can decrypt any ciphertext and break
full-bothVect-IND-SO-CPA of the PKE scheme with probability negligibly close
to 1. The full formal proof of the following theorem appears in the full version.

Theorem 4. Let PKE be a PKE scheme such that {pk} has a Σ-protocol. Then
PKE is not full both -vectors-given IND-SO-CPA secure.

5 Relationship between SOA Security and Lossy
Encryption

[BHY09] presented the first positive results for SOA security of encryption
schemes. The constructions presented crucially used lossiness of encryption. More
specifically, they proved the following implications.

Implication 1. Every lossy encryption scheme is weak-singleVect-IND-SO-CPA
secure.

Implication 2. Every lossy encryption scheme with efficient openability is
SIM-SO-CPA secure.

In the study of complexity of SOA-security, a natural question then is whether
the converses of these implications hold too. Namely:

Question 1. “Is every weak-singleVect-IND-SO-CPA secure scheme a lossy
encryption scheme?”

Question 2. “Is every SIM-SO-CPA secure scheme a lossy encryption scheme
with efficient openability?”

These are the questions that we investigate in this Section. We answer these
questions in the negative. In fact, we prove a stronger result. Namely, we give
a concrete construction of a SIM-SO-CPA secure scheme that is not a lossy
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encryption (even without efficient openability). Since every SIM-SO-CPA security
trivially implies weak-singleVect-IND-SO-CPA security, it follows as a corollary
of our result that none of the converses of the implications proved by [BHY09]
hold.

The road-map for the rest of the section is as follows. We shall first give
a very simple construction for a SIM-SO-CPA secure scheme that is not a
lossy scheme. However, although this scheme is not lossy in the traditional
sense, it satisfies ‘computational lossiness’ defined in Definition 5. Arguably,
this for most practical purposes, computational lossiness suffices, and thus it
seems that this counterexample does not give a clear answer to our question
of whether lossiness is necessary for SOA security. This brings us to our next
counterexample; although technically involved, this counterexample gives a
convincing answer to our question of whether lossiness is necessary for SOA
security.

Construction 1. Our first construction of a SIM-SO-CPA secure scheme that is
not lossy follows. Let G be a group of prime order p. Let g be a generator of G.
We shall denote the scheme as PKEsoa

1 = (KeyGensoa1 ,Encsoa1 ,Decsoa1 ).

KeyGensoa
1 : Choose x← Zp. Set sk := x and pk := gx.

Encsoa1 : On input a message m ∈ {0, 1}, sample random coins
(r,R1, R2)← Zp ×G

2, and proceed as follows. If m = 0, then output
(gr,pkr); otherwise, output (R1, R2).
Decsoa1 : On input a ciphertext (c1, c2), check if c2 = (c1)

sk. If so, then output
0; otherwise, output 1.

Fig. 1. A SIM-SO-CPA secure scheme that is not a lossy encryption scheme

We shall first show that PKEsoa
1 is a SIM-SO-CPA secure scheme but not a

lossy encryption scheme.

Theorem 5 (PKEsoa
1 is SIM-SO-CPA secure). Assuming DDH assumption

holds in G, PKEsoa
1 is SIM-SO-CPA secure.

The full proof appears in the full version. We give a proof sketch here below.
Proof Sketch: Recall from Definition 4 that in order to show that a PKE
scheme is SIM-SO-CPA secure, we need to show existence of a PPT simulator
such that, for every adversary A, the output of the simulator is computationally
indistinguishable from the output of the A in the real world. We shall construct
such a simulator SimPKEsoa

1 for PKEsoa
1 .

Recall that in the real world A, upon receiving a vector of ciphertexts, chooses
a subset I of ciphertexts and sees their openings. On the other hand, in the
ideal world, the simulator first needs to output I; then it receives the plaintext
messages to which it needs to show openings to of the ciphertexts.

The idea for simulation is that SimPKEsoa
1 would run A by providing a tuple

of ciphertexts (c1, . . . , cN ) where every ci is an encryption of 0. That is ci is
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computed as (gri , pkri). Then, upon A choosing the subset of the ciphertexts,

SimPKEsoa
1 would receive the plaintext values for which it needs to provide openings

to. If for any ciphertext ci, the plaintext value to which it needs to be opened to

is 0, then set the opening (randomness) of ci as (ri, R
(1)
i , R

(2)
i ) for some random

R
(1)
i , R

(2)
i ∈ G. Otherwise, to provide opening to 1, claim that the randomness

used was (r′i, g
ri , pkri) for some random r′i ← Zp.

Note that the only differing factor in the outputs of the real and simulated

worlds is that while an encryption of 1 is (r′i, R
(1)
i , R

(2)
i ) for independently

random R
(1)
i , R

(2)
i in the real world, in the simulated world, encryption of 1

is (r′i, g
ri , pkri). Note that this difference directly corresponds to being given a

non-DDH tuple and a DDH tuple, resp.: (g, pk, R
(1)
i , R

(2)
i ) and (g, pk, gri, pkri).

Thus, from the DDH assumption, the scheme PKEsoa
1 is SIM-SO-CPA secure. 
�

Theorem 6 (PKEsoa
1 is not lossy). PKEsoa

1 is not a lossy encryption scheme.

Proof. The proof is straight-forward. Note that every g′ ∈ G belongs to the
public-key space of PKEsoa

1 . Also for any public key pk, a ciphertext (c1, c2) can
either be of the form c2 = csk1 or not; hence, a ciphertext decrypts to either 0 or
1 and not both. Thus, PKEsoa

1 is not a lossy encryption scheme.

Our scheme is described below. The two ingredients we use to construct this
scheme are a lossy encryption scheme with efficient openability and a CPA secure
PKE scheme with decidable public-key space and pseudorandom ciphertexts.
Note that the assumption that lossy encryption scheme with efficient openability
exists is without loss of generality while considering Question 1, since if no lossy
encryption scheme exists then the answer to Question 1 is trivially negative. For
Question 2, however, we only need to assume any lossy encryption the reason
being the following: looking ahead, our approach is to take any lossy scheme,
that is already known to be weak-IND-SO-CPA secure, and modify it such that
the modified scheme is still weak-IND-SO-CPA secure but not a lossy encryption
scheme. The approach for constructing such a weak-IND-SO-CPA secure scheme
is the same as the approach below for constructing a SIM-SO-CPA secure scheme
and we omit the details). For the same reason as for Question 1, this assumption
too is without loss of generality when we consider Question 2.

Let PKElosPKE = (KeyGenlosPKE,FakeKeyGenlosPKE,EnclosPKE,DeclosPKE) be

a lossy encryption scheme. Let PKE$,deci = (KeyGen$,deci,Enc$,deci,Dec$,deci)
be a CPA-secure public key encryption scheme with decidable public-key space
{pk$,deci} and with pseudorandom ciphertexts. We construct a scheme PKEsoa

2 =
(KeyGensoa2 ,Encsoa2 ,Decsoa2 ) as follows.

Theorem 7 (PKEsoa
2 is SIM-SO-CPA secure). Let PKElosPKE be a lossy

encryption scheme and PKE$,deci be a public-key-decidable CPA-secure encryption
scheme with pseudorandom ciphertexts. Then PKEsoa

2 is SIM-SO-CPA secure.

The full proof appears in the full version. We give a proof sketch here below.
Proof Sketch: We construct such a simulator SimPKEsoa

2 for our PKEsoa
2 scheme.
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KeyGensoa
2 :

• Run (pkreal, skreal)← KeyGenlosPKE.
• Run (pk$,deci, sk$,deci)← KeyGen$,deci.
• Set soa-pk := (pkreal,pk$,deci) and soa-sk := (skreal, sk$,deci).
Encsoa2 : On input a message m, proceed as follows.
• Sample r ← CoinsEnclosPKE and compute creal ← EnclosPKE(pkreal,m; r).
• Sample a random bit b← {0, 1}.
• Compute c$,decib ← Enc$,deci(pk$,deci, r) and sample c$,deci

b
← {0, 1}cipherLen.

• Output (creal, c$,deci0 , c$,deci1 ).

Decsoa2 : On input a ciphertext (creal, c$,deci0 , c$,deci1 ), proceed as follows.
• Compute m← DeclosPKE(skreal, creal).

• If there exists b ∈ {0, 1} such that r := Dec$,deci(sk$,deci, c$,decib ) and
creal = EnclosPKE(pkreal, m; r), then output m; otherwise, output ⊥.

Fig. 2. A SIM-SO-CPA secure scheme that is not a lossy encryption scheme

We begin by providing a high-level sketch of SimPKEsoa
2 . Recall that the

underlying primitives in our construction of PKEsoa
2 are a lossy encryption

scheme with efficient openability and a public-key-decidable encryption scheme.
Also recall that we know from [BHY09] that every lossy encryption scheme
with efficient openability is a SIM-SO-CPA secure scheme. Thus every lossy
encryption scheme with efficient openability has a SIM-SO-CPA simulator
associated with it. With this, to build the SIM-SO-CPA simulator SimPKEsoa

2

for our PKEsoa
2 scheme (which is built by using a lossy encryption scheme with

efficient openability and public-key-decidable CPA-secure encryption scheme) we
naturally extend the SIM-SO-CPA simulator of the underlying lossy encryption
scheme.

It is helpful to first recall at a high-level the SIM-SO-CPA simulator of

the underlying lossy encryption scheme. Let SimPKElosPKE

be the SIM-SO-CPA
simulator of the underlying lossy encryption scheme with efficient openability

PKElosPKE. SimPKElosPKE

first samples a lossy public key. Then it encrypts a
tuple of dummy messages and gives the ciphertext tuple to the adversary. Upon
receiving an index-set I from the adversary and the values to be opened to at
these indices from the opening oracle, it runs the PPT algorithm Opener ensured
by the lossy encryption scheme to open the lossy ciphertexts at these indices to
the requested values. Finally, it simply outputs the output of the adversary.
With this, indistinguishability of the simulated output from the output of the
adversary in the real experiment follows from indistinguishability of real keys
from lossy keys of the lossy encryption scheme.

Now, having recalled the structure of SimPKElosPKE

, our simulator SimPKEsoa
2 is a

slight modification of SimPKElosPKE

. Roughly speaking, this modification directly
corresponds to the modification to the underlying lossy scheme PKElosPKE

introduced in our PKEsoa
2 . Recall that the modifications to PKElosPKE were

basically two-fold: one was to append the public key pklossy with the public
key pk$,deci of the public-key-decidable encryption scheme PKE$,deci; the other
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modification was that, while encrypting, besides encrypting the plaintext with
the (real) public key of the lossy encryption scheme to get a ciphertext creal,
append two more components to this ciphertext – namely, an encryption of the
randomness used in generating creal and a random value from {0, 1}cipherLen, in
random order. The corresponding modification to the simulator SimPKElosPKE

would be the following: SimPKEsoa
2 also appends the lossy public key with a

uniformly sampled public key pk$,deci of the PKE$,deci scheme. Then, to construct
a ciphertext, it would first construct a lossy ciphertext clossy (with some dummy
plaintext); then it would compute openings r0 and r1 of this lossy ciphertext to

0 and 1, respectively, encrypt both r0 and r1 in a random order using pk$,deci to
get c$,deci0 , c$,deci1 . The resulting ciphertext is thus (clossy, c$,deci0 , c$,deci1 ).

With this, the simulator can open each ciphertext to both 0 and 1 as follows.
To open to m ∈ {0, 1}, it would output the pre-computed opening, rm, of clossy

to m and also an opening of the one between c$,deci0 and c$,deci1 ) that encrypts
rm (with a pretense that the other ciphertext component was randomly chosen
from {0, 1}cipherLen. With this, from the indistinguishability of real keys from
lossy keys of the lossy encryption scheme and from the pseudorandomness of the
ciphertexts of the PKE$,deci scheme, indistinguishability of the simulated output
from the output of the adversary in the real experiment follows. 
�
Theorem 8. PKEsoa

2 is not a lossy encryption scheme.

The full proof appears in the full version. We give a proof sketch here below.
Proof Sketch: We begin by providing some intuition to the proof. Recall
that for PKEsoa

2 to be a lossy encryption scheme, there must exist algorithms
FakeKeyGensoa and (possibly inefficient) Openersoa such that the following holds:

1. public keys, called lossy public keys, sampled using FakeKeyGensoa are
computationally indistinguishable from those sampled using KeyGensoa2 , and,

2. for a ciphertext, called a lossy ciphertext, generated using any lossy public
key can be opened to any bit value using Openersoa.

The idea would be to show that no pair of algorithms (FakeKeyGensoa,
Openersoa) can satisfy these properties for our scheme. Assume for contradiction
that there exist such a pair of algorithms (FakeKeyGensoa, Openersoa).

We rely on the following facts about our scheme.

1. A public key soa-pk of our scheme consists of two components soa-pk =
(pkreal, pk$,deci), where the second component is easily decidable. Thus:
• A lossy public-key output by FakeKeyGensoa is such that its second part is

still within the public-key space of PKE$,deci.
• Any ciphertext generated using the second component of soa-pk (regardless

of soa-pk being real or lossy) cannot be opened to two distinct plaintexts.

2. Consider soa-pklossy = (pklossy, pk$,deci) sampled using FakeKeyGensoa. As
per our scheme a ciphertext generated using soa-pklossy consists of three
components: (clossy, c$,deci0 , c$,deci1 ), where clossy is an encryption using pklossy

of the plaintext with randomness r and one of the other two components, say
c$,decib , is an encryption of r using pk$,deci. This has the following implication.
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• In order for the Openersoa algorithm to open such a ciphertext to both
0 and 1, it has to be the case that c$,deci0 and c$,deci1 are encryptions of
openings of clossy to 0 and 1 (in some random order).

From the above observations on your PKEsoa
2 , we have the following. Let c =

(clossy, c$,deci0 , c$,deci1 ) ← Encsoa2 (soa-pklossy,m) for m ∈ {0, 1}. Recall that our

encryption algorithm works by choosing one of c$,deci0 and c$,deci1 uniformly from
{0, 1}cipherLen (and by computing the other as an encryption of the randomness
r used in generating clossy). For concreteness of discussion, let the random string

be c$,deci0 . From the above observations, for (any) algorithm, and in particular
for Openersoa, to open c to 1−m, the following condition must hold:
• there must exist an opening r′ of clossy to 1 − m such that there exists an

opening of c$,deci0 to r′.
We can show that this condition does not hold with non-negligible probability
over the choice of c$,deci0 . The subtlety however to make this argument work
is the following. It is possible that, for PKElosPKE there are multiple openings
of a lossy ciphertext to either 0 or 1. Furthermore, for PKE$,deci, the number
of ciphertexts encrypting one message could be different than the number of
ciphertexts encrypting another message. We shall discuss the subtlety in detail
and get around it to still make the argument work in the full proof. 
�

Furthermore, as a corollary of our techniques, on a slightly unrelated but
useful note, we obtain that lossiness is not required to obtain non-committing
encryption. Details are given in the full version.
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