
Michel Abdalla
Roberto De Prisco (Eds.)

 123

LN
CS

 8
64

2

9th International Conference, SCN 2014
Amalfi, Italy, September 3–5, 2014
Proceedings

Security
and Cryptography
for Networks

Lecture Notes in Computer Science 8642
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Michel Abdalla Roberto De Prisco (Eds.)

Security
and Cryptography
for Networks

9th International Conference, SCN 2014
Amalfi, Italy, September 3-5, 2014
Proceedings

13

Volume Editors

Michel Abdalla
École Normale Supérieure & CNRS
45 rue d’Ulm
75005 Paris, France
E-mail: michel.abdalla@ens.fr

Roberto De Prisco
Università di Salerno
Dipartimento di Informatica
via Ponte don Melillo
84084 Fisciano, Italy
E-mail: robdep@dia.unisa.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10878-0 e-ISBN 978-3-319-10879-7
DOI 10.1007/978-3-319-10879-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946896

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 9th Conference on Security and Cryptography for Networks (SCN 2014)
was held in Amalfi, Italy, during September 3-5, 2014. The conference has tra-
ditionally been held in Amalfi, with the exception of the fifth edition which was
held in the nearby Maiori. The first three editions of the conference were held
in 1996, 1999, and 2002. Since 2002, the conference has been held biannually.

Modern information infrastructures rely heavily on computer networks with
the Internet being the one that is most used. Implementing secure distributed
transactions for such networks poses new challenges. The SCN conference is an
international meeting that focuses on cryptographic and information security
tools, both from a theoretical and from a practical perspective, that are needed
to face the above challenges. SCN gives to researchers, practitioners, developers,
and users interested in the security of communication networks, the possibility
to foster cooperation and to exchange techniques, tools, experiences, and ideas
in the stunning Amalfi Coast setting.

The conference received 95 submissions in a broad range of cryptography and
security areas, setting a new record number of submissions for SCN. The selection
of the papers was a difficult task. Amongst the many high-quality submissions,
31 were accepted for publication in these proceedings on the basis of quality,
originality, and relevance to the conference’s scope.

The international Program Committee (PC) consisted of 33 members who
are top experts in the conference fields. At least three PC members reviewed
each submitted paper, while submissions co-authored by a PC member were
subjected to the more stringent evaluation of four PC members. In addition to
the PC members, many external reviewers joined the review process in their
particular areas of expertise. We were fortunate to have this knowledgeable and
energetic team of experts, and are deeply grateful to all of them for their hard
and thorough work, which included a very active discussion phase. Special thanks
to Brett Hemenway, Giuseppe Persiano, and Ivan Visconti, for their extra work
as shepherds.

Given the perceived quality of the submissions, the PC also decided to give a
best paper award, both to promote outstanding work in the fields of cryptogra-
phy and information security and to keep encouraging high-quality submissions
to SCN. This award was given to the paper “On the Classification of Finite
Boolean Functions up to Fairness” by Nikolaos Makriyannis.

The paper submission, review, and discussion processes were effectively and
efficiently made possible by the Web Submission and Review software, written
by Shai Halevi, and hosted at École Normale Supérieure. Many thanks to Shai
for his assistance with the system’s various features and constant availability.

The program was further enriched by the invited talks of Dario Catalano
(University of Catania, Italy) Sanjam Garg (IBM T.J. Watson Research Center,

VI Preface

USA), and Hoeteck Wee (École Normale Supérieure, France), top experts on the
subjects of the conference.

SCN 2014 was organized in cooperation with the International Association
for Cryptologic Research (IACR).

We thank all the authors who submitted papers to this conference; the Or-
ganizing Committee members, colleagues, and student helpers for their valuable
time and effort; and all the conference attendees who made this event a truly
intellectually stimulating one through their active participation.

We finally thank the Dipartimento di Informatica of the University of Salerno,
Italy, for the financial support.

September 2014 Michel Abdalla
Roberto De Prisco

SCN 2014

The 9th Conference on
Security and Cryptography for Networks

Amalfi, Italy
September 3–5, 2014

Organized by

Dipartimento di Informatica
Università di Salerno

In Cooperation with
The International Association for Cryptologic Research (IACR)

Program Chair

Michel Abdalla ENS and CNRS, France

General Chair

Roberto De Prisco Università di Salerno, Italy

Organizing Committee

Aniello Castiglione Università di Salerno, Italy
Luigi Catuogno Università di Salerno, Italy
Paolo D’Arco Università di Salerno, Italy

Steering Committee

Carlo Blundo Università di Salerno, Italy
Alfredo De Santis Università di Salerno, Italy
Ueli Maurer ETH Zürich, Switzerland
Rafail Ostrovsky University of California - Los Angeles, USA
Giuseppe Persiano Università di Salerno, Italy
Jacques Stern ENS, France
Douglas Stinson University of Waterloo, Canada
Gene Tsudik University of California - Irvine, USA
Moti Yung Google, USA and Columbia University, USA

VIII SCN 2014

Program Committee

Masayuki Abe NTT, Japan
Giuseppe Ateniese Rome University, Italy
Nuttapong Attrapadung AIST, Japan

Olivier Blazy Ruhr-Universität Bochum, Germany
Carlo Blundo Università di Salerno, Italy
Elette Boyle Technion, Israel
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Stefan Dziembowski University of Warsaw, Poland
Dario Fiore IMDEA, Spain
Marc Fischlin Darmstadt University of Technology, Germany
Pierre-Alain Fouque University of Rennes, France
Brett Hemenway University of Pennsylvania, USA
Stanislaw Jarecki University of California - Irvine, USA
Gaëtan Leurent Inria, France
Daniele Micciancio University of California - San Diego, USA
Michael Naehrig Microsoft Research, USA
Adam O’Neill Georgetown University, USA
Claudio Orlandi Aarhus University, Denmark
Carles Padró Nanyang Technological University, Singapore
Christopher Peikert Georgia Institute of Technology, USA
Giuseppe Persiano Università di Salerno, Italy
Thomas Peyrin Nanyang Technological University, Singapore
Emmanuel Prouff ANSSI, France
Christian Rechberger DTU, Denmark
Vincent Rijmen K.U. Leuven, Belgium
Christian Schaffner University of Amsterdam, The Netherlands
Thomas Shrimpton Portland State University, USA
François-Xavier Standaert Université catholique de Louvain, Belgium
Stefano Tessaro University of California - Santa Barbara, USA
Mehdi Tibouchi NTT, Japan
Damien Vergnaud ENS, France
Ivan Visconti University of Salerno, Italy
Bogdan Warinschi University of Bristol, UK

External Reviewers

Mohamed Abdelraheem
Hoda A. Alkhzaimi
Jacob Alperin-Sheriff
Marcin Andrychowicz
Gilad Asharov
Abhishek Banerjee
Céline Blondeau

Ilario Bonacina
Joppe W. Bos
Niek Bouman
Hank Carter
Henry Carter
Ignacio Cascudo
David Cash

Dario Catalano
Nishanth Chandran
Melissa Chase
Jie Chen
Céline Chevalier
Craig Costello
Dana Dachman-Soled

SCN 2014 IX

Bernardo David
Léo Ducas
Keita Emura
Anna Lisa Ferrara
Nils Fleischhacker
Jean-Pierre Flori
Georg Fuchsbauer
Benjamin Fuller
Irene Giacomelli
Vincent Grosso
Dennis Hofheinz
Vincenzo Iovino
Ioana Ivan
Amandine Jambert
Abhishek Jain
Jérémy Jean
Hugo Jonker
Saqib A. Kakvi

Eike Kiltz
Taechan Kim
Susumu Kiyoshima
François Koeune
Hugo Krawczyk
Wang Lei
Patrick Longa
Vadim Lyubashevsky
Daniel Malinowski
Takahiro Matsuda
Sarah Meiklejohn
Diego Mirandola
Ivica Nikolic
Ryo Nishimaki
Miyako Ohkubo
Jiaxin Pan
Maura Paterson
Thomas Peters

Ananth Raghunathan
Samuel Ranellucci
Thomas Roche
Yusuke Sakai
Benedikt Schmidt
Dominique Schroder
Maciej Skórski
Gabriele Spini
Mario Strefler
Katsuyuki Takashima
Tyge Tiessen
Gaven Watson
Hoeteck Wee
Shota Yamada
Eugen Zalinescu
Bingsheng Zhang

Abstracts of Invited Talks

Program Obfuscation via Multilinear Maps

Sanjam Garg

IBM T.J. Watson

sanjamg@cs.ucla.edu

Abstract. Recent proposals for plausible candidate constructions of
multilinear maps and obfuscation have radically transformed what we
imagined to be possible in cryptography. For over a decade cryptogra-
phers had been very skeptical about the existence of such objects. In this
article, we provide a very brief introduction to these results and some of
their interesting consequences.

Functional Encryption and Its Impact on

Cryptography

Hoeteck Wee*

ENS, Paris, France

wee@di.ens.fr

Abstract. Functional encryption is a novel paradigm for public-key
encryption that enables both fine-grained access control and selective
computation on encrypted data, as is necessary to protect big, complex
data in the cloud. In this article, we provide a brief introduction to
functional encryption, and an overview of its overarching impact on the
field of cryptography.

* CNRS (UMR 8548) and INRIA. Supported in part by NSF Awards CNS-1237429
and CNS-1319021 and a fellowship from the Alexander von Humboldt Foundation.

Homomorphic Signatures and Message

Authentication Codes

Dario Catalano

Università di Catania, Italy

catalano@dmi.unict.it

Abstract. Homomorphic message authenticators allow to validate com-
putation on previously signed data. The holder of a dataset {m1, . . . , m�}
uses her secret key sk to produce corresponding tags (σ1, . . . , σ�) and
stores the authenticated dataset on a remote server. Later the server can
(publicly) compute m = f(m1, . . . , m�) together with a succinct tag σ
certifying that m is the correct output of the computation f . A nice
feature of homomorphic authenticators is that the validity of this tag
can be verified without having to know the original dataset. This latter
property makes the primitive attractive in a variety of context and ap-
plications, including, for instance, verifiable delegation of computation
on outsourced data.

In this short survey, I will give an overview of the state of the art in
the areas of homomorphic signatures and message authentication codes.
I will (briefly) describe some of the most recent results and provide an
overview of the main challenges that remain to address.

Table of Contents

Key Exchange

Universally Composable Non-Interactive Key Exchange 1
Eduarda S.V. Freire, Julia Hesse, and Dennis Hofheinz

Forward Secure Non-Interactive Key Exchange . 21
David Pointcheval and Olivier Sanders

Secure Key Exchange and Sessions without Credentials 40
Ran Canetti, Vladimir Kolesnikov, Charles Rackoff, and
Yevgeniy Vahlis

Multilinear Maps and Obfuscation

Relaxed Two-to-One Recoding Schemes . 57
Omkant Pandey, Kim Ramchen, and Brent Waters

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security) 77
Antonio Marcedone and Claudio Orlandi

Invited Talk I

Program Obfuscation via Multilinear Maps . 91
Sanjam Garg

Pseudorandom Function Extensions

Constrained Verifiable Random Functions . 95
Georg Fuchsbauer

Publicly Evaluable Pseudorandom Functions and Their Applications . . . 115
Yu Chen and Zongyang Zhang

Secure Computation – Foundations and Algorithms

On the Classification of Finite Boolean Functions up to Fairness 135
Nikolaos Makriyannis

Communication-Efficient MPC for General Adversary Structures 155
Joshua Lampkins and Rafail Ostrovsky

Publicly Auditable Secure Multi-Party Computation 175
Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi

XVIII Table of Contents

Reducing the Overhead of MPC over a Large Population 197
Ashish Choudhury, Arpita Patra, and Nigel P. Smart

Network Security

Statistics on Password Re-use and Adaptive Strength for Financial
Accounts . 218

Daniel V. Bailey, Markus Dürmuth, and Christof Paar

Efficient Network-Based Enforcement of Data Access Rights 236
Paul Giura, Vladimir Kolesnikov, Aris Tentes, and Yevgeniy Vahlis

EyeDecrypt — Private Interactions in Plain Sight . 255
Andrea G. Forte, Juan A. Garay, Trevor Jim, and Yevgeniy Vahlis

Functional Encryption

Semi-adaptive Attribute-Based Encryption and Improved Delegation
for Boolean Formula . 277

Jie Chen and Hoeteck Wee

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts
from the Decisional Linear Assumption . 298

Katsuyuki Takashima

Invited Talk II

Functional Encryption and Its Impact on Cryptography 318
Hoeteck Wee

Cryptanalysis

Generic Attacks on Strengthened HMAC: n-bit Secure HMAC Requires
Key in All Blocks . 324

Yu Sasaki and Lei Wang

Improved Indifferentiable Security Analysis of PHOTON 340
Yusuke Naito and Kazuo Ohta

Secure Computation – Implementation

Faster Maliciously Secure Two-Party Computation Using the GPU 358
Tore Kasper Frederiksen, Thomas P. Jakobsen, and
Jesper Buus Nielsen

Table of Contents XIX

Systematizing Secure Computation for Research and Decision
Support . 380

Jason Perry, Debayan Gupta, Joan Feigenbaum, and
Rebecca N. Wright

An Empirical Study and Some Improvements of the MiniMac Protocol
for Secure Computation . 398

Ivan Damg̊ard, Rasmus Lauritsen, and Tomas Toft

Zero Knowledge

Efficient NIZK Arguments via Parallel Verification of Benes
Networks . 416

Helger Lipmaa

Non-Malleable Zero Knowledge: Black-Box Constructions and
Definitional Relationships . 435

Abhishek Jain and Omkant Pandey

On Adaptively Secure Protocols . 455
Muthuramakrishnan Venkitasubramaniam

Message Authentication

Key-Indistinguishable Message Authentication Codes 476
Joël Alwen, Martin Hirt, Ueli Maurer, Arpita Patra, and
Pavel Raykov

Interactive Encryption and Message Authentication 494
Yevgeniy Dodis and Dario Fiore

Invited Talk III

Homomorphic Signatures and Message Authentication Codes 514
Dario Catalano

Proofs of Space and Erasure

Efficient Proofs of Secure Erasure . 520
Nikolaos P. Karvelas and Aggelos Kiayias

Proofs of Space: When Space Is of the Essence . 538
Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and
Nicola Galesi

XX Table of Contents

Public-Key Encryption

Chosen Ciphertext Security on Hard Membership Decision Groups:
The Case of Semi-smooth Subgroups of Quadratic Residues 558

Takashi Yamakawa, Shota Yamada, Koji Nuida,
Goichiro Hanaoka, and Noboru Kunihiro

On Selective-Opening Attacks against Encryption Schemes 578
Rafail Ostrovsky, Vanishree Rao, and Ivan Visconti

Narrow Bandwidth Is Not Inherent in Reverse Public-Key
Encryption . 598

David Naccache, Rainer Steinwandt, Adriana Suárez Corona, and
Moti Yung

Author Index . 609

Universally Composable

Non-Interactive Key Exchange

Eduarda S.V. Freire1,�, Julia Hesse2, and Dennis Hofheinz2,��

1 Royal Holloway, University of London, United Kingdom
Eduarda.Freire.2009@live.rhul.ac.uk

2 Karlsruhe Institute of Technology, Germany
{julia.hesse,dennis.hofheinz}@kit.edu

Abstract. We consider the notion of a non-interactive key exchange
(NIKE). A NIKE scheme allows a party A to compute a common shared
key with another party B from B’s public key and A’s secret key alone.
This computation requires no interaction between A and B, a feature
which distinguishes NIKE from regular (i.e., interactive) key exchange
not only quantitatively, but also qualitatively.

Our first contribution is a formalization of NIKE protocols as ideal
functionalities in the Universal Composability (UC) framework. As we
will argue, existing NIKE definitions (all of which are game-based) do not
support a modular analysis either of NIKE schemes themselves, or of the
use of NIKE schemes. We provide a simple and natural UC-based NIKE
definition that allows for a modular analysis both of NIKE schemes and
their use in larger protocols.

We investigate the properties of our new definition, and in particular
its relation to existing game-based NIKE definitions. We find that
(a) game-based NIKE security is equivalent to UC-based NIKE security

against static corruptions, and
(b) UC-NIKE security against adaptive corruptions cannot be achieved

without additional assumptions (but can be achieved in the random
oracle model).

Our results suggest that our UC-based NIKE definition is a useful and
simple abstraction of non-interactive key exchange.

Keywords: non-interactive key exchange, universal composability.

1 Introduction

Non-interactive key exchange. In a non-interactive key exchange (NIKE) scheme,
any two parties can compute a common shared key without any interaction.
Concretely, a NIKE scheme enables a party A to compute a shared key KA,B =
KB,A with partyB from A’s secret key skA and B’s public key pkB. A very simple

� Supported by CAPES Foundation/Brazil on grant 0560/09-0 and Royal Holloway,
University of London.

�� Supported in part by DFG grant GZ HO 4534/4-1.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 1–20, 2014.
c© Springer International Publishing Switzerland 2014

2 E.S.V. Freire, J. Hesse, and D. Hofheinz

(albeit only mildly secure) example of a NIKE scheme is the Diffie-Hellman key
exchange protocol [10]. (Here, KA,B = gab can be computed from skA = a and
pkB = gb, or from pkA = ga and skB = b.)

A NIKE scheme offers guarantees that are quite different from a regular (i.e.,
interactive) key exchange (KE) protocol: a NIKE scheme can only offer one
session (i.e., shared key) per pair of public keys. On the other hand, in NIKE
schemes, the notion of (specifically adversarial) key registrations plays a crucial
role. Namely, while KE schemes use long-term public keys commonly only to
achieve authentication properties (e.g., [7]), a NIKE scheme must completely rely
on public and secret keys. In return, a NIKE scheme offers its functionality with-
out any interaction – a feature that has found use, e.g., in constructions of PKE
schemes [13], designated verifier signature schemes [16], deniable authentication
[11], or in wireless and sensor networks [14]. To see how the latter could benefit
from the non-interactivity we refer to [8], where it is shown that the energy costs
of communication can be significantly reduced when using non-interactive key
exchange schemes rather than interactive ones. Moreover, as a further applica-
tion, NIKE can even be used as a basis for interactive key exchange [2]. We stress
that in many of the above mentioned applications [13, 16, 11], non-interactivity
is a crucial requirement, and not only an efficiency bonus. We believe that this
justifies the investigation of NIKE schemes as such.

Previous NIKE definitions. Somewhat surprisingly, the syntax and security of
NIKE schemes has been formalized only very recently, by Cash, Kiltz, and Shoup
[9].1 They also construct an efficient NIKE scheme in the random oracle model
(ROM), based on the Computational Diffie-Hellman assumption. Further con-
structions and variants of the NIKE definition were given by Freire et al. [13].
All of the security definitions in [9, 13] are game-based and do not consider the
registration process of public keys itself. This is a bit unfortunate, in particular
since a factoring-based NIKE scheme from [13] explicitly requires a nontrivial
key registration (and can thus not be completely modeled in the setting of [13]).

In fact, game-based security definitions (like those from [9, 13]) appear unsuit-
able to model an interactive key registration process for NIKE schemes. Namely,
adding a (presumably adversarially controlled) interactive message scheduling
would considerably complicate the clean and simple NIKE definitions of [9, 13].
Indeed, it seems more natural and modular to conceptually separate the interac-
tive key registration process from the actual security of (non-interactive) NIKE
sessions. However, it is not obvious how to achieve such a conceptual separation
using a game-based security definition.

Our contribution. In this work, we devise a simple and intuitive NIKE definition
that enables a modular analysis both of NIKE schemes themselves and their use
in larger protocols. Our definition is set in the framework of Universal Compos-
ability (UC) [3], which allows for a convenient separation of the interactive key
registration phase and the actual NIKE scheme. Specifically, we can analyze key

1 A formalization of NIKE schemes as variants of interactive KE schemes (e.g., using
the KE security model of [7]) seems possible; however, as argued above, a case-
tailored NIKE definition would appear simpler and more useful.

Universally Composable Non-Interactive Key Exchange 3

registration and NIKE scheme (assuming correctly registered public keys) sep-
arately. Besides, a formalization as an ideal functionality in the UC framework
yields a very natural and intuitive characterization of a NIKE scheme.

We demonstrate the usefulness of our definition by showing that our definition
generalizes existing game-based NIKE definitions, and that the factoring-based
NIKE scheme of [13] can be analyzed with respect to our NIKE definition. This
in particular means that, while being conceptually simpler, our NIKE notion
retains a form of backward compatibility with existing notions.

Why KE functionalities are not suitable for NIKE protocols. Existing KE func-
tionalities (e.g., [7]) are designed for interactive key exchange protocols and allow
multiple sessions per pair of public keys. In contrast, our NIKE functionality is
non-interactive (i.e., immediate) and supports only one session per pair of pub-
lic keys. As mentioned above, non-interactivity is crucial in certain applications
(e.g., [13, 16, 14, 11]); however, currently no NIKE schemes that support mul-
tiple sessions per pair of public keys are known. (Hence we have restricted our
functionality to one session per pair of public keys.)

One could of course modify existing KE functionalities by restricting them to
one session, or by modifying the adversary to immediately deliver outputs. This
would have essentially the same effect as our tailor-made NIKE functionality. We
believe however that a specific NIKE functionality is simpler, and the conceptual
differences between (interactive) KE and NIKE justify a separate functionality.

Some technical details. As already explained, we formalize a NIKE scheme itself
and the key registration process separately. Concretely, we consider three ideal
functionalities (in the sense of UC), FCRS , FNIKE and FKR. FCRS provides
a common reference string (CRS), which abstracts the availability of public
parameters for the NIKE scheme. FKR abstracts the key registration process.
We stress that, similar to [17], and unlike [1, 6], our FKR functionality allows
a party to register arbitrary public keys (that pass some – possibly interactive
– validity check). In particular, FKR does not choose key pairs for a party.
This yields a weaker, but arguably more realistic abstraction of key registration.
Indeed, we will not attempt to implement FKR itself – rather, we view FKR as
an abstraction of an actual key registration authority.
FNIKE , on the other hand, completely abstracts a NIKE scheme. Hence, a

NIKE scheme may (or may not) implement FNIKE in the (FCRS ,FKR)-hybrid
model (i.e., using an instance of FCRS and FKR). In a nutshell, FNIKE simply
provides every pair of parties with a single, independently uniform shared key.

We first show that our formalization can be seen as a generalization of the
previous game-based definitions of [9, 13]. Concretely, let us call a NIKE scheme
NIKE CKS-secure if it achieves the game-based notion of [9]. We show that
the CKS notion and the NIKE security notions from [13] are all polynomially
equivalent even if we allow a re-registration of users that are not allowed in those
models. Since [9, 13] do not model key registration, we must assume that NIKE
runs with a trivial key registration in which parties simply send their public keys
to FKR, and no validity check whatsoever is performed. We show that

4 E.S.V. Freire, J. Hesse, and D. Hofheinz

(a) NIKE is CKS -secure if and only if NIKE securely realizes FNIKE (with respect
to the trivial key registration described above) against static2 adversaries,

(b) FNIKE cannot be realized without additional (e.g., set-up) assumptions
against adaptive adversaries, but

(c) if NIKE is CKS -secure,3 then a variant of NIKE with hashed shared keys
securely realizes FNIKE against adaptive adversaries in the ROM.

Results (b) and (c) resemble similar results by Nielsen [18] for the case of UC-
secure public-key encryption. Specifically, to show (b), we show that a UC sim-
ulator S (as necessary to show UC security) attempting to emulate an adaptive
attack on NIKE may run into a commitment problem. (We note, however, that
the commitment problem we encounter for NIKE schemes is slightly different
from the one for public-key encryption from [18]; see Section 4.2 for details.)

Secondly, we remark that FNIKE and FKR allow to model NIKE schemes
that cannot be modeled using previous NIKE notions. Specifically, we observe
that the key registration of the factoring-based NIKE scheme from [13] can be
handled using FKR.

Further related work. We note that, apart from the mentioned works dealing with
public-key-based NIKE schemes, the concept of NIKE has also been considered
in the identity-based setting (e.g., [19, 12]).

Roadmap. We recall (and slightly adapt) previous NIKE definitions and security
models in Section 2, and we present our UC-based NIKE definition in Section 3.
We investigate the properties of our new definition in Section 4. Namely, Sec-
tion 4.1 relates our definition (restricted to static corruptions) to existing (game-
based) definitions. Section 4.2 and Section 4.4 contain our results for adaptive
corruptions: Section 4.2 shows that adaptive UC-based NIKE security cannot
be achieved without additional (e.g., setup) assumptions, and Section 4.4 de-
scribes a simple transformation that achieves adaptive UC-based NIKE security
in the ROM. See the full version [20] for more detailed explanations, proofs and
a complete modelling of the factoring-based NIKE scheme from [13].

2 Preliminaries

NIKE schemes. Following [9], and later [13], we formally define non-interactive
key exchange in the public key setting. A non-interactive key exchange scheme
NIKE in the public key setting consists of three algorithms: NIKE.CommonSetup,
NIKE.KeyGen and NIKE.SharedKey. The first algorithm is run by a trusted au-
thority, while the second and third algorithms can be run by any user.

– NIKE.CommonSetup(1k): This algorithm is probabilistic and takes as input a
security parameter k. It outputs a set of system parameters, params.

2 However, our result hinges on the exact definition of “static corruptions” — see
Section 4.1 for details.

3 Actually we only need a weaker version of this notion, which is “search-based” instead
of indistinguishability-based.

Universally Composable Non-Interactive Key Exchange 5

– NIKE.KeyGen(params, ID): This is the key generation algorithm, a probabilistic
algorithm that on inputs params and a user identifier ID ∈ IDS, where IDS
is an identity space, outputs a public key/secret key pair (pk, sk).

– NIKE.SharedKey(ID1, pk1, ID2, sk2): On inputs a user identifier ID1 ∈ IDS
and a public key pk1 along with another user identifier ID2 ∈ IDS and a
secret key sk2, this deterministic algorithm outputs a shared key in SHK, the
shared key space, for the two users, or a failure symbol ⊥. We assume that
this algorithm outputs ⊥ if ID1 = ID2 or if any of its input is missing or is not
in the correct domain.
For correctness, for any pair of user identifiers ID1, ID2, and corresponding

public key/secret key pairs (pk1, sk1), (pk2, sk2), NIKE.SharedKey satisfies

NIKE.SharedKey(ID1, pk1, ID2, sk2) = NIKE.SharedKey(ID2, pk2, ID1, sk1).

W.l.o.g., we will only consider a shared key space of SHK = {0, 1}k.
(Game-based) security of NIKE. Several game-based security notions for NIKE,
where an adversary against a NIKE scheme is required to distinguish real from
random keys, were presented in [13]. The security notions in [13] are denoted
by CKS-light, CKS, CKS-heavy and m-CKS-heavy. In those notions, minimal
assumptions are made about the Certificate Authority (CA) in the PKI sup-
porting the non-interactive key exchange. The security models in [13] do not
rely on the CA checking that a) a public key submitted for certification has not
been submitted before, and b) the party submitting the public key knows the
corresponding secret key. An adversary against a NIKE scheme in those models
is thus allowed to introduce arbitrary public keys (for which it might not know
the corresponding secret keys) into the system. However, the security models in
[13] do not capture re-registration of (honest or corrupted) users, (i.e., when a
user renews its public key).

In this paper, we make use of some of the security notions from [13], but in
the more realistic scenario where users are allowed to re-register public keys with
a CA, and an adversary against a NIKE scheme is allowed to re-register a user
as corrupted even if it was registered as honest before. Also, for some cases we
need weaker security notions, where an adversary instead of being required to
distinguish real from random keys, it is required to actually output the shared
key between two honest users.

We start with recalling the strongest model from [13], m-CKS-heavy, which
is defined in terms of a game between an adversary B and a challenger C. First,
B obtains a set of system parameters, params, from C, which is obtained by

running params
$←− NIKE.CommonSetup(1k). C then randomly chooses a bit b

and answers the following oracle queries from B:
(register honest user, ID). C runs (pk, sk)

$←− NIKE.KeyGen(params, ID) to
generate a keypair, records (honest, ID, pk, sk) and sends pk to B.

(register corrupt user, ID, pk). C records (corrupt, ID, pk,⊥), thereby over-
writing any existing entry for this ID.

(extract, ID). C returns all values sk that appear in stored entries of the form
(honest, ID, pk, sk) for the given ID.

6 E.S.V. Freire, J. Hesse, and D. Hofheinz

Table 1. Allowed number of queries for an adversary in the game-based security defi-
nitions for NIKE from [13]. ∗ means that the adversary is allowed to make an arbitrary
number of queries.

Security notion reg.hon. reg.corr. extract hon.rev. corr.rev. test

CKS-light 2 ∗ 0 0 ∗ 1
CKS ∗ ∗ 0 0 ∗ ∗
CKS-heavy ∗ ∗ ∗ ∗ ∗ 1
m-CKS-heavy ∗ ∗ ∗ ∗ ∗ ∗

(honest reveal, IDi, IDj). Here B supplies two identities IDi and IDj , both reg-
istered as honest. C obtains the shared key between the identities IDi and IDj

by running Ki,j ← NIKE.SharedKey(IDi, pki, IDj , skj) and returns Ki,j to B.
(corrupt reveal, IDi, IDj). Here B supplies one honest and one corrupt iden-
tity. C obtains the shared key between the identities IDi and IDj by run-
ning Ki,j ← NIKE.SharedKey(IDi, pki, IDj , skj) if IDj is honest or Ki,j ←
NIKE.SharedKey(IDj , pkj , IDi, ski) if IDi is honest. C returns Ki,j to B.

(test, IDi, IDj). C computes the corresponding shared key by running Ki,j ←
NIKE.SharedKey(IDi, pki, IDj , skj) if b = 0, or draws Ki,j uniformly random
from SHK if b = 1 (note that both identities are honest). C returns Ki,j to B.

The identities IDi, IDj belong to an identity space IDS and are merely used
to track which public keys are associated with which users. Also, B is allowed to
make an arbitrary number of queries. We assume that C maintains a list of shared
keys and sends the same shared key for a pair of identities if B makes the same
test query again. To avoid trivial wins, B is not allowed to issue an honest

reveal query and a test query on the same pair of identities. For the same
reason, B is not allowed to issue an extract query on any identity involved in a
test query, and vice versa. B is also not allowed to make a register corrupt

user query on an identity which has already been registered as honest. B wins
the game if it outputs a bit b̂ = b. Now B’s advantage in the m-CKS-heavy game
is:

Advm-CKS-heavy
B (k, qH , qC , qE , qHR, qCR, qT) =

∣∣∣Pr[b̂ = b]− 1/2
∣∣∣ ,

where qH , qC , qE , qHR, qCR and qT are the numbers of register honest user,
register corrupt user, extract, honest reveal, corrupt reveal and test

queries made by B. Informally, a NIKE scheme is m-CKS-heavy-secure if there
is no polynomial-time adversary that makes at most qH register honest user

queries, etc., having non-negligible advantage in k. In our proofs, we will w.l.o.g.
restrict to adversaries that make exactly as many queries of each type as they
are allowed. See Table 1 for a summary of the differences between the models
from [13] in terms of allowed adversarial queries.

Throughout the paper, we add + to the notation of the security models from
[13] to denote the augmented versions of those models when re-registration
of honest users is allowed, and we add ++ to the notation to denote that
both re-registration of honest users, as well as corrupt registration of previously

Universally Composable Non-Interactive Key Exchange 7

registered honest users, are allowed. We show that our strongest security model,
the m-CKS-heavy++ , is polynomially equivalent to the weakest notion from [13],
the CKS-light model. Then it follows that all the above mentioned security mod-
els with or without re-registration of users are also polynomially equivalent. We
start with a description of our augmented version of the m-CKS-heavy model.

The m-CKS-heavy++ security model. Our m-CKS-heavy++ security model dif-
fers from the CKS-heavy model by allowing an adversary A to make multiple
(register honest user, ID) queries for the same ID. Upon each such request, C
runs (pk, sk)

$←− NIKE.KeyGen(params, ID) to obtain a new public key/secret key
pair and returns pk to A. C then overwrites any existing entry (honest, ID, pk, sk)
for ID in its list. Additionally, A is allowed to register previously registered hon-
est users as corrupt users by issuing a (register corrupt user, ID, pk) query
to its challenger C. The user will from then on be considered as corrupt. Here
C deletes any existing entry for ID of the form (honest, ID, pk′, sk′) and adds a
new entry (corrupt, ID, pk,⊥) to its list. We can loosen some restrictions on the
adversary concerning trivial wins, e.g., allow extract queries on users involved
in test queries as long as that user has been re-registered since the test query
was issued. The adversary’s goal in the m-CKS-heavy++ game is the same as in
the m-CKS-heavy game. The following theorem, the proof of which can be found
in the full version [20], shows that the new strong security notion is equivalent
to the weakest notion from [13].

Theorem 1 (m-CKS-heavy++ ⇔ CKS-light). The m-CKS-heavy++ and
CKS-light security models are polynomially equivalent.

A strictly weaker notion: weakCKS++ security. We introduce a weaker notion,
called weakCKS++, where the adversary has to output a current shared key be-
tween two honest parties. The adversary is allowed to issue the following queries:
(register honest user, ID), (register corrupt user, ID, pk), (extract, ID)
and (corrupt reveal, IDi, IDj). We note that, similar to Theorem 1, it can be
shown that the weakCKS++ security model is polynomially equivalent to its ver-
sion without the extra allowance of the above mentioned re-registration of users,
which we denote by the weakCKS security model.

3 NIKE in the UC Model

NIKE in the UC model of protocol execution. In order to establish relationships
between game-based NIKE security notions and UC notions, we first explain how
parties behave in a real execution of a NIKE scheme NIKE with environment Z
and adversary A, in the hybrid-model with a key registration functionality Ff

KR

(described below) and a common reference string functionality FCRS .

A party Pi proceeds as follows, running with Z, A, Ff
KR and FCRS :

– Upon receipt of (register,Pi) from Z for the first time, request params from
the FCRS functionality and run NIKE.KeyGen(params,Pi) to generate a public

8 E.S.V. Freire, J. Hesse, and D. Hofheinz

key/secret key pair (pki, ski). Register the public key pki with F
f
KR by sending

(register,Pi, pki, τ), where τ is a proof of validity of pki
4.

– On input (init,Pi,Pj) from Z, request the public key corresponding to

party Pj by sending (lookup,Pj) to Ff
KR. Compute the shared key Ki,j ←

NIKE.SharedKey(Pj , pkj ,Pi, ski) and send (Pi,Pj ,Ki,j) to Z.

– On input (renew,Pi) from Z compute (pki, ski)
$←− NIKE.KeyGen(params,Pi)

to generate a new public key/secret key pair. Register pki with F
f
KR as before.

– Upon receipt of (corrupt,Pi) from A, send the entire current state to A and,
from this point on, relay everything to or from A.

Ideal functionalities for NIKE.We now introduce our ideal functionalities FNIKE

and Ff
KR. FNIKE abstracts the task of non-interactive key exchange. To enable

a modular analysis of NIKE schemes we separate the process of key registration
from the issuance of shared keys and, in addition to FNIKE , introduce a separate

ideal functionality Ff
KR for the task of public key registration.

The key exchange functionality FNIKE . Our ideal functionality FNIKE is suitable
for non-interactive key exchange in the public key setting. FNIKE handles the
generation of shared keys between two parties, providing the security guararan-
tees of non-interactive key exchange: if an honest party Pi obtained a key Ki,j

from a session with an honest party Pj , thenKi,j is ideally random and unknown
to the adversary. Also, FNIKE requires the requesting party to know the iden-
tity of the peer. We stress that FNIKE can also handle issuance of new shared
keys (e.g., after a party renews its public key in a real NIKE scheme). If one of
the parties is corrupted by the time that a request was made, then there is no
guarantee of security of the shared key.

We remark that, as standard in the GNUC model, FNIKE ’s output towards
the parties is scheduled immediately, i.e., without adversarial intervention. Even
more, we model FNIKE such that the computation of shared keys between honest
parties is completely oblivious to the adversary. This models the fact that a
party, when using a non-interactive key exchange scheme, needs to be able to
perform this computation without the help of other parties. Modeling FNIKE

as immediate enforces this, because the execution of an interactive protocol can
be delayed by the real-world adversary and is thus not simulatable in the ideal
world, where the adversary has no ability to schedule FNIKE ’s output. We note
that even in this setting, during computation of a shared key, a real-world party
is still able to use hybrid ideal functionalities that do not communicate with the
adversary.
FNIKE operates in two modes, depending on the kind of session for which

it should output a key. We call a session honest if both parties are honest,

4 How such a proof τ looks like depends on the concrete NIKE scheme. For instance,
in most existing NIKE protocols, the proof will be trivial (i.e., empty), since the
validity of public keys is publicly verifiable.

Universally Composable Non-Interactive Key Exchange 9

otherwise the session is called corrupted. We assume FNIKE knows which parties
are corrupted.5 Additionally, FNIKE maintains three lists:
– a list Λrenew to store parties that want to renew their public key/secret key
pair;

– a list Λreg to store parties that successfully registered a public key;
– a list Λkeys to store shared keys for pairs of parties.
We note that technically, sessions with dishonest parties who still maintain an
honestly registered key could alternatively be treated as honest. This yields an
alternative ideal functionality that provides slightly better security guarantees
than FNIKE at the cost of a more complicated description. (Our proofs below
carry over to such an alternative functionality.)

FNIKE proceeds as follows, running on security parameter k, with parties
P1, . . . ,Pn and an adversary.

– On input (register,Pi) from Pi forward (register,Pi) to the adversary.
– On input (Pi, registered) from the adversary, if Pi /∈ Λreg, add Pi to Λreg .

Else, if Pi ∈ Λrenew, delete every existing entry ({Pi, ·}, key) from Λkeys

and delete Pi from Λrenew . In any case, send (Pi, registered) back to the
adversary.

– On input (init,Pi,Pj) from Pi, if Pj /∈ Λreg , return (Pi,Pj ,⊥) to Pi. If
Pj ∈ Λreg, we consider two cases:
• Corrupted session mode: if there exists an entry ({Pi,Pj},Ki,j) in Λkeys,

set key = Ki,j . Else send (init,Pi,Pj) to the adversary. After receiving
({Pi,Pj}, Ki,j) from the adversary, set key = Ki,j and add ({Pi,Pj}, key)
to Λkeys.

• Honest session mode: if there exists an entry ({Pi,Pj},Ki,j) in Λkeys, set

key = Ki,j , else choose key
$←− {0, 1}k and add ({Pi,Pj}, key) to Λkeys.

Return (Pi,Pj , key) to Pi.
– On input (renew,Pi) from Pi, store Pi in Λrenew and forward (renew,Pi)

to the adversary.

Description of the ideal functionality FNIKE

On the immediateness of FNIKE . As specified above, FNIKE does not guarantee
immediate output upon an init query that refers to a corrupted session. Namely,
in that case, the adversary is queried for a key Ki,j , and could potentially block
FNIKE ’s output by not sending that key. (We stress that the simulators we
construct will never block immediate delivery of keys in this sense.) To avoid this
possibility to block outputs, we could have let the adversary upload an algorithm
AdvKey to FNIKE that is used to immediately derive keysKi,j := AdvKey(Pi,Pj)

5 This assumption is standard in UC (e.g., [7]) and implemented as part of the model
of computation. However, since the corruption mechanism is not fully specified in
GNUC (yet), we simply assume a mechanism. (For concreteness, we assume that
ideal functionalities send any party a special “corrupted?” request that is automat-
ically and directly answered with “yes” if and only if that party has been corrupted.)

10 E.S.V. Freire, J. Hesse, and D. Hofheinz

without querying the adversary. (This is in analogy to similar algorithms in
signature and encryption functionalities [4, 5].) While possible, this would entail
technical complications (such as communicating code and an AdvKey function
that will have to use a pseudorandom function to derive keys), so we keep the
slightly simpler and more intuitive formulation from above.

The key registration functionality Ff
KR. The ideal functionality for key regis-

tration is motivated by the key registration process in the real world, which is
usually operated by a trusted authority, e.g., a CA. We can assume authenti-
cated channels between each party and the CA (because usually a CA requires
a proof of identity, e.g. possession of an identity card or, for remote use, a valid
signature). Using standard techniques (e.g., public-key encryption), we can then
establish secure channels between party and CA. Note that, even with secure
channels, the adversary still learns about registrations taking place and is able
to delay them. This leads to the following ideal functionality:

Ff
KR proceeds as follows, running with parties P1, . . . ,Pn and an

adversary.

– On input (register,Pi, pki, τ) from Pi send (register,Pi) to the
adversary.

– On input (output,Pi) from the adversary, if f(Pi, pki, τ) = 0, send ⊥
to Pi. Otherwise, store (Pi, pki) and send (Pi, pki, registered) to Pi.

– On input (lookup,Pi) return (Pi, pki). If this entry does not exist,
return ⊥.

Description of the ideal functionality Ff
KR

Ff
KR is provided with an efficiently computable function f that takes as input

a party identifier Pi, a public key pki and a proof of validity, τ , of the public
key. f returns 1 if τ is a valid proof for pki, and 0 otherwise. The adversary

obtains a notification from Ff
KR when a party tries to register and needs to

send a notification back so that Ff
KR can proceed. This models the fact that the

output of the functionality can be delayed by the adversary.
Note that the function f needs to be specified and can be used to obtain differ-

ent ideal functionalities. For example, if we want Ff
KR to accept all public keys,

we can set f to be constant, e.g. f ≡ 1. We denote this special functionality by
F1

KR and allow omitting τ in the inputs for F1
KR. We explicitly allow interactive

key registrations (i.e., implementations of Ff
KR) – only the ideal functionality

Ff
KR uses f to (non-interactively) check validity of keys. (Hence, an interactive

key registration protocol could enable a simulator to extract a witness for f).
Finally, we remark that we explicitly do not require proofs of possession (of

secret keys), as popular in concrete public-key infrastructures. However, proofs

of possession can be seen as a special case of Ff
KR (in which τ simply is the

secret key for pk, which can be verified by a suitable f).

Universally Composable Non-Interactive Key Exchange 11

4 Results

4.1 Static Corruption

We show that any CKS+-secure NIKE scheme NIKE emulates the functionality
FNIKE in a hybrid UC model, if and only if the environment Z is restricted to
static corruptions. (With static corruptions, we mean that a party can only be
corrupted before it obtains any protocol input from Z. However, we point out
that there is a subtlety regarding the precise definition of static corruptions –
see the comment after the proof of Theorem 3.).

We remind the reader that the CKS+ security notion is an augmented version
of the CKS security notion from [13] including honest re-registration of parties
(see Section 2 for definitions).

Theorem 2. Let NIKE be a CKS+ -secure NIKE scheme. Then NIKE realizes
FNIKE in the (FCRS ,F1

KR)-hybrid model with respect to static corruptions.

Proof. It suffices to show that there exists a simulator S for the dummy adver-
sary A. S interacts with an environment Z and FNIKE . S maintains a list of
corrupted parties and a list Λ with entries of the form (Pi, pki, ski), containing
party identifiers and their public key/secret key pairs. For every party only the
newest entry is kept. Thus, there is at most one entry for each party identifier
Pi. A party’s entry contains a public key if and only if it successfully registered
this key with F1

KR. We specify the reactions of S to invocations from Z and
FNIKE :
(parameters) from Z. The environment Z issues this request to the adver-
sary because it cannot access FCRS directly. S simulates FCRS by obtaining

params
$←− NIKE.CommonSetup(1k) once and, from then on, S always answers

this request with params.
(register,Pi) from FNIKE . We may assume that S already computed the
public parameters params. If the list Λ does not contain any entry (Pi, ·, ·), S
obtains (pki, ski)

$←− NIKE.KeyGen(params,Pi) and stores (Pi, pki, ski) in Λ. S
then sends a message (Pi, registered) to FNIKE , waits for (Pi, registered)
from FNIKE and sends (register,Pi) to Z (simulating that message from
F1

KR to the dummy adversary A).
(init,Pi,Pj) from FNIKE . This input implies that Pi,Pj are not both honest.
We may assume Pj is corrupted, because S would not send (init,Pi,Pj)
through a corrupted Pi. S returns (Pi,Pj , NIKE.SharedKey(Pj , pkj ,Pi, ski))
to FNIKE (note that the shared key could be ⊥).

(renew,Pi) from FNIKE . S obtains (pki, ski)
$←− NIKE.KeyGen(params,Pi) and

stores (Pi, pki, ski) in Λ, overwriting any existing entry for Pi if necessary.
S then sends (Pi, registered) to FNIKE , waits for (Pi, registered) from
FNIKE and sends (register,Pi) to Z.

(corrupt,Pi) from Z. Again, Z will issue this request to the adversary. S cor-
rupts Pi and adds Pi to its list of corrupted parties.

12 E.S.V. Freire, J. Hesse, and D. Hofheinz

(register,Pi, pki) from Z. Such a request will only be made by Z to the ad-
versary, which is asked to let a corrupted party Pi register pki as its public
key. S then stores (Pi, pki,⊥) in Λ, sends (Pi, registered) to FNIKE , waits
for (Pi, registered) from FNIKE and sends (register,Pi) to Z. S then sends
(register,Pi) to Z, (Pi, registered) to FNIKE and stores (Pi, pki,⊥) in Λ.

(lookup,Pi) from any entity. If Λ contains an entry (Pi, pki, ·), then return
(Pi, pki), else return ⊥.

FKR FCRS

Pi Pj

A

Z Z

F

SPi Pj

FKR FCRS

A

Fig. 1. Transition from G0 (left) to G1 (right)

Now let A be the dummy adversary and NIKE a CKS+-secure NIKE scheme.
We show that for every environment Z

Exec[FNIKE ,S,Z] ≈ Exec[NIKE,A,Z].

Here Exec[NIKE,A,Z] (resp. Exec[FNIKE ,S,Z]) denotes the random vari-
able describing the output of environment Z when interacting with adversary A
(resp. S) and protocol NIKE (resp. functionality FNIKE).

6

Game G0: Real protocol run. This is the real execution of NIKE with dummy
adversary A. A specific instance of this game is depicted on the left-hand side
of Figure 1.

Game G1: Regrouping of machines and addition of relays. We regroup every
machine except for Z from game G0 into one machine and call it S. We add
single relays for every party, outside of S, and one relay called F covering all
wires between the single relays and S.

Obviously the view of Z is distributed exactly as in game G0. Figure 1 shows
the transformation from G0 to G1 in a situation with one honest and one cor-
rupted party.

6 Throughout the paper we assume Z to be uniform, i.e. Z gets no auxiliary input.

Universally Composable Non-Interactive Key Exchange 13

Game G2: Merging wires. Merge all wires between F and S into one wire. Let
F determine recipients of messages (consisting of a tuple) from S by choosing
the first party that occurs in the tuple. S determines recipients in the same way.

Messages are delivered to the same recipients as in the previous game, hence,
the view of Z is distributed exactly as before.

The main difference between G2 and the ideal execution with FNIKE is that
in G2 the keys of honest sessions are computed using NIKE.SharedKey, whereas
in the ideal execution the keys are randomly chosen. This will change in the last
gameG5. Next, in gameG3, we make a simple but slightly technical modification:
we let F perform a check to determine whether it should forward a shared key
coming from S to the requesting party. (Namely, if the other party involved in
this session has not registered its public key yet, then F can answer this request
with ⊥ on its own.)

Game G3: Allowing F to store information and make decisions. We let S send
(Pi, registered) to F whenever a party successfully registers a public key pki
with F1

KR. We let F bounce the message back to S and additionally maintain
a list Λreg with parties for which F already received such a message. Upon
receiving (init,Pi,Pj), if Pj /∈ Λreg, F sends (Pi,Pj ,⊥) to Pi. Else F relays
(init,Pi,Pj) to S and receives an answer (Pi,Pj ,Ki,j). F relays (Pi,Pj ,Ki,j)
to Pi.

We have to check whether the output of Pi in G2 is (Pi,Pj ,⊥) if and only if
the output of Pi in G3 is (Pi,Pj ,⊥). In G2, Pi outputs (Pi,Pj ,⊥) if and only if
⊥ ← NIKE.SharedKey(Pj , pkj ,Pi, ski). By definition of F in G3, the output of
a party Pi is (Pi,Pj ,⊥) if and only if Pj /∈ Λreg or S answered with (Pi,Pj ,⊥).
A missing pkj will cause NIKE.SharedKey(Pj , pkj ,Pi, ski) to output ⊥, hence,
both events together are equivalent to ⊥ ← NIKE.SharedKey(Pj , pkj ,Pi, ski).

Game G4: More lists and more decisions for F . Here, we introduce two new lists,
Λkeys and Λrenew, to F . These lists resemble the lists used internally by FNIKE .
Specifically, whenever F has to send a message (Pi,Pj , key) to Pi where key �= ⊥,
it also stores ({Pi,Pj}, key) to Λkeys. Whenever F receives a message (renew,Pi)
from Pi, it adds Pi to Λrenew. Whenever F receives a message (Pi, registered)
from S, if Pi ∈ Λrenew , F deletes all entries ({Pi, ·}, key) from Λkeys and removes
Pi from Λrenew. So far there were no modifications regarding F ’s outputs. Now
upon receipt of (init,Pi,Pj) with Pj ∈ Λreg we let F check the list Λkeys for
an entry ({Pi,Pj}, key). If there is one, F does not relay (init,Pi,Pj) to the
adversary and instead returns ({Pi,Pj}, key) to Pi right away.

The output of F is the same as in Game G3, because any entry in Λkeys was
computed by S and therefore matches the answer of S to the init request in
Game G3.

Game G5: Building the ideal functionality FNIKE . We now substitute all shared
keys between two honest parties in Λreg (computed with NIKE.SharedKey) with
random keys. Concretely, for every honest session (init,Pi,Pj), for Pj in F ’s
list Λreg, we let F determine the key for that session. First of all we prevent
F from forwarding (init,Pi,Pj) to the adversary. Next, if Λkeys contains an

14 E.S.V. Freire, J. Hesse, and D. Hofheinz

Table 2. Corresponding queries

UC requests CKS+ queries

(parameters) (parameters)
(corrupt,Pi) + (register,Pi, pki) (register corrupt user,Pi, pki)
(register,Pi) or (renew,Pi) (register honest user,Pi)
(init,Pi,Pj), corrupt session (corrupt reveal,Pi,Pj)
(init,Pi,Pj), honest session (test,Pi,Pj)

entry ({Pi,Pj},Ki,j), F sets key = Ki,j . Else F chooses key
$←− {0, 1}k, stores

({Pi,Pj}, key) and sends (Pi,Pj, key) to Pi.
Let Z be a distinguishing environment between games G4 and G5. We use Z

to construct an adversary B against NIKE in the CKS+ security game. Besides
playing the CKS+ security game with its challenger C, B runs Z and acts as a
mediator between Z and C.

Table 2 shows requests of Z and the corresponding queries in the CKS+

security game that B issues to get answers for Z’s requests. Note that B can
embed its own challenge into the UC execution with Z by answering initialization
requests for honest sessions from Z with C’s responses to test queries. We omit
a detailed description of B and briefly list what B has to do besides issuing the
requests shown in Table 2.
– To be able to answer lookup requests from Z, B has to keep track of all public
keys.

– When answering (init,Pi,Pj) requests from Z, B returns ⊥ to Z if Pj has
not been registered with C yet.

Note that according to Table 2 both (register,Pi) and (renew,Pi) requests
from Z lead to the same request in the CKS+ game. This is due to the fact that
renewing a public key in the CKS+ game is done by re-registering the user as hon-
est. Let AdvG4,G5

Z = |Pr[1← Z|Z runs in G5]− Pr[1← Z|Z runs in G4]| de-
note the advantage of Z in distinguishing G4 and G5. By assumption, AdvG4,G5

Z
is non-negligible. Let b̂ denote the output bit of Z and b the bit chosen by the
CKS+ challenger C. If b = 0, C answers test queries with real shared keys, else
the keys are randomly chosen from {0, 1}k. Thus if b = 0, B simulates G4, and if

b = 1, B simulates G5. We let B output b̂, i.e. the same bit as Z. Hence, we have

that AdvCKS+

B = AdvG4,G5

Z . Clearly, as AdvG4,G5

Z is non-negligible, AdvCKS+

B is
non-negligible as well. This contradicts the CKS+ security of NIKE and thus we
conclude that AdvG4,G5

Z is negligible.
It is easy to see that F in game G5 behaves exactly like FNIKE , and game G5

is equal to an ideal execution of NIKE with FNIKE and S. It follows that

Exec[NIKE,A,Z] = GAMEG0

Z ≈ GAMEG5

Z = Exec[FNIKE ,S,Z],

where GAMEG0

Z (resp. GAMEG5

Z) denotes the output of Z when running in game
G0 (resp. G5).

Universally Composable Non-Interactive Key Exchange 15

Remark. The hybrid functionality FCRS is required to guarantee that the pa-
rameters for the NIKE scheme cannot be adversarially chosen. But since there is
no need for the simulator to program the CRS, we can also assume FCRS to be
a global functionality. The global CRS functionality, denoted by ḠCRS , can be
directly accessed by Z and is a strictly weaker assumption than our functionality
FCRS . A detailed description of ḠCRS can be found in [6].

Theorem 2 states that CKS+ security (or any equivalent notion) of a NIKE
scheme is sufficient for UC security of the scheme with respect to static ad-
versaries. Next we show that CKS+ security (or any equivalent notion) is also a
requirement for UC-secure NIKE schemes. We recall that there is an equivalence
between several flavours of game-based security notions for NIKE (see [13]) and
it therefore suffices to show CKS-light security.

Theorem 3. Let NIKE be a UC-secure NIKE scheme realizing FNIKE in the
(FCRS ,F1

KR)-hybrid model with respect to static corruptions. Then NIKE is CKS-
light-secure.

Proof sketch: We will first map any CKS-light adversary B to a suitable environ-
ment Z that simulates B and translates B’s queries in a similar way as shown
in Table 2.7 Hence, running Z with NIKE provides B with a view as in the CKS-
light game with b = 0 (i.e., with real keys). Now consider an environment Z̃ that
works like Z, but substitutes all shared keys between honest parties provided
by NIKE (or FNIKE) with random keys. Hence, running Z̃ with NIKE provides
B with a view as in the CKS-light game with b = 1 (i.e., with random keys).
Intuitively, if B is a successful CKS-light distinguisher, then B can distinguish
between running with Z or Z̃ in the real UC model. However, in the ideal UC
model, Z and Z̃ provide B with identical views; hence, B will not be able to
distinguish running with Z or Z̃ in the ideal UC model. In this way, a successful
B acts as a successful distinguisher between the real and the ideal UC model.

On the UC notion of static corruption. In the proof of Theorem 3, we use the rel-
atively loose definition of static corruption in the UC model (cf. [5, Section 6.7]).
In fact, Theorem 3 would not hold if we applied a stricter (with respect to adver-
sarial constraints) definition of static corruption. For instance, we could require
that no corruptions take place after the first honest party receives an input. (This
is in fact the default notion of static corruptions in the GNUC model of security,
at least since the December 2012 update of [15].) For this notion of static corrup-
tion, we can construct counterexamples to Theorem 3. On the other hand, once
there is only a fixed polynomial number of parties whose identities are known
in advance, the environment Z from the proof of Theorem 3 can guess the two
honest parties that B chooses and corrupt all other parties in advance. Hence,
Theorem 3 holds even with respect to stricter notions of static corruption, once
the set of possible honest parties is polynomially small.

7 Note, however, that the CKS-light game does not feature renew queries. Further-
more, the number of queries considered in the CKS-light game is in fact more re-
stricted than in the CKS+ game.

16 E.S.V. Freire, J. Hesse, and D. Hofheinz

4.2 Adaptive Corruption

We consider adaptive corruption, where Z is now allowed to corrupt formerly
honest protocol participants. To avoid trivial protocols, say that a function f
(that recognize valid keys in Ff

KR) is nontrivial for a given NIKE scheme iff
f(Pi, pki, τ) = 1 for all parameters params generated by NIKE.CommonSetup(1k)
and all public keys generated by NIKE.KeyGen(params,Pi) along with proofs τ .

Theorem 4. There is no NIKE scheme NIKE and function f which is nontrivial
for NIKE, such that NIKE realizes FNIKE in the (FCRS ,F

f
KR)-hybrid model with

respect to adaptive corruptions.

Proof. We specify an adversary A and an environment Z and show that there
is no simulator S for this setup.

Let NIKE be any non-interactive key exchange scheme. W.l.o.g we assume
that all secret keys have the same bit length l = l(k), where k denotes the
security parameter. Let NIKE.SharedKey be the shared key algorithm of NIKE
that takes as inputs (Pi, pki,Pj , skj), i �= j, and outputs shared keys of length k.
Let n :=
 l

k �+ 2. For convenience we let A be the dummy adversary and let Z
mount the attack on NIKE, which is described in five steps:
1. Send (parameters) to A to obtain params, a set of system parameters.
2. Send (register,Pi) to Pi, i = 1, . . . , n and (init,Pi,P1) to Pi, i = 2, . . . , n.
Thus, Z obtains the shared keys K1,i between party P1 and party Pi, i =
2, . . . , n.

3. Obtain the public keys pk1, . . . , pkn, corresponding to parties P1, . . . ,Pn, from
A.

4. Send (corrupt,P1) to A to learn sk1. Abort if sk1 /∈ {0, 1}l.
5. If K1,i = NIKE.SharedKey(Pi, pki,P1, sk1) ∀ i = 2, . . . , n, output 1, else out-
put 0.

In the real world Z will always output 1 by the correctness of NIKE and the
nontriviality of f . Now let S be any simulator. The ideal world execution with
S will have to proceed as follows:

1. S arbitrarily chooses a set of system parameters params and sends params
to Z.

2. Here S cannot choose the shared keys K̃1,i, i = 2, . . . , n, between the honest
parties, because these are chosen by FNIKE (and in fact unknown to S).

3. Now S arbitrarily chooses public keys pk1, . . . , pkn, simulating Ff
KR, and sends

them to Z.
4. S also corrupts P1 and learns K̃1,i, i = 2, . . . , n. S chooses sk1 ∈ {0, 1}l and
sends it to Z.
To see what happens in step 5 we define

F�pk(sk1) : {0, 1}
l −→ {0, 1}(n−1)k

sk1 �−→ (NIKE.SharedKey(P2, pk2,P1, sk1), . . . ,

NIKE.SharedKey(Pn, pkn,P1, sk1))

Universally Composable Non-Interactive Key Exchange 17

where �pk := (pk2, . . . , pkn). FNIKE chooses (K̃1,2, . . . , K̃1,n) uniformly from
{0, 1}(n−1)k, hence the probability that there exists sk1 with

F�pk(sk1) = (K̃1,2, .., K̃1,n)

is at most 2l

2(n−1)k . As n was chosen such that (n−1)k ≥ l+k, we have 2l

2(n−1)k ≤
2l

2l+k ≤ 2−k, which is negligible in k. It follows that Z will output 1 only with
negligible probability.

Remarks. (1) If the secret key depends deterministically on the public key, the
attack is simpler, because after the first step S is committed to secret keys. After
receiving the public keys, Z initializes a key exchange session between two honest
parties and later corrupts one of them. Due to the commitment in the first step,
the probability that the secret key matches the uniformly chosen shared key is
negligible in the size k of the shared key.

(2) In the security models from [13], adaptive corruption corresponds to an
adversary which issues a test query for two honest identities and additionally
uses an extract query to get one of the secret keys. This case is excluded as
trivial win for the adversary.

Relation to a Similar Result of Nielsen in Secure Message Transfer
Nielsen’s results. We have shown that security against adaptive corruptions is
not possible without additional assumptions. Taking into account the results
of Nielsen [18], this is not surprising. There, it is shown that there is no non-
interactive protocol which realizes secure message transfer (SMT) without addi-
tional assumptions. Non-interactive SMT protocols (according to the definition
of [18]) can essentially be viewed as a PKE scheme. The impossibility result
is due to the fact that the simulator has to commit to a transcript of encryp-
tions before knowing the underlying messages. Upon corruption, S, now knowing
the messages, can only hope to adjust the secret key to explain the transcript.
Nielsen shows that a secret key of fixed length does not provide enough entropy
to explain an unbounded number of encryptions.

Why his result does not imply ours. Regarding NIKE, a similar problem arises
when formerly honest parties, when being corrupted, reveal an unbounded num-
ber of earlier computed shared keys. The simulator has to use the secret key to
explain those shared keys. Analogous to [18] we can prove an impossibility result
due to a lack of entropy in the secret key.

One could hope to conclude this directly from the result of [18] with the fol-
lowing argument: every NIKE can be used to realize SMT. Thus an impossibility
result for the latter would imply Theorem 4. However, [18] crucially uses that
the SMT protocol can transmit arbitrarily long messages between two parties.
In contrast, a NIKE only creates fixed-length (i.e., k-bit) shared keys between
each pair of parties. Such a short key cannot (in any obvious way) be used to
transmit arbitrarily long messages against adaptive corruptions.

18 E.S.V. Freire, J. Hesse, and D. Hofheinz

Therefore Nielsen’s impossibility result for non-interactive SMT can not be
used to directly conclude Theorem 4. Nevertheless our technique is strongly
inspired by the idea of Nielsen, namely using an unbounded number of key
exchange sessions instead of unbounded-length messages.

Generalizations of our negative result to other (non-programmable) functionali-
ties. Theorem 4 shows that security against adaptive corruption is not achievable
in the (FCRS ,F

f
KR)-hybrid model. The result would be even stronger if we added

more powerful hybrid functionalities. We find that, similar to another result from
[18], even a global random oracle functionality to which Z has direct access does
not facilitate security against adaptive corruption. (This notion of a globally ac-
cessible functionality has been formalized in [18], but can be cast more generally
in the “GUC” variant of UC [6].)

Even more, (the proof of) Theorem 4 would still hold in any hybrid model that,

in addition to FCRS and Ff
KR, provides only non-programmable hybrid function-

alities. In this context, by non-programmable we mean that the input/output
behaviour of the functionality is completely independent of the simulator (note
that this also includes that the simulator is not able to program the output
of the functionality via scheduling of messages). This observation points us to
hybrid functionalities that actually facilitate adaptive corruption. And indeed,
in Section 4.4 we will see that a programmable random oracle functionality is
enough to achieve adaptive UC security.

4.3 Summary of Relations Established So Far

There is a strong relation between the game-based security notions from [9, 13]
and UC security with respect to FNIKE , our functionality for non-interactive
key exchange. In Section 4.1 we have shown equivalence of CKS security (or
other equivalent notions from [13]) to static UC-NIKE security (w.r.t FNIKE

using FCRS and FKR). Furthermore, Theorem 4 implies that CKS security is
not enough to achieve adaptive UC-NIKE security (w.r.t FNIKE using FCRS and
FKR). The relations between the security notions are depicted in Figure 2.

adaptive UC-NIKE security

static UC-NIKE security CKS security
Theorem 2

Theorem
4

Theorem 3

Fig. 2. Relations between CKS security models and UC-NIKE security

Universally Composable Non-Interactive Key Exchange 19

4.4 Transformation to Adaptively Secure NIKE in the ROM

In Section 4.2 we have proven that, without additional assumptions, FNIKE

cannot be realized in the (FCRS ,F
f
KR)-hybrid model in the presence of adaptive

adversaries. We now show how to achieve adaptive UC security if we assume
the existence of a random oracle. More specifically, we show that if a NIKE
scheme NIKE is secure in the sense of a strictly weaker (“search-based” instead
of indistinguishability-based) notion of security than the notions presented in
[13], and with additional allowance of re-registration of honest users and corrupt
registration of previously registered honest users, then a hash variant of NIKE
securely realizes our non-interactive key exchange functionality FNIKE in the
FRO -hybrid model. The security model used in our reduction is denoted by
weakCKS++ (see Section 2 for a definition).

Definition 1 (Transformation to the ROM). Let NIKE be a non-interactive
key exchange scheme with shared key algorithm NIKE.SharedKey and let H :
{0, 1}∗ → {0, 1}k′

be a hash function (viewed as a random oracle), where k′ is
a security parameter. Let NIKE’ be a modification of the scheme NIKE such that
its shared key algorithm, NIKE’.SharedKey’, is defined as

NIKE’.SharedKey’(Pi, pki,Pj , skj)

if

{
Pi < Pj return H(Pi,Pj , NIKE.SharedKey(Pi, pki,Pj , skj))

Pj < Pi return H(Pj ,Pi, NIKE.SharedKey(Pi, pki,Pj , skj))

Here we are assuming that the party identifiers come from a space with a natural
ordering and that the shared key space of NIKE’ is {0, 1}k′

.

Theorem 5. Let NIKE be a weakCKS++ -secure non-interactive key exchange
protocol. Then, in the presence of adaptive adversaries, the modification NIKE’

of NIKE realizes FNIKE in the (FCRS ,F1
KR,FRO)-hybrid model.

Proof sketch: We show that Z cannot distinguish the real protocol run of NIKE’
with the ideal functionalities FCRS , F1

KR and FRO , and an adversaryA, from the
ideal protocol run with FNIKE and S, unless Z makes a specific type of RO query.
Then we show that if Z makes such a RO query, we can construct an adversary
against NIKE in the weakCKS++ security game. By our assumption, there is
no such adversary with non-negligible advantage. Thus, the probability that Z
makes that RO query is negligible and therefore the real and ideal execution
(with our simulator S) cannot be distinguished by any environment Z.

References

[1] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195. IEEE Computer
Society Press (2004)

[2] Barker, E., Johnson, D., Smid, M.: NIST special publication 800-56A: Recommen-
dation for pair-wise key establishment schemes using discrete logarithm cryptog-
raphy, revised (2007)

20 E.S.V. Freire, J. Hesse, and D. Hofheinz

[3] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

[4] Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW 2004, p. 219. IEEE Computer Society (2004)

[5] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive (2005), http://eprint.iacr.org/2000/067

[6] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007)

[7] Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002)

[8] Capar, C., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.:
Signal-flow-based analysis of wireless security protocols. Inf. Comput. 226, 37–56
(2013)

[9] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

[10] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

[11] Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability
of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162.
Springer, Heidelberg (2009)

[12] Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash
functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

[13] Freire, E.S., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271.
Springer, Heidelberg (2013)

[14] Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.:
Strongly-resilient and non-interactive hierarchical key-agreement in mANETs. In:
Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 49–65. Springer,
Heidelberg (2008)

[15] Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Cryp-
tology ePrint Archive (2011), http://eprint.iacr.org/2011/303

[16] Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

[17] Kidron, D., Lindell, Y.: Impossibility results for universal composability in public-
key models and with fixed inputs. Journal of Cryptology 24(3), 517–544 (2011)

[18] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

[19] Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, Okinawa, Japan (2000)

[20] Freire, E.S.V., Hesse, J., Hofheinz, D.: Universally Composable Non-Interactive
Key Exchange. Cryptology ePrint Archive (2014),
http://eprint.iacr.org/2014/528

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2014/528

Forward Secure Non-Interactive Key Exchange

David Pointcheval1 and Olivier Sanders1,2

1 École normale supérieure, CNRS & INRIA, Paris, France
2 Orange Labs, Applied Crypto Group, Caen, France

Abstract. Exposure of secret keys is a major concern when crypto-
graphic protocols are implemented on weakly secure devices. Forward
security is thus a way to mitigate damages when such an event occurs.
In a forward-secure scheme, the public key is indeed fixed while the se-
cret key is updated with a one-way process at regular time periods so
that security of the scheme is ensured for any period prior to the expo-
sure, since previous secret keys cannot be recovered from the corrupted
one. Efficient constructions have been proposed for digital signatures or
public-key encryption schemes, but none for non-interactive key exchange
protocols, while the non-interactivity makes them quite vulnerable since
the public information cannot evolve from an execution to another one.

In this paper we present a forward-secure non-interactive key exchange
scheme with sub-linear complexity in the number of time periods. Our
protocol is described using generic leveled multilinear maps, but we show
that it is compatible with the recently introduced candidates for such
maps. We also discuss various security models for this primitive and
prove that our scheme fulfills them, under standard assumptions.

Keywords: forward security, non-interactive key exchange, multilinear
map.

1 Introduction

1.1 Non-Interactive Key Exchange

The famous interactive key exchange protocol introduced in 1976 in the semi-
nal paper [DH76] by Diffie and Hellman can be turned into a simple and quite
efficient non-interactive key exchange (NIKE) scheme: it enables two parties,
who have first agreed on some parameters, to share a common secret without
exchanging any additional messages but just their public keys. More precisely,
the parameters simply consist of a group G of prime order p along with a gener-
ator g ∈ G. When Alice, whose secret/public keys pair is (x,X = gx) for some
x ∈ Zp, wants to share a secret with Bob, whose public key is Y = gy, she com-
putesK = Y x, which value can be recovered by Bob by computing Xy. However,
eavesdroppers have no clue about this value, because of the intractability of the
Diffie-Hellman problem. Hashing the resulting secret K along with both identi-
ties even leads to a provably secure scheme, according to the expected properties
for a NIKE scheme, and this scheme is remarkably efficient. Indeed, both secret

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 21–39, 2014.
c© Springer International Publishing Switzerland 2014

22 D. Pointcheval and O. Sanders

and public keys consist of one element and sharing a secret only requires one
exponentiation from each user.

A first basic security model for NIKE has been provided by Bernstein [Ber06].
Thereafter, Cash, Kiltz and Shoup [CKS08] enhanced it, allowing dishonestly
generated public keys. This models the real-life situation where public keys are
published by users, without certification, or with a weak certification only (when
the certification authority does not check the knowledge of the associated se-
cret key, but just the identity of the owner of the public key). However, Freire
et al [FHKP13] pointed out some weaknesses in their model such as the inability
of the adversary to corrupt honest users, and thus get honestly generated secret
keys or shared keys between two honest entities. They proposed the dishonest-
key registration model, as the strongest security model, together with a scheme
in a pairing-friendly setting, secure in the standard model.

Sakai, Oghishi and Kasahara [SOK00] proposed the first Identity-based NIKE
(Id-NIKE) scheme, later formalized and proven secure by Dupont and Enge in
an ad-hoc security model [DE06]. The above concerns about the Certification
Authority, and dishonestly generated public keys, are irrelevant in the identity-
based setting, however, again, the lack of oracle access to previous shared keys
was noticed as a potential weakness by Paterson and Srinivasan [PS09]. They
thus fixed the previous model and explored the relationships between Id-NIKE
and Identity-Based Encryption (IBE). Moreover, they proposed constructions,
using trapdoor discrete log groups, whose instantiations suffer from the high
computational cost of the Extract algorithm (to get secret keys from identi-
ties), with security in the random oracle model. Recently, Freire et al [FHPS13]
provided the first Id-NIKE and Hierarchical Id-NIKE schemes secure against
corruptions in the standard model.

1.2 Forward Security

As for most of cryptographic protocols, the main threat against a NIKE scheme
is exposure of users’ secret keys since, contrarily to interactive key exchange
protocols which can still provide some security in this case, all the session keys
between the corrupted user and any other user get immediately leaked. Leakage
of a secret key is therefore a major issue for all users, not only for the corrupted
one. A classical solution to prevent leakage is to distribute the secret across
multiple servers via secret sharing. However, this is not compatible with the
goal of non-interactive key exchange which is to limit communications between
the different parties. Anderson [And97] thus suggested forward security to mit-
igate damages caused by key exposure: the lifetime of a system is now divided
into T time periods, the secret keys evolving with time. More precisely, at any
time period i, each user owns a secret key sk i which he can use as usual, but
also to derive his secret key sk i+1, for the next time period. However, forward
security requires that an adversary being able to recover sk i is unable to com-
promise the security of any previous time period: the evolving process from sk i

to sk i+1 has to be one-way. In his talk, Anderson proposed a non trivial solution,
but constructing protocols whose parameters were sub-linear in the number of

Forward Secure Non-Interactive Key Exchange 23

periods remained a challenge. The case of digital signatures was first addressed
by Bellare and Miner [BM99] which provided a security model but also differ-
ent constructions, one of them achieving constant key-size (i.e. independent of
T). Then, many other papers followed [AR00, IR01, KR02, BSSW06, ABP13],
most of them providing schemes in the RSA setting. The case of public-key en-
cryption has later been addressed by Canetti, Halevi and Katz [CHK07] whose
construction in a pairing-friendly setting has complexity logarithmic in T only.

Although the case of forward-secure NIKE was mentioned in [And97], the
problem of constructing a scheme with sub-linear complexity has still remained
open. One could think that the ideas used to construct forward-secure signature
or encryption schemes can lead to forward-secure NIKE schemes, however, this
does not seem to be the case for the reasons we describe below. We here make
a distinction between constructions in the RSA setting [BM99, AR00, IR01,
ABP13] and the ones in a pairing-friendly setting [BSSW06, CHK07].

The first forward-secure schemes were proposed in the RSA setting: the key
evolving process relies on the fact that exponentiation is a one-way function,
even with a public exponent. Informally, the underlying idea is to set the public
key as Z = Se1·...·eT for T public exponents e1, ..., eT (we may have ei = ej) and
a secret element S. At each time period i, the user will prove knowledge of an
(ei ·...·eT)-th root of Z (thus sk i is S

e1·...·ei−1), such a proof leading to an efficient
signature scheme by using the Fiat-Shamir heuristic [FS86]. Updating the secret
key simply consists in computing skei

i and so does not require any randomness
which would be convenient for constructing a NIKE scheme. However, while
assuming that Alice knows some n-th root of a public element ZA and that
Bob knows an m-th root of a public element ZB, computing a common secret
between Alice and Bob is far from being obvious. Therefore, the RSA setting
unfortunately seems to be more suitable for signatures than for NIKE schemes.

Since the seminal paper from Joux [Jou00], pairings have been widely used
in cryptography, their properties allowing to solve open problems such as to
construct an efficient identity-based encryption scheme [BF01]. In [CHK07],
Canetti, Katz and Halevi used them to propose a forward-secure encryption
scheme with logarithmic complexity in the number of time periods. However,
since the involved groups are of prime order, exponentiation with public expo-
nent is no longer a one-way function. The update algorithm is then more complex
and involves randomness which makes sharing a common secret more difficult
since non-interactivity of the primitive implies that Bob cannot get information
about the random values used by Alice. The signature scheme of Boyen et al
[BSSW06] is quite similar, therefore the underlying idea of constructions in a
pairing-friendly setting does not seem to suit the NIKE case either. However, we
emphasize that the randomness used to update the secret key is not necessarily
incompatible with NIKE but the protocol must ensure that the common secret
shared by Alice and Bob is independent of it.

24 D. Pointcheval and O. Sanders

1.3 Achievements

The lack of forward-secure NIKE scheme with sub-linear complexity could be
explained by the limitations of cryptographic tools known until recently. As with
pairings a decade ago, the recent candidates for multilinear maps proposed by
Garg, Gentry and Halevi [GGH13] and Coron, Lepoint and Tibouchi [CLT13]
offer new functionalities allowing to achieve constructions previously impossible.
An example is provided in [FHPS13] where the authors used them to propose
the first Id-NIKE scheme secure in the standard model.

In this work we prove that constructing a forward-secure NIKE scheme is also
possible by using multilinear maps. Our scheme shares some similarities with
tree-based forward-secure schemes since we also associate time periods with all
nodes of the tree. But the construction manages to handle both evolution of
secret keys and key exchange with the tree. It also provides some flexibility with
the number of levels of the multilinear map, since whatever the number of time
periods a bilinear map can be enough, at the cost of a larger secret key, while a
smaller secret key will require a multilinear map with a higher number of levels.
In addition, our construction is compatible with multilinear maps from [GGH13]
and [CLT13], but requires some modifications that we describe in this paper. We
also formally define two security models for forward-secure NIKE and prove that
our scheme achieves the strongest one under a conventional assumption in the
standard model.

1.4 Organization

In the next section, we recall the definition of generic leveled-multilinear maps
and some of the differences with their approximations proposed in [GGH13]
and [CLT13]. Section 3 describes a security model for forward-secure NIKE. We
present a protocol using binary tree in Section 4 and then discuss the necessary
adjustments to suit existing implementations of multilinear maps. We then show
how to generalize the underlying idea of the previous protocol to get a trade-off
between the size of the secret key and the number of levels of the multilinear
map.

2 Leveled Multilinear Maps

Boneh and Silverberg [BS03] defined n-linear maps as non-degenerate maps e
from Gn

1 to G2 (where G1 and G2 are groups of same order) such that, for all
g1, ..., gn ∈ G1 and a1, ..., an ∈ Z, e(ga1

1 , ..., g
an
n) = e(g1, ..., gn)

a1...an . The candi-
date multilinear map proposed by Garg, Gentry and Halevi [GGH13] actually
yields a richer structure since it is now possible to multiply any (bounded) subset
of encodings instead of n at a time. As in [HSW13], such maps will be denoted
leveled multilinear maps. We recall the formal definition of generic n-leveled
multilinear groups.

Forward Secure Non-Interactive Key Exchange 25

Leveled Multilinear Maps. Generic n-leveled multilinear groups consist of n
cyclic groups G1, ...,Gn of prime order p, along with bilinear maps ei,j : Gi ×
Gj → Gi+j for i, j ≥ 1 and i+j ≤ n such that, for all gi ∈ Gi, gj ∈ Gj and a, b ∈
Zp, ei,j(g

a
i , g

b
j) = ei,j(gi, gj)

a·b. In the following we will write e instead of ei,j
when i and j are obvious and e(g1, g2, . . . , gn) instead of e(g1, e(g2, . . . gn) . . .)).

The graded encoding schemes proposed in [GGH13] and [CLT13] are only ap-
proximations of such leveled multilinear maps. One of the main differences is
that group elements have many possible representations called encodings. An
encoding can be re-randomized but at the cost of introducing some noise. Such
a randomization, performed using the Rerand algorithm, is sometimes necessary
to prevent recovering of secret values. Indeed, let c be a secret level-zero encod-
ing and g a public level-1 encoding. The level-1 encoding y = c · g (which is the
equivalent of gc in conventional groups) cannot be directly published since any-
one will be able to recover c by computing y.g−1, it must first be re-randomized
into a new level-1 encoding y′ ← Rerand(y). All these randomizations could be
an obstacle for sharing a common secret, however, it is possible to extract, using
the Extract algorithm, a canonical bit string which depends on the group element
and not on its encoding, meaning that two encodings of the same element will
give the same extracted string. Then the security of our protocols relies on the
following assumption.

The n-Multilinear Decisional Diffie-Hellman (n-MDDH) Assumption

Given (g, gx1, ..., gxn+1, G) ∈ Gn+2
1 × Gn, it is hard to decide whether G =

e(gx1 , ..., gxn)xn+1 or not.

3 Forward-Secure Non-Interactive Key Exchange and
Security Model

3.1 Syntax

Following [CKS08] and [FHKP13], a forward-secure non-interactive key-exchange
is defined by the following algorithms along with an identity space IDS and a
shared key space SHK. Identities are used to track which public keys are asso-
ciated with which users but we are not in the identity-based setting.

– Setup(1k, T): On inputs a security parameter k and a number of time periods
T , this probabilistic algorithm outputs params , a set of system parameters
that are implicit to the other algorithms. The current time period t∗ is
initially set to 1;

– Keygen(ID): On input an identity ID ∈ IDS this probabilistic algorithm
outputs a public key/secret key pair (pk , sk t∗), for the current time period
t∗. We assume that the secret keys implicitly contain the time periods, hence
the subscripts;

26 D. Pointcheval and O. Sanders

– Update(sk t): This algorithm takes as inputs the secret key sk t at some period
t (implicitly included in sk t) and outputs the new secret key sk t+1 for the
next time period, if t < T . If t = T then the secret key is erased and there
is no new key;

– Sharekey(IDA, pk
(A), IDB , sk

(B)
t): On inputs an identity IDA, associated

with a public key pk (A) and a secret key sk
(B)
t with identity IDB , outputs

either a shared key shkAB
t ∈ SHK or a failure symbol ⊥. This algorithm

outputs ⊥ if IDA = IDB. Since the secret key sk t contains the time period,
the shared key shkAB

t is also specific to that time period t.

Correctness requires that, for any pair (IDA, IDB), if the secret keys sk
(A)
t and

sk
(B)
t indeed correspond to the same time period t:

Sharekey(IDA, pk
(A), IDB , sk

(B)
t) = Sharekey(IDB, pk

(B), IDA, sk
(A)
t).

As in most of the forward-secure primitives, we provide the number of time
periods to the Setup algorithm, because the parameters depend on it. In practice,
one can take T large enough. Note that T = 215 is enough to enumerate one-day
time-periods for one century.

3.2 Security Model

We define the security of a forward-secure non-interactive key exchange through
a game between an adversary A and a challenger C. Our security model makes
use of the following oracles:

– ORegHon(ID) is an oracle used by A to register a new honest user ID at
the initial time period. The challenger runs the Keygen algorithm with 1
as the current time period, returns the public key pk to A and records
(ID , sk1, pk , honest). This implicitly defines all the secret keys sk2, . . . , skT ;

– ORegCor(ID , pk) is an oracle used by A to register a new corrupted
user ID with public key pk . The challenger then records the tuple
(ID ,−, pk , corrupted).

– OBreakin(ID , t) is an oracle used by A to get the ID ’s secret key at the
time period t. The challenger looks for a tuple (ID , sk1, pk , honest). If there
is a match, then it returns sk t. Else, it returns ⊥.

– OReveal(IDA, IDB, t) is an oracle used by A to get the shared key shk
(AB)
t

between IDA and IDB for the time period t. If both IDA and IDB are
corrupted then C returns ⊥. Else, it runs the Sharekey algorithm with the
secret key of one of the honest users for the appropriate time period and the

public key of the other user and returns shk
(AB)
t .

A non-interactive key exchange is forward-secure if, for any adversary A and
any security parameter k, the advantage Pr[Expfs

A(k) = 1]− 1
2 is negligible in k,

where Expfs
A(k) is defined as follows:

Forward Secure Non-Interactive Key Exchange 27

1. params ← Setup(1k, T)
2. (IDA, IDB , t

∗)← AORegHon,ORegCor,OBreakin,OReveal(params)

3. b
$← {0, 1}

4. If b = 0 then shk
(AB)
t∗ ← Sharekey(IDA, pk

(A), IDB, sk
(B)
t∗)

5. Else, shk
(AB)
t∗

$← SHK
6. b∗ ← AORegHon,ORegCor,OBreakin,OReveal(shk

(AB)
t∗)

7. If IDA or IDB is corrupted then return 0
8. If an OBreakin-query has been asked on ID ∈ {IDA, IDB} with
t ≤ t∗ then return 0

9. If an OReveal-query has been asked on (IDA, IDB, t
∗) then return

0
10. If b∗ = b then return 1
11. Else, return 0

The adversary succeeds if it is able to distinguish a valid shared key between
two users from a random element of the shared key space SHK. To avoid trivial
cases, the adversary is not allowed to corrupt the targeted users at a time period
prior to t∗ or to get the shared key between them at this time period. We
emphasize that the adversary may corrupt any user (including IDA or IDB) for
time periods t > t∗, which models the forward security.

Registration. The use of a Certification Authority (CA) is inevitable for pro-
tocols which are not in the ID-based settings, in order to link ID ’s and pk ’s.
However, the assumptions made about the procedures followed by this entity
differ according to each model.

– In the registered-key model, when a user wants to get his pubic key certified,
the CA verifies, using a proof of knowledge, that the user actually knows
the associated secret key. This enables the challenger (the simulator in the
security proof) to extract the secret key and thus to answer every OReveal-
queries involving corrupted users.

– Cash, Kiltz and Shoup [CKS08] considered a stronger model where the CA
no longer requires such a proof of knowledge of the secret key. In [FHKP13],
the authors named it the dishonest-key registration model, since the public
keys are not checked anymore.

In the latter case, some OReveal queries are not easy to answer, since none of
the secret keys are known to the challenger/simulator. Hence the use of the Twin
Diffie-Hellman [CKS08] which allows the challenger to check some consistency,
in the random oracle model, under the sole CDH assumption. The requirement
of the random oracle model has been more recently removed [FHKP13], by using
chameleon hash functions [KR00]. To this end, they actually add some elements
to the public key which provide a way for the challenger to recover the Diffie-
Hellman value without knowledge of the corresponding secret keys. However,
consistency still has to be checked, which is possible in the pairing settings only.

28 D. Pointcheval and O. Sanders

We can use the same approach, but with generic leveled multilinear maps,
which are not provided with the existing implementations [GGH13, CLT13] of
such maps. We explain the reasons in the Section 4.4.

3.3 Forward Security with Linear Complexity

A trivial solution, secure in our model, is to generate T independent keys pair
(pk ′

i, sk
′
i) for any NIKE scheme and to set pk as (pk ′

1, . . . , pk
′
T) and sk1 as

(sk ′
1, . . . , sk

′
T). Updating the secret key sk i = (sk ′

i, . . . , sk
′
T) simply consists in

erasing the value sk ′
i. To avoid the linear complexity of the public key we may

use the following idea, similar to the one from [And97]: Let (G1,G2,GT , e, p) be

a bilinear setting, with groups of prime order p, and g1, . . . , gT
$← G1, g

$← G2.
To generate his public/secret key pair, a user randomly selects x

$← Zp and sets
pk ← gx and sk1 ← (gx1 , . . . , g

x
T). To update his secret key a user proceeds as in

the previous solution, and to share a session key, at time period t, with another
user whose public key is gy, he computes e(gxt , g

y). This scheme is correct and
secure in the registered-key model. We can also avoid the linear complexity of the
public parameters by setting gi ← H(ti) for some cryptographic hash function
H : {0, 1}∗ → G1. But the resulting scheme will now be secure in the random
oracle model only, with both the public keys and public parameters of constant
size, while the secret keys are linear in the number of time periods T . Our goal
is now to achieve a sub-linear complexity for the secret keys too.

4 A Forward-Secure Non-Interactive Key Exchange
Scheme

As in [HSW13], we first describe a version of our scheme, using generic leveled
multilinear maps, that we prove secure in the registered-key model. We then
explain how to achieve security in the dishonest-key registration model defined
in [FHKP13] and discuss the necessary adjustments to suit existing multilinear
maps [GGH13, CLT13].

4.1 The Protocol

Let Sn be the set of bitstrings of size smaller than n. We recall the lexicographic
order on Sn. Let s = b1 · · · b� and s′ = b′1 · · · b′k, with � ≤ k ≤ n, be two bitstrings,
then:

– if bi = b′i, ∀ 1 ≤ i ≤ �, then s < s′ if � < k, and s = s′ otherwise;
– else, let j ≤ � be such that bi = b′i, ∀ 1 ≤ i < j, but bj �= b′j . If bj < b′j then
s < s′, else s > s′.

Each bitstring s ∈ Sn will now refer to a time period. Specifically, the i-th bit-
string of Sn (considering that the empty string does not belong in the set) will refer
to the i-th time period: the order is thus 0, 00, 000, . . . , 0n, 0n−11, 0n−21, 0n−210,

Forward Secure Non-Interactive Key Exchange 29

0n−211, . . . , 1n, with T = #Sn = 2n+1 − 2 elements, and thus corresponding to
2n+1 − 2 time periods.

Let (G1, . . . ,Gn+1) be an (n+1)-leveled multilinear group setting of order p,
the algorithms defining our forward-secure NIKE are described below:

– Setup(1k, n): This algorithm outputs the parameters (g, g1, ..., gn)
$← Gn+1

1

along with hs
$← G1 for each bitsring s ∈ Sn. The public parameters params

contain the T + n+ 1 elements. In the following, for each s = b1 · · · b� ∈ Sn,
we will denote Gs = e(hb1 , hb1b2 , . . . , hb1b2···b�) ∈ G�, where e(hb) = hb ∈ G1.

– Keygen(ID): The user ID first selects x
$← Zp and then outputs pk ← gx and

the secret key of ID at the first time period, for s = 0, is sk0 ← {hx1 , hx0}. In
the following, for each s = b1 · · · b� ∈ Sn, we denote z

(ID)
s = Gx

s ∈ G�.
– Update(sks): Let � be the length of s = b1 · · · b� and Is be the set {1 ≤ i ≤ � :
bi = 0}. Then, sks can be parsed as ∪i∈Is{zb1···bi−11} ∪ {zs} (see the Cor-
rectness paragraph below) and the algorithm proceeds as follows:
• if � < n, then the next bitstring is s||0, the algorithm computes
zs||0 ← e(zs, hs||0), zs||1 ← e(zs, hs||1) and returns sks||0 ← (sks \ {zs})∪
{zs||1, zs||0};

• if � = n, then we have s = b1 · · · bn. If s = 1n, then we have reached the
last time period and the algorithm returns ⊥. Else, let j be the greatest
index such that bj = 0, the next time period s∗ is then b1 · · · bj−11. The
algorithm then returns sks∗ ← ∪i∈Is,i≤j{zb1···bi−11} ⊂ sks.

– Sharekey(IDA, pk
(A), IDB , sk

(B)
s): This algorithm returns ⊥ if IDA = IDB.

Else, it outputs shkAB
s ← e(z

(B)
s , g�+1, . . . , gn, pk

(A)) where � is the length
of s.

Correctness. We first prove by induction that, for each time period s, sks =
∪i∈Is{zb1···bi−11} ∪ {zs}.

– For s = 0 we have Is = {0} and sk0 = {z1} ∪ {z0}.
– If � < n then the length of the next time period, s∗ = s||0, is � + 1 and
Is∗ = Is ∪ {� + 1}. The Update algorithm ensures that the next secret key
sks∗ is ∪i∈Is∗{zb1···bi−11} ∪ {zs∗}.

– If � = n, then the next time period is s∗ = b1 · · · bj−11, so Is∗ = Is ∩
{1, . . . , j − 1}. The new secret key sks∗ := ∪i∈Is,i≤j{zb1···bi−11} =
∪i∈Is,i<j{zb1···bi−11} ∪ {zs∗} = ∪i∈Is∗{zb1···bi−11} ∪ {zs∗} is then consistent.

Finally, our protocol is correct since:

Sharekey(IDA, pk
(A), IDB, sk

(B)
s) = e(z(B)

s , g�+1, . . . , gn, pk
(A))

= e(hxB

b1
, hb1b2 , . . . , hb1b2···b� , g�+1, . . . , gn, g

xA)

= e(hxA

b1
, hb1b2 , . . . , hb1b2···b� , g�+1, . . . , gn, g

xB)

= e(z(A)
s , g�+1, . . . , gn, pk

(B))

= Sharekey(IDB, pk
(B), IDA, sk

(A)
s).

30 D. Pointcheval and O. Sanders

Our Protocol in a Nutshell. The Update algorithm must be a one-way func-
tion to ensure the forward-security, but correctness requires keeping a relation
between the secret key and the public key. Therefore we cannot use an arbi-
trary one-way function (such as, for example, hash functions). Our secret key
sks at a time period s = b1 · · · b� can be divided into two parts: the element
zs used to share a secret key at the current time period, and the other ones
(∪i∈Is{zb1···bi−11}) that will be used to update the key. Since, ∀i ∈ Is, the strings
b1 · · · bi−11 are not a prefix of a previous time period s∗, no one can compute
zs∗ from sks. Moreover, multilinearity of the map implies that zs is an element
Ax (if pk is gx) with A ∈ G�, which ensures correctness of our scheme. The use
of different parameters (g1, . . . , gn) and hs, for s ∈ Sn, offers an efficient way to
answer the oracle queries while being able to introduce the challenge values at
a selected period, as shown in section 4.2.

For example, assume that n = 3 and s = 01, then we have sk01 = {z1}∪{z01}.
Since the length of s = 01 is 2 < n = 3, updating the secret key to the next
time period s′ = 010 consists of replacing z01 by z010 ← e(z01, h010) and z011 ←
e(z01, h011), so the new secret key sks′ is {z1, z011}∪{z010} (see Figure 1). Now,
s′ has reached the maximum length n = 3 so the Update algorithm will simply
delete the element z010 to output the secret key of the following time period 011.

x

z0 = hx
0

z00 = e(z0, h00)

00

z01 = e(z0, h01)

z010 = e(z01, h010)

010

z011 = e(z01, h011)

011

01

0

z1 = hx
1

... ...

1

Fig. 1. Example for time period 010

4.2 Security Analysis

Theorem 1. In the registered-key model, our forward-secure NIKE scheme with
2n+1 − 2 time periods is secure under the (n+ 1)-MDDH assumption.

Forward Secure Non-Interactive Key Exchange 31

Proof. Let A be an adversary against our forward-secure NIKE scheme such
that ε = Pr[Expfs

A(k) = 1]− 1/2, then we construct B, an adversary against the
(n+ 1)-MDDH problem, as follows:

– B first makes a guess for the target time period s∗ = b∗1 · · · b∗�∗
$← Sn, of

length �∗, and the two distinct honest users involved in the target session,
i0, i1

$← {1, . . . , qH} where qH is a bound on the number of ORegHon-queries.
– On input an (n + 1)-MDDH challenge (g, gx1, . . . , gxn+2, G), B generates

(m1, . . . ,mn)
$← Zn

p and ns
$← Zp for each s ∈ Sn, then sets:

• ∀i ∈ {1, . . . , n}\{�∗}, gi ← (gxi)mi

• g�∗ ← gm�∗

• ∀i ∈ {1, . . . , �∗}, hb∗1 ···b∗i ← g
xi·nb∗1 ···b∗

i

• ∀s ∈ Sn\{b∗1, b∗1b∗2, . . . , b∗1 · · · b∗�∗}, hs ← gns

This way, only elements ht such that t is a prefix of s∗ will be challenge el-
ements. This enables B to handle any OBreakin-query on time periods later
than s∗. Similarly, setting g�∗ as a non-challenge element allows B to answer any
OReveal-query for time periods other than s∗. Now, B runs A with the above
parameters and answers the different queries as follows:

– ORegHon(ID): Upon receiving an i-th register honest query, for a new iden-
tity ID , B acts as follows: If i �= i0 and i �= i1 then it runs the Keygen-
algorithm on ID and returns the resulting public key to A. Else, we have
i = ib for b ∈ {0, 1} and ID will now be denoted IDb. B will act as if

sk
(b)
0 = {hxn+1+b

1 , h
xn+1+b

0 } and then set pk (b) = gxn+1+b, from the challenge
input.

– ORegCor(ID , pk): Upon receiving a public key pk along with a new identity
ID , B registers them. Since we first consider the registered-key model, we
assume that B extracts the secret key sk = x during the proof of knowledge
of the secret key.

– OBreakin(ID , s): If ID �= IDb for b ∈ {0, 1}, then B returns sk (ID)
s . Else,

the behaviour of B depends on s. If s ≤ s∗, then B aborts. Else, B parses s as

b1 · · · bk. The secret key of IDb at this time period is sk
(b)
s = ∪i∈Is{z

(b)
b1···bi−11

}∪
{z(b)s }. B proceeds as follows for each i ∈ Is:
• If i > �∗, then hb1···bi−11 = gnb1···bi−11 and thus z

(b)
b1···bi−11

=

e(h
xn+1+b

b1
, hb1b2 , . . . , hb1···bi−11) which B can compute as:

e(hb1 , hb1b2 , . . . , (g
xn+1+b)nb1···bi−11)

• If i ≤ �∗, then c1 · · · ci := b1 · · · bi−11 cannot be a prefix of s∗, oth-
erwise we would have s∗ ≥ b1 · · · bi−11 > s (since bi = 0). So there
is j < i such that b∗j �= cj or b∗i = 0 (which means that for j = i,

b∗j �= 1 = ci), implying that B is able to return z
(b)
b1···bi−11

= z
(b)
c1···ci =

e(hxn+1+b
c1 , hc1c2 , . . . , hc1c2···ci) by computing:

e(hc1 , hc1c2 , . . . , hc1···cj−1 , (g
xn+1+b)nc1···cj , hc1···cj+1 , . . . , hc1c2···ci)

which is a valid value since hc1···cj = gnc1···cj .

32 D. Pointcheval and O. Sanders

Similarly, B is able to return z
(b)
s , since s is not a prefix of s∗, and thus

hs = gns , which means that B can answer every OBreakin-query on IDb for
time periods s > s∗.

– OReveal(IDA, IDB, s): If at least one of the involved identity is honest and
different from ID0 and ID1, then B runs the Sharekey algorithm. Else, we
may assume (without loss of generality) that IDB = IDb for some b ∈ {0, 1}.
Since B is able to answer OBreakin-queries involving ID0 or ID1 for time
periods s > s∗, it is able to answer any OReveal-queries for these time
periods. We then only consider time periods s ≤ s∗:
• s < s∗. We distinguish the two following cases.

∗ If there is t ∈ Sn such that t is a prefix of s but not of s∗, then ht is
not a challenge element so B can compute zt (and so zs) in the same
way as in OBreakin-queries, and then return the valid shared key.

∗ Else, s = b∗1 · · · b∗k is a prefix of s∗, then B returns the valid shared
key by computing:

e(hb∗1 , . . . , hb∗1···b∗k , gk+1, . . . , g�∗−1, (g
xn+1+b)m�∗ , g�∗+1, . . . , gn, pk

(A)).

• s = s∗. If {IDA, IDB} = {ID0, ID1} then B aborts. Else, IDA is a
corrupted user, and then B uses the extracted key xIDA

to return the
shared key between IDA and IDb.

– At the challenge phase, A outputs two identities IDA and IDB along with a
time period s. If s �= s∗ or {IDA, IDB} �= {ID0, ID1} then B aborts. Else, it

returns G
∏�∗

i=1 nb1···bi
∏n

i=�∗+1 mi which is a valid shared key between ID0 and
ID1 if G = e(gx1 , . . . , gxn+1)xn+2 and a random element from the shared key
space otherwise. B is then able, using the bit returned by A, to distinguish
the (n+ 1)-MDDH problem with an advantage greater than ε/(Tq2H).

��

We stress that in order to have the (n + 1)-MDDH problem intractable, one
needs to use an (n+1)-leveled multilinear map. With more levels, this problem
because easy.

4.3 Dishonest-Key Registration Model

The simulator B above only needs the registered-key model to answer OReveal-
queries involving a dishonest identity A and one of the target identity IDb during
the time period s∗. Indeed, the public elements {g1, ..., gn} and {hs}s∈Sn are
constructed in such a way that at least one of those involved in the shared
keys does not depend on a challenge element when s �= s∗. The simulator is
then able to output shkA,IDb

s�=s∗ by replacing this element by (gxn+1+b)r where
r ∈ {m1, ...,mn} ∪ {ns}s∈Sn . This is no longer true for the time period s∗, so
B will use the secret key of A, extracted during the ORegCor-queries, to output
shkA,IDb

s∗ .
In [FHKP13], the authors provide an efficient way to avoid the registered-

key model by using a chameleon hash function [KR00] H : {0, 1}∗ × R → Zp,

Forward Secure Non-Interactive Key Exchange 33

where R is the random space. The public parameters params now contain three
additional elements u0, u1 and u2 used to compute the public keys. Indeed,
besides gx, users now compute t ← H(gx||ID, r) for some random r ∈ R and

z ← (u0u
t
1u

t2

2)x, and set their public key as (gx, z, r). Before sharing a key shk ,
correctness of the public key must be checked, which is possible in an n-linear
setting (as long as n > 1).

To handle OReveal-queries involving a dishonest user, the reduction B will
construct the parameters ui as follows:

– B first selects at random m0,m1
$← {0, 1} and v0, v1

$←R;
– B computes t0 ← H(m0, v0), t1 ← H(m1, v1) and a polynomial p(t) =
p0 + p1 · t+ p2 · t2 of degree 2 whose roots are t0 and t1;

– Now let b1 be the prefix of length 1 of s∗ in the security proof, then B sets
ui ← hpi

b1
gqi , for i = 0, 1, 2, where q0, q1, q2 are the coefficients of another

random polynomial of degree 2.

To register ID0 or ID1, B will use the secret key of the chameleon hash
function to get r0 or r1 such that H(gxn+1+b||IDb, rb) = tb and outputs (gxn+1+b ,
gxn+1+b·q(tb), rb) for b ∈ {0, 1}. This is a valid public key because p(tb) = 0.

To answer OReveal-queries involving a dishonest identity A during the time
period s∗, correctness of the public key is first checked. So we may assume

the public key pk (A) is well-formed: pk (A) = {gxA , h
p(tA)·xA

b1
gq(tA)·xA , rA}, where

tA ← H(gxA ||IDA, rA). Let pk (A)[i] be the i-th element of pk (A), B is able to

recover hxA

b1
by computing (pk (A)[2]/(pk (A)[1])q(tA))1/p(tA). Since b1 is a prefix of

s∗, B is able to recover z
(A)
s∗ = e(hxA

b1
, . . . , hs∗), which is the secret element from

sk
(A)
s∗ used by A to compute the shared key at the time period s∗.
The reduction B thus no longer needs the registered-key model to handle

OReveal-queries. The resulting protocol is then secure even considering the
dishonest-key registration model. However, as explained below, we can only use
this idea with generic leveled multilinear groups, and this is not yet possible with
the concrete constructions proposed by [GGH13] and [CLT13].

4.4 Adjustments to Existing Multilinear Maps

We currently do not have a concrete construction for leveled multilinear maps:
Garg, Gentry and Halevi [GGH13], followed by Coron, Lepoint and Tibouchi
[CLT13], have unfortunately just proposed approximations of such maps. Nev-
ertheless, the differences between their schemes and generic leveled multilinear
maps imply some changes in our protocol. The main drawback of these modifi-
cations is that our protocol does no longer support the dishonest-key registration
model and thus requires a proof of knowledge of the secret key during the reg-
istration phase. This is due to the fact that we cannot select elements from
the exponent group (called level-zero encoding in their paper), but only sample
random ones. This is problematic because, in the previous security proof, simula-
tions of answers to OReveal-queries involving a corrupted identity were possible

34 D. Pointcheval and O. Sanders

due to the elements u0, u1 and u2, constructed using some specific exponents,
which were the coefficients of the polynomial p(t). Moreover, in that security
proof, there is a need for inverting the exponent p(tA). Using the terminology
of [GGH13] and [CLT13], this means that, knowing a level-zero encoding of some
c we have to compute a level-zero encoding of c−1 which is not known as possi-
ble. We thus cannot achieve security in the dishonest-key registration model and
then only consider the registered-key model. The resulting scheme is then similar
to the one described at the beginning of this section but requires the following
adjustments:

– In the Keygen algorithm, the element x will now be a sampled level-0 en-
coding. The public key pk and the secret key sk0 contain level-1 encodings
which must be re-randomized (see Section 2) using the Rerand algorithm.

– Similarly, in the Update algorithm, the new values zs must be randomized
to prevent recovery of secret keys of previous time periods.

– In the Sharekey algorithm, the secret key cannot be e(z
(B)
s , g�+1, . . . , gn,

pk(A)) since this value depends on the randomness used for randomizing
encodings during previous steps. We then run the Extract algorithm on this
value and define the shared secret key shkAB

s as the output.

This instantiation of our protocol illustrates that randomness is compatible with
NIKE schemes as long as the output of the Sharekey algorithm does not depend
on it.

4.5 System Parameters

Our protocol requires (n+1)-leveled multilinear groups to handle T = 2n+1− 2
time periods. The set of public parameters, consisting of T +n+1 elements from
G1, can be shorten using a hash function H : {0, 1}∗ → G1 (for example we may
set hs ← H(s)), however, the security proof will require to model H as a random
oracle.

The size of the secret key sks depends on the time period s, however, it never
contains more than n + 1 elements since #sks ≤ #Is + 1 ≤ n+ 1. Even if the
number of levels only grows logarithmically w.r.t. the number of time periods,
the dependence between the former and the parameters size remains a problem
for the existing multilinear maps. In the next section we describe a generalization
of our protocol which provides a trade-off between the number of levels and the
size of the secret key.

5 A General Framework

A natural goal when designing a forward-secure NIKE is to make the parameters
independent of the number of time periods. Compared to the protocol described
in Section 3.3, our protocol has decreased the number of elements in the secret
key but has increased the number of levels of the multilinear maps. It is possible
to go further with this trade-off and thus achieve a protocol with only one element

Forward Secure Non-Interactive Key Exchange 35

in the secret key (but with a larger number of levels). We show in this section
that each protocol of this paper is actually a variant of a general framework
allowing us to choose the number of elements in the secret keys or the number
of levels (but not both of them). The idea is somewhat similar with the generic
construction described in [BM99, Section 2] but with two major differences: First,
Bellare and Miner considered certification chains where the secret key si at some
time period i was used to certify the public key pi+1 of a new secret/public keys
pair (si+1, pi+1). Signatures issued at the time period i must then contain the
full certification chain, namely ((σi, pi), . . . , (σ2, p2)) where σi is the certificate
on pi w.r.t pi−1. Using a binary tree, they reached a logarithmic number of
elements in messages and in storage. However, this idea is suitable for signature
schemes but not for NIKE, one reason being that the new public keys pi will
remain unknown to other parties unless one publishes them all at the beginning,
which would correspond to the trivial solution. The second difference is that,
with their solution, a signing key (the secret key along with the stored values
(σi, pi)) with constant size is unachievable whereas this is theoretically possible
with our construction (see Section 5.2).

5.1 The Framework

In the previous section, we considered the set Sn of bitstrings of size smaller than

n. In this section we rather consider the sets S(m)
n := {b1 · · · bk : k ≤ n and 0 ≤

bi < m} for any integer m > 0 (the previous section therefore corresponds to
the particular case where m = 2). Each string still refers to a time period, a
protocol using (n + 1)-leveled multilinear groups then ensures m

m−1 × (mn − 1)

time periods if m > 1 and n time periods if m = 11.

– Setup and Sharekey algorithms are the same as the ones described in Sec-
tion 4.1.

– Keygen(ID): The user ID first selects x
$← Zp and then outputs pk ← gx

and the secret key of ID at the first time period, sk0 ← {hxm−1, . . . , h
x
1 , h

x
0}.

In the following, for each s = b1 · · · b� ∈ S(m)
n , z

(ID)
s will still denote the

following element of G�: e(h
x
b1
, hb1b2 , . . . , hb1b2···b�).

– Update(sks): Let � be the length of s = b1 · · · b� and Is be the set {1 ≤ i ≤
� : bi < m − 1}. Then, sks =

⋃
i∈Is

⋃
bi<b≤m−1{zb1···bi−1b} ∪ {zs} and the

algorithm proceeds as follows:
• If � < n, then the next bitstring is s||0, the algorithm computes zs||0 ←
e(zs, hs||0), zs||1 ← e(zs, hs||1), . . . , zs||m−1 ← e(zs, hs||m−1), and returns
sks||0 ← (sk s \ {zs}) ∪ {zs||m−1, . . . , zs||1, zs||0}.

• If � = n, then we have s = b1 · · · bn. If bi = m − 1, for all i, then
we have reached the last time period and the algorithm returns ⊥.
Else, let j be the greatest integer such that bj < m − 1, the next
time period s∗ is then b1 · · · bj−1(bj + 1). The algorithm then returns
sks∗ ←

⋃
i∈Is,i≤j

⋃
bi<b≤m−1{zb1···bi−1b} ∪ {zs} ⊂ sks.

1 This comes from the fact that pn = #S(m)
n follows an arithmetico-geometric pro-

gression pn = m(pn−1 + 1), with p0 = 0.

36 D. Pointcheval and O. Sanders

The proof of correctness is similar to the case where m = 2: each time we move
from a period s of length � to a period s||0 of length �+1, the Update algorithm
simply stores the elements zs∗ for every strings s∗ of length �+1 whose prefix is
s. Evolution of the secret key thus remains possible while recovery of elements
zt with t ≤ s is impossible. Adaptation of the security proof is straightforward.

5.2 System Parameters

The relation T = m
m−1 · (mn − 1) (or T = n if m = 1) illustrates the trade-off

between the number of levels (n+ 1) of the multilinear map and the parameter
m affecting the size of the secret key. Indeed, our algorithms Keygen and Update

lead to a secret key containing up to n(m− 1)+ 1 elements. Let us focus on the
two following particular cases:

Case 1: n = 1. Our protocol only requires two levels from the multilinear map
so we can use conventional bilinear groups. The secret key at the first time period
is {hxm−1, . . . , h

x
0 , } (with m = T), the update algorithm is to simply delete the

last element of the secret key. This protocol is then exactly the same as the one
described in Section 3.3.

Case 2: m = 1. For convenience, we will denote in such a case the time periods
by {1, ..., T } rather than {0, 00, . . . , 00 · · · 000}. The secret key always contains
one element zi = e(hx1 , h2, ..., hi) ∈ Gi, updating it just consists in computing
zi+1 ← e(zi, hi+1). Assuming, as Papamanthou et al [PTT10], the existence of
multilinear maps where the size of the different groups Gi is independent of
the number of levels leads to a protocol where the sizes of the parameters and
of the secret and public keys are independent of the number of time periods
T . However, implementations of such a protocol with the maps from [GGH13]
and [CLT13] will not achieve constant size since the size of the elements in the
secret key will actually depend on the number of levels and so on the number of
time periods.

Trade-off. Between these two extreme cases, one can choose suitable parameters
according to the performance of the selected multilinear map. The maximal
number of elements in the secret key is N = n(m− 1)+1, and can be expressed
as a function of m and T using the relation T = m

m−1 · (mn − 1) if m > 1. We
then get:

N = 1 +
m− 1

log(m)
· log
(
m− 1

m
× T + 1

)
which is an increasing function of m in]1;T]. There is thus no optimal choice for
the parameters (m,n). They have thus to be chosen according to some external
constraints.

Forward Secure Non-Interactive Key Exchange 37

6 Conclusion

In this paper, we have first proposed two new security models for forward-secure
non-interactive key exchange scheme, in order to limit damages in case of key
exposure. In the first registered-key model, the certificate authority is assumed
to strictly check the knowledge of the secret keys before certifying public keys
together with an identity, whereas in the second dishonest-key registration model,
the certificate authority just checks the identity but not the knowledge of the
secret key associated to the public key. The latter model encompasses related-
key attacks, where an adversary would try to generate public keys related to
honest-user keys.

We then have proposed a construction that can be secure in the strongest
security model using generic leveled multilinear maps. Unfortunately, concrete
multilinear maps do not yet satisfy all the required properties, and thus our
concrete construction just provides forward security in the registered-key model.
We have thus pointed out a gap between generic leveled multilinear maps and
concrete ones.

Of course, the efficiency of our construction depends to a large extent on the
one of such maps. However, our construction can be made practical by tuning
the number of levels of the multilinear map, impacting the size of the secret key
but not the number of time periods.

Acknowledgments. This work was supported in part by the French ANR-12-
INSE-0014 SIMPATIC Project and in part by the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-
2013 Grant Agreement no. 339563 – CryptoCloud).

References

[ABP13] Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter Reductions for
Forward-Secure Signature Schemes. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 292–311. Springer, Heidelberg (2013)

[And97] Anderson, R.: Two remarks on public key cryptology (1997)
[AR00] Abdalla, M., Reyzin, L.: A New Forward-Secure Digital Signature Scheme.

In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129.
Springer, Heidelberg (2000)

[Ber06] Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung,
M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 207–228. Springer, Heidelberg (2006)

[BF01] Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001)

[BM99] Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer,
Heidelberg (1999)

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptogra-
phy. Contemporary Mathematics 324, 71–90 (2003)

38 D. Pointcheval and O. Sanders

[BSSW06] Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures
with untrusted update. In: Juels, A., Wright, R.N., De Capitani di Vimer-
cati, S (eds.) ACM CCS 2006: 13th Conference on Computer and Commu-
nications Security, pp. 191–200. ACM Press (October/November 2006)

[CHK07] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption
scheme. Journal of Cryptology 20(3), 265–294 (2007)

[CKS08] Cash, D.M., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and
Applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 127–145. Springer, Heidelberg (2008)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over the
Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[DE06] Dupont, R., Enge, A.: Provably secure non-interactive key distribution
based on pairings. Discrete Applied Mathematics 154(2), 270–276 (2006)

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transac-
tions on Information Theory 22(6), 644–654 (1976)

[FHKP13] Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-Interactive
Key Exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 254–271. Springer, Heidelberg (2013)

[FHPS13] Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable
Hash Functions in the Multilinear Setting. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg
(2013)

[FS86] Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[HSW13] Hohenberger, S., Sahai, A., Waters, B.: Full Domain Hash from (Leveled)
Multilinear Maps and Identity-Based Aggregate Signatures. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512.
Springer, Heidelberg (2013)

[IR01] Itkis, G., Reyzin, L.: Forward-Secure Signatures with Optimal Signing and
Verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354.
Springer, Heidelberg (2001)

[Jou00] Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma,
W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg
(2000)

[KR00] Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and
Distributed System Security Symposium – NDSS, The Internet Society
(February 2000)

[KR02] Kozlov, A., Reyzin, L.: Forward-Secure Signatures with Fast Key Update.
In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 241–256. Springer, Heidelberg (2003)

[PS09] Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key
distribution, identity-based encryption and trapdoor discrete log groups.
Des. Codes Cryptography 52(2), 219–241 (2009)

Forward Secure Non-Interactive Key Exchange 39

[PTT10] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Authenticated
Data Structures with Multilinear Forms. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 246–264. Springer, Heidelberg
(2010)

[SOK00] Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over
elliptic curve. In: Symposium on Cryptography and Information Security
(2000)

Secure Key Exchange and Sessions without Credentials

Ran Canetti1,�, Vladimir Kolesnikov2, Charles Rackoff3, and Yevgeniy Vahlis4

1 Boston University, Boston, USA and Tel-Aviv University, Tel-Aviv, Israel
canetti@tau.ac.il

2 Bell Labs, Murray Hill, NJ, USA
kolesnikov@research.bell-labs.com

3 University of Toronto, Toronto, Canada
rackoff@cs.toronto.edu
4 Bionym Inc., Toronto, Canada
yvahlis@bionym.com

Abstract. Secure communication is a fundamental cryptographic primitive. Typ-
ically, security is achieved by relying on an existing credential infrastructure, such
as a PKI or passwords, for identifying the end points to each other. But what can
be obtained when no such credential infrastructure is available?

Clearly, when there is no pre-existing credential infrastructure, an adversary
can mount successful “man in the middle” (MIM) attacks by modifying the com-
munication between the legitimate endpoints. Still, we show that not all is lost,
as long as the adversary’s control over the communication is not complete: We
present relatively efficient key exchange and secure session protocols that guar-
antee that any MIM adversary is immediately detected as soon as he fails to
intercept even a single message between the legitimate endpoints.

To obtain this guarantee we strengthen the notion of key exchange to require
that the keys exchanged in any two sessions are independent of each other as
long as each session has at least one honest endpoint, even if both sessions has
an adversarial endpoint. We call this notion credential-free key exchange. We
then strengthen the existing notion of secure session protocols to provide the
above guarantee given a CFKE (existing definitions and constructions are insuf-
ficient for this purpose). We provide two alternative definitions and constructions
of CFKE, a game-based one with a (very efficient) construction in the RO model,
and a UC one with a construction in the CRS model.

1 Introduction

Secure communication over adversary-controlled channels is one of the most widely
and frequently used achievements of cryptography. The standard approach to secure
communication involves two steps. First, the two conversing parties A and B securely
establish a session key, and second, they use the key to encrypt and authenticate the
exchanged messages. The first step, key exchange (KE), ensures that only authorized
players are able to successfully compute the keys. This guarantee holds even if the

� Supported by the Check Point Institute for Information Security, an NSF EAGER grant, and
NSF Algorithmic Foundations grant no. 1218461.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 40–56, 2014.
c© Springer International Publishing Switzerland 2014

Secure Key Exchange and Sessions without Credentials 41

adversary is capable of complete control of the channel, including arbitrary message
observation, alteration and scheduling.

Traditionally, the ability of communicating parties to authenticate themselves almost
always requires possession of secrets, and corresponding authorization architectures
and protocols employ some kind of infrastructure, which manages these secrets. Com-
mon examples include Public Key Infrastructure (PKI), shared long term private keys,
and human memorizable passwords.

In this work, we focus on efficiently achieving a strong security guarantee for the
problems of key exchange and secure sessions in the credential-free setting.

Practical Need for Authentication without Credentials. While trusted infrastructure
aids greatly in certifying the identities, capabilities or permissions of communicating
parties, its heavy cost is not justified in many non-security-critical applications. In some
cases, there may not be an authority who is qualified or trusted to operate the infrastruc-
ture and issue credentials. Some applications may use infrastructure opportunistically
and use PKI when available, but may fall back on weak authentication without creden-
tials. In yet other scenarios, such as ad-hoc peer-to-peer information sharing networks,
it is not required to associate a network entity with a real-life entity, but rather there is
a need to ensure the persistence of the connection.

The practical importance of the problem has led to a rich body of network secu-
rity research. Several techniques of weak authentication have emerged, were standard-
ized, and successfully widely deployed. For details, we refer the reader to the related
research described in [CKR+13]. Our work is a more formal approach that achieves
much stronger security.

1.1 The Setting and Our Contributions

In our setting, two partiesA and B have decided to have a communication session over
an insecure channel. A and B do not share any information other than which channel
to use for communication, and possibly a global public reference string. The decision
itself may have been made in an insecure way; for example, A may have really been
invited by an adversary Adv rather than by B. As there is no infrastructure to support
authentication, Adv may falsely claim any identity. The channel A and B will use for
their session may also be controlled by Adv, who can read from it and write to it at will.
Without credentials, we have no hope of preventing Adv falsely taking another player’s
identity or playing man-in-the-middle (MIM).

We are motivated by today’s many networking architectures, where it is difficult
for the adversary to always be an active MIM. Examples include LANs, wireless and
cellular networks, ad-hoc networks, opportunistic routing, etc. We present a candidate
for what we believe is the “next best” achievable security guarantee in this setting.
Namely, we require that the adversary must remain continuously active on the channel
throughout the entire session to avoid detection.

We formalize this by proposing new definitions of KE and secure sessions, which,
when combined, guarantee the above property (see Sect. 5.1). Our definitional approach
is as follows. In the KE preceeding the communication, either the exchanged key is hid-
den from Adv, or, if the adversary is playing MIM betweenA andB, thenA andB will
output keys that are random and independent from each other,and the adversary’s view

42 R. Canetti et al.

contains no secrets about these keys. We model this by requiring the view of the ad-
versary to be simulatable given the outputs of the parties. We identify and formalize a
security property of secure session protocols, which we call MIM-integrity, which en-
sures that the MIM-adversary must remain continuously active on the channel through-
out the entire session to avoid detection. We show that combining above KE and secure
sessions guarantees secure communication in the above sense. In this work we:
1. Present definitions of secure credential-free key exchange (CFKE) in the stan-

dalone and universally composable (UC) [Can00] settings. Our definitions guar-
antee that if two parties participate in a CFKE protocol, they either output the
same key which is completely hidden from the adversary, or output two keys that
are almost independent and uniformly random given the transcript of the view of
the adversary.

2. Present simple definitions of secure credential-free secure sessions (CFSS), which,
in addition to the standard security properties, guarantee that MIM must be con-
tinuously active to avoid detection.

3. We show that composing any CFKE and CFSS results in secure communication
in the credential-free setting. We also show that, in contrast, session protocols,
even those standardized by the Internet bodies, are insecure in our setting.

4. Describe a construction of a CFKE protocol in the standalone model with a global
common reference string (CRS), and prove its security in the standard model. We
then show how to construct a secure session with a new integrity property (MIM-
integrity) that guarantees that an adversary must modify every message in transit
from A to B or be detected.

5. Analyze two existing KE protocols: we show that the well known hashed Diffie-
Hellman protocol satisfies a variant of our standalone definition in the random
oracle model. We additionally compare our standalone protocol to the instantia-
tion of our UC definition using the construction of [BCL+05], and show that it
provides a useful tradeoff in settings with high latency, where low round com-
plexity is crucial.

1.2 Intuition for Our Constructions

CFKE. The key difference between a CFKE protocol and an unauthenticated key ex-
change (such as the basic Diffie-Hellman protocol) is that neither party should be able
to influence the outcome too much. This is necessary to achieve independence of keys
in the man-in-the-middle scenario.

A naive CFKE approach may be to use a coin toss protocol as a black box, and
simply encrypt its messages. However, there is no key infrastructure that would allow
A and B to encrypt! Indeed, the whole purpose of CFKE is to attempt to establish such
an infrastructure. Moreover, simply exchanging public keys to be used for encryption
won’t work since the adversary may be able to replace (or modify) the public keys on
the way, stripping the coin toss protocol from any privacy. This leads us to the following
intuitive observation: any cryptographic keys that are sent across the channel and are

Secure Key Exchange and Sessions without Credentials 43

used for the security of KE, must be strongly tied to the randomness used to generate
the final key.

Overview of the construction. Our credential-free key exchange protocol is symmet-
ric, and consists of two rounds where A and B simultaneously send messages to each
other. It proceeds as follows:

1. A andB generate and announce public keys, and commit to the public keys together
with random nonces. Here the commitment must have strong non-malleability prop-
erties (which we identify and formally define).

2. Using the public keys announced in the first round, A and B send to each other
encrypted decommitment strings for the commitments they announced in the first
round.

3. A and B use the decommitment strings to obtain each other’s nonces, and output
their exclusive-OR.

Relying on the non-malleability property of the commitment scheme, we get that no
adversary can modify either A’s public key or her nonce, without changing the other
(similarly for B). Moreover, since the nonce is hidden by the commitment, the adver-
sary is unable to commit to a related nonce, if she decides to modify the public key. On
the other hand, if she leaves the public key untouched, she will not be able to learn B’s
decommitment when he sends it in the next round.

Using CFKE for Communication. CFKE can be used to construct secure session pro-
tocols with security against MIM-adversaries. We show that the following is a secure
credential-free secure session (CFSS): a secure session protocol in the traditional sense,
where additionally the sender simply attaches to each message, in the clear, a dedicated
part of the secret key. That is, if A’s key is KA = (KA,1,KA,2), then KA,1 is used
for the underlying secure session protocol, and KA,2 is attached as an authenticator to
each message. Now, whenB receives a message from A with an attached authenticator
KA,2, he checks if KA,2 = KB,2, and aborts if the check fails. It is easy to see that
any adversary that does not change the authenticator on each message will be caught as
soon as a single message is transmitted directly.

1.3 Discussion

Password-Authenticated Key Exchange (PAKE) [BM92, KOY01, GL01],
[GL03, CHK+05, KV11, CDSVW12], when executed with fixed publicly known pass-
word, say, the all-zero password, can be viewed as a protocol in a credential-free setting.
In fact, such a PAKE achieves guarantees somewhat similar to those of CFKE, and at the
first glance may seem sufficient for our task. There are, however, important differences
between CFKE and PAKE, which render PAKE inapplicable to our setting.

Firstly, the definitional approach to PAKE fundamentally differs from our approach:
a successful Adv in PAKE may be able to fix the output key to an arbitrary value, which
would render such KE useless for CFSS (indeed, MIM Adv can set the two players’ key
to be equal and known to him, and thus break the CFSS protection).

Beyond just definitions, many natural PAKE protocols in fact do allow a player to
set the session key (and, to our knowledge, no protocols prove otherwise). Indeed, such

44 R. Canetti et al.

a PAKE can be easily constructed from any secure PAKE by adding a round where
the successfully authenticated players (now presumed honest by PAKE definitions) are
allowed to set the session key to anything of their choice.

More importantly, many existing protocols from the literature, e.g., of Canetti et
al. [CDSVW12] have the above feature. We stress that it is a natural property of their
approach; provably avoiding it would complicate their construction and would require
a new definition and a proof. In [CDSVW12], UC-secure PAKE is built from Oblivious
Transfer (OT), roughly as follows: the two players run several OT instances, where the
secrets are randomly chosen strings, and the password defines the selection bits. The
session key of OT receiver is the XOR of the received secrets, and OT sender’s key is
the XOR of the secrets corresponding to his password. It is easy to see that in the above
PAKE, the OT sender can set the session key to any string of his choice. We note that
the above PAKE OT idea is the basis for two constructions of [CDSVW12], and in both
of them the property of OT sender being able to set the key is preserved.

Practical Impact of MIM-integrity. Despite seeming simplicity, MIM-integrity is a
subtle concept and can be violated by seemingly secure natural protocols. Consider
a session protocol where players periodically refresh the session key. Typically, one
player chooses a nonce n, and each player updates his key sk to PRFsk(n). One promi-
nent example of such a protocol is in EAP-TLS [ALE09]. This refresh is a frequently
employed “best security practice”, which aims to limit the amount of ciphertext an
adversary can collect to attack the underlying encryption. However, CFSS using the
above security heuristic is completely insecure, as, since AES is invertible, MIM Adv
can choose nonces nA, nB which would set the refreshed keys KA = KB, allowing
the adversary to withdraw and only occasionally interfere with communication when
needed.

Open Directions. The main open direction left by our work is to design new secure
session protocols and notions of security against MIM adversaries that rely on other
(possibly weaker or incomparable) properties of networks in practice. For example, one
may be able to design secure sessions that always detect a MIM adversary assuming
network delay, or that messages are sent in pieces and that an adversary is unable to
predict future content (this idea was used in the Interlock protocol [RS84]). We believe
that our notion (and constructions) of CFKE can be used as a formal basis for such
future explorations.

1.4 Related Work

The problem of unauthenticated secure communication over insecure channels traces
back to the work of Dolev, Dwork, and Naor in [DDN91]. They introduced the non-
malleability guarantee: any adversary controlling the channel between two parties ei-
ther remains essentially passive, or is forced to run two independent instances of the
protocol, one with each honest party. The study of non-malleability has led to a rich
body of research that can be roughly classified according to two types of constructions:
constructions of specific non-malleable primitives such as encryption, zero-knowledge
proof systems, commitments, etc; and non-malleable “meta-protocols” that are used to
establish per-session infrastructures. These include non-malleable coin tossing [Bar02],

Secure Key Exchange and Sessions without Credentials 45

establishing a public key infrastructure [BCL+05], and a shared secret key infrastruc-
ture [CCGS10]. Such protocols can then provide setup for the protocols that need it.

Barak [Bar02] defines and constructs non-malleable coin tossing protocols, where
two parties wish to agree on an almost unbiased public random string in the presence
of MIM adversary. This coin tossing guarantees that an adversary must either allow the
players to output the same random string, or cause them to output two separate and
independently generated random strings. The protocols of [Bar02] work without any
infrastructure, but provide no privacy guarantee (the outcome of the coin toss is always
known to the adversary).

In [BCL+05] Barak et al. define split functionalities – a variant of ideal functional-
ities of the UC framework. Split functionalities allow an adversary to partition the set
of honest parties P into disjoint “authentication sets”. The idea is that all parties within
each set Hi ⊆ P have successfully established an authenticated session. The adversary
is then unable to impersonate any party in Hi to any other party in Hi, but can im-
personate any party in P \ Hi to any party in Hi. Since the adversary determines the
authenticated sets, this allows her, for example, to set all authenticated sets to be single-
tons, in which case no authenticated communication between honest parties is possible.
This indeed seems unavoidable since the adversary has complete control over the com-
munication channels. Camenisch et al. [CCGS10] define, among other things, split key
exchange and give a construction based on the decisional Diffie-Hellman assumption.

Our non-malleable KE can be built from split functionalities and coin toss. Indeed,
coin-toss whose output is hidden from Adv is easily achieved assuming secure channels
(e.g., Blum’s protocol with a UC-commitment suffices). Then, applying the compilers
of [BCL+05] or [CCGS10] to such secret coin toss functionality guarantees that either
key is hidden from Adv (Adv chose to interact with a single ideal functionality that
issues keys secretly to the two honest parties), or that Adv knows both independent keys
(Adv interacts with two separate functionalities, playing the role of an honest party in
each one). Using the recent commitment protocol of Lindell [Lin11], the resulting KE
protocol requires seven rounds of communication, and sending of a constant number of
group elements.

2 Preliminaries

Notation. We write PPT to denote Probabilistic Polynomial Time. When we wish to
fix the random bits of a PPT algorithm M to a particular value, we write M(x; r) to
denote running M on input x and randomness r. We write timen(M) to denote the
running time of algorithmM on security parameter n. We use x ∈R S to denote the fact
that x is sampled according to a distribution S. Similarly, when describing an algorithm
we may write x ←R S to denote the action of sampling an element from S and storing
it in a variable x. We denote by 1G the unit element of a group.

Discrete Logarithm Assumption. Let G be a probabilistic group generator such that
G←R G(1n) is a group of order pwhere p is a prime of length about n bits. The Discrete
Logarithm assumption for G is that given G, g, gx, where G ←R G(1n), g ∈R G,
x ∈R Zp, it is infeasible to find x.

46 R. Canetti et al.

Non-malleable Public Key Encryption (PKE). Let PKE = 〈KeyGen,Enc,Dec〉 be
a public key encryption scheme. We say that PKE is non-malleable if no adversary
can distinguish the encryptions of two messages of her choice, even if she is allowed to
make a single decryption query after seeing the challenge ciphertextC∗. The decryption
query is of course restricted to all strings that are not equal to C∗.

Target Collision Resistant Hash Functions. A family H = {Hk}k∈{0,1}∗ of hash
functions is target collision resistant if no efficient adversary can win the following
game: (i) the adversary selects a target input x; (ii) a random key k ∈R {0, 1}n is chosen;
(iii) the adversary is given k and must output another input y such thatHk(x) = Hk(y).

3 Definition of Secure Key Exchange without Credentials

We start with a syntactic definition of a credential-free key exchange (CFKE) protocol.
A CFKE protocol is a triple CFKE = 〈KEInit,KEA,KEB〉 where KEInit takes as input
a security parameter 1n and outputs a common reference string PUB. The protocol itself
consists of the actions performed by a role-A party, specified by KEA, and a role-B party
whose actions are specified by KEB (the roles are assigned to break the symmetry, e.g.
to determine who moves first). The pair KE = 〈KEA,KEB〉 is a two party protocol in
the common reference string model. We shall use KE to discuss the protocol as a whole,
and distinguish between KEA and KEB when such a distinction is warranted.

Adversary for a CFKE protocol is a triple of PPT algorithms Adv = (Ake, Aind,
Amal). To define security of CFKE we describe three experiments where the first ex-
periment models the interaction of Adv with the protocolKE, and the other experiments
capture privacy and non-malleability properties.

Security Experiments. We start with the description of the experiment ExpCFKE
which defines the interaction of the adversary with the protocol: let KE be a CFKE and
let Ake be a PPT algorithm.

Experiment. ExpCFKE(1n,KE , Ake)

1. KEInit(1n) is run to obtain public parameters PUB, which are given to Ake.
2. The key exchange protocol is run between two parties A and B, where A acts ac-

cording to KEA and B acts according to KEB . All the communication is routed
through Ake. During this process Ake can inject, delete, and modify messages be-
tween the two parties at will.

3. After KE concludes, let Kout
A and Kout

B be the outputs of the protocol, and let
view(Ake) be the view of Ake during its execution. The view consists of the ran-
domness ofAke, and all the (potentially modified) messages exchanged betweenA
and B during the execution of the protocol.

4. The outcome of the experiment is the tuple (Kout
A ,Kout

B , view(Ake)).

Intuitively, we wish to achieve the following security guarantee: either the two par-
ties agree on a key and the adversary knows nothing about it, or the adversary is forced
to perform two independent key exchanges (one with each party) resulting in the par-
ties outputting independently random keys. We capture this intuition by describing two
security experiments for CFKE: privacy and non-malleability.

Secure Key Exchange and Sessions without Credentials 47

The first experiment ExpCFKEInd requires the adversary to distinguish a key agreed
upon by the two parties in the protocol from a random key. If the two parties do not
agree on a key (i.e.Kout

A �= Kout
B) then the adversary automatically loses in the privacy

experiment. This is enforced by setting the outcome of the experiment by flipping an
unbiased coin. Let b ∈ {0, 1}, the privacy experiment is defined as follows:

Experiment. ExpCFKEInd(1n,KE , Ake, Aind, b)

1. Run experiment ExpCFKE(1n,KE , Ake) to obtain (Kout
A ,Kout

B , view(Ake)).
2. If Kout

A �= Kout
B , flip an unbiased coin b′ ∈R {0, 1} and set the outcome of the

experiment to b′.
3. Else, let K0 = Kout

A , K1 ∈R {0, 1}n. Let b′ ←R Aind(view(Ake),Kb). The out-
come of the experiment is b′.

Definition 1. Let KE = (KEInit,KE) be a credential-free key exchange. We say that
KE is private if for every CFKE adversary Adv = (Ake, Aind, Amal), there exists a
negligible function neg(·), such that for all n ∈ N

|Pr[ExpCFKEInd(1n,KE , Ake, Aind, 0) = 1]−
Pr[ExpCFKEInd(1n,KE , Ake, Aind, 1) = 1]| ≤ neg(n)

In the second experimentExpCFKENMal the goal of the adversary is to make the two
parties output different keys with some correlation that may depend on the adversary’s
view. We require that for every adversary there exists a simulator such that the view
of the adversary in an interaction that causes the parties to output two different keys
KA,KB is simulatable given random keys KA,KB. The simulated view should be
indistinguishable from the real one even given KA and KB .

This captures the intuition that the only way the adversary can make the parties out-
put different keys is by making them output independent random keys. As we discussed
in the introduction, we cannot completely prevent the adversary from influencing the
output of the parties since she always has the option to omit the message that deter-
mines that outcome, unless the outcome satisfies some property (e.g. the key KA has
zero as its first bit). We require that this is essentially the only way the adversary can
influence the outputs of the parties. This is captured by allowing the simulator to sample
polynomially many pairs of uniformly random keys, and pick one pair for the output.
This essentially grants the simulator exactly the ability to try a new key unless the
current key satisfies a relatively likely property. For b ∈ {0, 1} and a simulator S the
non-malleability experiment is:

Experiment. ExpCFKENMal(1n,KE , Ake, Amal, S, b)

1. Run experiment ExpCFKE(1n,KE , Ake) to obtain (Kout
A ,Kout

B , view(Ake)).
2. If Kout

A = Kout
B , flip an unbiased coin b′ ∈R {0, 1} and set the outcome of the

experiment to b′.
3. Else, run simulator S(1n) and allow S to sample a polynomial number of uni-

formly random key pairs (KA,KB) ∈ ({0, 1}n)2. Let view′ be the output of the
simulator and (KA,KB) be the last pair of keys sampled by S.

4. Set Y0 = (Kout
A ,Kout

B , view(Ake)), and Y1 = (KA,KB, view
′), and let b′ ←R

Amal(Yb). The outcome of the experiment is b′.

48 R. Canetti et al.

Definition 2. Let KE = (KEInit,KE) be a credential-free key exchange. We say that
KE is non-malleable if for every CFKE adversary Adv = (Ake, Aind, Amal), there
exists an expected PPT simulator S, and a negligible function neg(·), such that for all
n ∈ N

|Pr[ExpCFKENMal(1n,KE , Ake, Amal, S, 0) = 1]−
Pr[ExpCFKENMal(1n,KE , Ake, Amal, S, 1) = 1]| ≤ neg(n)

Finally, we say that a CFKE protocol is secure if it satisfies both properties described
above.

Definition 3. Let KE = (KEInit,KE) be a credential-free key exchange. We say that
KE is secure if it satisfies privacy, and non-malleability.

On Concurrent CFKE Executions. As in standard definitions of KE (e.g. [CK01]), it
suffices to consider only the case where there is a single “test session” that the adversary
tries to break. In addition, since the parties do not have initial credential or public keys,
here there is no need to explicitly model additional parties other than the two parties per-
forming the exchange. Indeed, consider an alternative definition based on Definition 3,
whereAdv is allowed to generate several instances of honest and dishonest players, with
whom Adv interacts in a concurrent manner. At multiple points during the interaction,
Adv adaptively selects a pair of players, requests and answers the challenge of the KE
game. The adversary wins if it wins in any one of the selected challenge exchanges.
It is easy to see that this stronger definition is equivalent to the current, single session
one. Indeed, an adversary that breaks the multi-session definition can be turned into an
adversary that wins the single session definition by choosing a single session at random
and simulating all the other sessions and players internally. (Note that this simulation
and the corresponding definitional simplification is only possible in the credential-free
setting.)

Universally Composable CFKE. To allow for formal composability of CFKE protocols,
we also provide a UC definition and construction of the CFKE notion. Due to limited
space, this is presented in [CKR+13].

4 Two Credential-Free Key Exchange Protocols

We present two constructions of CFKE protocols. Our main protocol is shown to be
secure in the standard model, and requires two simultaneous rounds of communication.
The second protocol that we present is what is commonly known as “Hashed Diffie-
Hellman”. We show that HDH is not a secure CFKE protocol in the standard random
oracle model. However, we show that if one is willing to assume that HDH uses its own
random oracle, that is not later used by other protocols, it is a secure CFKE protocol.

4.1 Protocol 1: Standard Model

We now present our main protocol (see Section 1.2 for its intuition). For our construc-
tion, we rely on a non-interactive equivocal commitment scheme with a specialized

Secure Key Exchange and Sessions without Credentials 49

non-malleability property. Commitments are discussed in detail in [CKR+13]. We note
that while our definition is specialized to allow us to prove the security of our CFKE
protocol, it may be of independent interest as a property of non-interactive commitment
schemes.

Let COM = 〈ComInit,Commit,Decommit〉 be a 2-strongly non-malleable com-
mitment scheme [CKR+13], and let PKE = 〈KeyGen,Enc,Dec〉 be a non-malleable
public key encryption scheme. We construct a two-flow credential-less key exchange
protocol CFKE1 = 〈KEInit,KEA,KEB〉 based on COM and PKE .

The public parameters generating algorithm KEInit on input security parameter 1n

runs ComInit(1n) to obtain a common reference string PUB for COM, and outputs
PUB as the public parameters of the key exchange protocol. The protocol KE consists
of two rounds where in each round Alice and Bob send a message to each other. In our
protocol, the actions of the parties are symmetric, and so the messages at each round can
be sent in parallel, without either side waiting for the other to send first. The complete
description of the protocol is given in Figure 1.

Alice Public Bob
PUB

Run KeyGen(1n) to obtain pubA, priA
Choose a random key KA ∈R {0, 1}n
(αA, βA) ←R CommitPUB(pubA,KA)

Run KeyGen(1n) to obtain pubB, priB
Choose a random key KB ∈R {0, 1}n
(αB, βB) ←R CommitPUB(pubB ,KB)

pubA,αA−−−−−−−−−→
pubB ,αB←−−−−−−−−−

Compute CA ←R EncpubB (βA) Compute CB ←R EncpubA(βB)
CA−−−−−−→
CB←−−−−−−

Compute β′
B ← DecpriA(CB)

(pub′
B ,K′

B) ← DecommitPUB(αB , β′
B)

If ⊥ ∈ {β′
B , pub′

B, K
′
B} or pub′

B �= pubB

or αB = αA

Output K̂A ∈R {0, 1}n
Else

Output KA ⊕K′
B

Compute β′
A ← DecpriB (CA)

(pub′
A,K

′
A) ← DecommitPUB(αA, β

′
A)

If ⊥ ∈ {β′
A, pub′

A,K
′
A} or pub′

A �= pubA

or αA = αB

Output K̂B ∈R {0, 1}n
Else

Output KB ⊕K′
A

Fig. 1. The CFKE Protocol CFKE1

Privacy. To achieve privacy, the protocol must guarantee that if the two parties agree
on a key (i.e. output the same string) then the adversary is unable to distinguish that key
from a random one. we prove the following theorem:

Theorem 1. If PKE is a non-malleable public key encryption scheme and COM is a
computationally binding, 2-strongly non-malleable commitment scheme, then the pro-
tocol CFKE1 is private according to Definition 1.

Intuitively, this follows from the following two facts: (i) if the adversary modifies A’s
a public key (the case of B is symmetric), then because of the strong non-malleability

50 R. Canetti et al.

Schedule EA Schedule EB
αA−−−−−→ αB←−−−−−

α′
A−−−−−→

βB←−−−−−
α′
B←−−−−−

βA−−−−−→
β′
B←−−−−− β′

A−−−−−→

αA−−−−−→ αB←−−−−−
α′
B←−−−−−

βA−−−−−→
α′
A−−−−−→

βB←−−−−−
β′
B←−−−−− β′

A−−−−−→

Fig. 2. Two possible schedules for adversarial commitments

of the commitment scheme, she must choose a new nonce to accompany the modified
public key. However, if she does so, the probability that A and B output the same key
is negligible. On the other hand, if she allows A and B to exchange public keys, then
privacy follows from the semantic security of the encryption scheme. Due to limited
space we present the details of the proof in [CKR+13].

Non-malleability. To show non-malleability, we must describe a simulator that can
simulate the view of the adversary given a choice of one of polynomially many pairs of
random outputs for the two parties. We prove the following theorem:

Theorem 2. If COM is a 2-strongly non-malleable commitment scheme then the pro-
tocol CFKE1 is non-malleable according to Definition 2.

Proof Sketch. We next present an overview of our proof. The complete details are
given in [CKR+13]. Our proof is structured as follows. We first describe a simulator
that achieves a weaker notion of security, where the simulator is allowed to lock an out-
put for each party. That is, the simulator can sample pairs of output keys as before, but
now it has the additional ability to lock one key in the pair, and continue randomizing
the other key. Once a key is locked the simulator has committed to making that key
the output of the corresponding party. Once we describe a simulator Sim in the weaker
model, achieving simulation according to the actual notion of security is straightfor-
ward: sample a pair of random keys K̂A and K̂B and guess at which iteration Sim will
lock each key. Then, generate the rest of the keys randomly. This procedure is repeated
until the guess is correct.

The simulator Sim itself is described [CKR+13]. On a high level the simulator
works as follows. Let us denote by EA (EB) the event that the adversary submits both
α′
A and α′

B before seeing an encryption of βA (βB). Note that since each party out-
puts the encrypted decommitment after obtaining the commitment of the other party,
at least one of these events must always occur (see Figure 2 for an illustration of the
two possible schedules). Specifically, according to schedule EA the adversary submits
both α′

A and α′
B before seeing an encryption of βA. Similarly, according to schedule

EB the adversary submits both commitments before obtaining βB . The simulator first
generates a tuple γ of the form (PUB, pubA, αA, pubB, αB, radv). This commits the
adversary to one of the two schedules described in Figure 2. Assuming that EA is the

Secure Key Exchange and Sessions without Credentials 51

schedule that the adversary follows conditioned on γ, the simulator proceeds to extract
a decommitment for α′

A by simulating the interaction of the adversary with the pro-
tocol to completion (the case when the schedule induced by γ is EB is symmetric).
Now, by making use of the strong non-malleability of the commitment scheme, and
ignoring (for the moment) the possibility that the adversary chooses to provide an in-
valid decommitment for α′

A, we know that there is a unique value K ′
A that α′

A will be
decommitted to. Therefore, the decommitment β′

A obtained by the simulator, together
with the commitment α′

A, allow the simulator to obtain K ′
A.

At this point, the simulator fixes a key K̂B to be output by Bob, and rewinds the ad-
versary to the point where she submitted her commitment α′

A. The simulator then uses

the equivocability of the commitment scheme to decommit αB to KB
def
= K̂B ⊕ K ′

A

A similar extract-then-adjust procedure is repeated with the Alice side of the interac-
tion: fixing (γ, α′

A, βB) the simulator obtains a commitment α′
B from the adversary

and simulates the protocol to completion to obtain a decommitment β′
B . Again, ig-

noring invalid commitments and applying the strong non-malleability property of the
commitment scheme, there is only a single value to which the adversary can decommit
α′
B . That value, K ′

B, is obtained by the simulator from α′
B and β′

B . The simulator then
rewinds the adversary to the point where (γ, α′

A, βB, α
′
B) are fixed, fixes a key K̂A to

be output by Alice, and decommits αA to KA
def
= K̂A ⊕ K ′

B. As a result, KA and
KB are properly distributed in the transcript of the protocol – uniformly random, and
the simulator successfully forces the correct outputs K̂A and K̂B for Alice and Bob
respectively.

Under the simplifying assumptions that the adversary always decommits a given
commitment α′

A or α′
B to a unique value, and that no invalid decommitments are ever

generated, the simulator described above perfectly simulates the view of the adversary
in the non-malleability experiment. The main technical difficulty is caused by the fact
that after fixing the commitment α′

A or α′
B the adversary still has a choice whether to

decommit to K ′
A (K ′

B) or to produce an invalid decommitment. To accommodate this
possibility the actual simulator may rewind the adversary many times until the “right”
kind of commitment is produced. For example, if the adversary first decommits α′

A to
K ′

A then after rewinding the simulator will keep trying new random keys K̂B for Bob
until the adversary decommits α′

A to K ′
A again. This repeated rewinding is what causes

the running time of our simulator to be expected rather than strict polynomial. The only
computational part of our argument concerns the inability of the adversary to decommit
a single commitment α′

A or α′
B to more than one non-⊥ value. If this were not the case

then our simulator would potentially not be able to predict the value K ′
A to which α′

A

will be decommitted, and therefore fail to set β′
A appropriately. However, no efficient

adversary can violate this requirement without breaking the strong non-malleability of
the commitment scheme.

We give the complete details in Appendix [CKR+13].

4.2 Protocol 2: Hashed Diffie-Hellman as CFKE

We next analyze the hashed Diffie-Hellman (HDH) [DH76] protocol (cf. Figure 3) in
the context of CFKE. Note, HDH (and natural variants) are insecure in the sense of

52 R. Canetti et al.

Alice Bob
Hash function H
Generator g ∈ G

Choose x ∈R Zp

Compute X ← gx
Choose y ∈R Zp

Compute Y ← gy

X−−−−−→
Y←−−−−−

Reject if Y = 1G, otherwise
compute KA = H(Y x)

Reject if X = 1G, otherwise
compute KB = H(Xy)

Fig. 3. The Hashed Diffie-Hellman protocol CFKE2

Definition 2. Indeed, a MIM adversary in HDH can learn the pre-images under the hash
function H of the keys KA and KB by running a separate instance of the protocol
with each party. This violates the non-malleability requirement of CFKE. One can then
design (contrived) session protocols that become insecure when the adversary has this
information. For example, a secure CFKE protocol can stop encrypting and authenti-
cating messages if Alice receives a message containing the pre-image of her key under
H . Additionally, HDH requires a slight tweak to meet the intuitive requirement of non-
malleability. Namely, the parties must check that they do not receive 1G from the other
party. Otherwise, the adversary can force the output to be the hash of 1G.

HDH variants, such as the one described in Figure 3, can be natural and useful CFKE
protocols, and should be allowed by the definition (especially since “incompatible”
CFSS protocols can be naturally excluded – see below). A simple amendment to the
definition of non-malleability resolves this. To accommodate protocols that output a
hash of a value as the final key, we let the simulator in experiment ExpCFKENMal
fix the output key pair to be the outcome of the last two queries that the simulator
makes to the random oracle before terminating. More precisely, we modify step 3 in the
experiment as follows:

3′. Run simulator S(1n) and allow S to query the random oracle H . Let view′ be
the output of the simulator and (KA,KB) be the last two values returned by H as
responses to queries made by S.

Definition 4. Let KE = (KEInit,KE) be a credential-free key exchange in the ran-
dom oracle model. We say that KE is secure if it satisfies privacy, and amended non-
malleability.

We note that the original version of Step 3 can be simulated in the above variant
simply by querying the random oracle on pairs of random inputs.

As discussed above, Definition 4 requires excluding “incompatible” CFSS protocols,
namely those that may query the same RO used in CFKE. Hence, a simple way to ensure
security of composed CFKE (Definition 4 version) and CFSS is to require that different
RO are used for the two types of protocols. This is achieved in practice by using a
protocol name as a prefix in all hash function calls.

Secure Key Exchange and Sessions without Credentials 53

Theorem 3. Let CFKE2 be the protocol of Figure 3. Let hash function H in the de-
scription of CFKE2 is modeled as a random function. Then, CFKE2 is a secure CFKE
according to Definition 4.

The proof of Theorem 3 is straightforward: privacy follows from the decisional
Diffie-Hellman assumption (DDH), similarly to the standard Diffie-Hellman key ex-
change protocol. Non-malleability is shown by having the simulator query the random
oracle on the two values queried last by the two parties.

5 Definition and Construction of Credential-Free Secure Sessions

The notion of secure session protocol (with a supposedly shared session key) appears
intuitive, and is often omitted from formal discussion. However, existing formalizations
of secure sessions and secure channels [Sho99, CK02] show that subtleties arise even in
these “simple” settings. Further, as we pointed out in Section 1.3, standard definitions
(and even constructions!) of secure sessions don’t work in our credential-free scenario.
In this section, we justify and formalize the new notion.

We simplify presentation by only considering one-way sessions where A communi-
cates a long message to B. This message arrives in pieces to A, which are encrypted
using (possibly randomized!) encryption function Enc and sent to B one at a time. The
adversary sees the encryptions and chooses the pieces in a very adaptive manner: he
chooses the first piece, sees its encryption, chooses the second piece, sees its encryp-
tion, etc. B decrypts the pieces one at a time (using Dec). Each such decryption will
involve an integrity test; if any such test fails, we say that B outputs a special symbol
FAIL for the piece, and for simplicity we will assume that B must then output FAIL for
all succeeding pieces.

Formally, a session protocol is a tuple 〈Enc,Dec〉, which satisfies correctness in the
absence of an adversary. That is, if Enc and Dec are given the same keyK , and if Enc is
given a sequence of message pieces m0,m1, . . . ,mw, and if the resulting encryptions
are fed into Dec, then Dec will output message pieces m0,m1, . . . ,mw. A standard
secure session must satisfy the standard notions of integrity and privacy.

Definition of Credential-Free Secure Sessions (CFSS). We say a session protocol is
a CFSS, if it satisfies: Integrity, Privacy, and MIM-Integrity. We omit formalization of
the first two standard properties.

Informally, MIM-integrity guarantees that as soon as Adv allows an unmodified mes-
sage to pass through between the endpoints with unequal random keys, Adv is detected
(player outputs FAIL). To define MIM-integrity (and hence CFSS), fix a session protocol
(Enc,Dec).

MIM-Integrity: Consider an adversary Adv on input security parameter 1n. Adv is a
probabilistic algorithm that runs in time polynomial in n. We define an experiment that
begins with two random n-bit stringsKA andKB being chosen; Adv sees bothKA and
KB; KA is given to A (who uses Enc) and KB is given to B (who uses Dec).

Adv interactively chooses m0,m1, . . . ,mw while seeing e0, e1, . . . , ew. (Note that
since A – that is Enc – is allowed to be probabilistic, Adv might not be able to compute
e0, e1, . . . , ew on his own.) Adv then computes and sends e′0, e

′
1, . . . , e

′
j to B, where

54 R. Canetti et al.

0 ≤ j ≤ w and e′j = ei for some i, 0 ≤ i ≤ w (e′i is an unmodified message that
should trigger FAIL). If B doesn’t output FAIL in response to e′j , we say that Adv wins.
Let pAdv(n) be the probability that Adv wins.

MIM-Integrity means that for every such Adv for every c, for sufficiently large n,
pAdv(n) ≤ 1/nc.

A number of works examine sessions and their underlying encryption schemes
(e.g., [BKN02]), with some of the approaches somewhat similar to ours. MIM-integrity
is a unique aspect of our work, and we are not aware of existing definitions which could
be used in its place.

A CFSS Protocol. It is not hard to create a session protocol that satisfies these three
concepts. It is straightforward to verify that the following construction is a CFSS.

Construction. Say that the session key consists of two parts: an n bit privacy key k1
and an n bit integrity key k2. Assume we have two pseudo-random function generators
F and F ′, where Fk1 : {0, 1}n → {0, 1}n and F ′

k2
: {0, 1}2n → {0, 1}n. A encrypts

the ith n-bit piece mi, by computing α = Fk1(i) ⊕ mi and letting the encryption
be ei = αF ′

k2
(iα). (Here, i denotes the n-bit representation of i.) B decrypts in the

obvious way: given the i-th encryption e′i = α′β′, B FAILs if β′ �= F ′
k2
(iα′), and

otherwise outputs Fk1(i) ⊕ α′. It is easy to see that this satisfies integrity and privacy,
but it does not necessarily satisfy MIM-integerity. In order to satisfy MIM-integrity,
we add to ei the string Fk1(1

n), and we add to B the additional stipulation that given
e′i = α′β′γ′, B FAILs if γ′ �= Fk1(1

n). (Of course, we need to ensure that the counter
never reaches the value 2n. Alternatively, we could add a dedicated part k3 of the key
to each message, however, adding Fk1(1

n) allows for shorter keys.)

5.1 Composing CFKE and CFSS

In this section we informally argue that composing CFKE and CFSS provides the guar-
antee that the adversary must remain continuously active on the channel throughout the
entire session to avoid detection.

This is indeed easy to see. In one case, CFSS (namely, its standard integrity and pri-
vacy properties) guarantees that if the keys are random and unknown to Adv, then chan-
nel is fully secure in the standard strong sense. In the other case, Adv knows the keys of
the players, and the keys are random and independent of each other, the MIM-integrity
property of CFSS guarantees that as soon as Adv allows an unmodified message to pass
between the players, it is immediately detected. Finally, the CFKE definition is tailored
to explicitly guarantee that the keys that the players output fall under one of the two of
the above cases.

References

[ALE09] Arkko, J., Lehtovirta, V., Eronen, P.: RFC 5448: Improved extensible authentica-
tion protocol method for 3rd generation authentication and key agreement, EAP-
AKA’ (May 2009), http://tools.ietf.org/html/rfc5448

http://tools.ietf.org/html/rfc5448

Secure Key Exchange and Sessions without Credentials 55

[Bar02] Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS, pp. 345–355. IEEE Computer Society
(2002)

[BCL+05] Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure Computation Without
Authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005)

[BKN02] Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: Prov-
ably fixing the SSH binary packet protocol. In: Atluri, V. (ed.) ACM CCS 02: 9th
Conference on Computer and Communications Security, November 18–22, pp. 1–
11. ACM Press, New York (2002)

[BM92] Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secureagainst dictionary attacks. In: SP 1992: Proceedings of the 1992 IEEE Sym-
posium on Security and Privacy, p. 72. IEEE Computer Society, Washington, DC
(1992)

[Can00] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/

[CCGS10] Camenisch, J., Casati, N., Gross, T., Shoup, V.: Credential Authenticated Identi-
fication and Key Exchange. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 255–276. Springer, Heidelberg (2010)

[CDSVW12] Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidel-
berg (2012)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

[CHK+05] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally Compos-
able Password-Based Key Exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

[CK01] Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

[CK02] Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002)

[CKOS01] Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, p. 40. Springer, Heidelberg (2001)

[CKR+13] Canetti, R., Kolesnikov, V., Rackoff, C., Vahlis, Y.: Secure key exchange and ses-
sions without credentials. Cryptology ePrint Archive, Report 2013/693 (2013),
http://eprint.iacr.org/

[DCIO98] Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable
commitment. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, pp. 141–150. ACM (1998)

[DDN91] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552. ACM (1991)

[DG03] Damgard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory
of Computing, p. 437. ACM (2003)

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

http://eprint.iacr.org/
http://eprint.iacr.org/

56 R. Canetti et al.

[FF00] Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In:
CRYPTO, pp. 413–431 (2000)

[GL01] Goldreich, O., Lindell, Y.: Session-Key Generation Using Human Passwords Only.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Hei-
delberg (2001)

[GL03] Gennaro, R., Lindel, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003)

[KOY01] Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

[KV11] Katz, J., Vaikuntanathan, V.: Round-Optimal Password-Based Authenticated Key
Exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

[Lin11] Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011)

[NT94] Neuman, B.C., Ts’o, T.: Kerberos: an authentication service for computer net-
works. IEEE Communications Magazine 32(9), 33–38 (1994)

[PR05] Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Proceedings of the Thirty-Seventh annual ACM Symposium
on Theory of Computing, p. 542. ACM (2005)

[RS84] Rivest, R.L., Shamir, A.: How to expose an eavesdropper. Commun. ACM 27,
393–394 (1984)

[Sho99] Shoup, V.: On formal models for secure key exchange. Technical Report RZ 3120
(#93166), IBM (1999)

Relaxed Two-to-One Recoding Schemes

Omkant Pandey1,�, Kim Ramchen2, and Brent Waters2,��

1 University of Illinois, Urbana-Champaign
omkant@uiuc.edu

2 University of Texas, Austin
{kramchen,bwaters}@cs.utexas.edu

Abstract. A two-to-one recoding (TOR) scheme is a new cryptographic
primitive, proposed in the recent work of Gorbunov, Vaikuntanathan,
and Wee (GVW), as a means to construct attribute-based encryption
(ABE) schemes for all boolean circuits. GVW show that TOR schemes
can be constructed assuming the hardness of the learning-with-errors
(LWE) problem.

Wepropose a slightly weaker variant of TOR schemes called correlation-
relaxed two-to-one recoding (CR-TOR). Unlike the TOR schemes, our
weaker variant does not require an encoding function to be pseudoran-
dom on correlated inputs. We instead replace it with an indistinguisha-
bility property that states a ciphertext is hard to decrypt without access
to a certain encoding. The primary benefit of this relaxation is that it al-
lows the construction of ABE for circuits using the TOR paradigm from
a broader class of cryptographic assumptions.

We show how to construct a CR-TOR scheme from the noisy cryp-
tographic multilinear maps of Garg, Gentry, and Halevi as well as those
of Coron, Lepoint, and Tibouchi. Our framework leads to an instantia-
tion of ABE for circuits that is conceptually different from the existing
constructions.

1 Introduction

Encrypting data using traditional public-key encryption results in a very coarse-
grained access to the data, since only those who possess an appropriate secret-
key can decrypt the resulting ciphertext. Attribute-based encryption (ABE),
introduced by Sahai and Waters [26] is an emerging class of cryptosystems which
allow for significantly more fine-grained access to data. There are two variants

� Part of this work was done while the author was at The University of Texas at
Austin.

�� Supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through
the U.S. Office of Naval Research under Contract N00014-11-1-0382, DARPA
N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, Mi-
crosoft Faculty Fellowship, and Packard Foundation Fellowship. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Department of Defense or
the U.S. Government.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 57–76, 2014.
c© Springer International Publishing Switzerland 2014

58 O. Pandey, K. Ramchen, and B. Waters

of ABE cryptosystems [16]: Key-Policy ABE and Ciphertext-Policy ABE. In
Key-Policy ABE, the secret-keys SKf have an associated boolean-function f
called the policy. The messages are encrypted under an assignment x of boolean
variables called the attributes. A secret-key SKf can decrypt a message M
encrypted under assignment x if and only if f(x) = 1. In Ciphertext-Policy
ABE, these roles are reversed: secret-keys are associated with assignments x and
ciphertexts are associated with policies f .

Recently, two independent works due to Garg, Gentry, Halevi, Sahai, and
Waters [13], and Gorbunov, Vaikuntanathan, and Wee [15] showed how to con-
struct ABE schemes for general circuits. More specifically, these works show how
to realize the class of access policies f that can be expressed as a boolean cir-
cuit of depth d and input length n; both d and n are fixed at the system setup
and can be polynomial in the security parameter; the size of ciphertexts and
public-parameters is at most polynomial in d and n but independent of the size
of the circuits in the class. The construction of [13] uses noisy cryptographic
multilinear maps of Garg, Gentry, and Halevi [12], and is based on a new as-
sumption in ideal lattices. The construction of [15] is based on the (standard)
learning-with-errors assumption [23]. Prior to these works, the construction of
[16] supported the largest class of access policies until now; namely the policies
corresponding to polynomial sized boolean formulas, or equivalently circuits in
the complexity class NC1.

Two-to-one recoding schemes. The work of GVW on attribute-based encryp-
tion introduces an interesting new framework called two-to-one recoding (TOR)
schemes. Roughly speaking, a TOR scheme resembles a proxy re-encryption
scheme [4]: it has an “encoding” mechanism with the following functionality.
Given the encodings of a message m under two different public-keys pk1 and
pk2, and an appropriate trapdoor t, it is possible to obtain the encoding of m
under a third public-key pk3. The trapdoor t, called the recoding key, can be
generated using any one of the secret-keys corresponding to pk1 or pk2. GVW
show that if such a primitive satisfies several additional simulatability and indis-
tinguishability properties (described later), then circuit ABE can be constructed
in a black box manner.

TOR schemes are intriguing primitive that we find interesting at least for two
reasons. First, because it immediately yields a (black-box) construction of circuit
ABE. And second, how it yields ABE construction. Roughly speaking, the TOR
encodings and recoding-keys are used imitate the circuit-computation along the
lines of garbled-circuits [29]. This ability to execute a circuit computation “se-
curely and in a tamper-proof manner” makes TOR a powerful primitive.

Relaxing the requirements of TOR schemes. In this work, we take a closer look
at TOR as an independent primitive. In particular, we investigate the possibility
of building TOR schemes from assumptions that are different from LWE.

Our focal point is the correlated pseudorandomness property [24] which states
that “the output of the encoding function on several correlated inputs looks pseu-
dorandom.’ While this property follows naturally from the LWE construction of

Relaxed Two-to-One Recoding Schemes 59

GVW, it proves to be significantly more difficult to achieve in other contexts.
For instance, we found that it was possible to achieve TOR in generic multilin-
ear maps using a natural generalization of the “matrix DDH” assumption [21].
However, this assumption assumption is actually false in the framework of GGH
[12]. In addition, while it remains plausible in the framework of CLT [11], the
resulting construction encumbers significant additional overhead to the existing
multilinear construction of Garg, Gentry, Halevi, Sahai, and Waters [13]. Ideally,
we would like an abstraction that both leads to circuit ABE from a broader range
of assumptions and one which naturally leads to competitive constructions.

With this goal in mind we reexamine how correlated pseudorandomness was
used in the GVW construction. In the GVW Circuit ABE construction multiple
TOR primitives for each input gate for each interior gate in a private key circuit
for f . However, in their proof the correlated randomness property is actually not
needed or used at any of these gates except the final output gate. This follows
from the fact that in the circuit ABE construction there is no real reason to hide
from an attacker that two encodings are generated from the same randomness
— the attacker naturally knows this anyway for a well formed ciphertext. The
correlated randomness property is used in combination with a one time encryp-
tion property at the output gate to show that if an attacker cannot derive the
encoding, then he cannot decrypt a message.

Our goal is to present a relaxed formulation of two-to-one reencoding that
more directly meets this intuitive security goal. We aim to replace correlated
pseudorandomness with a security goal that more tightly meets what is needed
to construct Circuit ABE systems.

Our contributions. We first present a relaxed formulation called correlation-
relaxed two-to-one recoding (CR-TOR) schemes. In this framework the encodings
are not required to be pseudorandom on correlated inputs. Rather, we capture
the corresponding security requirement by an indistinguishability game which
specifies only that there exists an encryption function producing an indistin-
guishable ciphertexts which can be decrypted by “appropriately computed” en-
codings. In terms of circuit ABE, an “appropriately computed” encoding will
be the recoding corresponding to the output of the circuit. After presenting our
formulation of CR-TOR, we show that it is sufficient to build circuit ABE in a
black-box manner.

Next, we consider the question of constructing CR-TOR and TOR schemes
from assumptions different from LWE. For this purpose, we turn to the frame-
work of idealized multilinear maps [6,12,11,13], and show how to construct a:

– CR-TOR scheme based on a natural generalization of the DDH assumption;
– TOR scheme based on the “matrix DDH” assumption (in groups with mul-

tilinear maps)

We note that the construction of CR-TOR is much more efficient compared to
the corresponding construction of TOR (which requires us to use matrix DDH
assumption). This indicates that correlated pseudorandomness property of TOR
comes at a price in efficiency.

60 O. Pandey, K. Ramchen, and B. Waters

As of today, no constructions of idealized multilinear maps are known. How-
ever, the breakthrough work of Garg, Gentry, and Halevi [12], as well as the re-
cent followup work of Coron, Lepoint, and Tibouchi [11], constructs randomized
encoding schemes which can be seen as candidate constructions for “approxi-
mate” multilinear maps. These constructions are based on new cryptographic
assumptions on ideal lattices.

We show that our construction of CR-TOR scheme can be easily adapted
to work in the framework of both GGH [12] and CLT [11]. Moreover, the per-
formance of the resulting constructions is roughly on par with the GGHSW
constructions [13].

However, our construction of the TOR scheme can only work with the frame-
work of CLT. This is because the matrix DDH assumption does not hold in
the GGH setting; but it remains plausible in the CLT setting. Furthermore,
the overhead is significantly increased compared to the CR-TOR systems. The
additional overhead can be directly attributed to achieving the stronger (and
unused) correlation resistance property.

Finally, we note that since CR-TOR suffices to obtain circuit ABE in a black-
box manner, we obtain a new construction of circuit ABE that is distinct from
both GVW[15] and GGHSW [13]. At a conceptual level, this construction re-
sembles the GVW construction since it is obtained from CR-TOR; on the other
hand, it uses multilinear maps as its internal mechanism for computation, result-
ing in the same underlying assumption as the GGHSW construction. We remark
that the construction of circuit ABE in all of these works, including ours, are in
the selective-security model [5,16].

Goals and Non-goals. One of our main objectives in this work is to under-
stand which properties of TOR are crucial to build circuit-ABE and eliminate
the unnecessary ones. Specifically, we have investigated the correlated pseudo-
randomness property and find that it might be unwarranted for circuit-ABE,
resulting in unnecessary inefficiencies. This argument is supported by construct-
ing a circuit-ABE scheme which compares favourably to existing schemes [13,15]
in terms of efficiency. However, building a new and more efficient circuit-ABE
scheme is not a goal of this paper. We do so only to demonstrate that corre-
lated pseudorandomness property is not required for circuit-ABE; relaxed-TOR
is sufficient and enables a better construction.

Related works. After the introduction of ABE, while limited progress was made
on expanding the class of access policies f , significant progress was made in many
directions on ABE. New proof techniques were developed in [27,18,22,8,1,3,20,2]
to diversify the underlying security assumptions based on both bilinear pairings
as well as lattices. New constructions for decentralizing trust in the key-issuing
authority were proposed in [9,10,19]. In addition, schemes supporting policies
of different flavors were also developed such as: inner-product policy [17], regu-
lar languages [28], branching programs [7], and more expressive schemes in the
(much weaker) “bounded collusion” model [25,14].

Relaxed Two-to-One Recoding Schemes 61

Paper organization. We will start by recalling the setting of idealized multilin-
ear maps and attribute-based encryption in Section 2. We provide a definition
of our correlation-relaxed TOR in the next section 3, followed by a black-box
construction of ABE from CR-TOR in Section 4. We conclude by presenting a
construction of our CR-TOR in Section 5. Due to space constraints, the construc-
tion of the original TOR (with strong correlation-psuedorandomness property)
is given in appendix A. Finally, in Appendix B we describe how to translate our
construction in the framework of graded encoding schemes of GGH.

2 Preliminaries

In this section we recall the setting of multilinear maps, hardness assumptions,
and definitions for circuit ABE. We follow the conventions established in [15,13].

2.1 Multilinear Maps

We first recall the setting of ideal multilinear maps. Following [13], we assume
the existence of a group generator G, which takes as input a security parameter
λ and a positive integer d to indicate the number of allowed pairing operations.
G(1λ, d) outputs a sequence of groups G = (G1, . . . ,Gd) each of large prime
order p > 2λ. Let gi be a canonical generator of Gi publicly known from group’s
description, and let g = g1.

We assume the existence of a set of efficiently computable bilinear maps {ei,j :
Gi×Gj → Gi+j |i, j ≥ 1; i+ j ≤ d}. The map ei,j satisfies the following relation:

ei,j(g
a
i , g

b
j) = gabi+j : ∀a, b ∈ Zp.

A consequence of this is that ei,j(gi, gj) = gi+j . When the context is obvious,
we will sometimes abuse notation and drop the subscripts i, j. For example, we
may simply write:

e(gai , g
b
j) = gabi+j .

Assumption 1. (d-Multilinear Decisional Diffie-Hellman (d-MDDH) assump-
tion) Suppose that a challenger runs G(1λ, d) and generates groups (G1, . . . ,Gd)
of prime order p with generators (g1, . . . , gd). Then, the d-MDDH assumption
states that the advantage AdvA(λ) of every polynomial time adversary A, defined
below, is at most negligible in λ:

|Pr[A(g, gs, gc1 , . . . , gcd , gsc1...cdd) = 1]− Pr[A(g, gs, gc1, . . . , gcd , gud) = 1]|

where s, c1, . . . , ck and u are uniformly distributed in Zp.

This is a natural generalization of the DDH assumption in the multilinear set-
ting. Intuitively, this assumption is plausible because there are d + 1 element
multiplications in the exponent, which cannot be computed using a d-linear
map.

We will describe our constructions in this ideal setting first. However, later
we will show how to adapt them to the noisy settings of GGH and CLT [12,11].

62 O. Pandey, K. Ramchen, and B. Waters

2.2 Attribute Based Encryption

The definition of ABE provided here is for the key-policy variant of ABE, where
the secret-keys are generated for a circuit C, and the ciphertexts are encrypted
under a “set of attributes” denoted by an index ind ∈ {0, 1}l.

ABE for circuits. An ABE scheme for a class of circuits C is a tuple of algorithms
ABE = (Setup,Enc,KeyGen,Dec) where:

– Setup(1λ, l, n). The setup algorithm takes as input the security parameter λ,
the length l of the index ind, and a bound n on circuit depth; it outputs
public parameters pp and the master key msk.

– Enc(pp, ind ∈ {0, 1}l,m). The encryption algorithm takes as input the pub-
lic parameters pp, a bit string ind ∈ {0, 1}l representing the assignment
of boolean variables (a.k.a. “attributes”), and a message m. It outputs a
ciphertext ct.

– KeyGen(msk,C). The key generation algorithm takes as input the master
key msk and the description of a circuit C of maximum depth n. It outputs
a secret-key skC .

– Decrypt(skC , ct). The decryption algorithm takes as input a secret key skC
and ciphertext ct. The algorithm attempts to decrypt and outputs a message
m if successful; otherwise it outputs a special symbol ⊥.

Correctness. It is required that for all pp and msk produced by algorithm
Setup, for all ind ∈ 0, 1l, all messages m, for all appropriate circuits C such
that C(ind) = 1, if KeyGen(msk,C) → skC and Enc(pp, ind,m) → ct then:
Dec(skC , ct) = m.

Selective security game for ABE. The selective-security game [16,13,5] for ABE
proceeds in following stages between an adversary A and a challenger:

– Init The adversary declares an index ind∗

– Setup The challenger runs the Setup algorithm and gives the public-
parameters to the adversary.

– Phase 1 The adversary adaptively makes secret-key queries for several cir-
cuit Cj such that Cj(ind

∗) = 0 for every j. The challenger answers each
query by running the KeyGen algorithm using the master secret-key.

– Challenge The adversary submits two challenge messages m0 and m1 of
equal length. The challenger flips a bit b and sends an encryption of mb

under the index ind∗ to the adversary.
– Phase 2 Phase 1 is repeated.
– Guess The adversary outputs a guess b′.

The advantage of the adversary A in the selective-security game is defined as∣∣Pr [b′ = b]− 1
2

∣∣. We say that an ABE scheme is selectively-secure if the ad-
vantage of every polynomial time adversary A in the above game is at most
negligible.

Relaxed Two-to-One Recoding Schemes 63

3 Correlation-Relaxed Two-to-One Recoding Schemes

In this section we will define our relaxation of the original TOR scheme of [15].
Let us first recall some salient features of the scheme. A TOR scheme defines a
probabilistic algorithm Encode(·, ·) whose first input is a public key, and whose
second input is a tag, from some tag set S. Additionally there is a “two-to-one”
recoding algorithm with the following property: for any tuple of public keys
(pk0, pk1, pktgt) and any s ∈ S, there exists a recoding key rk such that the
recoding algorithm performs the following transformation

(Encode(pk0, s),Encode(pk1, s))
rk→ Encode(pktgt, s)

There is an algorithm to generate the recoding key using either sk0 or sk1, such
that the key has the same distribution in either case. Additionally there is an
algorithm to simulate a fake recoding key/public key pair for any input keys pk0
and pk1. The fake pair (rk, pktgt) should be indistinguishable from that generated
honestly by the recode key generation algorithm for a random pktgt. Finally
“correlated pseudorandomness” states that given polynomially many encodings
of tag s under distinct public keys, an encoding under a fresh public key is
indistinguishable from random.

Our relaxation. We now describe the core features of our relaxation. Firstly we
remove the requirement for “correlated pseudorandomness”, paving the way for
construction of secure ABE from new assumptions. In doing so we introduce a
message encryption function whose random input is precisely the tag s, i.e. the
function is deterministic once s is picked. Additionally our scheme also generates
encodings deterministically.

Looking ahead to our ABE scheme in the next section, we will see that the
encryption function only uses randomness when sampling a tag. Therefore ABE
from correlation relaxed TOR can use a reduced entropy pool, which is useful
when encryption is performed on embedded systems. However one consequence
is that our key generation algorithm must generate “levelled” public keys. Intu-
itively the reason is that in the original TOR scheme, encodings under distinct
public keys are unnrelated, whereas in the relaxed scheme encodings at given
level are all re-randomized versions of a specific encoding.

Finally, we capture security of correlation relaxed TOR by an indistinguisha-
bility experiment; indistinguishability of encoding derived ciphertexts (IND-EDC).
The game specifies that the encrypted messages are indistinguishable given poly-
nomially many encodings of the tag.

The definition. A correlation-relaxed two-to-one recoding (CR-TOR) scheme
over an input space S = Sλ is a tuple of eight polynomial time algorithms
(Params, Keygen, Encode, ReKeyGen, SimReKeyGen, Recode, Encrypt, Decrypt).
The first three algorithms define a mechanism for encoding the input as follows:

– Params(1λ, d) is a probabilistic algorithm that takes as input the security
parameter λ and an upper bound d on the number of recoding operations;
it outputs the global public parameters pp.

64 O. Pandey, K. Ramchen, and B. Waters

– Keygen(pp, i) is a probabilistic algorithm that takes as input the public pa-
rameters pp, an index i called the level index ; it outputs a public/secret key
pair (pk, sk). When i = d only, the algorithm is deterministic and outputs a
unique public/secret key pair.

– Encode(pk, s) is a deterministic algorithm that takes as input a public-key pk
and an input s ∈ Sλ to be encoded; it outputs ψ which is called an encoding
of s. Input s is sometimes referred to as the tag or the secret.

The next three algorithms provide two different mechanisms to generate recoding-
keys, and a recoding mechanism as follows:

– ReKeyGen(pp, i, pk0, pk1, sk0, pktgt) is a probabilistic algorithm that takes as
input the public parameters pp, a level index i, a key pair (pk0, sk0), another
public key pk1, and a “target” public key pktgt; it outputs a trapdoor rk
called the recoding key.

– SimReKeyGen(pp, i, pk0, pk1) is a probabilistic algorithm that takes as input
public parameters pp, a level index i, and two public-keys pk0, pk1; it outputs
a recoding-key rk together with a “target” public key pktgt.

– Recode(rk, ψ0, ψ1) is a deterministic algorithm that takes as input a recoding
key rk, and two encodings ψ0, ψ1; it outputs an encoding ψtgt.

Finally, the last two algorithms define a symmetric encryption scheme with the
following properties:

– Encrypt(pp,m; s) is a probabilistic algorithm which takes as input the public
parameters pp, a message m (from a well-defined message space M) and a
tag s ∈ S as random coins; it outputs a ciphertext τ .

– Decrypt(pp, ψout, τ) is a deterministic algorithm which takes as input the
public parameters pp, an encoding ψout, and a ciphertext τ ; it produces a
message m ∈ M.

In addition, the following requirements must be satisfied.

Correctness. At a high level, correctness states that each properly generated
recoding-key works correctly for input encodings ψ0, ψ1. Since encodings are
generated under public-keys, and public-keys are generated for a given level-
index i,1 stating this requirement is somewhat notation-heavy. In addition, we
will have the correctness requirement on the encrypt and decrypt algorithms.

Formally, the first requirement is stated as follows. For every λ, d, every
pp ← Params(1λ, d), and every pk generated for index i < d (i.e. (pk, sk) ←
Keygen(pp, i)), and every tag s ∈ S there exists a set Ψpk,s satisfying the following
condition. Suppose that (pk0, sk0) and (pk1, sk1) are generated by Keygen(pp, i)
for index i, and (pktgt, sktgt) by Keygen(pp, i+1) for the index i+1. Then, for all
ψ0 ∈ Ψpk0,s, ψ1 ∈ Ψpk1,s and rk ← ReKeyGen(pp, i, pk0, pk1, sk0, pktgt), it holds
that Recode(rk, ψ0, ψ1) ∈ Ψpktgt,s.

1 This is another minor deviation in our definition from original TOR; it can be seen
as an additional weakening. We will avoid subscripting each pk with its level index
i when clear from the context.

Relaxed Two-to-One Recoding Schemes 65

The second requirement is as follows. Let (pkout, skout) ← Keygen(pp, i = d).
Then, for all m ∈ M, s ∈ S, ψout ∈ Ψpkout,s, it holds that Decrypt(pp, ψout,
Encrypt(pp,m; s)) = m.

Key indistinguishability. Let i < d, and (pkb, skb) ← Keygen(pp, i), and (pktgt,
sktgt) ← Keygen(pp, i+ 1). Then, the following two ensembles must be statisti-
cally close:2

[Aux,ReKeyGen(pp, i, pk0, pk1, sk0, pktgt)] ≡s

[Aux,ReKeyGen(pp, i, pk0, pk1, sk1, pktgt)]

where Aux = ((pk0, sk0), (pk1, sk1), (pktgt, sktgt)).

Recoding Simulation. Let i < d. Let (pkb, skb)← Keygen(pp, i) for b = 0, 1. Then
the following two ensembles are statistically close:

[Aux, pktgt, rk : (pktgt, sktgt)← Keygen(pp, i+ 1),

rk ← ReKeyGen(pp, i, pk0, pk1, sk0, pktgt)] ≡s

[Aux, pktgt, rk : (pktgt, rk)← SimReKeyGen(pp, i, pk0, pk1)]

where Aux = ((pk0, sk0), (pk1, sk1)).

The above two properties are statistical properties and identical to the
properties of original TOR scheme. We now describe the third property called
indistinguishability of encoding derived ciphertexts or IND-EDC. This is a com-
putational property; recall that the original TOR formulation had correlated
pseudorandomness which is stronger than IND-EDC.

Indistinguishability of Encoding Derived Ciphertexts (IND-EDC). We require
that the advantage of every polynomial time adversary A in the IND-EDC game
is at most negligible where the IND-EDC game proceeds as follows and the
advantage of A is defined as

∣∣Pr [b′ = b]− 1
2

∣∣ (see below):

– The challenger sends (pp, pk1, . . . , pk�) to the adversary where: pp ←
Params(1λ, d), (pkj , skj)← Keygen(pp, 1) for j = 1, . . . , � = poly(λ)

– Adversary sends two equal length messages m0,m1.
– Challenger samples a random bit b and secret tag s ∈ S. It sends (ψ1, . . . , ψ�,
τb) where ψj ← Encode(pkj , s) for every j ∈ [�], and τb ← Encrypt(pp,mb; s).

– Adversary outputs a bit b′ and halts.

4 Circuit ABE from Correlation-Relaxed TOR

In this section we construct ABE for circuits from correlation-relaxed TOR. The
construction is very similar to the GVW construction of ABE from TOR [15]

2 Computational indistinguishability may also be sufficient.

66 O. Pandey, K. Ramchen, and B. Waters

except that in proving security, instead of using correlation pseudorandomness,
we will use IND-EDC property.

Circuits are described using the same convention as in [15], which as follows.
Without loss of generality, we consider the class of circuits C = {Cλ}λ∈N where
each circuit C ∈ Cλ is a layered circuit consisting of input wires, gates, internal
wires, and a single output wire. Recall that in a layered circuits gates are ar-
ranged in layers where every gate at a given layer has a pre-specified depth. The
lowest row has depth 1 and depth increases by one as we go up. A gate at depth
i receives both of its inputs from wires at depth i − 1. The circuit has l = l(λ)
input wires, numbered from 1 to l. The size of the circuit is denoted by |C|, and
all internal wires are indexed from l + 1, . . . , |C| − 1; the output wire has index
|C|. Every gate is a boolean-gate with exactly two input wires and one output
wire.

Our construction of ABE from a CR-TOR scheme follows.

The construction. Suppose that the algorithms of the given CR-TOR scheme are:
(Params, Keygen, Encode, ReKeyGen, SimReKeyGen, Recode, Encrypt, Decrypt).
The algorithms of our ABE scheme ABE = (Setup,Enc,KeyGen,Dec) are as
follows.

– Setup(1λ, l, d): The setup algorithm for ABE first runs the parameter gen-
eration algorithm of CR-TOR to obtain global public-parameters: pp ←
Params(1λ, d). Then, for each input wire i ∈ [l], it generates two fresh public
and secret key pairs, and an additional pair for the output wire:

(pki,b, ski,b)← Keygen(pp, 1) for i ∈ [l], b ∈ {0, 1}
(pkout, skout)← Keygen(pp, d)

It outputs the master public-key and master secret-key pair (mpk,msk) as
follows (note that secret-key skout is not used):

mpk := pp, pkout, {pki,b}i∈[l],b∈{0,1} ,msk := {ski,b}i∈[l],b∈{0,1} .

– Enc(mpk, ind,m) : Let ind = (ind1, . . . , indl) =∈ {0, 1}l. The algorithm

chooses a uniform s
$← S, encodes it under the public-keys specified by the

bits of ind, and finally encrypts m under pp and s. That is,

ψi ← Encode(pki,indi , s), ∀i ∈ [l], and τ ← Encrypt(pp,m; s),

The algorithm outputs ctind = (ind, ψ1, . . . , ψl, τ) as the ciphertext.
– KeyGen(msk,C): The algorithm proceeds in two steps:

1. For every non-input wire w ∈ {l+1, . . . , |C|} of the circuit C, it generates
two public-secret key pairs denoting two possible values b ∈ {0, 1} for
this wire. However, the public-key corresponding to the circuit-output
1 is (always) set to pkout. That is, for every w ∈ {l + 1, . . . , |C|} and
every b ∈ {0, 1} such that (w, b) �= (|C|, 1), generate: (pkw,b, skw,b) ←
Keygen(pp, i), where i is the depth of wire w; then set pk|C|,1 = pkout.

Relaxed Two-to-One Recoding Schemes 67

2. For every gate g := (u, v, w) at level i—where (u, v) are two incoming
wires of g and w is its outgoing wire—compute four recoding-keys rkwb,c
for wire w as follows:

rkwb,c ← ReKeyGen(pp, i, pku,b, pkv,c, sku,b, pkw,gw(b,c))

where gw(b, c) denotes the output of g on input (b, c).
The algorithm outputs the secret key skC which is a collection of all 4(|C|−l)
recoding keys it has computed (along with the circuit C).

skC := C,
(
rkwb,c : w ∈ [l + 1, |C|], b ∈ {0, 1}, c ∈ {0, 1}

)
.

– Dec(skC , ctind) : If C(ind) = 0, algorithm outputs ⊥. Otherwise, C(ind) = 1
defines a computation of the circuit where each wire carries a well defined
value in {0, 1}. In particular, an input wire w ∈ {1, . . . , l} carries the bit
indw, and every other wire w ∈ {l + 1, . . . , |C|} carries a bit as follows.
Suppose w is the outgoing wire of (uniquely defined) gate g := (u, v, w), and
wires u and v carry values b∗ and c∗ respectively; then w carries the value
d∗ = gw(b

∗, c∗). For every wire, the decryption algorithm computes:

ψw,d∗ ← Recode
(
rkwb∗,c∗ , ψu,b∗ , ψv,c∗

)
using appropriate values from the ciphertext ctind and the key skC . Note
that since C(ind) = 1, the algorithm must have also computed an encoding
ψout ∈ Ψpkout,s corresponding to the output wire. The decrypted message is:
m← Decrypt(pp, ψout, τ).

Theorem 1. Scheme ABE described above is a selectively-secure ABE scheme
for all polynomial size circuits as per the definition in section 2.

Proof. To prove the theorem, we show that if there exists a PPT adversary A
breaking the selective security of ABE with noticeable advantage, then there
exists a PPT B winning the IND-EDC game with noticeable advantage (against
the underlying CR-TOR scheme). The construction of B, called the simulator,
proceeds as follows.

Simulator B. The simulator participates in the IND-EDC game with an outside
challenger. At the same time, internally, it plays the selective-security game with
A as follows. B runs A answering its queries in various stages as follows.

Init. It receives an index ind∗ from A.

Setup. In this phase, first the simulator B asks the challenger of IND-EDC
game to send (pp, pk1, . . . , pkl, pkout). Then, it prepares the parameters for A as
follows. It defines pki,ind∗i = pki, and generates the remaining keys as: (pki,1−ind∗

i
,

ski,1−ind∗
i
)← Keygen(pp, 1). It sends mpk to A where:

mpk := pp, pkout, {pki,b}i∈[l],b∈{0,1} .

68 O. Pandey, K. Ramchen, and B. Waters

Note that the mpk is well defined and distributed identically to the output of
the actual setup algorithm of ABE.

Phase 1. In this phase A submits polynomially many secret-key queries for
various circuits. Let C be one such query, then by definition of the game,
C(ind∗) = 0. The computation C(ind∗) defines a unique value carried by each
wire of C. B generates the simulated-key for C as follows.

– For each wire w ∈ [l+1, |C|−1] generate (pkw,1−b∗ , skw,1−b∗)← Keygen(pp, i),
where i is the depth of w and b∗ is the bit it carries in computation C(ind∗).
Define pk|C|,1 = pkout.

– For every gate g = (u, v, w) do the following (here i is the depth of g, and
b∗, c∗ are the bits carried by its incoming wires u, v in computation C(ind∗)):
1. pkw,g(b∗,c∗), rk

w
b∗,c∗ ← SimReKeyGen(pp, i, pku,b∗ , pkv,c∗). Note that at

this point, two public-keys for each wire in C have been fixed includ-
ing the output wire.3 This step also fixes one recode-key for each wire
corresponding to the computation C(ind∗). The remaining 3 recode-keys
for each wire are sampled in the next step.

2. For (b, c) ∈ {0, 1}2\(b∗, c∗), sample:

rkwb,c ← ReKeyGen(pp, i, sk∗, pku,b, pkv,c, pkw,g(b,c)),

where sk∗ is any one of the two secret-keys sku,b or skv,c; note that at
least one of them is always known.

– Output skC =:
(
rkwb,c : w ∈ [l+ 1, |C|], b ∈ {0, 1}, c ∈ {0, 1}

)
.

Observe that this indeed fixes all recode keys as desired, and that the distri-
bution of skC is statistically close to the output of KeyGen of ABE due to the
statistical properties of recoding simulation and key indistinguishability.

Challenge. When A sends (m0,m1), the simulator forwards them to the out-
side challenger, and recieves (ψ1, . . . , ψl, τb) where ψi = Encode(pki, s) : i ∈ [l]
and τb = Encrypt(pp,mb; s) for a random bit b. The simulator forwards this
response to A.
Phase 2. B answers the queries of A as in phase 1.

Guess. A outputs a guess bit b′. The simulator also outputs b′ and halts.

By construction (ψ1, . . . , ψl, τb) is a correctly distributed ABE encryption of
mb. Therefore B wins the IND-EDC game if A wins the selective security game.

5 Correlation-Relaxed TOR from Multilinear Maps

In this section we provide an instantiation of our CR-TOR scheme. For conve-
nience we first describe our construction using idealized multilinear maps under

3 While pk|C|,0 is obtained in this step, the key pk|C|,1 = pkout, always (and hence
never sampled once pkout is fixed).

Relaxed Two-to-One Recoding Schemes 69

the d-MDDH assumption (see Section 2). We will then describe how to adapt
this construction to the noisy multilinear maps of GGH in appendix B.

5.1 Overview

At a high level our construction works as follows. Let G = (G1, . . . ,Gd) be a
tuple of groups equipped with a multilinear map e (Section 2). Let h1, . . . , hd be
random elements in G1, which will be public parameters. A public key at level

i < d is formed by powering hi to a random exponent z
$← Zq. The corresponding

public key/secret key pair is (hzi , z). The unique public key at level i = d is simply
hd and we take the corresponding secret key4 to be z = 1. Let y1 = h1 and define
recursively yi+1 = e(yi, hi+1) for i < d. Note that yi is an element in Gi for all
i ≥ 1.

Encoding and Recoding. We take S = Zq to be the set of tags. Let pk = hzi be
a level i public key. Then the set of encodings of a tag s under pk is simply the
singleton set Ψpk,s = {yzsi }. Generating a recode key for a pair of public keys
(hz0i , h

z1
i) to a target public key h

ztgt
i+1 consists of constructing a pair of elements

(ρ0, ρ1) such that ρz00 · ρz11 = h
ztgt
i+1. Given encodings ψ0 = yz0si , ψ1 = yz1si , one

recodes by computing e(ψ0, ρ0) · e(ψ1, ρ1) = ψtgt; this calculation is detailed
below.

The encoding produced under the output public key is indistinguishable from
random if d-MDDH assumption holds. Therefore, we can use it encrypt/blind a
message. These are the core ideas, the full scheme follows.

5.2 Construction

– Params(1λ, d): Output a description of a tuple of groups G = (G1, . . . ,Gd)
together with a multilinear map e(Gi,G1) → Gi+1 for i < d. Each group
has prime order q. Let g = g1 be a canonical generator of G1. Choose

h1, . . . , hd
$← G1. Let y1 = h1 and define yi+1 = e(yi, hi+1) for i < d.

– Keygen(pp, i): If i < d choose z
$← Zq, let pk = hzi and let sk = z. If i = d,

let pk = hd and let sk = 1. Output the pair (pk, sk).
– Encode(pk, s): Let pk = hz1 be a level one public key. Compute ψ = (hz1)

s =
hzs1 .

– ReKeyGen(pp, i, sk0, pk0, pk1, pktgt): Let pk0 = hz0i , pk1 = hz1i , sk0 = z0.
Compute rk = (ρ0, ρ1) as follows:

1. Choose r1
$← Zq and let ρ1 = hr1i .

2. Compute ρ0 = (pktgt/(pk1)
r1)z

−1
0 .

Note that the above samples (ρ0, ρ1) according to the relation ρ
z0
0 ·ρz11 = h

ztgt
i+1,

but does so knowing only secret key z0.

4 Recall from the definition of correlation relaxed TOR that the secret key at level
i = d plays no role in the actual computation.

70 O. Pandey, K. Ramchen, and B. Waters

– Recode(rktgt0,1 , ψ0, ψ1) = e(ψ0, ρ0) · e(ψ1, ρ1) = e(yz0si , ρ0) · e(yz1si , ρ1)

= e(ysi , ρ
z0
0) · e(ysi , ρz10) = e(ysi , ρ

z0
0 · ρz11)

= e(ysi , pktgt) = e(ysi , h
ztgt
i+1)

= e(yi, hi+1)
ztgts = y

ztgts
i+1 = ψtgt

i+1.
– SimReKeyGen(pp, i, pk0, pk1): Let pk0 = hz0i , pk1 = hz1i .

1. Choose r0, r1
$← Zq, set ρ0 = hr0i and ρ1 = hr1i . Output recode key

rk = (ρ0, ρ1).
2. Let pktgt = (pk0)

r0 · (pk1)r1 . Output pktgt.
– Encrypt(pp,m; s): We have pp = (h1, . . . , hd). Output τ = m·e(. . . e(e(h1, h2),
h3) . . . , hd)

s = m · ysd.
– Decrypt(pp, ψout, τ): Compute m = τ/ψout.

The correctness properties are easy to verify. We now show that other prop-
erties hold as well if the d-MDDH assumption holds.

Key indistinguishability. Let (pkb, skb) ← Keygen(pp, i) for b = 0, 1 and (pktgt,
sktgt) ← Keygen(pp, i + 1). Let pkb = hzbi , skb = zb and pktgt = h

ztgt
i+1. The

distributions

(ρ0, ρ1) : ρ0 = hr0i , ρ1 = (pktgt/(pk0)
r0)z

−1
1 , r0

$← Zq

(ρ0, ρ1) : ρ1 = hr1i , ρ0 = (pktgt/(pk1)
r1)z

−1
0 , r1

$← Zq

are statistically indstinguishable since both experiments sample uniformly from
the set Sz0,z1,pktgt = {(ρ0, ρ1) : ρz00 · ρz11 = pktgt}.

Recoding simulation. Let (pkb, skb) ← Keygen(pp, i) for b = 0, 1. Let pkb =
hzbi , skb = zb. The distributions:

pktgt, (ρ0, ρ1) : pktgt = h
ztgt
i+1, ρ0 = hr0i , ρ1 = (pktgt/(pk0)

r0)z
−1
1 , ztgt, r0, r1

$← Zq

pktgt, (ρ0, ρ1) : pktgt = (pk0)
r0 · (pk1)r1 , ρ0 = hr0i , ρ1 = hr1i , r0, r1

$← Zq

are statistically indistinguishable since in both experiments pktgt is uniform over
G1 and (ρ0, ρ1) sampled uniformly from the set Sz0,z1,ytgt defined above.

Indistinguishability of Encoding Derived Ciphertexts. We prove the following
claim.

Claim 1. The above scheme is IND-EDC if the d-Multilinear Decisional Diffie-
Hellman assumption holds.

Proof. Suppose there exists an IND-EDC adversary A against the above scheme
with advantage ε. Then there exists an adversary B which breaks the d-MDDH
problem with the same advantage. B is passed an instance (gs, gc1 , . . . , gcd , T)
and runs as follows:

Relaxed Two-to-One Recoding Schemes 71

1. Generates x1, . . . xl
$← Zq. Lets pp = (gc1 , . . . , gcd). Lets pkj = gxj for j ∈ [l].

Lets ψj = (gs)xj for j ∈ [l]
2. Sends (pp, pk1, . . . , pkl) to A.
3. Receives (m0,m1) from A.

4. Chooses b
$← 0, 1 and sends (ψ1, . . . , ψl, τb = mb · T) to A.

5. Receives guess b′ from A.
6. Outputs 1 if b′ = b.

Let ET be the event that T is a multilinear Diffie-Hellman element, while EF

be the event that T is a random element of Gd. Note that xj
$← Zq has the

same distribution as c1 · zj : zj
$← Zq, thus pkj are simulated correctly. If ET

occurs, then τb is exactly equivalent to the output of Encrypt(pp,mb; s), thus
b′ = b holds exactly when A wins the IND-EDC game. But if EF occurs, then
τb is statistically independent of b, thus b′ = b with probability 1/2. So B has
advantage |Pr[b′ = b|ET]− Pr[b′ = b|EF]| = 1/2 + ε− 1/2 = ε.

Corollary 1. Assume the existence of multilinear maps and the validity of d-
MDDH assumption. Then, there exists a selectively-secure ABE scheme for all
polynomial-size circuits of depth at most d− 1.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional en-
cryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer,
Heidelberg (2012)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for in-
ner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

6. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive 2002, 80 (2002)

7. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013)

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

9. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

72 O. Pandey, K. Ramchen, and B. Waters

10. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: ACM Conference on Computer and Communica-
tions Security, pp. 121–130 (2009)

11. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

12. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

13. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Proceedings of the 45th Annual ACM Symposium on Symposium on
Theory of Computing, STOC 2013, pp. 545–554. ACM, New York (2013)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM,
New York (2006)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

19. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

20. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

21. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

22. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC, pp. 84–93 (2005)

24. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)

25. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM Conference on Computer and Communications Security, pp. 463–
472 (2010)

26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

Relaxed Two-to-One Recoding Schemes 73

27. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

28. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidel-
berg (2012)

29. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

A Construction of TOR

In this section we construct a TOR recoding [15] which is secure under the matrix
d-linear assumption [21]. The construction is described in the ideal multilinear
setting. By following the description in the next section, this construction is
easily adapted to the setting of noisy multilinear maps of both GGH and CLT.

An important remark is that the matrix d-linear assumption cannot hold in
the GGH framework [12]. Nevertheless, it remains plausible in the framework
of CLT [11]. Therefore, the resulting instantiation of TOR scheme only makes
sense in the CLT framework.

Notation. For matrices M = (mij) ∈ Za×b
q , N = (nij) ∈ Zb×c

q define gM ⊗N =

(
∏n

k=1(g
mik)nkj)ij = (

∏n
k=1 g

miknkj)ij = gMN andM⊗gN = (
∏n

k=1(g
nkj)mik) =

(
∏n

k=1 g
miknkj)ij = gMN .

Assumption 2 (Matrix d-linear assumption [21]). For any integers a and

b, and for any d ≤ i < j ≤ min(a, b) the ensembles (g, gR) : R
$← Rki(Z

a×b
q) and

(g, gR) : R
$← Rkj(Z

a×b
q) are computationally indistinguishable.

A.1 TOR from Matrix Decision Linear Assumption

We now describe our construction. Recall that in the (original) TOR scheme,
instead of IND-EDC game, one requires correlated pseudorandomness property.
All other properties and algorithms remain the same as in the definition of CR-
TOR (see section 3). The algorithms of the TOR scheme are as follows.

– Params(1λ, d): Output a description of a tuple of groups G = (G1, . . . ,Gd)
together with a multilinear map e(Gi,G1)→ Gi+1 for i < d. Each group has
prime order q. Let gi be a canonical generator of Gi and let g = g1.

– Keygen(pp): Sample A
$← Zd×d

q . Set pk = gA.

– Encode(pk, s) = pk ⊗ s = (gA)s = gAs.
– ReKeyGen(pk0, pk1, skb, pktgt): Let pk0 = gA0 , pk1 = gA1 , pktgt = gAtgt , so
skb = Ab. Compute rk = (ρ0, ρ1) = (gR0 , gR1) as follows:

1. Sample R1−b
$← Zd×d

q and let ρ1−b = gR1−b .

2. Compute ρb = (gAtgt/(ρ1−b ⊗A1−b))⊗A−1
b .

74 O. Pandey, K. Ramchen, and B. Waters

– Recode(rktgt0,1 , ψ0, ψ1) = e(ρ0, g
A0s
i) × e(ρ1, g

A1s
i) = gR0A0s

i+1 × gR1A1s
i+1 =

g
(R0A0+R1A1)s
i+1 = gRts

i+1 = ψtgt.

– SimReKeyGen(pk0, pk1): Let pk0 = gA0 and pk1 = gA1

1. Sample R0, R1
$← Zd×d

q , set ρ0 = gR0 , ρ1 = gR1 output rk = (ρ0, ρ1).

2. Let pk = R0 ⊗ gA0 ×R1 ⊗ gA1 = g(R0A0+R1A1).

The correctness properties of our scheme are easy to verify. We show that it
satisfies all other properties of TOR as well.

Key indistinguishability. We require that for all (pk0 = gA0 , pk1 = gA1 , pktgt =
gAt) the following distributions are indistinguishable:

– Choose R0
$← Gd×d

1 , compute ρ0 = gR0 and compute ρ1 = (gAt/(R0 ⊗
gA0))⊗A−1

1 . Output (ρ0, ρ1).

– Choose R1
$← Gd×d

1 , compute ρ1 = gR1 and compute ρ0 = (gAt/(R1 ⊗
gA1))⊗A−1

0 . Output (ρ0, ρ1).

However this follows from the fact that f : Zd×d
q → Zd×d

q satisfying f(X) =

(gAt/(X ⊗ gA0))⊗A−1
1 is injective.

Recoding simulation. This follows from the fact that (pktgt = R0 ⊗ gA0 × R1 ⊗
gA1 , gR0 , gR1) : A0

$← Zd×d
q , A1

$← Zd×d
q , R0

$← Zd×d
q , R1

$← Zd×d
q is statistically

close to (gAtgt , gR0 , gR1) : Atgt
$← Zd×d

q , R0
$← Zd×d

q , R1
$← Zd×d

q .

Correlated pseudorandomness. We defer the proof of this lemma to the full
version.

Lemma 1. The TOR construction achieves correlated pseudorandomness (Sec-
tion 4.1 [15]) if the matrix d-linear assumption [21] holds.

One-time semantic security. Let M = Gd
d, define

E(ψ,μ) = ψ � μ

where � denotes the component-wise product. One-time semantic security fol-
lows from the fact that ψ is computationally indistinguishable from a vector of
random group elements.

B Mapping Our Constructions to Graded Encoding
Systems

In this section we describe how to translate our constructions using multilinear
maps to the graded encoding system of Garg et al. [12]. For simplicity we fo-
cus on mapping our construction of CR-TOR from generic multilinear maps in
Section 5.

Relaxed Two-to-One Recoding Schemes 75

B.1 Graded Encoding Systems

In the framework of Garg et al. [12] an element gαi in a mutlinear group family
is an encoding of α at level i. The encoding permits the following operations:
equality testing, addition and a bounded number of multiplications. At a high

level a d-graded encoding system is a ring R and system of sets S = S
(α)
i ⊂

{0, 1}∗ : α ∈ R, 0 ≤ i ≤ d such that for every i, the sets {S(α)
i : α ∈ R} are

disjoint and form a partition of Si = ∪αS
(α)
i .

The GGH system is equipped with the following additional procedures for
manipulating encodings: InstGen, samp, enc, +, ×, reRand, isZero, ext. We defer
definitions of these to the full version.

Graded Multilinear Decisonal Diffie Hellman Assumption. We will re-
quire the following analogue of the d-Multilinear Decision Diffie Hellman as-
sumption for d-graded encoding systems.

Assumption 3. (d-Graded Multilinear Decisional Diffie-Hellman (d-GMDDH)
assumption) Suppose that a challenger runs InstGen(1λ, 1d) generating (params,
pzt). Let s, c1, . . . cd ← samp(params). Define s̃ = cenc1(params, 1, s), c̃1 =
cenc1(params, 1, c1), . . . , c̃d = cenc1(params, 1, cd). Then, the d-GMDDH as-
sumption states that the advantage AdvA(λ) of every polynomial time adversary
A, defined below, is at most negligible in λ:

|Pr[A(s̃, c̃1, . . . , c̃d, v) = 1]− Pr[A(s̃, c̃1, . . . , c̃d, w) = 1]|

where v = cenc1(params, d, s · c1 . . . cd) and w = cenc1(params, d, samp(params)).

B.2 Our Correlation-Relaxed TOR Using Graded Encodings

The canonicalizing algorithm cencl(params, i,u) defined in Remark 2 [12] takes
an encoding u and produces another encoding u′ which is equivalent to l re-
randomizations of u. For our purposes l will always be a small constant. For
convenience we suppress the params argument when making repeated calls to
samp and cencl.

– Params(1λ, d): Run InstGen(1λ, 1d) to generate (params,pzt) where params
is a description of a d-Graded Encoding System S = (S1, . . . , Sd). Let
c1, . . . , cd ← samp(). Let h1 = cenc1(1, c1), . . . , hd = cenc1(1, cd). Define

yi =
∏i

i=1 hi ∈ Si for i = 1 . . . d.
– Keygen(pp, i): If i < d sample z ← samp(), let pk = cenc2(1, hi · z) and let
sk = z. If i = d, let pk = hd and sk = 1. Output the pair (pk, sk).

– Encode(pk, s): Let pk = cenc2(1, h1 · z) be a level one public key. Compute
ψ = cenc3(1, pk · s).

– ReKeyGen(pp, i, sk0, pk0, pk1, pktgt): Let pk0 = cenc2(1, hi·z0), pk1 = cenc2(1,
hi · z1), sk0 = z0. Compute rk = (ρ0, ρ1) as follows:
1. Sample r1 ← samp() and let ρ1 = cenc3(1, hi · r1).

76 O. Pandey, K. Ramchen, and B. Waters

2. Compute ρ0 = cenc3(1, (pktgt − pk1 · r1) · z−1
0) where z−1

0 is computed
over Rq.

Note that the above samples (ρ0, ρ1) according to the relation ρ0 ·z0+ρ1 ·z1 =
hi+1 · ztgt, but does so knowing only secret key z0.

– Recode(rktgt0,1 , ψ0, ψ1) = ψ0 · ρ0 + ψ1 · ρ1=(yi · (z0 · s)) · ρ0 + (yi · (z1 · s)) · ρ1
= (yi · s) · ρ0 · z0 + (yi · s) · ρ0 · z1 = (yi · s) · (ρ0 · z0 + ρ1 · z1)
= (yi · s) · pktgt = (yi · s) · (hi+1 · ztgt)
= (yi · hi+1) · (ztgt · s) = yi+1 · (ztgt · s) = ψtgt

i+1.
– SimReKeyGen(pp, i, pk0, pk1): Let pk0 = cenc2(1, hi · z0), pk1 = cenc2(1, hi ·
z1).
1. Sample r0, r1 ← samp(), set ρ0 = cenc3(1, hi·r0) and ρ1 = cenc3(1, hi·r1).

Output recode key rk = (ρ0, ρ1).
2. Let pktgt = cenc3(1, pk0 · r0 + pk1 · r1). Output pktgt.

– Encrypt(pp,m; s): We have pp = (h1, . . . , hd). Let P = ext(pzt, s ·
∏d

i=1 hi).
Output τ = m⊕ P .

– Decrypt(pp, ψout, τ): Compute m = τ ⊕ ext(pzt, ψout).

Once again, correctness follows easily. We prove the other properties now.

Key indistinguishability. Let (pkb, skb) ← Keygen(pp, i) for b = 0, 1 and (pktgt,
sktgt) ← Keygen(pp, i + 1). Let pkb = cenc2(1, hi · zb), skb = zb and pktgt =
cenc2(1, hi+1 · ztgt). The distributions

(ρ0, ρ1) : ρ0= cenc3(1, hi · r0), ρ1 = cenc3(1, (pktgt − pk0 · r0) · z−1
1), r0 ← samp()

(ρ0, ρ1) : ρ1= cenc3(1, hi · r1), ρ0 = cenc3(1, (pktgt − pk1 · r1) · z−1
0), r1 ← samp()

are statistically indstinguishable since both experiments sample uniformly from
the set Sz0,z1,pktgt = {(ρ0, ρ1) : ρ0 · z0 + ρ1 · z1 = pktgt}.

Recoding simulation. Let (pkb, skb) ← Keygen(pp, i) for b = 0, 1. Let pkb =
cenc2(1, hi · zb), skb = zb. The distributions:

pktgt, (ρ0, ρ1) :pktgt = cenc3(1, hi+1 · ztgt)), ρ0 = cenc3(1, hi · r0),
ρ1 = cenc3(1, (pktgt − (pk0) · r0) · z−1

1), ztgt, r0, r1 ← samp()

pktgt, (ρ0, ρ1) :pktgt = cenc3(1, (pk0) · r0 + (pk1) · r1), ρ0 = cenc3(1, hi · r0),
ρ1 = cenc3(1, hi · r1), r0, r1 ← samp()

are statistically indistinguishable since in both experiments pktgt is nearly uni-
form over S1 and (ρ0, ρ1) sampled uniformly from the set Sz0,z1,pktgt defined
above.

Indistinguishability of Encoding Derived Ciphertexts. We defer the proof of this
claim to the full version.

Claim 2. The above scheme is IND-EDC if the d-GMDDH assumption holds.

Obfuscation ⇒
(IND-CPA Security �⇒ Circular Security)

Antonio Marcedone1,� and Claudio Orlandi2

1 Cornell University, USA and Scuola Superiore di Catania,
University of Catania, Italy

a.marcedone@studium.unict.it
2 Aarhus University, Denmark

orlandi@cs.au.dk

Abstract. Circular security is an important notion for public-key en-
cryption schemes and is needed by several cryptographic protocols. In
circular security the adversary is given an extra “hint” consisting of a
cycle of encryption of secret keys i.e., (Epk1(sk2), . . . , Epkn(sk1)). A
natural question is whether every IND-CPA encryption scheme is also
circular secure. It is trivial to see that this is not the case when n = 1.
In 2010 a separation for n = 2 was shown by [ABBC10, GH10] under
standard assumptions in bilinear groups.

In this paper we finally settle the question showing that for every n
there exists an IND-CPA secure scheme which is not n-circular secure.

Our result relies on the recent progress in cryptographic obfuscation.

1 Introduction

Public-key encryption schemes allow anyone to take a plaintext and create a cor-
responding ciphertext that carries little or no information about the encrypted
plaintext, in the eyes of everyone else but the owner of the secret key.

One might think that for an encryption scheme all plaintexts are equal, but
it turns out that some plaintexts are more equal than others. In particular,
secret-keys (or functions of them) are a very special kind of plaintexts.

But why would you want to encrypt a secret key? A prime example is
fully-homomorphic encryption (FHE): At the heart of virtually every fully-
homomorphic encryption scheme there is a technique called “bootstrapping”
that requires users to publish, in their public key, an encryption of the secret
key [Gen09]. For another example think of two cryptographers, Alice and Bob,
who get married and decide they should not keep any secret from each other and
therefore decide to share their secret keys with each other. To do so Alice sends
an encryption of her secret key skA to Bob using his public key pkB, while Bob
sends an encryption of his secret key skB to Alice using her public key pkA. This
is not a far fetched example and there are applications where this is actually
done, see [CL01].

� Most of the work done while visiting Aarhus University.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 77–90, 2014.
c© Springer International Publishing Switzerland 2014

78 A. Marcedone and C. Orlandi

Suppose now that the evil eavesdropper Eve gets to see these encryptions
of secret keys: is the encryption scheme still secure, or can Eve use this extra
information to break its security?

Circular Security. In the FHE example, a secret key was encrypted under its
own public key and we call this a 1-cycle i.e., Eve learns Epk(sk). When Alice
and Bob both encrypt their secret keys under the other party’s public key, we get
a 2-cycle i.e., Eve learns EpkA(skB) and EpkB (skA). In general, we are interested
in what happens when Eve learns the encryptions of n secret keys (sk1, . . . , skn)
under public keys (pk2, . . . , pkn, pk1) respectively. If an encryption scheme is
still secure when the adversary is given such a cycle of encryptions of secret
keys, we say that the scheme is n-circular secure1. This notion was first defined
in [CL01, BRS02]. Since then it has been an open problem to understand the
relationship between the standard definition of security for public key encryption
schemes (namely indistinguishability under chosen-plaintext-attack or IND-CPA
for short) and n-circular security.

IND-CPA Security �⇒ 1-Circular Security. It is quite easy to show that
IND-CPA security does not imply 1-circular security. Take any IND-CPA secure
scheme (G,E,D) and construct (G,E′, D) as follows: on input m, the modified

encryption scheme E′
pk(·) first checks if m

?
= sk.2 If so, E′ outputs m, else it

outputs Epk(m). The modified scheme is still IND-CPA secure (as it behaves
exactly like E for all m �= sk), but since E′

pk(sk) = sk it is clear that it would
be a very bad idea to let Eve learn this value.

Pairing Assumptions ⇒ (IND-CPA Security �⇒ 2-Circular Security).
Surprisingly, it was quite harder to show that there are IND-CPA schemes that
are not 2-circular secure. The reason for this is that the secret keys are gen-
erated independently and therefore the encryption algorithm does not have a
way of distinguishing a secret key from a message (in fact, every message could
be a secret key). This problem had been open for about a decade until it was
finally solved in 2010 by [ABBC10,GH10]. Both these results hold under the as-
sumption that some problems are hard in bilinear groups. The counterexample
is obtained by embedding some extra elements in the ciphertexts. These extra
values do not help the adversary to break the IND-CPA game but, when com-
bined together using a bilinear map, allow to effectively decrypt one of the two
“circular” ciphertexts and recover a secret key.
1 There are different ways of defining circular security. The interested reader can
check [CGH12] and reference therein for a discussion on the definitions. In this
paper we will show a scheme where the adversary (given a cycle of encryption of
secret keys) can recover all the secret keys, thus breaking even the weakest notions
of circular security. Therefore the actual definition used is irrelevant for us.

2 Note that it is always possible to check if m = sk by, for example, encrypting a bunch
of random messages using Epk(·) and decrypting them using m i.e., the encryption
algorithm checks if Dm(Epk(r)) = r for enough random values r. If the results are
all correct, one can assume whp that m = sk.

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security) 79

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security). In this pa-
per, we show that IND-CPA security does not imply n-circular security for any
n. More precisely, for every n, we can construct a scheme that is not n′-circular
secure for every n′ < n. We can show our result assuming that software obfus-
cation is possible, as defined by [BGI+01,BGI+12].

(False ⇒ True)? One might now object that our theorem is trivial: the same
paper that defined obfuscation also proved that this notion is impossible to
achieve! However [BGI+01, BGI+12] “only” proved that there exist no single
obfuscator that can obfuscate every circuit under the strongest possible notion
of obfuscation – namely “virtual black box” (VBB) obfuscation – and during
the last decade obfuscators for limited class of circuits have been shown, such
as [CD08,Wee05,CRV10,HRSV11].

In a surprising turn of event – and thanks to the recent breakthrough on a
candidate for multilinear maps [GGH13a] – the first candidate cryptographic
obfuscation was presented in [GGH+13b]. The obfuscation of [GGH+13b] does
not contradict the impossibility result of [BGI+01, BGI+12], as it achieves a
weaker notion called indistinguishability obfuscation (iO). Yet, this arguably
very weak notion of obfuscation allows for a long list of unexpected applica-
tions [SW14,HSW14,GGHR14,BZ14,KNY14], and one could say that the result
in [GGH+13b] is “an impractical obfuscation for all practical purposes”3.

Following this result, even a candidate VBB obfuscator has been proposed
in [BR14]. This result overcomes the impossibility result of [BGI+01,BGI+12],
by proving the security of the scheme in the generic graded encoding scheme
model : this can be thought as the analogue of the generic group model for discrete
logarithm, extended to the case of multilinear maps.

In Section 2 we show how to separate IND-CPA and circular security using
VBB obfuscation, as this powerful tool allows for very simple and intuitive con-
structions. Then, in Section 3 we show the same result using the weaker (and
therefore more realistic) assumption that an iO obfuscator exists.

Relation to [KRW13]. In October 2013 Koppula, Ramchen and Wa-
ters [KRW13] posted on ePrint a similar result with a proof of security under
indistinguishability obfuscation. On the same day, we posted a draft of our result
which only showed a counterexample under the assumption of VBB obfuscation
(Section 2). Subsequently, in February 2014 we updated our draft with Sec-
tion 3, which is a simple application of the punctured programming technique
from [SW14] to our construction of Section 2. Thus that addition achieves a
counterexample based only on indistinguishability obfuscation. While recogniz-
ing that [KRW13] were first in showing the separation using iO only, we believe
that our counterexample has some advantages.

Circular Security of Bit-Encryption. In the previous discussion on circular
security, we made the implicit conjecture that the secret keys are element of

3 Cit. Yuval Ishai.

80 A. Marcedone and C. Orlandi

the plain-text space (or how could it be possible to encrypt them?). It has been
conjectured that every IND-CPA bit-encryption scheme (that is, an encryption
scheme that can only encrypt messages in {0, 1}) is also circular secure. Roth-
blum [Rot13] shows an IND-CPA bit encryption scheme which is not 1-circular
secure assuming the existence of multilinear maps in which the SXDH assump-
tion holds. Koppula, Ramchen and Waters [KRW13] give a different separation,
based on the existence of iO obfuscation.

The Good News. While our work provides strong evidence for the fact that
not all IND-CPA secure public key encryption schemes achieve circular security,
there are a number of encryption schemes that can be proven secure even under
these attacks. We refer the interested reader to [BHHO08,CGH12,Hof13,BGK11,
BG10] and references therein.

1.1 Technical Overview

The simplest way of constructing a public-key encryption scheme in a world
where obfuscation exists is probably the following: a secret key is just a random
string s and a public key is a circuit P that outputs 1 on input s and ⊥ otherwise.

We write s
P→ 1 for compactness. We can think of a plaintext m as a circuit

1 → m. Now to encrypt m under public key P one can construct a ciphertext

C with the functionality s
C→ m by composing the two circuits s

P→ 1 → m.
Correctness is trivial to check and security follows from the fact that the circuits
are obfuscated and can therefore only be used as “black-boxes”.

To break the circular security of the scheme, we add another circuit to the
ciphertexts that “recognizes” circular encryptions without otherwise affecting
the security of our scheme. Using the public key P we define a new circuit Q
which takes as input a string y and a program B: Q evaluates B(y) and checks
if the result is equal to s using P and, if so, outputs s. In other words, Q only
outputs s to someone that already knows it.

When creating a ciphertext we append a circuit R to the ciphertext, where R
is an obfuscation of Q with the first input fixed to m. Following the definition of
Q, the circuit R provides the following functionality: On input a ciphertext C,
the circuit R tries to decrypt C with m and, if the output is s, releases the secret
key s. So, if Q1 is the circuit made from public key P1 and then its first input
is fixed to s2, the ciphertext will now contain a circuit R1,2 that can recognize
encryptions of s1 under the key s2. So, our new scheme is not 2-circular secure!

The next observation is that any two circuits x
A→ y and y

B→ z can be

composed into a circuit x
C→ z. In particular, from a set of n encryptions si

Ci→
s(i+1 mod n) for i = 1, . . . , n one can compute n circuits

s(i+1 mod n)
C∗

i→ si

Clearly the size of these circuits grows with n, but this is not a problem as long
as we set the input size of Q to be big enough.

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security) 81

This concludes the intuitive description of our “attack”. To see that the
scheme is IND-CPA secure, consider an intermediate game where we replace
the real public key P with a circuit that always outputs ⊥. If this can be done
in an indistinguishable way, then we are done: if P always outputs ⊥, then also
C,Q output ⊥ on any input, and therefore contain no information whatsoever
about m (at least in the ideal world where the simulator only has oracle access
to the circuits).

Now it is easy to see that if VBB obfuscators exist, we can replace P with
a circuit that always output ⊥ and the adversary will only distinguish if he
queries the oracles on the secret key s. However, iO obfuscation does not allow
to perform this replacement, as it only guarantees that obfuscations of circuits
computing the same functions are indistinguishable. To fix that, we replace the
public key P with a a string p = PRG(s): this still allows the other circuits C,Q

to check if their input is equal to the secret key by computing p
?
= PRG(x),

and at the same time it allows us to replace p with an indistinguishable uniform
random string (for which no secret key exists) in the hybrid game. Then, when
p is a uniform random string, C and Q always output ⊥ and we can therefore
use iO obfuscation to argue that encryptions of m0 are indistinguishable from
encryptions of m1.

1.2 Preliminaries

In this section, we state the notation and conventions used in the rest of the work.
To keep the paper self contained, we will also recall some relevant definitions and
theorems.

Notation and Conventions. We use lowercase letters s, x, y for strings in
{0, 1}n. We use uppercase lettersP,C,Q,R for “plaintext” circuits and P,C,Q,R
for obfuscated circuits. We callP the set of all polynomial-size circuits. We use the
notation P (x ∈ X) ∈ Y when we want to say that a circuit P takes input from
X ∪ {⊥} and returns a value in Y ∪ {⊥}. We write Pa→b for a circuit P that out-
puts b if x = a and ⊥ otherwise, and P∗→⊥ for the circuit that outputs ⊥ on any
input. For all circuits we define P (⊥) = ⊥.

If S is a finite set, s ← S is a uniformly random sample from S. If A is a
randomized algorithm, x ← A is the output of A on a uniformly random input
tape.

Definition 1 (Pseudorandom generator). We say that a function PRG :
{0, 1}k → {0, 1}y (with y > k) is a secure pseudorandom generator if no PPT
adversary A can distinguish between a random string c← {0, 1}y and the output
of the PRG(s) on a uniformly random point s ∈ {0, 1}k.

Definition 2 (IND-CPA). Let Π = (Gen,Enc,Dec) be a public key encryption
scheme. Let us define the following experiment (parametrized by a bit b) between
an adversary A and a challenger:

82 A. Marcedone and C. Orlandi

IND-CPAb
Π(A, k) :

1. The challenger runs (sk, pk)← Gen(1k) and gives pk to A.
2. A outputs two messages (m0,m1) of the same length.
3. The challenger computes Enc(pk,mb) and gives it to A
4. A outputs a bit b′ (if it aborts without giving any output, we just set

b′ ← 0). The challenger returns b′ as the output of the game.

We say that Π is secure against a chosen plaintext attack if for any k and any
PPT adversary A

Adv(A)
def
=

∣∣∣Pr [IND-CPA1
Π(A, k) = 1

]
− Pr

[
IND-CPA0

Π(A, k) = 1
] ∣∣∣ ≤ negl(k).

Definition 3 (Virtual Black-Box Obfuscator [BGI+01, BGI+12]). Let
C = {Cn}n∈N be a family of polynomial-size circuits, where Cn is a set of boolean
circuits operating on inputs of length n. And let O be a PPT algorithm, which
takes as input an input a length n ∈ N, a circuit C ∈ Cn, a security parameter
k ∈ N, and outputs a boolean circuit O(C) (not necessarily in C).
O is a (black-box) obfuscator for the circuit family C if it satisfies:

Preserving Functionality: For every n ∈ N, every C ∈ C and every x ∈
{0, 1}n, with all but negl(k) probability over the coins of O:(

O(C, 1n, 1k)
)
(x) = C(x)

Polynomial Slowdown: For every n, k ∈ N and C ∈ C, the circuit O(C, 1n, 1k)
is of size at most poly(|C|, n, k).

Virtual Black-Box: For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S, such that for every
n ∈ N and for every C ∈ C:∣∣∣∣ PrO,A

[
A
(
O(C, 1n, 1k)

)
= 1
]
− Pr

S

[
SC(1|C|, 1n, 1k) = 1

]∣∣∣∣ ≤ negl(k)

Definition 4 (Indistinguishability Obfuscation [BGI+01, BGI+12]).
Given a circuit class {Ck}, a (uniform) PPT machine O is called an indis-
tinguishability obfuscator (iO) for {Ck} if it satisfies:

Preserving Functionality: For every k ∈ N and C ∈ Ck,
Pr[C′(x) = C(x)|C ′ ← O(k, C)] = 1 ∀x

Indistinguishability: For any (non necessarily uniform) distinguisher D, all
security parameters k and all couples C0, C1 ∈ Ck such that C0(x) = C1(x)
for all inputs x, we have that∣∣∣Pr[D(O(k, C0) = 1]− Pr[D(O(k, C1)) = 1]

∣∣∣ ≤ negl(k)

Recently candidate obfuscators for every circuits have been presented: [BR14]
shows that VBB obfuscation is possible under appropriate assumptions in a
“generic group model” while [GGH+13b] shows that iO obfuscation is possible
under strong (but falsifiable) assumptions.

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security) 83

2 Separation from Virtual Black-Box Obfuscation

2.1 PKE from Obfuscation

We start by constructing a very simple IND-CPA public-key encryption scheme
Gen,Enc,Dec based on obfuscation, and show some of its interesting property.
In the next subsection, we will modify it in order to render it insecure under
n-circular security attacks.

Key Generation: The algorithm Gen(1k) chooses a random secret key s ←
{0, 1}k. The public key is an obfuscated circuit P ← O(P) where P is
defined as follows:
def P (x ∈ {0, 1}k) ∈ {0, 1}:
1. if (x

?
= s) output 1; else output ⊥.

Encryption: The algorithm Enc(P ,m) on input a public key P ∈ P and a
message m ∈ {0, 1}k outputs an obfuscated circuit C ← O(C) where C is
defined as follows:
def C(x ∈ {0, 1}k) ∈ {0, 1}k:
1. if (P (x)

?
= 1) output m; else output ⊥.

Decryption: The algorithm Dec(s, C) on input a secret key s ∈ {0, 1}k and a
ciphertext C ∈ P outputs m′ = C(s).

It is easy to check that if (s, P)← Gen, then:

Dec(s,Enc(P ,m)) = m

Theorem 1. If O is a VBB obfuscator for P according to Definition 3, then
the scheme (Gen,Enc,Dec) described above is IND-CPA secure according to Def-
inition 2.

To see that the scheme is IND-CPA secure, notice that thanks to the VBB
property one can replace the public key P with an obfuscated version of P∗→⊥
without the adversary noticing. Then, for every m, Enc(pk,m) = P∗→⊥, so in
the ideal world (where the simulator only has oracle access to the circuits) the
ciphertexts contain no information at all about the messages. A formal argument
follows.

Proof. We prove the theorem by an hybrid argument. Let us define the following
games:

Game 0: this is the same as IND-CPA0(A, k).
Game 1: this is the same as the previous one, but in step 1 we set the public

key pk to be an obfuscation (of proper size) of P∗→⊥.
Game 2: this is the same as the previous one, but in step 3 instead of an

encryption of m1 we give A an obfuscation of P∗→⊥.

84 A. Marcedone and C. Orlandi

Game 3: this is the same as Game 4, but in step 1 we set the public key
pk ← O(P∗→⊥).

Game 4: this is the same as IND-CPA1(A, k).

Proving that no adversary can distinguish between two consecutive games with
more than negligible probability implies the security of our scheme.
We first prove that Game 0 and Game 1 (and similarly Games 4 and 3) are
indistinguishable assuming the VBB property of O. Assume by contradiction
that there exists an adversary A such that |Game0(A, k) − Game1(A, k)| is
greater than any negligible function of k. Then we can build an adversary A′

against the VBB property ofO for the class of circuits Pk = {Ps→1|s ∈ {0, 1}k}∪
{P∗→⊥} as follows. A′ gets in input a circuit pk ← Pk, and runs A simulating
the IND-CPA game against it. Its goal is to distinguish whether pk = P∗→⊥
(and output 1) or not (and output 0); it works as follows:

A′(pk, k) :
1. Runs A giving it pk as the public key.
2. A outputs two messages (m0,m1) of the same length.
3. A′ computes Enc(pk,m0) and gives it to A
4. When A outputs a bit b′, A′ outputs 1 if b′ = 0 and 0 otherwise.

It is easy to see that, from A’s point of view, this game is exactly like Game
1 when pk = P∗→⊥, and exactly like Game 0 in the other case. Therefore (by
contradiction) A′ can distinguish between P∗→⊥ and any other circuit in Pk with
more than negligible advantage. However, no simulator (in the ideal world) can
do this given only oracle access to pk, as this would imply querying the oracle
for pk on input the only random point x such that pk(x) �= 1, which can only
happen with probability 1

2k
.

As a final step, we prove that no adversary can distinguish between Games 1
and 2 (2 and 3 respectively) with more than negligible probability. The distribu-
tion of the view of A is identical in both games up to step 3, where it receives a
direct obfuscation of P∗→⊥ in Game 2, and an encryption Enc(pk,m0) in Game
1. However, since we are using an obfuscation of P∗→⊥ as a public key in both
games, the ciphertexts given to the adversary are both functionally equivalent4

to (obfuscations of) P∗→⊥. Therefore, by the security property of the obfuscator
(as in the ideal world we are giving the same oracle to the simulator in both
cases), A cannot distinguish between the two distributions and therefore be-
tween the two games. ��

2.2 Properties of Our Scheme

The scheme (Gen,Enc,Dec) defined in the previous section has an interesting
property, namely that it is possible to combine ciphertexts together in order to

4 This means that they have the same input/output behaviour on all inputs. We also
note that by this property this part of the proof also works if we assume indistin-
guishability obfuscation instead of the VBB one.

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security) 85

achieve some flavour of proxy re-encryption: it is possible to delegate to some-
one the power to transform ciphertexts encrypted under a public key P1 into
ciphertexts encrypted under a different public key P2 without having to release
the corresponding secret key s1. To see how this is possible, think of a proxy
who is given two public keys (P1, P2) and

C1→2 = Enc(P2, s1)

(i.e., an encryption of secret key 2 using public key 1). It will be convenient now
to say that a circuit C (not necessarily an output of Enc) is an encryption of m
under key i if Dec(si, C) = m.

Then the proxy, using C1 s.t. Dec(s1, C1) = m and C1→2 s.t. Dec(s2, C1→2) =
s1, can compute an encryption of m under key P2 by creating an obfuscated
circuit C2 ← O(C2) where C2 is defined as follows:

def C2(x ∈ {0, 1}k) ∈ {0, 1}k
1. Output C1(C1→2(x));

It is now easy to check that C2(s2) = m and that, due to the property of the
VBB obfuscator O, nothing else can be computed from C2.

2-Cycle from n-Cycle: Using this property, we can go from a cycle of n
encryptions to n − 1 cycles of length 2. Namely, let Ci→(i+1) = Enc(Pi, si+1)
for all i ∈ {1, . . . , n} (where all additions are modulo n). Then one can create
circuits

C∗
(i+1)→i = C(i+1)→(i+2) ◦ . . . ◦ C(i−1)→i

Note that in this case we are not even interested in re-obfuscating the con-
catenation of the circuits (like in the proxy re-encryption application) and the
circuit C∗

(i+1)→i is a “functional ciphertext” in the sense that it is a circuit which
decrypts to si on input si+1. The only difference between C∗ and a “regular”
ciphertext is that the size of C∗ grows with n. Given an obfuscator O, it is
possible to find an upper bound βn = poly(k, n) s.t. the size of C∗

(i+1)→i is less
than βn.

2.3 A PKE That is Not n-Circular Secure

In this section, we add a new element to the ciphertexts to make the scheme
from the previous section insecure under circular attacks. Let B be the set of
circuits of size at most βn defined above, then we define the following circuit
(where P represents the public key circuit as defined below):

def Q(y ∈ {0, 1}k, B ∈ B) ∈ {0, 1}k:
1. If (P (B(y)) = 1), output B(y); else output ⊥.

Key Generation: (Unchanged from Sec. 2.1) The algorithm Gen(1k) chooses
a random secret key s ← {0, 1}k. The public key is an obfuscated circuit
P ← O(P) where P is defined as follows:

86 A. Marcedone and C. Orlandi

def P (x ∈ {0, 1}k) ∈ {0, 1}:
1. if (x

?
= s) output 1; else output ⊥.

Encryption: An encryption ofm now is a pair (C,R) where R(·)← O(Q(m, ·))
and C is an obfuscation of the circuit C defined as follows:

def C(x ∈ {0, 1}k) ∈ {0, 1}k:
1. if (P (x)

?
= 1) output m; else output ⊥.

Decryption: (Unchanged from Sec. 2.1) The algorithm Dec(s, C) on input a
secret key s ∈ {0, 1}k and a ciphertext C ∈ P outputs m′ = C(s).

Circular (in)Security of Our Scheme: In our new scheme an encryption
contains a circuit R which “remembers” the message m and then, on any circuit
B, it tests whether B(m) is equal to the secret key and, if so, it outputs it.

It is easy to see that this new scheme is not 1-circular secure, as R(C) =
Q(s,Enc(P , s)) = s. The scheme is also insecure under 2-circular attacks: let
s1, s2 be two secret keys and P 1, P 2 their respective public keys. The output
of Enc(P 1, s2) is (C1, R1,2). That is, R1,2 is a circuit that accepts as input any
circuit C of size at most βn, and if C(s2) = s1 it outputs s1.

Therefore if the adversary is also given an encryption (C2, R2,1)← Enc(P 2, s1),
he can invoke R1,2(C1) and R2,1(C2) to recover s1, s2 respectively. As described
in the previous section, from any longer cycle of size up to n one can compute a
functionally working encryption of s1 under key 2 i.e., a circuit that on input s2
outputs s1, that can be fed as well to R to recover the secret key. Therefore the
attack generalizes to n-circularity (as long as the concatenation of n ciphertexts
has length less than βn).

IND-CPA Security of Our Scheme: The modified scheme is still IND-CPA
secure: Unless one knows an encryption of the secret key, R cannot be exploited.
More formally, we prove the following:

Theorem 2. If O is a VBB obfuscator for P according to Definition 3, then the
modified scheme (Gen,Enc,Dec) described in this section is IND-CPA secure.

Proof. The proof is very similar to the one of the corresponding Theorem 1, the
main difference being that in this case we need to “substitute” the two parts of
the challenge ciphertext separately (and thus we need two more hybrid games):

Game 0: this is the same as IND-CPA0(A, k).
Game 1: this is the same as the previous one, but in step 1 we set the public

key pk ← O(P∗→⊥).
Game 1.5: this is the same as the previous one, but in step 3 instead of giving

A a complete encryption (C,R) of m0 we substitute R with an obfuscation
(of proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security) 87

Game 2: this is the same as the previous one, but in step 3 instead of an
encryption (C,R) of m0 we give A two obfuscations (O(P∗→⊥),O(P∗→⊥))
(of proper size).

Game 2.5: this is the same as Game 3, but in step 3 instead of giving A a
complete encryption (C,R) of m1, we substitute R with an obfuscation (of
proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).

Game 3: this is the same as Game 4, but in step 1 we set the public key pk to
be an obfuscation (of proper size) of P∗→⊥.

Game 4: this is the same as IND-CPA1(A, k).

An adversary that distinguishes Game 1 and Game 1.5 (resp. Game 3 and game
2.5) can be used to break the indistinguishability between two different obfusca-
tions of P∗→⊥: in Game 1, the circuit R always outputs ⊥ as pk = P∗→⊥, while
in Game 1.5 P∗→⊥ is obfuscated directly. Indistinguishability between the other
games follows from the same arguments as Theorem 1. ��

3 Separation from Indistinguishability Obfuscation

To prove that our simple encryption scheme is IND-CPA secure, we had to
argue that an obfuscation of a real public key Ps→1 is indistinguishable from an
obfuscation of P∗→⊥. However indistinguishability obfuscation only guarantees
that an adversary cannot tell the difference between the obfuscation of two
circuits computing the same function.

To fix this, change our simple scheme in the following way: let PRG : {0, 1}k →
{0, 1}2k be a pseudorandom generator, then we compute the public key pk as
pk = PRG(s). Note that in the simple public key encryption scheme we only
used the obfuscated program P to check if we had the right secret key. This can
be done using the new public key as well, by evaluating the PRG. At the same
time, this will allow us to replace a real public key with an (indistinguishable)
uniformly random string for which (with very high probability) no secret key
exists, and therefore all ciphertexts will be functionally equivalent to P∗→⊥.

3.1 The Technical Details

Key Generation: The algorithm Gen(1k) chooses a random secret key s ←
{0, 1}k and computes a string p = PRG(s) ∈ {0, 1}2k.

Encryption: The algorithm Enc(p,m) on input a public key p ∈ {0, 1}2k and a
message m ∈ {0, 1}k outputs an obfuscated circuit C ← O(C) and R(·) ←
O(Q(m, ·)). where C,R are defined as follows:
def C(x ∈ {0, 1}k) ∈ {0, 1}k:
1. if (PRG(x)

?
= p) output m; else output ⊥.

def Q(y ∈ {0, 1}k, B ∈ B) ∈ {0, 1}k:
1. If (PRG(B(y)) = p), output B(y); else output ⊥.

88 A. Marcedone and C. Orlandi

Decryption: The algorithm Dec(s, C,R) on input a secret key s ∈ {0, 1}k and
a ciphertext (C,R) ∈ P outputs m′ = C(s) (and ignores R).

It can be easily verified that this scheme is also not circular secure, and we
can argue that it is still IND-CPA secure.

Theorem 3. If O be a iO obfuscator and PRG a secure pseudorandom gener-
ator, then (Gen,Enc,Dec) described in this section is IND-CPA secure.

Proof. This proof is very similar to the one of Theorem 2. The only difference is
that we use a uniformly random string (instead of an obfuscation of P∗→⊥) as a
fake public key. The hybrids are as follows:

Game 0: this is the same as IND-CPA0(A, k).
Game 1: this is the same as the previous one, but in step 1 we set the public

key pk ← {0, 1}2k.
Game 1.5: this is the same as the previous one, but in step 3 instead of giving

A a complete encryption (C,R) of m0 we substitute R with an obfuscation
(of proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).

Game 2: this is the same as the previous one, but in step 3 instead of an
encryption (C,R) of m0 we give A two obfuscations (O(P∗→⊥),O(P∗→⊥))
(of proper size).

Game 2.5: this is the same as Game 3, but in step 3 instead of giving A a
complete encryption (C,R) of m1, we substitute R with an obfuscation (of
proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).

Game 3: this is the same as Game 4, but in step 1 we set the public key
pk ← {0, 1}2k.

Game 4: this is the same as IND-CPA1(A, k).

An adversary A distinguishing between Games 0 and 1 could be used to build
an adversary A′ against the security of the PRG as follows:

A′(pk ∈ {0, 1}2k, 1k) :
1. Runs A giving it pk as the public key.
2. A outputs two messages (m0,m1) of the same length.
3. A′ computes Enc(pk,m0) and gives it to A
4. When A outputs a bit b′, A′ outputs 1 if b′ = 0 and 0 otherwise.

FromA’s point of view, this game is exactly the same as Game 0 in the case where
pk is computed as pk ← PRG(s) from a uniformly random seed s ← {0, 1}k,
while it is exactly like Game 1 if pk is uniformly random.

Note that, in the case where pk← {0, 1}2k is uniformly random, with all but
negligible probability there exists no s such that PRG(s) = pk, and therefore
the circuits C,R contained in the ciphertexts of all other hybrids are always
functionally equivalent to P∗→⊥. Therefore those hybrids are indistinguishable
under the assumption that O is an indistinguishability obfuscator. ��

Obfuscation ⇒ (IND-CPA Security �⇒ Circular Security) 89

Acknowledgements. The authors would like to thank Amit Sahai for the
mantra “When you cannot solve a problem, try obfuscation” and Matthew Green
for helpful comments.

References

[ABBC10] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and
its relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-
key encryption under subgroup indistinguishability. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vad-
han, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J.
ACM 59(2), 6 (2012)

[BGK11] Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure en-
cryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 201–218. Springer, Heidelberg (2011)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure en-
cryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. CRYPTO 2014. Cryptol-
ogy ePrint Archive, Report 2013/642 (2014), http://eprint.iacr.org/

[CD08] Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit
output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
489–508. Springer, Heidelberg (2008)

[CGH12] Cash, D., Green, M., Hohenberger, S.: New definitions and separations for
circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC
2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012)

[CL01] Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitz-
mann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118.
Springer, Heidelberg (2001)

[CRV10] Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane mem-
bership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89.
Springer, Heidelberg (2010)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

http://eprint.iacr.org/

90 A. Marcedone and C. Orlandi

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS, pp. 40–49 (2013)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)

[GH10] Green, M., Hohenberger, S.: CPA and CCA-secure encryption systems
that are not 2-circular secure. IACR Cryptology ePrint Archive 2010, 144
(2010)

[Hof13] Hofheinz, D.: Circular chosen-ciphertext security with compact cipher-
texts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 520–536. Springer, Heidelberg (2013)

[HRSV11] Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Se-
curely obfuscating re-encryption. J. Cryptology 24(4), 694–719 (2011)

[HSW14] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220.
Springer, Heidelberg (2014)

[KNY14] Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP from indis-
tinguishability obfuscation. Cryptology ePrint Archive, Report 2014/213
(2014), http://eprint.iacr.org/

[KRW13] Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for
arbitrary length key cycles. Cryptology ePrint Archive, Report 2013/683
(2013), http://eprint.iacr.org/

[Rot13] Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg
(2013)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deni-
able encryption, and more. In: STOC (2014)

[Wee05] Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/

Program Obfuscation via Multilinear Maps

Sanjam Garg

IBM T.J. Watson
sanjamg@cs.ucla.edu

Abstract. Recent proposals for plausible candidate constructions of
multilinear maps and obfuscation have radically transformed what we
imagined to be possible in cryptography. For over a decade cryptogra-
phers had been very skeptical about the existence of such objects. In this
article, we provide a very brief introduction to these results and some of
their interesting consequences.

The goal of software obfuscation, often viewed as a panacea in cryptography, is
to make computer programs “unintelligible” while preserving their functionality.
The need for software obfuscation to perform tasks such as protecting intellectual
property is so immense that even the commercial use of insecure obfuscation
tools and techniques is rampant. Obfuscation offers solutions to many security
problems. Consider for example the task of releasing a patch to fix a zero-day
exploit in a software package. Attackers could reverse engineer this patch in order
to figure out the vulnerability, putting unpatched machines at risk. Obfuscation
offers the only known solution to this problem: release an initial patch in an
obfuscated form, and then later transition to a more efficient un-obfuscated
patch once large-scale adoption of the initial patch has completed. As another
example, consider the very basic task of constructing a public-key encryption
scheme [DH76, RSA78] with the smallest possible ciphertext size; obfuscation
enables a candidate that quantitatively beats all known constructions in the
literature.

The formal study of program obfuscation was initiated by Hada [Had00]
and Barak et al. [BGI+01]. Unfortunately, they showed that the most natural
simulation-based formulation of program obfuscation (a.k.a. “black-box obfusca-
tion”) is impossible to achieve for general programs. Faced with this impossibility
result, Barak et al. [BGI+01] suggested another notion of program obfuscation
called indistinguishability obfuscation: An indistinguishability obfuscator iO for
a class of circuits C guarantees that given two equivalent circuits C1 and C2

from the class, the two distribution of obfuscations iO(C1) and iO(C2) should
be computationally indistinguishable. We note that if the circuit class C has
efficiently computable canonical forms, then the computation of that canonical
form would already be an indistinguishability obfuscator. In a recent work Garg
et al. [GGH+13b] provide the first efficient indistingushability obfuscator for all
polynomial-size circuits.

It is not immediately clear how this weaker notion of obfuscation can be
useful for applications. Perhaps the strongest philosophical justification for

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 91–94, 2014.
c© Springer International Publishing Switzerland 2014

92 S. Garg

indistinguishability obfuscators comes from the work of Goldwasser and Roth-
blum [GR07], who showed that (efficiently computable) indistinguishability ob-
fuscators achieve the notion of Best-Possible Obfuscation [GR07]: Informally, a
best-possible obfuscator guarantees that its output hides as much about the in-
put circuit as any circuit of a certain size. Concretely Garg et al. [GGH+13b]
showed usefulness of indistinguishability obfuscation by showing that it can
be used to enable a construction of functional encryption (more on it later)
for all polynomial-size circuits. Subsequently a number of different works (such
as [SW14, GGHR14]) have shown other novel ways of making use of indistin-
guishability obfuscators.

Technically speaking, obfuscation entails the ability to perform arbitrary
computation on encrypted data while obtaining only the resulting output in
unencrypted form. Gentry’s breakthrough result on fully-homomorphic encryp-
tion [Gen09] enabled the goal of arbitrary computation on encrypted data,
however the output of the computation in his scheme remains encrypted. Mul-
tilinear maps first envisioned by Boneh and Silverberg [BS02] and realized by
Garg et al. [GGH13a] are the key technical tool that enable this challenging task
of arbitrary computation with limited decryption. Multilinear maps specifically
provide the ability to perform “somewhat” arbitrary computation on encrypted
data along with the ability to check if two encryptions encrypt the same mes-
sage. Garg et al. [GGH+13b] show that this limited capability can actually be
sculpted to enable obfuscation for all polynomial-size circuits.

Follow up works on multilinear maps [CLT13] and obfuscation [BR14,
BGK+14] have helped strengthened our belief in the existence of these objects.
Various other works have also provided some optimizations, e.g., recent works
by Boyle et al. [BCP14] and Ananth et al. [ABG+13] provide an obfuscation
method for Turing Machines instead of just for circuits.

Taken together, multilinear maps and obfuscation radically enhance our tool
set and open a floodgate of applications, including:

1. Functional Encryption. In functional encryption [BSW11, O’N10], cipher-
texts encrypt inputs x and keys are issued for circuits C. Using the key SKC

to decrypt a ciphertext CTx = enc(x), yields the value C(x) but does not
reveal anything else about x. Furthermore, no collusion of secret key holders
should be able to learn anything more than the union of what they can each
learn individually. Obfuscation based solution by Garg et al. [GGH+13b]
provides the the first construction that allows for secret keys with arbitrary
circuits. Subsequently Goldwasser et al. [GGG+14] construct a functional
encryption scheme for which a secret key can take multiple multiple cipher-
texts as input. Another work of Goyal et al. [GJKS13] enables a functional
encryption scheme with secret keys for randomized circuits. Prior to obfus-
cation based solutions, the realizations of functional encryption were limited
to simplistic set of permissible operations such as inner product.

2. Witness Encryption. Encryption in all its myriad flavors has always been
imagined with some known recipient in mind. But, what if the intended
recipient of the message is not known and may never be known? For example,

Program Obfuscation via Multilinear Maps 93

consider the task of encrypting a message for someone who knows a solution
to a crossword puzzle that appeared in the The New York Times. Or, in
general, a solution to some NP search problem which he might know or
might acquire over a period of time. This notion, called witness encryption,
was first posed by Rudich in 1989 [Rud89] (see [Bei11]) but was realized only
recently using multilinear maps by Garg et al. [GGSW13].

3. Non-Interactive Multiparty Key Exchange. In their seminal result, Diffie and
Hellman [DH76] realized non-interactive key exchange in a setting with two
parties. This result was generalized to the three party setting in a landmark
result by Joux [Jou04]. Multilinear maps of Garg et al. [GGH13a] enable the
first solution for a setting of arbitrary number of parties. Subsequent follow
up works such as [BZ13, ABG+13] have used obfuscation in order to obtain
various optimizations.

References

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689 (2013), http://eprint.iacr.org/2013/689

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On Extractability Obfuscation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Hei-
delberg (2014)

[Bei11] Beimel, A.: Secret-sharing schemes: A survey. In: Chee, Y.M., Guo, Z.,
Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS,
vol. 6639, pp. 11–46. Springer, Heidelberg (2011)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vad-
han, S.P., Yang, K.: On the (Im)possibility of Obfuscating Programs.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting Ob-
fuscation against Algebraic Attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual Black-Box Obfuscation for All
Circuits via Generic Graded Encoding. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BS02] Boneh, D., Silverberg, A.: Applications of multilinear forms to
cryptography. Cryptology ePrint Archive, Report 2002/080 (2002),
http://eprint.iacr.org/2002/080

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and
Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[BZ13] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/642 (2013), http://eprint.iacr.org/2013/642

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over
the Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2013/642

94 S. Garg

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans-
actions on Information Theory 22(6), 644–654 (1976)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher. In: 41st ACM STOC, pp. 169–178. ACM Press (May/June
2009)

[GGG+14] Goldwasser, S., Dov Gordon, S., Goyal, V., Jain, A., Katz, J., Liu, F.-H.,
Sahai, A., Shi, E., Zhou, H.-S.: Multi-input Functional Encryption. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 578–602. Springer, Heidelberg (2014)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal
Lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press
(October 2013)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-Round Secure MPC
from Indistinguishability Obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum.
In: 45th ACM STOC. ACM Press, pp. 467–476 (June 2013)

[GJKS13] Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for
randomized functionalities. Cryptology ePrint Archive, Report 2013/729
(2013), http://eprint.iacr.org/2013/729

[GR07] Goldwasser, S., Rothblum, G.N.: On Best-Possible Obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Hei-
delberg (2007)

[Had00] Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg
(2000)

[Jou04] Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of
Cryptology 17(4), 263–276 (2004)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology
ePrint Archive, Report 2010/556 (2010),
http://eprint.iacr.org/2010/556

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signature and public-key cryptosystems. Communications of the Associ-
ation for Computing Machinery 21(2), 120–126 (1978)

[Rud89] Rudich, S.: Unpublished (1989)
[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-

able encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp.
475–484. ACM Press (May/June 2014)

http://eprint.iacr.org/2013/729
http://eprint.iacr.org/2010/556

Constrained Verifiable Random Functions

Georg Fuchsbauer�

Institute of Science and Technology Austria

Abstract. We extend the notion of verifiable random functions (VRF)
to constrained VRFs, which generalize the concept of constrained pseu-
dorandom functions, put forward by Boneh and Waters (Asiacrypt’13),
and independently by Kiayias et al. (CCS’13) and Boyle et al. (PKC’14),
who call them delegatable PRFs and functional PRFs, respectively. In a
standard VRF the secret key sk allows one to evaluate a pseudorandom
function at any point of its domain; in addition, it enables computation of
a non-interactive proof that the function value was computed correctly.
In a constrained VRF from the key sk one can derive constrained keys
skS for subsets S of the domain, which allow computation of function
values and proofs only at points in S.

After formally defining constrained VRFs, we derive instantiations
from the multilinear-maps-based constrained PRFs by Boneh and Wa-
ters, yielding a VRF with constrained keys for any set that can be decided
by a polynomial-size circuit. Our VRFs have the same function values
as the Boneh-Waters PRFs and are proved secure under the same hard-
ness assumption, showing that verifiability comes at no cost. Constrained
(functional) VRFs were stated as an open problem by Boyle et al.

1 Introduction

Verifiable Random Functions. A pseudorandom function (PRF) [GGM86] is
an efficiently computable keyed function F : K×X → Y for which, when the seed
k is chosen at random, no efficient attacker should be able to distinguish F (k, x)
from a random value, even when given oracle access to F (k, ·) at any other point.
This fundamental primitive in cryptography was extended to verifiable random
functions (VRF) by Micali, Rabin and Vadhan [MRV99]. In a VRF a secret key
sk, which is set up together with a public key pk, allows evaluation of F and
furthermore computation of a non-interactive proof that the computed value y
matches F (sk, x). Verification of the proof must be done with respect to the
public key pk only; in particular, we cannot make use of a common reference
string (CRS). The proofs should remain sound even when pk was computed
maliciously and F (sk, x) should remain pseudorandom even when an adversary
can query values of F and proofs for them at any other point.

The first VRF schemes, such as [Lys02, Dod03, DY05], were based on bilinear
maps. Efficient schemes have proved difficult to construct, in particular ones with
large domains based on non-interactive assumptions, and were only proposed

� Supported by the European Research Council, ERC Starting Grant (259668-PSPC).

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 95–114, 2014.
c© Springer International Publishing Switzerland 2014

96 G. Fuchsbauer

from 2010 on [HW10, BMR10, ACF13]. VRFs have turned out to be a useful
building block, e.g. in the construction of zero-knowledge proofs and databases
[MR01, Lis05] and electronic payment schemes [MR02, BCKL09], to name a few.

Constrained VRFs. Boneh and Waters [BW13] define a new notion of PRFs,
which they call constrained PRFs and which was concurrently introduced as dele-
gatable PRFs byKiayias, Papadopoulos,Triandopoulos and Zacharias [KPTZ13],
and as functional PRFs by Boyle, Goldwasser and Ivan [BGI14]. While a key k for
a PRF enables evaluation of the function F at all points of its domain X , a con-
strained PRF allows one to derive constrained keys from k. A constrained key kS
corresponds to a set S ⊆ X and allows computation of F (k, x) only for x ∈ S.

Pseudorandomness requires that given an oracle for function values at points
of the adversary’s choice and an oracle for constrained keys for sets of its
choice, values of F (k, ·) at points outside the queried sets and different from
the queried points should still be indistinguishable from random. That is, after
querying keys for S1, . . . , Sq and functions values at x1, . . . , xp, the value F (k, x)
should be indistinguishable from random for all x /∈

⋃q
i=1 Si ∪ {x1, . . . , xp}.

Constrained PRFs were used to construct broadcast encryption and identity-
based non-interactive key exchange in [BW13]. In particular punctured PRFs
have proved to be a powerful tool in combination with indistinguishability ob-
fuscation [GGH+13b], leading to solutions of longstanding open problems, such
as deniable encryption [CDNO97] in [SW14] and instantiating full-domain hash
[BR93] in [HSW14].

We unify VRFs and constrained PRFs by adding the possibility to derive
constrained keys to the notion of VRFs. We then construct constrained VRF
schemes based on the Boneh-Waters constrained PRFs which are defined using
multilinear maps [BS02, GGH13a, CLT13]. Our second scheme allows derivation
of constrained keys for any subset of the domain that can be decided by a boolean
circuit of polynomial size.

Verifiable random functions turned out a lot harder to construct than PRFs.
While the Dodis-Yampolskiy VRF [DY05] only supports domains of polynomial
size, it requires a q-type assumption (where the parameter q of the assump-
tion upper-bounds how many queries an adversary can make). Hohenberger and
Waters [HW10] proposed the first VRF for large domains, whose function val-
ues are defined analogously to those of the PRF by Naor and Reingold [NR97],
but lifted to the target group of a bilinear map. These maps are then used to
verify the proofs of correct function evaluation. Hohenberger and Waters prove
their construction secure under a non-standard q-type assumption, while the
Naor-Reingold PRF is proved secure under the decisional Diffie-Hellman (DDH)
assumption.

Using multilinear maps, the situation is different: Our VRF constructions
support large input spaces when using complexity leveraging (see below), and
we prove their security under the same assumption on which pseudorandomness
of the Boneh-Waters constrained PRFs rely: the DDH assumption adapted to
the multilinear-map environment. We moreover show that we do not need to
lift the function values “up one level”: our VRF values are defined exactly as

Constrained Verifiable Random Functions 97

the Boneh-Waters PRF values. We thus show how to add verifiability to the
constrained PRFs from [BW13] without changing the PRF itself, nor using a
different assumption to prove pseudorandomness.

Our Contribution. We first formalize the notion of constrained VRFs by
extending the model for standard VRFs. In addition to Setup, Prove and Verify,
we define an algorithm Constrain, which allows to derive constrained keys. We
adapt the security notions of provability, uniqueness and pseudorandomness to
the constrained setting and define a new security notion. It requires that a proof
produced by a constrained key should be distributed like proofs computed using
the actual secret key. A constrained key skS behaves thus exactly like the key
sk on the subset S of the domain.

We present two multilinear-maps-based instantiations of constrained VRFs
with input space X := {0, 1}n for different systems of sets for which constrained
keys can be derived:

– Bit-fixing VRF: Constrained keys can be derived for any set Sv ⊆ {0, 1}n,
described by a vector v ∈ {0, 1, ?} as the set of all strings which match v at
all coordinates that are not ‘?’.

– Circuit-constrained VRF: In our second construction keys can be derived for
any set that is decidable by a polynomial-size circuit C. More precisely, a
key skC , derived from sk for a circuit C, enables computation of F (sk, x)
and a proof for all x for which C(x) = 1.

Both our schemes are directly derived from the constructions of constrained
PRFs given by Boneh and Waters [BW13]. These are defined over a leveled
multilinear group, which is a sequence of groups G1, . . . ,Gκ, each Gi of prime
order p > 2λ and generated by gi, equipped with bilinear maps (“pairings”)
ei,j : Gi × Gj → Gi+j , for i + j ≤ κ. The bit-fixing PRF from [BW13] maps
inputs from {0, 1}n to an element of Gκ where κ = n + 1. A key is a tuple
k = (α, d1,0, d1,1, . . . , dn,0, dn,1) ∈ Z 2n+1

p and the PRF is defined as

P (sk, x) := (gn+1)
α
∏n

i=1 di,xi . (1)

As noted in [BW13], the values Di,j := g
di,j

1 could be made public, and
inspection of the proof reveals that A := g α

2 could also be made public without
affecting pseudorandomness. These values could be used to make the PRF output
P publicly verifiable if we added one level in the group sequence, that is, set
κ := n + 2. Then in order to verify that some P ∈ Gn+1 equals P (sk, x) as
defined in (1), one could repeatedly apply the pairings to A and D1,x1, . . . , Dn,xn

to compute (gn+2)
α
∏n

i=1 di,xi ∈ Gκ and check whether this equals the pairing of
P with g1, which would lift P to Gn+2.

Of course this shows that P (sk, x) is not pseudorandom anymore after adding
a level in the group hierarchy; however, it can serve as the proof for a related
value in Gκ. After adding an element γ ∈ Zp to the secret key, we define the VRF
value as F (sk, x) := (gκ)

γ·α
∏n

i=1 di,xi . The value P (sk, x) = (gκ−1)
α
∏n

i=1 di,xi can
now be used to check whether some y ∈ Gκ equals F (sk, x): we add C := g γ

1 to

98 G. Fuchsbauer

the public key and then have e1,κ−1(C,P (sk, x)) = (gκ)
γ·α

∏n
i=1 di,xi = F (sk, x).

A nice side effect of this approach is that since our proof corresponds to the
PRF value in [BW13], we can reuse their constrained keys to construct proofs. In
particular for the circuit-constrained VRF this involves sophisticated techniques
derived from [GGH+13c].

While this approach works for both the bit-fixing VRF and the circuit-
constrained VRF, a drawback is that it requires an extra level in the group
hierarchy. Somewhat surprisingly, we show that this is not necessary: we instan-
tiate circuit-constrained VRFs using the same number of group levels as the
Boneh-Waters circuit-constrained PRF and for the bit-fixing construction we
even require one level less than [BW13].

The reason for this is that, as we show, the bit-fixing PRF can be constructed
over a multilinear group with κ = n− 1 (rather than κ = n+ 1 in [BW13]) and
the circuit-constrained PRF can be constructed for κ = n + � − 1 (rather than
κ = n+ � in [BW13]), where � is the maximum depth of the circuits. This allows
us to use the freed level for verification and preserve the function value of the
PRF. We present these modified constrained PRFs and prove their security in
the full version [Fuc14].

In [Fuc14] we also show that, as for the constrained PRFs in [BW13], our
constructions can be transferred from leveled multilinear groups to graded en-
codings, constructed by Garg, Gentry and Halevi [GGH13a], which can be viewed
as “approximate” multilinear groups.

Complexity Leveraging. Pseudorandomness of our VRFs can be reduced to
the multilinear DDH assumption without any security loss when considering
selective security. For this notion the adversary must decide on which value it
wants to be challenged before receiving the public key. Adaptive security (where
the adversary can make its challenge query at any point) can then be obtained
generically via complexity leveraging [BB04a]: the reduction simply guesses be-
forehand which challenge value the adversary will query. This leads to a security
loss that is exponential in the input length, which must be compensated by
increasing the parameters of the scheme.

Together with Konstantinov, Pietrzak and Rao [FKPR14], we recently showed
that any simple reduction (that is, one which runs an adversary once without
rewinding) from pseudorandomness of the Boneh-Waters constrained PRF to
a non-interactive hardness assumption must incur a security loss that is expo-
nential in the input length. Since constrained VRFs imply constrained PRFs,
this also holds for our construction, meaning that our proofs using complexity
leveraging are in some sense optimal.

Related Work. VRFs have been constructed in bilinear groups by Lysyanskaya
[Lys02] and Dodis [Dod03]. Based on Boneh-Boyen signatures [BB04b], Dodis
and Yampolskiy [DY05] gave the first efficient scheme that is secure under a non-
interactive assumption, but for small input spaces only. Hohenberger and Waters
[HW10] proposed the first VRF for exponential-size domains without resorting
to complexity leveraging or interactive assumptions. Boneh, Montgomery and

Constrained Verifiable Random Functions 99

Raghunathan [BMR10] achieve a similar result basing their construction on the
Dodis-Yampolskiy VRF. Abdalla, Catalano and Fiore [ACF13] show connections
of VRFs to identity-based key encapsulation, and also present a VRF with large
input spaces. Evidence why VRFs are hard to construct is given by Brakerski,
Goldwasser, Rothblum and Vaikuntanathan [BGRV09], who show that there is
no black-box construction from one-way permutations, and Fiore and Schröder
[FS12], showing that there is also none from trapdoor permutations. Variants
of VRFs include simulatable VRFs [CL07] (where CRSs are allowed) and weak
VRFs [BGRV09].

The concept of restricting keys for PRFs to subsets of their domains was
concurrently introduced as constrained PRFs by Boneh and Waters [BW13], as
delegatable PRFs by Kiayias et al. [KPTZ13], and as functional PRFs by Boyle
et al. [BGI14]. The latter mention functional VRFs as an open problem.

An analogous notion for digital signatures, namely deriving signing keys that
can only sign subsets of the message space was concurrently introduced by Boyle
et al. [BGI14] as functional signatures and by Bellare and the author as policy-
based signatures [BF14]. Since VRFs satisfy the definition of digital signatures,
constrained VRFs immediately yield policy-based signatures (PBS) for the same
classes of policies describing the constrained input (message) space. We note
however that constraint-hiding constrained VRFs, which we construct in this
paper, cannot satisfy the stronger of the two security definitions for PBS pro-
posed in [BF14], which requires that the policy (constraint) can be extracted
from a signature.

2 Preliminaries

Notation. If S is a finite set then |S| denotes its size and s←$ S denotes
picking an element uniformly from S and assigning it to s. For n ∈ N we let
[n] = {1, . . . , n}. We denote the security parameter by λ ∈ N and its unary
representation by 1λ. Algorithms are randomized unless otherwise indicated and
“PT” stands for “polynomial-time” for both randomized and deterministic algo-
rithms. We denote by y := A(x1, . . . ; ρ) the operation of running algorithm A on
inputs x1, . . . and coins ρ and assigning the output to y. By y←$ A(x1, . . .), we
denote the operation of letting y := A(x1, . . . ; ρ) with ρ chosen at random. We
denote by [A(x1, . . .)] the set of points that have positive probability of being
output by A on inputs x1,

Multilinear Groups. The usefulness of groups with multilinear maps in which
computing discrete logarithms is hard was first observed by Boneh and Silverberg
[BS02]. It was only recently that candidates for leveled multilinear forms were
proposed by Garg, Gentry and Halevi [GGH13a] and then by Coron, Lepoint and
Tibouchi [CLT13]. Although these constructions implement graded encodings,
which differ from multilinear groups, we present our results in the language of
multilinear groups. These can then be transferred in a straightforward manner
to graded encodings, as we show in the full version [Fuc14].

100 G. Fuchsbauer

Leveled multilinear groups are generated by a group generator G, which takes
as input the security parameter 1λ and κ ∈ N, which determines the number of
levels. G(1λ, κ) outputs a sequence of groupsG = (G1, . . . ,Gκ) of prime order p >
2λ. We assume that the description of each group contains a canonical generator
gi. For all i, j ≥ 1 with i+j ≤ κ, there exists a bilinear map ei,j : Gi×Gj → Gi+j ,
which satisfies:

∀a, b ∈ Zp : ei,j
(
g a
i , g

b
j

)
= (gi+j)

a·b .

(We omit the indices i, j of the maps if they can be deduced from the context.)
The only hardness assumption we will make is the following:

Assumption 1. The κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) as-
sumption states that, given (G1 . . . ,Gκ) obtained by running G(1λ, κ) and g =

g1, g
c1, . . . , gcκ+1 for c1, . . . , cκ+1 ←$ Zp, it is hard to distinguish g

∏
j∈[κ+1] cj

κ ∈ Gκ

from a random group element in Gκ.

Circuits. Our treatment of circuits follows that by Boneh and Waters [BW13],
who adapt the model of Bellare et al. [BHR12]. They consider boolean circuits
with a single output gate and require that circuits are layered (where a gate at
level j receives its inputs from wires at level j − 1) and monotonic in that they
only contain AND and OR gates. This is without loss of generality, since an arbi-
trary circuit can be transformed into a layered monotonic circuit of polynomially
related size.

Definition 1. A circuit is a 5-tuple f = (n, q, A,B, GateType), where n is the
number of inputs and q is the number of gates. Wires are associated with the set
[n + q] = {1, . . . , n + q}, where {1, . . . , n} are the input wires and n + q is the
output wire. Gates are labeled by the same index as their outgoing wire, we thus
define Gates := {n+ 1, . . . , n+ q}.

The function A : Gates → [n + q] maps a gate w to its first incoming wire
A(w) and B : Gates→ [n+ q] maps a gate w to its second incoming wire B(w).
We require w > B(w) > A(w). The function GateType: Gates → {AND,OR}
specifies whether a gate is an AND or an OR gate.

The function depth(w) maps a wire to the length of the shortest path to an
input wire plus 1; in particular for w ∈ [n] we have depth(w) = 1. Moreover,
a circuit is layered if for all w ∈ Gates : depth(A(w)) = depth(B(w)) =
depth(w) − 1. We let f(x) denote the evaluation of the circuit f on input
x ∈ {0, 1}n and let fw(x) denote the value of wire w of the circuit on input x.

3 Constrained Verifiable Random Functions

We extend the definition of constrained pseudorandom functions (PRF), defined
by Boneh and Waters [BW13] to constrained verifiable random functions (VRF).
A constrained PRF allows one to evaluate a keyed function F : K×X → Y and
defines an algorithm that given a key k ∈ K and a set S ⊆ X derives a key kS

Constrained Verifiable Random Functions 101

with which one can only evaluate F on points x ∈ S. It is set up w.r.t. a set
system S ⊆ 2X , defining the sets for which constrained keys can be derived.

For VRFs, in addition to a (secret) key, the setup algorithm outputs a public
key pk. Given a constrained secret key skS derived from sk for a set S ∈ S
and an input x ∈ S, the algorithm Prove computes the value y = F (sk, x) (like
the algorithm eval in [BW13]). It moreover outputs a proof π for the fact that
F (sk, x) = y, which can be verified w.r.t. pk via an algorithm Verify.

A constrained VRF should satisfy the following properties: Provability en-
sures completeness of the scheme: running Prove on a constrained key outputs
the correct function value and a proof that passes verification. Uniqueness guar-
antees soundness of the proofs: for any (possibly maliciously computed) value pk
and every x ∈ X there exists at most one y ∈ Y for which Verify(pk, x, y, π) = 1
for some π. Compared to PRFs, pseudorandomness should also hold against ad-
versaries that obtain the public key and proofs for input points in addition to
function values and constrained keys of their choice.

Finally, we consider an additional privacy or anonymity notion, which ensures
that proofs do not reveal anything about the constrained key used to compute
them: proofs computed with a constrained key should be distributed like proofs
computed with the actual secret key. Note that this notion would not be mean-
ingful for constrained PRFs or (standard) VRFs: a constrained key for a PRF
is only used to evaluate F , so by definition, different constrained keys yield the
same output; and for standard VRFs all proofs are computed with the same key.

Definition. Let F : K × X → Y be a function computable in polynomial time,
where K is the key space, X is the domain and Y the range (which may all be
parametrized by the security parameter λ). F is said to be a constrained verifiable
random function w.r.t. a set system S ⊆ 2X if there exists a constrained-key space
K′, a proof space P and PT algorithms Setup, Constrain, Prove and Verify:

– Setup(1λ) outputs a pair of keys (pk, sk).
– Constrain(sk, S), on input a secret key and a set S ∈ S, outputs a constrained

key skS ∈ K′.
– Prove(skS , x) outputs a pair (y, π) ∈ Y×P ∪ {(⊥,⊥)} of a function value

and a proof.
– Verify(pk, x, y, π) verifies that y = F (sk, x) using proof π, outputting a value

in {0, 1}.

We require the following properties:

Provability. For all λ ∈ N, all (pk, sk) ∈ [Setup(1λ)], all S ∈ S, all skS ∈
[Constrain(sk, S)], all x ∈ X and (y, π) ∈ [Prove(skS , x)] it holds that:

– If x ∈ S then y = F (sk, x) and Verify(pk, x, y, π) = 1
– If x /∈ S then (y, π) = (⊥,⊥)

Uniqueness. For all λ ∈ N, all pk, all x ∈ X , y0, y1 ∈ Y and π0, π1 ∈ P one of
the following holds:

102 G. Fuchsbauer

– y0 = y1,
– Verify(pk, x, y0, π0) = 0, or
– Verify(pk, x, y1, π1) = 0,

that is, for every x there is at most one value y for which there exists a proof
that F (sk, x) = y.

Constraint-Hiding. This notion ensures that the proof does not reveal which
key was used to create it. In particular, we require that there exist a PT algorithm
P : K × X → P , such that for all λ ∈ N, all (pk, sk) ∈ [Setup(1λ)], all S ∈ S, all
skS ∈ [Constrain(sk, S)] and all x ∈ S the following holds: the second output, π,
of Prove(skS , x) and the output of P (sk, x) are distributed identically.

Pseudorandomness. Consider the following experiment Exppr
b (λ) for λ ∈ N

and b ∈ {0, 1}:
– Generate (pk, sk)←$ Setup(1λ).
– Initialize sets C and V to ∅, where V will contain the points the adversary

can evaluate and C records the points at which the adversary queried a
challenge. Moreover, initialize an empty list R indexed by the set X , used
to store random values.

– Run the adversary on pk and provide the following oracles:
Constrain: On input S ∈ S, if S ∩ C = ∅, return skS ←$ Constrain(sk, S)
and set V := V ∪ S; else return ⊥.
Prove: Given x ∈ X , if x /∈ C, return F ((sk, x), P (sk, x)) and set V :=
V ∪ {x}; else return ⊥.
Challenge: On input x ∈ X , if x ∈ V then return ⊥. Else set C := C ∪{x}
and do the following. If b = 0 then return F (sk, x); if b = 1 then return a
consistent random value from Y, that is, return R[x] if x ∈ C and otherwise
choose y←$ Y, set R[x] := y and return y.

– Let b′ ∈ {0, 1} be the adversary’s final output, which we define as the output
of the experiment.

A constrained VRF is pseudorandom if the function
∣∣Pr[Exppr

1 (λ) = 1] −
Pr[Exppr

0 (λ) = 1]
∣∣ is negligible in λ for all PT adversaries A.

Note that by the constraint-hiding property an oracle to obtain Prove evalu-
ations under constrained keys unknown to the adversary would be redundant.
In our security proofs we will only allow the adversary to query its challenge
oracle once. This restricted notion however implies the notion defined above via
a standard hybrid argument.

4 Bit-Fixing VRF

In our first construction constrained keys can be derived for any “bit-fixing” set.
Such a set is defined by a value v ∈ {0, 1, ?}n as the set of all x ∈ {0, 1}n that
match v at all positions where v is different from ‘?’:

Sv :=
{
x ∈ {0, 1}n

∣∣ ∀i ∈ [n] : xi = vi ∨ vi =?
}

Constrained Verifiable Random Functions 103

The set system for our constrained VRF is then defined as S :=
{
Sv ⊆ {0, 1}n |

v ∈ {0, 1, ?}n
}
.

We show how to add verifiability to the bit-fixing PRF by Boneh and Waters
[BW13], which has domain X = {0, 1}n and where keys can be derived for Sv

for every v ∈ {0, 1, ?}n. As discussed in the introduction, the idea is to use one
extra level of the group hierarchy for verification: the element that was the PRF
value now serves as proof and the VRF value will live one group level above.
Verification is done using the pairings to check consistency. For their bit-fixing
PRF, Boneh and Waters define

FPRF : K × {0, 1}n → Gn+1(
(α, {di,β}i∈[n], β∈{0,1}), x

)
�→ (gn+1)

α
∏

i∈[n] di,xi

In [Fuc14] we show that n−1 group levels suffice when one defines the PRF value

as F ′
PRF(sk, x) = (gn−1)

∏
i∈[n] di,xi . We use this value as the proof in our VRF

construction and the same constrained keys for both the modified PRF and the
VRF. In order to provide verifiability, we add back one level; the last group in
our hierarchy is thus Gn, which is one level below the one of the Boneh-Waters
PRF.1

4.1 Construction

Setup(1λ, 1n): On input the security parameter λ and the input length n, the

setup runs G(1λ, n) to compute a sequence of groups G = (G1, . . . ,Gn) of prime
order p, with generators g1, . . . , gn, of which we let g := g1. It chooses γ←$ Zp

and (d1,0, d1,1), . . . , (dn,0, dn,1)←$ Z 2
p uniformly at random and sets C := gγ

and Di,β := gdi,β for i ∈ [n] and β ∈ {0, 1}. The VRF public and secret key are
defined as

pk :=
(
G = (G1, . . . ,Gn), C, {Di,β}i∈[n], β∈{0,1}

)
sk :=
(
pk, γ, {di,β}i∈[n], β∈{0,1}

)
The domain is X = {0, 1}n, the range of the function is Y = Gn and proofs are
in Gn−1. The function value and the proof for input x = (x1, . . . , xn) ∈ {0, 1}n
are defined as

F (sk, x) := gn
γ
∏

i∈[n] di,xi P (sk, x) := (gn−1)
∏

i∈[n] di,xi

Verify(pk, x, y, π): To verify a tuple (x, y, π) ∈ {0, 1}n×Gn×Gn−1 w.r.t. public

key pk = (G, C, {Di,β}), compute D(x) := gn
∏

i∈[n] di,xi by applying the bilinear
maps to (D1,x1 , . . . , Dn,xn) and output 1 if the following equations are satisfied:

e(g, π) = D(x) e(C, π) = y

1 If we wanted a VRF with the same function values as the Boneh-Waters PRF, it
would suffice to set up κ = n+1 group levels, lift the domain of F from Gn to Gn+1,
that of P from Gn−1 to Gn, and define the public-key element C := g γ

2 (instead of
gγ). The secret key element γ would then correspond to α in [BW13].

104 G. Fuchsbauer

Constrain(sk,v): Note that from a proof P (sk, x), by pairing it with the public-

key element C , one can compute F (sk, x) = e(C,P (sk, x)). It suffices thus that
a constrained key lets us construct P (sk, x).

The algorithm takes as input sk and a vector v ∈ {0, 1, ?}n describing the
constrained domain Sv := {x ∈ {0, 1}n | ∀i ∈ [n] : xi = vi ∨ vi =?}. Let
V := {i ∈ [n] |vi �=?} be the set of indices for which the input bit is fixed to 0
or 1. Return skv := (pk, kv), with kv defined as follows:

– If |V | > 1 then compute kv := (g|V |−1)
∏

i∈V di,vi .
– If V = {j} then set kv := dj,vj .

(If V = ∅ then return sk, from which Prove(sk, x) simply computes F (sk, x) and
P (sk, x).)

Prove(skv, x): Again let V := {i ∈ [n] |vi �=?} and let V := {i ∈ [n] |vi =?}
be its complement. If xi �= vi for some i ∈ V then return (⊥,⊥); else apply the
bilinear maps to {Di,xi}i∈V to compute

DV (x) := (g|V |)
∏

i∈V di,xi .

– If |V | > 1, set P (sk, x) := e(DV (x), kv)

= e
(
(g|V |)

∏
i∈V di,xi , (g|V |−1)

∏
i∈V di,vi

)
= (gn−1)

∏
i∈[n] di,xi .

– If V = {j}, set P (sk, x) := DV (x)
kv

=
(
(g|V |)

∏
i∈V di,xi

)dj,vj = (gn−1)
∏

i∈[n] di,xi .

Finally, compute e
(
C,P (sk, x)

)
= e
(
gγ , (gn−1)

∏
i∈[n] di,xi

)
= F (sk, x).

4.2 Properties

Provability. When (pk = (G, C, {Di,β}), sk)←$ Setup(1λ) then from the defini-
tion of F and P it follows immediately that for all x ∈ {0, 1}n: e(g, P (sk, x)) =
gn

∏
i∈[n] di,xi = D(x) and e(C,P (sk, x)) = gn

γ
∏

i∈[n] di,xi = F (sk, x). We have
thus Verify(pk, x, F (sk, x), P (sk, x)) = 1.

Moreover, given a constrained key skv derived for a vector v ∈ {0, 1, ?}n
and x ∈ {0, 1}n with xi = vi or vi =? for all i, it follows by inspection that
Prove(skv, x) computes (F (sk, x), P (sk, x)), which we showed satisfy the verifi-
cation equations.

Uniqueness. Consider a public key pk = (G, C, {Di,β}i∈[n], β∈{0,1}), with C ∈
G1 and Di,β ∈ G1, a value x ∈ {0, 1}n and values (y0, π0), (y1, π1) ∈ Gn ×Gn−1

that satisfy Verify(pk, x, yβ , πβ) = 1, for β ∈ {0, 1}. It suffices to show that
y0 = y1.

Let γ, di,β ∈ Zp be such that C = gγ and Di,β = gdi,β for all i, β. The fist

verification equation yields e(g, πβ) = gn
∏

i∈[n] di,xi , which by the properties of

the bilinear map e implies that πβ = (gn−1)
∏

i∈[n] di,xi for β ∈ {0, 1}. The second
equation yields yβ = e(C, πβ) = e

(
gγ , (gn−1)

∏
i∈[n] di,xi

)
for both β ∈ {0, 1},

which implies y0 = gn
γ
∏

i∈[n] di,xi = y1.

Constrained Verifiable Random Functions 105

Constraint-Hiding. The proof algorithm P maps sk = (γ, {di,β}i∈[n], β∈{0,1})

and x ∈ {0, 1}n to P (sk, x) := (gn−1)
∏

i∈[n] di,xi . Since by provability, this is
precisely the value that Prove(skv, x) outputs for any constraint v and any x
satisfying v, the constraint-hiding property follows immediately.

4.3 Proof of Pseudorandomness

Theorem 1. If there exists a PT adversary A that makes one challenge query
and breaks pseudorandomness of the above n-bit-input bit-fixing VRF with ad-
vantage ε(λ) then there exists a PT algorithm B that breaks the n-Multilinear
Decisional Diffie-Hellman assumption with advantage 2−n · ε(λ).

Proof. Without loss of generality, we assume that when x∗ is A’s challenge query
then A never queries constrained keys that could evaluate x∗, nor its Prove

oracle on x∗. We construct B, which receives an n-MDDH challenge consisting
of a group-sequence description G and elements g = g1, g

c1 , . . . , gcn+1 and T ,
which is either gn

∏
i∈[n+1] cj or a random element from Gn. B picks a random value

x∗ ←$ {0, 1}n, which it hopes will be A’s challenge query, and z1, . . . , zn ←$ Zp

and sets

Di,β :=

{
gci if x∗i = β
gzi if x∗i �= β

for i ∈ [n], β ∈ {0, 1},

which implicitly defines di,x∗
i
:= ci and di,x∗

i
:= zi (with x

∗
i denoting 1 − x∗i). It

also defines γ := cn+1 by setting C := gcn+1. B then runs A on input the public
key (G, C, {Di,β}i∈[n], β∈{0,1}), which is distributed as in the real scheme.

Constrain Queries. Suppose A queries a secret key for v ∈ {0, 1, ?}n. Let
V := {i ∈ [n] |vi �=?} be the set of indices that v fixes. B selects j ∈ V such
that vj �= x∗j . If no such j exists then the key could be used to evaluate F (sk, x∗),
meaning B’s guess was wrong, as we assumed A would not make such a query.
In this case B aborts outputting a random guess b′ ←$ {0, 1}.

If |V | = 1 then V = {j}, thus B knows zj with Dj,vj = Dj,x∗
i
= gzj and

sets kv := zj. If |V | > 1 then by repeatedly applying the bilinear maps to

the values {Di,vi}i∈V \{j}, it computes (g|V |−1)
∏

i∈V \{j} di,vi and raises this value

to zj = dj,vj to compute kv := (g|V |−1)
∏

i∈V di,vi . B answers the query with
(pk, kv).

Prove Queries. Since P (sk, x) is identical to a key for v = x, this value can
be computed as for the constrained-key query above. F (sk, x) is computed by
pairing it with C.

Challenge Query. If A’s challenge query is different from x∗ then B aborts
outputting a random guess b′ ←$ {0, 1}. Otherwise, it outputs T as a response

to the query. If T = gn
∏

i∈[n+1] cj then T = gn
γ
∏

i∈[n] di,x∗
i = F (sk, x∗). When A

outputs a guess b′ then B, if it has not aborted, outputs the same guess b′.

Success Probability.We analyze the probability that B wins the MDDH game.
Let abort denote the event that B aborts during the simulation. B aborts if

106 G. Fuchsbauer

and only if A queries its Challenge oracle on a value different from x∗ (as
A does not make any “illegal” queries, B only aborts during Constrain and
Prove queries if its guess of x∗ was wrong). We therefore have Pr[abort] =
1 − 2−n. Moreover, if B aborts then it outputs a random bit, thus yielding
Pr[B wins | abort] = 1

2 . If B does not abort then it wins with the same probability
as A (since A’s success is independent of B’s guess of x∗), whose advantage is
ε(λ), thus Pr[B wins | abort] = 1

2 + ε(λ). Together, we have

Pr[B wins] = Pr[B wins | abort] · Pr[abort] + Pr[B wins | abort] · Pr[abort]
= 1

2 · (1− 2−n) +
(
1
2 + ε(λ)

)
· 2−n = 1

2 + 2−n · ε(λ) ,

which shows that B’s advantage in breaking n-MDDH is ε′(λ) = 2−n · ε(λ). ��

5 Circuit-Constrained VRF

Consider a polynomial-size circuit f as in Definition 1. Our second VRF con-
struction allows us to derive a constrained key skf enabling function evaluations
and proof computations for exactly those values x, for which f(x) = 1. Letting
C be the set of all polynomial-size circuits, we have

S := {Sf ⊆ {0, 1}n | f ∈ C} , with Sf := {x ∈ {0, 1}n | f(x) = 1} .

Our circuit-constrained VRF is derived from the Boneh-Waters PRF [BW13]
for the same set system. Their PRF values are in Gκ with κ = n + �, where
� is the maximum depth of the supported circuits. In [Fuc14] we show that
their PRF construction can be modified and defined over a group sequence with
κ = n+ �− 1, by shifting the PRF value and elements of the constrained key
down by one level. Pseudorandomness then follows from (n+ �− 1)-MDDH.

For our constrained VRF we define the proofs as the values of the modified
PRF in Gn+�−1 (so proofs can be constructed using the constrained keys of the
modified PRF), then add back one level in the group hierarchy and define the
function values in Gn+� as pairings of the proof with an additional public-key

element gγ . The Boneh-Waters PRF is defined as FPRF(k, x) := gκ
α′ ∏

i∈[n] di,xi ,
where the key k consists of α′ and the elements di,β . Our VRF values can be

seen as the same but with α′ split into α and γ, thus F (sk, x) := gκ
α·γ

∏
i∈[n] di,xi .

The proof is the same value without γ and lives one level below the function
value: P (sk, x) := (gκ−1)

α
∏

i∈[n] di,xi .

5.1 Construction

Setup(1λ, 1n, 1�): On input the security parameter λ, the bit length n and the

maximum depth � of the circuits, Setup does the following: Run G(1λ, κ) with
κ := n + � to obtain a sequence of groups G = (G1, . . . ,Gκ) of prime or-
der p, with generators g = g1, . . . , gκ. Choose secret-key values α, γ←$ Zp and
(d1,0, d1,1), . . . , (dn,0, dn,1)←$ Z 2

p and set A := g α
� , C := gγ and Di,β := gdi,β for

Constrained Verifiable Random Functions 107

i ∈ [n] and β ∈ {0, 1}. The VRF public key pk is defined as the group sequence
G and

(
A,C, {Di,β}i∈[n], β∈{0,1}

)
. The secret key sk consists of the public key as

well as
(
α, γ, {di,β}i∈[n], β∈{0,1}

)
.

We define the domain as X := {0, 1}n, the range as Y := Gκ, and the proof
space as P := Gκ−1. On input x = (x1, . . . , xn) ∈ X , the function value and the
proof are defined as

F (sk, x) := gκ
α·γ

∏
i∈[n] di,xi P (sk, x) := (gκ−1)

α
∏

i∈[n] di,xi

Verify(pk, x, y, π): Given a public key pk = (G, A, C, {Di,β}i,β) and (x, y, π) ∈
{0, 1}n×Gκ×Gκ−1, first compute D(x) := gn

∏
i∈[n] di,xi by applying the bilinear

maps to (D1,x1 , . . . , Dn,xn) and return 1 if the following equations hold (and
return 0 otherwise):

e(g, π) = e(A,D) e(C, π) = y

Constrain(sk, f = (n, q, A,B, GateType)): On input the secret key and a circuit

description f , with n input wires, q gates (labeled from n+1 to n+ q), and the
wire n+q designated as output wire, the constrain algorithm does the following:

Choose r1, . . . , rn+q−1 ←$ Zp and set rn+q := α. For every wire w generate
a key component Kw, whose structure depends on the type of the wire: input
wire, OR gate, or AND gate.

Input wire: If w ∈ [n], it corresponds to the w-th input and the key component
is

Kw := grw·dw,1 .

OR gate: If w ∈ Gates with GateType(w) = OR and depth(w) = j then choose
aw, bw ←$ Zp and compute the following key components:

Kw,1 := gaw Kw,3 := (gj−1)
rw−aw·rA(w)

Kw,2 := gbw Kw,4 := (gj−1)
rw−bw·rB(w)

AND gate: If w ∈ Gates with GateType(w) = AND and depth(w) = j then
choose aw, bw ←$ Zp and compute the following key components:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w)−bw·rB(w)

The constrained key skf consists of these components for all n+q wires together
with the circuit description f and the public key pk.

Prove(skf , x): Given a constrained key skf for circuit f = (n, q, A,B, GateType)

and input x ∈ {0, 1}n, if f(x) = 0 , return (⊥,⊥). Otherwise, evaluate the circuit
level by level starting from the input wires. For every wire w that evaluates to
1, compute the value Pw = (gn+j−1)

rw
∏

i∈[n] di,xi , where j = depth(w). Note
that since rn+q = α, we have Pn+q = P (sk, x), from which we can then compute
F (sk, x) by pairing it with C. For every wire we distinguish the following cases:

108 G. Fuchsbauer

Input wire: For w ∈ [n] we only consider those w for which xw = fw(x) = 1.
Repeatedly apply the bilinear maps to the values {Di,xi}i�=w to compute

(gn−1)
∏

i∈[n]\{w} di,xi and pair it with Kw = grw·dw,1 in order to obtain Pw =

gn
rw

∏
i∈[n] di,xi .

OR gate: Let w ∈ Gates be such that fw(x) = 1 and GateType(w) = OR and

let j = depth(w). Define D(x) := gn
∏

i∈[n] di,xi , which can be computed from
the set {Di,xi}i∈[n]. If fA(w)(x) = 1 then compute:

e(PA(w),Kw,1) · e(Kw,3, D(x)) = e
(
(gn+j−2)

rA(w)

∏
i di,xi , gaw

)
· e
(
(gj−1)

rw−aw·rA(w) , gn
∏

i di,xi

)
= (gj+n−1)

rw
∏

i di,xi = Pw .

Otherwise, we must have fB(w)(x) = 1, so compute:

e(PB(w),Kw,2) · e(Kw,4, D(x)) = (gj+n−1)
rw

∏
i di,xi = Pw .

AND gate: Let w ∈ Gates be such that fw(x) = 1, GateType(w) = AND and
depth(w) = j. We have fA(w) = fB(w) = 1 and with D(x) as above we
compute:

e(PA(w),Kw,1) · e(PB(w),Kw,2) · e(Kw,3, D(x))

= e
(
(gn+j−2)

rA(w)

∏
i di,xi , gaw

)
· e
(
(gn+j−2)

rB(w)

∏
i di,xi , gbw

)
· e
(
(gj−1)

rw−aw·rA(w)−bw·rB(w) , gn
∏

i di,xi

)
= (gj+n−1)

rw
∏

i di,xi = Pw .

Evaluating level by level all wires w for which fw(x) = 1, we arrive at Pn+q =
(gn+�−1)

α
∏

i di,xi = P (sk, x), from which we compute

e(C,P (sk, x)) = e
(
gγ , (gκ−1)

α
∏

i di,xi

)
= F (sk, x)

and output
(
F (sk, x), P (sk, x)

)
.

5.2 Properties

Provability. When
(
pk = (G, A, C, {Di,β}), sk

)
←$ Setup(1λ, 1n, 1�) then from

the definition of F and P it follows that for all x ∈ {0, 1}n: e
(
g, P (sk, x)

)
=

e
(
A,D(x)

)
and e
(
C,P (sk, x)

)
= F (sk, x).

Moreover, given a constrained key skf derived from sk for a depth-� circuit f
and x ∈ {0, 1}n with f(x) = 1, we see that when running the Prove algorithm,
the value computed for every depth-j gate w for which fw(x) = 1 is Pw =

(gn+j−1)
rw

∏
i∈[n] di,xi . Since the value rn+q for the output gate was defined as

rn+q := α, Prove outputs (gn+�−1)
α
∏

i∈[n] di,xi = P (sk, x) and e
(
C,P (sk, x)

)
=

F (sk, x), which are the values that satisfy verification.

Uniqueness. Consider a public key pk that consists of G = (G1, . . . ,Gn+�),
A ∈ G�, C ∈ G1 and {Di,β}i∈[n], β∈{0,1} ∈ G 2n

1 , a value x ∈ {0, 1}n and values

Constrained Verifiable Random Functions 109

(y0, π0), (y1, π1) ∈ Gn+� × Gn+�−1 that satisfy Verify(pk, x, yβ , πβ) = 1, for β ∈
{0, 1}. It suffices to show that y0 = y1.

Let α, γ, di,β ∈ Zp be such that A = g α
� , C = gγ and Di,β = gdi,β for

i ∈ [n], β ∈ {0, 1}. The first verification equation is e(g, π) = e(A,D(x)) =

e
(
g α
� , gn

∏
i∈[n] di,xi

)
= (gn+�)

α
∏

i∈[n] di,xi , which can only be satisfied by π =

(gn+�−1)
α
∏

i∈[n] di,xi . We thus have π0 = π1 = π.
The second verification equation is y = e(C, π); so we have y0 = e(C, π0) =

e(C, π1) = y1, which proves uniqueness.

Constraint-Hiding. A secret key sk =
(
α, γ, {di,β}i∈[n], β∈{0,1}

)
∈ Z 2n+2

p and

x ∈ {0, 1}n are mapped by to P (sk, x) := (gn+�−1)
α
∏

i∈[n] di,xi . Since by prov-
ability, this is precisely the value that Prove(skf , x) outputs for any x ∈ {0, 1}n
and any key skf ∈ [Constrain(sk, f)] for any �-level circuit f with f(x) = 1, the
constraint-hiding property follows.

5.3 Proof of Pseudorandomness

Theorem 2. If there exists a PT adversary A that makes one challenge query
and breaks pseudorandomness of the above n-bit depth-� circuit-constrained VRF
with advantage ε(λ) then there exists a PT algorithm B that breaks the (n+ �)-
Multilinear Decisional Diffie-Hellman assumption with advantage 2−n · ε(λ).

Proof. The proof follows that of [BW13] closely. Consider a PT algorithm A
that wins the pseudorandomness game with advantage ε(λ). Without loss of
generality, we assume that A never queries a key for a circuit f with f(x∗) = 1
and never queries its Prove oracle on x∗ (where x∗ is the value queried to
Challenge). We construct an algorithm B that uses A to break (n+�)-MDDH.

Setup. B receives a challenge consisting of a group sequence G and values g =
g1, g

c1, . . . , gcn+�+1 and T , where T is either (gn+�)
∏

i∈[n+�+1] ci or a random group
element in Gn+�. Using the challenge, B sets up the keys as follows. It chooses
x∗ ←$ {0, 1}n and z1, . . . , zn ←$ Zp and sets

Di,β :=

{
gci if x∗i = β
gzi if x∗i �= β

for i ∈ [n], β ∈ {0, 1},

Repeatedly applying the bilinear maps, it computes A := g
cn+1···cn+�

� and sets
C := gcn+�+1. Note that this defines di,x∗

i
= ci and di,x∗

i
= zi (where x∗i de-

notes 1 − x∗i), as well as α = cn+1 · · · cn+� and γ = cn+�+1, which is dis-
tributed as in the real scheme. The parameters are set up so that we have

F (sk, x∗) = (gn+�)
α·γ

∏
i∈[n] di,x∗

i = (gn+�)
∏

i∈[n+�+1] ci . B runs A on input pk =
(G, A, C, {Di,β}i∈[n], β∈{0,1}).

Constrain Queries. SupposeA queries a private key for a circuit f . If f(x∗) = 1
then B aborts and outputs a guess b′ ← {0, 1}. Otherwise, it must compute the
key component Kw for every wire w of f . The simulation follows [BW13], who
base their technique on [GGH+13c].

110 G. Fuchsbauer

For the final gate w = n + q we have rw = α and elements of Kn+q con-
tain (g�−1)

α = (g�−1)
cn+1···cn+� , which B cannot compute. Simulating this is

thus the tricky part and is done as follows. In order to compute e.g. Kn+q,4 =
(g�−1)

α−bn+q·rB(n+q) (if the last gate is an OR gate), B sets bn+q := cn+� and
rB(n+q) := cn+1 · · · cn+�−1 (and adds some known randomness to each), so α
cancels out and B can compute Kn+q. Now rB(n+q) in level � − 1 contains
cn+1 · · · cn+�−1, which has one fewer challenge value. Applying the trick again, B
chooses the randomness of B(n+q)’s parent gates in level �−2 as cn+1 · · · cn+�−2,
and so on.

Note that since fn+q(x
∗) = f(x∗) = 0, if gate n+ q is an OR gate then both

its parents must satisfy fA(n+q)(x
∗) = fB(n+q)(x

∗) = 0 and we need to embed
challenge elements in both rB(n+q) and rA(n+q) to simulate Kn+q. On the other
hand, for an AND gate w with fw(x

∗) = 0, only one of its parent gates must
evaluate x∗ to 0, and for the cancellation trick to work, it suffices to embed
cn+1 · · · cn+depth(w)−1 in the randomness of that parent.

For every gate w at level j for which fw(x
∗) = 0, we thus set rw := cn+1 · · · cn+j

(plus some ηw ←$ Zp to make rw uniform). For the input wires we have rw :=
cn+1 + ηw, for which we can simulate Kw = grw·dw,1, since dw,1 = zw when
fw(x

∗) = x∗w = 0. Note that this does not work for wires and gates w with
fw(x

∗) = 1, for which it however suffices to compute the key elements Kw hon-
estly.

Formalizing the above, B answers a Constrain query for f = (n, q, A,B,
GateType) by computing Kw for every gate starting from the input wires:

Input wire: Suppose w ∈ [n]. If x∗w = 1 then choose rw ←$ Zp and compute the
key component

Kw := (Dw,1)
rw = grw·dw,1 .

If x∗w = 0 (in which case dw,1 = zw), we choose ηw ←$ Zp, implicitly set
rw := cn+1 + ηw and compute

Kw :=
(
gcn+1 · gηw

)zw
= grw·dw,1 .

OR gate: If GateType(w) = OR, we let j = depth(w) and again distinguish
two cases. If fw(x

∗) = 1, choose aw, bw, rw ←$ Zp and set Kw as specified by
Constrain:

Kw,1 := gaw Kw,3 := (gj−1)
rw−aw·rA(w)

Kw,2 := gbw Kw,4 := (gj−1)
rw−bw·rB(w)

(Even when rA(w) = cn+1 · · · cn+j−1 + ηA(w), one can compute (gj−1)
rA(w)

using the pairings.)

If fw(x
∗) = 0, B chooses ψw, φw, ηw ←$ Zp and implicitly sets aw := cn+j +

ψw, bw := cn+j + φw and rw := cn+1 · · · cn+j + ηw. Since fw(x
∗) = 0 implies

fA(w)(x
∗) = fB(w)(x

∗) = 0, we have rA(w) = cn+1 · · · cn+j−1 + ηA(w) and
rB(w) = cn+1 · · · cn+j−1+ηB(w). This enables B to create the key components

Constrained Verifiable Random Functions 111

as follows:

Kw,1 := gcn+j · gψw Kw,2 := gcn+j · gφw

Kw,3 := (gj−1)
ηw−cn+j·ηA(w)−ψw(cn+1···cn+j−1+ηA(w))

= (gj−1)
cn+1···cn+j+ηw−(cn+j+ψw)·(cn+1···cn+j−1+ηA(w))

= (gj−1)
rw−aw ·rA(w)

Kw,4 := (gj−1)
ηw−cn+j·ηB(w)−φw(cn+1···cn+j−1+ηB(w)) = (gj−1)

rw−bw·rB(w)

(Again, B can compute Kw,3 and Kw,4 by computing (gj−1)
cn+1···cn+j−1 via

the pairings.)

AND gate: If GateType(w) = AND, we let j = depth(w) and distinguish two
cases. If fw(x

∗) = 1 then B chooses aw, bw, rw ←$ Zp and defines Kw as
specified by Constrain:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w)−bw·rB(w)

Otherwise, choose ψw, φw, ηw ←$ Zp. Suppose fA(w)(x
∗) = 0. Then implicitly

set aw := cn+j + ψw, bw := φw and rw := cn+1 · · · cn+j + ηw. Since we have
rA(w) = cn+1 · · · cn+j−1 + ηA(w), and since (gj−1)

rB(w) is computable via the
pairings, B can compute the key components as follows:

Kw,1 := gcn+j · gψw Kw,2 := gφw

Kw,3 := (gj−1)
ηw−ψw·cn+1···cn+j−1−(cn+j+ψw)ηA(w)−φw·rB(w)

= (gj−1)
cn+1···cn+j+ηw−(cn+j+ψw)·(cn+1···cn+j−1+ηA(w))−φw·rB(w)

= (gj−1)
rw−aw·rA(w)−bw·rB(w)

If fA(w)(x
∗) = 1 then we must have fB(w)(x

∗) = 0 and B can compute the
key components as above with the roles of aw and bw swapped.

Prove Queries. Suppose A queries its Prove oracle on x. If x = x∗ then B
aborts and outputs b′ ←$ {0, 1}. Otherwise, let j be such that xj �= x∗j . Repeat-

edly applying the bilinear maps, B computes (gn−1)
∏

i∈[n]\{j} di,xi , and by raising

it to zi = di,xi , obtains H = (gn−1)
∏

i∈[n] di,xi . This suffices to compute

e(A,H) = e
(
g α
� , (gn−1)

∏
i∈[n] di,xi

)
= P (sk, x)

e(C,P (sk, x)) = e
(
gγ , (gn+�−1)

α
∏

i∈[n] di,xi
)
= F (sk, x)

Challenge Query. When A queries the challenge oracle for a value different
from x∗, B aborts and outputs a random bit b′ ←$ {0, 1}. Otherwise it returns T ,

which is either (gn+�)
∏

i∈[n+�+1] ci = (gn+�)
α·γ

∏
i∈[n] di,x∗

i = F (sk, x∗) or a random
element from Gn+�, thus perfectly simulating the experiment for pseudorandom-
ness. When A outputs a bit b′, B halts and returns b′.

112 G. Fuchsbauer

Success Probability. The probability that B wins the MDDH game is analyzed
as for the bit-fixing VRF. Let abort denote the event that B aborts during the
simulation. Since B aborts if and only if A queries its Challenge oracle on a
value different from x∗, we have Pr[abort] = 1−2−n. Moreover, if B aborts then
it outputs a random bit, thus we have Pr[B wins | abort] = 1

2 . If B does not abort
then it wins with the same probability as A (since A’s success is independent
of B guess of x∗), whose advantage is ε(λ). Thus Pr[B wins | abort] = 1

2 + ε(λ).
Together, this yields

Pr[B wins] = Pr[B wins | abort] · Pr[abort] + Pr[B wins | abort] · Pr[abort]
= 1

2 · (1− 2−n) +
(
1
2 + ε(λ)

)
· 2−n = 1

2 + 2−n · ε(λ) ,

which shows that B’s advantage in breaking (n+ �)-MDDH is 2−n · ε(λ). ��

References

[ACF13] Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: Rela-
tions to identity-based key encapsulation and new constructions. Journal
of Cryptology, 1–50 (2013)

[BB04a] Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based En-
cryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004)

[BB04b] Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 56–73. Springer, Heidelberg (2004)

[BCKL09] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-
Cash and Simulatable VRFs Revisited. In: Shacham, H., Waters, B. (eds.)
Pairing 2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009)

[BF14] Bellare, M., Fuchsbauer, G.: Policy-Based Signatures. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg
(2014)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional Signatures and Pseudoran-
dom Functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014)

[BGRV09] Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak
Verifiable Random Functions. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 558–576. Springer, Heidelberg (2009)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press (October 2012)

[BMR10] Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudoran-
dom functions with improved efficiency from the augmented cascade. In:
Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp.
131–140. ACM Press (October 2010)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–
73. ACM Press (November 1993)

Constrained Verifiable Random Functions 113

[BS02] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptogra-
phy. Contemporary Mathematics 324, 71–90 (2002),
http://eprint.iacr.org/2002/080

[BW13] Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their
Applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[CDNO97] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable Encryption.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104.
Springer, Heidelberg (1997)

[CL07] Chase, M., Lysyanskaya, A.: Simulatable VRFs with Applications to
Multi-theorem NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 303–322. Springer, Heidelberg (2007)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over
the Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[Dod03] Dodis, Y.: Efficient construction of (distributed) verifiable random func-
tions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17.
Springer, Heidelberg (2002)

[DY05] Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs
and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431.
Springer, Heidelberg (2005)

[FKPR14] Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive se-
curity of constrained prfs. Cryptology ePrint Archive, Report 2014/416
(2014), http://eprint.iacr.org/

[FS12] Fiore, D., Schröder, D.: Uniqueness Is a Different Story: Impossibility of
Verifiable Random Functions from Trapdoor Permutations. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg
(2012)

[Fuc14] Fuchsbauer, G.: Constrained verifiable random functions. Cryptology
ePrint Archive (2014), http://eprint.iacr.org/

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal
Lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (Octo-
ber 2013)

[GGH+13c] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-Based En-
cryption for Circuits from Multilinear Maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer,
Heidelberg (2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[HSW14] Hohenberger, S., Sahai, A., Waters, B.: Replacing a Random Oracle: Full
Domain Hash from Indistinguishability Obfuscation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220.
Springer, Heidelberg (2014)

[HW10] Hohenberger, S., Waters, B.: Constructing Verifiable Random Functions
with Large Input Spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 656–672. Springer, Heidelberg (2010)

http://eprint.iacr.org/2002/080
http://eprint.iacr.org/
http://eprint.iacr.org/

114 G. Fuchsbauer

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press (Novem-
ber 2013)

[Lis05] Liskov, M.: Updatable Zero-Knowledge Databases. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)

[Lys02] Lysyanskaya, A.: Unique Signatures and Verifiable Random Functions
from the DH-DDH Separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 597–612. Springer, Heidelberg (2002)

[MR01] Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg
(2001)

[MR02] Micali, S., Rivest, R.L.: Micropayments Revisited. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002)

[MRV99] Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In:
40th FOCS, pp. 120–130. IEEE Computer Society Press (October 1999)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer
Society Press (October 1997)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: 46th ACM STOC, pp. 475–484. ACM Press
(2014)

Publicly Evaluable Pseudorandom Functions

and Their Applications

Yu Chen1 and Zongyang Zhang2,3,�

1 State Key Laboratory of Information Security (SKLOIS),
Institute of Information Engineering, Chinese Academy of Sciences, China

chenyu@iie.ac.cn
2 National Institute of Advanced Industrial Science and Technology, Japan

3 Shanghai Jiao Tong University, China
zongyang.zhang@aist.go.jp

Abstract. We put forth the notion of publicly evaluable pseudorandom
functions (PEPRFs), which is a non-trivial extension of the standard
pseudorandom functions (PRFs). Briefly, PEPRFs are defined over do-
main X containing an NP language L in which the witness is hard to
extract on average, and each secret key sk is associated with a public
key pk. For any x ∈ L, in addition to evaluate Fsk(x) using sk as in
the standard PRFs, one is also able to evaluate Fsk(x) with pk, x and a
witness w for x ∈ L. We conduct a formal study of PEPRFs, focusing
on applications, constructions, and extensions. In more details:

– We show how to construct public-key encryption scheme (PKE) from
PEPRFs. The construction is simple, black-box, and admits a direct
proof of security. We provide evidence that PEPRFs exist by showing
generic constructions from both hash proof systems and extractable
hash proof systems.

– We introduce the notion of publicly samplable PRFs (PSPRFs),
which is a relaxation of PEPRFs, but nonetheless implies PKE. We
show PSPRFs are implied by trapdoor relations, yet the latter are
further implied by trapdoor functions. This helps us to unify and
clarify many PKE schemes from different paradigms and general as-
sumptions under the notion of PSPRFs.

– We propose two variants of PEPRFs. One is publicly evaluable pred-
icate PRFs, which admit a direct construction of predicate encryp-
tion. The other is publicly evaluable and verifiable functions (PEVFs),
which admit a simple construction of “hash-and-sign” signatures.

1 Introduction

Pseudorandom functions (PRFs) [18] are a fundamental concept in modern cryp-
tography. Loosely speaking, PRFs are a family of keyed functions F = {Fsk :
X → Y }sk∈SK such that: (1) it is easy to sample the functions and compute their
values, i.e., given a secret key (or seed) sk, one can efficiently evaluate Fsk(x) at

� Corresponding author.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 115–134, 2014.
c© Springer International Publishing Switzerland 2014

116 Y. Chen and Z. Zhang

all points x ∈ X ; (2) given only black-box access to the function, no probabilistic
polynomial-time (PPT) algorithm can distinguish Fsk for a randomly chosen sk
from a real random function, or equivalently, without sk no PPT algorithm can
distinguish Fsk(x) from random at all points x ∈ X .

In this work, we extend the standard PRFs to what we call publicly evaluable
PRFs, which partially fill the gap between the evaluation power with and without
secret key. In a publicly evaluable PRF, there exists an NP language L ⊆ X ,
and each secret key sk is associated with a public key pk. In addition, for any
x ∈ L, except via private evaluation with sk, one can also efficiently compute
the value of Fsk(x) via public evaluation with the corresponding public key pk
and a witness w for x ∈ L. Regarding the security requirement for PEPRFs,
we require weak pseudorandomness which ensures that no PPT adversary can
distinguish Fsk from a real random function on uniformly distributed challenge
points in L (this differs from the full pseudorandomness for PRFs in which the
challenge points are arbitrarily chosen by an adversary).

While PEPRFs are a conceptually simple extension of the standard PRFs,
they have surprisingly powerful applications beyond what is possible with stan-
dard PRFs. Most notably, as we will see shortly, they admit a simple and black-
box construction of PKE.

1.1 Motivation

PRFs have a wide range of applications in cryptography. Perhaps the most simple
application is an elegant construction of private-key encryption as follows: the
secret key sk of PRF serves as the private key; to encrypt a messagem, the sender
first chooses a random x ∈ X , and then outputs ciphertext (x,m⊕ Fsk(x)). It is
tempting to think whether PRFs might also yield public-key encryption in the
same way. However, such construction fails in the public-key setting when F is a
standard PRF. This is because without sk no PPT algorithm can evaluate Fsk(x)
(otherwise this violates the pseudorandomness of PRFs) and thus encrypting
publicly is impossible. Moreover, since PRFs and one-way functions (OWFs)
imply each other [18, 22], the implications of PRFs are inherently confined in
Minicrypt [26]. This result rules out the possibilities of constructing PKE from
PRFs in a black-box manner.

Meanwhile, most existing PKE schemes based on various concrete hardness
assumptions can be casted into several existing paradigms or general assump-
tions in the literature. In details, hash proof systems [12] encompass the PKE
schemes [11,13,30,32], extractable hash proof systems [42] encompass the PKE
schemes [6, 8, 21, 24, 28], one-way trapdoor permutations/functions encompass
the PKE schemes [37–40].1 However, the celebrated ElGamal encryption [16]
does not fit into any known paradigms or general assumptions. Motivated by
the above discussion, we find the following intriguing question:

1 The references [38, 39] actually refer to the padded version of RSA encryption and
Rabin encryption.

Publicly Evaluable Pseudorandom Functions and Their Applications 117

What kind of extension of PRFs can translate the above construction in
the private-key setting into public-key setting? Can it be used to explain
unclassified PKE schemes? Can it yield CCA-secure PKE schemes?

1.2 Our Contributions

We give positive answers to the above questions. Our main results (summarized
in Figure 1) are as follows:

– In Section 3, we introduce the notion of publicly evaluable PRFs (PEPRFs),
which contains several conceptually extensions of standard PRFs. In PEPRF,
there is an NP language L over domain X and each secret key sk is asso-
ciated with a public key pk. Moreover, for any x ∈ L, except via private
evaluation with sk, one can efficiently evaluate Fsk(x) using pk and a wit-
ness w for x ∈ L. We also formalize security notions for PEPRFs, namely
weak pseudorandomness and adaptively weak pseudorandomness.

– In Section 4, we demonstrate the power of PEPRFs by showing that they
enable the construction of private-key encryption to work in the public-key
setting, following the KEM-DEM methodology. In sketch, the public/secret
key of PEPRF serves as the public/secret key for PKE. To encrypt a message
m, a sender first samples a random x ∈ L with a witness w, then publicly
evaluates Fsk(x) from pk, x and w, and outputs a ciphertext (x,m⊕Fsk(x)).
To decrypt, a receiver simply uses sk to compute Fsk(x) privately, then re-
coversm. Such construction is simple, black-box, and admits a direct proof of
security.2 In particular, in Example 1 we show that the well-known ElGamal
PKE can be explained neatly by a weakly pseudorandom PEPRF based on
the Diffie-Hellman assumption. Interestingly, the above KEM construction
from PEPRFs is somewhat dual to that from trapdoor functions (TDFs). In
the construction from TDFs, a sender first produces a DEM key by picking

x
R←− X ,3 then generates the associated ciphertext TDFek(x); while in the

construction from PEPRFs, a sender first generates a ciphertext by picking

x
R←− X , then produces the associated DEM key Fsk(x).

– In Section 5 and Section 6, as our main result, we show that both smooth
hash proof system (HPS) and extractable hash proof system (EHPS) yield
weakly pseudorandom PEPRFs, while both smooth plus weakly universal2
HPS and all-but-one EHPS yield adaptively weakly pseudorandom PEPRFs,
respectively. This means that the works on HPS and EHPS implicitly con-
structed PEPRFs. Therefore, PEPRFs is an abstraction of the common as-
pect of the HPS and EHPS which are not formalized before. The existing

2 For simplicity, we treat PKE schemes as key encapsulation mechanisms (KEM) in
this work. It is well known that one can generically obtain a fully fledged CCA-
secure PKE by combining a CCA-secure KEM (the requirement on KEM could be
weaker [23]) and a data encapsulation mechanism (DEM) with appropriate security
properties [31,32].

3 To obtain semantic security, one should use hc(x) instead of x as the DEM key,
where hc is a hardcore predicate for the TDF.

118 Y. Chen and Z. Zhang

HPS EHPS adaptive TDF

adaptive PEPRF adaptive TDR

adaptive PSPRF

CCA-secure PKE

[42] [29]

[42]

[12]

Fig. 1. Summary of CCA-secure PKEs from paradigms and general assumptions. Here,
HPS refers to smooth plus universal2 HPS, and EHPS refers to its all-but-one variant.
The symbol→ is an implication. The bold lines and rectangles denote our contributions,
while the dashed lines denote those that are straight-forward or from previous work.
All of the constructions from general assumptions are black-box.

constructions of HPS and EHPS imply that PEPRFs are achievable under
a variety of number-theoretic assumptions.

– In Section 7, we introduce the notion of publicly samplable PRFs (PSPRFs),
which is a relaxation of PEPRFs, but nonetheless imply PKE. Of indepen-
dent interest, we redefine the notion of trapdoor relations (TDRs). We show
that injective trapdoor functions (TDFs) imply “one-to-one” TDRs, while
the latter further imply PSPRFs. This implication helps us to unify and clar-
ify more PKE schemes based on different paradigms and general assumptions
from a conceptual standpoint, and also suggests adaptive PSPRFs as a can-
didate of the weakest general assumption for CCA-secure PKE.

– In addition, we propose two variants of PEPRFs. One is publicly evalu-
able predicate PRFs, in which the secret key admits delegation for a set of
predicates. We prove the usefulness of this notion by presenting a direct con-
struction of predicate encryption from it. The other is publicly evaluable and
verifiable functions (PEVFs), which enjoy an additional promising property
named public verifiability while the best possible security degrades to being
hard to compute on average. We justify the applicability of this notion by
presenting a simple construction of “hash-and-sign” signatures from it. Due
to space limitations, we include this part in the full version of this paper [9].

1.3 Related Work

CCA-Secure PKE from General Assumptions or Paradigms. Except the
effort on constructing CCA-secure PKE from specific assumptions [20,34] or from
encryption schemes satisfying some weak security notions [4,10,14,15,25,33,35],

Publicly Evaluable Pseudorandom Functions and Their Applications 119

it is mostly of theoretical interest to build CCA-secure PKE from general as-
sumptions and paradigms. Cramer and Shoup [12] generalized their CCA-secure
PKE construction [11] to hash proof system (HPS) and used it as a paradigm
to construct CCA-secure PKE from various decisional assumptions. Kurosawa
and Desmedt [32] and Kiltz et al. [30] later improved upon the original HPS
paradigm. Peikert and Waters [37] proposed lossy trapdoor functions (LTDFs)
and showed a black-box construction of CCA-secure PKE from them. Rosen and
Segev [40] introduced correlated-product secure trapdoor functions (CP-TDFs)
and also showed a construction of CCA-secure PKE from them. Moreover, they
showed that CP-TDFs are strictly weaker than LTDFs by giving a black-box sep-
aration between them. Kiltz et al. [29] introduced (injective) adaptive trapdoor
functions (ATDFs) which are strictly weaker than both LTDFs and CP-TDFs
but suffice to imply CCA-secure PKE. Wee [42] introduced extractable hash
proof system (EHPS) and used it as a paradigm to construct CCA-secure PKE
from a variety of search assumptions. Wee also showed that both EHPS and
ATDFs imply (injective) adaptive trapdoor relations (ATDRs), which are suf-
ficient to imply CCA-secure PKE. To the best of our knowledge, ATDR is the
weakest general assumption that implies CCA-secure PKE. Very recently, Sahai
and Waters [41] successfully translated the PRF-based private-key encryption
to PKE by using punctured program technique in conjunction with indistin-
guishability obfuscation (iO). Due to the use of obfuscation, their construction
is inherently non-black-box.

Predicate PRFs. Very recently, predicate PRFs are studied in three concur-
rent and independent works, by Kiayias et al. [27] under the name of delegatable
PRFs, by Boneh and Waters [5] under the name of constrained PRFs, and by
Boyle, Goldwasser, and Ivan [7] under the name of functional PRFs. In predi-
cate PRFs, one can derive a secret key skp for a predicate p from the master
secret key msk. A secret key skp enables one to evaluate Fmsk(x) at points x
such that p(x) = 1. This natural extension turns out to be useful since it has
powerful applications out of the scope of standard PRFs, such as identity-based
key exchange, and optimal private broadcast encryption.

Witness PRFs. Independently and concurrently of our work, Zhandry [44] in-
troduces the notion of witness PRFs (WPRFs), which is similar in concept to
PEPRFs. In a nutshell, both WPRFs and PEPRFs are defined with respect to
an NP language and extend the classical PRFs with the same extra functionality,
i.e., one can publicly evaluate Fsk(x) for x ∈ L with the knowledge of the cor-
responding witness w and public key pk. The main differences between WPRFs
and our PEPRFs are as follows:

1. WPRFs can handle arbitrary NP languages, while PEPRFs are only for NP
languages whose witness is hard to extract on average.

2. WPRFs require that Fsk(x) is pseudorandom for any adversarially chosen
x ∈ X\L, while PEPRFs only require that Fsk(x) is pseudorandom for
randomly chosen x ∈ L.

120 Y. Chen and Z. Zhang

WPRFs are introduced as a weaker primitive for several obfuscation-based ap-
plications. By utilizing the reduction from any NP language to the subset-sum
problem, WPRFs can handle arbitrary NP languages. However, for applications
of WPRFs whose functionalities rely on Fsk(x) for x ∈ L, such as CCA-secure
encryption, non-interactive key exchange, and hardcore functions for any one-
way function, the underlying NP languages have to be at least hard-on-average.

This is because these applications need the indistinguishability between x
R←− L

and x
R←− X\L to argue Fsk(x) is computationally pseudorandom for x

R←− L.

2 Preliminaries and Definitions

Notations. For a distribution or random variable X , we write x
R←− X to denote

the operation of sampling a random x according toX . For a setX , we use x
R←− X

to denote the operation of sampling x uniformly at random from X , and use |X |
to denote its size. We write κ to denote the security parameter throughout
this paper, and all algorithms (including the adversary) are implicitly given κ
as input. We write poly(κ) to denote an arbitrary polynomial function in κ. We
write negl(κ) to denote an arbitrary negligible function in κ, which vanishes faster
than the inverse of any polynomial. We say a probability is overwhelming if it is
1−negl(κ), and said to be noticeable if it is 1/poly(κ). A probabilistic polynomial-
time (PPT) algorithm is a randomized algorithm that runs in time poly(κ). If
A is a randomized algorithm, we write z ← A(x1, . . . , xn; r) to indicate that A
outputs z on inputs (x1, . . . , xn) and random coins r. We will omit r and simply
write z ← A(x1, . . . , xn) when it is clear from the context. For distributions X ,
Y , we write X ≈s Y to mean that they are statistically indistinguishable.

3 Publicly Evaluable PRFs

We now give a precise definition of PEPRFs. We begin with the syntax and then
define the security.

Definition 1 (Publicly Evaluable PRFs). PEPRFs consist of five
polynomial-time algorithms as below:

– Setup(κ): on input a security parameter κ, output public parameters pp
which includes finite sets SK, PK, X , Y , a language L ⊆ X (these sets may
be parameterized by κ) and a witness set W , as well as a PEPRF family
F = {Fsk : X → Y ∪ ⊥}sk∈SK .

– KeyGen(pp): on input pp, output a secret key sk and an associated public
key pk.

– Sample(r): on input random coins r, output a random x ∈ L along with
a witness w ∈ W for x. For simplicity and without loss of generality, we

assume that x distributes uniformly over L conditioned on r
R←− R, where R

is the randomness space.

Publicly Evaluable Pseudorandom Functions and Their Applications 121

– PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈W for
x, output y ∈ Y .

– PrivEval(sk, x): on input sk and x ∈ X , output y ∈ Y ∪ ⊥.

Correctness: We require that for any pp ← Setup(κ) and any (pk, sk) ←
KeyGen(pp), it holds that:

∀x ∈ X : Fsk(x) = PrivEval(sk, x)

∀x ∈ L with witness w : Fsk(x) = PubEval(pk, x, w)

Security: Let A = (A1,A2) be an adversary against PEPRFs and define its
advantage as:

AdvA(κ) = Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣
b = b′ :

pp← Setup(κ);
(pk, sk)← KeyGen(pp);

state← AOeval(·)
1 (pp, pk);

{(x∗i , w∗
i)← Sample(r∗i), r

∗
i

R←− R}p(κ)i=1 ;
b← {0, 1};
b′ ← AOeval(·)

2 (state, {x∗i ,Oror(b, x
∗
i)}

p(κ)
i=1);

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− 1

2
,

where p(κ) is any polynomial,Oeval(x) = Fsk(x), Oror(0, x) = Fsk(x), Oror(1, x) =
H(x) (here H is chosen uniformly at random from all the functions from X to
Y)4, and A2 is not allowed to query Oeval(·) with any x∗i . We say that PEPRFs
are adaptively weakly pseudorandom if for any PPT adversary A its advantage
function AdvA(κ) is negligible in κ.5

The adaptively weak pseudorandomness captures the security against active
adversaries, who are given adaptive access to oracle Oeval(·). We also consider
weak pseudorandomness which captures the security against static adversaries,
who is not given access to oracle Oeval(·).

Remark 1. Different from the standard PRFs, PEPRFs require the existence of
an NP language L ⊆ X and a public evaluation algorithm. Due to this strength-
ening on functionality, we cannot hope to achieve full PRF security, and hence
settling for weak pseudorandomness is a natural choice.6 Note that the weak
pseudorandomness implicitly requires that in the NP language L the extraction
of witness must be hard on average. This requirement is strictly weaker than the
NP language L itself is hard on average.

4 To efficiently simulate access to a uniformly random function H from X to Y , one
may think of a process in which the adversary’s queries to Oror(1, ·) are “lazily”
answered with independently and randomly chosen elements in Y , while keeping
track of the answers so that queries made repeatedly are answered consistently.

5 The readers should not confuse with adaptive PRFs [3], where “adaptive” means
that instead of deciding the queries in advance, an adversary can adaptively make
queries to Oror(b, ·) based on previous queries.

6 In the full PRF security experiment, the input x∗
i of Oror(b, ·) are chosen by the

adversary, thus it may know the corresponding witness w∗
i and then evaluate Fsk(x

∗
i)

publicly.

122 Y. Chen and Z. Zhang

Remark 2. In some scenarios, it is more convenient to work with a definition
that slightly restricts an adversary’s power, but is equivalent to Definition 1.
That is, p(κ) is fixed to 1. Due to the existence of oracle Oeval(·), a standard
hybrid argument can show that PEPRFs secure under this restricted definition
are also secure under Definition 1. In the remainder of this paper, we will work
with this restricted definition.

Example 1. As a warm-up, we present an illustrative construction of PEPRF.
Let G be a cyclic group of prime order p with canonical generator g, and define
Fsk : G → G as xsk, where the secret key sk ∈ Zp and the public key pk =
gsk ∈ G. A natural NP language L defined over G is {x = gw : w ∈ Zp},
where the exponent w serves as a witness for x. For any x ∈ L, one can publicly
evaluate Fsk(x) via computing pkw. It is easy to verify that this PEPRF is weakly
pseudorandom assuming the DDH assumption holds in G. Looking ahead, when
applying the construction shown in Section 4 to this PEPRF, yields exactly the
plain ElGamal PKE.

A Possible Relaxation. To be completely precise, we do not necessarily require

the distribution of x induced by Sample(r) conditioned on r
R←− R is identical

or statistically close to uniform. Instead, it could be some other prescribed dis-
tribution χ. In this case, weak pseudorandomness extends naturally to χ-weak
pseudorandomness.

A Useful Generalization. In some scenarios, it is more convenient to work
with a more generalized notion in which we consider a collection of languages
{Lpk}pk∈PK indexed by public key rather than a fixed language L. Correspond-
ingly, the sampling algorithm takes pk as an extra input to sample a random
element from Lpk. We refer to such generalized notion as PEPRFs for public-
key dependent languages, and we will work with it when constructing adaptive
PEPRFs from hash proof system.

4 KEM from Publicly Evaluable PRFs

In this section, we present a simple and black-box construction of KEM from
PEPRFs. For compactness, we refer the reader to Appendix A.1 for the definition
and security notion of KEM.

– Setup(κ): run PRF.Setup(κ) to generate pp as public parameters.

– KeyGen(pp): run PRF.KeyGen(pp) to generate (pk, sk).

– Encap(pk; r): run PRF.Sample(r) to generate a random x ∈ L with a witness
w ∈ W for x, set x as the ciphertext c and compute PRF.PubEval(pk, x, w)
as the DEM key k, output (c, k).

– Decap(sk, c): output PRF.PrivEval(sk, c).

Correctness of the KEM follows directly from that of PEPRFs. For security, we
have the following results:

Publicly Evaluable Pseudorandom Functions and Their Applications 123

Theorem 1. The KEM is CPA-secure if the underlying PEPRFs are weakly
pseudorandom.

Proof. The proof is rather straightforward, which transforms an adversary A
against the IND-CPA security of KEM to a distinguisher B against the weak
pseudorandomness of PEPRFs. We proceed via a single game.

Game CPA: B receives (pp, pk) of PEPRFs, then simulates A’s challenger in
the IND-CPA experiment as follows:

Setup: B sends (pp, pk) to A.

Challenge: Upon receiving the challenge instance (x∗, y∗) from its own chal-
lenger, where (x∗, w∗)← PRF.Sample(r∗) and y∗ is either Fsk(x

∗) or randomly
picked from Y , B sends (x∗, y∗) to A as the challenge.

Guess: A outputs its guess b′ for b and B forwards b′ to its own challenger.

Clearly, A’s view in the above game is identical to that in the real IND-CPA
experiment. Thus B can break the weak pseudorandomness with advantage at
least AdvCPA

A (κ). This concludes the proof.

Theorem 2. The KEM is CCA-secure if the underlying PEPRFs are adaptively
weakly pseudorandom.

Proof. The proof is also straightforward, which transforms an adversaryA against
the IND-CCA security of KEM to a distinguisher B against the adaptively weak
pseudorandomness of PEPRFs. We proceed via a single game.

Game CCA: B receives (pp, pk) of PEPRFs, then simulates A’s challenger in
the IND-CCA experiment as follows:

Setup: B sends (pp, pk) to A.

Phase 1 - Decapsulation queries: on decapsulation query 〈x〉, B submits
evaluation query on point x to its own challenger and forwards the reply to A.

Challenge: Upon receiving the challenge instance (x∗, y∗) from its own chal-
lenger, where (x∗, w∗)← PRF.Sample(r∗) and y∗ is either Fsk(x

∗) or randomly
picked from Y , B sends (x∗, y∗) to A as the challenge.

Phase 2 - Decapsulation queries: same as in Phase 1 except that the decap-
sulation query 〈x∗〉 is not allowed.
Guess: A outputs its guess b′ for b and B forwards b′ to its own challenger.

Clearly, A’s view in the above game is identical to that in the real IND-CCA
experiment. Thus B can break the adaptively weak pseudorandomness with ad-
vantage at least AdvCCA

A (κ). This concludes the proof.

We note that the above results also hold if the underlying PEPRFs are (adap-
tively) χ-weakly pseudorandom.

5 Connection to Hash Proof System

Hash proof system (HPS) was introduced by Cramer and Shoup [12] as a
paradigm of constructing PKE from a category of decisional problems, named

124 Y. Chen and Z. Zhang

subset membership problems. As a warm up, we first recall the notion of HPS
and then show how to construct PEPRFs from it.

Hash Proof System. HPS consists of the following algorithms:

– Setup(κ): on input a security parameter κ, output public parameters pp
which include an HPS instance description (H,SK,PK,X,L,W,Π, α),
where H = {Hsk : X → Π}sk∈SK is a hash family indexed by SK, L
is a language defined over X , W is the associated witness set, and α is a
projection from SK to PK.

– KeyGen(pp): on input pp, pick sk
R←− SK, compute pk ← α(sk), output

(pk, sk).

– Sample(r): on input random coins r, output a random x ∈ L together with
a witness w.

– Sample′(r): on input random coins r, output a random x ∈ X\L.
– Priv(sk, x): on input sk and x, output π such that π = Hsk(x).

– Pub(pk, x, w): on input pk and x ∈ L together with a witness w for x, output
π such that π = Hsk(x).

HPS satisfies the following basic property:

Definition 2 (sampling indistinguishable). The two distributions induced
by Sample and Sample′ are computationally indistinguishable based on the hard-
ness of the underlying subset membership problem.

The following notions capture a rich set of properties for H on inputs x ∈ X\L.

Definition 3 (smooth). (pk,Hsk(x)) ≈s (pk, π), where (pk, sk)← KeyGen(pp),

x← Sample′(r), and π
R←− Π.

Definition 4 (universal1). For any x ∈ X\L, and any π ∈ Π, it holds that:

Pr[Hsk(x) = π | α(sk) = pk] ≤ ε

Definition 5 (universal2). For any x∗ ∈ X\L, any x /∈ L ∪ x∗, and any
π ∈ Π, it holds that:

Pr[Hsk(x) = π | Hsk(x
∗) = π∗ ∧ α(sk) = pk] ≤ ε

[12] indicated that universal2 property implies universal1 property, while [1]
further showed that universal1 property combining strong randomness extractor
implies smoothness. The universal2 property is much stronger than smoothness,
since the former is defined for all points x ∈ X\L non-equal to x∗, where the

latter is defined with respect to x
R←− X\L. In the designing of CCA-secure

PKE, the universal2 property is necessary since the input x∗ of universal2 hash
might be dependent on the target message choice of adversary. However, in the
designing of KEM, x∗ totally comes from the challenge instance of external
decisional problem, therefore, it is possible to weaken the universal2 property.
Of independent interest, we formalize weak universal2 property as follows:

Publicly Evaluable Pseudorandom Functions and Their Applications 125

Definition 6 (weak universal2). For x
∗ ← Sample′(r), any x /∈ L ∪ x∗, and

any π ∈ Π, it holds that:

Pr[Hsk(x) = π | Hsk(x
∗) = π∗ ∧ α(sk) = pk] ≤ ε

5.1 Construction from Smooth HPS

From smooth HPS, we construct weakly pseudorandom PEPRF as follows:

– Setup(κ): on input a security parameter κ, run HPS.Setup(κ) to generate
an HPS instance (H,PK, SK,X,L,Π, α), then produces public parameters
pp = (F, PK, SK,X,L, Y) for PEPRFs from it, where F = H , Y = Π . We
assume the public parameters pp of HPS and PEPRF contain essentially the
same information.

– KeyGen(pp): on input pp, output (pk, sk)← HPS.KeyGen(pp).

– Sample(r): on input r, output (x,w) ← HPS.Sample(r).

– PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈W for
x, output y ← HPS.Pub(pk, x, w).

– PrivEval(sk, x): on input sk and x ∈ X , output y ← HPS.Priv(sk, x).

The algorithm HPS.Sample′ is not used in the construction, but it is crucial to
establish the security. We have the following theorem of the above construction.

Theorem 3. If the underlying subset membership problem is hard, then the
PEPRFs from smooth HPS are weakly pseudorandom.

Due to space limitations, we defer the proof to the full version of this paper [9].

5.2 Construction from Smooth and Weak Universal2 HPS

From a smooth HPS and an associated weak universal2 HPS, we construct adap-
tively weakly pseudorandom PEPRF as follows:

– Setup(κ): on input κ, run HPS1.Setup(κ) to generate a smooth HPS instance
(H̃ , PK1, SK1, X̃, L̃, W , Π1, α1), run HPS2.Setup(κ) to generate a weak
universal2 HPS instance (Ĥ , PK2, SK2, X̃, L̃, W , Π2, α2), then build
pp = (F, PK, SK,X,L,W, Y) for PEPRFs from them, where X = X̃ ×Π2,
Y = Π1 ∪ ⊥, PK = PK1 × PK2, SK = SK1 × SK2, and L will be defined
later. We assume the two HPSs share the common sampling algorithm.

– KeyGen(pp): on input pp, run HPS1.KeyGen(pp) and HPS2.KeyGen(pp) to
get (pk1, sk1) and (pk2, sk2) respectively, output pk = (pk1, pk2), sk =
(sk1, sk2). We assume the public parameters pp of HPS and PEPRFs contain
the same information.

– Sample(pk; r): on input pk = (pk1, pk2) and random coins r, pick (x̃, w) ←
HPS1.Sample(r), compute π2 ← HPS2.Pub(pk2, x̃, w). This sampling algo-
rithm defines a collection of language L = {Lpk}pk∈PK over X = X̃ × Π2

where each Lpk = {(x̃, π2) : x̃ ∈ L̃ ∧ π2 = HPS2(pk2, x̃, w)}. Note that a

witness w for x̃ ∈ L̃ is also a witness for x = (x̃, π2) ∈ Lpk.

126 Y. Chen and Z. Zhang

– PubEval(pk, x, w): on input pk = (pk1, pk2) and an element x = (x̃, π2) ∈ Lpk

together with a witness w, output y ← HPS1.Pub(pk1, x̃, w).

– PrivEval(sk, x): on input sk = (sk1, sk2) and x = (x̃, π2), output y ←
HPS1.Priv(sk1, x̃) if π2 = HPS2.Priv(sk2, x̃) and ⊥ otherwise.

We have the following theorem of the above construction.

Theorem 4. If the underlying subset membership problem is hard, then the
PEPRFs from smooth and weak universal2 HPSs are adaptively weakly pseu-
dorandom.

Due to space limitations, we defer the proof to the full version of this paper [9].

6 Connection to Extractable Hash Proof System

Extractable hash proof system (EHPS) was introduced byWee [42] as a paradigm
of constructing PKE from search problems. In the following, we recall the notion
of EHPS and then show how to construct PEPRF from it.

Extractable Hash Proof System. EHPS consists of a tuple of algorithms
(Setup, KeyGen, KeyGen′, Pub, Priv, Ext) as below:

– Setup(κ): on input a security parameter κ, output public parameters pp
which include an EHPS instance (H,PK, SK, S, U,Π), where H is a hash
family mapping U toΠ indexed by PK. Let hc(·) : S → {0, 1}l be a hardcore
function for one-way binary relation R over S × U .

– KeyGen(pp): on input public parameters pp, output a key pair (pk, sk).

– KeyGen′(pp): on input public parameters pp, output a key pair (pk, sk′).

– Sample(r): on input random coins r, output a random tuple (s, u) ∈ R, where
s can be viewed as pre-image of u. For our purpose, we further decompose
algorithm Sample to SampLeft and SampRight. The former on input random
coins r outputs s ∈ S, while the latter on input random coins r outputs
u ∈ U . For all r ∈ R, we require that (SampLeft(r), SampRight(r)) ∈ R.

– Pub(pk, r): on input pk and r, output π = Hpk(u) where u = SampRight(r).

– Priv(sk′, u): on input sk′ and u ∈ U , output π = Hpk(u).

– Ext(sk, u, π): on input sk, u ∈ U , and π ∈ Π , output s ∈ S such that
(s, u) ∈ R if and only if π = Hpk(u).

In EHPS, KeyGen′ and Priv work in the hashing mode, which are only used to
establish security. EHPS satisfies the following property:

Definition 7 (Indistinguishable). The first outputs (namely pk) of KeyGen
and KeyGen′ are statistically indistinguishable.

All-but-One Extractable Hash Proof System. All-but-one (ABO) EHPS
is a richer abstraction of EHPS, besides algorithms (Setup, KeyGen, KeyGen′,
Pub, Priv, Ext), it has an additional algorithm Ext′.

Publicly Evaluable Pseudorandom Functions and Their Applications 127

– KeyGen′(pp, u∗): on input public parameter pp and an arbitrary u∗ ∈ U ,
output a key pair (pk, sk′).

– Ext′(sk′, u, π): on input sk′, u ∈ U such that u �= u∗, and π ∈ Π , output
s ∈ S such that (s, u) ∈ R if and only if π = Hpk(u).

In ABO EHPS, KeyGen′, Priv, and Ext′ work in the ABO hashing mode, which
are only used to establish security. ABO EHPS satisfies the following property:

Definition 8 (Indistinguishable). For any u∗ ∈ U , the first output (namely
pk) of KeyGen and KeyGen′ are statistically indistinguishable.

6.1 Construction from (All-But-One) EHPS

From (ABO) EHPS, we construct PEPRF as follows:

– Setup(κ): on input κ, run EHPS.Setup(κ) to generate an EHPS instance (H ,
PK,SK,S,U ,Π), and build public parameters pp=(F, PK, SK,X,L,W, Y)
for PEPRF from it, where X = U × Π , Y = {0, 1}l, F , L, and W will be
defined later. We assume the publicly parameters pp of PEPRF and EHPS
essentially contain the same information.

– KeyGen(pp): on input pp, output (pk, sk)← EHPS.KeyGen(pp).

– Sample(r): on input random coins r, compute u← EHPS.SampRight(r), and
π ← EHPS.Pub(pk, r), output x = (u, π) and w = r. This algorithm defines
an NP language L = {(u, π) : u ∈ U ∧ π = Hpk(u)} over X , where the
random coins r used to sample u serves as a witness for x = (u, π) ∈ L. Note
the witness set W is exactly the randomness space R used by EHPS.Sample.

– PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈W for
x, compute s← EHPS.SampLeft(w), output y ← hc(s).

– PrivEval(sk, x): on input secret key sk and parse x as (u, π), compute s ←
EHPS.Ext(sk, u, π), output y ← hc(s). This algorithm defines Fsk(x) as
hc(EHPS.Ext(sk, x)).

We have the following two theorems about the above construction.

Theorem 5. If the underlying binary relation R is one-way, then the PEPRFs
from EHPS are weakly pseudorandom.

Theorem 6. If the underlying binary relation R is one-way, then the PEPRFs
from all-but-one EHPS are adaptively weakly pseudorandom.

Due to space limitations, we defer the proofs of the two theorems to the full
version of this paper [9].

7 Publicly Samplable PRFs

In this section, we consider a functional relaxation for PEPRFs, that is, instead
of requiring the existence of NP language L over X and the publicly evaluable

128 Y. Chen and Z. Zhang

property of Fsk(x), we only require that the distribution (x,Fsk(x)) is efficiently
samplable with pk. More precisely, algorithms Sample(r) and PubEval(pk, x, w)
are replaced by algorithm PubSamp(pk; r), which on input pk and random coins
r outputs a random tuple (x, y) ∈ X × Y such that y = Fsk(x). We refer to
this relaxed notion as publicly samplable PRFs (PSPRFs). The (adaptively)
weak pseudorandomness for PSPRFs can be defined analogously. It is easy to
verify that PSPRF and KEM imply each other by viewing PSPRF.PubSamp
(resp. PSPRF.PrivEval) as KEM.Encap (resp. KEM.Decap).7 In light of this ob-
servation, we view PSPRFs as a high level interpretation of KEM, which allows
significantly simpler and modular proof of security. In what follows, we revisit
the notion of trapdoor one-way relations, and explore its relation to PSPRFs.

7.1 Trapdoor Relations

Before revisiting the notion of trapdoor relations, we first recall a closely related
notion, namely trapdoor functions (TDFs) (c.f. Appendix A.2). Briefly, TDFs
are a family of functions that are easy to compute, invert with trapdoor but hard
to invert on average without trapdoor. Most attention in the literature has focus
on injective (i.e. one-to-one) TDFs. It is well known that injective TDFs suffice
for PKE [19, 43]. Bellare et al. [2] made a careful distinction for TDFs based
on “the amount of non-injectivity”, measured by pre-image size. A (trapdoor,
one-way) function is said to have pre-image size Q(κ) (where κ is the security pa-
rameter) if the number of pre-images of any range points is at most Q(κ). They
demonstrated that Q(κ) is a crucial parameter with regarding to building PKE
out of TDFs by showing two facts: (i) OWFs imply TDFs with super-polynomial
pre-image size; (ii) TDFs with polynomial pre-image size is sufficient to imply
PKE. Kiltz et al. [29] strengthened TDFs to adaptive TDFs (ATDFs), which re-
main one-way even the adversary can adaptively access an inversion oracle. They
used injective ATDFs as a general assumption to construct CCA-secure PKE.
Wee [42] introduced trapdoor relations (TDRs) as a functionality relaxation of
injective TDFs, in which the “easy to compute” property is weakened to “easy to
sample”. Wee also showed how to construct such TDRs from EHPS. Note that
the notion of TDRs defined in [42] is inherently to be “one-to-one”, while the
TDRs yielded from EHPS are potentially to be “one-to-many”. Towards utmost
generality, we redefine the notion of TDRs as follows:

Definition 9 (Trapdoor Relations). Trapdoor relations are given by four
polynomial-time algorithms as below.

– Setup(κ): on input security parameter κ, output public parameters pp which
includes finite sets EK, TD, S, U , and a binary relation family R : S × U
indexed by EK, which will be defined by PubSamp as below.

– TrapGen(pp): on input pp, output (ek, td) ∈ EK × TD.

7 Without loss of generality, we assume KEM.Decap is deterministic. We note that
there do exist probabilistic decapsulation algorithms which implement “implicit re-
jection” strategy [31]. In that case, we can view KEM.Decap as randomized PSPRFs.

Publicly Evaluable Pseudorandom Functions and Their Applications 129

– PubSamp(ek; r): on input ek and random coins r, output a tuple (s, u) ∈
S × U . Implicitly, this gives us the relation Rek = {(s, u) : ∃r s.t. (s, u) =
PubSamp(ek; r)}. We extend the distinction of non-injectivity for functions
to the setting of binary relations. Hereafter, for every element u ∈ U we
define Su = {s : (s, u) ∈ Rek}; for every element s ∈ S we define Us = {u :
(s, u) ∈ Rek}. Let Q(κ) = max(|Su|u∈U) and P (κ) = max(|Us|s∈S). We say
a binary relation R : S×U is “many-to-one” if Q(κ) > 1 and P (κ) = 1; say
it is “one-to-many” if P (κ) > 1 and Q(κ) = 1; say it is “many-to-many” if
Q(κ) > 1 and P (κ) > 1; say it is “one-to-one” if Q(κ) = P (κ) = 1.

– TdInv(td, u): on input td and u ∈ U , output s ∈ S or a distinguished symbol
⊥ indicating u is not well-defined with respect to td.8

Correctness:We require that for any pp← Setup(κ) any (ek, td)← KeyGen(pp),
and any (s, u) ∈ Rek, it holds that: Pr[(TdInv(td, u), u) ∈ Rek] = 1.

Adaptive One-Wayness: Let A = (A1,A2) be an inverter against TDRs and
define its advantage as:

AdvA(κ) = Pr

⎡⎢⎢⎢⎢⎣(s, u∗) ∈ Rek :

pp← Setup(κ);
(ek, td)← TrapGen(pp);

state← AOinv(·)
1 (pp, ek);

(s∗, u∗)← PubSamp(ek);

s← AOinv(·)
2 (state, u∗)

⎤⎥⎥⎥⎥⎦ ,

where Oinv(y) = TdInv(td, y), and A2 is not allowed to query Oinv(·) for the
challenge u∗. We say TDRs are adaptively one-way (or simply adaptively) if for
any PPT inverter its advantage is negligible in κ. The standard one-wayness can
be defined similarly except that the adversary is not given access to Oinv(·).

Construction from TDFs. It is easy to see that TDFs imply TDRs. TDRs
can be constructed from TDFs as below:

– Setup(κ): run TDF.Setup(κ) to generate public parameters pp, set S = X ,
U = Y .

– KeyGen(κ): run TDF.TrapGen(pp) to generate (ek, td).

– PubSamp(ek; r): run TDF.SampleDom(r) to sample a random element s ∈ S,
compute u← TDF.Eval(ek, s), then output (s, u).

– TdInv(td, u): output TDF.TdInv(td, u).

The correctness and security of the above construction follows immediately from
that of TDFs. We omit the details here for triviality. Obviously, the resulting
TDR is “many-to-one” (resp. “one-to-one”) if the underlying TDF is “many-to-
one” (injective).

8 We say u is well-defined with respect to td if there exists ek and random coins r1, r2
such that (ek, td) = KeyGen(pp; r1) and (s, u) = PubSamp(ek; r2).

130 Y. Chen and Z. Zhang

7.2 Publicly Samplable PRFs from TDRs

Construction from TDRs. We show a simple construction of PSPRFs from
“one-to-many” or “one-to-one” TDRs. Let hc : S → {0, 1}l be a hardcore func-
tion for TDRs, we construct PSPRFs from U to {0, 1}l ∪ ⊥ as follows:

– Setup(κ): on input a security parameter κ, run TDR.Setup(κ) to generate
public parameters pp.

– KeyGen(pp): on input pp, compute (ek, td)← TDR.TrapGen(pp), set pk = ek
and sk = td, output (pk, sk).

– PubSamp(pk; r): on input public key pk and random coins r, compute (s, u)←
TDR.PubSamp(pk; r), output (u, hc(s)).

– PrivEval(sk, u): on input sk and u, compute s← TDR.TdInv(sk, u), if s = ⊥
output ⊥, else output hc(s).

The correctness of the above construction is easy to verify. For the security, we
have the following result:

Theorem 7. The resulting PSPRFs are (adaptively) weakly pseudorandom if
the underlying TDRs are (adaptively) one-way.

We omit the proof for its straightforwardness. The above result indicates
that adaptive PSPRFs are implied by adaptive TDFs. By the separation result
due to Gertner, Malkin, and Reingold [17] that it is impossible of basing TDFs
on trapdoor predicates, as well as the equivalence among trapdoor predicates,
CPA-secure PKEs and PSPRFs, we conclude that PSPRFs are strictly weaker
than TDFs in a black-box sense. We conjecture that a similar separation result
also exists between adaptive PSPRFs and ATDFs. Besides, whether adaptive
PSPRFs are strictly weaker than general ATDRs is also unclear to us. We left
this as an open problem.

Acknowledgment. We are grateful to Yi Deng, Qiong Huang, and Dennis
Hofheinz for helpful discussions and advice. We also thank the SCN 2014 re-
viewers for many useful comments.

The first author is supported by the National Natural Science Foundation of
China under Grant No. 61303257, No. 61379141, the IIE’s Cryptography Re-
search Project, the Strategic Priority Research Program of CAS under Grant
No. XDA06010701, and the National 973 Program of China under Grant No.
2011CB302400. The second author is an International Research Fellow of JSPS
and supported by the National Natural Science Foundation of China under Grant
No. 61303201.

References

1. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

Publicly Evaluable Pseudorandom Functions and Their Applications 131

2. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998)

3. Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom functions.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 357–368. Springer, Heidelberg
(2012)

4. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computation 36(5), 1301–1328 (2007)

5. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013)

6. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: CCS 2005, pp. 320–329. ACM (2005)

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

8. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
J. Cryptology 22(4), 470–504 (2009)

9. Chen, Y., Zhang, Z.: Publicly evaluable pseudorandom functions and their appli-
cations. Cryptology ePrint Archive, Report 2014/306 (2014),
http://eprint.iacr.org/2014/306

10. Cramer, R., Hofheinz, D., Kiltz, E.: A twist on the naor-yung paradigm and its
application to efficient cca-secure encryption from hard search problems. In: Mic-
ciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 146–164. Springer, Heidelberg
(2010)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167–226 (2003)

14. Dachman-Soled, D.: A black-box construction of a cca2 encryption scheme from
a plaintext aware encryption scheme. IACR Cryptology ePrint Archive 2013, 680
(2013)

15. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

16. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

17. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, pp. 126–135. IEEE Computer Society (2001)

18. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

20. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational diffie-hellman assumption. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)

http://eprint.iacr.org/2014/306

132 Y. Chen and Z. Zhang

21. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key
encryption from computational diffie-hellman in the standard model. In: Public
Key Cryptography - PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer (2010)

22. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

23. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

24. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

25. Hohenberger, S., Lewko, A.B., Waters, B.: Detecting dangerous queries: A new
approach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

26. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, STOC 1989, pp. 44–61. ACM (1989)

27. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2013, pp. 669–684. ACM (2013)

28. Kiltz, E.: On the limitations of the spread of an ibe-to-pke transformation. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 274–289. Springer, Heidelberg (2006)

29. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010)

30. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2009)

31. Kiltz, E., Vahlis, Y.: Cca2 secure ibe: Standard model efficiency through authenti-
cated symmetric encryption. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 221–238. Springer, Heidelberg (2008)

32. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

33. Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer,
Heidelberg (2013)

34. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via point obfuscation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 95–120. Springer, Heidelberg
(2014)

35. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proceedings of the 22th Annual ACM Symposium on Theory
of Computing, STOC 1990, pp. 427–437. ACM (1990)

36. Peikert, C.: Lattice cryptography for the internet. IACR Cryptology ePrint
Archive, Report 2014/070 (2014), http://eprint.iacr.org/2014/070

37. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC
2008, pp. 187–196. ACM (2008)

38. Rabin, M.: Probabilistic algorithms in finite fields. SIAM Journal on Computa-
tion 9, 273–280 (1981)

http://eprint.iacr.org/2014/070

Publicly Evaluable Pseudorandom Functions and Their Applications 133

39. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

40. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J.
Comput. 39(7), 3058–3088 (2010)

41. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Symposium on Theory of Computing, STOC 2014, pp.
475–484. ACM Press, New York (2014)

42. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

43. Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract).
In: FOCS, pp. 80–91. IEEE Computer Society Press (1982)

44. Zhandry, M.: How to avoid obfuscation using witness prfs. IACR Cryptology ePrint
Archive, Report 2014/301 (2014), http://eprint.iacr.org/2014/301

A Review of Standard Definitions

A.1 Key Encapsulation Mechanism

Following the treatment of [36], we equip key encapsulation mechanism (KEM)
with an explicit setup algorithm run by a trusted party, which generates some
global public parameters shared by all parties. If no trusted party is available,
then the setup algorithm can be run by individual parties as part of key gener-
ation algorithm, and the public parameters are included in the resulting public
key. Formally, a KEM consists of four polynomial-time algorithms:

– Setup(κ): on input security parameters κ, output public parameters pp. We
assume that pp also includes the descriptions of ciphertext space C and DEM
(data encapsulation mechanism) key space K. pp will be used as an implicit
input for algorithms Encap and Decap.

– KeyGen(pp): on input pp, output a public/secret key pair (pk, sk).

– Encap(pk): on input public key pk, output a ciphertext c and a DEM key
k ∈ K.

– Decap(sk, c): on input secret key sk and a ciphertext c ∈ C, output a DEM
key k or a reject symbol ⊥ indicating c is invalid.

Correctness:We require that for any pp← Setup(κ), any (pk, sk)← KeyGen(pp),
and any (c, k)← Encap(pk), it holds that: Pr[Decap(sk, c) = k] = 1.

Security: Let A = (A1,A2) be an adversary against KEM and define its ad-
vantage as:

AdvA(κ) = Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣
b = b′ :

pp← Setup(κ);
(pk, sk)← KeyGen(pp);

state← AOdec(·)
1 (pp, pk);

(c∗, k∗0)← Encap(pk), k∗1
R←− K;

b
R←− {0, 1};

b′ ← AOdec(·)
2 (state, c∗, k∗b);

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− 1

2
,

http://eprint.iacr.org/2014/301

134 Y. Chen and Z. Zhang

where Odec(c) = Decap(sk, c), and A2 is not allowed to query Odec(·) for the
challenge ciphertext c∗. A KEM is said to be IND-CCA secure if for any PPT
adversary A, its advantage defined as above is negligible in κ. The IND-CPA
security for KEM can be defined similarly except that the adversary is not
allowed to access Odec(·).

A.2 Trapdoor Functions

Trapdoor functions (TDFs) consists of five polynomial-time algorithms as below:

– Setup(κ): on input a security parameter κ, output public parameters pp
which includes a TDF instance description (TDF , EK, TD, X , Y), where
TDF = {TDFek : X → Y }ek∈EK .

– TrapGen(pp): on input pp, output (ek, td) ∈ EK × TD.

– SampleDom(r): on input ek and random coins r, output a random x ∈ X .

– Eval(ek, x): on input ek and x ∈ X , output TDFek(x).

– TdInv(td, y): on input td and y ∈ Y , output x ∈ X or a distinguished symbol
⊥ indicating y does not have pre-image.

Correctness: We require that for any pp ← Setup(κ), any (ek, td) ←
TrapGen(pp), and any y = Eval(ek, x), it holds that: Pr[Eval(ek,TdInv(td, y)) =
y] = 1.

Adaptive One-Wayness: Let A = (A1,A2) be an inverter against trapdoor
functions and define its advantage as:

AdvA(κ) = Pr

⎡⎢⎢⎢⎢⎣x ∈ TDF−1
ek (y

∗) :

pp← Setup(κ);
(ek, td)← TrapGen(pp);

state← AOinv(·)
1 (pp, ek);

y∗ ← Eval(ek, x∗), x∗ ← SampleDom(r∗);

x← AOinv(·)
2 (state, y∗)

⎤⎥⎥⎥⎥⎦ ,

where Oinv(y) = TdInv(td, y), and A2 is not allowed to query Oinv(·) for the
challenge y∗. We say TDFs are adaptively one-way (or simply adaptively) if for
any PPT inverter its advantage is negligible in κ. The standard one-wayness can
be defined similarly as above except that the adversary is not given access to
the inversion oracle.

On the Classification of Finite Boolean

Functions up to Fairness

Nikolaos Makriyannis

Departament de Tecnologies de la Informació i les Comunicacions
Universitat Pompeu Fabra, Spain
nikolaos.makriyannis@upf.edu

Abstract. Two parties, P1 and P2, wish to jointly compute some func-
tion f(x, y) where P1 only knows x, whereas P2 only knows y. Further-
more, and most importantly, the parties wish to reveal only what the
output suggests. Function f is said to be computable with complete fair-
ness if there exists a protocol computing f such that whenever one of
the parties obtains the correct output, then both of them do. The only
protocol known to compute functions with complete fairness is the one of
Gordon et al (STOC 2008). The functions in question are finite, Boolean,
and the output is shared by both parties. The classification of such func-
tions up to fairness may be a first step towards the classification of all
functionalities up to fairness. Recently, Asharov (TCC 2014) identifies
two families of functions that are computable with fairness using the
protocol of Gordon et al and another family for which the protocol (po-
tentially) falls short. Surprisingly, these families account for almost all
finite Boolean functions. In this paper, we expand our understanding of
what can be computed fairly with the protocol of Gordon et al. In partic-
ular, we fully describe which functions the protocol computes fairly and
which it (potentially) does not. Furthermore, we present a new class of
functions for which fair computation is outright impossible. Finally, we
confirm and expand Asharov’s observation regarding the fairness of fi-
nite Boolean functions: almost all functions f : X×Y → {0, 1} for which
|X| �= |Y | are fair, whereas almost all functions for which |X| = |Y | are
not.

Keywords: Complete Fairness, Secure Two-Party Computation.

1 Introduction

Assume that k parties wish to jointly compute some functionality on k inputs
where each party holds exactly one of the inputs. Secure Multi-Party Com-
putation explains how, given certain security requirements and under certain
assumptions, this task may be accomplished. For instance, using the standard
convention, in the presence of an adversary that is malicious (may deviate from
a protocol arbitrarily), computationally bounded, and only corrupts a strict mi-
nority of parties, it is well known [8] that for any functionality there exist pro-
tocols that guarantee at the same time, privacy - parties learn only what their

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 135–154, 2014.
c© Springer International Publishing Switzerland 2014

136 N. Makriyannis

(personal) inputs/outputs suggest, correctness - parties’ outputs are distributed
according to the prescribed functionality, independence of inputs - no party can
choose his input as a function of another party’s input, complete fairness - if a
certain party learns the correct output then all of them do. On the other hand,
if the adversary corrupts more than half of the parties, then protocols are known
to exist that satisfy the first three requirements but not the last. Whether or
not there exist protocols that guarantee complete fairness (fairness for short)
is an open problem. In fact, the problem remains open even for the case where
only two parties are involved and the functionality in question is finite, Boolean
and deterministic. The aim of the present paper is to shed some light on this
particular case: fairness of finite Boolean functions in 2PC.

It was long thought that non-trivial functions are not computable with fair-
ness. Cleve’s seminal paper [7], while not explicitly about fairness, has some
clear implications regarding the topic in question. Loosely speaking, any func-
tion that can be used for coin-tossing is not computable with fairness. This
includes, among others, the exclusive-or operation XOR : (x, y) �→ x ⊕ y. Ar-
guably, the implications of Cleve’s paper may have deterred others from pursuing
the question.

In a surprising turn of events, Gordon et al [9] showed that the folklore is
false. In particular, all finite Boolean functions f that do not contain embedded
XORs (i.e. ∃x1, y1, x2, y2 such that f(x1, y1) = f(x2, y2) �= f(x1, y2) = f(x2, y1))
are computable with fairness. These functions roughly correspond to the Mil-
lionaire’s Problem (i.e. f(x, y) = 0 ⇔ x ≥ y). The authors also show that even
certain XOR-embedded functions are fair. Using the real/ideal world paradigm,
they design a protocol (that we henceforth refer to as the GHKL-protocol) and
show that for certain functions, any real world adversary can be simulated in
the ideal model. Thus proving that in an execution of the GHKL-protocol, the
adversary cannot gain any advantage in learning the output over the honest
party. On the other hand, in [4], Asharov et al give a complete characterization
of finite Boolean functions that are not fair due to the coin-tossing criterion. In
other words, there exists a class of functions (strictly balanced functions) that
cannot be computed fairly, since the realisation of any such function yields a
completely fair coin-toss. What’s more, they show that functions that are not
in that class cannot be reduced to the coin-tossing problem, meaning that any
new negative results with respect to fairness must rely on different criteria.

Another major advancement towards characterizing all finite Boolean func-
tions up to fairness appears recently in [2]. The author shows that there exists an
extensive amount of functions that can be computed fairly using a slightly gen-
eralised version of the GHKL-protocol. Thus proving that these functions are
inherently fair. Surprisingly, the author shows that taking a random function
where players have input domains of different size will result, with overwhelm-
ing probability, in a fair function. On the flip side, Asharov shows that the
GHKL-protocol does not account for all functions whose fairness remains un-
known (In fact, almost all functions f : X × Y → {0, 1} for which |X | = |Y |).
These functions are not reducible to coin-tossing, nor are they computable with

On the Classification of Finite Boolean Functions up to Fairness 137

fairness using the GHKL-protocol, leaving the problem of determining whether
they are fair or not wide open. Finally, the author also considers asymmetric
and non-binary functions.

Preventing one party from gaining an advantage over the other seems like
a desirable security requirement for 2PC. Fairness guarantees exactly that. In
addition, apart from its obvious appeal as a security requirement, fairness is
important to the theoretical foundation of Multi-Party Computation. The char-
acterization of finite Boolean functions that are computable with fairness may
be a first step towards the classification of all functionalities up to fairness.

Our Results. In the present paper, we take another step towards characterizing
finite Boolean functions up to fairness. Ideally, we would like to find a universal
criterion to determine whether a deterministic single-output Boolean function is
computable with fairness. We remind the reader that certain functions are known
to be fair (using the GHKL-protocol) and certain functions are not (due to the
coin-tossing criterion). We contribute to both of these fronts. First, we give a
definite answer to the following question: Given a finite Boolean function f :
X×Y → {0, 1}, is f computable with fairness using the GHKL-protocol? In [2],
Asharov answers the question for three particular families of functions. We settle
the question using linear algebra. Next, we expand our knowledge of functions
which are provably unfair. We show that certain functions are reducible to the
sampling problem: P1 and P2 generate separate random bits according to some
joint probability distribution. The sampling problem is a natural generalisation
of coin-tossing and was shown not to be computable with fairness by Agrawal and
Prabhakaran [1]. Finally, by using the same argument, we confirm and expand
Asharov’s observation regarding the fairness of finite Boolean functions: almost
all functions f : X × Y → {0, 1} for which |X | �= |Y | are fair, whereas almost
all functions for which |X | = |Y | are not.

Outline of the Paper. The next section contains notation and definitions. In
particular, we introduce secure computation and the ideal model paradigm. In
Section 3 we give an informal description of the GHKL-protocol (in its gener-
alised version proposed by Asharov [2]) and a brief overview of the simulation
strategy. We conclude with a sufficient criterion for fairness, as it appears in [9].
Our contributions begin in Section 4 where we find an equivalent criterion in-
volving the linear dependence of the columns of a certain associated matrix.
Section 5 contains the classification of all functions with respect to these crite-
ria. Finally, the last section contains our negative result. We present a class of
functions for which fair computation is impossible.

2 Preliminaries

We begin with notation and definitions. Throughout the paper we focus on
functions of the form f : X × Y → {0, 1}, where X and Y are finite and ordered

138 N. Makriyannis

sets, that is X = {x1, . . . , x�} and Y = {y1, . . . , yk}. To every such function
we associate a matrix M ∈ R�×k, where Mi,j = f(xi, yj). The ith row and jth
column of M will be denoted rowi and colj , respectively. Thus,

M =

⎛⎜⎝ row1

...
row�

⎞⎟⎠ =

(
col1
∣∣ . . . ∣∣ colk).

More generally, we use capital letters for matrices (M,P, . . .). We denote the ker-
nel and image ofM by ker(M) and im(M) respectively, and its transpose byMT .
Vectors will be denoted by lower case letters (u, v, . . .) or bold letters (p,q,x, . . .).
In particular, 1� and 0� represent the all-1 and all-0 vector respectively, these
elements will also be called monochromatic. We say that pT = (p1, . . . , pk) is a
probability vector if

∑
i pi = 1 and pj ≥ 0, for every j.

Let Rk denote the real vector space of dimension k and let 〈u | v〉 = uT v denote
the standard inner product. As usual, two vectors are orthogonal if their inner
product is equal to 0. Similarly, two subsets of Rk are orthogonal if every element
of the first is orthogonal to every element of the second. Recall the fundamental
theorem of linear algebra: for a given matrix M ∈ R�×k, ker(M) and im(MT)
are orthogonal and their sum spans the entire space. Furthermore, let Iker(M)

denote the orthogonal projection of Rk onto ker(M) i.e. Iker(M) is the unique
linear map from Rk onto itself that annihilates the elements of im(MT) and
corresponds to the identity when restricted to ker(M). Finally, given a vector
space V ⊆ Rk and a k× k matrix P , we say that P defines an endomorphism of
V if Pv ∈ V , for every v ∈ V .

2.1 Two-Party Computation

Let n ∈ N denote the security parameter. A function μ(·) is negligible if it
vanishes faster than any (positive) inverse-polynomial. A distribution ensemble
X = {X(a, n)}a∈Δn,n∈N is an infinite sequence of random variables indexed by
Δn and N. Two distribution ensembles, X and Y , are computationally indistin-
guishable if for every non-uniform polynomial-time algorithm D, there exists a
negligible function μ such that for every a and n

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ μ(n).

Furthermore, we say that X and Y are statistically close if for all a and n, the
following sum is upper-bounded by a negligible function in n:

1

2
·
∑
s

|Pr[X(a, n) = s]− Pr[Y (a, n) = s]|,

where s ranges over the support of either X(a, n) or Y (a, n). We write X
c≡ Y

when the ensembles are computationally indistinguishable and X
s≡ Y when

they are statistically close.

On the Classification of Finite Boolean Functions up to Fairness 139

Let P1, P2 denote the parties. A two-party functionality F = {fn}n∈N, is
a sequence of random processes such that each fn maps pairs of inputs (one
for each party) to pairs of random variables (one for each party). The domain
of fn is denoted Xn × Yn and the output (f1

n, f
2
n). A two-party protocol π for

computing a functionality F , is a polynomial-time protocol such that on inputs
x ∈ Xn and y ∈ Yn, the joint distribution of the outputs of any honest execution
of π is statistically close to fn(x, y) = (f1

n(x, y), f
2
n(x, y)).

The Adversary. Following the usual convention, we introduce an adversary A
given auxiliary input z corrupting one of the parties. The adversary is assumed
to be malicious and computationally bounded. For a protocol π computing F ,
let (OutRealA(z),π,ViewReal

A(z),π)(x, y, n) denote the joint distribution of the honest
party’s output and the adversary’s view during an execution of π, where x and
y are the prescribed inputs and n is the security parameter.

2.2 The Ideal Model Paradigm

Let F = {fn}n∈N be a two-party functionality and let π be a protocol for
computing F . Further assume that an adversary is corrupting one of the parties.
Security in two-party computation is defined via an ideal model. Namely, we
assume that parties have access to a trusted party that performs the computation
for them, and we attempt to show that protocol π emulates this ideal scenario.
We will now describe three ideal models and give definitions of security for
each of them. The first corresponds to complete fairness which is the topic of the
present paper. Our goal is to show there exist (or not) protocols which are secure
with respect to this model. The other two are stepping stones which will help
us achieve that goal. We now describe the ideal model with complete fairness
(Figure 1).

Inputs: P1 holds 1n and x ∈ Xn, P2 holds 1n and y ∈ Yn. The adversary is given
an auxiliary input z ∈ {0, 1}∗.

Parties send inputs: The honest party sends his input to T , the corrupted party
sends a value of the adversary’s choice. Write (x′, y′) for the pair of inputs received
by T .

Trusted party performs computation: If either x′ or y′ are not in the appropri-
ate domain, then T reassigns the aberrant input to some default value. Write
(x′, y′) for the pair of inputs after (possible) reassignment. The trusted party
then chooses a random string r and computes (f1

n, f
2
n) = fn(x

′, y′; r).
Trusted party sends outputs: Party P1 receives f1

n, P2 receives f2
n.

Outputs: The honest party outputs whatever T sent him, the corrupted party out-
puts nothing and the adversary outputs a probabilistic polynomial-time function
of its view.

Fig. 1. Ideal model with complete fairness

140 N. Makriyannis

Let S be an adversary given auxiliary input z corrupting one of the par-
ties. Write (OutIM fair

S(z),f ,ViewIM fair
S(z),f)(x, y, n) for the joint distribution of the honest

party’s output and the adversary’s view, where x and y are the prescribed inputs
and n is the security parameter. We now define security with respect to the ideal
model with complete fairness.

Definition 2.1. Let π be a protocol for computing F . We say that π securely
computes F with complete fairness (or F is fair for short) if for every non-
uniform polynomial time adversary A in the real model, there exists a non-
uniform polynomial time adversary S in the ideal model such that{(

OutRealA(z),π,ViewReal
A(z),π

)(
x, y, n
)}

(x,y)∈Xn×Yn,
z∈{0,1}∗,n∈N

c≡

{(
OutIM fair

S(z),F ,ViewIM fair
S(z),F

)(
x, y, n
)}

(x,y)∈Xn×Yn,
z∈{0,1}∗,n∈N

.

In effect, showing that the above distribution ensembles are computationally
indistinguishable implies that, in the plain model, the information acquired by
the adversary together with his influence over the honest party’s output is no
worse than what can be achieved in an idealized situation. Moving on, we also
define the ideal model with abort (Figure 2) and define security with respect
to this model. We note that all functionalities are securely computable with
abort (Definition 2.2). Once again, let S be an adversary given auxiliary input z
corrupting one of the parties, and write (OutIM abort

S(z),f ,ViewIM abort
S(z),f)(x, y, n) for the

joint distribution of the honest party’s output and the adversary’s view, where
x and y are the prescribed inputs and n is the security parameter.

Definition 2.2. Let π be a protocol for computing F . We say that π securely
computes F with abort if for every non-uniform polynomial time adversary A
in the real model, there exists a non-uniform polynomial time adversary S in the
ideal model such that{(

OutRealA(z),π,ViewReal
A(z),π

)(
x, y, n
)}

(x,y)∈Xn×Yn,
z∈{0,1}∗,n∈N

c≡

{(
OutIM abort

S(z),F ,ViewIM abort
S(z),F

)(
x, y, n
)}

(x,y)∈Xn×Yn,
z∈{0,1}∗,n∈N

.

The Hybrid Model. In secure computation, the hybrid model is a tool that
allows us to break some cryptographic task into subtask and, assuming these
subtasks can be implemented securely, prove the security of the overlying task.

On the Classification of Finite Boolean Functions up to Fairness 141

Inputs: P1 holds 1n and x ∈ Xn, P2 holds 1n and y ∈ Yn. The adversary is given
an auxiliary input z ∈ {0, 1}∗.

Parties send inputs: The honest party sends his input to T , the corrupted party
sends a value of the adversary’s choice. Write (x′, y′) for the pair of inputs received
by T .

Trusted party performs computation: If either x′ or y′ are not in the appropri-
ate domain, then T reassigns the aberrant input to some default value. Write
(x′, y′) for the pair of inputs after (possible) reassignment. The trusted party
then chooses a random string r and computes (f1

n, f
2
n) = fn(x

′, y′; r).
Trusted party sends outputs: Corrupted party Pi receives f i

n from the trusted
party. The adversary then decides either to abort or continue. In the first case,
T sends ⊥ to the honest party. In the second case, P3−i receives f3−i

n .
Outputs: The honest party outputs whatever T sent him, the corrupted party out-

puts nothing and the adversary outputs a probabilistic polynomial-time function
of its view.

Fig. 2. Ideal model with abort

Let F1, . . . ,Fm and F be two-party functionalities. A protocol π for computing
F in the (F1, . . . ,Fm)-hybrid model consists in an protocol computing F that
proceed in rounds such that at any given round:

• Parties exchange information as in the real model or
• Parties invoke a trusted party computing Fi according to a specified ideal
model.

We say that π computes F securely in the (F1, . . . ,Fm)-hybrid model if for
any adversary corrupting one of the parties in the hybrid model, there exists
a simulator S in the ideal model such that the joint distribution of the adver-
sary’s view and honest party’s output is indistinguishable in both worlds. Hence,
applying the composition theorem of [6], and assuming there exists secure pro-
tocols ρ1, . . . , ρm computing F1, . . . ,Fm, protocol πρ1...ρm securely computes F ,
where πρ1...ρm is obtained by replacing ideal calls to the trusted party with the
appropriate protocols.

Reactive Functionalities. A reactive functionality G is a cryptographic task
that proceeds in several phases, where the input of one phase may depend on
the output of previous phases. With respect to the ideal model with abort, every
reactive functionality can be computed securely. Let π be a protocol for com-
puting F that does not involve any direct exchange of information between the
parties. Rather, at any given round, parties make a single call to a trusted party
computing G with abort. The composition theorem still holds, that is if the joint
distribution of the adversary’s view and honest party’s output is indistinguish-
able in the G-hybrid and ideal model with complete fairness, then protocol πρ

securely computes F with complete fairness, where ρ securely computes G with
abort. In fact, following Asharov [2], the GHKL-protocol in the next section is
defined by means of a reactive functionality.

142 N. Makriyannis

3 Computing Fair Functions

In this section, we focus on the GHKL-protocol [9], the only protocol that prov-
ably computes (certain) functions with complete fairness. We follow the descrip-
tion and generalisation proposed by Asharov in [2]. The protocol is defined in the
hybrid model where parties have access to a trusted party computing a certain
reactive functionality with abort. We give an informal description of the protocol
and a brief overview of the simulation strategy. The complete description and
simulation strategy can be found in [10] and [3], in their respective appendices.

3.1 Informal Description of the Generalised GHKL-Protocol

Let f : X×Y → {0, 1} be a finite Boolean function, suppose that the prescribed
inputs of P1, P2 are x and y respectively. The GHKL-protocol for computing f
is parametrized by three values: a real number α ∈ (0, 1), a probability vector
p ∈ R� and the security parameter n. Prior to the execution of the protocol, the
number of rounds is fixed at r = α−1 · ω(ln(n)).

• Compute Backup Outputs: P1 chooses ỹ ∈ Y according to the uniform
distribution and computes a0 = f(xi, ỹ), P2 chooses x̃ ∈ X according to
distribution p and computes b0 = f(x̃, yj).

• Preliminary Phase: Parties are instructed to send their inputs to the
trusted party. If either input is not in the correct domain, the trusted party
responds with an abort symbol to both parties and halts. Otherwise, write
(x′, y′) for the pair of inputs received by the trusted party. The trusted party
is instructed to choose an integer i∗ according to the geometric distribution
with parameter α, and constructs the following bits:
− For i = 1 . . . i∗− 1, set ai = f(x′, ỹ(i)) and bi = f(x̃(i), y′) where ỹ(i) and
x̃(i) are chosen according to the uniform distribution and distribution p,
respectively.

− For i = i∗ . . . r, set ai = bi = f(x′, y′).
• Online Phase: For i = 1 . . . r

1. P2 sends proceed to the trusted party, P1 then receives ai.
2. P1 sends proceed to the trusted party, P2 then receives bi.
If either party sends abort, then both receive ⊥ and the trusted party halts.

• Outputs: Parties are instructed to output the last ai/bi they successfully
constructed/received.

3.2 Security

In order to prove security, we need to show that any adversary in the hybrid
model can be simulated in the ideal model with complete fairness. On an intuitive
level, note that a corrupted P2 cannot affect the protocol’s fairness. No matter
what, P1 always receives the correct input first. In fact, a corrupted P2 can be
simulated regardless of the parameters, for any function (see [9] and [2]). On the
other hand, precisely because P1 receives the correct input first, an adversary

On the Classification of Finite Boolean Functions up to Fairness 143

A controlling P1 can potentially affect the protocol’s fairness. We focus on the
latter case and give an incomplete description of the simulator S in the ideal
model.

Suppose that A hands x ∈ X to S for the computation of f . The simulator
chooses a value i∗ according to the geometric distribution with parameter α.
Now, for i = 1 . . . i∗ − 1, simulator S hands ai = f(x, ỹ(i)) to A, where ỹ(i)

is chosen according to the uniform distribution. If at any point the adversary

decides to abort, S chooses x′ according to probability distribution x
(ai)
x (that

we define below), sends x′ to the trusted party, outputs whatever A outputs,
and halts. Otherwise, at i = i∗, the simulator sends x to the trusted party and
receives aout = f(x, y) which it hands to A. If A aborts, then S outputs whatever
A outputs, and halts. Finally, for i = i∗ +1 . . . r, the simulator hands aout to A.
Once again, if A aborts, then S outputs whatever A outputs, and halts.

Recall that the protocol is secure if the joint distributions of the adversary’s
view and the honest party output in the ideal and hybrid model are computa-
tionally indistinguishable. The simulation strategy boils down to the existence

of x
(a)
x that will do the trick. Using the fact that i∗ is chosen according to a

geometric distribution, it can be shown that the above simulation works if for
all a ∈ {0, 1}, for all x ∈ {x1, . . . , x�},

MT · x(a)
x = c(a)x ,

where Mi,j = f(xi, yj),

c(0)x (j)
def
=

{
pyj if f(x, yj) = 1

α·pyj

(1−α)·(1−px)
+ pyj otherwise

,

c(1)x (j)
def
=

{
α·(pyj

−1)

(1−α)·px
+ pyj if f(x, yj) = 1

pyj otherwise
,

and

(py1 , . . . , pyk
)
def
= pT ·M, (px1 , . . . , px�

)T
def
= M · (1/k, . . . , 1/k)T .

Theorem 3.1. Using the notation above, if for some probability vector p and

α ∈ (0, 1), and for all i ∈ {1, . . . , �}, there exist probability vectors x
(0)
xi ,x

(1)
xi ∈ R�

such that
MT · x(a)

xi
= c(a)xi

,

then f is computable with complete fairness using the GHKL-protocol.

Arguably, a function that does not satisfy the criteria of the above theorem
may still be computable with fairness using the GHKL-protocol. Of course, such
a claim must be accompanied by a new valid simulation strategy, since the one
described above will not work. With that in mind, and for the rest of the paper,
a function will be said to be GHKL-fair if it satisfies the hypothesis of Theorem
3.1. In other words, a function is GHKL-fair if it is computable with fairness
using the GHKL-protocol and the particular simulation strategy described above
proves it.

144 N. Makriyannis

4 Equivalent Conditions for GHKL-Fairness

The conditions of Theorem 3.1 depend heavily on parameters of the protocol,
namely α, {pxi}i and {pyj}y. A universal criterion for fairness would only depend
on the function itself. Failing that, we aim to find equivalent conditions that
are “easier” to verify. In this section, starting with the equations of Theorem
3.1, we present a new set of conditions that do not depend on α, nor {pxi}i,
but only {pyj}j and the function itself. Let f be a finite boolean function, and
assume that f is GHKL-fair i.e. for some α ∈ (0, 1) and probability vector p,

and all i ∈ {1, . . . , �}, there exist probability vectors x
(0)
xi ,x

(1)
xi ∈ R� such that

MT · x(a)
xi = c

(a)
xi . Define

x̃(0)
xi

def
=

(1− α)(1 − pxi)

α

(
x(0)
xi
− p
)
,

x̃(1)
xi

def
=

(1− α)pxi

α

(
x(1)
xi
− p
)
,

and note that
MT · x̃(a)

xi
= c̃(a)xi

, (1)

where

c̃(0)xi
(j) =

{
0 if f(xi, yj) = 1

pyj otherwise
, c̃(1)xi

(j) =

{
pyj − 1 if f(xi, yj) = 1

0 otherwise
.

Furthermore, ∑
j

x̃(a)
xi

(j) = 0 , (2)

∀j, x̃(0)
xi

(j) ∈ (1− α)(1 − pxi)

α
· [−p(j), 1− p(j)] , (3)

∀j, x̃(1)
xi

(j) ∈ (1− α)pxi

α
· [−p(j), 1− p(j)] . (4)

Conversely, if for some probability vector p and α ∈ (0, 1), and for all i, there

exist x̃
(0)
xi and x̃

(1)
xi satisfying relations (1) to (4), then we can construct x

(0)
xi and

x
(1)
xi satisfying Theorem 3.1. Specifically,

x(0)
xi

=

⎧⎨⎩
α·x̃(0)

xi

(1−α)(1−pxi
) + p if pxi �= 1

p otherwise
, x(1)

xi
=

⎧⎨⎩
α·x̃(1)

xi

(1−α)pxi
+ p if pxi �= 0

p otherwise
.

Simplifying Assumption. Probability vector p will be considered without
zero-components i.e. ∀j, p(j) �= 0. Note that, in this case, the intervals defined
in (3) and (4) grow arbitrarily as α tends to zero. Thus, we are only required to
verify relations (1) and (2). On the other hand, we claim that this simplifying

On the Classification of Finite Boolean Functions up to Fairness 145

assumption does not incur any loss of generality: If there exists a “suitable” p
with zero-entries, then we can construct another “suitable” probability vector
that is strictly positive. For further details, see Appendix A. To sum up, we
conclude with the following theorem.

Theorem 4.1. Using the notation above, function f is GHKL-fair if and only

if for some strictly positive p, and all i ∈ {1, . . . , �}, there exist x̃
(0)
xi and x̃

(1)
xi

such that
MT · x̃(a)

xi
= c̃(a)xi

and
∑
j

x̃(a)
xi

(j) = 0 .

Recall that pTM = (py1 , . . . , pyk
). Define P (M,p) = diag(py1 , . . . , pyk

) i.e. the
diagonal matrix whose components are the pyi . If no confusion arises, P (M,p)
will be denoted P . In Figure 3, we express the conditions of Theorem 4.1 with
respect to matrix P .

For all i ∈ {1, . . . , 	}, for all a ∈ {0, 1}, there exists (μ
(a)
i,1 , . . . , μ

(a)
i,�) that satisfies

1.
∑

j μ
(a)
i,j = 0,

2. (μ
(0)
i,1 , . . . , μ

(0)
i,�)M = (1T

k − rowi)P ,

3. (μ
(1)
i,1 , . . . , μ

(1)
i,�)M = rowi(P − Idk).

Fig. 3. GHKL-fairness conditions

In effect, function f is GHKL-fair if (1T
k − rowi)P and rowi(P − Idk) belong to

the image of MT and admit a suitable pre-image. Let V = {v ∈ R� |
∑

i vi = 0}.
By considering an appropriate basis of V , we note that the image of V by MT

corresponds exactly to the image of M ′T , where

M ′ =

⎛⎜⎜⎜⎝
row1

row1

...
row1

⎞⎟⎟⎟⎠−
⎛⎜⎜⎜⎝

row2

row3

...
row�

⎞⎟⎟⎟⎠ .

Furthermore, a quick analysis shows that ker(M ′)=
{
v ∈ Rk

∣∣Mv = (δ, . . . , δ)T
}
.

Going back to the conditions of Figure 3, function f is GHKL-fair if (1T
k −rowi)P

and rowi(P − Idk) belong to the image of M ′T . By orthogonality,

∀v ∈ ker(M ′),

{
(1T

k − rowi)Pv = 0

rowi(P − Idk)v = 0
,

both of which boil down to rowiPv = δ. By letting i vary, we deduce the following
Proposition.

Proposition 4.2. Function f is GHKL-fair if and only if there exists p such
that Mv =MPv, for every v ∈ ker(M ′).

146 N. Makriyannis

Already, we see that for a given p, verifying that a function f is GHKL-fair is
very easy. Take a basis of ker(M ′) and check that M(Idk − P)v = 0�, for every
element of the basis. Of course finding p is a non-trivial task, and we look into
that later on. For the remainder of the section, we show that certain functions
are not viable candidates for GHKL-fairness, regardless of the value of p.

Lemma 4.3. Assuming Mv = MPv, for every v ∈ ker(M ′), matrix P defines
an endomorphism of ker(M) as well as im(MT).

Proof. First of all, if v ∈ ker(M), then MPv =Mv = 0 and thus Pv ∈ ker(M).
On the other hand, let u ∈ im(MT) and v ∈ ker(M). Since P is diagonal,
we deduce that 〈Pu | v〉 = 〈u |Pv〉, and thus 〈Pu | v〉 = 0. Since v is arbitrary,
Pu ∈ im(MT). ��

Lemma 4.4. Suppose that Mv = MPv, for every v ∈ ker(M ′). Furthermore,
assuming it exists, let b ∈ Rk denote the unique pre-image of 1� by M that is
orthogonal to ker(M). Then, b(j) �= 0 implies colj = 1�.

Proof. We know that (Idk − P)b ∈ ker(M). Now, since P is an endomorphism
of im(MT), and thus (Idk − P)b ∈ im(MT), we deduce that (Idk − P)b = 0.
Consequently b(j) �= 0 implies Pj,j = 1, and since Pj,j = pT colj and p > 0�, we
conclude that colj = 1�. ��

Theorem 4.5. Using the notation above, f is GHKL-fair if and only if

1. no linear combination of the non-monochromatic columns of M yields 1�,
2. there exists a strictly positive p such that matrix P defines an endomorphism

of ker(M).

Proof. The second item is necessary because of Lemma 4.3. For the first item,
suppose without loss of generality that the first k′ columns contain 1� in their
linear span, and none of them is monochromatic. We show that b(j) �= 0, for some
j ∈ {1, . . . , k′}, in contradiction with Lemma 4.4. Let v = (v1, . . . , vk′ , 0, . . . , 0),
such that Mv = 1�. We know that v = b+ v′, where v′ ∈ ker(M). Consequently,
〈v | b〉 = 〈b | b〉 > 0, and we conclude that at least one of the first k′ entries of b
is non-zero.

Conversely, we show that the two conditions imply Proposition 4.2. First, since
P is an endomorphism of ker(M), then 0 = Mv = MPv, for all v ∈ ker(M). It
remains to show that Mb =MPb. Since the non-monochromatic columns of M
do not span the all-1 vector, we deduce that b(j) �= 0 if and only if coli = 1�,
and thus Pi,i = 1. Consequently, Pb = b, and thus f is GHKL-fair. It can also
be shown that neither condition is sufficient on its own. ��

5 Classification of GHKL-Fair Functions

We now present a classification of finite Boolean functions with respect to GHKL-
fairness. We subdivide functions into four families, three of which can be ac-
counted for almost immediately. First, we prove a couple of claims.

On the Classification of Finite Boolean Functions up to Fairness 147

Proposition 5.1. If f is GHKL-fair, then the same is true of 1− f .

Proof. We prove the claim by applying Proposition 4.2. Assuming that M is
the associated matrix of f , write M for the associated matrix of 1 − f . Using
the same p, assuming that Mv = MPv, for every v ∈ ker(M ′), and noting

that ker(M
′
) = ker(M ′), we conclude that Mv = M · P (M,p) · v, for every

v ∈ ker(M
′
). ��

Corollary 5.2. Suppose that f is GHKL-fair. Further assume that the first k′

columns of M are non-monochromatic. Then,
∑k′

i=1 vicoli = 0� implies∑k′

i=1 vi = 0.

Proof. If not, we obtain a contradiction with the above proposition and the first
item of Theorem 4.5. ��

Define M0/1 ∈ {0, 1}�×k′
obtained from M by deleting all monochromatic

columns. We distinguish 4 types of functions depending on the following prop-
erties of their associated matrix:

(Type 1) 1� ∈ im(M0/1) .
(Type 2) 1� /∈ im(M0/1) and ker(M0/1) = {0k′}.
(Type 3) 1� /∈ im(M0/1) and ker(M0/1) �= {0k′} and ker(M0/1) ⊆ {v |

∑
i vi = 0}.

(Type 4) 1� /∈ im(M0/1) and ker(M0/1) �= {0k′} and ker(M0/1) � {v |
∑

i vi = 0}.

Theorem 5.3. Let f be a finite Boolean function.

• If f is of type 1 or 4, then it is not GHKL-fair.
• If f is of type 2, then it is GHKL-fair.

Proof. Functions of type 1 do not satisfy the first item of Theorem 4.5. Similarly,
functions of type 4 are not in accordance with Corollary 5.2. On the other hand,
and by applying Theorem 4.5, we note that functions of type 2 and 3 do not
contain 1� in the linear span of the non-monochromatic columns. It remains
to show that there exists a strictly positive p such that matrix P defines an
endomorphism of the kernel. If f is of type 2, then columns of M that are
linearly dependent are all monochromatic. Knowing that (py1 , . . . , pyk

) = pTM ,
a quick analysis shows that matrix P defines an endomorphism of ker(M), for
any p. Finally, for functions of type 3, the existence of p depends on the linearly
dependent columns ofM0/1, and so a general rule cannot be extrapolated at this
point. ��

The theorem above confirms the findings of Asharov. Namely, in [2], the author
identifies two families of GHKL-fair functions, both of which are of type 2. On
the flip side, the author finds a family of functions for which the simulation
strategy we consider falls short. Indeed, these are type 1 functions.

148 N. Makriyannis

5.1 Finding the Probability Vector

Theorem 5.3 does not account for functions of type 3. Indeed, the existence of
p depends on the linearly dependent columns of M0/1. In the remainder of this
section, we show that the existence of p is subject to the resolution of a linear
program. We note that the program is defined in the broadest possible terms,
meaning that it’s a “one size fits all” way to find p. To illustrate, consider a
matrix M ∈ {0, 1}�×k of type 2. Construct a new matrix by concatenating a
column of M to itself. Now, M is of type 2 and thus GHKL-fair, whereas the
other is of type 3. It is easy to see however that it is also GHKL-fair, for any p.
Moving on, recall that Iker(M) denotes the orthogonal projection onto the kernel
ofM . Furthermore, for all i, let I rowi denote the diagonal matrix I rowi

j,j = rowi(j).

Theorem 5.4. Let f be a finite Boolean function of type 3. Function f is
GHKL-fair if and only if⎛⎜⎝I

ker(M) · I row1

...

Iker(M) · I row�

⎞⎟⎠MT

⎛⎜⎝r1...
r�

⎞⎟⎠ =

⎛⎜⎝0...
0

⎞⎟⎠ (5)

admits a strictly positive solution.

Proof. Let p = (r1, . . . , r�)
T . First, note that P =

∑
i riI

rowi , and that P defines
an endomorphism of ker(M) if and only if

∀j ∈ {1, . . . , �},
(∑

i

riI
rowi

)
rowT

j ∈ im(MT) . (6)

Since the matrices are all diagonal, and thus commute, we deduce that(∑
i

riI
rowi

)
rowT

j =

(∑
i

riI
rowi

)
I rowj · 1� = I rowj

(∑
i

rirow
T
i

)

= I rowj

(∑
i

rirow
T
i

)
= I rowj ·MT (r1, . . . , r�)

T .

Consequently, (6) holds if and only if (5) admits a strictly positive solution, in
which case the probability vector is obtained by normalisation. ��

5.2 Complete Fairness and GHKL-Fairness

We take a moment to discuss the relationship between complete and GHKL-
fairness. Recall that the latter depends on a specific protocol (and simulation
strategy), and constitutes a sufficient criterion for complete fairness. Let f be
a finite Boolean function and define fT : (y, x) �→ f(x, y). It might be the case
that fT is GHKL-fair, while f is not. It is easy to see however that f is indeed

On the Classification of Finite Boolean Functions up to Fairness 149

computable with complete fairness, the protocol in question being the GHKL-
protocol with the players’ roles interchanged. We conclude that for any f , if
either f or fT are GHKL-fair, then f is computable with complete fairness.

Another possibility is to consider computationally equivalent functions [9] i.e.
functions obtained by adding/deleting redundant inputs. By applying Theo-
rem 4.5 however, one can show that GHKL-fairness is preserved. In particular,
adding/deleting redundant inputs for P2 has no effect, and with a straightfor-
ward modification of the probability vector, the same can be shown for P1. In
summary, assuming a given function f is fair, if neither f nor fT is GHKL-
fair then to the best of our knowledge, there is no immediate way to design a
completely fair protocol computing f from the one of Gordon, Hazay, Katz and
Lindell.

On the other hand, assume that fair computation is impossible for a given
function f . Further assume that the function is not reducible to coin-tossing
(not strictly balanced [4]). Then we need a new argument to prove that it is
indeed unfair. In the next section, we do exactly that.

6 A Class of Unfair Functions

In this section, we present a new class of functions for which fair computation
is impossible. We begin with an example. Let f : {x1, . . . , x4} × {y1, . . . , y4} →
{0, 1} be the function with associated matrix

M =

⎛⎜⎜⎝
0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

⎞⎟⎟⎠ .

First, note that neither f nor fT are GHKL-fair, since both of them are of type
1. Assuming there exists a completely fair realization of function f , consider the
following: P1 chooses among {x1, x3, x4} with equal probability, P2 chooses y4
with probability 2/5, or one of his other inputs with probability 1/5. Players
compute f on the chosen inputs and obtain b. Define

Out1 = b, Out2 =

{
1− b if P2 chose y2

b otherwise
.

A quick analysis shows that Pr[Out1 = 1] = 1/3, Pr[Out2 = 1] = 2/5, and that
the two are equal with probability 4/5. If Out1 and Out2 were independent,
they would be equal with probability 8/15, which is not the case. Finally, it is
not hard to see that any malicious behaviour by either party does not affect the
probability distribution of the other party’s output.

In fact, we have just described a non-trivial instance of the sampling problem:
parties P1 and P2 generate bits b1 and b2, respectively, according to some joint
probability distribution. Secure sampling is said to be non-trivial if the outputs
are not independent. In [1], Agrawal and Prabhakaran show that this problem

150 N. Makriyannis

cannot be realised with complete fairness. In what follows, we demonstrate that
there exists a large class of functions that are reducible to the sampling problem,
and are thus unfair. Formally, let FSS denote the following functionality:

• Parameters. p, q ∈ [0, 1] and χ ∈ [2max(p+q−1, 0)−2pq , 2min(p, q)−2pq].
• Inputs. Empty for both parties.
• Outputs. P1 and P2 receive bits b1 and b2 ∈ {0, 1}, respectively, such that

1. Pr[b1 = 1] = p,
2. Pr[b2 = 1] = q,
3. Pr[b1 = b2] = pq + (1− p)(1− q) + χ.

Theorem 6.1. Unless χ = 0, functionality FSS is not computable with complete
fairness.

Proof. The proof is a natural generalisation of Cleve’s [7] original argument
(where p = q = 1/2) and can be found in [1]. Note that if χ = 0, then b1 and b2
are independent and FSS is trivially fair. ��

In fact, FSS is not computable with complete fairness even if we allow the
adversary to learn the honest party’s output. Formally, we augment the ideal
model with complete fairness such that after sending the outputs, the trusted
party divulges the honest party’s output to the adversary. We claim that FSS

is not securely computable in this new augmented model. The claim is true
because Cleve’s argument makes no assumption regarding the privacy of the
parties’ outputs. As a corollary, we deduce that any finite Boolean function that
can be reduced to an instance of the sampling problem is inherently unfair, even
if the adversary learns the honest party’s output.

6.1 Semi-balanced Functions

In [2], the author identifies a class of functions that are not GHKL-fair. Here,
we go one step further and show that they are inherently unfair. In particular,
they are all reducible to a (non-trivial) instance of the sampling problem.

Definition 6.2. Let f be a finite boolean function with matrix representation
M and write M for the matrix representation of 1 − f . We say that f is right
semi-balanced if

∃q ∈ Rk such that

{
Mq = 1�

Mq �= 0�

.

Similarly, f is left semi-balanced if

∃p ∈ R� such that

{
MTp = 1k

M
T
p �= 0k

.

Theorem 6.3. If f is left and right semi-balanced, then f is not computable
with complete fairness.

On the Classification of Finite Boolean Functions up to Fairness 151

We dedicate the rest of the section to the proof of Theorem 6.3. We show that
any secure protocol computing f with respect to the ideal model with complete
fairness, implies the existence of a secure protocol computing FSS with respect
to the augmented model where the adversary learns the honest party’s output.
Assuming f is left and right semi-balanced, fix q ∈ Rk, p ∈ R� such that⎧⎪⎨⎪⎩

∑
i |pi| = 1

pTM = (δ1, . . . , δ1), δ1 > 0

pTM �= (0, . . . , 0)

,

⎧⎪⎨⎪⎩
∑

i |qi| = 1

Mq = (δ2, . . . , δ2)
T , δ2 > 0

Mq �= (0, . . . , 0)T
.

Suppose that parties have access to a trusted party T computing f . Consider
protocol π in the f -hybrid model:

• Inputs: On empty inputs, P1 chooses xi with probability |pi|, P2 chooses
column yj with probability |qj |.

• Invoke Trusted Party: P1, P2 invoke the trusted party on inputs xi and
yj respectively. As per the ideal model with complete fairness (Figure 1), T
hands both parties a bit b.

• Outputs: If pi < 0, then P1 outputs 1 − b. Similarly, if qj < 0, then P2

outputs 1− b. Otherwise, parties are instructed to output b.

Define p+, q+, p−, q− such that p− = 1 − p+ =
∑

pi<0 |pi|, and q− = 1 − q+ =∑
qj<0 |qj |.

Lemma 6.4. (p+ − p−)δ2 = (q+ − q−)δ1.

Proof.

(p+ − p−)δ2 = pT (δ2, . . . , δ2)
T = pTMq

= (δ1, . . . , δ1)q = (q+ − q−)δ1 .

��

Lemma 6.5. An honest execution of π yields the following outputs:

• Pr[Out1 = 1] = δ1 + p−,
• Pr[Out2 = 1] = δ2 + q−,
• Out1 and Out2 are not independent random variables.

Proof. Write Out
(1)
2 (xi) for Pr[Out2 = 1 |x = xi], then(

Out
(1)
2 (x1), . . . ,Out

(1)
2 (x�)

)T
=
∑
qi<0

|qi|(1� − coli) +
∑
qi≥0

|qi|coli

=
∑
qi<0

|qi|1� +

k∑
i=1

qicoli

= q−1� +Mq = (q− + δ2, . . . , q
− + δ2)

T .

152 N. Makriyannis

The output of P1 is obtained in a similar fashion. Moving on, if Out1 and Out2
are independent, then they are equal with probability

(δ1 + p−)(δ2 + q−) + (−δ1 + p+)(−δ2 + q+) .

On the other hand, when the players execute π, they will agree on the output if
and only if both players flip their bits, or both players do not. Thus, Pr[Out1 =
Out2] = p−q−+p+q+. Consequently, if Out1 and Out2 are independent random
variables, we deduce that

(δ1 + p−)(δ2 + q−) + (−δ1 + p+)(−δ2 + q+) = p−q− + p+q+ ,

which boils down to 2δ1δ2 = δ1(q
+ − q−) + δ2(p

+ − p−). Now, by Lemma 6.4

and knowing that δ1, δ2 �= 0, we deduce that that δ2 =
∑

j qj and δ1 =
∑�

i=1 pi.

These in turn are equivalent to Mq = 0� and pTM = 0T
k , which we have ruled

out by assumption. Hence, we conclude that

Pr[Out1 = Out2] =

Pr[Out1 = 0]Pr[Out2 = 0] + Pr[Out1 = 1]Pr[Out2 = 1] + χ ,

for some χ �= 0. ��

It remains to show that every adversary in the f -hybrid model can be sim-
ulated in the ideal model. We briefly describe the simulation strategy for a
corrupted P1, the other case being identical. First, construct � × k matrix M̃
such that the j-th column of M̃ is equal to colj if qj > 0, and 1− colj otherwise.
Now, simulator S invokes A on the security parameter and auxiliary input z.
The adversary hands xi to S for the computation of f , and the simulator invokes
the trusted party for computing FSS . As per the augmented model with com-
plete fairness, the trusted party leaks the honest party’s output, say Out2, to S.
The simulator chooses yj according to the prescribed distribution conditioned on

M̃i,j = Out2. If qj < 0, the simulator hands 1−Out2 to A. Otherwise, S hands
Out2 to A. In any case, the simulator outputs whatever A outputs, and halts. It
is easy to see that the simulation strategy yields identical output distributions
in the hybrid and ideal world.

7 Conclusion

To conclude, we make an observation regarding the number of functions that
are either GHKL-fair or semi-balanced. A weaker version appears in [2] and the
argument is based on [13]. Take a random function f : X×Y → {0, 1} such that
|X | > |Y |. Then, with probability greater than 1 − ν(|Y |), where ν(∗) is some
negligible function, f is GHKL-fair. Intuitively, this occurs because k random
0/1-vectors of size � (with � > k) will almost surely form a linearly independent
set and yet their linear span will not contain the all-1 vector.

Similarly, take a random function f : X × Y → {0, 1} such that |X | =
|Y |. Then, with probability greater than 1 − ν(|Y |), where ν(∗) is the same

On the Classification of Finite Boolean Functions up to Fairness 153

negligible function, f is (left and right) semi-balanced. The intuition now relies
on the fact that for a random square matrixM , bothM andM are non-singular
with overwhelming probability. Putting everything together, we come to the
following conclusion: Almost all functions for which |X | �= |Y | are computable
with fairness, whereas almost all functions for which |X | = |Y | are not.

References

[1] Agrawal, S., Prabhakaran, M.: On fair exchange, fair coins and fair sampling.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
259–276. Springer, Heidelberg (2013)

[2] Asharov, G.: Towards characterizing complete fairness in secure two-party com-
putation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer,
Heidelberg (2014)

[3] Asharov, G.: Towards characterizing complete fairness in secure two-party com-
putation (extended version). Cryptology ePrint Archive, Report 2014/098 098
(2014), http://eprint.iacr.org/2014/098

[4] Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply
fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 243–262. Springer, Heidelberg (2013)

[5] Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983)

[6] Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

[7] Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: STOC 1986, pp. 364–369. ACM (1986)

[8] Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

[9] Gordon, D.S., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: STOC 2008, pp. 413–422. ACM (2008)

[10] Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure
two-party computation (extended version). Cryptology ePrint Archive, Report
2008/303 (2008), http://eprint.iacr.org/2008/303

[11] Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)

[12] Yao, A.C.: Protocols for secure computations, pp. 160–164 (1982)
[13] Ziegler, G.M.: Lectures on 0/1-polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Poly-

topes Combinatorics and Computation, DMV Seminar, pp. 1–41. Birkhauser,
Basel (2000)

A Considering Probability Vectors with
Zero-Components

Let f = {x1, . . . , x�} × {y1, . . . , yk} → {0, 1} and consider its associated matrix
M . Furthermore, fix a probability vector p ∈ R� and define k × k matrix P =
diag(py1 , . . . , pyk

) where

(py1 , . . . , pyk
) = pTM .

http://eprint.iacr.org/2014/098
http://eprint.iacr.org/2008/303

154 N. Makriyannis

Recall the alternate GHKL-fairness conditions: for all i ∈ {1, . . . , �}, for all

a ∈ {0, 1}, there exists (μ
(a)
i,1 , . . . , μ

(a)
i,�) satisfying

1.
∑

j μ
(a)
i,j = 0,

2. (μ
(0)
i,1 , . . . , μ

(0)
i,�)M = (1T

k − rowi)P with μ
(0)
i,j ≥ 0 if p(j) = 0,

3. (μ
(1)
i,1 , . . . , μ

(1)
i,�)M = rowi(P − Idk) with μ

(1)
i,j ≥ 0 if p(j) = 0.

Without loss of generality, suppose that p(1) = 0 and that the GHKL-fairness
conditions are satisfied. Then

(μ
(0)
1,1, . . . , μ

(0)
1,�)M = (1T

k − row1)P

(μ
(1)
1,1 + 1, . . . , μ

(1)
1,�)M = row1P .

Add the two expressions together:

(μ
(0)
1,1 + μ

(1)
1,1 + 1, . . . , μ

(0)
1,� + μ

(1)
1,�)M = 1T

k P = pTM .

Thus, (
μ
(0)
1,1 + μ

(1)
1,1 + 1− p(1), . . . , μ

(0)
1,� + μ

(1)
1,� − p(�)

)
M = 0 ,

and note that μ
(0)
1,1 +μ

(1)
1,1 +1−p(1) > 0. Now, define D = { j |p(j) = 0} and let

d = |D|. Using the same trick as above for every row indexed by D, deduce that
(ν1, . . . , ν�)M = 0, where

• νi = 1 +
∑

j∈D(μ
(0)
j,i + μ

(1)
j,i) > 0 if i ∈ D,

• νi = −d · p(i) +
∑

j∈D(μ
(0)
j,i + μ

(1)
j,i) if i /∈ D,

•
∑

i νi = 0.

Next, choose γ > 0 such that

−p(i) < γ · νi < 1− p(i) ,

for every i ∈ {1, . . . , �}, and define probability vector p̃ = p + γ · ν. By noting
that p̃TM = pTM = (py1 , . . . , pyk

), we conclude that function f is GHKL-fair
for a new probability vector without zero entries.

Communication-Efficient MPC

for General Adversary Structures

Joshua Lampkins1 and Rafail Ostrovsky2

1 Department of Mathematics,
University of California, Los Angeles, CA 90095

jlampkins@math.ucla.edu
2 Department of Computer Science and Department of Mathematics,

University of California, Los Angeles, CA 90095
rafail@cs.ucla.edu

Abstract. A multiparty computation (MPC) protocol allows a set of
players to compute a function of their inputs while keeping the inputs
private and at the same time securing the correctness of the output.
Most MPC protocols assume that the adversary can corrupt up to a
fixed fraction of the number of players. Hirt and Maurer initiated the
study of MPC under more general corruption patterns, in which the
adversary is allowed to corrupt any set of players in some pre-defined
collection of sets [1]. In this paper we consider this important direction
and present improved communication complexity of MPC protocols for
general adversary structures. More specifically, ours is the first uncondi-
tionally secure protocol that achieves linear communication in the size of
Monotone Span Program representing the adversary structure in the ma-
licious setting against any Q2 adversary structure, whereas all previous
protocols were at least cubic.

Keywords: Multiparty Computation, Secret Sharing, General Adver-
saries, Q2 Adversary Structures, Monotone Span Program.

1 Introduction

In a multiparty computation (MPC) protocol, it is assumed that some of the
players might collude together to attempt to determine some other player’s in-
put or to alter the output of the function. This is generally modeled as a single
adversary corrupting a subset of the players. In order for a protocol to have guar-
anteed termination for remaining honest (i.e., non-corrupted) players, one must
assume that the adversary is limited in the number of players he can corrupt.
Most MPC protocols have a simple threshold requirement on the adversary. For
instance, if the total number of players is n and the number of players corrupted
by the adversary is t, then a protocol might require t < n/3 or t < n/2.

In this paper, we consider requirements on the adversary which are more
general than just threshold requirements. If P is the set of players, then the
most general way of expressing the limitations of the adversary is to select a

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 155–174, 2014.
c© Springer International Publishing Switzerland 2014

156 J. Lampkins and R. Ostrovsky

subset A ⊂ 2P , called an adversary structure. The adversary is then allowed to
corrupt any set of players in A. This paper constructs a Multiparty Computation
protocol that is secure against a malicious, adaptive adversary whose corruption
pattern is specified by a general Q2 adversary structure1 in the information
theoretic setting with a broadcast channel.

1.1 Previous Work

The first MPC protocol for general adversaries was given in Hirt and Maurer [1].
The protocol was recursive, relying on the use of virtual processors/players and
“nesting” the virtualization. The MPC protocol for malicious Q2 adversaries
with a broadcast channel had communication complexity superpolynomial in
the size of the description of the adversary structure; the protocol was slightly
modified in Fitzi, Hirt and Maurer [2] to yield polynomial communication com-
plexity. More explicit protocols were given in Cramer, Damg̊ard and Maurer [3],
Smith and Stiglic [4], and Cramer, Damg̊ard, Dziembowski, Hirt and Rabin [5],
each paper constructing an MPC protocol based on Monotone Span Program
(MSP) secret sharing, initially developed by Karchmer and Wigderson [6]. An
MPC protocol based on a different secret sharing scheme is given in Beaver and
Wool [7], which deals with passive adversaries only.

This paper, along with [4] and [5], state the communication complexity in
terms of the size d of the smallest multiplicative MSP2 representing the adversary
structure. A separate line of work (including [1] and [2] cited above) on MPC for
general adversaries has stated the complexity in terms of the size of the set of
maximal sets in the adversary structure, |A|. These works do not rely on MSPs,
but construct fundamentally different secret sharing schemes. In [8] and [9], the
authors achieve a protocol that is cubic in |A|; in [10], the authors present a
protocol linear in |A|.

The two lines of work, those stating the complexity in terms of d and those
stating the complexity in terms of |A|, are incomparable. It is shown in [11]
how to construct an MSP with d ≤ n|A|. However, this only provides an upper
bound on d. In some instances, d can be as low as n. As a concrete example,
suppose there is an MPC protocol being run by the U.S., China, and Russia.
Each country has five servers running the protocol. We say that a country is
corrupt if at least 3 out of the 5 servers in that country are corrupt. The MPC
protocol tolerates an adversary that corrupts at most one country. In this case,

d = n = 15, whereas |A| = 3
(
5
2

)2
= 300.

In [3], the authors show that a multiplicative MSP for a given adversary
structure can be constructed from any MSP for that adversary structure; the
size of the multiplicative MSP is at most twice the size of the original MSP. Thus
requiring a multiplicative MSP instead of a general MSP makes no difference in
terms of asymptotic complexity.

1 Q2 adversary structures are defined in Sect. 3.
2 The terms MSP and multiplicative MSP are defined in Sect. 3.

Communication-Efficient MPC for General Adversary Structures 157

1.2 Our Contributions

This paper provides an MPC protocol in the setting of a malicious Q2 adversary
with a broadcast channel. We improve upon the amortized efficiency of previous
protocols for malicious, Q2 adversaries, as shown in Table 1. In examining the
table note that d is the dominating term and can be exponential in n and is
always at least n. So in addition to providing a strict improvement over previous
protocols, our result is the first MPC protocol secure against malicious and
adaptive Q2 adversaries that has communication complexity linear in d.

Table 1. Comparison of MPC protocols secure against malicious, Q2 adversaries with
a broadcast channel. Here, d is the size of the smallest MSP representing adversary
structure, n is the number of players, C is the size of the circuit, and κ is the security
parameter. Bandwidth is measured in field elements, and counts both point-to-point
communications and broadcasts.

Paper [4] [5] This Paper

Bandwidth Ω(Cκnd3) Ω(Cnd3) O(Cn2d+ n3d+ κn4 log d)

1.3 Techniques

One way of dealing with disputes is with a technique called Kudzu shares, as first
defined by Beerliová-Trub́ıniová and Hirt [12]. When one player accuses another
of lying (or other such misbehavior), they are said to be in dispute. When a
dealer distributes a secret s, the shares sent to players in dispute with the dealer
are defined to be zero. That is, instead of using a standard Shamir secret sharing,
the dealer picks a random polynomial f such that f(0) = s and f(i) = 0 for each
Pi in dispute with the dealer. Then the shares f(i) are sent to each player Pi. The
shares of the players in dispute with the dealer are called Kudzu shares. Since
the set of players in dispute with the dealer is public knowledge, every player
will know the shares sent to players in dispute with the dealer. This prevents
the recipients from lying about the shares they received later in the protocol.
The secret sharing scheme from [3] can also be adapted to implement Kudzu
shares; ours is the first MPC protocol to implement Kudzu shares with MSP
secret sharing for general adversaries.

One common technique used in verifiable secret sharing (VSS) protocols is
double sharing, in which the dealer shares the secret and then shares the shares.
This allows the players to reconstruct the secret in the presence of corrupt play-
ers. Double sharing was used in both [4] and [5]. Since the size of an MSP sharing
is d, the size of a double sharing is (at least) d2. So to achieve communication
complexity linear in d, we use another method for reconstructing. Throughout
the protocol, each sharing is a linear combination of sharings generated by (pos-
sibly) multiple players during different executions of the VSS share protocol.
So when an inconsistency is found during reconstruction in the protocol LC-
Reconstruct, the players engage in a process similar to the bisection method to

158 J. Lampkins and R. Ostrovsky

locate a single sharing for which there is an inconsistency. Then using the au-
thentication/verification tags generated when sharing that value, the players can
determine who the corrupt player is.

2 Protocol Overview

The general outline of our MPC protocol is much the same as the protocol
in [12]. The MPC protocol is divided into a preparation phase (Sect. 4.7), an
input phase (Sect. 4.8), and a computation phase (Sect. 4.9). In the preparation
phase, random sharings are generated for random gates and multiplication triples
are generated for multiplication gates (generation of multiplication triples is
described in Sect. 4.6). In the input phase, players share their inputs. In the
computation phase, the arithmetic gates are evaluated. Each phase is broken
into (roughly) n2 segments. All the gates in an individual segment are processed
in parallel. If adversarial behavior causes the processing of a segment to fail, a
new dispute is located, and the segment in repeated. Since there are n2 segments,
and since there can be no more than n2 disputes, the asymptotic complexity of
the protocol is not altered due to failed segments.

Our MPC protocol differs from that of [12] primarily in the underlying secret
sharing schemes. Whereas [12] uses a threshold secret sharing scheme, ours uses a
monotone span program secret sharing scheme for general adversaries (Sect. 4.1).
In [12], a VSS scheme is constructed from the “basic” threshold scheme by con-
structing a bivariate polynomial and using information checking protocols [13].
Using a bivariate polynomial would not be suitable for our protocol, because it
would add a d2 factor to the communication complexity. Therefore we apply in-
formation checking techniques (Sect. 4.2) to the “basic” monotone span program
secret sharing scheme to construct a VSS scheme (Sect. 4.3), which keeps the
complexity linear in d. However, this prevents us from reconstructing as in [12].
Thus we use a reconstruction protocol (given in Sect. 4.4)that uses the bisection
method (mentioned in Sect. 1.3) to locate a single sharing for which information
tags can be used to locate a corrupt player.

3 Definitions and Assumptions

Our MPC protocol is designed for a synchronous network with secure point-
to-point channels and an authenticated broadcast channel. The players are to
compute an arithmetic circuit over a finite field F of size3 |F| = 2κ. We let
cI , cM , cR, cO denote the number of input, multiplication, random, and output
gates (respectively) in the circuit. The total size of the circuit is C = cI + cM +
cR + cO. The multiplicative depth of the circuit is D.

Let n represent the number of players. We denote the player set by P =
{P1, . . . , Pn} and the adversary structure by A ⊂ 2P . Adversary structures are

3 We use a field of characteristic 2 because the information checking protocols require
an extension field of size at least d|F|, and using a base field of characteristic 2
ensures that the extension field is no more than twice the required size.

Communication-Efficient MPC for General Adversary Structures 159

monotone, meaning that if A ∈ A, then any subset of A is in A. We denote by
A the set of maximal sets in A (i.e., the set of all sets in A that are not proper
subsets of any other sets in A). An adversary structure A is said to be Q2 if no
two sets in the adversary structure cover the entire player set; that is, A is Q2
if A,B ∈ A ⇒ A ∪B �= P . Note that for threshold adversaries, the requirement
that t < n/2 is one example of a Q2 adversary structure. Our MPC protocol
is able to tolerate a malicious, adaptive adversary whose corruption pattern is
specified by a Q2 adversary structure.

We denote by Disp the set of pairs of players who are in dispute with one
another. If at any time a dispute arises between player Pi and player Pj , (i.e., one
of them says that the other is lying), the pair {Pi, Pj} is added to Disp. Since all
disputes are handled over the broadcast channel, each player has the same record
of which pairs of players are in Disp. We define Dispi = {Pj | {Pj, Pi} ∈ Disp}.
If at any time the set Dispi is no longer in A, that means that at least one
honest player has accused Pi, and therefore all players know that Pi must be
corrupt. We use the set Corr to denote the set of players known by all players
to be corrupt.

Most of the protocols in this paper use dispute control and will terminate
when one or more pairs of players are added to Disp. In this case, the protocol
terminates unsuccessfully. We handle unsuccessful termination of protocols as
in [12]. Namely, the circuit is divided into (roughly) n2 segments, and if one of the
sub-protocols terminates unsuccessfully during the computation for a segment,
that segment is started over from the beginning. A new dispute is found at each
unsuccessful termination, and since there can be at most n2 disputes, this does
not affect the asymptotic complexity of the protocol. Throughout this paper, we
will assume (without explicitly stating it) that if a sub-protocol invoked by a
parent protocol terminates unsuccessfully, then the parent protocol terminates
unsuccessfully.

Let M be a d× e matrix over F, and let a = (1, 0, 0, · · · , 0)� ∈ Fe. The triple
(F,M, a) is called a monotone span program (MSP).4 Define (x1, x2, . . . , x�)

� ∗
(y1, y2, . . . , y�)

� = (x1y1, x2y2, . . . , x�y�)
�, and suppose λ is a vector in Fd. We

call (F,M, a,λ) a multiplicative MSP if (F,M, a) is an MSP and if λ has the
property that

〈λ,Mb ∗Mb′〉 = 〈a,b〉 · 〈a,b′〉
for all b,b′ ∈ Fe. In this case, λ is called the recombination vector.

Each row of M will be labeled with an index i (1 ≤ i ≤ n), so that each
row corresponds to some player. For any nonempty subset A ⊂ {1, 2, . . . , n},
MA denotes the matrix consisting of all rows whose index is in A. For a given
adversary structure A, we say that the MSP (F,M, a) represents A if

A /∈ A ⇐⇒ a ∈ ImM�
A .

It is shown in Sect. 4.1 that the condition a ∈ ImM�
A implies that a secret

shared using M can be reconstructed from the shares of players in A.

4 The definition of MSP in [3] allows a to be any fixed vector, but it is convenient to
choose a as we have.

160 J. Lampkins and R. Ostrovsky

The size of the multiplicative MSP representing the adversary structure (mea-
sured as the number of rows in the matrix) is of prime importance in analyzing
the communication complexity of the MPC protocol, because secrets are shared
as a vector in the image of M . In [11], the authors show how to construct an
MSP of size at most n|A|, and in [3] it is shown how to construct a multiplicative
MSP from any given MSP such that the multiplicative MSP has size at most
twice that of the original MSP.

A “basic” sharing of a value w created using the MSP (as generated by the
protocol Share below) is denoted by [w]. The share of player Pi is denoted by
wi. Note that in general wi will be a vector, since it represents a portion of a
vector in the image of M , although it could be a single-element vector. This
secret sharing scheme is linear in that each player can compute a sharing of an
affine combination of already-shared secrets by performing local computations.

4 The Protocols

This section describes the MPC protocol and all sub-protocols. Due to space
constraints, proofs are deferred to the full version [14].

4.1 Secret Sharing

Our MPC protocol uses a “basic” secret sharing protocol and constructs a ver-
ifiable secret sharing (VSS) protocol by combining the basic protocol with in-
formation checking [13]. The basic secret sharing protocol—which is described
in this section—is essentially the secret sharing protocol of [3], except that it is
implemented with Kudzu shares [12]. We first review the secret sharing protocol
of [3] and then prove that this can be implemented with Kudzu shares.

Given an MSP with matrix M of size d× e as described in Sect. 3, the secret
sharing protocol of [3] proceeds as follows: The dealer with secret s picks e − 1
random values r2, . . . , re, constructing a vector s = (s, r2, r3, . . . , re). The dealer
then computes b = Ms = [s] and sends some of the entries of the vector b to
each player. It is shown in [3] how to construct multiplicative MSPs suitable for
secret sharing for any given Q2 adversary structure. The multiplicative MSP can
be constructed from any MSP for the given adversary structure, and the size of
the multiplicative MSP will be at most twice the size of the original MSP.

To implement Kudzu shares with this secret sharing scheme, we note that
the secret sharing scheme described above is perfectly private (proved in [3]). In
other words, the adversary’s view of the vector b is independent of the secret
being shared. So for a sharing b = [s] and a set A ∈ A, the dealer can construct
a sharing of zero [0] such that A’s view of [0] is the same as A’s view of [s].
Then the sharing [s] − [0] is a sharing of s with Kudzu shares, as the shares of
all players in dispute with the dealer will be zero.

Communication-Efficient MPC for General Adversary Structures 161

Protocol. Share(PD, s)

The dealer PD wants to share a secret s ∈ F. He selects random values r2, r3, . . . ,
re ∈ F, constructing a vector s = (s, r2, r3, . . . , re) ∈ Fe. The random values
r2, r3, . . . , re are chosen subject to the constraint that the shares of players in
dispute with PD must be all-zero vectors. The dealer then computes [s] = b =
Ms, where M is the MSP corresponding to A. The dealer sends bj = Mjs to
each Pj /∈ DispD (where bj is the vector of components of b corresponding to
player Pj).

For a value v ∈ F, we call the canonical sharing of v the sharing for which
r2, r3, . . . , re are all zero.

In this paper, we will represent the complexity of each protocol in a table.
The columns denote communication bandwidth, broadcast bandwidth, commu-
nication rounds, and broadcast rounds (abbreviated CB, BCB, CR, and BCR,
respectively). The two rows represent the complexity in the absence of a dispute
and the added complexity per dispute. It is assumed that the communication
and broadcast bandwidths are stated asymptotically (i.e., the big-O is not writ-
ten, but is assumed). Bandwidth is measured in field elements, so one would
have to multiply by κ to compute the bandwidth in bits.

Share CB BCB CR BCR

WithoutDispute d 0 1 0

PerDispute 0 0 0 0

Lemma 1. The protocol Share is a secret sharing scheme secure against any
malicious, adaptive adversary with Q2 adversary structure A.

We now show how reconstruction is performed on a sharing. Suppose we want
to reconstruct a secret using the shares of some set A of players satisfying A /∈ A.
Since the MSP represents A, by definition this means that a ∈ ImM�

A . So there
is some vector ωA satisfying M�

AωA = a. If [s]A represents the shares of [s] held
by players in A and s = (s, r2, . . . , re)

� represents the vector used in Share to
generate the sharing [s], then we can reconstruct the secret as

〈ωA, [s]A〉 = 〈ωA,MAs〉 = 〈M�
AωA, s〉 = 〈a, s〉 = s.

4.2 Information Checking

Information checking (IC) [13] is a scheme by which a sender can give a message
to a receiver along with some auxiliary information (authentication tags); the
sender also gives some auxiliary information (verification tags) to a verifier. This
is done such that at a later time, if there is a disagreement about what the sender
gave the receiver, the verifier can act as an “objective third party” to settle the

162 J. Lampkins and R. Ostrovsky

dispute. Information checking is used for shares distributed in the VSS protocol
so that incorrect shares can be identified during reconstruction. We ensure that
the verifier does not find out any information about the message (until a dispute
arises).

More specifically, an information checking scheme consists of two protocols,
Distribute-Tags and Check-Message. In Distribute-Tags, the sender of the message
gives authentication tags to the recipient of the message and verification tags to
the verifier. The verifier randomly selects half the her tags to send to the recipient
of the message, and the recipient checks that these correctly correspond with the
authentication tags (otherwise dispute resolution occurs). In Check-Message, the
recipient of the message forwards the message and the authentication tags to
the verifier, who then checks these against the verification tags to determine if
the message is valid.

The protocols Distribute-Tags and Check-Message that we use are variants of
those used in [12], so their explicit description is deferred to the full version [14].
The main difference is that we use an extension field G of F to allow the sender
to produce tags for messages of length at most d. Since d can be as much as
exponential in n, this is a much larger message size than that allowed in [12].

Lemma 2. The following four facts hold.

1. If Distribute-Tags succeeds and PV , PR are honest, then with overwhelm-
ing probability PV accepts the linear combination of the messages in Check-
Message.

2. If Distribute-Tags fails, then a new pair of players is added to Disp, and at
least one of the two players is corrupt.

3. If PS and PV are honest, then with overwhelming probability, PV rejects any
fake message m′ �= m in Check-Message.

4. If PS and PR are honest, then PV obtains no information about m during
the execution of Distribute-Tags (even if it fails).

The proof of this lemma and the complexities of the information checking
protocols are given in the full version [14].

4.3 Verifiable Secret Sharing

A verifiable secret sharing (VSS) scheme consists of two protocols, VSS and
VSS-Reconstruct. We use the following definition of secret sharing:

Definition 1. Consider a protocol VSS for distributing shares of a secret s and
a protocol VSS-Reconstruct for reconstructing s from the shares. We call this
pair of protocols a VSS scheme if the following properties are satisfied (with
overwhelming probability):

1. Termination: Either all honest players complete VSS, or a new dispute is
found. All honest players will complete VSS-Reconstruct.

2. Privacy: If the dealer is honest, then before executing VSS-Reconstruct, the
adversary has no information on the shared secret s.

Communication-Efficient MPC for General Adversary Structures 163

3. Correctness: Once all honest players complete VSS there is a fixed value r
such that:

3.1 If the dealer was honest throughout VSS, then r = s.

3.2 Whether or not the dealer is honest, at the end of VSS-Reconstruct the
honest players will reconstruct r.

The following protocol allows a dealer PD ∈ P − Corr to verifiably share �
values. To verify correctness, each player acts as verifier and requests a ran-
dom linear combination of these sharings (masked by a random sharing) to be
opened. If the sharing is inconsistent (meaning that it is not in the span of M),
then dispute resolution occurs. When PD shares secrets, he utilizes information
checking to produce authentication and verification tags in case a disagreement
occurs later as to what was sent.

Protocol. VSS(PD, �, s
(1), . . . , s(�))

We assume that PD ∈ P −Corr wants to share s(1), . . . , s(�). If PD ∈ Corr, then
all the sharings will be defined to be all-zero sharings.

1. Distribution

1.1 PD selects n extra random values u(1), . . . , u(n), and then invokes Share
to share {u(i)}ni=1 and {s(i)}�i=1.

1.2 For each pair PR, PV /∈ DispD such that {PR, PV } /∈ Disp, invoke
Distribute-Tags(PD, PR, PV , sR), where

sR = (s
(1)
R , . . . , s

(�)
R , u

(1)
R , . . . , u

(n)
R)

(remember that each s
(k)
R and u

(k)
R is a vector).

2. Verification

The following steps are performed in parallel for each PV /∈ DispD, who acts
as verifier.

2.1 PV choses a random vector (r1, . . . , r�) ∈ F� and broadcasts it.

2.2 Each player Pi /∈ DispD sends his share of
∑�

k=1 rk[s
(k)] + [u(V)] to PV .

2.3 If PV finds that the shares he received in the previous step (together with
the Kudzu shares) form a consistent sharing, (i.e., it is a vector in the
span of MP−Corr), then PV broadcasts (accept, PD), and the protocol
terminates. Otherwise, PV broadcasts (reject, PD).

3. Fault Localization

For the lowest player index V such that PV that broadcast “(reject, PD)”
in the previous step, then the following steps are performed.

3.1 PD broadcasts each share of
∑�

k=1 rk[s
(k)] + [u(V)]. If this sharing is

inconsistent, then PD is added to Corr and the protocol terminates.

3.2 If the protocol did not terminate in the last step, then there is a share
of some player Pi /∈ DispD that broadcast a different share than PD.

164 J. Lampkins and R. Ostrovsky

So PV broadcasts (accuse, Pi, PD, vi, vD), where vi is the value of the
share sent by Pi and vD the value sent by PD.

3.3 If Pi disagrees with the value vi broadcast by PV , then Pi broadcasts
(dispute, Pi, PV), the set {Pi, PV } is added to Disp, and the protocol
terminates.

3.4 If PD disagrees with the value vD broadcast by PV , then PD broadcasts
(dispute, PD, PV), the set {PD, PV } is added to Disp, and the protocol
terminates.

3.5 If neither Pi nor PD complained in the previous two steps, then {Pi, PD}
is added to Disp, and the protocol terminates.

VSS CB BCB CR BCR

WithoutDispute 	d+ nd+ n2κ log d n	+ n2 4 3

PerDispute 0 d 0 4

Note that this protocol can be easily modified to (verifiably) construct multi-
ple sharings of 1 ∈ F, (i.e., the multiplicative identity). We simply require that
all s(k) = 1 for all k = 1, . . . , � and u(k) = 1 for all k = 1, . . . , n, and in step 2.3,
PV checks not only that the sharing is consistent, but that it is a sharing of∑�

k=1 rk + 1; step 3.1 is similarly altered. Furthermore, in the fault localization
section, the players check not only that sharings are consistent, but that they are
sharings of the correct values. We refer to this modified protocol by VSS-One.

Lemma 3. The protocol VSS is statistically correct and perfectly private. More
explicitly:

1. If VSS terminates successfully:

1.1 With overwhelming probability, the s(1), . . . , s(�) are correctly shared.

1.2 With overwhelming probability, for each ordered triple of players
(Pi, Pj , Pk) that are not in dispute with one another,5 Pk has correct
verification tags for the shares sent from Pi to Pj.

2. If the protocol terminates with a dispute, then the dispute is new.

3. Regardless of how the protocol terminates, the adversary gains no information
on the s(1), . . . , s(�) shared by honest players.

The protocol VSS-Reconstruct, is used to reconstruct a sharing generated by a
single player. The reconstruction protocol used in the main MPC protocol (called
LC-Reconstruct) will be used to reconstruct linear combinations of sharings that
were shared by multiple dealers. Since VSS-Reconstruct is largely the same as
the reconstruction protocol in [12], using the authentication and verification tags
generated in VSS-Share, it is deferred to the full version [14].

Lemma 4. The pair VSS and VSS-Reconstruct described above constitute a VSS
scheme.

5 That is, no pair of players in the triple are in dispute with each other.

Communication-Efficient MPC for General Adversary Structures 165

4.4 Reconstructing Linear Combinations of Sharings

The following protocol is used to reconstruct linear combinations of sharings of
secrets that have been shared using VSS. It assumes that each sharing [w] is
a sum of sharings [w(1)] + · · · + [w(n)], where [w(i)] is a linear combination of
sharings shared by player Pi. Note that the protocol has some chance of failure.
However, whenever the protocol fails, a new player is added to Corr, so it can
fail only O(n) times in the entire MPC protocol.

The technique for using information checking in LC-Reconstruct is non-
standard, and deserves a bit of explanation. If the initial broadcasting of shares
of [w] is inconsistent, then the players open each [w(j)]. If [w(j)] is the first such
sharing that is inconsistent, then the players will want to use the verification
tags to determine who is lying. However, [w(j)] is a linear combination of shar-
ings that were generated with VSS. Each of these initial sharings has verification
tags, but there is no means for combining the tags to get tags for [w(j)].

So the players need to localize which of the sharings in the linear combination
[w(j)] = a1[s

(1)] + · · ·+ am[s(m)] is inconsistent. One way to do this would be to
have Pj state which player he accuses of lying and have that player broadcast
shares of each [s(k)] (or if Pj is corrupt, all players broadcast their shares of
each [s(k)]). Once this is done, the players could use the tags for whichever share
Pj claims is corrupt to determine who was lying. Although this approach would
work, it would result in an enormous communication complexity. Therefore,
instead of opening all of the [s(k)] all at once, the players use a “divide-and-
conquer” technique: Break the sum into two halves, determine which sum has
the inconsistency, break that sum in half, and so on until the players reach an
individual sharing, at which point they can use the verification tags.

Although using this bisection technique allows the players to locate an in-
dividual incorrect sharing without substantially increasing the communication
complexity, this technique adds a log C factor to the number of broadcast rounds.
It is in interesting open question whether we can achieve the same communica-
tion complexity with a lower round complexity.

Protocol. LC-Reconstruct([w])

Throughout this protocol, if a player ever refuses to send or broadcast some-
thing that the protocol requires, that player is added to Corr, and the protocol
terminates.

1. Each Pi /∈ Corr broadcasts his share wi of [w].

2. If the sharing broadcast in the previous step is consistent, then the players
reconstruct w as described in Sect. 4.1, and the protocol terminates.

3. If the sharing was inconsistent, each Pi /∈ Corr broadcasts his share w
(j)
i for

each Pj ∈ P .

166 J. Lampkins and R. Ostrovsky

4. If any player Pi broadcasted values such that his summands do not match

his sum (i.e., if wi �=
∑n

j=1 w
(j)
i), then all such players are added to Corr,

and the protocol terminates.

5. For the lowest j such that the shares of w(j) broadcast in step 3 are inconsis-
tent, one of two steps is performed: If Pj /∈ Corr proceed to step 6. Otherwise,
proceed to step 7.

6. Pj /∈ Corr
6.1 Since the shares of w(j) broadcast in step 3 are inconsistent, at least

one player broadcast an incorrect share, so Pj broadcasts (accuse, i) for
some player Pi that Pj accuses of sending an incorrect share.

6.2 Since [w(j)] is a linear combination of sharings dealt by Pj , the players
(internally) think of [w(j)] as a1[s

(1)] + · · ·+ am[s(m)], where each [s(k)]
was generated with VSS and each ak is non-zero. We arrange the s(k)’s
according to the order in which they were dealt.

6.3 From the sharings a1[s
(1)], . . . , am[s(m)], define two sharings

a1[s
(1)]+ · · ·+a�m/2[s

(�m/2)] and a�m/2+1[s
(�m/2+1)]+ · · ·+am[s(m)].

The player Pi accused in step 6.1 broadcasts his share of each of these
two sharings.

6.4 If Pi broadcast shares of summands in the previous step that do not
match up with the previously sent share of their sum, then Pi is added
to Corr, and the protocol terminates.

6.5 Player Pj broadcasts which of the sharings broadcast in step 6.3 he dis-
agrees with. If this is a single sharing ak[s

(k)], then the players proceed to
step 6.6. Otherwise, if the sharing is some sum ak1 [s

(k1)]+· · ·+ak2 [s
(k2)],

then the players return to step 6.3, but with a1[s
(1)], . . . , am[s(m)] re-

placed by ak1 [s
(k1)], . . . , ak2 [s

(k2)].

6.6 At this point, Pi has broadcast his share of ak[s
(k)], and Pj has broadcast

that he disagrees with this share. For each PV /∈ Dispj ∪ Dispi, the
players invoke Check-Message(Pi, PV , si), where si is the vector defined
in step 1.2 of the invocation of VSS in which [s(k)] was shared.

6.7 If Pi sent shares to PV in the invocation of Check-Message that do not
match with the share of ak[s

(k)], then PV broadcasts (accuse, i), and
{Pi, PV } is added to Disp.

6.8 For each PV /∈ Dispi that rejected the message sent by Pi in the invo-
cation of Check-Message, {Pi, PV } is added to Disp. For each PV that
accepted the message, {Pj , PV } is added to Disp.

6.9 At this point, all players are in dispute with either Pi or Pj . By the Q2
property of the adversary structure A, this means that one of Dispi or
Dispj is no longer in A. If Dispi /∈ A then Pi is added to Corr, and if
Dispj /∈ A, then Pj is added to Corr. Then the protocol terminates.

7. Pj ∈ Corr
7.1 Since [w(j)] is a linear combination of sharings dealt by Pj , the players

(internally) think of [w(j)] as a1[s
(1)] + · · ·+ am[s(m)], where each [s(k)]

Communication-Efficient MPC for General Adversary Structures 167

was generated with VSS and each ak is non-zero. We arrange the s(k)’s
according to the order in which they were dealt.

7.2 From the sharings a1[s
(1)], . . . , am[s(m)], define two sharings a1[s

(1)] +
· · · + a�m/2[s

(�m/2)] and a�m/2+1[s
(�m/2+1)] + · · · + am[s(m)]. Each

player not in Corr broadcasts his share of each of these two sharings.

7.3 Any player who broadcast shares of summands in the previous step that
do not match up with the previously sent share of their sum is added to
Corr, and the protocol terminates.

7.4 If the players reach this step, then one of the sharings broadcast in
step 7.2 is inconsistent. If this is a single sharing ak[s

(k)], then the players
proceed to step 7.5. Otherwise, if the sharing is some sum ak1 [s

(k1)] +
· · ·+ak2 [s

(k2)], then the players return to step 7.2, but with a1[s
(1)], . . . ,

am[s(m)] replaced by ak1 [s
(k1)], . . . , ak2 [s

(k2)].

7.5 The players invoke VSS-Reconstruct for the sharing [s(k)] decided upon in
the last execution of step 7.4 (however, they skip the initial broadcasting
of shares in VSS-Reconstruct, since shares of ak[s

(k)] have already been
broadcast).

7.6 The invocation of VSS-Reconstruct in the previous step will have added
a new player to Corr, so the protocol terminates.

LC-Reconstruct CB BCB CR BCR

WithoutDispute 0 d 0 1

PerDispute n2	+ n2κ log d n2 + nd+ d log C 2 6 + log C

Lemma 5. If [w] is a linear combination of sharings generated with VSS, then
with overwhelming probability, an invocation of LC-Reconstruct([w]) will either
reconstruct the correct value w or add a new player to Corr. Furthermore, LC-
Reconstruct does not leak any information about any sharing other than [w] to
the adversary.

4.5 Generating Random Values

The following protocol allows the players to generate a publicly known random
vector (s(1), . . . , s(�)). If the protocol fails (which occurs if one of its sub-protocols
fails), then a new dispute pair is found.

Protocol. Generate-Randomness(�)

1. Every player Pi /∈ Corr selects a random summand vector s(1,i), . . . , s(�,i).

2. Call VSS(Pi, �, s
(1,i), . . . , s(�,i)) to let every Pi /∈ Corr verifiably share his

summand vector.

168 J. Lampkins and R. Ostrovsky

3. Call LC-Reconstruct � times in parallel to reconstruct the sum sharings s(1) =∑
Pi /∈Corr s

(1,i), . . . , s(�) =
∑

Pi /∈Corr s
(�,i).

Generate-Randomness CB BCB CR BCR

WithoutDispute n	d+ n2d+ n3κ log d n2	+ n3 + d	 4 4

PerDispute n2	+ n2κ log d n2 + nd+ d log C 2 6 + log C

Lemma 6. If Generate-Randomness terminates successfully, then the generated
vector is random. If Generate-Randomness terminates unsuccessfully, then a new
dispute is found.

4.6 Generating Multiplication Triples

The following protocol allows the players to verifiably generate random sharings
of triples (a, b, c) such that ab = c. The idea is that a random a(k) is generated,
and then each Pi is “responsible for” creating a random triple a(k)b(i,k) = c(i,k).
To verify correctness, the Pi also creates a triple a(k)b̃(i,k) = c̃(i,k), and this is
used to mask an opening of a(k)b(i,k) − c(i,k). Once all these triples are checked,
the final triple is defined to be (a(k),

∑n
i=1 b

(i,k),
∑n

i=1 c
(i,k)).

Protocol. Multiplication-Triple(�)

1. Generating Triples

1.1 Each Pi /∈ Corr invokes VSS(Pi, 2�n + 3�) to generate uniformly ran-
dom sharings and VSS-One(Pi, 2�n) to generate sharings of 1 ∈ F; these
invocations are done in parallel. Denote the random sharings of player
Pi by ([a(i,1)], . . . , [a(i,�)]), ([b(i,1)], . . . , [b(i,�)]), ([̃b(i,1)], . . . , [̃b(i,�)]), and
{([r(i,j,1)], . . . , [r(i,j,�)]), ([r̃(i,j,1)], . . . , [r̃(i,j,�)])}nj=1 and the sharings of

ones by {([1(i,j,1)], . . . , [1(i,j,�)]), ([1̃(i,j,1)], . . . , [1̃(i,j,�)])}nj=1. The sharings
of players in Corr are defined to be all-zero sharings.

1.2 For each k = 1, . . . , � and each i such that Pi /∈ Corr, the players define
and locally compute

[a(k)] =
∑n

m=1[a
(m,k)]

[r(i,k)] =
∑n

m=1[r
(m,i,k)]

[1(i,k)] =
∑n

m=1[1
(m,i,k)] + w[1(i,i,k)],

where w ∈ F is the unique element that makes [1(i,k)] a sharing of 1. The
sharings [r̃(i,k)] and [1̃(i,k)] are similarly defined.

1.3 Each Pj /∈ Corr sends his share of [a(k)][b(i,k)] + [r(i,k)][1(i,k)] and

[a(k)][̃b(i,k)] + [r̃(i,k)][1̃(i,k)] to Pi /∈ Corr for each k = 1, . . . , �. (The

Communication-Efficient MPC for General Adversary Structures 169

shares of players in Corr will be Kudzu shares, so Pi knows those shares
as well.)

1.4 Each Pi /∈ Corr applies the recombination vector λ to the shares of
D(i,k) = a(k)b(i,k) + r(i,k) and D̃(i,k) = a(k)b̃(i,k) + r̃(i,k) received in the
previous step to compute D(i,k) and D̃(i,k) for each k = 1, . . . , �.

1.5 Each Pi broadcasts D
(i,k) and D̃(i,k) for each k = 1, . . . , �.

1.6 Each player locally computes [c(i,k)] = D(i,k) − [r(i,k)] and [c̃(i,k)] =

D̃(i,k) − [r̃(i,k)] (using the canonical sharings of D(i,k) and D̃(i,k) as de-
fined in Sect. 4.1).

2. Error Detection

2.1 The players invoke Generate-Randomness(�) to generate a random vector
(s(1), . . . , s(�)).

2.2 Each player not in Dispi broadcasts his share of [̂b(i,k)] = [̃b(i,k)] +
s(k)[b(i,k)] for each i = 1, . . . , n and each k = 1, . . . , �.

2.3 If the sharing of some [̂b(i,k)] broadcast in the previous step is inconsis-
tent, Pi broadcasts (accuse, Pj) for some Pj /∈ Dispi who broadcasted
an incorrect share, then {Pi, Pj} is added to Disp and the protocol ter-
minates.

2.4 The players invoke multiple instances of LC-Reconstruct in parallel to
reconstruct z(i,k) = [a(k)]̂b(i,k) − [c̃(i,k)]− s(k)[c(i,k)] for each i = 1, . . . , n
and each k = 1, . . . , �.

2.5 If all the z(i,k) reconstructed in the previous step are zero, then we define

[b(k)] =
∑n

m=1[b
(m,k)]

[c(k)] =
∑n

m=1[c
(m,k)],

and the protocol terminates successfully with the multiplication triples
taken to be (a(k), b(k), c(k)) for k = 1, . . . , �.

3. Fault Localization

If any z(i,k) reconstructed in step 2.4 is not zero, the following is done for the
lexicographically lowest pair (i, k) such that z(i,k) �= 0.

3.1 Each Pj broadcasts his share of [a(m,k)], [r̃(m,i,k)], and [r(m,i,k)] for each
Pm /∈ Pj .

3.2 If Pi sees that the shares of some Pj /∈ Dispi sent in the previous step
are inconsistent with the share sent in step 1.3 or 2.4, then Pi broadcasts
(accuse, Pj); then {Pj , Pi} is added to Disp and the protocol terminates.

3.3 Each Pm examines the shares broadcast in the previous step of all shar-
ings that Pm generated. If Pm notices that some Pj /∈ Dispm broadcast
an incorrect share in the previous step, then Pm broadcasts (accuse, Pj);
then {Pm, Pj} is added to Disp and the protocol terminates.

3.4 If no Pm broadcast an accusation in the previous step, then Pi is added
to Corr and the protocol terminates.

170 J. Lampkins and R. Ostrovsky

Multiplication-Triple CB BCB CR BCR

WithoutDispute n2	d+ n3κ log d n3	+ n	d 9 11

PerDispute n2	+ n2κ log d n2 + nd+ d log C 2 6 + log C

Lemma 7. If Multiplication-Triple terminates unsuccessfully, then a new dis-
pute is localized. If Multiplication-Triple succeeds, then it maintains statistical
correctness and perfect privacy. That is, with overwhelming probability, at the
end of the protocol the players hold sharings of � multiplication triples (a, b, c)
with c = ab; in addition, the adversary has no information on a, b, or c (other
than that c = ab).

4.7 Preparation Phase

The following protocol prepares the circuit for computation by generating the
required sharings. The protocol generates multiplication triples for the multi-
plication gates and random sharings for random gates. The task is broken into
n2 segments. The number of multiplication triples and random sharings gener-
ated in each segment are denoted by LM and LR (respectively), and we require
LM ≤
cM/n2� and LR ≤
(cR)/n2�.

Protocol. Preparation-Phase

Initialize Corr and Disp to the empty set. For each segment handling LM mul-
tiplication gates and LR random gates, the following steps are performed. If any
of the subprotocols fails, then the segment is repeated.

1. Invoke Multiplication-Triple(LM). Assign one multiplication triple to each
multiplication gate in this segment.

2. Each Pi /∈ Corr invokes VSS(Pi, LR, r
(1,i), . . . , r(LR,i)), sharing uniformly ran-

dom values. (The sharings of corrupt players are defined to be all-zero shar-
ings.)

3. We define LR random sharings by [r(k)] =
∑n

i=1[r
(k,i)] for each k = 1, . . . , LR.

Assign one random sharing to each random gate in this segment.

Preparation-Phase CB BCB CR BCR

WithoutDispute n2(cM + cR)d + n5κ log d n3(cM + cR) + n(cM + cR)d 13n2 14n2

PerDispute (cM + cR) + n2κ log d n2 + nd+ d log C 2 6 + log C

Communication-Efficient MPC for General Adversary Structures 171

4.8 Input Phase

The goal of the input phase is to allow each player to share their inputs. We
denote the number of inputs in a given segment by L. We require L ≤
cI/n2�,
and we also require that each segment contain inputs from only one player.

Protocol. Input-Phase

For each segment, the following steps are executed to let the dealer PD /∈ Corr
verifiably share L inputs s(1), . . . , s(L). If some invocation of VSS fails, then the
segment fails and is repeated.

1. Each Pi /∈ Corr invokes VSS(Pi, L, r
(1,i), . . . , r(L,i)), sharing uniformly ran-

dom values. (The sharings of corrupt players are defined to be all-zero shar-
ings.)

2. We define L random sharings by [r(k)] =
∑n

i=1[r
(k,i)] for each k = 1, . . . , L.

Assign one random sharing to each input gate in this segment.

3. Each Pi /∈ DispD sends his share of each [r(k)] to PD.

4. If PD finds that one of the sharings was inconsistent, he broadcasts the in-
dex of this sharing, and the following steps are performed. If they are all
consistent, then the players proceed to step 5.

4.1 If PD indicated that the random sharing [r] was inconsistent, then each
Pi /∈ DispD broadcasts their share of [r].

4.2 If PD sees that some Pi broadcast a different share than was sent pri-
vately, then PD broadcasts (accuse, i), {PD, Pi} is added to Disp, and
the segment fails and is repeated.

4.3 The players invoke LC-Reconstruct to reconstruct [r] (but skipping the
first step, because shares of [r] have already been broadcast).

4.4 Since the sharing [r] was inconsistent, the invocation of LC-Reconstruct in
the previous step will have located a new corrupt player, so the segment
fails and is repeated.

5. Using the method for reconstructing secrets described in Sect. 4.1, PD com-
putes the random value r associated with each of his L input gates in this
segment.

6. For each input gate with input s and random sharing [r], PD broadcasts s−r.
7. For each s − r broadcast in the previous step, each player locally computes

s − r + [r] (using the canonical sharing of s − r as defined in Sect. 4.1) as
the sharing for that input gate. Since each player is storing each share as a
sum of shares (one from each player), we update [r] by adding the canonical
sharing of s− r to [r(D)] and leaving [r(i)] the same for i �= D. In the dealer
failed to broadcast a value for an input gate, or if the dealer was already in
Corr, then the sharing for that gate is taken to be [r].

172 J. Lampkins and R. Ostrovsky

Input-Phase CB BCB CR BCR

WithoutDispute ncId+ n4d+ n5κ log d n2cI + n5 5n2 4n2

PerDispute cI + n2κ log d n2 + nd+ d log C 2 9 + log C

4.9 Computation Phase

After the circuit preparation has been done and after the inputs have been
provided by the players, the computation phase is just a matter of opening
linear combinations of sharings and possibly resolving disputes.

Each affine gate is computed by performing local computations. Each multi-
plication gate is computed by opening affine combinations of known sharings.
Each output gate is computed by publicly opening it.6 This means that the
computation phase will consist of local operations and cM + cO public openings.

The circuit will be divided into segments and evaluated one segment at a
time. The segments will be constructed such that each segment has no more
than
(cM + cO)/n

2� gates, and a single segment only contains gates from one
multiplicative layer of the circuit. This means that if D is the multiplicative
depth of the circuit, then there are at most n2 + D segments. Each affine gate
will be included in the first possible segment in which it can be evaluated.

If a fault occurs in some segment (which is to say that one of the opened
sharings is inconsistent), then one or more new disputes are localized, and the
segment is repeated.

It is important to remember that all sharings generated by VSS and
Multiplication-Triple are sums of sharings such that one summand comes from
each player. Since all sharings opened are affine combinations of these, this
means that every sharing we will be opening in the computation phase is a
sum of sharings with one summand coming from each player. Thus the protocol
LC-Reconstruct can be performed.

Protocol. Computation-Phase

For each segment with L reconstructions, the following steps are executed. If
one of the reconstructions is inconsistent, then a new dispute is found, and the
segment is repeated.

1. For each affine gate in the segment, the players evaluate the gate by local
computations.

2. The players invoke LC-Reconstruct multiple times in parallel for each output
gate in the segment.

6 We assume that each player receives all the outputs, although the protocol could
easily be modified to allow for private outputs.

Communication-Efficient MPC for General Adversary Structures 173

3. For each multiplication gate in the segment with inputs [x] and [y] and asso-
ciated multiplication triple ([a], [b], [c]), the following steps are performed in
parallel.

3.1 In parallel with step 2, the players invoke LC-Reconstruct([x − a]) and
LC-Reconstruct([y − b]).

3.2 The players assign the sharing (x−a)(y− b)− (x−a)[b]− (y− b)[a]+ [c]
as the output of the gate.

Computation-Phase CB BCB CR BCR

WithoutDispute 0 Cd 0 D
PerDispute Cn+ n3 + n2κ log d n2 + nd+ d log C 2 6 + log C

4.10 Putting It All Together

We perform the MPC protocol by invoking Preparation-Phase, Input-Phase, and
Computation-Phase in succession. Note that there is a term n added to the num-
ber of communication rounds to account for the fact that when a player is
corrupted, all players will broadcast their shares sent by that player.

Theorem 1. A set of n players communicating over a secure synchronous net-
work can evaluate an agreed function of their inputs securely against a malicious,
adaptive adversary with an arbitrary Q2 adversary structure A with point-to-
point communication bandwidth O(n2Cd+ n4d+ n5κ log d) and broadcast band-
width O(n3C + nCd+ n5 + n3d+ n2d log C), taking 20n2 communication rounds
and 27n2 + D + n2 log C broadcast rounds. Here, d is the number of rows in the
smallest MSP representing A, and κ is the size of an element of F.

Acknowledgments. Work is supported in part by NSF grants 09165174,
1065276, 1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foun-
dation Research Award, IBM Faculty Research Award, Xerox Faculty Research
Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. This material is based upon
work supported by the Defense Advanced Research Projects Agency through
the U.S. Office of Naval Research under Contract N00014 -11 -1-0392. The views
expressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

References

1. Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in general
multiparty computations. In: Proc. PODC (1997)

2. Fitzi, M., Hirt, M., Maurer, U.M.: General adversaries in unconditional multi-
party computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT
1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999)

174 J. Lampkins and R. Ostrovsky

3. Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

4. Smith, A., Stiglic, A.: Multiparty computation unconditionally secure against Q2

adversary structures. CoRR cs.CR/9902010 (1999)
5. Cramer, R., Damg̊ard, I.B., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-

party computations secure against an adaptive adversary. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

6. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity
Theory Conference, pp. 102–111 (1993)

7. Beaver, D., Wool, A.: Quorum-based secure multi-party computation. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 375–390. Springer, Heidelberg
(1998)

8. Maurer, U.: Secure multi-party computation made simple. Discrete Applied Math-
ematics 154(2), 370–381 (2006), Coding and Cryptography

9. Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and computational
security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18.
Springer, Heidelberg (2008)

10. Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computation. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 181–
200. Springer, Heidelberg (2013)

11. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science) 72(9), 56–64 (1989)

12. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006)

13. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85 (1989)

14. Lampkins, J., Ostrovsky, R.: Communication-efficient mpc for general adversary
structures. Cryptology ePrint Archive, Report 2013/640 (2013),
http://eprint.iacr.org/

http://eprint.iacr.org/

Publicly Auditable Secure Multi-Party

Computation

Carsten Baum�, Ivan Damg̊ard��, and Claudio Orlandi���

Aarhus University, Denmark
{cbaum,ivan,orlandi}@cs.au.dk

Abstract. In the last few years the efficiency of secure multi-party com-
putation (MPC) increased in several orders of magnitudes. However, this
alone might not be enough if we want MPC protocols to be used in prac-
tice. A crucial property that is needed in many applications is that every-
one can check that a given (secure) computation was performed correctly
– even in the extreme case where all the parties involved in the computa-
tion are corrupted, and even if the party who wants to verify the result
was not participating. This is especially relevant in the clients-servers
setting, where many clients provide input to a secure computation per-
formed by a few servers. An obvious example of this is electronic voting,
but also in many types of auctions one may want independent verifica-
tion of the result. Traditionally, this is achieved by using non-interactive
zero-knowledge proofs during the computation.

A recent trend in MPC protocols is to have a more expensive prepro-
cessing phase followed by a very efficient online phase, e.g., the recent
so-called SPDZ protocol by Damg̊ard et al. Applications such as voting
and some auctions are perfect use-case for these protocols, as the parties
usually know well in advance when the computation will take place, and
using those protocols allows us to use only cheap information-theoretic
primitives in the actual computation. Unfortunately no protocol of the
SPDZ type supports an audit phase.

In this paper, we show how to achieve efficient MPC with a public
audit. We formalize the concept of publicly auditable secure computation
and provide an enhanced version of the SPDZ protocol where, even if
all the servers are corrupted, anyone with access to the transcript of the
protocol can check that the output is indeed correct. Most importantly,
we do so without significantly compromising the performance of SPDZ
i.e. our online phase has complexity approximately twice that of SPDZ.

Keywords: Efficient Multi-Party Computation, Public Verifiability,
Electronic Voting.

� Partially supported by the European Research Commission Starting Grant 279447.
�� Supported by the Danish National Research Foundation, the National Science

Foundation of China (under the grant 61061130540) and also from the CFEM
research center within which part of this work was performed.

��� Supported by The Danish Council for Independent Research (DFF).

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 175–196, 2014.
c© Springer International Publishing Switzerland 2014

176 C. Baum, I. Damg̊ard, and C. Orlandi

1 Introduction

During the last few years MPC has evolved from a purely theoretical to a more
practical tool. Several recent protocols (e.g. BeDOZa [6], TinyOT [24] and the
celebrated SPDZ [14,12]) achieve incredible performance for the actual function
evaluation, even if all but one player is actively corrupted. This is done by
pushing all the expensive cryptographic work into an offline phase and using
only simple arithmetic operations during the online phase1. Since these protocols
allow the evaluation of an arbitrary circuit over a finite field or ring, one can in
particular use these protocols to implement, for instance, a shuffle-and-decrypt
operation for a voting application or the function that computes the winning
bid in an auction. It is often the case that we know well in advance the time at
which a computation is to take place, and in any such case, the aforementioned
protocols offer very good performance. In fact the computational work per player
in the SPDZ protocol is comparable to the work one has to perform to compute
the desired function in the clear, with no security.

However, efficiency is not always enough: if the result we compute securely
has large economic or political consequences, such as in voting or auction appli-
cations, it may be required that correctness of the result can be verified later.
Ideally, we would want that this can done even if all parties involved in the
computation are corrupted, and even if the party who wants to verify the result
was not involved in the computation.

The traditional solution to this is to ask every player to commit to all his
secret data and to prove in zero-knowledge for every message he sends, that this
message was indeed computed according to the protocol. If a common reference
string is available, we can use non-interactive zero-knowledge proofs, which allow
anyone to verify the proofs and hence the result at any later time. However, this
adds a very significant computational overhead, and would lead to a horribly
inefficient protocol, compared to the online phase of SPDZ, for instance.

It is therefore natural to ask whether it is possible to achieve the best of both
worlds and have highly efficient MPC protocols with a high-speed online phase
that are auditable, in the sense that everyone who has access to the transcripts
of the protocol can check if the result is correct even when all the servers are
corrupted. In this paper we answer this question in the affirmative.

1.1 Contributions and Technical Overview

The model. In this work we will focus on client-server MPC protocols, where
a set of parties (called the input parties) provide inputs to the actual work-
ing parties, who run the MPC protocol among themselves and make the output

1 The offline phase is independent from the inputs and the circuit to be computed –
only an upper bound on the number of multiplication gates is needed.

Publicly Auditable Secure Multi-Party Computation 177

public2. We will focus on the setting of MPC protocols for dishonest majority
(and static corruptions): as long as there is one honest party we can guarantee
privacy of the inputs and correctness of the results, but we can neither guarantee
termination nor fairness. We will enhance the standard network model with a
bulletin board functionality. Parties are allowed to exchange messages privately,
but our protocol will instruct them also to make part of their conversation public.

Auditable MPC. Our first contribution is to provide a formal definition of the
notion of publicly auditable MPC as an extension of the classic formalization of
secure function evaluation. We require correctness and privacy when there is at
least one honest party, and in addition ask that anyone, having only access to
the transcript of the computation published on the bulletin board, can check
the correctness of the output. This is formalized by introducing an extra, non-
corruptible party (the auditor) who can ask the functionality if the output was
correct or not3. We stress that the auditor does not need to be involved (or
even exist!) before and during the protocol. The role of the auditor is simply to
check, once the computation is over, whether the output was computed correctly
or not.4

SPDZ recap. Given the motivation of this work, we are only interested in the
notion of auditable MPC if it can be achieved efficiently. Therefore our starting
point is one of the most efficient MPC protocols for arithmetic circuits with a
cheap, information-theoretic online phase, namely SPDZ.

In a nutshell SPDZ works as follows: At the end of the offline phase all parties
hold additive shares of multiplicative triples (x, y, z) with z = x · y. Now the
players can use these preprocessed triples to perform multiplications using only
linear operations over the finite field (plus some interaction). Moreover, these
linear operations can now be performed locally and are therefore essentially for
free. However an adversary could send the honest parties a share that is different
from what he received at the end of the offline phase. To make sure this is not the
case, SPDZ adds information-theoretic MACs of the form γ = α·x to each shared
value x, where both the MAC γ and the key α are shared among the parties.
These MACs are trivially linear and can therefore follow the computation. Once
the output is reconstructed, the MAC keys are also revealed and the MACs
checked for correctness, and in the case the check goes through, the honest
parties accept the output.

2 Note that the sets need not be distinct, and using standard transformations we can
make sure that the servers do not learn the inputs nor the output of the computation
(think of the inputs/output being encrypted or secret shared).

3 Of course, this only holds in the case where the computation did not abort.
4 In terms of feasibility, auditable MPC can be achieved by compiling a strong semi-
honest protocol with NIZKs – a semi-honest MPC protocol alone would not suffice as
we cannot force the parties to sample uniform randomness, nor can we trust them to
force each other to do so by secure coin-tossing when everyone is corrupted. However,
this would not lead to a very practical solution.

178 C. Baum, I. Damg̊ard, and C. Orlandi

Auditable SPDZ. In order to make SPDZ auditable, we enhance each shared
value x with a Pedersen commitment gxhr to x with randomness r. The com-
mitment key (g, h) comes from a common reference string (CRS), such that even
if all parties are corrupted, those commitments are still (computationally) bind-
ing. To allow the parties to open their commitments, we provide them also with
a sharing of the randomness r (each party already knows a share of x). It is
easy to see that this new representation of values is still linear and is therefore
compatible with the existing SPDZ framework. During the computation phase,
the parties ignore the commitments (they are created during the offline phase,
and only the openings must be sent to FBulletin) and it will be the job of the
auditor to use the linear properties of the commitments to verify that each step
of the computation was carried out correctly. Clearly the offline phase of SPDZ
needs to be modified, in order to produce the commitments to be used by the
auditor. Moreover, we have to make this preprocessing step auditable as well.
We refer to the full version for more details.

1.2 An Example Application: Low-latency Voting from MPC

Our work can be seen as a part of a recent trend in understanding how generic
MPC protocols perform (in terms of efficiency) in comparison to special-purpose
protocols (see [11,19] for a discussion on private-set intersection). A notable
example of special purpose secure computation protocols are mixed-networks
(mix-nets), first introduced by Chaum in 1981 [9]. Here we show how our publicly
auditable version of SPDZ compares favorably with mix-nets in terms of latency.

In mix-nets a number of clients submit their encrypted inputs to some servers,
who jointly shuffle and decrypt the inputs in such a way that no one should be
able to link the input ciphertexts with the output plaintexts, if at least one of
the shuffling servers is honest. Mix-nets are of prime importance in electronic
voting (like e.g. the famous Helios [1] system). A disadvantage of mix-nets is that
they are inherently sequential : server i cannot start shuffling before receiving the
output of the shuffle performed by server i−1. Now, given that the voter’s privacy
depends on the assumption that there is at least 1 out of n uncorrupted server,
it is desirable to increase the number of parties involved in the shuffle as much
as possible. However, when using mix-nets the latency of the protocol is linear in
n, and therefore increasing n has a very negative impact on the total efficiency
of the protocol, here measured by the time between the last voter casts his vote
and the output of the election is announced. We argue here that implementing
a shuffle using a generic protocol like SPDZ makes the latency independent of
the number of servers performing the shuffle.

More formally, let n be the number of servers, m the number of input ci-
phertexts, λ a computational security parameter and sec a statistical security
parameter. The computational latency of mix-nets, here defined as the time we
have to wait before all servers have done their computational work, will be at

Publicly Auditable Secure Multi-Party Computation 179

leastO(n·m·λ3).5 Using SPDZ, the computational latency is O(m·log(m)·sec2),6
since the total complexity of SPDZ is linear in n and the servers work in parallel
(this was even verified experimentally). Therefore mix-nets are more expensive

by a factor of
(

n
logm ·

λ3

sec2

)
: This is a significant speedup when n grows – note also

that typical values of λ for public-key cryptography can be one or two orders of
magnitudes greater than typical values for a statistical security parameter sec
(only field operations are performed during the SPDZ online phase). Clearly, to
verify the impact in practice one would have to implement both approaches and
compare them. We leave this as an interesting future work.

The above comparison only considers the efficiency of the two approaches.
However, as argued before, in applications like voting it is crucial to allow the
voters to check that the outcome of the election is correct. Most mix-nets protocol
already achieve public verifiability using non-interactive zero-knowledge proofs
for the correctness of shuffles. This motivates our study of auditable generic
protocols.

1.3 Related Work

For certain applications, there already exist auditable protocols. The idea is
known in the context of e.g. electronic voting as public verifiability, and can
also be found concerning online auctions and secret sharing. To the best of our
knowledge, the term public verifiability was first used by Cohen and Fischer in
[10]. Widely known publicly auditable voting protocols are those of Schoenmak-
ers [28] and Chaum et al. [8] and the practical Helios [1]. Also stronger notions
for voting protocols have been studied, see e.g. [27,22,30]. Verifiability also ap-
peared for secret sharing schemes [28,17,29] and auctions [23,26]. We refer the
reader to the mentioned papers and the references therein for more information
on these subjects. It is crucial to point out that our suggested approach is not
just another voting protocol – instead we lift verifiability to arbitrary secure com-
putations. In this setting, the notion of public verifiability has not been studied,
with the exception of [15], where the author presents a general transformation
that turns universally satisfiable protocols into instances that are auditable in
our sense. This transformation is general and slows down the computational
phase of protocols, whereas our approach is tailored for fast computations.

In publicly verifiable delegation of computation (see e.g. [18,16] and references
therein) a computationally limited device delegates a computation to the cloud
and wants to check that the result is correct. Verifiable delegation is useless unless
verification is more efficient than the evaluation. Note that in some sense our
requirement is the opposite: We want our workers to work as little as possible,
while we are fine with asking the auditor to performmore expensive computation.

External parties have been used before in cryptography to achieve otherwise
impossible goals like fairness [20], but note that in our case anyone can be the

5 The λ3 factor is there because of the re-randomization step that is crucially done in
every mix-net. Using “onions” of encryptions would not be more efficient.

6 The m · logm factor comes from the optimal shuffle of Ajtai et al. [2].

180 C. Baum, I. Damg̊ard, and C. Orlandi

auditor and does not need to be online while the protocol is executed. This is
a qualitative difference with most of the other semi-trusted parties that appear
in the literature. A recent work [3] investigated an enhanced notion of covert
security, that allows anyone to determine if a party cheated or not given the
transcript of the protocol – note that the goal of our notion is different, as we
are interested in what happens when all parties are corrupted.

2 Defining Auditable MPC

In this section, we formalize our notion of publicly auditable MPC. We add a
new party to the standard formalization which only performs the auditing and
does not need to participate during the offline or the online phase. This auditor
does not even have to exist when the protocol is executed, but he can check
the correctness of a result based on a protocol transcript. This formal hack
makes it possible to guarantee correctness even if everyone participating in the
computation is corrupted7.

As mentioned, we put ourselves in the client-server model, so the parties
involved in an auditable MPC protocols are:

The input parties: We considerm parties I1, ...,Im with inputs (x1, . . . , xm).
The computing parties: We consider n parties P1, ...,Pn that participate in

the computation phase. Given a set of inputs x1, ..., xm they compute an
output y = C(x1, ..., xm) for some circuit C over a finite field. Note that
{I1, ...,Im} and {P1, ...,Pn} might not be distinct.

The auditor: After the protocol is executed, anyone acting as the auditor
TAudit can retrieve the transcript of the protocol τ from the bulletin board
and (using only the circuit C and the output y) determine if the result is
valid or not.

Our security notion is the standard one if there is at least one honest party
(i.e. we guarantee privacy, correctness, etc.). However standard security notions
do not give any guarantee in the fully malicious setting, i.e. when all parties
are corrupted. We tweak the standard notions slightly and ask an additional
property, called auditable correctness.

This notion captures the fact that in the fully malicious case, the input cannot
be kept secret from the adversary A. But we still want to prove that if the
computing parties deviate from the protocol, this will be caught by TAudit, who
has access to the transcript of the execution using a bulletin board FBulletin.

More formally, our definition for auditable correctness is as follows:

Definition 1 (Auditable Correctness). Let C be a circuit, x1, ..., xm be in-
puts to C, y be a potential output of C and τ be a protocol transcript for the

7 We are not adding a semi-trusted third party to the actual protocol: Our guarantee
is that if there exist at least one honest party in the universe who cares about the
output of the computation, that party can check at any time that the output is
correct.

Publicly Auditable Secure Multi-Party Computation 181

Functionality FAuditMPC

Initialize: On input (Init, C, p) from all parties (where C is a circuit with m
inputs and one output, consisting of addition and multiplication gates over
Zp):
(1) Wait until A sends the sets ABI ⊆ {1, . . . , m}(corrupted input parties)

and ABP ⊆ {1, . . . , n}(corrupted computing parties)
Input: On input (Input,Ii, varidx, x) from Ii and (Input,Ii, varidx, ?) from all

parties Pj , with varidx a fresh identifier:

(1) If i �∈ ABI then store (varidx, x). Else let A choose x′ and store
(varidx, x

′).
(2) If |ABP | = n, send (Input,Ii, varid , x) to all Pj .

Compute: On input (Compute) from all parties Pj :
(1) If an input gate of C has no value assigned, stop here.
(2) Compute yc = C(x′

1, . . . , x
′
m)

(3) if |ABP | = 0 set yo = yc.
if |ABP | > 0 output yc to A and wait for yo from A. If |ABP | < n,

the functionality accepts only yo ∈ {⊥, yc}. If |ABP | = n, any value
yo ∈ Zp ∪ {⊥} is accepted.

(4) Send (output, yo) to all parties Pj .
Audit: On input (Audit, y) from TAudit (where y ∈ Zp), and if Compute was

executed, the functionality does the following:
if yc = yo = y then output accept y.
if yo = ⊥ then output no audit possible.
if yc �= yo or y �= yo then output reject.

Fig. 1. The ideal functionality that describes the online phase

evaluation of the circuit C. We say that an MPC protocol as satisfies Auditable
Correctness if the following holds: The auditor TAudit with input τ outputs
accept y with overwhelming probability if the circuit C on input x1, ..., xm pro-
duces the output y. At the same time the auditor TAudit will return reject (ex-
cept with negligible probability) if τ is not a transcript of an evaluation of C or
if C(x1, ..., xm) �= y.

In Figure 1 we present an ideal functionality that formalizes our notion of
auditable MPC in the UC setting (where we use the same notation as before).
We use this ideal world-real world paradigm, because it simplifies the proof,
whereas the game-based definition gives a better intuition about auditability.
The protocol/simulator transcript can then be used as in Definition 1, and a
protocol that is secure in the ideal world-real world setting is also auditable
correct according to the definition.

To simplify the exposition, FAuditMPC is only defined for one output value y.
This can easily be generalized.

Note that we only defined our FAuditMPC for deterministic functionalities. The
reason for this is that when all parties are corrupted even the auditor cannot
check whether the players followed the protocol correctly in the sense of using

182 C. Baum, I. Damg̊ard, and C. Orlandi

real random tapes. This can be solved (using standard reductions) by letting the
input parties contribute also random tapes and define the randomness used by
the functionality as the XOR of those random tapes – but in the extreme case
where all the input parties are corrupted this will not help us.

3 An Auditable MPC Protocol

We now present an MPC protocol that is an extension of [14,12]. We obtain a
fast online phase, which almost only consists of opening shared values towards
parties.

Our Setup. Let p ∈ P be a prime and G be some abelian group (in multiplica-
tive notation) of order p where the Discrete Logarithm Problem(DLP) is hard to
solve. The MPC protocol will evaluate a circuit C over Zp, whereas we use the
group G to ensure auditability. Therefore, let g, h ∈ G be two generators of the
group G where h is chosen such that logg(h) is not known (e.g. based on some
CRS). For two values x, r ∈ Zp, we define pc(x, r) := gxhr.

We assume that a secure channel towards the input parties can be estab-
lished, that a broadcast functionality is available and that we have access to a
bulletin board FBulletin (Fig. 2), a commitment functionality FCommit

8 (Fig. 3)
and a procedure to jointly produce random values PProvideRandom (Fig. 4)9. To
implement PProvideRandom let Us(q, l) be a random oracle with seed s ∈ {0, 1}∗
that outputs a uniformly random element from Zl

q. We use the bulletin board
FBulletin to keep track of all those values that are broadcasted. Observe that no
information that was posted to FBulletin can ever be changed or erased.

Sharing Values for the Online Phase. All computations during the online
phase are done using additively-shared values. The parties are committed to
each such shared value using a MAC key α and a commitment to the shared
value. The key α is also additively-shared among the parties, where party Pi

holds share αi such that α =
∑n

i=1 αi, and the commitments to each value are
publicly known.

We define the 〈·〉-representation of a shared value as follows:

Definition 2. Let r, s, e ∈ Zp, then the 〈r〉-representation of r is defined as

〈r〉 := ((r1, ..., rn), (γ(r)1, ..., γ(r)n))

where r =
∑n

i=1 ri and α · r =
∑n

i=1 γ(r)i. Each player Pi will hold his shares
ri, γ(r)i of such a representation. Moreover, we define

8 This other commitment functionality might be implemented by a hash function/ran-
dom oracle, and is used whenever the linear operations of the commitment scheme
are not necessary.

9 Note that the random oracle model and FCommit were already assumptions used in
the original SPDZ protocol, our extra assumptions are the existence of FBulletin and
the DLP-hard group G.

Publicly Auditable Secure Multi-Party Computation 183

The ideal functionality FBulletin

Store: On input (Store, id, i,msg) from Pi, where id was not assigned yet, the
functionality stores (id, i,msg).

Reveal IDs: On input (All) from party Pi the functionality reveals all assigned
id-values to Pi

Reveal message: On input (Getmsg, id) from Pi, the functionality checks
whether id was assigned already. If so, then it returns (id, j,msg) to Pi.
Otherwise it returns (id,⊥,⊥).

Fig. 2. The ideal Functionality for the Bulletin board

〈r〉 + 〈s〉 := ((r1 + s1, ..., rn + sn), (γ(r)1 + γ(s)1, ..., γ(r)n + γ(s)n))

e · 〈r〉 := ((e · r1, ..., e · rn), (e · γ(r)1, ..., e · γ(r)n))
e+ 〈r〉 := ((r1 + e, r2, ..., rn), (γ(r)1 + e · α1, ..., γ(r)n + e · αn))

This representation is closed under linear operations:

Remark 1. Let r, s, e ∈ Zp. We say that 〈r〉 =̂ 〈s〉 if both 〈r〉, 〈s〉 reconstruct to
the same value. Then it holds that

〈r〉 + 〈s〉 =̂ 〈r + s〉, e · 〈r〉 =̂ 〈e · r〉, e+ 〈r〉 =̂ 〈e + r〉

A value that is shared as above is reconstructed or opened10 by summing up all
shares. The correctness of this opening can be checked by checking the MAC(we
will use a protocol where α will not be revealed). A value 〈a〉 can either be
publicly opened if every player P i broadcasts its share ai, or opened towards Pi

if every other party Pj , j �= i sends its share aj to Pi. Similarly, if the players
open towards FBulletin this means that they send their shares of the particular
value to the bulletin board.

During the online phase, the parties either open sharings (without revealing
the MACs) or do the linear operations defined above. Together with the Beaver
circuit randomization technique from [4] and a MAC checking procedure for the
output phase, this already yields an actively secure MPC scheme that is secure
against up to n− 1 corrupted players11.

The [[·]]-representation. In order to make SPDZ auditable we enhance the way
shared values are represented and stored. In a nutshell we force the computing
parties to commit to the inputs, opened values and outputs of the computation.
All intermediate steps can then be checked by performing the computation us-
ing the data on FBulletin. The commitment scheme is information-theoretically
hiding, and we will carry both the actual value 〈r〉 as well as the randomness
〈rrand〉 of the commitment through the whole computation.

10 We use both terms for it in this paper.
11 Provided that the offline phase generates valid multiplication triples and random

values together with MACs.

184 C. Baum, I. Damg̊ard, and C. Orlandi

The ideal functionality FCommit

Commit: On input (Commit, v, r, i, τv) by Pi, where both v and r are either in
Zp or ⊥, and τv is a unique identifier, it stores (v, r, i, τv) on a list and outputs
(i, τv) to all players.

Open: On input (Open, i, τv) by Pi, the ideal functionality outputs (v, r, i, τv)
to all players. If (NoOpen, i, τv) is given by the adversary, and Pi is corrupt,
the functionality outputs (⊥,⊥, i, τv) to all players.

Fig. 3. The Ideal Functionality for Commitments

Procedure PProvideRandom

Even though we do not mention minimum lengths of seeds here, they should be
chosen according to a concrete security parameter.

ProvideRandom(q, l) On input (Urandomness, q, l) from each party Pi:
(1) Each party Pi commits to a seed si ∈ {0, 1}∗ using FCommit. It also sends

the commitment to FBulletin.
(2) Each party opens its commitment to all parties and FBulletin.
(3) Each party locally computes s = s1 ⊕ · · · ⊕ sn

(4) Each party outputs v ← Us(q, l).

Fig. 4. A protocol to jointly generate random values

Procedure PMult

Multiply([[r]], [[s]], [[a]], [[b]], [[c]]):
(1) The players calculate [[γ]] = [[r]] − [[a]], [[δ]] = [[s]] − [[b]]
(2) The players publicly reconstruct γ, δ, γrand, δrand and send these values

to FBulletin.
(3) Each player locally calculates [[t]] = [[c]] + δ[[a]] + γ[[b]] + γδ
(4) Return [[t]] as the representation of the product.

Fig. 5. Protocol to generate the product of two [[·]]-shared values

The commitment to a value r will be a Pedersen commitment (see [25])
pc(r, rrand). When we open a [[·]]-representation, we reconstruct both r and
rrand.

12 This way the commitment is also opened (it is already published on
FBulletin) and everyone can check that it is correct (but the computing parties
do not need to do so).

Definition 3. Let r, rrand ∈ Zp and g, h ∈ G where both g, h generate the group,
then we define the [[r]]-representation for r as

[[r]] := (〈r〉, 〈rrand〉, pc(r, rrand))
12 Our different flavours of opening for 〈·〉-representations can be applied here as well.

Publicly Auditable Secure Multi-Party Computation 185

where 〈r〉, 〈rrand〉 are shared among the players as before.

We define linear operations on the representations as before:

Definition 4. Let a, b, arand, brand, e ∈ Zp. We define the following linear oper-
ations on [[·]]-sharings:

[[a]] + [[b]] := (〈a〉+ 〈b〉, 〈arand〉+ 〈brand〉, pc(a, arand) · pc(b, brand))
e · [[a]] := (e · 〈a〉, e · 〈arand〉, (pc(a, arand))e)
e+ [[a]] := (e+ 〈a〉, 〈arand〉, pc(e, 0) · pc(a, arand))

With a slight abuse in notation, we see that

Remark 2. Let r, s, e ∈ Zp. It holds that

[[r]] + [[s]] =̂ [[r + s]], e · [[r]] =̂ [[e · r]], e+ [[r]] =̂ [[e + r]]

In order to multiply two representations, we rely on the protocol in Figure 5
(as in [4]): Let [[r]], [[s]] be two values where we want to calculate a representation
[[t]] such that t = r · s. Assume the existence of a triple ([[a]], [[b]], [[c]]) such that
a, b are uniformly random and c = a · b. Then one can obtain [[t]] using PMult.

Most interestingly, one does not have to perform the computations on the
commitments during the online phase. Instead, only the 〈·〉-representations are
manipulated !

Shared Randomness from an Offline Phase. Our online phase relies on the
availability of [[·]]-representations of random values and multiplication triples. In
Figure 6 and 8 we define the functionality FSetup that describes our preprocess-
ing protocol, which is essentially an auditable version of the SPDZ preprocessing
functionality. If all parties are corrupted, the functionality might output an in-
correct result – however this can be checked by the auditor. Since we assume
that g, h come from a CRS, the audit is still correct in this setting.

The Online Phase. The online phase of our protocol is presented in Figure 9.
To create the transcript, every party puts all values it ever sends or receives onto
FBulletin (except for the private reconstruction of input values)13. The check of
the MACs is done as in SPDZ using the protocol in Figure 11.

4 Security of the Online Phase

In this section, we will prove that for all poly-time adversaries A there exists
a simulator SOnline such that ΠAuditMPC is indistinguishable from FAuditMPC

to every poly-time environment Z. As we argued before, this also implies that
ΠAuditMPC fulfills the auditable correctness requirement from Definition 1.

We start with the following Lemma from [12, Lemma 1] about correctness and
soundness of the MAC check. We then prove the security of the online phase in
Theorem 1.
13 This does not break the security, because (informally speaking) this is the same

information that an A receives if he corrupts n− 1 parties.

186 C. Baum, I. Damg̊ard, and C. Orlandi

Functionality FSetup, Part 1/3

� denotes pointwise multiplication of vector entries and l is a fixed SIMD factor.

Initialize: On input (Init, p, l) from all players, the functionality stores the prime
p and the SIMD factor l. A chooses the set of parties ABP ⊆ {1, . . . , n} he
corrupts.
(1) Choose a g ∈ G and s ∈ Z∗

p, set h = gs. Send g, h to A.
(2) For all i ∈ ABP , A inputs αi ∈ Zp, while for all i �∈ ABP , the functionality

chooses αi ← Zp at random.
(3) Set they key α =

∑n
i=1 αi and send (αi, g, h) to Pi, i �∈ ABP .

(4) Set the flag f = �.

Audit: On input (Audit), return reject if f = ⊥ or if Initialize or Compute
was not executed. Else return accept.

Fig. 6. The ideal functionality that describes the offline phase

Lemma 1. Let p ∈ P. On input (a1, γ(a1), . . . , at, γ(at), p) PCheckMac is correct
and sound:

If ∀i : α · ai = γ(ai) then it returns 1 with probability 1.
If ∃i : α · ai �= γ(ai) then it rejects except with probability 2/p.

Theorem 1. In the FSetup,FBulletin,FCommit-hybrid model with a random or-
acle, the protocol ΠAuditMPC implements FAuditMPC with computational security
against any static adversary corrupting all parties if the DLP is hard in the group
G.

Proof. We prove the above statement by providing a simulator SOnline (see
Figure 12). The simulator is divided for two cases, for the honest minority
(SOnline,normal in Figure 13) and the fully malicious setting (SOnline,full in Fig-
ure 14).

At Least One Honest Party. The simulator runs an instance of ΠAuditMPC

with the players controlled by Z and simulated honest parties. For Initialize,
Input, Add, Multiply it performs the same steps as in ΠAuditMPC, only that it
uses a fixed input 0 for the simulated honest parties during Input. Since every
set of at most n− 1 shares of a value is uniformly random and does not reveal
any information about the shared secret, this cannot be distinguished from a
real execution.

During Output, we adjust the shares of one simulated honest party to agree
with the correct output y from FAuditMPC: The simulator obtained the result y′

of the simulated computation, hence it can adjust the share of a simulated honest
party. Moreover, it also adjusts the MAC share as depicted in SOnline,normal using
the MAC key α provided by FSetup. As argued in [14], the distribution of these
shares of the simulated honest parties is the same as during a protocol execution.

Publicly Auditable Secure Multi-Party Computation 187

Functionality FSetup, Part 2/3

Compute: On input (GenerateData, T, ρ) from all players with T, ρ multiples of
l:
(1) RandomV alues(T, l):

(1.1) For each i �∈ ABP choose uniformly random ri, si ← ZT
p , send these

to Pi and pc(ri, si) to A.
(1.2) For i ∈ ABP , A inputs ri, si ∈ ZT

p

(1.3) Compute [[r]] ← Bracket(r1, . . . , rn, s1, . . . , sn, T).
(1.4) Send the commitments of [[b]] to FBulletin.
(1.5) Return ([[r]]).

(2) Triples(ρ, l):
(2.1) For i �∈ ABP , the functionality samples ai,arand,i, bi, brand,i ∈ Zρ

p

at random, sends them to Pi and pc(ai,arand,i), pc(bi, brand,i) to A.
(2.2) For i ∈ ABP , A inputs ai,arand,i, bi, brand,i ∈ Zρ

p.
(2.3) For each i �∈ ABP sample uniformly random oi ∈ Gρ and send them

to A.
(2.4) For i ∈ ABP let A choose ci, crand,i ∈ Zρ

p.
(2.5) Define a =

∑n
j=1 aj , b =

∑n
j=1 bj .

(2.6) Let j �∈ ABP be the smallest index of an honest player(if any).
For all i �∈ ABP , i �= j choose ci ∈ Zρ

p unifromly at random and
crand,i ∈ Zρ

p subject to the constraint that oi = pc(ci, crand,i) using
s. For Pj let cj = a � b −

∑
i∈[n],i�=j ci and crand,j ∈ Zρ

p such that

oj = pc(cj , crand,j) using s. Send ci, crand,i to Pi.
(2.7) Let c =

∑n
i=1 ci.

(2.8) Run the macros [[a]] ← Bracket(a1, . . . ,an,arand,1, . . . ,arand,n, ρ),
[[b]] ← Bracket(b1, . . . , bn, brand,1, . . . , brand,n, ρ),
[[c]] ← Bracket(c1, . . . , cn, crand,1, . . . , crand,n, ρ).

(2.9) Let L′ = {1, ..., ρ}
(2.10) If |ABP | = n then let A input L, otherwise let L = L′. If L �= L′

then set f = ⊥.
(2.11) Send the commitments of ([[a[m]]], [[b[m]]], [[c[m]]])m∈L to FBulletin

(2.12) Return ([[a[m]]], [[b[m]]], [[c[m]]])m∈L.

Fig. 7. The ideal functionality that describes the offline phase,continued

The commitment is information-theoretically hiding, and since the discrete
logarithm logg(h) is known to SOnline,normal, it can compute a randomness value
yrand that correctly opens the commitment in [[y]] as posted on FBulletin for the
value y instead of y′. It then adjusts a share of y′rand such that (y′, y′rand) open
the commitment. Once again, the distribution of this share of yrand′ agrees with
the distribution in a real protocol execution.

If moreover Z decides to stop the execution, then SOnline,normal will forward
this to the ideal functionality and Z will not receive any additional information,
as in the real execution.

During the Audit phase, we also do exactly the same as in the protocol.
Note that both Output and Audit will always reveal the correct values from

188 C. Baum, I. Damg̊ard, and C. Orlandi

Functionality FSetup, Part 3/3

Macro Bracket(r1, . . . , rn, s1, . . . , sn, d): This macro will be run by the func-
tionality to create [[·]]-representations.
(1) Define r =

∑n
i=1 ri, s =

∑n
i=1 si.

(2) If |ABP | = n, A inputs a vector Δc ∈ Gd.
If Δc is not the (1, . . . , 1) vector, set f = ⊥. If |ABP | < n set Δc to the
all-ones vector.

(3) Compute com = pc(r, s)�Δc.
(4) Run macro 〈r〉 ← Angle(r1, ..., rn, d) and 〈s〉 ← Angle(s1, ..., sn, d).
(5) Define [[r]] = (〈r〉, 〈s〉, com). Return [[r]].

Macro Angle(r1, . . . , rn, d): This macro will be run by the functionality to create
〈·〉-representations.
(1) Define r =

∑n
i=1 ri

(2) For i ∈ ABP , A inputs γi,Δγ ∈ Zd
p, and for i �∈ ABP , choose γi ∈R Zd

p

at random except for γj , with j being the smallest index not in ABP (if
there exists one).

(3) If |ABP | < n set γ = α · r + Δγ and γj = γ −
∑n

j �=i=1 γi, else set
γ =

∑n
i=1 γi.

(4) Define 〈r〉 = (r1, ..., rn,γ1, ..., γn). Return 〈r〉.

Fig. 8. The ideal functionality that describes the output of the offline phase, continued

FAuditMPC in the simulated case. We have to show that in the real protocol, the
probability that A can cheat is negligible.

Output: There are three ways how the output can be incorrect with respect
to the inputs and the calculated function, which is if a multiplication triple
was not correct even though it passed the check, or if a dishonest party
successfully adjusted the MACs during the computation, or it successfully
cheated during the output phase. As argued in [14], the first event only
happens with probability 1/p. If A can adjust the MACs correctly with
non-negligible probability, then it can guess the secret MAC key α – which
contradicts that it only holds at most n−1 shares of it which reveal no infor-
mation. For the third case, Lemma 1 implies that this can only happen with
probability 2/p. Since we set p to be exponential in the security parameter,
the distributions are statistically indistinguishable.

Audit: We focus on the two cases when FAuditMPC and ΠAuditMPC disagree
about the output of Audit. The conditions under which SOffline,normal and
ΠAuditMPC output no audit possible are the same.

(1) FAuditMPC outputs accept y when ΠAuditMPC outputs reject does
not happen due to the construction of SOffline,normal.

(2) FAuditMPC outputs reject when ΠAuditMPC outputs accept y. A
replaced the output with ⊥, but PCheckMac passed successfully. This
happens with probability at most 2/p according to Lemma 1.

Publicly Auditable Secure Multi-Party Computation 189

Protocol ΠAuditMPC, Part 1/2

Initialize: On input (Init, C, p) from all parties (where p ∈ P and C is a circuit
over Zp, with ρ multiplication gates):
(1) The parties send (Init, p, l) to FSetup and obtain their shares αi.
(2) The parties choose the smallest τ ≥ ρ such that l|τ and send

(GenerateData, m+2, τ) to FSetup. If they obtain ρ′ < ρ triples, they con-
tinue sending (GenerateData, 0, τ) until they obtained at least ρ triples in
total.

Input: On input (Input,Ii, varid, xi) by Ii and (Input,Ii, varid, ?) from all Pj ,
the parties and Ii do the following (using a new random value [[r]]):
(1) [[r]] is privately opened as r, rrand to Ii.
(2) Let cr be the commitment of [[r]] on FBulletin. Ii checks that cr =

pc(r, rrand). If not, the protocol is aborted.
(3) Ii broadcasts ε = xi − r to all Pj and FBulletin.
(4) All players locally compute [[xi]] = [[r]] + ε

Compute: Upon input (Compute) from all Pi, if Initialize has been executed
and inputs for all input wires of C have been assigned, evaluate C gate per
gate as follows:
Add: For two values [[r]], [[s]] with IDs varidr, varids:

(1) Let varidt be a fresh ID. Each party locally computes [[t]] = [[r]]+ [[s]]
and assigns varidt to it. The commitments are excluded from the
computation.

Multiply: Multiply two values [[r]], [[s]] with IDs varidr, varids, using the
multiplication triple ([[a]], [[b]], [[c]]).
(1) Let varidt be a fresh ID. The parties invoke

PMult.Multiply([[r]], [[s]], [[a]], [[b]], [[c]]) to compute [[t]] and assign
the ID varidt. The commitments are excluded from the computa-
tion.

Output: The parties open the output [[y]]. Let a1, ..., at be the values opened.
(1) All parties compute

r ← PCheckMac.CheckOutput(a1, γ(a1), . . . , at, γ(at), p)
If r �= 0 then stop.

(2) All parties open the output [[y]] towards FBulletin.
(3) All parties compute

s ← PCheckMac.CheckOutput(y, γ(y), yrand, γ(yrand), p)
If s �= 0 then stop. Otherwise output y.

Fig. 9. The protocol for the online phase

Fully Malicious Setting. The intuition behind SOnline,full is that we let Z
send arbitrary messages during the online phase. But since all messages for
FSetup go through SOnline,full, we extract the used inputs after the fact which
we then can use with FAuditMPC. Observe that, since we cannot guarantee pri-
vacy, no inputs must be substituted. During the Audit, we run the protocol of
ΠAuditMPC also in the simulator (but with different outputs, as we shall see).
The difference between both again is the output of Audit in both worlds.

190 C. Baum, I. Damg̊ard, and C. Orlandi

Protocol ΠAuditMPC, Part 2/2

Audit:
(1) If the Output step was not completed, output no audit possible.
(2) Run Audit for FSetup. If it returns accept then continue, otherwise

output no audit possible.
(3) We follow the computation gates of the evaluated circuit C in the same

order as they were computed. For the i-th gate, do the following:
Input: Let [[r]] be the opened value and varidx be the ID of input x. Set

cvaridx = pc(ε, 0) · c, where c is the commitment in [[r]] and ε is the
opened difference.

Add: The parties added [[r]] with varidr and [[s]] with varids to [[t]] with
varidt. Set cvaridt = cvaridr · cvarids .

Multiply: The parties multiplied [[r]] with varidr and [[s]] with varids
(using the auxiliary values [[a]], [[b]], [[c]], [[γ]], [[δ]] with their respective
IDs). The output has ID varidt.
(a) Set cvaridt = cvaridc · cδvarida · cγvaridb · pc(γ · δ, 0).
(b) Check that cvaridr · c−1

varida

?
= pc(γ, γrand,) and

cvarids · c−1
varidb

?
= pc(δ, δrand,). If not, output reject.

(4) Let y be the output of Output and cy be the commitment for the output
value [[y]].
If cy = pc(y, yrand) then output accept y.
If cy �= pc(y, yrand) then output reject.

Fig. 10. The protocol for the online phase, continued

Procedure PCheckMac

CheckOutput(v1, γ(v1), ..., vt, γ(vt),m) Here we check whether the MACs hold
on t reconstructed values.
(1) Each Pi samples a value si and, to obtain the vector r, invokes

PProvideRandom.P rovideRandom(m, t) with the seed si.
(2) Each Pi computes v =

∑t
i=1 r[i] · vi.

(3) Each Pi computes γi =
∑t

j=1 r[j] · γ(vj) and σi = γi − αi · v.
(4) Each Pi commits to σi using FCommit as c′i.
(5) Each c′i is opened towards all players using FCommit.
(6) If σ =

∑n
i=1 σi is 0 then return 1, otherwise return 0.

Fig. 11. Procedure to check validity of MACs

(1) FAuditMPC outputs accept y when ΠAuditMPC outputs reject does not
happen due to the construction of SOffline,full.

(2) FAuditMPC outputs reject when ΠAuditMPC outputs accept y. Z replaced
the output with another value y′ (and also y′rand) that open the commitment
cy. But in step (3) of Compute, the simulator already obtained y such that

Publicly Auditable Secure Multi-Party Computation 191

Simulator SOnline

(1) Wait for the set ABP of corrupted players from Z.
(2) If |ABP | �= n then forward all incoming messages that are not from

SOnline,normal to SOnline,normal, and forward all messages that come from
SOnline,normal to the recipient.

If |ABP | = n then forward all incoming messages that are not from
SOnline,full to SOnline,full, and forward all messages that come from
SOnline,full to the recipient.

Fig. 12. Simulator for the online phase

pc(y, yrand) = pc(y′, y′rand) for some yrand.
14. This implies a solution of the

DLP in poly-time, contradicting the assumption.
��

5 On the Efficiency of Our Solution

In this section, we will outline why the practical efficiency of the offline and
audit phase of our protocol crucially depends on how fast commitments can be
computed and checked. We will moreover present a few optimizations for these
tasks.

Asymptotic Efficiency. In terms of asymptotic efficiency, our suggested on-
line phase is as efficient as the SPDZ protocol. Practically, the number of local
field operations and sent values increases by a modest factor of two, plus some
additional work for each input-providing party (to check whether the commit-
ment is correct). It is an interesting open problem to see if one could get rid of
even this minor slowdown.

To be more precise, we have to distinguish between the field operations in
Zp and the group operations in G. In the standard setting, where each party
provides O(1) inputs and O(1) output values are jointly computed, and where
the number of gates in our circuit is upper-bounded by |C|, all operations of
the online phase (Input, Add, Multiply, Output) together can be performed
by each player doing at most O(n · |C|) field operations. Assuming that we use
Pedersen commitments to implement FCommit in practice, we obtain an extra
O(n · log p) group operations during Input and Output. In terms of network
load, each party sends or receives O(n · |C|) field elements over the network
during the Input phase and while the computation is carried out, and O(n)
elements from Zp and G during Output.

We moreover have to discuss our new Audit phase of the protocol (we exclude
FSetup from the discussion). The strategy of Audit is to follow the computation
with the commitments. Here, the number of operations in Zp is O(n · |C|), which
14 Computing yrand from C and the randomization values of the inputs is straightfor-

ward. We omitted this computation here.

192 C. Baum, I. Damg̊ard, and C. Orlandi

Simulator SOnline,normal

The values g, h are provided as a CRS by this simulator, so s = logg(h) is known
as well as α.

Initialize: On input (Init, C, p) from Z:
(1) Set up FBulletin and start a local instance Π of ΠAuditMPC with the dis-

honest parties (and simulated honest parties).
(2) Run a copy of FSetup, with which Z and the simulated honest parties

communicate through the simulator.
(3) Run Initialize and Compute of FSetup as in ΠAuditMPC.

Input: On input (Input,Ii, varid, ·) by Ii and (Input,Ii, varid, ?) from and Z:
If Ii is honest then follow ΠAuditMPC for a fake input 0.
If Ii is dishonest then extract the input value xi from Π and send it to

FAuditMPC. Execute this step with xi in FAuditMPC.
Compute: Upon input (Compute) from Z, if Initialize has been executed and

inputs for all input gates of C have been provided, evaluate C gate per gate
as follows:
Add: Follow the steps of Add in ΠAuditMPC.
Multiply: Follow the steps of Multiply in ΠAuditMPC.
Output: Obtain the output y from FAuditMPC and simulate ΠAuditMPC as

follows:
(1) Generate correct shares for the simulated honest parties for Π :

(1.1) Let Pi be a simulated honest party and y′ be the output of
Π with Z right now. Let [[y′]] = (〈y′〉, 〈y′

rand〉, c = pc(y′, y′
rand)),

where y′ =
∑

k y
′
o,k and y′

rand =
∑

k y
′
rand,o,k. For all honest Pj

with j �= i, let y′
q,j = y′

o,j, y
′
rand,q,j = y′

rand,o,j
a.

(1.2) For Pi set y
′
q,i = y′

o,i + (y− y′) and γ′
q,i = γ′

o,i +α(y− y′). We
have s �= 0, so s−1 mod p exists. Set yrand = (y′−y+s ·y′

rand)/s
mod p, and y′

rand,q,i = y′
rand,o,i + (yrand − y′

rand),
γ′
rand,q,i = γ′

rand,o,i + α · (yrand − y′
rand).

(1.3) Let y′ =
∑

k yq,k, y
′
rand =

∑
k y

′
rand,q,k, γ′ =

∑
k γ

′
q,k and

γ′
rand =

∑
k γ

′
rand,q,k.

(2) Follow the protocol ΠAuditMPC to check the MACs according to step
1 of Output. If that step fails, let FAuditMPC deliver ⊥ to the honest
parties and stop.

(3) Send the shares of the simulated honest parties of the output [[y]] to
FBulletin. If Z does not provide shares of [[y]] for all dishonest parties,
then let FAuditMPC set y′ = ⊥ and stop.

(4) Run PCheckMac as in ΠAuditMPC. If the MAC on the output [[y]] is
correct, let FAuditMPC set y′ = y, otherwise y′ = ⊥.

Audit: Run Audit as in ΠAuditMPC with the malicious players. Then invoke
Audit in FAuditMPC and output reject if it is the output of FAuditMPC. If
not, reveal what FAuditMPC outputs.

a Similarly, the MAC keys γ′
o,j , γ

′
rand,o,j of those parties are not touched.

Fig. 13. Simulator for honest minority

Publicly Auditable Secure Multi-Party Computation 193

Simulator SOnline,full

Initialize: On input (Init, C, p) from Z:
(1) Set up FBulletin and start a local instance Π of ΠAuditMPC with the dis-

honest parties.
(2) Run a copy of FSetup, with which Z communicates through the simulator.
(3) Run Initialize and Compute of FSetup as in ΠAuditMPC.

Input: On input (Input,Ii, varid, ·) by Ii and (Input,Ii, varid, ?) from Z:
If Ii is honest then ask FAuditMPC to reveal the input value xi.
If Ii is dishonest then extract the value xi from Π and send it to

FAuditMPC.
Compute: Upon input (Compute) from Z, if Initialize has been executed and

inputs for all input gates of C have been provided, evaluate C gate per gate
as follows:
Add: Follow the steps of Add in ΠAuditMPC.
Multiply: Follow the steps of Multiply in ΠAuditMPC.
Output:

(1) Follow the protocol ΠAuditMPC to check the MACs according to step
1 of Output. If that step fails, let FAuditMPC set y′ = ⊥ and stop.

(2) If Z does not provide shares of [[y]] for all parties, then let FAuditMPC

set y′ = ⊥ and stop.
(3) Run PCheckMac as in ΠAuditMPC. If the MAC on the output [[y]] is

correct, let FAuditMPC set y′ = y, otherwise y′ = ⊥.
Audit: Run Audit as in ΠAuditMPC with the malicious players. Then invoke

Audit in FAuditMPC and output reject if it is the output of FAuditMPC. If
not, reveal what FAuditMPC outputs.

Fig. 14. Simulator for the fully malicious setting

is comparable to the online phase. In addition, the algorithm performs the gate
operations on commitments and checks whether every opening of a commitment
was correct – this in total requires O((n + C) · log p) group operations.

To check whether the commitments are correctly opened, the audit process
computes a random linear combination of the opened commitments (using co-
efficients from Zp) and the values which should open them (instead of checking
all of them independently). This randomized check fails with probability 2− log p.
In practice, one would choose the coefficients of the random linear combination
from the smaller interval [0, ..., 2k−1] (where we can have k# log p), thus saving
operations in G.

Towards a Faster Offline Phase. Though the offline phase of [14] can di-
rectly be extended to support the computation of the commitments (as we de-
scribe in the full version), one can use different optimizations for it. First of all,
computing the commitments can be made faster using preprocessing as in [7,21].
Moreover, it is possible to reduce the total number of commitments (introducing
a moderate slowdown during the online phase) as follows:

194 C. Baum, I. Damg̊ard, and C. Orlandi

Instead of computing one commitment per value, one can also use s pairwise
distinct generators g1, ..., gs ∈ Zp together with just one randomness parameter,
where generator gi is used to commit to the ith value.

A representation (x1, ..., xt, r, g
x1
1 · · · gxt

t h
r) of t values in parallel is compo-

nentwise linear, and multiplications can also be performed as before (now for
multiple elements in parallel). We observe that the computation of a commit-
ment with many generators can be substantially faster than computing all com-
mitments individually. This optimization, similar to [13], works for a large class
of circuits. We moreover note that, in order to use this optimization, one also
has to precompute permutations between the representations which must then
be used during the online phase. This leads to a moderate slowdown during the
evaluation of the circuit.

Tweaks for the Audit Phase. The audit process, as explained in Figure 9,
basically consists of (1) performing linear operations on commitments and (2)
checking whether commitments open to the correct values. Whereas we see no
approach to speed up the first part, we will address the second one using a
well-known technique from [5].

Let c1, ..., cn ∈ G be the commitments and let x1, ..., xn, r1, ..., rn be the values
that should open them. We want to establish that ∀i ∈ {1, ..., n} : ci = gxihri .

The is to compute a random linear combination of all commitments, and thus
check all of them at once. We choose the coefficients of the random combination
from the interval 0, ..., 2k − 1.

Now computing such a random linear combination will yield a false positive
with probability ≈ 2−k, but we can adjust the error probability here and make
it independent of the field description size log p (remember that also G has to
be a DLP-hard group of order p). This also yields less computational overhead,
as we only have to raise group elements to at most 2kth powers. The algorithm
looks as follows:

(1) Choose a← {0, ..., 2k − 1}n uniformly at random.

(2) Check that
∏

i c
a[i]
i =
∏

i(g
xihri)a[i] = g

∑
i a[i]xih

∑
i a[i]ri .

Bellare et al. show in [5] that this algorithm indeed fails to correctly verify
with probability 2−k. Moreover, one can use a recursive approach to gain further
speedup for a large number of commitments. We refer to [5] for more details.

6 Summary and Open Problems

In this paper, we described how to formally lift MPC into a setting where all
servers are malicious. We outlined how this concept can then be securely realized
on top of the SPDZ protocol. Though our approach can also be implemented for
other MPC protocols, we focused on SPDZ since, even as an publicly auditable
scheme, its online phase is very efficient. We note that our protocol would also
work for Boolean circuits, but this would introduce a significant slowdown (since
the MACs must then be defined as elements of an extension field over F2, which

Publicly Auditable Secure Multi-Party Computation 195

leads to a significant overhead). It is an interesting future direction to design an
efficient auditable protocol optimized for Boolean circuits or circuits over fields
with small characteristic.

With respect to online voting, there exist stronger degrees of auditability than
we presented. An example is the notion of universal verifiability (see e.g. [27,22])
where the auditor must not know the output of the computation. We also do
not provide accountability (see e.g. Küsters et al. [30]), and leave it as an open
question whether similar, efficient protocols can be achieved in this setting.

We leave a working implementation of our scheme as a future work. As our
protocol is very similar in structure to the original SPDZ, it should be possible
to implement it easily on top of the existing codebase of [12].

Acknowledgements. We want to thank the anonymous reviewers for their
helpful comments.

References

1. Helios, B.A.: Web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Ajtai, M., Komlós, J., Szemerédi, E.: An o(n log n) sorting network. In: STOC,
pp. 1–9 (1983)

3. Asharov, G., Orlandi, C.: Calling out cheaters: Covert security with public veri-
fiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
681–698. Springer, Heidelberg (2012)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992)

5. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

6. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

7. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993)

8. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: De Capitani di Vimercati, S., Syverson, P., Gollmann, D. (eds.) ES-
ORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

9. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84–90 (1981)

10. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme. In: FOCS, vol. 85, pp. 372–382 (1985)

11. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In:
Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X.
(eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012)

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practi-
cal covertly secure mpc for dishonest majority - or: Breaking the spdz limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

196 C. Baum, I. Damg̊ard, and C. Orlandi

13. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013)

14. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

15. Jacobus, S., de Hoogh, A.: Design of Large Scale Applications of Secure Multiparty
Computation: Secure Linear Programming. PhD thesis, Technische Universiteit
Eindhoven (2012)

16. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: ACM Conference on Computer and
Communications Security, pp. 501–512 (2012)

17. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)

18. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

19. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS (2012)

20. Küpçü, A., Lysyanskaya, A.: Optimistic fair exchange with multiple arbiters. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345,
pp. 488–507. Springer, Heidelberg (2010)

21. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) Advances in Cryptology - CRYPT0 1994. LNCS, vol. 839,
pp. 95–107. Springer, Heidelberg (1994)

22. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

23. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp.
129–139. ACM (1999)

24. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

25. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS,
vol. 576, pp. 129–140. Springer, Heidelberg (1992)

26. Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng, Y.
(eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000)

27. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) Advances in Cryptology - EUROCRYPT 1995. LNCS,
vol. 921, pp. 393–403. Springer, Heidelberg (1995)

28. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 148–164. Springer, Heidelberg (1999)

29. Stadler, M.A.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) Advances
in Cryptology - EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Hei-
delberg (1996)

30. Truderung, T., Vogt, A., Küsters, R.: Accountability: definition and relationship
to verifiability. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, pp. 526–535. ACM (2010)

Reducing the Overhead of MPC over a Large Population

Ashish Choudhury1, Arpita Patra2, and Nigel P. Smart3

1 IIIT Bangalore, India
2 Dept. of Computer Science & Automation, IISc Bangalore, India

3 Dept. of Computer Science, Uni. Bristol, United Kingdom
partho31@gmail.com, arpita@csa.iisc.ernet.in,

nigel@cs.bris.ac.uk

Abstract. We present a secure honest majority MPC protocol, against a static
adversary, which aims to reduce the communication cost in the situation where
there are a large number of parties and the number of adversarially controlled
parties is relatively small. Our goal is to reduce the usage of point-to-point chan-
nels among the parties, thus enabling them to run multiple different protocol ex-
ecutions. Our protocol has highly efficient theoretical communication cost when
compared with other protocols in the literature; specifically the circuit-dependent
communication cost, for circuits of suitably large depth, is O(|ckt|κ7), for se-
curity parameter κ and circuit size |ckt|. Our protocol finds application in cloud
computing scenario, where the fraction of corrupted parties is relatively small. By
minimizing the usage of point-to-point channels, our protocol can enable a cloud
service provider to run multiple MPC protocols.

1 Introduction

Threshold secure multi-party computation (MPC) is a fundamental problem in secure
distributed computing. It allows a set of n mutually distrusting parties with private
inputs to “securely” compute any publicly known function of their private inputs, even
in the presence of a centralized adversary who can control any t out of the n parties and
force them to behave in any arbitrary manner. Now consider a situation, where n is very
large, say n ≥ 1000 and the proportion of corrupted parties (namely the ratio t/n) is
relatively small, say 5 percent. In such a scenario, involving all the n parties to perform
an MPC calculation is wasteful, as typical (secret-sharing based) MPC protocols require
all parties to simultaneously transmit data to all other parties. However, restricting to
a small subset of parties may lead to security problems. In this paper we consider the
above scenario and show how one can obtain a communication efficient, robust MPC
protocol which is actively secure against a computationally bounded static adversary.
In particular we present a protocol in which the main computation is performed by a
“smallish” subset of the parties, with the whole set of parties used occasionally so as
to “checkpoint” the computation. By not utilizing the entire set of parties all the time
enables them to run many MPC calculations at once. The main result we obtain in the
paper is as follows:

Main Result (Informal): Let ε = t
n with 0 ≤ ε < 1/2 and let the t corrupted

parties be under the control of a computationally bounded static adversary.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 197–217, 2014.
c© Springer International Publishing Switzerland 2014

198 A. Choudhury, A. Patra, and N.P. Smart

Then for a security parameter κ (for example κ = 80 or κ = 128), there
exists an MPC protocol with the following circuit-dependent communication
complexity1 to evaluate an arithmetic circuit ckt: (a).O(|ckt| ·κ7) for ckt with
depth ω(t). (b). O(|ckt| · κ4) for ckt with d = ω(t) and w = ω(κ3) (i.e.
|ckt| = ω(κ3t)).

Protocol Overview: We make use of two secret-sharing schemes. A secret-sharing
scheme [·] which is an actively-secure variant of the Shamir secret-sharing scheme [22]
with threshold t. This first secret-sharing scheme is used to share values amongst all of
the n parties. The second secret-sharing scheme 〈·〉 is an actively-secure variant of an
additive secret-sharing scheme, amongst a well-defined subset C of the parties.

Assuming the inputs to the protocol are [·] shared amongst the parties at the start
of the protocol, we proceed as follows. We first divide ckt into L levels, where each
level consists of a sub-circuit. The computation now proceeds in L phases; we describe
phase i. At the start of phase i we have that all n parties hold [·] sharings of the inputs
to level i. The n parties then select (at random) a committee C of size c. If c is such that
εc < 2−κ then statistically the committee C will contain at least one honest party, as
the inequality implies that the probability that the committee contains no honest party
is negligibly small. The n parties then engage in a “conversion” protocol so that the
input values to level i are now 〈·〉 shared amongst the committee. The committee C
then engages in an actively-secure dishonest majority2 MPC protocol to evaluate the
sub-circuit at level i. If no abort occurs during the evaluation of the ith sub-circuit then
the parties engage in another “conversion” protocol so that the output values of the sub-
circuit are converted from a 〈·〉 sharing amongst members in C to a [·] sharing amongst
all n parties. This step amounts to check-pointing data. This ensures that the inputs to
all the subsequent sub-circuits are saved in the form of [·] sharing which guarantees
recoverability as long as 0 ≤ ε < 1

2 . So the check-pointing prevents from re-evaluating
the entire circuit from scratch after every abort of the dishonest-majority MPC protocol.

If however an abort occurs while evaluating the ith sub-circuit then we determine a
pair of parties from the committee C, one of whom is guaranteed to be corrupted and
eliminate the pair from the set of active parties, and re-evaluate the sub-circuit again. In
fact, cheating can also occur in the 〈·〉 ↔ [·] conversions and we need to deal with these
as well. Thus if errors are detected we need to repeat the evaluation of the sub-circuit
at level i. Since there are at most t bad parties, the total amount of backtracking (i.e.
evaluating a sub-circuit already computed) that needs to be done is bounded by t. For
large n and small t this provides an asymptotically efficient protocol.

The main technical difficulty is in providing actively-secure conversions between the
two secret-sharing schemes, and providing a suitable party-elimination strategy for the
dishonest majority MPC protocol. The party-elimination strategy we employ follows

1 The communication complexity of an MPC protocol has two parts: a circuit-dependent part,
dependent on the circuit size and a circuit-independent part. The focus is on the circuit-
dependent communication, based on the assumption that the circuit is large enough so that
the terms independent of the circuit-size can be ignored; see for example [10,4,11,5].

2 In the dishonest-majority setting, the adversary may corrupt all but one parties. An MPC pro-
tocol in this setting aborts if a corrupted party misbehaves.

Reducing the Overhead of MPC over a Large Population 199

from standard techniques, as long as we can identify the pair of parties. This require-
ment, of a dishonest-majority MPC protocol which enables identification of cheaters,
without sacrificing privacy, leads us to the utilization of the protocol in [11]. This results
in us needing to use double-trapdoor homomorphic commitments as a basic building
block. To ensure greater asymptotic efficiency we apply two techniques: (a). the check-
pointing is done among a set of parties that assures honest majority with overwhelming
probability (b). the packing technique from [16] to our Shamir based secret sharing.

To obtain an efficient protocol one needs to select L; if L is too small then the sub-
circuits are large and so the cost of returning to a prior checkpoint will also be large.
If however L is too large then we will need to checkpoint a lot, and hence involve all
n parties in the computation at a lot of stages (and thus requiring all n parties to be
communicating/computing). The optimal value of L for our protocol turns out to be t.

Related Work: The circuit-dependent communication complexity of the traditional
MPC protocols in the honest-majority setting is O(|ckt| · Poly(n, κ)); this informally
stems from the fact in these protocols we require all the n parties to communicate
with each other for evaluating each gate of the circuit. Assuming 0 ≤ ε < 1/2,
[10] presents a computationally secure MPC protocol with communication complex-
ity O(|ckt| · Poly(κ, logn, log |ckt|)). The efficiency comes from the ability to pack
and share several values simultaneously which in turn allow parallel evaluation of “sev-
eral” gates simultaneously in a single round of communication. However, the protocol
still requires communications between all the parties during each round of communica-
tion. Our protocol reduces the need for the parties to be communicating with all others
at all stages in the protocol; moreover, asymptotically for large n it provides a better
communication complexity over [10] (as there is no dependence on n), for circuits of
suitably large depth as stated earlier. However, the protocol of [10] is secure against a
more powerful adaptive adversary.

In the literature, another line of investigation has been carried out in [6,9,12,13] to
beat the O(|ckt| · Poly(n, κ)) communication complexity bound of traditional MPC
protocols, against a static adversary. The main idea behind all these works is similar to
ours, which is to involve “small committees” of parties for evaluating each gate of the
circuit, rather than involving all the n parties. The communication complexity of these
protocols3 is of the orderO(|ckt| ·Poly(logn, κ)). Technically our protocol is different
from these protocols in the following ways: (a). The committees in [6,9,12,13] are of
size Poly(logn), which ensures that with high probability the selected committees have
honest majority. As a result, these protocols run any existing honest-majority MPC
protocol among these small committees of Poly(logn) size, which prevents the need to
check-point the computation (as there will be no aborts). On the other hand, we only
require committees with at least one honest party and our committee size is independent
of n, thus providing better communication complexity. Indeed, asymptotically for large
n, our protocol provides a better communication complexity over [6,9,12,13] (as there
is no dependence on n), for circuits of suitably large depth. (b). Our protocol provides a

3 Note, the protocol of [6] involves FHE to further achieve a communication complexity of
O(Poly(log n)).

200 A. Choudhury, A. Patra, and N.P. Smart

better fault-tolerance. Specifically, [12,9,6] requires ε < 1/3 and [13] requires ε < 1/8;
on the other hand we require ε < 1/2.

We stress that the committee selection protocol in [6,9,12,13] is unconditionally se-
cure and in the full-information model, where the corrupted parties can see all the mes-
sages communicated between the honest parties. On the other hand our implementation
of the committee selection protocol is computationally secure. The committee election
protocol in [6,9,12,13] is inherited from [14]. The committee selection protocol in these
protocols are rather involved and not based on simply randomly selecting a subset of
parties, possibly due to the challenges posed in the full information model with uncon-
ditional security; this causes their committee size to be logarithmic in n. However, if
one is willing to relax at least one of the above two features (i.e. full information model
and unconditional security), then it may be possible to select committees with honest
majority in a simple way by randomly selecting committees, where the committee size
may be independent of n. However investigating the same is out of the scope of this
paper.

Finally we note that the idea of using small committees has been used earlier in the
literature for various distributed computing tasks, such as the leader election [17,20],
Byzantine agreement [18,19] and distributed key-generation [8].

On the Choice of ε: We select committees of size c satisfying εc < 2−κ. This im-
plies that the selected committee has at least one honest participant with overwhelming
probability. We note that it is possible to randomly select committees of “larger” size so
that with overwhelming probability the selected committee will have honest majority.
We label the protocol which samples a committee with honest majority and then runs
an computationally secure honest majority MPC protocol (where we need not have to
worry about aborts) as the “naive protocol”. The naive protocol will have communica-
tion complexityO(|ckt| · Poly(κ)).

For “very small” values of ε, the committee size for the naive protocol is compara-
ble to the committee size in our protocol. We demonstrate this with an example, with
n = 1000 and security level κ = 80: The committee size we require to ensure both a
single honest party in the committee and a committee with honest majority, with over-
whelming probability of (1 − 2−80) for various choices of ε, is given in the following
table:

ε c to obtain at least one honest party c to obtain honest majority
1/3 48 448
1/4 39 250
1/10 23 84
1/100 11 20

From the table it is clear that when ε is closer to 1/2, the difference in the committee
size to obtain at least one honest party and to obtain honest majority is large. As a result,
selecting committees with honest majority can be prohibitively expensive, thus our se-
lection of small committees with dishonest majority provides significant improvements.

To see intuitively why our protocol selects smaller committees, consider the case
when the security parameter κ tends to infinity: Our protocol will require a committee
of size roughly ε · n + 1, whereas the naive protocol will require a committee of size

Reducing the Overhead of MPC over a Large Population 201

roughly 2 · ε · n+ 1. Thus the naive method will use a committee size of roughly twice
that of our method. Hence, if small committees are what is required then our method
improves on the naive method.

For fixed ε and increasing n, we can apply the binomial approximation to the hy-
pergeometric distribution, and see that our protocol will require a committee of size
c ≈ κ/ log2(

1
ε). To estimate the committee size for the naive protocol we use the cu-

mulative distribution function for the binomial distribution, F (b; c, ε), which gives the
probability that we select at least b corrupt parties in a committee of size c given the
probability of a corrupt party being fixed at ε. To obtain an honest majority with prob-
ability less than 2−κ we require F (c/2; c, ε) ≈ 2−κ. By estimating F (c/2; c, ε) via
Hoeffding’s inequality we obtain

exp

(
−2 · (c · ε− c/2)2

c

)
≈ 2−κ,

which implies

κ ≈
(
c · (2 · ε− 1)2

2

)
/ loge 2.

Solving for c gives us

c ≈ 2 · κ · loge 2
(2 · ε − 1)2

.

Thus for fixed ε and large n the number of parties in a committee is O(κ) for both our
protocol, and the naive protocol. Thus the communication complexity of our protocol
and the naive protocol is asymptotically the same. But, since the committees in our
protocol are always smaller than those in the naive protocol, we will obtain an advantage
when the ratio of the different committee size is large, i.e. when ε is larger.

The ratio between the committee size in the naive protocol and that of our protocol
(assuming we are in a range when Hoeffding’s inequality provides a good approxima-
tion) is roughly

−2 · loge 2 · log2 ε
(2 · ε− 1)2

So for large n the ratio between the committee sizes of the two protocols depends on
ε alone (and is independent of κ). By way of example this ratio is approximately equal
to 159 when ε = 0.45, 19 when ε = 1/3, 7 when ε = 1/10 and 9.6 when ε = 1/100;
although the approximation via Hoeffding’s inequality only really applies for ε close to
1/2.

This implies that for values of ε close to 1/2 our protocol will be an improvement on
the naive protocol. However, the naive method does not have the extra cost of check-
pointing which our method does; thus at some point the naive protocol will be more
efficient. Thus our protocol is perhaps more interesting, when ε is not too small, say in
the range of [1/100, 1/2].

Possible Application of Our Protocol for Cloud-Computing. Consider the situa-
tion of an organization performing a multi-party computation on a cloud infrastructure,
which involves a large number of machines, with the number of corrupted parties pos-
sibly high, but not exceeding one half of the parties, (which is exactly the situation

202 A. Choudhury, A. Patra, and N.P. Smart

considered in our MPC protocol). Using our MPC protocol, the whole computation can
be then carried out by a small subset of machines, with the whole cloud infrastructure
being used only for check-pointing the computation. By not utilizing the whole cloud
infrastructure all the time, we enable the cloud provider to serve multiple MPC requests.

Our protocol is not adaptively secure. In fact, vulnerability to adaptive adversary is
inherent to most of the committee-based protocols for several distributed computing
tasks such as Leader Election [17,20], Byzantine Agreement [19,18], Distributed Key-
generation [8] and MPC in [12,9]. Furthermore, We feel that adaptive security is not
required in the cloud scenario. Any external attacker to the cloud data centre will have
a problem determining which computers are being used in the committee, and an even
greater problem in compromising them adaptively. The main threat model in such a
situation is via co-tenants (other users processes) to be resident on the same physical
machine. Since the precise machine upon which a cloud tenant sits is (essentially) ran-
domly assigned, it is hard for a co-tenant adversary to mount a cross-Virtual Machine
attack on a specific machine unless they are randomly assigned this machine by the
cloud. Note, that co-tenants have more adversarial power than a completely external
attacker. A more correct security model would be to have a form of adaptive security
in which attackers pro-actively move from one machine to another, but in a random
fashion. We leave analysing this complex situation to a future work.

2 Model, Notation and Preliminaries

We denote by P = {P1, . . . , Pn} the set of n parties who are connected by pair-wise
private and authentic channels. We assume that there exists a PPT static adversary A,
who can maliciously corrupt any t parties from P at the beginning of the execution of
a protocol, where t = n · ε and 0 ≤ ε < 1

2 . There exists a publicly known randomized
function f : Fn

p → Fp, expressed as a publicly known arithmetic circuit ckt over the
field Fp of prime order p (including random gates to enable the evaluation of random-
ized functions), with party Pi having a private input x(i) ∈ Fp for the computation.
We let d and w to denote the depth and (average) width of ckt respectively. The finite
field Fp is assumed to be such that p is a prime, with p > max{n, 2κ}, where κ is the
computational security parameter. Apart from κ, we also have an additional statistical
security parameter s and the security offered by s (which is generally much smaller
than κ) does not depend on the computational power of the adversary.

The security of our protocol(s) will be proved in the universal composability (UC)
model. The UC framework allows for defining the security properties of cryptographic
tasks so that security is maintained under general composition with an unbounded num-
ber of instances of arbitrary protocols running concurrently. In the framework, the se-
curity requirements of a given task are captured by specifying an ideal functionality run
by a “trusted party” that obtains the inputs of the parties and provides them with the
desired outputs. Informally, a protocol securely carries out a given task if running the
protocol in the presence of a real-world adversary amounts to “emulating” the desired
functionality. For more details, see the full version of this paper.

We do not assume a physical broadcast channel. Although our protocol uses an ideal
broadcast functionalityFBC (Fig. 3), that allows a sender Sen ∈ P to reliably broadcast

Reducing the Overhead of MPC over a Large Population 203

a message to a group of parties X ⊆ P , the functionality can be instantiated using
point-to-point channels; see the full version of this paper for details.

The communication complexity of our protocols has two parts: the communication
done over the point-to-point channels and the broadcast communication. The later is
captured by BC

(
�, |X |
)

to denote that in total,O(�) bits is broadcasted in the associated
protocol to a set of parties of size |X |.

Two different types of secret-sharing are employed in our protocols. The secret-
sharings are inherently defined to include “verification information” of the individual
shares in the form of publicly known commitments. We use a variant of the Pedersen
homomorphic commitment scheme [21]. In our protocol, we require UC-secure com-
mitments to ensure that a committer must know its committed value and just cannot
manipulate a commitment produced by other committers to violate what we call “in-
put independence”. It has been shown in [7] that a UC secure commitment scheme is
impossible to achieve without setup assumptions. The standard method to implement
UC-secure commitments is in the Common Reference String (CRS) model where it is
assumed that the parties are provided with a CRS that is set up by a “trusted third party”
(TTP). We follow [11], where the authors show how to build a multiparty UC-secure
homomorphic commitment scheme (where multiple parties can act as committer) based
on any double-trapdoor homomorphic commitment scheme.

Definition 1 (Double-trapdoor Homomorphic Commitment for Fp [11]). It is a col-
lection of five PPT algorithms (Gen,Comm,Open,Equivocate,TDExtract,�):

– Gen(1κ) → (ck, τ0, τ1): the generation algorithm outputs a commitment key ck,
along with trapdoors τ0 and τ1.

– Commck(x; r0, r1)→ Cx,r0,r1: the commitment algorithm takes a message x ∈ Fp

and randomness r0, r1 from the commitment randomness space R 4 and outputs a
commitment Cx;r0,r1 of x under the randomness r0, r1.

– Openck(C, (x; r0, r1)) → {0, 1}: the opening algorithm takes a commitment C,
along with a message/randomness triplet (x, r0, r1) and outputs 1 if C = Commck(
x; r0, r1), else 0.

– Equivocate(Cx,r0,r1 , x, r0, r1, x, τi) → (r0, r1) ∈ R: using one of the trapdoors
τi with i ∈ {0, 1}, the equivocation algorithm can open a commitment Cx,r0,r1

with any message x �= x with randomness r0 and r1 where r1−i = r1−i.
– TDExtract(C, x, r0, r1, x, r0, r1, τi) → τ1−i: using one of the trapdoors τi with
i ∈ {0, 1} and two different sets of message/randomness triplet for the same com-
mitment, namely x, r0, r1 and x, r0, r1, the trapdoor extraction algorithm can find
the other trapdoor τ1−i if r1−i �= r1−i.
The commitments are homomorphic meaning that Comm(x; r0, r1) � Comm(y;
s0, s1) = Comm(x+y; r0+s0, r1+s1) andComm(x; r0, r1)

c = Comm(c·x; c·r0 ,
c · r1) for any publicly known constant c.

We require the following properties to be satisfied:

– Trapdoor Security: There exists no PPT algorithm A such that A(1κ, ck, τi) →
τ1−i, for i ∈ {0, 1}.

4 For the ease of presentation, we assume R to be an additive group.

204 A. Choudhury, A. Patra, and N.P. Smart

– Computational Binding: There exists no PPT algorithm A with A(1κ, ck) → (x,
r0, r1, x, r0, r1) and (x, r0, r1) �= (x, r0, r1), but Commck(x; r0, r1) = Commck(
x; r0, r1).

– Statistical Hiding: ∀x, x ∈ Fp and r0, r1 ∈ R, let (r0, r1) = Equivocate(Cx,r0,r1 ,
x, r0, r1, x, τi), with i ∈ {0, 1}. Then Commck(x; r0, r1) = Commck(x; r0, r1) =
Cx,r0,r1; moreover the distribution of (r0, r1) and (r0, r1) are statistically close.

We will use the following instantiation of a double-trapdoor homomorphic commitment
scheme which is a variant of the standard Pedersen commitment scheme over a groupG
in which discrete logarithms are hard [11]. The message space is Fp and the randomness
space is R = F2

p.

– Gen(1κ)→ ((G, p, g, h0, h1), τ0, τ1), where ck = (G, p, g, h0, h1) such that g, h0,
h1 are generators of the group G of prime order p and gτi = hi for i ∈ {0, 1}.

– Commck(x; r0, r1)→ gxhr00 h
r1
1 = Cx,r0,r1 , with x, r0, r1 ∈ Fp.

– Openck(C, (x, r0, r1))→ 1, if C = gxhr00 h
r1
1 , else Openck(C, (x, r0, r1))→ 0.

– Equivocate(Cx,r0,r1 , x, r0, r1, x, τi) → (r0, r1) where r1−i = r1−i and ri =
τ−1
i (x− x) + ri.

– TDExtract(C, x, r0, r1, x, r0, r1, τi)→ τ1−i, where if r1−i �= r1−i, then

τ1−i =
x− x+ τi(ri − ri)

r1−i − r1−i
.

– The homomorphic operation � is just the group operation i.e.

Comm(x; r0, r1)� Comm(x; r0, r1) = gxhr00 h
r1
1 · gxhr00 hr11

= gx+x · hr0+r0
0 · hr1+r1

1

= Comm(x+ x; r0 + r0, r1 + r1).

We can now define the various types of secret-shared data used in our protocols. Let
α1, . . . , αn ∈ Fp be n publicly known non-zero, distinct values, where αi is associated
with Pi as the evaluation point. The [·] sharing is the standard Shamir-sharing [22],
where the secret value will be shared among the set of parties P with threshold t. Ad-
ditionally, a commitment of each individual share will be available publicly, with the
corresponding share-holder possessing the randomness of the commitment.

Definition 2 (The [·] Sharing). Let s ∈ Fp; then s is said to be [·]-shared among P if
there exist polynomials, say f(·), g(·) and h(·), of degree at most t, with f(0) = s and
every (honest) party Pi ∈ P holds a share fi = f(αi) of s, along with opening informa-
tion gi = g(αi) and hi = h(αi) for the commitment Cfi,gi,hi = Commck(fi; gi, hi).
The information available to party Pi ∈ P as part of the [·]-sharing of s is denoted by
[s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). All parties will also have the access to ck. More-
over, the collection of [s]i’s, corresponding to Pi ∈ P is denoted by [s].

The second type of secret-sharing (which is a variation of additive sharing), is used to
perform computation via a dishonest majority MPC protocol amongst our committees.

Reducing the Overhead of MPC over a Large Population 205

Definition 3 (The 〈·〉 Sharing). A value s ∈ Fp is said to be 〈·〉-shared among a set
of parties X ⊆ P , if every (honest) party Pi ∈ X holds a share si of s along with the
opening information ui, vi for the commitment Csi,ui,ui = Commck(si;ui, vi), such
that
∑

Pi∈X si = s. The information available to party Pi ∈ X as part of the 〈·〉-
sharing of s is denoted by 〈s〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X). All parties will also
have access to ck. The collection of 〈s〉i’s corresponding to Pi ∈ X is denoted by 〈s〉X .

It is easy to see that both types of secret-sharing are linear. For example, for the 〈·〉
sharing, given 〈s(1)〉X , . . . , 〈s(�)〉X and publicly known constants c1, . . . , c�, the parties
inX can locally compute their information corresponding to 〈c1 ·s(1)+ . . .+c� ·s(�)〉X .
This follows from the homomorphic property of the underlying commitment scheme
and the linearity of the secret-sharing scheme. This means that the parties in X can
locally compute 〈c1 · s(1) + . . .+ c� · s(�)〉X from 〈s(1)〉X , . . . , 〈s�〉X , since each party
Pi in X can locally compute 〈c1 · s(1) + . . .+ c� · s(�)〉i from 〈s(1)〉i, . . . , 〈s�〉i.

3 Main Protocol

We now present an MPC protocol implementing the standard honest-majority (meaning
ε < 1/2) MPC functionality Ff presented in Figure 1 which computes the function f .

Functionality Ff

Ff interacts with the parties in P and the adversary S and is parametrized by an n-input
function f : Fn

p → Fp.

– Upon receiving (sid, i, x(i)) from every Pi ∈ P where x(i) ∈ Fp, the functionality
computes y = f(x(1), . . . , x(n)), sends (sid, y) to all the parties and the adversary S
and halts.

Fig. 1. The Ideal Functionality for Computing a Given Function f

We now present the underlying idea of our protocol (outlined earlier in the intro-
duction). The protocol is set in a variant of the player-elimination framework from [4].
During the computation either pairs of parties, each containing at least one actively cor-
rupted party, or singletons of corrupted parties, are identified due to some adversarial
behavior of the corrupted parties. These pairs, or singletons, are then eliminated from
the set of eligible parties. To understand how we deal with the active corruptions, we
need to define a dynamic set L ⊆ P of size n, which will define the current set of
eligible parties in our protocol, and a threshold t which defines the maximum number
of corrupted parties in L. Initially L is set to be equal to P (hence n = n) and t is set
to t. We then divide the circuit ckt (representing f) to be evaluated into L levels, where
each level consists of a sub-circuit of depth d/L; without loss of generality, we assume
d to be a multiple of L. We denote the ith sub-circuit as ckti. At the beginning of the
protocol, all the parties in P verifiably [·]-share their inputs for the circuit ckt.

For evaluating a sub-circuit cktl, instead of involving all the parties inL, we rather in-
volve a small and random committee C ⊂ L of parties of size c, where c is the minimum

206 A. Choudhury, A. Patra, and N.P. Smart

value satisfying the constraint that εc ≤ 2−κ; recall ε = t/n. During the course of eval-
uating the sub-circuit, if any inconsistency is reported, then the (honest) parties inP will
identify either a single corrupted party or a pair of parties from L where the pair con-
tains at least one corrupted party. The identified party(ies) is(are) eliminated fromL and
the value of t is decremented by one, followed by re-evaluation of cktl by choosing a
new committee from the updated set L. This is reminiscent of the player-elimination
framework from [4], however the way we apply the player-elimination framework is
different from the standard one. Specifically, in the player-elimination framework, the
entire set of eligible parties L is involved in the computation and the player elimina-
tion is then performed over the entire L, thus requiring huge communication. On the
contrary, in our context, only a small set of parties C is involved in the computation,
thus significantly reducing the communication complexity. It is easy to see that after a
sequence of t failed sub-circuit evaluations, L will be left with only honest parties and
so each sub-circuit will be evaluated successfully from then onwards.

Note that the way we eliminate the parties, the fraction of corrupted parties in L after
any un-successful attempt for sub-circuit evaluation, is upper bounded by the fraction
of corrupted parties in L prior to the evaluation of the sub-circuit. Specifically, let εold =
t/n be the fraction of corrupted parties in L prior to the evaluation of a sub-circuit cktl
and let the evaluation fail, with either a single party or a pair of parties being eliminated
fromL. Moreover, let εnew be the fraction of corrupted parties in L after the elimination.
Then for single elimination, we have εnew = t−1

n−1 and so εnew ≤ εold if and only if n ≥ t,
which will always hold. On the other hand, for double elimination, we have εnew = t−1

n−2
and so εnew ≤ εold if and only if n ≥ 2t, which will always hold.

Since a committee C (for evaluating a sub-circuit) is selected randomly, except with
probability at most εc < 2−κ, the selected committee contains at least one honest party
and so the sub-circuit evaluation among C needs to be performed via a dishonest ma-
jority MPC protocol. We choose the MPC protocol of [11], since it can be modified
to identify pairs of parties consisting of at least one corrupted party in the case of the
failed evaluation, without violating the privacy of the honest parties. To use the protocol
of [11] for sub-circuit evaluation, we need the corresponding sub-circuit inputs (avail-
able to the parties in P in [·]-shared form) to be converted and available in 〈·〉-shared
form to the parties in C and so the parties in P do the same. After every successful
evaluation of a sub-circuit, via the dishonest majority MPC protocol, the outputs of that
sub-circuit (available in 〈·〉-shared form to the parties in a committee) are converted and
saved in the form of [·]-sharing among all the parties in P . As the set P has a honest
majority, [·]-sharing ensures robust reconstruction implying that the shared values are
recoverable. Since the inputs to a sub-circuit come either from the outputs of previous
sub-circuit evaluations or the original inputs, both of which are [·]-shared, a failed at-
tempt for a sub-circuit evaluation does not require a re-evaluation of the entire circuit
from scratch but requires a re-evaluation of that sub-circuit only.

3.1 Supporting Functionalities

We now present a number of ideal functionalities defining sub-components of our main
protocol; see the full version for the UC-secure instantiations of these functionalities.

Reducing the Overhead of MPC over a Large Population 207

Basic Functionalities: The functionality FCRS for generating the common reference
string (CRS) for our main MPC protocol is given in Figure 2. The functionality outputs
the commitment key of a double-trapdoor homomorphic commitment scheme, along
with the encryption key of an IND-CCA secure encryption scheme (to be used later for
UC-secure generation of completely random 〈·〉-shared values as in [11]). The func-
tionality FBC for group broadcast is given in Figure 3. This functionality broadcasts the
message sent by a sender Sen ∈ P to all the parties in a sender specified set of parties
X ⊆ P ; in our context, the set X will always contain at least one honest party. The
functionality FCOMMITTEE for a random committee selection is given in Figure 4. This
functionality is parameterized by a value c, it selects a set X of c parties at random from
a specified set Y and outputs the selected set X to the parties in P .

Functionality FCRS

FCRS interacts with the parties in P and the adversary S and is parameterized by κ.

– Upon receiving (sid, i) from every party Pi ∈ P , the functionality computes
Gen(1κ) → (ck, τ0, τ1) and G(1κ) → (pk, sk), where G is the key-generation
algorithm of an IND-CCA secure encryption schemea and Gen is the key-generation
algorithm of a double-trapdoor homomorphic commitment scheme. The functionality
then sets CRS = (ck, pk) and sends (sid, i,CRS) to every party Pi ∈ P and the
adversary S and halts.

a For use in the protocol of [11]

Fig. 2. The Ideal Functionality for Generating CRS

Functionality FBC

FBC interacts with the parties in P and the adversary S .

– Upon receiving (sid,Sen, x,X) from the sender Sen ∈ P such that X ⊆ P , the
functionality sends (sid, j,Sen, x) to every Pj ∈ X and to the adversary S and halts.

Fig. 3. The Ideal Functionality for Broadcast

Functionality FCOMMITTEE

FCOMMITTEE , parametrized by a constant c, interacts with the parties in P and the adversary S .

– Upon receiving (sid, i,Y) from every Pi ∈ P , the functionality selects c parties at
random from the set Y that is received from the majority of the parties and denotes the se-
lected set as X . The functionality then sends (sid, i,X) to every Pi ∈ P and S and halts.

Fig. 4. The Ideal Functionality for Selecting a Random Committee of Given Size c

208 A. Choudhury, A. Patra, and N.P. Smart

Functionality Related to [·]-sharings: In Figure 5 we present the functionalityFGEN[·]
which allows a dealer D ∈ P to verifiably [·]-share an already committed secret among
the parties in P . The functionality is invoked when it receives three polynomials, say
f(·), g(·) and h(·) from the dealer D and a commitment, say C, supposedly the commit-
ment of f(0) with randomness g(0), h(0) (namely Cf(0),g(0),h(0)), from the (majority
of the) parties in P . The functionality then hands fi = f(αi), gi = g(αi), hi = h(αi)
and commitments {Cfj ,gj ,hj}Pj∈P to Pi ∈ P after ‘verifying’ that (a): All the three
polynomials are of degree at most t and (b): C = Commck(f(0); g(0), h(0)) i.e. the
value (and the corresponding randomness) committed in C are embedded in the con-
stant term of f(·), g(·) and h(·) respectively. If either of the above two checks fail, then
the functionality returns Failure to the parties indicating that D is corrupted.

In our MPC protocol where FGEN[·] is called, the dealer will compute the commit-
ment C as Commck(f(0); g(0), h(0)) and will broadcast it prior to making a call to
FGEN[·]. It is easy to note that FGEN[·] generates [f(0)] if D is honest or well-behaved. If
FGEN[·] returns Failure, then D is indeed corrupted.

Functionality FGEN[·]

FGEN[·] interacts with the parties in P , a dealer D ∈ P , and the adversary S and is
parametrized by a commitment key ck of a double-trapdoor homomorphic commitment
scheme, along with t.

– On receiving (sid,D, f(·), g(·), h(·)) from D and (sid, i,D,C) from every Pi ∈ P ,

the functionality verifies whether f(·), g(·) and h(·) are of degree at most t and C
?
=

Commck(f(0); g(0), h(0)), where C is received from the majority of the parties.
– If any of the above verifications fail then the functionality sends (sid, i,D,Failure) to

every Pi ∈ P and S and halts.
– Else for every Pi ∈ P , the functionality computes the share fi = f(αi),

the opening information gi = g(αi), hi = h(αi), and the commitment
Cfi,gi,hi = Commck(fi; gi, hi). It sends (sid, i,D, [s]i) to every Pi ∈ P where
[s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) and halts.

Fig. 5. The Ideal Functionality for Verifiably Generating [·]-sharing

We note that FGEN[·] is slightly different from the standard ideal functionality (see
e.g. [2]) of verifiable secret sharing (VSS) where the parties output only their shares
(and not the commitment of all the shares). In most of the standard instantiations of a
VSS functionality (in the computational setting), for example the Pedersen VSS [21], a
public commitment of all the shares and the secret are available to the parties without
violating any privacy. In order to make these commitments available to the external
protocol that invokes FGEN[·], we allow the functionality to compute and deliver the
shares along with the commitments to the parties. We note, [1] introduced a similar
functionality for “committed VSS” that outputs to the parties the commitment of the
secret provided by the dealer due to the same motivation mentioned above.

Reducing the Overhead of MPC over a Large Population 209

3.2 Supporting Sub-protocols

Our MPC protocol also makes use of the following sub-protocols. Due to space con-
straints, here we only present a high level description of these protocols and state
their communication complexity. The formal details of the protocols are available in
the full version. Since we later show that our main MPC protocol that invokes these
sub-protocols is UC-secure, it is not required to prove any form of security for these
sub-protocols separately.

(A) Protocol Π〈·〉→[·] : it takes input 〈s〉X for a set X containing at least one honest
party and either produces a sharing [s] (if all the parties in X behave honestly) or out-
puts one of the following: the identity of a single corrupted party or a pair of parties
(with at least one of them being corrupted) from X . The protocol makes use of the
functionalities FGEN[·] and FBC.

More specifically, let 〈s〉i denote the information (namely the share, opening infor-
mation and the set of commitments) of party Pi ∈ X corresponding to the sharing 〈s〉X .
To achieve the goal of our protocol, there are two clear steps to perform: first, the cor-
rect commitment for each share of s corresponding to its 〈·〉X -sharing, now available to
the parties in X , is to be made available to all the parties in P ; second, each Pi ∈ X is
required to act as a dealer and verifiably [·]-share its already committed share si among
P . Note that the commitment to si is included in the set of commitments that will be
already available amongP due to the first step. Clearly, once [si] are generated for each
Pi ∈ X , then [s] is computed as [s] =

∑
Pi∈X [si]; this is because s =

∑
Pi∈X si.

Now there are two steps that may lead to the failure of the protocol. First, Pi ∈
X may be identified as a corrupted dealer while calling FGEN[·]. In this case a single
corrupted party is outputted by every party in P . Second, the protocol may fail when
the parties in P try to reach an agreement over the correct set of commitments of the
shares of s. Recall that each Pi ∈ X holds a set of commitments as a part of 〈s〉X . We
ask each Pi ∈ X to call FBC to broadcast among P the set of commitments held by
him. It is necessary to ask each Pi ∈ X to do this as we can not trust any single party
from X , since all we know (with overwhelming probability) is that X contains at least
one honest party. Now if the parties in P receive the same set of commitments from
all the parties in X , then clearly the received set is the correct set of commitments and
agreement on the set is reached among P . If this does not happen the parties in P can
detect a pair of parties with conflicting sets and output the said pair. It is not hard to
see that indeed one party in the pair must be corrupted. To ensure an agreement on the
selected pair when there are multiple such conflicting pairs, we assume the existence
of a predefined publicly known algorithm to select a pair from the lot (for instance
consider the pair (Pa, Pb) with minimum value of a+ n · b). Intuitively the protocol is
secure as the shares of honest parties in X remain secure.

The communication complexity of protocol Π〈·〉→[·] is stated in Lemma 1, which
easily follows from the fact that each party in X needs to broadcastO(|X |κ) bits to P .

Lemma 1. The communication complexity of protocol Π〈·〉→[·] is BC
(
|X |2κ, n

)
plus

the complexity of O(|X |) invocations to the realization of the functionality FGEN[·].

(B) ProtocolΠ〈·〉 : the protocol enables a designated party (dealer) D ∈ P to verifiably
〈·〉-share an already committed secret f among a set of partiesX containing at least one

210 A. Choudhury, A. Patra, and N.P. Smart

honest party. More specifically, every Pi ∈ P holds a (publicly known) commitment
Cf,g,h. The dealer D holds the secret f ∈ Fp and randomness pair (g, h), such that
Cf,g,h = Commck(f ; g, h); and the goal is to generate 〈f〉X . In the protocol, D first
additively shares f as well as the opening information (g, h) among X . In addition,
D is also asked to publicly commit each additive-share of f , using the corresponding
additive-share of (g, f). The parties can then publicly verify whether indeed D has
〈·〉-shared the same f as committed in Cf,g,h, via the homomorphic property of the
commitments. Intuitively f remains private in the protocol for an honest D as there
exists at least one honest party in X . Moreover the binding property of the commitment
ensures that a potentially corrupted D fails to 〈·〉-share an incorrect value f ′ �= f .

If we notice carefully the protocol achieves a little more than 〈·〉-sharing of a secret
among a set of parties X . All the parties in P hold the commitments to the shares of f ,
while as per the definition of 〈·〉-sharing the commitments to shares should be available
to the parties in X alone. A closer look reveals that the public commitments to the
shares of f among the parties in P enable them to publicly verify whether D has indeed
〈·〉-shared the same f among X as committed in Cf,g,h via the homomorphic property
of the commitments. The communication complexity of Π〈·〉 is stated in Lemma 2.

Lemma 2. The communication complexity of protocol Π〈·〉 is O(|X |κ) and
BC
(
|X |κ, n

)
.

(C) ProtocolΠ[·]→〈·〉 : the protocol takes as input [s] for any secret s and outputs 〈s〉X
for a designated set of parties X ⊂ P containing at least one honest party.

Let f1, . . . , fn be the Shamir-shares of s. Then the protocol is designed using the fol-
lowing two-stage approach: (1): First each party Pk ∈ P acts as a dealer and verifiably
〈·〉-share’s its share fk via protocolΠ〈·〉; (2) Let H be the set of |H| > t+ 1 parties Pk

who have correctly 〈·〉-shared its Shamir-share fk; without loss of generality, let H be
the set of first |H| parties in P . Since the original sharing polynomial (for [·]-sharing
s) has degree at most t with s as its constant term, then there exists publicly known
constants (namely the Lagrange’s interpolation coefficients) c1, . . . , c|H|, such that s =
c1f1+ . . .+ c|H|f|H|. Since corresponding to each Pk ∈ H the share fk is 〈·〉-shared, it
follows easily that each party Pi ∈ X can compute 〈s〉i = c1〈f1〉i + . . .+ c|H|〈f|H|〉i.
The correctness of the protocol follows from the fact that the corrupted parties in P will
fail to 〈·〉-share an incorrect Shamir-share of s, thanks to the protocol Π〈·〉. The pri-
vacy of s follows from the fact that the Shamir shares of the honest parties in P remain
private, which follows from the privacy of the protocolΠ〈·〉.

The communication complexity of the protocolΠ[·]→〈·〉 is stated in Lemma 3 which
follows from the fact that n invocations to Π〈·〉 are done in the protocol.

Lemma 3. The communication complexity ofΠ[·]→〈·〉 isO(n|X |κ) andBC
(
n|X |κ, n

)
.

(D) ProtocolΠRANDZERO[·] : the protocol is used for generating a random [·]-sharing of
0. To design the protocol, we also require a standard Zero-knowledge (ZK) functionality
FZK.BC to publicly prove a commitment to zero. The functionality is a “prove-and-
broadcast ” functionality that upon receiving a commitment and witness pair (C, (u, v))
from a designated prover Pj , verifies if C = Commck(0;u, v) or not. If so it sends C to

Reducing the Overhead of MPC over a Large Population 211

all the parties. A protocol ΠZK.BC realizing FZK.BC can be designed in the CRS model
using standard techniques, with communication complexityO(Poly(n)κ).

Protocol ΠRANDZERO[·] invokes the ideal functionalities FZK.BC and FGEN[·]. The idea
is as follows: Each party Pi ∈ P first broadcasts a random commitment of 0 and proves
in a zero-knowledge (ZK) fashion that it indeed committed 0. Next Pi calls FGEN[·] as
a dealer D to generate [·]-sharing of 0 that is consistent with the commitment of 0. The
parties then locally add the sharings of the dealers who are successful as dealers in their
corresponding calls to FGEN[·]. Since there exists at least one honest party in this set of
dealers, the resultant sharing will be indeed a random sharing of 0, see the full version
for details. Looking ahead, we invokeΠRANDZERO[·] only once in our main MPC protocol
Πf (more on this later); so we avoid giving details of the communication complexity
of the protocol. However assuming standard realization of FZK.BC, the protocol has
complexityO(Poly(n)κ).

(E) Dis-honest Majority MPC Protocol : Apart from the above sub-protocols, we
use a non-robust, dishonest-majority MPC protocol ΠNR

C with the capability of fault-
detection. The protocol, allows a designated set of parties X ⊂ P , containing at least
one honest party, to perform 〈·〉-shared evaluation of a given circuit C. In case some
corrupted party inX behaves maliciously, the parties inP identify a pair of parties from
X , with at least one of them being corrupted. The starting point ofΠNR

C is the dishonest
majority MPC protocol of [11], which takes 〈·〉-shared inputs of a given circuit, from
a set of parties, say X , having a dishonest majority. The protocol then achieves the
following:

– If all the parties in X behave honestly, then the protocol outputs 〈·〉-shared circuit
outputs among X .

– Else the honest parties in X detect misbehaviour by the corrupted parties and abort
the protocol.

We observe that for an aborted execution of the protocol of [11], there exists an honest
party in X that can locally identify a corrupted party from X , who deviated from the
protocol. We exploit this property in ΠNR

C to enable the parties in P identify a pair of
parties from X with at least one of them being corrupted.

ProtocolΠNR
C proceeds in two stages, the preparation stage and the evaluation stage,

each involving various other sub-protocols (details available in the full version). In the
preparation stage, if all the parties in X behave honestly, then they jointly generate
CM + CR shared multiplication triples {(〈a(i)〉X , 〈b(i)〉X , 〈c(i)〉X)}i=1,...,CM+CR

, such
that c(i) = a(i) ·b(i) and each (a(i),b(i), c(i)) is random and unknown to the adversary;
here CM and CR are the number of multiplication and random gates in C respectively.
Otherwise, the parties in P identify a pair of parties in X , with at least one of them
being corrupted.

Assuming that the desired 〈·〉-shared multiplication triples are generated in the prepa-
ration stage, the parties in X start evaluating C in a shared fashion by maintaining the
following standard invariant for each gate of C: Given 〈·〉-shared inputs of the gate,
the parties securely compute the 〈·〉-shared output of the gate. Maintaining the invari-
ant for the linear gates in C does not require any interaction, thanks to the linearity
of 〈·〉-sharing. For a multiplication gate, the parties deploy a preprocessed 〈·〉-shared

212 A. Choudhury, A. Patra, and N.P. Smart

multiplication triple from the preparation stage (for each multiplication gate a differ-
ent triple is deployed) and use the standard Beaver’s trick [3]. While applying Beaver’s
trick, the parties in X need to publicly open two 〈·〉-shared values using a reconstruc-
tion protocolΠREC〈·〉 (presented in the full version). It may be possible that the opening
is non-robust5, in which case the circuit evaluation fails and the parties in P identify a
pair of parties from X with at least one of them being corrupted. For a random gate,
the parties consider an 〈·〉-shared multiplication triple from the preparation stage (for
each random gate a different triple is deployed) and the first component of the triple is
considered as the output of the random gate. The protocol ends once the parties in X
obtain 〈·〉-shared circuit outputs 〈y1〉X , . . . , 〈yout〉X ; so no reconstruction is required at
the end.

The complete details ofΠNR
C is provided in the full version. The protocol invokes two

ideal functionalities FGENRAND〈·〉 and FBC where the functionality FGENRAND〈·〉 is used
to generate 〈·〉-sharing of random values (again see the full version). For our purpose
we note that the protocol provides a statistical security of 2−s and has communication
complexity as stated in Lemma 4 and proved in the full version. Note that there are two
types of broadcast involved: among the parties in X and among the parties in P .

Lemma 4. For a statistical security parameter s, protocol ΠNR
C has communication

complexity of O(|X |2(|C|+ s)κ),BC
(
|X |2(|C|+ s)κ, |X |

)
and BC

(
|X |κ, n

)
.

3.3 The MPC Protocol

Finally, we describe our MPC protocol. Recall that we divide the circuit ckt into sub-
circuits ckt1, . . . , cktL and we let inl and outl denote the number of input and out-
put wires respectively for the sub-circuit cktl. At the beginning of the protocol, each
party [·]-share their private inputs by calling FGEN[·]. The parties then select a random
committee of parties by calling FCOMMITTEE for evaluating the lth sub-circuit via the
dishonest majority MPC protocol of [11]. We use a Boolean flag NewCom in the pro-
tocol to indicate if a new committee has to be decided, prior to the evaluation of lth
sub-circuit or the committee used for the evaluation of the (l − 1)th sub-circuit is to
be continued. Specifically a successful evaluation of a sub-circuit is followed by set-
ting NewCom equals to 0, implying that the current committee is to be continued for
the evaluation of the subsequent sub-circuit. On the other hand, a failed evaluation of
a sub-circuit is followed by setting NewCom equals to 1, implying that a fresh com-
mittee has to be decided for the re-evaluation of the same sub-circuit from the updated
set of eligible parties L, which is modified after the failed evaluation. After each suc-
cessful sub-circuit evaluation, the corresponding 〈·〉-shared outputs are converted into
[·]-shared outputs via protocol Π〈·〉→[·], while prior to each sub-circuit evaluation, the
corresponding [·]-shared inputs are converted to the required 〈·〉-shared inputs via pro-
tocol Π[·]→〈·〉. The process is repeated till the function output is [·]-shared, after which
it is robustly reconstructed (as we have honest majority in P).

Without affecting the correctness of the above steps, but to ensure simulation security
(in the UC model), we add an additional output re-randomization step before the output

5 As we may not have honest majority in X , we could not always ensure robust reconstruction
during ΠREC〈·〉 .

Reducing the Overhead of MPC over a Large Population 213

reconstruction: the parties call ΠRANDZERO[·] to generate a random [0], which they add
to the [·]-shared output (thus keeping the same function output). Looking ahead, during
the simulation in the security proof, this step allows the simulator to cheat and set the
final output to be the one obtained from the functionality, even though it simulates the
honest parties with 0 as the input (see the full version for the details).

Let E be the event that at least one party in each of the selected committees during
sub-circuit evaluations is honest; the event E occurs except with probability at most
(t + 1) · εc ≈ 2−κ. This is because at most (t + 1) (random) committees need to be
selected (a new committee is selected after each of the t failed sub-circuit evaluation
plus an initial selection is made). It is easy to see that conditioned on E, the protocol
is private: the inputs of the honest parties remain private during the input stage (due to
FGEN[·]), while each of the involved sub-protocols for sub-circuit evaluations does not
leak any information about honest party’s inputs. It also follows that conditioned on
E, the protocol is correct, thanks to the binding property of the commitment and the
properties of the involved sub-protocols.

The properties of the protocol Πf are stated in Theorem 1 and the security proof is
available in the full version; we only provide the proof of communication complexity
here. The (circuit-dependent) communication complexity in the theorem is derived after
substituting the calls to the various ideal functionalities by the corresponding protocols
implementing them. The broadcast complexity has two parts: the broadcasts among the
parties in P and the broadcasts among small committees.

Theorem 1. Let f : Fn
p → Fp be a publicly known n-input function with circuit

representation ckt over Fp, with average width w and depth d (thus w = |ckt|
d). More-

over, let ckt be divided into sub-circuits ckt1, . . . , cktL, with L = t and each sub-
circuit cktl having fan-in inl and fan-out outl. Furthermore, let inl = outl = O(w).
Then conditioned on the event E, protocol Πf (κ, s)-securely realizes the functional-
ity Ff against A in the (FCRS,FBC,FCOMMITTEE ,FGEN[·],FGENRAND〈·〉 ,FZK.BC)-hybrid
modelin the UC security framework. The circuit-dependent communication complexity
of the protocol is O(|ckt| · (n·td + κ) · κ2), BC

(
|ckt| · n·t·κ2

d , n
)

and BC
(
|ckt| · κ3, κ

)
.

PROOF (COMMUNICATION COMPLEXITY): We analyze each phase of the protocol:

1. Input Commitment Stage: Here each party broadcasts O(κ) bits to the parties in
P and so the broadcast complexity of this step is BC

(
nκ, n
)
.

2. [·]-sharing of Committed Inputs: Here n calls to FGEN[·] are made. Realizing
FGEN[·] with the protocol Π[·], see the full version, this incurs a communication
complexity of O(n2κ) and BC

(
n2κ, n
)
.

3. Sub-circuit Evaluations: We first count the total communication cost of evaluating
the sub-circuit cktl with inl input gates and outl output gates.

– Converting the inl [·]-shared inputs to inl 〈·〉-shared inputs will require inl in-
vocations to the protocol Π[·]→〈·〉. The communication complexity of this step
is O(n · c · inl · κ) and BC

(
n · c · inl · κ, n

)
; this follows from Lemma 3 by

substituting |X | = c.
– Since the size of cktl is at most |ckt|

L , evaluating the same via protocol ΠNR
cktl

will have communication complexityO(c2(|ckt|L + s)κ), BC
(
c2(|ckt|L + s)κ, c

)
and BC

(
c · κ, n
)
; this follows from Lemma 4 by substituting |X | = c.

214 A. Choudhury, A. Patra, and N.P. Smart

Protocol Πf (P, ckt)

For session ID sid, every party Pi ∈ P does the following:

Initialization. Set L = P, n = |L|, t = t and NewCom = 1. Divide ckt into L sub-circuits
ckt1, . . . , cktL, each of depth d/L.

CRS Generation. Invoke FCRS with (sid, i) and get back (sid, i,CRS), where CRS = (pk, ck).
Input Commitment. On input x(i), choose random polynomials f(i)(·), g(i)(·), h(i)(·) of de-

gree ≤ t, such that f(i)(0) = x(i) and compute the commitment C
x(i),g

(i)
0

,h
(i)
0

=

Commck(x
(i); g

(i)
0 , h

(i)
0) where g

(i)
0 = g(i)(0), h

(i)
0 = h(i)(0).

– Call FBC with message (sid, i,C
x(i),g

(i)
0

,h
(i)
0

,P).

– Corresponding to each Pj ∈ P, receive (sid, i, j,C
x(j),g

(j)
0

,h
(j)
0

) from FBC.

[·]-sharing of Committed Inputs.

– Act as a dealer D and call FGEN[·] with (sid, i, f(i)(·), g(i)(·), h(i)(·)).
– For every Pj ∈ P, call FGEN[·] with (sid, i, j,C

x(j),g
(j)
0

,h
(j)
0

).

– For every Pj ∈ P, if (sid, i, j, Failure) is received from FGEN[·], substitute a default
predefined public sharing [0] of 0 as [x(j)], set [x(j)]i = [0]i and update L = L \{Pj},
decrement t and n by one. Else receive (sid, i, j, [x(j)]i) from FGEN[·].

Start of While Loop Over the Sub-circuits. Initialize l = 1. While l ≤ L do:
– Committee Selection. If NewCom = 1, then call FCOMMITTEE with (sid, i,L) and receive

(sid, i, C) from FCOMMITTEE .
– [·] to 〈·〉C Conversion of Inputs of Sub-circuit cktl . Let [x1], . . . , [xinl

] denote the [·]-sharing
of the inputs to cktl:

– For k = 1, . . . , inl, participate in Π[·]→〈·〉 with (sid, i, [xk]i, C). Output
(sid, i, 〈xk〉i) in Π[·]→〈·〉, if Pi belongs to C. Else output (sid, i).

– Evaluation of the Sub-circuit cktl. If Pi ∈ C then participate in ΠNR
cktl

with
(sid, i, 〈x1〉i, . . . , 〈xinl

〉i, C), else participate in ΠNR
cktl

with (sid, i, C).
– If (sid, i, Failure, Pa, Pb) is the output during ΠNR

cktl
, then set L = L \ {Pa, Pb},

t = t− 1, n = n− 2, NewCom = 1 and go to Committee Selection step.
– 〈·〉C to [·] conversion of Outputs of cktl. If (sid, i, Success, 〈y1〉i, . . . , 〈youtl

〉i) or
(sid, i, Success) is obtained during ΠNR

cktl
, then participate in Π〈·〉→[·] with (sid, i, 〈yk〉i)

or (sid, i) (respectively) for k = 1, . . . , outl.
– If (sid, i, Success, [yk]i) is the output in Π〈·〉→[·] for every k = 1, . . . , outl, then

increment l and set NewCom = 0.
– If (sid, i, Failure, Pa, Pb) is the output in Π〈·〉→[·] for some k ∈ {1, . . . , outl}, then

set L = L \ {Pa, Pb}, t = t − 1, n = n − 2, NewCom = 1 and go to the Committee

Selection step.
– If (sid, i, Failure, Pa) is the output in Π〈·〉→[·] for some k ∈ {1, . . . , outl}, then set

L = L \ {Pa}, t = t− 1, n = n− 1, NewCom = 1 and go to the Committee Selection

step.
Output Rerandomization. Let [y] denote the [·]-sharing of the output of ckt. Participate in

ΠRANDZERO[·] with (sid, i), obtain (sid, i, [0]i) and locally compute [z]i = [y]i + [0]i.
Output Reconstruction. Interpret [z]i as (fi, gi, hi, {Cfj ,gj,hj

}Pj∈P). Initialize a set Ti to ∅.
– Send (sid, i, j, fi, gi, hi) to every Pj ∈ P. On receiving (sid, j, i, fj , gj , hj) from every

party Pj include party Pj in Ti if Cfj,gj ,hj
�= Commck(fj ; (gj , hj)).

– Interpolate f(·) such that f(αj) = fj holds for every Pj ∈ P \ Ti. If f(·) has degree
at most t, output (sid, i, z = f(0)) and halt; else output (sid, i, Failure) and halt.

Fig. 6. Protocol for UC-secure realizing Ff

Reducing the Overhead of MPC over a Large Population 215

– Finally converting the outl 〈·〉-shared outputs to [·]-shared outputs require outl
invocations to the protocolΠ〈·〉→[·]. This has communication complexityO(n ·
c · outl · κ), BC

(
outl · c2 · κ, n

)
and BC

(
n · c · κ, n

)
; this follows from Lemma

1 by substituting |X | = c.

Thus evaluating cktl has communication complexity O((n2 + n · c · inl + n · c ·
outl + c2(|ckt|L + s))κ), BC

(
(n2 + n · c · inl + c2 · outl)κ, n

)
and BC

(
c2(|ckt|L +

s)κ, c
)
. Assuming inl = O(w) and outl = O(w), with w = |ckt|

d , this results in

O((n2 + n · c · |ckt|
d + c2(|ckt|L + s))κ), BC

(
(n2 + n · c · |ckt|

d)κ, n
)

and BC
(
(c2 ·

(|ckt|L + s))κ, c
)
. The total number of sub-circuit evaluations is at most L+ t, with

L successful evaluations and at most t failed evaluations. Substituting L = t, we
get the overall communication complexityO((|ckt| · (n·t·cd + c2)+n2t+ c2s · t)κ),
BC
(
(|ckt| · n·t·c

d + n2t)κ, n
)

and BC
(
(|ckt| · c2 + c2 · s · t)κ, c

)
.

4. Output Rerandomization and Reconstruction: The costs O(Poly(n, κ)) bits.

The circuit-dependent complexity of the whole protocol comes out to beO(|ckt|·(nt·cd +
c2)κ) bits of communication over the point-to-point channels and broadcast-complexity
ofBC
(
|ckt|·nt·cd ·κ, n

)
andBC

(
|ckt|·c2 ·κ, c

)
. Since c has to be selected so that εc < 2−κ

holds, asymptotically we can set c to be O(κ). (For any practical purpose, κ = 80
is good enough.) It implies that the (circuit-dependent) communication complexity is
O(|ckt|(ntd + κ)κ2), BC

(
|ckt| · ntκ2

d , n
)

and BC
(
|ckt|κ3, κ

)
. �

We propose two optimizations for our MPC protocol that improves its communica-
tion complexity.

[·]-sharing among a Smaller Subset of P . While for simplicity, we involve the entire
set of parties in P to hold [·]-shared values in the protocol, it is enough to fix and involve
a set of just z parties that guarantees a honest majority with overwhelming probability.
From our analysis in Section 1, we find that z = O(κ). Indeed it is easy to note that
all we require from the set involved in holding a [·]-sharing is honest majority that
can be attained by any set containing O(κ) parties. This optimization replaces n by
κ in the complexity expressions mentioned in Theorem 1. It implies that the (circuit-
dependent) communication complexity is O(|ckt|(κtd + κ)κ2), BC

(
|ckt| · tκ3

d , κ
)

and
BC
(
|ckt|κ3, κ

)
. Now instantiating the broadcast functionality in the above modified

protocol with the Dolev-Strong (DS) broadcast protocol (see the full version), we obtain
the following:

Corollary 1. If d = ω(t) and if the calls to FBC are realized via the DS broadcast
protocol, then the circuit-dependent communication complexity of Πf is O(|ckt| · κ7).

When we restrict to widths w of the form w = ω(κ3), we can instantiate all the in-
vocations to FBC in the protocols Π〈·〉→[·] and Π[·]→〈·〉 (invoked before and after the
sub-circuit evaluations) by the Fitzi-Hirt (FH) multi-valued broadcast protocol [15], see
the full version. This is because, setting w = ω(κ3) ensures that the combined message
over all the instances of Π〈·〉→[·] (respectively Π[·]→〈·〉) to be broadcast by any party
satisfies the bound on the message size of the FH protocol. Incorporating the above, we
obtain the following corollary with better result.

216 A. Choudhury, A. Patra, and N.P. Smart

Corollary 2. If d = ω(t) and w = ω(κ3) (i.e. |ckt| = ω(κ3t)), then the circuit-
dependent communication complexity of Πf is O(|ckt| · κ4).

Packed Secret-Sharing. We can employ packed secret-sharing technique of [16] to
checkpoint multiple outputs of the sub-circuits together in a single [·]-sharing. Specifi-
cally, if we involve all the parties in P to hold a [·]-sharing, we can pack n− 2t values
together in a single [·]-sharing by setting the degree of the underlying polynomials to
n− t− 1. It is easy to note that robust reconstruction of such a [·]-sharing is still possi-
ble, as there are n− t honest parties in the set P and exactly n− t shares are required
to reconstruct an (n − t − 1) degree polynomial. For every sub-circuit cktl, the woutl

output values are grouped so that each group contains n− 2t secrets and each group is
then converted to a single [·]-sharing.

If we restrict to circuits for which any circuit wire has length at most d/L = d/t
(i.e. reaches upto at most d/L levels), then we ensure that the outputs of circuit cktl
can only be the input to circuit cktl+1. With this restriction, the use of packed secret-
sharing becomes applicable at all stages, and the communication complexity becomes
O(|ckt| · (t

d +κ) ·κ2), BC
(
|ckt| · t·κ2

d , n
)

and BC
(
|ckt| ·κ3, κ

)
; i.e. a factor of n less in

the first two terms compared to what is stated in Theorem 1. Realizing the broadcasts
using DS and FH protocol respectively, we obtain the following corollaries:

Corollary 3. If d = ω(n
3·t
κ4) and if the calls to FBC are realized via the DS broadcast

protocol, then the circuit-dependent communication complexity of Πf is O(|ckt| · κ7).

Corollary 4. If d = ω(n·tκ5) andw = ω(n2 ·(n+κ)) (i.e. |ckt| = ω(n
3·t
κ5 (n+κ))), then

the circuit-dependent communication complexity of the protocol Πf is O(|ckt| · κ7).

Acknowledgements. This work has been supported in part by ERC Advanced Grant
ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant EP/I03126X, and by Defense
Advanced Research Projects Agency (DARPA) and the Air Force Research Labora-
tory (AFRL) under agreement number FA8750-11-2-00796 and the third author was
supported in part by a Royal Society Wolfson Merit Award.

References

1. Abe, M., Fehr, S.: Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 317–334. Springer, Heidelberg (2004)

2. Asharov, G., Lindell, Y.: A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty
Computation. IACR Cryptology ePrint Archive 2011, 136 (2011)

3. Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum,
J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992)

6 The US Government is authorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

Reducing the Overhead of MPC over a Large Population 217

4. Beerliová-Trubı́niová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication
Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Hei-
delberg (2008)

5. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-Linear Unconditionally-Secure Multiparty
Computation with a Dishonest Minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)

6. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party compu-
tation how to run sublinear algorithms in a distributed setting. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013)

7. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

8. Canny, J., Sorkin, S.: Practical large-scale distributed key generation. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 138–152. Springer, Heidel-
berg (2004)

9. Choudhury, A.: Breaking the O(n|c|) barrier for unconditionally secure asynchronous mul-
tiparty computation - (extended abstract). In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 19–37. Springer, Heidelberg (2013)

10. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multiparty Com-
putation with Nearly Optimal Work and Resilience. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

11. Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to
Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–
576. Springer, Heidelberg (2010)

12. Dani, V., King, V., Movahedi, M., Saia, J.: Brief Announcement: Breaking the O(nm) Bit
Barrier, Secure Multiparty Computation with a Static Adversary. In: Principles of Distributed
Computing, PODC 2012, pp. 227–228 (2012)

13. Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: Efficient asynchronous
secure multiparty computation. In: Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum, S.
(eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer, Heidelberg (2014)

14. Feige, U.: Noncryptographic selection protocols. In: FOCS, pp. 142–153 (1999)
15. Fitzi, M., Hirt, M.: Optimally Efficient Multi-valued Byzantine Agreement. In: Principles of

Distributed Computing, PODC 2006, pp. 163–168. ACM (2006)
16. Franklin, M.K., Yung, M.: Communication Complexity of Secure Computation (Extended

Abstract). In: Symposium on Theory of Computing, STOC 1992, pp. 699–710. ACM (1992)
17. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast Asynchronous Byzan-

tine Agreement and Leader Election with Full Information. ACM Transactions on Algo-
rithms 6(4) (2010)

18. King, V., Lonargan, S., Saia, J., Trehan, A.: Load Balanced Scalable Byzantine Agreement
through Quorum Building, with Information. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srini-
vasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214. Springer,
Heidelberg (2011)

19. King, V., Saia, J.: Breaking the O(n2) Bit Barrier: Scalable Byzantine Agreement with an
Adaptive Adversary. J. ACM 58(4), 18 (2011)

20. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable Leader Election. In: SODA, pp. 990–999
(2006)

21. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 129–
140. Springer, Heidelberg (1992)

22. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)

Statistics on Password Re-use and Adaptive

Strength for Financial Accounts

Daniel V. Bailey, Markus Dürmuth, and Christof Paar

Horst Görtz Institute for IT-Security, Bochum, Germany
danbailey@sth.rub.de, {markus.duermuth,christof.paar@rub.de}

Abstract. Multiple studies have demonstrated that users select weak
passwords. However, the vast majority of studies on password security
uses password lists that only have passwords for one site, which means
that several important questions cannot be studied. For example, how
much stronger are password choices for different categories of sites? We
use a dataset which we extracted from a large dump of malware records.
It contains multiple accounts (and passwords) per user and thus allows
us to study both password re-use and the correlation between the value
of an account and the strength of the passwords for those accounts.

The first contribution of our study shows that users in our sample
choose (substantially) stronger passwords for financial accounts than for
low-value accounts, based on the extracted passwords as well as publicly
available lists. This contribution has implications for password research,
as some widely-used lists contain passwords much weaker than those
used in the real world (for accounts of more than low value). In our
second contribution, we measure password re-use taking account values
into account. We see that although high-value passwords are stronger,
they are re-used more frequently than low-value passwords – valuable
passwords are identical to 21% of the remaining passwords of a user.
Before our study, little was known about password re-use for different
account values.

1 Introduction

Most online services rely on users to choose passwords for authentication. Con-
ventional wisdom holds that users generally do not choose passwords that are
difficult to guess. Several alternatives to passwords have been proposed, but
none has found widespread use, as passwords are easy to deploy, scale to an
Internet-wide user-base, and are easy to understand for the users. Alternative
technologies have a number of drawbacks: hardware like smart cards and secu-
rity tokens can be expensive to procure and manage for Website operators and
can be perceived as an impediment to usability. Biometric identification systems
also require extra hardware, can raise privacy issues, and many biometrics are
not secret (e.g., we leave fingerprints on many surfaces we touch).

Research on password security started as early as 1979 [21], and a number of
studies has been published since then. One important aspect is password re-use:

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 218–235, 2014.
c© Springer International Publishing Switzerland 2014

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 219

As user accounts proliferate, users are forced to remember more and more pass-
words that must also remain confidential and hard to guess. In response, users
often re-use the same password for multiple logins to keep the number of pass-
words they have to remember low [12]. When a re-used password leaks, then the
security of all accounts using the same password is at risk. Even worse, a rogue
service could collect login credentials (typically usernames and corresponding
passwords) and test those at other sites, which is hard to detect for the user.

While it is known from leaked password lists that users choose weak passwords
on average, there is some hope in the community that users choose stronger
passwords for those accounts that are valuable1 (see, e.g., [14]). However, this
belief has never been justified with real-world data. Actually, there is very little
data available on high-value passwords at all, which is most likely the reason why
so little research has been conducted on the topic. However, this question is of
importance, as a number of studies in the literature use low-value passwords as
input. Arguably, research on password security is most interesting for high-value
passwords, as these are most likely the target of actual attackers.

The lack of available data is one of the main problems in password research
as, by their nature, passwords are meant to be confidential. For password re-use,
most available studies use data collected in user surveys, where great care has
to be taken to ensure ecological validity, see Section 1.1 for more details. Our
data show the type of site influences the password strength chosen by a user –
at least, for users of malware-infected PCs. As explained later, we feel our data
provides insight into the behavior of average users as well. This work is the first,
to our knowledge, studying real-world password data collected by malware.

1.1 Related Work

As early as 1979 it has been observed [21] that users tend to choose weak pass-
words that are susceptible to so-called dictionary attacks. This problem has been
studied extensively since then and led to development of tools such as John the
Ripper [7] and HashCat [13]. More advanced password guessers based on Markov
models have been presented recently [22,30]. To increase the strength of pass-
words against guessing attacks, various strength measures for passwords have
been developed [6]. Strength of passwords generated under different password
rules were studied in [16]. However, with very few exceptions in the older litera-
ture, relevant research was conducted on passwords for low-value sites, and it is
not known if users choose stronger passwords for more valuable sites.

Several studies examine password re-use. Ives et al. give an interesting high-
level overview of password re-use [15], including some examples of actual damage
done by password re-use. Florencio and Herley [9] present a large-scale user study

1 The question which accounts have high value is another topic which is out of the
scope of this text. We will use financial-related sites as high-value sites, which we
believe reflects the intuition of most users. While from a security point of view, email
accounts might be at least as valuable, as they are often used as fall-back security
mechanism for other sites, it is unknown how many users take this into consideration.

220 D.V. Bailey, M. Dürmuth, and C. Paar

on passwords including password re-use, where they collected their data from
browsers running the Windows Live toolbar (from consenting participants). They
could only test for exact re-use of passwords and get a moderate bias, both due
to the study’s design. They find that each user has, on average, 25 accounts and
6.5 passwords, i.e., each password is used for 3.9 accounts.

In a lab study, Gaw and Felten ask participants to conclude when groups of
passwords are similar [11]. This approach is adopted to preserve confidentiality
of participant passwords, but the resulting similarity measure is vague. They
find between 2.2 and 3.2 accounts per password. Komanduri et al. measure the
effect of password-creation rules [17]. When asked to create a new eight-character
password subject to one of a set of rules, the resulting password had an entropy
between 27 and 34 bits. In addition, they report on users’ self-reported re-use. As
rules become more complicated, the number of re-used passwords increases from
17% up to 33%. Dhamija and Perrig interviewed 30 people and reported that
participants used one to seven unique passwords for ten to fifty websites [8]. Sasse
et al. report that in a study of 144 employees, an average of 16 passwords was
reported, but this was not limited to online activities [25]. Two other studies
have based estimations of people’s passwords through surveys. Brown et al.
surveyed college students, finding an average of 8.18 password uses with 4.45
unique passwords [4]. Riley also used a survey to focus on online accounts, finding
students had an average of 8.5 password-protected accounts [24].

Bonneau [1] used two password lists that both included usernames, allowing
re-use measurement between these two sets. Both lists were hashed, so the hashes
first needed to be cracked. From those accounts cracked in at least one list,
49% of users used the same password for accounts on both sites, however, this
does not take into account those accounts that weren’t cracked, and thus we
cannot say what the actual re-use rate is. It seems plausible to assume that
those passwords that weren’t cracked belong to more security-savvy users and
that those have a lower rate of password re-use, so 49% most likely constitutes
an upper bound. Furthermore, in the same text Bonneau recognizes the need for
a study on password re-use based on account value.

An industry advisory [28] considers password re-use by utilizing a browser
plug-in intended to warn about phishing attempts against banking passwords
that also detects re-use. They report that “73% of users share the online banking
password with at least one nonfinancial website” [28]. However, not many details
are given about the exact setup and distribution of the plug-in. In addition,
to compare the results with other work we would require at least the average
number of accounts per user they recorded. Forcing users to periodically change
their passwords is a common technique to prevent attackers from using leaked
passwords. Zhang et al. use a database of 7700 accounts to examine the difficulty
in guessing the replacement password given the expired one [31]. They found in
this attack model that 41% of replacement passwords could be guessed in a few
seconds.

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 221

Table 1. Overview of the password lists we used

Abbrev. Size Users PWs/User Avg. PW Length

Malware-List
– total MW 3531 1721 2.05 9.01
– financial MW-Fin 177 134 1.3 9.1
– rest MW-Btm 3354 1686 2.09 9.01

Mt. Gox (Bitcoin) BITC 61,020 61,020 1 –
RockYou RY 32 M 32 M 1 7.89
Carders.cc CC 5062 5062 1 7.59

1.2 Paper Outline

In Section 2 we describe our datasets and the preprocessing steps we used. Sec-
tion 3 studies the relation between password strength and account value. In
Section 4 we study password re-use, concluding with some final remarks in Sec-
tion 5.

2 The Datasets

This section describes our dataset along with some limitations.

2.1 The Malware Dataset

A username-password combination allows a thief to log into an online-banking
account and, depending on further security measures, drain it of funds. Malware
such as Trojans specifically target Web browsers and aim to capture the data
entered in HTML forms. Many organizations attempt to monitor this situation,
working with law enforcement, alerting affected banks, and publishing reports on
emerging threats. To do so, they obtain some of this data for forensic purposes.
As the malware captures all of the HTTP POST data, IP address, operating
system version and so on can prove to be valuable clues on infection rates and
locations. One of these organizations allowed the present authors limited access
to this data. No additional malware output was collected to enable the present
work. The dataset contains thousands of passwords captured by the Zeus Trojan
in late 2012. We partition the Malware list (MW) into two (disjoint) subsets
according to the perceived value to a user.

– High-value accounts: Financial passwords (MW-Fin) The first sam-
ple includes passwords for accounts at banks, insurers, brokers, and related
financial services. An attacker takeover of one of these accounts has obvi-
ous financial consequences and therefore heightened risk perception on the
part of the user. We selected the accounts by searching the domain names
for financial-services related keywords in a variety of languages, as well as
a number of known banks. In addition, we manually inspected the domain

222 D.V. Bailey, M. Dürmuth, and C. Paar

names to ensure accuracy. This yielded a set of 177 passwords from 95 dif-
ferent domains, however, the number of distinct entities/sites/... is smaller
as a single bank may service several domains.

– Lower-value accounts: Remaining passwords (MW-Btm) This group
includes all other passwords. This sample includes well-known email providers
and social networks. This yielded a set of 3354 passwords from 1134 different
sites; Facebook is the largest subset with 1163 passwords.

Perceived Value of Accounts. The perception of security risk is known to
be subjective and based on several factors including dread of consequences [23].
The compromise of a user’s financial account obviously carries real financial
consequences for a user. Malware-promulgating attackers generally aim to take
over an online account and drain it of funds – or perhaps to gather enough
sensitive personal information to fraudulently apply for a credit card or loan
(often called identity theft). We therefore group these financial-site passwords
together (similar to [10]). This classification includes sites likely to directly enable
transfer of funds including banks, credit-card issuers, stock brokers, and insurers.
In addition, we include those housing sensitive information that would enable
identity theft such as payroll processors and tax collectors. In fact, other accounts
can be quite valuable to users as well, e.g., email accounts can be used for
password recovery. However, for the overwhelming majority of users (except
maybe celebrities, bloggers, and corporations) the compromise of a user email or
social-networking account leads to practically no direct financial consequences. A
common sentiment seems to be that “Nobody wants to read my private email.”

A potential objection to this approach is that intuitively, restricting the high-
value passwords to financial passwords leaves out other valuable passwords. How-
ever, we show in Section 3.2 that the passwords in MW-Fin are significantly
stronger than those in MW-Btm. Even if some high-value passwords (not from
financial sites) are still contained in MW-Btm, this means that the real difference
is even stronger than we measured. So the error incorporated from this rather
narrow interpretation would lead us to underestimate the disparity, reinforcing
our main point.

Bias in the Dataset. There are two potential sources of bias in the dataset:
First, we have a subset of the total set of passwords collected by the malware
only, and second, this bigger set could be biased as it is collected by malware and
infections are not necessarily uniform across all users. The sub-sample contains a
wide variety of sites in many countries and languages, and represents a snapshot
of the actual data available to criminals. Second, only those users infected by
malware are included in our dataset. We feel the results will likely hold true
for many other users given the widespread nature and infection methods of
Zeus. According to industry reports, Zeus variants have been observed in the
wild on Windows (IE, Firefox, and Chrome browsers), Android, and Blackberry,
including one of every 3000 computers worldwide [27]. Most Zeus infections
occur on PCs with up-to-date antivirus software. Zeus spreads through email
attachments as well as “drive-by infection,” where a user need only visit a Web

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 223

site to become infected, thanks to a malicious JavaScript redirection. These
properties to a certain extent dispel the misconception that malware afflicts
only unsophisticated or careless users. The malware dataset does not include any
captures from MacOS or Linux, which induces some amount of bias. However,
Windows represents more than 85% of desktops accessing the Internet, so the
bias due to operating system choice is expected to be small [26].

Furthermore, we expect the comparison of the strength of passwords in MW-
Fin and MW-Btm (see Section 3.2) to be largely unaffected by these biases, as
both lists are sampled with the same bias, and there is no indication that the
bias is such that it affects both subsets in a different way.

2.2 More Password Sets

To relate our findings to previous work, we compare against several other sets.

– RockYou (RY). One of the largest lists publicly available is the RockYou
list (RY), consisting of 32.6 million passwords that were obtained by an
SQL injection attack in 2009. The passwords were leaked in plaintext, but
all metadata like username was stripped from the list before it was leaked
to the public. This list has two advantages: First, its large size yields pre-
cise information also about less-common passwords; second, it was collected
via an SQL injection attack therefore affecting all the users of the compro-
mised service, basically removing sample bias. These advantages have made
RockYou studies quite popular in the literature, so we use it to compare our
findings with previous work.

– MtGox/Bitcoin (BITC). Bitcoin is an emerging decentralized currency
based on computation; several merchants accept these “coins” for goods and
services, and researchers are studying it in terms of cryptography, privacy,
and economics. Bitcoins can also be exchanged for other currencies, one of
the biggest websites (at the time) providing this service was Mt.Gox. The
password file containing over 61 thousand hashed passwords leaked online in
2011 [20].

– Carders.cc (CC). Carders.cc is an online forum where hackers would nego-
tiate stolen assets like passwords and credit-card account numbers. In 2010,
Carders.cc was itself subject to a hacking attack that exposed its database
of 5,062 passwords [18]. Most interesting about this list for our purposes is
the user population. Unlike general social-networking sites, this one catered
to users who are (on average) both technology-savvy and security aware.

2.3 Ethical Considerations

All passwords analyzed in this paper were leaked by attacks in 2012 and col-
lected in support of other efforts to track and remediate malware infections.
No additional data was collected specifically to enable the present work. This
fact means that practical attackers have already had independent access to our

224 D.V. Bailey, M. Dürmuth, and C. Paar

datasets for more than two years. It is not expected that the present work aids
actual attackers.

Nevertheless, special care was taken to avoid our work leading to a new consol-
idated source of passwords for actual attackers. The Malware passwords them-
selves were stored in a private enclave away from typical corporate or academic
networks. They were only available to researchers through a chain of proxies
with a full complement of firewalls, network monitoring, and data-loss preven-
tion tools meant to stop data exfiltration. Then, direct access was eschewed in
favor of scripts that returned only statistics to the researchers.

3 Correlation of Password Strength and Account Value

One unique aspect of the Malware password list is that it contains passwords
for multiple accounts per user, and those are sampled in the same way and
with the same bias. A closer inspection reveals that it often contains passwords
for accounts that are more valuable than others, which allows us to compare the
strength of those passwords. These findings are relevant for several reasons: First,
it allows us to test if “users choose more secure passwords for accounts of value”,
which is often expressed in the literature when weak passwords are discovered.
Second, previous password studies are limited to the available data: collections
of passwords from social networks or portals like Yahoo! [3]. By contrast, our
study includes passwords directly used to protect financial transactions.

3.1 Measures for Password Strength

At a high level, we can distinguish measures that evaluate resistance against a
specific password cracker (either by directly attacking them, or by using math-
ematical models to estimate their effectiveness), and approaches that consider
the distribution of passwords. While the former are motivated by practice and
model common attacks pretty well, they depend on the specific software tool and
do not necessarily generalize well. The latter are based on mathematical models
and thus have a clearly defined meaning and are (in some sense) optimal, but
not necessarily relevant for practice.

Entropy Measures. A number of different entropy measures have been used
to measure the security of passwords. For an overview, as well as more details
about the one presented here, see [2,3]. Guessing entropy [19,5] measures the
average number of guesses that the optimal attack needs in order to find the
correct password. However, a practical attacker is generally satisfied with break-
ing into a certain fraction of accounts, which guessing entropy does not take into
account. Partial guessing entropy [2] (or α-guesswork) takes this into account.

For 0 ≤ α ≤ 1 let μα = min{i0 |
∑i0

i=1 pi ≥ α} the minimal number so that the
guesses cover at least a fraction α of the passwords, and let λα = λμα =

∑μα

i=1 pi
the actual sum (which is greater or equal to α). With these, partial guessing
entropy is defined as

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 225

Gα(X) = (1 − λα) · μα +

μα∑
i=1

i · pi (1)

Intuitively, the first term is contributed by those passwords that weren’t guessed
in the allotted number of guesses, and the second term is contributed by those
password that were. We want to express this in “bits of information” to be able
to compare it with other measures more easily. This is done as follows:

G̃α(X) = log

(
2 ·Gα(X)

λα
− 1

)
+ log

1

2− λα
(2)

where the “correction term” log 1
2−λα

is used to make the metric constant for
the uniform distribution (see [2] for a more detailed explanation).

We have two reasons to deviate from this approach. First, to approximate
the distribution of X (i.e., the probabilities pi) requires a large sample set size
which is much larger than the Malware dataset; second, one can be interested in
getting a more comparable metric for a specific attack. So we are interested in a
combination of both, as we define in the following.

John the Ripper. A well-known and wide-spread tool for password cracking
is John the Ripper (JtR) [7]. JtR uses a number of heuristics that show good
performance in practice. It can be configured in a wide range, but in the standard
mode of operation it performs the following steps. (i) Single crack mode. In a first
step, JtR tries items like username and home-directory name both as-is as well
as simple “mangling” modifications like appending digits or reordering letters.
(ii) Wordlist mode. JtR comes with a dictionary of 3557 common passwords to
try, along a set of mangling rules that are applied. (iii) Incremental mode. A
mode that can try all possible combinations.

We used John the Ripper 1.7.8-jumbo-5, instrumented with an additional
patch that logs the number of passwords tried. The Jumbo version supports
counting of plaintext guesses as well as hashed passwords. The number of guesses
by JtR is often seen as a good approximation for the practical strength of a pass-
word. As we are only interested in comparing the strength of different password
lists the specific choice does not make a substantial difference. We measured the
number of guesses needed for passwords in each of our lists. JtR can run for
a very long time generating every possible password of a given length, so for
practical considerations, we aborted JtR after a given amount of time.

For the Malware datasets, we ran JtR against every password. As the other
lists contained substantially more passwords, we randomly sampled 1024 from
each. The BITC list consists of salted, hashed passwords and so required sub-
stantially more computation time to check the validity of a guess. The plaintext
lists required only the generation of a guess and not the hash. Experimentally,
approximately the same number of hashed guesses can be checked in 10 hours
of CPU time vs. one minute of CPU time for plaintext.

Experimental Entropies. We combine the theoretical entropy measure
with real-world password-guessing tools to yield what we will call experimental

226 D.V. Bailey, M. Dürmuth, and C. Paar

Table 2. Experimental Partial Guessing Entropy for several success probabilities, using
John the Ripper as baseline as explained in Section 3.1. A dash means that fewer
passwords have been cracked for the respective list, so the respective value cannot be
computed from the data at hand.

α = 5% 10% 15% 20%

RockYou 15.1 15.0 17.4 22.2
Malware-Btm 16.2 25.0 28.8 –
Malware-Fin 23.3 28.6 – –
MtGox 26.1 – – –
Carders 14.4 13.6 13.8 14.0

guessing entropy. As discussed before, there are two main reasons why we do
not use the above measures directly, namely that entropy measures require sub-
stantial knowledge about the distribution and thus a large number of samples to
approximate it with sufficient precision, and second that the output of guessing
tools is specific to that tool and hard to compare with other results.

To calculate the experimental partial guessing entropy (EPGE), we use JtR
to determine the proportion of passwords cracked for a given number of guesses
(see, e.g., Figure 1). We then use these probabilities in Equations 1 and 2 instead
of the optimal attack considered originally. (i.e., we replace the optimally ordered
pi’s with probabilities from a realistic attack with JtR.) Note that the resulting
entropy values depend on the guessing tool used, and are in general higher than
the true partial guessing entropy, which assumes an optimal guesser. As our
main objective is to compare different distributions, the EPGE suffices.

Statistical Significance. One potential concern about the Malware dataset
is that the set is rather small (at least when compared with password lists such as
the RockYou list with 32.6 million passwords), which leads to a higher variance
of the results. We used an approach similar to that by Bonneau [3] to determine
bounds on these effects. We sampled more than 80 uniformly chosen subsets of
the RockYou password list of the appropriate size (3354 and 177, respectively),
ran password guessing and entropy estimation (for both α = 0.05 and α = 0.2)
just as for the Malware dataset, and measured the confidence interval for the
level 95%.We find that the confidence intervals for a sample size of 177 passwords
(as in MW-Fin) is ±0.7 for α = 0.05 and ±4.4 for α = 0.2, and for a sample size
of 3354 samples (as in MW-Btm) is ±0.35 for α = 0.05 and ±1.18 for α = 0.2.

These (empirical) confidence intervals are determined from another list of
passwords that might have different characteristics compared to the Malware
list, and thus have to be considered carefully. However, as the differences in
entropy that we will encounter later are substantially larger then these confidence
intervals, they give us a reasonable level of trust.

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 227

3.2 Results: Malware Dataset

In the first experiment, we compare the strength of financial password (MW-Fin)
to the remaining passwords (MW-Btm).

Running the Experiments. We run JtR as described in Section 3.1 against
the two Malware sub-lists (see Section 2), i.e., the Malware list filtered for finan-
cial passwords (MW-Fin) and the remaining (MW-Btm), the most interesting
and directly comparable set of passwords. All passwords in these lists are avail-
able in plaintext, so no hash operations need to be performed and running time
is no concern. Note that John the Ripper is highly customizable, with the poten-
tial for dictionaries and rules tailored for particular lists. This approach clearly
gives the best performance in practice. As our purpose here is simply to compare
guessing success among the various lists, the default settings will suffice. Our
presented results do not reflect JtR’s performance potential in absolute terms.

Results and Discussion. Figure 1 shows the resulting graphs, plotting the
number of password guesses on the x-axis and the fraction of accounts guessed
successfully on the y-axis, Figure 2 shows a more detailed view for fewer guesses.
Table 2 gives the experimental guessing entropy for α ∈ {5%, 10%, 15%, 20%}
(along with the entropy values for other password lists we will evaluate in the
following). From Figure 1 one can already see quite clearly that the different lists
have different strength. This is substantiated by the entropy values in Table 2,
where we see that, e.g., for α = 5% we get entropies of 16.2 and 23.3, respec-
tively. From the measurements in Section 3.1 we conclude that this difference is
significant.

While this result is not surprising, prior to the present work limitations in the
lists available to researchers served as a hindrance. This is because the differences
may be more due to userbase, differing password policies, or other causes than
a specific behavior on the part of a user population. With the Malware dataset
and the two subsets MW-Fin and MW-Btm, we are finally in the situation to
have several passwords sampled under comparable situations. In addition, we
believe that the dataset has less bias than lists obtained by phishing. But even
though the data is somewhat biased, both sublists MW-Fin and MW-Btm are
biased in the same way, so the results for both are comparable.

One explanation for the difference in password strength could be that different
password rules were deployed. This is hard to verify, as the passwords are from
a wide variety of different accounts, and there is no efficient method to obtain
the password rules that were in place at the time a password was changed.
However, we are convinced that password rules do not explain the differences
for two reasons: First, in general password rules are known to be a bad indicator
for password strength [17,29], so we would not expect such a strong impact on
password security. Other studies in the literature [10] find password rules are
determined more by a site’s need to be usable than the extractable financial
value.

228 D.V. Bailey, M. Dürmuth, and C. Paar

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 200M 400M 600M 800M 1G

gu
es

si
ng

 s
uc

ce
ss

#guesses

JtR Carders.cc
JtR RockYou

JtR Malware-Btm
JtR Malware-Fin

JtR MtGox

Fig. 1. Fraction of passwords successfully guessed when running JtR against various
password lists

3.3 Results: Comparing with Other Datasets

More interesting insights come from comparing the results for the Malware lists
MW-Fin and MW-Btm with other lists of passwords that are publicly available;
this also allows us to relate our results to previous research. With the same
parameters as in the previous section, we run the experiments again for other
password lists: (i) the RockYou (RY) list as examples for a list of weak passwords
that is regularly used in the literature that allow us to compare our results with
other work, and (ii) the carders.cc (CC) list which represents a list of low-value
passwords for a technology-savvy userbase (on average). Again, these lists are
available in plaintext, so no hashing is required.

Results and Discussion. We see that even the weaker passwords in MW-
Btm are significantly more secure than those in the lists RY and CC (and MW-
Fin is even more secure). For α = 0.1 the entropy of MW-Btm is 25.0, whereas
entropies for RY and CC are below 15.0, and similarly for α = 0.15. (For α = 0.5
the entropy values are still somewhat similar, which means that the weakest
passwords are similarly weak in those lists.) This can also be seen in the graphs
in Figures 1 and 2. (Our estimates from Section 3.1 suggest that most differences
are significant.)

An additional difference between those lists of weak passwords and the MW-
Btm list is that the former contain passwords from a single low-value site only,

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 229

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 5M 10M 15M 20M

gu
es

si
ng

 s
uc

ce
ss

#guesses

JtR Carders.cc
JtR RockYou

JtR Malware-Btm
JtR Malware-Fin

JtR MtGox

Fig. 2. Fraction of passwords successfully guessed when running JtR against various
password lists (zoomed in)

whereas MW-Btm probably contains a mix of low- and medium-value (and po-
tentially even some high-value) sites. Another factor that needs to be taken into
account is that the Malware list contains data that was collected in 2012, while
the RockYou list leaked in 2009. The enforced password rules as well as user’s
perception of password security have improved over those years, which explains
the difference at least in part.

The list RY is regularly used in the literature both as example for weak
passwords and as benchmark for work on password security, which might not be
an optimal choice in light of our results.

3.4 Results: Comparing with MtGox

In a third experiment, we compare our results with the only other list of high-
value passwords that we are aware of, the MtGox list, which is a representative
for a list of high-value passwords for another technology-savvy userbase (on
average). This list is, however, not available in plaintext, but in hashed form,
which is a likely explanation why it has only rarely been studied in the literature.
As only some passwords can be guessed in a reasonable amount of time, this
results in a sample bias towards weaker passwords. In fact, this is one of the
reasons why we use JtR, as we can directly compare results without additional
bias. Running time for these tests is substantial. As we need to compute a hash

230 D.V. Bailey, M. Dürmuth, and C. Paar

to check the validity of a guess, it takes about ten hours of CPU time to check
the same number of guesses as in one minute of CPU time when passwords are in
plaintext. For this reason we only make 345,000,000 guesses per password hash,
which limits the resulting graphs.

Results and Discussion. We can see that the passwords in the BITC list
are substantially more secure than those from any other list we consider. For
α = 0.05, we estimate an entropy of 26.1 for BITC, which is only moderately
harder than the estimate of 23.3 for MW-Fin, but substantially harder than all
other estimates which fall in the range from 14.4 bits to 16.2 bits. There are
two potential explanations for these difference: First, these passwords (often)
protect direct monetary value, so users could be inclined to protect that money
and choose strong passwords, and second, the userbase of the Bitcoin system and
thus MtGox has a technology-savvy userbase, which are likely to choose stronger
passwords. When additionally considering the CC list, which is the least secure
one we tested, the following explanation seems likely: Technology-savvy users
might differentiate between high-value accounts (BITC, 26.1 Bits for α = 0.05)
and low-value accounts (CC, 14.4 Bits for α = 0.05), whereas the average user
differentiates less between high-value (MW-Fin, 23.3 Bits for α = 0.05) and
low-value accounts and low-value passwords (MW-Btm, 16.2 Bits for α = 0.05).

4 Password Re-use

Several studies show that users often re-use passwords for several accounts, to
decrease the amount of information they need to memorize. However, re-use
can be problematic, because single passwords leak quite frequently, which then
puts a number of accounts at risk. Even worse, malicious website operators have
direct access to a user’s login credentials, and misuse will go unnoticed.

However, the studies available so far suffer from two problems: Most work
uses surveys to answer such questions about re-use, which requires great care
to avoid biased data (e.g., caused by the observer-expectancy effect). Moreover,
people might not recall every site where they have registered (see Section 1.1 and
Table 3). We are aware of two studies not using surveys: one [9] uses data that
was collected for another purpose and was available only hashed (i.e., similarity
could not be measured). The other [1] used two leaked password lists that both
contained usernames, however, both were hashed and thus only those could be
compared that were broken by a brute-force attack, which constitutes a bias
towards weak passwords, which likely also have higher re-use.

A crucial aspect that has not been considered prior to the present work is
that the security implications of re-using a password depend on the value of
an account/password. (The only exception being an industry advisory [28] with
unclear methodology and little explanation.) Re-using a low-value password at
another low-value site can often be seen as a rational choice by the user, as
creating a unique password for a large number of low-security sites is practi-
cally infeasible. What really constitutes a problem is re-using a password from a

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 231

Table 3. Comparing our results on password re-use with previous work. (A dash means
that the values are not given/cannot be computed from the data.)

Source #accts #pwds #accts
#pwds

re-use rate (RR)

Previous work
Florencio/Herley [9] 25 6.5 3.9 12%
Gaw/Felten [11] – – 2.3–3.2 –
Komanduri [17] – – – 27% to 52%
Dhamija/Perrig [8] 10–50 1–7 – –
Brown et al. [4] 8.18 4.45 1.84 12%
Trusteer Inc. [28] – – – (73%)2

Our work

RRall
0 – – – 14%

RRall
0.2 – – – 19%

RRfin
0 – – – 21%

RRfin
0.2 – – – 26%

high-value site (such as a bank) on a low-value site, as the low-value site is often
easier to compromise. We will study this form of re-use in the remainder of this
section.

4.1 Measuring Re-use from Random Samples

Previous work on password re-use often gives results as average number of pass-
words per user and average number of accounts per password. This is less than
ideal, as it does not differentiate between the case where each cluster has the
same size, or where the size of clusters is heavily skewed, which can make a big
difference in practice. In addition, to make such a statement one needs complete
knowledge of the user’s accounts and passwords. This is problematic because
depending on how much you press a user he will remember a different number
of accounts he has, making the measure rather fragile, and when working with
randomly sampled data there is no way to compare the results.

Therefore, we introduce a new measure for password re-use that we call re-use
rate. The re-use rate gives the following probability: Choosing a user at random,
and choosing two of his accounts at random, what is the probability that the
two passwords for the two accounts are identical? As one would expect, a re-use
rate of 0 means that no passwords are re-used, and a re-use rate of 1 means that
for each user, all passwords are identical. Note that this measure can handle
very well the situation when one has access to a subset of a user’s passwords,
provided that this sample is randomly chosen: Choosing a random password from
all passwords or from a randomly sampled subset does not make a difference.

2 This number is not directly comparable to the other numbers, as they only measured
in any other password matched, which yields (much) higher percentages than the
re-use rate.

232 D.V. Bailey, M. Dürmuth, and C. Paar

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 p
as

sw
or

ds

Normalized edit distance

Re-use of all passwords
Re-use of financial pwds

Fig. 3. Measuring the re-use of passwords for variable levels of similarity, given by their
edit distance

Hence the re-use rate is a suitable measure for our dataset, where only a random
sample of passwords for each user is available.

We are not only interested in exact re-use of passwords, but also in re-use
of similar passwords. In practice, tools like JtR implement established concepts
like (normalized) edit distance. The edit distance of two strings s1 and s2 is
the minimal number of weighted edit operations required to transform s1 to s2.
Typical edit operations are delete/insert/substitute character (weight 1); we add
prepend/append character (weight 0.5) to approximate JtR’s mangling rules. We
normalize the resulting value by dividing by the length of the longer string.

To compare our results with previous work, we convert the numbers from
previous work to re-use rate. Here, we have to make assumptions on the sizes of
the clusters, which we assume to be of the same size. Writing A for the number
of accounts and B for the number of accounts per password, the probability that
we get the same password is RR = B−1

A−1 . The results are shown in Table 3.

4.2 Results

– First, we measured re-use across all passwords of a user, regardless their as-
signment to MW-Fin or MW-Btm. These measurements allow us to compare
the results with previous work.

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 233

– Second, we measured re-use of financial passwords on other sites, i.e., the
re-use rate when, for a fixed user, selecting one password randomly from
MW-Fin and one from MW-Btm. Such results have never been obtained
before and are enabled by the specifics of our dataset.

For both scenarios, we considered both exact re-use as well as approximate re-
use (such as “password” and “password1” for instance). For exact re-use across
all passwords we got 14%, for a (normalized) edit distance of 0.2 we have 19%,
and for re-use of financial passwords we got 21% and 26% percent, respectively.
The results are summarized in Table 3, which also gives figures from previous
work for comparison. The detailed graphs are given in Figure 3, where we plot
the normalized edit distance on the x-axis, and the fraction of password pairs
with normalized edit distance up to that bound on the y-axis.

4.3 Discussion

We can see that the re-use rates only increase slightly between the distance 0
and 50%, which is already larger than what is usually considered “similar”. For
example, the strings “password” and “password-123” have edit distance 20%
while the strings “use” and “re-use” have edit distance 50%. This means that
among people that re-use their password, most re-use it in the exactly same
form. (Re-using with even small modifications would be a much wiser choice
than exact re-use, as this would already prohibit simple forms of attack.)

Surprisingly, we find that re-use is more common for financial passwords than
for all passwords, 21% vs. 14% for exact re-use and 26% vs. 19% for approxi-
mate re-use. We speculate that financial passwords are re-used more frequently
because their increased strength represents a cognitive burden on the user, and
this is something of a maladaptive coping strategy.

When we compare these results with the work of Florencio and Herley [9],
we see that our results are very similar; because they determined a re-use rate
of 12% compared with our 14%, we feel confident that these results are cor-
rect. Comparison with the study by Trusteer Inc. [28] is not easy, as they do
not describe their methodology. They state that “73% of users share the online
banking password with at least one nonfinancial site.” How this relates to our
results depends on the number of accounts they observed per user, and it is not
clear how they handle the case where one user has multiple banking passwords.

5 Conclusion

In this work we studied two important aspects of password security that have
received little attention previously. We used a dataset obtained by malware,
which has passwords for multiple accounts for most users. This allowed us to
compute meaningful statistics on two aspects of password security: first if users
choose stronger passwords for accounts that are more valuable, and second on
the re-use of passwords from high-value accounts on low-value accounts.

We found that password strength indeed does correlate with account value,
a result we also were able to confirm with other lists of leaked passwords. This

234 D.V. Bailey, M. Dürmuth, and C. Paar

means that high-value real-life passwords are stronger than widely suspected,
even though more work is required to see if they are actually strong enough.
We were also able to show that users do re-use their high-value password on
low-value accounts, a practice which must be considered unsafe, and we were
able to confirm previous results on password re-use.

Our work also hints at further interesting research topics. First, it is interesting
to find other meaningful sources for passwords that have multiple passwords
for the same user, that are either larger or have a different/less bias than our
present dataset. Evaluating these datasets would further increase the trust and
the understanding of our results. Second, understanding the exact motives that
lead to the observable differences both in password strength and password re-
use is important. A reasonable method seems to be user interviews, which also
might inform efforts to influence users towards better behavior, i.e., choosing
strong passwords for those accounts that have high value, and to re-use only
those passwords that have low value or are sufficiently protected on the server.

References

1. Bonneau, J.: Measuring password re-use empirically (February 2011),
http://www.lightbluetouchpaper.org/2011/02/09/

measuring-password-re-use-empirically/

2. Bonneau, J.: Guessing human-chosen secrets. PhD thesis, University of Cambridge
(May 2012)

3. Bonneau, J.: The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy (2012)

4. Brown, A.S., Bracken, E., Zoccoli, S., Douglas, K.: Generating and remembering
passwords. Applied Cognitive Psychology 18(6), 641–651 (2004)

5. Cachin, C.: Entropy Measures and Unconditional Security in Cryptography. PhD
thesis, ETH Zürich (1997)

6. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from
Markov models. In: Proc. Network and Distributed Systems Security Symposium
(NDSS). The Internet Society (2012)

7. Designer, S.: John the ripper, http://www.openwall.com/john
8. Dhamija, R., Perrig, A.: Deja vu: A user study using images for authentication.

In: Proc. 9th USENIX Security Symposium (2000)
9. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proc.

16th International Conference on World Wide Web (WWW 2007), pp. 657–666.
ACM (2007)

10. Florencio, D., Herley, C.: Where do security policies come from? In: Symposium
on Usable Privacy and Security, SOUPS (2010)

11. Gaw, S., Felten, E.W.: Password management strategies for online accounts. In:
Proc. Symposium on Usable Privacy and Security, SOUPS (2006)

12. Taiabul Haque, S.M., Wright, M., Scielzo, S.: A study of user password strategy
for multiple accounts. In: Proc. 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 173–176 (2013)

13. HashCat, http://hashcat.net/hashcat
14. Herley, C., van Oorschot, P.C., Patrick, A.S.: Passwords: If we’re so smart, why are

we still using them? In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628,
pp. 230–237. Springer, Heidelberg (2009)

http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.openwall.com/john
http://hashcat.net/hashcat

Statistics on Password Re-use and Adaptive Strength for Financial Accounts 235

15. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password reuse. Com-
munications of the ACM 47(4), 75 (2004)

16. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess Again (and Again and Again): Mea-
suring Password Strength by Simulating Password-Cracking Algorithms. In: 2012
IEEE Symposium on Security and Privacy (2012)

17. Komanduri, S., Shay, R., Kelley, P.G., Mazurek, M.L., Bauer, L., Christin, N.,
Cranor, L.F., Egelman, S.: Of passwords and people: Measuring the effect of
password-composition policies. In: Proc. Conference on Human Factors in Com-
puting Systems, CHI 2011 (2011)

18. Krebs, B.: Fraud Bazaar Carders.cc Hacked (May 2010),
http://krebsonsecurity.com/2010/05/fraud-bazaar-carders-cc-hacked/

19. Massey, J.L.: Guessing and entropy. In: IEEE International Symposium on Infor-
mation Theory, p. 204 (1994)

20. Mick, J.: Inside the Mega-Hack of Bitcoin: The Full Story (June 2011),
http://www.dailytech.com/

Inside+the+MegaHack+of+Bitcoin+the+Full+Story/article21942.htm

21. Morris, R., Thompson, K.: Password security: A case history. Commun.
ACM 22(11), 594–597 (1979)

22. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proc. 12th ACM Conference on Computer and Communications
Security (CCS), pp. 364–372. ACM (2005)

23. Nurse, J.R., Creese, S., Goldsmith, M., Lamberts, K.: Trustworthy and effective
communication of cybersecurity risks: A review. In: Proc. Workshop on Socio-
Technical Aspects in Security and Trust (STAST), pp. 60–68. IEEE (2011)

24. Riley, S.: Password security: What users know and what they actually do. Usability
News 8(1) (2006)

25. Sasse, M.A., Brostoff, S., Weirich, D.: Transforming the ’weakest link’ a hu-
man/computer interaction approach to usable and effective security. BT Tech-
nology Journal 19(3), 122–132 (2001)

26. Owl, S.: Microsoft market dominance (2013),
http://www.statowl.com/custom_microsoft_dominance.php

27. Trusteer, Inc. Detects rapid spread of new polymorphic version of zeus online
banking trojan. Security Advisory (2010),
http://www.trusteer.com/news/press-release/trusteer-detects-rapid-

spread-new-polymorphic-version-zeus-online-banking-trojan

28. Trusteer, Inc. Reused login credentials. Security Advisory (2010),
http://landing2.trusteer.com/sites/default/files/

cross-logins-advisory.pdf

29. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proc. 17th ACM
Conference on Computer and Communications Security (CCS 2010), pp. 162–175.
ACM (2010)

30. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: Proc. IEEE Symposium on Security and
Privacy, pp. 391–405. IEEE Computer Society (2009)

31. Zhang, Y., Monrose, F., Reiter, M.K.: The security of modern password expiration:
an algorithmic framework and empirical analysis. In: Proc. ACM Conference on
Computer and Communications Security (CCS), pp. 176–186 (2010)

http://krebsonsecurity.com/2010/05/fraud-bazaar-carders-cc-hacked/
http://www.dailytech.com/Inside+the+MegaHack+of+Bitcoin+the+Full+Story/article21942.htm
http://www.dailytech.com/Inside+the+MegaHack+of+Bitcoin+the+Full+Story/article21942.htm
http://www.statowl.com/custom_microsoft_dominance.php
http://www.trusteer.com/news/press-release/trusteer-detects-rapid-spread-new-polymorphic-version-zeus-online-banking-trojan
http://www.trusteer.com/news/press-release/trusteer-detects-rapid-spread-new-polymorphic-version-zeus-online-banking-trojan
http://landing2.trusteer.com/sites/default/files/cross-logins-advisory.pdf
http://landing2.trusteer.com/sites/default/files/cross-logins-advisory.pdf

Efficient Network-Based Enforcement
of Data Access Rights

Paul Giura1, Vladimir Kolesnikov2, Aris Tentes3, and Yevgeniy Vahlis4

1 AT&T Security Research Center, New York, NY, USA
paulgiura@att.com

2 Bell Labs, Murray Hill, NJ, USA
kolesnikov@research.bell-labs.com

3 New York University, New York, USA
tentes@cs.nyu.edu

4 Bionym, Toronto, Canada
evahlis@gmail.com

Abstract. Today, databases, especially those serving/connected to the Internet
need strong protection against data leakage stemming from misconfiguration, as
well as from attacks, such as SQL injection.

Other insider and Advanced Persistent Threat (APT) attacks are also increas-
ingly common threats in the security landscape.

We introduce access control list (ACL)-based policy checking and enforce-
ment system designed specifically to prevent unauthorized (malicious or acci-
dental) exfiltration of database records from real-life large scale systems. At the
center of our approach is a trusted small-footprint and lightweight policy checker
(e.g., implemented as a router function) that filters all outgoing traffic. We prov-
ably guarantee that only authorized data may be sent outside, and to the right
recipients.

We design and formally prove security of two access control schemes, with
distinct security and performance guarantees: one based on authenticated Bloom
filters, and one based on either long or short (e.g. 16-bits long) aggregated MAC
codes. The use of the short codes, while providing a clear performance benefit,
cannot be proven secure by a simple reduction to existing aggregated MAC tools,
and required careful handling and a concrete security analysis. The advantage of
our schemes is that they are both simple yet much more efficient than the naive
MAC-based access control.

Our solution requires explicit designation of each record-attribute-user tuple
as permitted or disallowed. We rely on shared secret key cryptography, and our
system can scale even for use by large organizations.

We implemented and deployed our algorithms in an industrial system setup.
Our tests mimic usage scenarios of medium-size DB (10M records) of telephone
company call records. Our experiments show that we achieve high (scalable) ef-
ficiency both in the server and checker computation, as well as extremely low
communication overhead.

Keywords: provably secure access control, aggregate MAC, Bloom filter, im-
plementation.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 236–254, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Network-Based Enforcement of Data Access Rights 237

1 Introduction

This work presents a system for enforcement of data access policies in systems where
typical volume of traffic or lack of public key infrastructure prohibits extensive use
of existing trust management systems such as SD3, SDSI, PolicyMaker and KeyNote
[13,5,19,4]. A central part of our system is a trusted (e.g., highly hardened) lightweight
component that is present on the communication channel between the inside and outside
of the protected network and verifies compliance of outgoing traffic with data access
policies. The lightweight check is stateless with the exception of a long term secret key
that is used in the verification process.

These features are critical in many natural deployment scenarios, such as when the
verifier is executed on a router as an add-on functionality. In particular, ACL of non-
trivial size cannot be stored on a verifier which is just a network element. We believe
that none of prior work on ACL enforcement is simple and efficient enough for this type
of deployment (cf. Section 1.3).

The capabilities of our system and its advantages compared to existing trust man-
agement solutions are best illustrated in a scenario where a database is accessed by a
large number of users, each of which may choose to delegate partial access capabili-
ties to untrusted and unsophisticated outsiders. An example of such a scenario can be a
customer phone usage database system of a telecommunications company. The system
is accessible both internally for multiple purposes such as billing, marketing, etc, and
externally to the customers through an internet website.

In such a scenario, we aim to address two main threats. Firstly, the fact that the usage
record database is accessible indirectly through a web server means that the web server
must manage user access credentials, and make sure that queries submitted by exter-
nal users do not bypass their access permissions to leverage the full permissions of the
server. SQL injection exploits are an example of a situation where the web server incor-
rectly enforces user access control, allowing an attacker to extend his access privileges
to those of the web server and gain access to private records of other users.

There is a wealth of work focused on designing access policy enforcement schemes
that are as general as possible while maintaining efficiency. While some of the schemes
are quite efficient and somewhat close to our model (e.g., [13]), such schemes inher-
ently cannot take advantage of certain cryptographic techniques that can push the effi-
ciency much further, which is needed for making the system practical for use in very
high volume environments. (In particular, [13] relies on public key operations, which is
inherently orders of magnitude slower than private-key primitives we rely on.) In this
work, we present two protocols that take advantage of such techniques to provide an
extremely efficient scheme for a set of basic database queries that are common in the
scenarios described above.

More specifically, given a set of records and users, and an access control list (ACL)
specified by tuples of the form (user id, record id, attribute id), we describe two meth-
ods for representing the ACL in an authenticated manner, and providing small and effi-
ciently checkable proofs that a projection of the records is accessible by a specified user
according to the ACL. A projection is a subset of records and fields within the records.

238 P. Giura et al.

1.1 Overview of Our Methods

Our two main methods are as follows:

– Aggregate MAC based solution. In our first solution, the ACL is represented as
a set of message authentication codes (MACs). Each MAC authenticates a single
DB entry. The proof is then computed by using the MAC aggregation technique of
[14,15] to combine the MACs corresponding to the projection of the records that is
being returned to the user. As a result of the aggregation, the bandwidth overhead
introduced by the proof is negligible – a single MAC. We further show how to use
short MACs, of only a few bits of length, to highly optimize DB storage and access
speed, while offering provable strong security. Computationally, our first method is
as expensive as the trivial MAC based solution. The additional cost of aggregation
is minimal, as we show in Section 4.

– Bloom filter based solution. Our second solution stores the entire set of records
that is accessible by the user in a Bloom filter [6], and the Bloom filter itself is au-
thenticated by a MAC. The proof now is simply the Bloom filter that represents the
data accessible by the user. To verify the proof, the verifier checks that all records
being returned are members of the set defined by the Bloom filter. This solution is
applicable to settings where a small (configurable) probability of false positive is
allowed.

Interestingly, the Bloom filter based solution imposes an extremely low computa-
tional overhead for the database server. This is due to the fact that, for each user, the
proof is identical for all possible queries, and therefore there is no need for additional
complex database searches. The price of the computational efficiency is an increase in
bandwidth overhead as the Bloom filter grows with the size of the data accessible by the
user, as well as the rigidity of the Bloom filter which makes changes to the ACL quite
expensive. Indeed, recall that a Bloom filter is a data structure that represents a set of
elements S by maintaining a bit array A such that A(i) = 1 if and only if there exists
at least one element s ∈ S where hs(i) = 1 and hs is a hash1 of the element s.

Adding elements to the Bloom filter is trivially achieved by setting the appropriate
bits in A to 1 and recomputing the MAC of the Bloom filter. However, if the size of
the ACL for a user outgrows the capacity of the Bloom filter, the entire ACL must be
available to compute a larger Bloom filter. Moreover, the authenticity of the ACL must
be ascertained somehow. Requiring the database server to maintain a signed copy of the
ACL is a possible solution. We do not discuss this issue further, and mention it solely
to point out a practical limitation of the Bloom filter based approach.

In contrast, the aggregate MAC based solution allows efficient additions to the ACL
list simply by computing MACs of the added tuples.

Revocation. We don’t address revocation in this work. Rather, for the sake of complete-
ness, we describe a possible approach. Revocation can be achieved by standard methods
that are typically applied to public key certificate revocation. Suppose that the owner of

1 Typically, the hash will computed by applying a cryptographic hash function, such as SHA-3,
to the binary representation of s.

Efficient Network-Based Enforcement of Data Access Rights 239

the data wishes to revoke some of the access privileges of a user. Clearly, just asking the
database server to delete the appropriate ACL tuple or Bloom filter and MAC is insuf-
ficient in generality since there is no guarantee that a corrupted server will follow such
instructions. (This simple approach would work, however, in the settings where server
is not malicious and data leakage is due to misconfiguration.) It is also not clear that us-
ing Bloom filter variants, such as counting filters will help. To address access privilege
revocation, we propose relying on existing techniques that are typically used in certifi-
cate revocation. In particular, if a dynamic accumulator is used, the checker will keep
an up to date accumulator value, and verify for each ACL tuple or Bloom filter received
that it is not present in the set defined by the accumulator. We note that, although the
space requirements of most accumulator schemes are minimal, and in particular inde-
pendent from the size of the ACL, checking incoming data against the accumulator will
impose a significant computational overhead using current techniques. The difficulty in
checking revoked access permissions is therefore a limitation of both our schemes.

1.2 Experimental Results

We tested the feasibility of our proposed solutions by using two data sets that share
the same attributes as the data collected as voice call detail records (CDRs) from a
large wireless carrier. We pre-processed the original data in order to encode the access
policies (i.e. ACLs) using the Bloom filter representation and MACs. Then we loaded
both the original data and the policy data into a MySQL database. To issue queries to
the new database that include policy data, we implemented a query parser that reads the
original user query statement and rewrites into a new query that includes the original
query and an additional query for the policy data that will be sent to the checker. Once a
query has been issued, and evaluated by the database, the results set of the original query
and the policy data needed to perform the policy verification are sent to the checker, who
then performs the check according to one of our two schemes.

We run two test queries against both data sets. Our tests were performed in a system
setup approximating industrial deployment (with a powerful DB server and a fast net-
work). Our results show that, with a slight storage overhead of up to 23%, both methods
could be used for certain types of policy settings and query workloads. More precisely,
in the cases when many users are granted access to a small set of records, the Bloom fil-
ter implementation yields better performance than the MAC approach in terms of query
time and storage overhead. On the other hand, in the case when most users are granted
access to a very large set of elements, the Bloom filter based solution will need much
more time for checking the policy and for sending the data to the checker because of
the large size of the Bloom filter, even though less time is spent for the actual query of
the database. Thus, in the case of a lightweight checker that could be implemented in a
portable device, such as a smart phone or tablet, with limited memory and bandwidth,
the MAC solution will perform better if the users have granted access to very large
number of records.

Consequently, our results show a clear trade-off between the MAC and Bloom filter
based approaches. The MAC approach is more suitable for very dense access policies,
while the Bloom filter based solution should be chosen for sparse policies.

240 P. Giura et al.

1.3 Related Work

A rich body of work studies credential and trust management systems
[13,17,16,2,5,19,4], but none is close in functionality/performance to this work
on ACL enforcement. In most prior works, the focus is on providing an efficient way
of describing trust relationships and then proving that a particular relationship holds
in a specific scenario. Architecturally, the SD3 [13] system is closest to our work. In
SD3, an access control policy is described using a high level language. During access,
a proof is generated that the access was compliant with the policy, and is sent to an
external checker, which in turn can verify the validity of the proof efficiently. Despite
the similarity in architecture, the goals of the two works are very different. SD3 builds
a distributed public key infrastructure, and focuses on providing an efficient proof
checking mechanism for a high level policy description language. In contrast, our
system assumes a shared private key setting, and does not provide the convenience of a
high level policy language, but achieves very good efficiency if a policy description as
an ACL tuple list is available.

Another avenue of research relates data exfiltration detection and prevention
[10,18,20], and protection against related attacks, such as SQL injection [11,7].

Moreover, [1] considers the problem of misconfigurations, which is related to ours,
however, the solution they provide is based on statistical analysis of past queries. Our
constructions provide a stronger guarantee as we do not need to assume any statistical
correlation among the queries.

Recently appearing techniques, such as searchable encryption (see e.g., Garay et
al. [9]) are related to the problem we are solving, but do not apply directly. Indeed, the
searchable encryption guarantees protection against corrupted server, but not against
the client who is assumed to own the data in their setting. Even a recent highly scalable
searchable encryption scheme [8] (and its enhanced variant [12] used in private DB
search) are vastly unsuitable as a lightweight deployment. For example, the intermediate
party in [8,12] is a 16-core Xeon machine with 96GB of RAM! In contrast, our system
can run on just a few KB of RAM, for Aggregated MAC-based approach and a few MB
for Bloom filter-based approach.

2 Preliminaries

In this section we discuss some of the required preliminaries, such as definitions and
notation.

We now give the basic definition of Message Authentication Code (MAC).

Definition 1. A Message Authentication Code (MAC) is a stateless deterministic al-
gorithm MAC : {0, 1}n × {0, 1}∗ �→ TAG. On input key k ∈ {0, 1}n and a message
m ∈ {0, 1}∗, MAC outputs a tag τ ∈ TAG. (Here TAG is the domain of tags, which
depends on n, and is independent of the signed message length.) We will sometimes
write MACk(m) to mean MAC(k,m).

Let k ∈R {0, 1}n. Let A be a polytime adversary with an access to the MAC oracle
O(m) = MACk(m). A outputs a message m′ and its alleged authentication tag τ ′,
and must never call O(m′). We say that MAC is secure, if for every such A, Prob(τ ′ =
MACk(m

′)) < 1/nc for every c and sufficiently large n.

Efficient Network-Based Enforcement of Data Access Rights 241

Fig. 1. Policy checking system overview

We note that MAC is a special case of the more general notion of message authen-
tication schemes. MAC satisfies the strongest requirements of message authentication
schemes [3], and is sufficient for our purposes.

An important notion of aggregate MACs was introduced by Katz and Lindell [14].
Later, Kolesnikov [15] strengthened the definition to allow aggregation of duplicate
messages, which we include for reference in Appendix A.

3 Our Constructions

In this section we present all algorithmic and technical details of our underlying
approaches, along with the security proofs.

3.1 Overview of Our Approach

As noted in the introduction, enforcing policy (ACL in our case) on the returned dataset
is a highly desired feature in the DB management. In contrast with the traditional ap-
proach of hardening the DB server, we offer a complementary approach of employing
a light-weight verifier, which is positioned on the outgoing channel and which formally
ensures that only authorized data records are sent in response to the queries. This guar-
antee is formally proven in our system.

System Architecture. We consider the following architecture illustrated in Figure 1.
The DB owner O owns the database D, and wants a server S to operate the DB and
respond to SQL queries from clients C. However, due to the risk of compromise of a
large system S we introduce a small machine (possibly even a small network device),
verifier V , which is responsible for checking that every record that is sent out is con-
sistent with the ACL specified by O for the user that submitted the query. The ACL is
too large to fit in V , and hence ACL is encoded and authenticated in some form, and V
verifies the authentication.

242 P. Giura et al.

For simplicity, for the purpose of this work, we define the ACL as a set of tuples,
where each tuple specifies a record identifier of a record in D, field identifier, and a
user identifier of a user C. The presence of a tuple in the ACL indicates that the user
with the specified identifier is allowed to access the field of the record indicated in the
tuple. In practice, an access control policy would often be represented more concisely
by the data owner, but any such representation can of course be converted to the ACL
as described above.

Recall, we require that even if S is fully compromised by an adversary A, he still
will not be able to exfiltrate any data which A is not authorized to access as defined by
the ACL.

We stress that V is assumed to be incorruptible and honest, and hence no security
against V is needed and considered.

The Naive MAC Authentication Approach. The natural approach is for O to use a
MAC to authenticate each authorized field-user pair, and store the entire set of MACs
with S. O then shares (discloses) the MAC key k with V , so as to enable verification.
The key k is not shared with S in order to prevent forgery of ACL tuples in case of
corrupted S. When S responds to a query, in addition to the result set, S sends to
V the MACs of each of the corresponding fields. V only forwards a record to C if it
successfully verifies MAC of each of its fields. (We do not discuss policy decisions
such as what is best done in case of failed MAC).

The obvious disadvantage of the above MAC approach is the significant overhead
of sending a MAC for each field of each record sent. For records with small fields
consisting only of a few bytes, such as call records, the MAC transmission can result in
factor 2− 10 overhead.

Aggregated MAC. Our first contribution is the design of the authentication scheme,
which uses the recently proposed MAC aggregation schemes [14,15]. Firstly, instead
of sending each MAC separately, S will send their sum (e.g., modulo 2128), which,
as shown in [15], guarantees verification and hence unforgeability of each individual
MAC. Secondly, in terms of DB storage, we show that we don’t need to store the entire
MAC. Instead, only a few, e.g., 16 bits of the MAC are needed to achieve good security
in our setting. This is because the adversary’s forging attacks are “online”, in the sense
that A cannot verify forgeries other than by submitting them to V , since only V has the
MAC key. The online nature of the verification makes the relatively high probability of
successful forgery acceptable since, once even a single forgery attempt is detected by
V , S can be blocked or flagged as potentially compromised. The use of short MAC also
complicates our analysis, as we now cannot simply refer to [14,15] for security. Instead,
we carefully re-prove the theorem of [14] for our setting, while tightening the analysis
of the boundaries and probabilities.

Result set streaming. An interesting aspect of this approach is that V does not know
whether the verification succeeded or failed until the entire result set has been pro-
cessed by V , and its aggregate MAC verified. We show how to avoid the delays and
storage costs associated by buffering the result set by V , as follows. V simply randomly
generates a new random encryption key, and forwards the result set to the client C en-
crypted with this key. He then releases the key once the result set has been processed

Efficient Network-Based Enforcement of Data Access Rights 243

and aggregate MAC verified. We stress that the ability to stream the data as described
above allows V to have extremely small footprint, suitable for deployment as a cheap
network element or router functionality.

Bloom-Filter Based Approach. We also propose an alternative approach, with differ-
ent security and performance properties (see our performance evaluation in Section 4).
The idea here is forO to create a bloom filter BF per user, into which are inserted all the
pieces of data (i.e. each field of each record) to which this user C is authorized to have
access. Each BF is then authenticated with a MAC and given to S. Now, when S needs
to send the result set, he first sends the corresponding BF together with its authenticator,
which V verifies and stores locally for processing of the result set. Then S simply sends
the result set, each element of which is tested for membership in the BF by V . If all
elements are contained in the BF, the result set is forwarded to C.

This solution is applicable to settings where a small (configurable) probability of
false positive ε is allowed. Our analysis (Theorem 3) takes ε in account. We note that
Bloom filter sizes/parameters are selected to reflect the acceptable ε; in case the DB or
ACL changes, the filter might need to be updated (increased in size) to comply with ε.

3.2 Security Definitions

To enable formalization of the security guarantees of our system, we start with present-
ing the definition of security. Our definition is game-based, it describes an interaction
between the players, where we say that the adversary S wins, if he manages to send to
C an unauthorized record or a field of a record.

For simplicity, and without loss of generality, we will view the database D as a two-
dimensional table, where each record (row) has several fields (columns). An Access
Control List (ACL) L is a table which, for each record/field specifies the list of user
names which are authorized to retrieve this field.

Definition 2. Let G be the following game (experiment) played by server S and ver-
ifier V . The game G generates a random secret MAC key, which is shared with V . S
generates a DB D and ACL L of his choice, gives D and L to G, who generates the
necessary authenticators and gives them back to S. S then generates a result set for a
client C, which consists of one or more records, each of which in turn consist of one or
more fields.

We say that S wins the game if V accepts the verification of a result set where at least
one field value (defined as triple 〈row i, column j, value vij〉, with indices with respect
to D) is not authorized for retrieval by C.

We say that the access control protocolΠ is ε-secure, if the probability of S winning
the game G is at most negligibly greater than ε. If ε = 0, we will simply write secure
access control protocol.

Discussion. Observe that our definition is presented with respect to one collaborating
malicious client C, while in practice there may be several such clients. We note that this
is does not present a restriction in our definition, since our game is not with respect to
a specific game player C, but with respect to any (not directly named in the definition)
user, who is described by the ACL generated by S.

244 P. Giura et al.

We note that our definition and system does not guarantee the absence of side chan-
nels, such as timing or set ordering. Indeed, a malicious C and S may agree on a system,
where the intervals between the messages or the ordering of the records in the result set
may encode protected information. We do not formally address these out-of-band and
low-bandwidth attacks, but note that natural prevention or mitigation techniques can be
employed here. For example, V can require that records are sent in the increasing order
of their id, or V could introduce random delays in forwarding the messages.

3.3 Authentication by Aggregated MAC

We now formalize the Aggregated MAC-based construction, informally presented at
the high level in Section 3.1. Let n be a cryptographic security parameter. Let H :
{0, 1}∗ → {0, 1}n be a hash function modeled by random oracle.

Construction 1. Let n be the cryptographic security parameter. LetD be the database,
and L be the ACL owned by O.
O generates MAC key k ∈R {0, 1}n. For each tuple 〈row i, column j, value vij〉, O

generates authenticator τi,j = MACk(i, j, vij). Further, for each client C and access
right tuple 〈row i, column j, C〉, O generates authenticator τi,j,C = MACk(i, j, C).
Finally, O sends all authenticators to S, which S stores. O sends the key k to V .

When S responds to a query by client C, S sends the entire result set to V . Further,
S computes and sends to V the aggregated MAC τ of all the relevant authenticators.
Namely, for each authenticator τi,j of tuple 〈row i, column j, value vij〉 and corre-
sponding authenticator τi,j,C of access right tuple 〈row i, column j, C〉, S aggregates
τi,j and τi,j,C into the current value of τ .

Given key k, V verifies the aggregated MAC τ and halts if the MAC is invalid. This
is done by calling aggregated MAC’s Vrfy function. If MAC is verified successfully, V
forwards the result set to C.

Observation 1. The verifier V in Construction 1 must receive and hold the entire result
set before he can forward it to C as the verification of any part of the result set is com-
plete only once the entire set is verified. The overhead of the storage is easily avoided as
follows. When processing a query, V chooses a random key kV , and, as he receives the
result set, he forwards it to C, encrypted with kV . Upon the verification of the validity
of the result set, V sends kV to C for decryption.

It is easy to see that this maintains the security of the scheme, but allows V to have
only small storage (a few keys and a few buffered data packets).

Theorem 1. Construction 1 is a secure access control protocol (with negligible ε).

Proof. (Sketch.) We show that an adversary S who constructs an accepted result set
containing (at least one) unauthorized tuple, can be used to break security of Aggre-
gateMAC. Indeed, S is strictly weaker (i.e. asks fewer types of queries, for example,
S cannot call the Corrupt oracle) than the adversary of the AggregateMAC game
of Definition 4, and therefore, S is a valid aggregate MAC adversary. It is easy to see
that an accepted result set with an unauthorized data entry generated by S represents a
forged aggregate MAC (where the unauthorized data entry represents the the message

Efficient Network-Based Enforcement of Data Access Rights 245

on which MAC was never queried in the game of the definition of aggregate MAC).
Since employed aggregate MAC can be forged only with negligible probability, it im-
plies that the data exfiltration in such a system only possible with negligible probability.

We stress that in normal operation, we do not expect S to be corrupted, and hence it
is beneficial to trade off some security against corrupted S for the performance of our
scheme. It turns out that the following modification to Construction 1 achieves a very
useful trade off. Consider a “truncated” MAC scheme, where only a few bits, say 16, of
the output of the MAC are employed in verification. (Note that in generality, formally,
any fraction, or even a majority of the bits of a secure MAC may not hold any security at
all; for example they can all always be set to 0. One way of implementing the truncated
MAC is to hash the entire secure MAC using random oracle, and then take the last bits
of the hash. This will guarantee that these bits are as unpredictable as the entire MAC.)
It turns out that using just a few bits for the MAC, for example, a 16-bit truncated
MAC, gives reasonable security in our system. Intuitively, this is because the adversary
is not able to see MACs of messages of his choice – only the messages corresponding
to ACL-authorized entries are MAC’ed.

Remark 1. Short MAC may also be obtained directly by applying a random oracle to
the pair (key,message). We chose to present our result for constructionH(MAC(m)) to
make the flow of the presentation more consistent. Further,H(MAC(m)) is often faster
than H(key,m) for longer messages. (Indeed, e.g., AES with precomputed key sched-
ule is much faster than SHA256, especially with available CPU hardware support.)

We further remark that if MAC is based on PRF (e.g., τ = MACk(mi) =
AESk(mi)), then short MAC can be obtained directly by truncating the tag τ to de-
sired length, e.g. to 16 bits. The following theorem holds for this case as well, with an
analogous proof and the same security guarantee.

Construction 2. LetH be a hash function modeled as a random oracle. Consider Con-
struction 1. Replace each use of MAC with that of �-bit truncated MAC (denoted �-
MAC), implemented as the last � bits of H(MAC). Let the employed aggregate MAC be
the additive MAC of Kolesnikov [15] or the bitwise XOR MAC of Katz and Lindell [14].
Finally, additionally require V to verify that no entry in the result set is submitted more
than once (this is particularly relevant if the XOR aggregate MAC is used).

For provable and efficient construction, we need to employ aggregate MAC which
allows tight security reduction and provide a concrete analysis. Unfortunately, previous
aggregate MAC constructions were only proven asymptotically secure, and moreover,
have loose reductions. Further, we must fix the aggregate MAC scheme, since the theo-
rem will not hold in generality for an arbitrary aggregate MAC. Indeed, in particular, a
secure aggregate MAC scheme may choose to ignore the last bit of every MAC, which
would affect the probability claim of our theorem. Thus, partly, our technical contribu-
tion in this section is to show that the chosen aggregate MAC schemes have no secu-
rity loss (at least in our application) and provide the corresponding concrete security
analysis.

Theorem 2. Construction 2 is a 1
2�

-secure access control protocol.

246 P. Giura et al.

Proof. (Sketch.)
We prove the theorem for the aggregate MAC of Katz-Lindell [14]. The case with

the MAC of [15] is analogous.
While Construction 2 is based on Construction 1, the proof of security of Construc-

tion 1 does not go through as is here, since the probability of MAC forgery and MAC
collisions is now non-negligible. In particular, the proof of Construction 1 reduces to
the proof of security of aggregated MAC, which is not presented in concrete probability
terms in either Katz-Lindell [14] or Kolesnikov [15] Another subtlety in the construc-
tion and the proof is that a malicious S can find tuples that MAC to the same value and
substitute them.

We will thus present a direct and concrete reduction to MAC security, demonstrat-
ing a forgery of an �-MAC whenever S produces an unauthorized result set which is
accepted by V .

Consider the adversary S who selects the DBD and ACL L. We construct an �-MAC
adversary A as follows. Upon receipt of D,L, A queries MAC-oracle to obtain MACs
on all DB entries in L. That is, for each DB entry 〈i, j, vij〉 and corresponding access
right 〈i, j, C〉, A asks MAC oracle for corresponding MAC. A then forwards all the
MACs to S. In its next communication, S produces a result set and an authenticator τ .
One or more entries of this result set is unauthorized according to L. A then proceeds
as follows.
A first determines the set of unauthorized entries, and considers any one of them, say

〈i, j, vij〉, and its access right 〈i, j, C〉. There are two possible reasons why this entry is
unauthorized: either the value vij sent is not the true value, or the access right 〈i, j, C〉
is invalid (of course, both reasons can apply, as well). Note that A is able to determine
the reason simply by inspection of submitted result set and from the knowledge of L.

Consider the first reason, vij sent is not the true value in D. A will then attempt
�-MAC forgery on message m = 〈i, j, vij〉. A will query the MAC oracle on all the
remaining values corresponding to the result set (with the exception of m). A then
computes the MAC tag τ ′ = τ ⊕

⊕
iMAC(mi), where XOR

⊕
is over all the authen-

ticators used to construct the aggregate tag τ , with the exception of that of m. It is now
easy to see that if the result set is accepted by V then τ is a valid �-MAC of m. Further,
τ constitutes a proper forgery in the MAC game, since A will not have asked the game
for the MAC of m.

Considering the second reason, that the access right 〈i, j, C〉 is invalid is analogous
to the above. If both reasons hold, a MAC forgery attack via any one of them will work.

Finally, since the probability of forging the employed �-MAC is close to 1
2�

, it follows
that the probability of success of S is close to 1

2� as well, and the theorem holds. ��

3.4 Bloom-Filter-Based Authentication

We now formalize the Bloom filter-based construction, informally presented at the high
level in Section 3.1. Let n be a cryptographic security parameter. Let H : {0, 1}∗ →
{0, 1}n be a hash function modeled by random oracle.

Efficient Network-Based Enforcement of Data Access Rights 247

Construction 3. Let D be the database, and L be the ACL owned by O.
O generates a MAC key k ∈R {0, 1}n. For each client C ∈ L,O generates a random

Bloom filter key kC ∈R {0, 1}n. For each C, O generates a Bloom filter BFC by insert-
ing, one by one, all ACL entries for C, as follows. For tuple 〈C,row i, column j, value
vij〉, O inserts H(kC , i, j, vij) into the BFC, according to the BF insertion procedure.
Finally, O authenticates BFC and, for each C, sends BFC and MACk(BFC) to S, which
S stores.

When S responds to a query by client C, S sends C’s name, BFC and MACk(BFC) to
V . V verifies the MAC and halts if the MAC is invalid. For each result set entry 〈row i,
column j, value vij〉, S sends 〈i, j, vij〉 to V . V then computes h = H(kC , i, j, vij) and
verifies that h is in BFC. V halts if h �∈ BFC; otherwise, V forwards 〈row i, column j,
value vij〉 to C.

Observation 2. Note that the BF function, mapping keywords to BF bit position, must
be unknown to S (we use a hash function modeled as a random oracle keyed with a
secret key, and this is sufficient). This is important as otherwise S may be able to verify
by himself whether certain unauthorized tuples (or even arbitrary data sets) match the
BF, and return them.

Further, we need to include client-specific data, such as client’s id, inside the private
BF mapping function. This more subtle requirement is needed to prevent S from getting
knowledge (or fully determining, e.g., in case where only one element is inserted in the
BF) on what the BF indices corresponding to a DB entry are, and hence determine
whether this DB entry will pass the BF check for an unauthorized data transfer. Such
ability would violate our security definition for Bloom filters with non-negligible false
positive rates.

Theorem 3. Let ε be a false positive rate in the employed Bloom filter. Then construc-
tion 3 is an ε-secure access control protocol.

Proof. (Sketch).
The proof follows from unforgeability of MAC of BF, generated by O, and from the

fact that there is no way for S to guess (other than at random) what are the BF positions
corresponding to any specific unauthorized DB entry. The latter holds because of the
random-oracle properties of H , and because S is never allowed to query H on the
unauthorized DB entries.

Assume that the BF delivered to V is in fact not forged (probability of MAC forgery
is negligible, and is hence allowed in the success rate for the attacker). Let 〈i, j, vij〉
be a data tuple, selected by S and unauthorized for C. We argue that probability of its
acceptance is at most negligibly greater than the false positive rate ε of the underlying
BF. For this, it remains to show that S cannot predict which BF positions the entry
e = 〈kC , i, j, vij〉 corresponds to. This, in turn, follows from the fact that the entry e
was never queried w.r.t. H , since only O knows kC , and since e is not in L, H(e) was
never evaluated. From the randomness of the random oracle output, it follows that the
BF positions corresponding to e are unpredictable to S.

248 P. Giura et al.

4 System Setup and Experimental Results

In this section we show the experimental evaluation for a prototype implementation of
the policy checking system. We report the results obtained by using the two methods to
represent data access policy: the aggregated MAC and Bloom filter based approaches.
We stress that our experiments replicate real usage scenarios of DB storage and access
of a large wireless carrier.

4.1 Data

In order to protect user data privacy we used synthetic data representing voice call
records with the same characteristics as real data recorded in a large wireless carrier
network. Thus, we built a data generator that creates voice Call Detail Records (CDRs)
using data distributions observed in real voice records, but independent of real CDR
data. We generated two data sets, each with 10 million voice CDRs. One data set (Data
Set 1) contains records for 500,000 users in a text file of size 484 MB, one call record
(e.g. voice transaction) on each line, and approximately 20 transactions per user. This
data set has the characteristics of data collected from 500,000 moderate usage voice
users for a period of 1 day. By using this data set we test the overhead of the policy
checking mechanisms when only few possible records have to be checked for each user.
The other data set (Data Set 2) contains records for 10 users, approximately 1 million
transactions per user. This data set has the characteristics of voice data collected over
several months for 10 heavy users (e.g., organizations) of a voice service. By using this
data set we wanted to test the overhead of policy checking for a large number of possible
records. For both data sets, each record contains 6 attributes: record id (id), source
number (src), timestamp (ts), destination number (dst), duration (dur), base station (bs).
Table 1 summarizes data characteristics for both data sets.

Table 1. Data characteristics

Data Set 1 Data Set 2
of records 10,000,000 10,000,000
raw data size 484 MB 484 MB

record attributes id, src, ts, dst, dur, bs id, src, ts, dst, dur, bs
of users 500,000 10

approx. # of records/user 20 1,000,000

4.2 Policy Representation

After generating the data, we generate the policy to access the data by using MACs and
Bloom filter representations of the policy. Thus, we feed the original data to a policy
generator that creates the policy data for both data sets. For simplicity, we assume that
each user has access to only the records that list her as the source of the voice call.
Thus each record can be accessed by a single user only. By making this assumption we
reduce the overall experimental query runtime with policy checking enabled.

Efficient Network-Based Enforcement of Data Access Rights 249

When using MACs, for each user we represent the policy by keeping a MAC
value for each attribute and record id, and one MAC value for each user and record
id. More precisely, we represent the policy “user A has access to record (row)
r = (idr, srcr , tsr, dstr, durr, bsr)” by appending to record r the following
fields: H(idr|srcr |keyA), H(idr|tsr|keyA), H(idr|dstr|keyA), H(idr|durr|keyA),
H(idr|bsr|keyA), H(idr|A|keyA), where keyA is a unique key for user A assigned by
the data owner, and H(·) is a cryptographic hash function used to compute the MACs.
In our experiments we use the first 16 bits of SHA-1 output for each MAC attribute.

When using Bloom filter representation we represent in a Bloom filter all the val-
ues of the records that the user is allowed to access. More precisely, we represent the
policy “user A has access to record r = (idr, srcr , tsr, dstr, durr, bsr)” by inserting
in the Bloom filter corresponding to user A, BFA, the following items idr|srcr |keyA,
idr|tsr|keyA, idr|dstr|keyA, idr|durr|keyA, idr|bsr|keyA. Additionally, for each user
Bloom filter we store as the signature the valueH(BFA, keyA). In order to make a fair
comparison with the MAC case, for each user we select the Bloom filter size 16 times
the number of elements inserted. That is, we represent each element using 16 bits in a
Bloom filter and we use two hash functions, therefore each Bloom filter, for each user,
yields an expected false positive rate of 0.0138.

4.3 System Setup

We set up the system as shown in Figure 1. We use a MySQL database as the “un-
trusted database” to store the data and the access policy hosted on MySQL server ver-
sion 5.5.28 installed on a server with 16-core 2.93 GHz CPU, 86 GB RAM running
openSUSE 12.2 operating system. This represents a typical hardware specification of
a database system used in a production setting. We assume the user and the database
are not trusted and can collude in revealing to the user more data than she is allowed
to access. We created one database to store the data for all cases. We additionally cre-
ated the following three tables. One table with original dataData(src, ts, dst, dur, bs),
one table with original and mac data MACData(src, ts, dst, dur, bs, mac src, mac ts,
mac dst, mac dur,mac bs,mac user) and one table with Bloom filters data for each
user BloomFilter(user, bloom filter, signature). We loaded the original data into
Data table, the data with MACs appended into the MACData table and the Bloom
filters for all users into BloomFilter table. We built indexes on src attribute for Data
and MACData tables, and on user attribute for BloomFilter table.

We built the Lightweight Policy Checker by implementing a Query Parser and a
Policy Verifier in the Python programming language, as illustrated in Figure 2. We stress
that the query parser is not a trusted component, and its corruption will not violate our
security guarantee. The Query Parser takes as input the SQL query statement sent by
the user, Q in Figure 2, and generates query Q’ which additionally queries the data used
in policy verification. The database processes Q’ and Q and returns R’ and R. R’ is the
auxiliary data needed to compute the policy verification and R is the result set of the
initial query. If the policy verifies the result set R is forwarded to the user.

250 P. Giura et al.

Untrusted
User

Q

R

Q, Q'

R, R'

Untrusted
Database

Untrusted
Query Parser

Fig. 2. Lightweight Policy checker

4.4 Experimental Results

We tested the system by running two queries with no policy checking enabled, with
Bloom filter-based policy checking and with aggregate MAC-based policy checking.
The first query (Query 1) retrieves all the durations of the calls for a user. This is a
typical query used to calculate the billing charges for a voice customer. Second query
(Query 2) returns all records for a user. This query is typically used to resolve customer
service inquiries about billing or accidental service charges. Table 2 shows the data
storage requirements for each policy method, and the runtime for Query 1 and Query 2
for no policy checking, policy checking using Bloom filters and using MACs.

Table 2. Experimental results. (R) = size of query result set, (R + ID) = size of query result set
plus the size of record ids, B = byte, MB = megabyte

Data Set 1 (10M records) Data Set 2 (10M records)
No Policy Bloom Filter MAC No Policy Bloom Filter MAC

Data Stored 484 MB 591 MB 598 MB 484 MB 579 MB 598 MB
requirements Transported (R) (R + ID) + 200 B (R + ID) + 2 B (R) (R + ID) + 1.9 MB (R + ID) + 2 B

Query 1 DB Query 5.34 sec 9.9 sec 12.9 sec 5.73 sec 12.3 sec 22.82 sec
runtime Verification 0 sec 0.03 sec 0.04 sec 0 sec 70.1 sec 8.84 sec

Total 5.34 sec 10.02 sec 12.94 sec 5.73 sec 82.4 sec 31.66 sec

Query 2 DB Query 6.59 sec 11.09 sec 14.95 sec 7.3 sec 14.1sec 26.2 sec
runtime Verification 0 sec 0.03 sec 0.04 sec 0 sec 80.9 sec 16.5 sec

Total 6.59 sec 11.12 sec 14.99 sec 7.3 sec 95 sec 42.7 sec

For Data Set 1, when using Bloom filters to store the access policy the storage over-
head is about 107 MB representing that 22% more policy data is needed in addition to
the original data for a total of 591 MB. Using the MAC solution requires about 598 MB
in total, representing 22.5% overhead in addition to the original data. For Data Set 2,
the policy data required for the MAC method has the same size as for Data Set 1, but
the size of the data required to store the user Bloom filters is slightly smaller. This is
the case because there are only 10 users in Data Set 2, thus 499,990 fewer user names
and signatures to store than for Data Set 1.

The data required to be transported, which includes the query result set and the
data needed for policy checking, is always smaller in size for the aggregate MAC-
based method compared to the Bloom filter-based method. That is the case because the
database will always have to send the user Bloom filter to the policy checker in addition
to the results set when using the Bloom filter solution. When using MACs, the database
will send only the aggregated MAC which is of size 16 bits (2 Bytes) in the experimen-
tal implementation. When using the Bloom filter solution the size of the Bloom filter

Efficient Network-Based Enforcement of Data Access Rights 251

sent to the verifier is approximately 200 Bytes for Data Set 1 and 1.9 Megabytes for
Data Set 2.

We report the runtime of the queries for both data sets. We implement the lightweight
policy checker as having two components: a query parser and a policy verifier. The
query parser reads the original user query statement and rewrites into a new query that
includes the original query and an additional query for the policy data that will be sent
to the verifier. The time spent in reading the original query and generating the new
query is negligible and we do not report it in the experiments. We consider the query
runtime the time elapsed from the moment the user issues the query to the database
until she receives the final result. Thus, a query execution time is composed of the time
spent to query the database, DB Query in the Table 2, and the time spent to verify the
access policy for the result set (which includes the time spent to transport the policy
data). The policy verifier accepts as input the results set of the original query and the
policy data needed to perform the policy verification for the user that issued the original
query. For Data Set 1, we observe that the Bloom filter solution achieves better query
runtime than the MAC solution for DB Query for both Query 1 and Query 2. This is
an expected result because the database will spend more time loading the larger table
MACData, that includes the MACs for the attributes, and XORing their values. Both
solutions achieve almost negligible verification time because the result set is small. For
Data Set 2, we observe that the Bloom filter solution allows faster execution of the BD
query, because of loading less data and no need to compute XORing, but is significantly
slower in policy verification, having a total runtime of Query 2 of 95 seconds, more than
double the runtime of MAC solution and more than 10 times the runtime of the original
query. In addition there is a possible significant unaccounted overhead for transmission
of the large Bloom filter over network in cases when that is necessary. This result clearly
shows that in cases when the policy is represented in a Bloom filter for a user with
access to a very large set of records, the checker needs significantly more memory and
data bandwidth. For all experiments the runtime of Query 2 is slightly longer than of
Query 1 because there is more data to be processed for Query 2 both in the DB Query
and the verification phase.

In conclusion, in the cases when many users have granted access to a small set of
records, the Bloom filter implementation yields better performance in terms of query
time and storage overhead. On the other hand, in the case when most users have granted
access to a very large set of elements, the Bloom filter based solution will need much
more time for checking the policy and for sending the data to the checker because of
the large size of the Bloom filter even though less time is spent for the actual query of
the database. Thus, in the case of a lightweight checker that could be implemented in a
portable device, such as a smart phone or tablet, with limited memory and bandwidth,
the MAC solution will perform better if the users have granted access to a very large
number of records.

Acknowledgments. Vladimir Kolesnikov was supported in part by the Intelligence
Advanced Research Project Activity (IARPA) via Department of Interior National Busi-
ness Center (DoI/NBC) contract Number D11PC20194. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and conclusions contained

252 P. Giura et al.

herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC,
or the U.S. Government.

References

1. Bauer, L., Garriss, S., Reiter, M.K.: Detecting and resolving policy misconfigurations in
access-control systems. In: SACMAT, pp. 185–194 (2008)

2. Becker, M.Y., Fournet, C., Gordon, A.D.: Secpal: Design and semantics of a decentralized
authorization language. Journal of Computer Security 18(4), 619–665 (2010)

3. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in message
authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309
(2004), http://eprint.iacr.org/

4. Blaze, M., Feigenbaum, J., Keromytis, A.D.: KeyNote: Trust management for public-key
infrastructures. In: Christianson, B., Crispo, B., Harbison, W.S., Roe, M. (eds.) Security Pro-
tocols 1998. LNCS, vol. 1550, pp. 59–625. Springer, Heidelberg (1999)

5. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy, 1996, pp. 164–173. IEEE (1996)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13,
422–426 (1970)

7. Boyd, S.W., Keromytis, A.D.: SQLrand: Preventing SQL injection attacks. In: Jakobsson,
M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–302. Springer, Heidel-
berg (2004)

8. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable
searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg
(2013)

9. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: Im-
proved definitions and efficient constructions. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S., (eds.) ACM CCS 2006, October/November, pp. 79–88. ACM Press (2006)

10. Giani, A., Berk, V.H., Cybenko, G.V.: Data exfiltration and covert channels. In: Sensors, and
Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland
Security and Homeland Defense (2006)

11. Halfond, W.G., Viegas, J., Orso, A.: A classification of sql-injection attacks and countermea-
sures. In: Proceedings of the IEEE International Symposium on Secure Software Engineer-
ing, pp. 65–81. IEEE (2006)

12. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner, M.: Outsourced symmetric pri-
vate information retrieval. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013,
pp. 875–888. ACM Press (November 2013)

13. Jim, T.: Sd3: A trust management system with certified evaluation. In: Proceedings of the
2001 IEEE Symposium on Security and Privacy, S&P 2001, pp. 106–115. IEEE (2001)

14. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T. (ed.) CT-RSA
2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008)

15. Kolesnikov, V.: MAC aggregation with message multiplicity. In: Visconti, I., De Prisco, R.
(eds.) SCN 2012. LNCS, vol. 7485, pp. 445–460. Springer, Heidelberg (2012)

16. Li, N., Mitchell, J.C.: Rt: A role-based trust-management framework. In: Proceedings of
DARPA Information Survivability Conference and Exposition 2003, vol. 1, pp. 201–212.
IEEE (2003)

http://eprint.iacr.org/

Efficient Network-Based Enforcement of Data Access Rights 253

17. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy 2002, pp. 114–
130. IEEE (2002)

18. Liu, Y., Corbett, C., Chiang, K., Archibald, R., Mukherjee, B., Ghosal, D.: Sidd: A frame-
work for detecting sensitive data exfiltration by an insider attack. In: 42nd Hawaii Interna-
tional Conference on System Sciences, HICSS 2009, pp. 1–10. IEEE (2009)

19. Rivest, R.L., Lampson, B.: SDSI – a simple distributed security infrastructure. In: Crypto
(1996)

20. Zander, S., Armitage, G., Branch, P.: A survey of covert channels and countermeasures in
computer network protocols. IEEE Communications Surveys & Tutorials 9(3), 44–57 (2007)

A Aggregate MAC

An important notion of aggregate MACs was introduced by Katz and Lindell [14].
Later, Kolesnikov [15] strengthened the definition to allow aggregation of duplicate
messages, which we include for reference below.

Definition 3. (Aggregate MAC with Message Multiplicity.) An aggregate message au-
thentication code is a tuple of probabilistic polynomial-time algorithms (MAC, Agg,
Vrfy) such that:

– Authentication algorithm MAC: upon input a key k ∈ {0, 1}n and a message m ∈
{0, 1}∗, algorithm MAC outputs a tag τ .

– Aggregation algorithm Agg: upon input two sets of message/identifier pairs M1 =
{(m1

1, id
1
1), ..., (m

1
i1
, id1i1)},M2 = {(m2

1, id
2
1), ..., (m

2
i2
, id2i2)}, and associated

tags τ1, τ2, algorithm Agg outputs a new tag τ . We stress that Agg is unkeyed.
– Verification algorithm Vrfy: upon receiving a set of key/identifier pairs
{(k1, id1), ..., (kt, idt)}, a set (possibly with multiplicity) of message/identifier
pairs M = {(m1, id

′
1), ..., (mi, id

′
i)}, and a tag τ , algorithm Vrfy outputs a single

bit, with ‘1’ denoting acceptance and ‘0’ denoting rejection. We denote this proce-
dure by Vrfy(k1,id1),...,(kn,idt)(M, τ). (In normal usage, id′i ∈ {id1, ..., idt} for all
i.)

The following correctness conditions are required to hold:

– For all k, id,m ∈ {0, 1}∗, it holds that Vrfyk,id(m,MACk(m)) = 1. (This is es-
sentially the correctness condition for standard MACs.)

– (Aggregation of MAC tags enables correct verification.) Let M1,M2 be two sets
of message/identifier pairs (possibly with element multiplicity and further possibly
with M1 ∩M2 �= ∅), and let M =M1 ∪M2, with element multiplicity. If:
1. Vrfy(k1,id1),...,(kt,idt)(M

1, τ1) = 1, and
2. Vrfy(k1,id1),...,(kt,idt)(M

2, τ2) = 1, then
Vrfy(k1,id1),...,(kn,idn)(M,Agg(M1,M2, τ1, τ2)) = 1.

We now present the security part of the definition.

Definition 4. (Security properties of Aggregate MAC with Message Multiplicity.) LetA
be a non-uniform probabilistic polynomial-time adversary, and consider the following
experiment involvingA and parameterized by a security parameter n:

254 P. Giura et al.

– Key generation: Keys k1, ..., kt ∈ {0, 1}n, for t = poly(n), are generated.
– Attack phase: A may query the following oracles:

• Message authentication oracle Mac: On input (i,m), the oracle returns
MACki(m).

• Corruption oracle Corrupt: upon input i, the oracle returns ki.

– Output: The adversary A outputs a set of message/identifier pairs
M = {(m1, id1), ..., (mi, idi)} (possibly with multiplicity) and a tag τ .

– Success determination: We say A succeeds if (1) Vrfyk1,...,kt
(M, τ) = 1 and (2)

there exists a pair (mi∗, idi∗) ∈M such that
1. A never queried Corrupt(idi∗), and
2. A never queried Mac(idi∗,mi∗).

We say that the aggregate MAC scheme (MAC, Agg, Vrfy) is secure if for all t =
poly(n) and all non-uniform probabilistic polynomial-time adversaries A, the proba-
bility that A succeeds in the above experiment is negligible.

EyeDecrypt —
Private Interactions in Plain Sight

Andrea G. Forte1, Juan A. Garay2,�, Trevor Jim1, and Yevgeniy Vahlis3,�

1 AT&T Labs, New York, NY USA
{forte,trevor}@att.com

2 Yahoo Labs, Sunnyvale, CA USA
garay@yahoo-inc.com
3 Byonim, Toronto, Canada
evahlis@gmail.com

Abstract. We introduce EyeDecrypt, a novel technology for privacy-preserving
human-computer interaction. EyeDecrypt allows only authorized users to deci-
pher data shown on a display, such as an electronic screen or plain printed mate-
rial; in the former case, the authorized user can then interact with the system (e.g.,
by pressing buttons on the screen), without revealing the details of the interaction
to others who may be watching or to the system itself.

The user views the decrypted data on a closely-held personal device, such as
a pair of smart glasses with a camera and heads-up display, or a smartphone. The
data is displayed as an image overlay on the personal device, which we assume
cannot be viewed by the adversary. The overlay is a form of augmented reality
that not only allows the user to view the protected data, but also to securely enter
input into the system by randomizing the input interface.

EyeDecrypt consists of three main components: a visualizable encryption
scheme; a dataglyph-based visual encoding scheme for the ciphertexts generated
by the encryption scheme; and a randomized input and augmented reality scheme
that protects user inputs without harming usability. We describe all aspects of
EyeDecrypt, from security definitions, constructions and analysis, to implemen-
tation details of a prototype developed on a smartphone.

1 Introduction

Nowadays personal and sensitive information can be accessed at any time, anywhere,
thanks to the widespread adoption of smartphones and other wireless technologies such
as LTE and IEEE 802.11 (i.e., WiFi). This always-connected paradigm, however, comes
at the expense of reduced privacy. Users access sensitive information on the train, on
the subway and in coffee shops, and use public computers in airports, libraries and
other Internet access points. Sensitive information is at the mercy of anyone in the
user’s proximity and of any piece of malware running on trusted and untrusted de-
vices such as a personal laptop or a computer in a library. This applies not just to the
content displayed on a monitor but also to the interaction users have with the system
(e.g., typing a password or a social security number). Someone looking at the keyboard

� Work done while at AT&T Labs.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 255–276, 2014.
c© Springer International Publishing Switzerland 2014

256 A.G. Forte et al.

as one types in a password is as bad as showing the password in clear text on a login
page.

We introduce EyeDecrypt, a technology aimed at protecting content displayed to the
user as well as interactions the user has with the system (e.g., by typing). In particular,
we do not trust the user’s environment (e.g., “shoulder surfing”), nor do we trust the
device the user interacts with as it may have been compromised (e.g., keyloggers).

In EyeDecrypt, the content provider encrypts and authenticates content and sends
it to the device the user requested the content from (e.g., laptop, cellphone, ATM).
Because the content arrives already encrypted to this untrusted device, any piece of
malware running on it would not be able to learn anything meaningful about the content
being displayed to the user; the user is then able to retrieve the content through her
personal device (running the EyeDecrypt app). Similarly, the user interacts with the
untrusted device using EyeDecrypt so that only the remote content provider learns the
actual inputs provided by the user during the interaction (e.g., password or PIN code).
A piece of malware such as a keylogger running on the untrusted device would not
be able to learn what the user has typed. Figure 1 presents a basic system overview;
the “untrusted device” (which we sometimes will just call the “display”) represents the
device the user requests content from and interacts with.

Let us now provide some intuition on how EyeDecrypt works at a high level. If we
print a document with extremely small fonts, this will appear as a collection of dots
with no meaning. If, however, we take a very powerful magnifying lens, we will be able
to read the part of the document right underneath the lens; further, by moving the lens
around, we will be able to read the whole document. Anyone without the magnifying
lens (i.e., a shoulder-surfer) will see just dots. EyeDecrypt provides a similar experience.

In EyeDecrypt content is encrypted and visually encoded so that it appears as some
pattern of dots, lines or other shape to anyone looking at it. In order to be able to decrypt
such document or parts of it, users will have to use the EyeDecrypt app on their personal
device (e.g., smartphone, Google Glass). Such app enables users to use the camera
on their personal device as the “magnifying lens” described earlier. By leveraging the
smartphone camera, for example, the EyeDecrypt app captures a part of the encrypted
content, decrypts it and overlays the decrypted content on top of the camera view on the
personal device—a form of augmented reality. By moving the smartphone around over
the document, users will capture, decrypt and display different parts of the document.
One key difference with the magnifying lens example is that the EyeDecrypt app will
be able to decrypt a document only if it has the correct cryptographic keys for that
document or that content provider. Just the EyeDecrypt app by itself is not enough to
decrypt content.

Importantly, EyeDecrypt also protects users’ interactions with the system. For ex-
ample, in the case of a keyboard, a randomized keyboard layout can be encrypted and
displayed to the user together with other encrypted content. The EyeDecrypt app will
decrypt all content including this randomized keyboard layout and will superimpose
such layout on the camera view as an overlay on the actual physical keyboard (i.e.,
using augmented reality). In doing so, there is now a random mapping between keys
of the physical keyboard and keys of the randomized layout that the user can see. Any
onlooker would see the user pressing, say, the ‘A’ key on the physical keyboard without

EyeDecrypt — Private Interactions in Plain Sight 257

Fig. 1. System view Fig. 2. Prototype view

knowing to which value it would actually map to in the randomized layout. In partic-
ular, the random mapping between physical keyboard and virtual keyboard would be
known only to the user, the EyeDecrypt app and to the remote server that encrypted the
content (see Figure 1).

The untrusted device on which the encrypted document is displayed would not be
aware of such mapping. Because of this, even a keylogger running on the untrusted
device the user is interacting with, would not be able to learn the actual key values
inputted by the user.

As mentioned above, EyeDecrypt aims at protecting against attacks on content dis-
played to the user as well as on information sent by the user (e.g., by typing). Such
attacks may be due to shoulder surfing as well as to malware. While EyeDecrypt can
leverage any device equipped with a camera, the type of device is important as differ-
ent types of devices make EyeDecrypt more or less effective depending on the threat
scenario. Let us look at a few settings.

In the most general case of shoulder surfing, the attacker can be anywhere in the
victim’s surroundings. In such a case, displaying decrypted content on a device such
as a smartphone does not completely remove the possibility of someone being able to
glance at the smaller screen of the phone even though the smaller screen of the phone
does make it harder. A better solution in this scenario would be to use EyeDecrypt with
a device such as Google Glass where the screen is very small and close to the eyes of
the user making a shoulder-surfing attack much harder.

In a different type of shoulder surfing attack, the attacker has installed a small fixed
hidden camera in close proximity of an ATM keypad so as to film the hands of users
as they enter their PIN code. In such a scenario, a solution based on using EyeDecrypt
with a smartphone would be perfectly fine as the hidden camera would not be able to
capture the screen of the smartphone1. Similarly, using EyeDecrypt with a smartphone
would be perfectly suitable to protect against an attack involving malware such as a
keylogger.

When thinking about a shoulder-surfing attack it is natural to ask, “Why not just
display content in a head-mounted display without any encryption?” The answer is
that this would prevent shoulder surfing, but it assumes that the device that the head-
mounted display is plugged into can be trusted. It does not help in the more difficult
case of a modified ATM or compromised public terminal.

1 Naturally, we assume the user to be security conscious so as not to position the phone too close
to the ATM keypad.

258 A.G. Forte et al.

Another idea is to encrypt content at the server, send it to the untrusted device, and
have the untrusted device forward it to the user’s trusted personal device via wireless
transmission, instead of using EyeDecrypt’s visual channel. This is definitely a viable
solution and has its advantages, such as higher bandwidth. However, it has two signifi-
cant downsides.

First, both the personal device and the untrusted device need to be equipped with
the same wireless technology. It would not work, for example, with existing ATMs,
which do not employ Bluetooth or WiFi. In contrast, EyeDecrypt works on any personal
device equipped with a camera, and it makes no assumptions about the connectivity of
the untrusted device; EyeDecrypt can work with existing ATMs, without requiring a
hardware upgrade.

Fig. 3. EyeDecrypt overview

Second, wireless communication requires secure pairing. As in the ATM case, it
may be that the user has never interacted with the public device before. Pairing is re-
quired to be sure that the personal device is communicating with the intended public
device, and not some other device in the vicinity. Secure pairing by itself is a hard prob-
lem and one of the devices being untrusted (i.e., possibly misbehaving) makes it much
harder. EyeDecrypt does not require pairing—the user knows where she is pointing
her camera—making the whole process much more secure and user-friendly. Notably,
most of the secure pairing solutions that have been proposed involve use of the visual
channel, for exactly this reason. In other words, use of the wireless channel in these sce-
narios already requires some mechanism like EyeDecrypt. We discuss secure pairing in
Section 6.

Lastly, EyeDecrypt also works with printed content such as passports, bank state-
ments, medical records and any other type of sensitive material. If the human eye can
see it, EyeDecrypt can protect it.

EyeDecrypt consists of three main components: an encryption mechanism which we
term visualizable encryption; a suitable visual data encoding scheme; and a combi-
nation of augmented reality and randomization for secure input. Figure 3 shows how
content is encrypted and then visually encoded.

Visualizable encryption is distinct from ordinary encryption in that information is
captured incrementally, frame-by-frame, and even block-by-block within a frame, in
a pan-and-zoom fashion. In addition, our notion of security refers to the security of
the “EyeDecrypt activity” and not just to the security of the encryption scheme. As

EyeDecrypt — Private Interactions in Plain Sight 259

such, it must also take into account what the adversary is able to observe—not only
ciphertext, but also the user’s interaction (e.g., gesticulation) with the system. Thus,
formally defining the security of these new applications is important, in particular since
our security notion does not directly reduce to an encryption scheme’s, and can become
the basis for the development of such technologies in the future. As important is the fact
that our new notion and scheme are achievable (resp., realizable) using (the practical
instantiations) of basic cryptographic tools, such as a pseudorandom function generator
(PRFG), a collision resistant hash function and an existentially unforgeable message
authentication code (MAC) (cf. Section 3).

EyeDecrypt is symmetric key-based, and the cryptographic keys needed for decryp-
tion and authentication are provisioned and directly shared between the remote content
provider and the EyeDecrypt app running on the user’s personal device. In particular,
the untrusted device does not have access to the keys. In the ATM scenario, for exam-
ple, the keys would be shared between the bank’s server, which would act as the remote
content provider, and the EyeDecrypt app running on the user’s personal device. The
ATM, being untrusted, would not have access to the keys. Thus, the key provisioning
phase is the only time at which EyeDecrypt requires network connectivity in order for
the EyeDecrypt app to communicate privately with the remote content provider. For ev-
erything else, EyeDecrypt does not require it, making it suitable for very high-security
environments where network connectivity may not be permitted.

EyeDecrypt can use any type of visual encoding (e.g., QR codes [13], Data Matri-
ces [12], Dataglyphs [29]) as long as it satisfies some basic properties (see Section 3.3).
In our proof of concept we opted for Dataglyphs as this particular encoding has very
little structure such as no visual landmarks and no fixed block size. This gives us the
flexibility of being able to change parameters of the underlying Visualizable Encryption
scheme (e.g., cipher-block size) without affecting its visual encoding representation. In
particular, we have developed a new dataglyph-based visual encoding scheme that can
be decoded progressively, by zooming or moving the camera close to one part of the
encoding, and panning to decode other parts. Due to our use of augmented reality this
feels quite natural. At the same time, the security of panning becomes one of the central
challenges in the design of a visualizable encryption scheme compatible with our visual
encoding. In Section 3.3 we discuss how EyeDecrypt allows for the use of other visual
data encodings such as QR codes.

Due to space constraints, some complementary material can be found in the full
version of the paper [9].

2 Model and Definitions

In this section we present the basic model where we envision EyeDecrypt operating, as
well as formal definitions of the different components needed for our constructions.

In its basic form, EyeDecrypt operates in a setting with three components, or
“parties:” a user personal device U running the EyeDecrypt app, a server S, an a
(polynomial-time) adversary Adv, controlling both the device where the information is
displayed and/or entered (the “untrusted device” in Figure 1) and the shoulder-surfer(s)
surrounding the user. The user device U can be any device that can capture an image,

260 A.G. Forte et al.

process it, and display the result to the human user. We envision the server encrypting
and transmitting data to the user by visual means (e.g., rendering a visual encoding of
the [encrypted] data on a computer screen), and the user receiving a (possibly noisy)
version of that data. In turn, the user can transmit data back to the server by means of
pressing buttons, active areas on a touch screen, etc., of the untrusted device. We expect
the user and the server to engage in an interaction where the information transmitted
at each “round” is dependent on all prior communication, as well as possibly other
external factors.

In this paper we treat both passive and active adversaries threatening the security
of the system. A passive adversary observes the visual channel as well as other avail-
able channels of information such as the user’s body language, the buttons that she
presses, the areas of the touch screen that she activates, the information that is trans-
mitted through the untrusted device, etc. (This type of adversary is also called honest-
but-curious in the literature.) An active adversary, on the other hand, can in addition
manipulate the communication between the server and the untrusted device, mount
man-in-the-middle attacks, etc. This could occur, for example, if the user is interacting
with a terminal infected by malware that is displaying information that is transmitted
by a remote trusted server. We assume, however, that the “shoulder-surfer” component
of such an adversary remains passive.

Data transmitted from S to U are partitioned into frames, and each frame is parti-
tioned into blocks. The frames represent the change of the content over time, and blocks
partition the frame into logical units. The choice of what constitutes a block depends
on the parameters of the system. For example, a block could be a rectangular area in an
image, or a group of characters in a text document.

2.1 Security of EyeDecrypt

The security of EyeDecrypt is defined in a setting wherein the server can receive input
from the user through the entry device or from another source such as a local hard drive
or the Internet. A screen in the (untrusted) device is used to display information about
the inputs received so far, such as outputs of a visual encoding function of the encrypted
input (see below). The entry device allows the user to select values from a fixed alphabet
Σ, whereas information received from other sources is viewed as arbitrary strings.

Formally, a (stateful) EyeDecrypt scheme is a triple of PPT (probabilistic polynomial-
time) algorithms (EyeDecInit,EyeDecEntry,EyeDecRead) where EyeDecInit : N →
S × KED takes as input a security parameter and outputs an initial state S0 for the
EyeDecrypt server, and a long term key for the user viewing device; here, KED is the
space of possible keys. EyeDecEntry : S × Σ × {0, 1}∗ → S where S is the set of
possible states of the scheme, and EyeDecRead : KED × {0, 1}∗ → {0, 1}∗ runs on
the user device and outputs the information that is shown to the user. The expression
EyeDecEntry(S, x,m) should be interpreted as the system receiving input x through
the entry device, and receiving inputm from another source.

For example, when considering a secure PIN entry application, Σ = {0, . . . , 9} (as
well as some other symbols such as ‘#’, ‘Cancel’, etc., omitted here for simplicity), and
corresponding to the buttons on the keypad. In our solution for the PIN entry application

EyeDecrypt — Private Interactions in Plain Sight 261

(see Section 3.2), S will consist of the keys of the visualizable encryption scheme, and
the contents displayed on the screen

We define the security of an EyeDecrypt scheme in terms of the information that is
“leaked” to the adversary, which may vary depending on the particular real-world ap-
plication that is being modeled. Specifically, the definition of security of an EyeDecrypt
scheme against passive adversaries is parameterized by a function Leak : S → {0, 1}∗
that specifies the information that is given to the adversary after each input. Looking
ahead to our construction for the PIN entry case, Leak will reveal the current encrypted
image displayed on the screen, as well as the number on the button that was most re-
cently pressed by the user, but not the keys of the underlying visualizable encryption
scheme. Active adversaries, as mentioned above, can in addition “tamper” with the in-
formation being transmitted (displayed as well as entered), adaptively and as a function
of the current state and of what they observe. Thus, the definition of security of EyeDe-
crypt in this case is parameterized by a class of “tamper-leakage” functions of the form
S × {0, 1}∗ → S × {0, 1}∗. Intuitively, these functions express in addition the ways in
which the adversary is allowed to alter the information (modify the state), when com-
municated both to the user and to the server. Formally, the security of an EyeDecrypt
scheme against passive and active adversaries is defined via the experiments shown in
Figure 4.

Note that calls to the corresponding oracle byAdv are slightly different in each exper-
iment, as in the case of active attacks the adversary is able to choose the tamper-leakage
functions (TLpre,TLpost) on the fly. Also, the design choice of having two functions in
the active-attack case, as opposed to encoding all the tampering actions and leakage
into just one, is to avoid having to specify another function for the initial leakage.

Definition 1 (Passive Attacks). Let EyeDec = (EyeDecInit,EyeDecEntry,
EyeDecRead) be an EyeDecrypt scheme, and Leak : S → {0, 1}∗. Then, EyeDec is
a Leak-secure EyeDecrypt scheme if for all PPT adversaries Adv, and all n ∈ N,

Pr[ExpEyeDec(1n,Adv,EyeDec) = 1] ≤ 1

2
− neg(n).

Definition 2 (Active Attacks). LetEyeDec=(EyeDecInit,EyeDecEntry,EyeDecRead)
be an EyeDecrypt scheme, andT L be a class of tamper-leakage functions. Then,EyeDec
is T L-secure against active adversaries if for all PPT adversaries Adv, and all n ∈ N,

Pr[ExpEyeDecNM(1n,Adv,EyeDec) = 1] ≤ 1

2
− neg(n),

as long as Adv only queries the TamperLeakST oracle on inputs (x,m,TLpre,TLpost),
where TLpre,TLpost ∈ T L.

Note that the algorithm EyeDecRead does not play a role in the above definitions. This
is because it is only used to specify the functionality of the scheme that is available to
the legitimate user U (i.e., the unencrypted content from the screen). Its role is in fact
similar to the role of the decryption algorithm in encryption schemes.

262 A.G. Forte et al.

ExpEyeDec(1n,Adv,EyeDec) :

S0 ←R EyeDecInit(1n)
((x0,m0), (x1,m1), st) ← AdvLeakST(1n, Leak(S0))
where (x0,m0) �= (x1,m1)
b ←R {0, 1}; λ ← LeakST(xb,mb)

b′ ← AdvLeakST(1n, λ)
Output 1 if and only if b = b′

LeakST(x,m) is stateful, and works as follows:
Initially S ← S0

Given (x,m) ∈ Σ × {0, 1}∗ do:
S ← EyeDecEntry(S, x,m)

Output Leak(S)

ExpEyeDecNM(1n,Adv,EyeDec) :

S0 ←R EyeDecInit(1n)
((x0,m0), (x1,m1),TL

∗
pre,TL

∗
post, st) ← AdvTamperLeakST(1n)

where (x0,m0) �= (x1,m1)
b ←R {0, 1}; (λpre, λpost) ← TamperLeakST(xb,mb,TL

∗
pre,TL

∗
post)

b′ ← AdvTamperLeakST(1n, λpre, λpost)
Output 1 if and only if b = b′

TamperLeakST(x,m,TLpre,TLpost) is stateful, and works as follows:
Initially S ← S0, C∗ ← ⊥
Given (x,m) ∈ Σ × {0, 1}∗ do:

S′, λpre ← TLpre(S,C
∗)

S′′ ← EyeDecEntry(S′, x,m)
If challenge query, set:
C∗ ← v′′ (from S′′)

S, λpost ← TLpost(S
′′, C∗)

Output (λpre, λpost)

Fig. 4. EyeDecrypt security game definitions for both passive and active adversaries

2.2 Defining the Building Blocks

The basic components in an EyeDecrypt application specify suitable ways for the in-
formation to be displayed in the rendering device and captured by the user, as well
as a method for encrypting the plaintext content. We elaborate on such visual encoding
schemes along with some desirable properties at the end of the section. First, we present
a definition of visualizable encryption—a key component in our solution.

Visualizable Encryption. A private-key visualizable encryption scheme consists of a
triple of PPT algorithms 〈KeyGen,Enc,Dec〉, where KeyGen takes as input a security
parameter n ∈ N, and outputs a key; Enc takes as input a keyK , a frame index f , block
number i, and a plaintext m, and outputs a ciphertext; and Dec takes as input a key K ,
a frame index f , block number i, and a ciphertext, and outputs a plaintext.

EyeDecrypt — Private Interactions in Plain Sight 263

ExpVisIND-ATK(1n,Adv,VisEnc) :

K ←R KeyGen(1n);
(f∗, i∗,m0,m1, st) ← AdvEncATKK(·,·,·),DecATKK(·)(1n)
b ←R {0, 1}; C∗ ←R EncK(f∗, i∗,mb)

b′ ← AdvEncATKK(·,·,·),D̂ecATKK (·)(1n)
Let viewAdv be the view of the adversary.
Output 1 if and only if b′ = b and Check(view) = 1.

Enc{CPA,CCA}K(f, i,m)
def
= EncK(f, i,m)

DecCPAK(C)
def
= ⊥

DecCCAK(C)
def
= DecK(C)

D̂ecCCAK(C)
def
= DecK(C) if C �= C∗

⊥ if C = C∗

Check(view):
Let (f�, i�,m�)1≤�≤q be the queries
made to EncATK. Output 1 if and
only if for all 	, 	′, if f� = f�′ and
i� = i�′ , then m� = m�′ .

Fig. 5. Security game definition for visualizable encryption

Definition 3. Let VisEnc = 〈KeyGen,Enc,Dec〉. Then, VisEnc is a ATK-secure vi-
sualizable encryption scheme, where ATK ∈ {CPA,CCA}, if for all PPT adversaries
Adv, all n ∈ N,

Pr[ExpVisIND-ATK(1n,Adv,VisEnc) = 1] ≤ 1

2
− neg(n),

where ExpVisIND-ATK(·, ·, ·) is the experiment presented in Figure 5.

In our proofs in Section 3 we require a slightly different security property from the
encryption scheme, where the adversary can receive an encryption of a sequence of
blocks as a challenge instead of a single block. Namely, the adversary outputs four
vectors f∗, i∗,m0,m1, where m0 �= m1 and receives back a vector C∗ of ciphertexts
of the elements of mb with frame and block numbers at the matching positions in
f∗ and i∗, respectively. Let us call this notion of security ATK-security for multiple
messages. The following claim can be shown to be true by a standard hybrid argument:

Claim. Let E be an ATK-secure visualizable encryption scheme. Then, E is also ATK-
secure for multiple messages with a 1

ν loss in security, where ν is the number of mes-
sages encrypted in the challenge.

We now provide some intuition regarding the applicability of our definition to the
EyeDecrypt setting. Recall that a main motivation for our work is to prevent “shoulder-
surfing” attacks. In such a scenario, an attacker is covertly observing the content of a
(supposedly) private screen or paper document; in addition, the attacker may be able to
observe the activities (gesticulation, movements, etc.) of the legitimate content’s owner,
and infer information. For example, by measuring how long the user spends looking
at a given (encrypted) document, or the sequence of buttons that the user presses, the
attacker may learn a lot about the content of the document. Our definition accounts for

264 A.G. Forte et al.

such a scenario similarly to the way that semantic security of encryption [10] accounts
for partial knowledge of the plaintext by the adversary: by allowing the adversary in the
security experiment to specify all the content but a single block in a single frame, we
capture any external knowledge that the adversary may have about the plaintext.

Visual Encoding. Let d1, d2, t1, t2 ∈ N (see below for an explanation of these param-
eters), and P be a finite set representing possible values that can be assigned to a pixel
(e.g., RGB values2). A visual encoding scheme is a pair of functions (Encode,Decode)
such that Encode : ({0, 1}n)d1×d2 → Pt1×t2 , and Decode ≡ Encode−1.
d1 × d2 is the size of the (ciphertext) input matrix, measured in number of blocks;

the size of a block is n bits. t1 × t2 is the size (resolution) of the output (image); e.g.,
640 × 480 pixels. One basic but useful property of a visual encoding scheme is that it
preserves the relative positioning of elements (in our case, blocks) in the source object.
The following definition makes that explicit.

Definition 4. A visual encoding scheme is said to satisfy relative positioning if the fol-
lowing conditions hold:
1. Decode maps P≤t1×≤t2 to ({0, 1}n)≤d1×≤d2;

2. for all X ∈ ({0, 1}n)d1×d2 , r1 and r2 such that 1 ≤ r1 < r2 ≤ d1, and c1
and c2 such that 1 ≤ c1 < c2 ≤ d2, if Y ← Encode(X) and (r′1, r

′
2, c

′
1, c

′
2) =

(r1 · t1d1
. . . r2 · t1d1

, c1 · t2d2
. . . c2 · t2d2

), thenXr1...r2,c1...c2 ← Decode(Yr′1...r′2,c′1...c′2).

3 Constructions

We start off this section with a CCA-secure construction for visualizable encryption
using basic cryptographic tools, followed by an EyeDecrypt scheme with two flavors
(secure against passive and active attacks, respectively), which are based on it. The
section concludes with the dataglyphs-based visual enconding construction.

3.1 The Visualizable Encryption Scheme

Our construction of a visualizable encryption scheme uses a pseudorandom function
generator (PRFG), a strongly collision resistant hash function family, and an existen-
tially unforgeable message authentication code (MAC).

Construction 1. Let F be a PRFG with key space KPRF, H be a family of hash func-
tions, and MAC an existentially unforgeable MAC with key space KMAC. Then we con-
struct a visualizable encryption scheme E = 〈KeyGen,Enc,Dec〉 as follows:

KeyGen(1n): Generate KPRF ∈R KPRF; KMAC ∈R KMAC; H ∈R H; and output
K = (KPRF,KMAC, H).
EncK(f, i,M): Compute C0 ← FKPRF

(H(f, i)) ⊕M ; τ ← MACKMAC
(C0); and

output C = (C0, τ, i, f).

2 The RGB color model is an additive color model in which red, green, and blue light are added
together in various ways to reproduce a broad array of colors. The name of the model comes
from the initials of the three additive primary colors.

EyeDecrypt — Private Interactions in Plain Sight 265

DecK(C): Interpret C as a tuple (C0, τ, i, f), and compute τ ′ ← MACKMAC
(C0).

If τ ′ �= τ , output⊥. Otherwise, compute and output M ← C0 ⊕ FKPRF
(H(f, i)).

Theorem 1. The visualizable encryption scheme E in Construction 1 is CCA-secure
according to Def. 3.

Proof sketch. The proof follows by describing a sequence of hybrid arguments from
the security definitions of F , H, and MAC. We next sketch the sequence of games that
gives us the proof.

Game 0: This is the original ExpVisIND-ATK experiment.
Game 1: Game 1 proceeds identically to Game 0, except that Check(view) is mod-
ified as follows.
Check(view)

′: Proceed as in Check(view), but output 1 if and only if for all �, �′, if
H(f�, i�) = H(f�′ , i�′) then m� = m�′ . Game 1 and Game 0 will proceed identi-
cally, unless the adversary finds a strong collision in H .
Game 2: Game 2 proceeds as Game 1, except that FKPRF

is replaced by a random
function R with the same range and domain. The fact that Game 2 and Game 1
proceed identically (except with negligible probability) follows from the pseudo-
randomness of F .
Game 3: Game 3 proceeds as Game 2, except that we further modify Check(view)
to output 0 if the adversary has queried the decryption oracle on two ciphertexts
C = (f, i, C0, τ) and C′ = (f, i, C′

0, τ
′) where (C0, τ) �= (C′

0, τ
′), and both

queries resulted in non-⊥.
This concludes the proof. �

3.2 An EyeDecrypt Scheme

We construct an EyeDecrypt scheme(s) based on our visualizable encryption scheme
E , and the dataglyphs-based visual encoding scheme described in Section 3.3, which
for now can be thought of as satisfying Definition 4; let V = (Encode,Decode) denote
that scheme. Our construction is parameterized by a function g which specifies how
an application converts inputs to a new visual frame. Here g(x,m, frame, π) outputs
a sequence of blocks frame′ = (t1, . . . , tn) comprising the content of the new frame
given the input from the user, an input from another source (such as a harddrive or the
Internet), and the previous frame. The input π to g is a permutation over alphabet Σ,
and its meaning will become clear in the discussion that follows the construction. In
order to use the EyeDecrypt scheme for a particular application, one only has to plug in
an appropriate g into the construction below.

Construction 2. The generic EyeDecrypt scheme secure against passive attacks works
as follows:

EyeDecInit(1n): Run KeyGen(1n) to obtain a key K , and generate a random per-
mutation π over Σ. Output S0 = (K,π,⊥,⊥, 0) and K . The two ⊥ values in the
tuple corresponds to the current cleartext and ciphertext frames, which are initially
empty, and 0 is the initial frame number.

266 A.G. Forte et al.

EyeDecEntry(S, x,m): Parse S as (K,π, frame, v, j). Generate a random permu-
tation π′ over Σ, and compute (t1, . . . , tn)← g(π(x),m, frame, π′), set frame′ =
(t1, . . . , tn), and compute ci ← EncK(j, i, ti) and v′ ← Encode(c1, . . . , cn).
Lastly, set S = (K,π′, frame′, v′, j + 1).
EyeDecRead(K, v): Compute (c1, . . . , cn)← Decode(v) and ti ← DecK(ci), for
1 ≤ i ≤ n. Output (t1, . . . , tn).

The intuition behind the construction is to encrypt content as it is displayed, and to
randomly permute the meaning of the possible inputs that can be received from the user
input device. In the PIN entry application, for example, we envision a touchscreen in
the entry device where the nine digits are randomly re-ordered each time the user enters
a PIN digit; see Fig. 9b. Alternatively, the device may have a keypad with unlabeled
buttons, and a random mapping of buttons to digits will be displayed to the user in
encrypted form.

Theorem 2. Let Leak(S) = v. Then, the EyeDecrypt scheme given in Construction 2
is Leak-secure according to Definition 1 if E is a CPA-secure visualizable encryption
scheme.

Proof sketch. We prove the theorem by reducing the security of the EyeDecrypt scheme
to the security of E . Let Adv be an adversary that breaks Leak-security of EyeDecrypt.
Then, we constructAdv′ that breaks the CPA-security for multiple messages of E . Then,
by Claim 2.2, we obtain the security of EyeDecrypt.

Our adversary Adv′ works as follows. Initially, Adv′ simulates EyeDecInit(1n) ex-
cept that no encryption key is generated. Adv′ then simulates Adv. To answer a query
(x,m) to the LeakST oracle, Adv′ works as follows. Adv′ computes (t1, . . . , tn) ←
g(π(x),m, frame, π′), and obtains ci = EncK(j, i, ti) for 1 ≤ i ≤ n by querying its
EncCPA oracle. All other steps are identical to EyeDecEntry. Adv′ then computes and
returns v′ ← Encode(c1, . . . , cn) to Adv.

WhenAdv submits the challenge tuple (x0,m0), (x1,m1), Adv
′ computes frameb ←

g(π(xb),mb, frame, π′) for b ∈ {0, 1}. If frame0 = frame1, then Adv′ gives up, and
outputs a random bit. Otherwise, Adv′ submits (frame0, frame1) as its challenge in
the ExpVisIND-CPA experiment. Given a vector of ciphertexts (c∗1, . . . , c

∗
n), Adv

′ con-
structs the challenge ciphertext as above, and returns the encoded version to Adv. The
simulation is concluded naturally.

Given the above construction, Adv′ simulates Adv perfectly in the ExpEyeDec ex-
periment, except when frame0 = frame1. However, in this case, Adv obtains no infor-
mation about b in the challenge. Therefore, Adv′ wins with the same advantage as Adv.

��

Turning to active attacks, simply substituting a CCA-secure encryption scheme for the
CPA-secure one in Construction 2 is not enough to achieve non-malleability of the
EyeDecrypt scheme against an interesting class of tamper-leak functions. In addition,
we must perform checks on the viewing device to see if block positions have been
modified.

Construction 3. The generic EyeDecrypt scheme secure against active attacks works as
follows: EyeDecInit(1n) and EyeDecEntry(S, x,m) are identical to Construction 2’s,

EyeDecrypt — Private Interactions in Plain Sight 267

except that the encryption scheme (KeyGen,Enc,Dec) must be CCA-secure according
to Definition 3. The viewing function is defined as follows:

EyeDecRead(K, v): Compute (c1, . . . , cn) ← Decode(v), parse each ci as (Ci
0,

τi, i
′, j′) and compute ti ← DecK(ci) for 1 ≤ i ≤ n. Let j be the current frame

number. If i′ �= i or j′ �= j or ti = ⊥, return ⊥; otherwise, output (t1, . . . , tn).

Note that the above construction requires the device to keep track of the current frame
number, but this is an implementation issue. We now prove that Construction 3 is secure
against active attacks where the adversary is limited to modifying the displayed contents
in addition to the capabilities it is given in the passive attack setting. Specifically, let T L
be the class of functions defined as follows:

T L def
= {TL(·)|TL(K,π, frame, v, j, C∗) =

((K,π, frame, f(v), j), Leakact(K, f(v), C
∗))},

where f : Pt1×t2 → Pt1×t2 and Leakact : KED×{0, 1}∗×{0, 1} → {0, 1}∗ is defined
as:

Leakact(K,u,C
∗)

def
=

{
(EyeDecRead(K,u), u) if ui �= C∗

i for 1 ≤ i ≤ n;

(⊥, u) otherwise.

Note that v, the visual encoding, is the value that is tamperable and that is leaked to
the adversary. Also note that in the above definition we require that the adversary does
not apply any tamper-leakage functions that attempt to decrypt parts of the challenge
ciphertext. Every block has to be different from the blocks of the challenge. This is so
because, unlike in standard (non-visualizable) encryption, here blocks must be decrypt-
able individually. Therefore, there is no way to determine if other blocks outside the
field of view have been tampered with. We can now show the following theorem:

Theorem 3. Let T L be as above. The EyeDecrypt scheme given in Construction 3
is T L-secure according to Definition 2 if E is a CCA-secure visualizable encryption
scheme.

The proof proceeds by a relatively straightforward reduction to the CCA-security of the
underlying visualizable encryption scheme E . Intuitively, the decryption condition in
the definition of Leak prevents the adversary from querying the challenge ciphertext,
unless she is able to change the block number of a ciphertext block. However, the posi-
tion of the block that is obtained by decrypting the ciphertext is verified by EyeDecRead
to match the position of the block in the field of view.

Given the EyeDecrypt constructions above, specifying the function g defines the
functionality of the application. Next, we do this to provide a complete solution to the
secure PIN entry application.

Instantiating EyeDecrypt for Secure PIN Entry. The exact nature of g will depend
on the content being protected by the PIN. However, any PIN-protected application
must allocate some of the output blocks of g to display a permuted numeric keypad.
Suppose that the user input device is a (fixed) numeric keypad, and suppose (wlog)

268 A.G. Forte et al.

that blocks t1, . . . , ti in the plaintext visual frame are allocated to the permuted key-
pad. Let P (pin, data) be a program that, given the PIN and additional data, generates
blocks ti+1, . . . , tn. Then, g(pin, data, frame, π) computes (ti+1, . . . , tn) ← P (pin,
data), and computes blocks t1, . . . , ti by generating an image that shows the digit d
written on the physical button that has the digit label π−1(d).

Finally, as mentioned in Section 1 and made evident by the definitions and construc-
tions above, EyeDecrypt is symmetric key-based. In [9] we also show how the personal
device running the EyeDecrypt app and the content-generating server are able to share
cryptographic keys in a secure manner.

Fig. 6. (a) Dataglyph encoding (b) Blocks of the encoding (c) Structure of a block

3.3 A Dataglyphs-Based Visual Encoding Scheme

Many existing visual encoding schemes are compatible with visualizable encryption
(e.g., QR codes [13], Data Matrices [12], Dataglyphs [29], High Capacity Color Bar-
codes (HCCB) [20]), but visualizable encryption does impose some constraints.

First, the system should be able to decrypt content when zoomed in to a single block.
Our chosen visual encoder should therefore not encode more than one block per code—
otherwise zooming in to a single block would present the decoder with only a portion
of a code. On the other hand, we are free to encode a block using multiple codes.

Second, the system must support decoding multiple blocks of a frame all at once.
We have found that some decoders get “confused” by images containing multiple codes
(we need at least one code per block) or partial codes. Sometimes, decoders that sup-
port multiple codes per image impose constraints on their arrangement (for example,
multiple QR codes require a “quiet zone” between codes).

Finally, the visual decoder must not only be able to decode multiple blocks, it must
also understand their spatial arrangement. For any given block the decoder must under-
stand which other block is its right neighbor, etc., so that the system can detect whether
an attacker has re-arranged blocks of ciphertext (cf. Construction 3 above). This is a
computer vision problem that is not solved by simply reading multiple codes indepen-
dently, and existing systems using multiple codes (e.g., [6]) do not implement it. Note
that simply knowing the pixel coordinates of codes within an image is not sufficient as
images taken with a hand-held device exhibit rotation, skew, perspective shift, and other
misalignments.

EyeDecrypt — Private Interactions in Plain Sight 269

Still, within these constraints many existing visual encodings could be made to work.
For our implementation we had to choose one, and we have (somewhat arbitrarily)
chosen to use Dataglyphs (Figure 6(a)).

A (data)glyph is a marking with two possible angles, +45◦ and −45◦, indicating a
0 or 1 bit, respectively. Multiple bits are encoded by organizing multiple glyphs into a
grid. Decoding multiple bits therefore means reconstructing the grid structure from the
pixel coordinates of glyphs within an image. While this is not a trivial task, the great
advantage in our setting is that the resulting grid structure can be used not only for
decoding a single glyph, but also for understanding the spatial arrangement of multiple
blocks also arranged in a grid. In fact, what is shown in Figure 6(a) is actually an
encoding of a grid of blocks, with each block being encoded by a grid of glyphs, as
indicated in Figure 6(b). Blocks can be arranged seamlessly into a grid of arbitrary size.
This gives dataglyphs a flexibility that has proven to be very useful in experimenting
with parameters of the underlying visualizable encryption scheme (e.g., cipher-block
size, aspect ratio).

4 The EyeDecrypt Prototype

EyeDecrypt would be a natural fit for augmented-reality devices such as Google Glass
[11]: the user would simply look at encrypted content and have the decrypted version
displayed directly on the screen of the glasses. However, given that such devices are
not yet widely available, we implemented EyeDecrypt on a smartphone, an iPhone 5S
equipped with an 8 MP rear-facing camera.

The EyeDecrypt app shows a live camera view and decrypts on the fly, at a rate of
20–30 frames per second, depending on the number of blocks in view. The decrypted
content is overlaid over the corresponding block of dataglyphs in the camera view it-
self. The only action users need to perform is to position the phone camera in front of
the encrypted document they wish to decrypt and move the camera around to decrypt
different parts of the document. This is illustrated in Figure 2.

Figure 7(a) shows a screenshot of the application. The encrypted message consists
of ten blocks laid out in two rows. Each decrypted block is rendered independently,
directly over the corresponding block of glyphs; gaps between decrypted blocks are the
result of camera motion during the live capture. The decrypted blocks track the glyphs
at 20–30fps, achieving a true augmented reality experience. The application verifies that
adjacent blocks are correctly arranged, and displays any out-of-place blocks in red, as
in Figure 7(b), making evident any rearrangement of blocks by cut-and-paste.

In the current implementation we encrypt the plaintext instantiating the PRF in the
visualizable encryption scheme of Section 3.1 with AES-128, and visually-encode it
using dataglyphs. Currently, no MAC is implemented and therefore our implementation
is only secure against passive attacks, except for the detection of block rearrangement
(Figure 7(b)).

We now list the steps that EyeDecrypt goes through in order to decode a visually
encoded ciphertext.

Removing Moiré Patterns. EyeDecrypt works not only with documents printed
on paper but also documents viewed on computer screens. In this second scenario,

270 A.G. Forte et al.

(a) A decrypted message (b) Detecting rearranged blocks

Fig. 7. Screenshots of the EyeDecrypt application

additional noise is introduced to the image captured by the phone camera. In partic-
ular, Moiré patterns [31] are well-known artifacts present in digital images. In order to
reduce Moiré patterns when reading a visual encoding from a screen, we apply a series
of low-pass filters and high-pass filters to filter out such patterns as much as possible
while, at the same time, trying to enhance the dataglyphs. In our implementation we
use OpenCV [14], and, in particular, we use a Gaussian Blur as low-pass filter and a
Laplacian as high-pass filter.

Contour Detection. We convert the image to gray scale, use the Scharr transform to
perform edge detection, and the Suzuki-Abe algorithm to detect contours [27]. For each
contour, we calculate its centroid coordinates and angle.

Reconstructing the Grid. We build a graph by Delaunay triangulation of the glyph
centroids. The result is an undirected graph in which each centroid has edges to up to 8
of its nearest neighbors. We remove “diagonal” edges so that remaining edges roughly
follow the rows and columns of a grid, and each centroid is connected to at most four
other centroids.

Removing Noise. Camera lens deformation, non-uniform light conditions, variable dis-
tance from content and camera resolution all lead to the creation of noise and artifacts in
the detection of the contours that is, in the detection of the centroids. Such artifacts are
usually located at the edges of the camera field of view which translates to disconnected
or missing centroids at the edges of the graph. The way users hold their phone repre-
sents another significant source of noise. In particular, given that the visual encoding
we use does not have any landmark to help with alignment, if the phone is rotated by
a significant amount, it may be very hard to tell left from right and top from bottom of
the visually encoded content captured by the camera. Figure 8(a) shows this problem.
As we can see, by just looking at the centroids of the contours we cannot tell the correct
alignment of the ciphertext.

In order to solve all these issues, we apply various graph-theory algorithms that allow
us to remove all the artifacts due to noise and reconstruct the graph. Figure 8(b) shows
the graph reconstructed from the centroids shown in Figure 8(a). We can see that we
were able to remove artifacts and infer the camera rotation which is an essential step to
correctly decode the content.

EyeDecrypt — Private Interactions in Plain Sight 271

(a) Rotated centroids (b) Rebuilt graph

Fig. 8. Rebuilding a graph from noisy centroids with unknown rotation

Decoding. The corrected graph from the previous step is next converted to a binary
matrix by converting the angle information of each centroid into ones and zeros.

In the current implementation, one block of ciphertext has dimensions 10×10 bits
(see Figure 6(c)). The first 16 bits of the block represent the coordinates i and j of
that block in the frame, while the last 12 bits of the block represent a checksum. This
checksum is the truncated output of AES-128 applied to the coordinates i, j of the
block. We know we have found a valid block of ciphertext when computing AES-128
over the first 16 bits of a block, we get the same checksum found in the last 12 bits of
that block. If the checksum fails, we move one column to the right in the matrix and
perform the same check on the new block until we have tested all the bits of a 12x12
matrix. If a valid block is found, each block of the matrix is decrypted. Finally, the
decrypted content from all the decrypted blocks is displayed as an overlay on the phone
camera view.

5 Performance Evaluation

As mentioned in the previous section, each block of ciphertext has a dimension of
10×10 bits. Figure 6(c) shows the structure of the block. The first 16 bits are used to
encode the coordinates i, j corresponding to the position of the block in the document,
while the last 12 bits are used for the block checksum. This leaves 72 bits of encrypted
payload per block. Given that the visualizable encryption scheme is length-preserving
(uses a one-time pad approach; see Section 3.1), we can encrypt 72 bits of data in each
block. In the case of text, this means that we can encrypt nine characters per block of
ciphertext.

In general, users will hold their device so that multiple blocks will be decoded at
once, that is, a multiple of nine characters will be displayed at once to the user. Increas-
ing the ciphertext block size would reduce the overhead due to block coordinates and
checksum. A larger block size, however, would also mean that users have to hold their
devices at a larger distance from the encoded image in order to fit at least one block
in the camera field of view. The larger distance would add additional noise, possibly
leading to a higher probability of decryption failure.

272 A.G. Forte et al.

(a) Ciphertext with Moiré noise (4,800 bits) (b) Randomized keypad

Fig. 9. Decoding and decryption

Figure 9(a) shows the correct decoding and decryption of 4,800 bits of ciphertext
displayed on a computer screen, where the decoding was successful despite the presence
of Moiré patterns. In such case, the decoding took an average time of 250 milliseconds
(i.e., 4 frames per second). This time, however, largely depends on the camera resolution
being used and the number of cipher-blocks visible in the same frame. For the decoding
shown in Figure 9(a), we used a resolution of 640x480 pixels and decoded 48 cipher-
blocks in a single frame. In the case of a numerical keypad, as shown in Figure 9(b),
the visual encoding includes 12 cipher-blocks in a single frame which we were able to
process at a rate of about 18 frames per second.

The resolution of the camera plays an important role in EyeDecrypt. On one hand,
higher resolution means that the camera has better accuracy in reading the image, and
hence a larger number of cipher blocks can be correctly decoded in a single frame. Also,
decoding can happen at greater distance. On the other hand, higher resolution means
that the device has to process a larger image, i.e., more information, and the decoding
takes longer. Furthermore, with higher resolution Moiré noise gets amplified as well so
that accuracy does not increase linearly with resolution. A consequence of this is that
decrypting content in printed form is much more reliable and accurate than decrypting
electronic content where Moiré noise is present. Different camera resolutions imply a
tradeoff between accuracy, decryption speed and maximum decoding distance.

The visual encoding based on dataglyphs could be easily enhanced to increase the
amount of information it conveys. As we mentioned in Section 3.3, we currently use
only two angle values to encode ones and zeros—namely,−45◦ for bit 1 and +45◦ for
bit 0.

Naturally, the problem in having only two possible values is that less information
can be conveyed in the dataglyph encoding. In particular, by using 0◦, +45◦, −45◦ and
90◦, each dataglyph could encode two bits of information. This, however, would make
dataglyphs less resilient to noise. Other ways to enhance dataglyphs would be by using
different colors and sizes so that for each dataglyph we can now specify angle, color and
size. If we assume four possible angles, four independent colors and two different sizes,
one dataglyph could now convey 5 bits of information. Enhancing the visual encoding
so to convey more information as described above is left for future work.

EyeDecrypt — Private Interactions in Plain Sight 273

6 Related Work

Human-computer interactions almost universally involve human vision, and so EyeDe-
crypt or any other HCI technology is subject to the security limitations of vision. In
particular, vision is susceptible to interception, by means as simple as shoulder surf-
ing or as sophisticated as capturing the reflection of images from the surface of the
eye [19, 1, 2]. EyeDecrypt protects against many interception attacks by encrypting the
visual channel between the encoding and a personal device. The visual channel from
the personal device to the eye remains unprotected by EyeDecrypt itself; it is intended
for use only when the personal device remains inaccessible to adversaries. When eye
reflections are a concern but it is still desirable to use the visual channel, we know no
protection short of an enclosed display. EyeDecrypt is compatible with such a display.

On the other hand, vision has some inherent security advantages. Humans generally
know with certainty what physical object they are looking at (as opposed to what device
has sent them a wireless transmission), and vision is resistant to active tampering. For
example, there are a few techniques to overload camera sensors but a user can detect
this by comparison with their own vision. Consequently, visual encodings are widely
use in security for key establishment, wireless device pairing, and trusted display estab-
lishment [17, 25, 26, 6]; EyeDecrypt can be used for these purposes as well.

Computer vision researchers have been studying visual encodings for decades, seek-
ing to increase their capacity and their robustness against lens distortion, image com-
pression, non-uniform lighting, skew, motion blur, shake, low camera resolution, poor
focus, etc. [16, 30, 21]. Techniques for zooming into visual encodings include recursive
grids of barcodes [22] and nested barcodes [28]. Fourier tags [24] handle the oppo-
site case of zooming out: at close distance, they can be completely decoded, but as the
camera zooms out, fewer bits can be decoded; low-order bits are lost before high-order
bits.

Encrypted content is often used in single barcodes (e.g., [3]) but less often in multiple
barcodes. Fang and Chang describe a method for encoding a large encrypted message
in multiple barcodes [6]. All barcodes must be decoded and decrypted to view the mes-
sage, and the barcodes must be presented in a known order, unlike our blocks which
can be viewed independently. They are concerned with rearrangement attacks in which
the adversary is able to rearrange the order of the barcodes so that the message cannot
be decrypted. Their solution is to use a visual cue (numbers in sequence) over which
each barcode is interleaved. The user can manually verify that the barcodes are in the
correct order, while the device handles the decoding and decryption of the actual data.
In our solution, visual clues are not necessary, as the frame and block numbers of ad-
jacent regions are directly encoded and can be read and compared automatically by the
device.

Many defenses against shoulder surfing during PIN entry have been proposed; we
discuss a representative sampling here. We emphasize that unlike EyeDecrypt, these
systems do not encrypt the device display, so they are not appropriate for displaying
private information, only entering it.

274 A.G. Forte et al.

EyePassword [15] and Cued Gaze-Points [8] are two systems that use gaze-based
input for password/PIN entry. These systems require the public device (e.g., an ATM)
to have a camera and they work by computing the point on the screen that the user is
looking at. In the Cued Gaze-Points system PIN entry works by the user selecting gaze-
points on a sequence of graphic images. In EyePassword, the user gazes at a standard
onscreen keyboard. The key assumption in both cases is that the adversary does not
see the input at all (the adversary does not have a view of the user’s eyes). In contrast,
EyeDecrypt assumes that the adversary can see the input but only in obfuscated form
(randomized and encrypted).

Roth et al. [23] require users to enter PINs via cognitive trapdoor games, e.g., a
sequence of puzzles that are easy to solve (by an unaided human) with knowledge
of the PIN, but hard to solve without it. Their scheme emphasizes useability and is
intended only to defend against attackers that are unaided humans (for example, with
human short-term memories). Unlike gaze-entry systems, and similar to EyeDecrypt, it
can work without modifying ATM hardware.

In the ColorPIN system [5], a user’s PIN is a sequence of colored digits, and the
ATM displays a ten-digit keypad where each digit appears with three colored letters.
For example, the digit “1” could appear above a black “Q,” a red “B,” and a white “R,”
and the user would enter “black 1” by hitting “Q.” Each letter appears with multiple
digits, so that a sequence of letters is associated with multiple sequences of digits. A
shoulder-surfing observer thus gets partial information about the PIN (e.g., for a four-
digit pin the observer knows that it is one of 3×3×3 = 81 possibilities). EyeDecrypt’s
visual encryption protects against this sort of leakage.

MobilePIN [4], like EyeDecrypt, uses a trusted personal device to aid PIN entry. In
MobilePIN, the ATM displays its wireless address and authentication token onscreen
as a QR code, and the user reads the code using the camera of the personal device.
The personal device can then establish a secure wireless connection between with the
ATM (secure pairing using the visual channel). The user enters her PIN on the trusted
personal device, which transmits it to the ATM over the wireless channel. MobilePIN
therefore has similar assumptions as EyeDecrypt, except in addition it assumes that the
ATM is equipped with a radio.

Most other shoulder-surfing-resistant PIN entry methods involve changing the au-
thentication process, e.g., by using graphical passwords or security tokens, or by re-
quiring network connectivity or device pairing.

Naturally, EyeDecrypt is related to the cryptographic technique known as visual
cryptography ([18] and follow-ups), which allows visual information (pictures, text,
etc.) to be encrypted in such a way that decryption becomes a mechanical operation
that does not require a computer, such as for example over-imposing two (transparent)
images in the Naor-Shamir visual secret-sharing scheme.

Finally, EyeDecrypt has the additional ability to ensure that only legitimate users can
view the information that is openly displayed, and in that sense bears some similarity to
broadcast encryption ([7] and numerous follow-ups), with closely related applications
such as pay-TV. A fundamental difference in EyeDecrypt is the public-view nature of
the rendering device.

EyeDecrypt — Private Interactions in Plain Sight 275

References

[1] Backes, M., Chen, T., Drmuth, M., Lensch, H.P.A., Welk, M.: Tempest in a teapot: Com-
promising reflections revisited. In: IEEE Symposium on Security and Privacy, pp. 315–327
(2009)

[2] Backes, M., Drmuth, M., Unruh, D.: Compromising reflections-or-how to read LCD moni-
tors around the corner. In: IEEE Symposium on Security and Privacy, pp. 158–169 (2008)

[3] Conde-Lagoa, D., Costa-Montenegro, E., Gonzalez-Castao, F., Gil-Castieira, F.: Secure eT-
ickets based on QR-Codes with user-encrypted content. In: 2010 Digest of Technical Papers
International Conference on Consumer Electronics (ICCE), pp. 257–258 (2010)

[4] De Luca, A., Frauendienst, B., Boring, S., Hussmann, H.: My phone is my keypad: Privacy-
enhanced PIN-entry on public terminals. In: Proceedings of the 21st Annual Conference
of the Australian Computer-Human Interaction Special Interest Group, pp. 401–404. ACM,
New York (2009), http://doi.acm.org/10.1145/1738826.1738909

[5] De Luca, A., Hertzschuch, K., Hussmann, H.: ColorPIN: Securing PIN entry through in-
direct input. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1103–1106. ACM, New York (2010),
http://doi.acm.org/10.1145/1753326.1753490

[6] Fang, C., Chang, E.C.: Securing interactive sessions using mobile device through visual
channel and visual inspection. In: Proceedings of the 26th Annual Computer Security Ap-
plications Conference, ACSAC 2010, pp. 69–78. ACM, New York (2010),
http://doi.acm.org/10.1145/1920261.1920272

[7] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) Advances in Cryptology -
CRYPT0 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994),
http://dl.acm.org/citation.cfm?id=646758.705697

[8] Forget, A., Chiasson, S., Biddle, R.: Shoulder-surfing resistance with eye-gaze entry in
cued-recall graphical passwords. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1107–1110. ACM, New York (2010),
http://doi.acm.org/10.1145/1753326.1753491

[9] Forte, A., Garay, J., Jim, T., Vahlis, Y.: Eyedecrypt – private interactions in plain sight.
Cryptology ePrint Archive, Report 2013/590 (2013), http://eprint.iacr.org/

[10] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sci-
ences 28(2), 270–299 (1984),
http://www.sciencedirect.com/science/article/
pii/0022000084900709

[11] Google: Google Glass, http://www.google.com/glass
[12] ISO: Information technology – Automatic identification and data capture techniques – Data

Matrix bar code symbology specification. ISO 16022:2006. International Organization for
Standardization, Geneva, Switzerland (2006)

[13] ISO: Information technology – Automatic identification and data capture techniques – QR
Code 2005 bar code symbology specification. ISO 18004:2006. International Organization
for Standardization, Geneva, Switzerland (2006)

[14] Itseez: Open Source Computer Vision (OpenCV) Library, http://opencv.org
[15] Kumar, M., Garfinkel, T., Boneh, D., Winograd, T.: Reducing shoulder-surfing by using

gaze-based password entry. In: Proceedings of the 3rd Symposium on Usable Privacy and
Security, SOUPS 2007, pp. 13–19. ACM, New York (2007),
http://doi.acm.org/10.1145/1280680.1280683

[16] Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: A survey. In-
ternational Journal of Document Analysis and Recognition (IJDAR) 7(2-3), 84–104 (2005),
http://link.springer.com/article/10.1007/s10032-004-0138-z

http://doi.acm.org/10.1145/1738826.1738909
http://doi.acm.org/10.1145/1753326.1753490
http://doi.acm.org/10.1145/1920261.1920272
http://dl.acm.org/citation.cfm?id=646758.705697
http://doi.acm.org/10.1145/1753326.1753491
http://eprint.iacr.org/
http://www.sciencedirect.com/science/article/pii/0022000084900709
http://www.sciencedirect.com/science/article/pii/0022000084900709
http://www.google.com/glass
http://opencv.org
http://doi.acm.org/10.1145/1280680.1280683
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10032-004-0138-z

276 A.G. Forte et al.

[17] McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones for
human-verifiable authentication. In: IEEE Symposium on Security and Privacy, pp. 110–
124. IEEE Computer Society, Los Alamitos (2005)

[18] Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994.
LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

[19] Nishino, K., Nayar, S.K.: Corneal imaging system: Environment from eyes. International
Journal of Computer Vision 70(1), 23–40 (2006)

[20] Parikh, D., Jancke, G.: Localization and segmentation of a 2D high capacity color barcode.
In: IEEE Workshop on Applications of Computer Vision, pp. 1–6. IEEE (2008)

[21] Perli, S.D., Ahmed, N., Katabi, D.: PixNet: Interference-free wireless links using LCD-
camera pairs. In: Proceedings of the Sixteenth Annual International Conference on Mobile
Computing and Networking, MobiCom 2010, pp. 137–148. ACM, New York (2010),
http://doi.acm.org/10.1145/1859995.1860012

[22] Reilly, D., Chen, H., Smolyn, G.: Toward fluid, mobile and ubiquitous interaction with
paper using recursive 2D barcodes. In: 3rd International Workshop on Pervasive Mobile
Interaction Devices, PERMID 2007 (May 2007)

[23] Roth, V., Richter, K., Freidinger, R.: A PIN-entry method resilient against shoulder surfing.
In: Proceedings of the 11th ACM Conference on Computer and Communications Security,
pp. 236–245. ACM, New York (2004),
http://doi.acm.org/10.1145/1030083.1030116

[24] Sattar, J., Bourque, E., Giguere, P., Dudek, G.: Fourier tags: Smoothly degradable fiducial
markers for use in human-robot interaction. In: Fourth Canadian Conference on Computer
and Robot Vision, CRV 2007, pp. 165–174 (2007)

[25] Saxena, N., Ekberg, J.E., Kostiainen, K., Asokan, N.: Secure device pairing based on a
visual channel. In: IEEE Symposium on Security and Privacy, pp. 306–313. IEEE Computer
Society (2006)

[26] Starnberger, G., Froihofer, L., Goeschka, K.: QR-TAN: Secure mobile transaction authen-
tication. In: International Conference on Availability, Reliability and Security, ARES 2009,
pp. 578–583 (2009)

[27] Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border
following. Computer Vision, Graphics, and Image Processing 30, 32–46 (1985)

[28] Tateno, K., Kitahara, I., Ohta, Y.: A nested marker for augmented reality. In: IEEE Virtual
Reality Conference, VR 2007, pp. 259–262 (2007)

[29] Tow, R.F.: Methods and means for embedding machine readable digital data in halftone
images (May 24, 1994), US Patent 5,315,098

[30] Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations
and Trends in Computer Graphics and Vision 3(3), 177–280 (2007)

[31] Wikipedia: Moiré pattern (2013),
http://en.wikipedia.org/wiki/Moir%C3%A9_pattern

http://doi.acm.org/10.1145/1859995.1860012
http://doi.acm.org/10.1145/1030083.1030116
http://en.wikipedia.org/wiki/Moir%C3%A9_pattern

Semi-adaptive Attribute-Based Encryption

and Improved Delegation for Boolean Formula�

Jie Chen1,�� and Hoeteck Wee2,� � �

1 Department of Computer Science and Technology, East China Normal University
s080001@e.ntu.edu.sg

2 École Normale Supérieure, Paris
wee@di.ens.fr

Abstract. We consider semi-adaptive security for attribute-based en-
cryption, where the adversary specifies the challenge attribute vector
after it sees the public parameters but before it makes any secret key
queries. We present two constructions of semi-adaptive attribute-based
encryption under static assumptions with short ciphertexts. Previous
constructions with short ciphertexts either achieve the weaker notion of
selective security, or require parameterized assumptions.

As an application, we obtain improved delegation schemes for Boolean
formula with semi-adaptive soundness, where correctness of the computa-
tion is guaranteed even if the client’s input is chosen adaptively depend-
ing on its public key. Previous delegation schemes for formula achieve
one of adaptive soundness, constant communication complexity, or se-
curity under static assumptions; we show how to achieve semi-adaptive
soundness and the last two simultaneously.

1 Introduction

Attribute-based encryption (ABE) [33, 20] is an emerging paradigm for public-
key encryption which enables fine-grained control of access to encrypted data. In
traditional public-key encryption, access to the encrypted data is all or nothing:
given the secret key, one can decrypt and read the entire plaintext, but without
it, nothing about the plaintext is revealed (other than its length). In ABE, a

� The research leading to these results has received funding from the European Re-
search Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 339563 CryptoCloud). A longer version of
this work appears in [11].

�� Supported by Science and Technology Commission of Shanghai Municipality un-
der Grants 14YF1404200, 13JC1403500, and the National Natural Science Foun-
dation of China Grant No. 61172085. Part of this work was done at Nanyang
Technological University, supported by the National Research Foundation of Sin-
gapore under Research Grant NRF-CRP2-2007-03.

� � � CNRS (UMR 8548) and INRIA. Supported in part by the French ANR-12-INSE-
0014 SIMPATIC Project. Part of this work was done at Columbia University,
supported by NSF Award CNS-1319021, and at Ruhr-Universität Bochum as a
Research Fellow of the Alexander von Humboldt Foundation.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 277–297, 2014.
c© Springer International Publishing Switzerland 2014

278 J. Chen and H. Wee

ciphertext is labeled with an attribute vector x, and a secret key is associated
with an access policy specified as a Boolean formula, and the secret key decrypts
the ciphertext if and only if x satisfies the access policy.1 It is easy to see that
ABE is a generalization of identity-based encryption (IBE) [34, 5, 14]. The secu-
rity requirement for ABE stipulates that it resists collusion attacks, namely any
group of users collectively learns nothing about the plaintext if none of them is
individually authorized to decrypt the ciphertext.

Delegation. A delegation scheme allows a computationally weak client to
delegate expensive computations to the cloud, with the assurance that a ma-
licious cloud cannot convince the client to accept an incorrect computation
[19, 17, 4, 15]. Recent work of Parno, Raykova and Vaikuntanathan [32] showed
that any ABE with encryption time at most linear in the length of the attribute
vector immediately yields a delegation scheme for Boolean formula. There is
an initial pre-processing phase which fixes the formula f the client wishes to
compute and produces some public key. Afterwards, to delegate computation on
an input x, the client only needs to send a single message. Moreover, the ensu-
ing delegation scheme satisfies public delegatability, namely anyone can delegate
computations to the cloud; as well as public verifiability, namely anyone can
check the cloud’s work (given a “verification” key published by the client).

State of the Art. Since the introduction of ABE and motivated in part by the
connection to delegation, there is now a large body of work providing construc-
tions with incomparable trade-offs amongst efficiency, security guarantees and
security assumptions [20, 2, 27, 31, 26]; a summary of this work is presented in
Fig 1. A key measure of efficiency is the ciphertext size and the encryption time;
ideally, we want this to depend at most linearly in the length of the attribute
vector and independent of the size of the access structure. For security guaran-
tees, the two primary notions are selective and adaptive security; in the more
restrictive setting of selective security, the adversary must specify the challenge
attribute vector prior to seeing the public parameters. Finally, the security of
the schemes rely on the assumed hardness of some computational problem in
bilinear groups; here, we prefer prime-order instantiations over composite-order
ones, and static assumptions over parameterized ones.

1.1 Our Contributions

We introduce the notion of semi-adaptive security for ABE and delegation. In
ABE, this means that the adversary specifies the challenge attribute vector after
it sees the public parameters but before it makes any secret key queries. This

1 This is typically referred to as key-policy ABE in the literature, which is the focus
of this paper. A different line of works, e.g. [13, 21, 37, 27, 26], considers ciphertext-
policy ABE, where the ciphertext is labeled with a formula and the secret key is
associated with an attribute vector.

Semi-adaptive Attribute-Based Encryption and Improved Delegation 279

reference security Enc time CT size MPK size SK size group assumption

GPSW06 [20]

selective

O(n)∗ O(n)∗ O(n) O() prime static
ALP11 [2] O(n) O(1) O(n) O(n) prime non-static
ALP11+LW10 O(n) O(1) O(n) O(n) composite static
T14 [35] O(n) O(1) O(n) O(n) prime static

LOSTW10 [27]

adaptive

O(nM)∗ O(nM)∗ O(nM) O() composite static
OT10 [31] O(nM)∗ O(nM)∗ O(nM) O() prime static
LW12 [26] O(n)∗ O(n)∗ O(n) O() prime non-static
A14 [1] O(n) O(1) O(n) O(n) composite non-static

Construction 1 semi- O(n) O(1) O(n) O(n) composite static
Construction 2 adaptive O(n)∗ O(n)∗ O(n) O() prime static

Fig. 1. Summary of existing KP-ABE schemes. Here, n denotes the universe size, M is
the maximum number of times an attribute may be used, and 	 ≤ nM is the number
of rows in the matrix M of the access structure. Encryption time is given in terms
of group operations, and CT, PP, SK sizes are given in terms of group elements. For
CT, we omit the additive overhead of n bits in order to transmit the attribute vector.
For the quantities marked with ∗, n may be replaced with number of non-zero entries
in the attribute vector x ∈ {0, 1}n, which could be much smaller than n. Note that
ALP11, T14 and A14 achieve large universe, we restrict the attribute universe to [n]
for comparison.

is stronger than selective security but weaker than adaptive security. In dele-
gation, this means that the client’s input may depend on the public key but is
independent of the worker’s evaluation key. In addition, we provide new con-
structions of efficient semi-adaptively secure ABE and delegation schemes under
static assumptions.

New ABE Schemes. Our first result is a semi-adaptively secure ABE whose
efficiency matches the state-of-the-art selectively secure ABE [2]:

(Informal Theorem) There exists a semi-adaptively secure ABE with
constant-size ciphertexts. Encryption time is linear in the length of the
attribute vector and independent of the size of the access structure. The
security of the scheme is based on static assumptions in composite-order
groups.

We also achieve an analogous result in prime-order groups based on the SXDH
Assumption; however, the ciphertext size is linear in the length of the attribute
vector. Throughout this work, when we refer to ciphertext size, we measure the
number of group elements, and we omit the additive overhead of n bits needed
to transmit the attribute vector.

New Delegation Schemes. Starting from our semi-adaptively secure ABE, we ob-
tain improved delegation schemes for Boolean formula with semi-adaptive sound-
ness, where correctness of the computation is guaranteed even if the client’s input
is chosen adaptively depending on its public key. We note that achieving semi-
adaptive soundness is important in practice, since we would like to reuse the

280 J. Chen and H. Wee

reference security |EKF|
client’s

communication
in bits

worker’s
complexity

groups assumptions

GPSW06 [20]
selective

O() O(nλ) O() prime static
ALP11 [2] O(n) n+O(λ) O(n) prime non-static
T14 [35] O(n) n+O(λ) O(n) prime static

GGPR13 [18]
adaptive

O() n+O(λ) O() prime non-static
LW12 [26] O() O(nλ) O() prime non-static
A14 [1] O(n) n+O(λ) O(n) composite non-static

Construction 1 semi- O(n) n+O(λ) O(n) composite static
Construction 2 adaptive O() O(nλ) O() prime static

Fig. 2. Summary of existing publicly verifiable computation schemes. GGPR13 sup-
ports NC. The remaining schemes only support NC1 and are obtained using the trans-
formation of [32]. Here, |EKF| is the worker’s evaluation key, n is the bit length of the
input and 	 is the size of the formula. In all the schemes, the public key is O(n) group
elements, delegation and verification complexity of client is O(n) group operations,
computation complexity of worker is also given in terms of group operations.

same public key across multiple inputs, which could lead to correlation between
the input and the public key. Previous delegation schemes for formula achieve
one of adaptive soundness [26, 18], constant communication complexity2 [2], or
security under static assumptions [20]; we achieve semi-adaptive soundness and
the last two simultaneously. We compare our schemes with prior works in Fig 2.
We stress that in applications such as delegating computation from mobile de-
vices on cellular networks where bandwidth is a premium, reducing the client’s
communication from O(nλ) bits to n+O(λ) bits represents substantial savings.

1.2 Our Techniques

Following our recent works [38, 9] and inspired in part by [26], we rely on Waters’
dual system encryption methodology [36, 25] to reduce the problem of building a
(public-key) semi-adaptively secure ABE to that of building a private-key selec-
tively secure ABE. Recall that dual system encryption is typically implemented
by designing a “semi-functional space” where semi-functional components of
keys and ciphertexts will behave like a parallel copy of the normal components
of the system, except divorced from the public parameters. In particular, we will
embed the private-key selectively secure ABE into the semi-functional space.

We proceed to outline the constructions of private-key ABE with short ci-
phertexts:

– For our composite-order scheme with constant-size ciphertext, we use a
private-key variant of the selectively secure ABE scheme of Attrapadung,
Libert and Panafieu (ALP) in [2]. Our main insight is that in the private-key

2 Here, we refer to the client’s communication overhead beyond sending the n-bit input,
as measured in group elements.

Semi-adaptive Attribute-Based Encryption and Improved Delegation 281

setting with a single challenge ciphertext, we can replace the use of param-
eterized assumptions in the ALP scheme with the basic DDH assumption.
Roughly speaking, fix an attribute i that does not appear in the challenge
attribute. We can then rely on the DDH assumption to mask all the LSSS
shares of the master secret key corresponding to attribute i (c.f. Section 3
overview and Lemma 2).3 The formal security proof is more involved since
we need to instantiate this argument within the dual system framework.

– For our prime-order scheme with O(n)-size ciphertext, the private-key selec-
tively secure ABE we use is essentially that of Goyal et al. [20], which is in
fact a public-key scheme and yields ciphertexts of length O(n). To combine
this scheme with the dual system framework, we rely on dual pairing vec-
tor spaces [29, 30, 16, 24, 12]. Here, we will also use the SXDH assumption
to boost statistical entropy in the semi-functional key space into arbitrar-
ily large amounts of computational entropy in the same space as we will
need to mask an arbitrarily large number of shares corresponding to a single
attribute.

For both schemes, we are able to exploit random self-reducibility to obtain se-
curity loss that do not depend on the number of secret key queries or the size
of the boolean formula (but may depend on the input size n). In contrast, all
known adaptively secure ABE schemes incur a loss that is at least linear in both
the number of secret key queries and the size of the boolean formula (sometimes
implicitly, by either making a “one-use” restriction or using a parameterized
assumption).

Additional Related Work. In an independent work, Takashima [35] pro-
posed a selectively secure KP-ABE scheme with constant-size ciphertexts under
the DLIN assumption, which results in a delegation scheme with constant com-
munication complexity and security under static assumptions but only achiev-
ing selective soundness. Upon learning of our work, Takashima showed that his
scheme also achieves semi-adaptive security, thereby resolving a natural open
problem from this work. Gennaro, Gentry, Parno and Raykova [18] constructed
a delegation scheme achieving adaptive soundness and supporting NC but its
security relies on parameterized assumptions.

Organization. We present our composite-order construction in Section 3. We
provide our prime-order construction, the delegation schemes and associated
definitions in the full version of this paper [11].

3 In an earlier submission, an anonymous reviewer asked if it is possible to obtain the
composite-order scheme by combining the Lewko-Waters ABE [26] with the ALP
scheme. We clarify here that this approach (should it pan out) would inherit the
parameterized assumption from [2]. In particular, none of the prior works either
implicitly or explicitly build a private-key ABE with constant-size ciphertexts from
static assumptions.

282 J. Chen and H. Wee

2 Preliminaries

Notation. We denote by s←r S the fact that s is picked uniformly at random
from a finite set S and by x, y, z ←r S that all x, y, z are picked independently
and uniformly at random from S. By PPT, we denote a probabilistic polynomial-
time algorithm. Throughout, we use 1λ as the security parameter. We use · to
denote multiplication (or group operation) as well as component-wise multipli-
cation. We use lower case boldface to denote (column) vectors over scalars and
upper case boldface to denote vectors of group elements as well as matrices.
Given two vectors x = (x1, x2, . . .),y = (y1, y2, . . .) over scalars, we use 〈x,y〉 to
denote the standard dot product x�y. Given a group element g, we write gx to
denote (gx1 , gx2 , . . .); we define gA where A is a matrix in an analogous way.

2.1 Access Structures

We define (monotone) access structures using the language of (monotone) span
programs [22].

Definition 1 (access structure [3, 22]). A (monotone) access structure A
for attribute universe [n] is a pair (M, ρ) where M is a � × �′ matrix over ZN

and ρ : [�]→ [n]. Given x = (x1, . . . , xn) ∈ {0, 1}n, we say that

x satisfies A iff 1 ∈ span〈Mx〉.
Here, 1 := (1, 0, . . . , 0) ∈ Z�′

N is a row vector; Mx denotes the collection of
vectors {Mj : xρ(j) = 1} where Mj denotes the j’th row of M; and span refers
to linear span of collection of (row) vectors over ZN .

That is, x satisfies A iff there exists constants ω1, . . . , ω� ∈ ZN such that∑
j:xρ(j)=1

ωjMj = 1.

Observe that the constants {ωj} can be computed in time polynomial in the size
of the matrix M via Gaussian elimination.

2.2 Key-Policy Attribute-Based Encryption

A KP-ABE scheme consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ, [n])→ (mpk,msk). The setup algorithm takes in a security parameter
1λ, and an attribute universe [n]. It outputs public parameters mpk and a
master secret key msk.

Enc(mpk,x,m) → ctx. The encryption algorithm takes in mpk, an attribute
vector x, and a message m. It outputs a ciphertext ctx.

KeyGen(mpk,msk,A)→ skA. The key generation algorithm takes in mpk, msk,
and an access structure A := (M, ρ). It outputs a secret key skA.

Dec(mpk, skA,ctx)→ m. The decryption algorithm takes in mpk, a secret key
skA for an access structure A, and a ciphertext ctx encrypted under an
attribute vector x. It outputs a message m if x satisfies A.

Semi-adaptive Attribute-Based Encryption and Improved Delegation 283

Correctness. For all (mpk,msk) ← Setup(1λ, [n]), all access structures A, all
decryption keys skA, all messagesm, all x satisfyingA, we have Pr[Dec(mpk, skA,
Enc(mpk,x,m)) = m] = 1.

2.3 Semi-adaptive Security Model

We now formalize the notation of semi-adaptive security for KP-ABE. Briefly,
the adversary specifies the challenge attribute vector after it sees the public
parameters and before it makes any secret key queries. The security game is
defined by the following experiment, played by a challenger and an adversary A.

Setup. The challenger runs the setup algorithm to generate (mpk,msk). It gives
mpk to A.

Challenge Attribute. A gives the challenger a challenge x∗.

Phase 1. A adaptively requests keys for access structures A with the constraint
x∗ does not satisfy A. The challenger responds with the corresponding secret
key SKA, which it generates by running the key generation algorithm.

Challenge Ciphertext. A submits two equal-length messagesm0 andm1. The
challenger picks β ←r {0, 1}, and encrypts mβ under x∗ by running the
encryption algorithm. It sends the ciphertext to A.

Phase 2. A continues to issue key queries as in Phase 1.

Guess. A must output a guess β′ for β.

The advantage Advkp-abeA (λ) of an adversaryA is defined to be Pr[β′ = β]−1/2.

Definition 2. A KP-ABE scheme is semi-adaptively secure if all PPT adver-
saries achieve at most a negligible advantage in the above security game.

2.4 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [7] and used in [23,
25, 27]. A generator G takes as input a security parameter 1λ and outputs a
description G := (N,GN , GT , e), where N is product of distinct primes of Θ(λ)
bits, GN and GT are cyclic groups of order N , and e : GN ×GN → GT is a map
with the following properties:

1. (Bilinearity) ∀g, h ∈ GN , a, b ∈ ZN , e(g
a, hb) = e(g, h)ab;

2. (Non-degeneracy) ∃g ∈ GN such that e(g, g) has order N in GT .

We require that the group operations in GN and GT as well the bilinear map e
are computable in deterministic polynomial time with respect to λ. Furthermore,
the group descriptions of GN and GT include generators of the respective cyclic
groups. We use Gn to denote the subgroup of GN of order n, where n divides
N .

284 J. Chen and H. Wee

Computational Assumptions. We now state the three static assumptions
that are required in our security proof. The first two assumptions are introduced
in [25] and also used in [27]. The third assumption which basically asserts that
the DDH problem is hard in the Gp2 -subgroup. This assumption is essentially
implied by the composite 3-party Diffie-Hellman (3PDH) assumption in [6]. We
provide more discussion and justification of this assumption in the full version
of this paper [11]. All three assumptions hold in the generic group model under
the assumption finding a non-trivial factor of N is hard.

Assumption 1. Given a group generator G, we define the following distribution:

G := (N = p1p2p3, GN , GT , e)←r G,
g1, U1 ←r Gp1 , U2 ←r Gp2 , g3 ←r Gp3 ,

T0 ←r Gp1 , T1 ←r Gp1p2 ,

D := (G; g1, U1U2, g3).

We assume that for any PPT algorithm A,

AdvAS1

A (λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣
is negligible in the security parameter λ.

Assumption 2. Given a group generator G, we define the following distribution:

G := (N = p1p2p3, GN , GT , e)←r G,
α, s←r ZN ,

g1 ←r Gp1 , g2, X2, Y2 ←r Gp2 , g3 ←r Gp3 ,

T0 := e(g1, g1)
αs, T1 ←r GT ,

D := (G; g1, g
α
1X2, g

s
1Y2, g2, g3).

We assume that for any PPT algorithm A,

AdvAS2

A (λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣
is negligible in the security parameter λ.

Assumption 3. Given a group generator G, we define the following distribution:

G := (N = p1p2p3, GN , GT , e)←r G,
x, y, z ←r ZN ,

g1, U1 ←r Gp1 , g2, U2 ←r Gp2 , g3, X3, Y3, U3,W3 ←r Gp3 ,

T0 := gxy2 W3, T1 := gxy+z
2 W3,

D := (G; g1, U1U2, g
x
2X3, g

y
2Y3, g2U3, g3).

We assume that for any PPT algorithm A,

AdvAS3

A (λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣
is negligible in the security parameter λ.

Semi-adaptive Attribute-Based Encryption and Improved Delegation 285

3 Semi-adaptive ABE with Constant-Size Ciphertext

Overview. The starting point of our construction is the following variant of the
ALP KP-ABE in [2]:

mpk := (g, gw, e(g, g)α)

ctx := (gs, gs〈w,x〉, e(g, g)αs ·m)

skA := (gαjeρ(j)+rjw, grj : j ∈ [�])

where α1, . . . , α� are LSSS shares of α for the access structure A. Our construc-
tion proceeds by embedding this scheme into composite-order groups. As noted
in the introduction, our main insight is to analyze this scheme in the private-key,
selective setting. Fix a selective challenge x∗ ∈ {0, 1}n and an index k ∈ [n] and
an access structure A not satisfied by x∗. We proceed via a case analysis to argue
that skA hides α computationally:

– if x∗k = 0, then the shares {αj : ρ(j) = k} reveal no information about α via
the secret sharing property.

– if x∗k = 1, then the ciphertext reveals no information about wk (and since
we are in the private-key setting, there is no mpk). Then, by the DDH
assumption, {gαj+rjwk , grj : ρ(j) = k} computationally hides αj .

The formal security proof is more involved since we need to instantiate this
argument within the dual system framework.

3.1 Construction

– Setup(1λ, [n]): On input an attribute universe [n], generate G := (N =
p1p2p3, GN , GT , e)←r G, pick α←r ZN ,w←r Zn

N and output

mpk := (G, e(g1, g1)
α, g1, g

w
1) and msk := (α,w, g2, g3) .

– Enc(mpk,x,m) : On input an attribute vector x := (x1, . . . , xn) ∈ {0, 1}n
and m ∈ GT , output

ctx :=
(
C0 := gs1, C1 := g

s〈w,x〉
1 , C2 := e(g1, g1)

αs ·m
)
,

where s←r ZN .

– KeyGen(mpk,msk,A := (M, ρ)): On input an access structure A := (M, ρ),

where M ∈ Z�×�′
N and ρ : [�] → [n], pick a random vector u ←r Z�′

N such
that 1u = α and set αj := Mju, j ∈ [�].4 Output

skA :=
(
Dj := g

αjeρ(j)+rjw
1 · gr

′
jw

2 ·Xj , D0,j := g
rj
1 · gr

′
j

2 · Zj : j ∈ [�]
)
,

where r1, r
′
1, . . . , r�, r

′
� ←r ZN ; Xj ←r G

n
p3
;Zj ←r Gp3 , and (e1, . . . , en) is

the standard basis for Zn
N .

4 The αj ’s do in fact correspond to LSSS secret shares of α, distributed across n parties,
where the i’th party receive |ρ−1(i)| shares, given by {αj : ρ(j) = i}.

286 J. Chen and H. Wee

– Dec(mpk, skA,ctx): If x satisfies A, compute ω1, . . . , ω� ∈ ZN such that∑
j:xρ(j)=1

ωjMj = 1.

Then, compute5

e(g1, g1)
αs ←

∏
j:xρ(j)=1

(
e(Cx

0 ,Dj) · e(C1, D0,j)
−1
)ωj

,

and recover the message as m← C2/e(g1, g1)
αs ∈ GT .

Correctness. Observe that

e(Cx
0 ,Dj) · e(C1, D0,j)

−1

= e((gs1)
x, g

αjeρ(j)+rjw
1 · gr

′
jw

2 ·Xj) · e(gs〈w,x〉
1 , g

rj
1 · gr

′
j

2 · Zj)
−1

= e(g1, g1)
αjs〈eρ(j) ,x〉 · e(g1, g1)rjs〈w,x〉 · e(g1, g1)−rjs〈w,x〉

= e(g1, g1)
αjs.

In addition, we have∑
j:xρ(j)=1

ωjαj =
∑

j:xρ(j)=1

ωjMju = 1u = α.

This means∏
j:xρ(j)=1

(
e(Cx

0 ,Dj) · e(C1, D0,j)
−1
)ωj

=
∏

j:xρ(j)=1

e(g1, g1)
ωjαjs = e(g1, g1)

αs.

Correctness follows readily.

3.2 Proof of Security

We prove the following theorem:

Theorem 1. Under Assumptions 1, 2 and 3 (described in Section 2.4), our KP-
ABE scheme defined in Section 3.1 is semi-adaptively secure (in the sense of Def-
inition 2). More precisely, for any adversary A that makes at most q key queries
against the KP-ABE scheme, there exist probabilistic algorithms B1,B2,B3 such
that

Advkp-abeA (λ) ≤ AdvAS1

B1
(λ) + n · AdvAS3

B2
(λ) + AdvAS2

B3
(λ) + 1/p1 + (n+ 1)/p2,

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n),

where n is the size of universe attribute set and poly(λ, n) is independent of
Time(A).

5 It is easy to see that e(Cx
0 ,Dj) can in fact be computed using only a single pairing.

Semi-adaptive Attribute-Based Encryption and Improved Delegation 287

Overview. The proof follows via a series of games. To describe the games, we
must first define semi-functional keys and ciphertexts. Fix random generators
g1, g2, g3, and let x∗ denote the semi-adaptive challenge. We stress that unlike
standard dual system encryption, we allow the semi-functional secret keys to
depend on the semi-adaptive challenge x∗ (this is okay because in the semi-
adaptive security game, x∗ is fixed before the adversary sees any secret keys).
In the final transition (c.f. Lemma 3), we need to be able to simulate the secret
keys given gα1X2 (as provided in Assumption 2) instead of gα1 , so we define the
semi-functional secret keys to have additional random Gp2 -components for the
indices j corresponding to x∗ρ(j) = 0 as captured by the term α′

jeρ(j) below.

Semi-functional ciphertext.

ctx∗ :=

(
gs1 · gs

′
2 , g

s〈w,x∗〉
1 · gs

′〈w,x∗〉
2 , e(g1, g1)

αs ·m
)
,

where s′ ←r ZN .

Semi-functional secret key.

skA :=

⎛⎜⎝ g
αjeρ(j)+rjw
1 · gr

′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x
∗
ρ(j) = 1

g
αjeρ(j)+rjw
1 · g

α′
jeρ(j) +r′jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x
∗
ρ(j) = 0

⎞⎟⎠ ,
where fresh α′

1, . . . , α
′
� ←r ZN are chosen for each secret key (specifically, we

pick fresh α′
j ←r ZN for all j such that x∗ρ(j) = 0).

Remark 1 (decryption capabilities). Fix x∗,A such that x∗ satisfies A. Then,

– both semi-functional and normal secret key skA can decrypt a normal ci-
phertext ctx∗ ;

– a normal secret key skA can decrypt a semi-functional ciphertext ctx∗ ;

– a semi-functional secret key skA can decrypt a semi-functional ciphertext
ctx∗ ; this is because the j’th subkey (Dj , D0,j) corresponding to x∗ρ(j) =
0 is not used for decryption although it has an additional semi-functional

component g
α′

j

2 . This is different from a standard dual system encryption
argument, but is okay in our setting because x∗ is fixed semi-adaptively
before the adversary makes secret key queries.

Game Sequence. We consider the following sequence of games:

– Game0: is the real security game (c.f. Section 2.3).

– Game1: is the same as Game0 except that the challenge ciphertext is semi-
functional.

288 J. Chen and H. Wee

– Game2,k, k = 1, 2, . . . , n: we incrementally transform each normal secret key
to a semi-functional one, i.e. Game2,k is the same as Game1 except that, for
each secret key

skA :=
(
Dj , D0,j : j ∈ [�]

)
,

the j’th subkey (Dj , D0,j) is semi-functional if ρ(j) ≤ k, and normal if
ρ(j) > k. More precisely, skA has the distribution⎛⎜⎜⎝
g
αjeρ(j)+rjw
1 · gr

′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x
∗
ρ(j) = 1

g
αjeρ(j)+rjw

1 · gr
′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : (x
∗
ρ(j) = 0) ∧ (ρ(j) > k)

g
αjeρ(j)+rjw
1 · gα

′
jeρ(j)+r′jw

2 ·Xj, g
rj
1 · gr

′
j

2 · Zj : (x
∗
ρ(j) = 0) ∧ (ρ(j) ≤ k)

⎞⎟⎟⎠ ,
where fresh α′

1, . . . , α
′
� ←r ZN are chosen for each secret key. In other words,

from Game2,k−1 to Game2,k, we modify the first component Dj of the j’th
subkey for all j such that ρ(j) = k (that is, corresponds to the variable xk)
as follows:

• if x∗k = 1, leave it unchanged;

• if x∗k = 0, change the semi-functional component from g
r′jw
2 to g

α′
jek+r′jw

2 .

Note that in Game2,n, all keys are semi-functional.

– Game3: is the same as Game2,n except that the challenge ciphertext is a
semi-functional encryption of a random message in GT .

Fix an adversary A. We write Advxx(λ) to denote the advantage of A in Gamexx.
It is easy to see that Adv3(λ) = 0, because the view of the adversary is Game3 is
independent of the challenge bit β. We complete the proof by establishing the
following sequence of lemmas.

Lemma 1 (Normal to semi-functional ciphertext). There exists an ad-
versary B1 such that:

|Adv0(λ) − Adv1(λ)| ≤ AdvAS1

B1
(λ) + 1/p1 + 1/p2

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Proof. We construct an adversary B1 for Assumption 1 using A. Recall that in
Assumption 1, the adversary is given D := (G; g1, U1U2, g3), along with T , where
T is distributed as

gs1 or gs1g
s′
2 .

Here, B1 simulates Game0 if T := gs1 and Game1 if T := gs1g
s′
2 . The quantity

s, s′ in the assumption will correspond the random exponents s, s′ used in the
ciphertext.

Specifically, B1 proceeds as follows:

Semi-adaptive Attribute-Based Encryption and Improved Delegation 289

Setup. B1 samples α←r Zn, w ←r Zn
N and outputs

mpk := (e(g1, g
α
1), g1, g

w
1).

We note that

(α,w, g1, U1U2, g3;T)

is known to B1. The adversary A outputs a challenge x∗ := (x∗1, . . . , x
∗
n).

Challenge Ciphertext. Upon receiving two equal-length messagesm0 andm1

from A, B1 picks β ←r {0, 1} and outputs the semi-functional challenge
ciphertext as:

ctx∗ :=
(
T, T 〈w,x∗〉, e(T, gα1) ·mβ

)
.

Now, suppose T = gs1 · gs
′

2 , then,

T 〈w,x∗〉 := (gs1 · gs
′

2)〈w,x∗〉 = g
s〈w,x∗〉
1 g

s′〈w,x∗〉
2 ,

e(T, gα1) := e(gs1 · gs
′

2 , g
α
1) = e(g1, g1)

αs.

Now, if s′ = 0 (i.e., T = gs1), this would indeed be a normal encryption. On
the other hand, if s′ ←r ZN instead, this would indeed be a semi-functional
encryption.

Key Queries. On input A := (M, ρ), B1 needs to generate a normal key skA,
which has the distribution(

Dj := g
αjeρ(j)

1 · (grj1 · gr
′
j

2)w ·Xj , D0,j := (g
rj
1 · gr

′
j

2) · Zj : j ∈ [�]

)
.

B1 picks r̃j ←r ZN for j ∈ [�] and replaces g
rj
1 · gr

′
j

2 with (U1U2)
r̃j ; then, it

outputs

skA :=
(
g
αjeρ(j)

1 · (U1U2)
r̃jw ·Xj , (U1U2)

r̃j · Zj : j ∈ [�]
)
.

Observe that (U1U2)
r̃j is properly distributed as long as U1U2 is a generator

ofGp1p2 (by the Chinese Remainder Theorem), which occurs with probability
1− 1/p1 − 1/p2.

We may therefore conclude that: |Adv0(λ)−Adv1(λ)| ≤ AdvAS1

B1
(λ)+1/p1+1/p2.

��

Lemma 2 (Normal to semi-functional keys). For k = 1, . . . , n, there exists
an adversary B2 such that:

|Adv2,k−1(λ)− Adv2,k(λ)| ≤ AdvAS3

B2
(λ) + 1/p2

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A). (We note that Game2,0 is identical to Game1.)

290 J. Chen and H. Wee

Overview of proof. Fix k. We want to modify j’th subkey (Dj , D0,j) for all j
such that ρ(j) = k (that is, corresponds to the variable xk) as follows:

– if x∗k = 1, we leave it unchanged (in this case, Game2,k−1 and Game2,k are
identical);

– if x∗k = 0, we change the semi-functional component in Dj from g
r′jw
2 to

g
α′

jek+r′jw
2 using Assumption 3.

In the rest of the overview, we focus on the case x∗k = 0. Roughly speaking, we
rely on the fact that wk (mod p2) is statistically hidden given mpk to obtain

computational entropy as captured by {gα
′
j

2 : ρ(j) = k}. For simplicity, we first
consider a single subkey (Dj , D0,j) for which ρ(j) = k. Recall that (Dj , D0,j)
in Game2,k−1 and Game2,k are of the form:

(g
αjek+rjw
1 · gr

′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj) and

(g
αjek+rjw
1 · gα

′
jek+r′jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj)

Roughly speaking, it suffices to show that:

(gw1 , g
r′jw
2 ·Xj , g

r′j
2 · Zj) and (gw1 , g

α′
jek+r′jw

2 ·Xj , g
r′j
2 · Zj)

are computationally indistinguishable, where gw1 is provided in mpk. We may
further simplify this to show that:

(gwk
1 , g

r′jwk

2 ·Xj , g
r′j
2 · Zj) and (gwk

1 , g
α′

j+r′jwk

2 ·Xj , g
r′j
2 · Zj)

are computationally indistinguishable, where Xj , Zj ←r Gp3 . This follows essen-
tially from Assumption 3, which tells us that

(g
r′jwk

2 ·Xj, g
r′j
2 · Zj , g

wk
2 · Y3) and (g

α′
j+r′jwk

2 ·Xj , g
r′j
2 · Zj , g

wk
2 · Y3)

are computationally indistinguishable, where Xj , Zj, Y3 ← Gp3 . Here, we rely
crucially on the fact that wk (mod p2) is completely random given gwk

1 . To
handle multiple subkeys {(Dj , D0,j) : j ∈ ρ−1(k)}, we can proceed via a hybrid
argument, but that would yield a security loss of |ρ−1(k)|. To avoid this loss,
we rely on the re-randomization trick from [28]. Finally, note that we cannot
generate a semi-functional ciphertext for x∗ such that x∗k = 1 since we are only
given gwk

2 Y3 and not gwk
2 . (For the proof, it suffices to simulate a semi-functional

ciphertext for which x∗k = 0.)

Proof. We construct an adversary B2 (which gets as additional input k ∈ [n]) for
Assumption 3 using A. We note that the case x∗k = 1 is straight-forward since
Game2,k is identical to Game2,k−1, which means

|Adv2,k−1(λ)− Adv2,k(λ)| = 0 ≤ AdvAS3

B2
(λ).

Semi-adaptive Attribute-Based Encryption and Improved Delegation 291

This leaves us with k such that x∗k = 0. Recall that in Assumption 3, the adver-
sary is given D := (G; g1, U1U2, g

x
2X3, g

y
2Y3, g2U3, g3), along with T , where T is

distributed as
gxy2 W3 or gxy+z

2 W3.

Here, we assume that z ←r Z∗
p2
, which yields a 1/p2 negligible difference from

Assumption 3 in the advantage; B2 simulates Game2,k−1 if T = gxy2 W3 and
Game2,k if T = gxy+z

2 W3. Moreover, we use a “trick” from [28] to get a tight
security reduction and avoid losing a factor of �.

Specifically, B2 proceeds as follows:

Setup. B2 samples α ←r ZN , w̃ ←r Zn
N and implicitly sets the parameter

w := w̃ mod p1p3 (whereas w mod p2 is undetermined at this point). B2

outputs
mpk := (e(g1, g

α
1), g1, g

w̃
1).

Observe that this is indeed the correct distribution since gw1 = gw̃1 . Moreover,
we note that

(α, w̃, g3;U1U2, g
x
2X3, g

y
2Y3, g2U3;T)

is known to B2. Upon receiving a challenge x∗ := (x∗1, . . . , x
∗
n) for which

x∗k = 0, B2 implicitly sets the parameter w = w̃ + y · ek mod p2.

Challenge Ciphertext. Upon receiving two equal-length messagesm0 andm1

from A, B2 picks β ←r {0, 1} and outputs the semi-functional challenge
ciphertext as: (

U1U2, (U1U2)
〈w̃,x∗〉, e(gα1 , U1U2) ·mβ

)
.

Observe that this is indeed the correct distribution since 〈w̃,x∗〉 = 〈w,x∗〉
mod p1p2.

Key Queries. On input A := (M, ρ), B2 needs to generate a secret key skA of
the form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g
αjeρ(j)+rjw

1 · gr
′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x∗
ρ(j) = 1

g
αjeρ(j)+rjw

1 · gr
′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : (x∗
ρ(j) = 0) ∧ (ρ(j) > k)

g
αjeρ(j)+rjw

1 · gα
′
jeρ(j)+r′jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : (x∗
ρ(j) = 0) ∧ (ρ(j) < k)

g
αjeρ(j)+rjw

1 · g
r′jw
2 ·Xj , g

rj
1 · gr

′
j

2 · Zj : (x∗
ρ(j) = 0) ∧ (ρ(j) = k)

∧ (T = gxy2 W3)

g
αjeρ(j)+rjw

1 · g
α′
jeρ(j)+r′jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : (x∗
ρ(j) = 0) ∧ (ρ(j) = k)

∧ (T = gxy+z
2 W3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where α′
1, . . . , α

′
� ←r ZN . Note that we know α and can therefore compute

αj := Mju as in the normal KeyGen. We proceed via a case analysis for j.
The first three cases are straight-forward, observe that

gw̃1 = gw1 and gw2 = gw̃2 · (gy2)ek .

292 J. Chen and H. Wee

We simply use g2U3 and gy2Y3 in place of g2 and gy2 respectively and pick
rj , r

′
j , α

′
j ←r ZN .

This leaves us with j such that (x∗ρ(j) = 0) ∧ (ρ(j) = k). Here, B2 picks

δj , δ
′
j ←r ZN and implicitly sets

r′j := xδj + δ′j .

We can then rewrite the j’th normal subkey as:(
g
αjeρ(j)+rjw̃
1 · (g

xδj
2 · gδ

′
j

2)w̃ · (gxyδj2 · gyδ
′
j

2)eρ(j) ·Xj, g
rj
1 · (gxδj2 · gδ

′
j

2) · Zj

)
.

Here, we want to replace g2, g
x
2 , g

y
2 , g

xy
2 with g2U3, g

x
2X3, g

y
2Y3, T respectively.

First, B2 computes

Rj := (gx2X3)
δj · (g2U3)

δ′j = g
r′j
2 · (Xδj

3 U
δ′j
3),

and outputs as the j’th subkey(
g
αjeρ(j)+rjw̃

1 · Rw̃
j ·
(
T δj · (gy2Y3)δ

′
j
)eρ(j) ·Xj , g

rj
1 · Rj · Zj

)
.

Now, suppose T = gxy+z
2 W3. Then,

Rw̃
j ·
(
T δj · (gy2Y3)δ

′
j
)eρ(j) = g

zδjeρ(j)+r′jw
2 ·X ′

j

for some X ′
j ∈ Gn

p3
. Now, if z = 0 (i.e., T = gxy2 W3), this would indeed

be a normal subkey. On the other hand, if z ←r Z∗
p2
, this would be a

semi-functional subkey, with α′
j := zδj, and where (r′j , δj) are pairwise-

independent modulo p2.
In summary, B2 outputs as skA:

⎛
⎜⎜⎜⎜⎝

D̃j · Sj , D̃0,j · (g2U3)
r′j : x∗

ρ(j) = 1

D̃j · Sj , D̃0,j · (g2U3)
r′j : (x∗

ρ(j) = 0) ∧ (ρ(j) > k)

D̃j · (g2U3)
α′
jeρ(j) · Sj , D̃0,j · (g2U3)

r′j : (x∗
ρ(j) = 0) ∧ (ρ(j) < k)

D̃j · Rw̃
j ·

(
T δj · (gy2Y3)

δ′j
)eρ(j) , D̃0,j ·Rj : (x∗

ρ(j) = 0) ∧ (ρ(j) = k)

⎞
⎟⎟⎟⎟⎠

where

D̃j := g
αjeρ(j)+rjw̃

1 ·Xj ∈ Gn
p1p3

, D̃0,j := g
rj
1 · Zj ∈ Gp1p3 ,

Sj := (gy2Y3)
r′jek · (g2U3)

r′jw̃ ∈ Gn
p2p3

, Rj := (gx2X3)
δj · (g2U3)

δ′j ∈ Gp2p3 .

We may therefore conclude that: |Adv2,k−1(λ)−Adv2,k(λ)| ≤ AdvAS3

B2
(λ) + 1/p2.

��

Lemma 3 (Final transition). There exists an adversary B3 such that:

|Adv2,n(λ) − Adv3(λ)| ≤ AdvAS2

B3
(λ)

and Time(B3) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Semi-adaptive Attribute-Based Encryption and Improved Delegation 293

Overview of proof. Following the final transitions in [25, 27], we use Assumption 2,
in which we are given (g1, g

α
1X2, g

s
1Y2, g2, g3, T) where T is either e(g1, g1)

αs or
drawn uniformly fromGT to blind the challenge messagemβ . The main challenge
in our setting lies in simulating a semi-functional key skA given gα1X2 and not α
itself. Recall that a semi-functional key skA has the same distribution⎛⎜⎝ g

αjeρ(j)

1 · grjw1 · gr
′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x∗ρ(j) = 1

g
αjeρ(j)

1 · gα
′
jeρ(j)

2 · grjw1 · gr
′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x∗ρ(j) = 0

⎞⎟⎠
in both Game2,n and Game3. Specifically, we need to simulate (given g1, g2, g

α
1X2)⎛⎝ g

αj

1 : x∗ρ(j) = 1

g
αj

1 · gα
′
j

2 : x∗ρ(j) = 0

⎞⎠
where α1, . . . , α� are LSSS shares of α according to A = (M, ρ) and α′

1, . . . , α
′
�

are independently random values. Roughly speaking, we proceed as follows:

– simulate the terms (g
αj

1 : x∗ρ(j) = 1) by raising g1 to the power of random

LSSS shares of 0 (as determined by Mũ0 below);

– simulate the terms (g
αj

1 · gα
′
j

2 : x∗ρ(j) = 0) by doing a LSSS share of gα1X2 “in

the exponent” (as determined by αMũ1 below), multiplying by the shares
of 0 from the previous step, then re-randomizing the Gp2 -components.

We exploit the fact that x∗ does not satisfy A to argue that we can choose ũ1

so that Mx∗ũ1 = 0.

Proof. We construct an adversary B3 for Assumption 2 using A. Recall that
in Assumption 2, the adversary is given D := (G; g1, g

α
1X2, g

s
1Y2, g2, g3), along

with T , where T equals e(g1, g1)
αs or is drawn uniformly from GT . Here, B3

simulates Game2,n if T := e(g1, g1)
αs and Game3 if T ←r GT . The quantity α in

the assumption will correspond exactly to α in msk, and the quantity s in the
assumption will correspond the random exponents s used in the (semi-functional)
ciphertext.

Specifically, B3 proceeds as follows:

Setup. B3 samples w ←r Zn
N and output the public parameters

mpk := (e(g1, g
α
1X2), g1, g

w
1).

We note that
(w, g2, g3; g

α
1X2, g

s
1Y2;T)

is known to B3. The adversary A outputs a challenge x∗ := (x∗1, . . . , x
∗
n).

Challenge Ciphertext. Upon receiving two equal-length messagesm0 andm1

from A, B3 picks β ←r {0, 1} and outputs the semi-functional challenge
ciphertext as:

ctx∗ :=
(
gs1Y2, (g

s
1Y2)

〈w,x∗〉, T ·mβ

)
.

294 J. Chen and H. Wee

Now, if T is distributed as distributed as e(g1, g1)
αs, this would indeed be a

properly distributed semi-functional encryption of mβ . On the other hand,
if T ←r GT , instead, then the challenge ciphertext is a properly distributed
semi-functional encryption of a random message in GT .

Key Queries. On input A := (M, ρ), B3 needs to generate a semi-functional
key skA, which has the distribution⎛⎜⎝ g

αjeρ(j)

1 · grjw1 · gr
′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x∗ρ(j) = 1

g
αjeρ(j)

1 · gα
′
jeρ(j)

2 · grjw1 · gr
′
jw

2 ·Xj , g
rj
1 · gr

′
j

2 · Zj : x∗ρ(j) = 0

⎞⎟⎠ ,
where α′

1, . . . , α
′
� ←r ZN . The main challenge lies in simulating the terms g

αj

1

since B3 is only given gα1X2 and not α itself. By definition of the KP-ABE
security game, x∗ does not satisfy A, so 1 /∈ span〈Mx∗〉. (Refer to Definition 1
for the notation.) Therefore, we can efficiently compute ũ1 ∈ Z�′

N such that

Mx∗ũ1 = 0 and 1ũ1 = 1.

B3 samples ũ0 ←r Z�′
N such that 1ũ0 = 0, and implicitly sets

u := α · ũ1 + ũ0.

Observe that u has indeed the correct distribution. Recall that we set αj :=
Mju, which yields

αj =

{
Mjũ0 if x∗ρ(j) = 1

α ·Mjũ1 +Mjũ0 if x∗ρ(j) = 0

where both ũ1 and ũ0 are known to B3. The case j such that x∗ρ(j) = 1 is

straight-forward; B3 simply picks rj , r
′
j ←r ZN . For the case j such that

x∗ρ(j) = 0, we can then rewrite g
αj

1 · gα
′
j

2 as a function of ũ0, ũ1, and g
α
1X2:

g
αj

1 · gα
′
j

2 = g
α·Mjũ1+Mjũ0

1 · gα
′
j

2 = (gα1X2)
Mj ũ1 · gMj ũ0

1 · gα̃
′
j

2 ,

where B3 picks α̃′
j ←r ZN and implicitly sets g

α′
j

2 := X
Mjũ1

2 · gα̃
′
j

2 . B3 then
outputs

skA :=

⎛⎜⎝ g
Mjũ0eρ(j)

1 · D̃j , D0,j : x∗ρ(j) = 1(
(gα1X2)

Mj ũ1 · gMjũ0

1 · gα̃
′
j

2

)eρ(j) · D̃j , D0,j : x∗ρ(j) = 0

⎞⎟⎠ ,
where D̃j := g

rjw
1 · gr

′
jw

2 ·Xj and D̃0,j := g
rj
1 · gr

′
j

2 · Zj .

We may therefore conclude that: |Adv2,n(λ) − Adv3(λ)| ≤ AdvAS2

B3
(λ). ��

Semi-adaptive Attribute-Based Encryption and Improved Delegation 295

Acknowledgments. We thank Allison Lewko and the reviewers for helpful
discussions and feedback.

References

[1] Attrapadung, N.: Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

[2] Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

[3] Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D., Tech-
nion - Israel Institute of Technology (1996)

[4] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–
131. Springer, Heidelberg (2011)

[5] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

[6] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Hei-
delberg (2007)

[7] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

[8] Chen, J., Wee, H.: Fully (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

[9] Chen, J., Wee, H.: Fully (almost) tightly secure IBE from standard assumptions.
IACR Cryptology ePrint Archive, Report 2013/803, Preliminary version in [8]
(2013)

[10] Chen, J., Wee, H.: Dual system groups and its applications — compact HIBE and
more. IACR Cryptology ePrint Archive, Report 2014/265, Preliminary version in
[8] (2014)

[11] Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved del-
egation for boolean formula. IACR Cryptology ePrint Archive, Report 2014/465
(2014)

[12] Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures
via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 122–140. Springer, Heidelberg (2013)

[13] Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM
Conference on Computer and Communications Security, pp. 456–465 (2007)

[14] Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

[15] Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: ACM Conference on Computer and
Communications Security, pp. 501–512 (2012)

296 J. Chen and H. Wee

[16] Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

[17] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

[18] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

[19] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive
proofs for muggles. In: STOC, pp. 113–122 (2008)

[20] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

[21] Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 579–591. Springer, Heidelberg (2008)

[22] Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity
Theory Conference, pp. 102–111 (1993)

[23] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

[24] Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

[25] Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

[26] Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

[27] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

[28] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-
random functions. J. ACM 51(2), 231–262 (2004)

[29] Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

[30] Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

[31] Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

[32] Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

Semi-adaptive Attribute-Based Encryption and Improved Delegation 297

[33] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

[34] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely,
G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPT0 1984. LNCS, vol. 196,
pp. 47–53. Springer, Heidelberg (1985)

[35] Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: SCN Also, Cryptology ePrint
Archive, Report 2014/207 (to appear 2014)

[36] Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

[37] Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

[38] Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Expressive Attribute-Based Encryption

with Constant-Size Ciphertexts
from the Decisional Linear Assumption

Katsuyuki Takashima

Mitsubishi Electric, 5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. We propose a key-policy attribute-based encryption (KP-
ABE) scheme with constant-size ciphertexts, whose selective security is
proven under the decisional linear (DLIN) assumption in the standard
model. The proposed scheme also has semi-adaptively security, which is
a recently proposed notion of security. The access structure is expressive,
that is given by non-monotone span programs. It also has fast decryption,
i.e., a decryption includes only a constant number of pairing operations.
As an application of our KP-ABE construction, we also propose a fully
secure attribute-based signatures with constant-size secret (signing) keys
from the DLIN. For achieving the above results, we employ a hierarchical
reduction technique on dual pairing vector spaces and a modified form
of pairwise independence lemma specific to our proposed schemes.

1 Introduction

1.1 Backgrounds

The notion of attribute-based encryption (ABE) introduced by Sahai and Waters
[25] is an advanced class of encryption and provides more flexible and fine-
grained functionalities in sharing and distributing sensitive data than traditional
symmetric and public-key encryption as well as recent identity-based encryption.
In ABE systems, either one of the parameters for encryption and secret key is
a set of attributes, and the other is an access policy (structure) over a universe
of attributes, e.g., a secret key for a user is associated with an access policy and
a ciphertext is associated with a set of attributes. A secret key with a policy
can decrypt a ciphertext associated with a set of attributes, iff the attribute set
satisfies the policy. If the access policy is for a secret key, it is called key-policy
ABE (KP-ABE), and if the access policy is for encryption, it is ciphertext-policy
ABE (CP-ABE).

All the existing practical ABE schemes have been constructed by (bilinear)
pairing groups, and the largest class of relations supported by the ABE schemes
is (non-monotone) span programs (or (non-monotone) span programs with inner-
product relations [22]). While general (polynomial size) circuits are supported
[14,16] recently, they are much less efficient than the pairing-based ABE schemes

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 298–317, 2014.
c© Springer International Publishing Switzerland 2014

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 299

and non-practical when the relations are limited to span programs. Since our
aim is to achieve constant-size ciphertexts in the sizes of attribute set or access
policy in expressive ABE, hereafter, we focus on pairing-based ABE with span
program access structures. Here, “constant” is valid as long as the description
of the attribute or policy is not considered a part of the ciphertext, which is a
common assumption in the ABE application. Hence, we use “constant” in this
sense hereafter.

While the expressive access control (span programs) is very attractive, it also
requires additional cost in terms of ciphertext size and decryption time. Emura
et al. [13], Herranz et al. [17], and Chen et al. [8] constructed ABE schemes with
constant-size ciphertexts, but their access structures are very limited. Attra-
padung, Libert and de Panafieu [2] first constructed a KP-ABE scheme for span
programs with constant-size ciphertexts and fast decryption which needs only a
constant-number of pairing operations.

While Attrapadung et al.’s KP-ABE scheme (and subsequent works [30,1])
show an interesting approach to achieving constant-size ciphertexts with expres-
sive access structures, the security are proven only based on q-type assumptions
(n-DBDHE assumption with n the maximum number of attributes per cipher-
text and more complex EDHE assumptions). Previously, since the introduction
by Mitsunari et al. [19] and Boneh et al. [5], various kinds of q-type assump-
tions have been widely used in order to achieve efficient cryptographic primi-
tives [4,6,15,12,17]. However, the assumptions (and also the associated schemes)
suffered a special attack which was presented by Cheon [10] at Eurocrypt 2006.
More recently, Sakemi et al. [26] have shown that the attack can be a real threat
to q-type assumption-based cryptographic primitives by executing a successful
experiment. Consequently, it is very desirable that the above schemes should be
replaced by an efficiency-comparable alternative scheme based on a static (non-q
type) assumption instead of a q-type assumption. Very recently, Chen and Wee
[9] introduced the notion of semi-adaptive security for ABE, where the adversary
specifies the challenge attribute set after it sees the public parameters but be-
fore it makes any secret key queries, and they also constructed a small-universe
KP-ABE scheme with constant-size ciphertexts on composite-order groups.

Hence, to construct an expressive KP-ABE scheme with constant-size cipher-
texts from a static assumption on the prime-order groups remains an interesting
open problem in terms of practical and theoretical aspects on ABE. Also, since
there exist no attribute-based signatures (ABS) [18,24] with constant-size secret
keys, to construct ABS with constant-size secret keys is open.

1.2 Our Results

– We propose a KP-ABE scheme with constant-size ciphertexts, whose se-
lective security is proven from the DLIN assumption in the standard model
(Section 5). It is also semi-adaptively secure from the same assumption (The-
orem 2). The access structure is expressive, that is given by non-monotone
span programs. It also has fast decryption: a decryption includes only a con-
stant number of pairing operations, i.e., 17 pairings independently of the

300 K. Takashima

Table 1. Comparison of our scheme with KP-ABE for span programs with constant-size
ciphertexts in [2,1,9], where |G|, |GT |, |Γ |, n, 	, r, and ν represent size of an element of a
bilinear source group G, that of a target group GT , the maximum number of attributes
per ciphertext, and the number of rows and columns in access structure matrix for the
secret key, and the maximum number of the adversary’s key queries, respectively. PK,
SK, and CT stand for public key, secret key, and ciphertext, respectively.

ALdP11 [2] A14 [1] CW14 [9] Proposed

Universe large large small large

Security selective adaptive semi-adaptive
selective∗ and

semi-adaptive

Order of G prime composite composite prime

Assumption n-DBDHE
EDHE3 & 4 para-

metrized by n, 	, r

Static assump. on

composite order G
DLIN

Access

structures

Non-monotone

span program

Monotone

span program

Monotone

span program

Non-monotone

span program

PK size O(n) |G| O(n) |G| O(n) |G| O(n) |G|
SK size O(n) |G| O(n) |G| O(n) |G| O(n) |G|
CT size 3 |G|+ 1 |GT |∗∗ 6 |G|+ 1 |GT | 2 |G|+ 1 |GT | 17 |G|+ 1 |GT |

* While the reduction factor of the semi-adaptive security from DLIN is O(ν),
that of the selective security from DLIN is O(n).
** In a subsequent work [30], CT size is reduced to 2 |G|+ 1 |GT |.

sizes of the used attribute set and access structure. For comparison of our
scheme with previous KP-ABE for span programs with constant-size cipher-
texts, see Table 1.

– As an application of our KP-ABE construction, we also propose a fully se-
cure ABS scheme with constant-size secret (signing) key from the DLIN
assumption (Section 7 and the full version of this paper [27]).

– For achieving the above results, we employ a hierarchical reduction technique
on dual pairing vector spaces (DPVS) [21,22] and a modified form of pairwise
independence lemma specific to our proposed schemes, whose original form
was given in [23] for realizing constant-size ciphertexts or secret keys in
inner-product encryption. For the details, see Sections 1.3 and 6.

1.3 Key Techniques

As an underlying primitive, we employ a sparse matrix key-generation on DPVS
developed in [23], in which constant-size ciphertext zero/non-zero inner-product
encryption are constructed from DLIN. Using the basic construction [23], to
achieve short ciphertexts in our KP-ABE, attributes Γ := {xj}j=1,...,n′ are en-
coded in an n-dimensional (with n ≥ n′ + 1) vector �y := (y1, . . . , yn) such that∑n−1

j=0 yn−jz
j = zn−1−n′∏n′

j=1(z − xj) where y1 = 1. Each attribute value vi
(for i = 1, . . . , �) associated with a row of access structure matrix M (in S) is

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 301

encoded as �vi := (vn−1
i , . . . , vi, 1), so �y · �vi =

∏n−1
j=1 (vi − xj), i.e., the value of

inner product is equal to zero if and only if vi = xj for some j. Here, the relation
between S and Γ is determined by the multiple inner product values �y · �vi for
one vector �y which is equivalent to Γ . Hence, a ciphertext vector element c1 is
encoded with ω�y (for random ω), which is represented by twelve (constant in n)
group elements (as well as �y), and key vector elements k∗

i are encoded with �vi
and shares si (i = 1, . . . , �) for a central secret s0, respectively (see Section 5.1
for the key idea). A standard dual system encryption (DSE) approach consid-
ers a pair of vectors in the semi-functional space, (τ�y, ri�e1 + ψi�vi) or (τ�y, ri�vi)
with secret shares ri of a secret r0 and random τ, ψi, and then the vector pair
is randomized with preserving the inner product values based on a pairwise in-
dependence argument. Since we must deal with a common τ�y in all the above
pairs, we should modify the original argument for our scheme, which is based
on a modified form of pairwise independence lemma (Lemma 4) for a specific
matrix group H�y(n,Fq).

For the purpose, we prove the security in a hierarchical manner. First, we es-
tablish an intermediate problem (Problem 1 in Section 5.4) to prove the scheme’s
security, and then, the security of the problem is proven from the DLIN assump-
tion. Problem 1 is made for proving the selective security of our KP-ABE, which
takes a target vector �y as input. The queried keys (and the challenge ciphertext)
in the security games change to semi-functional form in DSE framework as given
in Eq. (7) (in particular, w0 is uniformly distributed in Fq). The difference of the
advantages of the adversary is bounded by the advantage gap of Problem 1 since
the target attributes do not satisfy access structures for queried keys. (See [20]
for a simpler example of this type argument.)

The security of the (intermediate) problem is reduced to that of DLIN through
multiple reduction steps (Lemma 3). A technical challenge for the security of
Problem 1 is to insert n random (sparse) matrices {Zj}j=1,...,n of size n×n which
fix �y i.e., �y = �y · (Zj)

T to key components {h∗
1,j,i} for j, i ∈ {1, . . . , n} when the

underlying matrix for the basis B1 is sparse. The randomness {Zj}j=1,...,n are
sequentially inserted in a consistent manner with the security condition on the
target �y and key queries. It is accomplished by applying computational (swap-
ping) game changes and information-theoretical (or conceptual) changes alter-
natingly (see Section 6.1 for the outline). For achieving the alternating changes,
the above matrices Zj are generated uniformly in an cleverly selected subgroup
H�y(n,Fq) with three nice properties, which are described in Section 6.2 in detail.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. We denote the finite field of order q by
Fq, and Fq \ {0} by F×

q . A vector symbol denotes a vector representation over
Fq, e.g., �x denotes (x1, . . . , xn) ∈ Fn

q . For two vectors �x = (x1, . . . , xn) and

�v = (v1, . . . , vn), �x·�v denotes the inner-product
∑n

i=1 xivi. The vector
�0 is abused

as the zero vector in Fn
q for any n.XT denotes the transpose of matrixX . A bold

302 K. Takashima

face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i =
1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace
generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN) and B∗ :=

(b∗1, . . . , b
∗
N), (x1, . . . , xN)B :=

∑N
i=1 xibi and (y1, . . . , yN)B∗ :=

∑N
i=1 yib

∗
i . �ej

denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · ·0) ∈ Fn

q . GL(n,Fq) denotes
the general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces and Decisional Linear
(DLIN) Assumption

For simplicity of description, we will present the proposed schemes on the sym-
metric version of dual pairing vector spaces (DPVS) [21] constructed using
symmetric bilinear pairing groups. For the asymmetric version of DPVS, see
Appendix A.2 of the full version of [22].

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

“Dual pairing vector spaces (DPVS)” of dimension N by a direct product of
symmetric pairing groups (q,G,GT , G, e) are given by prime q, N -dimensional

vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, and pairing

e : V×V→ GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi, Hi) ∈ GT where
x := (G1, . . . , GN) ∈ V and y := (H1, . . . , HN) ∈ V. This is nondegenerate
bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0.

Definition 2 (DLIN: Decisional Linear Assumption [5]). The DLIN prob-

lem is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)
R← GDLIN

β (1λ),

where GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), κ, δ, ξ, σ U← Fq, Y0 :=

(δ + σ)G, Y1
U← G, return (paramG, G, ξG, κG, δξG, σκG, Yβ), for β

U← {0, 1}.
For a probabilistic machine E, we define the advantage of E for the DLIN prob-

lem as: AdvDLIN
E (λ) :=

∣∣∣Pr [E(1λ, �)→1
∣∣∣� R←GDLIN

0 (1λ)
]
−Pr
[
E(1λ, �)→1

∣∣∣� R←
GDLIN
1 (1λ)

]∣∣ . The DLIN assumption is: For any probabilistic polynomial-time

adversary E, the advantage AdvDLIN
E (λ) is negligible in λ.

3 Definition of Key-Policy Attribute-Based Encryption

3.1 Span Programs and Non-monotone Access Structures

Definition 3 (Span Programs [3]). U (⊂ {0, 1}∗) is a universe, a set of
attributes, which is expressed by a value of attribute, i.e., v ∈ F×

q (:= Fq \

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 303

{0}). A span program over Fq is a labeled matrix S := (M,ρ) where M is a
(� × r) matrix over Fq and ρ is a labeling of the rows of M by literals from
{v, v′, . . . ,¬v,¬v′, . . .} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} →
{v, v′, . . . ,¬v,¬v′, . . .}.

A span program accepts or rejects an input by the following criterion. Let Γ be
a set of attributes, i.e., Γ := {xj}1≤j≤n′ . When Γ is given to access structure S,
map γ : {1, . . . , �} → {0, 1} for span program S := (M,ρ) is defined as follows:
For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = vi] ∧ [vi ∈ Γ] or [ρ(i) = ¬vi] ∧ [vi �∈ Γ].
Set γ(i) = 0 otherwise.

The span program S accepts Γ if and only if �1 ∈ span〈(Mi)γ(i)=1〉, i.e., some

linear combination of the rows (Mi)γ(i)=1 gives the all one vector �1. (The row
vector has the value 1 in eciphertextsach coordinate.)

A span program is called monotone if the labels of the rows are only the positive
literals {v, v′, . . .}. Monotone span programs compute monotone functions. (So,
a span program in general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now
construct a secret-sharing scheme for a non-monotone span program.

Definition 4. A secret-sharing scheme for span program S := (M,ρ) is:

1. Let M be � × r matrix. Let column vector �fT := (f1, . . . , fr)
T U← F r

q . Then,

s0 := �1 · �fT =
∑r

k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)
T :=

M · �fT is the � shares of the secret s0 and the share si belongs to ρ(i).
2. If span program S := (M,ρ) accepts Γ , i.e., �1 ∈ span〈(Mi)γ(i)=1〉 with γ :
{1, . . . , �} → {0, 1}, there exist constants {αi ∈ Fq | i ∈ I} such that I ⊆
{i ∈ {1, . . . , �} | γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these constants

{αi} can be computed in time polynomial in the size of the matrix M .

3.2 Key-Policy Attribute-Based Encryption (KP-ABE)

In key-policy attribute-based encryption (KP-ABE), encryption (resp. a secret
key) is associated with attributes Γ (resp. access structure S). Relation R for
KP-ABE is defined as R(S, Γ) = 1 iff access structure S accepts Γ .

Definition 5 (Key-Policy Attribute-Based Encryption: KP-ABE). A
key-policy attribute-based encryption scheme consists of probabilistic polynomial-
time algorithms Setup,KeyGen,Enc and Dec. They are given as follows:

Setup takes as input security parameter 1λ and a bound on the number of at-
tributes per ciphertext n. It outputs public parameters pk and master secret
key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access
structure S := (M,ρ). It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message
space msg, and a set of attributes, Γ := {xj}1≤j≤n′ . It outputs a ciphertext
ctΓ .

304 K. Takashima

Dec takes as input public parameters pk, secret key skS for access structure S,
and ciphertext ctΓ that was encrypted under a set of attributes Γ . It outputs
either m′ ∈ msg or the distinguished symbol ⊥.

A KP-ABE scheme should have the following correctness property: for all

(pk, sk)
R← Setup(1λ, n), all access structures S, all secret keys skS

R← KeyGen(pk,

sk, S), all messages m, all attribute sets Γ , all ciphertexts ctΓ
R← Enc(pk,m, Γ),

it holds that m = Dec(pk, skS, ctΓ) if S accepts Γ . Otherwise, it holds with
negligible probability.

Definition 6. The model for defining the selectively (resp. semi-adaptively)
payload-hiding security of KP-ABE under chosen plaintext attack is given by
the following game:

Setup. In the selective security, the adversary output a challenge attribute set,

Γ , the challenger runs the setup, (pk, sk)
R← Setup(1λ, n), and gives public

parameters pk to the adversary. In the semi-adaptive security, the adversary
specifies the challenge attribute set after it sees the public parameters.

Phase 1. The adversary is allowed to adaptively issue a polynomial number of
key queries, S, to the challenger provided that S does not accept Γ . The

challenger gives skS
R← KeyGen(pk, sk, S) to the adversary.

Challenge. The adversary submits two messages m(0),m(1). The challenger

flips a coin b
U← {0, 1}, and computes ct

(b)
Γ

R← Enc(pk,m(b), Γ). It gives ct
(b)
Γ

to the adversary.
Phase 2. Phase 1 is repeated with the restriction that no queried S accepts chal-

lenge Γ .
Guess. The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the selective (resp. semi-adaptive) game is de-

fined as AdvKP-ABE,SelA (λ) (resp.AdvKP-ABE,SAA (λ)) := Pr[A wins] − 1/2 for any
security parameter λ. A KP-ABE scheme is selectively (resp. semi-adaptively)
payload-hiding secure if all polynomial time adversaries have at most a negligible
advantage in the selective (resp. semi-adaptive) game.

4 Special Matrix Subgroups

Lemmas 1 and 2 are key lemmas for the security proof for our KP-ABE and
ABS schemes. For positive integers w, n and �y := (y1, .., yn) ∈ Fn

q \ span〈�en〉, let

H(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
u u′1
. . .

...
u u′n−1

u′n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
u, u′l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1)

H�y(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

1 u′1
. . .

...
1 u′n−1

u′n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
�u′ := (u′l)l=1,...,n ∈ Fn

q ,
u′n �= 0, �y · �u′ = yn,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (2)

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 305

Lemma 1. H�y(n,Fq) ⊂ H(n,Fq). H(n,Fq) ∩ GL(n,Fq) and H�y(n,Fq) are sub-
groups of GL(n,Fq).

Lemma 1 is directly verified from the definition of groups. ��
Let

L(w, n,Fq) :=⎧⎪⎪⎪⎨⎪⎪⎪⎩X :=

⎛⎜⎝X1,1 · · · X1,w

...
...

Xw,1 · · · Xw,w

⎞⎟⎠
∣∣∣∣∣∣∣Xi,j :=

⎛⎜⎜⎜⎝
μi,j μ′

i,j,1

. . .
...

μi,j μ
′
i,j,n−1

μ′
i,j,n

⎞⎟⎟⎟⎠
∈ H(n,Fq)
for i, j =
1, . . . , w

⎫⎪⎪⎪⎬⎪⎪⎪⎭⋂
GL(wn,Fq). (3)

Lemma 2. L(w, n,Fq) is a subgroup of GL(wn,Fq).

The proof of Lemma 2 is given in Appendix A in the full version of [23].

5 Proposed KP-ABE Scheme with Constant Size
Ciphertexts

5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme

In this section, we will explain key ideas of constructing and proving the security
of the proposed KP-ABE scheme.

First, we will show how short ciphertexts and efficient decryption can be
achieved in our scheme, where the IPE scheme given in [23] is used as a building
block. Here, we will use a simplified (or toy) version of the proposed KP-ABE
scheme, for which the security is no more ensured in the standard model under
the DLIN assumption.

A ciphertext in the simplified KP-ABE scheme consists of two vector ele-
ments, (c0, c1) ∈ G5 × Gn, and c3 ∈ GT . A secret-key consists of � + 1 vec-

tor elements, (k∗
0 ,k

∗
1 , . . . ,k

∗
�) ∈ G5 × (Gn)

�
for access structure S := (M,ρ),

where the number of rows of M is � and k∗
i with i ≥ 1 corresponds to the

i-th row. Therefore, to achieve constant-size ciphertexts, we have to compress
c1 ∈ Gn to a constant size in n. We now employ a special form of basis gener-

ation matrix, X :=

⎛⎜⎜⎜⎝
μ μ′

1

. . .
...

μ μ′
n−1

μ′
n

⎞⎟⎟⎟⎠ ∈ H(n,Fq) of Eq. (1) in Section 4, where

μ, μ′
1, . . . , μ

′
n

U← Fq and a blank in the matrix denotes 0 ∈ Fq. The public key

(DPVS basis) is B :=

⎛⎜⎜⎜⎝
b1
...

bn

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
μG μ′

1G
. . .

...
μG μ′

n−1G
μ′
nG

⎞⎟⎟⎟⎠. Let a ciphertext as-

sociated with Γ := {x1, . . . , xn′} be c1 := (ω�y)B = ω(y1b1 + · · · + ynbn) =

306 K. Takashima

(y1ωμG, . . . , yn−1ωμG, ω(
∑n

i=1 yiμ
′
i)G), where ω

U← Fq and �y := (y1, . . . , yn)

such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ·

∏n
j=1(z − xj). Then, c1 can be compressed

to only two group elements (C1 := ωμG, C2 := ω(
∑n

i=1 yiμ
′
i)G) as well as �y,

since c1 can be obtained by (y1C1, . . . , yn−1C1, C2) (note that yiC1 = yiωμG
for i = 1, . . . , n − 1). That is, a ciphertext (excluding �y) can be just two group
elements, or the size is constant in n.

Let B∗ := (b∗i) be the dual orthonormal basis of B := (bi), and B∗ be the
master secret key in the simplified KP-ABE scheme. We specify (c0,k

∗
0 , c3) such

that e(c0,k
∗
0) = gζ−ωs0

T and c3 := gζTm ∈ GT with s0 is a center secret of
shares {si}i=1,...,� associated with access structure S. Using {si}i=1,...,�, we also
set a secret-key for S as k∗

i := (si�e1 + θi�vi)B∗ if ρ(i) = vi and k∗
i := (si�vi)B∗ if

ρ(i) = ¬vi where �vi := (vn−1
i , . . . , vi, 1) and θi

U← Fq. From the dual orthonor-
mality of B and B∗, if S accepts Γ , there exist a system of coefficients {αi}i∈I

such that e(c1, k̃
∗) = gωs0

T , where k̃∗ :=
∑

i∈I ∧ ρ(i)=vi
αik

∗
i +
∑

i∈I ∧ ρ(i)=¬vi
αi(�y·

�vi)
−1k∗

i . Hence, a decryptor can compute gωs0
T if and only if S accepts Γ , i.e.,

can obtain plaintext m. Since c1 is expressed as (y1C1, . . . , yn−1C1, C2) ∈ Gn

and k̃∗ is parsed as a n-tuple (D∗
1 , . . . , D

∗
n) ∈ Gn, the value of e(c1, k̃

∗) is∏n−1
i=1 e(yiC1, D

∗
i)·e(C2, D

∗
n) =
∏n−1

i=1 e(C1, yiD
∗
i)·e(C2, D

∗
n) = e(C1,

∑n−1
i=1 yiD

∗
i)·

e(C2, D
∗
n). That is, n− 1 scalar multiplications in G and two pairing operations

are enough for computing e(c1, k̃
∗). Therefore, only a small (constant) number

of pairing operations are required for decryption.
We then explain how our full KP-ABE scheme is constructed on the above-

mentioned simplified KP-ABE scheme. The target of designing the full KP-ABE
scheme is to achieve the selective (resp. semi-adaptive) security under the DLIN
assumption. Here, we adopt and extend a strategy initiated in [22], in which the
dual system encryption methodology is employed in a modular or hierarchical
manner. That is, one top level assumption, the security of Problem 1, is directly
used in the dual system encryption methodology and the assumption is reduced
to a primitive assumption, the DLIN assumption.

To meet the requirements for applying to the dual system encryption method-
ology and reducing to the DLIN assumption, the underlying vector space is six
times greater than that of the above-mentioned simplified scheme. For example,
k∗
i := (si�e1 + θi�vi, 02n, �ηi, 0n)B∗

1
if ρ(i) = vi, k

∗
i := (si�vi, 02n, �ηi, 0n)B∗

1
if

ρ(i) = ¬vi, c1 = (ω�y, 02n, 02n, ϕ1�y)B1 , andX :=

⎛⎜⎝X1,1 · · · X1,6

...
...

X6,1 · · · X6,6

⎞⎟⎠ ∈ L(6, n,Fq)

of Eq. (3) in Section 4, where each Xi,j is of the form of X ∈ H(n,Fq) in the sim-
plified scheme. The vector space consists of four orthogonal subspaces, i.e., real
encoding part, hidden part, secret-key randomness part, and ciphertext random-
ness part. The simplified KP-ABE scheme corresponds to the first real encoding
part.

A key fact in the security reduction is that L(6, n,Fq) is a subgroup of
GL(6n,Fq) (Lemma 2), which enables a random-self-reducibility argument for

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 307

reducing the intractability of Problem 1 in Definition 7 to the DLIN assump-
tion. For the reduction, see [23]. The property that H�y(n,Fq) is a subgroup of
GL(n,Fq) is also crucial for a special form of pairwise independence lemma in
this paper (Lemma 4), where a super-group H(n,Fq) ∩GL(n,Fq)(⊃ H�y(n,Fq))
is specified in L(6, n,Fq) or X . Our Problem 1 employs the special form matrices

{Uj
U← H�y(n,Fq)} and {Zj := (U−1

j)T}, and makes Lemma 4 applicable in our
proof. Informally, our pairwise independence lemma implies that, for all (�y,�v),
a vector, �vZ, is uniformly distributed over Fn

q \ span〈�en〉⊥ with preserving the
inner-product value, �y · �v, i.e., �vZ reveal no information but (�y and) �y · �v.

5.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GKP-ABE
ob using a sparse

matrix given by Eq. (3), which is used in the proposed KP-ABE scheme.

GKP-ABE
ob (1λ, 6, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N0 := 5, N1 := 6n,

ψ
U← F×

q , gT := e(G,G)ψ , paramn := (paramG, {Nt}t=0,1, gT),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L(6, n,Fq), hereafter,

{μi,j , μ
′
i,j,l}i,j=1,...,6;l=1,...,n denotes non-zero entries of X1 as in Eq. (3),

b0,i := (χ0,i,1G, .., χ0,i,5G) for i = 1, .., 5, B0 := (b0,1, .., b0,5),

Bi,j := μi,jG, B
′
i,j,l := μ′

i,j,lG for i, j = 1, . . . , 6; l = 1, . . . , n,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t)

−1,

b∗t,i := (ϑt,i,1G, .., ϑt,i,NtG) for i = 1, .., Nt, B∗
t := (b∗t,1, .., b

∗
t,Nt

),

return (paramn,B0,B
∗
0, {Bi,j , B

′
i,j,l}i,j=1,...,6;l=1,...,n,B

∗
1).

Remark 1. Let

⎛⎜⎜⎝
b1,(i−1)n+1

...

b1,in

⎞⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎝
Bi,1 B′

i,1,1

. . .
...

Bi,1 B
′
i,1,n−1

B′
i,1,n

· · ·

Bi,6 B′
i,6,1

. . .
...

Bi,6 B
′
i,6,n−1

B′
i,6,n

⎞⎟⎟⎟⎟⎟⎠
for i = 1, . . . , 6,

and B1 := (b1,1, . . . , b1,6n),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

where a blank element in the matrix denotes 0 ∈ G. B1 is the dual orthonormal
basis of B∗

1, i.e., e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1 ≤ i �= j ≤ 6n.

5.3 Construction

We note that attributes xj , vi are in F×
q , i.e., nonzero.

308 K. Takashima

Setup(1λ, n) :

(paramn,B0,B
∗
0, {Bi,j , B

′
i,j,l}i,j=1,...,6;l=1,...,n,B

∗
1)

R← GKP-ABE
ob (1λ, 6, n)),

B̂0 := (b0,1, b0,3, b0,5),

B̂1 := (b1,1, . . . , b1,n, b1,5n+1, . . . , b1,6n) = {Bi,j, B
′
i,j,l}i=1,6;j=1,...,6;l=1,...,n,

B̂∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂∗

1 := (b∗1,1, . . . , b
∗
1,n, b

∗
1,3n+1, . . . , b

∗
1,5n),

pk := (1λ, paramn, {B̂t}t=0,1), sk := {B̂∗
t }t=0,1, return pk, sk.

KeyGen(pk, sk, S := (M,ρ)) :

�f
U← F r

q , �s
T := (s1, . . . , s�)

T :=M · �fT, s0 := �1 · �fT, η0
U← Fq,

k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �, �vi := (vn−1
i , . . . , vi, 1) for ρ(i) = vi or ¬vi, �ηi U← F 2n

q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷
if ρ(i) = vi, θi

U← Fq, k
∗
i := (si�e1 + θi�vi, 02n, �ηi, 0n)B∗

1
,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷
if ρ(i) = ¬vi, k∗

i := (si�vi, 02n, �ηi, 0n)B∗
1
,

return skS := (S,k∗
0 ,k

∗
1 , . . . ,k

∗
�).

Enc(pk, m, Γ := {x1, . . . , xn′ | xj ∈ F×
q , n

′ ≤ n− 1}) : ω, ϕ0, ϕ1, ζ
U← Fq,

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ·

∏n′

j=1(z − xj),

c0 := (ω, 0, ζ, 0, ϕ0)B0 ,

C1,j := ωB1,j + ϕ1B6,j , C2,j :=
∑n

l=1 yl(ωB
′
1,j,l + ϕ1B

′
6,j,l) for j = 1, .., 6,

c3 := gζTm, ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, c3). return ctΓ .

Dec(pk, skS := (S,k∗
0 ,k

∗
1, . . . ,k

∗
�), ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, c3)) :

If S := (M,ρ) accepts Γ := {x1, . . . , xn′}, then compute I and {αi}i∈I

such that �1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ] ∨ [ρ(i) = ¬vi ∧ vi �∈ Γ] },
�y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·
∏n′

j=1(z − xj),

(D∗
1 , . . . , D

∗
6n) :=

∑
i∈I ∧ ρ(i)=vi

αik
∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi

�vi · �y
k∗
i ,

E∗
j :=
∑n−1

l=1 yl−1D
∗
(j−1)n+l for j = 1, . . . , 6,

K := e(c0,k
∗
0) ·
∏6

j=1

(
e(C1,j , E

∗
j) · e(C2,j , D

∗
jn)
)
, return m′ := c3/K.

Remark 2. A part of the output of Setup(1λ, n), {Bi,j , B
′
i,j,l}i=1,6;j=1,..,6;l=1,..,n,

can be identified with B̂1 := (b1,1, . . . , b1,n, b1,5n+1, .., b1,6n) through the form of
Eq. (4), while B1 := (b1,1, . . . , b1,6n) is identified with {Bi,j , B

′
i,j,l}i,j=1,..,6; l=1,..,n

by Eq. (4). Decryption Dec can be alternatively described as:

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 309

Dec′(pk, skS := (S,k∗
0 ,k

∗
1, . . . ,k

∗
�), ctΓ := (Γ, c0, {C1,j, C2,j}j=1,...,6, c3)) :

If S := (M,ρ) accepts Γ := {x1, . . . , xn′}, then compute I and {αi}i∈I

such that �1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ] ∨ [ρ(i) = ¬vi ∧ vi �∈ Γ] },
�y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·
∏n′

j=1(z − xj),
n︷ ︸︸ ︷ n︷ ︸︸ ︷

c1 := (y1C1,1, .., yn−1C1,1, C2,1, y1C1,2, .., yn−1C1,2, C2,2, · · ·
y1C1,5, .., yn−1C1,5, C2,5, y1C1,6, .., yn−1C1,6, C2,6),

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
that is, c1 = (ω�y, 02n, 02n, ϕ1�y)B1 ,

K := e(c0,k
∗
0) · e

⎛⎝c1, ∑
i∈I ∧ ρ(i)=vi

αik
∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi

�vi · �y
k∗
i

⎞⎠ ,
return m′ := c3/K.

[Correctness] e(c0,k
∗
0)
∏

i∈I∧ρ(i)=vi
e(c1,k

∗
i)

αi ·
∏

i∈I∧ρ(i)=¬vi
e(c1,k

∗
i)

αi/(�vi·�y)

= g−ωs0+ζ
T

∏
i∈I∧ρ(i)=vi

gωαisi
T

∏
i∈I∧ρ(i)=¬vi

g
ωαisi(�vi·�y)/(�vi·�y)
T

= g
ω(−s0+

∑
i∈I αisi)+ζ

T = gζT .

5.4 Security

Theorem 1. The proposed KP-ABE scheme is selectively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there is a probabilistic machine F , whose running time
is essentially the same as that of A, such that for any security parameter λ,
AdvKP-ABE,SelA (λ) ≤

∑n
j=0

∑2
ι=1 Adv

DLIN
Fj,ι

(λ) +ε, where Fj,ι(·) := F(j, ι, ·) for
j = 0, . . . , n; ι = 1, 2, ε := (ν�+ 10n+ 12)/q, and ν is the maximum number of
A’s key queries, � is the maximum number of rows in access matrices M of the
key queries.

Theorem 2. The proposed KP-ABE scheme is semi-adaptively payload-hiding
against chosen plaintext attacks under the DLIN assumption.

The reduction factor of the semi-adaptive security from the DLIN is O(ν�) where
ν, � are defined in Theorem 1. Theorem 2 is proven in the full version [27].

Proof Outline of Theorem 1. At the top level strategy of the security proof,
the dual system encryption by Waters [29] is employed, where ciphertexts and
secret keys have two forms, normal and semi-functional. The real system uses
only normal ciphertexts and normal secret keys, and semi-functional ciphertexts
and keys are used only in subsequent security games for the security proof.

To prove this theorem, we employ Game 0 (original selective-security game)
through Game 2. In Game 1, the challenge ciphertext and all queried keys are

310 K. Takashima

changed to semi-functional form, respectively. In Game 2, the challenge cipher-
text is changed to non-functional form. In the final game, the advantage of the
adversary is zero. As usual, we prove that the advantage gaps between neigh-
boring games are negligible.

A normal secret key (with access structure S), is the correct form of the secret
key of the proposed KP-ABE scheme, and is expressed by Eq. (5). Similarly, a
normal ciphertext (with attributes Γ) is expressed by Eq. (6). A semi-functional
ciphertext is expressed by Eq. (8). A semi-functional key is expressed by Eq. (7).
A non-functional ciphertext is expressed by Eq. (9) (with c1 in Eq. (8)).

To prove that the advantage gap between Games 0 and 1 is bounded by the
advantage of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the
challenger of Game 0 (or 1) (against an adversary A) by using an instance with

β
U← {0, 1} of Problem 1. We then show that the distribution of the secret keys

and challenge ciphertext replied by the simulator is equivalent to those of Game
0 when β = 0 and those of Game 1 when β = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma
5). The advantage of Problem 1 is proven to be equivalent to (2n+ 2)-times of
that of the DLIN assumption (Lemma 3).

We then show that Game 1 can be conceptually changed to Game 2 (Lemma
6), by using the fact that parts of bases, b0,2 and b∗0,3, are unknown to the
adversary. In the conceptual change, we use the fact that the challenge ciphertext
and all queried keys are semi-functional, i.e., respective coefficients of b0,2 and
b∗0,2 are random.

Key Lemmas. We will show Lemmas 3 and 4 for the proof of Theorem 1.

Definition 7 (Problem 1). Problem 1 is to guess β, given (paramn,

{B̂ι, B̂∗
ι }ι=0,1,h

∗
β,0, eβ,0, {h∗

β,j,i}j=1,...,n; i=1,...,n, eβ,1)
R← GP1

β (1λ, n, �y), where

GP1
β (1λ, n, �y) :

(paramn,B0,B
∗
0, {Bi,j , B

′
i,j,l}i,j=1,...,6;l=1,...,n,B

∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, . . . , b0,5), B̂∗
0 := (b∗0,1, b

∗
0,3, . . . , b

∗
0,5),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (1)

from {Bi,j , B
′
i,j,l}i,j=1,...,6;l=1,...,n,

B̂∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,3n+1, .., b

∗
1,6n), δ, δ0, ω, ϕ0, ϕ1

U← Fq, τ, ρ
U← F×

q ,

h∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, ρ, 0, δ0, 0)B∗
0
,

e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 ,

for j = 1, .., n; i = 1, .., n; �ei := (0i−1, 1, 0n−i) ∈ Fn
q ,

�δj,i
U← F 2n

q ,

Uj
U← H�y(n,Fq), Zj := (U−1

j)T,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
0,j,i := (δ�ei, 02n, �δj,i, 0n)B∗

1

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 311

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
1,j,i := (δ�ei, 0n, ρ�ei · Zj , �δj,i, 0n)B∗

1

e0,1 := (ω�y, 02n, 02n, ϕ1�y)B1 ,
e1,1 := (ω�y, τ�y, τ�y, 02n, ϕ1�y)B1 ,

return (paramn, {B̂ι, B̂
∗
ι }ι=0,1,h

∗
β,0, eβ,0, {h∗

β,j,i}j=1,...,n; i=1,...,n, eβ,1),

for β
U← {0, 1}. For a probabilistic adversary B, we define the advantage of B as

the quantity AdvP1B (λ) :=
∣∣∣Pr [B(1λ, �)→ 1

∣∣∣� R← GP1
0 (1λ, n)

]
− Pr
[
B(1λ, �)→ 1 |

�
R← GP1

1 (1λ, n)
]∣∣∣ .

Lemma 3. Problem 1 is computationally intractable under the DLIN assump-
tion.

For any adversary B, there are probabilistic machines Fj,ι (j = 0, . . . , n; ι =
1, 2), whose running times are essentially the same as that of B, such that for

any security parameter λ, AdvP1B (λ) ≤
∑n

j=0

∑2
ι=1 Adv

DLIN
Fj,ι

(λ) + (10n+ 10)/q.

The proof of Lemma 3 is given in the full version of this paper [27]. For an
outline of the proof, see Section 6.

Next is a key lemma for applying the proof techniques in [22] to our KP-ABE
and ABS schemes.

Lemma 4. For all �y ∈ Fn
q \ span〈�en〉 and π ∈ Fq, let W�y,π := {�w ∈ Fn

q \
span〈�en〉⊥ | �y · �w = π}, where span〈�en〉⊥ := {�w ∈ Fn

q | �w · �en = 0}.
For all (�y,�v) ∈

(
Fn
q \ span〈�en〉

)
×
(
Fn
q \ span〈�en〉⊥

)
, if Z is generated as U

U←
H�y(n,Fq) and Z := (U−1)T where H�y(n,Fq) is defined by Eq. (2), then �vZ is
uniformly distributed in W�y,(�y·�v).

The proof of Lemma 4 is given in the full version of this paper [27].

Proof of Theorem 1 : To prove Theorem 1, we consider the following 3
games. In Game 0, a part framed by a box indicates coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates
coefficients which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query for access structure
S := (M,ρ) is:

k∗
0 := (−s0, 0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �;
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷

if ρ(i) = vi, k∗
i := (si�e1 + θi�vi, 0n, 0n , �ηi, 0n)B∗

1
,

if ρ(i) = ¬vi, k∗
i := (si�vi, 0n, 0n , �ηi, 0n)B∗

1
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

where �f
U← F r

q , �s
T := (s1, . . . , s�)

T := M · �fT, s0 := �1 · �fT, (s′1, . . . , s
′
�)

U←
F �
q , θi, η0

U← Fq, �ηi
U← Fn

q , �e1 = (1, 0, . . . , 0) ∈ Fn
q , and �vi := (vn−1

i , . . . , vi, 1) ∈

312 K. Takashima

(F×
q)n. The challenge ciphertext for challenge plaintexts (m(0),m(1)) and Γ :=

{x1, . . . , xn′} with n′ ≤ n− 1 is:

c0 := (ω, 0 , ζ , 0, ϕ0)B0 , c3 := gζTm
(b),

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := (ω�y, 02n , 02n, ϕ1�y)B1 ,

⎫⎪⎪⎬⎪⎪⎭ (6)

where b
U← {0, 1};ω, ζ, ϕ0, ϕ1

U← Fq, and �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j

= zn−1−n′ ·
∏n′

j=1(z − xj).

Game 1 : Same as Game 0 except that the reply to a key query for access
structure S := (M,ρ) are:

k∗
0 := (−s0, w0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �;
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷

if ρ(i) = vi, k∗
i := (si�e1 + θi�vi, 0n, �wi , �ηi, 0n)B∗

1
,

if ρ(i) = ¬vi, k∗
i := (si�vi, 0n, �wi , �ηi, 0n)B∗

1
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7)

where �g
U← F r

q , �r
T := (r1, . . . , r�)

T := M · �gT, w0
U← Fq, ψi

U← Fq, �wi
U← {�wi ∈

Fn
q | �wi ·�y = (ri�e1+ψi�vi) ·�y}, �wi

U← {�wi ∈ Fn
q | �wi ·�y = ri�vi ·�y}, and the challenge

ciphertext is:

c0 := (ω, τ , ζ, 0, ϕ0)B0 , c3 := gζTm
(b),

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := (ω�y, τ�y, τ�y , 02n, ϕ1�y)B1 ,

⎫⎪⎪⎬⎪⎪⎭ (8)

where τ
U← Fq, and all the other variables are generated as in Game 0.

Game 2 : Game 2 is the same as Game 1 except c0 (and c3) of the challenge
ciphertext are

c0 := (ω, τ, ζ′ , 0, ϕ0)B0 , c3 := gζTm
(b), (9)

where ζ′
U← Fq (i.e., independent from ζ

U← Fq), and all the other variables are
generated as in Game 1.

Let Adv
(0)
A (λ),Adv

(1)
A (λ), and Adv

(2)
A (λ) be the advantage of A in Game 0,1

and 2, respectively. Adv
(0)
A (λ) is equivalent to AdvKP-ABE,PHA (λ) and it is clear

that Adv
(2)
A (λ) = 0 by Lemma 7. We will show Lemmas 5 and 6 that evaluate

the gaps between pairs of Adv
(0)
A (λ), Adv

(1)
A (λ),Adv

(2)
A (λ). From these lemmas

and Lemma 3, we obtain AdvKP-ABEA (λ) = Adv
(0)
A (λ) ≤

∣∣∣Adv(0)A (λ) − Adv
(1)
A (λ)
∣∣∣+∣∣∣Adv(1)A (λ) − Adv

(2)
A (λ)
∣∣∣ ≤ AdvP1B (λ)+(ν�+2)/q ≤

∑n
j=0

∑2
ι=1 Adv

DLIN
Fj,ι

(λ)+(ν�+

10n+ 12)/q. This completes the proof of Theorem 1. ��

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 313

Lemma 5. For any adversary A, there exists a probabilistic machine B, whose
running time is essentially the same as that of A, such that for any security

parameter λ, |Adv(1)A (λ) − Adv
(0)
A (λ)| ≤ AdvP1B (λ) + (ν� + 1)/q, where ν is the

maximum number of A’s key queries, � is the maximum number of rows in
access matrices M of key queries.

The proof of Lemma 5 is given in the full version of this paper [27].

Lemma 6. For any adversary A, for any security parameter λ, |Adv(2)A (λ) −
Adv

(1)
A (λ)| ≤ 1/q.

Lemma 6 is proven in a similar manner to Lemma 7 in the full version of [22].

Lemma 7. For any adversary A, for any security parameter λ, Adv
(2)
A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 2. Hence,

Adv
(2)
A (λ) = 0. ��

6 Proof Outline of Lemma 3

6.1 Iteration of Swapping and Conceptual Change

Lemma 3 is proven by the hybrid argument through 2n+2 experiments (given in
the full version): Experiment 0⇒ Experiment 1⇒ for j = 1, . . . , n; Experiment
2-j-1 ⇒ Experiment 2-j-2

First, in a β = 0 instance of Problem 1 (Experiment 0), coefficients of the
hidden parts of e1 and h∗

κ,i (κ = 1, . . . , n) are all zero. Then, in the next Exper-

iment 1, that of e1 is filled with (τ�y, τ�y) ∈ F 2n
q and the first n-dim. coefficient

(block) of the hidden parts of h∗
κ,i (κ = 1, . . . , n) are changed to ρ�ei ∈ Fn

q as:
(Hereafter, a blank indicates zero coefficients)

Coefficients of the hidden part
of e1 in Experiment 0

Coefficients of the hidden part
of e1 in Experiment 1

−→ τ�y τ�y

Coefficients of the hidden part
of h∗

κ,i in Experiment 0
Coefficients of the hidden part
of h∗

κ,i in Experiment 1

κ = 1
...
j
...
n

−→

κ = 1 ρ�ei
...

...
j
...
n ρ�ei

After that, in turn for j = 1, . . . , n, the coefficient vector ρ�ei ∈ Fn
q is swapped

to the second block of the hidden parts of h∗
j,i in Experiment 2-j-1 and the

314 K. Takashima

coefficient vector is conceptually (information-theoretically) changed to ρ�eiZj in
Experiment 2-j-2 by a conceptual basis change. The swapping can be securely
executed under the DLIN assumption. At the final Experiment 2-n-2, each ρ�eiZj

(j = 1, . . . , n) is embedded in the second block of hidden parts in h∗
j,i, i.e., an

instance of Experiment 2-n-2 is equivalent to a β = 1 instance of Problem 1.

Coefficients of the hidden part
of h∗

κ,i in Experiment 2-(j − 1)-2
Coefficients of the hidden part
of h∗

κ,i in Experiment 2-j-1

→ ·· →

κ = 1 ρ�eiZ1

...
...

j ρ�ei
...

...
n ρ�ei

swap
−→

κ = 1 ρ�eiZ1

...
...

j ρ�ei
...

...
n ρ�ei

Coefficients of the hidden part
of h∗

κ,i in Experiment 2-j-2
Coefficients of the hidden part
of h∗

κ,i in Experiment 2-n-2

insert
Zj−→

κ = 1 ρ�eiZ1

...
...

j ρ�eiZj

...
...

n ρ�ei

→ ·· →

κ = 1 ρ�eiZ1

...
...

j ρ�eiZj

...
...

n ρ�eiZn

Insertion of Zj is realized by a conceptual basis change determined by Zj (see
item 3 in Section 6.2).

6.2 Key Properties of H�y(n, Fq)

In order to achieve the game transformations given above, in particular, change
into Experiment 2-j-2, the transformation (�y,�v) �→ (�yU,�vZ) by (U,Z) with

U
U← H�y(n,Fq) and Z := (U−1)T is required to satisfy the following conditions.

1. It fixes the target �y, i.e., �yU = �y, which is obvious by the definition of
H�y(n,Fq). If �yU was uniformly distributed in a large subspace outside of
span〈�y〉, the challenger would fail the simulation for the above game changes.

2. �vZ distributes uniformly in W�y,(�y·�v) := {�w ∈ Fn
q \ span〈�en〉⊥ | �y · �w = �y · �v}

(Lemma 4). That is, if �y ·�v �= 0 and is uniformly random (resp. �y ·�v = 0), �vZ
distributes uniformly in Fn

q (resp. in the hyperplane that is perpendicular to
�y) except for negligible probability.

3. H�y(n,Fq) is a subgroup of GL(n,Fq) (Lemma 1). This fact realizes (iterated)
information-theoretical changes into Experiment 2-j-2 since (Z1, . . . , Zj−1,
In)Zj = (Z1Zj , . . . , Zj−1Zj, Zj) is uniformly distributed in H�y(n,Fq)

j if

Zi
U← H�y(n,Fq) for i = 1, . . . , j.

Lemma 4 is considered to be a pairwise independence lemma specific to
H�y(n,Fq). For comparison, we describe the lemma for H(n,Fq) in [23] below.

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 315

Fig. 1. Three dimensional cases of Lemma 8 on the left and Lemma 4 on the right
when �y · �v �= 0 and is uniformly random and independent from other variables. The
vectors �yU and �vZ are uniformly distributed in the shadowed subspaces, respectively.

Fig. 1 compares the two lemmas when �y ·�v (�= 0) is uniformly random and inde-
pendent from other variables, which is an important case for the security proof
of the proposed KP-ABE.

Lemma 8 (Pairwise Independence Lemma for H(n,Fq) [23]). Let �en :=
(0, . . . , 0, 1) ∈ Fn

q . For all �y ∈ Fn
q \ span〈�en〉 and π ∈ Fq, let W

′
�y,π := {(�r, �w) ∈

(span〈�y,�en〉 \ span〈�en〉)× (Fn
q \ span〈�en〉⊥) | �r · �w = π}.

For all (�y,�v) ∈
(
Fn
q \ span〈�en〉

)
×
(
Fn
q \ span〈�en〉⊥

)
and (�r, �w) ∈W ′

�y,(�y·�v), Pr [�yU

= �r ∧ �vZ = �w] = 1
/
$W ′

�y,(�y·�v), where U
U←H(n,Fq)∩GL(n,Fq) and Z :=(U−1)T.

The left hand side of Fig. 1 presents the transformation (�y,�v) �→ (�yU,�vZ)

which is given in Lemma 8 using a pair of matrices (U,Z) with U
U← H(n,Fq)∩

GL(n,Fq) in a three-dimensional space when �y·�v (�= 0) is uniformly random. The
image (�yU,�vZ) is spreading over span〈�y,�en〉×Fn

q except for negligible probability
since (�yU) · (�vZ) = �y · �v is random. The right hand side of Fig. 1 presents the

transformation which is given in Lemma 4 using (U,Z) with U
U← H�y(n,Fq) in a

three-dimensional space when �y · �v (�= 0) is uniformly random. Then, �y is fixed,
i.e., �yU = �y. Only �vZ is spreading over Fn

q except for negligible probability since
�y ·(�vZ) = �y ·�v is random. Since �y is fixed in this conceptual change, i.e., change to
Experiment 2-j-2, we can execute the next computational change, i.e., swapping
in Experiment 2-(j + 1)-1, in the sequence of changes given in Section 6.1.

7 Proposed Constant-Size Secret-Key ABS Scheme

We propose a fully secure (adaptive-predicate unforgeable and private) ABS
scheme with constant-size secret-keys. This is because the adaptive-predicate
unforgeability of the ABS can be guaranteed by the non-adaptive payload-hiding

316 K. Takashima

security of the underlying CP-ABE under the Naor transform. For the details,
see the full version [27]. The proofs of Theorems 3 and 4 are also given in [27].

Theorem 3. The proposed ABS scheme is perfectly private.

Theorem 4. The proposed ABS scheme is adaptive-predicate unforgeable under
the DLIN assumption and the existence of collision resistant hash functions.

References

1. Attrapadung, N.: Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

2. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, et al. (eds.) [7], pp. 90–108

3. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD Thesis,
Israel Institute of Technology, Technion, Haifa (1996)

4. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer (ed.) [11], pp. 440–456

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

7. Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.): PKC 2011. LNCS,
vol. 6571. Springer, Heidelberg (2011)

8. Chen, C., Chen, J., Lim, H.W., Zhang, Z., Feng, D., Ling, S., Wang, H.: Fully
secure attribute-based systems with short ciphertexts/signatures and threshold
access structures. In: Dawson, E. (ed.) RSA 2013. LNCS, vol. 7779, pp. 50–67.
Springer, Heidelberg (2013)

9. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for boolean formula. To appear in SCN 2014. IACR Cryptology ePrint Archive
2014, 465 (2014)

10. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay
(ed.) [28], pp. 1–11

11. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

12. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007)

13. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009)

14. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

15. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay (ed.) [28], pp. 445–464

Expressive Attribute-Based Encryption with Constant-Size Ciphertexts 317

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 545–554.
ACM (2013)

17. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold
attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

18. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

19. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
damentals E85-A(2), 481–484 (2002)

20. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. Fundamen-
tals E96-A(1), 42–52 (2013)

21. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

22. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010), full version is available
at http://eprint.iacr.org/2010/563

23. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011),
full version is available at http://eprint.iacr.org/2011/648

24. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, et al. (eds.) [7], pp. 35–52, full
version is available at http://eprint.iacr.org/2011/700

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer (ed.) [11], pp.
457–473

26. Sakemi, Y., Hanaoka, G., Izu, T., Takenaka, M., Yasuda, M.: Solving a discrete
logarithm problem with auxiliary input on a 160-bit elliptic curve. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 595–608.
Springer, Heidelberg (2012)

27. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. IACR Cryptology ePrint Archive 2014,
207 (2014)

28. Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg
(2006)

29. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

30. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014)

http://eprint.iacr.org/2010/563
http://eprint.iacr.org/2011/648
http://eprint.iacr.org/2011/700

Functional Encryption and Its Impact on Cryptography

Hoeteck Wee�

ENS, Paris, France
wee@di.ens.fr

Abstract. Functional encryption is a novel paradigm for public-key encryption
that enables both fine-grained access control and selective computation on
encrypted data, as is necessary to protect big, complex data in the cloud. In this
article, we provide a brief introduction to functional encryption, and an overview
of its overarching impact on the field of cryptography.

1 Introduction

Recent computing and technological advances such as the ubiquity of high-speed
network access and the proliferation of mobile devices have had a profound impact
on our society, our lives and our behavior. In the past decade, we have seen a substantial
shift towards a digital and paperless society, along with a migration of data and
computation to the cloud. Storing data in the cloud offers tremendous benefits: easy
and convenient access to the data and reliable data storage for individuals, as well
as scalability and financial savings for organizations. On the flip side, storing data
remotely poses an acute security threat as these data – government, financial, medical
records as well as personal information exchanged over email and social networks –
are outside our control and could potentially be accessed by untrusted parties. Without
taking measures to protect our data, we are at risk of devastating privacy breaches and
living under digital surveillance in an Orwellian future.

However, traditional public-key encryption lacks the expressiveness needed to
protect big, complex data:

(i) First, traditional encryption only provides coarse-grained access to encrypted data,
namely, only a single secret key can decrypt the data. Corporate entities want to
share data with groups of users based on their credentials. Similarly, individuals
want to selectively grant access to their personal data on social networks and
Google Docs.

(ii) Second, access to encrypted data is “all or nothing”: one either decrypts the entire
plaintext or learns nothing about the plaintext. In applications such as data-mining
on encrypted medical records or social networks, we want to provide only partial
access and selective computation on the encrypted data, for instance, restricted
classes of statistical or database queries.

� CNRS (UMR 8548) and INRIA. Supported in part by NSF Awards CNS-1237429 and CNS-
1319021 and a fellowship from the Alexander von Humboldt Foundation.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 318–323, 2014.
© Springer International Publishing Switzerland 2014

Functional Encryption and Its Impact on Cryptography 319

Ideally, we want to encrypt data while enabling fine-grained access control and
selective computation; that is, we want control over who has access to the encrypted data
and what they can compute. Such a mechanism would reconcile the conflict between
our desire to outsource and compute on data and the need to protect the data.

2 Functional Encryption

Over the past decade, cryptographers have put forth a novel paradigm for public-key
encryption [30, 23, 3, 28] that addresses the above goal: (i) attribute-based encryption
(ABE), which enables fine-grain access control, and (ii) its generalization to functional
encryption, which enables selective computation.

– In attribute-based encryption (ABE), encrypted data are associated with a set of
attributes and secret keys with policies that control which ciphertexts the key can
decrypt. For instance, a digital content provider can issue keys that decrypt basic
and premium channel contents on weekdays and only basic ones on weekends.

– In functional encryption, a secret key enables a user to learn a specific function of
the encrypted data and nothing else. For example, decrypting an encrypted image
with a cropping key will reveal a cropped version of the image and nothing else
about the image.

A salient feature of both attribute-based and functional encryption is that there are
many possible secret keys with different decryption capabilities. Moreover, the keys are
resilient to collusion attacks, namely any group of users holding different secret keys
learns nothing about the plaintext beyond what each of them could individually learn.
Together, attribute-based and functional encryption constitute a crisp generalization of
several advanced notions of encryption, such as broadcast and identity-based encryption
as well as searching on encrypted data; indeed, many advances in public-key encryption
over the past decade can be viewed as special cases of attribute-based and functional
encryption.

State of the Art. The fundamental goals in the study of attribute-based and functional
encryption are two-fold: (i) to build expressive schemes that support a large class
of policies and functions; and (ii) to obtain efficient instantiations based on widely-
believed intractability of basic computational problems.

The simplest example of attribute-based encryption (ABE) is that of identity-based
encryption (IBE), where both the ciphertext and secret key are associated with identities
i.e. bit strings, and decryption is possible exactly when the identities are equal. Starting
with identity-based encryption (IBE), substantial advances in ABE were made over the
past decade showing how to support fairly expressive but nonetheless limited subset of
policies, culminating most recently in schemes supporting any policy computable by
general circuits [22, 4].

In addition, we have a wide spectrum of techniques for efficient IBE and ABE that
yields various trade-offs between efficiency, expressiveness, security and intractability
assumptions. The specific assumptions in use may be broadly classified into two cate-
gories: (i) pairing-based, such as variants of the Diffie-Hellman problem over bilinear
groups, and (ii) lattice-based, notably the learning with errors (LWE) assumption.

320 H. Wee

functional encryption [13, 21]

ABE [22, 4]

prior

Fig. 1. Advances in attribute-based and functional encryption since 2012. The white region refers
to ABE and functionalities for which we have efficient instantiations under standard assumptions;
the grey region refers to functionalities beyond ABE for which our understanding is much more
limited.

Beyond ABE, our understanding of functional encryption is much more limited. The
only efficient schemes we have are for very simple functionalities related to computing
an inner product [24]. In a recent break-through work, Garg et al. [13] gave a beautiful
construction of functional encryption for general circuits; however, the construction
relies on “multi-linear maps”, for which we have few candidates, along with complex
intractability assumptions which are presently poorly understood. In contrast, if we
consider collusions of a priori bounded size, a weaker guarantee that is still meaningful
for many applications, then it is possible to obtain functional encryption for general
circuits under a large class of standard assumptions.

Along with these cryptographic advances, the community has also made a greater
push towards implementation, prototypes and deployment of attribute-based and
functional encryption: several IBE schemes are now standardized in RFC 5091; the
CHARM project provides a Python framework for rapidly prototyping cryptosystems
and includes implementations of several IBE and ABE schemes; the SHARPS project
explores the use of ABE for protecting health-care data; the Mylar project presents a
web application platform that uses ABE to provide fine-grained access to encrypted
data.

3 Impact on Cryptography

The study of functional encryption has significantly advanced the state of the art in the
field of cryptography. In particular, it motivated the development of new and powerful
tools and techniques, including trapdoor and delegation techniques in lattices [16, 9] and
the first candidate construction of multi-linear maps [12]. These tools and techniques
have in turn found numerous applications beyond functional encryption, notably CCA-
secure encryption [8], signatures schemes [5], leakage-resilient cryptography [26],
delegating and verifying computation [29, 25, 11], and most recently, garbled circuits
[19, 4] and program obfuscation [13, 20]. We highlight three examples, drawing upon
recent developments closely related to our research in functional encryption.

Verifiable Computation. In verifiable computation, a computationally weak client
with input x wishes to delegate a complex computation f to an untrusted server, with the
assurance that the server cannot convince the client to accept an incorrect computation

http://tools.ietf.org/html/rfc5091
http://charm-crypto.com
http://sharps.org
http://css.csail.mit.edu/mylar/

Functional Encryption and Its Impact on Cryptography 321

[18, 14]. We focus on the online/offline setting, where the protocol proceeds in two
phases. In the offline phase, the client sends to the server a possibly long message that
may be expensive to compute. Later on, in the online phase (when the input x arrives),
the client sends a short message to the server, and receives the result of the computation
f (x) together with a certificate for correctness. Applying an existing transformation [29]
to our ABE for general circuits [22], we obtain a protocol for verifiable computation
on general circuits f with a number of highly desirable properties: (i) the client’s
communication and computational complexity in the online phase depends only on the
input/output lengths and depth of the circuit computing f but not the circuit size; (ii)
anyone can check the server’s work given a “verification” key published by the client;
(iii) we may securely reuse the computation of the offline phase across multiple inputs
in the online phase (in particular, our construction is immune to the “rejection problem”
from [14]).

Short, Scalable Signatures. Many applications involving cloud computing and big
data require cryptographic primitives that remain secure when used on huge data sets.
In particular, we would like to design scalable signatures schemes that remain secure
when used to sign a very large number of messages without any performance penalty.
However, most known signature schemes are not scalable: their security guarantee
degrades linearly in the number of signatures seen by an adversary; this implies a
performance degradation as we need to increase key sizes to account for the security
loss, which in turn increases the running time of the implementation. In a recent work
[10], we presented the first scalable signature scheme in the standard model where each
signature is a constant number of group elements. The signature scheme is derived from
an IBE with a better security reduction that overcomes seemingly inherent limitations
of prior proof techniques, via a delicate combination of techniques used for achieving
full security in IBE/ABE [31, 32] and those for constructing efficient pseudo-random
functions [27]. Our signature scheme has since been improved and extended to the
multi-user setting in [2].

Fully Homomorphic Encryption. In 2009, Gentry [15] presented the first candidate
fully homomorphic encryption (FHE) for all circuits, and substantial progress have
since been made towards improving the efficiency and the underlying assumptions
[6, 17]. We note that while both FHE and functional encryption support some form of
computation on encrypted data, it is not known how to construct functional encryption
from FHE or vice versa. Nonetheless, our lattice-based ABE for branching programs
[22] has recently inspired the first FHE schemes based on the LWE assumption with
a polynomial modulus-to-noise ratio [7, 1]. Roughly speaking, we propagate LWE
samples across computation during decryption in ABE, and during homomorphic
evaluation in FHE. If we compute on circuits, the noise accumulated in the LWE
samples grows exponentially with the depth D of the circuit (the noise grows as nD

where n is the length of the LWE secret). On the other hand, by exploiting an asymmetry
in computation on branching programs, it is possible to achieve noise growth that is
linear in the length of the branching program. The latest FHE schemes in [7, 1] then use
a branching program instead of a log-depth circuit to compute the decryption function

322 H. Wee

during bootstrapping, thus incurring a polynomial as opposed to a quasi-polynomial
noise growth.

Acknowledgments. I am extremely grateful to Jie Chen, Sergey Gorbunov and Vinod
Vaikuntanathan for many fruitful collaborations and to Dan Boneh, Yuval Ishai, Allison
Lewko and Brent Waters for many illuminating discussions. I would also like to thank
Michel Abdalla and the SCN 2014 PC for inviting me as a speaker.

References

[1] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: CRYPTO
(to appear 2014)

[2] Blazy, O., Kiltz, E., Pan, J. (hierarchical) identity-based encryption from affine message
authentication. In: CRYPTO (to appear 2014)

[3] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In:
Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

[4] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan,
V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

[5] Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 499–517. Springer, Heidelberg (2010)

[6] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
LWE. In: FOCS, Cryptology ePrint Archive, Report 2011/344 (2011)

[7] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS, pp. 1–12
(2014)

[8] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222.
Springer, Heidelberg (2004)

[9] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice
basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer,
Heidelberg (2010)

[10] Chen, J., Wee, H.: Fully (almost) tightly secure IBE and dual system groups. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer,
Heidelberg (2013)

[11] Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for
boolean formula. In: SCN (to appear 2014)

[12] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17.
Springer, Heidelberg (2013)

[13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp.
40–49 (2013), Also, Cryptology ePrint Archive, Report 2013/451

[14] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 465–482. Springer, Heidelberg (2010)

Functional Encryption and Its Impact on Cryptography 323

[15] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178
(2009)

[16] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

[17] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)

[18] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive proofs
for muggles. In: STOC, pp. 113–122 (2008)

[19] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: STOC, pp. 555–564 (2013)

[20] Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi,
E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)

[21] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions
via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

[22] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In:
STOC, pp. 545–554 (2013) Also, Cryptology ePrint Archive, Report 2013/337

[23] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM Conference on Computer and Communications
Security, pp. 89–98 (2006)

[24] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 146–162. Springer, Heidelberg (2008)

[25] Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achieving full
security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

[26] Lewko, A.B., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system
encryption. In: TCC, pp. 70–88 (2010), Cryptology ePrint Archive, Report 2010/438

[27] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

[28] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556 (2010)

[29] Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: Verifiable
computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

[30] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

[31] Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer,
Heidelberg (2009)

[32] Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Generic Attacks on Strengthened HMAC:

n-bit Secure HMAC Requires Key in All Blocks

Yu Sasaki and Lei Wang

NTT Secure Platform Laboratories, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

Nanyang Technological University, Singapore, Singapore
Wang.Lei@ntu.edu.sg

Abstract. HMAC is the most widely used hash based MAC scheme.
Recently, several generic attacks have been presented against HMAC
with a complexity between 2n/2 and 2n, where n is the output size of
an underlying hash function. In this paper, we investigate the security
of strengthened HMAC in which the key is used to process underlying
compression functions. With such a modification, the attacker is unable
to precompute the property of the compression function offline, and thus
previous generic attacks are prevented. In this paper, we show that keying
the compression function in all blocks is necessary to prevent a generic
internal state recovery attack with a complexity less than 2n. In other
words, only with a single keyless compression function, the internal state
is recovered faster than 2n. To validate the claim, we present a generic
attack against the strengthened HMAC in which only one block is key-
less, thus pre-computable offline. Our attack uses the previous generic
attack by Naito et al. as a base. We improve it so that the attack can be
applied only with a single keyless compression function while the attack
complexity remains unchanged from the previous work.

Keywords: HMAC, generic attack, internal state recovery, multi-
collision.

1 Introduction

A message authentication code (MAC) ensures the integrity of messages trans-
ferred between two players sharing the secret key K in advance. When a sender
sends a message M , he generates a tag T computed by MAC(K,M), and sends
a pair of (M,T). A receiver computes the tag of the received message with his
own key K and checks the match with received T . If they match, it turns out
that no one modified the original message M during the communication.

A MAC is often built by using a hash function, e.g. a tag is produced by
hashing a combination of K andM . A hash function based MAC often processes
the keyK first which takes a role of initialization, and then processes the message
M , and finally processes the key K again which takes a role of finalization. This
framework is called a hybrid MAC [1].

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 324–339, 2014.
c© Springer International Publishing Switzerland 2014

Generic Attacks on Strengthened HMAC 325

HMAC, which was originally designed by Bellare et al. [2], is the most widely
used hash function based MAC. HMAC is standardized by several standardiza-
tion authorities such as NIST [3] and ISO [4]. Let H be an underlying hash
function and ipad and opad be two constant values. For a messageM and a key
K, HMAC computes a tag T by

T ← H
(
K ⊕ opad‖H(K ⊕ ipad‖M)

)
.

Let n be the output size ofH. HMAC is provably secure up to O(2n/2) queries [5]
when a narrow-pipe Merkle-Damg̊ard hash function, e.g. NIST’s hash function
standard SHA-family [6], is instantiated.

On one hand, the lower-bound of the security proof of HMAC is tight. Pre-
neel and van Oorschot showed a generic existential forgery attack with O(2n/2)
queries [7] by exploiting the collision of the internal state generated by the birth-
day paradox. On the other hand, the internal state collisions cannot be utilized
to break stronger security notions such as internal state recovery attack, univer-
sal forgery attack, key recovery attack, and so on. Security of HMAC against
those notions was an open problem for a while.

Recently, several researches reported generic attacks on HMAC. Dodis et
al. studied the indifferentiability security of HMAC in which key values are
chosen by the attacker [8]. Independently, Peyrin et al. showed the similar weak
key relation in the related key attack model [9], which can recover the internal
state value with a complexity less than 2n. Then, in 2013, two types of generic
internal state recovery attacks were proposed.

The first approach was proposed by Leurent et al. [10]. In short, it utilizes
several properties of a functional graph generated by the underlying compression
function with a fixed message input. In the offline phase, the attacker precom-
putes the behavior of the underlying function when a long message, O(2n/2)
blocks, is queried. Then, in the online phase, the attacker queries such long mes-
sages and checks if the precomputed properties are satisfied. The attack requires
long queries, while the attack complexity is low, O(2n/2).

The second approach was proposed by Naito et al. [11]. It utilizes a multi-
collision for the underlying compression function with a fixed message input. In
the offline phase, the attacker precomputes the multi-collision of the compression
function. In the online phase, the bias observed by the multi-collision is verified
with higher probability than 2−n. The attack requires queries of only 3 message
blocks, while the attack complexity is high, O(2n/n).

Several researches showed that by using the generic internal state recovery
attack as a tool, more powerful attacks can be mounted [12–15]. It is a useful
approach to strengthen the computation of HMAC so as to prevent the generic
internal state recovery attack, and provide n-bit security for it. In practice,
people may not expect n-bit security by using a narrow-pipe Merkle-Damg̊ard
hash function as H because 1) the attack complexity of O(2n/n), in particular
the memory usage of this size, is close to the brute force attack and 2) the
generic existential forgery attack exists with O(2n/2) complexity. It seems that
the simplest way to achieve the n-bit secure HMAC is using 2n-bit hash function

326 Y. Sasaki and L. Wang

CF CF

Fig. 1. Block-wise Computation Structure of HMAC

as H. Nevertheless we believe that aiming n-bit security with an n-bit hash
function contributes to make a progress in the theory of designing MACs.

Because the previous related-key attack [9] suggested an efficient countermea-
sure, in this paper we focus our attention on the generic internal state recovery
attack in the single-key setting [10, 11]. The essence of those attacks is that the
attacker can precompute the property of an underlying hash function or com-
pression function, which holds irrespective of the key value. Thus, to prevent
those attacks, we consider tweaking the compression function with key. For ex-
ample, we fix n bits of each message block to the key. Then, the attacker becomes
unable to perform the precomputation.

This paper is not the first one that discusses the HMAC like construction with
key in all compression function invocations. An and Bellare in 1999 analyzed the
NI function (Nested Iterated function) in [16], which is close to NMAC with key
in all compression function invocations. A multilane variant of HMAC achieving
beyond the birthday bound security was already proposed by Yasuda [17]. In
this paper, we discuss how to strengthen HMAC while keeping it as a single
lane, which is different from the approach in [17].

Our Contributions

We show that keying the compression function in all blocks is necessary to pre-
vent a generic internal state recovery attack with a complexity less than 2n. In
other words, only with a single keyless compression function, the internal state
is recovered faster than 2n. We validate the claim by presenting a generic at-
tack against the strengthened HMAC in which only one block is keyless, thus
pre-computable offline. The observation can be applied for not only HMAC but
also other similar type of hybrid MAC schemes such as NMAC [2] and Sandwich
MAC [18]. Due to the wide usage of HMAC, we focus our attention on HMAC
in this paper.

Our attack uses the previous generic attack by Naito et al. [11] as a base.
We improve it so that the attack can be applied only with a single keyless
compression function. The intuition of the attack in [11] is shown in Fig. 1. One
message block mfix is fixed and the attacker searches for input chaining values
to the compression function which forms a multi-collision on its output. Let

Generic Attacks on Strengthened HMAC 327

v1, v2, . . . , vt be input chaining values forming a t-collision1 where 2 ≤ t ≤ n.
Also let vmc be the colliding output. This indicates that as long as the message
block is fixed to mfix, the colliding value vmc appears more frequently than
others, which gives some advantage to the attacker. To detect the occurrence of
vmc, Naito et al. in the subsequent message block appended another colliding
message pair m and m′ which maps vmc to an identical value. Then, if tags for
two queries x‖mfix‖m and x‖mfix‖m′ for any message block x collide, we recover
that the internal state value is vmc with a high probability. All in all, the attacker
needs to precompute at least two blocks offline.

Because our attack model assumes that only a single block is keyless, the
same approach as the previous work cannot be used. In our attack, we perform
the precomputation of the multi-collision for the keyless block, and change the
detecting method of the occurrence of the multi-collision.

Naito et al, evaluated that their attack complexity is O(2n/n), which comes
from the fact that up to n-collisions can be generated for an n-bit function
with a complexity up to O(2n). In the same evaluation, our attack complexity
is O(2n/n), which is the same as the previous work. The exact complexity de-
pends on the output size n, and must be carefully evaluated. Considering the
applications to SHA-256 and SHA-512, we evaluate the complexity for n = 512
and n = 256. For n = 512, the internal state is recovered with a complexity of
2509.52. For n = 256, the internal state is recovered with a complexity of 2254.27.
Those lead to our claim that only with a single keyless block, the internal state
is recovered with a complexity less than 2n.

Paper Outline

The organization of this paper is as follows. In Section 2, HMAC with a narrow-
pipe Merkle-Damg̊ard hash function is specified. Previous generic attacks on
HMAC are explained in Section 3. Our attack which requires only a single
unkeyed compression function is explained in Section 4. Finally, the paper is
concluded in Section 5.

2 Specification

2.1 Merkle-Damg̊ard Hash Functions

Merkle-Damg̊ard structure is a common approach to process the input message
of arbitrary length into the fixed hash digest. Suppose that both of the internal
state size and the hash digest size are n bits2, and also suppose that the message
block size is b bits. It firstly pads the input message so that its bit size becomes a
multiple of the block size. In this paper, we suppose that the padding scheme only

1 t-collision means t different input values which return an identical output value.
2 If the internal state size is bigger than the hash digest size, the construction is called
wide-pipe [19]. In this paper, we focus our attention on only narrow-pipe, where the
internal state size and the hash digest size are identical.

328 Y. Sasaki and L. Wang

Fig. 2. Block-wise Computation Structure of HMAC

depends on the input message size, and does not depend on the message value.
Note that the MD-strengthening padding, which is widely used in the current
standard hash functions such as the SHA-family [6], satisfies this property. The
padded message is then split into each message block M0,M1, . . . ,ML−1, where
the size of each Mi is b bits. Then the compression function CF : {0, 1}n ×
{0, 1}b → {0, 1}n is iteratively applied as follows:

H0 ← IV,

Hi ← CF(Hi−1,Mi−1) for i = 1, 2, . . . , L,

where IV stands for initial value, which is an n-bit constant defined in the spec-
ification. HL is the hash digest of the input message.

2.2 HMAC

HMAC with a secret key K produces a MAC tag only with 2 calls of hash
function H. At first, K is processed to be b bits as follows:

- If |K| < b, append a necessary number of zeros, i.e. K ← K‖00 · · ·0.
- If |K| = b, K ← K.
- If |K| > b, K ← H(K).

Then, the MAC tag is computed as follows.

HMACK(M)← H
(
K ⊕ opad‖H(K ⊕ ipad‖M)

)
,

where ipad and opad are b-bit constant values specified in HMAC. The block-
wise representation of the HMAC construction is depicted in Fig. 2.

HMAC was firstly proven to be a secure MAC up to O(2n/2) queries under the
assumption that H is collision resistant [2]. It was then proven to be a pseudo-
random function (PRF) up to O(2n/2) queries under the assumption that H is
weak collision resistant [5]. Finally, the proof of the exact PRF of HMAC is given
by [20]. For more queries beyond the birthday bound, the proof of HMAC cannot
ensure its security. Indeed, several generic attacks have already been proposed,
which will be explained in Section 3.

Generic Attacks on Strengthened HMAC 329

3 Previous Work

Several generic attacks are known to HMACwith a narrow-pipe Merkle-Damg̊ard
hash function. The first generic attack was proposed by Preneel and van Oorschot
which performs an existential forgery attack with O(2n/2) queries [7]. The attack
utilizes a collision of the internal state value generated by the birthday paradox.
Due to the iterative structure of the underlying hash function H, it is principally
hard to avoid this attack. Fortunately, application of the internal state collision
is limited, namely, it cannot be used to mount more powerful attack such as
universal forgery attack and key recovery attack.

In 2013, two types of the internal state recovery attack were proposed. The
first approach was proposed by Leurent et al. [10] and the second approach was
proposed by Naito et al. [11]. Moreover, several researches used the internal state
recovery attack as a tool to mount more powerful attacks [12–15]. Hence, generic
internal state recovery attacks should be prevented. This section explains more
details of those two types of the internal state recovery attacks.

3.1 Long Message Attack with Functional Graph Properties

Leurent et al. proposed an efficient internal state recovery attack when an at-
tacker can query long messages, O(2n/2) blocks [10]. The attack utilizes several
properties of a functional graph generated by the underlying hash function H. In
the narrow-pipe Merkle-Damg̊ard hashes, H iterates the compression function
CF. The attack fixes the b-bit value of the message input to the compression
function CF in all blocks, which is denoted by M . Then, the function is rep-
resented as CFM : {0, 1}n → {0, 1}n. Because CFM is a public function, the
attacker can simulate the functional graph of CFM offline.

In a functional graph, the chain of the function is computed. That is to say,
a start point v0 is determined randomly, and then vi ← CFM (vi−1) is computed
for i = 1, 2, 3, · · · until vi reaches the previously computed value. It is known
that a functional graph satisfies several generic properties, e.g. each point will
enter a cycle after O(2n/2) iterations, and the size of the largest cycle of the
graph is O(2n/2).

To apply those properties to HMAC, the attack by Leurent et al. [10] works
as follows.

– At offline, the attacker computes the size of the largest cycle of CFM , which
is denoted by L.

– At online, the attacker queries the following two messages of the size O(2n/2)
blocks

M [2n/2]‖Mrand‖M [2n/2+L],

M [2n/2+L]‖Mrand‖M [2n/2],

whereM [x] represents the x iterations of the message blockM andMrand repre-
sents a randomly chosen message block such that Mrand �=M . For HMAC with

330 Y. Sasaki and L. Wang

Fig. 3. Previous Internal State Recovery Attack on HMAC with Short Message Input

H, the above two queries return the same tag with a high probability, and this
gives significant information for the attacker. Leurent et al. pointed out that the
internal state value can be recovered [10] and Peyrin and Wang [14] showed a
generic universal forgery attack on HMAC by combining more properties of the
functional graph.

3.2 Short Message Attack with Multi-collisions

Naito et al. proposed another internal state recovery attack [11]. The advantage
of this attack is that it only requires queries of 3 message blocks, while the
complexity of the attack is high, which is some value between 2n and 2n/n. In
other words, the attack efficiency is lower-bounded by 2n/n.

The attack fixes a b-bit message inputM to the compression function to form
a random function CFM : {0, 1}n → {0, 1}n. The attack uses the multi-collision
of CFM which is generated by the complexity between 2n and 2n/n. A t-collision
is expected to be found with about 2(t−1)n/t computations of CFM . Thus, with
a complexity up to 2n, up to n-collision is expected. Note that this is a rough
evaluation, and the exact complexity that optimizes the entire attack must be
carefully calculated as was done in [11]. Let vmc be the output value of the
t-collision.

Naito et al. pointed out that vmc appears more frequently than other values
due to the bias confirmed by the t-collision, and this fact can be used to recover
the internal state value. The entire attack procedure is as follows, which is also
depicted in Fig. 3.

Offline Phase
- Fix the value of M2.
- Choose r distinct values of the chaining variable input vr where 2n/n ≤ r ≤

2n. Compute CFM2(vr) and find t-collision where 2 ≤ t ≤ n. For simplic-
ity, let v1, v2, . . . , vt be the chaining variable inputs forming a t-collision for
CFM2 .

Generic Attacks on Strengthened HMAC 331

- For the later detection of the occurrence of vmc, find a colliding pair M3‖pad
and M ′

3‖pad such that CF(vmc,M3‖pad) = CF(vmc,M
′
3‖pad), where pad is

the padding string for the online phase.
Online Phase
- Choose j distinct values of the message input M j

1 where j = 2n/t. Query the
following 3 block messages.

M j
1‖M2‖M3,

M j
1‖M2‖M ′

3.

One of j choices ofM1 will reach one of v1, . . . , vt, and thus the collision is gener-
ated after M3‖pad and M ′

3‖pad. Then, the internal state value vmc is recovered.
The attack complexity depends on the choice of r and the corresponding j, which
are between 2n and 2n/n.

3.3 Preventing Internal State Recovery Attacks

Let us consider possible countermeasures against the previous internal state
recovery attacks by modifying the computation of HMAC.

The essence of the previous attack is that the behavior of the compression
function with a fixed message CFM can be simulated by the attacker offline.
Thus, by tweaking the compression function with a secret value derived from
K the attacks are invalidated. On the contrary, the number of such a tweak
should be minimized so that the bad influence to the computation efficiency is
minimized.

The long message attack [10] requires the precomputation of a big functional
graph. Hence, giving a key tweak in every a few blocks can prevent the attack.
The short message attack [10] requires the precomputation of 2 consecutive com-
pression functions. Hence, the attack can be prevented by giving a key tweak in
every two blocks.

4 New Attack against Single Keyless Block

In this section, we show that if there exists one compression function that can
be simulated by the attacker offline, the internal state recovery attack can be
performed with a complexity less than 2n. An important implication of this fact
is that to ensure n-bit security against the internal state recovery attack, the
compression function must depend on the key in all blocks so that the attacker
cannot perform the precomputation.

4.1 Target Structure

We consider a strengthened HMAC as our attack target. That is to say, all com-
pression function computations but for 1 block (for processing the i-th message
block) are tweaked by key value and the tweak depends on the block position.

332 Y. Sasaki and L. Wang

Fig. 4. Our Attack Target. Only a single block is public.

The tweak, for example, can be given by setting n bits of a b-bit message block
to a value derived by the key. The modification is conservative but for the single
keyless block, which will clearly indicate how the single keyless block gives a bad
influence to the entire structure. The computation structure of our attack target
is depicted in Fig. 4.

4.2 Attack Overview

Due to the key value in most of blocks, we use the approach of the short message
attack [11] that exploits the multi-collision of the compression function.

The offline phase with the dominant complexity part is the same as the one in
[11]. Namely, we fix the message inputMi and choose r distinct chaining variable
inputs v1, v2, . . . , vr to find a t-collision of the fixed function CFMi , where r is
a some value between 2n/n and 2n. Let v1, v2, . . . , vt be the obtained chaining
variable inputs forming a t-collision.

Then in the online phase, we generate two messagesM1‖M2‖ · · · ‖Mi−1 which
will reach one of v1, v2, . . . , vt. If we can detect such messages, the internal state
value can take only t choices, and it is possible to recover the exact internal state
value by exhaustively testing all the t choices. To generate such two messages,
we fix the value ofM1‖M2‖ · · · ‖Mi−2, choose 2×2n/t distinct messages ofMi−1

and query M1‖M2‖ · · · ‖Mi−2‖Mi−1‖Mi for each choice of Mi−1. Two messages
reaching any of v1, v2, . . . , vt collide after the i-th block, and thus produce an
identical tag. Hence, we pick all message pairs with colliding tags. Of course this
will generate a lot of noise, i.e. collisions of tags without reaching v1, v2, . . . , vt.
We filter out those noise by using additional queries.

4.3 Offline Phase

The offline phase consists of two sub-phases which are depicted in Fig. 5.

Generic Attacks on Strengthened HMAC 333

Fig. 5. Offline Phase

Phase 1 is for constructing a t-collision of the keyless compression function CF.
We fix the message input Mi||pad where pad is the padding string for the online
phase. As explained later, the length of queries in the online phase is i blocks plus
the size of Mi. Mi can be set to any value as long as Mi||pad fits in one block.
Then, the compression function can be described as an n-bit to n-bit function
CFMi(·). We then choose r distinct chaining variable inputs v1, v2, . . . , vr, and
compute CFMi(v1),CFMi(v2), . . . ,CFMi(vr) to find a t-collision of the function’s
output, where r is a some value between 2n/n and 2n determined later. Let
v1, v2, . . . , vt be the obtained chaining variable inputs forming the t-collision.

Phase 2 is for generating a message pair (M j
i ,M

′j
i) such that CF(vj ,M

j
i) =

CF(vj ,M
′j
i) for 1 ≤ j ≤ t for the later detection of the occurrence of v1, v2, . . . , vt.

The idea behind is that if we later find a messageM1‖ · · · ‖Mi−1 which may reach
one of v1, v2, . . . , vr, we can confirm it by checking the tag collision of the message
pair M1‖ · · · ‖Mi−1‖M j

i and M1‖ · · · ‖Mi−1‖M ′j
i .

The complexity of the offline phase is as follows. In phase 1, the computational
cost is r compression function computations and the memory requirement is to
store the r corresponding tags, where 2n/n ≤ r ≤ 2n. The computational cost of
phase 2 is t × 2n/2 compression function computations, which is negligible com-
pared to phase 1. The collision search of phase 2 can be memoryless. In the end,
the complexity of the offline phase is r compression function computations and a
memory to store r n-bit tags. Because this is offline, the number of query is 0.

4.4 Online Phase

The online phase consists of three sub-phases called 1) collision collection, 2)
noise elimination, and 3) recovering value. The online phase is depicted in Fig. 6.
Note that the first message block of the outer function, K ⊕ opad, is not related
to our attack. We omit its description in Fig. 4.4 by representing the first block’s
output as KOUT.

Collision Collection. As explained in Section 4.2, we generate two messages
which will reach one of v1, v2, . . . , vt and collect all message pairs producing the
tag collision. Because a t-collision is generated offline, we query 2 × 2n/t mes-
sages in the collision collection phase. We first fix the value ofM1‖M2‖ · · · ‖Mi−2.

334 Y. Sasaki and L. Wang

Fig. 6. Online Phase

Then for any query, the internal state value after processing Mi−2 becomes a
fixed value, denoted by Kv in Fig. 6. We then choose 2× 2n/t distinct messages

M1
i−1,M

2
i−1, . . . ,M

2×2n/t
i−1 so that we can obtain two messages reaching one of

v1, v2, . . . , vt. We query M1‖ · · · ‖Mi−2‖M j
i−1‖Mi for j = 1, 2, . . . , 2 × 2n/t. For

those queries, HMAC pads the padding string pad and the last message block be-
comes exactly the same as the one fixed in the offline phase. Two messages reach-
ing any of v1, v2, . . . , vt collide after the last message block, and thus produce the
tag collision. Here, we also obtain many collisions that do not reach v1, v2, . . . , vt.
Those collisions are called noise. There are 3 cases that noise occurs: after pro-
cessingMi−1 which are called pre-collisions, after processingMi‖pad but without
reaching v1, v2, . . . , vt which are called middle-collisions, and after processing the
outer function which are called post-collisions. Let us count the number of noise.
With 2×2n/t queries, about 22n+1/t2 pairs are generated and each pair produces
an identical tag value with probability 2−n. In the end, we obtain the following
collisions.

Case 1. 2n+1/t2 pre-collisions
Case 2a. 2n+1/t2 middle-collisions
Case 2b. 1 desired collision via some of v1, . . . , vt
Case 3. 2n+1/t2 post-collisions

In total, we obtain 3 ∗ 2n+1/t2 + 1 collisions.

Noise Elimination. In noise elimination, we discard all the pre-collisions and
post-collisions with two more additional queries for each noise.

To eliminate pre-collisions, we query each colliding message pair by replacing
Mi with another one M∗

i . Because the internal state value is already collided
after processing Mi−1, the pair also generates a tag collision with new M∗

i . We
discard all the pairs that generate another collision with newM∗

i . The probability
of wrongly discarding the desired collision is 2−n, which is negligible. Note that
wrongly discarding other noise does not cause any problem.

Generic Attacks on Strengthened HMAC 335

To eliminate post-collisions, we query each colliding message pair by append-
ing the padding string pad and then appending a common message block Mi+1.
Because input value to the outer function changes, new pairs do not produce
a collision with an overwhelming probability. We discard all the pairs that do
not produce another collision. The probability of wrongly discarding the desired
collision is 0 because the collision after processing Mi‖pad is preserved even af-
ter the additional common message block. A post-collision wrongly remain with
probability of 2−n × 2n+1/t2 = 2/t2. Such a small number of post-collisions
only give negligible impact to the next phase. Moreover, by iterating the noise
eliminating phase twice, even such a negligible event can be avoided.

The remaining collisions are 2n+1/t2 middle-collisions and 1 desired collision.
Unfortunately, eliminating middle-collisions is hard. However, we can still recover
the internal state by analyzing 2n+1/t2 middle-collisions and 1 desired collision
together.

Recovering Value. For each of 2n+1/t2+1 collision pairs, we confirm that one
message of the pair reaches some of v1, v2, . . . , vt. Thus, we replaceMi with M

j
i ,

and then with M ′j
i for j = 1, 2, . . . , t and check if the corresponding tags collide.

The desired collision always generates collision with Mi and M
j
i . Moreover, we

can iterate the same test for the other message pair. Hence, the probability of
the false positive is negligible. In the end, the correct internal state value is
recovered.

Complexity. The complexity of the collision collecting phase is 2×2n/t queries,
2× 2n/t memory accesses to deal with the obtained tags and a memory to store
2×2n/t tags. The complexity of the noise elimination phase is 2∗3∗2n+1/t2+1
queries for eliminating pre-collisions and 2∗2∗2n+1/t2+1 queries for eliminating
post-collisions, which is about 20∗2n/t2 queries in total. The computational cost
and memory requirement are negligible. The complexity of the recovering value
phase is 2t∗(2n+1/t2+1) ≈ 4∗2n/t queries. The computational cost and memory
requirement are negligible.

All in all, the total attack complexity of the online phase is as follows.

– The number of queries is 2∗2n/t+20∗2n/t2+4∗2n/t = 6∗2n/t+20∗2n/t2.
– The computational cost is 2 ∗ 2n/t.
– The memory requirement is 2 ∗ 2n/t.

4.5 Choosing Optimal Parameters

The bottleneck of the offline phase is finding a t-collision with r computations
of CF. Suzuki et al. showed the complexity to find a t-collision with probability
1/2 [21], which tells the exact value of r in our attack.

r = (t!)1/t × (2n·
t−1
t) + t− 1. (1)

336 Y. Sasaki and L. Wang

Algorithm 1. Internal State Recovery on HMAC with a Single Keyless Block

Output: Two pairs of i− 1 message blocks M1‖ · · · ‖Mi−1 and the internal state after
the last block

Offline Phase
1: Fix Mi such that Mi‖pad fits in one block.
2: for j ← 1, 2, . . . , r do
3: Choose the value of vj , then compute CFMi(vj) and store the result.
4: end for
5: Find a t-collision for CFMi(·). Let t values forming a t-collision be v1, v2, . . . , vt.
6: for j ← 1, 2, . . . , t do
7: Find (M j

i ,M
′j
i) such that CF(vj ,M

j
i) = CF(vj ,M

′j
i).

8: end for
Online Phase
9: Fix M1,M2, . . . ,Mi−2.
10: for j ← 1, 2, . . . , 2n/t do
11: Choose the value of M j

i−1, then query M1‖ · · · ‖Mi−2‖M j
i−1‖Mi and store the

tag.
12: end for
13: Pick up message pairs producing the tag collision.
14: Let (Mz,M ′

z) for z = 1, 2, . . . , 3 ∗ 2n/t2 + 1 be pairs of M1‖ · · · ‖Mi−2‖Mi−1 pro-
ducing the tag collision.

15: for z = 1, 2, . . . , 3 ∗ 2n/t2 + 1 do
16: Choose a new value of M∗

i , then query Mz‖M∗
i and M ′

z‖M∗
i .

17: if tags collide then
18: Discard the pair.
19: end if
20: end for
21: for z = 1, 2, . . . , 2 ∗ 2n/t2 + 1 do
22: Choose a new value of Mi+1, then query Mz‖Mi‖pad‖Mi+1 and

M ′
z‖Mi‖pad‖Mi+1.

23: if tags do not collide then
24: Discard the pair.
25: end if
26: end for
27: for z = 1, 2, . . . , 2n/t2 + 1 do
28: for j = 1, 2, . . . , t do
29: Query Mz‖M j

i and Mz‖M ′j
i .

30: if tags collide then
31: for k = 1, 2, . . . , t do
32: Query M ′

z‖Mk
i and M ′

z‖M ′k
i .

33: if tags collide then
34: return (Mz, vj) and (M ′

z, vk).
35: end if
36: end for
37: end if
38: end for
39: end for

Generic Attacks on Strengthened HMAC 337

The attack complexity of the online phase is 6 ∗ 2n/t+20 ∗ 2n/t2 queries and
2 ∗ 2n/t computational cost and memory requirement, in which the number of
queries is dominant. The data complexity is evaluated by the number of queried
message blocks. Hence, the data complexity is

i× (6 ∗ 2n/t+ 20 ∗ 2n/t2) (2)

Security of the construction is evaluated in the worst case scenario. Namely, the
keyless block position is chosen by the attacker to optimize the attack. Thus we
evaluate the case i = 2. As a result, we choose the value of t which balances
Eq. (1) and Eq. (2) for i = 2. The best choice of t depends on the tag size n.
Considering the application to SHA-256 and SHA-512, the evaluation of t for
n = 512 and n = 256 are summarized in Table 1.

Table 1. Attack Complexity with Optimal Parameter Choices

n t Offline Online
Eq.(1) Eq.(2)

512 70 2509.435 2509.523

256 43 2254.124 2254.266

4.6 Attack Procedure

We finally describe the attack procedure in Algorithm 1. The exact choices of t
can be found in Table 1, and the corresponding r can be calculated by Eq. (1).
As shown in Table 1, the internal state value can be recovered with a complexity
less than 2n.

5 Concluding Remarks

In this paper, we investigated the security of strengthened HMAC in which the
underlying compression function is keyed to avoid the precomputation by the at-
tacker. We improved the previous generic internal state recovery attack by Naito
et al. so that it can be applied only with a single keyless compression function
without increasing the attack complexity. This fact indicates that in order to
avoid the generic internal state recovery attack faster than 2n complexity, the
compression function must be keyed in all blocks.

Acknowledgments. The authors would like to thank anonymous reviewers of
SCN 2014 for their helpful comments. Lei Wang is supported by the Singapore
National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

338 Y. Sasaki and L. Wang

References

1. Tsudik, G.: Message Authentication with One-Way Hash Functions. In: ACM SIG-
COMM Computer Communication Review, vol. 22(5), pp. 29–38. ACM (1992)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPT0 1996. LNCS,
vol. 1109, pp. 1–15. Springer, Heidelberg (1996)

3. U.S. Department of Commerce, National Institute of Standards and Technology:
The Keyed-HashMessage Authentication Code (HMAC) (Federal Information Pro-
cessing Standards Publication 198) (2008),
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

4. ISO/IEC 9797-2:2011: Information technology – Security techniques – Message
Authentication Codes (MACs) – Part 2 (2011)

5. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

6. U.S. Department of Commerce, National Institute of Standards and Technology:
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

7. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
Maurer, U. (ed.) Advances in Cryptology - EUROCRYPT 1996. LNCS, vol. 1070,
pp. 19–32. Springer, Heidelberg (1996)

8. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To Hash or Not to Hash
Again (In)differentiability Results for H2 and HMAC. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg
(2012)

9. Peyrin, T., Sasaki, Y., Wang, L.: Generic Related-Key Attacks for HMAC. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597.
Springer, Heidelberg (2012)

10. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks against Hash-Based MACs.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
1–20. Springer, Heidelberg (2013)

11. Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic State-Recovery and Forgery
Attacks on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama, K., Terada, M.
(eds.) IWSEC 2013. LNCS, vol. 8231, pp. 83–98. Springer, Heidelberg (2013)

12. Guo, J., Sasaki, Y., Wang, L., Wang, M., Wen, L.: Equivalent Key Recovery At-
tacks against HMAC and NMAC with Whirlpool Reduced to 7 Rounds. In: Cid,
C., Rechberger, C. (eds.) FSE. LNCS, Springer, Heidelberg (to appear 2014)

13. Guo, J., Sasaki, Y., Wang, L., Wu, S.: Cryptanalysis of HMAC/NMAC-Whirlpool.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
21–40. Springer, Heidelberg (2013)

14. Peyrin, T., Wang, L.: Generic Universal Forgery Attack on Iterative Hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 147–164. Springer, Heidelberg (2014)

15. Sasaki, Y., Wang, L.: Improved Single-Key Distinguisher on HMAC-MD5 and Key
Recovery Attacks on Sandwich-MAC-MD5. In: Lange, T., Lauter, K., Lisonek, P.
(eds.) SAC 2013. LNCS, vol. 8282, pp. 493–512. Springer, Heidelberg (2013)

16. An, J.H., Bellare, M.: Construsting VIL-MACs from FIL-MACs: Message Authen-
tication under Weakened Assumption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

Generic Attacks on Strengthened HMAC 339

17. Yasuda, K.: Multilane HMAC - Security beyond the Birthday Limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

18. Yasuda, K.: “Sandwich” Is Indeed Secure: How to Authenticate a Message with
Just One Hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 355–369. Springer, Heidelberg (2007)

19. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

20. Gazi, P., Pietrzak, K., Rybar, M.: The Exact PRF-Security of NMAC and HMAC.
In: Garay, J., Gennaro, R. (eds.) CRYPTO. LNCS, Springer, Heidelberg (to appear
2014)

21. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday Paradox for Multi-
Collisions. IEICE TRANSACTIONS on Fundamentals of Electronics, Communi-
cations and Computer Sciences E91-A(1), 39–45 (2008)

Improved Indifferentiable Security Analysis

of PHOTON

Yusuke Naito1 and Kazuo Ohta2

1 Mitsubishi Electric Corporation and The University of Electro-Communications
Naito.Yusuke@ce.MitsubishiElectric.co.jp
2 The University of Electro-Communications

kazuo.ohta@uec.ac.jp

Abstract. In this paper, we study the indifferentiable security of the
domain extension algorithm of the PHOTON hash function that was proven
to be indifferentiable from a random oracle up to O(2min{c/2,c′/2}) query
complexity, where c is the capacity in the absorbing step of PHOTON and
c′ is that in the squeezing step. By reducing the size c′, one can reduce
the processing time spent by PHOTON, while the indifferentiable security is
degraded. Note that there is no generic attack on PHOTON with O(2c

′/2)
query complexity. Thus it is interesting to investigate the optimality
of the indifferentiable security and the size of c′ ensuring the O(2c/2)
security.

For these motivations, first, we prove that PHOTON is indifferentiable
from a random oracle up to O(min{qmcoll(d

∗, c − c′), 2c/2}) query com-
plexity where qmcoll(d

∗, c− c′) is the query complexity to find a d∗-multi-
collision of (c− c′) bits of hash values and d∗ satisfies qmcoll(d

∗, c− c′) =
2c

′
/d∗. We also show that there exists a generic attack on PHOTON with

the same query complexity. Thus the indifferentiable security of our proof
is optimal.

Second, by using this bound we study the parameter c′ ensuring the
O(2c/2) security. We show that the O(2c/2) security is ensured if c′ ≥
c/2 + log2 c, which implies that we can reduce the processing time by
PHOTON with keeping the same indifferentiable security.

Finally, we propose a faster construction than PHOTON with keeping
the same indifferentiable security, where the length of the first message
block is modified from r bits to r + c/2 bits.

Keywords: Indifferentiability from a random oracle, PHOTON, optimal
security.

1 Introduction

The PHOTON hash function was proposed by Guo, Peyrin, and Poschmann [10].
It is a lightweight hash function that uses a “Sponge-like” algorithm as domain
extension algorithm.

The Sponge function was proposed by Bertoni, Daemen, Peeters, and Van
Assche [4]. The SHA-3 hash function [3] uses it as domain extension algorithm.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 340–357, 2014.
c© Springer International Publishing Switzerland 2014

Improved Indifferentiable Security Analysis of PHOTON 341

P
c ����

r ����

M1

P

M2

P

M3

c ����

r ����

P P

z1 z2 z3

��������	 �
�����	

Fig. 1. Sponge

P
c ����

r ����

M1

P

M2

P

M3

c’ ����

r’ ����
P

z1 z2

��������	 �
�����	

Fig. 2. PHOTON

The advantage of Sponge is that it is possible to keep the internal memory size
as low as possible because it avoids any feed forward operation, and thereby it
is suitable to design lightweight hash functions. For example, lightweight hash
functions Quark [2] and SPONGENT [6] use Sponge as domain extension algo-
rithm.

Sponge is a permutation based algorithm which iterates permutation P of
r+ c bits. It can accept an input of arbitrary length and can generate an output
of arbitrary length. This construction is shown in Fig. 1, which consists of two
steps. The first step is called “absorbing step” which updates chaining values by
absorbing message blocks of r bits. The second step is called “squeezing step”
that generates the output by squeezing r-bit blocks from respective chaining
values. The last c bits of each chaining value are the so-called “capacity” that
keeps the security of Sponge. Bertoni et al. proved that Sponge is indifferentiable
from a random oracle (denoted by RO) up to O(2c/2) query complexity when
P is ideal [5].

Indifferentiable security [11] is an important security criterion of hash func-
tions. This framework offers an elegant composition theorem for RO secure
cryptosystems: if a hash function H (with ideal primitives) is indifferentiable
from RO up to q query complexity then for any single-stage security, any cryp-
tosystem using H is at least as secure as in the RO model up to the same query
complexity [11,13], and thereby it is ensured that there is no generic attack on
H against any single-stage adversary.

The domain extension algorithm of the PHOTON hash function, denoted by
PHOTON, is shown in Fig. 2, where the length of capacity in the squeezing step

342 Y. Naito and K. Ohta

is flexible. The length of capacity in this step is denoted by c′ and the length
of squeezed bits is denoted by r′. The flexibility offers the advantage that when
c′ < c, the processing time spent in the squeezing step can be reduced, compared
to Sponge. For example, when c = 3r, c′ = 2r and the output length is 3r bits,
the number of invoking P is reduced from 2 (see Fig. 1) to 1 (see Fig. 2). This
construction has a positive impact on design of lightweight hash functions. It
is because for lightweight hash functions based on Sponge, the squeezing step
can be very slow due to small r, and thus reducing c′, which means increasing
r′, boosts the squeezing step. However, it was proven that PHOTON is indiffer-
entiable from RO up to O(2min{c/2,c′/2}) query complexity [1],1 and thus the
indifferentiable security is degraded depending on the parameter c′. Note that
when c′ < c, no generic attack with O(2c

′/2) query complexity has been found.2

So it is interesting to investigate the following questions for the indifferentiable
security of PHOTON for the case of c′ < c.

1. Can we give an optimal proof of the indifferentiable security of PHOTON?
2. Can we reduce c′ with the O(2c/2) security?

1.1 Our Results

We study them by using the multi-collision based proof technique which is used
in the security proofs of several hash functions such as [8,14]. So this paper
considers the case of c′ < c.

In Section 3, we improve the indifferentiable security of PHOTON: PHOTON

is indifferentiable from RO up to O
(
min{qmcoll(d

∗, c∗), 2c/2}
)
query complex-

ity, where c∗ = c − c′ and qmcoll(d
∗, c∗) is a query complexity to find a d∗-

multi-collision of c∗ bits of the hash outputs. Note that d∗ satisfies equation
qmcoll(d

∗, c∗) = 2c
′
/d∗.

In Section 4, we show the optimality of the indifferentiable security. To prove
this, we consider a forgery attack on the hash-based message authentication code
(MAC) which is the most important application of hash functions. We give a
generic forgery attack on the PHOTON-MAC with this query complexity. Thus,
the indifferentiable security of our proof is optimal. 3

In Section 5, by using the optimal bound, we investigate the size of c′ with
the O(2c/2) security. We show that when c′ = c/2+ log2 c and d

∗ = c/2− log2 c,
the O(2c/2) security is ensured, and thereby one can improve the processing
time spent in the squeezing step with keeping the indifferentiable security if
c′ ≥ c/2 + log2 c.

1 Note that [1] defined a generalized permutation-based hash function that includes
PHOTON.

2 When c′ ≤ c, the query complexity is optimal, since the collision of capacity in
the absorbing step yields the differentiable attack for PHOTON, and thereby the query
complexity is at most O(2c/2).

3 While [10] gave the optimal parameter of c′ for each of collision security and preim-
age security, our result ensures the optimal indifferentiable security which gives the
optimal parameter of c′ for any single-stage security.

Improved Indifferentiable Security Analysis of PHOTON 343

Table 1. This table compares the numbers of P calls for the original PHOTON hash
function, (optimized) PHOTON, and PHOTONm, where the size of P is 288 bit. c1 is the
length of capacity of the first block. The third and forth columns are the numbers of
P calls at absorbing and squeezing steps, respectively.

Hash Function Capacity Absorbing Squeezing Indiff. Security

PHOTON (Original) [10] c = c1 = c′ = 256 9 7 2128

PHOTON (Optimalized) c = c1 = 256, , c′ = 133 9 1 2128

PHOTONm c = 256, c1 = 128, c′ = 133 5 1 2128

In Section 6, we consider a faster construction where the length of the first
message block, denoted by r1, is flexible. We denote the modified construction
by PHOTONm. We show that PHOTONm has the same indifferentiable security as
PHOTON if r1 ≤ r+ c/2. Thus, one can also improve the processing time spent in
the absorbing step with keeping the indifferentiable security if r1 ≤ r+ c/2. We
believe that this modification also has a positive impact on design of lightweight
hash functions, especially this is effective for short messages.

Finally, in Table 1, we compare the numbers of P calls for the original PHOTON
hash function, (optimized) PHOTON, and PHOTONm, where the input length is 256
bit and the output length is 256 bit. We use a 288-bit permutation that is
used in one of the PHOTON family called PHOTON-256/32/32 [10]. In this table,
PHOTON-256/32/32 is denoted by “original PHOTON”. Then, we optimize the orig-
inal PHOTON by using our analysis for c′. In this table, it is denoted by “optimized
PHOTON”. We also optimize it by using our analysis for r1. In this case, the num-
bers of P calls are 16 (original PHOTON), 10 (optimized PHOTON), and 6 (PHOTONm).
This example shows that the number of P calls can be reduced with keeping the
indifferentiable security.

1.2 Related Works

PHOTON can be seen as the ChopMD hash function [9] shown in Fig. 3
where the compression function h is defined by h(cv,Mi) = P ((Mi‖0r) ⊕ cv).
Chang and Nandi [8] proved that ChopMD is indifferentiable from RO up to
O(min{2c′/r′, 2r′}) query complexity when h is a random oracle. Naito, Sasaki,
Wang and Yasuda [12] showed that the query complexity is optimal when r′ = c′

hr+c ����

M1 M2 M3

h h
c’ ����
r’ ����

z1

Fig. 3. ChopMD

344 Y. Naito and K. Ohta

where they gave a generic forgery attack on the ChopMD-MAC with O(2c
′
/c′)

complexity. Thus, if the compression function P ((Mi‖0r) ⊕ cv) is indifferen-
tiable from RO, then the compression function can be used as a random oracle
compression function and thereby the ChopMD result might offer the optimal
security of PHOTON.

However, the compression function is not indifferentiable from RO. One can
easily find a collision of the compression function by setting (M‖0c) ⊕ cv =
(M ′‖0c) ⊕ cv′ such that M �= M ′. On the other hand, it is hard to find the
collision of a random oracle. The difference yields the differentiable attack on
the compression function. Thus the indifferentiable security of ChopMD does
not ensure that of PHOTON.

Canteaut, Fuhr, Naya-Plasencia, Paillier, Reinhard, and Videau [7] defined
a generalized permutation-based hash construction that includes a fixed output
length PHOTON where the output is squeezed from a single permutation call. They
proved that the generalized hash function is indifferentiable from RO. Note
that our result covers a variable output length PHOTON. Moreover, their query
complexity is not optimal. For example, when c′ = c/2 + log2 c and r

′ = c2, the
query complexities are O(2c/2/c) from [7] and O(2c/2) from our result.

2 Preliminaries

Notation. For two values x, y, x||y is the concatenated value of x and y. For
some value y, x← y means assigning y to x. When X is a non-empty finite set,

we write x
$←− X to mean that a value is sampled uniformly at random from

X and assign to x. ⊕ is bitwise exclusive or. |x| is the length (size) of binary
string x. For a b-bit value x, x[i, j] is the value from (left) i-th bit to (left) j-
th bit where 1 ≤ i ≤ j ≤ b. For example, let x = 01101001, x[3, 5] = 101. ∅
is an empty set and ε is an empty string. pmcoll(Q, d, c

∗) is the probability of
occurring a d-multi-collision in Q random values of r bits, which means that for
Q random values x1, . . . , xQ of r bit, there exists d-values xi1 , . . . , xid such that
xi1 = · · · = xid . qmcoll(d, c

∗) is the number of random values of c∗ bits wherein
a d-multi-collision occurs with the probability of 1/2. Note that the number is
discussed in [15]. Please see [15] for the detail.

PHOTON Construction. Let P be a permutation of t bits. The PHOTON hash
function PHOTONP is defined in Fig. 4, which accepts a message of arbitrary
length, denoted by M , and the output length denoted by n, and generates an
n-bit string. Let r be the length of a message block, c = t − r, which is called
“capacity”, r′ be the length of each output block, c′ = t − r′ and c∗ = c −
c′. pad : {0, 1}∗ → ({0, 1}r)∗ is an injective padding function such that the
last r-bit value is not 0r and its inverse unpad : ({0, 1}r)∗ → {0, 1}∗ ∪ {⊥} is
efficiently computable. unpad(M) =M∗ (�=⊥) if ∃M∗ such that pad(M∗) =M ,
unpad(M) =⊥ otherwise. For example, pad(M) =M ||1||0i where i is a smallest
value such that the length of M ||1||0i is multiples of r. IV is a constant value
of n bits. IV1 = IV [1, r] and IV2 = IV [r + 1, t].

Improved Indifferentiable Security Analysis of PHOTON 345

Indifferentiability [11]. Let HP be a hash function (e.g., PHOTON) using a
random permutation P . Let P−1 be its inverse oracle. Let S = (SF , SI) be a
simulator. The indifferentiable advantage of HP from a random oracle RO is
defined as follows.

Advindiff,RO
HP ,S

(D) = |Pr[DHP ,P,P−1 ⇒ 1]− Pr[DRO,SRO
F ,SRO

I ⇒ 1]|

where D is a distinguisher has oracle access to HP /RO, P/SF and P−1/SI .
SF and SI simulate P and P−1, respectively. Since PHOTON accepts the output
length n, a query to RO includes the output length: for query (n,M), the output
is defined as RO(M)[1, n].

We sayHP is indifferentiable fromRO if there exists a simulator S = (SF , SI)
such that for any distinguisher D the advantage is negligible.

Hereafter, we call the H world “Real World”, and the RO world “Ideal
World”. We call the oracleHP /RO “Left Oracle” (denoted by L) and the oracles
P/SF and P−1/SI “Right Oracles” (denoted RF and RI , respectively).

The indifferentiability composition theorem is as follows. It ensures that for
any single-stage security such as collision security, second preimage security, and
preimage security, if HP is indifferentiable from RO then any cryptosystem is
at least as secure in the P model via H as in the RO model [11,13].

Theorem 1 ([11,13](The following statement is from Theorem 3.1 of
[13])). Let G be any single-stage security game. Let S be a simulator. For any
adversary A, there exist an adversary B and a distinguisher D such that

Pr[A wins G under the HP case] ≤Pr[B wins G in RO model]

+ Advindiff,RO
HP ,S

(D).

Moreover, tB ≤ tD + qAtS , qB ≤ qAqS , tD ≤ tG + qGtA, qD ≤ qG + qGtA where
tA, tB, and tD are the maximum running times of A,B, and D, respectively;
qA and qB are the maximum number of queries made by A and B in a single
execution, respectively; and qG are the maximum number of queries made by G
to the left oracle and to the adversary.

3 Improving the Indifferentiable Security Bound of
PHOTON

In this section, we improve the indifferentiable security of PHOTONP where P is
a random permutation and P−1 is its inverse oracle.

Theorem 2. Assume that c′ ≤ c. There exists a simulator S = (SF , SI) such
that for any distinguisher D, the following holds,

Advindiff,RO
PHOTONP ,S

(D) ≤max

{
Npmcoll(qL, d, c

∗) +
(d− 1)q

2c′
+
q(q − 1)

2c
,
σ2

2c

}
+
σ(σ − 3)

2t+1

346 Y. Naito and K. Ohta

Algorithm PHOTONP (n,M)

1. parse pad(M) into r-bit blocks
(M1, . . . ,M�)

2. s = IV
3. for i = 1, . . . , 	 do s ← P (s⊕ (Mi‖0c))
4. for j = 1, . . . , �n/r′� do wj ← P (wj−1);

w ← w||wj [1, r
′]

5. return w[1, n]

Fig. 4. PHOTON Fig. 5. PHOTON Graph

where D can make queries to PHOTONP /RO and (P, P−1)/(SF , SI) at most qL, q
times, respectively, where N is the maximum size of the sum of the input blocks
of an L query and the output blocks, and d is a free parameter which can be
selected such that the bound is minimum. σ = NqL + q. S makes at most q
queries and runs in time O(q). �

3.1 PHOTON Graph

We define a PHOTON graph GS which keeps paths constructed from query-
responses of right oracles. It is initialized with the single node IV . Edges and
nodes in this graph are defined by query-responses of right oracles, which fol-
lows the PHOTON structure. The nodes are chaining values and the edges are
message blocks. For example, if (X1, Y1) and (X2, Y2) are query-responses of
RF or RI such that X1[r + 1, t] = IV2 and Y1[r + 1, t] = X2[r + 1, t] then
IV, Y1 and Y2 are the nodes of GS , and M1 and M2 are the edges where
M1 = IV1 ⊕ X1[1, r] and M2 = Y1[1, r] ⊕ X2[1, r]. We denote the path by

IV
M1−−→ Y1

M2−−→ Y2 or IV
M1||M2−−−−−→ Y2 (Fig. 5 may help readers to understand this

graph). We say paths with a PHOTON construction “PHOTON paths”. For example,

IV
M−→ Y1

0r−→ Y2
0r−→ Y3 · · · is a PHOTON path if unpad(M) �=⊥.

3.2 Simulator

We define a simulator S = (SF , SI) in Fig. 6. S has two tables T and path that
are initialized by the Initialization procedure. S keeps query-response pairs in T
and the paths in path. The paths are constructed from the pairs in T .
S is defined such that S and RO are consistent, which means that for any

path IV
M−→ Y1

0r−→ Y2
0r−→ · · · 0r−→ Y� in path, if unpad(M) = M∗ �=⊥ then

Y1[1, r
′]|| . . . ||Y�[1, r′] = RO(M∗)[1, r′�].

3.3 Proof Overview

We give the outline of the indifferentiable security proof of PHOTON. In order to
simplify the discussion, we fix the input lengths as r (single block) and 2r (two

Improved Indifferentiable Security Analysis of PHOTON 347

SF (X)

1. if ∃(X,Y) ∈ T then return Y
2. parse X into r-bit value Xr and c-bit value Xc

3. if ∃(IV M−→ u‖Xc) ∈ path then
4. parse M‖(u⊕Xr) into M0 and 0jr

s.t. the last block of M0 is not 0r

5. Y [r′ + 1, t]
$←− {0, 1}c′

6. if unpad(M0) = M∗ �=⊥ then
7. z ← RO(M∗)
8. assign j + 1-th r′-bit block of z to Y [1, r′]
9. else

10. Y [1, r′] $←− {0, 1}r′

11. endif
12. insert IV

M−→ u‖Xc
u⊕Xa−−−−→ Y to path

13. else
14. Y

$←− {0, 1}t
15. endif
16. insert (X,Y) to T
17. return Y

Initialization

1. T ← ∅
2. path ← {IV ε−→ IV }

SI(Y)

1. if ∃(X,Y) ∈ T then
return X

2. X
$←− {0, 1}t

3. insert (X,Y) to T
4. return X

Fig. 6. Simulator

block), and the output as n = r′ (single block), and omit the padding function
pad. The full proof is given in the next subsection.

In the real world, L makes RF queries, where (L,RF , RI) = (PHOTONP ,

P, P−1). Therefore, for any PHOTON path IV
M−→ Y , the relation Y [1, r′] =

L(r′,M) is ensured. On the other hand, in the ideal world, L does not make
RF queries, where (L,RF , RI) = (RO, SF , SI). So S has to simulate the rela-
tion between L and RF in the real world. If we can construct such simulator,
the indifferentiable security can be ensured. In this case, we say the PHOTON

consistency is ensured.

Differentiable Events. We discuss differentiable events. Consider PHOTON

paths IV
M1−−→ Y1 (single block) and IV

M1−−→ Y1
M2−−→ Y2 (two blocks) in the

graph GS in the ideal world. Let (X1, Y1) be the query-response pair correspond-

ing with IV
M1−−→ Y1, that is, X1 = IV ⊕ (M1‖0c), and similarly (X2, Y2) be the

query-response pair corresponding with Y1
M2−−→ Y2. In the following discussion,

we focus on the queries corresponding with (X1, Y1) and (X2, Y2).
When these pairs are defined by RF queries and by this order, the PHOTON

consistency is ensured; When D makes the query RF (X1), SF can respond the
output Y1 such that Y1[1, r

′] = L(r′,M1) by making the query L(r′,M1). When
D makes the query RF (X2), since S can know M1 from the table path, S can
respond Y2 such that Y2[1, r

′] = L(r′,M1‖M2).

348 Y. Naito and K. Ohta

On the other hand, the PHOTON consistency is not ensured when these pairs
are defined by other patterns. These patterns can be categorized by the five
events ConnectIVF , ConnectIVI , ConnectF , ConnectI , and Coll. We ex-
plain these events as follows.

– ConnectIVF is that for the query RF (X1), the response Y1 connects to IV ,

that is, Y1[r + 1, t] = IV2. In this case, in addition to the path IV
M1−−→ Y1,

other paths can be constructed, e.g., IV
M1−−→ Y1

M∗
−−→ Y1 where M∗ =

IV1⊕M1⊕Y1[1, r]. On the other hand, Y1 �= L(r′,M1) or Y1 �= L(r′,M1‖M∗),
since L = RO. Thus, if ConnectIVF occurs then the PHOTON consistency
cannot be ensured.

– ConnectIVI is that for the query RI(Y1), the response X1 connects with
IV , that is, X1[r + 1, t] = IV2. Since L = RO, Y1[1, r

′] �= RO(M1). Thus, if
ConnectIVI occurs then the PHOTON consistency cannot be ensured.

– ConnectF is that first D makes the query RF (X2), and then makes the
query RF (X1). Namely, the response Y1 connects with X2, that is X2[r +
1, t] = Y1[r + 1, t]. In this case, when making the query RF (X1), S does
not know M1. Since L = RO, Y2[1, r] �= L(r′,M1‖M2). Thus if ConnectF
occurs, the PHOTON consistency cannot be ensured.

– ConnectI is that first D makes the query RF (X1), and second D makes the
query RI(Y2). Then the response X2 connects with Y1, that is X2[r+1, t] =
Y1[r + 1, t]. Since L = RO and Y2 is chosen by D, Y2[1, r

′] �= L(r′,M1||M2).
Thus, if ConnectI occurs, the PHOTON consistency cannot be ensured.

– Coll is that D makes queries RF (X
(1)
1) and RF (X

(2)
1), and then the re-

sponses Y
(1)
1 and Y

(2)
1 are such that Y

(1)
1 [r + 1, t] = Y

(2)
1 [r + 1, t]. Thus, the

collision paths IV
M

(1)
1−−−→ Y

(1)
1 and IV

M
(2)
1−−−→ Y

(2)
1 are constructed. In this

case, when the query RF (X2) is made where X2[r + 1, t] = Y
(1)
1 [r + 1, t],

the response Y2 is such that Y2[1, r
′] �= L(r′,M

(1)
1 ‖M (1)

2) or Y2[1, r
′] �=

L(r′,M
(2)
1 ‖M (2)

2) where M
(1)
2 = X2[1, r] ⊕ Y

(1)
1 [1, r] and M

(2)
2 = X2[1, r] ⊕

Y
(2)
1 [1, r], since L = RO. Thus, if Coll occurs, the PHOTON consistency can-

not be ensured.

Note that if the PHOTON consistency cannot be ensured then one of the
above events occurs. Thus, the indifferentiable advantage of PHOTON is obtained
from the probabilities Pr[ConnectIVF], Pr[ConnectIVI], Pr[ConnectF],
Pr[ConnectI], and Pr[Coll].

Evaluating the Probabilities. Assume that D can make queries at most Q
times. We give rough evaluations of these probabilities as follows.

For the probabilities Pr[ConnectIVF], Pr[ConnectIVI], Pr[ConnectI],
and Pr[Coll], since outputs of S are chosen uniformly at random from {0, 1}t,
we have

Improved Indifferentiable Security Analysis of PHOTON 349

Pr[ConnectIVF] ≤
Q

2c
, Pr[ConnectIVI] ≤

Q

2c
,

Pr[ConnectI] ≤
Q∑
i=1

i− 1

2c
≤ Q(Q− 1)

2c+1
, and

Pr[Coll] ≤
Q∑
i=1

i− 1

2c
≤ Q(Q− 1)

2c+1
.

Finally, we evaluate the probabilities Pr[ConnectF]. Note that [1] evaluated
the probability of the event ConnectF as Pr[ConnectF] ≤ Q2/2c

′
. The prob-

ability is from the facts that the numbers of such (X1, Y1) and of such (X2, Y2)
are at most Q, respectively, and right most c′ bits are uncontrollable. Hence,
the probability that Y1 connects with X2 is at most Q2/2c

′
. On the other hand,

the probability can be evaluated by using the multi-collision technique that was
used in the security proofs of several hash functions such as [8,14].

Let MColl be a multi-collision event where for some queries L(r′,M
(1)
1),

. . ., L(r′,M
(d)
1), the outputs Z

(1)
1 , . . . , Z

(d)
1 are such that Z

(1)
1 [r + 1, r′] = · · · =

Z
(d)
1 [r + 1, r′] (d-multi-collision). Then the probability Pr[ConnectF] can be

bounded as

Pr[ConnectF] ≤ Pr[MColl] +Pr[ConnectF |¬MColl].

Then,

Pr[MColl] = pmcoll(Q, d, c
∗).

We evaluate the probability Pr[ConnectF |¬MColl] as follows. In this case,
we must care the two facts.

– D can know the left most r′-bits of some output of S by an output of L.

This is from the condition that for the PHOTON path IV
M1−−→ Y1, Y1[1, r

′] =
L(r′,M1).

– D can select messages.

Thus Y1[1, r] is under the control of D and Y1[r+1, r′] is obtained from the query
L(M1). So the probability Pr[ConnectF |¬MColl] can be evaluated from the
following D’s procedures: (1) D obtains Y1[1, r

′] by query L(r′,M1), (2) makes
query SF (X2) such that X2[r+1, r′] = Y1[r+1, r′], and (3) makes query SF (X1)
such that X1 = IV ⊕ (M1‖0r) where the output is Y1. From the event ¬MColl,
the number of such X1[r

′+1, t] is at most d−1 and D can make queries SF (X2)
at most Q. Thus we have

Pr[ConnectF |¬MColl] ≤ (d− 1)Q

2c′
.

Thus the query complexity to be differentiable from RO is

O
(
min{qmcoll(d, c

∗), 2c
′
/d, 2c/2}

)
.

350 Y. Naito and K. Ohta

L(n,M)

return RO(M)[1, n];

RF (x)

return SF (x);

RI(y)

return SI(y);

Fig. 7. Game 1

L(n,M)

return PHOTONSF (n,M);

RF (x)

return SF (x);

RI(y)

return SI(y);

Fig. 8. Game 2

L(n,M)

return PHOTONP (n,M);

RF (x)

return P (x);

RI(y)

return P−1(y);

Fig. 9. Game 3

We select d such that qmcoll(d
∗, c∗) = 2c

′
/d∗, and hence the query complexity is

O
(
min{qmcoll(d

∗, c∗), 2c/2}
)
.

3.4 Proof of Theorem 2

This proof consists of three games, which are shown in Figs. 7, 8, and 9. In each
game, the distinguisher D has oracle access to left oracle L and right oracles
(RF , RI). Game 1 is the ideal world and Game 3 is the real world. Let Gi be
the event that in Game i D outputs 1. Then

Advindiff,RO
PHOTONP ,S(D) ≤ |Pr[G1]−Pr[G2]|+ |Pr[G2]−Pr[G3]|.

In the following, we evaluate each difference.

Game 1 ⇒ Game 2. The evaluation of the difference between Game 1 and
Game 2 is inspired by the proof of [9]. When considering the difference, we must
care two points. The first point is that in Game 2 for a query L(n,M), L makes
RF queries corresponding with PHOTONSF (n,M), while in Game 1 L does not
makes the queries. In Game 2, D cannot find the additional right query-responses
directly but can find them by making the corresponding right queries. So we must
show that the additional right query-responses that D obtains don’t affect the
D’s behavior. The second point is that in Game 2 L(n,M) = PHOTONSF (n,M),
while in Game 1 L(n,M) = RO(M)[1, n]. Thus we must ensure the following
two points.

1. In Game 1, RF and RI consistent with L as in Game 2.
2. In Game 2, for any query L(n,M), the response is equal to RO(M)[1, n].

Note that we assumed that n is multiple of r′. To ensure the two points, we use
the following lemma.

Lemma 1. In Game 1 and Game 2, for any PHOTON path IV
M−→ y1

0r−→
y2

0r−→ · · · 0r−→ y�−1
0r−→ y� in GS, unless the following bad event occurs,

y1[1, r
′]|| . . . ||y�[1, r′] = RO(M∗)[1, r′�] where unpad(M) =M∗.

Improved Indifferentiable Security Analysis of PHOTON 351

– Badj: In Game j, for some i-th query RF (Xi), the response Yi is such that
Yi[r + 1, t] collides with some value in Wi ∪ {Xi[r + 1, t], IV2}, or
for some i-th query RI(Yi), the response Xi is such that Xi[r+ 1, t] collides
with some value in Wi ∪ {IV2},

where Wi is a table keeping the right most c-bit values of all query-responses
to RF and RI before the i-th query. Namely, for Wi and any u < i, Xu[r +
1, t], Yu[r + 1, t] ∈Wi where (Xu, Yu) is the u-th query-response. �
Note that in Game 2, these queries include queries from L in addition to those
from D.

Proof (Proof of Lemma 1). Let IV
M−→ y1

0r−→ y2
0r−→ · · · 0r−→ y�−1

0r−→ y�
be any path. The query-response pairs corresponding with the path are de-
noted by (X1, Y1), . . . , (Xl, y1), (y1, y2), . . . , (y�−1, y�) where X1[r + 1, t] = IV2,
Xi[r + 1, t] = Yi−1[r + 1, t] (i = 2, . . . , l), and M = M1|| . . . ||Ml where
M1 = IV1 ⊕ X1[1, r], Mi = Yi−1[1, r] ⊕ Xi[1, r] (i = 2, . . . , l). We show that
y1[1, r

′]|| . . . ||y�[1, r′] = RO(M∗)[1, r′�] where unpad(M) = M∗. Assume that
Badj does not occur.

Since Badj does not occur, (X1, Y1), . . . , (Xl, y1), (y1, y2), . . . , (y�−1, y�) are
defined by this order and by the RF queries. Since Badj does not occur, there

are no collision paths: IV
M−→ u1‖X and IV

M−→ u2‖X . Thus, Steps 7 and 8 of
SF ensure that y1[1, r

′]|| . . . ||y�[1, r′] = RO(M∗)[1, r′�].
��

Lemma 1 ensures the two points.

– In Game 1, for any PHOTON path in GS , denoted by IV
M−→ y1

0r−→ y2
0r−→

· · · y�−1
0r−→ y�, y1[1, r

′]‖y�−1[1, r
′]‖y�[1, r′] = L(r′�,M∗) such that M∗ =

unpad(M). Thus RF and RI consistent with L as in Game 2, thereby the
point 1 is ensured.

– In Game 2, unless the bad event occurs, for any query L(n,M∗), the response
is equal to RO(M∗)[1, n]. Thus the point 2 is ensured.

Consequently, Pr[G1|¬Bad1] = Pr[G2|¬Bad2], and we have

|Pr[G1]−Pr[G2]|
≤|Pr[G1|Bad1]Pr[Bad1] +Pr[G1|¬Bad1]Pr[¬Bad1]

− (Pr[G2|Bad2]Pr[Bad2] +Pr[G2|¬Bad2]Pr[¬Bad2])|
≤|Pr[G1|¬Bad1](Pr[Bad2]−Pr[Bad1])

+ (Pr[G1|Bad1]Pr[Bad1]−Pr[G2|Bad2]Pr[Bad2])|
≤max{Pr[Bad1],Pr[Bad2]}

We evaluate the bounds as follows.
First, we evaluate the probability Pr[Bad1]. We define an event MColld

in which a d-multi collision occurs for c∗-bit values of some blocks of outputs
of RO. Strictly, let Z1, . . . , Zs be all outputs of RO by L queries. Let Zi,j =
Zi[(j − 1)r′ + 1, jr′] (j-th block of r′ bit) for i = 1, . . . , s.

352 Y. Naito and K. Ohta

– MColld: For some j∗ and some i1, . . . , id, Zi1,j∗ [r + 1, r′] = . . . = Zid,j∗ [r +
1, r′] (d-multi-collision).

We have

Pr[Bad1] ≤Pr[MColld] +Pr[Bad1|¬MColld]

≤Npmcoll(qL, d, c
∗) +

(d− 1)q

2c′
+
q(q − 1)

2c

where the first term corresponds with Pr[MColld] and the remaining terms
correspond with Pr[Bad1|¬MColld].

We thus justify the bound of Pr[Bad1|¬MColld]. Assume that ¬MColld
occurs. The event Bad1 is triggered by some RF query or some RI query. Thus
we consider the two cases.

– Consider the case that this event is triggered by some RF query.
• In this case, we must care the case that D can obtain left most r′-bit
values of outputs of SF by L (= RO) queries in advance, where this case
corresponds with the event ConnectF shown in Subsection 3.3. Since
the number of queries which may connect to some block is at most d−1,
the probability is ≤ (d− 1)q/2c

′
.

• On the other hand, other cases are that the r′-bit values are not obtained
by L queries in advance. Fix i and assume that the i-th query triggers
the event Bad1. The i-th query-response is denoted by (Xi, Yi) which is
defined by the RF query. Yi[r + 1, t] is chosen independent from Wi ∪
{IV2, Xi[r + 1, t]}. The probability is ≤

∑q
i=1(2(i − 1) + 2)/2c = q(q −

1)/2c.
Thus the probability of this case is ≤ (d− 1)q/2c

′
+ q(q − 1)/2c.

– Consider the case that this event is triggered by some RI query. Fix i and
assume that the i-th query triggers the event Bad1. The i-th query-response
is denoted by (Xi, Yi) which is defined by the RI query, that is, Xi is such
that Xi[r + 1, t] collides with some of Wi ∪ {IV2}. We note that outputs of
SI are chosen uniformly at random and independent from RO. Thus the
probability p2 from this case is ≤

∑q
i=1(2(i− 1) + 1)/2c = q(q − 3)/2c.

We thus have

Pr[Bad1|¬MCollt] ≤max

{
(d− 1)q

2c′
+
q(q − 1)

2c
,
q(q − 3)

2c

}
≤ (d− 1)q

2c′
+
q(q − 1)

2c
.

Finally, we evaluate the probability Pr[Bad2]. Fix i. Let (Xi, Yi) be an i-th
query-response to a right oracle.

– When (Xi, Yi) is defined by the SF query, the probability that Yi[r + 1, t]
collides with some of Wi ∪ {IV2, Xi[r + 1, t]} is ≤ 2(i− 1) + 2)/2c.

– When (Xi, Yi) is defined by the SI query, the probability that Xi[r + 1, t]
collides with some of Wi ∪ {IV2} is ≤ (2i− 1)/2c.

Improved Indifferentiable Security Analysis of PHOTON 353

We thus have

Pr[Bad2] ≤
σ∑

i=1

2i

2c
=
σ2

2c
.

Game 2 ⇒ Game 3. Outputs of SF and SI are random values, while (P, P−1)
is a random permutation. The difference |Pr[G2]−Pr[G3]| is thus bounded by
the collision probability in Game 2. Since SF or SI is called at most σ times, we
thus have

|Pr[G2]−Pr[G3]| ≤
σ∑

i=1

i − 1

2t
=
σ(σ − 3)

2t+1
.

4 Optimality of Our Proof

In this section, we show that the query complexity obtained from our bound is
optimal. To show this, in Subsection 4.1, we give a generic forgery attack on the
PHOTON-MAC. In Subsection 4.2, we explain the optimality of the indifferentiable
security.

4.1 Forgery Attack on PHOTON-MAC

For a single block size secret key K and a message M , the tag is computed by
PHOTONP (1,K‖M). Thus the tag size is r′ bits.

The goal of the forgery attack is to find a valid pair of message M and tag
tag such that tag = PHOTONP (1,K‖M) and the query corresponding the pair
was not made, where K is chosen uniformly at random and a forger can make
queries to PHOTONP (1,K‖·).

Attack Procedure. In this attack, we shall construct a d-multi-collision of the
PHOTON-MAC. We postpone determining the value of d till the next subsection.

1. Choose first message block M1 so that the message with the padding value
pad1, denoted by M1‖pad1, fits in the first block, and make queries M1 to
obtain the corresponding tag. Iterate this qmcoll(d, c

∗) times. If no d-multi-
collision occurs for the c∗ bits of the tags from r+1 to r′, then abort. Other-
wise, continue the following procedures. Let M1,i, where i ∈ {1, 2, . . . , d}, be
the d values forming the d-multi-collision, and let T1,i, where i ∈ {1, 2, . . . , d},
be the corresponding tags. That is, T1,1[r + 1, r′] = · · · = T1,d[r + 1, r′]. Let
T ∗
1 = T1,1[r + 1, r′].

2. Choose 2c
′
/d distinct c′-bit values Cj for j = 1, . . . , 2c

′
/d. For each j, Xj =

0r‖T ∗
1 ‖Cj and Yj = P ((pad3‖0c)⊕ P (Xj)) where pad3 is the padding value

fitting in the third block.
3. For each M1,i, set M2 = T1,i[1, r], make a query M1,i‖pad1‖M2 and obtain

the tag T3,i. If there exists j such that T3,i = Yj [1, r
′] then do the following.

354 Y. Naito and K. Ohta

(a) Select distinct r-bit blocks M∗
2,1 and M∗

2,2 such that for l = 1, 2 M∗
2,l �=

M2.
(b) For l = 1, 2, X∗

l = (M∗
2,l ⊕ T1,i)‖T ∗

1 ‖Cj , Y
∗
l = P ((pad3‖0r) ⊕ P (X∗

l)),
and set T3,l = Y ∗

l [1, r
′].

(c) Make a query M1,i‖pad1‖M∗
2,1 and obtain the tag T3

(d) If T3 = T3,1, return the message M1,i‖pad1‖M∗
2,2 and the tag T3,2.

Complexity and Success Probability. Step 1 requires to make qmcoll(d, c
∗)

queries to obtain the d-multi-collision with a probability of 1/2.The memory
requirement is qmcoll(d, c

∗) for the internal state values on finding the d-multi-
collision, and d for storing the pairs (M1,i, T1,i). Step 2 requires 2×
2c′/d� off-line
computations of P . The memory requirement is
2c′/d� for storing (Cj , Yj [1, r

′]).
Step 3 requires to make d 2-block queries, which is 2d queries, and if T3,i =
Yj [1, r

′], requires 4-off-line computations of P and a 2-block query, which is 2
queries. Finally, we can conclude that the query complexity is qmcoll(d, c

∗)+2(d+
1) for Steps 1 and 3, the time complexity is 2 ×
2c′/d� + 4 for Steps 2 and 3,
and the memory complexity is qmcoll(d, c

∗) +
2c′/d� for Steps 1 and 3.
The success probability of Step 1 is roughly 1/2 and the success probability

of Step 3 is roughly 1− 1/e. Finally, the success probability of the entire attack
is 1/2 · (1− 1/e) ≈ 0.316.

4.2 Discussion

From Theorem 2, the indifferentiable advantages of PHOTONP is bounded by

max

{
pmcoll(NqL, d, c

∗) +
(d− 1)q

2c′
+
q(q − 1)

2c
,
σ2

2c

}
+
σ(σ − 3)

2t+1
.

We define the free parameter d = d∗ such that qmcoll(d
∗, c∗) = 2c

′
/d∗.

Thus the query complexity for the indifferentiable security is at least

O
(
min{2c′/d∗, 2c/2}

)
.

On the other hand, from Theorem 1, the generic forgery attack ensures that

the query complexity is at most O
(
min{qmcoll(d, c

∗) + 2c
′
/d, 2c/2}

)
. Note that

the query complexity of O(2c/2) is from the attack based on the collision of
capacity. Since for any d, qmcoll(d, c

∗) + 2c
′
/d ≥ qmcoll(d

∗, c∗) + 2c
′
/d∗, the query

complexity for the indifferentiable security is at most O
(
min{2c′/d∗, 2c/2}

)
.

Thus the query complexity of our proof is optimal.

5 Choosing Parameters c′

We assume that c > c′. Note that the indifferentiable security of PHOTON with
c ≤ c′ is ensured by the one of Sponge. We show that when c′ ≥ c/2 + log2 c,
the query complexity to be differentiable from RO is O(2c/2).

Improved Indifferentiable Security Analysis of PHOTON 355

The indifferentiable advantages of PHOTONP is bounded by

max

{
pmcoll(NqL, d, c

∗) +
(d− 1)q

2c′
+
q(q − 1)

2c
,
σ2

2c

}
+
σ(σ − 3)

2t+1
.

Note that the terms q(q−1)/2c, σ2/2c, and σ(σ−3)/2t+1 ensure the complexity
of O(2c/2). We thus consider remaining terms.

We consider the probability pmcoll(NqL, d, c
∗).

pmcoll(NqL, d, c
∗) ≤
(
NqL
d

)(
1

2c∗

)d−1

.

We define the parameters c′ and d as c′ = c/2 + log2 c and d = c∗ = c − c′ =
c/2− log2 c. Then,(

NqL
d

)(
1

2c∗

)d−1

≤ 1

c/2− log2 c

(
NqL

2c/2−log2 c−1

)c/2−log2 c

≤ 1

c/2− log2 c

(
NqL

2c/2−log2 c−1

)
≤ NqL

2c/2−2

and

(d− 1)q

2c′
=

(c/2− log2 c)q

2c/2+log2 c
≤ q

2c/2+1
.

Thus when c′ ≥ c/2 + log2 c, the O(2c/2) security is ensured.

6 Modified PHOTON

In this section, we consider the faster construction than PHOTON where the length
of the first block message, denoted by r1, is flexible.

Recall the bad events discussed in Section 3.3. The query complexities to
occur the bad events ConnectIVF and ConnectIVI are O(2c). Thus when
r1 ≤ r+c/2, the O(2c/2) security is ensured. Precisely, the following theorem can
be proven by the same proof as Theorem 2, where the modified PHOTON, denoted
by PHOTONm is indifferentiable from RO up to O(2c/2) query complexity.

Theorem 3. Assume that c′ ≤ c. There exists a simulator S = (SF , SI) such
that for any distinguisher D, the following holds,

Advindiff,RO
PHOTONPm,S

(D) ≤max{Npmcoll(qL, d, c
∗) +

(d− 1)q

2c′
+
q(q − 2)

2c
+

q

2c/2
,

σ(σ − 1)

2c
+

σ

2c/2
}+ σ(σ − 3)

2t+1

356 Y. Naito and K. Ohta

where D can make queries to PHOTONPm/RO and (P, P−1)/(SF , SI) at most qL, q
times, respectively, where N is the maximum size of the sum of the input blocks
of an L query and the output blocks, and d is a free parameter which can be
selected such that the bound is minimum. σ = NqL + q. S makes at most q
queries and runs in time O(q). �

The probabilities q/2c/2 and σ/2c/2 are appeared due to the bad event cor-
responding with the initial value. Since this proof is similar to the proof of
Theorem 2, we omit this proof.

References

1. Andreeva, E., Mennink, B., Preneel, B.: The Parazoa Family: Generalizing the
Sponge Hash Functions. Int. J. Inf. Sec. 11 (2012)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak sponge function
family, http://keccak.noekeon.org/

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop (2007)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

6. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

7. Canteaut, A., Fuhr, T., Naya-Plasencia, M., Paillier, P., Reinhard, J.-R., Videau,
M.: A Unified Indifferentiability Proof for Permutation- or Block Cipher-Based
Hash Functions. IACR Cryptology ePrint Archive, 2012/363

8. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD
Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008)

9. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

10. Guo, J., Peyrin, T., Poschmann, A.: The photon family of lightweight hash func-
tions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer,
Heidelberg (2011)

11. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

12. Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic State-Recovery and Forgery
Attacks on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama, K., Terada, M.
(eds.) IWSEC 2013. LNCS, vol. 8231, pp. 83–98. Springer, Heidelberg (2013)

http://keccak.noekeon.org/

Improved Indifferentiable Security Analysis of PHOTON 357

13. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Limita-
tions of the Indifferentiability Framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

14. Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal-Cipher Model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

15. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

Faster Maliciously Secure
Two-Party Computation Using the GPU

Tore Kasper Frederiksen, Thomas P. Jakobsen, and Jesper Buus Nielsen∗

Department of Computer Science, Aarhus University, Aarhus, Denmark
{jot2re,tpj,jbn}@cs.au.dk

Abstract. We present a new protocol for maliciously secure two-party computa-
tion based on cut-and-choose of garbled circuits using the recent idea of “forge-
and-loose”, which eliminates around a factor 3 of garbled circuits that needs to
be constructed and evaluated. Our protocol introduces a new way to realize the
“forge-and-loose” approach, which avoids an auxiliary secure two-party compu-
tation protocol, does not rely on any number theoretic assumptions and paral-
lelizes well in a same instruction, multiple data (SIMD) framework.

With this approach we prove our protocol universally composable-secure
against a malicious adversary assuming access to oblivious transfer, commitment
and coin-tossing functionalities in the random oracle model.

Finally, we construct, and benchmark, a SIMD implementation of this protocol
using a GPU as a massive SIMD device. The findings compare favorably with all
previous implementations of maliciously secure, two-party computation.

1 Introduction

Background. Secure two-party computation (2PC) is the area of cryptography con-
cerned with two mutually distrusting parties who wish to securely compute an arbi-
trary function with private output based on their independent and private input. A bit
more formally Alice has the input x, Bob the input y, and they wish to compute the
function f(x, y) = z while ensuring such properties as correctness, privacy, and input
independence.1

2PC was introduced in 1982 by Andrew Yao [36,37], specifically for the semi-honest
case where both parties are assumed to follow the prescribed protocol and only try to
compromise security by extracting information from their own views of the protocol
execution. Yao showed how to construct a semi-honestly secure protocol using a tech-
nique referred to as the garbled circuit approach. This approach involves having one

∗ Partially supported by the European Research Commission Starting Grant 279447 and the
Danish National Research Foundation and The National Science Foundation of China (grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computation. Tore and
Thomas are supported by Danish Council for Independent Research Starting Grant 10-081612.

1 Who should learn the output z can differ and in the most general case there might be a specific
output for Alice and one for Bob, i.e., f(x, y) = z = (zA, zB) = (fA(x, y), fB(x, y)) where
Alice should only learn zA and Bob only zB . In this paper we only consider the case where
Bob learns the entire output z. If output for Alice is also needed then any of several general
approaches can be used [26, 30, 35].

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 358–379, 2014.
c© Springer International Publishing Switzerland 2014

Faster Maliciously Secure Two-Party Computation Using the GPU 359

party (the constructor), say, Alice, encrypt, or “garble”, a Boolean circuit computing
the desired functionality. The “garbling” involves first choosing two random keys for
each wire in the circuit, one representing a value of 0 and another representing a value
of 1. Each gate in the garbled circuit is then constructed such that Bob (the evaluator),
given only one key for each input wire, can compute only one key for the output wire,
namely the key corresponding to the bit that the gate is supposed to output, for exam-
ple the logical AND of the two input bits. Alice sends the garbled circuit to Bob and
makes sure that for each input wire, Bob learns only one of that wire’s keys. For Alice’s
own input, she simply sends these keys to Bob. For Bob’s input, they use an oblivious
transfer (OT) protocol such that Bob learns one key for each input wire corresponding
to his own input, without Alice learning Bob’s input. Now, given one key for each input
wire, Bob can then evaluate the whole garbled circuit, gate by gate, while at the same
time, he cannot learn which bits flow on the wires. Only when he reaches the output
wires, he uses some auxiliary information to learn which bits the keys encode. See [27]
for a thorough description of Yao’s scheme.

A major reason why Yao’s original protocol is only secure against a semi-honest
adversary is that Bob cannot be sure that the garbled circuit he receives from a Alice
has been garbled correctly. One way to ensure correct garbling is with a cut-and-choose
approach: Instead of sending one garbled circuit, Alice sends several independently
garbled versions of the circuit to Bob. Bob then randomly selects some of these, called
the check circuits, where all the keys on the input wires are revealed to Bob, allowing
him to verify that the check circuits do indeed compute the correct function f . If enough
circuits are checked and all found to be correct, a large fraction of the remaining circuits,
called evaluation circuits, will also be correct.

Doing cut-and-choose on several garbled circuits introduces some other issues that
have to be dealt with in order to obtain malicious security. First, there may still be a few
incorrect circuits among the evaluation circuits. Also, since there are now many circuits,
some mechanisms must ensure input consistency amongst the circuits: Alice and Bob
must give the same input to all the circuits. Information about Alice’s input will leak to
Bob if he gets to evaluate the circuit on different inputs. But information might also leak
to Alice, depending on the function the circuit is computing, if she gives inconsistent
input. Another perhaps more subtle issue that arises is a certain kind of selective failure
attack: Since Alice will supply Bob with the keys in correspondence with his input bits
through an OT Alice can simply input garbage for one of the keys, e.g, the 0-key for the
first bit of his input. If Bob aborts the protocol, because he cannot evaluate a garbled
circuit when one of the keys is garbage, Alice will know that the first bit of his input is
0! On the other hand, if he does not abort the protocol then his first bit must be 1!
Cut-and-choose of Garbled Circuits. In recent years several protocols have been pre-
sented which obtain malicious security by combining Yao’s original protocol with cut-
and-choose on the circuits [3,11,16,24–26,28,30,33–35]. They mainly differ in the way
they handle the above issues and, as a consequence, in how many circuits are needed
to send from Alice to Bob. We call the amount of circuits needed to be sent from Alice
to Bob for the replication factor. Most of these approaches are based on an analysis
saying that if the fraction of check circuits is high enough and if the check circuits are
all found to be correct, then a majority of the remaining evaluation circuits will also

360 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

be correct except with negligible probability. This allows Bob to compute the correct
output as the majority of the outputs from the evaluation circuits.

Recent results [3, 16, 25] manage to ensure that Alice only succeeds in cheating if
all check circuits are honestly constructed and all evaluation circuits are maliciously
constructed. This happens with noticeably less probability than only the majority of the
evaluation circuits are honestly constructed, thus making it possible to run a protocol
with noticeably less garbled circuits. The main idea of [3] and [25] (called “forge-
and-loose”) is to make sure that if Alice cheats, that is, if two evaluation circuits yield
different results, then this enables Bob to learn Alice’s private input x. He can then use
x to compute locally, unencrypted, the correct input f(x, y). In [25] Bob learns Alice’s
input through an auxiliary secure protocol execution, using as input part of the transcript
of the “original” protocol execution, as proof that Alice is corrupt. In [3] a special kind
of commitments are used which leaks some auxiliary information if the outputs of two
garbled circuits differ. This auxiliary information can then be used to learn Alice’s input.
The idea of [16] is to have both parties play the role of the circuit constructor and circuit
evaluator respectively in two simultaneous executions of a cut-and-choose of garbled
circuits protocol.
Other Approaches to Malicious Security. Several other approaches to maliciously se-
cure two party computation exist, based on Yao’s garbled circuits as well as other novel
constructions.

In [32] Nielsen and Orlandi introduced the notion of cut-and-choose at the gate level
in order to achieve malicious security for Yao’s garbled circuits, popularly referred to as
the LEGO approach. LEGO gave an asymptotic increase in efficiency of O(log(|C|))
where |C| is the amount of gates in the circuit to compute. However, their approach
relied on heavy group based computations (as the protocol required homomorphic com-
mitments) for each gate in the circuit.

In the later work [10] a new approach for constructing xor-homomorphic commit-
ments based on error correcting codes was introduced. These xor-homomorphic com-
mitments made it possible to use the LEGO approach without doing group operations
for each gate, unfortunately at the price of large constants.

Another approach, not using garbled gates, was introduced in [31] where heavy us-
age of oblivious transfers was used to construct verified and authenticated Boolean
gates. To achieve efficiency the authors constructed a highly efficient maliciously se-
cure OT extension, which took a few random OTs as “seeds” and then used a random
oracle to extend these to polynomially many random OTs.

Yet another approach, not necessarily using Yao’s garbled circuits, is the idea of
“MPC-in-the-head” from [19, 20] where the parties run a semi-honestly secure two-
party protocol, but within this they emulate n > 2 parties that run a virtual second
protocol secure against a malicious minority. The final protocol is then maliciously
secure. Another idea is to base the protocol on preprocessed constrained randomness as
in [8].

If one is willing to accept a weaker kind of “malicious” security one can get signifi-
cant improvements by using the “dual execution” approach where only a single garbled
circuit is constructed and evaluated by both parties. [17, 29, 30].

Faster Maliciously Secure Two-Party Computation Using the GPU 361

Besides all of the above approaches a whole other subfield of secure multi-party
computation exists where the function to be evaluated is arithmetic (which can clearly
also be used to evaluate Boolean circuits when the field for the arithmetic operations
is F2). Some of the more recent works in this area include [1] (semi-honest security)
and [6, 7] (malicious security).
Motivation. The area of 2PC and multi-party computation, MPC, (when more than two
parties supply input) is very interesting as efficient solutions yield several practical ap-
plications. The first “real world” usage of MPC was described in [2] where MPC was
used to decide the market clearing price of sugar beet quotas in Denmark. Still, several
other applications of 2PC and MPC exists such as voting, anonymous identification,
privacy preserving database queries etc. Thus we believe that it is highly relevant to
find practically efficient protocols for 2PC and MPC.
Our Results. We present a new maliciously secure two-party protocol based on cut-
and-choose of garbled circuits. The protocol combines previous ideas, mainly from
[3,16,25] and [11,34] with new optimizations to a protocol with the following benefits:

1. A small replication factor for the same reasons as [3, 25].2 But unlike [25] our
protocol eliminates the need for running an auxiliary protocol and unlike [16] we
eliminate the need of both parties both constructing and evaluating O(s) garbled
circuits.

2. A very lightweight approach to ensure that Alice gives consistent input to all garbled
circuits used for evaluation.

3. Reliance only on lightweight primitives (in practice a hash function) and few OTs.
4. A large degree of same instruction, multiple data (SIMD) parallelization, and there-

fore direct benefits from access to a large amount of computation cores.
5. A security proof in the Universally Composable (UC) model [4].3 We also show

how to realize a highly efficient version of the protocol in the Random Oracle
Model (ROM) without number theoretic assumptions, only assuming access to an
OT functionality.

Finally, we also provide an implementation of the protocol written in C and CUDA,
using a consumer grade GPU for exploiting the inherent parallelism in the protocol.
Outline. We start by going through the overall ideas of our scheme, along with the
primitives we need in Section 2. We then continue with a high level description of our
protocol in Section 3. Finally a discussion of our implementation along with experi-
mental results are given in Section 4.
Notation. We assume Alice is the constructor and Bob the evaluator and that the func-
tionality they wish to compute is f(x, y) = z, where Alice gives input x, Bob gives
input y and only one party, Bob, receives the output z. We denote the amount of bits of
x as |x| = m, the amount of bits of y as |y| = n and the amount of bits of z as |z| = o.
We denote the Boolean circuit computing the functionality f(·, ·) by C and assume it

2 We do not strictly obtain the same replication factor as [3,25], where the replication factor is s,
when s is the statistical security parameter. Our replication factor is slightly larger as in [16].
See the full version of this paper for details [9].

3 Specifically we provide a UC-proof of our protocol in a hybrid/random oracle model with OT,
commitments and coin tossing, and a secure garbling scheme with free-xor [23].

362 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

consist of gates with fan-in 2 and fan-out 1 such as AND, XOR, OR etc. Furthermore,
we say the size of C, |C|, is the amount of non-XOR Boolean gates. When considering
a garbled version ofC we add a tilde, i.e., C̃. In a garbled circuit we define the semantic
value of a key to be the bit it represents. We furthermore define the plain values or func-
tions to be the unencrypted, unhidden values or functionalities, e.g., the actual function
f(x, y) = z with inputs x and y and output z. We use s to represent a statistical security
parameter, and we let κ be a computational security parameter. Technically, this means
that for any fixed s and any polynomial time bounded adversary, the advantage of the
adversary is 2−s + negl(κ) for a negligible function negl. I.e., the advantage of any
adversary goes to 2−s faster than any inverse polynomial in the computational security
parameter. If s = Ω(κ) then the advantage is negligible. If s = O(log(κ)) or s = O(1)
we only have covert security (see [13] for a detailed description of this concept).

Let [n] denote the set of integers {1, 2, . . . , n} and let H(·) denote a hash function
modeled as a random oracle giving κ bits of output. We use subscript to denote index,
i.e. xi denotes the i’th bits of a vector x and mi,j denotes the i’th row and j’th column
of the matrix m. Finally we let x ∈R S denote that x is sampled uniformly at random
from the set S.

2 The Big Picture

We assume the reader is familiar with free-xor Yao circuits [23] for secure computation.
The overall strategy is as follows:

1. Garbling. Alice garbles a bunch of circuits and sends them to Bob.
2. Oblivious Transfer. The parties then engage in an OT protocol, secure against ma-

licious adversaries, such that Bob, for each garbled circuit, learns the input keys
corresponding to his input to the function f .

3. Cut-and-Choose. The parties then use a coin tossing protocol to select around half
of the garbled circuits as check circuits and the remaining as evaluation circuits.
Bob then verifies that the check circuits have been constructed correctly and re-
ceives from Alice the keys corresponding to her input to the evaluation circuits.

4. Evaluation. Bob will then use his own input keys, which he learned from the OT,
along with Alice’s input keys to evaluate all the evaluation circuits. Using the results
from the evaluated circuits he finds the correct output.

This generic scheme leaves open how to handle the problems that arise due to the
fact that the parties might act maliciously and due to multiple circuits being garbled and
evaluated instead of just one circuit. These problems are (1) selective failure attacks, (2)
consistency of the parties’ input and (3) how to know which output is the correct one
in the evaluation phase. Many different approaches exist to solve these problems with
different levels of efficiency and security assumptions. In the following sections we
shortly discuss various solutions and in particular, how we solve these issues.

Avoiding Selective Failure Attacks. To ensure privacy, a corrupted party should not
be able to deduce anything about the other party’s private input based on the other
party’s behavior. If care is not taken, 2PC based on cut-and-choose of circuits can easily

Faster Maliciously Secure Two-Party Computation Using the GPU 363

lead to a vulnerability of this kind: If, e.g., Alice inputs another 1-key in the OT for a
certain input wire than she uses when garbling the corresponding circuit, and that circuit
happens to be an evaluation circuit, she can deduce that Bob’s input on that wire is 1 if
he aborts. Such an attack is known as a selective failure attack and was first pointed out
by [22, 29],

Mohassel and Franklin [29] suggested thwarting the attack by means of committing
OT’s, which makes it possible for Bob to verify Alice’s input to the OT against the
keys in the check-circuits. Lindell and Pinkas [26] thwarted the attack by increasing the
amount of input wires of Bob, letting Bob replace his original input with constrained
randomness, where certain input wires xor’ed together would give his real input. This
eliminates the attack since it is hard for Alice to “guess” Bob’s choice of randomness,
which is needed in order for her to successfully complete her attack. Unfortunately,
this also increases the size of Bob’s input from n bits to max(4n, 8s) bits. Lindell and
Pinkas’ technique was later refined by shelat and Shen to give a smaller increase in the
amount of input bits needed by Bob [34].

Another approach works by introducing a tighter coupling between the OTs and the
rest of the protocol. Lindell and Pinkas [28] introduced the single-choice batch cut-and-
choose oblivious transfer based on Diffe-Hellman pseudo-random synthesizers, which
were used to “glue” together the OTs and the garbled circuits. The pseudo-random
synthesizers were also used to ensure consistency of the parties’ inputs to the different
garbled circuits.

In our solution we handle the selective failure problem in the same manner as in [26].
The approach involves increasing the amount of input bits of the evaluator from a string
y of n bits to a string ȳ of n̄ = max(4n, 8s) bits. More specifically, what we do is to
have Bob choose a random binary matrix MSec ∈R {0, 1}n̄ × {0, 1}n and his input
randomly, i.e., ȳ ∈R {0, 1}n̄, but under the constraint that MSec · ȳ = y where y is
his “true” input. Thus the augmented functionality computes exactly the same as the
original. Still, the idea is that if a selective failure attack is done, using the augmented
function will not leak any useful information: as the entire vector ȳ is random, learning
a few bits of ȳ will only give the adversary a negligible advantage in learning one of the
constructor’s true input bits. This follows from the fact that the other bits of ȳ will be
used to hide each of the actual bits of y. The details and a full proof of security of this
approach can be found in [26].

Ensuring Consistency of Bob’s Input. Making just multiple calls to a basic protocol
for OT, Bob could input different choice bits for each of the circuits, which would allow
him to evaluate the function on different inputs. That is, he would learn both f(x, y)
and f(x, y′) for two different inputs y and y′ of his own choice, which obviously leaks
too much information to Bob.

To avoid this we must make sure that for each of the bits yi in Bob’s input, he gives
the same choice bit for all of the garbled circuits in the OTs. This can easily be achieved
by doing fewer OTs, but of longer bit strings: For each OT Alice inputs a concatenation
of the 0-, respectively 1-keys for a given input wire for all circuits, Bob inputs only one
choice bit and receives the keys for all the circuits corresponding to his choice bit on that
given input wire. This approach is used in most previous results [11, 25, 26, 28, 34, 35].

364 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

In the ROM this can be very efficiently realized using black box access to a one-out-of-
two OT of strings of length s [11, 34].

Ensuring Consistency of Alice’s Input. To see why there is also a problem if Alice is
inconsistent in her inputs, assume the functionality to be computed is the inner product,
that Alice inputs the strings 〈100 . . .0〉, 〈010 . . .0〉, . . . , 〈000 . . .1〉 and that she is the
party who is supposed to learn the output of the computation. In this case what she will
learn is the majority of bits in Bob’s input string, which is clearly too much information.

To ensure consistency of Alice’s input Lindell and Pinkas [26] embedded a consis-
tency check of Alice’s input into the cut-and-choose step itself, resulting in O(ms2)
commitments. Shelat and Shen [35] ensures input consistency using another approach
based on claw-free functions.

We follow a different approach, introduced independently by Frederiksen and
Nielsen [11] and shelat and Shen [34]. The idea is to augment the functionality com-
puted by the garbled circuits such thatAlice’s input, apart from being used in the original
computation of f , is also fed into a universal hash function decided by Bob. The output
of both the original functionality f and the hash digest of Alice’s input is then learned
by Bob. We can now safely let Bob abort if any of these digests diverge without leaking
anything to Alice about his input. Intuitively, this approach is secure if the output of the
augmented functionality does not leak information about Alice’s input and Alice cannot
find two inputs whose digests collide. We achieve the first property by having Alice give
some auxiliary random input, which one-time pads the output of the hash function. The
second property will follow directly from the nature of a universal hash function if Alice
is committed to her input choices before potentially learning the specific hash function
used.

A specific, but simple way to construct such an augmentation is as follows [11]:
Assume the functionality we wish to compute is defined by f as f(x, y) = z. We then
define a new function f ′ as f ′(x′, y′) = f ′(x‖a, y‖b) = z‖c where a ∈R {0, 1}s,
b ∈R {0, 1}m+s−1 and c ∈ {0, 1}s. To compute c we define a matrix M In ∈ {0, 1}s ×
{0, 1}|x| where the i’th row is the first m = |x| bits of b << i where << denotes the
bitwise left shift. Specifically the j’th bit of the i’th row is the i+ j’th bit of the binary
vector b, i.e.,M In

i,j = bi+j−1. The computation of c is then defined as c = (M In ·x)⊕a,
assuming all binary vectors are in column form. Now see that f computes the same
function as f ′, but requires s extra random bits of input from Alice and m + s − 1
extra random bits from Bob. The s extra output bits will work as digest bits (since
(M In · x)⊕ a is actually a universal hash function) and can be used to check that Alice
is consistent with her inputs to the circuits, by verifying that they are the same in all the
garbled circuits which Bob evaluates.

Next, [34] observed that it is in fact not needed to have Bob specify the specific
hash function as part of his input. Instead he can send Alice the vector b defining the
matrix M In and have her garble the circuits to compute the hash function this vector
specifies. Evaluation of the garbled universal hash function can now be done using only
xor operations, which we can do for “free” with the free-xor approach. Thus the binary
string b ∈ {0, 1}m+s−1 defines a family of universal hash functions mapping m bits to
s bits. In turn, a sampling of such a function is simply a random choice of the string

Faster Maliciously Secure Two-Party Computation Using the GPU 365

b. We will call a specific function from this family for HIn and call the actual circuit
augmentation for HIn ⊕ a where a will be Alice’s auxiliary input sampled from {0, 1}s.

A remaining problem with the construction is that Alice can now try to find a colli-
sion for the hash function before she gives her input keys to Bob. This is a significant
problem as collisions for universal hash functions can be easy to find. However, if we
let Alice commit to her input and then let Bob reveal his choice of hash function to
her then she will only have negligible probability in the size of the digest of finding a
collision.

It should be noted that in [34] another universal hash function was used, which re-
quired 2s + log(s) auxiliary random bits of input from Alice, unlike only s in [11].
However, the authors of [11] did not observe that it was enough to send M In in plain,
nor did they actually prove their construction secure. In the full version of this paper [9]
we prove that the universal hash function used in [11] is secure in our setting whenM In

is sent in plain after Alice commits to her inputs.
We follow the approach of circuit augmentation outlined above. Concretely we im-

plement the consistency check by having Alice commit to her input before the cut-
and-choose phase. Then we have Bob give her the specification of the hash function.
Alice then garbles the circuit with the hash function augmentation. When Bob later
has evaluated the evaluation circuits, he aborts if the hash values from any two of the
augmentations of these circuits differ.

Computing the Correct Output. Despite the input consistency of Alice being enforced
as discussed above, Bob may still end up with more than one distinct output when he
evaluates the evaluation circuits. This is due to the fact that the cut-and-choose tech-
nique does not ensure that all the remaining evaluation circuits are good. With non-
negligible probability some of them may not evaluate at all and some may evaluate, but
result in diverging output.

Given several different outputs, Bob cannot just abort the computation or choose
a random result without becoming vulnerable to a selective failure attack. However,
Lindell and Pinkas [26] showed that for a statistical security parameter s, if the number
of garbled circuits, i.e., the replication factor, is greater than cs for some constant c and
if half are chosen as check circuits, then, except with negligible probability, the majority
of the outputs are well-defined and are in fact the correct output.

For realistic circuit sizes, the replication factor has proven to be very important for
the performance of the overall protocol [11, 24, 33]. Thus recent effort has been made
to reduce the replication factor. As a start, [33] claimed that [26] only requires a repli-
cation factor � ≥ 4s (to achieve failure probability at most 2−s). The analysis was
later improved by [28] showing that one only needed a replication factor � ≥ 3.22s.
Finally, [35] refined the analysis further by showing that taking 60% of the circuits to
be check circuits, a replication factor � ≥ 3.13s is sufficient.

All of these results are based on taking the majority of the outputs from the evaluation
circuits. As mentioned in the introduction, recently Brandão [3] and Lindell [25] inde-
pendently showed how to avoid taking majority by instead enablingBob to learn Alice’s
private input if the results diverge, and thereby letting Bob compute the correct result in
“clear”. Doing so allows for a replication factor of only s to achieve an error probability
of 2−s, which is a considerable improvement. Independently Huang et al. [16] showed

366 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

the same, but with a slightly higher replication factor. In particular, doing the protocol
with a replication factor � gives an error probability of at most 2−�+O(log �). For com-
parison, note that for a typical application with s = 40, [28] and [35] need 129 and 125
circuits respectively, while [3, 25] requires only 40 circuits to be garbled.

Our protocol is based on the same idea as [3, 25] and our main theoretical contribu-
tion arrives in the way we allow Bob to find the correct output based on the evaluation
of the garbled circuits. We do so without using an extra secure computation as in [25] or
computationally heavy trapdoor commitments as in [3], furthermore, we do not strictly
require any specific computational assumption. 4

Let t = �/2, that is, t is the amount of check circuits. Also, let k′0i,j and k′1i,j be
the zero and one keys for the i’th output wire on the j’th circuit. We use the free-xor
technique [23] and let Alice garble each circuit with a different Δ. That is, for circuit j
and all wires k Alice chooses the wire keys such that k0k,j ⊕ k1k,j = Δj .

We select the replication factor � such that, except with probability 2−s, if Alice
was not caught cheating during the cut-and-choose phase, at least one of the evaluation
circuits that remain is correct. Our strategy is then to make sure that for each pair of
garbled circuit evaluations whose semantic output differ, Bob will be able to efficiently
compute the Δ values for one of those circuits. Knowing the Δ value used to garble a
circuit allows Bob to learn the input x that Alice submitted for that circuit.
Using Polynomials to Compute Δ’s. We now explain how we let Bob compute Δs for
those circuits whose outputs diverge.

As part of the garbling phase, Alice associates a polynomial of degree at most t, Pi

with each output wire in the circuit, where t = �/2. Now for each garbled circuit j ∈ [�]
and each output wire i ∈ [o] Alice associates a point on the corresponding polynomial,
i.e., a value Pi(j). Thus we have a polynomial associated with each output wire and for
each of these polynomials we have a point associated with each garbled circuit. Next,

for the 0-key on each output wire in each circuit
{{
k′0i,j
}o
i=1

}�
j=1

and point Pi(j) we

associate the “link” Li,j (see the full version [9] for details). For simplicity assume that
the link is realized as follows Li,j = (ri,j , si,j , hi,j , gi,j) where ri,j , si,j ∈R {0, 1}κ
are uniformly random sampled elements, hi,j = H (Pi(j), ri,j) ⊕ k′0i,j and gi,j =

H
(
k′0i,j , si,j

)
⊕ Pi(j). Alice sends all these links to Bob.

GC1

P1

P2

P3

GC2 GC3 GC4

Fig. 1. Four garbled circuits with three
output wires. Each 0-key on these output
wires is linked to a particular point on a
polynomial of degree at most 2.

Next notice, that after the cut-and-choose
step, Bob will learn all the 0-keys on the output
wires for t garbled circuits and in turn be able
to learn t points on all the polynomials (by us-
ing the output 0-keys, k′0i,j along with the corre-
sponding links Li,j). Thus by learning just one
more 0-key for a given output wire, Bob will
be able to learn one more point on one of the
polynomials. This will give him a total of t+ 1
points on a polynomial of degree at most t and
he will thus be able to do polynomial interpolation and learn all the points on that poly-
nomial. Knowing all the points on a given polynomial will make it possible for Bob to

4 We do require access to OT, but any one-out-of-two OT can be used, including OT extensions.

Faster Maliciously Secure Two-Party Computation Using the GPU 367

learn the 0-key on a given output wire in all the garbled circuits (by using the points,
Pi(j) along with the links Li,j).

A bit more specifically, suppose that Bob ends up with two garbled circuits where
there is an output wire that outputs the 0-key in one of the circuits and the 1-key in
the other. Say, w.l.o.g. that this is the case for output wire 1 in circuit 1 and circuit
2, such that Bob learns both k′01,1 and k′11,2 = k′01,2 ⊕ Δ2. Using the link L1,1 =

(r1,1, s1,1, h1,1, g1,1)Bob can compute the pointP1(1) asP1(1) = g1,1⊕H
(
k′01,1, s1,1

)
.

This gives him a total of t+ 1 points on the polynomial P1 (remember that he already
knew t points from the check part of the cut-and-choose phase). Using these points he
can then do polynomial interpolation, which in turn will make it possible for him to
easily compute the point P1(2). Finally, he can then compute the following:

h1,2 ⊕ H (P1(2), r1,2)⊕ k′11,2 = k′01,2 ⊕ k′11,2 = Δ2 .

Using Δ2 he can completely degarble the second garbled circuit, and in turn, also learn
Alice’s plain input to circuit 2. This is so, as knowing the Δ value and one key for all
wires allows to compute both keys for all wires and thus completely open up a garbled
circuit.

The approach of using the links to learn the Δ values generalizes to each output
wire in two circuits where one is the 0-key and other the 1-key. Thus, assuming we
have enough output wires with different values it is possible to find Δ for all garbled
circuits, and in turn Alice’s plain input to all garbled circuits.

We want to emphasize, however, that Bob does not use the Δ values to completely
open up any garbled circuit, as this would be too expensive (it would essentially count
as an extra garbling towards the computational complexity). Instead Bob only opens
up the input layer to learn the semantic value of the input keys of Alice to the circuit.
He then evaluates the universal hash function on Alice’s input in plain and compare
it with the semantic meaning of the garbled evaluation of the universal hash function.
Then Bob discards the circuits where the plain and semantic meaning of the output of
the universal hash function is discrepant, which cannot lead to selective errors, as the
correctness of the augmented part of the circuit is known by Alice already. Now, for all
the remaining circuits, the inputs of Alice are the same, except with a small probability
2−s that a collision for the universal hash function occurred. This is so, as the circuits
computed the hash function correctly, and the hash function was chosen by Bob after
Alice committed to her inputs. Hence Bob can safely abort if there are different inputs
left and otherwise just evaluate f in plain on his own input and the unique input of
Alice.
Ensuring Consistency of Polynomials. We made a few assumptions in the strategy de-
scribed above. That is, it only works if the polynomials are consistent, that is, if they
are at most degree t and we have enough output wires that diverge in value to make
sure Bob can learn the Δ values for each of the evaluation circuits. Since Alice might
be malicious, and thus can deviate from the prescribed protocol in an arbitrary manner,
we cannot be sure that she constructs the polynomials of degree at most t. In particu-
lar she might construct these to be degree 2t and thus make it impossible for Bob to
use polynomial interpolation to find the Δ values. We could use techniques like Kate
et al. [21] to ensure consistency of the polynomials, but this would be inefficient and

368 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

impose certain number theoretic assumptions. We instead introduce an additional cut-
and-choose phase in which Alice prepares more polynomials than actually needed, and
then Bob randomly chooses half of the polynomials as check polynomials, which Alice
then reveals and Bob verifies to have degree at most t. We say that a polynomial of
degree greater than t is inconsistent and if it has degree at most t we say it is consis-
tent. Thus for Bob to accept the check polynomials they must all be consistent. If all
the check polynomials are consistent then a large quantity of the remaining polynomi-
als are guaranteed to be consistent. In fact, we select half of the polynomials as check
polynomials, and therefore get that a majority of the remaining circuits are guaranteed
to be correct except with negligible probability in the amount of challenge polynomials,
for the same reasons as in the analysis of circuit cut-and-choose in [26].

s

s

a

z

o

m n

x y

m

GC GC

max(4n, 8s)

ȳ

MSec · ȳ = y

z

x y

HOut

4.82s + 4.82�

HIn

Fig. 2. Illustration comparing the original circuit (right) and
the augmented circuit (left). Inputs and output are shown
in light grey, whereas actual computation is shown with a
darker grey.

Ensuring consistency of the
polynomials with cut-and-
choose is efficient and does not
rely on any specific number
theoretic assumptions. How-
ever, it leaves us with the issue
that some of the polynomials
that are not checked might still
be inconsistent and thus not
usable for interpolation in our
context, along with the problem
that we still need enough output
wires which diverge in value to
make sure Bob can learn the Δ
values for each of the evalua-
tion circuits.

To cope with these problems we introduce another circuit augmentation, which is a
universal hash function, taking the output of the original computation as input. We then
let the the wire keys used in the links be the wire keys of the output of this new universal
hash function instead of the wire keys of the actual output of the garbled circuit. Intu-
itively, if there is any divergence on one bit in the original output then the digests of the
universal hash function will diverge in many bits. Thus the hash function ensures that
we have enough output wires which will differ in their keys, since the output of the hash
function is uniformly distributed. Thus, if a garbled circuit is maliciously constructed
then the hashed value of the malicious output will differ in many bits compared with
the hashed value of the correct output. This ensures, except with negligible probabil-
ity in the amount of output bits of the augmentation, that we will have enough output
wires with different keys to learnΔ for all the evaluation circuits. In the full version [9]
we prove that with only a majority of the polynomials guaranteed to be consistent, a
hash function with at least
4.82s + 4.82� output bits is sufficient in order to guaran-
tee, except with probability 2−s, that Bob will be able to learn all the Δ values of the
evaluation circuits if he ends up with two or more evaluation circuits where at least one
output wire diverge.

Faster Maliciously Secure Two-Party Computation Using the GPU 369

The augmentation on the output wires is done in almost the same efficient way as the
augmentation to ensure input consistency of Alice. That is, we exploit the free-xor tech-
nique and let Bob send the specification of the hash function to Alice in clear. Specif-
ically, let z be the binary output of the computation. Then we have Bob choose two
random binary strings bOut1 ∈R {0, 1}�o+4.82s+3.82� and bOut2 ∈R {0, 1}�4.82s+4.82�.
Using the first string we define a
4.82s + 4.82� × o binary matrix MOut such that
the j’th bit of the i’th row is the i + j − 1’th bit of bOut1. That is, MOut

i,j = bOut1
i+j−1.

The augmentation should then compute
(
MOut · z

)
⊕ bOut2 assuming z is a binary vec-

tor in column form. Thus the binary strings bOut1 ∈ {0, 1}�o+4.82s+4.82� and bOut2 ∈
{0, 1}�4.82s+4.82� defines a family of universal hash functions mapping o bits to
4.82s+
4.82� bits. In turn a sampling of such a function is simply a random choice of the strings
bOut1 and bOut2. We will call a specific function from this family for HOut.

An illustration of the final circuit with both augmentations is given in Fig. 2 and an
informal version of the protocol itself is given in Section 3.

3 The Protocol

Assume we have access to a free-xor garbling scheme, an OT functionality, a coin-
tossing functionality along with a commitment scheme supporting both computationally
hiding/binding commitments and commitments where the opening to a commitment
is exactly the message committed to. We call the last type of commitment scheme a
verifiable commitment scheme as it allows a party to verify if a particular message is
the opening of a particular commitment.

We let Alice garble � versions of a Boolean circuit C using the free-xor technique
[23], we call these garbled circuits C̃j where j ∈ [�]. For each of these garbled circuits
we associate a distinct global value Δj ∈ {0, 1}κ, which is used to enforce the con-
straint that for any wire, i, in the garbled circuit C̃j , we have that k1i,j = k0i,j ⊕Δj in
correspondence with a free-xor garbling scheme.

At an informal level our protocol can then be summarized with the phases Setup,
Polynomial Setup, Oblivious Transfer, Garbling, Commitment, Augmentation, Cut-and-
Choose, Evaluation, and Reconstruction. Of these, Setup, Oblivious Transfer, Garbling,
and Commitment, are very similar to other protocol based on cut-and-choose of Yao
garbled circuit, e.g., [11,26,28,34,35]. In Fig. 3 and 4 we sketch what happens in each
of these steps and leave the specific details along with the proof of security against a
static, malicious, computationally bounded adversary to the full version [9].

4 Implementation

As our protocol is designed to work well in the SIMD model we did our implementa-
tion in CUDA, which is a platform that supports both explicit programming of SIMD
execution, along with cheap hardware, GPUs, which supports SIMD execution. More
specifically we implemented our protocol in ANSI C using the CUDA extension by
NVIDIA. Some parts of our implementation is based on the code from [11] which gave
very efficient construction and evaluation of garbled circuits (including handling of the

370 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

1. Setup
(a) Assume the function to compute is f(x, y) = z where Alice inputs x ∈ {0, 1}m,

Bob inputs y ∈ {0, 1}n and Bob learns the results z ∈ {0, 1}o.
(b) Bob then samples a random binary matrix MSec ∈R {0, 1}n̄ × {0, 1}n and a

random input ȳ of n̄ = max(4n, 8s) bits such that MSec · ȳ = y. He sends MSec

to Alice and they both agree on a function, f ′ with MSec embedded such that
f ′(x, ȳ) = f(x, y). Denote the Boolean circuit computing f by C.

2. Polynomial Setup
(a) Alice choses p = 6s+7 random polynomials, Pi for i ∈ [p], of degree ≤ t = 	/2,

over a finite field with 2κ elements.
(b) Next Alice computes 	 points on each of the polynomials, achieving a total of

	 · (6s + 7) points. Alice commits to each point j on each polynomial i using a
verifiable commitment scheme and sends these commitments to Bob.

(c) Alice and Bob complete a cut-and-choose procedure on the random polynomials
to select �1.18s+2.18� of these for checking and �4.82s+4.82� for evaluation.
For each of the check polynomials Alice sends the openings to the points commit-
ted to in the previous step. Bob then uses the points to interpolate the polynomials
and verifies that they are in fact all polynomials of degree at most t. If not, he
aborts.

3. Oblivious Transfer Alice chooses 	 global differences for the garbling, we call these
Δ1,Δ2, ..., Δ�. Using these values she constructs random keys for each of Bob’s n̄
input bits in correspondence with the free-xor garbling scheme for 	 distinct garbled
circuits. Alice and Bob then engage in batch OT such that Bob learns the 	 keys in
correspondence to each of his input bits y.

4. Garbling Alice produces 	 garbled versions C̃j of the circuit C using the global differ-
ences and keys constructed in the previous step in the free-xor manner and sends these
circuits to Bob.

5. Commitment Alice commits to her own choice of input keys. She also makes verifiable
commitments to the concatenation of the 0- and 1-keys on each input wire in each of
the garbled circuits.

6. Augmentation
(a) Bob randomly samples a universal hash function HIn from a family of universal

hash functions mapping |x| = m bits to s bits and a universal hash function HOut

mapping |z| = o bits to �4.82s+4.82� bits from another family of hash functions
as described in the previous section.

(b) Bob sends a description of these hash functions to Alice who augments all of the
garbled circuits with HIn ⊕ a and HOut using only xor operations of respectively
her input keys and the output keys of the garbled circuits.

(c) Alice then sends Bob the output decryption tables of the augmentations HIn ⊕ a
and HOut. Alice also sends a “link” of each of the output keys of HOut to the
corresponding polynomial points. That is, for each output wire i of HOut in each
garbled circuit j she sends to Bob the link Li,j .

Fig. 3. Protocol Overview - Part 1

possible selective failure attack on Bob’s input), along with an “OT extension”, using a
consumer GPU. We direct the reader to [11] for details on these aspects of the imple-
mentation.

Faster Maliciously Secure Two-Party Computation Using the GPU 371

1. Cut-and-Choose Alice and Bob uses a coin-tossing protocol to agree on a random
subset C of size t = 	/2 of the garbled circuits, called the check circuits. Alice then
sends both the 0- and 1-key for each input wire in the set of check circuits. Bob then
verifies the keys against the commitments to the input keys and then verifies that the
check circuits were correctly constructed. Using the output keys of HOut, along with
the “links” from the augmentation phase, Bob computes the t points on each of the
�4.82s + 4.82� polynomials remaining from the set-up phase.

2. Evaluation Alice opens the input keys in correspondence with her input x for all
the evaluation circuits to Bob. Bob then evaluates HIn ⊕ a. If the semantic value of
any of the evaluations of HIn ⊕ a are divergent, or if the output decryption table is
incorrectly constructed, he aborts. Otherwise he evaluates the garbled circuits. If any
of the garbled circuits fails to evaluate he discards it. If any of the semantic values
on the output wires of the evaluated garbled circuits are inconsistent then he proceeds
with the reconstruction phase. Otherwise he “simulates” the reconstruction phase using
garbage data (to avoid timing attacks) and in the end outputs the only semantic output
value he learned.

3. Reconstruction
(a) Bob computes the augmented output HOut for each of the evaluated garbled cir-

cuits. Since he now knows the semantic value on each garbled circuit’s output
wires, along with the specification of HOut, he can compute, in plain, the semantic
values he expects to find in HOut’s output decryption table. Any augmented circuit
where this is not the case he discards. From the remaining circuits he computes
the points on the remaining polynomials from the Polynomial Setup phase using
the links from the augmentation phase. He then uses the t polynomial points from
the cut-and-choose phase along with the discrepant keys of an augmented output
wire in two circuits to learn t + 1 points on a polynomial for a given wire. He
then does polynomial interpolation on these points to find all the 	 points of this
wire, i.e. one for each garbled circuit. He then uses the links to find the 0-key on
that wire in all of the evaluation circuits. Hence Bob can learn Δj for at least one
garbled circuit (because the output of that wire is discrepant and thus at least one
garbled circuit will have 1-key output on that wire). He continues in this man-
ner for each discrepant output wire until he learns Δj for all the non-discarded
evaluation circuits.

(b) Using these Δ’s along with Alice’s input keys and the verifiable commitments
to the keys of the input wires Bob extracts the plain values of Alice’s input in
all the evaluation circuits. For each input, Bob evaluates HIn on the plain input
and discards the circuits where the plain output from HIn ⊕ a does not match the
semantic output previously computed by the garbled circuit. He then uses Alice’s
plain input for one of the remaining circuits and computes the function f in plain
to learn the correct output. If there are no remaining circuits, Bob terminates.

Fig. 4. Protocol Overview - Part 2

It should be noted that a recent result by Husted et al. [18] presents another scheme
for constructing and evaluation garbled circuits using the GPU. Their scheme is up to
a factor 3 faster than the scheme in [11] in computation on the same hardware, but
increases the size of each gate with another ciphertext (both xor and non-xor gates).

372 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

Unfortunately their result was not published until after we had completed our imple-
mentation and thus we do not know whether their scheme would be faster when used
with our protocol. However, a study of this would be interesting for future work.

Trading Assumptions for Efficiency. Since the description of our protocol is given in
the hybrid setting, assuming access to OTs, commitments, coin-tossing and garbling,
we need to make some decisions on the security assumptions needed in order to realize
the functionalities in our implementation. We have chosen to be liberal in the security
assumptions in order to achieve a more efficient solution. In particular this means that
our implementation assumes the existence of random oracles and SHA-1 is used to
implement random oracle queries with a 160 bit output, thus we set κ = 160. We use
the ROM garbling scheme of [33], which only requires 4 calls to the oracle to construct
a garbled gate, and only a single call to the oracle in order to evaluate a garbled gate.

We realize a coin-tossing functionality along with a commitment scheme (that fits
our needs) highly efficiently in the ROM. We also base the OTs we need on an efficient
OT extension, which only assume access to O(s) “seed” OTs in the ROM. See the full
version [9] for details. Finally, we also implement the verification of “circuit seeds” [12]
to eliminate the need of sending the garbled computation tables of the check circuits.

SIMD Implementation Optimizations. HIn and HOut. First notice that HOut is very
similar to HIn⊕a and they can both be computed using only xor operations on particular
keys. Furthermore, each output key of both functions can be computed independently
of the other output keys, since each output key only depends on the input keys to HIn⊕
a, respectively HOut, and the matrix M In, respective MOut. Thus the output of each
function can clearly be done in a SIMD manner, up to the amount of outputs of HIn,
respectively HOut, i.e. s, respectively
4.82s + 4.82�.5 However, the xor operation is
so light that it is in general considered overkill to have a GPU thread do nothing but a
few xors, because of the overhead of copying data from the RAM of the host system
to the RAM of the GPU and back. Thus we simply implemented the functionalities in
a sequential manner using the CPU. However, using the CPU might not always be the
best case as we will discuss, based on our experiments, in Section 4.

Polynomial Representation. In the protocol description we explained that the polynomi-
als would have points in GF

(
2160
)

as they need to have the same size as the wire keys.
However, we instead replace each element of GF

(
2160
)

by 20 elements of GF
(
28
)
,

i.e., we use polynomials over the ring GF
(
28
)20

, which is still a secure secret sharing
scheme, c.f. [5]. So it is possible to implement multiplication and inversion in GF

(
28
)

through a lookup table instead of a quadratic time algorithm, which would otherwise be
the straight forward approach for elements in GF

(
2160
)
.

Polynomial Construction. The 20p polynomials with elements from GF
(
28
)

are gener-
ated in a SIMD manner using the GPU based on a 160 bit seed of entropy. Specifically
what we do is to have p× (t+1) threads generate coefficients consisting of 160 bits of
pseudo-randomness by hashing a seed along with a unique identifier. Using these coef-
ficients we have p × 2t threads computing 2t points on each of the 20p polynomials.

5 The computation of HIn and HOut can be parallelized even further: Since xor is commutative
we can use a classic reduction approach for computing each output key.

Faster Maliciously Secure Two-Party Computation Using the GPU 373

More specifically Pi(j) for all j ∈ [2t] and i ∈ [20p]. This is done by a loop of t + 1
iterations where an element ci,jjd ∈ GF

(
28
)

is computed in the d’th iteration and then
added to the result of the previous d − 1 iterations. Notice that the loop could also
be parallelized in a SIMD manner by having a multiple of t + 1 more threads, each
computing a single value of ci,jjd.

Polynomial Interpolation. Our polynomial interpolation (part of the Polynomial Setup)
is based on Lagrange interpolation and consists of 4 subphases, denominator, numera-
tor, combination and reduction in order to optimize the SIMD parallelization. Before we
go through these phases remember that in Lagrange interpolation we assume knowledge
of t+ 1 data point pairs {(xj , yj)}t+1

j=1 where all xj are distinct. These define the inter-

polation polynomials in Lagrange form: L(x) :=
∑t+1

j=1 yj lj(x) , where the Lagrange

basis polynomials are defined as lj(x) :=
∏

1≤g≤t+1,g �=j
x−xg

xj−xg
, where 1 ≤ j ≤ t+1.

Using lj(·) an arbitrary point x can then be computed. In our case we will know t + 1
points from [2t] and want to compute the remaining t− 1 points in [2t].

When we verify that the 2t points Bob got from Alice, for each of the '1.18s+2.18(
check polynomials, constitutes polynomials of degree at most t+ 1, we do polynomial
interpolation of the points]t + 1; 2t] using the points [1; t + 1] and verify that the
newly interpolated points are the same as Alice sent us. Now the phases for which we
interpolate these points in a SIMD manner goes as follows:

Denominator: We have t + 1 threads computing the denominator of each lj(x). No-
tice that this is enough as the choice of value of x does not come into play here,
but only in the numerator. Finally, each thread computes the inverse so that each
denominator can be directly multiplied onto a numerator later.

Numerator: We use (t+1)×(t−1) threads to compute the numerator of each lj(i). That
is lj(i) will be computed by thread j · (t− 1)+ i so that we compute the numerator
of each of the t+1 Lagrange polynomials using a different value for i ∈]t+1; 2t].
Finally, each thread multiply its result with the appropriate denominator from the
previous step. That is, computing lj(i) for each i ∈]t+ 1; 2t].

Combination: We use '1.18s+2.18(×(t+1)×(t−1) threads to compute each term of
the t+1 terms of L(i) for the 20'1.18s+2.18(polynomials for each i ∈]t+1; 2t].
This is simply done by having each thread multiply the appropriate values yj for
each for the 20'1.18s+ 2.18(polynomials with the corresponding Lagrange basis
polynomial (computed in the “Numerator” step).

Reduction: To continue with the maximal level of SIMD parallelization up to '1.18s+
2.18(× (t + 1) × (t − 1) threads will complete a reduction approach, i.e. any
given thread will xor together two terms of L(i). A new thread will take over two
of the intermediate results and xor these together. This will continue until '1.18s+
2.18(× (t− 1) threads remain, containing the result L(i) for all i ∈]t+ 1; 2t] and
all 20'1.18s+ 2.18(polynomials

All the steps are done with all generated data staying in the GPU’s RAM and only at
the end the final results are copied back to the host’s RAM. Because all the data is
on the GPU it is sensible to do the reduction step instead of a sequential computation
on the host system, even though the operations done will only be xors.

374 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

Polynomial Reconstruction. The polynomial reconstruction (part of the Reconstruction
phase) is done almost in the same manner as the polynomial interpolation. The main
difference being that in the reconstruction the set of t + 1 points we know might be
different for each of the
4.82s+ 4.82� sets of 20 polynomials. However, at most one
of these points might be different since Bob will always learn the same t points for
all the polynomials as an effect of the cut-and-choose of garbled circuits. Thus we can
implement the numerator step in the following two substeps:

– First we use t × (t − 1) threads to compute
∏

1≤g≤t,g �=j (x− xg) for each point
j ∈ [t] where xj is an index of a check circuit and for each of the t − 1 points, x
being an index of an evaluation circuit.

– We then use
4.82s+ 4.82� × (t+ 1)× (t− 1) threads to multiply the last point,
which might vary from polynomial to polynomial, onto the result of the previous
step. This will give us the numerator in all the t+1 Lagrange basis polynomials for
each of the t− 1 points Bob needs to learn, i.e. the t− 1 indices of the evaluation
circuits.

The same idea applies to the computation of the denominator step, but with a factor
t− 1 less, as the denominator remains the same for all possible values of x we need to
learn.

With the above approach we avoid having
4.82s+4.82�× (t+1)× (t− 1) threads
doing a multiplication loop of t + 1 iterations and instead only use t × (t− 1) threads
with a loop of t iterations and
4.82s+4.82�× (t+1)× (t−1) threads with a constant
amount of multiplications to achieve the same result.

A Note on Multi-threading. In order to limit the time each party is idle we employ
multi-threading to the protocol in a non-SIMD manner. That is, when several distinct
steps of the protocol can be carried out independently of each other we fork the host
process to carry out these computations in parallel. In particular we fork when some
data needs to be sent/received while other operations can be carried out with the data
already known.

A Note on Parallel Complexity. The parallel complexity of cut-and-choose of garbled
circuits is bounded by the depth of the circuit to compute times the garbling of a single
gate along with the parallel complexity of the handling of selective failure attacks, con-
sistency of inputs, OTs and commitments. In our case, as well as in [11], the complexity
of handling selective failure attacks is bounded by O(log(max(n, s))) as it only con-
sists of xor’ing (because of the free-xor approach) at most max(4n, 8s) keys of κ bits
with each other, O(sn) times in parallel, using a reduction approach. The same argu-
mentation goes for ensuring consistency of Alice’s input, i.e. computing HIn⊕ a: Using
a reduction approach it is basically O(log(m)) SIMD xor operations using O(s2κm)
SIMD processors. Regarding handling input recovery in case of cheating, first notice
that the parallel computation of HOut is almost the same as for HIn ⊕ a, thus it requires
O(log(o)) SIMD xor operations using O(s2oκ) SIMD processors.

Considering the polynomial generation, notice that we first generate coefficients and
then evaluate points based on the coefficients. Now, evaluating points can be done using
a reduction approach, that is, each term of a polynomial is evaluated independently, then
two terms are added together by one thread, these results are then added together two

Faster Maliciously Secure Two-Party Computation Using the GPU 375

at a time, and so on until all the terms for a given point in a given polynomial has been
added together. This implies that the complexity of polynomial generation is bounded
by the logarithm of the degree of the polynomial, that is O(log(s)) SIMD operations
using O(s3κ) SIMD processors. Regarding polynomial interpolation, assuming we use
Lagrange interpolation, the straight forward approach would be to make an evalua-
tion of a Lagrange basis polynomial for each point we wish to interpolate. These basis
polynomials will consist of 1 + s/2 factors. Again we can compute each factor inde-
pendently and combine the factors using a reduction approach. These basis polynomials
will be the same for each of the polynomials we wish to interpolate, with the exception
of at most one factor (depending on which augmented output wires contains 0-values
for each evaluation circuits). These basis polynomials are then used to find the actual
points by multiplying each of them with a known point (learned from the links) and then
adding the terms together. There will be 1 + s/2 terms and again these can be added
together using a reduction approach. Thus, the interpolation complexity is also limited
to O(log(s)) SIMD operations using O(s3κ) SIMD processors.

Notice that in the above analysis we assume that addition and multiplication is con-
stant time, which makes sense since they can be implemented through a lookup table
following the implementation idea in Section 4.

Table 1. Timing in milliseconds of our protocol computing oblivious AES-128 for both Alice
(A.) and Bob (B.) under different statistical security parameters (s). Column “Comp.” represents
wall-clock time where at least one thread does computation. Columns “IO”, “Comm.” and “Idle ”
represents wall-clock time where the protocol execution is single-threaded and does disk loading,
network communication or is completely idle, respectively. Column “Total” represents the total
wall-clock execution time of the entire protocol. Column “Total idle” represents the total wall-
clock time when one of the parties is idle.

s IO Comp. Comm. Idle Total Total idle

9
A. 4.073 ± 0.036 53.19 ± 0.47 45.77 ± 0.17 81.70 ± 3.5

211.0 ± 3.6 160.1 ± 7.0
B. 4.040 ± 0.0012 82.81 ± 0.60 45.77 ± 0.17 78.38 ± 3.5

19
A. 4.053 ± 0.020 65.81 ± 0.89 71.97 ± 0.20 86.75 ± 4.5

260.1 ± 4.3 171.3 ± 8.7
B. 4.039 ± 0.00097 99.49 ± 0.71 71.97 ± 0.20 84.56 ± 4.3

30
A. 4.046 ± 0.0080 119.9 ± 0.90 108.1 ± 0.26 112.3 ± 3.8

398.1 ± 4.1 231.0 ± 7.6
B. 4.066 ± 0.031 167.3 ± 0.70 108.1 ± 0.26 118.7 ± 3.8

40
A. 4.055 ± 0.017 137.3 ± 0.79 132.3 ± 0.30 118.5 ± 4.1

455.7 ± 4.2 244.7 ± 8.1
B. 4.049 ± 0.016 193.1 ± 1.0 132.3 ± 0.30 126.2 ± 4.1

60
A. 4.043 ± 0.0069 170.1 ± 1.9 178.1 ± 0.38 130.3 ± 4.5

583.0 ± 4.3 263.7 ± 8.5
B. 4.093 ± 0.088 266.2 ± 0.77 178.1 ± 0.38 133.4 ± 4.3

80
A. 4.055 ± 0.017 247.1 ± 1.6 231.2 ± 0.37 168.1 ± 4.1

810.4 ± 3.5 340.2 ± 6.9
B. 4.069 ± 0.038 398.8 ± 1.1 231.2 ± 0.37 172.0 ± 3.0

119
A. 4.055 ± 0.020 377.9 ± 2.9 343.8 ± 0.37 215.1 ± 6.9

1220 ± 5.2 431.0 ± 12
B. 4.040 ± 0.0026 641.5 ± 1.1 343.8 ± 0.37 215.9 ± 5.3

Experimental Results. All of our experiments are based on the same, commonly used,
circuit for oblivious 128 bit AES encryption.6 This circuit is used as benchmark in
[11, 14, 15, 28, 31], and many more implementations of 2PC for functions expressed as

6 We thank Benny Pinkas, Thomas Schneider, Nigel P. Smart and Stephen C. Williams for sup-
plying the circuit.

376 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

a Boolean circuit. We ran experiments on the circuit with several different statistical
security parameters on two consumer grade desktop computers connected to Aarhus
University’s gigabit local area network. At the time of purchase (2012) each of these
machines had a price of less than $1600. Both machines have similar specifications: an
Intel Ivy Bridge i7 3.5 GHz quad-core processor, 8 GB DDR3 RAM, an Intel series-
520 180 GB SSD drive, a MSI Z77 motherboard with gigabit LAN and a MSI GPU
with an NVIDIA GTX 670 chip and 2 GB GDDR5 RAM. The machines ran up-to-
date versions of Linux Mint 14 and CUDA 5.5. Each of the experiments was repeated
50 times and with no front end applications running on either of the machines. The
timings are summarized in Table 1 and Table 2. These timings include loading circuit
description and randomness along with communication between the host and device
and communication between the parties. However, in the same manner as done in [31]
and [11] the timings of the seed OTs have not been included as it is a computation
that is needed once between two parties and thus will get amortized out in a practical
context. The time it takes to initialize the GPU device (driver related overhead) has not
counted either, and generally would constitute between 50 and 60 milliseconds on our
test systems when the GPU is set to “persistence mode”.

The timings are in milliseconds and represent “wall-clock” times. However, since
some aspects of the execution are multi-threaded we have chosen to count those parts as
computation time, even though one thread might not be doing computation, but rather be
idle or doing communication. Thus what is counted in the communication, respectively
idle columns, is the time where the party is only doing communication, respectively is
completely idle.

Data Analysis. From Table 1 we see that idle time takes up a significant portion of the
total execution time of the protocol, i.e. between 18% and 44% for each party and up

Table 2. Timing in miliseconds of the parts of our protocol responsible for cheating recovery. The
timings are taken from the computation of oblivious AES-128 for both Alice (A.) and Bob (B.)
under different statistical security parameters (s). Column “Comp.” represents wall-clock time
where at least one thread of a given party does computation. Columns “IO”, “Comm.” and “Idle ”
represents wall-clock time where the protocol execution is single-threaded and does disk loading,
network communication or is completely idle, respectively. Column “Party total” represents the
total wall-clock time of protocol execution.

s Comp. Comm. Idle Party total

9
A. 4.836 ± 0.17 1.592 ± 0.046 < 1 6.467 ± 0.17

B. 14.04 ± 0.43 1.592 ± 0.046 4.808 ± 2.4 20.44 ± 2.5

19
A. 7.373 ± 0.93 3.885 ± 0.066 < 1 11.28 ± 0.94

B. 20.10 ± 0.52 3.885 ± 0.066 10.49 ± 3.9 34.47 ± 3.9

30
A. 33.24 ± 1.4 8.244 ± 0.079 < 1 41.86 ± 1.4

B. 34.56 ± 0.78 8.244 ± 0.079 12.53 ± 2.5 55.34 ± 2.7

40
A. 42.60 ± 0.46 12.64 ± 0.079 < 1 55.34 ± 0.44

B. 51.63 ± 1.1 12.64 ± 0.079 18.40 ± 2.9 82.67 ± 3.1

60
A. 47.35 ± 0.62 24.38 ± 0.11 < 1 71.94 ± 0.58

B. 116.1 ± 0.83 24.38 ± 0.11 23.67 ± 2.5 164.2 ± 2.7

80
A. 66.48 ± 0.40 40.91 ± 0.089 < 1 107.4 ± 0.37

B. 185.4 ± 2.7 40.91 ± 0.089 39.13 ± 0.28 265.4 ± 2.7

119
A. 102.4 ± 0.59 84.71 ± 0.11 < 1 187.6 ± 0.51

B. 315.1 ± 1.8 84.71 ± 0.11 71.28 ± 0.22 471.1 ± 1.7

Faster Maliciously Secure Two-Party Computation Using the GPU 377

Table 3. Timing comparison of secure two party computation protocols evaluating oblivious 128-
bit AES. d is the depth of the circuit to be computed. Notice that our implementation is run on
the same hardware and using the same garbling scheme as [11].

Security s Model Rounds Time (s) Equipment
[15] Semi honest - ROM O(1) 0.20 Desktop
This work Malicious 2−9 ROM O(1) 0.21 Desktop w. GPU
This work Malicious 2−40 ROM O(1) 0.46 Desktop w. GPU
[11] Malicious 2−39 ROM O(1) 1.1 Desktop w. GPU
This work Malicious 2−60 ROM O(1) 0.58 Desktop w. GPU
This work Malicious 2−80 ROM O(1) 0.81 Desktop w. GPU
[31] Malicious 2−58 ROM O(d) 1.6 Desktop
[24] Malicious 2−80 SM O(1) 1.4 Cluster, 512 nodes
[11] Malicious 2−79 ROM O(1) 2.6 Desktop w. GPU
[34] Malicious 2−80 SM O(1) 40.6 Cluster, 8 nodes

to 76% of the wall-clock time one party sits idle. Taking Table 2 into account, we see
that at most 30% of the overhead of recovery is idle time. The reason is probably that
most messages that needs to be sent, as part of our approach to input recovery, can be
batched together with messages that needs to be sent as part of the generic structure of
cut-and-choose of garbled circuits.

It should be noted that we have spent quite a bit of time trying to limit the idle time of
the implementation by using multi-threading, batching messages and restructuring steps
within a given party’s execution. Unfortunately, it remains unknown how much this
has limited idle time compared to other implementations of cut-and-choose of garbled
circuits, as other authors with comparable protocols have not included measurements
of idle time.

Comparing the total times of Table 1 and Table 2 we see that input recovery consti-
tutes from 10% up to 39% for of the execution time for Bob, whereas for Alice it goes
from 3.5% up to 20%. Looking further into the different steps of input recovery it turns
out that around half of the computation time Bob spends on Reconstruction is actually
spent doing the “free” computation of the output keys of HOut (since it is all xor oper-
ations on keys and we use free-xor). He spend even more time on “free” computations
before we optimized the Reconstruction part of our implementation to limit the amount
of cache-misses.

Acknowledgement. The authors would like to thank Rasmus Lauritsen for useful
discussions.

References

1. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and mul-
tiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–
188. Springer, Heidelberg (2011)

378 T.K. Frederiksen, T.P. Jakobsen, and J.B. Nielsen

2. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M.,
Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure multi-
party computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628,
pp. 325–343. Springer, Heidelberg (2009)

3. Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments, via a cut-
and-choose with forge-and-lose technique - (extended abstract). In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 441–463. Springer, Heidelberg (2013)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS, pp. 136–145. IEEE Computer Society (2001)

5. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg
(2003)

6. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly
secure MPC for dishonest majority – or: Breaking the SPDZ limits. In: Crampton, J., Jajo-
dia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg
(2013)

7. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat
homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

8. Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits using
preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer, Hei-
delberg (2013)

9. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-party compu-
tation using the GPU. IACR Cryptology ePrint Archive, 2014:270 (2014)

10. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Minilego: Ef-
ficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013)

11. Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computation using
the GPU. IACR Cryptology ePrint Archive, 2013:46 (2013)

12. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against
covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306.
Springer, Heidelberg (2008)

13. Hazay, C., Lindell, Y.: Efficient Secure Two-party Protocols: Techniques and Constructions.
Information security and cryptography. Springer, Heidelberg (2010)

14. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool for au-
tomating secure two-party computations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V.
(eds.) ACM Conference on Computer and Communications Security, pp. 451–462. ACM
(2010)

15. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled
circuits. In: USENIX Security Symposium. USENIX Association (2011)

16. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-
and-choose. IACR Cryptology ePrint Archive, 2013:81 (2013)

17. Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest protocols
with dual execution. In: IEEE Symposium on Security and Privacy, pp. 272–284. IEEE Com-
puter Society (2012)

18. Husted, N., Myers, S., Shelat, A., Grubbs, P.: GPU and CPU parallelization of honest-but-
curious secure two-party computation. In: Payne Jr., C.N. (ed.) ACSAC, pp. 169–178. ACM
(2013)

19. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 21–30. ACM (2007)

Faster Maliciously Secure Two-Party Computation Using the GPU 379

20. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – ef-
ficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer,
Heidelberg (2008)

21. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and
their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194.
Springer, Heidelberg (2010)

22. Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s garbled cir-
cuit construction. In: Proceedings of 27th Symposium on Information Theory in the Benelux,
pp. 283–290 (2006)

23. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)

24. Kreuter, B., Shelat, A., Shen, C.-H.: Towards billion-gate secure computation with malicious
adversaries. IACR Cryptology ePrint Archive, 2012:179 (2012)

25. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. IACR
Cryptology ePrint Archive, 2013:79 (2013)

26. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–
78. Springer, Heidelberg (2007)

27. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J.
Cryptology 22(2), 161–188 (2009)

28. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)

29. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–
473. Springer, Heidelberg (2006)

30. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: More efficient and secure
two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 36–53. Springer, Heidelberg (2013)

31. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-
secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

32. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)

33. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is prac-
tical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer,
Heidelberg (2009)

34. Shelat, A., Shen, C.-H.: Fast two-party secure computation with minimal assumptions. IACR
Cryptology ePrint Archive, 2013:196 (2013)

35. Shelat, A., Shen, C.-H.: Two-output secure computation with malicious adversaries. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer,
Heidelberg (2011)

36. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164.
IEEE Computer Society (1982)

37. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–
167. IEEE Computer Society (1986)

Systematizing Secure Computation for Research

and Decision Support

Jason Perry1, Debayan Gupta2,
Joan Feigenbaum2, and Rebecca N. Wright1

1 Rutgers University, NJ, USA
{jason.perry,rebecca.wright}@rutgers.edu

2 Yale University, CT, USA
{debayan.gupta,joan.feigenbaum}@yale.edu

Abstract. We propose a framework for organizing and classifying re-
search results in the active field of secure multiparty computation (MPC).
Our systematization of secure computation consists of (1) a set of defi-
nitions circumscribing the MPC protocols to be considered; (2) a set of
quantitative axes for classifying and comparing MPC protocols; and (3)
a knowledge base of propositions specifying the known relations between
axis values. We have classified a large number of MPC protocols on these
axes and developed an interactive tool for exploring the problem space of
secure computation. We also give examples of how this systematization
can be put to use to foster new research and the adoption of MPC for
real-world problems.

1 Introduction

For more than 30 years, since the groundbreaking work of Yao [30,31] and Gol-
dreich et al. [18], hundreds of research papers on Secure Multiparty Computation
(MPC) have appeared, many of them proposing original protocols for carrying
out general secure computation under varying sets of assumptions. In this paper,
we systematically organize the main research results in this area, in order to:

– Help potential users of MPC learn which existing protocols and implementa-
tions best match the sensitive-data computations they would like to perform.
This may stimulate adoption of MPC in areas where it would be beneficial.

– Help new researchers get up to speed in a complex area by providing an
overview of the “lay of the land.”

– Help MPC researchers explore the problem space and discover remaining
openings for protocols with new combinations of requirements and security
features—or for new impossibility results that preclude the existence of such
protocols.

Most research papers in MPC include comparisons of their results to related
work, often with tables related to the most significant protocol features, in or-
der to provide context for understanding the paper’s contributions. However,

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 380–397, 2014.
c© Springer International Publishing Switzerland 2014

Systematizing Secure Computation for Research and Decision Support 381

none has attempted to organize the larger problem space in order to meet the
goals listed above. There are a handful of introductory surveys and textbook-like
treatments of MPC [17,11,23,12]; these have (justifiably) focused on a narrower
region of the problem space or specific security model, in order to present the
material in a pedagogically clean way. In contrast, we do not limit ourselves to
one model or set of definitions but instead provide a framework for examining
their variations.

Our work shares some common goals with research meant to foster the real-
world adoption of secure MPC. Such papers include the MPC-in-the-field exper-
iments of Feigenbaum et al. and Bogetoft et al. [15,8] and the end-user survey
work of Kamm et al. [7].

Since an effort such as this can never comprehensively account for every piece
of research in a sprawling and active field, the framework has been deliberately
designed to be extensible; it can accommodate new results and refined definitions
without breaking.

In Section 2, we present the three major components that we believe are
needed to systematize the main body of MPC results: (1) a set of definitions de-
lineating the boundaries of the problem space; (2) a set of quantitative features
for describing protocols; and (3) a knowledge base of propositions specifying the
known relationships and dependencies among features. In Section 3, we describe
the construction of a systematization database of more than 60 significant MPC
protocols, and in Section 4 we present a user interface designed to aid the ex-
ploration of the database of systematized MPC protocols and show how our
systematization can be put to work to facilitate new research.

2 The Systematization

As a necessary prerequisite for this work, we have carried out an extensive liter-
ature survey producing an annotated bibliography of MPC research. It contains
over 180 papers from the MPC literature, as well as a sampling of important
papers for related problems, including secret sharing and oblivious transfer.

In addition to a written paragraph annotating each paper, the BibTeX source
of our Annotated Bibliography includes tags for each paper indicating which
aspects of MPC it treats, e.g., 2party for a paper with a specifically two-party
protocol, or uncond for a protocol with unconditional security. These tags make it
possible to write scripts to automatically generate a bibliography for any specific
sub-problem or aspect of MPC.

The bibliography continues to be updated on an ongoing basis. The most
recent version is available online [27].

2.1 Definitions

In this section, we provide definitions to delimit the scope of the secure com-
putation protocols that we are concerned with. These definitions are purposely
quite broad, so that a large range of work can potentially be captured by them.

382 J. Perry et al.

Variables that determine the fundamental nature of an MPC protocol include:
(1) whether the protocol is for a fixed number of parties (most commonly, two) or
is for any number n ≥ 2 of parties, (2) whether the protocol is for computing one
specific functionality (e.g., set intersection) or any of a class of functionalities,
and (3) whether the protocol treats exact computation only or secure computa-
tion of approximations, which is a generalization of exact MPC [14]. Our initial
literature survey encompassed all of these, although not exhaustively. For the
current systematization, we consider only protocols for exact computation, and
thus we have four definitions, one for each setting of the two variables.

Since the way that security is defined varies from protocol to protocol, and
indeed a primary purpose of our systematization is to examine such variations,
our definitions necessarily cannot give any fixed definition of security. What mat-
ters is that, in the literature, protocols are proven to meet rigorous definitions
of security and that our systematization indicates which definitions are actually
in use for a given protocol. Therefore, for an MPC protocol to be considered as
a candidate for systematization, in addition to fitting into one the definitions
listed below, it must be accompanied by rigorous definitions of security, includ-
ing privacy of inputs and correctness of outputs, that the protocol has been
proven to meet. The nature of these security definitions is elaborated in the next
subsection.

Definition 1. A protocol for Secure n-party Computation of a functionality f
is a specification of an interactive process by which a fixed number n of players,
each holding a private input xi, can compute a specific, possibly randomized,
functionality of those inputs f(x1, ..., xn) = (y1, ..., yn).

Definition 2. A protocol for Secure Multiparty Computation of a functionality
f is a specification of an interactive process by which any number n ≥ 2 of play-
ers, each holding a private input xi, can compute a specific, possibly randomized,
functionality of those inputs f(x1, ..., xn) = (y1, ..., yn).

Definition 3. A protocol for Secure n-party Computation of a class C of func-
tionalities allows a fixed number n of players, each holding a private input xi,
to compute an agreed-upon, possibly randomized, functionality of those inputs
f(x1, ..., xn) = (y1, ..., yn), where f is any member of the class C of functionali-
ties.

Definition 4. A protocol for Secure Multiparty Computation of a class C of
functionalities allows any number n ≥ 2 of players, each holding a private input
xi, to compute an agreed-upon, possibly randomized, functionality of those inputs
f(x1, ..., xn) = (y1, ..., yn), where f is any member of the class C of functionali-
ties.

The class C is typically used to refer to the model of computation in which
a protocol’s functionalities are represented, such as circuits or RAM programs.
A majority of the work in MPC has been concerned with universal (Turing-
complete) computation, but there has been work exploring secure computation

Systematizing Secure Computation for Research and Decision Support 383

specifically for restricted computation classes, such as AC0 or NC1 circuits or
regular or context-free languages.

All of the protocols we surveyed for the systematization fall under one of
these definitions, with the majority coming under the most general definition
(Definition 4). Yao-like two-party computation protocols fall under Definition 3.

2.2 Linear Axis Representation of MPC Protocol Features

The main conceptual object in our systematization is a set of linear axes, where
each axis represents an ordering of values of a single feature of MPC protocols.
Every axis has at least two labeled values, at the endpoints. Some axes are
continuous and others discrete. MPC protocols can be scored on these axes,
allowing them to be compared quantitatively. This is the first attempt we are
aware of to factor research results in MPC into such a representation. The axes
were selected based on our literature survey, using two guiding principles:

1. The axes should be as orthogonal as possible, minimizing overlap (although
some logical dependencies between axes are unavoidable.)

2. The set of axes should be complete in the sense that they can express all dis-
tinctions of security and (asymptotic) efficiency between any two protocols.

For any discrete axis that is not inherently binary, the number of occupied
intermediate values on the axis is subject to change. The diagrams below show
intermediate values that are known to have been achieved by MPC protocols.
However, this should not be seen as finally determining the number of points on
the axis. Indeed, one of the objectives of the axis representation is to highlight
the possibility of future protocols with new intermediate values. This has already
happened for several axes over the history of MPC research. For example, the
appearance of protocols tailored for covert adversaries, such as those of Aumann
et al. and Goyal et al. [1,22], showed that there are intermediate values along
the “Maliciousness” axis (Axis 7), whereas previously only the passive/malicious
distinction had been considered.

We orient all the axes in the same direction, such that moving from left to right
on a given axis indicates an improved protocol—e.g., one that is more efficient,
has a stronger security guarantee, or requires a weaker setup or computational-
hardness assumption. In drawing the non-numeric axes, the points have been
placed with equal spacing; the relative distances between points on these axes
should not be considered significant.

Our axes do not include the model of computation in which a protocol is ex-
pressed. This is a categorical feature which is indicated by the definition (Section
2.1) under which the protocol falls. The model of computation for each protocol
is included in its entry in our MPC protocol database, described in Section 3.
We have not generated axes for proof techniques, because a proof technique is
not a function of the protocol; a protocol’s security may be proven in a number
of ways.

We now proceed to describe the axes and values in detail. The axes are in-
formally grouped into four categories, which serves to highlight the tradeoffs

384 J. Perry et al.

inherent in achieving secure multiparty computation. The axes in categories I
and II, Environmental features and Assumptions, can be thought of as what one
“pays” to enable secure MPC, and categories III (Security) and IV (Efficiency)
can be seen as what one is “buying.” A similar tradeoff structure can also be seen
on a smaller scale among axes within the efficiency category. When it is helpful,
our description of an axis also cites particular MPC solutions that instantiate
points on the axis.

I. Environmental Features Axes
This is the category of features assumed to be provided by the execution
environment. The right endpoint of these axes indicates that the feature is
not required in any form.

1. Trusted setup

Common
Reference String PKI

No trusted
setup

Protocols achieving the highest composable security levels require some
type of trusted data to be shared by all the parties prior to the protocol
execution. The middle point, PKI, is occupied by protocols such as that
of Barak et al. [2], who showed how to use public-key-like assumptions
instead of a polynomial-length common reference string in any case where
computational security suffices.

2. Broadcast

Broadcast channel No broadcast

The broadcast-channel assumption means that each party has the abil-
ity to send a message to all other parties simultaneously, and that all
parties receiving the broadcast have assurance that the same message
was received by all parties.

3. Private channels

Private channels No private channels

The private channel assumption is only significant for unconditionally se-
cure protocols, because cryptography using basic computational-hardness
assumptions can be used to emulate private and authenticated commu-
nication channels.

4. Synchronization

Synchronous
communication Limited Synchronization

Asynchronous
model

A basic assumption of the early MPC protocols is that they operate on
a synchronous network, in which all sent messages arrive on time and
in order. The asynchronous case was first considered in Ben-Or et al.
[4], where messages may be arbitrarily delayed and arrive in any order.
Note that, in such a case, it is impossible to know whether a corrupted
party has failed to send a message or, rather, the message is simply

Systematizing Secure Computation for Research and Decision Support 385

delayed. Later works, such as that of Damg̊ard et al. [13], have staked
out intermediate points on this axis by giving protocols that require a
smaller number of synchronization points (typically a single one).

II. Assumption Axes

5. Assumption level

Enhanced TDP/LWE/other

Trapdoor Permutations

One-way Functions

None

A total (linear) ordering for cryptographic assumptions is not known,
and the separation of assumptions cannot currently be unconditionally
proven. We therefore use broader categories of assumption type, because
these are usually sufficient to distinguish protocols. If a protocol makes
no such assumptions, it is said to have unconditional security (see Axis
10). Some work specifies protocols in a hybrid model, with no concrete
computational assumptions, but in which some high-level cryptographic
operation (such as oblivious transfer) is assumed to exist as a black box.
See Section 3 for a discussion of how such protocols are treated in this
systematization.

6. Specific or general assumption

Specific Assumption General Assumption Class

Some more efficient protocols have been designed by making use of spe-
cific number-theoretic assumptions. This axis indicates whether the pro-
tocol requires such assumptions or whether it is stated so as to use any
assumption from a given class, e.g., trapdoor permutations.

III. Security Axes
7. Adversary maliciousness

Passive (HBC)

Fail-stop

Covert

Malicious

A passive, or honest-but-curious, adversary is one that follows the pro-
tocol but may use the data of corrupted parties to attempt to break the
protocol’s privacy. A fail-stop adversary follows the protocol except for
the possibility of aborting. A malicious adversary is one whose behavior
is arbitrary, and a covert adversary is like a malicious one, except that it
only deviates from the protocol if the probability of being caught is low.
Not present on the axis is the value “rational,” since the class of rational
adversaries is in fact a generalization that can encompass the entire
axis, except for fully malicious, because malicious behavior can be truly
arbitrary. The position of a rational adversary on the axis is determined
by its utility function.

386 J. Perry et al.

8. Adversary mobility

Static

Adaptive

Mobile

A static adversary must choose which parties to corrupt before the pro-
tocol begins. An adaptive adversary can choose which parties to corrupt,
up to the security threshold (see Axis 9), over the course of the computa-
tion, after observing the state of previously corrupted parties. A mobile
adversary is able to move corruptions from one party to another in the
course of the computation.

9. Number of corrupted parties tolerated

none < n/4

< n/3

< n/2

< n

This is themaximumnumber of corrupted parties for which the (strongest)
security guarantees of the protocol hold. The values shown are chosen
merely to be representative of the most well known protocols; any value
along the axis is possible.

Some protocols tolerate additional corrupted parties at a lower level
of maliciousness; see axes 13 and 14.

10. Security type

Computational

Statistical

Perfect

Both statistical and perfect security are unconditional, that is, not based
on computational hardness assumptions. Note that true unconditional
security typically cannot be achieved through the internet, even if an
unconditionally-secure protocol is used, since all unconditionally secure
protocols require the assumption of either private or broadcast channels,
which on the internet must be emulated by cryptography.

11. Fairness guarantee

No agreement

No fairness

Partial Fairness

Complete Fairness

Guaranteed output

A protocol is fair if all honest parties receive the output if any party
does. Agreement means that either all honest parties receive the output
or none of them do. Protocols without agreement were introduced by
Goldwasser et al. [20]. Some authors use the term “with abort” to refer
to the no-fairness situation, in which dishonest parties can abort after
receiving the correct output.

12. Composability

Stand-alone

Parallel composable

Concurrent composable

Universally composable

Systematizing Secure Computation for Research and Decision Support 387

The composability guarantees of a protocol indicate whether that proto-
col remains secure when executed in an environment where other proto-
cols may be executed sequentially or in parallel. The strongest guarantee,
universal composability (UC), implies that the security properties of a
protocol hold regardless of the environment in which it is executed.

13. Bound for additional passively corrupted parties tolerated

none

< n/3

< n/2

< 2n/3

< n

This axis applies to protocols achieving “mixed adversary” security.
A protocol that tolerates a certain proportion of maliciously/covertly
corrupted parties may also tolerate an additional number of passively
corrupted parties, up to a certain threshold. The values on this axis rep-
resent that upper threshold. This and the following axis relate to MPC
protocols with “graceful degradation”, which is surveyed in Hirt et al.
[24].

14. Corrupted parties tolerated with weakened security

none

< n/3

< n/2

< 2n/3

n− 1

This axis applies to protocols with “hybrid security” results. A protocol
that tolerates a certain proportion of corrupted parties (Axis 9) may in
fact tolerate a larger number of corruptions, but with a weaker security
type, e.g., computational vs. unconditional security.

15. Leakage Security

Not leakage-secure

Input leakage-secure

State leakage-secure

Leakage security is an additional guarantee that an adversary cannot
gain an advantage even if it can force all honest players to “leak” some
bits of information about their state in the course of the computation.
See definitions in Bitansky et al. [6].

16. Auditability

Not auditable Auditable

This axis indicates whether the protocol includes computations that al-
low for examining the transcript of computation after it is finished, to
prove that the parties have correctly followed the protocol. This may be
the most recent axis to come into existence, starting with the work of
Baum et al. [3]

IV. Efficiency Axes
Our efficiency axes are concerned primarily with the asymptotic efficiency
of the protocol in question.

388 J. Perry et al.

17. Online computational overhead

Superlinear Computation Linear

Historically, the main efficiency concern in MPC has been with commu-
nication rather than computational complexity; thus the lack of elabo-
ration of this axis. More recently, Ishai et al. have notably shown how to
achieve MPC with constant computational overhead [25], and the RAM-
model results of Gordon et. al [21] have shown the possibility, in the
RAM model, of MPC with amortized computation that is sublinear in
the input size.

18. Online communication complexity (rounds)

polynomial rounds

logarithmic (O(d)) rounds

O(1) rounds

3 rounds

2 rounds

Here, d is the depth of the circuit representing the functionality. Mini-
mizing the number of rounds of computation, independently of the total
amount of bytes communicated, is crucial for efficiency in a high-latency
or asynchronous network environment. Fully general MPC was shown to
require at least three rounds in Gennaro et al. [16], although for some
functionalities a 2-round protocol is possible.

19. Online communication complexity (per-gate)

Ω(n3)

O(n2)

O(n)

This is the most significant measure of efficiency for MPC protocols. It
can represent either bits or field elements of communication. The orig-
inal BGW protocol has a communication complexity of O(n6) bits per
multiplication gate in the worst case. Anything cubic or worse occupies
the lowest position on our axis, as finer distinctions at that level would
have little value for distinguishing current, more practical protocols.

20. Preprocessing Communication complexity

Ω(n2)

Linear

Sublinear

No preprocessing

Many recent protocols achieve improved online communication efficiency
by means of a preprocessing phase. In the case where the functionality is
represented as an arithmetic circuit, the preprocessing phase is typically
a simulation of a trusted dealer that distributes multiplication triples,
which allow local evaluation of multiplication gates in the online phase.
Sublinear preprocessing typically indicates that the preprocessing con-
sists only of exchange of public keys, which is also indicated as a setup
assumption (Axis 1).

Systematizing Secure Computation for Research and Decision Support 389

21. Preprocessing Dependency

Input-dependent

Function-dependent

Independent or
no preprocessing

In some protocols, the preprocessing phase depends on the specific func-
tionality to be computed, while in others it only depends on the upper
bound of the size of the circuit. In all cases, the preprocessing is inde-
pendent of the parties’ inputs.

22. Preprocessing Reuse

Not Reusable Reusable

This indicates whether the information computed in the preprocessing
stage, of whatever type or amount, can be reused for multiple computa-
tions. Data of the nature of a public key typically can be reused, while
e.g., garbled circuits traditionally cannot be reused without breaking
security. But see recent work of Goldwasser et al. [19].

As mentioned above, we have endeavored to make this selection of axes as
complete as possible. The value of completeness in a systematization can be
illustrated as follows: Suppose there are two MPC protocols whose scores along
the axes are identical for every axis except one. If the set of axes is complete,
then we can be confident that the protocol with the higher value on that axis is
strictly better.

2.3 Dependencies between Axes

Since many MPC protocols involve essential tradeoffs in order to achieve security
or efficiency, a systematization of secure computation also needs to model what
is known about how features of protocols interact. In this section, we present the
second major aspect of our systematization: a list of each of the theorems known
to imply constraints among the axes’ values, each accompanied by a statement of
the constraint. References are given to the paper in which the theorem implying
the constraint was proven.

Theorem 1 ([5]). If statistical or perfect security is obtained, then either a
broadcast channel or private channels must be assumed. Axis constraint: If
Axis 10’s value is to the right of “Computational,” then either Axis 3’s value is
“Private channel” or Axis 2’s value is “Broadcast channel”.

Theorem 2 ([29]). No protocol with security against malicious adversaries can
tolerate more than n/2 corrupted parties without losing the complete fairness
property. Axis constraint: If Axis 7’s value is “Malicious” and Axis 9’s value
is to the right of n/2, then Axis 11’s value must be to the left of “Complete
fairness”.

390 J. Perry et al.

Theorem 3 ([10]). No protocol unconditionally secure against malicious adver-
saries can guarantee output delivery with n/3 or more corrupted parties. Axis
constraint: If Axis 7’s value is “Malicious,” Axis 10’s value is to the right of
“Computational,” and Axis 9’s value is to the right of “n/3,” then Axis 11’s
value must be to the left of “Guaranteed output”.

Theorem 4 ([5]). No protocol can have perfect security against more than n/3
maliciously corrupted adversaries. Axis constraint: If Axis 7’s value is “Mali-
cious” and Axis 9’s value is to the right of n/3, then Axis 10’s value must be to
the left of “Perfect”.

Theorem 5 ([16]). Any general MPC protocol with complete fairness against a
malicious adversary must have at least three rounds. Axis constraint: If Axis
7’s value is “Malicious” and Axis 11’s value is at or to the right of “complete
fairness”, then Axis 18’s value must be to the left of “2 rounds”.

Theorem 6 ([5]). For unconditional security against t maliciously corrupted
players, n/3 ≤ t < n/2, a broadcast channel is required. Axis constraint: If
Axis 10’s value is to the right of “Computational” and Axis 7’s value is “Ma-
licious” and Axis 9’s value is to the right of n/3, then Axis 2’s value must be
“Broadcast channel”.

Theorem 7 ([18]). For (even cryptographic) security against ≥ n/3 maliciously
corrupted players, either a trusted key setup or a broadcast channel is required.
Axis constraint: If axis 7’s value is “Malicious” and Axis 9’s value is to the
right of n/3, then either Axis 2’s value must be “Broadcast channel,” or else
Axis 1’s value is to the left of “No trusted setup.”

Theorem 8 ([5]). There can be no unconditionally secure protocol against an
adversary controlling a majority of parties. Axis constraint: Axis 10’s value
can be to the right of “Computational” only if Axis 9’s value is at or to the left
of n/2.

Theorem 9 ([9]). There is no protocol with UC security against a dishonest
majority without setup assumptions. Axis constraint: If Axis 9’s value is to
the right of n/2 and Axis 12’s value is “Universally composable,” then axis 1’s
value must be to the left of “No trusted setup”.

Theorem 10 ([4]). In an asynchronous environment, there is no protocol with
guaranteed output secure against a fail-stop adversary corrupting n/3 or more
parties. Axis constraint: If Axis 4’s value is “Asynchronous,” Axis 7’s value is
at or to the right of “Fail-stop,” and Axis 11’s value is at “Guaranteed output,”
then Axis 9’s value must be at or to the left of n/3.

Theorem 11 ([4]). In an asynchronous environment, there is no protocol with
guaranteed output secure against a malicious adversary corrupting n/4 or more
parties. Axis constraint: If Axis 4’s value is “Asynchronous,” Axis 7’s value is
“Malicious,” and Axis 11’s value is at “Guaranteed output,” then Axis 9’s value
must be at or to the left of n/4.

Systematizing Secure Computation for Research and Decision Support 391

One validation of our choice of axes is that these theorems are directly and
compactly expressible in terms of them, thus giving a unified representation
of the central body of knowledge of MPC. The axis constraints can easily be
represented in a programming or knowledge representation language, as Section
4 shows.

3 An Extensible Protocol Database

We scored more than 60 of the most significant protocols in secure multiparty
computation on our axes, integrating information from our annotated bibliogra-
phy, resulting in an extensible MPC protocol database.

Many papers in the area include multiple protocols. We give each protocol a
separate entry in the database, which is labeled by adding a suffix to the usual
“alpha”-style reference. For instance, “[GMW87]-mal” refers to the protocol of
[18] that is secure against a malicious adversary. The database also indicates
whether an implementation of the protocol is known to exist.

The work of constructing the database motivated many revisions of our set
of axes and highlighted difficulties in systematizing MPC results, some of which
we discuss here.

Efficiency. As mentioned in the axis descriptions, our efficiency axes are con-
cerned primarily with asymptotic efficiency measurements. When we populated
our database, we relied on evaluations in the literature, frequently from the paper
actually introducing the protocol.

The model of computation in which a protocol’s functionalities are expressed
can have a large impact on concrete efficiency. Historically, MPC functionali-
ties have been expressed as circuits. The original Yao model considers Boolean
circuits, while most of the current state-of-the-art MPC protocols are in the
arithmetic-circuit model. Implementing these requires performing field arith-
metic, and, although the size of the field elements is a constant in the security
parameter, the time taken to perform field operations can have a significant im-
pact on efficiency. Although this difference in concrete efficiency is not captured
by the axes, our protocol database notes the model of computation for each
protocol.

Even in the asymptotic case, comparing the efficiency of MPC protocols is
an extremely difficult problem because of multiple interacting aspects of effi-
ciency present in MPC. In selecting an actual implementation, a concrete anal-
ysis and/or empirical efficiency measurements should also be consulted.

Substitutability. One factor that makes it nontrivial to enumerate a list of
MPC protocols is that many protocols described in the literature make use
of subprotocols for cryptographic operations in a black-box fashion, making it
possible to substitute different protocols implementing that operation. This can
alter not only the performance characteristics but also the computational and
environmental assumptions and security and composability guarantees of the
resultant protocol. In some cases, a new and improved subprotocol can trivially

392 J. Perry et al.

be used to improve an older MPC protocol, but no published work explicitly
presents the improvement; in other cases a protocol explicitly allows for black-
box substitution of subprotocols, in which case it is said to be stated in a hybrid
model. In the case of the OT-hybrid model, in which oblivious transfer is a black
box, recent work in OT extension has produced significant performance gains.

An extreme case of this “substitutability” factor is the IPS compiler of Ishai et
al. [26], which is not only in the OT-hybrid model but also allows any of a wide of
of honest-majority MPC protocols to be plugged in as an “outer protocol,” with
the resulting protocol inheriting some (but not all) of the security properties of
the outer protocol.

To address this complex issue, we have limited our systematization to rep-
resent only concrete instantiations of hybrid protocols. The axes are such that
a protocol in a hybrid model must first be “instantiated” with concrete sub-
protocols in order to be scored. In our database, we have sought to enumerate as
many such concrete protocols as possible that are based on well-known hybrid-
model protocols.

Two-Party Secure Computation. Although much research has been done
specifically addressing two-party secure computation, starting from Yao’s orig-
inal garbled circuits idea, it can be considered as a special case of multiparty
computation, in which, if security against a malicious adversary is sought, no
honest majority can be assumed (Axis 9 at n − 1). Thus, two-party protocols
can at least theoretically be compared with multiparty results in this category.

In reality, however, vast improvements in efficiency have been made for the
two-party case. We note that these optimizations often come at the expense of
symmetry: The security guarantee against cheating by one of the two parties
may be weaker than for the other. For instance, one of the two parties may be
able to cheat with an inverse-polynomial probability, while the other may only
be able to cheat with negligible probability. Asymmetry is not included in our
axis definitions, and so two-party protocols are scored by the weaker of the two
sets of security guarantees. Of course, the database indicates which protocols
and implementations are strictly for two parties.

4 Putting the Systematization to Work

As mentioned in Section 1, the main theorems of secure multiparty computation
demonstrate essential tradeoffs involved in securely computing a functionality
among distrustful parties. To leverage the information that our systematization
captures about these tradeoffs and gain insight into the problem space, we ex-
perimented with visually plotting the protocol axis scores of the MPC database.
However, we found that the highly categorical nature of the data makes it diffi-
cult to gain insight from a static visualization. In this section, we describe an an
interactive tool we have developed for interacting with the systematization and
MPC protocol database, which provides a better way of coming to grips with
the multi-dimensional landscape of MPC protocols.

Systematizing Secure Computation for Research and Decision Support 393

4.1 A Prototype Decision-Making Support Tool

We have developed a prototype GUI tool, SysSC-UI, which reads in a protocol
database of axis values and enables the user to adjust a set of sliders and check-
boxes corresponding to our axes of systematization. For the tool’s interface, the
axes are oriented vertically rather than horizontally as in this paper, so a higher
position of a slider corresponds to a stronger result. A dynamically updated re-
sults window displays the protocols from the database that match the specified
axis values. See the screenshot in Figure 1. The source code for the desktop
version is available online https://code.google.com/p/syssc-ui/, as well as
a beta web-based version http://work.debayangupta.com/ssc/.

Fig. 1. Screenshot of the SysSC-UI tool for interacting with the protocol database

For a given setting of the sliders and checkboxes, the results window shows
all papers whose axis values are at the same level or higher than the settings.
Thus, the tool presents all protocols that are at least as good as the specified
settings. When the tool is started, the sliders and checkboxes are all set to the
least constraining position, such that every protocol in the database is displayed
in the results window. There is also a button to reset the tool to this state. An-
other button sets the sliders to the exact values of the protocol in the currently
highlighted protocol, allowing the precise achievements of a protocol to be ex-
amined. This has the side effect of changing the output to the results window,
so that only protocols that are at least as good as the selected one are displayed.

Double-clicking on a reference in the results window will display a pop-up
window giving the authors’ full names and the description of the paper containing
the protocol from the annotated bibliography. The GUI also indicates when the
positioning of the sliders is such that a secure computation protocol is known to
be impossible, by means of an encoding of the theorems in Section 2.3.

The axes and values displayed by SysSC-UI are a subset of those in the full
systematization. This was done in order to simplify the interaction and avoid

https://code.google.com/p/syssc-ui/
http://work.debayangupta.com/ssc/

394 J. Perry et al.

confusion from the visual display of too much information at once. For example,
for the composability axis, there is only a single checkbox, to indicate whether
the protocol is proven universally composable or not.

We now present sample use cases highlighting the features of SysSC-UI.

4.2 Sample Use Cases for SysSC-UI

Finding the Best Protocol for a Known Problem. Consider a scenario in
which a technology consultant is hired by a company to find a way to compute
some function of a distributed set of sensitive data residing on servers owned by
different divisions of the company. We show how she can use the SysSC-UI tool
to find an appropriate MPC protocol for achieving this secure computation.

In the initial state of the UI tool, all four environmental assumption boxes are
checked, and all sliders are in the lowest position, so that every protocol in the
database is displayed in the results window. To begin, our consultant unchecks
“Private Channels”, knowing that the computation will be carried out over an
ordinary internet connection, which should always be assumed to be tapped. She
wishes to protect against adversaries that are covertly malicious, so she moves
the leftmost Adversary Type slider up to “Covert”. The consultant is suspicious
of protocols that use a weaker model to prove security, so she moves the first
Security slider up to “Computational.” Furthermore, she suspects that universal
composability is necessary to guarantee security in a heterogenous environment,
so she checks the “UC” box. The protocols resulting from these selections can
be seen in the results window in Figure 2.

Fig. 2. Results shown by the SysSC-UI tool after selections have been made

The consultant wishes to determine the most efficient protocol that meets
these requirements, so next she moves the “Online Comm Complexity” slider
up to the highest level for which the results box is not empty. We would like to
achieve this online complexity with the minimum preprocessing complexity, so
she tries sliding the “Preprocessing comm” slider up. If it is moved up too far,

Systematizing Secure Computation for Research and Decision Support 395

the results window becomes empty. So she readjusts both this and the Online
slider to find an agreeable tradeoff between online and preprocessing complexity.
The results of this exploration are shown in Figure 2.

Exposing Directions for Cryptographic Research. In using the tool, one
invariably stumbles upon a setting of the sliders / boxes that is not in the “known
impossible” range, and yet has no papers with a matching protocol listed. Of
course, one reason for this could simply be the incompleteness of the protocol
database. Another possible reason is that the combination of features is not desir-
able from a security or efficiency standpoint. However, a third possibility exists,
which is that a genuine opening for new research has been revealed. Two kinds
of such “holes” may reveal new research directions: (1) Gaps between achieved
and proven impossible security levels, and (2) settings in which a weakening of
security parameters may allow greater efficiency. An example of the second type
of advance is the case of positing composable security definitions weaker than
universal composability, as in [28].

5 Ongoing Work

As it is unlikely that the authors will permanently be able to stay abreast of
the growing MPC literature, we have developed a web-based survey that allows
researchers to submit descriptions of new protocols and their features on the
axes so that they can be integrated into the protocol database and SysSC-UI.
The survey is available at http://goo.gl/T4ORzr. Author participation is vital
to the continuing usefulness of this effort.

The set of theorems in Section 2.3 should also be expanded as knowledge
of secure computation increases. This work has highlighted several remaining
unknowns in characterizing the possibility of secure computation; for example,
perhaps some of the malicious impossibility results hold for the covert case as
well. A longer-term goal is to characterize the efficiency of the protocols more
precisely, in terms of the number of elementary operations, to make the efficiency
of all protocols directly comparable.

Systematizations of knowledge are especially needed in research fields where a
large body of results have been generated in a short time, and secure multiparty
computation is undoubtedly such a field. Without an effort to systematically
organize results, there may be unnecessary duplication of research efforts, the
barriers to entry for new researchers may be needlessly high, and results may
not see useful applications as early as they could. Our systematization of secure
computation is a tool that can significantly ease the task of coming to grips with
this sprawling body of results, and potentially speed its adoption in fields where
it would be useful.

Acknowledgments. This material is based on research sponsored by DARPA
under agreement number FA8750-13-2-0058. The U.S. government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding

http://goo.gl/T4ORzr

396 J. Perry et al.

any copyright notation thereon. The views and conclusions herein are those of
the authors and should not be interpreted as necessarily representing the office
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

References

1. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2004), pp. 186–195. IEEE
(2004)

3. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. Cryptology ePrint Archive, Report 2014/075 (2014),
http://eprint.iacr.org/

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC
1993), pp. 52–61 (1993)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC 1988), pp. 1–10 (1988)

6. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

7. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P.: Secure multi-party
data analysis: end user validation and practical experiments. Cryptology ePrint
Archive, Report 2013/826 (2013), http://eprint.iacr.org/2013/826

8. Bogetoft, P., Christensen, D., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J., Nielsen, J., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.:
Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC
2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

9. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC, pp. 364–369 (1986)

11. Cramer, R., Damg̊ard, I.: Multiparty computation, an introduction. In: Contem-
porary Cryptology, pp. 41–87. Springer (2005)

12. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing: An Information Theoretic Approach. Self-published manuscript (2013),
https://users-cs.au.dk/jbn/mpc-book.pdf

13. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

14. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. ACM Transactions on Algo-
rithms 2(3), 435–472 (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/2013/826
https://users-cs.au.dk/jbn/mpc-book.pdf

Systematizing Secure Computation for Research and Decision Support 397

15. Feigenbaum, J., Pinkas, B., Ryger, R., Saint-Jean, F.: Secure computation of sur-
veys. In: EU Workshop on Secure Multiparty Protocols. Citeseer (2004)

16. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002)

17. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing (STOC 1987), pp.
218–229 (1987)

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Proceedings of
the 45th Annual ACM Symposium on Theory of Computing (STOC 2013), pp.
555–564 (2013)

20. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi, D.
(ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002)

21. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: ACM Confer-
ence on Computer and Communications Security (ACM CCS 2012), pp. 513–524
(2012)

22. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computa-
tion against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

23. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols – Techniques and
Constructions. Information Security and Cryptography. Springer (2010)

24. Hirt, M., Lucas, C., Maurer, U., Raub, D.: Graceful degradation in multi-party
computation (extended abstract). In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673,
pp. 163–180. Springer, Heidelberg (2011)

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC 2008), pp. 433–442. ACM, New York (2008)

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

27. Perry, J., Gupta, D., Feigenbaum, J., Wright, R.N.: The secure computation an-
notated bibliography (2014),
http://paul.rutgers.edu/~jasperry/ssc-annbib.pdf

28. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC 2004), pp. 242–251 (2004)

29. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC 1989), pp. 73–85 (1989)

30. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 1982), pp. 160–164 (1982)

31. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: Pro-
ceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 1986), pp. 162–167 (1986)

http://paul.rutgers.edu/~jasperry/ssc-annbib.pdf

An Empirical Study and Some Improvements

of the MiniMac Protocol for Secure
Computation

Ivan Damg̊ard, Rasmus Lauritsen, and Tomas Toft�

Department of Computer Science, Aarhus University
{ivan,rwl,ttoft}@cs.au.dk

Abstract. Recent developments in Multi-party Computation (MPC)
has resulted in very efficient protocols for dishonest majority in the pre-
processing model. In particular, two very promising protocols for Boolean
circuits have been proposed by Nielsen et al. (nicknamed TinyOT) and
by Damg̊ard and Zakarias (nicknamed MiniMac). While TinyOT has
already been implemented, we present in this paper the first implemen-
tation of MiniMac, using the same platform as the existing TinyOT im-
plementation. We also suggest several improvements of MiniMac, both
on the protocol design and implementation level. In particular, we sug-
gest a modification of MiniMac that achieves increased parallelism at no
extra communication cost. This gives an asymptotic improvement of the
original protocol as well as an 8-fold speed-up of our implementation. We
compare the resulting protocol to TinyOT for the case of secure com-
putation in parallel of a large number of AES encryptions and find that
it performs better than results reported so far on TinyOT, on the same
hardware.

1 Introduction

In Multi-party Computation (MPC), N players wish to compute a function
securely on privately held inputs, where security means that the result must be
correct, and be the only new information that is released about the inputs. This
must hold even if T players are corrupted by an adversary. In this paper, we
consider the case of active corruption (where the adversary takes full control
over corrupted players) of up to N − 1 players, so-called dishonest majority.
In several recent papers [2,6,5,7,9] it has been shown that we can obtain very
practical MPC protocols for dishonest majority using preprocessing.

The basic idea exploited is that,while dishonestmajority precludes information-
theoretic (IT) constructions, the expensive and inefficient, computationally secure
(public key) cryptography can be pushed to a preprocessing phase. This phase is

� The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within part of
this work was performed; and from the CFEM research center, supported by the
Danish Strategic Research Council. The third author was supported by European
Research Council Starting Grant 279447.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 398–415, 2014.
© Springer International Publishing Switzerland 2014

An Empirical Study and Some Improvements of the MiniMac Protocol 399

independent of not only the inputs, but also the function to be securely computed.
The “raw-material” generated allows the use of IT-secure protocols in the online
phase, i.e., protocols that are much more computationally efficient.

Two promising protocols have been proposed for the case of secure computa-
tion of Boolean circuits, namely the TinyOT protocol by Nielsen et al. [9] and
the MiniMac protocol by Damg̊ard and Zakarias [7]. [7] presents a theoretical
comparison between the two: For security parameter κ, it was shown that where
TinyOT requires each player to do Θ(κ) elementary bit operations per gate in
the circuit, MiniMac requires only O(log κ) operations (or even O(1) for some in-
stantiations, when the number of players is large). The same overhead was found
for communication and the amount of preprocessing-data each player stores.

It is, however, very unclear whether these theoretical advantages translate
to greater efficiency in practice. Indeed, TinyOT has been implemented with
promising results, and the Θ(κ) bit operations required per gate can in most
cases be performed in parallel using a single or small number of CPU instructions.
On the other hand, the fact that TinyOT has larger storage requirements and
communication complexity remains even on a massively parallel machine.

Our Contribution. In this paper we present the first implementation of MiniMac.
We compare this to a TinyOT implementation running on the same hardware
with the goal of making a meaningful comparison of the two approaches in
practice. As benchmark, we use parallel computation of many AES encryptions
using a binary circuit; AES is often used as the de facto standard benchmark
and performing multiple parallel executions has practical relevance, e.g., when
encrypting data in counter mode. Additionally, we propose a new modification
of MiniMac which increases the efficiency of binary circuit evaluation in both
theory and practice. Our implementation is optimized for the two party case but
works for any number of players.

MiniMac is based on an error correcting code of length n and dimension k
over some finite field, F, and allows k parallel evaluations of some arithmetic
circuit over F. It further uses an IT-secure authentication scheme that is based
on the code; a forged message authentication code (MAC) will be accepted with
probability 2−t where t = log(|F|) · (n− 2k + 1).

Our implementation uses a Reed-Solomon code over F28 with (n, k) =
(256, 120) or (255, 85), depending on the underlying implementation of oper-
ations on codewords; this implies (at least) 128-bit security. We note that [7]
suggests alternative constructions of binary codes based on algebraic geometry,
however, the constants involved are very large and no truly efficient encoding
algorithm is known, thus, using these were not seen as a viable approach.

Using F28 as the underlying field is a natural choice; elements can be encoded
as bytes and addressed separately, while the field is sufficiently small to allow
efficient multiplication through table-lookup. Further, F28 has characteristic two
implying that binary-XOR is simply addition.

Regarding the choice of (n, k), we strove to maximize parallel computation,
i.e., maximize k. Since n is bounded by the cardinality of the field, F28 , we have
(n, k) = (256, 120) when aiming for security level t ≥ 128. However, for these

400 I. Damg̊ard, R. Lauritsen, and T. Toft

parameters, our best encoding algorithm is quadratic: the naive multiplication
by the generator matrix. We found this matrix multiplication to be quite costly
in practice. As an alternative, we suggest to implement it using a variant of Fast
Fourier Transform (FFT) – 85 divides 255 which is the order of the multiplicative
group implying that roots of unity of order 255 and 85 exist in F28 . This reduces
encoding- and decoding-time, but requires that the input-size divides 255. This
sets (n, k) = (255, 85), however, despite the reduced parallelization we found
that this still pays off.

In addition to the above implementation suggestions, we also present an im-
provement of the protocol when the overall goal is Boolean circuits. Taking a
closer look at the choice of field, we see that using a code over F28 with the
original MiniMac protocol to compute a Boolean circuit, implies that every bit
is encoded as a byte, i.e., we “waste” a factor of 8 in terms of space. We pro-
pose an optimization that allows us to use every bit in every data byte; this
increases parallelization to 8 · 120 = 960 or 8 · 85 = 680 instances. To reach this
goal, we redesign the multiplication operation in MiniMac: the original protocol
implements multiplication of data bytes as multiplication in F28 . Instead, we
compute bit-wise AND of two bytes. Our solution for this generalizes to other
characteristic 2 fields (and even other protocols, e.g., [6]) and while it requires
a small amount of extra local computation, it saves communication and stor-
age compared to the original MiniMac. More precisely, in [7] they compute the
cost per player per gate of their protocol, where the cost can be the amount of
data stored from the pre-processing, the communication and the computational
work. For the case of two players, these costs can be O(1), O(1), O(poly(n)), or
all three can be O(polylog(n)), depending on the underlying code used. For the
case of computing the same function many times in parallel, our solution obtains
O(log(n)), O(1), O(polylog(n)) and so is better than both previous solutions on
the parameters that matter most for efficiency. This is not only a theoretical
improvement: in our implementation, we obtain more than an 8-fold speedup.

Another performance boost was obtained by exploiting the structure of the
AES circuit: only AND gates require communication, and we form a number of
batches of gates, such that gates of one batch can all be executed in parallel.
We collect the required communication in packets that each span the entire
batch. This way we send fewer but larger packets and this turns out to reduce
the time we wait for communication to happen. However, profiling showed that
significant time was still spent waiting for communication. We therefore tried
a new setup, where several instances of the program were started at slightly
different times. The idea was that this would keep both CPUs busy almost all
the time and give us larger throughput. Indeed, we gained a factor almost 2 from
this. Finally experimenting with the best setting for compiler optimizations gave
another factor of 2.

Combining all the tricks we came up with, we obtain an amortized time of
about 4 ms per AES encryption with (at least) 128 bit security and about 9
seconds latency. This is almost 10 times faster than the best time reported for
TinyOT evaluating the same circuit on the same hardware, where we note that

An Empirical Study and Some Improvements of the MiniMac Protocol 401

this TinyOT implementation runs with only 64 bit security and much larger
latency.

In [8], a different secure AES implementation is reported on, based on the
SPDZ protocol [6]. It is a bit faster than ours, but is incomparable as the
hardware is different and the security level lower (40 bit). Most importantly,
however, the circuit used there is an arithmetic circuit over F28 plus some “bit-
decomposition” tricks to evaluate the S-boxes. Our study should be seen pri-
marily as targeted against at using MiniMac as efficiently as possible to evaluate
a Boolean circuit. Finally, [8] reports that much of their efficiency comes from
a very careful scheduling of operations and messages. We have optimized our
implementation to some extent w.r.t. scheduling but based on measurements of
the time we spend waiting for messages, we believe there is further potential.

2 MiniMac

The MiniMac protocol supports the operations described in Figure 1. It does
this by representing values occurring in the computation in a certain format.
In the original MiniMac paper this representation is optimized for the case of
many players. In this paper, however, we concentrate on the two-player case and
therefore we set up the representation in a way that resembles more the way it is
done in the TinyOT protocol (which is inherently a two-player protocol). More
precisely, whereas in the original MiniMac, each secret value, as well a Message
Authentication Code (MAC), is additively secret shared among the players, we
keep the additive secret sharing of the value, but add instead a MAC on each
share. Whereas this is sub-optimal for the multiple player case, it makes the
check of Macs simpler and adds no significant other cost for two players.

Functionality FMPC

Initialize: On input (init, k) from all parties, each initialize the store for block
length k.

Rand: On input (rand , Pi, vid) from all parties Pi, with vid a fresh identifier, pick
r ← Fk and store (vid , r).

Input: On input (input , Pi, vid ,x) from Pi and (input , Pi, vid , ?) from all other
parties, with vid a fresh identifier, store (vid ,x).

Add: On command (add , vid1, vid2, vid3) from all parties (if vid1, vid2 are present
in memory and vid3 is not), retrieve (vid1,x), (vid2,y) and store (vid3,x+y).

Multiply: On input (mult , vid1, vid2, vid3) from all parties (if vid1, vid2 are
present in memory and vid3 is not), retrieve (vid1,x), (vid2,y) and store
(vid3,x ∗ y).

Output: On input (output , vid) from all honest parties (if vid is present in mem-
ory), retrieve (vid ,x) and output it to the environment. If the environment
returns “OK”, then output (vid ,x) to all players, else output ⊥ to all players.

Fig. 1. The ideal functionality for MPC.

402 I. Damg̊ard, R. Lauritsen, and T. Toft

Representation of values. A clear text value x is k-element vector over some finite
field, in our case always F28 . We consider a systematic linear error correcting
code C of length n and dimension k, and let C(x) denote the encoding of x in C.
We also need to consider the Schur-transform C∗ of C, which is the linear span
of all products of form c1∗c2, where c1, c2 ∈ C and ∗ denote the coordinate-wise
product of vectors.

In our set-up, players P1 and P2 hold random n-element vectors α1 and α2,
serving as (parts of the) keys for the MACs. A representation of x has the
following form:

[[x]] =
(
(C(x1),m1,βx2

), (C(x2),m2,βx1
)
)

where the first component is held by P1 and the second by P2. It should hold
that x = x1 + x2, that m1 =MAC(x1) = α2 ∗C(x1) + βx1

, and by symmetry
that m2 =MAC(x2) = α1 ∗ C(x2) + βx2

.
A representation can be opened if players exchangeC(x1),m1 and C(x2),m2.

P1 checks that C(x2) is indeed in C, and that m2 =MAC(x2) = α1 ∗x2 +βx2

holds; P2 does the symmetric check on what he receives. Then both players can
add the additive shares to get C(x) and hence x.

This way to open a representation is secure against a corrupt P2 if βx2
is

uniformly chosen, independently for each representation since then P2 has no
a priory information on α1. From this it is easy to see, using essentially the
same argument as in [7], that P1 will accept an incorrect value of C(x2) with
probability at most S−d where S is the size of the field used and d is the minimum
distance of C. The point is that P2 wold have to switch to a different code word
and hence change C(x2) in at least d positions. But then he could only produce
the required MAC value by guessing α1 in d positions. Of course, a similar
arguments works for a corrupt P1.

It is trivial to verify that [[x]] + [[y]] = [[x + y]] where the +-symbol denotes
that each player locally adds corresponding components he knows from the rep-
resentations.

We can easily define a similar representation [[x]]∗, this is exactly the same as
[[x]], except that the code C∗ is used for encoding. This will mean that the MACs
can now be cheated with probability S−d∗

where d∗ is the minimum distance of
C∗. This is a potential problem since in general d∗ < d, so we need to take care
when we choose C.

Now, to multiply a value on the representation with a publicly known k-vector
u, u is turned into a codeword, C(u) and then we define

C(u) ∗ [[x]] = ((C(u) ∗ C(x1), C(u) ∗m1, C(u) ∗ βx2
),

(C(u) ∗ C(x2), C(u) ∗m2, C(u) ∗ βx1
).

It is easy to see that this is indeed a well-formed representation of u ∗ x,
however, using the code C∗, so we can write this as C(u) ∗ [[x]] = [[u ∗ x]]∗.

We can also add a public constant u to a representation, namely we define

C(u) + [[x]] =
(
(C(u) + C(x1),m1,βx2

), (C(x2),m2,βx1
−α2 ∗ u)

)
= [[u+x]].

An Empirical Study and Some Improvements of the MiniMac Protocol 403

The protocol ΠMPC using this representation and its linear properties is de-
scribed in Figure 2. In the original protocol [7] there was also a sub-protocol for
permuting entries internally in the represented vectors. However, since we only
want to do several instance of one computation in parallel, we do not need this
step.

Protocol ΠMPC

Initialize: The parties first invoke the preprocessing to get a sufficient number
of multiplication triples ([[a]], [[b]], [[c]]∗), random values and single values ([[r]]),
([[s]], [[s]]∗), [[t]].

Rand: The parties take an available single [[t]].
Input: To share Pi’s input xi, take an available single [[r]] and do the following:

1. [[r]] is opened privately to Pi only.
2. Pi broadcasts ε ← C(xi)− C(r).
3. The parties verify that ε is a codeword and if so, compute [[xi]] ← [[r]] + ε.

Add: To add representations [[x]], [[y]], parties locally compute [[x+y]] ← [[x]]+[[y]].
Multiply: To multiply [[x]], [[y]], parties take a triple ([[a]], [[b]], [[c]]∗) and a pair of

random values [[s]], [[s]]∗ from the set of the available ones and do:
1. Open [[x]]− [[a]] to get ε and [[y]] − [[b]] to get δ to every player (note that

ε and δ are code words in C).
2. Compute [[x ∗ y]]∗ ← [[c]]∗ + ε ∗ [[b]] + δ ∗ [[a]] + ε ∗ δ.
3. Open [[x ∗ y]]∗−[[s]]∗ to every player who gets σ∗ ∈ C∗. P1 extracts x∗y−s

and encodes this value into a codeword σ ∈ C which he broadcasts.
4. All players check that σ∗,σ are codewords for the same value and then

compute [[x ∗ y]] ← σ + [[s]].
Output: This stage is entered when the players have [[y]]. In the [[·]] MACs are

checked immediately and thus the players do the following:
1. [[y]] is opened privately to each player Pi.

Fig. 2. The online protocol

2.1 Reed-Solomon Codes

MiniMac[7] requires that the code C and its Schur transform C∗ are systematic.
In this section we recall how Reed-Solomon works, what it means for a code to
be systematic and how it is achieved for Reed-Solomon which is not systematic
out of the box.

A Reed-Solomon code is an error correcting code described by three param-
eters: (n, k, d) where n is the length of the code, k is the dimension (the length
of messages that can be encoded) and d the distance of the code (the amount
of redundancy). There are two algorithms, one for encoding a message into a
codeword and one for checking a codeword is valid.

To encode a message of k field elements say a = [a0, ..., ak−1] as a Reed-
Solomon codeword we consider the polynomial fa(x) = a0+a1x+ · · ·+ak−1x

k−1

of degree k−1. For n ≥ k distinct points vj , j = 0, . . . , n−1 we define the vector

404 I. Damg̊ard, R. Lauritsen, and T. Toft

c = (fa(v0), . . . , fa(vn−1)) to be a codeword for a. Evaluating a polynomial
fa in n distinct points is strongly connected to n by k Vandermonde matrices,
Vn×k. Encoding a polynomial fa corresponds to multiplying such a Vandermonde
matrix with the column vector a = (a0, ..., ak−1)

T as follows:

Vn×k · a =

⎡⎢⎢⎢⎣
v00 v0 · · · vk−1

0

v01 v1 · · · vk−1
1

...
v0n vn · · · vk−1

n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a0
a1
...

ak−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

a0 + a1v0 + · · ·+ ak−1v
k−1
0

a0 + a1v1 + · · ·+ ak−1v
k−1
1

...
a0 + a1 + vn + · · ·+ ak−1v

k−1
n

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
fa(v0)
fa(v1)

...
fa(vn)

⎤⎥⎥⎥⎦
Observe that from k points from a codeword we can find our message a (the

coefficient of fa) again using interpolation. Thus, one naive way to validate a
given codeword, c is to go through each of the 2d subsets of k elements from c
and check that each interpolate to the same message a.

As noted in the beginning of this section this way of encoding messages is not
systematic in the following sense: A systematic code is a code where the encoded
message directly appears in fixed positions of the codeword. In our case we will
have the first k positions of a codeword to be the actual encoded message.

To encode a systematic Reed-Solomon codeword we fix an encoding matrix
Vn×k where n is the desired codeword length and k the length of our messages.
Then we take the upper k × k matrix Vk×k of Vn×k which by construction is
guaranteed to be invertable and do the following:

Vn×k(Vk×k)
−1aT = c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 = a0
...

ck−1 = ak−1

ck
...

cn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We take E = Vn×k(Vk×k)

−1 to define our encoding matrix. Notice that the
first k rows of E will yield the k × k identity matrix, ensuring systematic code-
words as desired.

Now it is easy to check whether a vector is a codeword, namely given c we
multiply E with the column vector consisting of the first k entries in c, and

check the result yields c again e.g. E[c0, ..., ck−1]
T ?
= c. If not the codeword is

invalid.
As noted in the introduction, F28 is a natural choice as an underlying field.

In particular as efficient encoding is important for MiniMac, we benefit from
F28 being small enough that multiplication can be done by table look-up. With

An Empirical Study and Some Improvements of the MiniMac Protocol 405

respect to Reed-Solomon the choice of F28 introduces some restrictions on the
parameters (n, k, d). Namely, that as there are only 256 elements, the length
of a (checkable) Reed-Solomon code can be at most 256, as we need a distinct
evaluation point for each codeword position. Furthermore, the error probability
for the MACs is at most 256−d∗

; aiming for 128-bit security implies a minimum
distance of (at least) 16 field elements for C∗. We can summarize the restrictions
we get on the Reed-Solomon code parameters as follows:

– n ≤ |F28 | = 256 - The length of the codewords can be at most 256.
– d′ = min(d, d∗) ≥ 16 - Altering a message to another codeword implies

modifying d′ positions.
– k ≤ (n−d′)/2+1 - If C has dimension k it is generated from polynomials of

degree k−1, so the Schur transform is generated from polynomials of degree
2(k− 1) and hence has minimum distance d∗ = n− 2(k− 1). For d∗ = 16 we
get k ≤ 121 when n = 256. We have chosen to round this to k = 120 as this
slightly simplifies implementation.

2.2 Preprocessing

We will not explicitly consider the preprocessing in this paper. Note, however,
that since MACs are set up as in [9] and our field is characteristic 2, it is straight-
forward to modify the TinyOT preprocessing to obtain the one presently needed.

3 Evaluation and Comparison with TinyOT

In this section we evaluate MiniMac in practice. To put our work in perspective
we wish to compare MiniMac to the previous state of the art protocol, TinyOT,
in [9]. We present performance numbers for AES encryption for both protocols
in our framework and their interpretation.

3.1 Empirical Setup and Performance Measurements

In the following empirical study of TinyOT and MiniMac, we use the same two
computers on an Aarhus University’s network. Both machines have the following
specifications:

In many of our experiments we start multiple processes on the two test ma-
chines that pair-wise execute the protocol to maximize CPU and network utiliza-
tion. When more pairs of processes are executing the protocol a third machine,
the Monitor, listens for all of them to report ready. When all processes are ready
the Monitor broadcasts a “Go!” signal and records the time. When the pairs of
processes running the protocol reports back to the Monitor that they are done
the Monitor records the time of the last process. These two numbers are recorded
as the start and end time of the experiment and their difference is taken to be
the measured elapsed time of the experiment.

In summary performance numbers are presented in tables with these columns:

406 I. Damg̊ard, R. Lauritsen, and T. Toft

CPU Intel(R) Xeon(R) CPU X3430 @ 2.40 GHz
CPU op-mode(s) 32-bit, 64-bit
CPU(s) 4
Thread(s) per core 1
CPU MHz 2393.859
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 8192K
RAM 32 GB
Net Gigabit LAN with 0.215 ms avg. latency measured using the ping tool.

Fig. 3. Hardware spec

Instances. This column report how many protocol instances are run in parallel.
That is, the number of processes started on each of the two test machines
pair-wise carrying out the protocol.

Total (ms). This column reports on the total execution time in milliseconds.
For one instance, this is also the latency, e.g. the time from initiating com-
putation until some result is ready.

No AES. This reports the total number of single block 128-bit AES encryptions
carried out.

Time per AES (ms). This column shows the amortized time in milliseconds
used per AES circuit.

To even out fluctuations, every line in tables like the one below reports on the
mean time from at least five runs. When appropriate, we present results with in
a 95% confidence interval, indicated as 35± 8 ms for an experiment with mean
35 with a 95% confidence interval in [27; 43] ms.

Instances No AES Total Time (ms) Time per AES (ms)

8 102000 960 380 ±69 ms

Fig. 4. An example performance measurement, these numbers are made up

3.2 The Benchmark - AES Circuit and Relevance

We run our experiments with a binary AES circuit encrypting one block of
plaintext with a 128 bits key. The key is additively secret shared between the
two test machines. The plain-text to encrypt is publicly known as well as the
circuit gates. Both test machines learns the cipher-text but learns nothing new
about the key. There are several practical scenarios where key material split
between several servers might mitigate a potential compromise of one server.

Our concrete circuit has 6800 AND-gates and 26816 XOR-gates.
Throughout all experiments MiniMac is run with at least 128-bit security.

An Empirical Study and Some Improvements of the MiniMac Protocol 407

3.3 MiniMac Test Runs with No Optimizations

In this Section we run our implentation with all optmizations and tricks turned
off to present a baseline of performance. This baseline is compared to TinyOT
also implemented in our framework.

To only measure the AES circuit we exclude input and output gates. Thus
when running our experiments all MiniMac processes run to the point where all
parties has completed their input gates. Likewise, when the last XOR-gates of
the circuit is computed the computation is recorded as complete before running
any of the output gates.

Instances No AES Total Time (ms) Time per AES (ms)

1 120 161651 1347 ± 1243
2 240 128283 644 ± 578
4 480 188824 393 ± 138
8 960 264596 144 ± 233
16 1920 598799 311 ± 108

Fig. 5. Running MiniMac without tricks and optimizations

3.4 Introduction to TinyOT

The protocol in [9] is nicked named TinyOT. MiniMac and TinyOT are both
targeted at evaluating binary circuits. TinyOT uses Oblivious Transfer to obtain
multiplication triples as described in [1].

First a short piece of history about TinyOTs implementation. A great deal of
work was put in to implementing of TinyOT in Java for the publication and the
performance-numbers presented in [9]. The best times achieved there were on a
gigantic circuit doing 16384 AES encryptions in parallel. With this set-up, they
achieved 32 ms amortised time per AES block. This circuit was not available to
us here as it was custom built into a circuit generator written in Java.

Later Nielsen et. al. did experimentation with implementing TinyOT in C++.
This later C++ implementation has been adapted to our set-up in plain C.
This allows us to measure TinyOT performance on a single AES circuit in our
framework. It is faster than the Java implementation used in [9] for one instance,
probably because of the cost involved in starting up a Java process.

3.5 Empirical Results with TinyOT

The table below presents TinyOT runs on the test circuit in our setup. To get
some parallelism we try to run several TinyOT processes. From the numbers
it is evident that running multiple TinyOT processes in parallel actually hurts
performance making each AES circuit slower. The explanation for this is that
TinyOT exhausts the CPU resource on our test machines, probably in part
because the administration involved in running several separate processes hurts
performance.

408 I. Damg̊ard, R. Lauritsen, and T. Toft

Instances No AES Total Time (ms) Time per AES (ms)

1 1 1079 1079 ± 251
2 2 1414 707 ± 183
4 4 4740 1185 ± 229
8 8 10451 1306 ± 187
16 16 41998 2624 ± 261

Fig. 6. Running TinyOT (the C version) on one instance of our AES circuit

4 MiniTrix

In this section we boost MiniMac in a number of ways.

4.1 Making the Protocol Symmetric for Multiplications

In MiniMac one player has a special role when transforming [[σ]]∗ back to [[σ]]
where all players wait on one player to do the re-encoding of σ as codeword in
C. This happens both when multiplying with a public constant and when mul-
tiplying two secret values. This step, transforming a C∗ codeword to C requires
communication in the order of 2N -codeword for N players.

With this trick we make the protocol symmetric, by opening [[σ]]∗ among all
players. Now each party in parallel can extract 〈σ〉 and reencode it in C. This
increases the overall communication complexity from 2N to N2, however for
small N and in particular in the two party case this makes no difference, and
evens out the workload for the parties. However, we did not see any significant
impact of this optimization.

4.2 Use Fast Fourier Transform for Encoding

The naive MiniMac implementation spends most of its CPU-time in matrix by
vector multiplications during the encoding of codewords.

Naive matrix by vector multiplication is quadratic in the length of the code-
word, n, and hence there is a lot to gain by reducing this using the Fast Fourier
Transform (FFT[4,3]).

In its basic form, FFT can be thought of as a recursive algorithm for mul-
tiplying a vector by an n × n Vandermonde matrix M , or its inverse. In order
for this to work, the matrix must contain powers of an n’th root of unity. More
specifically, starting indices from 0, the (i, j)’th entry in the matrix should be
ωij , where ωn = 1. We call this matrix Mω. If we think of a vector x as contain-
ing coefficients of a polynomial of degree (at most) n− 1, then computing Mωx
will evaluate the polynomial in the points ω0, ω1, . . . , ωn−1, it can therefore be
used for Reed-Solomon encoding.

FFT works by breaking the problem into two instance of size n/2 each, and
in order for this to work recursively, it is usually assumed that n is a two-power.
In this case, the algorithm takes time O(n log n) field multiplications. However,
even if n is not a two-power but factors into smaller primes, variants of the

An Empirical Study and Some Improvements of the MiniMac Protocol 409

algorithm can still be used to break the problem into smaller pieces and improve
performance.

In our field F28 , the multiplicative group has order 255, which factors into
3 ·5 ·17. The field therefore contains a root of unity ω of order 255, which means
that ω3 is a root of unity of order 85. This allows us to use a Reed-Solomon code
of length 255 and dimension 85, where all the required operations can be done
using (a variant of) FFT:

Systematic encoding can be done by multiplying the data vector x by the
85×85 matrixM−1

ω3 to get y containing coefficients of a polynomial that evaluates
to the coordinates of x in the points (ω3)i, i = 0...84. Then we compute Mωy
to get the full codeword. Note that the protocol only requires to encode in C,
not in C∗. We can test if c is in C (or C∗) by computing M−1

ω c. This should
reconstruct the polynomial underlying the purported codeword, and then we
simply test if the degree is low enough.

Even using one level of recursion in FFT reduces significantly the work we
need for these operations. Because 17 divides the size of both matrices, we can
break both problems in 17 smaller pieces, and for multiplication by Mω, for
instance, this reduces the work from 2562 = 65536 field multiplications to 255 ∗
15 + 255 ∗ 17 = 8160.

Instances No AES Total Time (ms) Time per AES (ms)

1 85 53699 631
2 170 59505 424
4 340 79092 207
8 680 107512 146
16 1360 257609 115

Fig. 7. Running a varying number MiniMac instances using FFT encoding

4.3 Preprocessing Dedicated for Binary Circuits

Minimac provides secure field arithmetic, and basing everything on F2 directly
seems natural if the overall goal is secure Boolean circuit evaluation. However,
constructing binary codes with the right properties is non-trivial as explained
earlier. In this paper we solved this issue by using codes over F28 . But this means
that, although every data vector we encode will have binary entries, positions
in the resulting codeword will be bytes where only the least significant position
contains data; all other bit positions are identically 0. It is natural to ask if we
can exploit all eight positions in each data byte. Thus, the goal here will be to
evaluate not k, but 8k (log |F| · k in general) identical circuits in parallel, using
the same code as before and therefore (ideally) at the same cost.

We can certainly encode a vector x that contains data in all bit positions,
to get [[x]], and our addition [[x]] + [[y]] = [[x + y]] indeed implements 8k XOR
operations in parallel, simply because the addition in F28 is the same as bit-wise
XOR on bytes.

410 I. Damg̊ard, R. Lauritsen, and T. Toft

This means that we just need to redesign the multiplication protocol so that
from [[x]], [[y]], we can compute [[x∧y]], where for x = (x1, ..., xk),y = (y1, ..., yk)
we define [[x∧y]] = (x1∧y1, ..., xk ∧yk), and where xi∧yi denotes bit-wise AND
on bytes.

To get started, let us recall the MiniMac multiplication protocol (since we are
in characteristic 2, we simplify some expressions by replacing some minus signs
by plus).

To multiply [[x]], [[y]], parties take a triple ([[a]], [[b]], [[c]]∗) and a pair of random
values [[s]], [[s]]∗ from the set of the available ones and do:

1. Open [[x]] + [[a]] to get ε and [[y]] + [[b]] to get δ to every player.

2. Compute [[x ∗ y]]∗ ← [[c]]∗ + ε ∗ [[b]] + δ ∗ [[a]] + ε ∗ δ to every player.

3. Open [[x ∗ y]]∗+[[s]]∗ to every player who gets σ∗ ∈ C∗. P1 extracts x∗y+s
and encodes this value into a codeword σ ∈ C which he broadcasts.

4. All players check that σ∗,σ are codewords for the same value and then
compute [[x ∗ y]]← σ + [[s]].

Note here that ε and δ are codewords. In general for c ∈ C we will let C−1(c)
denote the k-vector that c encodes. The reader should notice that the reason
why step 2 above works is that C−1(ε) = x+ a and C−1(δ) = y + b.

Now, the idea is to change the computation in step 2. above. Instead we will
compute:

[[x ∧ y]]∗ = [[C−1(δ) ∧ C−1(ε)]] + [[C−1(ε) ∧ a]]∗ + [[C−1(δ) ∧ b]]∗ + [[a ∧ b]]∗

It is easy to see that this equation is true, simply because the ∧ operation
distributes over bit-wise XOR just like the ∗-operation does. Essentially, we
are simply using Beaver triples for F2, where the product is stored as a F28-
element. Note that it makes sense to add [[]] and [[]]∗-representations since our C
is contained in C∗. Therefore [[C−1(δ) ∧ C−1(ε)]] is also a [[]]∗-representation of
the same vector (albeit not a random such representation).

Now we need to figure out how we can compute the 4 terms on the right-hand
side. The last term can be obtained by requiring that the preprocessing supplies
us with [[c]]∗ = [[a ∧ b]]∗. Also, the first term can be computed on public values
by all parties.

The “mixed terms” [[C−1(ε) ∧ a]]∗, [[C−1(δ) ∧ b]]∗ constitute a challenge. To
compute these, the multiplication triples from the preprocessing phase are ex-
tended so that in addition to [[a]] and [[b]], the “bit decomposition” of a and b is
also provided.

To explain what this means we need some notation. Say a = (a1, ..., ak) where
each aj ∈ F28 . Let (aj)i be the byte that equals aj in the i’th bit position and
is 0 elsewhere. Furthermore, (aj)↓i denotes (aj)i shifted down i − 1 positions,
so that the “important” bit is in the least significant position. Then we define
ai = ((a1)i,, (ak)i) and a↓i = ((a1)↓i...., (ak)↓i).

The assumption on the preprocessing now is that we that we are given
[[ai]], [[bi]] for i = 0...7.

An Empirical Study and Some Improvements of the MiniMac Protocol 411

One can now observe that we can compute the missing terms as follows:

7∑
i=0

C(C−1(δ)↓i) ∗ [[ai]] =

7∑
i=0

[[C−1(δ)↓i ∗ ai]]
∗ = [[C−1(δ) ∧ a]]∗

Note that we multiply by the public constant C(C−1(δ)↓i) using the normal
MiniMac procedure that works over F28 . Hence the result will indeed be a vector
in the [[]]∗-representation. That the vector inside the representation is indeed
C−1(δ)∧a can be seen from the fact that each byte in C−1(δ)↓i has the value 0
or 1, depending on the value of the corresponding bits from C−1(δ). It therefore
acts as a “selector” that decides whether to include the bits from ai.

A final modification concerns that last two steps in the original protocol, where
the result is converted from [[]]∗ to [[]]-representation. This costs communication
that we would like to avoid. To do this, consider what happens if we simply omit
this conversion. This would mean that data would be passed from one gate to
another using the [[]]∗-representation instead. This presents no problem for doing
linear computation, as the [[]]∗-representation is also linear.

For the multiplication protocol to take input in the [[]]∗-representation, we
can just modify the preprocessing so that it would supply [[a]]∗, [[b]]∗ in stead of
[[a]], [[b]]. The only effect of this is that then ε, δ will be C∗-codewords, but this
has no effect on the rest of the protocol, since we anyway need to decode them
and re-encode the bits in C; thus, C∗−1 will simply denote the extraction of the
first k data-entries of a C∗ codeword.

To summarize, the multiplication triples have been replaced by a different set
of data, namely

[[a]]∗, [[b]]∗, [[a ∧ b]]∗, {[[ai]]| i = 0...7}, {[[bi]]| i = 0...7}

The multiplication protocol works as follows:

1. Open [[x]]∗ + [[a]]∗ to get ε and [[y]]∗ + [[b]]∗ to get δ, for every player. The
following steps are then done using local operations only.

2. Compute [[C∗−1(ε) ∧ C∗−1(δ)]]

3. Compute
∑7

i=0 C(C
∗−1(δ)↓i) ∗ [[ai]] = [[C∗−1(δ) ∧ a]]∗.

4. Compute
∑7

i=0 C(C
∗−1(ε)↓i) ∗ [[bi]] = [[C∗−1(ε) ∧ b]]∗.

5. Compute [[C∗−1(δ)∧C∗−1(ε)]]+[[C∗−1(ε)∧a]]∗+[[C∗−1(δ)∧b]]∗+[[a∧b]]∗ =
[[x ∧ y]]∗

Theoretical Analysis of the Binary Preprocessing. It is easy to see that
the above methods generalizes to any field of characteristic 2. In general the field
should be of size O(log(n)) to allow the use of Reed-Solomon codes and hence
allow for efficient encoding using FFT.

Following [7], we compute the cost of the protocol per player per gate in the
circuit we compute. By simple inspection, one sees that the storage needed from
the preprocessing is O(log(n)) (namely O(1) field elements). The communication
is O(1) bits because we only do 2 openings in each multiplication protocol,

412 I. Damg̊ard, R. Lauritsen, and T. Toft

and each such protocol does log(n) AND gates. Finally the computational work
is O(polylog(n)) bit operations due to the use of FFT. As explained in the
Introduction, this improves on the original MiniMac for communication and
computational work. We also save one round of communication.

Experimentation and Performance Numbers. In the above we actually
present two tricks. The first trick allows us to utilize all eight bits of each field
element. We call this the bit-packing trick. In the second trick we reduce the
communication complexity of the protocol by removing the down conversion
from codewords in the Schur transform to codewords in C, we call this the zero-
degree constants trick because it takes advantage of the fact that all constants
in our circuit is the same value repeated many times and thus the underlying
encoding polynomial must be constant.

Instances No AES Total Time (ms) Time per AES (ms)

1 960 58127 60 ± 2
2 1920 104840 76 ± 6
4 3840 224146 58 ± 2
8 7680 591523 77 ± 7
16 15360 1094454 71 ± 6

Fig. 8. Running MiniMac with bit-packing-trick only, with standard matrix encoding

Instances No AES Total Time (ms) Time per AES (ms)

1 680 19410 24 ± 4
2 1360 36235 26 ± 3
4 2720 71082 24 ± 8
8 5440 196322 34 ± 30
16 10880 428458 39 ± 1

Fig. 9. Running MiniMac with bit-packing-trick only, with Fast Fourier Transform
encoding

4.4 Simultaneous Multiplication Gates

The present optimization is based on the observation that network utilization is
much higher for large batches of data. Thus, collecting a larger amount of data
before communication should give better performance.

In the previous sections our MiniMac implementation was general and works
even if the circuit is streamed, e.g. without any knowledge of what is coming
ahead. If our circuit description is extended with hints about which gates can be
run simultaneously, then the protocol can be made to run faster. In particular, we
extend our implementation to use such hints to compute blocks of multiplication
(AND) gates. The hints that we allow in the circuit description describe how

An Empirical Study and Some Improvements of the MiniMac Protocol 413

many of the following multiplications are independent (e.g. the number of AND
gates in the following that will not read the results of each other).

Lets us recap the communication pattern in MiniMac during a multiplication
from one players pointer of view:

1 The codewords for δ and ε are sent to every other player along with their
MACs. This requires 4∗n∗N bytes of communication. Where n is the length
of a codeword and N is the number of players.

2 Receive δ and ε with MACs from every other player.
3 Local computation, including checking the incoming MACs.

The idea is to collect say M independent AND gates before initiating com-
munication. Then on the M ’th gate the peers exchange M δ- and ε-values with
MACs.

Instances No AES Total Time (ms) Time per AES (ms)

1 960 55917 58 ± 20
2 1920 95321 70 ± 56
4 3840 205667 85 ± 148
8 7680 334529 43 ± 24
16 15360 282940 42 ± 20

Fig. 10. Running MiniMac with bit-packing-trick and simultaneous multiplication
trick, with matrix encoding

Instances No AES Total Time (ms) Time per AES (ms)

1 680 14313 21 ± 2
2 1360 27893 28 ± 22
4 2720 69452 25 ± 4
8 5440 140540 25 ± 6
16 10880 257556 23 ± 3

Fig. 11. Running MiniMac with bit-packing-trick and simultaneous multiplication
trick, with FFT encoding

4.5 Fast Encoding of Binary Data

One should notice that in the above multiplication protocol we need to encode
C∗−1(ε)↓i for i = 0...7. However, each entry in these vectors is 0 or 1, due to
the shift down we did. Therefore, we can encode much faster than in general by
simply XOR-ing together those rows of the generator matrix that correspond
to positions in the vector that are 1. Packing bytes together in word-size chunk
allows us to do this on several bytes using one CPU instruction.

414 I. Damg̊ard, R. Lauritsen, and T. Toft

Instances No AES Total Time (ms) Time per AES (ms)

1 960 18060 18 ± 1
2 1920 37614 19 ± 6
4 3840 118878 28 ±10
8 7680 252111 18 ±10
16 15360 304846 19 ±7

Fig. 12. Running MiniMac with bit-packing-trick, zero-degree-constants and simulta-
neous multiplication trick, with matrix bit encoding trick

Instances No AES Total Time (ms) Time per AES (ms)

1 680 9962 14 ± 1
2 1360 17553 14 ± 5
4 2720 39886 15 ± 5
16 10880 195992 18 ± 7

Fig. 13. Running MiniMac with bit-packing-trick, zero-degree-constants and simulta-
neous multiplication trick, with FFT bit encoding trick

4.6 Final Optimizations

Just before the deadline for this version of the paper, we did some final experi-
ments that greatly improved the performance. First, we observed from profiling
the program that a lot of time was spent waiting for data to arrive on the com-
munication line. In other words, both players had idle time we should be able to
exploit. We therefore tried starting 8 copies of our original process with a time
interval of 200ms in between them, hoping to allow some instances to compute
while others were waiting. This improved the time per AES instance to about 9
ms (using 8 copies of the program seemed experimentally to be the best choice).
Finally, we experimented with compiler flags and found a setting that allowed
better exploitation of the CPU. This gave another factor of about 2, so that we
end up with about 4 ms per AES.

5 Conclusion

We have proposed several optimisations of the MiniMac protocol, both on im-
plementation and protocol level. In the fastest configuration of MiniMac using
Fast Fourier transform and bit encoding trick with simultaneous multiplications
gates we evaluate an AES circuit in 4 ms on our test setup. As far as we are
aware, this is the fastest published actively secure two-party implementation of
AES with 128-bit security based on a Boolean circuit.

6 Future Directions

All experiments in this paper are run on the same AES circuit. To improve
performance one may try to optimize the AES circuit, for instance by reducing

An Empirical Study and Some Improvements of the MiniMac Protocol 415

further the number of AND gates. Since a lot of the description of AES uses
arithmetic over F28 it seems natural to try an arithmetic circuit over F28 . How-
ever, the circuits of this type that we know of are all significantly larger than
the binary circuit we use here. However, it is likely that adding the bit decom-
position trick used in [8] could help here, so this seems an obvious direction to
try in future work. However, AES leads to very specialized circuits, so it natural
to broaden the scope and consider other binary circuits, for instance for hash
functions such as SHA-1.

During our work with MiniMac many Operating System dependent obstacles
has been identified. In particular the handling of when the TCP actually sends
data. It is possible that tweaking Linux network stack parameters, and/or other
strategies for better scheduling may increase throughput further.

Acknowledgements. We would like to thank Nigel Smart, Stefan Tillich
and their crew at Bristol for providing a selection of excellent circuits
at http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/. Also
we would like to thank Jesper Buus Nielsen for providing source code for the
TinyOT C++ implementation.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992)

2. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

3. Conte, S.D., De Boor, C.: Elementary Numerical Analysis: An Algorithmic Ap-
proach. International series in pure and applied mathematics. McGraw-Hill (1980)

4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Math. comput. 19(90), 297–301 (1965)

5. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

6. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from some-
what homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

7. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits
using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641.
Springer, Heidelberg (2013)

8. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure mpc
with dishonest majority. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, pp. 549–560. ACM (2013)

9. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

Efficient NIZK Arguments via Parallel

Verification of Benes Networks

Helger Lipmaa

Institute of Computer Science, University of Tartu, Estonia

Abstract. We work within the recent paradigm, started by Groth (ASI-
ACRYPT 2010), of constructing short non-interactive zero knowledge ar-
guments from a small number basic arguments in a modular fashion. The
main technical result of this paper is a new permutation argument, by
using product and shift arguments of Lipmaa (2014) and a parallelizable
variant of the Beneš network. We use it to design a short non-interactive
zero knowledge argument for the NP-complete language CircuitSAT

with Θ(n log2 n) prover’s computational complexity, where n is the size
of the circuit. The permutation argument can be naturally used to design
direct NIZK arguments for many other NP-complete languages.

Keywords: Beneš networks, modular NIZK arguments, perfect zero
knowledge, product argument, shift argument, shuffle.

1 Introduction

To construct a cryptographic protocol secure against malicious adversaries, one
needs to employ zero-knowledge proofs [14]. To enable verifiability even in the
case the prover is not online, zero-knowledge proofs must be non-interactive.
Since in many applications, the proof will be verified by many independent ver-
ifiers (e.g., by many voters in an e-voting applications), then it is also desirable
that the proofs be short. Finally, in several applications (like delegation of com-
putation) one needs to construct a short non-interactive zero-knowledge (NIZK)
proofs for generic NP-complete languages (like CircuitSAT).

Motivated by such applications, Groth [16] constructed a non-interactive zero
knowledge and computationally sound NIZK proof (i.e., an NIZK argument)
for CircuitSAT with communication that is a small constant number of group
elements. Groth’s CircuitSAT argument is constructed in a modular fashion
from a small number of more basic arguments. More precisely, it consists of
less than 10 basic Hadamard product (given three committed vectors, one of
them is an entry-wise product of the other two) and permutation (given two
committed vectors and a public permutation �, the coefficients of one vector are
�-permuted coefficients of the second vector) arguments. Unfortunately, both ba-
sic arguments have CRS length (in group elements) and prover’s computation (in
exponentiations) quadratic in the vector dimension n, and as the result, the cor-
responding complexity parameters of the CircuitSAT argument are quadratic

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 416–434, 2014.
c© Springer International Publishing Switzerland 2014

Efficient NIZK Arguments via Parallel Verification of Benes Networks 417

in the circuit size |C|. Due to this, Groth’s original argument can only be used
for relatively small |C|.

Subsequent research has improved on Groth’s modular approach by both in-
creasing the efficiency of Groth’s basic arguments and studying the possibility to
implement arguments for NP-complete languages by using different (hopefully
more efficient) basic arguments. Lipmaa [19] improved Groth’s basic arguments,
by using progression-free sets (see Sect. 2). For vectors of length n, Lipmaa’s ba-
sic arguments have CRS length of Θ(r−1

3 (n)) group elements, while the prover’s
computation is dominated by Θ(n2) scalar additions. Here, r3(N) is the size of
some progression-free subset of [N] = {1, . . . , N}. However, due to quadratic
prover’s computation, also Lipmaa’s CircuitSAT argument is useful only for
small |C|. In [12], Fauzi, Lipmaa and Zhang implemented Lipmaa’s product
argument in prover’s computational complexity Θ(r−1

3 (n) log r−1
3 (n)) multipli-

cations. Finally, in [21], Lipmaa used a different approach to construct a product
argument with the CRS length of Θ(n) group elements and prover’s computation
of Θ(n log n) non-cryptographic and Θ(n) cryptographic operations. His product
argument is based on the so called interpolating commitment scheme.

However, none of the subsequent work improved on the asymptotic computa-
tion of the permutation argument. Instead, [12] proposed a new z-left/right shift
argument (given two committed vectors, one of them is a coordinate-wise z-shift
of the second vector) with linear CRS size and prover’s computation. They then
used the product and shift arguments to implement computationally more effi-
cient modular NIZK arguments for the NP-complete languages SetPartition,
SubsetSum and DecisionKnapsack. (For the latter, they also need an effi-
cient NIZK range argument, [8], which can be constructed by using product and
shift arguments as shown in [12,21].) Lipmaa showed in [21] how to use the inter-
polating commitment scheme to efficiently implement the shift arguments, and
thus also the corresponding NP-complete languages. Since the prover’s compu-
tation in the arguments from [21] is Θ(n logn), these arguments are usable for
much larger input sizes n than the CircuitSAT arguments from [16,19].

On the other hand, while [12] proposed computationally efficient NIZK ar-
guments for SetPartition, SubsetSum and DecisionKnapsack, it did not
propose one for CircuitSAT. CircuitSAT is a natural language to be used
in various cryptographic applications, like verifiable computation. Moreover,
CircuitSAT is often used as a benchmark to show the efficiency of new zero-
knowledge techniques. Therefore, construction of a CircuitSAT argument with
subquadratic CRS length and prover’s computation and short (i.e., polylogarith-
mic) communication is still an important open problem.

Finally, any further advances will help one to better understand the power and
limitations of the modular approach. It is likely (we will motivate this intuition
later) that efficient modular arguments for other NP-complete languages can
be constructed by using the permutation argument, and thus it is important to
construct a permutation argument with better prover’s computation.

418 H. Lipmaa

Bn−1

Bn−1

Bn−1

Bn−1

Fig. 1. The usual definition of Beneš network Bn (left), and our definition (right). The
boxes with blue X denote crossbars in the input and output stage.

Our Contributions. We construct a new permutation argument for n-bit
vectors, by using Beneš network [4] to combine Θ(log n) product and shift
arguments. This results in a permutation argument with Θ(n log2 n) prover’s
computation and logarithmic communication. We then plug the new permuta-
tion argument in to the NIZK arguments of [16,19] to obtain a CircuitSAT

argument with the same asymptotic complexity. Apart from being the most ef-
ficient CircuitSAT argument following from the modular paradigm, the new
CircuitSAT argument is the most complex known yet still competitively ef-
ficient NIZK argument in the modular framework. We also outline how to use
the new permutation argument to construct efficient NIZK arguments for other
NP-complete languages.

Let Sn denote the symmetric group. The Beneš network Blog2 n, see Fig. 1,
is a multistage interconnection network [18]. Every stage consists of a number
of crossbars, the outputs of which are wired to the inputs of the next stage’s
crossbars. The only changeable elements are the S2-permutations implemented
by each of the crossbars. Assuming that n is a power of 2, the definition of a
Beneš network Blog2 n is usually given recursively, from two copies of Blog2 n−1,
an input stage (that has n/2 crossbars) and an output stage (that has n/2− 1
crossbars; one crossbar can be fixed to implement the identity map), as in Fig. 1
(left). The network B1 consists of a single crossbar. Each crossbar implements a
permutation from S2.

The Beneš network Blog2 n implements a permutation from Sn by using nearly
optimal n · log2 n− n+ 1 crossbars and 2 log2 n− 1 stages (log2 n input stages,
followed by a single stage that implements B1, followed by log2 n output stages).
A stage here consists of n/2 parallel crossbars, followed by wirings from the
outputs of the crossbars of the current stage to the inputs of the next stage.

A straightforward use of Beneš networks results in a permutation (and shuffle)
argument of length Θ(n log n) [1,2]. We achieve logarithmic communication and
Θ(n log2 n) prover’s computation by verifying in parallel that all crossbars of the
same stage of the Beneš network have been implemented correctly; this seems
to be a novel use of Beneš networks. We use a small number of product and

Efficient NIZK Arguments via Parallel Verification of Benes Networks 419

shift arguments from [21] (each of which has Θ(n log n) prover’s computation
and constant communication) at every stage. Since there are Θ(log n) stages,
the resulting permutation argument consists of Θ(log n) basic arguments.

It is not immediately clear from the standard recursive definition of Beneš
networks (Fig. 1, left) how to do parallel verification. We use a slight variant
(that we call a parallelizable Beneš network) of the usual Beneš network, see
Fig. 1 (right), that is also a well-known but not the usually presented definition.
In that variant, at every stage, input elements of the stage are permuted twice.

First, in crossbars, the ith input of a stage will become to the jth input of the
wirings, where depending on the S2-permutation implemented by the concrete
crossbar, j ∈ {i− 1 mod n, i, i + 1 mod n}. That is, the jth output bit of the
crossbars is either equal to the jth bit of the input a of the crossbars, or it is
equal to the jth bit of either 1-left or 1-right shift of a. Which case happens
depends on the number of the stage, the index i, and the input to the network.

Second, after the wiring, the ith output of the crossbars will go to the jth
input of the next stage, where j ∈ {i − z mod n, i, i + z mod n}, where z is
a stage-dependent constant. That is, the jth output bit of the wiring is either
equal to jth input bit of the wiring, or to the jth bit of a z-left or z-right shift
of the input of the wiring. Importantly, which case happens depends only on the
number of the stage and on i, and not on the input to the network, that is, not
on the concrete permutation. In the usual variant of the Beneš networks as in
Fig. 1 (left), all possible z-shifts, z ≤ n/2, are used in wirings of every stage.

These observations make it possible to verify correct implementation of one
stage of the Beneš network by using a small constant number of shift and product
arguments. Therefore, correct implementation of the full Beneš network can be
verified by using a logarithmic number of shift and product arguments. This
results in a permutation argument with related complexity parameters.

While the resulting new permutation argument, has larger communication
than Groth’s and Lipmaa’s permutation arguments [19], it has smaller prover’s
computation.1 Since quadratic prover’s computation is the main obstacle in ac-
tually applying Groth’s short arguments, this means that now one can use a
significantly larger value of n. The relatively minor increase in the communica-
tion (from Θ(1) to Θ(log n), where n is the circuit size) is comparatively less
important.

Both the prover and the verifier have to execute an online routing algorithm
that outputs the necessary shift amounts. For (the standard variant of the) Beneš
network, routing can be done in time Θ(n logn) on a single processor [28,24], or
Θ(log2 n) on a parallel computer [23]. Clearly, routing algorithms can be modified
to work with the parallelizable Beneš networks without any loss in efficiency.

We can use the methodology of Groth [16] and Lipmaa [19] to construct
a CircuitSAT argument, given the product argument of [21] and the per-
mutation argument of the current paper. Hence, one can construct modular

1 It also has verifier’s computation of Θ(n log n) multiplications. This is larger than
in [16], but smaller than in [19], where one needed Θ(n) exponentiations. (Since one
exponentiation takes Θ(log p) multiplications, and n � p.)

420 H. Lipmaa

NIZK arguments of knowledge for NP-complete languages SetPartition [12],
SubsetSum [12], DecisionKnapsack [12] and CircuitSAT ([16], [19], and
the current paper) that are all based on the simple “parallel programming lan-
guage” consisting of two arguments, Hadamard product and (z-)shift. The fact
that one can construct a CircuitSAT argument from the weaker set of ba-
sic primitives than in previous papers [16,19], where the programming language
consisted of the product and (arbitrary) permutation arguments, can be seen
as an additional contribution of the current paper. Since every shift argument
is quadratically more efficient than the permutation argument of [16,19], using
Θ(log n) of them results still in a major win in efficiency.

Interestingly, the arguments for SetPartition, SubsetSum and
DecisionKnapsack [12,21] are more efficient than the new argument for
CircuitSAT, and the new CircuitSAT argument is by far the most complex
existing program in such a language. We leave it as an open question to design
efficient direct (i.e., one obtained without a reduction to another NP-complete
language) NIZK arguments for other NP-complete languages, and to study
why some languages have more efficient arguments than others.

However, one can use the permutation argument and the product argument to
construct NIZK argument for manyNP-complete languages as follows. First, use
a permutation argument (by using a secret permutation) to permute the inputs
randomly. (See App. B for a description of how to efficiently modify the new
permutation argument to handle secret permutations. The resulting argument
can be seen as a committed shuffle argument that one committed vector is a
shuffle of another vector.) Second, use a product argument to clear the bits of
the inputs that are not needed to verify the witness (this can be done by checking
that the permuted input a and the cleared version b satisfy ai · ci = bi, where ci
is a publicly known Boolean vector). After that, one reveals the cleared version
of the inputs, from which one can — in the case of many NP-complete languages
— directly verify the witness. This results in direct NIZK arguments for a large
family of NP-complete languages.

As a high-level example, in the case of the HamiltonianPath argument, the
prover has to show that there exists a path that visits each vertex once. Here, the
prover chooses a random secret permutation � that permutes the input (which is
usually represented as an n× n adjacency matrix), modulo the restriction that
the Hamiltonian path visits vertices in the order 1 → 2 → 3 . . . → n → 1. The
prover uses a committed shuffle argument to show that the (secret) permutation
was done correctly. The prover then uses a product argument to clear n2 − n
elements of the adjacency matrix, and then opens the cleared adjacency matrix.
In the case that the graph had an Hamiltonian path, the opened adjacency
matrix has 1-s in positions (i, i + 1 mod n). The language Clique has a very
similar argument, except that one verifies that the opened adjacency matrix
starts with an all-1 m ×m matrix for some parameter m. We leave the precise
details together with bringing further examples to the future work.

We remark that the parallel programming model that consists of shift and
entry-wise addition and product is well-known both in theoretical computer

Efficient NIZK Arguments via Parallel Verification of Benes Networks 421

science [26] and parallel computing [6], but up to our knowledge it has not been
applied before the current line of work (starting with [16] and made explicit
in [19,12]) to verify the solutions of NP-complete languages — even without
requiring the zero knowledge property.

Comparison to the QSP/QAP-Based Approach. In [13], Gennaro, Gen-
try, Parno, and Raykova showed how to construct a more efficient (linear CRS,
Θ(n log3 n) prover’s computation, constant communication, and linear verifier’s
computation) NIZK argument for CircuitSAT. The prover’s computation can
be improved to Θ(n log2 n) when one uses bilinear groups of well-chosen prime or-
der p [13,20,21]. Their — based either on Quadratic Span Programs or Quadratic
Arithmetic Programs — argument has been further improved in say [5,3,20].

First, the arguments of [13] are directly tailored for (arithmetic) CircuitSAT.
It is unclear how to use these arguments for anyNP-complete language L, except
via a potentially costly polynomial-time reduction. Even if this reduction takes
time say Θ(n log2 n), the resulting argument for L becomes too slow (in prover’s
computation).

Second, our approach is completely different and therefore still interesting by
itself. It is clearly beneficial to study different approaches to the same problem.

2 Preliminaries

Let [L,H] = {L,L + 1, . . . , H − 1, H} and [H] = [1, H]. By a, we denote the
vector a = (a1, . . . , an). For a group G, we utilize the fact that G2 = G × G
is a group and thus aggressively use notation like (g, h)a or (g1, h1) · (g2, h2).
If y = hx, then let logh y := x. We abbreviate probabilistic polynomial-time as
PPT, and let negl(κ) be an arbitrary negligible function.

Preliminaries on Interconnection Networks. The basic components of a
switching network [18] (e.g., see Fig. 1 or Fig. 2) are crossbars, and links that
connect crossbars. A crossbar with n inlets and m outlets is denoted by Xnm.
Any matching (one-to-one mapping) between the inlets and the outlets of a
crossbar is considered routable, that is, a crossbar is nonblocking. By using dif-
ferent terminology, a crossbar Xnn can be fixed to implement any permutation
from Sn. Two sets of crossbars are connected to outside world. One set of such
crossbars is called input crossbars and another set output crossbars. The links on
an input (output) crossbar linking to outside world are called inputs (outputs)
of the network. An (N,M)-network has N inputs and M outputs, and will be
called an N -network if M = N .

A network is (i) strict-sense nonblocking if one can, given the values of �
for some i together with corresponding routes in the network, always find non-
intersecting routes for the rest of the values of �, (ii) wide-sense nonblocking if
there is an algorithm for establishing paths in the network one after another,
so that after each path is established, it is still possible to connect any unused

422 H. Lipmaa

input to any unused output, (iii) rearrangeable if it is only required that such
choice of routes can be done for all i at the same time.

An (m,n)-Clos network [9,18] for a permu-

n× n m×m n× n

Fig. 2. An (4, 4)-Clos network for
permutations from S16

tation � ∈ SN , whereN = mn, is a three-stage
network to implement �, in which each stage
is composed in a number of smaller crossbars.
The first stage has m crossbars Xnn, the sec-
ond stage has n crossbars Xmm, and the third
stage has m crossbars Xnn. Each input cross-
bar is connected to each middle stage crossbar,
and each middle stage crossbar is connected
to each output crossbar. See Fig. 2. To im-
plement an arbitrary permutation from Smn

it suffices to use a rearrangeable non-blocking
network [9,4,18], for which one can choose an
(m,n)-Clos network. (In fact, the Clos net-
work is strict-sense nonblocking.) For this one

just has to choose the 2m+ n small permutations accordingly.
Beneš networks [4,18] implement an arbitrary permutation � : [N] → [N] by

using 2 log2N − 1 stages of X22 crossbars. Beneš network Bn (for permutation
from S2n) is usually defined recursively by connecting an initial stage of n/2 X22

crossbars, two Bn−1 networks and a final stage of (n/2 − 1) X22 crossbars, as
in Fig. 1, left. Clearly, the Beneš network Blog2 N has (N log2N − N + 1) X22

crossbars. While the Clos network is strict-sense nonblocking, the Beneš network
is only rearrangeable. Recall that X22 implements either an identity function id,
id(x, y) = (x, y), or a flip flip, flip(x, y) = (y, x).

Waksman [28] and Opferman and Tsao-Wu [24] proposed efficient routing
algorithms for the standard variant (Fig. 1, left) of the Beneš network. Their
algorithm instantiates the N log2N −N + 1 crossbars �i,j , given the input per-
mutation �, in time Θ(N logN). Nassimi and Sahni [23] proposed a parallel
routing algorithm for the Beneš network that works in time Θ(log2N), given N
parallel processors.

Cryptographic Preliminaries. On input 1κ, where κ is the security param-
eter, a bilinear map generator returns (p,G1,G2,GT , ê, g1, g2), where G1, G2

and GT are three multiplicative cyclic groups of prime order p, gz is a genera-
tor of Gz for z ∈ {1, 2}, and ê is an efficient bilinear map ê : G1 × G2 → GT

that satisfies in particular the following two properties: (i) ê(g1, g2) �= 1, and (ii)
ê(ga1 , g

b
2) = ê(g1, g2)

ab. Thus, if ê(ga1 , g
b
2) = ê(gc1, g

d
2) then ab = cd mod p.

The security of the arguments of the current paper depends on the q-type
computational and knowledge [10] assumptions, variants of which have been
studied and used in say [15,11,16,8,19,5,12]. In fact, all known (to us) adaptive
short NIZK arguments are based on q-type assumptions about genbp. We refer
to [21] for a description of these assumptions.

Efficient NIZK Arguments via Parallel Verification of Benes Networks 423

Trapdoor commitment scheme is a randomized cryptographic primitive in the
CRS model [7] that takes a message and outputs its commitment. It consists
of two efficient algorithms gencom (that outputs a CRS and a trapdoor) and
Com (that, given the CRS, a message and a randomizer, outputs a commit-
ment), and must satisfy the following three security properties.Computational
binding: without access to the trapdoor, it is intractable to open the same com-
mitment to two different messages. Perfect hiding: commitments of any two
messages have the same distribution. Trapdoor: given an access to the original
message, the randomizer and the trapdoor, one can open a commitment to (say)
0 to an arbitrary message. See, e.g., [16] for formal definitions.

We use the following interpolating commitment scheme from [21]. Assume n
is a power of 2, and assume that the group order p is such that there exist a nth
primitive unit of root modulo p [21]. Let this unit be ω. Let f0(X) = Z(X) and
fi(X) = �i(X) be polynomials, defined as follows:

1. Z(X) =
∏n

j=1(X − ωj−1) = Xn − 1, i.e., Z(ωi−1) = 0,

2. �i(X) =
∏

j �=i(X − ωj−1)/
∏

j �=i(ω
i−1 − ωj−1) is the ith Lagrange basic

polynomial, i.e., �i(ω
i−1) = 1 and �i(ω

j−1) = 0 for i �= j.

The CRS generation algorithm gencom(1κ) first sets gk ← genbp(1κ), and then
generates the trapdoor (σ, α) ← Z2

p (with σ �= 0). It then outputs the com-

mon reference string ck = ((g1, g
α
2)

f(σ))f∈{Z,�1,...,�n}. The commmon reference
string ck is made public, while the trapdoor (σ, α) is only used in security

proofs. Define2 Comck((a1, . . . , ak); r) :=
∏k

i=1((g1, g
α
2)

�i(σ))ai · ((g1, gα2)Z(σ))r =

(g1, g
α
2)

rZ(σ)+
∑k

i=1 ai�i(σ). The computation of Com can be sped up by using ef-
ficient multi-exponentiations algorithms [27,25]. We denote the output of the
commitment either by (A1, A

α
2) or by (A, Â).

As shown in [21], the interpolating commitment scheme is perfectly hiding,
and computationally binding. Moreover, if a suitable knowledge assumption
holds, then for any non-uniform PPT A that outputs a valid commitment C,
there exists a non-uniform PPT extractor that, given A’s input together with
A’s random coins, extracts a valid opening of C.

An NIZK argument for a language L consists of three algorithms, gencrs, P
and V . The CRS generation algorithm gencrs takes as input 1κ (and possibly
some other, public, language-dependent information) and outputs the CRS crs
and the trapdoor td. The prover’s algorithm P takes as an input crs together
with a statement x and a witness w, and outputs an argument π. The verifier’s
algorithm V takes as an input crs together with a statement x and an argument
π, and either accepts or rejects.

We expect the argument to be (i) perfectly complete (the honest verifier
always accepts the honest prover), (ii) perfectly zero knowledge (there exists
an efficient simulator who can, given x, crs and td, output an argument that
comes from the same distribution as the argument produced by the prover),

2 Here and in what follows, elements of the form (g, gα)x, where α is a secret random
key, can be thought of as a linear-only encoding of x, see [5] for a discussion.

424 H. Lipmaa

and (iii) computationally sound (if x �∈ L, then an arbitrary non-uniform PPT
prover has only a negligible success in creating a satisfying argument). We refer
to say [16,19] for formal definitions.

Assume that Γ is a (trapdoor) commitment scheme that commits to elements
a = (a1, . . . , an) ∈ Zn

p for a prime p and integer n ≥ 1. In an Hadamard product
argument [16,19], the prover aims to convince the verifier that given commit-
ments A, B and C, he can open them as A = Com(ck;a; ra), B = Com(ck; b; rb),
and C = Com(ck; c; rc), such that ci = aibi for i ∈ [n]. In a z-right shift
argument [12], the prover aims to convince the verifier that for two commit-
ments A and B, he knows how to open them as A = Com(ck;a; ra) and
B = Com(ck; b; rb), such that ai = bi+z for i ∈ [n − z], and ai = 0 for
i ∈ [n − z + 1, n]. That is, (a1, . . . , an) = (bz, . . . , bn, 0, . . . , 0). We define the
z-left shift argument dually. In a permutation argument [16,19], the prover aims
to convince the verifier that given commitments A and B and a permutation
� ∈ Sn, he can open them as A = Com(ck;a; ra) and B = Com(ck; b; rb), such
that bi = a�(i) for i ∈ [n].

We recall the following theorem from [21], but we only give the details that are
needed in the following (for example, we state the precise security guarantees,
but we leave out the description of the arguments themselves and the precise
security assumptions). We do it to avoid overdependence on the concrete im-
plementation of the basic arguments. We remark that the condition (2) in the
theorem statement is called co-soundness, see [17] for an explanation.

Theorem 1 (Security of the product argument [21]). Let n = poly(κ).
Let Com be the interpolating commitment scheme.

1. The product argument from [21] is perfectly complete and perfectly witness-
indistinguishable.

2. (Co-soundness:) If genbp satisfies a q-type computational assumption
from [21], then a non-uniform probabilistic polynomial-time adversary
against the product argument from [21] has negligible chance, given crs ←
gencrs(1κ, n) as an input, of outputting inp× = (A, Â, B, B̂, C, Ĉ) and an
accepting argument π× together with a witness w× = (a, ra, b, rb, c, rc), such
that
(i) a, b, c ∈ Zn

p and ra, rb, rc ∈ Zp,

(ii) (A, Â) = Com(ck;a; ra), (B, B̂) = Com(ck; b; rb), and (C, Ĉ) =
Com(ck; c; rc), and

(iii) for some i ∈ {1, . . . , n}, aibi �= ci.

The product argument of [21] has CRS of Θ(n) group elements, prover’s compu-
tation Θ(n log n) multiplications, verifier’s computation 3 pairings, and commu-
nication of 1 group element. We denote this argument as [[(A, Â)]] ◦ [[(B, B̂)]] =
[[(C, Ĉ)]].

For a vector a = (a1, . . . , an), denote lsft1(a) := (a2, a3, . . . , an, 0) and
rsft1(a) := (0, a1, a2, . . . , an−1). For z > 1, let lsftz(a) := lsft1(lsftz−1(a)) and
rsftz(a) := rsft1(rsftz−1(a)). In the case of the shift argument, [21] proved an
even weaker version of soundness, see [16] for explanation.

Efficient NIZK Arguments via Parallel Verification of Benes Networks 425

Theorem 2 (Security of the right shift argument [21]). Let n = poly(κ).
Let Com be the interpolating commitment scheme.

1. The shift argument of [21] is perfectly complete and perfectly witness-
indistinguishable.

2. (Weak soundness:) Let Φz
rsft be as in [21]. If genbp satisfies a q-type

computational assumption from [21], then a non-uniform probabilistic poly-
nomial time adversary against the shift argument of [21] has negligible
chance, given crs ← gencrs(1κ, n) as an input, of outputting inprsft ←
(A, Â, B, B̂) and an accepting argument (π, πβ) together with a witness
wrsft ← (a, ra, b, rb, (f

∗
ϕ)ϕ∈Φz

rsft
), such that

(i) a, b ∈ Zn
p , ra, rb ∈ Zp, f

∗
ϕ ∈ Zp for ϕ ∈ Φz

rsft,

(ii) (A, Â) = Com(ck;a; ra), (B, B̂) = Com(ck; b; rb),
(iii) logg2 π = loggα

2
πβ =
∑

ϕ∈Φz
rsft
f∗
ϕ · ϕ(σ), and

(iv) (an, . . . , a1) �= (0, . . . , 0, bn, . . . , bz+1).

The communication (argument size) of the right shift argument from [21] is 2 ele-
ments from G2. The prover’s computation is dominated by Θ(n) multiplications
in Zp and two (n+2)-wide multi-exponentiations. The verifier’s computation is
dominated by 4 bilinear pairings. The CRS consists of Θ(n) group elements.

The left shift argument is very similar to the right shift argument, see [12,21].

3 New Permutation Argument

We now propose a new permutation argument that has Θ(n log2 n) prover’s
computation, as compared to Θ(n2) in previous work. The main drawback of
the new argument, compared to say permutation arguments from [16,19], is
increased communication.

We will use parallelizable Beneš network [4] (see Sect. 2) to implement an
arbitrary permutation argument. Beneš networks have been used before in the
context of zero knowledge, see, e.g., [1,2,16]. In App. A, we explain why the
approach of [16] of using Clos networks does not give the gain in efficiency that
is necessary for our purposes, even if we use Beneš networks instead. Similar
reasoning applies to the approach of [1,2]. To simplify the presentation, we will
assume from now on that n is a power of 2.

More precisely, we show how to verify all basic permutations of the same
step of the Beneš network simultaneously. That is, for every step of the Beneš
network, we construct a short argument that this step was performed correctly
by the prover. We emphasize that we use the variant of the Beneš permutation
from Fig. 1 (right).

In a nutshell, at every stage we show separately that the crossbars are imple-
mented correctly and that the wiring is implemented correctly. As we explained
in the introduction, at both substages, the inputs will either stay at their origi-
nal position, or will be shifted up or down by a constant that only depends on
the stage. Next, we will show that one can compute efficiently the indexes of
elements that are not shifted at all, shifted up, or shifted down. (In the crossbar

426 H. Lipmaa

substage, the prover and the verifier have to both use a routing algorithm for
this.) Given corresponding index vectors (that we call masks), one can then show
— by using a small number of product and shift arguments — the correctness
of each substage.

Consider the crossbar substage of the jth stage of the Beneš network, where
we start counting with j = 0. Clearly, after the crossbar, the pair of elements
indexed by (2i, 2i+ 1) will now be indexed by either (2i, 2i+ 1) or (2i + 1, 2i),
depending on whether the ith crossbar Cj,i of this stage implements id or flip.

We prove the following technical lemma. As usually, for a predicate P (X), let
[P (X)] = 1 if P (X) is true, and [P (x)] = 0 if P (X) is false.

Lemma 1. After following the crossbars, the vector aj of intermediate values

of all wires will change to a vector bj+1, where bj+1 := (1−mc,�
j+1 −mc,r

j+1) ◦
aj +mc,�

j+1 ◦ lsft1(aj) +mc,r
j+1 ◦ rsft1(aj). Here,

mc,�
j+1,2i := [Cji = flip] , mc,r

j+1,2i+1 := [Cji = flip] ,

mc,�
j+1,2i+1 := 0 , mc,r

j+1,2i := 0 .
(1)

Proof. Denote
cj+1 ← lsft1(aj) and rc
j+1 ← rsft1(aj). Clearly, the pair

(bj+1,2i, bj+1,2i+1) depends only on (aj,2i, aj,2i+1) and Cji. More precisely, if
Cj+1 = id, then (bj+1,2i, bj+1,2i+1) = (aj,2i, aj,2i+1), and if Cj+1 = flip, then
(bj+1,2i, bj+1,2i+1) = (aj,2i+1, aj,2i). Thus, bj+1,2i obtains the value aj,2i if
Cij = id, and the value �cj+1,2i = aj,2i+1 otherwise. Analogously, bj+1,2i+1 ob-
tains the value aj,2i+1 if Cij = id, and the value rcj+1,2i = aj,2i otherwise. Thus,

bj+1,2i = aj,2i · [Cij = id] + �cj+1,2i · [Cij �= id] + rcj+1,2i · 0

and

bj+1,2i+1 = aj,2i+1 · [Cij = id] + �cj+1,2i+1 · 0 + rcj+1,2i+1 · [Cij �= id] .

Therefore, bj+1 can be expressed as in Eq. (1). ��

Here, the values mc,�
j+1 and mc,r

j+1 are publicly known but �-dependent. Thus,
they have to be computed as part of the argument. Their computation takes
time Θ(n log n), by using a standard routing algorithm.

Let z ← n/2j for j < log2 n and z ← 2j/n for j ≥ log2 n. That is, z ←
2|j−log2 n|. After additionally following the wiring substage, the new value of the
value vector is equal to aj+1, where aj+1,2i+1 = bj+1,2i+1, and, letting ⊕ to
denote the bitwise XOR, bj+1,2i⊕z . This follows directly from the definition of
the parallelizable Beneš network as given in Fig. 1, right. Thus, for some (public)

masks mw,�
j+1 and mw,r

j+1,

aj+1 := (1−mw,�
j+1−mw,�

j+1)◦bj+1+mw,�
j+1 ◦ lsftz(bj+1)+mw,r

j+1 ◦ rsftz(bj+1) .

The vectors mw,�
j and mw,r

j are both publicly known and not dependent on �,
therefore they can be precomputed (if necessary, as a part of the CRS). We note

Efficient NIZK Arguments via Parallel Verification of Benes Networks 427

Let gk := (p,G1,G2,GT , ê) ← genbp(1κ, n), g1 ← G1 \ {1}, g2 ← G2 \ {1}; Let
σ ← Zp; Generate the CRS of the following basic arguments separately, except
that use the same values (gk, σ, α) in all of them:

(i) the product argument,
(ii) the 2i-left shift argument for i < log2 n,
(iii) the 2i-right shift argument for i < log2 n.

The CRS of the permutation argument is equal to the union of all basic
arguments.

Algorithm 1. CRS generation on input (1κ, n)

that since there are no wirings at the last stage, we will just have a2 log2 n =
b2 log2 n.

Based on the explanation above, we now construct the permutation ar-
gument �([[(B, B̂)]]) = [[(A, Â)]], where (B, B̂) = (A0, Â0) and (A, Â) =
(B2 log2 n, B̂2 log2 n). Note that we can remove (B2 log2 n, B̂2 log2 n) from π�. See
Prot. 1, Prot. 2 and Prot. 3. Here, the prover commits to all values aj and bj ,
and then shows, by using intermediate masks m·,·

j and left and right shifts, that
bj+1 is correctly computed from aj and that aj+1 is correctly computed from
aj+1. The (weak) soundness of the argument follows directly from the (weak)
soundness of the product and permutation argument. The concrete computa-
tional assumption is used to individually guarantee the (weak) soundness of the
product argument and 2i-left and 2i-right shift arguments for i < logn.

Theorem 3. Let Com be the interpolating commitment scheme.

(1) The new permutation argument is perfectly complete and perfectly witness-
indistinguishable.

(2) Let Φrsft
z be as in Thm. 2, Φlsft

z be as in Sect. 2, and Φperm :=
⋃log2 n−1

i=0 Φlsft
2i ∪⋃log2 n−1

i=0 Φrsft
2i . If genbp satisfies an appropriate computational assumption,

then a non-uniform PPT adversary against the new permutation argument
has negligible chance, given a correctly formed CRS crs as an input, of out-
putting inpperm ← (A, Ã, B, B̃, �) and an accepting argument πperm ← (π, π̃)
together with a witness wperm ← (a, ra, b, rb, (f

∗
φ)φ∈Φperm), such that

(i) a, b ∈ Zn
p , ra, rb ∈ Zp, and f

∗
φ ∈ Zp for φ ∈ Φperm,

(ii) (A, Ã) = Com(c̃k;a; ra), (B, B̃) = Com(c̃k; b; rb), � ∈ Sn,
(iii) logg2 π = logg̃2 π̃ =

∑
φ∈Φperm f∗

φ · φ(σ), and
(iv) a�(i) �= bi for some i ∈ [n].

Proof. Completeness follows from the previous discussion. Witness-

indistinguishability follows from the fact that the argument πperm is uniquely
defined, given the witness.

Computational soundness. Given an adversary A who can break the
soundness property, we construct an adversary A∗ that either breaks either a

428 H. Lipmaa

Let (A0, Â0) = (A, Â) be the input commitment;

Let (B2 log2 n, B̂2 log2 n) = (B, B̂) be the output commitment;
Use a routing algorithm to find out the value of Cij for every crossbar;
for i ← 0 to 2 log2 n− 1 do

/* Handling crossbars */

Construct a commitment (Bi+1, B̂i+1) to bi+1;

Construct a commitment (Lc
i+1, L̂

c
i+1) to �ci+1 ← lsft1(ai);

Construct a commitment (Rc
i+1, R̂

c
i+1) to rc

i+1 ← rsft1(ai);
Construct an argument πi+1,1 that lsft1([[Ai]]) = [[Lc

i+1]];
Construct an argument πi+1,2 that rsft1([[Ai]]) = [[Rc

i+1]];

Use Eq. (1) to construct valid masks mc,�
i+1,m

c,r
i+1 ∈ {0, 1}n;

Construct a commitment (Dc,�
i+1, D̂

c,�
i+1) to dc,�

i+1 ← mc,�
i+1 ◦ �ci+1;

Construct a commitment (Dc,r
i+1, D̂

c,r
i+1) to dc,�

i+1 ← mc,r
i+1 ◦ rc

i+1;

Construct a product argument πi+1,3 ← [[Lc
i]] ◦ [[Com(ck;mc,�

i+1; 0)]] = [[Dc,�
i+1]];

Construct a product argument πi+1,4 ← [[Rc
i]]◦ [[Com(ck;mc,r

i+1; 0)]] = [[Dc,r
i+1]];

Construct a prod. arg. πi+1,5 that
ai ◦ (1−mc,�

i+1 −mc,r
i+1) = bi+1 − dc,�

i+1 − dc,r
i+1;

πc
i+1 ← (Bi+1, B̂i+1, L

c
i+1, L̂

c
i+1, R

c
i+1, R̂

c
i+1, D

c,�
i+1, D̂

c,�
i+1, D

c,r
i+1, D̂

c,r
i+1,

(πi+1,j)j∈{1,2}, (πi+1,j)j∈{3,4,5});
if i < 2 log2 n− 1 then

/* Handling wirings */

Construct a commitment (Ai+1, Âi+1) to ai+1 ; /* Interim values

after the wirings */

if i < log2 n then z ← n/2i else z ← 2i/n
Construct a commitment (Lw

i+1, L̂
w
i+1) of �

w
i+1 = lsftz(bi+1);

Construct a commitment (Rw
i+1, R̂

w
i+1) of r

w
i+1 = rsftz(bi+1);

/* mw,�
i+1 and mw,r

i+1 can be part of CRS */

Construct valid masks mw,�
i+1,m

w,r
i+1 ∈ {0, 1}n;

Construct a shift argument πi+1,6 for lsftz([[Bi+1]]) = [[Lw
i+1]];

Construct a shift argument πi+1,7 for rsftz([[Bi+1]]) = [[Rw
i+1]];

Construct a commitment (Dw,�
i+1, D̂

w,�
i+1) to dw,�

i+1 ← mw,�
i+1 ◦ �wi+1;

Construct a commitment (Dr,�
i+1, D̂

r,�
i+1) to dw,�

i+1 ← mw,r
i+1 ◦ rw

i+1;
Construct a product argument
πi+1,8 ← [[Lw

i]] ◦ [[Com(ck;mw,�
i+1; 0)]] = [[Dw,�

i+1]];
Construct a product argument
πi+1,9 ← [[Rw

i]] ◦ [[Com(ck;mw,r
i+1; 0)]] = [[Dw,r

i+1]];
Construct a prod. arg. πi+1,10 that
ai+1 − dw,�

i+1 − dw,r
i+1 = (1−mw,�

i+1 −mw,r
i+1) ◦ bi+1;

πw
i+1 ← (Ai+1, Âi+1, L

w
i+1, L̂

w
i+1, R

w
i+1, R̂

w
i+1, D

w,�
i+1, D̂

w,�
i+1, D

w,r
i+1, D̂

w,r
i+1,

(πi+1,6)j∈{6,7}, (πi+1,6)j∈{8,9,10});
end

end

The argument is π� ← ((πc
i+1, π

w
i+1)

2 log2 n−2
i=0 , πc

2 log2 n);

Algorithm 2. Prover’s algorithm on input (A, Â;a, ra, b, rb)

Efficient NIZK Arguments via Parallel Verification of Benes Networks 429

Use routing algorithm to compute Cij for all i, j;
for i ← 0 to 2 log2 n− 1 do

Verify that Bi+1, L
c
i+1, R

c
i+1, D

c,�
i+1, D

c,r
i+1 are all group elements, and that

their knowledge component is correctly formed;

Construct valid masks mc,�
i+1 and mc,r

i+1 following Eq. (1);

Compute valid masks mw,�
i+1 and mw,r

i+1;

Verify 2 shift and 3 product arguments πj+1,i for i ≤ 5;
if i < 2 log2 n− 1 then

Verify that Ai+1, L
w
i+1, R

w
i+1, D

w,�
i+1, D

w,r
i+1 are all group elements, and that

their knowledge component is correctly formed;
Verify 2 shift and 3 product arguments πj+1,i for i ≥ 6;

end

end

Algorithm 3. Verifier’s algorithm on input (A, Â, B, B̂;π�)

computational or a knowledge assumption, as follows. For each stage, the ad-
versary A∗ uses the knowledge extractor to open the following commitments
(the adversary also obtains the used randomizers, which we will not specify):
(a) (Bi+1, B̂i+1) to bi+1, (b) (Lc

i+1, L̂
c
i+1) to
ci+1, (c) (Rc

i+1, R̂
c
i+1) to rc

i+1,

(d) (Dc,�
i+1, D̂

c,�
i+1) to dc,�

i+1, (e) (Dc,r
i+1, D̂

c,r
i+1) to dc,r

i+1, (f) (Ai+1, Âi+1) to ai+1,

(g) (Lw
i+1, L̂

w
i+1) to
wi+1, (h) (Rw

i+1, R̂
w
i+1) to rw

i+1, (i) (Dw,�
i+1, D̂

w,�
i+1) to dw,�

i+1,

(j) (Dw,r
i+1, D̂

w,r
i+1) to dw,r

i+1. A∗ verifies that all the openings were successful. If not
(that is, A was not successful), she aborts.

Now, assume that A∗ has returned (inpperm, πperm, wperm) that satisfy condi-
tions (2i–2iv). Thus, in particular, a�(i) �= bi for some i ∈ [n]. Since we obtained
by using the extractor the intermediate values ai and bi, A∗ verifies starting
from i = 0 and ending with i = 2 log2 n− 1 where is the first point where one of
those two values was computed incorrectly.

W.l.o.g., assume that for some i0, ai and bi have always been computed
correctly for i < i0, but bi0 is computed incorrectly. That is, bi0 is not equal to
the expression given in Lem. 1. But it must be the case that all πi0,3, πi0,4, and
πi0,5 verify while bi0 . Now we also have a case analysis depending on whether

dc,�
i0

= mc,�
i0 ·
ci0 and/or dc,r

i0
= mc,r

i0 ·rc
i0
, or not. Suppose, w.l.o.g., that both

equalities hold (the adversary A∗ can check it, because due to the extractor she

knows all the elements). In this case, dc,�
i0

and dc,r
i0

were correctly computed

and πi0,5 verifies, but (ai0 − dc,�
i0
− dc,r

i0
) �= (1 − dc,�

i0
− dc,r

i0
) ◦ ai0 . But then by

contradicting Thm. 1, the adversary has broken an appropriate computational
assumption.

By an analogous case analysis, we obtain that the permutation argument is
weakly sound, unless the weak soundness (and then the corresponding computa-
tional assumption) of one of the underlying product or shift arguments is broken.

��

430 H. Lipmaa

Efficiency. As seen from Prot. 2 and Prot. 3, every step can be done by us-
ing a small number of commitments, product, and rotation arguments. Thus, the
computational complexity of the whole permutation argument will be dominated
by Θ(log n) more basic product and rotation arguments. Since the product ar-
gument can be computed in Θ(n logn) non-cryptographic operations and Θ(n)
cryptographic operations, then the new permutation argument can be computed
in Θ(n log2 n) non-cryptographic operations and Θ(n log n) cryptographic oper-
ations. This improves on prover’s computation of Θ(n2) exponentiations in [16].

The verifier has to perform Θ(log n) pairings in total. Moreover, the verifier
has to run a routing algorithm to establish the values Cij , which takes Θ(n log n)
non-cryptographic operations. This is fine, since in all known applications of the
permutation argument, the verifier’s computational complexity is Ω(n) (much
more expensive) cryptographic operations.

We also note that the second component of all product arguments used in
Prot. 2 is a commitment to the masks. Both the prover and the verifier know the
masks, and thus the corresponding commitments do not have to be transferred.
On the other hand, both parties also have to compute these commitments, and
this takes Θ(n log n) multiplications in total.

The CRS length will be Θ(n log n) group elements because all Θ(log n) differ-
ent shift arguments have to use a linear-length (and different) CRS.

4 CircuitSAT Argument

As shown in [16], one can construct a CircuitSAT argument out of Θ(1) prod-
uct and permutation arguments. Since Groth’s product and permutation argu-
ments had quadratic prover’s computation complexity, so did his CircuitSAT

argument. By using the product argument proposed in [21] and the permu-
tation argument of this paper, we end up with a CircuitSAT argument
with prover’s computation dominated by Θ(n log2 n) non-cryptographic oper-
ations and Θ(n logn) cryptographic operations. As shown in [16,19], witness-
indistinguishability and (weak) soundness of the underlying arguments is
sufficient to prove zero-knowledge and soundness of the CircuitSAT argument.
In fact, they can also be used to prove that the CircuitSAT argument is an
argument of knowledge. Again, since we do not want to introduce overdepen-
dence on concrete basic arguments, also here we omit the precise description of
the underlying assumptions; they can be derived directly from the assumptions
behind the product and shift arguments.

Theorem 4. There exists a perfectly complete and zero-knowledge
CircuitSAT argument. Under certain q-type computational and knowl-
edge assumptions, this argument is also computationally sound and an argument
of knowledge.

Proof. The CircuitSAT argument will be exactly the same as in [19], except
that it uses the new permutation argument from Sect. 3 together with the prod-
uct argument from [19]. The soundness of the CircuitSAT argument follows

Efficient NIZK Arguments via Parallel Verification of Benes Networks 431

from q-type computational and knowledge assumptions, as in [19]. We also get
that the CircuitSAT argument is an argument of knowledge, since during the
soundness proof of [19], the adversary uses the knowledge extractor to extract
the whole witness. ��

Acknowledgements. The author was supported by Estonian Research Council
and European Union through the European Regional Development Fund.

References

1. Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.-Y., Okamoto,
E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer,
Heidelberg (1999)

2. Abe, M., Hoshino, F.: Remarks on Mix-Network Based on Permutation Networks.
In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg
(2001)

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying Program Executions Succinctly and in Zero Knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013)

4. Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic.
Academic Press (August 28, 1965)

5. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct Non-
interactive Arguments via Linear Interactive Proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

6. Blelloch, G.: Vector Models for Data-Parallel Computing. MIT Press (1990)
7. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Appli-

cations. In: STOC 1988, pp. 103–112. ACM Press (1988)
8. Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-Interactive Range Proof with Con-

stant Communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp.
179–199. Springer, Heidelberg (2012)

9. Clos, C.: A Study of Non-Blocking Switching Networks. Bell System Technical
Journal 32(2), 406–424 (1953)

10. Damg̊ard, I.: Towards Practical Public Key Systems Secure against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445–456. Springer, Heidelberg (1992)

11. Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability Assump-
tion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS,
vol. 5028, pp. 175–185. Springer, Heidelberg (2008)

12. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient Modular NIZK Arguments from Shift
and Product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. 8257, pp. 92–121. Springer, Heidelberg (2013)

13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

14. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. In: Sedgewick, R. (ed.) STOC 1985, pp. 291–304. ACM Press (1985)

432 H. Lipmaa

15. Golle, P., Jarecki, S., Mironov, I.: Cryptographic Primitives Enforcing Communi-
cation and Storage Complexity. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp.
120–135. Springer, Heidelberg (2003)

16. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidel-
berg (2010)

17. Groth, J., Lu, S.: A Non-interactive Shuffle with Pairing Based Verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007)

18. Hwang, F.K.M.: The Mathematical Theory of Nonblocking Switching Networks,
2nd edn. Series on Applied Mathematics, vol. 15. World Scientific Publishing Co
Pte Ltd. (October 1, 2004)

19. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
169–189. Springer, Heidelberg (2012)

20. Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Pro-
grams and Linear Error-Correcting Codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)

21. Lipmaa, H.: Almost Optimal Short Adaptive Non-Interactive Zero Knowledge.
Tech. Rep. 2014/396, International Association for Cryptologic Research (2014),
http://eprint.iacr.org/2014/396

22. Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive
Zero-Knowledge Shuffle Argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)

23. Nassimi, D., Sahni, S.: Parallel Algorithms to Set Up the Benes Permutation Net-
work. IEEE Trans. Computers 31(2), 148–154 (1982)

24. Opferman, D.C., Tsao-Wu, N.T.: On a Class of Rearrangeable Switching Networks.
Part I: Control Algorithm. Bell System Technical Journal 50(5), 1579–1600 (1971)

25. Pippenger, N.: On the Evaluation of Powers and Monomials. SIAM J. Com-
put. 9(2), 230–250 (1980)

26. Pratt, V.R., Stockmeyer, L.J.: A Characterization of the Power of Vector Machines.
Journal of Computer and System Sciences 12(2), 198–221 (1976)

27. Straus, E.G.: Addition Chains of Vectors. American Mathematical Monthly 70,
806–808 (1964)

28. Waksman, A.: A Permutation Network. Journal of the ACM 15(1), 159–163 (1968)

A On Groth’s Use of Clos Networks

One can implement a permutation argument by constructing an efficient rear-
rangeable interconnection network for that permutation, and then showing in
zero knowledge that both the crossbars and the wiring steps of the network are
followed correctly. In particular, Groth [16] used an (m,m)-Clos network for
m ≈ √

n, combined with permutation arguments (for permutations from Sm) to
show the correctness of crossbars, and with so called dispersion arguments [16]
to show the correctness of the wirings. Since Groth’s dispersion argument is
significantly more efficient than Groth’s permutation argument (or the permu-
tation argument that we will construct in this paper), we will only count the
cost induced by the Sm-permutation arguments.

http://eprint.iacr.org/2014/396

Efficient NIZK Arguments via Parallel Verification of Benes Networks 433

Assume that we use some multistage interconnection network that uses,
w.l.o.g.3, crossbars Xmm for some m | n, has n/m crossbars per stage, and
k stages. To implement a single crossbar (i.e., permutation from Sm) by using
Groth’s permutation argument, we need a CRS of size Θ(m2), prover’s computa-
tion Θ(m2), verifier’s computation Θ(m), and communication Θ(1). Thus, when
we implement all k stages of the network (and kn/m crosspoints), the prover’s
computation grows to Θ(k · n

m · m2) = Θ(kmn), the verifier’s computation to
Θ(k · n

m ·m) = Θ(kn), and the communication to Θ(kn/m). On the other hand,
the CRS length stays at Θ(m2).

For example, if one uses the Clos network with m =
√
n as in [16], then

the CRS/the communication/the prover’s computation/the verifier’s computa-
tion become Θ(n)/Θ(n1.5)/Θ(n)/Θ(

√
n). In the case of the Beneš network, with

m = 2 and k = log2 n, the corresponding complexities will be Θ(1), Θ(n log n),
Θ(n log n), and Θ(n logn). (Thus, it has the same computational and communi-
cation complexity as — interactive — shuffle by Abe [1,2], which is also based
on the Beneš network.) The new method (as described below) provides a sig-
nificant optimization over Groth’s way of using interconnection networks in a
permutation argument.

B Committed Shuffle Argument

B.1 Brief Idea

In a shuffle argument, the prover proves that two vectors of ciphertexts en-
crypt the same (unordered) multiset of plaintexts. Until now, only two efficient
NIZK shuffle arguments have been published [17,22]. The argument of [17] is
based on the Groth-Sahai proofs. The more efficient shuffle argument of [22]
first uses two new basic arguments (zero argument and 1-sparsity argument),
related to the techniques [16,19], to show that two commitments commit to the
same (unordered) multiset of plaintexts. We call it the committed shuffle argu-
ment. After that, they use another argument to show that the same elements
that were committed to were also encrypted by a ciphertext vector. We call it
the commitment-ciphertext consistency argument. In [22], both arguments take
linear computation and linear communication.

By using Beneš networks as in the case of the permutation argument, we
implement the committed shuffle argument by using quasilinear CRS, prover’s
computation Θ(r−1

3 (n) log r−1
3 (n) · logn), logarithmic verifier’s computation, and

logarithmic communication. The main additional technical challenge here, com-
pared to the permutation argument, is that one has to prove in zero knowledge
that the committed masks are correctly formed. We show that the latter can be
done efficiently. The new committed shuffle argument is, up to our knowledge,
the first committed shuffle argument that requires only polylogarithmic commu-
nication. On the other hand, it requires larger prover’s computation than the

3 One can use crossbars of different size, but the complexity is dominated by the largest
crossbar in use. Moreover, all interesting multistage interconnection networks contain
crossbars of the same size.

434 H. Lipmaa

shuffle arguments of [17,22]. Alternatively, by using Groth’s balancing technique,
one can achieve sublinear CRS and communication at the same time.

On top of this, we can use the commitment-ciphertext consistency argument
of [22]. The resulting shuffle argument will have smaller communication and
verifier’s computation than the shuffle argument from [22], but at the same time
it will have higher prover’s computation. We note that Beneš networks have
been used before to construct shuffle arguments but with significantly larger
communication Θ(n logn), see for example [1,2].

B.2 Construction

The main difference with the permutation argument is that in the committed
shuffle argument, the permutation should stay unknown to the verifier. We can
still use Beneš networks, but in this case the masks mc,r

i+1 and mc,�
i+1 are not

public, but they are committed to. The prover has to show that both masks
belong to the set of allowed masks. The rest of the argument is pretty much the
same as the permutation argument.

More precisely, to show that mc,r
i+1 and mc,�

i+1 are both valid, the prover

proves that mc,r
i+1 and mc,�

i+1 satisfy Eq. (1). This can be done by showing that

(here, ∗ denotes an arbitrary value) (i) mc,�
j+1 = (∗, 0, ∗, 0, . . . , ∗, 0) by using

restriction argument [16], (ii) mc,r
j+1 = (0, ∗, 0, ∗, . . . , 0, ∗) by using restriction

argument [16], (iii) mc,�
j+1 is Boolean by using a product argument [16,19,12],

(iv) mr,�
j+1 = lsft1(m

c,�
j+1) by using shift argument [12]. Thus, one has to do

2 restriction, 1 product and 1 shift argument. One can construct similar mask
correctness arguments for any value of j. The committed shuffle argument itself
takes Θ(log n) group elements, as in the case of the permutation argument.
Moreover, here the verifier does not have to execute the Θ(n logn)-time routing
algorithm, and thus the verifier’s computation is dominated by Θ(log n) pairings.

Related Work. Abe and Hoshino [1,2] proposed a shuffle, where the underlying
permutation is implemented by a Beneš network. Since there the correctness of
every crossbar is verified individually, the resulting shuffle consists of Θ(n log n)
smaller zero-knowledge proofs and is thus less efficient than the new argument.

Non-Malleable Zero Knowledge: Black-Box

Constructions and Definitional Relationships

Abhishek Jain1 and Omkant Pandey2

1 Boston University and MIT
abhishek@csail.mit.edu

2 UIUC
omkant@uiuc.edu

Abstract. This paper deals with efficient non-malleable zero-knowledge
proofs for NP, based on general assumptions. We construct a simulation-
sound zero-knowledge (ZK) protocol for NP , based only on the black-box
use of one-way functions. Constructing such a proof system has been an
open question ever since the original work of Dolev, Dwork, and Naor
[18]. In addition to the feasibility result, our protocol has a constant
number of rounds, which is asymptotically optimal.

Traditionally, the term non-malleable zero-knowledge (NmZK) refers
to the original definition of [18]; but today it is used loosely to also refer
to simulation-soundness (SimSound) [51], and simulation-extractability
(SimExt) [47]. While SimExt implies NmZK, the common perception is
that SimExt is strongest of the three notions. However, very few results
about their exact relationship are known.

In the second part of this work, we provide further results about the
exact relationship between these notions. We show that in the “static”
case, if an NmZK protocol is also an argument-of-knowledge, then it is
in fact SimExt. Furthermore, in the most strict sense of the definition,
SimSound does not necessarily follow from SimExt. These results are
somewhat surprising because they are opposite to the common percep-
tion that SimExt is the strongest of the three notions.

1 Introduction

The concept of non-malleability was introduced in the seminal work of Dolev,
Dwork, and Naor [18,19]. It has proven fundamental to several developments in
cryptography such as CCA2-secure encryption schemes [41,18,51], composable
multiparty computation [12,45,34], privacy amplification and non-malleable ex-
tractors [17], tamper-resilience [20], hash functions [8], etc.

This paper is about non-malleability in zero-knowledge (ZK) interactive proofs
[25]. Roughly speaking, [18] define a ZK proof to be non-malleable, if no man-in-
the-middle can improve his chances in proving a statement x̃ even if it receives
a proof for a “related” statement x. An O(log n) round NmZK protocol for NP ,
was given in [18] based on the existence of one-way functions (Owf). The proto-
col of [18] makes non-black-box use of one-way functions since it uses Cook-Levin

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 435–454, 2014.
c© Springer International Publishing Switzerland 2014

436 A. Jain and O. Pandey

reductions to NP-complete problems [13,28,30]. Such reductions are usually a
large source of inefficiency both in terms of computation and communication,
and are highly undesirable.

Black-box Constructions. A protocol A is said to make only black-box use
of a cryptographic primitive B if the implementation of A uses B only as an
oracle—i.e., only refers to the input/output behavior of B. Such a black-box
construction does not depend on the actual implementation details of B, and
therefore precludes the use of Cook-Levin reductions in the protocol explicitly.
This results in much more efficient protocols, which are more suitable for actual
implementations.

Despite intensive research on non-malleable ZK in recent years
[18,51,16,1,45,47,46,44,31,48,52,26,32], the complexity of NmZK protocols
from the point of view of black-box use of cryptographic assumptions (such
as Owf), is still not very well understood. And in particular, the following
question has remained open thus far:

Do non-malleable ZK proofs, based only on black-box use of general
assumptions, exist?

The first part of this work resolves this question in the affirmative. Specifically,
we construct a simulation-sound ZK protocol for NP , based on the existence of
one-way functions. In fact, our result is more general and can be based on any
non-malleable commitment scheme which satisfies the so called “1-1CCA secu-
rity” notion [11]: it is essentially a standard non-malleable commitment except
that the man-in-the-middle adversary is provided with the value it commits to
on the right as soon as the right interaction finishes—even if the left interaction
is still in progress. This is done by means of a non-polynomial time extraction or-
acle. Our protocol uses such commitment schemes only as a black-box and adds
only a constant number of rounds more. Traditional schemes such as [18] sat-
isfy 1-1CCA security; further, the recent constant round constructions of [26,27]
also satisfy 1-1CCA, and [27] is based on the black-box use of (only) one-way
functions.1

We note that black-box constructions of simulation-sound zero knowledge are
important for higher-level tasks; for example, simulation-sound zero knowledge
is known to be sufficient for constructing concurrently secure multiparty com-
putation protocols [36,45].2

Round Complexity. Traditionally, in theory of cryptography, the round com-
plexity of protocols has often been an important measure of efficiency. Recent
implementations show that the latency of sending and receiving messages back

1 Although, [18,26,27] do not explicitly claim 1-1CCA security, their security proofs
implicitly achieve this property. We argue in the full version that [27] satisfies 1-
1CCA and the same explanation holds for [18,26] as well.

2 We note that in specific cases, such as when a setup (e.g., common random string)
is available, non-malleable commitments suffice for obtaining concurrently secure
multiparty computation [34]; however such a reduction is not known in general, in
the plain model.

Non-Malleable Zero Knowledge 437

and forth can in fact be a dominating factor in running cryptographic protocols
[39,4]. Unlike the “black-box use” complexity, however, the round-complexity of
non-malleable ZK is much well understood. In a series of results, round-efficient
non-malleable protocols for both ZK and commitments, based on general as-
sumptions were presented in [1,47,31,48,52]. Recently, Goyal [26] and Lin-Pass
[32] have constructed constant round non-malleable ZK protocols for all of NP ,
assuming only one-way functions. Both of these works, however, still use the
Owf in a non-black-box manner.

In light of these recent results, we can make our previous question even more
strict and ask whether it is possible to construct constant-round simulation-
sound ZK proofs, based only on black-box use of general assumptions. Towards
this end, we note that our protocol indeed achieves constant-round complexity
when it is instantiated with non-malleable commitment scheme of [27] (or even
[26] which only achieves slightly weaker notion of non-malleability when Owf is
used as a black-box).

Relationship between Various Notions of Non-malleability. As noted
earlier, today the term non-malleable ZK is used loosely and can refer to any of
the following three notions: NmZK as formulated by DDN [19] (see also [47]),
simulation soundness (SimSound) as formulated by Sahai [51] in the context of
non-interactive zero-knowledge [6,7],3 and simulation-extractability (SimExt)
as formulated by Pass and Rosen [47] (see also [16,35]). Briefly, NmZK requires
that for every man-in-the-middle M , there exists an M∗ who can succeed in
proving the concerned statement x̃ on its own with almost the same probability
(in a given ZK protocol). SimSound requires that no M can prove a false
statement even when it can receive proofs to many false statements from the
simulator. Finally, SimExt requires that there exist a single machine called the
“simulator-extractor” which simulates the view of M and output witnesses for
all statements that M proves successfully.

We note that while SimExt is perceived as the strongest notion of all three, an
exact relationship between the three notions of non-malleability (as described
above) is not known. In the non-interactive setting, Sahai demonstrated that
NmZK and SimSound are incomparable. Further, in the interactive setting,
Pass and Rosen [47] proved that SimExt implies NmZK. Indeed, studying the
formal relationships between various security notions is a well established line of
research. For example, see the works in [2,29,3,9] for an extensive study of such
relationships between security notions of encryption schemes.

In the second part of this work, we continue the study of the exact relationship
between the three notions of non-malleability and obtain further results (in the
interactive case), as summarized below. If a protocol satisfies a security notion
A, does it also satisfy some other security notion B? If yes, then we write A⇒ B,
otherwise we write A � B. Notation A ⇔ B implies that the two notions are

3 We note that simulation-soundness in the interactive case has never been explicitly
formalized in the plain model; Garay, MacKenzie, and Yang presented a formulation
for the same in the CRS model [23]. We present a formulation in the plain model by
building upon [51,23,47].

438 A. Jain and O. Pandey

equivalent, i.e. A ⇒ B, and B ⇒ A. Then, roughly speaking, we arrive at the
following conclusions:

NmZK-AoK⇔ SimExt � SimSound

Here NmZK-AoK is short for NmZK argument-of-knowledge. Pass and Rosen
[47] showed that SimExt implies NmZK-AoK, and the folklore perception is
that it is in fact stronger than the other two notions. Our conclusions are there-
fore somewhat surprising. We note that we only study the stand-alone and com-
putational setting. A similar study for the more complex concurrent setting (as
well as statistical notions) is an interesting future direction. Another direction is
to investigate the notion of non-malleable witness indistinguishability [43] and
its connection with other non-malleable primitives.

Other Related Works. In this paper, we only focus on constructions based on
general assumptions, and in the plain model. If one is willing to give up on general
assumptions, then under specific number-theoretical assumptions, efficient con-
structions are known for both non-malleable zero knowledge and commitments,
e.g., see [44,42]. Likewise, if one is willing to depart from the plain model, and
use setup assumptions such as a CRS, then efficient constructions are known for
both non-malleable zero knowledge and commitments, e.g. see [14,23,38].

1.1 Overview of Main Ideas

The Simulation Sound Protocol. In this section, we provide key intuition
behind our black-box construction of simulation-sound zero-knowledge protocol.
Our protocol looks deceptively simple but in fact relies on several key ideas, as
we explain below.

Intuitively, to construct NmZK, we should use a non-malleable commitment
(NmCom) to obtain some sort of “independence” between left and right execu-
tion. Consider using NmCom in Blum’s Hamiltonicity (BH) protocol. Clearly,
replacing the commitment scheme in BH by NmCom will not work since Nm-

Com is not necessarily concurrent non-malleable [18,46].4 Another idea is to use
a Feige-Shamir style construction [21,22] to establish a “trapdoor” and commit
to a fake witness using NmCom. Clearly, this approach does not suffer from the
earlier issue of concurrent non-malleability. However, any such approach where
NmCom will not be later “opened” must somehow prove something about the
committed value (since otherwise, intuitively, such a commitment is of no use
in the protocol). Note that this will require one to use Cook-Levin reductions
unless one is able to leverage some “cut-and-choose” style techniques. Unfortu-
nately, however, there is no hope of using “cut-and-choose” style protocols to

4 Indeed there is no known construction of concurrent non-malleable commitments for
tags of length n that uses Owf as a black-box. Furthermore, even if there existed
one, it may not be suffice here since some of the commitments sent by the prover
are opened later in the third round of BH protocol.

Non-Malleable Zero Knowledge 439

circumvent this issue, since such protocols will run into the issues of concurrent
non-malleability.

With these observations, our initial idea is to change the direction of the use of
NmCom, i.e., construct a protocol where the verifier (instead of prover) commits
to some value using NmCom, which must be opened later. One possible approach
is to have the prover P and the verifier V perform coin-tossing to determine the
“challenge” in the BH-protocol in the following manner: V first commits to a
random string r1 using NmCom and then opens it after P sends a random string
r2; the BH-challenge is then set to be r1 ⊕ r2.

While a-priori this sounds like a promising approach, unfortunately, we run
into the following problem in the proof. Note that during the simulation, the
simulator S must simulate the outcome of the above coin-tossing phase to a
fixed challenge value (say) ch for which it knows how to respond successfully.
Therefore, in the simulated experiment, there will be sufficient information about
ch in the first message of BH. This can be exploited by the man-in-the-middle
M while preparing its NmCom, thus failing the simulation.

To this end, our next idea is to move the verifier’s commitment to the “top”
of the protocol. Specifically, we adopt the Goldreich-Kahan [24] approach and
require V to commit its challenge ch using NmCom before it sees any informa-
tion from P (or S) — use of NmCom guarantees that M ’s challenge will be
independent of V ’s. However, since NmCom used will be statistically binding5,
this approach compromises even the stand alone soundness of the scheme. Our
first key-idea is to fix this stand-alone soundness. We do this by noting that the
BH protocol has a special structure: once prover sends its message, then for a
false statement x′, there is at most one challenge ch′ for which he can succeed.
Therefore, to succeed, it must set ch′ = ch. Hence, we replace the commitment
scheme in BH-protocol by a special 3-round extractable commitment scheme
[49,50]; this ensures that if prover sets ch′ = ch, we can extract ch′ using the
extractable-commitment, without ever opening it.

When we move to the non-malleability setting, however, this approach runs
into a second problem. To simulate a false proof, our simulator S will indeed
rewind M and prepare the first message of BH, based on the value revealed by
M , say chM . It is possible that M will set its value in right interaction, de-
pending upon the message on its left. To overcome this situation, our second
key-observation is to argue independence without rewinding M at all. In par-
ticular, we use the strong definition of non-malleability, which simply gives the
value chM to S (or the distinguisher in the non-malleability experiment—see,
e.g., [33,47]). Therefore, using this we can show that if M ’s preparation of the
first BH-message on right changes as we go from real to the simulated world,
we can once again extract using our first idea, while simulating in straight-line
on left. A non-synchronous adversary is handled using standard scheduling ar-
guments and known techniques.

5 In case of statistical hiding, we must rely on “non-malleability w.r.t. opening”, and
that is a troublesome proposition since no single value is defined in the commitment.
This creates several new difficulties of its own.

440 A. Jain and O. Pandey

This essentially summarizes the high-level ideas in our protocol. We refer the
reader to the technical sections for details.

Definitional Relationships. We briefly highlight here how we obtain these
results. First, it is not hard to see that NmZK-AoK implies SimExt if non-
malleability property uses the adversary only as a black-box. That is, if M∗

(guaranteed by NmZK) usesM as a black-box only, thenM∗ and the AOK prop-
erty can be (easily) combined to construct a “simulator-extractor” for SimExt
property. However, in general, it is not obvious if such a simulator-extractor can
be constructed at all.

We show that in the static case, where M declares x̃ (after seeing x) before
any execution begins, we can in fact construct such a simulator-extractor by
combining M∗ with the knowledge extractor E guaranteed by AOK property.
The central difficulty that arises is that the success probability ofM∗ may differ
negligibly from that of M in the real world. Since the extraction of the witness,
intuitively, must come from M∗ via rewinding, this negligible difference can
result in exponential time during extraction. This is a problem akin to Goldreich-
Kahan [24], and we use their techniques to overcome this situation. To the best
of our knowledge, this is the first time that the techniques of [24] (to ensure
expected polynomial-time simulation) have been applied in the context of non-
malleability. The ideal result, of course, would be to prove equivalence even for
the adaptive case. We leave this as an important open question.

Finally, the result SimExt � SimSound is obtained by exploiting the fact
that SimExt does not require any security guarantee in the case when the input
message is false. Since SimSound explicitly deals with false messages, we are able
to exploit this situation to obtain a counter-example. We note that in the bare
public-key model [10], similar ideas have been used before to separate “knowledge
extraction” from “soundness,” e.g., see Crescenzo and Visconti [15].

2 Basic Definitions

We assume familiarity with standard definitions such as commitment schemes,
interactive proofs, zero knowledge, and arguments of knowledge. We also assume
that the reader is familiar with man-in-the-middle experiments for commitments
and zero-knowledge proofs. Here we recall the notation very briefly. Throughout
the paper, unless stated otherwise, we will use n to denote the security parameter.

Let 〈C,R〉 be a commitment protocol where C is the algorithm for honest
committer and R is the algorithm for honest receiver. We assume that 〈C,R〉 is
statistically-binding and for strings of length at least n. The man-in-the-middle
is denoted by A, his advice string by z ∈ {0, 1}∗. The experiment is a random
process A interacts with C receiving a commitment to v, and simultaneously
interacts with R, acting as a committer. We use standard terms—left and right
interactions for A’s interaction with C and R respectively. At the end of A’s
interaction on right, let ṽ denote the unique value that A commits on right
(possible ⊥). As soon as A completes its interaction on right, value ṽ is provided

Non-Malleable Zero Knowledge 441

to A—irrespective of the state of left interaction; the value ṽ is extracted by an
oracle O which can run in exponential time.6

We prefer to work with tag based definitions; and hence every execution of
〈C,R〉 defines a tag string. We stick to the simple class of protocols where the
tag string is chosen by the receiver.7 Let the tag string on right be tag, and
˜tag on left (chosen by A). Without loss of generality, we assume that the length

of the tag strings is the same as the security parameter n. If ˜tag = tag, A’s
interaction on right is set to the abort symbol ⊥.

The joint view (of A and R) in the experiment consists of: the randomness of
A, the auxiliary input z, all messages A receives in both interactions, the value
ṽ, and the randomness of R. The experiment is a random process, and hence
the joint view of A is a random variable. For v ∈ {0, 1}n, z ∈ {0, 1}∗, tag ∈
{0, 1}n, n ∈ N, the joint view in the experiment (which includes ṽ given to A by
the oracle O after the completion of right side commitment) is denoted by:

mimA
〈C,R〉,O(v, z, tag)

Definition 1 (Non-malleable (1-1CCA) Commitment). A commitment
protocol 〈C,R〉 is said to be non-malleable if there exists an oracle O such that
for every non-uniform probabilistic polynomial time Turing machine A (man-
in-the-middle), for every pair of strings v0, v1 ∈ {0, 1}n, every tag-string tag ∈
{0, 1}n, every (advice) string z ∈ {0, 1}∗, the following two random variables are
computationally indistinguishable,

mimA
〈C,R〉,O(v0, z, tag) and mimA

〈C,R〉,O(v1, z, tag)

Often we will drop the oracle O from the notation when it is clear from the con-
text. In many schemes, tags of smaller length such as O(log n) are also allowed.
Ideally we want schemes with longer tag length such as n. Most of the schemes
in the literature, such as [18,26,27] already satisfy the notion of 1-1CCA w.r.t.
tags of length n; this is implicit in their security proofs (although not claimed
explicitly). The construction in [27] is based on the black-box use of one-way
functions, and suffices for our result. In the full version, we argue briefly how
the security proof of [27] already satisfies 1-1CCA security.

Non-malleable Interactive Proofs. Let 〈P, V 〉 be an interactive proof system
for anNP complete language L. Let x ∈ L be a statement of length n; we assume
that P is polynomial time and receives a witness w ∈ RL(x) as its auxiliary
input. This experiment is the same as the commitment experiment except that
it involves execution of proof system 〈P, V 〉. The joint view (of A and V) in
the man-in-the-middle experiment consists of: statements x, x̃, the randomness

6 Note that this is a slight deviation from standard definition, which provide A the
value ṽ only at the end of both interactions. Nevertheless, all non-malleable com-
mitment schemes that we know of, are not affected by this change.

7 Once again, this choice is in the interest of a cleaner exposition of our results, and
without loss of generality. Note that A is free to choose the tag in the left session
adaptively, after viewing the tag chosen by the receiver in the right session.

442 A. Jain and O. Pandey

of A, the auxiliary input z, all messages A receives in both interactions, and the
randomness of V . For x ∈ L, w ∈ RL(x), z ∈ {0, 1}∗, tag ∈ {0, 1}n, n ∈ N, the
joint view in the experiment (sometimes called the real experiment) is denoted
by:

viewA
〈P,V 〉(x,w, z, tag)

When a random variable representing a view, e.g., viewA
〈P,V 〉(x,w, z, tag) is

accepting, we abuse the notation and write: “viewA
〈P,V 〉(x,w, z, tag)=1”. We now

recall two formulations of non-malleability from literature: non-malleable zero-
knowledge and simulation-extractability.

Let 〈A∗, V 〉(x, z, tag) denote the view of V in a random execution of the proof
system defined by 〈P, V 〉, where A∗ plays the role of the prover.

Definition 2 (Non-malleable Interactive Proofs). An interactive proof
system 〈P, V 〉 for a language L is said to be non-malleable if for every ppt

Turing machine A (man-in-the-middle), there exists a ppt Turing machine A∗

(stand alone prover), such that for every x ∈ L, every w ∈ RL(x), every tag
string tag ∈ {0, 1}n, every polynomial q(·), every (advice) string z ∈ {0, 1}∗,
and every sufficiently large n ∈ N,

Pr
[
viewA

〈P,V 〉(x,w, z, tag) = 1
]
< Pr [〈A∗, V 〉(x, z, tag) = 1] +

1

q(n)

If, in addition, 〈P, V 〉 is also zero knowledge, then 〈P, V 〉 is said to be a non-
malleable zero-knowledge interactive proof system.

Note that, a non-malleable interactive proof is not necessarily zero knowledge.
A somewhat different formulation is that of simulation-extractability (which
implies non-malleable zero-knowledge). This notion requires a simulator (as in
ZK), which simulates the joint view, and also outputs a witness for the right-
hand side statement if V accepts on right.

Definition 3 (Simulation Extractable Interactive Proofs). An interactive
proof system 〈P, V 〉 for a language L is said to be simulation extractable if for
every ppt Turing machine A (man-in-the-middle), there exists a probabilistic
expected polynomial time Turing machine SE, such that for every x ∈ L, every
w ∈ RL(x), every tag string tag ∈ {0, 1}n, and every (advice) z ∈ {0, 1}∗, the
following properties hold:

1. Joint-view in the real experiment, viewA
〈P,V 〉(x,w, z, tag), is computationally

indistinguishable from the first output (i.e., simulated joint-view) of SE,
denoted by SE1(x, z, tag).

2. If the right execution in SE1(x, z, tag) is accepting for an instance x̃ ∈
{0, 1}n, then the second output of SE is a string w̃ such that w̃ ∈ RL(x̃).

3 Efficient Simulation-Sound Interactive Proofs

This section presents our first main result, a simulation-sound protocol based
only on black-box use of non-malleable commitment scheme 〈C,R〉. The notion

Non-Malleable Zero Knowledge 443

of simulation-soundness, in the interactive setting in the plain model, despite
implicit discussions in many works, has never appeared formally. In the common
reference string (CRS) model, it was introduced by Sahai [51] for non-interactive
ZK; an extension for interactive case—still in the CRS model—was considered
by Garay, MacKenzie, and Yang [23]. Below we give an adaptation of the defi-
nitions of [51,23] to the plain model (in the interactive setting).

3.1 The Definition

Intuitively, simulation soundness means that in a ZKproof, a man-in-the-middle
adversary A cannot produce a convincing proof for a false statement, even if it
can see simulated proofs for statements of its own choice, including false state-
ments. Note that since A has to be able to access simulated proofs, in some sense,
this automatically guarantees zero knowledge. This is unlike non-malleable in-
teractive proofs, which may or may not be zero knowledge. The formal definition
requires a single machine S—the simulator—which guarantees indistinguishabil-
ity of the view for true statements, and the soundness for statements on right
hand side even in the presence of simulated false proofs on left hand side.

Definition 4 (Simulation Sound Interactive Proofs). An interactive proof
system 〈P, V 〉 for a language L is said to be simulation sound if for every prob-
abilistic polynomial time Turing machine A (man-in-the-middle), there exists a
probabilistic expected polynomial time machine S such that,

1. For every x ∈ L, every w ∈ RL(x), every tag ∈ {0, 1}n, and every (advice)
z ∈ {0, 1}∗, the following distributions are computationally indistinguishable,

S(x, z, tag) and viewA
〈P,V 〉(x,w, z, tag)

2. For every x ∈ {0, 1}n, every tag ∈ {0, 1}n, every (advice) z ∈ {0, 1}∗, every
polynomial q(·) and every sufficiently large n ∈ N,

Pr
[
ν ← S(x, z, tag); x̃ /∈ L ∧ b̃ = 1

]
<

1

q(n)

where, x̃ represents the right hand side statement and b̃ denotes whether the
right hand side verifier accepts, in the simulated joint view ν.

Remarks

1. The second requirement in our definition is a direct adaptation of the def-
inition of [51,23]. This is essentially the core requirement of the definition.
It also makes the definition somewhat strict in the sense that A can re-
ceive simulated proofs for statements that it knows are false. However, this
is unavoidable: while A might know that a particular statement is false, it
is not clear how the simulator S can access this knowledge. As a result, S
must be able to simulate for all false x, irrespective of what A knows about
x. This is the fact we exploit in constructing a counter-example and prove
that SimExt � SimSound. The first requirement of the definition is for
capturing ZK.

444 A. Jain and O. Pandey

2. The strict requirement can be relaxed by considering a distribution based
definition in which a sampler samples a statement (either true or false) but
A does not know which is the case. A then receives proofs only for such
sampled statements. This yields a weaker definition, denoted SimSoundD.
In this case, it is straightforward to see that SimExt ⇒ SimSoundD. We
remark that this is indeed usually the situation in cryptographic settings.

3.2 Tool: Extractable Commitment

Consider the following simple challenge-response based bit commitment scheme
〈Ĉ, R̂〉, which can be based on top of any standard bit commitment scheme
〈C′, R′〉 (e.g., [40]). The scheme has been used in several works, starting from

[49,50]. The protocol 〈Ĉ, R̂〉 for committing to a bit b is described in Figure 1.

Commit Phase:

1. To commit to a bit b, Ĉ chooses n independent random pairs {b0i , b1i }ni=1 of bits

such that b0i ⊕ b1i = b; and commits to them to R̂ using 〈C′, R′〉. Let c0i ← C′(b0i)
and c1i ← C′(b1i) for every i ∈ [n].

2. R̂ sends n uniformly random bits r1, . . . , rn.
3. For every i ∈ [n], if ri = 0, Ĉ opens c0i , otherwise it opens c1i to R̂ by sending the

decommitment information (according to 〈C′, R′〉).

Open Phase: Ĉ opens all the unopened commitments by sending the decommitment
information for each of them.

Fig. 1. Extractable Commitment Scheme 〈Ĉ, R̂〉

Some remarks about 〈Ĉ, R̂〉 are in order.

1. If 〈C ′, R′〉 is statistically binding, so is 〈Ĉ, R̂〉. We adopt the convention that
if not all shares are such that b0i ⊕ b1i = b, then the adversary has essentially
aborted, setting b = ⊥. It suffices for our application.

2. To commit to a string s = s1, s2, . . . , sn, execute n instances of 〈Ĉ, R̂〉, in
parallel—one for each bit si. This is a string commitment scheme, which we
shall denote by 〈Ĉs, R̂s〉. Note that s = ⊥ if si = ⊥ for any i ∈ [n].

3. Scheme 〈Ĉs, R̂s〉 is a public coin protocol for R̂s.

4. Finally, 〈Ĉs, R̂s〉 admits an extractor algorithm CExt which extracts a string
str′ from every C∗ such that if C∗ commits to a valid string str, then str′ =
str. The running time of CExt is inversely proportion to the probability
that C∗ makes a convincing commitment to R. If we increase the challenge-
response rounds to ω(1), then CExt runs in polynomial time.

Non-Malleable Zero Knowledge 445

3.3 The Simulation-Sound Protocol

We are now ready to present our simulation-sound interactive argument system
〈P, V 〉. Our protocol uses a non-malleable commitment scheme 〈C,R〉, and also

the bit commitment scheme 〈Ĉ, R̂〉 described above. These schemes are used in
a black-box manner.

At a high level, our protocol is essentially a parallel repetition of Blum’s
protocol for Graph Hamiltonicity [5] with the following modifications: (a) instead
of using a standard perfectly binding commitment scheme, the prover P uses the
3-round commitment scheme 〈Ĉ, R̂〉 described above. (b) Further, similar to [24],
we require the verifier to commit to its challenge in advance. However, unlike
[24] where a statistically hiding commitment scheme is used, the verifier V in
our protocol uses the non-malleable commitment scheme 〈C,R〉 to commit to
its challenge.

We now formally describe the protocol. Let P and V denote the prover and
verifier respectively. The common input is a graph G in the form of a n × n
adjacency matrix. Further, the private input to P is a Hamiltonian cycle H in
G. The protocol proceeds as follows:

1. V chooses a uniformly random n bit string ch, and commits to it by using
the non-malleable commitment scheme 〈C,R〉, where V acts as C and P
acts as R.

2. For every i ∈ [n]:

(a) P chooses a random permutation πi and prepares Gi = πi(G). Let � =
n log(n) denote the length of πi.

(b) P commits to each bit bi,j in matrix Gi and each bit b′i,k in πi to V using

the commitment scheme 〈Ĉ, R̂〉,8 for every j ∈ [n2] and k ∈ [�].

Note that this step can be seen as running 2n parallel instances of 〈Ĉs, R̂s〉,
n of which commit to n2 size bit strings G1, . . . , Gn and and the remaining n
commit to length � bit strings π1, . . . , πn. Alternatively, this step is essentially
equivalent to committing a string str of size n3+n2 log(n) using the protocol

〈Ĉs, R̂s〉.
3. V sends ch, and decommits by sending the corresponding decommitment

information.

4. For every i ∈ [n]:

(a) If chi = 0, P reveals πi and Gi, and decommits according to 〈Ĉ, R̂〉.
(b) Otherwise, P reveals the Hamiltonian Cycle in Gi by sending the corre-

sponding decommitment information.

Facts about 〈P, V 〉

1. If graph G does not contain a Hamiltonian cycle, and the commitments
in step 2 define a unique string (say str), then after this step, there is at

8 Each matrix Gi has n
2 cells, and each cell contains a single bit.

446 A. Jain and O. Pandey

most one challenge string ch for which a cheating prover P ∗ can provide a
convincing answer in step 4.9

2. Furthermore, in the above case, if there does exist a challenge ch for which a
convincing answer can be produced after step 2, then given string str, one
can reconstruct the challenge ch in the following manner: for every i ∈ [n],
let π′

i denote the i
th permutation and G′

i denote the i
th graph in string str.

Then, if π′
i(G) = G′

i, set chi = 0, else set chi = 1.

Theorem 1. Protocol 〈P, V 〉 is a simulation-sound interactive argument system
for Graph Hamiltonicity, as per definition 4.

3.4 Proof of Security

To prove Theorem 1, we need to demonstrate an expected polynomial time
machine S (simulator), satisfying both properties in definition 4. Our simulator
S is almost identical to the Goldreich-Kahan simulator [24], with some obvious
modifications. Before we describe our simulator, we first define a machine A′

that is used later in our description.

Machine A′. We define A′ as a machine that internally incorporates the adver-
sary A and honest verifier V . A′ will act as a cheating verifier and receive a
proof from an honest prover. Internally, A′ forwards this proof to A as the left
interaction of 〈P, V 〉. In addition,A′ also simulates the right interaction for A,
by letting it interact with the internal verifier V . At the end of the execution,
A′ separates the left and the right views to represent the joint-view (of the man-
in-the-middle experiment for interactive proofs). A′ produce such a joint-view
simply by replaying the messages with fixed randomness that it used for V and
A internally. The reason, we create this artificial machine A′ is because we can
now run Goldreich-Kahan simulator on it.

Simulator S. The description of our simulator S, for proving SimSound, ap-
pears in Figure 2. Every time S rewinds A′ to a previous point in execution, it
provides A′ with fresh randomness for the rest of the execution.

It is instructive to note that while in the NmCom-experiment, the adversary
can obtain ṽ as soon as it finishes the right session, no such “luxury” is available
in NmZK-experiment. Therefore, A—who works in the NmZK-experiment—
never asks for any such values. Note that, step (S1) represents a partial “main
thread” of execution of S, which it completes in step (S4) if A′ opens the chal-
lenge successfully.

9 Specifically, consider the simpler case of the 3-round Blum Hamiltonicity (BH) pro-
tocol (the argument for our scheme follows in a similar manner). Recall that in BH,
if the challenge bit is 0, then the prover P must open the commitments (sent in the
first step) to a permutation π and a graph G′ such that π(G) = G′. Otherwise, if
the challenge bit is 1, P must reveal a Hamiltonian cycle in the committed graph
(without decommitting to the entire committed graph). Then, if graph G does not
contain a Hamiltonian cycle, and a cheating prover manages to succeed in the last
step irrespective of whether the challenge bit is 0 or 1, we can contradict the binding
property of the commitment scheme.

Non-Malleable Zero Knowledge 447

Let A′ denote be a machine that internally incorporates adversary A and honest
verifier V as described earlier. The simulator S first fixes a uniformly random tape
for A′ and then proceeds according to the following steps:

S1. S simulates the first step of the protocol by playing an honest receiver R in the
execution of the non-malleable commitment scheme 〈C,R〉 with the adversary
A′. Since 〈C,R〉 is statistically binding, except with negligible probability, A′ is
committed to a unique challenge string. Let the state of A′ at the end of this step
be stA′ , which S records.

S2. S now plays the next round of the protocol but commits to dummy strings (e.g.,

all 1s). That is, S commits by executing 2n parallel instances of 〈Ĉs, R̂s〉: n
instances of n2-size strings (representing graphs) and the rest of size 2n (repre-
senting permutations). At the end of this step, if A′ successfully opens a challenge
string ch for step S1 commitment, S records ch and proceeds to the next step.
Otherwise, S outputs the current view of A′ and halts.

S3. S repeats step (S2) with fresh randomness until it records n2 valid openings to ch.
If t is the total number of trials, then let p̄ = n2/t be an estimate of p(G, r). Here
p(G, r) is the probability that A′ (when initialized with state stA′) successfully
opens ch in step (S2) over the randomness of step (S2).

S4. S now reinitializes A′ with the same state stA′ , and plays step (S4) as follows.
Recall that ch is the string opened in step (S2) by A. For every i ∈ [n], S does
the following: if chi = 0, S chooses a random permutation πi and commits to πi

and Gi = πi(G); otherwise, S commits to a random permutation and a random
n-cycle graph Hi (i.e., an n× n adjacency matrix where the cells corresponding
to the cycle are set to 1 while the other cells are set to random bits). If A′ replies
by correctly revealing the string ch, S proceeds to complete the simulation by
correctly revealing the openings to the commitments. Otherwise, the entire step
(S4) is repeated for at most poly(n)

p̄
times, until A′ correctly reveals ch. If all the

attempts fail, S outputs a special symbol indicating time-out.

Fig. 2. Simulator S for 〈P, V 〉

Proving simulation-soundness. To prove that 〈P, V 〉 satisfies definition 4,
we show that it satisfies its two requirements. The first requirement is akin to
proving that 〈P, V 〉 is a ZK interactive argument system. The proof for this
is identical to [24], barring some trivial changes, and is therefore omitted. In
particular, it follows almost immediately if we show that time-out is output with
negligible probability (see [24] or the proof of Claim 4.1 in section 4.1 where a
similar claim is argued).

We now focus on the second requirement in definition 4, which requires that
A cannot prove a false statement in the view output by S, even if the input to
S is a false statement: i.e., an arbitrary graph G ∈ {0, 1}n2

, which may not be
Hamiltonian.10

10 For simplicity, we are dealing with a n2 size statement here, but this is only a
syntactic change, and can be removed by scaling the number of vertices in G down
to

√
n.

448 A. Jain and O. Pandey

Assume that the second requirement does not hold. Then, there exists a (non-
uniform) ppt man-in-the-middle adversaryA, a polynomial q(·), an advice string
z ∈ {0, 1}∗, and infinitely many n ∈ N such that for every n there exists a graph

G ∈ {0, 1}n2

, and a tag string tag ∈ {0, 1}n such that over the randomness of
S:

δ(n)
def
= Pr
[
ν ← S(G, z, tag); G̃ /∈ L ∧ b̃ = 1

]
>

1

q(n)

where, G̃ represents the right hand side instance and b̃ denotes whether the right
hand side verifier accepts, in the simulated joint-view ν. Fix one such n, along
with statement Gn ∈ {0, 1}n

2

, and tag string tagn ∈ {0, 1}n, and let

δn = Pr
[
ν ← S(Gn, z, tagn); G̃ /∈ L ∧ b̃ = 1

]
which is larger than 1/q(n). Now, recall that the man-in-the-middle A controls
the scheduling of messages in the left and right executions. Figure 3 describes
three representative schedules that A can choose from. Since the overall success
probability of A is δn, A must succeed in one of the schedules with probability
at least δn

3 . For each schedule, we will show how to break some security property
of scheme 〈C,R〉.

We start by describing the three schedules, as shown in Figure 3.

Fig. 3. Three schedules for A. nmcom := 〈C,R〉 and ExtCOM := 〈Ĉs, R̂s〉

Scheduling 1. A starts the right execution of extractable commitment
ExtCOM := 〈Ĉs, R̂s〉 before its left execution. In particular, this means that A
sends out the first message of 〈Ĉs, R̂s〉 in the right execution without seeing the
corresponding message in the left execution.

Scheduling 2. A schedules the left and right executions in a synchronous man-
ner.11

Scheduling 3. A forces the ExtCOM protocol 〈Ĉs, R̂s〉 in the left execution to be
started before the NmCom protocol 〈C,R〉 is completed in the right execution.

11 This means that for every i ∈ [r], where r is the number of rounds in 〈P, V 〉, the ith

message of the protocol in left and right executions is sent only after the (i − 1)th

message of the protocol has been sent in both left and right executions.

Non-Malleable Zero Knowledge 449

Due to space constraints, we defer the formal details of the proof for each
schedule to the full version of the paper. Here, we briefly discuss the high-level
intuition for each case.

In scheduling 1, we will break the hiding property of 〈C,R〉. The main obser-
vation is that in this scheduling A has already fixed the message for which he
can succeed, without any help from the simulator. Therefore, we can extract this
value from the ExtCOM-phase. Very briefly, the fact that simulator rewinds
on left is not a problem because the extractor for ExtCOM is public-coin and
S never rewinds to a point higher than ExtCOM on left.

In schedules 2 and 3, we will break the non-malleability property of 〈C,R〉.
Very briefly, in schedule 2, we will demonstrate a ppt man-in-the-middle ad-
versary A′ for 〈C,R〉 and an expected ppt distinguisher D′ violating the non-
malleability property of 〈C,R〉. The key-idea for this schedule is that the value
that A commits in NmCom, will be given as input along with the joint-view.
And therefore, we do not rewind A at all, since we already know the trapdoor
for simulation. The proof for schedule 3 is almost identical. We first observe the
following: in scheduling, A ends up completing his NmCom-phase before it has
received the NmCom from V . The key-observation now is that since A’s com-
mitment finishes first, it can be given the value it has committed so far during
the execution. Therefore, we consider a man-in-the-middle A′ for NmCom, just
as before; as soon as it receives the committed value (which is the trapdoor for
simulation), it internally incorporates the distinguisher D′ described above and
runs it with this value.

4 Relationship between Different Notions of
Non-Malleable ZK

In this section, we study the definitional equivalence between the three notions of
non-malleability in the context of zero knowledge, namely, NmZK, SimSound,
and SimExt. We obtain two results. First, in Section 4.1, we show that NmZK

with the argument of knowledge (AOK) property implies SimExt. Then, in
Section 4.2, we demonstrate that SimExt does not imply SimSound. Putting
these results together, we obtain the following picture regarding the equivalence
of the three notions:

NmZK-AoK⇔ SimExt � SimSound

4.1 NmZK versus SimExt

Simulation-extractability was formulated in [47], and it was shown that it implies
non-malleable zero-knowledge. Perhaps somewhat surprisingly, we show that if
the non-malleable zero-knowledge protocol is also an argument-of-knowledge,
then it is actually simulation extractable.

Theorem 2. If 〈P, V 〉 is a non-malleable zero knowledge argument of knowl-
edge for a language L ∈ NP, it is in fact a simulation extractable interactive
argument for L.

450 A. Jain and O. Pandey

This result is very generic, and applies to all types of protocols, be they compu-
tational or statistical ZK, black-box or non-black-box ZK, etc. This essentially
shows that as far as the “moral” sense of non-malleability is concerned, the two
definitions are equivalent. We note, however, that the theorem holds only for
the static case where A must announce the theorem x̃ on input the theorem x,
before the protocol execution begins. That is, x̃ depends only on x and not on
the execution of the protocol. We do not consider the adaptive case (where A
chooses x̃ based on the execution on left so far) in this paper, and leave it for
future work.

Proof of Theorem 2. Let 〈P, V 〉 be a non-malleable zero knowledge argument of
knowledge for a language L with respect to tags of length n. This means that
we have the following: (a) Since 〈P, V 〉 is non-malleable, we have that ∀ ppt

man-in-the-middle adversaries A, ∃ a stand-alone ppt adversary A∗ such that
it satisfies definition 2. Now, we can define probabilities pa and pa∗ as follows:
pa is the probability that A convinces the verifier in the right session in the
real execution, and pa∗ is the probability that A∗ convinces an honest verifier.
Note that by definition 2, we have that pa∗ ≥ pa − negl(n). (b) Since 〈P, V 〉 is
zero knowledge, for every cheating verifier strategy, ∃ a simulator S satisfying
the zero knowledge property. (c) Since 〈P, V 〉 is an argument of knowledge, for
every cheating prover P ∗, ∃ an extractor E satisfying the argument of knowledge
property.

Now, in order to prove Theorem 2, we need to construct a simulator-extractor
SE satisfying Definition 3. Let V ∗ be a machine that internally incorporates the
adversary A and verifier V and their interaction in the real execution.12 Now,
before we proceed to formally describe our simulator-extractor, let us discuss a
natural approach in order to highlight the main technical challenge.

Main Issue. Consider the following natural algorithm for a simulator-extractor
SE: (a) Let V ∗ be a machine that internally incorporates the adversary A and
verifier V and their interaction in the real execution. Then, first run the simulator
S with V ∗ to output the joint view of A. (b) Now, since we are in the static
case, the instance x̃ in the right execution does not depend on the left view.
Then, if the joint view output by S contains an accepting right execution, run
the extractor E on the stand-alone adversary A∗ to extract a witness for x̃.

Now note that the running time of the second step in the above procedure is
proportional to ps

pa∗ , where ps is the probability that the joint view output by

S contains an accepting right execution. Unfortunately, ps

pa∗ is not necessarily

12 Note that given the view of V ∗ in the real execution, we can construct the joint
view of A (as defined in Section 2) from the random tape of V ∗ and the messages
that A and V exchange internally, as well as those exchanged between P and V ∗.
Likewise, if S is used with V ∗, the joint view can still be constructed even if S is a
non black-box simulator. This is done by first producing viewV ∗ , and then replaying
the entire executions on left and right with the same V that was used to construct
V ∗. This yields messages corresponding to both left and right sessions of A, defining
the complete joint view.

Non-Malleable Zero Knowledge 451

bounded by a polynomial, hence the running time of the above procedure is not
expected ppt. We note that this is reminiscent of a technical problem overcome
by Goldreich and Kahan in the construction of constant round zero knowledge
[24]. Indeed, we overcome this problem by using ideas from [24].

The Simulator-Extractor. Given the machines defined above, we now give
a detailed description of our simulator-extractor SE. The simulator-extractor
SE receives statement x, advice string z, and tag-string tag as input. SE also
receives access to either the code of A or black-box access to A depending upon
the properties of A∗ and S. SE runs the following steps:

S1. Run S with V ∗ on input x, z, and tag to generate a view viewV ∗ .13 If the
right execution in viewV ∗ is not accepting (i.e., A does not convince V), then
output (viewV ∗ ,⊥) and stop.

S2. Otherwise, let ps denote the probability that simulator S in step (S1) outputs
a view that contains an accepting right execution. Run S with V ∗ (on input
x, z, and tag) repeatedly until n2 views with accepting right execution are

obtained. Let ps = n2

t be the estimate of ps, where t is the total number of
trials.

S3. Run the following two procedures in parallel14 and halt as soon as one of
them finishes.

(i) Run the brute force (exponential-time) search procedure to compute a
witness w̃ for x̃. Output the tuple (viewV ∗ , w̃) and stop.

(ii) Run the following two steps: (a) First, run the (stand-alone) adversary
A∗ with an honest verifier V on inputs x, x̃ (where x̃ is the theorem

proven by A in step S1), z, and tag repeatedly at most poly(n)
ps

times until
an accepting view viewA∗ is generated. If no accepting view is generated
after all the trials, then output a special symbol indicating time-out and
stop. (b) Next, run the argument of knowledge extractor E on A∗ with
input viewA∗ to extract a witness w̃ for x̃ from A∗. Output the tuple
(viewV ∗ , w̃) and stop.

This completes the description of our simulator extractor SE. We will now prove
that it satisfies Definition 3. Here, the difficult part is to prove that the running
time of SE is polynomial in expectation, as claimed below.

Claim. The simulator-extractor SE runs in expected polynomial time.

We further need to show that SE outputs a joint view indistinguishable from
that in the real execution along with a valid witness for the instance in the right
session. Towards that end, note that the correctness of the witness string output

13 SE simply runs the man-in-the-middle adversary A such that it interacts with S
and V in the “left” and “right” executions respectively. In case S is a non black-
box machine, SE is non black-box as well, since it will need the code of A to
construct V ∗.

14 The effect of parallel execution can be obtained by running one step of the first
procedure followed by one step of the second procedure, and so on.

452 A. Jain and O. Pandey

by SE follows directly from the correctness of the extractor machine E. Then, we
only need to show that the joint view output by SE is indistinguishable from that
in the real execution. To this end, we note that the proof for the same essentially
follows from the zero-knowledge property guaranteed by S provided we can argue
that SE outputs the time-out symbol with only negligible probability. In the
claim below, we bound this probability. We remark that this is a standard claim,
and similar claims have earlier appeared in several works before, e.g., [24,35,37].

Claim. The simulator-extractor SE outputs the time-out symbol with only neg-
ligible probability.

We refer the reader to the full version for the formal proofs.

4.2 SimSound versus SimExt

We show that, perhaps somewhat surprisingly, a simulation extractable protocol
is not necessarily simulation sound. Intuitively, this is because the behavior of the
simulator-extractor SE is not defined for false statements. We exploit this fact to
construct a protocol which is simulation extractable, but not simulation sound.

At a high level, we consider languages L ∈ NP ∩co-NP , since such languages
admit polynomial-size witness for both types of assertions: “x ∈ L”and “x /∈ L”.
We then take any SimExt protocol and modify it so that first the man-in-the-
middle A proves to P that “x /∈ L” using a tag-string tag; if it succeeds, P proves
that “x ∈ L” using a modified tag-string tag′, which A can copy on right. If x
is false, it is not hard to see that A succeeds if the left interaction succeeds in
proving a false statement. The concrete protocol, and its analysis, is given in the
full version.

However, as we discussed in Section 3.1, in the “natural” case where S proves
false statements that cannot be distinguished from true statements, it is not
hard to see that simulation-extractability does imply simulation soundness (i.e.,
SimExt⇒ SimSoundD).

References

1. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS (2002)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

4. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party
computation. In: ACM Conference on Computer and Communications Security
(2008)

5. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444–1451 (1987)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103–112 (1988)

Non-Malleable Zero Knowledge 453

7. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

8. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable
hash and one-way functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 524–541. Springer, Heidelberg (2009)

9. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

10. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
11. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the

plain model from standard assumptions. In: FOCS (2010)
12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party

computation. In: Proc. 34th STOC, pp. 494–503 (2002)
13. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158

(1971)
14. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive

non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, p. 40. Springer, Heidelberg (2001)

15. Crescenzo, G.D., Visconti, I.: On defining proofs of knowledge in the bare public
key model. In: ICTCS (2007)

16. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001), http://link.springer.de/
link/service/series/0558/papers/2139/21390566.pdf

17. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: STOC (2009)

18. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC (1991)

19. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (electronic) (2000), Preliminary version in STOC 1991

20. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS (2010)
21. Feige,U., Shamir,A.:Zeroknowledgeproofs of knowledge in tworounds. In:Brassard,

G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)
22. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:

Proc. 22nd STOC, pp. 416–426 (1990)
23. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols

using signatures. J. Cryptology 19(2) (2006)
24. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof

systems for NP. Journal of Cryptology 9(3), 167–189 (Summer 1996)
25. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof-systems. In: Proc. 17th STOC, pp. 291–304 (1985)
26. Goyal, V.: Constant round non-malleable protocols using one way functions. In:

STOC (2011)
27. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-

mitments: A black-box approach. In: FOCS (2012)
28. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-

puter Computations, pp. 85–103 (1972)
29. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic

private-key encryption. In: STOC, pp. 245–254 (2000)
30. Levin, L.A.: Problems, complete in “average” instance. In: STOC, p. 465 (1984)

http://link.springer.de/link/service/series/0558/papers/2139/21390566.pdf
http://link.springer.de/link/service/series/0558/papers/2139/21390566.pdf

454 A. Jain and O. Pandey

31. Lin, H., Pass, R.: Non-malleability amplification. In: STOC, pp. 189–198 (2009)
32. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way

function. In: STOC (2011)
33. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-

ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 571–588. Springer, Heidelberg (2008)

34. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent se-
curity: universal composability from stand-alone non-malleability. In: STOC (2009)

35. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer,
Heidelberg (2001), http://link.springer.de/
link/service/series/0558/papers/2139/21390171.pdf

36. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: Proc. 35th STOC, pp. 683–692 (2003)

37. Lindell, Y.: Constant round zero knowledge proofs of knowledge (2010),
http://eprint.iacr.org/2010/487.pdf

38. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011)

39. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX Security Symposium (2004)

40. Naor, M.: Bit commitment using pseudo-randomness (extended abstract). In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg
(1990)

41. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC (1990)

42. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for
concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

43. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable
zero knowledge in the bare public-key model. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)

44. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. CRYPTO, pp. 57–74.
Springer, Heidelberg (2008)

45. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proc. 36th STOC, pp. 232–241 (2004)

46. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS (2005)
47. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-

graphic protocols. In: STOC (2005)
48. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-

exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010)

49. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS (2002)

50. Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004)

51. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proc. 40th FOCS, pp. 543–553 (1999)

52. Wee, H.: Black-box, round-efficient secure computation via non-malleability am-
plification. In: FOCS (2010)

http://link.springer.de/link/service/series/0558/papers/2139/21390171.pdf
http://link.springer.de/link/service/series/0558/papers/2139/21390171.pdf
http://eprint.iacr.org/2010/487.pdf

On Adaptively Secure Protocols

Muthuramakrishnan Venkitasubramaniam

University of Rochester, Rochester, NY 14611, USA

Abstract. Adaptive security captures the capability of an adversary to
adaptively affect a system during the course of its computation based
on partial information gathered. In this work, we explore the theoretical
complexity of achieving adaptive security in two settings:

1. Adaptive UC-Secure Computation: We provide a round-
efficient compiler that transforms any stand-alone semi-honest
adaptively secure multiparty computation to adaptive UC-security.
Recently, Dana et. al (Asiacrypt 2013) showed how to acheive
adaptive UC-security in any trusted setup under minimal assump-
tions. They achieve this by constructing an O(n)-round adaptively
secure concurrent non-malleable commitment scheme. The main con-
tribution of our work shows how to achieve the same in O(1)-rounds.

2. Zero-Knowledge with Adaptive Inputs: Lin and Pass in (TCC
2011) gave first constructions of concurrent non-malleable zero-
know-ledge proofs secure w.r.t. adaptively chosen inputs in the plain
model in a restricted setting, namely, where the adversary can only
ask for proofs of true (adaptively-chosen) statements. We extend
their definition to the fully-adaptive setting and show how to con-
struct a protocol that satisfies this definition. As an independent
contribution we provide a simple and direct compilation of any semi-
honest secure protocol to a fully concurrently secure protocol under
polynomial-time assumptions in the Angel-Based UC-Security.

1 Introduction

Adaptive security captures the capability of an adversary to adaptively affect a
system during the course of its computation based on partial information gath-
ered. In this work, we revisit the complexity of achieving two different notions of
adaptive security: (1) Round complexity of achieving fully concurrent adaptively
secure computation protocols, and, (2) Feasibility of concurrent non-malleable
zero-knowledge protocols with fully adaptively chosen inputs.

Adaptive Secure Computation. The notion of secure multi-party computa-
tion allows m mutually distrustful parties to securely compute a functionality
f(x̄) = (f1(x̄), ..., fm(x̄)) of their corresponding private inputs x̄ = x1, ..., xm,
such that party Pi receives the value fi(x̄). Loosely speaking, the security re-
quirements are that the parties learn nothing more from the protocol than their

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 455–475, 2014.
c© Springer International Publishing Switzerland 2014

456 M. Venkitasubramaniam

prescribed output, and that the output of each party is distributed according
to the prescribed functionality. This should hold even in the case that an arbi-
trary subset of the parties maliciously deviates from the protocol. The original
setting in which secure multi-party protocols were investigated, however, only
allowed the execution of a single instance of the protocol at a time; this is the
so called stand-alone setting. A more realistic setting, is one which allows the
concurrent execution of protocols. In the concurrent setting, many protocols are
executed at the same time. This setting presents the new risk of a coordinated
attack in which an adversary interleaves many different executions of a proto-
col and chooses its messages in each instance based on other partial executions
of the protocol. The strongest (but also most realistic) setting for concurrent
security—called Universally Composable (UC) security [Can01, PW01, DM00],
or environmental-security—considers the execution of an unbounded number of
protocols, running concurrently in an arbitrary, and adversarially controlled,
network environment. Unfortunately, achieving UC security for most interest-
ing functionalities is impossible unless some sort of trusted setup is assumed
[CF01, CKL03, Lin03]. Previous works overcome this barrier either by using
some trusted setup infrastructure or by relaxing the definition of security (we
will see examples below).

When considering security in such settings, we refer to the adversary as static
if it chooses the subset of the parties to corrupt at the beginning of the protocol
and adaptive if it is allowed to corrupt on-the-fly. Adaptively secure multiparty
computation protocols (in the non-erasure model) were first realized in Canetti,
Feige, Goldreich and Naor [CFGN96] for the stand-alone case. Canetti, Lindell,
Ostrovsky and Sahai [CLOS02] provided the first constructions of UC-secure
protocols with adaptive security for “well-formed” functionalities in the common
reference string model (CRS) where all parties have access to public reference
string sampled from a pre-specified distribution. Subsequently, several results
were obtained for both the static and adaptive case in other trusted-setup mod-
els and relaxed-security models. However, for a given functionality, realizing an
adaptively secure protocol is significantly harder than realizing in the static
case. In this work we focus on the round complexity of achieving adaptive secu-
rity under minimal assumptions. In the static case Lin et. al [LPV08, LPV12]
provide a round-efficient compiler from stand-alone semi-honest secure compu-
tation protocol to static UC-security under minimal assumptions. Since there
exists O(1)-round protocols with static security in the semi-honest setting for
most setup models, we can achieve the same with static UC-security as well. For
adaptive-security, the best known semi-honest secure protocol requires O(dC)-
rounds for computing a circuit C, where dC is the depth of the circuit.1,2 When
considering adaptive UC-security, for particular models such as the common-
reference string (CRS) model, we know how to construct O(dC)-round adaptive

1 Informally, the depth of a circuit is the longest path from any input bit to the output
bit.

2 There are constant-round protocols if we assume erasures or restrict the adversary
to corrupting a strict subset of the parties.

On Adaptively Secure Protocols 457

UC-secure protocols under minimal assumptions [CLOS02, DN02, CDSMW09].
For other models such as uniform reference string model [CLOS02], multi-string
model [GO07], similar constructions exist with stronger assumptions (e.g., dense
cryptosystems). However, when considering minimal assumptions, the work of
[DSMRV13] shows how to achieve adaptive UC-security in any trusted setup in
O(ndC)-rounds where n is the length of the identifier of the parties. Thus the
state-of-the-art shows a huge gap in the round-complexity required for achiev-
ing adaptive security under minimal assumptions in the semi-honest setting and
UC-setting in most models. One of the main questions addressed in this work is

Is there a round-efficient transformation from stand-alone semi-honest
adaptive security to adaptive UC-security under minimal assumptions?

In this work, we answer this question in the affirmative and show how to
obtain round-efficient compilation to obtain adaptively UC-secure protocols.
Concretely, our work improves the round-complexity of constructing adaptively
UC-secure protocols in most setup models under “minimal assumptions” and
closes the gap of round-complexity between achieving such constructions in the
semi-honest and fully-malicious UC setting in any setup.

Zero-Knowledge with Adaptively Chosen Inputs. Zero-knowledge interactive
proofs [GMR89] are paradoxical constructs that allow one player (called the
Prover) to convince another player (called the Verifier) of the validity of a math-
ematical statement x ∈ L, while providing zero additional knowledge to the
Verifier. The notion of concurrent ZK, first introduced and achieved, by Dwork,
Naor and Sahai [DNS04] considers the execution of zero-knowledge proofs in an
asynchronous setting and concurrent setting. Non-malleable ZK was first intro-
duced by Dolev, Dwork and Naor [DDN00] where they model an adversary as
a man-in-the-middle participating in two executions, acting as a verifier in one
execution (in the left) and as a prover in another execution (in the right). The
notion of concurrent non-malleable ZK considers adversaries that participates
in an unbounded number of executions as the prover and verifier. Barak, Prab-
harakan and Sahai [BPS06] gave the first ZK argument for NP that is concurrent
non-malleable in the plain model (i.e. without any trusted set-up assumptions).
Since then several works improve efficiency and/or construct concurrent non-
malleable ZK proofs [OPV08, LPTV10, LP11b]. In all these works, the input
statements for all executions on the right can be adaptively chosen by the ad-
versary whereas on the left need to be selected apriori, i.e. at the beginning of
the execution. In this work, we consider strengthening the security, by allowing
the adversary to adaptively chose the statements it wishes to prove and ver-
ify. Lin and Pass [LP11b] show how to construct concurrent non-malleable ZK
proofs in a restricted setting where the adversary can adaptively choose only
true statements to receive proofs of. Furthermore, they argue that allowing the
adversary to choose arbitrary statements will reveal more information and thus
not be zero-knowledge (for languages in NP). That main question we address
in this work is:

458 M. Venkitasubramaniam

Is it possible to achieve fully adaptively chosen input concurrent non-
malleable zero-knowledge protocols (CNMZK) with meaningful secu-
rity?

We again answer this question in the affirmative and show that we can define
ZK with meaningful security in such a setting and show how to construct such
protocols in the plain model. Previous works that achieve CNMZK with fully
adaptive input selection have relied on some sort of trusted set-up models such as
Bare-Public Key [OPV08], Common Reference String [SCO+01, CF01, DN02],
etc. For the weaker case of witness indistinguishability, Ostrovksy et. al [OPV06]
present a restricted version3 of input-adaptive concurrent non-malleable witness
indistinguishable argument in the plain model. As an independent contribution
we show the power of our definition of ZK by showing how to achieve UC-security
using super-polynomial helpers analogous to [CLP10] under polynomial-time
assumptions in the angel-based security model of Prabhakaran and Sahai [PS04].

1.1 Our Results

We provide a round-efficient compilation from stand-alone adaptively secure
semi-honest protocols to adaptive UC-security. We achieve this by constructing
a round-efficient concurrent non-malleable equivocal commitment, a primitive
defined in [DSMRV13]. From previous works [CLOS02, DN00] we know that
every functionality can be compiled into a protocol in the ideal-commitment
functionality hybrid model.4 In [DSMRV13] they show (assuming the existence
of simulatable public-key encryption schemes) that any t-round protocol in this
hybrid model can be securely realized using an O(tp)-round puzzle and O(tc)
round concurrent non-malleable equivocal commitment scheme in O(t(tp + tc))
rounds. We prove the following theorem

Theorem 1 (Informal). For any setup model T , assume the existence of a
O(t1)-round adaptive puzzle and one-way functions, then there exists a O(t1)
round concurrent non-malleable equivocal commitment scheme.

Since in most models, there exists O(1)-round puzzles, our result combined with
the work of [DSMRV13] shows that in most models any t-round protocol can
be realized securely with adaptive UC-security in O(t)-rounds, thus yielding
a round-preserving transformation. Furthermore, we obtain improvements in
round-complexity in several setup models. Concretely, we obtain the following
corollary:

Corollary 1 (Informal). Assuming the existence of simulatable public-key en-
cryption, any well-formed circuit C can be realized with adaptive UC-security in
O(dC)-rounds in Common Reference String, Uniform Reference String, Imper-
fect Reference String (Sunspots), Multi-String and Bounded Concurrent model,
where dC is the depth of circuit C.
3 This definition implicitly has a similar restriction to [LP11b] where the statements

in the left need to be true statements.
4 In this hybrid model, all parties have access to the ideal commitment functionality.

On Adaptively Secure Protocols 459

We also obtain corresponding improvements for relaxed-models of security,
such as quasi-polynomial simulation and non-uniform simulation, where we need
to make additional assumptions on the simulatable public-key encryption. We
remark, this matches previous constructions in the Common-Reference String
model. For the rest of the models, to achieve an O(dC)-round construction we
either did not have a construction (eg, bounded-concurrent) or needed additional
assumptions (uniform reference string, sunspots). Our work closes the gap in the
round-complexity required to achieve adaptively-secure protocols in the semi-
honest setting and the fully malicious UC setting in most setup models.

Concurrent Non-Malleable Zero-Knowledge with Adaptive Inputs: As our second
contribution, we define fully adaptive concurrent non-malleable zero-knowledge
(a definition inspired by [LP11b] and angel-based security model of Prabhakaran
and Sahai [PS04]) and show how to construct a protocol satisfying the definition.
Our definition will allow for a man-in-the-middle adversary to adaptively request
proofs of arbitrary NP statements, may it be true or false. For true statements,
it will be provided with a proof using an efficient prover P using the witness to
the statement and for false statements, it will be provided with a “fake” proof by
a prover that potentially runs in exponential time. To construct a protocol, we
rely on the recently introduced CCA-secure commitment schemes of [CLP10].
More formally, we prove the following theorem.

Theorem 2 (Informal). Assuming the existence of one-way functions, there
exists a Õ(logn)-round fully-adaptive CNMZKargument.

As an independent contribution, we show that our ACNMZK protocol can be
used to securely realize any functionality in the angel-based model introduced
by Prabhakaran and Sahai [PS04]. Canetti, Lin and Pass [CLP10] were the first
to show how to achieve UC-security using the CCA-secure commitments in the
angel model under polynomial-time assumptions.

The high-level idea of our protocol follows previous approaches where the func-
tionality is first compiled to a protocol in the IdealZK-hybrid model.5 Then, in a
second step, it is complied to a protocol in a slightly weaker ideal functionality
called MemberZK which is the ideal zero-knowledge proof of membership pro-
tocol. Finally, a protocol realizing the MemberZK functionality is constructed
assuming some setup. We show that any protocol satisfying our definition of
ACNMZK realizes MemberZK in the angel-model. We additionally point out
a subtlety that arises when compiling IdealZK into MemberZK which was not
previously addressed and show how our protocol handles this. We also believe
that a direct compilation, as in [GMW87], of any semi-honest protocol to full
UC-security in the angel model is possible by simply requiring honest parties to
provide a zero-knowledge proof using our ACNMZK protocol after every step.

5 In the IdealZK-hybrid all parties have access to an ideal zero-knowledge proof-of-
knowledge protocol.

460 M. Venkitasubramaniam

1.2 Our Techniques

Proving UC-security essentially reduces to proving concurrent non-malleability
and concurrent simulation. In [LPV09], Lin et. al inroduced the notion of a
UC-puzzle that captures the concurrent simulation requirement of UC-security
and showed how to achieve it using any setup under minimal assumptions. In
[DSMRV13], Dana et. al extended the notion of UC-puzzle to adaptive security
and showed how to achieve adaptive UC-security using an adaptive UC-puzzle
and a special kind of commitment scheme known as an equivocal non-malleable
commitments. Roughly speaking, such commitments require that no man-in-the-
middle adversary participating as a sender and receiver in multiple concurrent
commitments and decommitments, be able to break the binding property of
the commitment scheme. Similar notions have been studied previously in the
works of [CIO98, CKOS01] for the limited case of bounded concurrency and
non-interactive commitments and in [OPV09, CVZ10] where they restrict the
commitments and decommitments to be performed in two distinct phases that
do not overlap in time.

In more detail, a tag-based commitment scheme (i.e., commitment scheme
that takes an identifier—called the tag—as an additional input) is concurrent
non-malleable w.r.t opening if for every man-in-the-middle adversaryA that par-
ticipates in several interactions with honest committers as a receiver (called left
interactions) as well as several interactions with honest receivers as a commit-
ter (called right interactions), there exists a simulator S that can simulate the
left interactions, while extracting the commitments made by the adversary in
the right interactions (whose identifiers are different from all the left identifiers)
before the adversary decommits.

Equivocal commitments can be constructed easily using trusted set-up. The
basic idea is to provide the simulator with a trapdoor with which it can equiv-
ocate as well as extract the commitments on the right. (by e.g., relying on en-
cryption). However, to ensure non-malleability, most constructions in literature
additionally impose CCA-security or provide independent trapdoors for every in-
teraction. In [DSMRV13], they show how to construct a concurrent non-malleable
commitment scheme in any trusted set-up. More precisely, they construct a com-
mitment scheme in any setup that admits a UC-puzzle, a formulation introduced
by Lin et al [LPV08] for the case of static security that captures precisely the
simulation requirement. However, the round complexity of their protocol is linear
in the length of the identities. In this work we show how to construct constant-
round protocols that are concurrently non-malleable. Moreover, our construction
seemingly only relies on the stand-alone non-malleable commitment schemes in
the static setting. In particular, using the O(1)-round scheme of [LP11b] we pro-
vide a O(1)-round concurrent non-malleable commitment w.r.t opening in any
setup with a UC-puzzle.

Comparison with [DSMRV13]. The work of [DSMRV13] focused on constructing
protocols with adaptive UC-security in any model under minimal assumptions.
In particular their work showed how to minimize complexity assumptions and

On Adaptively Secure Protocols 461

the “trust” required in the setup analogous to [LPV09] for the static setting. In
this work, we focus on obtaining round-efficient protocols. The novelty in our
reduction over the work in [DSMRV13] is that we are able to directly reduce the
security proof to the non-malleability of the underlying non-malleable commit-
ment scheme while [DSMRV13] rely on a particular non-malleable commitment
scheme (that of [DDN00, LPV08]) and provide a security reduction that is tai-
lored to this scheme. Our proof is modular and in our opinion simpler than that
of [DSMRV13]. Although the main application of equivocal non-malleable com-
mitments is in achieving adaptive UC-security, these commitments may also be
useful for other applications such as concurrent non-malleable zero knowledge
secure under adaptive corruptions or obtaining composable protocols. We be-
lieve that this notion in some sense extends the notion of security w.r.t selective
opening attacks to the non-malleable setting and our protocols might be useful
in such contexts as well.

CNMZK with Adaptively Chosen Inputs. Lin and Pass [LP11b] consider the
scenario where a man-in-the-middle adversary participates in unbounded zero-
knowledge interactions as a verifier on the left and prover on the right and
can adaptively choose statements for left and right interactions with the re-
striction that only true statements are chosen for left interactions. They call a
zero-knowledge protocol in such a setting CNMZK with Adaptive Input Selec-
tion if for every adversary A, there exists a computationally efficient simulator-
extractor that can simulate both the left and right interactions for A, while
outputting a witness for every statement proved by the adversary in the right
interactions. As pointed out in [LP11b, OPV06], having this restriction for pro-
tocols in the plain model seems inherent in light of the impossibility result of
Lindell [Lin03]. To circumvent the impossibility result one can rely on some
sort of trusted setup such as the Bare-Public Key (BPK) or Common Reference
String (CRS) model. Indeed there are fully input-adaptive CNMZK arguments
in these models [SCO+01, CF01, DN02, OPV08].

In this work, we want a definition in the plain model that allows for concur-
rent composition. Our definition is inspired by the definitions of [LP11b] and
the angel-based security model of Prabhakaran and Sahai [PS04, CLP10]. We
allow the adversary to adaptively chose any statement in the left and require the
existence of a simulator extractor that can achieve the same indistinguishabil-
ity guarantees of [LP11b]. If we allow the adversary to choose false statements,
a proof cannot be provided and hence will fall into the impossibility result of
Lindell [Lin03]. Instead we will require that there be an exponential-time strat-
egy that will provide proofs of false statements. Now for such a setting, our
definition of CNMZK with fully adaptive input-selection requires for every ad-
versary there be a simulator-extractor that can simulate both the left and right
interactions for A, while outputting a witness for every statement proved by
the adversary in the right interactions. Relying on CCA-secure commitments
[CLP10, GLP+12], we show how to construct an Õ(logn)-round CNMZK
protocol with fully adaptive-inputs selection. CCA-secure commitments were
introduced by Canetti, et. al [CLP10] to construct UC-secure protocol with

462 M. Venkitasubramaniam

angel-based security. We also prove that CCA-secure commitments are equiva-
lent to CNMZK with fully adaptive-input selection.

2 Preliminaries

We assume familiarity with interactive protocols, commitment schemes. Some of
the definitions are presented almost verbatim from [DSMRV13].

We adopt a variant of language-based commitment schemes introduced by
Lindell et. al [LZ09]. Roughly speaking, in such commitments the sender and
receiver share a common input, a statement x from an NP language L. The
main difference from standard commitments is that the binding property of
the commitment scheme. Informally, the binding property of the scheme asserts
that any adversary violating the binding can be used to extract an NP-witness
for the statement. We require a variant We present below the definition of a
language-based equivocal commitment scheme which is a slight variant of such
commitment schemes (See [DSMRV13] for the formal definition).

Definition 1 (Language-Based Equivocal Commitments). Let L be an
NP-Language and R, the associated NP-relation. A language-based commitment
scheme 〈S,R〉 for L is said to be equivocal, if there exists a tuple of algorithms
(S̃,Adap) such that the following holds:

Special-Hiding: For every (expected) PPT machine R∗, it holds that, the fol-
lowing ensembles are computationally indistinguishable over n ∈ N .
– {staR∗

〈S,R〉(x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

– {staR∗

〈S̃,R〉(x,w, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

where staR
∗

〈S̃,R〉(x,w, z) denotes the random variable describing the output

of R∗(x, z) after receiving a commitment using 〈S̃, R〉.
Equivocability: Let τ be the transcript of the interaction between R and S̃ on

common input x ∈ L∩ {0, 1}n and private input w ∈ R(x) and random tape
r ∈ {0, 1}∗ for S̃. Then for any v ∈ {0, 1}n, Adap(x,w, r, τ, v) produces a
random tape r′ such that (r′, v) serves as a valid decommitment for C on
transcript τ .

In [DSMRV13] (relying on the work of [LZ09]), show how to construct such
schemes using one-way functions.

2.1 Definition of Equivocal Non-Malleable Commitments

Let 〈C,R〉 be a commitment scheme, and let n ∈ N be a security parameter.
Consider man-in-the-middle adversaries that are participating in left and right
interactions in which m = poly(n) commitments take place. We compare be-
tween a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution, the adversary A is simultaneously participating in m left and right
interactions. In the left interactions the man-in-the-middle adversary A interacts

On Adaptively Secure Protocols 463

with C receiving commitments to values v1, . . . , vm, using identities id1, . . . , idm
of its choice. It must be noted here that values v1, . . . , vm are provided to com-
mitter on the left prior to the interaction. In the right interaction A interacts
with R attempting to commit to a sequence of related values again using iden-
tities of its choice ĩd1, . . . , ĩdm; ṽi is set to the value decommitted by A in the
jth right interaction. If any of the right commitments are invalid its committed
value is set to ⊥. For any i such that ĩdi = idj for some j, set ṽi = ⊥—i.e.,
any commitment where the adversary uses the same identity as one of the hon-
est committers is considered invalid. Additionally, the adversary can adaptively
choose a session in the left executions that has completed the commitment phase
to be decommitted. Let mimA

〈C,R〉(v1, . . . , vm, z) denote a random variable that
describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

In the simulated execution, a simulator S interacts only with receivers on the
right as follows:
1. Whenever the commitment phase of jth interaction with a receiver on the

right is completed, S outputs a value ṽj as the alleged committed value in a
special-output tape.

2. During the interaction, S may output a partial view for a man-in-the-middle
adversary whose right-interactions are identical to S’s interaction so far.
If the view contains a left interaction where the ith commitment phase is
completed and the decommitment is requested, then a value vi is provided
as the decommitment.

3. Finally, S outputs a view and values ṽ1, . . . , ṽm. Let simS
〈C,R〉(1

n, v1, . . . , vm, z)
denote the random variable describing the view output by the simulation and
values ṽ1, . . . , ṽm.

Definition 2. A commitment scheme 〈C,R〉 is said to be concurrent non-
malleable w.r.t. opening if for every polynomial p(·), and every probabilistic
polynomial-time man-in-the-middle adversary A that participates in at most
m = p(n) concurrent executions, there exists a probabilistic polynomial time sim-
ulator S such that the following ensembles are computationally indistinguishable
over n ∈ N :

–
{
mimA

〈C,R〉(v1, . . . , vm, z)
}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗

, and

–
{
simS

〈C,R〉(1
n, v1, . . . , vm, z)

}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗

We will use the slightly relaxed definition where all the values committed to
the adversary in the left interaction are sampled independently from an arbi-
trary distribution D fixed apriori. We call a commitment scheme an equivocal
non-malleable commitment scheme if it is both a language-based equivocal com-
mitment scheme and is concurrent non-malleable w.r.t. opening.

2.2 Adaptive UC-Puzzles

Informally, an adaptive UC-puzzle is a protocol 〈S,R〉 between two players–a
sender S and a receiver R – and a PPT computable relation R, such that the
following two properties hold:

464 M. Venkitasubramaniam

Soundness. No efficient receiver R∗ can successfully complete an interaction
with S and also obtain a “trapdoor” y, such that R(TRANS, y) = 1, where
TRANS is the transcript of the interaction.

Statistical UC-simulation with adaptive corruptions. For every efficient
adversary A participating in a polynomial number of concurrent executions
with receivers R (i.e., A is acting as a puzzle sender in all these executions)
and at the same time communicating with an environment Z, there exists a
simulator S that is able to statistically simulate the view of A for Z, while
at the same time outputting trapdoors to all successfully completed puzzles.
Moreover, S successfully simulates the view even when A may adaptively
corrupt the receivers.

2.3 Fully Input-Adaptive Concurrent Non-Malleable
Zero-Knowledge

Our definition of fully input-adaptive concurrent non-malleable zero-knowledge
is closely based on the definition of adaptive concurrent non-malleable zero-
knowledge from [LP11a] (which in turn are based on [BPS06, PR05]). The main
difference is that we consider adversaries that is allowed to adaptively select true
and false statements to receive proofs of.

Let 〈P, V 〉 be an interactive argument for a language L ∈ NP with witness
relation RL and exponential time cheating prover P̂ , and let n be the security
parameter. Consider a man-in-the-middle adversary A that participates in many
left and right interactions in which m = m(n) proofs take place. In the left
interactions, the adversary A verifies the validity of the statements x1, . . . , xm
by interacting with a special prover P̂ , using identities id1, . . . , idm. In the right-
interactions, A proves the validity of statements x̃1, . . . , x̃m to an honest verifier
V , using identities ĩd1, . . . , ĩdm. Prior to the interactions, all parties receive as
common input the security parameter in unary 1n, and A receives as auxiliary
input z ∈ {0, 1}∗. Furthermore, at the beginning of each left (respectively right)
interaction, the adversary adaptively selects the statement xi (respectively x̃i)
and the identity idi (respectively ĩdi). For each left-interaction, the special-prover
P̂ behaves as follows:

1. If the statement xi chosen by A is false, then P̂ runs the exponential-time
cheating strategy,

2. If the statement xi chosen by A is true, then P̂ picks a witness wi ∈ RL(xi)
and runs the honest prover strategy P with private input wi.

Let viewA,P̂ denote a random variable that describes the view of A in the
above experiment. Informally, an interactive argument (with exponential time
cheater strategy) is fully-adaptive concurrent non-malleable zero-knowledge
(ACNMZK) if for all man-in-the-middle adversary A, there exists a probabilis-
tic polynomial time machine (called the simulator-extractor) that can simulate
both the left and right interactions of A, while outputting a witness for every
statement proved by the adversary in the right interactions.

On Adaptively Secure Protocols 465

Definition 3. An interactive argument (P, V) for a language L with witness-
relation RL and exponential-time prover P̂ is said to be fully input-adaptive
concurrent non-malleable zero-knowledge if for every polynomial m, and every
probabilistic polynomial-time man-in-the-middle adversary A that participates in
at most m = m(n) concurrent executions, there exists a probabilistic polynomial
time machine S, such that,

1. The ensembles
{
viewA,P̂ (n, z)

}
n∈N,z∈{0,1}∗

and {S1(1
n, z)}n∈N,z∈{0,1}∗ are

computationally indistinguishable over n ∈ N
2. Let z ∈ {0, 1}∗ and (view,w) denote the output of S(1n, z). Let x̃1, . . . , x̃m

be the statements of the right interactions in view, and let id1, . . . , idm and
ĩd1, . . . , ĩdm be the identities of the left-interactions and right-interactions in
view. Then for every i ∈ [m], if the ith right-interaction is accepting and
ĩdi �= idj for any j ∈ [m], w contains wi such that RL(x̃i, wi) = 1.

Remark 1. We remark that it would be impossible to achieve proofs according to
our definition, since we allow for an exponential-time prover to convince verifiers
of false statements.

3 EQNMCom Based on [LP11b]

Our starting point is any stand-alone non-malleable commitment scheme that
follows that Feige-Shamir paradigm for the hiding property and the “simulation-
soundness” paradigm of Sahai[Sah99] for non-malleability. More precisely, in a
scheme following the Feige-Shamir paradigm, there is a trapdoor phase where,
possibly through rewinding the receiver, a trapdoor can be obtained and a proof
phase where the committer proves either knowledge of the value committed or
knowledge of the trapdoor. To prove non-malleability, or simulation-soundness,
these schemes provide a mechanism to rewind the left interaction of a man-in-
the middle adversary to obtain a trapdoor while ensuring the right interactions
remains “sound”.

While our techniques are more generally applicable, in this work, we present
a protocol based on the constant-round non-malleable commitment protocol of
Lin and Pass [LP11b]. Their scheme relies on fixed-length signature scheme Π =
(Gen, Sign, V er), zero-knowledge argument of knowledge, witness-indistinguish-
able special-sound proofs and we assume the readers familiarity with these prim-
itives. Our protocol is obtained from the protocol from [LP11b] by replacing
the non-interactive commitment com with the language-based equivocal com-
mitment scheme EQComx (see Definition 1) from [DSMRV13] and the Stage 3
protocol with the adaptively-secure witness-indistinguishable proof of knowledge
(WIPOK).

In more detail, to achieve equivocability, as in [DSMRV13], we rely on a vari-
ant of Feige-Shamir’s trapdoor commitment scheme. Let x be an NP-statement.
The sender commits to bit b by running the honest-verifier simulator for Blum’s
Hamiltonian Circuit protocol [Blu86] on input the statement x and the veri-
fier message b, generating the transcript (a, b, z), and finally outputting a as

466 M. Venkitasubramaniam

its commitment. In the decommitment phase, the sender reveals the bit b by
providing both b, z. To achieve adaptively secure WIPOK protocol (we refer
[DSMRV13] for a formal definition and construction) we rely on the protocol of
Lindell-Zarosim [LZ09].

3.1 Equivocal Non-Malleable Commitment Scheme (EQNMCom) in
any Setup

Given any setup T with an adaptive UC-Puzzle, we prove that Π = 〈S,R〉 de-
scribed below is an equivocal non-malleable commitment scheme when combined
with the adaptive UC-puzzle. In more detail, consider the following protocol: Let
(〈Spuz,Rpuz〉,R) be an adaptive UC-puzzle in setup T . The protocol Π proceeds
in two phases on common input the identity id ∈ {0, 1}� of the committer, and
private-input string r for the committer and security parameter n.

Preamble Phase: An adaptive UC-Puzzle interaction 〈Spuz,Rpuz〉 on input 1n
where Scom is the receiver and Rcom is the sender. Let x = TRANS be the
transcript of the messages exchanged.

Commitment Phase: The parties run protocol 〈S,R〉 with common input x
and identifier id. S plays the part of sender with input r.

Our construction relies on the equivocal commitment scheme 〈S,R〉 con-
structed based on the non-malleability commitment scheme of Lin and Pass
[LP11b]. For the purpose of describing the simulator we will only rely on the
fact that the protocol has a round where the honest committer sends a commit-
ment to the value in its input using EQComx and a proof phase where there are
one or more adaptively secure WIPOK instantiations based on statement x from
where the committer proves knowledge of the value committed using EQComx in
that interaction. We now show that the protocol Π is concurrent non-malleable
w.r.t opening w.r.t i.i.d commitments.

Theorem 1. Commitment scheme Π described above is concurrent non-
malleable w.r.t. opening with independent and identically distributed (i.i.d)
commitments.

First we describe the simulator and then prove correctness. Let A be a con-
current man-in-the-middle adversary that on input 1n participates in at most
m(n) left-interactions as a receiver, receiving commitments from an honest com-
mitter whose values are chosen uniformly from distribution D and at most m(n)
right-interactions as a committer. On a high-level, S internally incorporates A
and emulates an execution with A as follows: For all puzzle interactions where
A∗ controls the sender, S follows the puzzle simulator’s strategy to simulate the
puzzle and obtains a witness which it stores. In the right puzzle interactions, Sim
simply forwards the messages to an external receiver. For every left interaction,
Sim internally generates the messages using the code of special committer (guar-
anteed by the scheme), i.e. equivocate in the commitment phase with the witness
w obtained from the puzzle interactions. When a decommitment is requested by

On Adaptively Secure Protocols 467

A, Sim outputs the current partial view of the transcript of messages exchanged
by A in a special-output tape. Then, it receives a value v from outside to be
decommitted to in the left interaction. Internally, it runs the Adap algorithm
guaranteed by the equivocal commitment scheme to generate a decommitment
to v and feeds it to A.

Whenever the commitment phase is completed with a receiver on the right,
Sim temporary stalls the main-execution and tries to extract the value commit-
ted to by A in this interaction. For this, Sim selects a random adaptively secure
WIPOK from that interaction and rewinds A to the point just before which
A receives the challenge-message in the WIPOK. Sim supplies a new challenge
message and continues simulation. In the rewinding, the right interactions are
simulated as before (i.e. honestly) while the left interactions are simulated dif-
ferently. Instead of equivocating the session, Sim follows the honest committer’s
strategy with value v, where v is the actual value decommitted to in left interac-
tion if one exists from the main-execution or chosen uniformly at random from
D.6 If in the rewinding, A provides a valid response for the selected WIPOK of
the right interaction, then using the special-sound property of the WIPOK, Sim
extracts the witness used in the WIPOK, which contains the committed value. If
the adversary fails to provide a valid response for the particular WIPOK in the
right interaction, Sim cancels the current rewinding and starts a new rewinding
by supplying a new challenge.

The proof of correctness of the simulator is expressed in the following lemma.

Lemma 1. The following ensembles are computationally indistinguishable{
(v1 . . . , vm)← Dn : mimA

〈S,R〉(v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : simS
〈S,R〉(1

n, v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗

Proof. We consider a sequence of intermediate hybrid experiments H0, . . . , Hm.
In experiment Hi, we consider a simulator Simi that knows all the values
(v1, . . . , vn) being committed to in the left interactions. On input z, Simi pro-
ceeds as follows: It follows Sim’s strategy in the first i left interactions both
in the main phase and rewinding phase. For the other left interactions, i.e.
j = i + 1, . . . , n, Sim simulates the main phase by equivocating as before, but
in the rewinding phase follows the honest committers strategy using vj . Let
hybi(1n, v1, . . . , vm, z) denote the output of Simi inHi. It follows from description
that hybm(1n, v1, . . . , vm, z) and simS

〈S,R〉(1
n, v1, . . . , vm, z) are indistinguishable.

In hybrid experiment H0, all puzzles are simulated and the simulator with
input (v1, . . . , vm) proceeds exactly as the real simulator in the main execution
phase, whereas in the rewindings, it uses the code of the honest committer to
commit to vi. We consider an intermediate hybridH0 which proceeds exactly like
H0 with the exception that the simulator uses the code of the honest committer
in the main execution phase as well with value vi for left session i. Let the output
6 Sim can generate such messages for any value v, since by adaptive security, Sim can

obtain random coins for an honest committer and any value v that is consistent with
any partial transcript generated by the equivocator.

468 M. Venkitasubramaniam

of this experiment be hyb0. The proof of the Lemma follows from the next three
claims using a standard hybrid argument.

Claim. mimA
〈S,R〉(v1, . . . , vm, z) ≈ hyb0(1n, v1, . . . , vm, z)

Proof Sketch. The proof of this claim essentially follows from the statistical
simulation of the puzzle. In fact, this step is identical to the one presented
as part of the proof in [DSMRV13] (see Claim 1 in [DSMRV11]) and will be
presented in the full version.

Claim. hyb0(1n, v1, . . . , vm, z) ≈ hyb0(1n, v1, . . . , vm, z)

Proof. Recall that in hybrid H0, the simulator follows the honest committer
strategy in the main and rewinding phases for left interactions while in H0 it
equivocates in the main phase and then follows honest committer strategy in the
rewindings using the random coins generated for a honest committer by the Adap
algorithm of the commitment scheme. Recall that the simulator in all hybrids
have all the values to be committed in the left interactions at the beginning of
the experiment.

Now, assume for contradiction there exists a distinguisher that can distinguish
the outputs in both the experiments with probability 1

p(n) for some polynomial
p(·). As in the previous claim, we can conclude that in H0 the value extracted
and the value decommitted to in some right interaction by the adversary is
different with probability 1

p(n) . Now, we consider a truncated version of both
the hybrids where both the experiments are cut-off after the simulator runs T
steps. Using the same argument as in the previous claim, we can conclude that
the simulator runs in expected polynomial time in both the experiments. Let
t(n) be an upper bound for the expected running time in both experiments. We
set T to be 2t(n)p(n). Using Markov’s inequality, it holds that the distinguisher
distinguishes the truncated experiments with probability at least 1

2p(n) . We will
show that the adversary A can be used to violate the pseudo-randomness of the
commitments under Com and thus arrive at a contradiction.

Next, following [DSMRV13], we rely on the existence of a committer strategy
C∗ and distributions D0 and D1 such that on input the witness to the puzzle-
statement and a sequence of strings from distribution Db can commit to a value v
such that messages are distributed identically to the honest committer’s strategy
if b = 0 and according to the equivocating strategy if b = 1. In fact one of these
distributions is simply commitments to the bit 0 while the other is a the uniform
random string.

Now consider a simulator S∗ that additionally on input T samples s1, . . . , sT
fromDb, proceeds exactly as inH0 with the exception that for all left interactions
the simulator uses the committer strategy C∗ with samples s1, . . . , sT in the
main and rewinding phase. By construction, it follows that the output of S∗

with samples from Db is identical to truncated version of H0 when b = 0 and
H0 when b = 1. Therefore, by running D on the output of S∗ we can distinguish
D0 from D1 which is a contradiction.

On Adaptively Secure Protocols 469

Claim. hyb0(1n, v1, . . . , vm, z) ≈ hybm(1n, v1, . . . , vm, z)

Proof. Assume for contradiction, there exists an adversary A, distinguisher D,
polynomial p(·) such that, for infinitely many n,D distinguishes the ensembles in
the claim with probability at least 1

p(n) . Recall that in hyb0, the value successfully
decommitted by the adversary in every right interaction is the value extracted by
the simulator. Furthermore, the view output by the simulator in both hyb0 and
hybm are identical since the main execution is simulated in an identical manner.
Hence, if D can distinguish, it must hold that the value extracted in some right
interaction in hybm must not be the value decommitted to by the adversary with
probability at least 1

p(n) . Whenever this happens in an execution in the kth right
interaction, we will say that the adversary cheats in the kth right interaction.
Therefore, given our hypothesis, there must exist an i such that the difference in
probability that A cheats in the kth interaction is at least 1

p1(n)
between hybi−1

and hybi for some polynomial p1(·). Consider a random transcript truncated at
the end the of kth interaction. Then, the simulation strategies of the ith left
interaction according to hybi−1 and hybi in the rewindings must yield different
values extracted in kth right interaction with probability at least 1

p1(n)
. We can

further impose the condition that the adversary has not corrupted or requested
the decommitment of the left ith interaction before the kth right interaction has
completed.7

We now consider truncated experiments hyb
i−1

A and hyb
i

A where the execution
is stopped after the commitment phase of the kth right interaction. We define
the output of hyb

i−1

A and hyb
i

A as the partial view in the main execution and the
value extracted in the kth right interaction.

Recall that the only difference between hyb
i−1

A and hyb
i

A is the simulation
strategies of the ith left interaction in the rewindings. More precisely, the first
i− 1 left interactions are simulated by choosing either a random sample from D
or the actual value (if it has already been decommitted to in the partial view
of the main execution) in both hyb

i−1

A and hyb
i

A, but the ith left interaction is
simulated using a fixed commitment chosen ahead of time in hyb

i−1

A and using a
random commitment from D in hyb

i

A. Observe that, since the adversary cheats
with small probability in hyb

i−1

A , it holds that for random samples chosen for
the first i − 1 left interactions and a fixed commitment for the ith interaction,
the value extracted in the kth right interaction is the same with high probability.
Hence, there must exist particular values v−i, vi and vi such that if the simulator
uses the values v−i and vi for the left interactions (call this experiment E1) and
values v−i and vi in another experiment call it E2, the probability that the
values extracted in the kth right interaction is different in both the experiments
with probability at least 1

p2(n)
for some polynomial p2(·).

7 Conditioned on the the adversary corrupting the ith left party the outputs of hybi−1

A

and hyb
i

A are identical.

470 M. Venkitasubramaniam

We now proceed as in the previous claim where we consider a simulator S∗
1

that with T samples s1, . . . , sT from Db and values v, runs the adversary until
the kth right interaction and rewinds the kth right interaction with values v on
the left. From the indistinguishability of D0 and D1, we can conclude that the
value extracted by the adversary in the kth right interaction must be the same
when the samples come from D0 and D1. By construction, when the samples
s1, . . . , sT come from D0 and values for left interactions are v = v−i ∪ {vi}
the simulation proceeds identical to E1 and when the samples come from D0

and values for left interactions v = v−i ∪ {vi} the simulation is identical to E2.
Let the corresponding experiments when the samples s1, . . . , sT come from D1

and values from v = v−i ∪ {vi} and v = v−i ∪ {vi} be E∗
1 and E∗

2 . In E∗
1 and

E∗
2 all the commitments in the left are honestly generated. So we can consider

corresponding experiments E∗∗
1 and E∗∗

2 where the puzzles are not simulated.
By indistinguishability of D0 and D1, the values extracted from E∗

1 and E∗
2 will

be different with non-negligible probability. By statistical-closeness of the puzzle
simulation we can now conclude that values extracted in E∗∗

1 and E∗∗
2 are sta-

tistically close to E∗
1 and E∗

2 respectively and thus different with non-negligible
probability. We are now ready to violate the stand-alone non-malleability of
〈S,R〉. Observe that in experiments E∗∗

1 and E∗∗
2 all values used in left interac-

tions except the value in the ith left interaction are the same. We now construct a
man-in-the-middle adversary that forwards the ith left interaction and kth right
interaction and this violates the non-malleability of 〈S,R〉.

This concludes the proof of Lemma 1 and Theorem 1.

3.2 Round-Efficient Adaptively Secure UC-Protocols

On a high-level constructing UC-secure protocol proceeds in two steps: (1) First,
every functionality is compiled into a protocol in the Fmcom-hybrid model.8 This
step follows as corollary from previous works [CLOS02, DN00] and the round-
complexity is preserved upto constant factors. (2) In the second step, assuming
the existence of a UC-puzzle and a EQNMCom protocol, any protocol in the
Fmcom functionality can be securely realized in the real-model. This step was
formalized and proved in [DSMRV13] and captured in the following Lemma.

Lemma 2 (Lemma 5[DSMRV13]). Let Π ′ be an tp-round protocol in the
Fmcom-hybrid model. Assume the existence of a tpuz-round adaptive puzzle in a
G-hybrid model, a tc-round EQNMCom protocol 〈S,R〉 and a simulatable PKE
scheme. Then, there exists an O(tp(tpuz + tc))-round protocol Π in the G-hybrid
such that, for every uniform PPT adversary A, there exists a simulator A′,
such that, no environment Z ∈ Cenv can distinguish the real execution with A in
G-hybrid and the simulator A′ in the Fmcom-hybrid.

In [DSMRV13], it was shown how to construct O(1)-round adaptive puz-
zles for various models. In the previous section we showed how to construct a
8 In the Fmcom-hybrid, all parties have access to the ideal commitment functionality

called Fmcom functionality.

On Adaptively Secure Protocols 471

O(1)-round EQNMCOM protocol based on any O(1)-round adaptive puzzle and
one-way functions. Hence for these models, our work combined with previous
Lemma yields an adaptive UC-secure protocol whose round complexity is O(tp).
From previous works [DN00, CLOS02], we know that every well-formed func-
tionality represented as a circuit C, can be realized in the Fmcom-hybrid in O(dC)-
rounds where dC is the depth of the circuit C. Thus, we obtain the following
corollary.

Corollary 31 Assuming the existence of simulatable public-key encryption, any
well-formed circuit C with depth dC can be realized with adaptive UC-security in
O(dC)-rounds

1. in Common Reference String, Uniform Reference String, Imperfect Reference
String (Sunspots) model, and Bounded-Concurrent model, or

2. with Quasi-polynomial Simulation and Non-uniform Simulation

For more details on the puzzle, we refer the reader to [DSMRV13]. We re-
mark that in [DSMRV13], they provide puzzles for the tamper-proof model and
the timing model as well. The simulators for these puzzles are not straight-line
and have been excluded from this work for simplicity. However, analogous to
[DSMRV13], we believe it is possible to extend our result to these models.

4 An ACNMZK Argument

In this section we construct a fully adaptive concurrent non-malleable zero-
knowledge proof based on one-way functions. The construction is inspired by the
CCA-secure commitment scheme in [GLP+12]. Let 〈C,R〉 be a tag-based com-
mitment scheme that is O(1)-robust CCA− secure w.r.t decommitment oracle
O. Let NMCom be a tag-based non-malleable commitment scheme (there exists
O(1)-round protocols for such commitments [LP11b, Goy11]). Let 〈Pswi, Vswi〉
be a public-coin strong-WI argument of knowledge.

We now describe 〈P, V 〉, our fully input-adaptive concurrent non-malleable
zero-knowledge protocol. Protocol ACNMZK for a language L ∈ NP proceeds
in four stages given a security parameter n, a common input statement x ∈
{0, 1}n, an identity id, and a private input w ∈ RL(x) to the Prover.

Stage 1. The Prover commits to w using 〈C,R〉. Let τ1 be the commitment-
transcript.

Stage 2. The Verifier chooses a random string r ∈ {0, 1}n and commits to r
using 〈C,R〉.

Stage 3. The Prover commits to 0n using the NMCom scheme. Let τ2 be the
commitment-transcript.

Stage 4. The Prover proves using 〈Pswi, Vswi〉 that either
– ∃y s.t. y ∈ RL(x) and τ1 is a valid commitment to y as per 〈C,R〉, or
– τ2 is a valid commitment to r as per NMCom

472 M. Venkitasubramaniam

Completeness and Soundness follows using standard techniques. On a high-level,
our simulator-extractor S proceeds in two stages. First we construct an oracle
hybrid-simulator S̃ that incorporate A internally and emulates a man-in-the-
middle interaction with A. S̃ with oracle access to O, will forward all the com-
mitments made by the adversary A in Stage 1 of right-interactions and Stage 2
of left interactions to O. To simulate left interactions S̃ commits to 0n in Stage
1. Upon receiving the decommitment r from O of the commitment made by the
adversary in Stage 2, S̃ will commit to r in Stage 3 using the honest-committer
strategy and use r as the fake witness in Stage 4 WI-proof. Finally S̃ will output
the view of A from its internal emulation along with all the decommitments ob-
tained from O for the Stage 1 commitments made by A in the right interactions.
These will serve as the witnesses corresponding to the statements proved A in
the right-interactions. Using S̃ we construct the actual simulator-extractor S.
This essentially follows from robust CCA-security of 〈C,R〉 w.r.t O. Recall that
0-robust CCA-security implies that for every adversary with oracle access to O
there exists a stand-alone simulator that outputs the same. Applying this to S̃
we obtain S. Proving correctness of the simulator relies on standard techniques
and is presented in the full version. We additionally show in the full version how
to construct a CCA-secure commitment scheme using an ACNMZK protocol.

4.1 Achieving UC-Security with Super-Polynomial Helpers

It follows from the works of [Lin03, Pas04] that constructing UC-secure pro-
tocols for any functionality boils down to realizing the zero-knowledge proof-
of-membership functionality, often referred to as the MemberZK functionality.
Consider an oracle-helper H that will provide proof of any statement (adap-
tively chosen) using the ACNMZK protocol described above to the adversary
but not allow the adversary to use it to prove false statements to honest veri-
fiers.9 We show how to realize MemberZK-functionality in the angel-model where
all parties have access to H. The protocol is simply requiring the prover to use
the ACNMZK protocol to prove the statement.

A subtle issue arises when compiling a protocol in the IdealZK-hybrid to the
MemberZK-hybrid. The security reduction proves that for every adversary that
only sends true statements to the MemberZK-functionality (also known as non-
abusing adversaries) in the MemberZK-hybrid there is a simulator in the IdealZK-
hybrid. This proof inherently assumes that an adversary remains non-abusing
while receiving false proofs. Previous works that follow this paradigm do not
prove this additional requirement when realizing the MemberZK-functionality.10
We remark that our compilation of the protocol in the MemberZK-hybrid using
a ACNMZK-protocol by definition achieves the additional requirement.

9 This can be achieved analogous to [CLP10], by providing the helper with the identity
of corrupt parties and checking the session-id of the interaction before providing the
proof.

10 The result and the constructions presented in these works are nevertheless secure,
since a direct and more cumbersome proof can prove their correctness.

On Adaptively Secure Protocols 473

References

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Pro-
ceedings of the International Congress of Mathematicians, pp. 1444–
1451 (1986)

[BPS06] Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero
knowledge. In: FOCS, pp. 345–354 (2006)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: FOCS, pp. 136–145 (2001)

[CDSMW09] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-
box constructions of adaptively secure protocols. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer,
Heidelberg (2001)

[CFGN96] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-
party computation. In: STOC, pp. 639–648 (1996)

[CIO98] Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-
malleable commitment. In: STOC, pp. 141–150 (1998)

[CKL03] Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of univer-
sally composable two-party computation without set-up assumptions.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86.
Springer, Heidelberg (2003)

[CKOS01] Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-
interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally com-
posable two-party and multi-party secure computation. In: STOC, pp.
494–503 (2002)

[CLP10] Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable se-
curity in the plain model from standard assumptions. In: FOCS, pp.
541–550 (2010)

[CVZ10] Cao, Z., Visconti, I., Zhang, Z.: Constant-round concurrent non-
malleable statistically binding commitments and decommitments. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
193–208. Springer, Heidelberg (2010)

[DDN00] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J.
Comput. 30(2), 391–437 (2000)

[DM00] Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically
secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 74–92. Springer, Heidelberg (2000)

[DN00] Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption
schemes based on a general complexity assumption. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidel-
berg (2000)

[DN02] Damgård, I.B., Nielsen, J.B.: Perfect hiding and perfect binding uni-
versally composable commitment schemes with constant expansion fac-
tor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596.
Springer, Heidelberg (2002)

474 M. Venkitasubramaniam

[DNS04] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J.
ACM 51(6), 851–898 (2004)

[DSMRV11] Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam,
M.: Adaptive and concurrent secure computation from new notions of
non-malleability. IACR Cryptology ePrint Archive, 2011:611 (2011)

[DSMRV13] Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam,
M.: Adaptive and concurrent secure computation from new adap-
tive, non-malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 316–336. Springer,
Heidelberg (2013)

[GLP+12] Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient
concurrently composable secure computation via a robust extraction
lemma. Cryptology ePrint Archive, Report 2012/652 (2012)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental
game or a completeness theorem for protocols with honest majority.
In: STOC, pp. 218–229 (1987)

[GO07] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341.
Springer, Heidelberg (2007)

[Goy11] Goyal, V.: Constant round non-malleable protocols using one way func-
tions. In: STOC, pp. 695–704 (2011)

[Lin03] Lindell, Y.: Bounded-concurrent secure two-party computation without
setup assumptions. In: STOC, pp. 683–692 (2003)

[LP11a] Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adap-
tive inputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292.
Springer, Heidelberg (2011)

[LP11b] Lin, H., Pass, R.: Constant-round non-malleable commitments from
any one-way function. In: STOC, pp. 705–714 (2011)

[LPTV10] Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concur-
rent non-malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 429–446. Springer, Heidelberg (2010)

[LPV08] Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable
commitments from any one-way function. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)

[LPV09] Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for
concurrent security: universal composability from stand-alone non-
malleability. In: STOC, pp. 179–188 (2009)

[LPV12] Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for
UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012)

[LZ09] Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adap-
tively secure oblivious transfer. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 183–201. Springer, Heidelberg (2009)

[OPV06] Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable wit-
ness indistinguishability and its applications. Electronic Colloquium on
Computational Complexity (ECCC) 13(095) (2006)

On Adaptively Secure Protocols 475

[OPV08] Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent
non-malleable zero knowledge in the bare public-key model. In: Aceto,
L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 548–
559. Springer, Heidelberg (2008)

[OPV09] Ostrovsky, R., Persiano, G., Visconti, I.: Simulation-based concurrent
non-malleable commitments and decommitments. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 91–108. Springer, Heidelberg (2009)

[Pas04] Pass, R.: Bounded-concurrent secure multi-party computation with a
dishonest majority. In: STOC, pp. 232–241 (2004)

[PR05] Pass, R., Rosen, A.: Concurrent non-malleable commitments. In:
FOCS, pp. 563–572 (2005)

[PS04] Prabhakaran, M., Sahai, A.: New notions of security: achieving univer-
sal composability without trusted setup. In: STOC, pp. 242–251 (2004)

[PW01] Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems
and its application to secure message transmission. In: IEEE Sympo-
sium on Security and Privacy, p. 184 (2001)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)

[SCO+01] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)

Key-Indistinguishable Message Authentication

Codes�

Joël Alwen1, Martin Hirt1, Ueli Maurer1, Arpita Patra2,��, and Pavel Raykov1

1 Department of Computer Science, ETH Zurich, Switzerland
{alwenj,martin.hirt,ueli.maurer,pavel.raykov}@inf.ethz.ch

2 Department of Computer Science & Automation, IISc Bangalore, India
arpita@csa.iisc.ernet.in

Abstract. While standard message authentication codes (MACs) guar-
antee authenticity of messages, they do not, in general, guarantee the
anonymity of the sender and the recipient. For example it may be easy for
an observer to determine whether or not two authenticated messages were
sent by the same party even without any information about the secret key
used. However preserving any uncertainty an attacker may have about
the identities of honest parties engaged in authenticated communication
is an important goal of many cryptographic applications. For example
this is stated as an explicit goal of modern cellphone authentication pro-
tocols [rGPP12] and RFID based authentication systems [Vau10].

In this work we introduce and construct a new fundamental crypto-
graphic primitive called key indistinguishable (KI) MACs. These can be
used to realize many of the most important higher-level applications re-
quiring some form of anonymity and authenticity [AHM+14a]. We show
that much (though not all) of the modular MAC construction framework
of [DKPW12] gives rise to several variants of KI MACs. On the one hand,
we show that KI MACs can be built from hash proof systems and certain
weak PRFs allowing us to base security on assumptions such as DDH,
CDH and LWE. Next we show that the two direct constructions from the
LPN assumption of [DKPW12] are KI, resulting in particularly efficient
constructions based on structured assumptions. On the other hand, we
also give a very simple and efficient construction based on a PRF which
allows us to base KI MACs on some ideal primitives such as an ideal
compression function (using HMAC) or block-cipher (using say CBC-
MAC). In particular, by using our PRF construction, many real-world
implementations of MACs can be easily and cheaply modified to obtain
a KI MAC. Finally we show that the transformations of [DKPW12] for
increasing the domain size of a MAC as well as for strengthening the
type of unforgeability it provides also preserve (or even strengthen) the
type of KI enjoyed by the MAC. All together these results provide a wide
range of assumptions and construction paths for building various flavors
of this new primitive.

� The unabridged version of this paper appears in [AHM+14b].
�� Work done while the author was at ETH Zurich.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 476–493, 2014.
c© Springer International Publishing Switzerland 2014

Key-Indistinguishable Message Authentication Codes 477

1 Introduction

1.1 Anonymous Authenticity

In many applications preserving anonymity can conflict with other desirable se-
curity properties such as secrecy and authenticity. In [BBDP01,KMO+13] the au-
thors described and analyzed cryptographic primitives providing both anonymity
and secrecy. In particular [BBDP01] define and realize the notion of Key-Private
public key encryption (PKE) which, in addition to the usual secrecy provided
by PKE, also guarantees that an adversary learns nothing about the target pub-
lic key under which a given ciphertext was encrypted. Intuitively this can be
used to provide reciever-anonymous private communication, a concept which
was formalized in [KMO+13].

In this work we address the dual problem of providing anonymity in tan-
dem with authenticity. That is, we focus on the private key setting and define
the notion of a Key-Indistinguishable Message Authentication Code (KI-MAC).
These are MACs which have the added benefit that they reveal nothing about
the keys used to generate the authentication tags. In [AHM+14a] it is shown
how such schemes can be used to realize higher level applications such as anony-
mous authenticated or even secure message transmission and anonymous entity
authentication each in strongly composable way.

1.2 Our Contributions

On the highest level we achieve our goal of constructing KI-MACs in three steps
detailing a modular and flexible approach. First we formally define KI-MACs
via a pair of games and describe some relevant variants thereof. In the sec-
ond step we show that several constructions either based on Learning Parity
with Noise (LPN) assumption or black-box primitives such as hash proof sys-
tems (HPS), certain weak pseudorandom functions (wPRF), and variable input-
length PRFs are KI. From a theoretical perspective the former constructions
allow us to realize KI-MACs from a wide array of number-theoretic assumptions
(beyond LPN) such as the Paillier assumption, DDH, CDH and LWE. From
a practical perspective the PRF construction demonstrates how to base a KI-
MAC on an ideal compression function (using HMAC), an ideal block-cipher
(using CBC-MAC [BPR05] and several of its variable input-length extensions
such as OMAC [IK03], ECBC [BPR05]) or a fixed-input length PRF (using
SS-NMAC [DS09]). In the third step we show that various transformations on
MACs for strengthening their security properties also preserve or strengthen the
flavour of key-indistinguishability provided by the MAC.

We remark that all MAC schemes in this work are (neccesarily) probabilistic
which may be a problem for extremely light-weight computing devices. How-
ever they can easily and generically be translated into stateful but deterministic
parties by using a PRG.1

1 In particular the security proofs for the probabilistic setting then automatically
carry over (at least in a computational sense) by preceding the proof with a hybrid
argument replacing the output of each call to the PRG with fresh random numbers.

478 J. Alwen et al.

Exact Security. All security statements we give come with an exact security
analysis (as opposed to asymptotic ones). We see at least two advantages in
taking this approach. First, such results greatly facilitate comparing the qual-
ity/efficiency trade-off obtained via different constructions especially when based
on the same underlying cryptographic assumptions. A somewhat less common
but equally relevant advantage is that such statements make explicit the bene-
fits obtained by enforcing constraints on the adversary through implementation
choices. Take for example a protocol whose security degrades say in q/ |M|: the
number of times an adversary can interact with a client divided by the size of
the message space supported by a MAC. Normally such a protocol would re-
quire a MAC with at least 160-bit messages to be considered secure. However,
if implemented on hardware which guarantees failure after a limited number of
interactions, say q ≤ 210 (a common assumption in the RFID setting) the MAC
now need only support 100-bit messages potentially reducing the hardware costs
of the resulting implementation significantly.

1.3 Related Work

MACs are one of the most fundamental, common and widely studied primitives
in modern cryptography, especially in practice and a wide variety of construc-
tions have been developed in the past. Most relevant to this work is [DKPW12]
from which most of the MAC constructions and transformations analyzed in
this work are taken (the notable exception being the PRF based construction
of 3.1). That work focuses mainly on theoretical constructions of MACs with the
aim of expanding the class of assumptions upon which we can base our security.
However given practical efficiency constraints and the difficulty in designing se-
cure symmetric key cryptographic primitives much attention has been focused
on constructing secure (variable-input length) MACs from other existing (but
idealized) symmetric key primitives such as block-ciphers [BPR05, IK03], com-
pression functions [Bel06, BCK96a], and even fixed-input length PRFs [DS09].
Indeed, some of these have found wide acceptance in practice [Nat], however we
stress that none of these constructions result in KI-MACs as they all result in
deterministic MACs which trivially can not be key-indistinguishable.

On the other hand cryptographic applications ensuring anonymity have al-
most exclusively been studied in the context of interactive protocols and are
therefore tailored to specific applications rather than providing a general tool
with which anonymous applications can be constructed. The most relevant exam-
ple to this work being [AHM+14a] which investigates how KI-MACs can be used
in higher level protocols to construct various idealized multi-user anonymous
functionalities. Some other notable examples are [Vau10, HPVP11, DLYZ11,
BLdMT09,BM11] which primarily focus on entity authentication (often based
on lite-weight RFID cards) and [AMRR11, TM12, AMR+12, LSWW13] which
focus specifically on the requirements of mobile phone network communication
protocols.

The most important exception to this trend is the work of [BBDP01] which
investigates PKE schemes that additionally hide all information about which

Key-Indistinguishable Message Authentication Codes 479

public key was used to encrypt a given ciphertext. This is motivated by the
higher level application of receiver-anonymous private message transmission as
formalized in [KMO+13].

1.4 Outline

In Section 2 we review various existing and some new security notions for
MAC schemes. In Section 3 we investigate a variety of constructions of vary-
ing strengths (and their consequences) based on both black-box and number-
theoretic assumptions. Finally in Section 4 we describe how to strengthen the
security properties of KI-MACs via some black-box transformations.

2 Definitions

We review some variants of MACs and define the new property of KI.
A message authentication code MAC = {KG, TAG, VRFY} is a triple of algorithms

with associated key space K, message space M, and tag space T .

– Key Generation. The probabilistic key generation algorithm k ← KG(1λ)
takes as input a security parameter λ ∈ N (in unary) and outputs a secret
key k ∈ K.

– Tagging. The probabilistic authentication algorithm τ ← TAGk(m) takes as
input a secret key k ∈ K and a message m ∈M and outputs an authentica-
tion tag τ ∈ T .

– Verification. The deterministic verification algorithm VRFYk(m, τ) takes as
input a secret key k ∈ K, a message m ∈ M and a tag τ ∈ T and outputs
an element of the set {Accept, Reject}.

Next we define some useful properties such a triple of algorithms can have such
as completeness and unforgeability. We also discuss two further less common
security notions for MACs, called message hiding and key indistinguishability
which can only be achieved by randomized MACs. While the former notion was
already introduced in [DKPW12], the latter is defined for the first time in this
work.

Completeness. We say that MAC has completeness error η if for all m ∈ M
and λ ∈ N,

Pr[VRFYk(m, τ) = Reject : k ← KG(1λ), τ ← TAGk(m)] ≤ η.

Unforgeability. We recall the standard notion security for (randomized)
MACs; namely unforgeability under a chosen message (and verification) attack
(uf-cmva). We denote by Advuf-cmva

MAC (A, λ), the advantage of the adversary A in
forging the message for a random key k ← KG(1λ). Formally it is the probability
that the following experiment outputs 1.

480 J. Alwen et al.

Experiment. Expuf-cmva
MAC (A, λ)

– k ← KG(1λ)
– Invoke ATAGk(·),VRFYk(·,·).
– Output 1 if A queried (m∗, τ∗) to VRFYk(·, ·) s.t. VRFYk(m

∗, τ∗) = Accept and
A did not receive τ∗ by querying m∗ to TAGk(·).

The above experiment can be weakened in several ways to obtain useful vari-
ants. In the selective unforgeability (suf-cmva) notion defined in [DKPW12],
A has to specify the target message m∗ before making any queries to the or-
acles in Expuf-cmva

MAC (A, λ). A yet weaker notion called universal unforgeability
(uuf-cmva) requires the adversary to produce a fresh tag for a uniform random
message m∗ ← M given as input to the adversary. We call the modified ex-
periments Expsuf-cmva

MAC and Expuuf-cmva
MAC , respectively. Another way in which the

{uuf, suf, uf}-cmva security notions can be weakened is to restrict the adver-
sary A to making only a single query to the verification oracle.2 To denote the
resulting security notions we write {uuf, suf, uf}-cma respectively.3 Finally, if
the winning condition of the experiment is to ask only those m∗ that have not
been previously queried to TAGk(·) then we refer to the resulting notion as weakly
unforgeable while referring to the more stringent security notions as strong. In
particular the {suf, uf}-{cma, cmva} definitions in [DKPW12] are all weak vari-
ants. In general in this work unless stated otherwise we always mean the strong
variants.

We refer to an efficient (i.e. PPT) adversary A playing a cmva type experi-
ments as a (t, qt, qv)-adversary if it runs in time at most t, and for any pair of
oracles with a fixed key A makes at most qt tag and qv verification queries.

Definition 1 (Unforgeability). A MAC scheme is (strongly) (t, qt, qv, ε)-
uf-cmva secure if for any (t, qt, qv)-adversary A we have:

Advuf-cmva
MAC (A, λ) := Pr[Expuf-cmva

MAC (A, λ) → 1] ≤ ε.

It is (t, qt, ε)-uf-cma secure if it is (t, qt, 1, ε)-uf-cmva secure.

We omit the analogous definitions for the suf, and uuf variants with and
without verification queries detailed above. From these definitions it is imme-
diate that for any t, qt, qv ∈ N and ε ≥ 0 the following relation holds for both
strong and weak variants: (t,qt,qv,ε)-uf-cmva =⇒ (t,qt,qv,ε)-suf-cmva =⇒
(t,qt,qv,ε)-uuf-cmva. Further, as observed in [DKPW12], every weakly
(t, qt, ε)-suf-cma MAC is also weakly (t, qt, ε2

μ)-uf-cma secure where |M| = 2μ,
since the adversary can guess in advance for which message it can mount the
forgery attack. The same observation holds for strong unforgeability.

2 Note that this is only a meaningful restriction for MACs with a randomized tag-
ging algorithm since a deterministic tagging algorithm can trivially be used as a
verification oracle.

3 Equivalently we sometimes speak of the adversary simply having no access to the
verification oracle and instead outputting an attempted forgery at the end of her
execution in the cma type experiments.

Key-Indistinguishable Message Authentication Codes 481

Key Indistinguishability. Intuitively, the notion of key indistinguishability
(KI) ensures that tags leak no information about the secret key (or more gen-
erally the internal state of the tag algorithm). Indeed this permits the use of
KI-MACs in implementing higher level anonymous authentication applications
as detailed in [AHM+14a]. We note that such a property is not implied by even
the strongest of unforgeability notions defined above.4

To capture the desired intuition we define a game where an adversary is given
access to two sets of oracles. Its goal is to determine if the two sets use the
same key or two independent random keys. To formalize this we introduce some
notation. For keys k0, k1 ∈ K we write [k0, k1] to denote the 4-tuple of oracles
(TAGk0 , VRFYk0 , TAGk1 , TAGk1). Moreover we write [k0, k0] to denote a similar 4-
tuple but where the TAG oracles share their entire internal state including secret
key (and similarly for the VRFY oracles). In other words, calls to the first and
third oracle of [k0, k0] are answered by essentially the same oracle (and similarly
for the second and fourth oracle).5

Experiment. Expki-cmva
MAC (A, λ)

– k0, k1 ← KG(1λ), c← {0, 1}
– Sample output c′ ← A[k0,kc].
– If a tag obtained from the left oracle (namely TAGk0) was verified using the

right verification oracle (namely VRFYkc) or vice versa, then output a uniform
random bit.

– Otherwise if c = c′ output 1 and 0 otherwise.

As usual, in the above experiment we have made a non-triviality constraint;
namely that A is not allowed to make a verification query (m, τ) to the right
oracle VRFYkc if τ was obtained from the left oracle TAGk0 for message m (and
vice versa).

As before in the following definition we say that an adversary A is a (t, qt, qv)-
adversary if it runs in time at most t and for each pair of oracles with a given key
makes at most qt tag and qv verification queries. So in total such an adversary
can make up to 2qt tag queries namely by making qt queries to TAGk0 and TAGkc .

4 Indeed this is not difficult to see. For example we can modify any (say strongly
ufcmva) unforgeable scheme as follows such that it is clearly not KI yet maintains
its original unforgeability property. We double the key size, use the first half of the
key in conjunction with the original TAG algorithm to tag the message and then
append the second half of the key to the resulting tag. Clearly the scheme remains
unforgeable however yet it is trivial to tell apart tags issued under different keys.

5 For stateful MACs it is important that the full state (and not just the secret key) be
shared between matching oracles in [k0, k0]. Suppose we have a secure MAC which
hides all information about the secret keys. We can modify the TAG algorithm to
keep a counter which is appended to each tag τ . Clearly the scheme still hides all
information about the secret key. However it is unclear how such a scheme might be
used to achieve anonymity. Indeed it is trivial to tell say the 10th tag issued for key
k0 from the 3rd tag issued for different key k1.

482 J. Alwen et al.

Definition 2 (Key Indistinguishability). A MAC scheme is (t, qt, qv, ε)-
ki-cmva secure (informally: key hiding) if for any (t, qt, qv)-adversary A we have:

Advki-cmva
MAC (A, λ) := 2

∣∣∣Pr[Expki-cmva
MAC (A, λ) → 1]− 1

2

∣∣∣ ≤ ε

Moreover if MAC is (t, qt, 0, ε)-ki-cmva then we call it (t, qt, ε)-ki-cma secure. In
particular in the ki-cma experiment we simply omit all verification oracles.

Multi-key KI Implies Plain KI. A possible extension of the KI notions involves
giving the adversary access to n-tuples of pairs of oracles where either each
of the pairs have their own states (and keys) or else all pairs share the same
state. Indeed such a notion arises quite naturally in the context of a multi-user
anonymous protocols as in the real world the adversary observes tags computed
under many different states (one for each of the n users). Yet in the ideal and
perfect anonymous world the simulator uses the same state to answer all queries.

It turns out that (just as in the case for multi-message CPA encryption) the
“one-key” KI notions defined above already implies such a multi-key variant with
only a minimal loss of security. (Indeed this is implicitly proved in [AHM+14a].)
As has been argued for CPA security, we view this as a further justification for
the format of the KI notion defined above.

Message Hiding. Finally we require the somewhat non-standard security notion
for MACs called message hiding (under chosen message attacks) [DKPW12]
which we denote by ind-cma. In that work it is shown how message hiding
MACs with (weak) unforgeability properties can be strengthened via a generic
transformation. In this work we show that the same transformation preserves
any KI properties the MAC may have. The formal definition of message hiding
can be found in [AHM+14b].

3 Constructing Key Indistinguishable MACs

In this section we prove that various known constructions and transformations
for MACs achieve KI. These results may be viewed as analogous to [BBDP01]
with the difference that we consider the symmetric key MACs instead of public-
key encryption. We now provide a more detailed overview of our results and their
relations in Figure 1. The letters “s” and “w” in the figure are used to denote
the strong and weak unforgeability variants respectively. The figure consists of
three columns. In the first column (AES, DDH, LWE, LPN) we put the un-
derlying cryptographic assumptions upon which security is based. In the second
column (HPS, PRF, weak PRF) we put common cryptographic primitives which
the MAC constructions use in a black-box manner. In particular they may be
implemented using the assumptions which are presented in the first column or
any other computational problems. In the third column each box represents a
generic MAC scheme characterized by the type of security it provides. Arrows
from assumptions and primitives to such a box denote a particular construction.

Key-Indistinguishable Message Authentication Codes 483

AES

DDH

LWE

LPN

HPS

PRF

weak
PRF

w ufcma, indcma, kicma

s ufcmva, kicmva

s ufcmva, kicma

w sufcma, indcma, kicma

[BPR05]

[NR97]

[D
KPW12]

[DKPW12][BPR12]

[DKPW12]

Constr. 1

Con
str

. 1

[AHM+
14b]

[AHM+
14b]

[AHM+14b]

[AHM+14b]

Constr
. 2

[AHM+14b]

Observed
in [DKPW12]

Section 4.1

Domain
Extension

(Section 4.1)

Fig. 1. Obtaining MACs from different assumptions

Additionally arrows between the generic MAC schemes represent transforma-
tions used to strengthen the security properties of MACs.

In the remainder of this section we detail two constructions (one from a PRF
and one from the LPN assumption) and briefly describe three other construc-
tions.

3.1 From PRFs

PRFs trivially give rise to deterministic MACs (simply by recasting them as the
TAG algorithm). However deterministic MACs can not be key indistinguishable
(even if they are only weakly universally unforgeable). Thus we now show an
alternative construction called MACPRF that is {uf, ki}-cmva. It is very efficient
in practical terms (requiring a single call to the underlying PRF) while obtain-
ing the strongest forms of unforgeability and key indistinguishability. Thus it
represents potentially the most practically relevant of the construction meth-
ods of KI MACs detailed in this paper. In particular the PRF can be instanti-
ated based on an block cipher using say CBC-MAC [BCK96b], OMAC [IK03]
or ECBC [BPR05] modes of operation or using a compresion function via the
HMAC [Bel06, BCK96a] construction. Alternatively, from a theoretical stand-
point the PRF can also be based on a variety of well studied number theoretic
assumptions such as the DDH family of assumptions [NR97, DY05] or LWE
(using PRF from [BPR12]).

Pseudorandom Function Family (PRF): A PRF is a family of functions
with the property that the input-output behavior of a random instance of the
family is computationally indistinguishable from that of a random function.

484 J. Alwen et al.

Definition 3 (Pseudorandom Functions). For arbitrary domain X and
range Y let R denote the set of functions from X to Y. Moreover let PRF :=
{fk : X → Y}k∈K be a set of efficiently computable functions indexed by key
space K. Then we call PRF a (t, q, ε)-secure PRF if for any (t, q)-adversary A
(running in time at most t making at most q queries)

Advprf
PRF(A, λ) :=

∣∣∣Prk←K
[
Afk(·) → 1

]
− PrR←R

[
AR(·) → 1

]∣∣∣ ≤ ε.

For security parameter λ ∈ N, let M = M(λ) be a message space and X =
X (λ) be an arbitrary space such that |X | ≥ 2λ. The construction makes use of
pseudorandom function PRF = {fk :M×X → Y}k∈K, that is, the domain of PRF

is the set M×X .

Construction 1 (MAC from PRF: MACPRF)
System Parameters: The key space is K, message space is M and tag space
is T = Y × X .

Key Generation: The key generation algorithm KG(1λ) samples k ← K and
outputs k as the secret key.

Tagging: The tagging algorithm TAGk(m) samples r ←R X , runs z = fk(m, r)
and returns tag (r, z).

Verification: The verification algorithm VRFYk(m, (r, z)) outputs Accept if
fk(m, r) = z. Otherwise it outputs Reject.

Theorem 1. For any t, qt, qv ∈ N, ε > 0, if PRF is a (t, qt+qv, ε)-secure, (t, 2(qt+
qv), ε)-secure and (t, 2qt, ε)-secure then for t ≈ t′ we have that:

– MACPRF has completeness error η = 0.
– MACPRF is strongly (t′, qt, qv, ε+

qv
|Y|)-uf-cmva secure.

– MACPRF is (t′, qt, qv, 4ε+
4q2t
|X | +

2qv
|Y|)-ki-cmva secure.

– MACPRF is (t′, qt, 4ε+
4q2t
|X |)-ki-cma secure respectively.

Proof. The completeness follows by inspection of the scheme and the fact that
all functions in PRF are deterministic.

Strong uf-cmva Security. To prove this we build a reduction to the security of
underlying PRF. Let A be a (t, qt, qv)-adversary interacting with Expuf-cmva

MAC . We
give a reduction R(A) whose advantage in the prf experiment implies an upper
bound on the advantage of A. The reduction R expects oracle O and emulates
the experiment Expuf-cmva

MAC (A, λ) with the caveat that it uses O in place of PRF to
implement the tag and verification oracles. Finally R outputs 1 if A ever makes
a forgery query to the verification oracle; that is a query (m∗, (r∗, z∗)) such that
z∗ = O(m∗, r∗) and (r∗, z∗) was not obtained in response to a tag oracle query
for message m∗. Otherwise R outputs 1. We note that R makes at most qt + qv
queries to O(·) in order to simulate Expuf-cmva

MAC to A. We bound the probability
Pr[R→ 1] for the two possible types of oracle O.

Key-Indistinguishable Message Authentication Codes 485

Case O = f : When O is a PRF (with random key) R perfectly simulates
Expuf-cmva

MAC (A, λ). Therefore: Pr[Rf → 1] = Advuf-cmva
MAC (A, λ).

Case O = R: Suppose O is a random function R and A makes q forgery at-
tempts for message m∗ of the form (m∗, r∗, z1), . . . (m

∗, r∗, zq). Then the
probability that for some i it holds that zi = R(m∗, r∗) is q

|Y| . Moreover, if the

forgery attempts involve more than one value of (m∗, r∗) then the probabil-
ity of succesful forgery is even smaller. Thus after qv verification attempts a
forgery has occured with probability at most qv

|Y | . That is: Pr[R
R → 1] ≤ qv

|Y| .

Summing up, we have ε ≥ Advprf
PRF(R, λ) =

∣∣Pr[Rf → 1]− Pr[RR → 1]
∣∣ ≥

Advuf-cmva
MAC (A, λ)− qv

|Y| or Advuf-cmva
MAC (A, λ) ≤ ε+ qv

|Y| .

ki-cmva and ki-cma Security. Recall that the ki-cmva game involves two pairs
of TAG and VRFY oracles associated with key k0 and k1 respectively. We define two
experiments closely related to Expki-cmva

MAC incrementally replacing the responses
to tag and verification queries with responses that would be outputted when
PRFs are replaced with random functions (i.e. independent of key for that ora-
cle). As a result we obtain a ki-cmva-like experiment where both the pairs of TAG

and VRFY oracles are implemented with a pair of random functions instead of a
pair of PRFs. Subsequently we introduce another hybrid experiment where the
responses to any non-trivial query to any of the verification oracle is immedi-
ately replied with Reject. This results the final experiment to be same as ki-cma
experiment where both the TAG oracles are implemented with random functions.
We prove the differences of the advantages of the hybrids are negligible and also
prove that (unconditionally) the advantage in the ki-cma using truly random

functions is
2q2t
|X | .

More precisely, for parameters λ ∈ N and any (t, qt, qv)-adversary A we define
the experiment Exp0 := Expki-cmva

MAC (A, λ). Let experiment Exp1 be identical to
Exp0 except for that any tag and verification query for the oracles associated
key k0 are responded after replacing the PRF with key k0 with an random
function R0. Let Exp2 be identical to Exp1 except that also tag and verification
queries for k1 are responded after replacing the PRF with key k1 with an random
function R1. Finally let Exp3 is identical to Exp2 except that all the non-trivial
verification queries are immediately responded with Reject without performing
any verification.

For i ∈ [0, 3] we write εi := Adv
Expi

MAC (A, λ) to denote the respective advantages
of A at winning these experiments. Bellow we prove that |ε0 − ε1| ≤ 2ε. An almost
identical argument will apply for |ε1 − ε2|. We show that |ε2 − ε3| ≤ 2qv

|Y| holds

unconditionally. Finally, the proof that ε3 ≤ 4q2t
|X | holds implies the result, as

|ε0 − ε3| ≤ 2ε+ 2qv
|Y| implies ε0 = 4ε+

4q2t
|X | +

2qv
|Y| .

Claim 1. |ε0 − ε1| ≤ 2ε.

Proof. Given A we define reduction R interacting with the prf experiment with
access to oracles O as follows. Internally it runs Expki-cmva

MAC (A, λ) by sampling a

486 J. Alwen et al.

random PRF f and then simulating TAG0, VRFY0 using O(·) and TAG1, VRFY1 using
f . Finally if A wins then R outputs 0, otherwise it outputs 1. We note that O(·)
might be queried 2(qt + qv) times in total when the bit c in ki-cmva experiment
is chosen to be 0. This is the reason why we require the underlying PRF to be
(t, 2(qt + qv), ε)-secure.

Suppose now that O = fk for a random k ∈ K. Then the view of A is
exactly that generated in Exp0. Therefore it must be that Pr[Rfk → 0] = ε0

2 +
1
2 . On the other hand, if O = R is a random function then the view of A is
identical to Exp1. This implies that Pr[RR → 0] = ε1

2 + 1
2 . Together, it implies∣∣Pr[Rfk → 0]− Pr[RR → 0]

∣∣ = |ε0−ε1|
2 . Due to the security of PRF, it now follows

that |ε0−ε1|
2 ≤ ε or |ε0 − ε1| ≤ 2ε.

��

Claim 2. |ε2 − ε3| ≤ 2qv
|Y| .

Proof. The only way A will behave differently in Exp2 and Exp3 is if she is
able to produce a non-trivial query to any of the verification oracles that is
accepted. I.e it makes a query (m, (r, z)) to a verification oracle using function
f such that f(m, r) = z. Since both the pairs of oracles in the experiments are
implemented with a pair of random functions and A has not seen the output of
the random functions at point (m, r) the probability that she can produce the
correct z is 1

|Y| . Thus via a hybrid argument over all verification queries we have

that |ε2 − ε3| ≤ 2qv
|Y| . ��

Claim 3. ε3 ≤ 4q2t
|X | .

Proof. Our goal is to bound the advantage ε3 of any adversary A for experiment
Exp3; that is the experiment where two random functions R0 and R1 are used in
place of PRFs for replying TAG queries and all the non-trivial verification queries
are responded with immediate Reject. We define an event for which we can
show that on the one hand if the event does not occur then the adversary has
little chance of winning and moreover the event occurs with only a very small
probability.

First we observe that in the experiment if the bit c is chosen to be 0 then R0

is queried up to 2qt times via tag oracles (and R1 not at all) or, when c = 1,
then both R0 and R1 are queried at most qt via the respective tag oracles. Now
consider calls to R0 and R1 (in Exp3) made through the tag oracles. Each such
call has the form (m, r), where A choosesm but r is sampled uniformly at random
from X . Two such calls (m, r) and (m′, r′) are said to collide if (m, r) = (m′, r′).
We define the event C to occur when A produces output in Exp3 and at least
one pair of colliding calls was made. Then we see that conditioned on C not
occurring the view of A in Exp3 is independent of bit c which it must guess.
Consequently we have Pr[Exp3 = 1|¬C] = 1

2 .
It remains to bound Pr[C]. During each of 2qt queries r is chosen indepen-

dently and uniformly at random. So Pr[C] is same as the probability that an

Key-Indistinguishable Message Authentication Codes 487

r ∈ X is picked at least twice in these 2qt queries, where there are |X | possibili-
ties for r. We note that Pr[C] ≤ (2qt2)

|X | ≤ 2q2t
|X | . Now, we estimate the probability

of A in winning Exp3.

ε3 = 2

∣∣∣∣Pr[Exp3 = 1]− 1

2

∣∣∣∣ =
2

∣∣∣∣∣∣∣|Pr[Exp3 = 1 | C] · Pr[C]︸ ︷︷ ︸
≤Pr[C]

+Pr[Exp3 = 1 | ¬C] · Pr[¬C]︸ ︷︷ ︸
= 1

2 (1−Pr[C])

−1

2

∣∣∣∣∣∣∣ ≤ Pr[C]

��

The proof for ki-cma follows from the above proof for ki-cmva where there is
no verification oracles throughout and therefore experiments Exp2 and Exp3

become identical leading to the removal of the term 2qv
|Y| from the security pa-

rameter of ki-cma. ��

3.2 From LPN

We now analyze the KI properties of the MACLPN construction based directly on
the LPN assumption taken from [DKPW12] where it was shown to be ind-cma
and wealky uf-cma secure. We show that aditionally it is also ki-cma. The
resulting scheme is the most efficient of the constructions based on number-
theoretic assumptions analyzed in this work.

LPN and SLPN* Assumptions: Following [Pie12], we briefly recall the LPN
assumption defining it as a special case of the SLPN* assumption. Let Un be the
uniform distribution over Zn

2 , Bτ be the Bernoulli distribution with parameter
τ and Bnτ be the n-dimensional Bernoulli distribution.6 For a vector x ∈ Zn

2 we
denote by xT the transpose of x. Moreover for a vector a ∈ Zn

2 we denote by
hw(a) the hamming weight of a. We write a ∧ b for the component wise AND
and a↓b for the vector obtained from a by removing all components ai of a where
bi = 0.

For � ∈ N, τ ∈ (0, 12) and s ∈ Z�
2 define SLPN* oracle Γτ,�,d(s, ·) to take input

vectors v ∈ Z�
2 and return ⊥ if hw(v) < d. Otherwise the oracle samples fresh

vector r according to U� and bit e according to Bτ and outputs (rT, rT(s∧v)+e)7.
On the other hand the oracle U�+1,d(·), on input v ∈ Z�

2 outputs ⊥ if hw(v) < d.
Otherwise it outputs a fresh sample from U�+1.

For t, q ∈ N we call a PPT oracle machine A a (t, q)-adversary if it runs in
time at most t making at most q queries and produces binary output.

The SLPN∗
τ,�,d assumption is said to be (t, q, ε)-hard if for secret s sampled

according to U�+1 the distinguishing advantage between oracles Γτ,�,d and U�+1,d

6 That is the distribution over Zn
2 where each bit is chosen independently according

to Bτ .
7 The second component is same as rT↓vs↓v + e

488 J. Alwen et al.

of any (t, q)-adversaries is at most ε. Similarly, the LPNτ,� assumption is (t, q, ε)-
hard if no (t, q)-adversary can distinguish oracles Γτ,�,� and U�+1,� with greater
then probability ε.

Roughly speaking, it was shown by Pietrzak in [Pie12] that the LPN implies
the SLPN*.8

Lemma 1 ([Pie12]). If the LPNτ,d is (t, q, ε)-hard then for any δ ∈ N the
SLPN∗

τ,�,d+δ is (t′, q, ε′)-hard where t′ = t− poly(q, �) and ε′ = ε+ q
2δ
.

We now turn to the second construction from [DKPW12] which was (implic-
itly) shown to be ind-cma and weakly uf-cma secure in [KPC+11]. Bellow we
prove it to be ki-cma secure.

Construction 2 (MAC from LPN: MACLPN)
System Parameters: Parameter τ ∈ (0, 12) and � ∈ N which control the
security quality, and parameters τ ′ = 1/4 + τ/2 and n ∈ N which controls
the correctness error. Finally parameter α ∈ N controls the message length.

The resulting key space is K = Z(�+1)×α
2 , the message space is M = Zα

2 and

the tag space is T = Z(�+1)n
2 .

Key Generation: Algorithm KG(·) samples X ← Z�×α
2 and x̄ ← Z�

2 both
uniformly and outputs secret key (X, x̄).

Tagging: For message m and secret key s = (X, x̄) the algorithm TAGs(m)
first samples R ← Z�×n

2 uniformly and e according to Bnτ . Then it outputs
tag σ = (R,RT · (X ·m+ x̄) + e).

Verification: To verify tag σ = (R, z) ∈ Z�×n
2 ×Zn

2 with secret key s = (X, x̄)
the algorithm VRFYs(m, σ) outputs Accept if and only if hw(RT · (X ·m +
x̄)− z) ≤ τ ′n.

Theorem 2. If LPNτ,� is (t, q, ε)-hard then MACLPN is (t, q2 , 2ε)-ki-cma secure.

Proof. At its core the proof relies on a pair of reductions to the LPNτ,� prob-
lem. In a few words the LPN assumption tells us that for a given tagging key
(component) x̄ we can replace all terms of the form RT · x̄+ e in all tag queries
with fresh uniform random elements from Zn

2 . By doing this for both keys in
the ki-cma game we obtain an experiment in which the bit c being guessed by
adversary remains hidden from her view.

More precisely we define three experiments and show that on the one hand
for any fixed adversary their outcomes are computationally indistinguishable and
on the other hand all adversaries have no advantage at winning the third game.
In fact we define experiments Exp0,Exp1 and Exp2 exactly as in that proof
except that the construction MACLPN is used. For example to answer tag queries

for key k0 in Exp1 simply returns a fresh uniform sample from Z(�+1)n
2 while

tag queries for key k1 are answered using the TAG algorithm of MACLPN.
Using the same notations of the previous proof, we observe that ε2 = 0 which

holds unconditionally since in Exp2 the view of any adversary is information

8 Actually a stronger result was shown, namely that the subspace-LPN assumption
(which implies the SLPN*) is implied by the LPN.

Key-Indistinguishable Message Authentication Codes 489

theoretically independent of the bit c which it is trying to guess. Thus it remains
only to show that |ε0 − ε1| and |ε1 − ε2| (defined just as before) can be at most
ε if the LPNτ,� is (t, q, ε)-hard.

Claim |ε0 − ε1| ≤ ε: We reduce the the LPNτ,� assumption with the following
reduction R which has access to an oracle O that is either and LPN oracle
or a uniform oracle. The reduction emulates an experiment internally to A
and outputs 1 if and only if A wins. The experiment is identical to Exp0

except for the following:

1. Instead of generating k0 according to KG(1λ) it only samples and stores
X← Z�×α

2 .
2. When a tag query m ∈ Zα

2 for key k0 is made R first obtains n fresh
samples {(ri, bi) ∈ Z�+1

2 }i∈[n] from O. Let R ∈ Z�×n
2 be the matrix

whose ith column is ri and b ∈ Zn
2 be the vector whose ith bit is bi. Then

R returns the tag (R,RT ·X ·m+ b).

We claim that if O is an LPNτ,� oracle with secret x then R has perfectly
emulated experiment Exp0 with key k0 = (X,x). This follows from the
calculation:

RT ·X ·m+ b = RT ·X ·m+RT · x+ e = RT · (X ·m+ x) + e

which implies that Pr[R→ 1] = ε0 for such an oracle.
On the other hand if O is a uniform oracle then in particular b is uniformly
and independently distributed for each tag query. Thus all valuesRT ·X·m+
b are also uniformly and independently distributed exactly as in experiment
Exp1. It follows that Pr[R→ 1] = ε1 when O is uniform.
Taken together we can conclude that |ε0 − ε1| ≤ ε. Moreover the reduction
makes at most 2q queries to O.9

Claim |ε1 − ε2| ≤ ε: Once again an almost identical argument applied to k1 to
the previous case also proves this claim.

3.3 Further Constructions

We briefly detail three further constructions which we prove KI in the full version
of this paper [AHM+14b].

From the SLPN* Assumption. We also analyze the construction MACSLPN∗ based
on the SLPN* assumption of [DKPW12] which was (implicitly) shown to be
ind-cma and weakly suf-cma secure in [KPC+11]. In the full version of this
work [AHM+14b] we prove that it is also ki-cma secure based on the related Sub-
set LPN (SLPN*) assumption which can be efficiently reduced to the more stan-
dard LPN assumption [Pie12]. The two LPN based schemes MACLPN and MACSLPN∗

9 This occurs in the case when A makes q queries to both left and right oracle and
c = 0 in the emulated Exp1 experiment

490 J. Alwen et al.

are somewhat incomparable. On the one hand MACLPN provides a stronger un-
forgeability property and comes with a tighter reduction to the LPN assumption.
On the other hand MACSLPN∗ enjoys a smaller key size (though less efficient tag-
ging operation) and can be instantiated with a comparatively smaller value of
the security parameter to achieve the same level of security.

From Hash Proof Systems. In [AHM+14b] we also show that the MAC con-
struction MACHPS given in [DKPW12] based on any labeled hash proof systems
HPS is also ki-cma secure. The scheme has been shown to be weakly uf-cmva
secure. Using a slightly stronger notion of a HPS, the proof for weak uf-cmva
goes through unchanged resulting in the same parameters for strong uf-cmva
security. This scheme provides the most efficient KI MAC in this work based on
DDH assumption.

From Key-Homomorphic Weak PRFs. We show that the MAC construction
MACkhwPRF of [DKPW12] based on any key-homomorphic weak PRF is ki-cma
secure. The scheme has been proven to be weakly suf-cma secure. In [DKPW12]
an extension of the wPRF construction is provided which makes use of Waters’
argument [Wat05] to achieve weak uf-cma (and ind-cma) security at the cost
of a somewhat less efficient scheme. We also observe that the modified scheme
is ki-cma secure following essentially same argument that we use for the former
wPRF based construction. As observed in [DKPW12] both DDH assumption and
the LWE assumptions can (for example) be used to directly instantiate efficient
key-homomorphic wPRF families.

4 Transformations for Strengthening MACs

We describe several transformations for strengthening the security properties of a
MAC. All but one of the transformations were originally described in [DKPW12].
In this work we show that not only do they achieve their intended goal of pro-
ducing MACs with better unforgeability properties but they also preserve the
underlying KI property. Moreover we show that the most important such
transformation even achieves a stronger unforgeability notion (namely strong
uf-cmva) then originally claimed.

4.1 Adding Support for Verification Queries

We show how to add security in the face of verification queries while preserving
KI by giving a full path from any weakly {uf, ind, ki}-cma secure MAC to a
strongly {uf, ki}-cmva secure one.

Verification Queries for Unforgeability. In [DKPW12] the authors present
a very efficient transformation which maps any weakly {uf, ind}-cma secure
scheme MAC to a weakly uf-cmva secure scheme MAC. We show that the transfor-
mation achieves more namely the resulting MAC is even strongly uf-cmva se-
cure. Indeed the original proof goes through unchanged also for the the stronger

Key-Indistinguishable Message Authentication Codes 491

statement. We also show that the same transformation also preserves the ki-cma
security of the underlying MAC.

Verification Queries for KI. The above result shows that for certain MACs
we can strengthen the type of unforgeability supported while preserving the KI
property. Next we show that any (strong) uf-cmva and ki-cma secure MAC is
also ki-cmva secure. Together these results provide a full path from any weakly
{uf, ind, ki}-cma secure MAC to a strongly {uf, ki}-cmva secure one.

Theorem 3 (uf-cmva + ki-cma =⇒ ki-cmva). For any t, qt, qv ∈ N and
ε1, ε2, η > 0, if MAC is:

– (t, qt, qv, ε1)-uf-cmva (strongly existentially unforgeable with verification
queries)

– (t, qt, ε2)-ki-cma (key indistinguishable)
– and has completeness error η

then MAC is (t′, qt, qv, 4ε1 + ε2 + 4min(qt, qv)η)-ki-cmva secure where t′ ≈ t.

For a proof of the theorem we refer the interested reader to the full version of
this work [AHM+14b].

KI Preserving Domain Extension. Recall that (for both weak and strong
variants) an suf-cma secure MAC is also uf-cma secure albiet at a cost of degrad-
ing security by a multiplicative factor of 2μ = |M|; the size of the message space.
In order to keep this 2μ factor small, we start with (t, qt, ε)-suf-cma MAC with
very small message space and then after recasting it as uf-cma secure scheme
we can apply the domain extension transformation of [DKPW12] to grow the
message space. In the full version [AHM+14b] we show that the transformation
also preserves the KI of the original scheme as long as the original MAC is also
ind-cma secure (though not necessarily unforgeable in any sense).

References

[AHM+14a] Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Anonymous
authentication with shared secrets. Cryptology ePrint Archive, Report
2014/073 (2014), http://eprint.iacr.org/

[AHM+14b] Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Key-
indistinguishable message authentication codes. Cryptology ePrint
Archive, Report 2014/107 (2014), http://eprint.iacr.org/

[AMR+12] Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M., Golde, N., Redon,
K., Borgaonkar, R.: New privacy issues in mobile telephony: fix and
verification. In: ACM Conference on Computer and Communications
Security, pp. 205–216. ACM (2012)

[AMRR11] Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M.: Formal analysis of
umts privacy, CoRR abs/1109.2066 (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/

492 J. Alwen et al.

[BBDP01] Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in
public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 566–582. Springer, Heidelberg (2001)

[BCK96a] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for
message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 1–15. Springer, Heidelberg (1996)

[BCK96b] Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revis-
ited: The cascade construction and its concrete security. In: FOCS, pp.
514–523 (1996)

[Bel06] Bellare, M.: New proofs for NMAC and HMAC: Security without
collision-resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 602–619. Springer, Heidelberg (2006)

[BLdMT09] Burmester, M., Le, T.V., de Medeiros, B., Tsudik, G.: Universally com-
posable RFID identification and authentication protocols. ACM Trans.
Inf. Syst. Secur. 12(4) (2009)

[BM11] Burmester, M., Munilla, J.: Lightweight RFID authentication with for-
ward and backward security. ACM Trans. Inf. Syst. Secur. 14(1), 11
(2011)

[BPR05] Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for
CBC mACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
527–545. Springer, Heidelberg (2005)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012)

[DKPW12] Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication,
revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 355–374. Springer, Heidelberg (2012)

[DLYZ11] Deng, R.H., Li, Y., Yung, M., Zhao, Y.: A zero-knowledge based frame-
work for RFID privacy. Journal of Computer Security 19(6), 1109–1146
(2011)

[DS09] Dodis, Y., Steinberger, J.: Message authentication codes from unpre-
dictable block ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 267–285. Springer, Heidelberg (2009)

[DY05] Dodis, Y., Yampolskiy, A.: A verifiable random function with short
proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386,
pp. 416–431. Springer, Heidelberg (2005)

[HPVP11] Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID
privacy model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 568–587. Springer, Heidelberg (2011)

[IK03] Iwata, T., Kurosawa, K.: Omac: One-key cbc mac. In: Johansson, T.
(ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg
(2003)

[KMO+13] Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.:
Anonymity-preserving public-key encryption: A constructive approach.
In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981,
pp. 19–39. Springer, Heidelberg (2013)

[KPC+11] Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authen-
tication from hard learning problems. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

Key-Indistinguishable Message Authentication Codes 493

[LSWW13] Lee, M.-F., Smart, N.P., Warinschi, B., Watson, G.: Anonymity guaran-
tees of the umts/lte authentication and connection protocol. Cryptology
ePrint Archive, Report 2013/027 (2013), http://eprint.iacr.org/

[Nat] National Institute of Standards and Technology, U.S. Department of
Commerce, M Dworkin. Recommendation for block cipher modes of op-
eration: the CMAC mode for authentication. NIST Special Publication
800-38B

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: FOCS, pp. 458–467 (1997)

[Pie12] Pietrzak, K.: Subspace LWE. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 548–563. Springer, Heidelberg (2012)

[rGPP12] 3rd Generation Partnership Project. Ts 33.102 - 3g security; Security
architecture v11.5.0 (2012)

[TM12] Tsay, J.-K., Mjølsnes, S.F.: A vulnerability in the umts and lte authenti-
cation and key agreement protocols. In: Kotenko, I., Skormin, V. (eds.)
MMM-ACNS 2012. LNCS, vol. 7531, pp. 65–76. Springer, Heidelberg
(2012)

[Vau10] Vaudenay, S.: Privacy models for RFID schemes. In: Ors Yalcin, S.B.
(ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 65–65. Springer, Heidelberg
(2010)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005)

http://eprint.iacr.org/

Interactive Encryption and

Message Authentication

Yevgeniy Dodis1 and Dario Fiore2,�

1 Department of Computer Science, New York University, USA
dodis@cs.nyu.edu

2 IMDEA Software Institute, Spain
dario.fiore@imdea.org

Abstract. Public-Key Encryption (PKE) and Message Authentication
(PKMA, aka as digital signatures) are fundamental cryptographic prim-
itives. Traditionally, both notions are defined as non-interactive (i.e.,
single-message). In this work, we initiate rigorous study of (possibly)
interactive PKE and PKMA schemes. We obtain the following results
demonstrating the power of interaction to resolve questions which are
either open or impossible in the non-interactive setting.

Efficiency/Assumptions. One of the most well known open questions
in the area of PKE is to build, in a “black-box way”, so called cho-
sen ciphertext attack (CCA-) secure PKE from chosen plaintext attack
(CPA-) secure PKE. In contrast, we show a simple 2-round CCA-secure
PKE from any (non-interactive) CPA-secure PKE (in fact, these prim-
itives turn out to be equivalent). Similarly, although non-interactive
PKMA schemes can be inefficiently built from any one-way function,
no efficient signature schemes are known from many popular number-
theoretic assumptions, such as factoring, CDH or DDH. In contrast, we
show an efficient 2-round PKMA from most popular assumptions, in-
cluding factoring, CDH and DDH.

Advanced Properties. It is well known that no non-interactive signature
(resp. encryption) scheme can be deniable (resp. forward-secure), since
the signature (resp. ciphertext) can later “serve as an evidence of the
sender’s consent” (resp. “be decrypted if the receiver’s key is compro-
mised”). We also formalize a related notion of replay-secure (necessar-
ily) interactive PKMA (resp. PKE) schemes, where the verifier (resp.
encryptor) is assured that the “current” message can only be authenti-
cated (resp. decrypted) by the secret key owner now, as opposed to some
time in the past (resp. future). We observe that our 2-round PKMA
scheme is both replay-secure and (passively) deniable, and our 2-round
PKE scheme is both replay- and forward-secure.

1 Introduction

Digital signatures and public-key encryption (PKE) schemes are two of the most
fundamental and well studied cryptographic primitives. Traditionally, both no-
tions are defined as non-interactive (i.e., single message). Aside from obvious

� Work partially done while postdoc at NYU.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 494–513, 2014.
c© Springer International Publishing Switzerland 2014

Interactive Encryption and Message Authentication 495

convenience — both the sender and receiver need not keep any state — such
non-interactive “one-and-done” philosophy is also critical in many applications.
Coupled with the fact that we now have many (often efficient) candidates for
both signature and encryption schemes, it might appear that there is little value
in extending the syntax of signature/encryption schemes to allow for (possibly)
interactive realizations.

In this work we challenge this point of view, and initiate rigorous study
of (possibly) interactive signature and public-key encryption schemes. For the
former, we will actually use the term Public-Key Message Authentication
(PKMA) scheme, as the term “signature” often comes with expectations of “non-
repudiation”, which is orthogonal to the standard notion of “unforgeability” the
moment interaction is allowed. First, although we agree that some applications
might critically rely on the non-interactivity of PKE/PKMA schemes, we be-
lieve that many other applications, including arguably the most basic one of
sending/receiving private/authentic messages, might not so be fixated on non-
interactivity. For such applications, it appears natural to allow the sender and
the receiver to interact, especially if they are involved in a conversation anyway.

Second, in this work we will show that, by allowing a single extra message
(i.e., a 2-round protocol), we can “resolve” two arguably most important open
problems in the area of non-interactive PKE/PKMA schemes:1 (a) “black-box”
2-round chosen-ciphertext attack (CCA-) secure PKE from any (non-interactive)
chosen-plaintext attack (CPA-) secure PKE; (b) efficient 2-round strongly un-
forgeable PKMA scheme from a variety of simple assumptions, such as factoring
and DDH.

Third, we point out several useful advanced properties of PKE/PKMA
schemes which are impossible to achieve without interaction. While some of
these properties (such as deniable PKMA [18,20,19,15]) were already extensively
studied in the past, most others (such as interactive forward-secure PKE, and
replay-secure PKE/PKMA) appear to be new.

Related Work. Although our work is the first to offer a detailed and com-
prehensive study of interactive PKE/PKMA schemes, it is certainly not the
first to consider these notions. The most related prior work in this regard is
the famous “DDN-paper” on non-malleable cryptography [17,18]. This seminal
work had many extremely important and influential results. Among them, it also
considered non-malleable, interactive encryption and authentication, and briefly
sketched2 elegant constructions for both primitives. We discuss more in detail the
relation with our work in the next section, when we describe our improvements
over the DDN paper.

To the best of our knowledge, the only other work providing a related defi-
nition (only for encryption) is the one of Katz [27]. However, our definition is

1 Of course, we obtain this by changing the model to allow for interaction, which is
the reason for the quotation marks.

2 Due to the massive scope of [18], the DDN paper did not give formal definitions and
proofs for the encryption results (saying they are “outside the scope” of their paper;
see page 32), and only sketched the definition/proof for the authentication case.

496 Y. Dodis and D. Fiore

stronger, as we place more restriction on the attacker to declare that the at-
tacker ‘acts as a wire’. Moreover, the solutions given in [27] use so called timing
assumptions, while our constructions are in the standard model.

1.1 Our Results

We now describe our motivations and results in more detail.

Definitional Framework. Our first goal was to extend the short and elegant
definitions of non-interactive encryption/signatures to the interactive setting,
without making the definitions long and tedious. Unfortunately, in the interactive
setting things are more complicated, as issues of concurrency and state, among
others, must be dealt with. The way we managed to achieve our goal, was to split
our definitions into two parts. The first (somewhat boring) part is independent
of the particular primitive (e.g., PKE/PKMA), and simply introduces the bare
minimum of notions/notation to deal with interaction. For example (see Section 2
for details), we define (a) what it means to have (concurrent) oracle access to
an interactive party under attack; and (b) what it means to ‘act as a wire’
between two honest parties (for brevity, we call this trivial, but unavoidable,
attack a ‘ping-pong’ attack). Once the notation is developed, however, our actual
definitions of possibly interactive PKE/PKMA are as short and simple as in the
non-interactive setting (see Definitions 5 and 6). E.g., in the PKMA setting
(Definition 6) the attacker A has (concurrent) oracle access to the honest signer
(as defined in (a)), and simultaneously tries to convince an honest verifier (i.e.,
“challenger”). A wins if the challenger accepts, and A’s forgery was not a ‘ping-
pong’ of one of its conversations with the signer (as defined in (b)).3 Overall, the
definition consists of the same couple of lines as in the non-interactive setting!
And the same holds for the encryption case in Definition 5, which naturally
generalizes the notion of CCA-security to the interactive setting.

Better Efficiency/Assumptions via Interaction. Turning from defini-
tions to constructions, we show how a single extra round of interaction (i.e., a
2-round protocol) can help “solve” (in a sense explained in Footnote 1) two of
the arguably toughest open problems in the areas of non-interactive PKE and
PKMA, respectively.

In the area of PKE, the question is to build a CCA-secure PKE from a CPA-
secure PKE. In principle, such constructions are known using an appropriately-
chosen notion of non-interactive zero-knowledge proofs [18,34,35,37,29]. How-
ever, all these constructions are generally inefficient and considered somewhat
unsatisfactory, since they use the code of the given CPA-secure encryption
scheme. In particular, the question of finding so called black-box constructions
of CCA-encryption from CPA-encryption remains open. In fact, although sev-
eral partial progress along both positive (e.g., [12,11,30]) and negative (e.g., [23])

3 This generalizes the notion of strong unforgeability, as opposed to regular unforge-
ability, as was done in DDN [18].

Interactive Encryption and Message Authentication 497

fronts was made, the general question remains elusive. In contrast, we show a
relatively simple, black-box, 2-round CCA-secure encryption from CPA-secure
encryption (in fact, the two primitives are equivalent). We notice that the DDN
paper [18] itself already made a similar conclusion, by presenting a 3-round
black-box protocol from any CPA-secure PKE.4 Thus, aside from presenting a
formal model for interactive CCA-secure encryption, our result can be viewed
as improving the round efficiency of the DDN paper from 3 to 2.

In the area of PKMA, the “theory” question was settled pretty quickly, by
showing that the strongest security notion for signature schemes — strong exis-
tential unforgeability against chosen message attack — can be realized assuming
the mere existence of one-way functions [24,33,3,4,36]. Unfortunately, the generic
constructions were primarily of theoretical interest, and did not result in prac-
tical enough signature schemes. In fact, practical signature schemes (outside of
the random oracle model [7,21,38,25]) are only constructed from a handful of
“not-too-standard” number-theoretic assumptions, such as ‘strong RSA’ [14,22]
and ‘Bilinear-Diffie-Hellman’ [39], and even these ‘practical’ constructions were
generally somewhat slow, requiring generation of primes, long keys or bilinear
maps. In particular, one of the main open questions is to build an efficient digital
signature scheme from a standard assumption, such as factoring, CDH or DDH.

In contrast, we show very efficient, 2-round, strongly unforgeable PKMA
schemes from virtually all standard assumptions, including factoring, CDH and
DDH. In fact, although we are not aware of any paper explicitly claiming this re-
sult, it follows in a relatively simple manner by combining various prior works.5

Let us explain. With a different motivation in mind, the DDN paper [18] showed
a simple 3-round6 PKMA scheme from any CCA-secure encryption. At the time,
CCA-secure PKE was considered a very ‘advanced’ primitive, so the construc-
tion was not considered ‘efficient’. Over the years, though, many truly efficient
CCA-secure schemes were constructed from virtually all popular assumptions,
including factoring [26], CDH [40] and DDH [13] (despite the fact that no such
efficient signature schemes are known from these assumptions!). Thus, these re-
sults, if combined, immediately yield an efficient 3-round PKMA from all these
assumptions. Moreover, it is well known (e.g., see [28,1]) that one can reduce
the number of rounds from 3 to 2 by also using a message authentication code
(MAC), in addition to CCA-secure encryption. Of course, in theory, a MAC
is implied by a CCA-secure PKE, albeit in an inefficient manner. Moreover,
until recently, even direct efficient MAC constructions from concrete assump-
tions, such as DDH [31] and factoring [32], required long keys (quadratic in se-
curity parameter). Fortunately, Dodis et al. [16] recently observed an elementary

4 Although they do not give a formal definition/proof, their construction is easily seen
to be secure in our model.

5 Except only establishing regular unforgeability, but the actual constructions are
easily seen to be strongly unforgeable.

6 The construction becomes 2-round if the verifier knows the authenticated message
in advance.

498 Y. Dodis and D. Fiore

efficient (probabilistic) MAC construction from any CCA-secure scheme. This
gives an efficient 2-round PKMA scheme from any CCA-secure encryption. We
also manage to further optimize the resulting construction, and obtain a really
simple (new!) 2-round protocol, depicted in Figure 3. In turn, this gives efficient
2-round PKMA from a variety of standard assumptions, including factoring,
CDH and DDH.7

Duality between Interactive PKE and PKMA. Interestingly, our 2-
round CCA-secure PKE uses a signing key as its long-term “decryption secret”
(and generates several ephemeral keys for the CPA-secure scheme), while our
2-round strongly unforgeable PKMA scheme uses a decryption key for a CCA-
secure encryption as its long term “authentication secret”. We show that this
duality is not a coincidence. In fact, our 2-round results follow as corollaries of
two more general schemes, depicted in Figures 1 and 2: an interactive CCA-
secure scheme from any (interactive or not) strongly unforgeable PKMA scheme
(plus any CPA-secure PKE8), and an interactive strongly unforgeable PKMA
scheme from any (interactive or not) CCA-secure PKE. The ‘duality’ of our re-
sults (authentication using encryption and vice-versa) shows that, perhaps, the
practical/theoretical distinction between interactive encryption and authentica-
tion is not as great as one could have guessed by looking at what is known in
the non-interactive setting.

Overcoming Impossibility Results. We also show that our simple defini-
tional framework (one generic/reusable ‘long-and-boring’ part followed by many
application-specific ‘short-and-intuitive’ parts) easily lends itself to various ex-
tensions. Examples include various notions of privacy and/or authenticity which
are impossible in the non-interactive setting, such as forward-secure PKE and
the notion of replay-secure PKE/PKMA that we introduce in this work.

1.2 Preliminaries and Notation

We denote by λ ∈ N the security parameter. A function ε(λ) is said negligible if
it is a positive function that vanishes faster than the inverse of any polynomial in

λ. If X is a set, let x
$← X denote the process of selecting x uniformly at random

in X . An algorithmA is called PPT if it is a probabilistic Turing machine whose
running time is bounded by some polynomial in λ. If A is a PPT algorithm, then

y
$← A(x) denotes the process of running A on input x and assigning its output

to y.

7 Of course, in practice one should not use CCA-secure encryption to build a MAC
(instead, one should use practical MACs such as CBC-MAC or HMAC), but here
we use it to establish efficient feasibility results from concrete number-theoretic as-
sumptions.

8 For the sake of elegance and modularity, we use a slightly stronger notion of so
called “1-bounded CCA-secure PKE”, but the latter can be built from any CPA-
secure PKE [12].

Interactive Encryption and Message Authentication 499

2 Defining Message Transmission Protocols

In this section we introduce message transmission protocols: we define their syn-
tax as well as suitable notions of confidentiality (called iCCA security) and au-
thenticity (called iCMA security).

We give a generic definition of message transmission protocols involving two
parties: a sender S and a receiver R, such that the goal of S is to send a message
m to R while preserving certain security properties on m. In particular, in the
next two sections we consider arguably the most basic security properties: the
confidentiality/authenticity of the messages sent by S to R. Formally, a message
transmission protocol Π consists of algorithms (Setup, S,R) defined as follows:

Setup(1λ): on input the security parameter λ, the setup algorithm generates
a pair of keys (sendk, recvk). In particular, these keys contain an implicit
description of the message space M.

S(sendk,m): is a possibly interactive algorithm that is run with the sender key
sendk and a message m ∈M as private inputs.

R(recvk): is a possibly interactive algorithm that takes as private input the re-
ceiver key recvk, and whose output is a message m ∈ M or an error ⊥.

When S and R are jointly run, they exchange messages in a specific order, e.g.,
S starts by sending M1, R sends M2, S sends M3, and so on and so forth until
they both terminate. We say that Π is an n-round protocol if the number of
messages exchanged between S and R during a run of the protocol is n. If Π is
1-round, then we say that Π is non-interactive. Since the sender gets no output,
we assume without loss of generality that the sender always speaks last. Thus,
in an n-round protocol, R (resp. S) speaks first if n is even (resp. odd). For
compact notation, we denote with 〈S(sendk,m),R(recvk)〉 = m′ the process of
running S and R on inputs (sendk,m) and recvk respectively, and assigning R’s
output to m′. In our notation, we will use m ∈M for messages (aka plaintexts),
and capital M for protocol messages.

Definition 1 (Correctness). A message transmission protocol Π=(Setup, S,R)

is correct if for all honestly generated keys (sendk, recvk)
$← Setup(1λ), and all

messages m ∈ M, we have that 〈S(sendk,m),R(recvk)〉 = m holds with all but
negligible probability.

Defining Security: Man-in-the-Middle Adversaries. In our work, we as-
sume that the sender and the receiver speak in the presence of powerful adver-
saries that have full control of the communication channel, i.e., the adversary
can eavesdrop the content of the communication, and it can stop/delay/alter the
messages passing over the channel. Roughly speaking, the goal of an adversary
is to violate a given security property (say confidentiality or authenticity) in a
run of the protocol that we call the challenge session. Formally, this session is
a protocol execution 〈S(sendk,m),AR(recvk)〉 or 〈AS(sendk,·),R(recvk)〉 where the
adversary runs with a honest party (S or R). By writing AP, we mean that the
adversary has oracle access to multiple honest copies of party P (where P = R
or P = S), i.e., A can start as many copies of P as it wishes, and it can run the

500 Y. Dodis and D. Fiore

message transmission protocol with each of these copies. This essentially formal-
izes the fact that the adversary can “sit in the middle of two honest parties”
relaying messages between them in an active way. Sometimes, we also write APk

to denote that the adversary can start at most k copies of party P. In our model
we assume that whenever A sends a message to the oracle P, then A always ob-
tains P’s output. In particular, in the case of the receiver oracle, when A sends
the last protocol message to R, A obtains the (private) output of the receiver,
i.e., a message m or ⊥.

Since all these protocol sessions can be run in a concurrent way, the adversary
might entirely replay the challenge session by using its oracle. This is something
that we would like to prevent in our definitions. To formalize this idea, we take
an approach similar to the one introduced by Bellare and Rogaway [6] in the
context of key exchange, which is based on the idea of “matching conversations”.
First of all, we introduce a notion of time during the execution of the security
experiment. We stress that this is done for ease of analysis of the security model:
there is no need to keep track of global timing in the real protocols. Let t be a
global counter which is progressively incremented every time a party (including
the adversary) sends a message, and assume that every message sent by a party
(S, R or A) gets timestamped with the current time t. Using this notion of time,
we define the transcript of a protocol session as follows:

Definition 2 (Protocol Transcript). The transcript of a protocol session be-
tween two parties is the timestamped sequence of messages exchanged by the
parties during a run of the message transmission protocol Π. If Π is n-round,
then a transcript T is of the form T = 〈(M1, t1), . . . , (Mn, tn)〉, where M1, . . . ,
Mn are the exchanged messages, and t1, . . . , tn are the respective timestamps.

In a protocol run 〈S(sendk,m),AR(recvk)〉 (resp. 〈AS(sendk,·),R(recvk)〉) we have
a transcript T ∗ of the challenge session between S and A (resp. A and R), and
Q transcripts T1, . . . , TQ, one for each of the Q sessions established by A with R
(resp. S) via the oracle. While we postpone to the next two sections the defini-
tion of specific security properties of message transmission (e.g., confidentiality
and authenticity), our goal here is to formalize in a generic fashion which ad-
versaries are effective for “uninteresting”/unavoidable reasons. Namely, when
the challenge session is obtained by entirely replaying one of the oracle sessions:
what we call a “ping-pong” attack, that we formalize via the following notion of
matching transcripts.

Definition 3 (Matching Transcripts). Let T = 〈(M1, t1), . . . , (Mn, tn)〉 and
T ∗ = 〈(M∗

1 , t
∗
1), . . . , (M

∗
n, t

∗
n)〉 be two protocol transcripts. We say that T matches

T ∗ (T ≡ T ∗, for short) if ∀i = 1, . . . , n, Mi = M∗
i and the two timestamp

sequences are “alternating”, i.e., t1 < t∗1 < t∗2 < t2 < t3 < · · · < tn−1 < tn < t∗n
if R speaks first, or t∗1 < t1 < t2 < t∗2 < t∗3 < · · · < tn−1 < tn < t∗n if S speaks
first. We remark that the notion of match is not commutative.

Given all the definitions above, we can define the notion of ping-pong adversary:

Definition 4 (Ping-pong Adversary). Consider a run of the protocol Π
involving A and a honest party (it can be either 〈S(sendk,m),AR(recvk)〉 or

Interactive Encryption and Message Authentication 501

〈AS(sendk,·),R(recvk)〉), and let T ∗ be the transcript of the challenge session, and
T1, . . . , TQ be the transcripts of all the oracle sessions established by A. Then we
say that A is a ping-pong adversary if there is a transcript T ∈ {T1, . . . , TQ}
such that T matches T ∗, i.e., T ≡ T ∗.

Interactive Chosen-Ciphertext-Secure Encryption. Here we propose a
suitable notion of confidentiality for message transmission protocols that we
call interactive chosen ciphertext security (iCCA). Our notion is designed as a
very natural generalization of the classical notion of IND−CCA security to the
interactive setting. In fact, IND−CCA security is a special case of iCCA security
for 1-round (i.e., non-interactive) protocols (we leave this check to the reader).
Roughly speaking, in the IND−CCA definition the adversary has to distinguish
whether a given “challenge” ciphertext encrypts a message m0 or m1 while
having access to a decryption oracle. To make the definition non-trivial, the
adversary is denied to query the decryption oracle on the challenge ciphertext.
Our notion of iCCA security is obtained similarly: the adversaryA interacts with
a sender which sends either m0 or m1 and A has to tell the two cases apart while
having access to the receiver (instead of the decryption oracle); the restriction
on the challenge ciphertext is replaced by requiring that A cannot be ping-pong.
The formal definition follows.

Let Π = (Setup, S,R) be a message transmission protocol and A be an adver-
sary. To define iCCA security, consider the following experiment:

Experiment ExpiCCA
Π,A (λ)

b
$← {0, 1} ; (sendk, recvk)

$← Setup(1λ)
(m0,m1)←AR(recvk)(sendk)
b′←〈S(sendk,mb),AR(recvk)(sendk)〉
If b′ = b and A is not “ping-pong”, then output 1. Else output 0.

Definition 5 (iCCA security). For any λ ∈ N, we define the advantage of an
adversary A in breaking iCCA security of a message transmission protocol Π as
AdviCCA

Π,A (λ) = Pr[ExpiCCA
Π,A (λ) = 1]− 1

2 , and we say that Π is iCCA-secure if for

any PPT A, AdviCCA
Π,A (λ) is negligible. We call a message transmission protocol

satisfying this notion an interactive encryption scheme.

As we mentioned in the introduction, it is worth noting that our definition
is similar to the one proposed by Katz in [27]. The main difference is in the
restrictions applied to the adversary in the security game. In [27] this is realized
by means of a notion of “equality of transcripts” which considers only equality
of messages (in the same order) and leaves any time constraint to the specific
protocols realizations. Our security definition, instead, directly takes into ac-
count time constraints in the security experiment via the notion of matching
transcripts. To see the difference between the two definitions with an example,
consider an adversary who creates an oracle session having the same transcript
as the one of the challenge session, but where the timestamps of the messages
are not correctly alternating. Such an adversary would not be legal according to
the definition of [27], but is legal (i.e., not ping-pong) according to ours.

502 Y. Dodis and D. Fiore

Extensions. We also consider a weaker notion of iCCA security, called q-
bounded-iCCA, in which the adversary is restricted to complete at most q sessions
with the oracle R, i.e., in ExpiCCA

Π,A (λ) we run ARq . This is the analogous of (non-
interactive) q-bounded IND−CCA security [12].

We define an extension of interactive encryption in which both the sender
and the receiver algorithms take a public string—a label—as an additional input
(similarly to the non-interactive setting [8]). In the full version we provide a full
formalization of labeled iCCA encryption and show that it can be generically
constructed from ‘plain’ iCCA-secure encryption. Here we briefly recall that for
any label L we use SL to denote that an algorithm S takes as input L.

Interactive Chosen-Message Secure Public Key Message Authentica-
tion. Here we propose a suitable notion of authenticity for message trans-
mission protocols that we call interactive unforgeability under chosen message
attacks (iCMA). Our notion is designed as a very natural generalization to the
interactive setting of the standard notion of strong unforgeability (suf-cma) for
digital signatures. In fact, suf-cma security is a special case of iCMA security for
1-round protocols. Roughly speaking, in strong unforgeability the adversary has
to produce a valid signature while having access to the signer. In order for the
definition to be non-trivial, however, such signature has to be “new”, i.e., not
obtained from the signing oracle. Our notion of iCMA security naturally extends
suf-cma as follows: the adversary A has to convince a receiver while having or-
acle access to the sender (instead of the signing oracle); the requirement that
the signature must be new is replaced by requiring that A is not ping-pong. The
formal definition follows.

Let Π = (Setup, S,R) be a message transmission protocol and A be an adver-
sary. To define iCMA security, consider the following experiment:

Experiment ExpiCMA
Π,A (λ)

(sendk, recvk)
$← Setup(1λ)

m∗←〈AS(sendk,·)(recvk),R(recvk)〉
If m∗ �= ⊥ and A is not “ping-pong”, then output 1. Else output 0.

Definition 6 (iCMA security). For any λ ∈ N, the advantage of A in break-
ing the iCMA security of a message transmission protocol Π is AdviCMA

Π,A (λ) =

Pr[ExpiCMA
Π,A (λ) = 1], and we say that Π is iCMA-secure if for any PPT A,

AdviCMA
Π,A (λ) is negligible. We call a message transmission protocol satisfying

this notion a public key message authentication (PKMA) protocol.

3 Basic Constructions

In this section we propose realizations of message transmission protocols sat-
isfying our iCCA and iCMA security notions. Interestingly, our constructions
show that iCCA security is implied by the iCMA and IND−CPA notions, whereas
(somehow vice-versa) iCMA security is directly implied by iCCA. Our results thus
show that in the interactive setting—and with a minimum level of interaction

Interactive Encryption and Message Authentication 503

Setting: a key pair (sendk′, recvk′) for an iCMA-secure protocol Π′ is gen-
erated.

S(recvk′, m) R(sendk′)

R sends ek to S using Π′

Get ek′ � (ek, dk)
$← KG(1λ)

If ek′ �= ⊥ : c = Enc(ek′,m) � m′←Dec(dk, c)

Fig. 1. iCCA protocol from iCMA-secure PKMA and 1-bounded-IND−CCA encryption

(i.e., 2 rounds) indeed!—the notions of confidentiality and authenticity present
somewhat surprising and interesting relations unknown in the non-interactive
case.

iCCA Encryption from IND−CPA Encryption and iCMA PKMA. Our
result is a simple interactive encryption protocol that is based on a PKMA
protocol Π′ and a public key encryption scheme E = (KG,Enc,Dec). The idea
is simple and is illustrated in Figure 1: the receiver sends a “fresh” public key
ek authenticated using Π′, and the sender encrypts the message using ek. As we
show in our theorem below, the PKMA protocol has to be iCMA-secure, while
the PKE scheme E needs only to be 1-bounded-IND−CCA-secure. Concretely,
Π′ can be a strongly unforgeable signature and E can be constructed using an
IND−CPA-secure encryption (as shown by Cramer et al. [12]), thus yielding an
optimal 2-round encryption protocol that is iCCA-secure based only on IND−CPA
security. A more precise description follows.

Let Π′ = (Setup′, S′,R′) be a PKMA protocol, and E = (KG,Enc,Dec) be a
(non-interactive) public key encryption scheme. We build protocol Π = (Setup,
S,R) as follows:

Setup(1λ): run (sendk′, recvk′)
$← Setup′(1λ) and output sendk = recvk′ and

recvk = sendk′.
S(sendk,m): first run the PKMA protocol Π′ with R by playing the role of the

receiver, i.e., S runs R′(recvk′). If Π′ terminates correctly with output ek,
then send c = Enc(ek,m) to R. Otherwise, stop running.

R(recvk): generate (ek, dk)
$← KG(1λ), run S′(sendk′, ek) to send ek with au-

thenticity to S, and keep dk as private information. After Π′ terminates, on
input a message c from S, the receiver algorithm computes m←Dec(dk, c)
and returns the message m as its private output.

Theorem 1. If E is 1-bounded-IND−CCA-secure and Π′ is iCMA-secure, then
Π is iCCA-secure.

For lack of space, the proof of the theorem appears in the full version. As an
interesting consequence of Theorem 1 we obtain an equivalence between the
notions of IND−CPA and iCCA security:

504 Y. Dodis and D. Fiore

Setting: generate a key pair (sendk′, recvk′) for an iCCA protocol Π′.

S(recvk′,m) R(sendk′)

R sends r to S using Π′ r
$← Gen(1λ)

Get r′ �
If Ver(r,m,σ) = 1 :

m,σ = Tag(r′,m) � return m.

Fig. 2. iCMA protocol from iCCA-secure encryption and MACs

Corollary 1. 2-round-iCCA encryption exists if and only if (non-interactive)
IND−CPA PKE exists.

iCMA-secure PKMA from iCCA security. We show how to realize iCMA-
secure message transmission from any message transmission protocol that is
iCCA-secure, and any strongly unforgeable MAC. The protocol is based on an
old idea of realizing public key authentication via CCA-secure encryption and
message authentication codes. The basic idea is that the authenticator shows
its ability to decrypt: the verifier encrypts a MAC key r for the authenticator,
who decrypts and sends back the MAC of message m using the key r. This
protocol (briefly sketched in Figure 2) implicitly appeared first in [28] and was
proven secure in [1]. Here we generalize this construction in the framework of
our definitions, i.e., by using (possibly interactive) iCCA-secure encryption in
place of (non-interactive) IND−CCA-secure encryption. Furthermore, in the full
version we generalize a 3-round protocol earlier proposed by Dolev, Dwork and
Naor [18] that is based only on iCCA security.

LetMAC = (Gen,Tag,Ver) be a strongly unforgeable MAC with message space
M and key space K, and let Π′ = (Setup′, S′,R′) be an encryption protocol with
message space K. We build a PKMA protocol Π = (Setup, S,R) as follows.

Setup(1λ): run (sendk′, recvk′)
$← Setup′(1λ) and output recvk = sendk′ and

sendk = recvk′. The message space of the protocol Π is the message space
M of the MAC.

S(sendk,m): run the encryption protocol Π′ with R with reversed roles, i.e., S
runs the receiver algorithm R′ of Π′ while R will run the sender algorithm
S′. Let r be the output of R′ at the end of the run of protocol Π′. Then S
sends (m,σ = Tag(r,m)) to R as the last message.

R(recvk): generate a fresh MAC key r
$← Gen(1λ) and send r to S using the en-

cryption protocol Π′, i.e., R runs S′(sendk′, r). Once the encryption protocol
is over, R waits for a message (m,σ′) from S. If Ver(r,m, σ′) = 1 then R
outputs m. Otherwise, it outputs ⊥.

We can now state the following theorem (its proof is in the full version).

Theorem 2. If Π′ is iCCA-secure and MAC is strongly-unforgeable, then Π is
an iCMA-secure message transmission protocol.

Interactive Encryption and Message Authentication 505

Setting: (ek, dk) a key-pair for a labeled encryption scheme
(KG,EncL,DecL) is generated.

S(dk, m) R(ek)

r′←Decek
′
(dk, c) ek′, c = Encek

′
(ek, r)� (ek′, dk′) $← KG(1λ)

r
$← {0, 1}λ

If r′ �= ⊥ : m,σ = Encm(ek′, r′) � If Decm(dk′, σ) = r
return m.

Fig. 3. 2-round iCMA protocol from labeled IND−CCA-secure encryption

Remark 1. While the protocol uses a fresh MAC key for every session, we stress
that a one-time MAC (e.g., a pairwise independent hash function) is not sufficient
to prove iCMA security. Intuitively, the reason is that the adversary may fully-
replay the first portion of the protocol (i.e., the one related to Π′) from the
challenge session to many copies of the sender, each initialized with a different
plaintext m �= m∗, thus obtaining several MACs under the same key.

If we instantiate the above construction with a 1-round (aka non-interactive)
iCCA-secure encryption scheme, and one of the constructions of MACs from
IND−CCA encryption proposed in [16] (that have the advantage of having a
‘compact’ secret key), we then obtain an elegant and efficient 2-round PKMA
protocol based only on IND−CCA security. Moreover, by directly observing the
MAC of [16] and the resulting protocol, we managed to further optimize this
protocol: we notice that the ephemeral secret key dk′ (which is part of the MAC
key with r) is only used for verification, and there is no need to encrypt it inside
c; instead, we use labels to bind ek′ with c. The resulting optimized protocol is
presented in Figure 3.

By instantiating the result of Theorem 2 (and our optimization above) with
known constructions of CCA-secure encryption from Factoring [26], DDH [13],
or CDH [40], we obtain the following corollary.

Corollary 2. If the Factoring (resp. DDH, CDH) assumption holds, there exists
an efficient 2-round PKMA.

Secure Round Extension of Message Transmission Protocols. In the
full version we discuss a generic methodology to securely increase the number
of rounds of message transmission protocols. Although at a first glance this
construction might not look very interesting as it decreases efficiency, it turns
out to be particularly useful to achieve our stronger notions of (strong) replay
security (see Section 4.1).

Theorem 3. For any n ≥ 1, if Π′ is an iCCA (resp. iCMA) secure n-round
protocol, there exists an iCCA (resp. iCMA) secure (n+ 1)-round protocol Π.

506 Y. Dodis and D. Fiore

4 Advanced Security Properties from the Power of
Interaction

We discuss three advanced security properties of message transmission protocols,
each requiring interaction: deniability, forward security, and replay security.

While the first two properties have been already considered in previous work
in the context of encryption, key exchange, and message authentication, the
last one, replay security, is new and aims at obtaining more intuitive security
definitions of message transmission. Interestingly, we show that replay security
can be achieved only by interactive protocols, and that with enough interaction
our notions of iCCA and iCMA security already provide replay-secure protocols.

Below we start with an informal discussion of these advanced security notions.
Next, in Section 4.1, we formally introduce the new notion of replay-security. A
formal treatment of forward security and deniability appears in the full version.

Deniability. We already mentioned that interactive PKE/PKMA might
achieve advanced security properties which are impossible in the non-interactive
setting. One such (well studied [18,20,19,15]) notion is that of deniable authenti-
cation, which was actually the original motivation of the DDN paper. Since this
is not the main topic of this work, we only define the weakest notion of passive
deniability (and its extension called ‘passive forward deniability’ [15]), and ob-
serve that our optimized 2-round variant from non-interactive CCA-secure PKE
is passively forward deniable.9

Forward Security. Another example is the notion of forward security, which
(intuitively) states that ‘old’ message transmissions should remain private even
if the party’s long term secret key is later compromised. Prior to our work,
forward security has been extensively studied in the KE literature (in fact, in
many cases being a mandatory part of a ‘secure’ KE). On the other hand, forward
security is (obviously) impossible for non-interactive PKE without “changing the
model”; e.g. by introducing global time periods, and periodically refreshing the
secret key [9]. In contrast, no such impossibility exists for interactive PKE, and,
indeed, our interactive PKE schemes are forward-secure, since all of them use
ephemeral keys to actually encrypt the message.

Replay-Security. Yet another limitation of non-interactive PKE/PKMA
schemes is that they necessarily suffer from what we informally (for now) term
“replay” attacks. In the case of encryption, for example, an attacker can always
record an ‘old’ ciphertext, and then manage to decrypt it much later. Similarly,
a verifier can always pass an ‘old’ signature to another verifier in the future.
Motivated by this impossibility, we formalize (to the best of our knowledge, for
the first time) the notion of replay-secure (necessarily) interactive PKMA/PKE
schemes. For the former, a honest verifier is assured that the “current” mes-
sage is actually being authenticated by the secret key owner “now”, as opposed

9 The construction can be made ‘actively deniable’, with more rounds, using the tech-
niques developed by [20].

Interactive Encryption and Message Authentication 507

to some time in the past. For the latter, a honest encryptor is similarly as-
sured that the “current” message can only be decrypted by the secret key owner
“now”, as opposed to some time in the future. We then show that any interac-
tive PKE/PKMA scheme which has at least 2 rounds is already replay-secure.10

For example, we automatically get replay-secure PKE/PKMA schemes, by us-
ing the 2-round solutions in this paper.11 We also notice that a very special
case of our replay-secure PKMA, when the message space has cardinality 1, es-
sentially corresponds to the strongest security notion for identification schemes,
called impersonation security under concurrent attacks [5]. Here the attacker
has concurrent oracle access to the prover (i.e., ‘signer of a fixed message’), then
loses this oracle access, and, finally, has to convince an honest verifier. In fact,
our 2-round PKMA protocols, when specialized to this trivial case, essentially
“collapse” to well-known challenge-response identification protocols from CCA-
encryption and signature schemes, respectively. Of course, by having an extra
“non-trivial” message, we think that replay-secure PKMA schemes should have
more applications than concurrently secure identification schemes.

4.1 Replay Security

In what follows we formalize the notion of replay security, and then we show
that traditional non-interactive protocols (e.g., CCA encryption and signatures)
cannot be replay-secure. Intuitively, the reason is that a ciphertext or a digital
signature can always be “replayed” after its transmission (this also explains our
choice for the name of this notion).

Time Intervals and Concurrent Sessions. To formalize our definitions and
argue more easily about concurrent sessions, we refine our notion of time and we
introduce an intuitive terminology. If t and t′ are time instants such that t < t′,
then we denote with [t, t′] the time interval between t and t′, i.e., the sequence
〈t, t+ 1, t+ 2, . . . , t′〉. For every protocol transcript T = 〈(M1, t1), . . . , (Mn, tn)〉
(i.e., for every session) of an n-round protocol there exists a corresponding time
interval [t1, tn] in which the session starts and ends. Let [t∗1, t

∗
n] and [t1, tn] be the

time intervals of two protocol sessions. We say that [t∗1, t
∗
n] and [t1, tn] overlap

if [t1, tn] ∩ [t∗1, t
∗
n] �= ∅. Moreover, we say that A is an overlapping adversary

if it generates an oracle session [t1, tn] that overlaps with the challenge session
[t∗1, t

∗
n].

In the following lemma we show that in any protocol with at least two
rounds, any ping-pong adversary is also overlapping. We use this general state-
ment to prove that any 2-round secure message-transmission protocol is also
replay-secure.

10 For encryption, we also define a stronger notion of replay-security, which requires at
least 3 rounds, and is realized by any 3-round CCA secure scheme.

11 This includes already mentioned 2-round PKMA from CCA-encryption and 2-round
PKE from signatures, as well as simple 2-round PKE/PKMA obtained by “extend-
ing” 1-round PKE/PKMA schemes.

508 Y. Dodis and D. Fiore

Lemma 1. Let n ≥ 2 and Π be an n-round message transmission protocol. If A
is a ping-pong adversary against Π, then A is overlapping.

Proof. Assume by contradiction that A is not overlapping, then we show that A
is not ping-pong. Let T ∗ and [t∗1, t

∗
n] be the transcript and time interval of the

challenge session. Since A is not overlapping, no oracle session T overlaps with
T ∗, i.e., for every oracle session with time interval [t1, tn] it holds [t

∗
1, t

∗
n]∩[t1, tn] =

∅. However, since n ≥ 2, it is easy to see that if [t∗1, t
∗
n] ∩ [t1, tn] = ∅ then the

timestamps of these two sessions are not alternating, and thus T �≡ T ∗. ��

Replay-Secure Public-Key Message Authentication. Informally speak-
ing, a PKMA protocol is replay-secure if all oracle sessions initialized with the
challenge plaintextm∗ do not overlap with the challenge session. This essentially
means that the adversary loses access to the legitimate signer (on message m∗)
before starting to forge m∗.

For a more formal definition, consider the experiment ExpiCMA
Π,A (defined in

Section 2) and let [t∗1, t
∗
n] be the time interval of the challenge session, and

{[ti1, tin]}i=1,...,Q be the time intervals of all the oracle sessions established by A.
Moreover, letmi be the plaintext used to initialize the sender oracle S(sendk,mi)
in the i-th oracle session. Then we call A a replay adversary if there exists
i ∈ {1, . . . , Q} such that mi = m∗ and [ti1, t

i
n] ∩ [t∗1, t

∗
n] �= ∅. Replay security for

PKMA is defined as as follows:

Definition 7 (Replay Secure PKMA). Let ExpRSMA
Π,A be the same experi-

ment as ExpiCMA
Π,A , except that A is required not to be a replay adversary (in-

stead of not being ping-pong). Then we say that an interactive protocol Π is
a replay secure PKMA (RSMA for short) if for any PPT A, its advantage

AdvRSMA
Π,A (λ) =

∣∣∣Pr[ExpRSMA
Π,A (λ) = 1]− 1

2

∣∣∣ is negligible.

First, in the following theorem we show that 1-round PKMA protocols cannot
be replay-secure. Its proof is rather simple and follows from the fact that in 1-
round protocols there is clearly no overlap between different sessions. Hence, the
dummy adversary who replays a signature received from the legitimate signer is
a valid adversary in the RSMA experiment.

Theorem 4. Any 1-round iCMA-secure PKMA protocol is not RSMA-secure.

It is worth noting that one can obtain 1-round replay-secure solutions in
different models, e.g., by introducing global time periods and requiring the signer
to always sign the message with the current timestamp. However, such a solution
falls outside the pure non-interactive model considered by our work.

Therefore, while 1-round replay-secure PKMA cannot be achieved, in the
following theorem we show that with at least two rounds of interaction any
iCMA-secure protocol is a replay-secure PKMA.

Theorem 5. For n ≥ 2, any n-round iCMA-secure protocol Π is RSMA-secure.

Proof. The proof follows by observing that if A is not a replay adversary in
ExpRSMA

Π,A (for Π with at least 2 rounds), then A is also not ping-pong in ExpiCMA
Π,A .

Interactive Encryption and Message Authentication 509

Namely, we show that for a non-replay A we have that for all i = 1, . . . , Q,
Ti �≡ T ∗. For every i, there are only two possible cases: mi = m∗ or mi �= m∗.
If mi = m∗, then Ti �≡ T ∗ follows by Lemma 1. In the case of sessions i where
mi �= m∗, assume by contradiction that Ti ≡ T ∗. Then by definition of match
the sessions must share the same protocol messages in the same order (i.e.,
M i

j =M∗
j) which, by correctness, implies that mi = m∗, a contradiction. ��

From Theorem 5 we obtain two interesting results that we summarize in the
following corollary:

Corollary 3. (1) There exists a simple 2-round replay-secure PKMA protocol
based on any strongly unforgeable signature scheme (and thus on one-way func-
tions); (2) there exists a simple 2-round replay-secure PKMA protocol based on
any IND−CCA-secure PKE.

The construction (1) follows by combining Theorem 5 with our round-extension
result (Theorem 3) applied to any strongly unforgeable signature (aka 1-round
iCMA-secure PKMA). The construction (2) from IND−CCA-secure PKE is in-
stead obtained by applying Theorem 5 to our 2-round construction of Theorem
2 (instantiated with a non-interactive IND−CCA-secure PKE scheme).

Remark 2 (Relation to Concurrent-Secure Identification Schemes). Notice that
in the special case when the message space has cardinality 1, our notion of
replay-secure PKMA essentially corresponds to the strongest security notion
for identification schemes, called impersonation security under concurrent at-
tacks [5]. In this case (i.e., message space of cardinality 1), a PKMA can be
indeed seen as an identification scheme. Moreover, by considering authentica-
tion with an empty message space, the 2-round PKMA protocols mentioned in
Corollary 3 recover well known 2-round, signature-based and encryption-based,
identification schemes (see, e.g., [2], and notice that outputting the secret key is
indeed a secure MAC for an empty message space).

Replay-Secure Public-Key Encryption. Informally speaking, a PKE pro-
tocol is replay-secure if there is no overlap between the challenge session and
all oracle sessions in which the plaintext revealed by the receiver is one of the
two challenge plaintexts. In essence, this means that during the challenge session
the adversary loses access to the legitimate decryptor, but only on the challenge
plaintexts m0 or m1. More formally, consider the experiment ExpiCCA

Π,A (defined
in Section 2) and let [t∗1, t

∗
n] be the time interval of the challenge session, and

{[ti1, tin]}i=1,...,Q be the time intervals of all the oracle sessions established by
A. Moreover, let mi be the plaintext revealed by the receiver in the i-th oracle
session (wlog we only consider completed sessions). Then, we call A a replay
adversary if there exists i ∈ {1, . . . , Q} such that mi = m0 or mi = m1, and
[ti1, t

i
n] overlaps with [t∗1, t

∗
n]. Replay security for PKE is defined as follows:

Definition 8 (Replay-Secure Encryption). Let ExpRSE
Π,A be the same as ex-

periment ExpiCCA
Π,A , except that A is required not to be a replay adversary

510 Y. Dodis and D. Fiore

(instead of denying it to be ping-pong). Then we say that an interactive pro-
tocol Π is a replay-secure encryption (RSE) if for any PPT A, its advantage
AdvRSE

Π,A(λ) = Pr[ExpRSE
Π,A(λ) = 1]− 1

2 is negligible.

It is worth mentioning that the notion of replay-secure PKE is similar to the
notion of Replayable CCA-secure encryption (RCCA) introduced by Canetti,
Krawczyk and Nielsen [10]. In RCCA security the adversary is allowed to submit
any ciphertext c to the decryption oracle, except that if c decrypts to m0 or m1

the adversary gets a special string test as response.
Similarly to replay-secure PKMA, in the following theorems we show that

replay-secure PKE requires at least 2-rounds of interaction to be achieved.

Theorem 6. Any 1-round iCCA-secure PKE protocol is not RSE-secure.

The proof is obtained by considering the adversary who replays the challenge
ciphertext to the receiver.

Theorem 7. For n ≥ 2, any n-round iCCA-secure protocol Π is RSE-secure.

The proof is similar to that of Theorem 5 and is postponed to the full version.
From Theorem 7 we obtain a collection of nice results summarized in the

following Corollary:

Corollary 4. (1) IND−CPA-secure PKE is sufficient to build RSE-secure PKE;
(2) there exists an efficient 2-round RSE-secure PKE protocol based on 1-bounded-
IND−CCA-secure PKE and signature schemes (see Theorem 1); (3) there exists
an efficient 2-round RSE-secure PKE protocol based on any IND−CCA-secure
PKE (via our round-extension transformation of Theorem 3).

Strong Replay-Secure Encryption. We notice that our definition of replay
security (for both PKMA and PKE) does not allow the adversary to suspend
“critical” sessions (e.g., sessions authenticating m∗, or sessions which decrypt
to m0 or m1) during the challenge session, and to later resume these sessions
once the challenge session is over. While allowing such suspended sessions would
not make sense for PKMA (indeed observe that the outcome of the security
experiment is determined upon the end of the challenge session), it might be a
reasonable strengthening for replay-secure PKE. Here we define strong-replay-
secure PKE, and we show that two rounds of interaction are insufficient to
achieve strong replay-security with suspended sessions (see Theorem 8 below),
but three rounds are enough and indeed any (at least) 3-round iCCA-secure PKE
is strong replay-secure (cf. Theorem 9).

Towards defining strong replay security more formally, let us say that [t1, tn]
is off during [t∗1, t

∗
n] if for all j = 1, . . . , n we have that tj /∈ [t∗1, t

∗
n]. We call A

a strong replay adversary if there exists i ∈ {1, . . . , Q} such that mi = m0 or
mi = m1, and [ti1, t

i
n] is not off during [t∗1, t

∗
n].

Definition 9 (Strong Replay-Secure Encryption). Let ExpsRSE
Π,A be the

same experiment as ExpiCCA
Π,A , except that A is required not to be a strong re-

play adversary (instead of denying it to be ping-pong). Then we say that an
interactive protocol Π is a strong replay secure encryption (sRSE) if for any
PPT A, its advantage AdvsRSE

Π,A (λ) = Pr[ExpsRSE
Π,A (λ) = 1]− 1

2 is negligible.

Interactive Encryption and Message Authentication 511

Theorem 8. Any 2-round iCCA-secure PKE protocol is not sRSE-secure.

Proof. To prove the theorem we show that there exists an adversary A who is
not a strong replay adversary in ExpsRSE

Π,A but is a ping-pong adversary. Then,
being ping-pong, A can trivially obtain a decryption of the challenge plaintext.

First, observe that in any 2-round protocol we have the first message from R
to S. So, consider the following adversary A that plays the role of the receiver
in the challenge session:

– A queries R on a new session and obtains M1 with timestamp t1 = t.
– A sends M1 to the honest sender S as the first protocol message in the

challenge session (here M1 gets timestamp t∗1 = t + 1). A receives back M2

from S, where M2 gets timestamp t∗2 = t+ 2.
– A forwardsM2 to R in the session previously opened in step 1 (this message

gets timestamp t2 = t+ 3).

While A is clearly ping-pong according to Definition 4, A is still not a strong
replay adversary in ExpsRSE

Π,A since t1, t2 /∈ [t+ 1, t+ 2]. This is exactly a case in
which the adversary suspended a session. ��
Theorem 9. For n ≥ 3, any n-round iCCA-secure protocol Π is sRSE-secure.

The proof is basically the same as that of Theorem 7, except that here we use
the following lemma to show that for 3-round protocols any ping-pong adversary
generates an oracle session (decrypting to one of the challenge plaintexts) which
is not off during the challenge session.

Lemma 2. Let n ≥ 3, and let T , [t1, tn] and T
∗, [t∗1, t

∗
n] be the transcripts and

time intervals of two sessions of an n-round protocol. If [t1, tn] is off during
[t∗1, t

∗
n], then T does not match with T ∗.

Proof. Recall that [t1, tn] is off during [t∗1, t
∗
n] if for all j = 1, . . . , n we have

that tj /∈ [t∗1, t
∗
n]. This means that either one of the following cases occurs: (1)

[t∗1, t
∗
n] ∩ [t1, tn] = ∅, (2) [t∗1, t

∗
n] ∩ [t1, tn] �= ∅. Case (1) is identical to that of

Lemma 1. In case (2), we have that the two sessions overlap, and we also know
that tj /∈ [t∗1, t

∗
n], ∀j = 1, . . . , n, that is t1 < t∗1 and t3 > t∗3. Since there are at

least 3 rounds, there exists at least a distinct timestamp t2 such that t1 < t2 < tn
and such that t2 satisfies either one of the following conditions: t1 < t2 < t∗1, or
tn > t2 > t∗n. However, one can again check that in neither one of these cases
the timestamps are correctly alternating. Therefore, T �≡ T ∗. ��

Acknowledgements. The authors would like to thank Adam O’Neill, Vic-
tor Shoup and Stefano Tessaro for valuable discussions on this work. The re-
search of Yevgeniy Dodis is partially supported by gifts from VMware Labs and
Google, and NSF grants 1319051, 1314568, 1065288, 1017471. The research of
Dario Fiore is partially supported by the European Commission Seventh Frame-
work Programme Marie Curie Cofund Action AMAROUT-II (grant no. 291803),
and the Madrid Regional Government under project PROMETIDOS-CM (ref.
S2009/TIC1465).

512 Y. Dodis and D. Fiore

References

1. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
30th ACM STOC, pp. 419–428. ACM Press (May 1998)

2. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001)

3. Bellare, M., Micali, S.: How to sign given any trapdoor function (extended ab-
stract). In: 20th ACM STOC, pp. 32–42. ACM Press (May 1988)

4. Bellare, M., Micali, S.: How to sign given any trapdoor function. Journal of the
ACM 39(1), 214–233 (1992)

5. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press
(November 1993)

8. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

9. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

10. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

11. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

12. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

14. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: ACM CCS 99, pp. 46–51. ACM Press (November 1999)

15. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In:
Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005, pp. 112–121. ACM Press
(November 2005)

16. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012)

17. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press (May 1991)

18. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

19. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press (November 2000)

20. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC,
pp. 409–418. ACM Press (May 1998)

Interactive Encryption and Message Authentication 513

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

22. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999)

23. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA se-
curity for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 434–455. Springer, Heidelberg (2007)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A “Paradoxical” solution to the signature
problem. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, p.
467. Springer, Heidelberg (1985)

25. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

26. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

27. Katz, J.: Efficient and non-malleable proofs of plaintext knowledge and applica-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228.
Springer, Heidelberg (2003)

28. Krawczyk, H.: Skeme: a versatile secure key exchange mechanism for internet. In:
Proceedings of the Symposium on Network and Distributed System Security, pp.
114–127 (February 1996)

29. Lindell, Y.: A simpler construction of cca2-secure public-key encryption under gen-
eral assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
241–254. Springer, Heidelberg (2003)

30. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607–616.
IEEE Computer Society Press (October 2009)

31. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press (October
1997)

32. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring (ex-
tended abstract). In: 32nd ACM STOC, pp. 11–20. ACM Press (May 2000)

33. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43. ACM Press (May 1989)

34. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press (May 1990)

35. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

36. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press (May 1990)

37. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press
(October 1999)

38. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

39. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

40. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

Homomorphic Signatures and Message

Authentication Codes

Dario Catalano

Università di Catania, Italy
catalano@dmi.unict.it

Abstract. Homomorphic message authenticators allow to validate com-
putation on previously signed data. The holder of a dataset {m1, . . . ,m�}
uses her secret key sk to produce corresponding tags (σ1, . . . , σ�) and
stores the authenticated dataset on a remote server. Later the server can
(publicly) compute m = f(m1, . . . , m�) together with a succinct tag σ
certifying that m is the correct output of the computation f . A nice
feature of homomorphic authenticators is that the validity of this tag
can be verified without having to know the original dataset. This latter
property makes the primitive attractive in a variety of context and ap-
plications, including, for instance, verifiable delegation of computation
on outsourced data.

In this short survey, I will give an overview of the state of the art in
the areas of homomorphic signatures and message authentication codes.
I will (briefly) describe some of the most recent results and provide an
overview of the main challenges that remain to address.

1 Introduction

Imagine that Alice wants to outsource large amounts of data to some external
server (to the ”cloud”) so that she can later delegate the server to perform
computation on this data. A natural requirement in such a situation is that
the server performs the computation correctly. More precisely, the server should
be able to perform the prescribed computation and also be able to convince
Alice that the computation has been carried out as prescribed. What makes this
task non trivial are the following additional requirements: (1) Alice does not
want to keep a local copy of her data (2) the communication complexity of the
protocol should not depend on the (total) size of the outsourced data. This latter
restriction rules out, for instance, trivial solutions in which Alice authenticates
each single message in the dataset and then receives back the same dataset to
re-run the computation locally.

An elegant solution to this problem comes from the notion of homomorphic
signatures (and message authentication codes, in cases were verification does
not need to be publicly doable). In a preliminary phase Alice signs her dataset
{mi}i=1,...,� and stores it on the cloud together with the corresponding signatures
σi = Sign(sk,mi). Later the server can use a (publicly available) evaluation algo-
rithm to compute m = f(m1, . . . ,m�) together with a (succinct) valid signature

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 514–519, 2014.
c© Springer International Publishing Switzerland 2014

Homomorphic Signatures and Message Authentication Codes 515

σ on it; σ validates the computation, as homomorphic signatures are required
to be unforgeable. Informally, this means that adversaries that can (adaptively)
see the signatures corresponding to polynomially many messages of their own
choice, cannot forge valid signature for m∗ �= f(m1, . . . ,m�).

Beyond security, additional requirements of homomorphic signatures are suc-
cinctness and composability. Informally, succinctness states that both fresh and
”derived” signatures should be short, meaning with this that transmitting them
should require much less bandwidth than sending out the original dataset. Com-
posability requires that derived signatures should be usable as inputs to authen-
ticate new computations. Finally, a keynote feature of homomorphic signatures
is that the validity of σ can be verified without needing to know the original
messages m1, . . . ,m�.

Because of their flexibility homomorphic signatures have been investigated in
several settings and flavors. Examples include homomorphic signatures for linear
and polynomial functions [8,9], redactable signatures [27], transitive signatures
and more [30,31].

Known Realizations. The problem of realizing homomorphic message au-
thenticators in both the symmetric (i.e. MACs) and in the publicly verifiable
setting (signatures), has been the focus of many previous works. The idea of
homomorphic signature was first introduced by Desmedt [17] and later refined
by Johnson et al. [27]. Linearly homomorphic signatures were introduced in 2009
by Boneh et al. [8] as a tool to prevent pollution attacks in linear network coding
schemes. Following this work, many results further explored this notion both in
the random oracle [22,10,9,13], and in the standard model [3,14,4,15,19,5]. In
the symmetric setting constructions of (linearly) homomorphic message authen-
tication codes have been proposed by [1]. Several more recent works consider
the question of supporting larger classes of functionalities. Boneh and Freeman
in [9] proposed an homomorphic signature scheme for constant degree poly-
nomials. Gennaro and Wichs [23] gave a construction of homomorphic MACs
supporting arbitrary computations. This construction relies on fully homomor-
phic encryption and it is proved secure in a weaker security model where the
adversary cannot ask verification queries. Catalano and Fiore [11] revisited this
result and put forward a construction that, while capturing a less general class
of functionalities (i.e. arithmetic circuits of polynomial degree), is very efficient
and explicitly allows for verification queries. This latter result was further gen-
eralized by Catalano et al. in [12]. Finally, Catalano, Fiore and Warinschi [16],
proposed a construction of homomorphic signatures for polynomial functions
that improves over the Boneh-Freeman solution in three main aspects. First
the scheme is proven secure in the standard model. Second, security is proven
in a stronger fully adaptive setting1. Finally, signature verification is more effi-
cient (in a amortized sense) than recomputing the function from scratch. Let us

1 The solution from [9] is proven secure in a model where the adversary is required to
ask all the signing queries for a given dataset at once. The scheme from [16], on the
other hand, is more flexible as adversaries can ask one message at a time and even
intersperse queries for messages belonging to different datasets

516 D. Catalano

elaborate a bit more on this. Virtually all previous work in the area2 proposed
constructions where the cost of verifying the signature/MAC is proportional to
the description of the function being evaluated. This means that, if one wants to
check the validity of a derived signature σ for m = f(m1, . . . ,m�), the cost of the
verification procedure is proportional to the description of f . The solution from
[16] enjoys efficient verification in the sense that verifying a signature against a
function f can be done faster than computing f . More precisely, this holds in
an amortized sense: once a first pre-computation of f is carried out locally, one
can verify the evaluation of f on any other dataset efficiently. This feature opens
the way to using homomorphic signatures for verifiable computation (e.g. [21])
and, in particular, it allows to realize simple verifiable computation schemes for
outsourced data.

SNARKs. In principle one could construct (fully) homomorphic signatures using
CS proofs [29] or, more in general, succinct non interactive arguments of knowl-
edge (SNARKs) for NP [7]. For any given NP statement, one can use SNARKs
to create a short3 proof π that certifies knowledge of the corresponding witness.
Slightly more in detail, one can create a short argument π that, given m proves
knowledge of some input data set {m1, . . . ,m�}, together with corresponding
signatures σi, such that f(m1, . . . ,m�) = m. The security of this construction
comes from the fact that, being it an argument of knowledge, a forged signature
for some function f allows to extract a (forged) signature for the underlying
dataset. The main problem of (NP)-SNARKs is that they are known to require
non standard assumptions [24]. In particular, known constructions either rely on
random oracles [29] or on so-called ”knowledge” assumptions (e.g. [25,7]).

Other related work. Recently Libert et al. [28] introduced and realized
the notion of Linearly Homomorphic Structure Preserving signatures (LHSPS
for short). Structure Preserving cryptography provides a simple and elegant
methodology to compose algebraic tools within the framework of Groth-Sahai
proof systems [26]. Informally LHSPS are like ordinary Structure Preserving
Signatures but they come equipped with a linearly homomorphic property that
makes them interesting even beyond their usage within the Groth Sahai frame-
work. In particular Libert et al. showed that LHSPS can be used to enable simple
verifiable computation mechanisms on encrypted data. More surprisingly, they
observed that linearly homomorphic SPS (generically) yield efficient simulation
sound trapdoor commitment schemes [20], which in turn imply non malleable
trapdoor commitments [18] to group elements.

Other works considered the problem of modeling notions of privacy [9,2,4]for
homomorphic signatures, so to be able to compute on authenticated data in a
privacy preserving way.

2 A nice exception is the work of Backes et al. [6] that introduced the notion of
homomorphic MACs with efficient verification. Their scheme, while very efficient,
can only support quadratic polynomials.

3 Here by short we mean that the length of π does not depend on the size of the
statement/witness.

Homomorphic Signatures and Message Authentication Codes 517

Open Problems. Currently the main open problem in the area of homomorphic
authenticators is to realize fully homomorphic signatures and message authenti-
cation codes4. Even more ambitious goals might be to realize fully homomorphic
solutions with efficient verification, as this would allow to delegate arbitrary
computations on outsourced data in an efficient, verifiable way.

Acknowledgements. I would like to thank Orazio Puglisi for his comments
and all my co-authors in this exciting area of research: Dario Fiore, Bogdan
Warinschi, Rosario Gennaro, Luca Nizzardo and Konstantinos Vamvourellis.

References

1. Agrawal, S., Boneh, D.: Homomorphic mACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012)

3. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

4. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

5. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

6. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS
2013, pp. 863–874. ACM Press (November 2013)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM (January 2012)

8. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

9. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

10. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

4 In this sense the fully homomorphic solution by Gennaro and Wichs [23] cannot be
considered fully satisfactory as it does not support verification queries

518 D. Catalano

11. Catalano, D., Fiore, D.: Practical homomorphic mACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013)

12. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic
mACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 538–555. Springer, Heidelberg (2014)

13. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor)
one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 680–699. Springer, Heidelberg (2013)

14. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

15. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

16. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)

17. Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW
(1993)

18. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press (May 1991)

19. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

20. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols
using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
177–194. Springer, Heidelberg (2003)

21. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

22. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010)

23. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

24. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press (June 2011)

25. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

Homomorphic Signatures and Message Authentication Codes 519

27. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

28. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

29. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE
Computer Society Press (November 1994)

30. Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA
2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)

31. Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2006)

Efficient Proofs of Secure Erasure

Nikolaos P. Karvelas1,� and Aggelos Kiayias2,�

1 TU Darmstadt & CASED
2 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Greece

Abstract. A proof of secure erasure (PoSE) enables a space restricted
prover to convince a verifier that he has erased his memory of size S.
So far the only known PoSEs have linear communication complexity in
S or quadratic computation complexity in S, hence their applicability is
limited, since Θ(S) communication or Θ(S2) computation can be quite
impractical (e.g., for devices with S memory words when S is in the or-
der of GB’s). In this work we put forth two new PoSEs that for the first
time achieve sublinear communication and quasilinear computation com-
plexity hence they are more efficient than what was previously known.
Efficiency comes at the price of slightly more relaxed security guarantees
that we describe and motivate.

Keywords: Time/Space Tradeoffs, Graph Pebbling, Space-bounded
adversaries.

1 Introduction

Attacks on cryptographic devices can be carried out either physically or remotely.
In either case it is highly desirable that an operator (which will be also called
the verifier in our context) is able to determine, whether the device has been
compromised or not. The scenarios in which such a demand arises are many. For
instance, in the case of a wireless sensor or actuator network, the verifier wants
to examine which (if any at all) nodes of the network have been compromised.
The suspected nodes could be asked by the verifier to erase all their memory
contents and then perform an update. However it is unclear how the verifier can
be convinced that this task is carried out properly without having physical access
to these nodes. In another setting, the operator wishes to discard a cryptographic
device. Again it is unclear, how the operator can be convinced that the device
has really deleted all of its contents without physical access to the device. While
problems as the ones described can be easily solved if the operator circumvents
the logic of the device and accesses the hardware directly, such access can be quite
cost ineffective. Therefore the question that arises is whether this problem can
be solved in a cryptographic sense, i.e., through a protocol interaction between

� Work performed while at the National and Kapodistrian University of Athens, Re-
search partly supported by ERC grant CODAMODA.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 520–537, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Proofs of Secure Erasure 521

the two parties, device and operator, without the need for the operator to resort
to accessing the hardware of the device.

In a proof of secure erasure (PoSE) protocol, the prover (a cryptographic
device with restricted memory) interacts and attempts to convince the verifier
that it has erased all its memory. At an intuitive level, a PoSE is secure, if the
prover cannot cheat the verifier and maintain a portion of its memory intact.

Our Results. We present a formal security model for PoSE protocols as well as
two new efficient PoSE constructions that succeed in attaining quasilinear com-
putational complexity and sublinear communication complexity in the prover’s
storage capacity, S.

The idea behind our first protocol, named iHash PoSE, is that the prover
wants to invert a hash function on a given point sent to him by the verifier. This
is achieved by using a time-space tradeoff, whose most computationally intensive
step is an exhaustive search, performed using an algorithm inspired by Horowitz
and Sahni, [10]. The security proof is based on a standard information theoretic
argument (cf. Trevisan et. al. in [4] for instance).

Our second approach treads on a similar general path like the one in [7]
however with the important restriction that we want to maintain quasilinear
computational complexity (as opposed to quadratic achieved in [7]). To do this
we construct a directed acyclic graph with constant in- and out-degree, on every
node which will be used to define a function. The prover should be able to calcu-
late this function efficiently using all his available memory, while any adversary
who would use substantially less than all his memory, would either not be able
at all to calculate the function or at least would have to pay in time that would
be in at least quadratic. Our class of graphs results from the application of the
recursive superconcentrators of Paul et al. [12] over Butterfly graphs and may
be of independent interest.

Table 1. A summary of the PoSEs, with S being the prover’s memory size, k the
security parameter (which is lower bounded by log S), q an upper bound of Adversary’s
running time and γ the success probability of the Adversary assuming he uses only αS
space for α ∈ (0, 1)

Communication Compl. Computation Compl. γ α

[13] S S 2−k 1− 1/S

[7] 2k S2 q2−k 1− 1/S

iHash Θ((1− α)−1 log γ−1) Θ(S log S(1− α)−1 log γ−1) any any

graphPoSE 2k S log S q2−k 1/32

Our Security Guarantees. The efficiency achieved by our constructions comes
at the price of more relaxed security guarantees. Specifically, in the case of
iHash which achieves quasilinear computation and sublinear communication,
the adversarial model in which we prove it secure assumes that the adversary
acts in two distinct phases: an “offline” phase, where he is allowed to prepare a
space consuming data structure without knowing the challenge and an “online”

522 N.P. Karvelas and A. Kiayias

phase where he receives the challenge and he should use the results from the
preparation phase as an advice, in order to invert the hash function on the given
point. While this type of offline-online behavior may be enforced through timing
(by having the verifier time the stages and reject when the prover takes longer)
a way to formally prove full security is not apparent. GraphPoSE on the other
hand is proven secure in the random oracle model (as also the previous work that
provided a formal proof of security [7] did), however as evidenced by table 1,
the α value we achieve is much less than the other protocols. This means that
the prover is guaranteed to have to erase only a fraction of his memory. While
this restricts the applicability of the protocol, its essentially optimal efficiency
characteristics make it still appealing for a subset of applications (e.g., for those
devices that destroying even a small percentage of the O/S would make them
non-functional). The situation can be improved by devising graphs with tighter
pebbling lower bounds with respect to their size which is a research direction
our work can motivate.

Organization of the Paper. In Section 2.1 we present the formal security
model for PoSEs. Then we present our first construction (iHash) in Section 2.2;
and our second construction (graphPoSE) in Section 2.3.

Related Work. The concept of Proof of Secure Erasure (PoSE) was by Perito
and Tsudik in [13] who also presented the first solution. The PoSE protocol
proposed by [13] works as follows: the verifier sends to the prover random data,
as large as the latter’s memory capacity. The prover calculates a keyed hash
function (known to both parties), using as key the last blocks of the received
data and sends it back to the verifier. The verifier calculates the same function
and compares the two results. Of course not any keyed hash function gives a
necessarily secure instantiation e.g., when the hash function is based on the
Merkle-Damg̊ard design paradigm; on the other hand, if the function is thought
to be a random oracle the security is easy to show. In any case, the protocol has
very high communication complexity something that renders it impractical in
many settings.

In subsequent work [7], a different solution is suggested, that minimizes the
communication complexity. The idea behind this approach is that the verifier
sends a small “seed” to the prover, which the latter “unravels” into a sequence
of computations that in order to be carried out, the prover will have to use all
its available storage. More specifically the prover has the description of a hash
function and receives from the verifier an initial value. He calculates the hash
function recursively in a way described by a diamond-like directed acyclic graph:
Every node has constant in- and out-degrees except for the node at the top and
the one at the bottom of the pyramid. The one at the top is the output value of
the whole calculation and has out-degree 0 and the one in the bottom is given
by the verifier and has in-degree 0. This solution reduces the communication
complexity to minimum, but demands computational complexity quadratic on
the size of the verifier’s memory. For very small memory devices this solution
can be practical, however many devices would find it extremely tolling to run a

Efficient Proofs of Secure Erasure 523

calculation proportional to the square of their memory (and in some cases, say
in a 1GB memory device, the calculation becomes infeasible).

Recently and independently of our work1 a variant of Proofs of Work (a con-
cept introduced by Dwork and Naor in [5]) has began to receive significant at-
tention by the community. Proofs of Space (PoS), studied independently in [2,6]
address the problem where a verifier needs to be convinced that a remote prover
has dedicated a specific amount of its memory, to perform a computation. PoS
and PoSE’s are related but also have important differences in terms of their
design considerations: (i) in a PoS it is imperative that the time-complexity of
the verifier is small and hence techniques like Merkle-hash trees may be used
to make the verifier side computation efficient; while such requirement might be
desirable in PoSE’s it is not fundamental to their usefulness. In this respect a
PoS imposes a stringer requirement. (ii) in a PoSE it is important that the hon-
est prover can perform reasonably efficiently using all his memory S, however a
dishonest prover with memory S′ # S should find it infeasible to convince the
verifier. For a PoSE to be useful in practice the ratio α = |S′|/|S| should be very
high (ideally very close to 1 or at least constant). For a PoS on the other hand
while it is desirable to have a high α, a PoS protocol might still be quite useful
even if α is, say, vanishing in the security parameter. In this respect, a PoSE
imposes a somewhat stringer requirement from the point of view of security. The
above remarks suggest that there may exist an “ultimate” protocol that achieves
simultaneously a very high α, a very low verifier time-complexity (such protocol
would thus be a PoS and a useful PoSE simultaneously), and quasilinear honest
prover computation. Designing such a scheme is an interesting open question.

Finally, there is an interesting parallel between key evolution schemes for
space-bounded adversaries [7,14] and proofs of space, (and in light of the above
also PoSEs). In this setting the objective is to protect against a space-bounded
adversary that operates from within the implementation of a cryptographic sys-
tem. In key evolution schemes the adversary can be thought of as the malicious
prover in a proof of space while the honest key update algorithm is following the
strategy of the honest prover. The fact that the space bounded prover cannot
cheat in the proof of space parallels the fact that the adversary cannot pre-
dict the evolved key after the implementation completes the update. Exploring
further the formal relation between the two problems is an interesting direction.

2 PoSEs Constructions

2.1 Definitions

On a high level a (two-round) Proof of Secure Erasure (PoSE) is a protocol
executed between a verifier V and a prover P , who receives a challenge from V .
In order for P to respond to the challenge he must use all his available memory
S. Otherwise (say in case he uses less that a percentage α of his memory),

1 The present paper is based on the Master’s thesis of the first author, titled “Proofs
of Secure Erasure”, supervised by the second author and submitted on Jan. 7 2013.

524 N.P. Karvelas and A. Kiayias

P should either not be able to respond at all or respond in time greater than
the one that an honest prover would need. In order to describe the above notion
more robustly we give the following definitions:

Definition 2.11. A PoSE (P ,V) is (t, s, p)−feasible if

Prob

[
V accepts

P runs for time t and uses space at most s

]
≥ p,

Similarly a PoSE (P ,V) is (t, s, p)−infeasible if for all P∗,

Prob

[
V accepts

P∗ runs for time t and uses space at most s

]
< p,

Definition 2.12. For an 0 < α < 1 a PoSE is α-robust if for every 0 < γ <
1,and for every s there exists a t > 0 such that the protocol is (t, s, 1−γ)-feasible
and (t, αs, γ)-infeasible.

Definition 2.13. An α-robust PoSE is efficient if t is polynomial in the param-
eters log γ−1, s and (1− α)−1.

2.2 Invert-Hash PoSE

In this protocol, the verifier and the prover have the description of a function,
which is hard to invert however it is designed in such a way that is particularly
amenable to a time-space tradeoff. The verifier calculates the function on a
random input and sends the output to the prover. The prover has to invert
the function on the given challenge. Below we provide a formal description and
analysis.

PoSE Description. Let f1 and f2 be two functions (to be defined later) map-
ping a set [N] to [N2/2] (where [N] = {0, . . . , N − 1}) and let x1 ∈ [N] and
x2 ∈ [N]. The prover P and the verifier V have the description of a func-
tion f : [N2] → [N2], which for every x ∈ [N2] such that x = x1 + x2N ,
f(x) = f1(x1) + f2(x2); note that addition here is taken over the integers. The
gist of the protocol is first, the verifier chooses a challenge x and sends over to
P the value y = f(x). The prover and the verifier invert f on y. The prover
sends the result to the verifier, who accepts if the result he received is the same
to what he calculated.

For a given y ∈ [N2] such that f(x) = y, in order to find its pre-image x,
we need to find x1 and x2, such that x = x1 + Nx2 and satisfy the property
f(x) = f1(x1) + f2(x2). Note that one may search amongst all pairs (x1, x2)
to find those that satisfy the property, however this is very inefficient as it will
have complexity proportional to N2. Instead one can use a time/space trade-
off technique like the ones described in [9] and [8]. We use the algorithm from
[10] and achieve subquadratic time complexity while using the prover’s all avail-
able memory. We do this by creating two tables T1 and T2 containing all pairs

Efficient Proofs of Secure Erasure 525

(x1, f1(x1)), (x2, f2(x2)), respectively for x1, x2 ∈ [N] sorted according to the
second coordinate in increasing order for T1 and decreasing order for T2. Suppose
that (x̃1, ỹ1), (x̃2, ỹ2) are the two first elements in T1, T2. In case ỹ1 + ỹ2 = y we
have a solution; on the other hand if ỹ1 + ỹ2 > y we repeat by considering the
next element of table T2; finally if ỹ1+ ỹ2 < y, we repeat by considering the next
element of T1. It is easy to see that in this way we can find all solution pairs.
The time complexity of this algorithm is governed by the sorting step, which
will require O(N logN) time and the space complexity will be exactly N blocks.

Observe that the above computation can be naturally divided in two stages:
an “off-line” stage, where the prover prepares the tables T1, T2 and an “online”
stage where the prover receives y and uses the tables T1, T2 to respond to the
verifier. The verifier times the prover in each stage and rejects in case the prover
takes longer to respond than what he is supposed to. See Figure 1 for an overview
of the protocol.

Fig. 1. Single round iHash PoSE with functions f1 and f2 instantiated by a hash
function H with random seeds s1 and s2 respectively, i.e. f1 = H(s1, ·), f2 = H(s2, ·)

In the following section we analyze the security of our PoSE, assuming adver-
saries that fit in the following model.

Adversarial Model. We assume that the adversary poses queries to the ran-
dom oracle that are independent of the challenge y. For such an adversary it is
possible to place all queries to the RO in the first stage (that is independent of
the challenge y). To reflect this non-adaptivity we consider adversaries that, as
it is the case of the real prover, operate on two phases: a first offline “preparation
phase”, during which the adversary is allowed to perform any queries he wants
to the oracle function H(·), store the answers and perform any calculation he
considers necessary. The results of this phase are stored in the adversary’s mem-
ory. In the second phase the adversary receives the challenge y from the prover
and uses the results stored in his memory as advice, performing computation

526 N.P. Karvelas and A. Kiayias

and following any strategy he wants provided he responds within the allotted
time frame (which is too short to invert the function f without the time-space
tradeoff).

Security Proof. In order to prove this PoSE efficient under the definition 2.12
we will provide first some preparatory lemmas.

Lemma 1 (Fact 1). Suppose there exists a randomized encoding procedure
Enc : {0, 1}N × {0, 1}r → {0, 1}m and a decoding procedure Dec : {0, 1}m ×
{0, 1}r → {0, 1}N such that

Prob
r∈Ur

[Dec(Enc(x, r), r) = x] ≥ δ

Then

m ≥ N − log 1/δ

For the lemma’s proof we refer to the extended version of [4].

Lemma 2. For f1, f2 and f as defined in our Invert-Hash PoSE, the expected
size of f−1(y) is bounded by 3.

Proof. Let y = f1(x1)+f2(x2) be the image of f on input x = x1+x2N . Assume
that x1, x2, y, f1, f2(x2) are fixed. Consider next the set B = {y − f1(x

∗
1) | x∗1 ∈

[N]}, which contains all the candidate values in the range of f2 that will lead
to an increase in the size of f−1(y). Observe that |B| ≤ N , since this is the
maximum number of elements that may be included. Then since the range of
f2 is of size N2/2, the probability of assigning a value to an element x∗2 ∈ [N]
such that it belongs to B is at most N/N2/2 = 2/N . The table of f2 contains
N − 1 elements (beyond the one that we have fixed f2(x2)) and hence the size
of f−1(y) can be expected to be as stated. �

Lemma 3. Let A be an algorithm, that succeeds in inverting f completely:

Prob[A(y) = f−1(y)] ≥ δ

Then there exist algorithms A1,A2 that succeed in inverting f1 and f2 as follows:

Prob[A1(y1) = f−1
1 (y1)] ≥ δ and Prob[A2(y2) = f−1

2 (y2)] ≥ δ

Proof. We describe the algorithm A1, that inverts an element y1 using A and
works as follows:

1. A1 chooses an element x2 ∈ [N], forms y = y1 + f2(x2) and passes it to A.

2. A returns all (x′1, x
′
2), such that f1(x

′
1) + f2(x

′
2) = y.

3. A1 finds a pair (x′1, x
′
2) such that x′2 = x2 and returns x1 = x′1.

Efficient Proofs of Secure Erasure 527

An algorithmA2 can be defined in entirely symmetric fashion. We will show that
A1 succeeds in inverting a given element y1 with probability at least δ. Define

Ψ1 = {y1 ∈ [N2/2] : ∃y ∈ [N2]∃(x1, x2) ∈ [N]2 : (x1, x2) ∈ A(y) ∧ f1(x1) = y1},
Ψ2 = {y2 ∈ [N2/2] : ∃y ∈ [N2]∃(x1, x2) ∈ [N]2 : (x1, x2) ∈ A(y) ∧ f2(x2) = y2},
S = {(x1, x2) ∈ [N]2 : ∃y ∈ [N2] : (x1, x2) ∈ A(y)},
Sf1,f2 = {(y1, y2) ∈ [N2/2]2 : ∃(x1, x2) ∈ S : f1(x1) = y1 ∧ f2(x2) = y2}

Now let (y1, y2) ∈ Sf1,f2 . Then there exists (x1, x2) ∈ S such that f1(x1) = y1
and f2(x2) = y2. Since (x1, x2) ∈ S, there exists a y such that (x1, x2) ∈ A(y).
So for this y, we have that y1 ∈ Ψ1 and y2 ∈ Ψ2, which means that Sf1,f2 ⊆
Ψ1 × Ψ2. Since |S| ≥ |Sf1,f2 | and by the hypothesis |S| ≥ δN2, we have that
|Ψ1 × Ψ2| ≥ δN2.

Since S �= ∅, we have that Sf1,f2 �= ∅ and therefore Ψ1 �= ∅ and Ψ2 �= ∅. Observe
now that since f−1

1 (y1) ≤ N (by the definition of f1) |Ψ1| ≤ N and similarly
|Ψ2| ≤ N . Assume that |Ψ1| < δN and |Ψ2| = N . Then |Ψ1 × Ψ2| < δN2, which
is a contradiction. Therefore it must hold that |Ψ1| ≥ δN and |Ψ2| ≥ δN .

To conclude the proof, let y1 be a random element from f1([N]). Since A1

inverts all the elements in Ψ1 and |f1([N])| = N , we have that Prob[A1(y1) =
f−1(y1)] ≥ δN

N = δ and similarly Prob[A2(y1) = f−1(y2)] ≥ δN
N = δ. �

Our security proof will hinge on the following lemma which shows how an
algorithm A for inverting f can be used as an encoding schema for the functions
f1, f2.

Lemma 4. Let A be a probabilistic poly time algorithm that on input (σ, y),
where y is the element to be inverted and σ is an advice string of length |σ| = εN ,
returns the set {(xj1, x

j
2) : y = f1(x

j
1) + f2(x

j
2), j = 1, . . . , k, k ≤ N} of all

the preimages of y, with the property that (f1(x
j
1) < f1(x

j+1
1)) and (f2(x

j
1) >

f2(x
j+1
1)) and assume

Prob[A(σ, f(x)) succeeds] ≥ δ

Then using A we can produce a randomized encoding procedure for the function
table of f1 and f2 that has length at most |σ|+ 4(1− δ)N logN .

Proof. (sketch) We begin by describing the Encoding and Decoding procedures:

Encoding. The encoding consists of the advice string σ and a table T , which
contains the 2(1− δ)N elements, not inverted by A.

Decoding. 1. Initialize a table T ′ that will hold the values of f1 and f2
2. Fill T ′ with the contents of T
3. For every element in T ′ that has not yet been inverted, use A to invert

it.

Next we calculate the space needed for the encoding:

– Encode the values of f1 : [N] → [N2/2] that A cannot invert, using
log (1− δ)N ! bits.

528 N.P. Karvelas and A. Kiayias

– Encode the set f1((1 − δ)N) of the images of the elements, that cannot be

inverted by A using log

(
N2/2

(1 − δ)N

)
bits.

The total space needed for the encoding is:

|σ|+ 2 log ((1− δ)N)! + 2 log

(
N2/2

(1− δ)N

)
= |σ|+ 2 log ((1− δ)N)!

(
N2/2

(1− δ)N

)
≤ |σ|+ 4(1− δ)N logN

This completes the proof. �

Proposition 2.21. For any α > 0, the k-round sequential composition of the
Invert-Hash-PoSE is α-robust and has the performance characteristics of table 1

provided that k = Θ(log γ−1

1−α).

Proof. Let S be the memory size that we want to securely erase, γ the adversary’s
success probability and αS the amount of memory, that the adversary will use.
It is easy to see, Invert-Hash-PoSE is (O(S logS), S, 1−γ)-feasible, since it needs
O(S logS) time in order to sort the elements and needs S space to hold them.
Since in order to find the inverse element, it has to go through all the table that
contains f1 and f2, we see that

Prob

[
V accepts

P ran for O(S log S) time and used S space

]
= 1,

Next we show that a single round of Invert-Hash-PoSE is (O(S logS), αS, 1−
(1 − α)13) infeasible. Assume that it is (O(S logS), αS, 1 − (1 − α)13)-feasible.
Then

Prob

[
V accepts

P ran for O(S logS) time and used αS space

]
≥ δ

for δ = 1−(1−α)13 . In other words there exists an algorithmA such that given an
advice string of length αS and an element y to invert, succeeds with probability
≥ δ. By lemma 4 and usingA we can construct a randomized encoding procedure
that uses space αS + 4(1− δ)S logS bits. By lemma 1 we have that αS + 4(1−
δ)S logS ≥ S · log (S2

2) which means that 4(1 − δ) logS ≥ log
(

S2

2

)
− α from

which it follows that δ < 1− (1−α)13 (for S at least 3) which is a contradiction.
Recall now that the protocol is repeated k times. Then given that it holds(

1− (1− α)13
)k ≤ e−(1−α) 1

3 ·k we have that in order for the protocol to be

(O(S logS), αS, γ) infeasible it must hold that e−(1−α) 1
3 ·k ≤ γ i.e. k ≥ 3 ln γ−1

(1−α) .

In other words the protocol is (O(S logS), αS, γ) infeasible as long as it is iter-

ated any k amount of times, such that k = Θ
(

log γ−1

1−α

)
. Based now on Lemma 2

the expected number of collisions is constant, thus achieving the communication
complexity stated in table 1. �

Efficient Proofs of Secure Erasure 529

2.3 Graph Based PoSE

From the discussion in the previous sections it is reasonable to assume that for a
PoSE to be efficient, a computational problem must be used, for which we know
lower bounds in its space complexity while the time needed for the honest prover
to solve it is less than quadratic. In this setting one comes accross the pebbling
games on graphs, which have been studied extensively in the context of proving
space lower bounds for calculating algebraic expressions and thus they appear
to be a useful tool in the context of PoSEs, as has been previously also observed
in [7]. With respect to pebbling, we refer to [11] for a detailed survey – here we
provide only the necessary background for our purposes.

A PoSE based on the pebbling game is intuitevely easy to understand. There-
fore we start by giving its description and stating the adversarial model. Then
we provide all the necessary definitions and lemmata to describe our PoSE rig-
orously and prove it secure according to the definitions in 2.1.

PoSE Description. Consider a DAG with only one source and one sink (i.e.
node with 0 in- and out- degree respectively). Constructing a PoSE based on
this DAG is easy: The prover P and the verifier V have a hash function H :
{0, 1}∗ → {0, 1}k, whose outputs we assign as labels to the various nodes of the
graph. The label of every node is the hash of the labels of the node’s predecessors
(as well as the index of the node). In more detail we have the following protocol
(which we will be calling graphPoSE):

1. V sends the label of the source node S0.
2. P “pebbles” the graph, starting from the label of the source node and for

every node uses the hash function H in order to determine the label of the
descendant node. He proceeds in this manner until he pebbles the unique
sink of the graph.

3. P sends the label of the unique sink to V , who, having ran the same protocol,
checks if the value he received is the same to the one he calculated.

Prover V erifier

H(S0)

Choose label for

the source node

S0, H(S0)

Pebble the graph
until the sink node Z0

is pebbled
Label of Z0

Pebble the graph
until the sink node Z0

is pebbled

accept if

value computed == value received

Fig. 2. The template for a graphPoSE using a DAG

530 N.P. Karvelas and A. Kiayias

Adversarial Model. We model the hash function H as a random oracle. The
adversary can query it at any point during its computation.

Security Proof. The details of the protocol as well as the various definitions
and lemmata needed are provided below.

Definition 2.31. (Pebble game). Let G be a directed acyclic graph (DAG). A
pebble game on G is the following one-player game. At any time t, we have a
configuration Pt of pebbles on the vertices of G, at most one pebble per vertex.
The rules of the game are as follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them, a
pebble may be placed on v. In particular, a pebble can always be placed on a
source vertex.

2. A pebble may be removed from any vertex at any time.

A pebbling of G, also called a pebbling strategy for G, is a sequence of pebble
configurations P = 〈P0, . . . ,Pτ 〉. In case P0 = X and Pτ = Y where X,Y are the
source and sink vertices of G then we call this a complete strategy. Furthermore,
if for all t ∈ [τ], Pt follows from Pt−1 adhering to the rules above, we call this a
legal strategy. The time of a pebbling P = {P0, . . . ,Pτ} is simply time(P) = τ and
the space is space(P) = max0≤t≤τ{|Bt|} where Bt represents the set of vertices
that carry a pebble in time t. The pebbling price of G, denoted Peb(G), is the
minimum space of any complete legal strategy for G.

Definition 2.32. (Compact Recursive Representation) A parameterized family
of Directed Acyclic Graphs {Gn}∞n=1 will be called Compactly Recursively Rep-
resentable (CRR), if for every graph Gn = (Vn, En), there exists a circuit C of
polylogarithmic size in |Vn| that given a node returns its incoming edges.

In other words, a graph that belongs in this family, will have a short (inde-
pendent of the usual matrix or list) representation, which is what we need in
our protocol, since for the verifier to send the whole graph in its matrix or list
representation, would have to blow up the communication complexity to at least
linear.

Consider G = (V,E) to be a DAG of |V | = n vertices. In G we distinguish
some special vertices : an input vertex is a vertex with no incoming edges and
an output vertex is a vertex that has no outgoing edges.

For any such graph G we define the following symbolic labeling: input vertices
are labeled by xi where i ranges over {1, . . . , k} where k is the number of input
vertices. Any other node v is labeled by H(v, l1, . . . , lm) where m is the number
of incoming edges and l1, . . . , lm are the corresponding labels of the incoming
(parent) vertices.

Definition 2.33. Let U = {0, 1}s. Given a DAG G = (V,E) with k input ver-
tices, m output vertices and bounded in-degree d, we define for a given function
H : V × Ud → U the function GH : Uk → Um to be the function that maps
x1, . . . , xk ∈ U to the values y1, . . . , ym ∈ U that correspond to the evaluations
of the symbolic labelings of the output vertices of G using the function H.

Efficient Proofs of Secure Erasure 531

We now fit the notion of ex-post-facto pebbling from [7] to our setting.

Definition 2.34. Fix U = {0, 1}s and DAG G. Given a probabilistic algorithm
A utilizing an oracle H : V × Us → U , the ex-post-facto pebbling of G corre-
sponding to A is a pebbling strategy P parameterized by input x1, . . . , xk ∈ U ,
the choice of H and the coins ρ of A that satisfies the following :

1. The time of the pebbling equals the number q of oracle queries of A to H.
2. Initially pebbles are placed on all k of the input vertices of G.
3. If in the i-th query A asks H for an input u and it holds that u equals the

label of a node v then a pebble is placed on that vertex for the configuration
Pi.

4. Suppose a label l of a non-output vertex v never appears in any query j
succeeding the i-th query until the sequence terminates or the label of v is
recomputed. Then, no pebble is placed on v in any configuration Pi+1, . . . ,Pj.

We say that an algorithm A has an execution that computes the function
GH for a given function H if it happens that the ex-post-facto pebbling of G
corresponding to A on input x1, . . . , xk for some coins ρ of A is complete (i.e., it
terminates in a configuration where all output nodes of G are pebbled). For the
case where the function H behaves as a random oracle, we prove the following:

Proposition 2.31. Fix U = {0, 1}s and a d-bounded DAG G = (V,E) with
n = |V | and k input vertices. Consider an algorithm A and the random variable
P defined as the ex-post-facto pebbling of G parameterized by x1, . . . , xk selected
uniformly at random from U and H selected uniformly at random from (V ×
Ud → U). Then we have that

Pr[P is legal] ≥ 1− q · 2−s

Proof. (sketch) Let P = 〈P0, . . . ,Pq〉 be a possible pebbling strategy of A. If P
is not legal then there exists a smallest i ≥ 1 such that the transition from Pi−1

to Pi does not adhere to the rules of definition 2.31. This means that for some
i ∈ {1, . . . , q}, a pebble appears for vertex v in Pi while in Pi−1 at least one of
the parent nodes of v have no pebble placed in them. Translating this to our
computational model, it means that the label of the parent node of v was never
computed. On the other hand the fact that the ex-post-facto pebbling places a
pebble on v means that the i-th query to H by A contains the label l of the node
v′ (where v′ is one of v’s parents). Then v is not an input node since all input
nodes have pebbles placed on them automatically in any ex-post-facto pebbling.
Let a = (l′1, . . . , l

′
d, v) be the string that defines the label l = H(a). Since there

was never a pebble in v′ this means that a was never queried. It follows that the
value l is uniformly random over U from the perspective of A, hence predicting
it correctly as part of the i-th query can occur with probability at most 2−s.
The result follows given that i ranges in {1, . . . , q}. �

532 N.P. Karvelas and A. Kiayias

Using the above proposition we conclude that any algorithm A performs a
legal pebbling while computing the labels with very high probability. Next we
need to establish a relation between the price of pebbling and the space required
by an algorithm A. This we achieve by proving the following:

Proposition 2.32. Fix U = {0, 1}s, a d-bounded DAG G = (V,E) with n = |V |
and k input vertices, and H : V ×Ud → U . (1) There exists an algorithm AH,P in
the RAM model that on input x1, . . . , xk computes GH(x1, . . . , xk) using Peb(G)
space and time O(|V |) where P : V → V d ∪ {⊥} is a function that returns the
d parents of a given node v or ⊥ if it is a source node. (2) Any other algorithm
A that agrees with GH(x1, . . . , xk) on a fraction of inputs above α uses space
Peb(G).

Proof. (sketch) (1) The proof is using P to perform a depth first search over G.
Further details are omitted.

(2) Consider an execution of A for which the space complexity is less than
Peb(G). This means that there is a strategy that calculates GH(x1, . . . , xk) but
the pebbling induced by A in this execution path has price strictly smaller than
Peb(G) something that suggests that either it is not complete or not legal (given
Peb(G) is the minimum such price for complete and legal strategies). Given that
there is an α fraction of complete strategies there should be at least α − q2−s

that are legal. �

An essential role as the building blocks of the graphs we construct is played by
the superconcentrator graph family, which we describe next giving also some
well known results about it, which will help us prove the security of our PoSE.

Superconcentrators are graphs that solve the problem of connecting N clients
to N servers in a setting where either the clients or the servers are interchange-
able and therefore it does not matter which client is connected to which server.
A formal definition follows:

Definition 2.35. A directed acyclic graph G with N input and N output nodes,
will be called an N− superconcentrator if for every r ≤ N , every set of r inputs,
and every set of r outputs, there exists an r−flow (a set of r vertex-disjoint
directed paths) from the given inputs to the given outputs.

Next we state some basic results regarding superconcentrators, which we will
use for our protocol. For the proofs we refer to [11].

Lemma 5. Suppose that Q : u� v is a path in G and that P = {Pσ,Pσ+1, ...,Pt}
is a pebbling such that the whole path Q is completely free of pebbles at times
σ and t but the endpoint v is pebbled at some point in the time interval (σ, t).
Then the starting point u is pebbled during (σ, t) as well.

Lemma 6. Let G be an N− superconcentrator, S the set of its sources and Z
the set of its sinks. Then for every pebble configuration P with Space(P) < s
there exist S′ ⊆ S and Z ′ ⊆ Z, with |S′| ≥ N − s and |Z ′| > s such that for
every s ∈ S′ and z ∈ Z ′ the vertex path from s to z is completely pebble free.

Efficient Proofs of Secure Erasure 533

Lemma 7 (Basic Lower Bound Argument). Suppose that P = {Pσ,Pσ1 , . . . ,
Pt} is a conditional (i.e.Pσ �= ∅) pebbling of an N− superconcentrator such that
space(Pσ) ≤ sσ, space(Pt) ≤ st, and P pebbles at least sσ + st + 1 sinks during
the closed time interval [σ, t]. Then P pebbles and unpebbles at least N − sσ − st
different sources during the open time interval (σ, t).

Proposition 2.33 (Pebble lower bound). Any complete pebbling of an N−
superconcentrator G in space at most s has to pebble at least Ω(N2/s) sources.

Paul, Tarjan and Celoni in [12] create a family of graphs for which we can
find the lower bound pebbling price. This graph family construction we describe
here as presented in [11]. Graphs that belong in this family we will be calling
Paul-Tarjan-Celoni (PTC) graphs.

Definition 2.36. Let C(k) = SCN(k) for k = 0, 1, 2, . . . denote any arbitrary

but fixed family of superconcentrators with N(k) = K · 2k sources and sinks for
some constant K ∈ N+ and Θ(N(k)) vertices of indegree 2. Then the PTC graph
Ξ(0) is C(0), and Ξ(i + 1) for i ≥ 0 is defined inductively as follows:

The graph Ξ(i+1) has sources si+1[j] and sinks zi+1[j] for j = 1, 2, . . . , N(i+
1). It contains two copies Ξ1(i), Ξ2(i) of the PTC graph of one size smaller
with sources sci [j] and sinks zci [j] for j = 1, 2, . . . , N(i) and c = 1, 2, and two
superconcentrator copies C1(i), C2(i) with sources xci [j] and sinks yci [j] for j =
1, 2, . . . , N(i) and c = 1, 2. The edges in Ξ(i + 1) are all internal edges within
Ξ1(i), Ξ2(i) and C1(i), C2(i), as well as the following edges:

1. (si+1[j], x
1
i [j]) and si+1[j+N(i)], x1i [j]) for j = 1, . . . , N(i), from the sources

in Ξ(i+ 1) to the sources of C1(i),
2. (y1i [j], s

1
i [j]) for j = 1, . . . , N(i), from the sinks of C1(i) to the sources of

Ξ1(i),
3. (z1i [j], s

2
i [j]) for j = 1, . . . , N(i), from the sinks of Ξ1(i) to the sources of

Ξ2(i),
4. (z2i [j], x

2
i [j]) for j = 1, . . . , N(i), from the sinks of Ξ2(i) to the sources of

C2(i),
5. (y2i [j], zi+1[j]) and (y2i [j], zi+1[j +N(i)]) for j = 1, . . . , N(i), from the sinks

of C2(i) to the sources of Ξ1(i+ 1),
6. (si+1[j], zi+1[j]) for j = 1, . . . , N(i+1), directly form the sources to the sinks

of Ξ(i+ 1).

For this family of graphs the following lemma is proved:

Lemma 8 (Lower Bound on Superconcentrator pebbling). Let m(i) =
|S(i)| = |T (i)| = 2i, let Ξ(i) be a DAG as in the construction of [12] and suppose
that in the interval [0, t] at least c1m(i) sinks of Ξ(i) are pebbled in any order for
some constant c1. Suppose also that at times 0 and t there are at most c2m(i)
pebbles on the graph for some constant c2. Then there exist constants c3, c4 and
a time interval [t1, t2] ⊆ [0, t] during which at least c3m(i) sources of Ξ(i) are
pebbled and at least c4m(i) pebbles are always on the graph.

534 N.P. Karvelas and A. Kiayias

Using the lemma, a lower bound on the pebbling price for this graph family
can be found, as shown in the following:

Proposition 2.34. There exists a family of explicitly constructible
DAGs {Gn}∞n=1 with Θ(n) vertices, unique sink and indegree 2, such that
Peb(G) = Ω(n/ logn).

For a detailed proof of the above we refer to [12]. In this work the constants of
the lemma 8 are set to m(i0) = 256, c1 = 14/256, c2 = 3/256, c3 = 34/256 and
c4 = 1/256. The pebbling lower bound is actually the constant c4, which is clearly
affected by the superconcentrator family of graphs, used for the C(i) graph of
every recursion step. For example the superconcentrator family constructed in
[1] although it is inductively constructed, its base case begins with 218 sources,
which clearly cannot be used in the setting that we want. On the other hand
using the complete bipartite graph with N nodes again cannot be done, due its’
unbounded in- and out-degree.

While the above construction provides a solution that is efficient in the asymp-
totic sense it is not as satisfying in terms of concrete parameters. To improve
the concrete parameters we instantiate the construction with family of the but-
terfly graphs (where But(n) denotes the butterfly graph with n sinks/sources),
which actually helped us improve the hidden constants in the PTC graphs. The
resulting graph we call PTC-But graph, which we further adjust by adding one
extra layer of nodes (denoted as layer-(N + 1) in the following) in order to fit
our needs of one sink and one source. This graph clearly belongs to the CRR
family of graphs and since the number of vertices is Θ(i2i)2 (where 2i = n is the
number of sinks), running a BFS on the graph can pebble it in time O(n log n).
Using lemma 8 makes also clear that any algorithm that pebbles it, must use
Θ(n) space. It is therefore clear that this family of graphs has all the desired
properties for constructing an efficient PoSE:

– It is compactly recursively representable
– It requires Θ(n) space
– It can be pebbled in O(n log n) time

Lemma 9. Any pebbling strategy that pebbles at least 14 sinks of the butterfly
graph with 64 sinks/sources (But(64)) and starts with a configuration of 3 peb-
bles, pebbles at least 34 sources, while maintaining at least one pebble throughout
the whole time.

Proof. We will prove this lemma by actually proving something stronger: namely
we argue that in order to pebble 1 sink, all the sources of the graph need to be
succintly pebbled. We start by observing that in order to pebble a single sink

2 Solving the recursive relationship

V (i) = 2(2i + 2i−12(i− 1)) + V (i− 1),

where V (i) is the number of vertices of the PTC graph with 2i sinks and 2i−12(i−1)
is the number of vertices added by the But(2i−1), proves the claim.

Efficient Proofs of Secure Erasure 535

of the But(4), any strategy would have to pebble all the 4 sources of the graph.
Then since any sink of But(8) needs to pebble two sinks of the two distinct
But(4) subgraphs and all of the latters’ sources need to be pebbled, then for
1 sink of But(8) to be pebbled, all the 8 sources need to be pebbled as well.
The idea propagates in the next members of the butterfly graph family (easily
shown by induction), thus proving that for one sink of the But(64) graph to be
pebbled, all its’ 64 sources need to be pebbled. Then clearly the lemma holds
for the case of this graph. �

Using then lemmata 8 and 9 we have now the following

Lemma 10. (Main Lemma) Any algorithm that pebbles a [12] superconcen-
trator with 2i sinks/sources and using the Butterfly family of superconcentrators
for constructing the C(i) graph of every recursion step uses at least 2i−6 pebbles.

Proof. Using the butterfly superconcentrator family of graphs in every recursive
call of C(i), and applying Lemma 9 we can verify that the constants c1 = 14/64,
c2 = 3/64, c3 = 34/64 and c4 = 1/64 satisfy the conditions required by 8, thus
proving the result. �

We recall now the algorithm that is ran by an honest prover and prove the
graphPoSE to be efficient under the definition 2.12. Assuming that each node’s
encoding is of the form (index, Label, layer) and that for the labeling of each
node a hash function H : {0, 1}2w → {0, 1}w is used, an honest prover pebbles a
given PTC graph (with 2i sinks/sources) in space 2i−1+5 and time i2i, given the
graph’s structure. The main idea behind the algorithm is that using 2i−1 pebbles
it is trivial to pebble the PTC(2i−1) graph just by running BFS. Therefore what
we really should care about is how to pebble the 2i sources and how to “ravel”
the graph after pebbling the 2i−1 sinks of Ξ2(i− 1). For that we need a total of
5 extra pebbles, which help us maintain a “book-keeping”. How the first part is
done is quite easy: In order to pebble sink j of the Ξ1(i− 1) graph, we place one
of the extra pebbles on sink j and one more on sink j + 2i−1 of PTC(2i). We
compute the result (which is the label of pebble j of Ξ1(i − 1)) and store it in
one of our 2i−1 available slots. In a similar way we use three of the extra pebbles
to compute the label of sink j of Ξ(i) (copying the label of sink j of Ξ2(i− 1) to
one of them, the label of source j of Ξ(i) to the other and placing the result to
the third). In a same way we compute the label of sink j + 1 of Ξ(i) and use it
to compute the label of sink j of layer-(N + 1) of Ξ(i), “raveling” stepwise the
graph, until we compute the label of the unique sink of the graph. The algorithm
is stated in detail in the Appendix and using this we can now prove the main
result concerning the graphPoSE in the following proposition.

Proposition 2.35. The graphPoSE is 1/32-robust and has the performance
characteristics given in table 1 where k is the number of bits in the output of
hash function H.

Proof. The proposition follows using Lemma 10 and the space requirement of
the algorithm executed by the honest prover that is described above.

536 N.P. Karvelas and A. Kiayias

References

1. Alon, N., Capalbo, M.R.: Noga Alon and Michael R. Capalbo. Smaller explicit
superconcentrators. Internet Mathematics 1(2), 151–163 (2003)

2. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: When space is
of the essence. Cryptology ePrint Archive, Report 2013/805 (2013),
http://eprint.iacr.org/

3. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: ACM Conference on Computer
and Communications Security, pp. 400–409 (2009)

4. De, A., Trevisan, L., Tulsiani, M.: Time Space Tradeoffs for Attacks against One-
Way Functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 649–665. Springer, Heidelberg (2010)

5. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

6. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. Cryp-
tology ePrint Archive, Report 2013/796 (2013), http://eprint.iacr.org/

7. Dziembowski, S., Kazana, T., Wichs, D.: One-Time Computable Self-erasing Func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Hei-
delberg (2011)

8. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM
J. Comput. 29(3), 790–803 (1999)

9. Martin, E.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26(4), 401–406 (1980)

10. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM 21(2), 277–292 (1974)

11. Nordström, J.: New wine into old wineskins: A survey of some pebbling classics
with supplemental results (2011)

12. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game of graphs. In:
Chandra, A.K., Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) STOC, pp.
149–160. ACM (1976)

13. Perito, D., Tsudik, G.: Secure Code Update for Embedded Devices via Proofs of
Secure Erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010)

14. Smith, A., Zhang, Y.: Near-linear time, leakage-resilient key evolution schemes
from expander graphs. Cryptology ePrint Archive, Report 2013/864 (2013),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Efficient Proofs of Secure Erasure 537

A Appendix

Algorithm 1. HonestPebbler(S0)

1: Input: The unique source’s label, S0

2: for j = 1 to j = 2i do
3: tmp1 ← H(j, S0){label of node j}
4: tmp2 ← H(2i + j, S0){label of node 2i + j}
5: L[j] ← ((j,H(tmp1, tmp2)), 1){Compute and store the labels of the sources of

the first level}
6: end for
7: Pebble the rest of the graph using BFS until reaching the sinks of C2(i−1), updating

the values in L[] {now L[] contains the values of the sinks of C2(i− 1)}
8: tmp1 ← H(1, S0){label of node 1 at layer 0}
9: tmp2 ← L[1]
10: tmp3 ← H(tmp1, tmp2)
11: tmp1 ← H(2, S0){label of node 2 at layer 0}
12: tmp2 ← L[2]
13: tmp4 ← H(tmp1, tmp2)
14: tmp5 ← H(tmp3, tmp4)
15: for j = 3 to j = 2i do
16: tmp1 ← H(j, S0){label of node j at layer 0}
17: tmp2 ← L[j]
18: tmp3 ← H(tmp1, tmp2)
19: tmp4 ← tmp5
20: tmp5 ← H(tmp3, tmp4)
21: end for
22: for j = 2i + 1 to j = 2i+1 do
23: tmp1 ← H(j, S0){label of node j at layer 0}
24: tmp2 ← L[j]
25: tmp3 ← H(tmp1, tmp2)
26: tmp4 ← tmp5
27: tmp5 ← H(tmp3, tmp4)
28: end for{tmp5 now holds the value of the unique sink}
29: Return tmp5

Proofs of Space: When Space Is of the Essence

Giuseppe Ateniese1,2, Ilario Bonacina1, Antonio Faonio1, and Nicola Galesi1

1 Sapienza - University of Rome, Italy
{ateniese,bonacina,faonio,galesi}@di.uniroma1.it

2 Johns Hopkins University, USA

Abstract. Proofs of computational effort were devised to control de-
nial of service attacks. Dwork and Naor (CRYPTO ’92), for example,
proposed to use such proofs to discourage spam. The idea is to couple
each email message with a proof of work that demonstrates the sender
performed some computational task. A proof of work can be either CPU-
bound or memory-bound. In a CPU-bound proof, the prover must com-
pute a CPU-intensive function that is easy to check by the verifier. A
memory-bound proof, instead, forces the prover to access the main mem-
ory several times, effectively replacing CPU cycles with memory accesses.

In this paper we put forward a new concept dubbed proof of space.
To compute such a proof, the prover must use a specified amount of
space, i.e., we are not interested in the number of accesses to the main
memory (as in memory-bound proof of work) but rather on the amount of
actual memory the prover must employ to compute the proof. We give a
complete and detailed algorithmic description of our model. We develop a
full theoretical analysis which uses combinatorial tools from Complexity
Theory (such as pebbling games) which are essential in studying space
lower bounds.

Keywords: Space Complexity, Proof of Work, Pebbling Game, Random
Oracle Model.

1 Introduction

Space has a special meaning in Computer Science. It refers to the number of cells
of the working tape used by a Turing Machine (TM). While a TM computes a
function, it will make several steps (relevant to time complexity) and use a
certain number of tape cells (relevant to space complexity).

In [13], Dwork and Naor proposed to employ proof of work (PoW) to discour-
age spam and, in general, to hinder denial of service attacks. Before any action
(such as sending an email), the prover must perform some work and generate a
proof of it that can be efficiently verified. Proofs of work are currently being used
to implement a publicly verifiable ledger for Bitcoin, where transactions are reg-
istered and verified by a community of users to avoid the double-spending prob-
lem [27]. The work performed by the prover can be CPU-bound, in which the
work represents the number of steps made by a TM, or memory-bound, in which
the work represents the times a TM access the working tape. The motivation

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 538–557, 2014.
c© Springer International Publishing Switzerland 2014

Proofs of Space 539

behind memory-bound PoW is that, while CPU speed may differ significantly
among distinct platforms, memory latencies vary much less across machines and
may prove to be more equitable and egalitarian. We stress that memory-bound
function complexity measures the number of memory accesses and does not take
into account the actual amount of memory employed. That is, a TM may read
and mark a single cell several times to reach a certain complexity level but it
will still end up using only one cell.

In this work we define the notion of Proof of Space (PoSpace). PoSpace forces
the prover to use at least a specified amount of memory. This means, for instance,
that a TM must now use a predetermined number of distinct tape cells to be able
to respond to a challenge. We will show that our PoSpace construction is also a
memory-bound PoW under the definition provided in [12, 14], while in general
a PoW cannot be a PoSpace under our definition. The state of the art memory-
bound PoW was described in [14] by Dwork, Goldberg, and Naor. Their scheme
requires both the prover and the verifier to store a large table T but they devised
ways to mitigate this problem via either hash trees or public-key signatures.

We view PoSpace as a valid alternative to various flavors of PoWs. In PoSpace
the spotlight is turned on the amount of space rather than on CPU cycles or
memory accesses as in PoWs. In addition, PoSpace solves certain problems where
PoW is not applicable. For instance, we believe PoSpace can be employed in
forensic analysis or device attestation to confirm remotely that an embedded
device has been successfully wiped. That is, a remote device could be instructed
to respond to a wipe command with PoSpace as evidence that its functional
memory is now overwritten (cf. [29]).

Straw Man Solutions. Memory-bound functions were first introduced by Abadi
et al. [1]. In the main construction of memory-bound PoW given in [12], both the
prover and the verifier share a large random table T . The prover must compute
a function by making several memory accesses to uniformly random positions
in T . Through a proper tuning of the parameters, it is also possible to force
the prover to reserve a specific amount of memory. In another construction, the
authors of [12] show that the verifier does not have to store T . The idea is to
sign all pairs (i, T [i]) and then challenge the prover on � positions of T . The
prover will return the � values T [i] along with an aggregate signature that can
be checked by the verifier to ensure the prover is holding the table T .

We first remark that it is possible to harness recent advances in proof of stor-
age schemes, such as Provable Data Possession (PDP) [4] and (compact) Proof
of Retrievability (POR) [31], to reduce the message complexity from O(�) to
essentially constant. This solution improves upon the one in [12] and, as long
as the initialization phase is performed only once, would meet our efficiency re-
quirements for PoSpace. However, proof of storage does not satisfy our definition
of PoSpace since the running time of the verifier depends on the size of T . The
only way to avoid linear dependency is to run a PDP-based scheme with spot
checking [4], but then the prover either must use more space than required or will
not access all the memory locations. Intuitively, the reason why a solution based
on proof of storage will not work rests upon the interpretation of what proof of

540 G. Ateniese et al.

space really means. Proof of storage applied to our context satisfies the notion
that “the prover can access space”. PoSpace instead captures the stronger no-
tion that “the prover can handle space”, i.e., the prover possesses, controls, and
manipulates space directly. In particular, we distinguish between a prover that
can only read memory and a prover that can read and write memory. This is
important because, among other things, write operations cannot be parallelized
within classical computer architectures. We will provide a formal definition later
and make this intuition rigorous.

We also remark that the adversarial model considered in [1,12] contemplates
the existence of a small but fast cache memory that must be saturated to force
the prover to dispense with the cache and use traditional RAM memory. Thus,
the constructions in [1, 12, 14] do provide a form of proof of space where the
space coincides with the cache memory. But, as for proof-of-storage schemes,
these schemes satisfy the weaker notion of PoSpace where the prover can only
read memory.

Other Related Work. A proof of work is also known as a cryptographic puz-
zle in the computer security literature. Puzzles were devised to improve on the
proposal by Back [6] and employed to thwart denial of service attacks. In partic-
ular, it is important to make them hard to precompute (see [22] and references
therein). Waters et al. [34] suggest to outsource the creation of puzzles to an
external secure entity. Abliz and Tznati [2] introduce the concept of network-
bound puzzles where clients collect tokens from remote servers before querying
the service provider. They argue that network latency provides a good solution
to the resource disparity problem.

All solutions above deal with proof of effort and cannot be adapted to prove
possession of space in the way it is meant and defined in this paper.

Litecoin (litecoin.org) is a variant of Bitcoin that employs scrypt [28] to
certify a public ledger. scrypt is defined as a sequential memory-hard function
and originally designed as a key derivation function, but it is used as a proof of
effort in litecoin to hinder the use of specialized hardware. Technically, scrypt
is not a memory-bound function as defined in [1] since no lower bound on the
memory used by the function can be guaranteed. Thus, it is not even a PoSpace.
We also note it requires both the prover and the verifier to dedicate a possibly
large amount of memory, while ideally only the prover should reserve and use
actual memory (as in our construction to be presented later).

Dziembowski et al. [18] have independently suggested a notion of proof of
space. Their original construction generalizes the hash-based PoW of Cash [6]
and does not employ the pebbling framework of [14] (cf. Appendix A of [15]).
A major overhaul version of their paper later appeared on the IACR Crypto
Eprint repository [15], along with ours [3]. Their new version does use pebbling
and adopts techniques similar to ours.

However, there are two main differences between our work and [15] that make
their work quite compelling:

litecoin.org

Proofs of Space 541

1. The definition of proof of space in [15] is stronger in that it allows a two-
stage protocol. The first stage can be executed once while the second stage
can potentially be executed many times after the first. There are several ap-
plications that would benefit from this two-stage notion (see for example the
Gmail scenario described in [15]). At the same time, however, this stronger
notion is achieved in a more idealized model than the Random Oracle Model.
To emphasize the differences between these two notions, we will often refer
to ours as a one-stage PoSpace.

2. In [15] the authors provide two main constructions. The one that can be
compared with our work achieves better pebbling complexity (N/(log(N)
vs. N/(log(N) · k)). Namely, they are able to remove the extra k (a security
parameter) through a clever technique.

The pebbling framework introduced in [14] has been used successfully in many
other contexts (see for example [15–17, 23, 32]). Dziembowski et al. [16] built a
leakage resilient key evolution scheme based on the pebbling framework. Their
model allows an internal memory-bounded adversary that can control the update
operation and leak bounded amounts of information. Smith and Zhang obtain a
more efficient scheme [32], specifically, their update operation runs in time quasi-
linear in the key length, rather than quadratic. The key-evolution scheme can be
adapted to obtain a proof of space with efficient communication complexity but
the space complexity of the verifier would not satisfy the efficiency constraint of
PoSpace.

In a recent paper [23], Karvelas and Kiayias provide two efficient constructions
for Proof of Secure Erasure (PoSE) as introduced by Perito and Tsudik [29].
Informally, in PoSE the prover must convince a verifier that a certain amount
of memory has been erased. Both schemes in [23] are ingenious and one of them
uses the pebbling framework. PoSE and PoSpace are closely related notions but
have different requirements as stated in [23]. In addition, in PoSpace the prover
must show that he can access (read/write) memory while in PoSE, intuitively,
there should be the extra and necessary requirement that the memory contents
before and after the protocol execution are uncorrelated.

General Ideas behind Our Protocol. We cast PoSpace in the context of delegation
of computation, where a delegator outsources to a worker the computation of a
function on a certain input. Securely delegating computation is a very active
area [10,11,19,21] thanks also to the popularity of cloud computing where weak
devices use the cloud to compute heavy functions. In the case of PoSpace, a
function f is first selected satisfying the property that there exists a space lower
bound for any TM computing it. Then, the verifier chooses a random input x
and delegates to the prover the computation of f(x).

Specifically, we will turn to the class of functions derived from the“graph
labeling problem” already used in cryptography (see for example [14, 16, 17]).
Important tools in delegation of computation are interactive proof (and argu-
ment) systems. The delegation problem, as described in [26], can be solved as
follows: The worker computes y := f(x) and proves using an interactive proof

542 G. Ateniese et al.

system that indeed y = f(x). While interactive proofs with statistical soundness
and non-trivial savings in verification time are unlikely to exist [8, 9, 20], Kil-
ian showed [24] that proof systems for NP languages with only computational
soundness (i.e., argument systems [7]) and succinctness 1 do exist. The construc-
tion in [24] relies on Merkle Trees and PCP proofs. However, in the context of
PoSpace, the PCP machinery is an overkill. In fact, the prover does not have
to prove the statement f(x) = y, but only that a space-consuming computa-
tion was carried out. Therefore, we replace the PCP verification with an ad-hoc
scheme that results in a very efficient overall construction (while PCP-based
constructions are notoriously impractical).

Our Contributions. We introduce a formal definition of Proof of Space (PoSpace
Definition 2) capturing the intuitive idea of proving to be able to handle (read
/ write) at least a specified amount of space. We provide two PoSpace protocols
in the ROM. In addition, we provide a weaker form of PoSpace (wPoSpace)
and prove that it is indeed a separate notion. Most of previous work on proof
of storage [4, 5, 31] and on memory-bound PoW, as defined in [1, 12, 14], can
somehow be adapted to meet this weaker definition but we will not elaborate on
this any further in this paper.

Structure of the Paper. Section 2 contains some preliminary definitions. Section
3 contains the formal definition of PoSpace and provide two PoSpace protocols.
Section 5 contains the definition of a weak variant of PoSpace that captures read-
only provers and a separation result between PoSpace and this weaker variant.

Open Problems. It is not clear whether in general PoSpace implies the standard
definition of PoW in the sense of [13] (i.e., whether PoSpace is also a PoW). The
main obstacle to proving a positive result consists in showing non-amortizability.
Roughly speaking, non-amortizability means that the “price” of computing the
function for l different inputs is comparable to l times the “price” of computing
the same function once. In the context of PoWs, the “price” is measured in terms
of computational time. A PoSpace prover for space S requires a computational
time proportional to S, thus we would like to reduce an adversary for l different
protocol executions to an adversary for a single execution which spends less than
S computational time. The point is that in order to carry out l executions, the
prover needs S space and we need to ensure that he spends l×S computational
time. But space is reusable and it may well happen that something already
computed for one instance is reused to compute the proof for another instance.
Nevertheless, our second construction does satisfy the definition of PoW. This
is simply because we resort to the Random Oracle to ensure that two instances
of the protocol are uncorrelated.

1 I.e., the total amount of communication and the verification time are both less than
their respective values required to transmit and check the NP-witness.

Proofs of Space 543

2 Notations and Preliminary Definitions

Graph Notation. Given a directed acyclic graph (DAG) G, the set of successors
and predecessors of v in G are respectively Γ+(v) and Γ−(v). We will implicitly
assume a topological ordering on its vertex set and a boolean encoding of the
vertices respecting that ordering. If Γ+(v) = ∅ then v is an output-node and
T(G) is the set of all output-nodes of G. Analogously if Γ−(v) = ∅ then v is an
input-node and S(G) is the set of all input-nodes of G.

Sampling, Interactive Execution, and Space. Let A be a probabilistic TM. We
write y ← A(x) to denote y sampled from the output of A on input x. Moreover,
given σ ∈ {0, 1}∗, we write y := A(x;σ) to denote the output of A on input x
fixing the random coins to be σ. We write ppt for the class of probabilistic
polynomial time algorithms. Let A, B be two probabilistic interactive TMs. An
interactive joint execution between A, B on common input x is specified via the
next message function notation: let b1 ← B(x), ai ← A(x, b1, . . . , bi), and bi+1 ←
B(x, a1, . . . , ai), then 〈A,B〉 (x) denotes a joint execution of A and B on common
input x. If the sequence of messages exchanged is (b1, a1, . . . , bk, ak, bk+1) we say
that k is the number of rounds of that joint execution and we denote with
〈A,B〉 (x) = bk+1 the last output of B in that joint execution of A and B on
common input x.

With Space(A, x), we denote the maximal amount of space used by the deter-
ministic TM A on input x without taking into account the length of the input
and output. More formally, we say that A(x) has space s (or Space(A, x) = s) if
and only if at most s locations on A’s work tapes (excluding the input and the
output tapes) are ever written by A’s head during its computation on x. In the
case of probabilistic TM A, the function Space(A, x) is a random variable that
depends on A’s randomness.

Similarly, given two interactive TMs A and B, we can define the space
occupied by A during a joint execution on common input x as follows. Let
(b1, a1, . . . , bk, ak, bk+1) the sequence of messages exchanged during 〈A,B〉 (x),
then:

SpaceA(〈A,B〉 , x) := max
i=1,...,n

{Space (A, x, b1, . . . , bi))}

As before, if A and B are probabilistic interactive TM then the function
SpaceA(〈A,B〉 , x) is a random variable that depends on the randomness of both
A and B. For simplicity, when the inputs of A (or 〈A,B〉) are clear from the
context, we write Space(A) (or SpaceA (〈A,B〉)).

Merkle Trees. Merkle Trees (MT) are classical tools in cryptography. A MT
enables a party to succinctly commit itself to a string l = (l1, . . . , ln) with
li ∈ {0, 1}k.

The term “succinctly” here means that the MT-commitment has size k which
is independent with respect to the size of l. In a later stage, when a party opens
the MT-commitment, it is guaranteed that the “opening” can yield only the
string l committed before (the binding property). Moreover l can be succinctly

544 G. Ateniese et al.

opened location-by-location: the party can open li for any i giving the certificate
attesting the value of li. Here we use the term succinctly to mean that the
“opening”, i.e., the certificate, has size logn × k (sub-linear in n) with respect
to the size of l.

Abstractly, we define a Merkle Tree as a tuple of three algorithms (GenCRH ,
MT,Open) where the first algorithm is a key generation algorithm for a collision
resistance hash (CRH) function. Suppose that GenCRH outputs a key s. Then
MT takes as input s and a sequence of strings l and outputs the commitment C
for l, i.e., C = MTs(l). The algorithm Open takes as input the key s, a sequence
of strings l, and an index i (it is denoted as Opens(l, i)), and outputs the string
li in l.

Usually, the term “commitment” refers to a scheme that is both hiding (i.e.,
the receiver cannot infer any knowledge on l from the commitment) and binding.
The MT scheme that we use does not provide the hiding property but we still
refer to it as a commitment.

A full description of the Merkle Tree is deferred to Appendix B.

Pebbling Games with Wildcards. The following definition of pebbling game with
wildcards is a modification of the standard definition of pebbling game that can
be found, for instance, in [25]. Given a DAG G = (V,E), we say that a sequence
P = (P0, . . . , PT) of subsets of V is a pebbling sequence on G with m wildcards
if and only if P0 = ∅ and there exists a set W ⊆ V of size m such that, for each
i ∈ {1, . . . , T }, exactly one of the following holds:

– Pi = Pi−1 ∪ {v} if Γ−(v) ⊆ Pi−1 ∪W (pebbling) or
– Pi ⊆ Pi−1 (unpebbling).

If a set of vertexes Γ is such that Γ ⊆
⋃T

i=0 Pi, we say that P pebbles Γ. If
P pebbles T(G) then we say that P is a pebbling game on G with m wildcards.
Moreover we say that the pebbling time of P is T and the pebbling space of P
is maxi |Pi|. Intuitively, a pebbled node is a node for which we have made some
computations. Instead, W represents complementary nodes, for which we have
made no computations.

One of the main ingredients for the correctness of our constructions is the Peb-
bling Theorem [25] that proves that stacks of superconcentrators graphs (Pip-
penger [30]) have an exponential pebbling space-time trade off.

Theorem 1 (Pebbling Theorem). There exists a family of efficiently sam-
pleable directed acyclic graphs {GN,k}k,N∈N with constant fan-in d, N input
nodes, N output nodes and kN logN nodes in total, such that:

1. Any pebbling sequence that pebbles Δ output nodes has pebbling space at most
S pebbles and m wildcards, where |Δ| � 4S + 2m+ 1, and pebbling time T
such that

T � |Δ|
(
N − 2S −m

2S +m+ 1

)k
.

Proofs of Space 545

2. There exists a pebbling sequence that pebbles the graph GN,k which has peb-
bling space N + 2 and needs time O(kN logN).

3. For any node v ∈ V (GN,k), the incoming nodes of v and the position of v in
first lexicographic topologically order of GN,k are computable in O(k logN).

More details about the construction and the proof of this theorem are given
in Appendix A.

Graph Labeling Problem with Faults. We adopt the paradigm where the action
of pebbling a node in a DAG G is made equivalent to the action of having
calculated some labeling on it. This paradigm was introduced in [14] and also
recently used in [16, 17]. We make use of a Random Oracle (RO) H to build a
labeling on G according to the pebbling rules.

Definition 1 (H-labeling with faults). Given a DAG G with a fixed ordering
of the nodes and a Random Oracle function H : {0, 1}∗ → {0, 1}k, we say that
� : V (G) → {0, 1}k is a (partial) H-labeling of G with m faults if and only if
there exists a set M ⊆ V (G) of size m such that for each v ∈ V (G) \M

�(v) := H(v‖�(v1)‖ . . . ‖�(vd)) where {v1, . . . , vd} = Γ−(v). (1)

Given a label � and a node v, we say that � well-label v if only if the equation
(1) holds for � and v.

Our framework generalize the paradigm of [14] by introducing the concept of
“faults”. As it is shown in Section 3.1, dealing with “faults” is necessary because
an adversary challenged on a labeling function could cheat by providing an
inconsistent label on some nodes (which, indeed, are then referred to as “faults”).

The use of a Random Oracle H provides two important benefits to our
construction: First, the incompressibility of any output given the input and
the evaluation of the function in many different points. Specifically, for any
x and x1, . . . , xm, the value of H(x) is uniformly random and independent of
H(x1), . . . ,H(xm). Therefore, to store H(x), an adversary needs space equal to
the minimum between the shortest description of the input and the length of the
output. In particular, notice that we do not require that the entire function be
incompressible (this holds for a Random Oracle but it is trivially false for any
real-world instantiation of it). Second, in order to H-label the graph, any TM
must follow a pebble strategy. In particular, to label a node v, a TM must neces-
sarily calculate and store the label values of all the predecessors �(v1), . . . , �(vd)
of the node v. If the graph G needs at least S pebbles to be pebbled efficiently in
a pebbling game, then a TM needs to store at least S labels (i.e., RO outputs)
to compute an H-labeling of G. This general strategy is proven sound in [14]
and referred to as the Labeling Lemma. In our context, however, we provide m
degrees of freedom and, given a partial H-labeling � of G with m faults and a
H-labeling �′ of G, it will likely be the case that �(v) �= �′(v) for each node v
that is a descendant of a not well-labeled node. For this reason, we must state a
more general version of the Labeling Lemma in [14].

546 G. Ateniese et al.

Lemma 1 (Labeling with Faults Lemma). Consider a DAG G with degree
d, a TM A with advice h, and a Random Oracle H : {0, 1}∗ → {0, 1}k that
computes an H-labeling � with m faults of G. If h is independent of H, with
overwhelming probability, there exists a pebbling sequence P = (P1, . . . , PT) for
the DAG G with m wildcards having pebbling space S such that:

– S � 1
k Space(A) + d,

– T � (d+ 2)σ, where σ is the number of queries of A to H.

In particular T is a lower bound for the execution time of A.

The proof of the Lemma above is provided in the full version of this paper [3].

3 Proof-of-Space Protocols

In this section we define the notion of PoSpace, then we provide two constructions
that meet the definition. We later define a second notion of a weak form of
PoSpace and show a separation result between the two notions. In our definition
below, we allow the adversary to access extra information to model the case
in which the adversary may outsource storage and computation to an external
provider.

We model the write permission on the storage by providing a precomputation
phase to the adversary. That is, the adversary can use as much space as needed to
produce an hint. The hint, that may depend on the public parameters of PoSpace,
can be read during the interactive phase (i.e., when the protocol is started). In
contrast, wPoSpace does not provide the adversary with a precomputation phase.

Definition 2 (PoSpace). Consider Σ = (Gen,P,V), where Gen is a ppt TM,
and P,V are interactive ppt TMs. Let k ∈ N be a security parameter. Suppose
that the following points hold :

(Completeness) For all pk ∈ Gen(1k) and for all S ∈ N, S > k it holds
〈P,V〉 (pk, 1S) = 1, time complexity of P is O(poly(k, S));

(Succinctness) For all S ∈ N, S > k the time and space complexity of V and
the message complexity of 〈P,V〉, as functions of k and S, are O(poly(k) ·
poly logS);

(Soundness) For any ppt adversary A and for any ppt TM with advice A′

such that pk← Gen(1k) and h← A′(pk, 1S), the following event:

SndA,A′
Σ,S (k) := 〈A(h),V〉 (pk, 1S) = 1 ∧ SpaceA(〈A(h),V〉 , pk, 1S) < S

has negligible probability (as a function of k) for all S ∈ N, S > k.

Then, we say that Σ = (Gen,P,V) is a (one-stage) Proof of Space (PoSpace).
To be concise, we could say informally that A wins when the event ∃S ∈ N :

SndA,A′
Σ,S (k) occurs.

Proofs of Space 547

Notice that in the completeness part we set just a very mild upper bound on
the space complexity of P. This is done on purpose to allow comparison among
different PoSpace protocols. In particular a useful measure on a PoSpace protocol
(Gen,P,V) is the following space gap: the ratio Space(P(pk, 1S))/S.

Notice that A′ is a space-unbounded ppt TM that models the fact that there
might be information that can be efficiently computed that the space-bounded
adversary A can exploit somehow to compromise PoSpace.

It is easy to see that the PoSpace definition implicitly provides sequential
composability. In fact, the adversaryA′ gives toA a hint which is a function of the
public key, therefore the adversary A′ can compute all the previous executions
of the protocol “in his head”.

We provide next a 4-messages PoSpace protocol in the Random Oracle Model
(ROM) without any computational assumption. By applying the Fiat-Shamir
paradigm to the scheme, we obtain a 2-message non-interactive PoSpace.

3.1 A 4-Message PoSpace Protocol

The protocol Σ4 = (Gen,V,P) is described in Figure 1 and it is a 4-message
protocol.

The protocol follows in some way Kilian’s construction of argument sys-
tems [24]. For any string α ∈ {0, 1}∗, let Hα(·) be defined as H(α‖·). The verifier
chooses a random α and asks the prover to build a Hα-labeling of graph GN,k,
where N depends on S. The purpose of α is to “reset” the Random Oracle. That
is, any previous information about H is now useless with overwhelming prob-
ability. The labeling provides evidence that the prover has handled at least S
memory cells. The prover then commits the labeling and sends the commitment
to the verifier. At this point, the verifier asks the prover to open several random
locations in the commitment and then it checks locally the integrity of the la-
beling. For a commitment C and for any node that the verifier has challenged,
the prover sends what we call a C-proof for the node (defined next).

Definition 3 (C-proof). Given a DAG G, a commitment C, and a Random
Oracle H, we say that a string π = (π0, . . . , πd) is a C-proof for a vertex v ∈
V (G) w.r.t. H if only if given Γ−

G (v) = {w1, . . . , wd} the following points hold:

1. π0 is a C-opening for v, let x be the value π0 is opening to;
2. for each i = 1, . . . , d, πi is a C-opening for wi, let xi be the value πi is

opening to;
3. x = H(v‖x1‖ . . . ‖xd).
We omit C, G, and H, when they are clear from the context, by saying that π
is simply a proof.

In the definition of C-proof, the points 1 and 2 refer to the commitment C
while point 3 ensures the integrity of the labeling. Note that the size of π is
O(kd logN).

We remark that when TM B takes as input a RO H, it is intended that B has
oracle access to H and the length of the input of B does not take into account
the (exponentially long) length of H.

548 G. Ateniese et al.

Generator Gen takes as input 1k and outputs pk := ({GN,k}N∈N,H, s),
where {GN,k}N∈N is a family of graphs satisfying the Pebbling Theorem (Theorem
1), equipped with the natural lexicographic topological ordering on its vertex set,

H is a RO and s is a key for CRH H.
Common input: k, S, pk

N := �4γ(d+ S/k) + γ�, where d is the degree of GN,k and γ ∈ R, γ > 1.

Verifier V Prover P

1. Pick α ← {0, 1}k α

C

Let 	 be a Hα-labeling of GN,k,
where Hα(·) := H(α‖·).

Commit C := MTs().

2. Pick (v1, . . . , vl) ← V l

uniformly at random, where
l = �k ln2 k logN� and
V = V (GN,k)

3. Check for any i � l if
Πi is a C-proof for vi wrt
the Hα-labeling 	

(v1, . . . , vl)

(Π1, . . . ,Πl)

For any vi, πi := Opens (, vi):
For any vji ∈ Γ−(vi):

πj
i := Opens

(
	, vji

)
Πi :=

(
πi, π

1
i , . . . , π

d
i

)

Send (Π1, . . . ,Πl)

Fig. 1. The 4-message PoSpace protocol Σ4

Theorem 2. The protocol Σ4 in Figure 1 is a (one-stage) PoSpace.

We start by giving the intuition behind the proof of the Theorem. Com-
pleteness is trivial. Succinctness follows easily from point (3) of the Pebbling
Theorem (Theorem 1). For Soundness, we first prove that the protocol Σ4 is a
Proof-of-Knowledge (PoK) of a partial labeling with “few” faults. By the PoK
property, we can extract from a winning adversary a partial labeling with few
faults. Thus, with overwhelming probability, the adversary A computes a partial
labeling. We then exploit the binding property of the Merkle-Tree and show that
the adversary has computed the labeling during the round (1) of the protocol.
By appropriately fixing the randomness of the protocol, we ensure that the hint
h is independent of H, thus meeting all the hypotheses of the Labeling Lemma
(Lemma 1). We obtain then a pebbling strategy that has pebbling space and
pebbling time roughly upper-bounded by the respective space and time com-
plexity of the adversary A. Since the adversary uses strictly less space than S

Proofs of Space 549

and A is ppt then, by our choice of the parameters, there is a contradiction with
the point (1) of the Pebbling Theorem (Theorem 1).

Proof. We focus on the Soundness. We divide the proof in two parts. First, in
the PoK Lemma, we prove that the Protocol Σ4 is a PoK for a partial labeling
with “few” faults, and that the partial labeling has been computed during the
round (1), i.e., after the verifier V sent the message α and before the adversary
sent the commitment message C. Then we combine the PoK Lemma with the
Labeling Lemma and the Pebbling Theorem to reach a contradiction assuming
that there exists a winning ppt adversary.

We stress that the knowledge extractor doesn’t need to be efficient since we
do not rely on any computational assumption.

Lemma 2 (PoK Lemma). Consider the protocol Σ4 = (Gen,V,P), a ppt ad-
versary A, a ppt Turing Machine with advice A′, a space parameter S, and a
security parameter k. Sample a random pk← Gen(1k) and let h← A′(pk, 1S). If

Pr
[
SndA,A′

Σ4,S
(k)
]
is noticeable (where the probability is taken over the random-

ness of pk, h and all the randomness used during the protocol execution between
A and the verifier) then, for a noticeable probability over the choice of pk, there
exist a first verifier message α̃ and an adversary’s randomness ρ̃ such that A(h)
calculates an Hα̃-labeling � of GN,k with m faults such that the following holds:

– the hint h is independent of Hα̃,
– m = O

(
N
ln k

)
and

– for any well-labeled node u in � we have (α̃‖u‖�(u1)‖ . . . ‖�(ud)) ∈ Q,

where Q is the set of queries to H made by A when fed with randomness ρ̃ during
round (1) of the protocol Σ4, and {u1, . . . , ud} = Γ−(u).

The proof of the Lemma above is provided in the full version of this paper [3].
By contradiction, suppose there exists an adversary A for the protocol Σ4. By

applying Lemma 2, we extract with noticeable probability a partial Hα̃-labeling,
ensure that A(h) computed that labeling during round (1) and that the hint h
is independent of Hα̃. Hence, satisfying the hypotheses of Lemma 1.

This gives us, with overwhelming probability, a pebbling sequence P of GN,k

with m wildcards having pebbling space S′ = S
k + d, m = O(N

ln k). In addition,
the pebbling time of P is a lower bound for the execution time of A during round
(1). To apply Theorem 1, we fix N such that

N − l � 4S′ + 2m+ 1, (2)

where l denotes the number of wildcards that are in T(GN,k).
Given c ∈ (0, 1) and ε > 0, we have that (2+ ε)m+ l � cN . If we find N such

that
N � 4S′ + cN + 1,

(hence N � 4γS′ + γ, where γ = 1/(1− c)) then the inequality (2) will follow.
(This is main reason why we have set N :=
4γS′ + γ� in the Protocol Σ4.)

550 G. Ateniese et al.

By applying Theorem 1, the execution time T of A is such that

T � (N − l)

(
N − 2S′ −m

2S′ +m+ 1

)k
� c′(1 + ε)k, (3)

where c′ is a constant that is a lower bound for N − l. The value (1+ ε)k derives
from the fact that, eventually,

N − 2S′ −m � (1 + ε)(2S′ +m+ 1).

Equation (3) shows that the execution time of A is exponential in k. This is not
possible as, by hypothesis, A is ppt.

On the Space Gap of the Protocol. The prover algorithm can be implemented
basically in two ways. The most natural implementation is to first build the
labeling for all the nodes in the graph and then apply the Merkle Tree, while
keeping in memory the labeling which is reused during the second phase of
the prover algorithm. Through this algorithm, the space gap of the prover is
O(log S) while the time complexity is essentially dominated by the one labeling
phase. Another way to implement the prover algorithm is by computing the
labeling and the Merkle Tree simultaneously. In this way the algorithm can
reuse space resulting in a strategy with space gap O(1). Note however that,
in this implementation, the prover must build the labeling twice (once for the
commitment and then during the challenge phase).

4 A 2-Messages PoSpace Protocol

We apply the standard Fiat-Shamir paradigm to the PoSpace scheme given in
Section 3.1 by using two independent Random Oracles H,L:

– H : {0, 1}∗ → {0, 1}k is used by the prover for the labeling of the graph;
– L : {0, 1}k → V l given the commitment C as input, it yields the second

verifier’s message (of the protocol Σ4).

Let (Σ4.Gen, Σ4.P, Σ4.V) the PoSpace defined in Figure 1. We define in Figure
2 a 2-messages PoSpace: we call Σ2 = (Gen,P,V) this protocol. Furthermore, let
H′ : {0, 1}∗ → {0, 1}k be a RO then the function f(x) := Σ2.P(pk, 1

S,H′(x)) is
a non-interactive PoSpace that satisfies the syntactic definition of PoWs in [13].

Theorem 3. The Protocol Σ2 in Figure 2 is a PoSpace.

The proof of the theorem 3 is provided in the full version of this paper [3].

5 Weak Proof of Space

The concept of proof of space can lead to multiple interpretations. The main
interpretation formalized in the PoSpace definition requires that the prover can

Proofs of Space 551

Generator Gen on input 1k returns pk′ := (pk,L),
where pk ← Σ4.Gen(1

k) and L is a RO
Common input: k, S, pk

Verifier V Prover P

1. Pick α ← {0, 1}k

2. Let v = L(C)
Check Σ4.V(pk, 1

S , α, C,v,Π) = 1

α

(C,Π)

C := Σ4.P(pk, 1
S , α)

v := L(C)

Π := Σ4.P(pk, 1
S , α, v)

Fig. 2. The 2-messages (one-stage) PoSpace protocol Σ2 = (Gen,P,V)

handle (i.e., read/write) space. In this section we provide a definition for a weaker
alternative of PoSpace we call weak Proof of Space (wPoSpace). This captures
the property that the prover can just access space and formalizes what could
effectively be achieved by properly adapting previous work on proof of storage
[4, 5, 31] and on memory-bound PoW as defined in [1, 12](where the adversary
model contemplates the existence of cache memory). The definition of wPoSpace
is similar to the Definition of PoSpace (Definition 2) (the only change is in the
Soundness part). We will provide a protocol which is a wPoSpace but not a
PoSpace, hence wPoSpace is a strictly weaker notion than PoSpace.

Definition 4 (wPoSpace). Consider Σ = (Gen,P,V) where Gen is a ppt TM,
and P, V are interactive ppt TMs. Let k ∈ N be a security parameter and
pk← Gen(1k). Suppose that the following points hold for all S ∈ N, S > k:

(Completeness) and (Succinctness) the same as in the PoSpace definition.
(weak-Soundness) For any ppt adversary A, the following event:

wSndA
Σ,S(k) := 〈A,V〉 (pk, 1S) = 1 ∧ SpaceA(〈A,V〉 , pk, 1S) < S,

has negligible probability (as a function of k).

Then we say that Σ is a (one-stage) Weak Proof of Space (wPoSpace).

In the Soundness of PoSpace, the adversary can take advantage of an un-
bounded space machine which is then unavailable during the protocol execu-
tion. In the Soundness of wPoSpace, instead, this is disallowed. Notice that a
wPoSpace’s adversary can perform some precomputation before the execution of
the protocol (i.e., before sending/receiving the first message), however, such a
precomputation cannot exceed the space bound given.

Theorem 4. There exists a protocol which is a wPoSpace but not a PoSpace.

552 G. Ateniese et al.

Proof. We start by providing a protocol which is not a PoSpace. Consider the
protocol Σ4 in Figure 1 where the first message α sent by V is always the same,
say 0k. We call Σ3 this modified version of Σ4. The protocol Σ3 is not a PoSpace.
For any k and S ∈ N, consider the hint h which is the H0k -labeling of GN,k plus
the complete Merkle-Tree of that labeling. We define an adversary that sends
the commitment C that is in h and, for any verifier’s second message v, reads
the right answer from h. That adversary needs to access h in read-only mode,
hence without using any additional working space.

The protocol Σ3 is a wPoSpace. The structure of the proof is the same as the
one of Theorem 2. We provide a particular case of the PoK Lemma (Lemma
2) where the hint h is the empty string and α̃ is 0k. For the sake of clarity, we
restate the PoK Lemma for this particular setting.

Lemma 3. Consider the protocol Σ3 = (Gen,V,P), a ppt adversary A, a space
parameter S and a security parameter k such that pk← Gen(1k).

If Pr
[
wSndA

Σ3,S(k)
]
is noticeable, then there exists a randomness ρ̃ such that

A fed with the randomness ρ̃ during the round (1) of the protocol Σ3 calculates
an H0k-labeling � of GN,k with m faults such that the following holds:

– m = O
(

N
ln k

)
and

– for any well-labeled node u in � we have (α̃‖u‖�(u1)‖ . . . ‖�(ud)) ∈ Q,

where Q is the set of queries to H made by A when fed with randomness ρ̃ until
the end of round (1) and {u1, . . . , ud} = Γ−(u).

By contradiction, suppose there exists an adversary A for the protocol Σ3. By
applying Lemma 3, we extract a partial H0k -labeling, ensuring that A computed
that labeling during round (1) (hence satisfying the hypotheses of Lemma 1).

This gives us, with overwhelming probability, a pebbling sequence P of GN,k

withm wildcards and with pebbling space S′ = S
k +d,m = O(N

lnk). The pebbling
time of P is a lower bound for the execution time of A before round (2). The
rest of the proof follows exactly the same structure of the proof of Theorem 2
and it is therefore omitted. ��

Acknowledgements. We are grateful to Krzysztof Pietrzak for his insightful
comments and suggestions.

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)

2. Abliz, M., Znati, T.: A guided tour puzzle for denial of service prevention. In:
ACSAC, pp. 279–288. IEEE Computer Society (2009)

3. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: When space is
of the essence. Cryptology ePrint Archive, Report 2013/805 (2013),
http://eprint.iacr.org/

http://eprint.iacr.org/

Proofs of Space 553

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS 2007, pp. 598–609.
ACM, New York (2007)

5. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319–333. Springer, Heidelberg (2009)

6. Back, A.: Hashcash - a denial of service counter-measure. Technical report (2002)

7. Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE
Conference on Computational Complexity, pp. 194–203. IEEE Computer Society
(2002)

8. Boppana, R.B., Hastad, J., Zachos, S.: Does co-np have short interactive proofs?
Inf. Process. Lett. 25(2), 127–132 (1987)

9. Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.): ICALP
2005. LNCS, vol. 3580. Springer, Heidelberg (2005)

10. Canetti, R., Riva, B., Rothblum, G.N.: Refereed delegation of computation. Infor-
mation and Computation 226, 16–36 (2013)

11. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Us-
ing Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

12. Dwork, C., Goldberg, A.V., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003)

13. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

14. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005)

15. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. Cryp-
tology ePrint Archive, Report 2013/796 (2013), http://eprint.iacr.org/

16. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 335–
353. Springer, Heidelberg (2011)

17. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Hei-
delberg (2011)

18. Dziembowski, S., Pietrzak, K., Faust, S.: Proofs of space and a greener bitcoin.
Talk presented at Workshop on Leakage, Tampering and Viruses, Warsaw 2013
(2013)

19. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and ma-
trix computations, with applications. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS 2012, p. 501 (2012)

20. Goldreich, O., Hastad, J.: On the complexity of interactive proofs with bounded
communication. Information Processing Letters (1998)

21. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, STOC 2008, pp. 113–122. ACM, New York (2008)

22. Juels, A., Brainard, J.G.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: NDSS. The Internet Society (1999)

http://eprint.iacr.org/

554 G. Ateniese et al.

23. Karvelas, N.P., Kiayias, A.: Efficient Proofs of Secure Erasure. In: Abdalla, M., De
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 526–543. Springer, Heidelberg
(2014)

24. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory
of Computing, STOC 1992, pp. 723–732. ACM, New York (1992)

25. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. Journal of the ACM (JACM) 29(4), 1087–1130 (1982)

26. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),
1253–1298 (2000)

27. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (May 2009)

28. Percival, C.: Stronger key derivation via sequential memory-hard functions. Pre-
sented at BSDCan 2009 (2009)

29. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of
secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010)

30. Pippenger, N.: Superconcentrators. SIAM J. Comput. 6(2), 298–304 (1977)
31. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)

ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)
32. Smith, A., Zhang, Y.: Near-linear time, leakage-resilient key evolution schemes

from expander graphs. IACR Cryptology ePrint Archive, 2013:864 (2013)

33. Tompa, M.: Time-space tradeoffs for computing functions, using connectivity prop-
erties of their circuits. In: Proceedings of the Tenth Annual ACM Symposium on
Theory of Computing, STOC 1978, pp. 196–204. ACM, New York (1978)

34. Waters, B., Juels, A., Alex Halderman, J., Felten, E.W.: New client puzzle out-
sourcing techniques for dos resistance. In: Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS 2004, pp. 246–256. ACM, New
York (2004)

A Proof of the Pebbling Theorem (Theorem 1)

For the sake of convenience we re-write the statement of that theorem here. For
the definitions of pebbling games, pebbling space and pebbling time we refer the
reader to Section 2.

Pebbling Theorem (Theorem 1). There exists a family of efficiently sam-
pleable directed acyclic graphs {GN,k}k,N∈N with constant fan-in d, N input
nodes, N output nodes and kN logN nodes in total, such that:

1. Any pebbling sequence that pebbles Δ output nodes has pebbling space at most
S pebbles and m wildcards, where |Δ| � 4S + 2m+ 1, and pebbling time T
such that

T � |Δ|
(
N − 2S −m

2S +m+ 1

)k
.

2. There exists a pebbling sequence that pebbles the graph GN,k which has peb-
bling space N + 2 and needs time O(kN logN).

Proofs of Space 555

3. For any node v ∈ V (GN,k), the incoming nodes of v and the position of v in
first lexicographic topologically order of GN,k are computable in O(k logN).

The family of graphs GN,k we build is made from DAGs that are k layered
stack of superconcentrators [30] with N inputs and N outputs.

Definition 5 (superconcentrator). We say that a directed acyclic graph G =
(V,E) is an N -superconcentrator if and only if

1. |S(G)| = |T(G)| = N ,
2. for each S ⊆ S(G) and for each T ⊆ T(G) such that |S| = |T | = � there

exist � vertex-disjoint paths from S to T , i.e. paths such that no vertex in V
is in two of them.

Fig. 3. An example of 16-superconcentrator: the Butterfly Graph

Definition 6 (stack of superconcentrators). Given an N-superconcentrator
G we define the graph G×k, the stack of k copies of G, inductively as follows:
G×1 = G and G×k is obtained from G×(k−1) and G by first renaming the vertexes
of G so that they do not appear in the vertexes of G×(k−1), obtaining a graph
G′, and then by identifying T(G×(k−1)) with S(G′).

Not any k layered stack of superconcentrators satisfies points 2 and 3 of the
Pebbling Theorem. To obtain those properties we use the following well-known
superconcentrator: the Butterfly Graph BN built by putting together two FFT
graphs with N inputs and outputs [33]. An example of such construction (for
N = 16) is given in Figure 3.

It is easy to see that the family of graphs GN,k := B×k
N satisfies points 2 and

3 of the Pebbling Theorem and it is a k layered stack of N -superconcentrators.
It remains to prove only point 1.

For superconcentrator graphs we can prove a tradeoff between pebbling space
and pebbling time, even for pebbling games with wildcards. This result is based
on a generalization of the “Basic Lower Bound Argument” (BLBA) by Tompa
[33].

556 G. Ateniese et al.

Lemma 4 (BLBA with wildcards). Consider an N -superconcentrator G, a
set M ⊆ T(G), and a pebbling sequence P = (P0, . . . , P�) with m wildcards that
pebbles M . Let A be the set of all elements of S(G) pebbled and unpebbled at
some point in P. If |M | � |P0|+ |P�|+m+ 1 then |A| � N − |P0| − |P�| −m.

Proof. By contradiction suppose that |A| < N − |P0| − |P�| − m, this means
that |Ac| � |P0| + |P�| + m + 1 and every element in Ac, by definition, is not
pebbled and unpebbled. Take any B ⊆ Ac such that |B| = |M | then, as G is an
N -superconcentrator, we have π1, . . . , π|M| vertex disjoint paths from B to M .
Let W be a set of m faults for P . By construction |M | > |P0 ∪ P� ∪W | thus we
have some path π from some element v of B to some element w of M such that
π∩ (P0 ∪P� ∪W) = ∅. By definition of Ac, and hence of B, v is not pebbled and
unpebbled and v �∈ P0∪P�∪W , thus v �∈ Pi for each i ∈ [�]. As π∩(P0∩W) = ∅,
we must have that π ∩ Pi = ∅ for each i ∈ [�]. But then the vertex w is not in⋃

i∈[�] Pi contradicting the fact that P pebbles M . ��

Theorem 5 (Pebbling Theorem (point 1)). Let G×k be a stack of k copies
of an N -superconcentrator G, Δ ⊆ T(G×k) and P a pebbling sequence for G×k

with m wildcards that pebbles Δ. Let S be the pebbling space of P and T the
pebbling time of P. If |Δ| � 4S + 2m+ 1 then

T � |Δ|
(
N − 2S −m

2S +m+ 1

)k
.

Proof. Let G1, . . . , Gk be the k copies of G that form G×k. Suppose we want
to pebble a set M ⊆ T(Gi) such that |M | � 2S +m+ 1 and let A1, . . . , An be
disjoint subsetes of M such that A1 are the first 2S +m+ 1 elements of M to
be pebbled in P , A2 are the second 2S +m+ 1 elements of M to be pebbled in

P and so on. Clearly we have that the number of these sets is n =
⌊

|M|
2S+m+1

⌋
.

By Lemma 4 we have that for each Aj there exists a set β(Aj) in S(Gi), whose
elements are pebbled and unpebbled, of size at least N − 2S − m. Thus we
have that the total number of elements in S(Gi) that have been pebbled and

unpebbled is at least (N − 2S −m)
⌊

|M|
2S+m+1

⌋
. Notice now that each β(Aj) ∈

T(Gi−1) hence we can reapply the argument above to it provided that for each
j, |β(Aj)| � N − 2S − m � 2S + m + 1 (and this is implied by the fact that
N � |Δ| � 4S+2m+1). Thus starting from T(Gk) = T(G×k) we can prove by
induction, going back to G1, that at least

|Δ|
(
N − 2S −m

2S +m+ 1

)k
actions of pebbling and unpebbling take place on S(G1) = S(G×k). As each
action is an elementary step in the pebbling game P we have that the result
follows. ��

Proofs of Space 557

B Merkle Tree

Consider the complete binary tree T over n leaves. Without loss of generality we
can assume that n is a power of 2 by using padding if necessary. Label the i-th
leaf with li, then, use a collision resistant hash (CRH) function Hs : {0, 1}2k →
{0, 1}k with random seed s to propagate the labeling l of the leaves to a labeling
φ along the tree T up to the root according to the following rules:

1. φ(v) := li if v is the i-th leaf of T ,
2. φ(v) := Hs(φ(v1)‖φ(v2)) where v1, v2 are the two children of v.

Then the commitment for a string l is the label φ(r) of the root of the tree: we
denote it with MTs(l). The commitment is succinct in fact it has size k which
is independent of n.

An opening for the i-th element in the sequence l is an ordered sequence
formed by elements of {0, 1}k that are intended to be the label li of the i-th leaf
of T together with the labels φ(vj) for each vj that is a sibling of vertices in the
path from the root of the tree to the i-th leaf. An example of opening is shown
in Figure 4.

e

c

b a

d

Fig. 4. An example of opening: c = (a, b, c, d, e)

We denote with Opens(l, i) the opening formed by li together with all the
φ(vj). Notice that from Opens(l, i) it is possible to compute φ(w) for each vertex
w in the path from the root to the leaf at the i-th position. In particular it
is efficient to compute MTs(l). The opening is succinct in fact it has size k ·
logn which is (almost) independent of n. In general, given an opening c =
(c1, . . . , clogn) for some position i we can think of it as equivalent to Opens(l, i)
and compute the label of the root according to the given c and position i. If this
value is equal to MTs(l), we say that c opens the i-th position to c1. As H is a
CRH function, then for any i, it is guaranteed that MTs(l) can open the i-th
position only to li.

Chosen Ciphertext Security on Hard

Membership Decision Groups: The Case of
Semi-smooth Subgroups of Quadratic Residues�

Takashi Yamakawa1,2, Shota Yamada2, Koji Nuida2,
Goichiro Hanaoka2, and Noboru Kunihiro1

1 The University of Tokyo, Japan
yamakawa@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST), Japan
{yamada-shota,k.nuida,hanaoka-goichiro}@aist.go.jp

Abstract. Nowadays, the chosen ciphertext (CCA) security is consid-
ered as the de facto standard security notion for public key encryption
(PKE). CCA secure PKE schemes are often constructed on efficiently
recognizable groups i.e., groups where the corresponding membership
decision problem is easy. On the other hand, when we prove the CCA
security of PKE schemes on not efficiently recognizable groups, much
care are required. For example, even if a decryption query involves an
unexpected element out of the group which causes a problem, the chal-
lenger cannot detect it due to the hardness of the membership decision
for the group. However, such a possibility is often overlooked.

As an example of such a group, in this paper, we consider the semi-
smooth subgroup which was proposed by Groth (TCC 2005) for enhanc-
ing efficiency of factoring-based cryptographic primitives. Specifically,
we propose a general technique to guarantee the CCA security of PKE
schemes on the semi-smooth subgroup. Roughly speaking, we prove that
for almost all natural “verification equations,” it is impossible to generate
a query which does not consist of elements in the group and satisfies the
equation if the factoring problem is hard. Hence, queries whose compo-
nents are not in the group will be automatically rejected even though the
simulator cannot recognize whether these components are in the group or
not. By the same technique, we also prove that the strong Diffie-Hellman
assumption holds on the “signed” semi-smooth subgroup under the fac-
toring assumption, and improve the efficiency of a factoring-based non-
interactive key exchange scheme by instantiating it on the semi-smooth
subgroup.

Keywords: key encapsulation mechanism, chosen ciphertext security,
non-interactive key exchange, factoring assumption, semi-smooth sub-
group.

� The first and second authors are supported by a JSPS Fellowship for Young Scien-
tists.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 558–577, 2014.
c© Springer International Publishing Switzerland 2014

Chosen Ciphertext Security on Hard Membership Decision Groups 559

1 Introduction

1.1 Background

Factoring-based Cryptographic Primitives. In the modern cryptography, con-
structing provably secure cryptographic primitives based on reliable assumptions
is considered one of the most important research topics. Among such assump-
tions, the factoring assumption is considered the most reliable in the sense that
it has been intensively analyzed for a long time and is also implied by many other
popular assumptions, e.g., the quadratic residuosity and RSA assumptions. And
hence, there have been proposed various cryptographic primitives based on the
factoring assumption.

In contrast to its reliable security, cryptographic primitives based on the fac-
toring assumption is not computationally very efficient in general as there exist
sub-exponential algorithms for solving the factoring problem and therefore, rel-
atively large order group is required to provide sufficient level of security. For
example, for providing 128-bit security, 3072 bits is required for the order of the
underlying groups of the (conventional) factoring-based constructions while 256
bits is sufficient for that in the elliptic-curve-based constructions [29].

Semi-smooth Subgroup over Z∗
N . For improving computational costs in factoring-

based schemes, there have been attempts to utilize small order subgroups over
Z∗
N and construct cryptographic schemes on them. Especially, Groth [15] in-

troduced the notion of a semi-smooth RSA modulus which is a special class of
composite integers, and showed that for a semi-smooth RSA modulus N , it is
possible to extract a subgroup of Z∗

N on which we can construct computationally
efficient variants of various existing factoring-based schemes, e.g., the Cramer-
Shoup signature [6] and additive homomorphic encryption [23]. This subgroup
is called the semi-smooth subgroup.

It is also likely that the semi-smooth subgroup can be applied to the Hofheinz-
Kiltz cryptosystem [17] which is the first practical chosen-ciphertext (CCA) se-
cure public key encryption (PKE) from the factoring assumption, and actually,
following [15], Mei, Li, Lu, and Jia [22] constructed its variants based on the
semi-smooth subgroup. However, we point out that their security proofs are not
precise and thus incomplete. In brief, in the security proof in [22], it seems that
they implicitly assume that the adversary submits only decryption queries which
consists of elements in the semi-smooth subgroup. This will be explained in the
next paragraph in more detail.

Difficulty of Handling CCA security over Semi-smooth Subgroup. As mentioned
above, the security proofs of the variants of [17] over the semi-smooth subgroup
which are given in [22] are incomplete. We stress that the missing part of the
proof is crucial as it is the most complicated part in the security proof when
introducing the semi-smooth subgroup while it does not arise when we do not
introduce the semi-smooth subgroup. Furthermore, this issue is not unique to
the scheme in [22] but should be carefully treated in the case that the adversary
is allowed to adaptively submit some queries, e.g., decryption queries.

560 T. Yamakawa et al.

Specifically, when applying the semi-smooth subgroup to a factoring-based
scheme (which does not originally depend on the semi-smooth subgroup), there
newly arises the following non-trivial issue. Since for a given semi-smooth sub-
group G over Z∗

N , it is generally hard to distinguish an element in G from that in
Z∗
N without knowing the factorization of N , in the security proof, the simulator

cannot distinguish a decryption query which consists of elements in G from that
consists of random elements in Z∗

N .1 Consequently, if the simulator can correctly
respond only for elements in G, then its behavior becomes significantly different
from the real world, and thus, intuitively, the simulation would fail. (Actually,
for example, in an earlier version of [26], a similar problem arose but was not
properly addressed. Later, this was pointed out in [19], and a concrete attack
was also shown.)

In summary, in the security proofs of cryptographic primitives based on the
semi-smooth subgroup, it is generally required to somehow handle queries which
consists of random elements in Z∗

N . This issue is considered significantly sensi-
tive, but have never been rigorously discussed so far.

Important Remark. Actually, the group that we consider in this paper is not
a semi-smooth subgroup G, but G+ which consists of absolute values of elements
of G. We call G+ signed semi-smooth subgroup. A merit of considering signed
groups is that the membership in QR+

N can be decided efficiently [16] but that in
QRN cannot (under the quadratic residuosity assumption). Note that the above
membership decision algorithm for QR+

N cannot be extended to the case for G+

since it uses the specific structure of QR+
N (See [16] for more details). The results

in Sec. 3 and 4 hold if G+ is replaced with G. However, those in Sec. 5, 6 and
7 do not hold for G since they essentially use the fact that the membership in
QR+

N can be decided efficiently.

1.2 Our Main Theorem

In this paper, we resolve the issue which is posed in the previous subsection, and
show how to handle decryption (and other similar kinds of) queries which may
be out of G+. Specifically, we point out that it is still hard to distinguish an ele-
ment of the semi-smooth subgroup and a random one, but we also demonstrate
that under the factoring assumption, in various constructions, no effective at-
tack utilizing the hardness of membership decision is possible. We first state our
result in a general manner as our main theorem, and then, show its concrete ap-
plications. Here, we briefly explain the main theorem which is informally stated
as follows:

Our Main Theorem (informal). Let g be a random element in G+ and X :=
gx where x is chosen from sufficiently large domain. If the factoring assumption
holds, then any efficient adversary that is given N , g and X and allowed to

1 There is no proof that the membership decision problem in G is hard. However, no
efficient algorithm for this problem is known, and [15] used it even as an assumption.

Chosen Ciphertext Security on Hard Membership Decision Groups 561

access “decryption oracle” with secret key x, cannot generate (A,B) such that
Ax = B and A /∈ G+.

In the context of the CCA security, x and X correspond to a secret key and a
public key respectively and the equation Ax = B corresponds to a “verification
equation” by the decryption oracle. Roughly speaking, the above theorem implies
that for almost all natural “verification equations,” it is impossible to generate a
query which does not consist of elements in G+ and satisfies the equation if the
factoring problem is hard. Hence, queries whose components are not in G+ will
be automatically rejected even though the simulator cannot recognize whether
these components are in G+ or not.

The above theorem is formally stated in Sec. 3, and its formal description
(Theorem 1) and proof are significantly more complicated than the above. This
means that it is not trivial at all and must be carefully treated in the security
proofs of cryptographic primitives which depend on the semi-smooth subgroup,
e.g., Mei et al.’s variant of the Hofheinz-Kiltz cryptosystem.

1.3 Applications of the Main Theorem

Here, we give an overview of applications of our main theorem. These are orig-
inally factoring-based cryptographic primitives, and by introducing the semi-
smooth subgroup, their computational costs can be significantly improved. We
note that due to the issues which are mentioned in Sec. 1.1, it becomes difficult
to prove their security (without using our main theorem). Our main theorem is
crucial for proving them.

Hofheinz-Kiltz Scheme and Its Variants. The Hofheinz-Kiltz scheme [17,18]
is an efficient CCA secure KEM on QRN or QR+

N which is CCA secure in the
standard model under the factoring assumption. We consider instantiating the
original Hofheinz-Kiltz scheme on G+ and show that it is CCA secure in the stan-
dard model under the factoring assumption. As a result, we obtain a much more
efficient scheme than the Hofheinz-Kiltz scheme. Note that the construction has
been already proposed by Mei et al. [22] and they also showed a security proof.
However, their proof is incomplete as mentioned above. Our contribution is to
make the proof complete. Moreover, our technique can be applied to variants of
the Hofheinz-Kiltz scheme [22,20,21] and we can improve the efficiency of them.
Note that it is already mentioned that these schemes can be instantiated on the
semi-smooth subgroup in the same papers. However, they lack the security proof.

The Strong Diffie-Hellman Assumption. The SDH assumption informally
says that any efficient algorithm cannot solve the CDH problem even with a fixed
base DDH oracle. We show that the factoring assumption implies the strong
Diffie-Hellman (SDH) assumption on G+. Moreover, we can show a more strong
assumption called the double strong Diffie-Hellman (DSDH) assumption [10]
on G+. It is already shown that these assumptions hold on a group of signed
quadratic residue QR+

N [16,10]. However, these proofs rely on the fact that the

562 T. Yamakawa et al.

group is efficiently recognizable and cannot be simply extended to the case of
G+ which is not efficiently recognizable, and our main theorem is required.

Hashed ElGamal KEM. Hashed ElGamal KEM (also called DHIES) [1] is a
natural variant of the ElGamal encryption scheme and it is proven CCA secure
in the random oracle model under the SDH assumption. We consider the hashed
ElGamal KEM instantiated on G+ and show that the scheme is CCA secure
in the random oracle model under the factoring assumption by using the fact
that the factoring assumption implies the SDH assumption on G+ as mentioned
above. Note that it has been already shown that the hashed ElGamal KEM on
QR+

N is CCA secure in the random oracle model under the factoring assumption.
However, our scheme achieves much better efficiency than it since the order of
G+ is significantly smaller than that of QR+

N .

Non-interactive Key Exchange. Freire et al. [10] proposed a secure non-
interactive key exchange scheme on QR+

N in the random oracle model under the
factoring assumption. We consider a variant of this scheme instantiated on G+

and prove its security in the random oracle model under the factoring assumption
by using the above mentioned result that the factoring assumption implies the
DSDH assumption. As a result, we obtain a much more efficient scheme than
Freire et al.’s scheme since the order of G+ is significantly smaller than that of
QR+

N .

1.4 Related Work

The first PKE scheme that is shown to be secure (in the sense of one-wayness)
under the factoring assumption is proposed by Rabin [28], and its semantically
secure variant (under the quadratic residuosity assumption) was later proposed
by Goldwasser and Micali [13]. However, these schemes only achieve chosen-
plaintext (CPA) security.

Naor and Yung [25] presented a generic construction of a (non-adaptively)
CCA secure PKE scheme from any CPA secure PKE scheme and non-interactive
zero-knowledge (NIZK) proof. Since it is known that NIZK proofs can be con-
structed from the factoring assumption [12], we can also construct a (non-
adaptively) CCA secure PKE scheme from only the factoring assumption by
using CPA secure PKE and NIZK proofs which are secure under the factor-
ing assumption. Sahai [27] and Dolev, Dwork, and Naor [9] later extended the
Naor-Yung construction to have adaptive CCA security. However, all of these
constructions require NIZK proofs, which are very inefficient, and therefore re-
sulting schemes are not practical.

Cramer and Shoup proposed a framework for constructing CCA secure PKE
schemes which is called the hash proof system [7]. By this framework, we can
obtain PKE schemes that are CCA secure under the quadratic residuosity as-
sumption or decisional composite residuosity assumptions that are implied by
the factoring assumption. However, there was no known practical PKE scheme
which is CCA secure solely under the factoring assumption for a long time.

Chosen Ciphertext Security on Hard Membership Decision Groups 563

Hofheinz and Kiltz [17] finally proposed the first CCA secure PKE scheme from
the factoring assumption and broke through the situation. Following this work,
Mei et al. [22] further presented that the efficiency of the Hofheinz-Kiltz scheme
can be improved if it is instantiated on the semi-smooth subgroup [15]. How-
ever, as mentioned above, its security proof is considered incomplete. There
exists some other variants of the Hofheinz-Kiltz scheme that achieve better effi-
ciency than the original scheme [20,21]. [20,21] also claimed that these schemes
can be made more efficient by instantiating them on the semi-smooth subgroup.
However, they gave no security proof though careful treatments are required in
the security proof as is done in this paper.

In a different line of research, Bellare and Rogaway [2] proposed the random
oracle model, and in this model, various practical CCA secure PKE schemes
have been proposed such as [2,11], though the random oracle model is known to
be somehow problematic [4].

2 Preliminaries

2.1 Notation

We use N to denote the set of all natural numbers, and [n] to denote the set

{1, . . . n} for n ∈ N. If S is a finite set, then we use x
$← S to denote that x is

chosen uniformly at random from S. If A is an algorithm, we use x ← A(y) to
denote that x is output by A whose input is y. We say that a function f(·) :
N→ [0, 1] is negligible if for all positive polynomials p(·) and all sufficiently large
λ ∈ N, we have f(λ) < 1/p(λ). We say f is overwhelming if 1 − f is negligible.
We say that an algorithm A is efficient if there exists a polynomial p such that
execution time of A with input length λ is less than p(λ). We use a|b to mean
that a is a divisor of b. We use a ≡ b mod n to mean n|(a−b). We use (a mod n)
to denote a unique integer x ∈ {0, . . . , n − 1} such that x ≡ a mod n. We use
λ to denote a security parameter. For random variables X and Y , we define the
statistical distance between them as Δ(X,Y) := 1

2Σa|Pr[X = a] − Pr[Y = a]|.
We say that X and Y are exponentially close if Δ(X,Y) = O(2−λ).

2.2 Basic definitions

Key Encapsulation Mechanism. It is shown that a CCA secure PKE scheme
is obtained by combining a CCA secure key encapsulation mechanism (KEM)
and a CCA secure symmetric cipher (DEM) [8]. A KEM consists of three algo-
rithms (Gen,Enc,Dec). Gen takes a security parameter 1λ as input and outputs
(PK, SK), where PK is a public key and SK is a secret key. Enc takes a public
key PK as input and outputs (C,K), where C is a ciphertext and K is a sym-
metric key. Dec takes a secret key SK and a ciphertext C as input and outputs
a key K with length �K or ⊥. We require that for all (PK, SK) output by Gen
and all (C,K) output by Enc(PK), we have Dec(SK,C) = K.

564 T. Yamakawa et al.

To define the CCA security of KEM, we consider the following game for
an adversary A and a KEM KEM = (Gen,Enc,Dec). In the game, a pub-
lic key and a secret key are generated as (PK, SK) ← Gen(1λ) and a chal-
lenge ciphertext C∗ is generated as (C∗,K) ← Enc(PK) as well as random bit

b
$← {0, 1}. Then a challenge key is set as K∗ := K if b = 1, and otherwise

K∗ $← {0, 1}�K . Then (PK,C∗,K∗) is given to the adversary A. In the game,
A has access to an oracle O(SK, ·) that returns Dec(SK,C) if C �= C∗, and
otherwise ⊥. Finally, A outputs a bit b′. We define the CCA advantage of A as
AdvccaA,KEM(λ) := |Pr[b′ = b]− 1/2|. We say that A (t, q, ε)-breaks KEM if A runs
in time at most t, makes queries at most q times and we have AdvccaA,KEM(λ) ≥ ε.
We say that KEM is CCA secure if AdvccaA,KEM(λ) is negligible for any efficient
adversary A.

Non-interactive Key Exchange. Here, we review the definition of non-
interactive key exchange (NIKE). A NIKE scheme consists of three algorithms
CommonSetup, NIKE.KeyGen and SharedKey together with identity space IDS
and a shared key space SHK. CommonSetup takes a security parameter 1λ as
input and outputs a set of system parameters params. We assume, without
loss of generality, that params is included in pk. NIKE.KeyGen takes params
and an identity ID ∈ IDS and outputs a public key/ secret key pair (pk, sk).
SharedKey takes an identity ID1 ∈ IDS and a public key pk1 along with an-
other identity ID2 and a secret key sk2 as input and outputs a shared key
in SHK for the two identities, or a failure symbol ⊥. This algorithm is as-
sumed to always output ⊥ if ID1 = ID2. For correctness, we require that for any
pair of identities ID1, ID2 and corresponding key pairs (pk1, sk1) and (pk2, sk2),
SharedKey(ID1, pk1, ID2, sk2) = SharedKey(ID2, pk2, ID1, sk1) holds.

There exists some security notions of NIKE that are called CKS-light, CKS,
CKS-heavy and m-CKS-heavy security. However, it is shown in [10] that they
are polynomially equivalent. Therefore we simply say that an NIKE scheme
is secure if the scheme satisfies these security notions. Since we do not need
concrete definitions of these security notions in this paper, we omit them here
and they can be found in the full version.

Target Collision Resistant Hash Functions. Here, we review the defini-
tion of a target collision resistant hash function (also called universal one-way
hash function [24]). Let Hκ : {0, 1}∗ → {0, 1}�H be an efficiently computable
keyed function, indexed by a key κ ∈ {0, 1}k. For any adversary A = (A1,A2),
we define the advantage of A with respect to H as AdvtcrH,A(λ) = Pr[(x, st) ←
A1(1

λ);κ ← {0, 1}k;x′ ← A2(κ, st) : x′ �= x ∧ Hκ(x
′) = Hκ(x)]. We say that

H is a target collision resistant hash function if AdvtcrH,A(λ) is negligible for any
efficient adversary A. We say that A (t, ε)-breaks te target collision resistance
of H if A runs in time at most t and we have AdvtcrH,A(λ) ≥ ε. For notational
convenience, in this paper we make the index κ of a hash function implicit.

Chosen Ciphertext Security on Hard Membership Decision Groups 565

2.3 Semi-smooth Subgroups and Signed Groups

Semi-smooth Subgroups [15,22].An integerN = PQ is called a semi-smooth
RSA modulus if P = 2p′p+1 and Q = 2q′q+1 are distinct odd primes with the
same length, where p′ and q′ are distinct odd primes and p and q are products of
some distinct odd primes smaller than a polynomially bounded integer B which
satisfy gcd(p, q) = 1. Let PB be the product of all odd primes smaller than B. We
can efficiently compute xPB for x ∈ Z∗

N . Let IGen(1λ) be an efficient algorithm
which outputs a random semi-smooth RSA modulus such that N is �N (λ)-bit, p′

is �p′(λ)-bit and q′ is �q′(λ)-bit. For simplicity, we often omit λ and simply denote
them as �N , �p′ and �q′ . For any adversary A and IGen, we define the factoring

advantage of A with respect to IGen as AdvfactA,IGen(λ) := Pr[N ← IGen(1λ);x ←
A(1λ, N) : x ∈ {P,Q}].A (t, ε)-breaks the factoring assumption if A runs in time

at most t and we have AdvfactA,IGen(λ) ≥ ε. We say that the factoring assumption

holds with respect to IGen if AdvfactA,IGen(λ) is negligible for any efficient adversary

A. For 80-bit security, [15] proposed to set �p′ = �q′ = 160, �N = 1024, B = 215

as a sample parameter. We note that by this parameter setting, N is resilient to
the attack described in [5] since the attack takes time O(min{

√
p′,
√
q′})

We consider the structure of multiplicative group Z∗
N for a semi-smooth RSA

modulus N = PQ = (2p′p + 1)(2q′q + 1). We define the group of quadratic
residues as QRN := {u2 : u ∈ ZN

∗}. Since N is a Blum integer, QRN is a cyclic
group with order (P − 1)(Q− 1)/4 = p′q′pq and we have −1 /∈ QRN . It follows
that there exists a unique subgroup of QRN with order p′q′, which we call the
semi-smooth subgroup and denote by G. The following properties are shown in
[22].
– A random element in G is a generator of G with overwhelming probability.
– If we set u

$← Z∗
N and h := uPB , then h is distributed uniformly in G.

– For any x ∈ Z and a generator g of G, the distribution of gμ+x where
μ

$← [2�p′+�q′+λ] is exponentially close to the uniform distribution in G.
– If there exists an adversary A that computes the square root of a randomly

chosen element of G, then there exists an adversary B that factorizes N with
almost the same time as A.

Remark 1. In general, we say that an integer n is B-semi-smooth if all prime
factors of n except one are smaller than B. In this meaning, a semi-smooth RSA
modulus N = PQ is not semi-smooth. Rather, P − 1 and Q − 1 are B-semi-
smooth. Similarly, the order of the semi-smooth subgroup is not semi-smooth.
Though this may be somehow confusing, we use this terminology for consistency
to [22].

Signed Groups. [16]. Let N = PQ = (2p′p + 1)(2q′q + 1) be a semi-smooth
RSA modulus. For any subgroup H ⊂ Z∗

N , we define its signed group as
H+ := {|x| : x ∈ H} where |x| is the absolute value of x when it is represented
as an element of {−(N − 1)/2, . . . , (N − 1)/2}. This is certainly a group by
defining a multiplication as x◦ y := |(xy mod N)| for x, y ∈ H+. For simplicity,
we often denote multiplications on H+ as usual multiplication when it is clear

566 T. Yamakawa et al.

that we are working over a signed group. If H is a subgroup of QRN , then
H

∼
= H+ by the natural projection since −1 /∈ QRN . In particular, QR+

N is a
cyclic group with order p′q′pq and G+ is a cyclic group with order p′q′. We call
QR+

N as a group of signed quadratic residues and G+ as a signed semi-smooth
subgroup. A remarkable property of QR+

N is that it is efficiently recognizable,
that is, there exists an efficient algorithm that determine whether given string is
an element of QR+

N or not [16]. Note that such an algorithm is not known for G+.

Blum-Blum-Shub Pseudorandom Number Generator. Here, we recall
the Blum-Blum-Shub (BBS) pseudorandom number generator [3]; more pre-
cisely, its signed variant appeared in [22]. It is defined on QR+

N and uses the
Goldreich-Levin predicate [14]. For u ∈ QR+

N , r ∈ {0, 1}�N and �K ∈ N, we

define BBSr,�K (u) := (GLr(u),GLr(u
2), . . . ,GLr(u

2�K−1

)) where GLr(u) denotes
the bitwise inner product of r and u.

We define the BBS advantage of an adversary A with respect to

IGen on a signed semi-smooth subgroup G+ as Advbbs,�K ,G+

A,IGen (λ) :=

|Pr[A(N, z, r,BBSr,�K (u)) = 1] − Pr[A(N, z, r, U{0,1}�K) = 1]| where N
$←

IGen(1λ), u
$← G+, z := u2

�K , r
$← {0, 1}�N , U{0,1}�K

$← {0, 1}�K .2 A (t, ε)-breaks

the BBS generator if A runs in time at most t and we have Advbbs,�K ,G+

A,IGen (λ) ≥ ε.
Similarly as in [22], we can show that if the factoring assumption holds for IGen
and �K is polynomially bounded in the security parameter, then for any efficient

adversary A, Advbbs,�K ,G+

A,IGen (λ) is negligible.3

3 Our Main Theorem

In this section, we show our main theorem. Our main theorem abstracts the
technique to prove the CCA security of a PKE scheme on a signed semi-smooth
subgroup. In the following, we prepare some properties about a semi-smooth
subgroup to prove our main theorem in Sec. 3.1 and state and prove our main
theorem in Sec. 3.2.

3.1 Preparation for Our Main Theorem

Here, we define subgroup G⊥ in QRN and show its properties to prove our main
theorem. For a semi-smooth RSA modulus N = PQ = (2p′p + 1)(2q′q + 1),
we denote the unique subgroup of QRN with order pq by G⊥. Then we have
QRN = G ×G⊥ and therefore we have QR+

N = G+ × (G⊥)+. In the following,
we show some easy propositions, whose proofs are given in the full version.

2 Note that the BBS generator is defined on QR+
N . However, we consider its advantage

on G+.
3 The only difference from [22] is that we are working over G+ whereas [22] considered
on G. However, it is easily checked that we can prove the pseudorandomness of the
BBS generator similarly.

Chosen Ciphertext Security on Hard Membership Decision Groups 567

Proposition 1. If u ∈ QR+
N , then up

′q′ ∈ (G⊥)+. In particular, if u ∈ G+,

then we have up
′q′ = 1.

Proposition 2. For x ∈ QR+
N , x ∈ (G⊥)+ is equivalent to xPB = 1. In partic-

ular, (G⊥)+ is efficiently recognizable.

The following lemma claims that if given any element of (G⊥)+ which is not
equal to 1, then N is factorized efficiently. The idea behind the proof of this
lemma is used in [15]. The proof of this lemma can be found in the full version.

Lemma 1 Let N = PQ = (2p′p+1)(2q′q+1) be a semi-smooth RSA modulus.
There exists an efficient algorithm A that factorizes N if N and any element
h ∈ (G⊥)+ \ {1} are given.

3.2 Our Main Theorem

Here, we state and prove our main theorem. Our main theorem is abstract for-
malization of our technique to prove the CCA security of a scheme on G+. In
particular, this is the technique to deal with an invalid query by an adversary,
where invalid query means that it is out of G+. Briefly, our main theorem states
that any efficient CCA adversary cannot make an invalid query that satisfies a
verification equation in a decryption algorithm with non-negligible probability.
By using this theorem, we can simulate a decryption oracle for both valid and
invalid queries though we still cannot tell whether that is valid or not. Thus we
can overcome the difficulty of an invalid query.

Then we prepare some definitions to state the formal description of our the-
orem. First, as an abstraction of decryption oracles in CCA secure schemes
on G+, we consider a family of (deterministic) oracles D = {DN,x} where
N = (2p′p + 1)(2q′q + 1) is a semi-smooth RSA modulus and x ∈ [2�p′+�q′+λ]
that satisfies the following properties.

– Input of DN,x consists of two elements in QR+
N .4

– DN,x can be efficiently simulated if N and x are known. That is, there exists
an efficient algorithm Sim such that Sim(N, x,A,B) = DN,x(A,B) for all
integers N , x and (A,B) ∈ QR+

N ×QR+
N

– DN,x(A,B) returns ⊥ if f1(A,B)x �= f2(A,B) where f1 : QR+
N × QR+

N →
QR+

N and f2 : QR+
N × QR+

N → QR+
N are efficiently computable functions

which do not depend on x.
– For (A,B) ∈ QR+

N × QR+
N , if f1(A,B) ∈ G+ holds, then DN,x(A,B) is

completely determined by (x mod p′q′). That is, if x ≡ x′ mod p′q′, then
DN,x(A,B)=DN,x′(A,B) for all (A,B) ∈ QR+

N ×QR+
N such that f1(A,B) ∈

G+.

4 We define input of DN,x as two group elements in QR+
N since ciphertexts of most

factoring-based CCA secure KEM consist of two group elements. We can easily
extend our main theorem to more general cases (i.e., cases that the ciphertext consists
of more than two group elements.).

568 T. Yamakawa et al.

We say that D is compatible for our main theorem if the above conditions
are satisfied. Note that decryption algorithms of most CCA secure KEMs from
the factoring assumption in the standard model [17,22,20,21] satisfy the above
conditions by defining f and g properly when they are instantiated on G+. For
example, as seen in Sec. 4, the decryption algorithm of the Hofheinz-Kiltz scheme
[17,18] on G+ is compatible for our main theorem by defining f1(A,B) := A2ν

and f2(A,B) = A2νB−H(B) where H is a hash function contained in a public
key and ν is a constant which depends on a security parameter. We say that a
query (A,B) ∈ QR+

N × QR+
N to DN,x is effective if f1(A,B)x+np′q′ = f2(A,B)

for some n ∈ Z and f1(A,B) /∈ G+. Then, we define an experiment for an
adversary A which we call Main with respect to an oracle D as follows.

Experiment MainA,IGen,D(λ)

N ← IGen(1λ), g
$← G+, x

$← [2�p′+�q′+λ], X := gx

Run ADN,x(N, g,X)
If A made at least one effective query (A,B), then return 1, and otherwise
return 0.

We define the advantage Advmain
A,IGen,D(λ) of an adversary A in MainA,IGen,D(λ)

as the probability that the experiment returns 1. We say that A (t, q, ε)-wins
MainA,IGen,D(λ) if A runs in time at most t, makes queries at most q times and
Advmain

A,IGen,D(λ) ≥ ε. Now we are ready to state our main theorem.

Theorem 1. If the factoring assumption holds and D is compatible with
our main theorem, then Advmain

A,IGen,D(λ) is negligible for any efficient algo-
rithm A. More precisely, If there exists A which (tmain, qmain, εmain)-wins
MainA,IGen,D(λ), then there exists B which (tfact, εfact)-breaks the factoring as-
sumption, where tfact ≈ tmain and εfact +O(2−λ) ≥ εmain/2.

Proof. We consider a slightly modified experiment Main′A,IGen,D(λ).

Main′A,IGen,D(λ) is the same as MainA,IGen,D(λ) except that x is chosen

uniformly from [M] instead of [2�p′+�q′+λ], where M is the smallest multiple of
p′q′ larger than 2�p′+�q′+λ. It is easy to see that the statistical distance between
the uniform distribution on [2�p′+�q′+λ] and the uniform distribution on [M] are
exponentially small, and therefore we consider the experiment Main′A,IGen,D(λ)
in the following.

For x ∈ [M], we can uniquely define r ∈ [p′q′] and m ∈ Z such that x =
r+mp′q′. Then r is uniformly distributed in [p′q′] andm is uniformly distributed

in {0, 1, . . . , ' 2
�
p′+�

q′+λ

p′q′ (} when x $← [M]. Then we can restate the condition that

(A,B) ∈ QR+
N × QR+

N is effective as that f1(A,B)r+n′p′q′ = f2(A,B) holds for
some n′ ∈ Z and f1(A,B) /∈ G+.

In the following, we consider how much information about m A can obtain in
the experiment. We can see that the distribution of X is completely determined
by r and independent from m, and therefore A cannot obtain any information
about m from X in the experiment. Moreover, we can prove the following claim.

Chosen Ciphertext Security on Hard Membership Decision Groups 569

Claim 1. If (A,B) ∈ QR+
N ×QR+

N is not an effective query, then the response
by the oracle DN,x to this query does not leak any information about m.

Proof of Claim 1. Assume that (A,B) is not an effective query. If f1(A,B) ∈ G+,
then Dx(A,B) does not reveal any information about m by the assumption that
D is compatible with our main theorem. If f1(A,B) /∈ G+, then Dx(A,B) returns
⊥ since (A,B) is not effective and therefore f1(A,B)x �= f2(A,B). We show that
this reveals no information about m. This is because even if m is replaced by
any integer m′ (that is, if x = r + mp′q′ is replaced by x′ = r + m′p′q′), the
response by D is always ⊥. This is because if there exists m′ such that D does
not return ⊥, then there exists n′ ∈ Z such that f1(A,B)x

′+n′p′q′ = f2(A,B),
and it contradicts to that (A,B) is not effective. ��

Then we return to the proof of Theorem 1. Assume that there exists an
efficient algorithmA which makes an effective query inMain′A,IGen,D(λ) with non-
negligible probability. Then we construct an efficient algorithm C that outputs
an element of (G⊥)+ \ {1} with non-negligible probability. If such C exists, then
we can construct an efficient algorithm B that factorizes N by Lemma 1 and it
contradicts to the factoring assumption. The construction of C is as follows.

C(N) : C chooses g
$← G+, x

$← [2�p′+�q′+λ], sets X := gx and gives (N, g,X)
to A as input. Whenever A queries (A,B) ∈ QR+

N , C returns DN,x(A,B)
to A by using N and x. C also calculates f2(A,B)f1(A,B)−x and if
f2(A,B)f1(A,B)−x ∈ (G⊥)+ \ {1} then C outputs it and halts. If A halts
before C outputs any value, then C aborts.

It is easy to see that the distribution of the input (N, g,X) of A is ex-
ponentially close to that in Main′A,IGen(λ) and C correctly simulates DN,x for
A. Let (A,B) be the first effective query by A. It suffices to show that
f2(A,B)f1(A,B)−x ∈ (G⊥)+ \ {1} with non-negligible probability. Since (A,B)
is effective, we have f1(A,B)r+n′p′q′ = f2(A,B) for some n′ ∈ Z and f1(A,B) ∈
QR+

N \G+. Then we have f2(A,B)f1(A,B)−x = (f1(A,B)p
′q′)n

′−m. We can see

(f1(A,B)p
′q′)n

′−m ∈ (G⊥)+ from Proposition 1. What is remained to prove is
(f1(A,B)p

′q′)n
′−m �= 1 with non-negligible probability. Let e be the order of

f1(A,B)p
′q′ . Since f1(A,B) ∈ QR+

N \ G+, we have f1(A,B)p
′q′ �= 1 and e ≥ 3.

What we should prove is e � |n′ − m with non-negligible probability. We can
see from Claim 1 that A have no information about m more than that is dis-
tributed uniformly in {0, 1, . . . , ' 2

�
p′+�

q′+λ

p′q′ (} before A makes the first effective

query. Therefore it is clear that the probability that e � |n′ − m is larger than
1/2.5 This completes the proof of Theorem 1.

4 Variants of Hofheinz-Kiltz Scheme

Hofheinz and Kiltz [17] proposed a practical CCA secure PKE scheme in the
standard model under the factoring assumption. Following the work, Mei et al.

5 Here, we implicitly assume � 2
�
p′+�

q′+λ

p′q′ � ≥ 3. Note that this is always true if λ ≥ 2.

570 T. Yamakawa et al.

[22] showed that the efficiency of the Hofheinz-Kiltz scheme can be improved if
it is instantiated on the semi-smooth subgroup. Specifically, in 80-bit security,
the encryption and decryption become 2.5 and 1.5 times faster than those of
the original Hofheinz-Kiltz scheme, respectively. However, the security proof
in [22] disregarded the fact that the semi-smooth subgroup is not efficiently
recognizable and therefore the proof is incomplete. In this section, we present
how to overcome the difficulty and give a complete proof for the Hofheinz-Kiltz
scheme instantiated on the (signed) semi-smooth subgroup.

4.1 Description of Hofheinz-Kiltz Scheme on Signed Subgroups

The construction of the Hofheinz-Kiltz scheme on G+ is as follows. We call this
scheme as HKsss. This is the same scheme as Mei et al.’s scheme [22] except that
we are working over G+ instead of G.6 In the following, �H is the length of hash
value, �K is the symmetric key length and ν := �H + �K .
Keygeneration : Gen(1λ) chooses N ← IGen(1λ), a target-collision resistant

function H : QR+
N → [2�H − 1], g

$← G+, r
$← {0, 1}�N , and ρ $← [2�p′+�q′+λ].

Then it sets X := gρ2
ν

. It outputs the public key PK := (N, g,X, r,H) and
the secret key SK := (ρ).

Encapsulation : Enc(PK) chooses μ
$← [2�p′+�q′+λ] and sets R := gμ2

ν

, t :=

H(R), S := (gtX)μ, T := gμ2
�H and K := BBSr(T). Then it outputs the

ciphertext C := (R,S) and the key K.
Decapsulation : Dec(SK, (R,S)) verifies (R,S) ∈ QR+

N × QR+
N and rejects if

not. Then it computes t := H(R) and verifies S2ν = Rt+ρ2ν , and rejects
if not. Next it computes a, b, c ∈ Z such that 2c = gcd(t, 2ν) = at + b2ν .

Finally, it computes T := (SaRb−aρ)2
�H−c

,K := BBSr(T) and outputs K.
The proof of the correctness of this scheme can be found in the full version.

4.2 Security

We prove that the scheme is CCA secure under the factoring assumption. Note
that Mei et al.’ [22] also claimed to prove it. However their proof does not
care about the fact that the (signed) semi-smooth subgroup is not efficiently
recognizable, and therefore their proof is not sufficient. Formally, the security of
HKsss is stated as follows.

Theorem 2. If the factoring assumption holds for IGen and H is a target colli-
sion resistant hash function, then HKsss is CCA secure. More precisely, if there
exists an adversary A which (t, q, ε)-breaks the CCA security of the above scheme,
then there exists an adversary B that (ttcr, εtcr)-breaks the target collision resis-
tance of H, an adversary C that (tfact, εfact)-breaks the factoring assumption
with respect to IGen and an adversary D that (tbbs, εbbs)-breaks the BBS genera-
tor, where ttcr ≈ t, tfact ≈ t, tbbs ≈ t and 2εfact + εtcr + εbbs +O(2−λ) ≥ ε.

6 In this paper, we only consider the scheme on G+. However, the situation is almost
the same for the scheme on G (i.e., Mei et al.’s scheme), and we can prove the CCA
security of the scheme on G almost similarly.

Chosen Ciphertext Security on Hard Membership Decision Groups 571

Proof.(sketch) Here, we give only an intuitive explanation. The full proof can be
found in the full version. First, we try to prove the security in the same way as
the original Hofheinz-Kiltz scheme [17] (as discussed in [22]). Assume that there
exists an adversary A that breaks the CCA security of HKsss. We construct
an adversary B that breaks the security of the BBS generator by using A. The
construction of B is as follows.

B(N, z, r, V) : B chooses H and g as in HKsss, and sets R∗ := z, t∗ := H(R∗),

β
$← [2�p′+�q′+λ], X := g−t∗+β2ν (This implicitly defines ρ as a value such

that ρ ≡ β − t∗/2ν mod p′q′.), S∗ := (R∗)β and K∗ := V . Then B gives
(N, g,X, r,H) as a public key, (R∗, S∗) as a challenge ciphertext and K∗

as a challenge key to A. When A makes a query (R,S) ∈ QR+
N × QR+

N

to the decryption oracle, B does as follows. If S2ν �= Rt−t∗+β2ν or t = t∗

where t := H(R), then B returns ⊥ to A, and otherwise B can simulate the
decryption oracle by the standard “all-but-one extraction”, and return the
decryption result to A. Finally, when A outputs b′, B also outputs b′.

It seems that B correctly simulates the CCA game for A and therefore has the
same BBS advantage as A’s CCA advantage. However, this is not true. More
precisely, the verification equation S2ν = Rt−t∗+β2ν in the simulation by B is
not always equivalent to the real verification equation S2ν = Rt+ρ2ν . That is, if
R ∈ G+, then these equations are equivalent since we have ord(R)|p′q′ and ρ ≡
β− t∗/2ν mod p′q′. However, otherwise ord(R) may not be a divisor of p′q′ and
therefore these equations are not equivalent. More precisely, S2ν = Rt−t∗+β2ν is
equivalent to S2ν = Rt+ρ2ν+np′q′ for some n ∈ Z

To overcome this difficulty, we prove that if R /∈ G+, then (R,S) does not
satisfy S2ν = Rt−t∗+β2ν nor S2ν = Rt+ρ2ν with overwhelming probability. If this
is proven, then the simulation of the decryption oracle by B is correct with over-
whelming probability even if R /∈ G+ since both real and simulated decryption
oracle return ⊥ with overwhelming probability, and therefore we can prove that
B breaks the BBS generator with almost the same advantage as A breaks the
CCA security of the scheme. To prove it, we use our main theorem (Theorem
1). To do so, we check that the decryption oracle in the scheme is compatible
with our main theorem by defining f1(R,S) = R2ν , f2(R,S) = S2νR−t where
t = H(R). This is because f1(R,S)

ρ = f2(R,S) is equivalent to S
2ν = Rt+ρ2ν ,

and if f1(R,S) = R2ν ∈ G+ and S2ν = Rt+ρ2ν hold, then we have R ∈ G+ and
S ∈ G+, and therefore the output of the decryption oracle is completely deter-
mined by (ρ mod p′q′). Therefore by our main theorem, we can prove that A’s
query (R,S) is not effective with overwhelming probability, i.e., if R /∈ G+, then
S2ν �= Rt+ρ2ν+np′q′ for all n ∈ Z. Then our claim follows from it immediately,
and the proof is completed. ��

4.3 Other CCA Secure Schemes on (Signed) Semi-smooth Subgroup

There is the same problem in the security proof of the second scheme in [22]
and we can fix it by the same technique. Moreover, we can apply our technique

572 T. Yamakawa et al.

to prove the security of other variants of the Hofheinz-Kiltz scheme [20,21] in-
stantiated on (signed) semi-smooth subgroup. Note that it was mentioned by
the authors of [20,21] that these schemes can be instantiated on a semi-smooth
subgroup and enjoy high efficiency. However, they did not take care about the
fact that a semi-smooth subgroup is not efficiently recognizable. Therefore, more
careful argument is required to prove the security of these schemes as seen in
this paper.

5 The Strong Diffie-Hellman Assumption

In this section, we present that our main theorem can be also used for proving the
SDH assumption on a signed semi-smooth subgroup is implied by the factoring
assumption. It is shown that the SDH assumption holds on QR+

N under the
factoring assumption in [16]. However, the proof relies on the fact that QR+

N is
efficiently recognizable and cannot be applied on G+ since it is not known to be
efficiently recognizable. We use our main theorem (Theorem 1) to overcome this
difficulty.

The SDH assumption is first proposed in [1]. The SDH assumption informally
says that any efficient algorithm cannot solve the CDH problem even with a
fixed base DDH oracle. To define the SDH assumption on G+, we consider the
following game for an adversary A. At first, semi-smooth RSA modulus N is
generated by N

$← IGen(1λ) as well as x, y
$← [2�p′+�q′+λ] and g

$← G+.7 Then,
X and Y are set as X = gx and Y = gy. The adversary A is given (N, g,X, Y)
as input, and finally A outputs Z. In the game, A has access to an oracle DDHx

which returns 1 if Ax = B, and otherwise 0 for a query (A,B) ∈ QR+
N × QR+

N .
Let T be the event that Z = gxy holds. We define the SDH advantage of A as
AdvsdhA,IGen(λ) := Pr[T]. We say that A (t, q, ε)-breaks the SDH assumption if A
runs in time at most t, makes queries at most q times and AdvsdhA,IGen(λ) ≥ ε. We

say that the SDH assumption holds on G+ with respect to IGen if AdvsdhA,IGen(λ)
is negligible for any efficient adversary A.

There are two differences between the SDH assumption on G+ defined above
and the original SDH assumption on a prime order group. They are to make it
useful for the security proof of cryptographic protocols. The first difference is
that x and y are chosen from exponentially larger domain than the order of G+.
This is because we cannot know the order of G+ without knowing factorization
of N . The second difference is that an adversary is allowed to query not only
elements of G+ but also elements of QR+

N . This is because G+ is not efficiently
recognizable and the adversary (and even a simulator in security proofs which
does not know the factorization) cannot tell whether its query is elements of G+

or not.
Then we state our theorem formally.

Theorem 3. If the factoring assumption holds with respect to IGen, then the
SDH assumption holds on G+ with respect to IGen. More precisely, if there exists

7 Then g is a generator of G+ with overwhelming probability.

Chosen Ciphertext Security on Hard Membership Decision Groups 573

an adversary A which (tsdh, qsdh, εsdh) breaks the SDH assumption on G+ with
respect to IGen, then there exists an adversary B which (tfact, εfact)-breaks the
factoring assumption with respect to IGen and C which (t′fact, ε

′
fact)-breaks the

factoring assumption with respect to IGen, where tfact ≈ tsdh, t
′
fact ≈ tsdh and

2εfact + ε′fact +O(2−λ) ≥ εsdh.

Proof (sketch). Here, we give only an intuitive explanation. The full proof can
be found in the full version. First, we try to prove the theorem similarly as
[16, Theorem 2] which states that the factoring assumption implies the SDH
assumption on QR+

N . Assume that there exists an adversary A that breaks the
SDH assumption on G+. We construct an adversary B that breaks the factoring
assumption by using A. To do so, we construct an algorithm C that is given N
and h

$← G+ and computes h1/2. If such C exists, a factoring adversary B is
easily constructed. The construction of C is as follows.

C(N, h) : C sets g := h2, a, b
$← [2�p′+�q′+λ], X := hga and Y := hgb. This

implicitly defines x and y as a value such that x ≡ a + 1/2 mod p′q′ and
y ≡ b + 1/2 mod p′q′. For DDH query (A,B) ∈ QR+

N × QR+
N by A, C

verifies A2a+1 = B2 and returns 1 if the equation holds, and otherwise 0 to
A. Finally, if A outputs Z, then C outputs Zh−(2ab+a+b).

We consider the success probability of C. If Z = gxy, then Zh−(2ab+a+b) =
gxyh−(2ab+a+b) = (h2)(a+1/2)(b+1/2)h−(2ab+a+b) = h1/2. Therefore, if C correctly
simulates the SDH game for A, then C succeed to compute h1/2 with the prob-
ability larger than A wins in the SDH game, and the theorem follows. However,
one can see that the simulation of DDH oracle by C is not always correct when
A /∈ G+. More precisely, A2a+1 = B2 is equivalent to Ax+np′q′ = B for some
n ∈ Z.

To overcome this difficulty, we prove that if A /∈ G+, then (A,B) does not
satisfy A2a+1 = B2 nor Ax = B with overwhelming probability. If this is proven,
then the simulation of the decryption oracle by C is correct with overwhelming
probability even if A /∈ G+ since both real and simulated oracle returns 0 with
overwhelming probability, and therefore we can prove that C succeeds in com-
puting h1/2 with almost the same probability as A’s SDH advantage. To prove
it, we use our main theorem. One can see that the DDH oracle is compatible
with our main theorem if we interpret that the DDH oracle outputs 0 as that it
outputs ⊥ by defining f1(A,B) = A and f2(A,B) = B. Therefore by our main
theorem, we can prove that A’s query (A,B) is not effective with overwhelming
probability i.e., if A /∈ G+, then Ax+np′q′ �= B for all n ∈ Z with overwhelming
probability. Then our claim follows immediately and the proof is completed. ��

Moreover, we can prove the following more strong assumption called the dou-
ble strong Diffie-Hellman (DSDH) assumption [10] on G+. The DSDH assump-
tion is defined as the same as the SDH assumption except an adversary is allowed
to access a DDH oracle with base y adding to that with base x. Then the fol-
lowing theorem holds.

Theorem 4. If the factoring assumption holds with respect to IGen, then the
DSDH assumption holds on G+ with respect to IGen.

574 T. Yamakawa et al.

This theorem can be proven similarly as Theorem 3 except that we require “dou-
ble” version of our main theorem. The details can be found in the full version.

6 Hashed ElGamal KEM

Hashed ElGamal KEM (DHIES) [1] is a natural variant of the ElGamal KEM
in which the DEM key is replaced by output of a hash function. It is well known
that the Strong Diffie-Hellman (SDH) assumption on the underlying group im-
plies the CCA security of hashed ElGamal KEM is CCA in the random oracle
model [1,8]. Moreover, [16] showed that the factoring assumption implies the
SDH assumption on the group of signed quadratic residues QR+

N and therefore
Hashed ElGamal KEM on QR+

N is CCA secure in the random oracle model under
the factoring assumption.

In this section, we show that the hashed ElGamal KEM on G+ is also CCA
secure in the random oracle model under the factoring assumption. This follows
from Theorem 3. Since the order of G+ is smaller than that of QR+

N , our con-
struction is more efficient than the scheme on QR+

N with regard to the secret
key size, encryption cost and decryption cost. (See Sec. 6.3.)

6.1 Construction

The proposed scheme HEGsss = (Gen,Enc,Dec) is described as follows. We de-
note a DEM key length by �K .

Keygeneration: Gen(1λ) sets N ← IGen(1λ), chooses a hash function H :

{0, 1}2�N → {0, 1}�K , a generator g
$← G+, x

$← [2�p′+�q′+λ] and sets X :=
gx. Then Gen(1λ) outputs the public key PK := (N, g,X,H) and the secret
key SK := (x).

Encapsulation: Enc(PK) chooses y
$← [2�p′+�q′+λ] and sets Y := gy and K :=

H(Y,Xy). Then Enc(PK) outputs the ciphertext Y and the DEM key K.
Decapsulation: Dec(SK, Y) verifies Y ∈ QR+

N and rejects if not. Then
Dec(SK, Y) sets K := H(Y, Y x) and outputs K.

6.2 Security

The security of HEGsss is stated as the following theorem.

Theorem 5. If the factoring assumption holds with respect to IGen, then HEGsss

is CCA secure in the random oracle model where H is modeled as a random
oracle. More precisely, if there exists an adversary A which (t, q, ε)-breaks the
CCA security of HEGsss, then there exists an adversary B which (tfact, εfact)-
breaks the factoring assumption and C which (t′fact, ε

′
fact)-breaks the factoring

assumption, where tfact ≈ tsdh, t
′
fact ≈ tsdh and 2εfact + ε′fact +O(2−λ) ≥ εsdh.

This is proven by combining Theorem 3 and the following theorem.

Theorem 6. If the SDH assumption holds on G+ with respect to IGen, then
HEGsss is CCA secure in the random oracle model whereH is modeled as a random

Chosen Ciphertext Security on Hard Membership Decision Groups 575

oracle. More precisely, if there exists an adversaryA which (t, q, ε)-breaks the CCA
security of HEGsss, then there exists an adversary B which (tsdh, qsdh, εsdh)-breaks
the SDH assumption, where tsdh ≈ t, qsdh = q and εsdh = ε.

Theorem 6 can be proven similarly as [16, Theorem 9] which claims that the
SDH assumption implies the CCA security of Hashed ElGamal KEM on QR+

N .

6.3 Efficiency

Here, we compare HEGsss with the the original HEG (that is the scheme on QR+
N

proposed in [16]). To estimate the efficiency of schemes, we use a parameter given
in [15]. They propose for security parameter λ = 80, �N = 1024, �p′ = �q′ = 160.
The ciphertext size and the public key size of our scheme are 1024-bit and
3072-bit respectively, which is the same as that of HEG. Ignoring the cost to
calculate H , HEGsss needs about 3(�p′ + �q′ + λ) = 1200 multiplications in the
encapsulation algorithm whereas HEG needs about 3�N = 3072 multiplications.
The decapsulation algorithm of our algorithm needs about 1.5(�p′+�q′+λ) = 600
multiplications whereas HEG needs about 1.5�N = 1536 multiplications. Here we
assume that an exponent of length � requires 1.5 modular multiplications. To
sum up, the encapsulation and the decapsulation algorithm of HEGsss is about
2.5 times faster than that of HEG.

7 Non-interactive Key Exchange

Here, we instantiate the NIKE scheme in [10] on G+. We prove that the proposed
scheme is secure in the random oracle model under the factoring assumption as
same as the scheme in [10] by using Theorem 4, which states that tha factoring
assumption implies the DSDH assumption on G+. Our proposed scheme is more
efficient than the original scheme in [10].

7.1 Construction

The proposed scheme NIKEsss = (CommonSetup,NIKE.KeyGen, SharedKey) is
described as follows.

CommonSetup(1λ): This computes N ← IGen(1λ), sets g
$← G+ and

params← (H,N, g) and outputs params.

NIKE.KeyGen(params, ID): This sets sk
$← [2�p′+�q′+λ] and pk := gsk and

outputs (pk, sk).
SharedKey(ID1, pk1, ID2, sk2): If ID1 = ID2 or pk1 /∈ QR+

N or pk2 /∈ QR+
N , then

this outputs ⊥. Otherwise it outputs{
H(ID1, ID2, pk

sk2
1) (If ID1 > ID2.)

H(ID2, ID1, pk
sk2
1) (If ID2 > ID1.)

.

7.2 Security

We show that NIKEsss is secure in the random oracle model under the factoring
assumption. More precisely, it is as follows.

576 T. Yamakawa et al.

Theorem 7. If the factoring assumption holds with respect to IGen, then NIKEsss

is secure in the random oracle model where H is modeled as a random oracle.

This is easily proven by using Theorem 4 since [10] shows that the DSDH as-
sumption implies the security of the NIKE scheme. Though [10] only considers
the scheme on QR+

N , the situation is similar if we consider the scheme on G+.

7.3 Efficiency

Here, we compareNIKEsss with the the originalNIKE (that is the scheme onQR+
N

proposed in [10]). To estimate the efficiency of schemes, we use a parameter given
in [15]. They propose for security parameter λ = 80, �N = 1024, �p′ = �q′ = 160.
The ciphertext size and the public key size of our scheme are 1024-bit and 3072-
bit respectively, which is the same as that of NIKE. Ignoring the cost to calculate
H , NIKEsss needs about 1.5(�p′ + �q′ + λ) = 600 multiplications in SharedKey
whereas NIKE needs about 1.5�N = 1536 multiplications. Here we assume that an
exponent of length � requires 1.5 modular multiplications. To sum up, SharedKey
of NIKEsss is about 2.5 times faster than that of NIKE.

Acknowledgment. We would like to thank the anonymous reviewers and mem-
bers of the study group “Shin-Akarui-Angou-Benkyou-Kai” for their helpful
comments. Especially, we would like to thank the reviewer who pointed out
our improper use of the term “semi-smooth” in the submitted manuscript.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

3. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

4. Canetti, R., Goldreich, O., Halevip, S.: The random oracle methodology, revisited
(preliminary version). In: STOC, pp. 209–218 (1998)

5. Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis
of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer,
Heidelberg (2011)

6. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)

7. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes. SIAM Journal on Computing 33(1), 167–226 (2003)

9. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552 (1991)

Chosen Ciphertext Security on Hard Membership Decision Groups 577

10. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key ex-
change. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013)

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

12. Goldreich, O.: Basing non-interactive zero-knowledge on (Enhanced) trapdoor per-
mutations: The state of the art. In: Goldreich, O. (ed.) Studies in Complexity and
Cryptography. LNCS, vol. 6650, pp. 406–421. Springer, Heidelberg (2011)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

14. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC, pp. 25–32 (1989)

15. Groth, J.: Cryptography in subgroups of Z∗
n. In: Kilian, J. (ed.) TCC 2005. LNCS,

vol. 3378, pp. 50–65. Springer, Heidelberg (2005)
16. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:

Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009)

17. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

18. Hofheinz, D., Kiltz, E., Shoup, V.: Practical chosen ciphertext secure encryption
from factoring. J. Cryptology 26(1), 102–118 (2013)

19. Joye, M., Quisquater, J.-J., Yung, M.: On the power of misbehaving adversaries
and security analysis of the original EPOC. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 208–222. Springer, Heidelberg (2001)

20. Lu, X., Li, B., Mei, Q., Liu, Y.: Improved tradeoff between encapsulation and
decapsulation of HK09. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011.
LNCS, vol. 7537, pp. 131–141. Springer, Heidelberg (2012)

21. Lu, X., Li, B., Mei, Q., Liu, Y.: Improved efficiency of chosen ciphertext secure
encryption from factoring. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC
2012. LNCS, vol. 7232, pp. 34–45. Springer, Heidelberg (2012)

22. Mei, Q., Li, B., Lu, X., Jia, D.: Chosen ciphertext secure encryption under factoring
assumption revisited. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 210–227. Springer, Heidelberg (2011)

23. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: ACM Conference on Computer and Communications Security, pp. 59–66 (1998)

24. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC, pp. 33–43 (1989)

25. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC, pp. 427–437 (1990)

26. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

27. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

28. Rabin, M.O.: Digital signatures and public key functions as intractable as factoriza-
tion. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology
(January 1979)

29. Yasuda, M., Shimoyama, T., Kogure, J., Izu, T.: On the strength comparison of
the ECDLP and the IFP. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 302–325. Springer, Heidelberg (2012)

On Selective-Opening Attacks against

Encryption Schemes

Rafail Ostrovsky1,2, Vanishree Rao1, and Ivan Visconti3,�

1 Department of Computer Science, UCLA, USA
2 Department of Mathematics, UCLA, USA

{rafail,vanishri}@cs.ucla.edu
3 Dipartimento di Informatica, University of Salerno, Italy

visconti@unisa.it

Abstract. At FOCS’99, Dwork et al. put forth the notion of ‘selective-
-opening attacks’ (SOAs, for short). In the literature, security against
such attacks has been formalized via indistinguishability-based and
simulation-based notions, respectively called IND-SO-CPA security and
SIM-SO-CPA security. Furthermore, the IND-SO-CPA notion has been
studied under two flavors – weak-IND-SO-CPA and full-IND-SO-CPA
security. At Eurocrypt’09, Bellare et al. showed the first positive results
on SOA security of encryption schemes: 1) any lossy encryption scheme is
weak-IND-SO-CPA secure; 2) any lossy encryption scheme with efficient
openability is SIM-SO--CPA secure.

Despite rich further work on SOA security, the (un)feasibility of
full--IND-SO-CPA remains a major open problem in the area of SOA
security. The elusive nature of the full-IND-SO-CPA notion of security
is attributed to a specific aspect of the security game, namely, the
challenger requiring to perform a super-polynomial time task. Not only
do we not know whether there exists a scheme that is full-IND-SO-CPA
secure, but we also do not know concrete attacks against popular
schemes such as the ElGamal and Cramer-Shoup schemes in the
full-IND-SO-CPA model.

The contribution of our work is three-fold.

1. Motivated by the difficulty in understanding (un)feasibility of the
full-IND-SO-CPA notion, we study a variant of this notion that is
closer in spirit to the IND-CPA notion but still embodies the security
captured by the full-IND-SO-CPA notion. We observe that the weak
form of our variation does not introduce any significant change to
the weak-IND-SO-CPA notion; that is, the weak form of our notion
is equivalent to the weak-IND-SO-CPA notion.

2. Interestingly, we can show that a large class of encryption schemes can
be proven insecure for the full form of our notion. The large class
includes most known constructions of weak-IND-SO-CPA secure
schemes and SIM-SO-CPA secure schemes and also popular schemes
like the ElGamal and Cramer-Shoup schemes.

3. Our third contribution studies the complexity of SIM-SO-CPA security.
Complementing the result of Bellare et al., we show that lossiness is

� Work partially done while visiting UCLA.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 578–597, 2014.
c© Springer International Publishing Switzerland 2014

On Selective-Opening Attacks against Encryption Schemes 579

not necessary to achieve SIM-SO-CPA security. More specifically, we
present a SIM-SO-CPA scheme that is not a lossy encryption scheme
(regardless of efficient openability). Since SIM-SO-CPA security
implies weak-IND-SO-CPA security, it follows as a corollary that
the converses of both the implications proved by Bellare et al. do
not hold. Furthermore, as a corollary of our techniques, on a slightly
unrelated but useful note, we obtain that lossiness is not required
to obtain non-committing encryption. Previously, at Eurocrypt’09,
Fehr et al. showed a construction of a non-committing encryption
scheme from trapdoor permutations and this scheme was, as noted
by the authors, possibly not lossy. Our scheme amounts to the first
construction of a non-committing encryption scheme that is provably
not lossy.

1 Introduction

Public-key encryption (PKE, for short) notion forms one of the most principal
cryptographic notions. For PKE schemes, indistinguishability of ciphertexts
under chosen-plaintext attacks (IND-CPA) and chosen-ciphertext attacks
(IND-CCA) are usually viewed as strong notions of security both conceptually
and in practical applications. However, there is a natural setting where these
standard notions do not necessarily imply security. Namely, note that on one
hand it is easy to see that a PKE scheme continues to be IND-CPA secure even
if an adversary is given multiple ciphertexts of multiple plaintexts; however, on
the other hand, if the adversary sees openings (that is, not only the plaintexts
but also the coins used) of some subset of the ciphertexts of its choice, then,
somewhat surprisingly, it is not known whether IND-CPA security is sufficient
to ensure privacy of the unopened plaintexts. This subtlety was first pointed
out by Dwork et al. in [DNRS99], and such an adversarial attack is called a
selective-opening attack (SOA, for short).

Dwork et al. [DNRS99], besides bringing to light the subtlety of SOA, also
investigated SOA security of commitment schemes. SOA security of PKE schemes
was studied by Bellare et al. in [BHY09].

The three flavors of SOA security. SOA security of PKE schemes has been
studied under various notions in the literature. The simulation-based security
notion is dubbed SIM-SO-CPA security. The two indistinguishability-based
notions are dubbed weak-IND-SO-CPA security and full-IND-SO-CPA security;
the two indistinguishability-based notions are together dubbed IND-SO-CPA
security. In this work, we study certain aspects of both the simulation-based and
the indistinguishability-based security notions. Below, we provide a quick and
pertinent glimpse on the state-of-the-art for these notions to keep in mind; then
we explain these notions informally.

Bellare et al. [BHY09] solved a longstanding open problem by showing how
to construct SIM-SO-SOA schemes. In fact, they showed that every lossy
encryption scheme is SIM-SO-SOA secure and that SIM-SO-SOA security implies

580 R. Ostrovsky, V. Rao, and I. Visconti

weak-IND--SO-CPA security. However, despite much work in the area, we still do
not know whether or not full-IND-SO-CPA security is feasible and, in particular,
if existing techniques to build weak-IND-SO-CPA schemes and SIM-SO-CPA
schemes can be useful to achieve full-IND-SO-CPA security. It is also not known
whether lossiness is necessary for SOA security. Thus, SOA notion still houses
many more challenging open questions.

IND-SO-CPA security. Let us review the structure of IND-SO-CPA security.
At a high level, the adversary gets a vector of ciphertexts. Then, the adversary
chooses a subset of ciphertexts of which it receives openings. For the rest of
the ciphertexts, the adversary gets either the actual plaintexts or randomly
chosen messages (conditioned on the revealed plaintexts), and he is challenged
to tell them apart. More specifically, the IND-SO-CPA challenger first chooses
a public-key/secret-key pair and gives the adversary the public key. Then the
adversary presents a description of a joint distribution over message vectors.
Then the challenger would sample a message vector from this distribution,
encrypt each message component, and give the adversary the resulting vector
of ciphertexts. Next, the adversary chooses a subset of the ciphertexts to be
opened (where, ‘opening’ corresponds to revealing both the plaintext and the
random coins used in generating the ciphertext). The adversary, then, besides
the openings to the chosen subset of ciphertexts, is given either the plaintexts of
the remaining ciphertexts or a message vector that is freshly sampled from the
specified (joint) message distribution, conditioned on the message components
already opened to. The objective of the adversary is to tell them apart.

Note that depending on the message distribution, sampling conditioned on
an arbitrary subset of messages can be an inefficient process that could render
the IND-SO-CPA security experiment inefficient. It is easily conceivable that
achieving IND-SO-CPA security when the message distribution does not have
an efficient resampling algorithm can be challenging: in its proof of security,
the reduction to some underlying hardness assumption might have the onus of
providing resampled message vectors, a computationally inefficient task. This
gives rise to two flavors of IND-SO-SOA-security: one, where it is required
that the message distribution specified by the adversary has efficient resampling
algorithm this flavor of security is called weak -IND-SO-CPA security; the other,
where there is no such requirement on message distributions this flavor of
security is called full -IND-SO-CPA security1.

SIM-SO-CPA security. The aforementioned technicality in the definition of
the indistinguishability based notion of IND-SO-CPA security (namely, the
full-IND -SO-CPA notion), and the fact that there is no known full-IND-SO-CPA
secure PKE scheme, motivated continuation of the study of the alternative
formulation of SOA security: the simulation-based SOA security notion by
Bellare et al. [BHY09].

1 The nomenclature ‘weak’ and ‘full’ were already used in earlier works such
as [BHK12].

On Selective-Opening Attacks against Encryption Schemes 581

State-of-the-art. With multiple flavors of SOA security taking shape in the
literature, Böhl et al. pursued an important and useful question, in this line
of research, of relationship between the many flavors of SOA security [BHK12].
In detail, they showed that SIM-SO-CPA security and full-IND-SO-CPA security
are isolated. In other words, they showed a SIM-SO-CPA secure scheme that is
not full-IND-SO-CPA secure, and (under the assumption that a full-IND-SO-CPA
secure scheme exists) a full-IND-SO-CPA secure scheme that is not SIM-SO-
-CPA secure. On the positive side, as mentioned above, after many years for
which achieving SOA security eluded researchers, Bellare et al. showed that
SIM-SO-CPA security is already enjoyed by every lossy encryption scheme with
efficient openability [BHY09]. Furthermore, they also showed that weak-IND-SO-
-CPA security (which is trivially implied by SIM-SO-CPA security) is enjoyed
by every lossy encryption scheme.

Discussion. Owing to the complex state-of-the-art of full-IND-SO-CPA security,
SIM-SO-CPA seems to be better understood, achievable, and thus preferable to
use in practice. However, on the other hand, there exists no proof of unfeasibility
of full-IND-SO-CPA security. Thus, there is no concrete reason to forgo this
notion entirely, and it thus becomes an important and intriguing open problem
to either construct a full-IND-SO-CPA secure scheme if one exists, or to discover
further evidences of unfeasibility of full-IND-SO-CPA security.

The above discussion pertains to the motivation of our first result that we
will discuss in Section 1.1. For the second question that we pursue, we continue
to study the complexity of SOA security, now in relation to the perhaps most
related primitive, lossy encryption [Hof12]. Towards better understanding the
complexity of SOA security, a natural question is whether the ‘lossiness’ is
necessary for SOA security. In particular, we question whether the converses
of the implications proved by Bellare et al. hold.

1.1 Our Contributions

Result 1. Variant of full-IND-SO-CPA closer in spirit to IND-CPA. Motivated
by the elusive nature of full-IND-SO-CPA notion, we study a variant notion that
is closer in spirit to the IND-CPA notion but still embodies the security captured
by the IND-SO-CPA notion. We observe that the weak form of our variation does
not introduce any significant change to the weak-IND-SO-CPA notion; that is,
the weak form of our notion is equivalent to the weak- IND-SO-CPA notion.

Result 2. Insecurity of standard schemes like ElGamal and Cramer-Shoup and
of known weak-IND-SO-CPA secure and SIM-SO-CPA secure schemes w.r.t.
variant full-IND-SO-CPA notion. Surprisingly, although the variation on the
weak-IND-SO-CPA notion showed no significant change, we show that a large
class of PKE schemes, namely the class of PKE schemes with public-key space
having a Σ-protocol (formalized later), can be proven insecure for the full form
of our variant of IND-SO-CPA notion. This class subsumes many popular PKE
schemes such as the ElGamal [Gam84] and the Cramer-Shoup [CS98] schemes

582 R. Ostrovsky, V. Rao, and I. Visconti

and most known constructions of weak-IND-SO-CPA secure and SIM-SO-CPA
[BHY09, HLOV09, PVW08, Hof12] secure schemes.

Details on Result 2. In the IND-CPA notion due to Goldwasser and Micali
[GM84], the adversary is challenged upon two messages; then it gets a ciphertext
encrypting one of the messages chosen at random; the adversary’s objective is
to guess the plaintext from that known set of two messages. On the other hand,
in the IND-SO-CPA notion recalled earlier in the Section, the challenger first
chooses a vector of messages from an adversary-specified distribution, and gives
the adversary their encryptions; the adversary then gets to see openings of a
subset of the ciphertexts it chooses; for the remaining ones, he is given only one
of the following two: either the plaintexts of all the unopened ciphertexts or a
freshly resampled messages conditioned on the opened plaintexts.

Observe here that the message distribution specified from the adversary is
possibly of ‘high’ min-entropy. Hence, in the event that an adversary against
full-IND-SO-CPA security is given a resampled message vector, the vector of
actual plaintexts is ‘hidden’. This is in contrast with the IND-CPA game where
the adversary gets both messages (including the actual plaintext) that it is
challenged upon.

In this work, we study an alternative formulation of IND-SO-CPA security
notion that is a more natural extension of the IND-CPA game, and study the
new notion, more specifically in relation to the existing notions. To distinguish
between the new and the existing notions, we rename the existing weak and full
notions as ‘weak single-vector-given IND-SO-CPA’ and ‘full single-vector-given
IND-SO-CPA’ games, respectively. We present the corresponding two new
notions as ‘weak both-vectors-given IND-SO-CPA’ and ‘full both-vectors-given
IND-SO- -CPA’ games.

To corroborate the already acquired intuition that the variation is not drastic,
we also observe that, just like full single-vector-given IND-SO-CPA and SIM-SO-
-CPA security notions are separated [BHK12], the new full both-vectors-given
IND-SO-CPA and SIM-SO-CPA security notions are also separated. We provide
a detailed note on the separation in the full version.

[BHK12] offers an informative inference that, given the separation result
in [BHK12] combined with the positive state-of-the-art on SIM-SO-CPA security
[BHY09], simulation-based notion is perhaps the ‘more appropriate’ formulation.
From the separation between full both-vectors-given IND-SO-CPA security and
SIM-SO-CPA security and our evidence of unfeasibility of full both-vectors-given
IND-SO-CPA security further corroborates the above inference in [BHK12].

Result 3. Lossiness vs. SOA security. For our final result, we continue the study
of complexity of SOA security, now in relation to perhaps the most related and
better studied primitive, lossy encryption [BHY09, HLOV09, PVW08, Hof12].
As mentioned earlier, Bellare et al. showed that

1. every lossy encryption scheme is weak-IND-SO-CPA secure;
2. every lossy encryption scheme with efficient openability is SIM-SO-CPA

secure.

On Selective-Opening Attacks against Encryption Schemes 583

Thus, towards understanding the complexity of SOA security, a natural question
is whether lossiness is necessary to achieve SOA-security; that is, do the converses,
stated below, of the implications proved by [BHY09] hold:

1. “Is every weak-IND-SO-CPA secure scheme also a lossy encryption scheme?”
2. “Is every SIM-SO-CPA secure scheme also a lossy encryption scheme with

efficient openability?”

We answer both the questions in the negative.

Details on Result 3. Most existing constructions of weak-IND-SO-CPA secure
and SIM-SO-CPA secure schemes follow the general paradigm of lossy encryption
[BHY09, HLOV09] (except for the constructions that aim to achieve special
additional features such as CCA, identity-based encryption (IBE, for short),
etc. [FHKW10, BWY11], since some of the instantiations of the generic solutions
provided in [FHKW10, BWY11] may not be known to be lossy; we shall expand
on this later in the full version).

While at the face value of the definitions of SOA security and lossy encryption
it seems that the answers to the above questions are affirmative, as mentioned
above, we prove otherwise. In fact we prove a stronger result: we show a SIM-SO-
-CPA secure scheme that is not a lossy encryption scheme (even without efficient
openability). Since simulation-based security implies weak-IND-SO-CPA security,
the negative result proves that the converses of both the implications proven
by [BHY09] do not hold.

Furthermore, as a corollary of our techniques, on a slightly unrelated but
useful note, we obtain that lossiness is not required to obtain non-committing
encryption. We remark that [FHKW10] gave a generic construction of NC-CPA
secure scheme from trapdoor permutations; as remarked by the authors, this
construction is possibly not lossy. We give a first construction of NC-CPA secure
scheme that is provably not lossy.

1.2 Our Techniques

We now present at a high level our technical approach in achieving the
aforementioned results (ignoring some of the subtleties that are handled in the
proofs).

Equivalence of the existing and new notions for weak-IND-SO-CPA security.
The fact that weak both-vectors-given IND-SO-CPA notion is equivalent to weak
single-vector-given IND-SO-CPA notion follows trivially from their definitions.

(Un)feasibility of new notion of full-IND-SO-CPA security. We show that if a
PKE scheme has a public-key space {pk} for which there exists a Σ-protocol,
then the scheme is not full both-vectors-given IND-SO-CPA. To prove this,
we construct an adversary which specifies the following particular distribution:
Given the public key pk, the adversary specifies the distribution as a uniform
distribution over the Σ-protocol transcripts for the statement pk ∈ {pk}. Then,

584 R. Ostrovsky, V. Rao, and I. Visconti

once the adversary receives a vector of three ciphertexts (corresponding to the
three messages of a Σ-protocol transcript), it opens only the first ciphertext.
Later upon given the actual plaintext and resampled message vectors, the
adversary runs the special-soundness extractor of the Σ-protocol to recover
the witness, namely, the secret-key. The adversary consequently will be able
to decrypt every ciphertext, thus breaking full both-vectors-given IND-SO-CPA
security of the scheme in question. All known schemes achieving (the existing
notion of) IND-SO-CPA security [BHY09, HLOV09, Hof12, PVW08, FHKW10,
BWY11], which are based on the general theme of lossiness, (except for
the schemes that aim to achieve additional features such as CCA, IBE,
etc. [FHKW10, BWY11], since some instantiations of the generic solutions
provided in [FHKW10, BWY11] may not be known to be lossy) are subsumed
by our negative result.

Complexity of SIM-SO-CPA security with respect to lossy encryption. For the
second result, we first give a very simple counterexample. Namely, we construct
an ElGamal-like SIM-SO-CPA scheme that is not a lossy encryption scheme.
However, one can argue here that this scheme satisfies some sort of ‘computational
lossiness’ (which shall formally define later), and, for all practical purposes,
this computational lossiness is all that is required of a lossy encryption scheme.
In light of this argument, we present another, but more technically involved
counterexample. The core idea for this construction stems from the following
observation. For a PKE scheme to be a lossy encryption scheme, the following
condition, called ‘lossiness of ciphertexts’, needs to hold: there exist special public
keys (called lossy public keys) such that for any such public key, and anymessage, a
ciphertext – called ‘lossy ciphertext’ – generated to encrypt that message is lossy.
That is, such a ciphertext can be opened to any plaintext message. The crucial
point here is that lossiness needs to hold even for the ciphertexts that are honestly
generated using the encryption algorithm (but with a lossy public key). On the
other hand, in the SIM-SO-CPA security definition, the simulator is required to be
able to open the ciphertexts to any givenplaintextmessage; however, the simulator
needs to be able to do so only for the ciphertexts that are generatedby the simulator
himself. Thus, it is conceivable that there could exist a simulator that generates
malicious ciphertexts and that it is able to equivocate only those ciphertexts. This
is the subtlety we build upon to construct a SIM-SO-CPA secure scheme with a
simulator that works by building malicious ciphertexts. Furthermore, we show for
this scheme that for honestly generated ciphertexts, for any malicious public key,
there does not exist an opening for at least one message, with some non-negligible
probability thus disqualifying the scheme from being a lossy encryption scheme.

Other related works. In [BDWY12], Bellare et al. studied the complexity of
SIM-SO-CPA security with respect to IND-CPA security of PKE schemes. They
showed that a large class of IND-CPA secure PKE schemes, including ElGamal,
do not achieve SIM-SO-CPA security. In [HR14], Hofheinz et al. studied the
relationship between IND-CPA security (resp., IND-CCA security) and IND-SO-
-CPA (respectively, IND-SO-CCA security); they showed that while IND-CPA

On Selective-Opening Attacks against Encryption Schemes 585

and IND-SO-CPA notions are equivalent in a generic model of computation,
IND-CCA security does not suffice to achieve IND-SO-CCA security. It has also
been shown how to achieve SOA-secure encryption with additional features such
as IND-CCA security [HLOV09, FHKW10] and IBE [BWY11]. SOA security
for commitments is also an active area of research and there had been many
advancements in understanding the complexity of this primitive in terms of
feasibility and impossibility results [BHY09, DNRS03, ORSV13, Xia11].

2 Background

Notations. In this paper, we usually consider vectors of lengthN , for N ∈ N, and
we point at the components of such vectors at indices i with the set of indices in
question, called the ‘index-set ’. Also, we denote the set [N] \ I as I. If a vector
of messages m = (m[1], . . . ,m[N]) is specified only at indices specified by an
index-set I ⊆ [N], then we call such a partially specified message vector as a
‘partial vector ’ and denote it by mI = (m[i])i∈I ∈ ({0, 1}λ)|I|. For any I ∈ [N],
let m0

I and m1
I be two partial vectors. Then the (whole) vector resulting by

placing m0[i] at the ith index if i ∈ I and by placing m1[j] at the jth index if
j ∈ I, is denoted by m0

I ||m1
I . Let M be a distribution over ({0, 1}λ)N . We

say that a partial vector m0
I ∈ Supp(M) iff ∃ m1

I := (m1[i])i∈I such that
m0

I ||m1
I ∈ Supp(M).

Below we recall the definition of efficiently resamplable distributions. At a
high level, these are joint distributions M over components of message vectors
with the following property: Conditioned on any subset of the components, the
rest of the components are efficiently samplable as per M. More precisely:

Definition 1 (Efficiently resamplable distribution). Let N = N(λ) > 0,
and let M be a joint distribution over ({0, 1}λ)N . We say that M is efficiently
resamplable if there exists a PPT algorithm ReSampM such that, for any I ⊆ [N]
and any partial vector mI := (m[i])i∈I ∈ Supp(M), ReSampM(mI) samples
from M|mI (i.e., from the distribution M conditioned on the ith component
being m[i] for all i ∈ I).

Opening oracles. In our definitions, like in [BHK12], upon providing the adversary
with a public key and a vector of ciphertexts, we provide him with an opening
oracle to allow adaptive queries. Such an oracle is a stateful functionality that
takes one argument. When queried with a set of indices, it responds via the
corresponding openings of the ciphertexts (i.e., the plaintexts encrypted in the
ciphertexts at the specified indices and the randomnesses used in generating
these ciphertexts). When queried with the string ‘get queries’, it returns the set
of all indices it has provided openings for since its instantiation.

Plaintext vector, Resampled message vector. Let M be a joint distribution over
vectors of messages. Let m0 := (m0[i])i∈[N] ← M and let c := (c[i])i∈[N] be
such that c[i] is and n encryption of m0[i] (under some public key). Under this
notation:

586 R. Ostrovsky, V. Rao, and I. Visconti

1. we call m0 as the plaintext vector.

2. Let I ⊆ [N] be a subset of the indices. Consider a message vector m1 such
that m1

I = (m0[i])i∈I ; let the rest of the components of m1 be sampled
according to M conditioned on the components at i ∈ I being m1

I . We
denote the way m1 is sampled via m1 ← M|m0I and we call m1 as the
resampled message vector.

2.1 Existing SOA Definitions

We now recall the existing definitions for various flavors of IND-SO-CPA security.
All the definitions here below are taken almost verbatim from [BHK12]. However,
the definitions have been slightly renamed in order to emphasize the difference
between the existing and the new notions. The new definitions are described
below2.

Definition 2 (Weak Single-vector-given Indistinguishability-based
SOA Security). For a PKE scheme PKE = (KeyGen,Enc,Dec), a polynomially
bounded function N = N(λ) > 0, an opening oracle O, and a stateful PPT
adversary A, consider the following experiment:

Experiment Exptweak−singleVect−ind−so
PKE,A,b :

1. (pk, sk)← KeyGen
2. (M,ReSampM)← A(pk)
3. m0 := (m0[i])i∈[N] ←M
4. (r[i])i∈[N] ← (CoinsEnc)

N

5. c := (Enc(pk,m0[i]; r[i]))i∈[N]

6. O := (m0[i], r[i])i∈[N]

7. AO(·)(select, c)
8. I := O(get queries)
9. m1 ←M|m0I
10. outA ← A(output,mb)
11. if outA = b, then return 1; otherwise return 0

where, the oracle O uses O to answer the queries of A. We say that PKE is
weak single-vector-given IND-SO-CPA secure if, for any A that always outputs
an efficiently resamplable distribution M over ({0, 1}λ)N with corresponding
efficient resampling algorithm ReSampM, the following is negligible:

Advweak−singleVect−ind−so
PKE,A (1)

:=
∣∣∣Pr[Exptweak−singleVect−ind−so

PKE,A,1 = 1]− Pr[Exptweak−singleVect−ind−so
PKE,A,0 = 1]

∣∣∣ . (2)

2 We recall that CoinsA denotes the space of randomness of an algorithm A.

On Selective-Opening Attacks against Encryption Schemes 587

Definition 3 (Full Single-vector-given Indistinguishability-based SOA
Security). For a PKE scheme PKE = (KeyGen,Enc,Dec), polynomially bounded
N = N(λ) > 0, an opening oracle O, and a stateful PPT adversary A, we define

experiment Exptfull−singleVect−ind−so
PKE,A,b (λ) analogously to Exptweak−singleVect−ind−so

PKE,A,b (λ)
with the only change the adversary is not required to provide a resampling
algorithm; i.e., A(pk) just outputs a message distributionM. We say that PKE is
full single-vector-given IND-SO-CPA if, for any such A, the following is
negligible.

Advfull−singleVect−ind−so
PKE,A (3)

:=
∣∣∣Pr[Exptfull−singleVect−ind−so

PKE,A,1 = 1]− Pr[Exptfull−singleVect−ind−so
PKE,A,0 = 1]

∣∣∣ . (4)

Definition 4 (Simulation-based SOA Security). For a PKE scheme PKEsoa
2

= (KeyGensoa2 ,Encsoa2 ,Decsoa2), a polynomially bounded function N = N(λ) > 0,
an opening oracle O, and a stateful PPT adversary A, a PPT distinguisher D
with a boolean output, consider the following experiments:

Experiment Exptsim−so−real
PKE,A,D :

1. (pk, sk)← KeyGen
2. M←A(pk)
3. m := (m[i])i∈[N] ←M
4. (r[i])i∈[N] ← (CoinsEnc)

N

5. c := (Enc(pk,m[i]; r[i]))i∈[N]

6. O := (m[i], r[i])i∈[N]

7. outA ← AO(·)(select, c)
8. I := O(get queries)
9. return D(m,M, I, outA)

Experiment Exptsim−so−ideal
PKE,A,D :

1. M← Sim;
2. m := (m[i])i∈[N] ←M
3. outSim ← SimO(·)(select)
4. I := O(get queries)
5. return D(m,M, I, outSim)

where, the oracle O uses O to answer the queries of A in Exptsim−so−real
PKE,A,D and

uses only m in Exptsim−so−ideal
PKE,A,D . We say that the scheme is SIM-SO-CPA secure

if for every adversary A there is a PPT algorithm called the simulator Sim such
that, for all PPT distinguishers D, the distributions induced by the experiments
Exptsim−so−real

PKE,A,D and Exptsim−so−ideal
PKE,A,D are statistically close. That is,

Advsim−so−cpa
PKE,A,D := |Pr[Exptsim−so−real

PKE,A,D → 1]−Pr[Exptsim−so−ideal
PKE,A,D → 1]| ≤ negl(λ).

Assuming knowledge of the standard definition of lossy encryption (the
definition is recalled in the full version), we provide here a new definition of
lossiness, called ‘computational lossiness’, that we informally define below. A
formal definition appears in the full version.

Definition 5 (Computational lossy encryption (Informal)). A scheme
PKElosPKE = (KeyGenlosPKE, FakeKeyGenlosPKE, EnclosPKE, DeclosPKE, Opener)
is said to be a computational lossy encryption scheme if it satisfies all the

588 R. Ostrovsky, V. Rao, and I. Visconti

properties of a lossy encryption scheme except for the following: for every ‘lossy
ciphertext’, the randomness output by the opening algorithm Opener needs to be
only computationally indistinguishable from the actual distribution of the random
coins for ciphertext.

2.2 PKE with Pseudorandom Ciphertexts

We now define PKE schemes with pseudorandom ciphertexts [CLOS02, BC05].
Roughly, these are the schemes with a property that for any plaintext message
a randomly generated ciphertext is computationally indistinguishable from a
uniform random string of the same length.

Definition 6 (PKE with pseudorandom ciphertexts). A PKE scheme

PKE$ = (KeyGen$, Enc$,Dec$) is said to have pseudorandom ciphertexts if,

for (pk$, ·)← KeyGen$, for any plaintext message m, the distribution ensembles

Enc$(pk$,m) and UcipherLen are all computationally indistinguishable, where the

ciphertexts of PKE$ are of length cipherLen.

In [CLOS02], Canetti et al. also provide a simple construction of such schemes
based on trapdoor permutations. Briefly, the construction in [CLOS02] is as
follows. With the public key as the description f of a trapdoor function,
encryption of a bit b is: f(x), b ⊕ HC(x), where x is chosen at random from
the domain of f and HC(·) is a hard-core predicate of f . Notice that for this
scheme, the distribution of encryption of a random bit b is itself a uniform
distribution over strings of the same length as the ciphertexts.

We now define PKE schemes with decidable public-key space. Roughly, for
such schemes, it is easy to verify whether a given string is a ‘valid’ public key;
i.e., whether a given string lies in the public-key space or not.

Definition 7 (PKE with decidable public-key space). A PKE scheme
PKEdeci is said to be public-key decidable if there exists a PPT algorithm that
given a string pkdeci outputs 1 if there exists some randomness with which the
key-generation algorithm outputs pkdeci as a public key, and outputs 0 otherwise
(that is, the public-key space is efficiently decidable).

We will be interested in PKE schemes with decidable public-key space and
pseudorandom ciphertexts. We shall denote such a PKE scheme by PKE$,deci.
Note that if we use certified3 trapdoor permutations instead of any permutations
in the construction of [CLOS02] discussed above, we get a scheme that enjoys
both – decidable public-key space and pseudorandom ciphertexts.

3 New IND-SO-CPA Definitions

In this section, we propose our new definitions for indistinguishability-based SOA
security. In comparison with the existing definitions, the new ones differ from the

3 A trapdoor permutation [BY96] is certified if one can verify from its description that
it is indeed a permutation.

On Selective-Opening Attacks against Encryption Schemes 589

existing ones in the following respect: in the existing definitions, corresponding
to the ciphertext vector given to the adversary, the adversary is given only either
the actual plaintext vector or the resampled message vector; on the other hand,
in the new definitions the adversary is given both the vectors that it is challenged
upon, thus being closer in spirit to the IND-CPA notion as discussed earlier.

Definition 8 (Weak Both-vectors-given Indistinguishability-based
SOA Security). For a PKE scheme PKE = (KeyGen,Enc,Dec), a polynomially
bounded function N = N(λ) > 0, an opening oracle O, and a stateful PPT
adversary A, consider the experiment that is identical to Exptweak−bothVect−ind−so

PKE,A,b

except for the following modification in Exptweak−bothVect−ind−so
PKE,A,b : 1. outA ←

A(output,mb,mb).
We say that PKE is weak both-vectors-given IND-SO-CPA secure if, for any

A that always outputs efficiently resamplable M over ({0, 1}λ)N with
corresponding efficient re-sampling algorithm ReSampM, the following is
negligible:

Advweak−bothVect−ind−so
PKE,A

:=
∣∣∣Pr[Exptweak−bothVect−ind−so

PKE,A,1 = 1]− Pr[Exptweak−bothVect−ind−so
PKE,A,0 = 1]

∣∣∣ .
Definition 9 (Full Both-vectors-given Indistinguishability-based SOA
Security). Given PKE scheme PKE = (KeyGen,Enc,Dec), a polynomially
bounded function N = N(λ) > 0, an opening oracle O, and a stateful PPT
adversary A, the experiment Exptfull−bothVect−ind−so

PKE,A (λ) is defined as

Exptweak−bothVect−ind−so
PKE,A (λ) with the only change that we do not require the

adversary to provide an algorithm for re-sampling; i.e., A(pk) just outputs a
message distribution M. We say that PKE is full both-vectors-given if, for any
PPT adversary A, the following is negligible:

Advfull−bothVect−ind−so
PKE,A

:=
∣∣∣Pr[Exptfull−bothVect−ind−so

PKE,A,1 = 1]− Pr[Exptfull−bothVect−ind−so
PKE,A,0 = 1]

∣∣∣ .
4 Equivalence of Weak Notions and (Im)possibility of

Full Notion

In this section we give a strong evidence of (un)feasibility of the new notion.
Namely, we show that every PKE scheme that has public-key space that has
a Σ-protocol is not fully secure under the new notion. Thus, our tweak on the
security definition has made it easier to prove (un)feasibility for full security.
On the other hand, for weak security, we show that the new notion is in fact
equivalent to the old notion.

590 R. Ostrovsky, V. Rao, and I. Visconti

4.1 Equivalence Between Old And New (Weak) Notions

Theorem 1 (weak-bothVect-IND-SO-CPA ⇒ weak-singleVect-IND-
SO-CPA). If PKE is weak both-vectors- given IND-SO-CPA secure then it is
also weak single-vector-given IND-SO-CPA secure.

This implication is almost trivial and the proof appears in the full version.

Theorem 2 (weak-singleVect-IND-SO-CPA ⇒ weak-bothVect-IND-
SO-CPA). If PKE is weak single-vector- given IND-SO-CPA secure then it is
also weak both-vectors-given IND-SO-CPA secure.

Proof Sketch: This implication also almost immediately follows from the
definitions. However, for completeness, we present a proof. Briefly, the
implication is derived from the following two facts about the experiments
in question. Firstly, since both the experiments concern the weak model, in
each of the experiments, an adversary also presents an efficient algorithm for
resampling. Secondly, the only difference in the two experiments is the following.
An adversary in the singleVect experiment receives only one message vector
(namely, either the actual plaintext vector or the resampled message vector);
on the other hand, an adversary in the bothVect experiment receives both the
message vectors (in a random order). Thus, in our reduction, an adversary
in the weak-singleVect-IND-SO-CPA experiment, who gets only one vector of
messages, can sample the other vector of messages by itself. However, note that
the reduction cannot identically simulate the bothVect experiment since among
the two message vectors an adversary receives in the bothVect experiment one
is definitely the actual message vector, and in the event that the only message
vector received by our reduction is the resampled message vector (from its own
experiment), it can never give the adversary in the bothVect experiment the
actual message vector. This difficulty can however be easily overcome via a hybrid
argument using two more hybrid games. A more detailed proof appears in the
full version. ��

Theorem 3 (full-bothVect-IND-SO-CPA ⇒ full-singleVect-IND-SO-
CPA). If PKE is a weak both-vectors- given IND-SO-CPA secure then it is
also weak single-vector-given IND-SO-CPA secure.

Proof Sketch: The proof is similar to the proof of (Theorem 1). ��

4.2 Impossibility of Full Security

We show that any public key encryption scheme for which the public-key space
has a Σ-protocol is not full-bothVect-IND-SO-CPA secure.

If {pk} has a Σ-protocol, then the PKE scheme is not full-bothVect-IND-SO-
CPA secure. At a high level, we prove this negative result by showing an explicit
full-bothVect-IND-SO-CPA attack on any PKE scheme with a public-key space
that has a Σ-protocol. The attack stems from the idea that upon receiving

On Selective-Opening Attacks against Encryption Schemes 591

the public key pk from the challenger, the adversary can specify the message
distribution to be a distribution that is statistically close to uniform proof-of-
knowledge (via the Σ-protocol) of a secret key corresponding to the public key pk.
It specifies this distribution simply as the output distribution of the simulator
of the Σ-protocol. Now, the core idea crucially relies on the special-soundness
property of the Σ-protocol. (Recall that special-soundness implies existence of an
efficient extractor that, for any theorem statement, given two proof transcripts
with the same first-round message but with distinct second-round messages and
corresponding third-round messages, the extractor computes a valid witness to
the theorem statement.) The rest of the idea then is for the adversary to ask
to open the ciphertext corresponding to only the first-round message. Then
the two vectors of messages given by the challenger would be two random
Σ-protocol proof-of-knowledge transcripts with the same first-round message,
and, with all but negligible probability, with distinct second-round messages and
corresponding third-round messages. Then the adversary can run the Σ-protocol
extractor to compute the witness, which in fact is a secret key corresponding to
the pk in question. Then the adversary can decrypt any ciphertext and break
full-bothVect-IND-SO-CPA of the PKE scheme with probability negligibly close
to 1. The full formal proof of the following theorem appears in the full version.

Theorem 4. Let PKE be a PKE scheme such that {pk} has a Σ-protocol. Then
PKE is not full both -vectors-given IND-SO-CPA secure.

5 Relationship between SOA Security and Lossy
Encryption

[BHY09] presented the first positive results for SOA security of encryption
schemes. The constructions presented crucially used lossiness of encryption. More
specifically, they proved the following implications.

Implication 1. Every lossy encryption scheme is weak-singleVect-IND-SO-CPA
secure.

Implication 2. Every lossy encryption scheme with efficient openability is
SIM-SO-CPA secure.

In the study of complexity of SOA-security, a natural question then is whether
the converses of these implications hold too. Namely:

Question 1. “Is every weak-singleVect-IND-SO-CPA secure scheme a lossy
encryption scheme?”

Question 2. “Is every SIM-SO-CPA secure scheme a lossy encryption scheme
with efficient openability?”

These are the questions that we investigate in this Section. We answer these
questions in the negative. In fact, we prove a stronger result. Namely, we give
a concrete construction of a SIM-SO-CPA secure scheme that is not a lossy

592 R. Ostrovsky, V. Rao, and I. Visconti

encryption (even without efficient openability). Since every SIM-SO-CPA security
trivially implies weak-singleVect-IND-SO-CPA security, it follows as a corollary
of our result that none of the converses of the implications proved by [BHY09]
hold.

The road-map for the rest of the section is as follows. We shall first give
a very simple construction for a SIM-SO-CPA secure scheme that is not a
lossy scheme. However, although this scheme is not lossy in the traditional
sense, it satisfies ‘computational lossiness’ defined in Definition 5. Arguably,
this for most practical purposes, computational lossiness suffices, and thus it
seems that this counterexample does not give a clear answer to our question
of whether lossiness is necessary for SOA security. This brings us to our next
counterexample; although technically involved, this counterexample gives a
convincing answer to our question of whether lossiness is necessary for SOA
security.

Construction 1. Our first construction of a SIM-SO-CPA secure scheme that is
not lossy follows. Let G be a group of prime order p. Let g be a generator of G.
We shall denote the scheme as PKEsoa

1 = (KeyGensoa1 ,Encsoa1 ,Decsoa1).

KeyGensoa
1 : Choose x ← Zp. Set sk := x and pk := gx.

Encsoa1 : On input a message m ∈ {0, 1}, sample random coins
(r,R1, R2) ← Zp ×G2, and proceed as follows. If m = 0, then output
(gr,pkr); otherwise, output (R1, R2).
Decsoa1 : On input a ciphertext (c1, c2), check if c2 = (c1)

sk. If so, then output
0; otherwise, output 1.

Fig. 1. A SIM-SO-CPA secure scheme that is not a lossy encryption scheme

We shall first show that PKEsoa
1 is a SIM-SO-CPA secure scheme but not a

lossy encryption scheme.

Theorem 5 (PKEsoa
1 is SIM-SO-CPA secure). Assuming DDH assumption

holds in G, PKEsoa
1 is SIM-SO-CPA secure.

The full proof appears in the full version. We give a proof sketch here below.
Proof Sketch: Recall from Definition 4 that in order to show that a PKE
scheme is SIM-SO-CPA secure, we need to show existence of a PPT simulator
such that, for every adversary A, the output of the simulator is computationally
indistinguishable from the output of the A in the real world. We shall construct
such a simulator SimPKEsoa

1 for PKEsoa
1 .

Recall that in the real world A, upon receiving a vector of ciphertexts, chooses
a subset I of ciphertexts and sees their openings. On the other hand, in the
ideal world, the simulator first needs to output I; then it receives the plaintext
messages to which it needs to show openings to of the ciphertexts.

The idea for simulation is that SimPKEsoa
1 would run A by providing a tuple

of ciphertexts (c1, . . . , cN) where every ci is an encryption of 0. That is ci is

On Selective-Opening Attacks against Encryption Schemes 593

computed as (gri , pkri). Then, upon A choosing the subset of the ciphertexts,

SimPKEsoa
1 would receive the plaintext values for which it needs to provide openings

to. If for any ciphertext ci, the plaintext value to which it needs to be opened to

is 0, then set the opening (randomness) of ci as (ri, R
(1)
i , R

(2)
i) for some random

R
(1)
i , R

(2)
i ∈ G. Otherwise, to provide opening to 1, claim that the randomness

used was (r′i, g
ri , pkri) for some random r′i ← Zp.

Note that the only differing factor in the outputs of the real and simulated

worlds is that while an encryption of 1 is (r′i, R
(1)
i , R

(2)
i) for independently

random R
(1)
i , R

(2)
i in the real world, in the simulated world, encryption of 1

is (r′i, g
ri , pkri). Note that this difference directly corresponds to being given a

non-DDH tuple and a DDH tuple, resp.: (g, pk, R
(1)
i , R

(2)
i) and (g, pk, gri, pkri).

Thus, from the DDH assumption, the scheme PKEsoa
1 is SIM-SO-CPA secure. ��

Theorem 6 (PKEsoa
1 is not lossy). PKEsoa

1 is not a lossy encryption scheme.

Proof. The proof is straight-forward. Note that every g′ ∈ G belongs to the
public-key space of PKEsoa

1 . Also for any public key pk, a ciphertext (c1, c2) can
either be of the form c2 = csk1 or not; hence, a ciphertext decrypts to either 0 or
1 and not both. Thus, PKEsoa

1 is not a lossy encryption scheme.

Our scheme is described below. The two ingredients we use to construct this
scheme are a lossy encryption scheme with efficient openability and a CPA secure
PKE scheme with decidable public-key space and pseudorandom ciphertexts.
Note that the assumption that lossy encryption scheme with efficient openability
exists is without loss of generality while considering Question 1, since if no lossy
encryption scheme exists then the answer to Question 1 is trivially negative. For
Question 2, however, we only need to assume any lossy encryption the reason
being the following: looking ahead, our approach is to take any lossy scheme,
that is already known to be weak-IND-SO-CPA secure, and modify it such that
the modified scheme is still weak-IND-SO-CPA secure but not a lossy encryption
scheme. The approach for constructing such a weak-IND-SO-CPA secure scheme
is the same as the approach below for constructing a SIM-SO-CPA secure scheme
and we omit the details). For the same reason as for Question 1, this assumption
too is without loss of generality when we consider Question 2.

Let PKElosPKE = (KeyGenlosPKE,FakeKeyGenlosPKE,EnclosPKE,DeclosPKE) be

a lossy encryption scheme. Let PKE$,deci = (KeyGen$,deci,Enc$,deci,Dec$,deci)
be a CPA-secure public key encryption scheme with decidable public-key space
{pk$,deci} and with pseudorandom ciphertexts. We construct a scheme PKEsoa

2 =
(KeyGensoa2 ,Encsoa2 ,Decsoa2) as follows.

Theorem 7 (PKEsoa
2 is SIM-SO-CPA secure). Let PKElosPKE be a lossy

encryption scheme and PKE$,deci be a public-key-decidable CPA-secure encryption
scheme with pseudorandom ciphertexts. Then PKEsoa

2 is SIM-SO-CPA secure.

The full proof appears in the full version. We give a proof sketch here below.
Proof Sketch: We construct such a simulator SimPKEsoa

2 for our PKEsoa
2 scheme.

594 R. Ostrovsky, V. Rao, and I. Visconti

KeyGensoa
2 :

• Run (pkreal, skreal) ← KeyGenlosPKE.
• Run (pk$,deci, sk$,deci) ← KeyGen$,deci.
• Set soa-pk := (pkreal,pk$,deci) and soa-sk := (skreal, sk$,deci).
Encsoa2 : On input a message m, proceed as follows.
• Sample r ← CoinsEnclosPKE and compute creal ← EnclosPKE(pkreal,m; r).
• Sample a random bit b ← {0, 1}.
• Compute c$,decib ← Enc$,deci(pk$,deci, r) and sample c$,deci

b
← {0, 1}cipherLen.

• Output (creal, c$,deci0 , c$,deci1).

Decsoa2 : On input a ciphertext (creal, c$,deci0 , c$,deci1), proceed as follows.
• Compute m ← DeclosPKE(skreal, creal).

• If there exists b ∈ {0, 1} such that r := Dec$,deci(sk$,deci, c$,decib) and
creal = EnclosPKE(pkreal, m; r), then output m; otherwise, output ⊥.

Fig. 2. A SIM-SO-CPA secure scheme that is not a lossy encryption scheme

We begin by providing a high-level sketch of SimPKEsoa
2 . Recall that the

underlying primitives in our construction of PKEsoa
2 are a lossy encryption

scheme with efficient openability and a public-key-decidable encryption scheme.
Also recall that we know from [BHY09] that every lossy encryption scheme
with efficient openability is a SIM-SO-CPA secure scheme. Thus every lossy
encryption scheme with efficient openability has a SIM-SO-CPA simulator
associated with it. With this, to build the SIM-SO-CPA simulator SimPKEsoa

2

for our PKEsoa
2 scheme (which is built by using a lossy encryption scheme with

efficient openability and public-key-decidable CPA-secure encryption scheme) we
naturally extend the SIM-SO-CPA simulator of the underlying lossy encryption
scheme.

It is helpful to first recall at a high-level the SIM-SO-CPA simulator of

the underlying lossy encryption scheme. Let SimPKElosPKE

be the SIM-SO-CPA
simulator of the underlying lossy encryption scheme with efficient openability

PKElosPKE. SimPKElosPKE

first samples a lossy public key. Then it encrypts a
tuple of dummy messages and gives the ciphertext tuple to the adversary. Upon
receiving an index-set I from the adversary and the values to be opened to at
these indices from the opening oracle, it runs the PPT algorithm Opener ensured
by the lossy encryption scheme to open the lossy ciphertexts at these indices to
the requested values. Finally, it simply outputs the output of the adversary.
With this, indistinguishability of the simulated output from the output of the
adversary in the real experiment follows from indistinguishability of real keys
from lossy keys of the lossy encryption scheme.

Now, having recalled the structure of SimPKElosPKE

, our simulator SimPKEsoa
2 is a

slight modification of SimPKElosPKE

. Roughly speaking, this modification directly
corresponds to the modification to the underlying lossy scheme PKElosPKE

introduced in our PKEsoa
2 . Recall that the modifications to PKElosPKE were

basically two-fold: one was to append the public key pklossy with the public
key pk$,deci of the public-key-decidable encryption scheme PKE$,deci; the other

On Selective-Opening Attacks against Encryption Schemes 595

modification was that, while encrypting, besides encrypting the plaintext with
the (real) public key of the lossy encryption scheme to get a ciphertext creal,
append two more components to this ciphertext – namely, an encryption of the
randomness used in generating creal and a random value from {0, 1}cipherLen, in
random order. The corresponding modification to the simulator SimPKElosPKE

would be the following: SimPKEsoa
2 also appends the lossy public key with a

uniformly sampled public key pk$,deci of the PKE$,deci scheme. Then, to construct
a ciphertext, it would first construct a lossy ciphertext clossy (with some dummy
plaintext); then it would compute openings r0 and r1 of this lossy ciphertext to

0 and 1, respectively, encrypt both r0 and r1 in a random order using pk$,deci to
get c$,deci0 , c$,deci1 . The resulting ciphertext is thus (clossy, c$,deci0 , c$,deci1).

With this, the simulator can open each ciphertext to both 0 and 1 as follows.
To open to m ∈ {0, 1}, it would output the pre-computed opening, rm, of clossy

to m and also an opening of the one between c$,deci0 and c$,deci1) that encrypts
rm (with a pretense that the other ciphertext component was randomly chosen
from {0, 1}cipherLen. With this, from the indistinguishability of real keys from
lossy keys of the lossy encryption scheme and from the pseudorandomness of the
ciphertexts of the PKE$,deci scheme, indistinguishability of the simulated output
from the output of the adversary in the real experiment follows. ��

Theorem 8. PKEsoa
2 is not a lossy encryption scheme.

The full proof appears in the full version. We give a proof sketch here below.
Proof Sketch: We begin by providing some intuition to the proof. Recall
that for PKEsoa

2 to be a lossy encryption scheme, there must exist algorithms
FakeKeyGensoa and (possibly inefficient) Openersoa such that the following holds:

1. public keys, called lossy public keys, sampled using FakeKeyGensoa are
computationally indistinguishable from those sampled using KeyGensoa2 , and,

2. for a ciphertext, called a lossy ciphertext, generated using any lossy public
key can be opened to any bit value using Openersoa.

The idea would be to show that no pair of algorithms (FakeKeyGensoa,
Openersoa) can satisfy these properties for our scheme. Assume for contradiction
that there exist such a pair of algorithms (FakeKeyGensoa, Openersoa).

We rely on the following facts about our scheme.

1. A public key soa-pk of our scheme consists of two components soa-pk =
(pkreal, pk$,deci), where the second component is easily decidable. Thus:
• A lossy public-key output by FakeKeyGensoa is such that its second part is

still within the public-key space of PKE$,deci.
• Any ciphertext generated using the second component of soa-pk (regardless

of soa-pk being real or lossy) cannot be opened to two distinct plaintexts.

2. Consider soa-pklossy = (pklossy, pk$,deci) sampled using FakeKeyGensoa. As
per our scheme a ciphertext generated using soa-pklossy consists of three
components: (clossy, c$,deci0 , c$,deci1), where clossy is an encryption using pklossy

of the plaintext with randomness r and one of the other two components, say
c$,decib , is an encryption of r using pk$,deci. This has the following implication.

596 R. Ostrovsky, V. Rao, and I. Visconti

• In order for the Openersoa algorithm to open such a ciphertext to both
0 and 1, it has to be the case that c$,deci0 and c$,deci1 are encryptions of
openings of clossy to 0 and 1 (in some random order).

From the above observations on your PKEsoa
2 , we have the following. Let c =

(clossy, c$,deci0 , c$,deci1) ← Encsoa2 (soa-pklossy,m) for m ∈ {0, 1}. Recall that our

encryption algorithm works by choosing one of c$,deci0 and c$,deci1 uniformly from
{0, 1}cipherLen (and by computing the other as an encryption of the randomness
r used in generating clossy). For concreteness of discussion, let the random string

be c$,deci0 . From the above observations, for (any) algorithm, and in particular
for Openersoa, to open c to 1−m, the following condition must hold:
• there must exist an opening r′ of clossy to 1 − m such that there exists an

opening of c$,deci0 to r′.
We can show that this condition does not hold with non-negligible probability
over the choice of c$,deci0 . The subtlety however to make this argument work
is the following. It is possible that, for PKElosPKE there are multiple openings
of a lossy ciphertext to either 0 or 1. Furthermore, for PKE$,deci, the number
of ciphertexts encrypting one message could be different than the number of
ciphertexts encrypting another message. We shall discuss the subtlety in detail
and get around it to still make the argument work in the full proof. ��

Furthermore, as a corollary of our techniques, on a slightly unrelated but
useful note, we obtain that lossiness is not required to obtain non-committing
encryption. Details are given in the full version.

Acknowledgments. Work supported in part by NSF grants 09165174, 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation
Research Award, IBM Faculty Research Award, Xerox Faculty Research
Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. This material is based upon
work supported by the Defense Advanced Research Projects Agency through
the U.S. Office of Naval Research under Contract N00014 -11 -1-0392. The views
expressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

References

[BC05] Backes, M., Cachin, C.: Public-key steganography with active attacks.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 210–226. Springer,
Heidelberg (2005)

[BDWY12] Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does
not imply security against selective-opening. In: Pointcheval, Johansson
(eds.) [PJ12], pp. 645–662

[BHK12] Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective
opening security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC
2012. LNCS, vol. 7293, pp. 522–539. Springer, Heidelberg (2012)

On Selective-Opening Attacks against Encryption Schemes 597

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results
for encryption and commitment secure under selective opening. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer,
Heidelberg (2009)

[BWY11] Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure
against selective opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 235–252. Springer, Heidelberg (2011)

[BY96] Bellare, M., Yung, M.: Certifying permutations: Noninteractive
zero-knowledge based on any trapdoor permutation. J. Cryptology 9(3),
149–166 (1996)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: Reif, J.H. (ed.) STOC,
pp. 494–503. ACM (2002)

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

[DNRS99] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. In:
Foundations of Computer Science (FOCS 1999), pp. 523–534 (1999)

[DNRS03] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. J.
ACM 50(6), 852–921 (2003)

[FHKW10] Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure
against chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg
(2010)

[Gam84] El Gamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[HLOV09] Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption:
Constructions from general assumptions and efficient selective opening
chosen ciphertext security. Cryptology ePrint Archive, Report 2009/088
(2009), http://eprint.iacr.org/

[Hof12] Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval,
Johansson (eds.) [PJ12], pp. 209–227

[HR14] Hofheinz, D., Rupp, A.: Standard versus selective opening security:
Separation and equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 591–615. Springer, Heidelberg (2014)

[ORSV13] Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting lower and
upper bounds for selective decommitments. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 559–578. Springer, Heidelberg (2013)

[PJ12] Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS,
vol. 7237. Springer, Heidelberg (2012)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

[Xia11] Xiao, D. (Nearly) round-optimal black-box constructions of commitments
secure against selective opening attacks. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 541–558. Springer, Heidelberg (2011)

http://eprint.iacr.org/

Narrow Bandwidth Is Not Inherent

in Reverse Public-Key Encryption

David Naccache1, Rainer Steinwandt2�,
Adriana Suárez Corona3,��, and Moti Yung4

1 École Normale Supérieure, Paris CEDEX 05, F-75230, France
david.naccache@ens.fr

2 Florida Atlantic University, Boca Raton, FL 33431, USA
rsteinwa@fau.edu

3 Universidad de León, 24004 León, Spain
adrixsua@gmail.com

4 Google Inc. and Columbia University, New York, NY, USA
moti@cs.columbia.edu

Abstract. Reverse Public-Key Encryption (RPKE) is a mode of oper-
ation exploiting a weak form of key privacy to provide message privacy.
In principle, RPKE offers a fallback mode, if the underlying encryption
scheme’s message secrecy fails while a weak form of key privacy survives.
To date, all published RPKE constructions suffer from a low bandwidth,
and low bandwidth seems naturally inherent to reverse encryption. We
show how reverse encryption can, in connection with and as a novel ap-
plication of anonymous broadcast encryption, achieve high-bandwidth.
We point out that by using traditional and reverse encryption simulta-
neously, a form of crypto-steganographic channel inside a cryptosystem
can be provided.

Keywords: public-key encryption, mode of operation, reverse public-
key encryption, broadcast encryption.

1 Introduction

Reverse Public-Key Encryption (RPKE) is generally thought to be a low band-
width mode of operation. In fact, even the Encyclopedia of Cryptographic Se-
curity [vTJ11] defines RPKE as “a low-bandwidth public key encryption mode
of operation [that] turns a weak form of key privacy into message privacy . . . ”;
a detailed discussion of RPKE can be found in [NSY09] which introduces the
concept and explains how to use it to obtain message privacy from key pri-
vacy. What is important to note here, is that the security of the reverse mode

� RS was supported by the Spanish Ministerio de Economı́a y Competitividad through
the project grant MTM-2012-15167.

�� ASC was supported by the Spanish Ministerio de Economı́a y Competitividad
through the project grant MTM-2010-18370-C04-01. This work was performed while
ASC was in University of Denver.

M. Abdalla and R. De Prisco (Eds.): SCN 2014, LNCS 8642, pp. 598–607, 2014.
c© Springer International Publishing Switzerland 2014

Narrow Bandwidth Is Not Inherent in Reverse Public-Key Encryption 599

of operation does in no way depend on the security of the traditional mode
of operation—any guarentees offered in reverse mode derive from key privacy
(alone). Straightforward RPKE requires the transmission of O(k) ciphertexts to
encode a k-bit plaintext, e.g., to RPKE transmit a 128-bit AES key using 200-
bit EC-ElGamal, several KBytes of data must be sent. This is highly inefficient,
even for a fallback mode of operation. A natural problem left open in [NSY09]
is the existence of “broadband RPKE”; it is interesting theoretically and may
have implication in cases where the notion applies.

Our contribution. We investigate the use of anonymous broadcast encryption
for achieving RPKE. Building on work by Fazio and Perera [FP12] we show how
in this setting RPKE can be made broadband—a single ciphertext and a small
overhead typically suffice to transmit a complete session key in reverse mode.
As technical tool we introduce a notion of robustness for anonymous broadcast
encryption which may be of independent interest. Combining traditional and
reverse encryption for an anonymous broadcast encryption scheme enables a
conceptually interesting dual use, where two independent meaningful plaintexts
are packed into one ciphertext. This can serve as a plausible deniability measure
against censorship. We also note, on the way to our result, a technicality in the
definition of RPKE and argue that for enabling security of the reverse mode of
operation, key privacy should come with a form of robustness.

2 Preliminaries

To show how broadband RPKE can be realized, we first review the definition of
RPKE and the relevant terminology for anonymous broadcast encryption. The
expression random will always refer to a uniform distribution.

2.1 Reverse Public-Key Encryption

To emphasize the difference between what is known and what we achieve regard-
ing the reverse mode of operation we adopt the terminology of [NSY09]:

Definition 1 (Traditional Public-Key Encryption). A (traditional) public-
key encryption scheme P = (G,K, E ,D) consists of four polynomial time algo-
rithms:

– A randomized common-key generation algorithm G which given the security
parameter 1k, outputs a common key ck.

– A randomized key generation algorithm K, which given ck outputs a (public
key, secret key)-pair (pk, sk).

– A randomized encryption algorithm E, which given pk and a plaintext m ∈
M(pk) outputs a ciphertext c. Here M(pk) denotes the message space asso-
ciated with pk.

– A deterministic decryption algorithm D which given (sk, c) either returns m
or an error symbol ⊥ �∈M(pk).

600 D. Naccache et al.

For all m ∈M(pk) we impose D(sk, E(pk,m)) = m.

Complementing the above definition, we assume the existence of a sampling
algorithm M which on input a public key pk samples plaintexts in M(pk).
This algorithm can be very simple and may even have constant output. As in
[NSY09], we denote by Im(M(pk)) ⊆M(pk) the set ofM(pk)’s possible outputs
and assume that membership in Im(M(pk)) can be tested in polynomial time.

Definition 2. Given a public-key encryption scheme P := (G,K, E ,D), [NSY09]
construct a “reverse public-key encryption scheme” PR := (GR,KR, ER,DR) al-
lowing to encrypt a single bit. PR and P share the same key generation algorithm
GR := G, but PR’s remaining algorithms differ as follows:

Key Generation: KR runs K twice to generate independent key-pairs (pk0, sk0)
and (pk1, sk1). The public key output by KR is the pair (pk0, pk1) and the
secret key is (sk0, sk1).

Encryption: to encrypt a plaintext b ∈ {0, 1}, we set ER(pk, b) := E(pkb,mb),

where mb
$← M(pkb). So the plaintext selects which of the two public keys

pk0 and pk1 is applied to (the possibly public!) mb.
Decryption: to decrypt a ciphertext c = E(pkb,mb), the algorithm DR computes

m̃0 ← D(sk0, c)
m̃1 ← D(sk1, c)

and then determines the output as

DR(sk, c) :=

⎧⎨⎩
0 if m̃0 ∈ Im(M(pk0)) and m̃1 �∈ Im(M(pk1))
1 if m̃1 ∈ Im(M(pk1)) and m̃0 �∈ Im(M(pk0))
⊥ else.

The intuition behind the proposed construction is already visible here: the case
m̃1 ∈ Im(M(pk1)) and m̃0 ∈ Im(M(pk0)) is left unexploited.

In [NSY09] the correctness of PR is taken for granted, although this is not an
evidence in itself: Consider a (degenerate) public-key encryption scheme P where
the plaintext space is identical for all public keys and E simply implements, for
all keys, the identity map on the plaintext space. Obviously this scheme must
be regarded as completely insecure in the traditional mode of operation, but at
the same time offers an extreme form of key privacy. Given a ciphertext, it is
information-theoretically impossible to identify the public key that was invoked
for encryption. As security of the reverse mode of operation is supposed to
stem from key privacy alone, one might have high hopes for the security of PR.
However, DR consistently fails and outputs ⊥.

The problem for this failure is a lack of robustness, and to remedy this problem
it is in principle sufficient to impose that P is weakly robust as defined by Abdalla
et al. in [ABN10] (WROB-CPA) which essentially defines a cryptosystem where
it is of negligible probability to find a message which is valid under two different
keys. Abdalla et al. also offer a general transformation to make (semantically
secure and anonymous) public-key encryption schemes robust. Weak robustness

Narrow Bandwidth Is Not Inherent in Reverse Public-Key Encryption 601

is a guarantee that holds with overwhelming probability only, and to take care of
this technicality we slightly weaken the correctness requirement in Definition 1:

Definition 3 (Overwhelming Correctness). Let P be as in Definition 1.
Then P is an overwhelmingly correct public-key encryption scheme if for all m ∈
M(pk) the equality D(sk, E(pk,m)) = m holds with overwhelming probability.
Here the probability is taken over the random choices of E.

Having addressed this technical issue, RPKEcan be used as described in [NSY09].

Proposition 1. Let P be an overwhelmingly correct and weakly robust tradi-
tional public-key encryption scheme. If the sampling algorithm M(pk) has a
constant output m0 ∈ M(pk) for all public keys pk, then PR as described in
[NSY09] is overwhelmingly correct.

Proof. If P is overwhelmingly correct, the case m̃0 /∈ Im(M(pk0)) and m̃1 /∈
Im(M(pk1)) can only happen with negligible probability.

The case m̃0 ∈ Im(M(pk0)) and m̃1 ∈ Im(M(pk1)) also leads to a ⊥ output,
but if P is weakly robust, this can only happen with negligible probability. Hence,
overwhelming correctness is guaranteed. ��

This clarifies the conditions for reversibility of encryption, and to overcome the
narrow-band restriction implicit in RPKE, we next transfer the reverse mode of
operation to anonymous broadcast encryption.

2.2 Anonymous Broadcast Encryption

The main tool to implement a broadcast variant of RPKE is an (outsider) anony-
mous broadcast encryption scheme. We consider a general enough setting to in-
clude both the public-key case and the identity-based case [LPQ12, FP12]. For
specific constructions we refer the reader to the latter works by Libert et al. and
by Fazio and Perera.

Definition 4 (Anonymous Broadcast Encryption). Let U = {1, . . . , n}
with n ∈ N be a fixed set of users, let M be a message space and C a ciphertext
space. An anonymous broadcast encryption scheme (ANOBES) is a tuple of
polynomial time algorithms (SB,GB, EB,DB) defined as follows:

– SB is probabilistic. Given the security parameter 1k and n, the setup algo-
rithm SB outputs a (master public key, master secret key)-pair (mpk,msk).

– GB is probabilistic. Given msk,mpk and an index i ∈ U , GB generates the
private key ski of user i.

– EB is probabilistic. Given mpk and m ∈M and a subset S ⊆ U , EB outputs
a ciphertext c.

– DB is deterministic. Given mpk, ski and c ∈ C, DB outputs a message m or
a special error symbol ⊥.

602 D. Naccache et al.

We require that for all S ⊆ U and for all i ∈ U , if:

– c = EB(mpk,m, S)
– and ski was generated by GB

then DB(mpk, ski, c) = m with overwhelming probability.

To characterize the security of an (outsider) ANOBES, anonymity and indistin-
guishability are simultaneously captured in a single definition by [LPQ12, FP12].
We adopt the security model of [FP12]:

– Setup: The challenger C runs SB to obtain (mpk,msk) and hands mpk to A.
– Phase 1: A can query a private key extraction oracle for any index i ∈ U : given

an index i ∈ U , C computes GB(mpk,msk, i).
– Challenge: A chooses two equal length messages m0, m1 ∈ M and two sets

S0, S1 ⊆ U with the restriction i /∈ S0 ∪ S1 for every index i queried before. A
hands (m0, m1, S0, S1) to C.a Then C selects a random bit b ∈ {0, 1}, computes
c∗ = EB(mpk,mb, Sb) and hands c∗ to A.

– Phase 2: A can issue private key queries as in Phase 1, subject to the condition
that i /∈ S0 ∪ S1.

– Guess: The adversary outputs b′ ∈ {0, 1} and wins if b = b′.

a In some instantiations, we may require that #S0 = #S1.

Fig. 1. Security in the sense of oABE-IND-CPA for an anonymous broadcast encryption
scheme

Definition 5 (oABE-IND-CPA security). An anonymous broadcast encryption
scheme is oABE-IND-CPA-secure if the advantage of any probabilistic polyno-
mial time adversary A in the game described in Figure 1 is negligible. Here A’s
advantage is defined as the function AdvoABE-IND-CPA

A (k) =
∣∣Pr[b = b′]− 1

2

∣∣.
[LPQ12] proposes a stronger security model, where the adversary can be an

insider. Also, both definitions can be adapted to chosen ciphertext scenarios. For
our purposes, we require outsider CPA-security as captured by Definition 5.

3 Robust Anonymous Broadcast Encryption

As for key private encryption, robustness is a desirable feature for anonymous
broadcast encryption: robustness ensures that when a user decrypts a ciphertext
without error, she can be sure to be an intended recipient. This guarantee will
enable us to construct a broadband RPKE variant. Note that independently of
our specific application such a property seems desirable to have. For anonymous
broadcast encryption, no formalization of robustness seems to be available in the
literature, so we start by proposing one:

Narrow Bandwidth Is Not Inherent in Reverse Public-Key Encryption 603

Definition 6 (WROB-CPA security). An ANOBES is WROB-CPA-secure (or
weakly robust) if the advantage of any probabilistic polynomial time adversary
A in the game described in Figure 2 is negligible. Here the advantage of A is

AdvWROB-CPA
A (k) = Pr[SuccWROB-CPA

A]

with SuccWROB-CPA
A denoting the event that A wins.

– Setup: The challenger C runs SB to obtain (mpk,msk) and hands mpk to A.
– Phase 1: A can query a private key extraction oracle for any index i ∈ U : given

an index i ∈ U , C computes GB(mpk,msk, i). Let I be the set of all indices i
queried by A during this phase.

– Challenge: A outputs a message m, a set S ⊆ U \ I and an index id /∈ S. A
wins if and only if DB(mpk,EB(mpk,m, S), skid) �= ⊥.

Fig. 2. Security in the sense of WROB-CPA for an anonymous broadcast encryption
scheme

If an ANOBES is not weakly robust, a transformation similar to the one pro-
posed in [ABN10] can be applied. Namely, let (SB,GB, EB,DB) be an anonymous
broadcast encryption scheme. Then (for a message size reduced by k bits,) the
transformed scheme is as follows:

– SB runs SB to obtain a master public key mpk and a master secret key

msk. Next, SB randomly selects K
$← {0, 1}k and outputs (mpk,K) as

master public key and msk as master secret key.
– GB runs GB to generate the private key ski for user i.
– EB: to encrypt a messagem to a set of recipients S, EB executes EB on input
mpk, message m||K and S ⊆ U to obtain a ciphertext c.

– DB runs DB onmpk, an ski and a ciphertext c ∈ C. If DB returnsm = m||K,

then DB returns m. Otherwise ⊥ is returned.

Proposition 2. Denote by BE = (SB,GB, EB,DB) an ANOBES with a set of
users U = {1, . . . , n} with n ∈ N and let BE be the anonymous broadcast en-
cryption scheme resulting from applying the weak robustness transform described
above. If BE is oABE-IND-CPA-secure, then BE is oABE-IND-CPA-secure and
weakly robust.

Proof (sketch). Proving the oABE-IND-CPA security of BE if BE is oABE-IND-
CPA-secure is straightforward. We only prove that the resulting scheme BE is
weakly robust. For this we use a short game hopping proof: LetA be an adversary
against the robustness of BE . We let A interact with a simulator and denote A’s
success probability (in this case equal to the advantage of A) in Game i by
AdvGame i

A .

604 D. Naccache et al.

Game 0: This game is identical to the original attack game and the success
probability is the same as in the original game.
Therefore

AdvGame 0
A (k) = AdvWROB-CPA

A .

Game 1: This game is identical to Game 0, but the adversary A is only con-
sidered successful if he outputs a message m, a set S, and an identity id
satisfying DB(mpk, EB(mpk, 0|m|||0k, S), skid) = m∗||K, with m∗ �= ⊥. To
show that A’s advantage in Game 1 and in Game 0 differs by no more than
a negligible function, consider the following adversary B against the oABE-
IND-CPA security of BE:
The adversary B acts as challenger for A, initializing A with the public
parameters mpk that B receives from its own challenger and a randomly se-

lected K
$← {0, 1}k. To answer A’s queries on private keys, B queries its own

oracle. Once A outputs a message m, a set S ⊆ U \ I and identity id /∈ S,
the algorithm B sends to its challenger the two messages 0|m|||0k and m||K
and the (identical) sets S and S. Now, after receiving the challenge c∗, B
queries the private key corresponding to id—this is an allowed query, as
id /∈ S. Next, B computes DB(mpk, skid, c

∗). If this algorithm returns ⊥,
then B returns the guess b′ = 0 for the random bit b of B’s challenger. If
DB(mpk, skid, c

∗) = m||K∗, where K∗ �= K, then B returns b′ = 0. Other-
wise, B returns b′ = 1. Therefore

|AdvGame 0
A −AdvGame 1

A | ≤ |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|

and the latter is upper-bounded by 2·AdvoABE-IND-CPA
B , which by assumption

on BE is negligible.

To conclude the proof, it suffices to recognize AdvGame 1
A as negligible. To do so,

we show that Pr[SuccGame 1
A]—the probability that

DB(mpk, EB(mpk, 0|M|||0k, S), skid) =M∗||K

with M∗ �= ⊥—is at most 22n+log2(t)−k. Here t = t(k) is A ’s running time,
which by assumption is polynomial in k. So with n being constant, 22n+log2(t)−k

is indeed negligible for properly chosen large enough k.
If none of the inputs mpk, EB(mpk, 0|M|||0k, S), |M |, S, skid depends on K,

then the probability of getting the last k bits of the decryption result to be equal
to K would be 2−k and therefore Pr[SuccGame 1

A] = 2−k. The choice of the set
of users we extract the private keys from can depend on K. As the set of users
U = {1, . . . , n} has size n, we have 2n possibilities, so this choice can carry no
more than n bits of information. The choice of the set S can also potentially
carry information about K. Again, as the set of users has size n, at most n bits
of information about K can be obtained in this way. Consequently,

Pr[SuccGame 1
A] ≤ 22n+log2(t)−k,

as claimed. ��

Narrow Bandwidth Is Not Inherent in Reverse Public-Key Encryption 605

Remark 1. The general transformations we invoke to ensure the weak robustness
prerequisite in Proposition 1 and Proposition 2 are formulated in a scenario
where both key anonymity and message security are given; we indeed employ
oABE-IND-CPA-security as a single security notion assuring both as our starting
point.

4 Realizing Broadband Reverse Encryption

Let BE = (SB,GB, EB,DB) be an ANOBES with set of users U = {1, . . . , n},
message space M and ciphertext space C. We can run BE in reverse mode by
deriving the following reverse encryption scheme BER to encrypt messages in
{0, 1}n (i.e., for encrypting an 128-bit AES key, a set of n = 128 users is needed):

– SRB: This algorithm runs SB(k, n).
– GRB: Runs GB(mpk,msk, i) for all i ∈ U to obtain the private key ski for

all users i ∈ U . The private key is sk = (sk1, . . . , skn), and the public key is
mpk.

– ERB: To encrypt a message M = (b1, . . . , bn) ∈ {0, 1}n, the set SM :=
{i ∈ U |bi = 1} is constructed, reflecting the positions of non-zero bits. An
arbitrary m ∈M is selected and EB(mpk,m, SM) is returned.

– DRB: To decrypt a ciphertextC ∈C using the private key sk = (sk1, . . . , skn),
this algorithm evaluates DB(mpk, ski, C) for all i ∈ U . If DB(mpk, ski, C) =
⊥, then bi = 0, otherwise bi = 1. Finally, M = (b1, . . . , bn) is reconstructed.

One could consider a different formulation where the encrypted message m is
published as a public parameter, and the decryption procedure not only checks
validity, but also the exact value obtained from DB. We think that the above
formulation better reflects the intuition behind reverse encryption, and, as ex-
plained below, enables an interesting double use of an ANOBES.

Remark 2. If the underlying anonymous broadcast encryption scheme requires
the sets S0 and S1 in the oABE-IND-CCA game to have the same size (so that
the adversary cannot trivially win), in reverse mode we have to restrict ourselves
to plaintexts of a fixed Hamming weight. Encoding bitstrings as bitstrings of a
fixed Hamming weight is a well-known problem, and we refer to, e.g., [OS09] for
a possible realization of such an encoding. Similarly, if the underlying broadcast
encryption scheme does not support the empty recipient set, the plaintext space
has to be adjusted accordingly.

Proposition 3. Let BE be a weakly robust ANOBES. Then BER as described
above is overwhelmingly correct.

Proof. The correctness of BE guarantees that if the plaintext bit bi is set (i ∈
SM), then the reverse broadcast decryption will recover a 1 in that position
with overwhelming probability. Moreover, if BE is weakly robust, we correctly
obtain a 0 from the reverse broadcast decryption algorithm for the plaintext bit
bi (i /∈ SM) with overwhelming probability. This argument applies to all n bits
comprising a plaintext. So BER is indeed overwhelmingly correct. ��

606 D. Naccache et al.

BER = (SRB,GRB, ERB,DRB) forms a public-key scheme in the sense of Defi-
nition 1, and if the underlying ANOBES is suitable, BER comes with a strong
security guarantee.

Proposition 4. Let BE be an oABE-IND-CPA-secure ANOBES. Then BER as
defined above is IND-CPA-secure.

Proof. Let A be an adversary against the IND-CPA security of BER. From A we
derive an adversary B that serves as challenger for A and attacks the oABE-IND-
CPA security of BE. First, B initializes A with its own master public key—note
that SB = SRB. WhenA outputs two (challenge) messagesM0,M1 ∈ {0, 1}n, the
algorithm B computes the corresponding sets SM0 , SM1 and submits them along
with an arbitrary plaintext message m. Upon receiving its challenge ciphertext,
B forwards it to A. When A outputs a guess b′ ∈ {0, 1} which message Mb′ has
been encrypted, B outputs the same bit. By construction, B wins whenever A
wins. Therefore

AdvIND-CPA
A ≤ AdvoABE-IND-CPA

B ,

and the latter is by assumption negligible. ��

To summarize:

Theorem 1.Assume the existence of an anonymous broadcast encryption scheme
BE which is oABE-IND-CPA-secure. Then there exists BER as defined above which
is a public-key encryption scheme that is correct, IND-CPA-secure, and supports
broadband messages whose size is proportional to n, the size of the group of
receivers.

5 Discussion: Cryptosteganographic Encryption

It is interesting to note that the reverse mode of operation is oblivious to the
plaintext message m that is encrypted using EB—m could even be public. How-
ever, one could also use traditional anonymous broadcast encryption in com-
bination with the reverse mode that we have just described: the full plaintext
space could be used, and at the same time the reverse mode can be employed
to transmit additional information—with a set of only 128 users a full AES-key
can be “piggybacked” in that way.

In view of typical constructions for anonymous broadcast encryption, it is
fair to say that the public-key encryption scheme obtained from the reverse
mode is not extremely efficient, but it is compatible with the traditional mode
of operation. We can exploit the latter to design a public-key system where the
sender can encrypt a hidden message (in the reverse mode) and an alternative
decoy message in the usual (traditional) mode. This provides the receiver with
deniability against authorities that later demand the user’s private key.

Given the first receiver, Alice, the sender sends it a message M , and at the
same time it sends it to a group which includes User 1. The group encodes the

Narrow Bandwidth Is Not Inherent in Reverse Public-Key Encryption 607

hidden message (by the other members of the receiver group except User 1). The
receiver who has the master secret key, can learn both the decoy messageM and
the real message (the subset). To deny, the receiver will erase the master secret
key and will keep only the private user key sk1, which is given to the authority,
which can compute M , the decoy, but not the actual message encoded as the
receiving group. This is an interesting deniable cryptographic steganography (as
there is no proof whether the receiver has kept or did not keep the original
master secret key).

6 Conclusion

The above shows how a weakly robust ANOBES can be used to overcome the
narrow-bandwidth limitation of reverse public-key encryption. In fact, the sug-
gested realization of reverse encryption allows the simultaneous use of the tra-
ditional mode of operation of an anonymous broadcast encryption scheme and
the reverse mode. For a weakly robust ANOBES the full plaintext space remains
usable1 while (additional) information is transmitted in reverse mode, allowing
for cryptographic steganographic applications. Defining deniable cryptographic
steganography and investigating it in depth is an interesting open issue.

Acknowledgment. The authors thank the anonymous referees for constructive
feedback.

References

[ABN10] Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D.
(ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010),
http://eprint.iacr.org/2008/440

[FP12] Fazio, N., Perera, I.M.: Outsider-Anonymous Broadcast Encryption with
Sublinear Ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012),
http://eprint.iacr.org/2012/129

[LPQ12] Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous Broadcast Encryp-
tion: Adaptive Security and Efficient Constructions in the Standard Model.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 206–224. Springer, Heidelberg (2012),
http://eprint.iacr.org/2011/476

[NSY09] Naccache, D., Steinwandt, R., Yung, M.: Reverse Public Key Encryption.
In: BIOSIG 2009 Proceedings. Lecture Notes in Informatics, pp. 155–169.
GI, Springer (2009)

[OS09] Overbeck, R., Sendrier, N.: Code-based cryptography. In: Post-Quantum
Cryptography, pp. 95–145. Springer (2009)

[vTJ11] Naccache, D.: Reverse Public Key Encryption. In: van Tilborg, H.C.A., Ja-
jodia, S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn., p.
1044. Springer (2011)

1 If the transformation from Section 3 needs to be applied first to establish weak
robustness, we lose k bits from the plaintext space.

http://eprint.iacr.org/2008/440
http://eprint.iacr.org/2012/129
http://eprint.iacr.org/2011/476

Author Index

Alwen, Joël 476
Ateniese, Giuseppe 538

Bailey, Daniel V. 218
Baum, Carsten 175
Bonacina, Ilario 538

Canetti, Ran 40
Catalano, Dario 514
Chen, Jie 277
Chen, Yu 115
Choudhury, Ashish 197

Damg̊ard, Ivan 175, 398
Dodis, Yevgeniy 494
Dürmuth, Markus 218

Faonio, Antonio 538
Feigenbaum, Joan 380
Fiore, Dario 494
Forte, Andrea G. 255
Frederiksen, Tore Kasper 358
Freire, Eduarda S.V. 1
Fuchsbauer, Georg 95

Galesi, Nicola 538
Garay, Juan A. 255
Garg, Sanjam 91
Giura, Paul 236
Gupta, Debayan 380

Hanaoka, Goichiro 558
Hesse, Julia 1
Hirt, Martin 476
Hofheinz, Dennis 1

Jain, Abhishek 435
Jakobsen, Thomas P. 358
Jim, Trevor 255

Karvelas, Nikolaos P. 520
Kiayias, Aggelos 520
Kolesnikov, Vladimir 40, 236
Kunihiro, Noboru 558

Lampkins, Joshua 155
Lauritsen, Rasmus 398
Lipmaa, Helger 416

Makriyannis, Nikolaos 135
Marcedone, Antonio 77
Maurer, Ueli 476

Naccache, David 598
Naito, Yusuke 340
Nielsen, Jesper Buus 358
Nuida, Koji 558

Ohta, Kazuo 340
Orlandi, Claudio 77, 175
Ostrovsky, Rafail 155, 578

Paar, Christof 218
Pandey, Omkant 57, 435
Patra, Arpita 197, 476
Perry, Jason 380
Pointcheval, David 21

Rackoff, Charles 40
Ramchen, Kim 57
Rao, Vanishree 578
Raykov, Pavel 476

Sanders, Olivier 21
Sasaki, Yu 324
Smart, Nigel P. 197
Steinwandt, Rainer 598
Suárez Corona, Adriana 598

Takashima, Katsuyuki 298
Tentes, Aris 236
Toft, Tomas 398

Vahlis, Yevgeniy 40, 236, 255
Venkitasubramaniam,

Muthuramakrishnan 455
Visconti, Ivan 578

Wang, Lei 324
Waters, Brent 57
Wee, Hoeteck 277, 318
Wright, Rebecca N. 380

Yamada, Shota 558
Yamakawa, Takashi 558
Yung, Moti 598

Zhang, Zongyang 115

	Preface
	SCN 2014
	Program Obfuscation via Multilinear Maps
	Functional Encryption and Its Impact on Cryptography
	Homomorphic Signatures and Message Authentication Codes
	Table of Contents
	Key Exchange
	Universally ComposableNon-Interactive Key Exchange
	1 Introduction
	2 Preliminaries
	3 NIKE in the UC Model
	4 Results
	4.1 Static Corruption
	4.2 Adaptive Corruption
	4.3 Summary of Relations Established So Far
	4.4 Transformation to Adaptively Secure NIKE in the ROM

	References

	Forward Secure Non-Interactive Key Exchange
	1 Introduction
	1.1 Non-Interactive Key Exchange
	1.2 Forward Security
	1.3 Achievements
	1.4 Organization

	2 Leveled Multilinear Maps
	3 Forward-Secure Non-Interactive Key Exchange and Security Model
	3.1 Syntax
	3.2 Security Model
	3.3 Forward Security with Linear Complexity

	4 A Forward-Secure Non-Interactive Key Exchange Scheme
	4.1 The Protocol
	4.2 Security Analysis
	4.3 Dishonest-Key Registration Model
	4.4 Adjustments to Existing Multilinear Maps
	4.5 System Parameters

	5 A General Framework
	5.1 The Framework
	5.2 System Parameters

	6 Conclusion
	References

	Secure Key Exchange and Sessions without Credentials
	1 Introduction
	1.1 The Setting and Our Contributions
	1.2 Intuition for Our Constructions
	1.3 Discussion
	1.4 RelatedWork

	2 Preliminaries
	3 Definition of Secure Key Exchange without Credentials
	4 Two Credential-Free Key Exchange Protocols
	4.1 Protocol 1: Standard Model
	4.2 Protocol 2: Hashed Diffie-Hellman as CFKE

	5 Definition and Construction of Credential-Free Secure Sessions
	5.1 Composing CFKE and CFSS

	References

	Multilinear Maps and Obfuscation
	Relaxed Two-to-One Recoding Schemes
	1 Introduction
	2 Preliminaries
	2.1 Multilinear Maps
	2.2 Attribute Based Encryption

	3 Correlation-Relaxed Two-to-One Recoding Schemes
	4 Circuit ABE from Correlation-Relaxed TOR
	5 Correlation-Relaxed TOR from Multilinear Maps
	5.1 Overview
	5.2 Construction

	References
	A ConstructionofTOR
	B Mapping Our Constructions to Graded Encoding Systems

	Obfuscation ⇒(IND-CPA Security �⇒ Circular Security)
	1 Introduction
	1.1 Technical Overview
	1.2 Preliminaries

	2 Separation from Virtual Black-Box Obfuscation
	2.1 PKE from Obfuscation
	2.2 Properties of Our Scheme
	2.3 A PKE That is Not n-Circular Secure

	3 Separation from Indistinguishability Obfuscation
	3.1 The Technical Details

	References

	Invited Talk I
	Program Obfuscation via Multilinear Maps
	References

	Pseudorandom Function Extensions
	Constrained Verifiable Random Functions
	1 Introduction
	2 Preliminaries
	3 Constrained Verifiable Random Functions
	4 Bit-Fixing VRF
	4.1 Construction
	4.2 Properties
	4.3 Proof of Pseudorandomness

	5 Circuit-Constrained VRF
	5.1 Construction
	5.2 Properties
	5.3 Proof of Pseudorandomness

	References

	Publicly Evaluable Pseudorandom Functionsand Their Applications
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries and Definitions
	3 Publicly Evaluable PRFs
	4 KEM from Publicly Evaluable PRFs
	5 Connection to Hash Proof System
	5.1 Construction from Smooth HPS
	5.2 Construction from Smooth and Weak Universal2 HPS

	6 Connection to Extractable Hash Proof System
	6.1 Construction from (All-But-One) EHPS

	7 Publicly Samplable PRFs
	7.1 Trapdoor Relations
	7.2 Publicly Samplable PRFs from TDRs

	References
	A Review of Standard Definitions

	Secure Computation – Foundations and Algorithms
	On the Classification of Finite BooleanFunctions up to Fairness
	1 Introduction
	2 Preliminaries
	2.1 Two-Party Computation
	2.2 The Ideal Model Paradigm

	3 Computing Fair Functions
	3.1 Informal Description of the Generalised GHKL-Protocol
	3.2 Security

	4 Equivalent Conditions for GHKL-Fairness
	5 Classification of GHKL-Fair Functions
	5.1 Finding the Probability Vector
	5.2 Complete Fairness and GHKL-Fairness

	6 A Class of Unfair Functions
	6.1 Semi-balanced Functions

	7 Conclusion
	References
	A Considering Probability Vectors with Zero-Components

	Communication-Efficient MPCfor General Adversary Structures
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions
	1.3 Techniques

	2 Protocol Overview
	3 Definitions and Assumptions
	4 The Protocols
	4.1 Secret Sharing
	4.2 Information Checking
	4.3 Verifiable Secret Sharing
	4.4 Reconstructing Linear Combinations of Sharings
	4.5 Generating Random Values
	4.6 Generating Multiplication Triples
	4.7 Preparation Phase
	4.8 Input Phase
	4.9 Computation Phase
	4.10 Putting It All Together

	References

	Publicly Auditable Secure Multi-PartyComputation
	1 Introduction
	1.1 Contributions and Technical Overview
	1.2 An Example Application: Low-latency Voting from MPC
	1.3 Related Work

	2 Defining Auditable MPC
	3 An Auditable MPC Protocol
	4 Security of the Online Phase
	5 On the Efficiency of Our Solution
	6 Summary and Open Problems
	References

	Reducing the Overhead ofMPC over a Large Population
	1 Introduction
	2 Model, Notation and Preliminaries
	3 MainProtocol
	3.1 Supporting Functionalities
	3.2 Supporting Sub-protocols
	3.3 The MPC Protocol

	References

	Network Security
	Statistics on Password Re-use and AdaptiveStrength for Financial Accounts
	1 Introduction
	1.1 Related Work
	1.2 Paper Outline

	2 The Datasets
	2.1 The Malware Dataset
	2.2 More Password Sets
	2.3 Ethical Considerations

	3 Correlation of Password Strength and Account Value
	3.1 Measures for Password Strength
	3.2 Results: Malware Dataset
	3.3 Results: Comparing with Other Datasets
	3.4 Results: Comparing with MtGox

	4 Password Re-use
	4.1 Measuring Re-use from Random Samples
	4.2 Results
	4.3 Discussion

	5 Conclusion
	References

	Efficient Network-Based Enforcement of Data Access Rights
	1 Introduction
	1.1 Overview of Our Methods
	1.2 Experimental Results
	1.3 RelatedWork

	2 Preliminaries
	3 Our Constructions
	3.1 Overview of Our Approach
	3.2 Security Definitions
	3.3 Authentication by AggregatedMAC
	3.4 Bloom-Filter-Based Authentication

	4 System Setup and Experimental Results
	4.1 Data
	4.2 Policy Representation
	4.3 System Setup
	4.4 Experimental Results

	References
	A Aggregate MAC

	EyeDecrypt— Private Interactions in Plain Sight
	1 Introduction
	2 Model and Definitions
	2.1 Security of EyeDecrypt
	2.2 Defining the Building Blocks

	3 Constructions
	3.1 The Visualizable Encryption Scheme
	3.2 An EyeDecrypt Scheme
	3.3 A Dataglyphs-Based Visual Encoding Scheme

	4 The EyeDecrypt Prototype
	5 Performance Evaluation
	6 Related Work
	References

	Functional Encryption
	Semi-adaptive Attribute-Based Encryptionand Improved Delegation for Boolean Formula
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques

	2 Preliminaries
	2.1 Access Structures
	2.2 Key-Policy Attribute-Based Encryption
	2.3 Semi-adaptive Security Model
	2.4 Composite Order Bilinear Groups

	3 Semi-adaptive ABE with Constant-Size Ciphertext
	3.1 Construction
	3.2 Proof of Security

	References

	Expressive Attribute-Based Encryptionwith Constant-Size Ciphertextsfrom the Decisional Linear Assumption
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Key Techniques
	1.4 Notations

	2 Dual Pairing Vector Spaces and Decisional Linear (DLIN) Assumption
	3 Definition of Key-Policy Attribute-Based Encryption
	3.1 Span Programs and Non-monotone Access Structures
	3.2 Key-Policy Attribute-Based Encryption (KP-ABE)

	4 Special Matrix Subgroups
	5 Proposed KP-ABE Scheme with Constant Size Ciphertexts
	5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme
	5.2 Dual Orthonormal Basis Generator
	5.3 Construction
	5.4 Security

	6 Proof Outline of Lemma 3
	6.1 Iteration of Swapping and Conceptual Change
	6.2 Key Properties of H�y(n, Fq)

	7 Proposed Constant-Size Secret-Key ABS Scheme
	References

	Invited Talk II
	Functional Encryption and Its Impact on Cryptography
	1 Introduction
	2 Functional Encryption
	3 Impact on Cryptography
	References

	Cryptanalysis
	Generic Attacks on Strengthened HMAC:n-bit Secure HMAC Requires Key in All Blocks
	1 Introduction
	2 Specification
	2.1 Merkle-Damg˚ard Hash Functions
	2.2 HMAC

	3 Previous Work
	3.1 Long Message Attack with Functional Graph Properties
	3.2 Short Message Attack with Multi-collisions
	3.3 Preventing Internal State Recovery Attacks

	4 New Attack against Single Keyless Block
	4.1 Target Structure
	4.2 Attack Overview
	4.3 Offline Phase
	4.4 Online Phase
	4.5 Choosing Optimal Parameters
	4.6 Attack Procedure

	5 Concluding Remarks
	References

	Improved Indifferentiable Security Analysisof PHOTON
	1 Introduction
	1.1 Our Results
	1.2 Related Works

	2 Preliminaries
	3 Improving the Indifferentiable Security Bound of PHOTON
	3.1 PHOTON Graph
	3.2 Simulator
	3.3 Proof Overview
	3.4 Proof of Theorem 2

	4 Optimality of Our Proof
	4.1 Forgery Attack on PHOTON-MAC
	4.2 Discussion

	5 Choosing Parameters c'
	6 ModifiedPHOTON
	References

	Secure Computation – Implementation
	Faster Maliciously Secure Two-Party Computation Using the GPU
	1 Introduction
	2 The BigPicture
	3 The Protocol
	4 Implementation
	References

	Systematizing Secure Computation for Researchand Decision Support
	1 Introduction
	2 The Systematization
	2.1 Definitions
	2.2 Linear Axis Representation of MPC Protocol Features
	2.3 Dependencies between Axes

	3 An Extensible Protocol Database
	4 Putting the Systematization to Work
	4.1 A Prototype Decision-Making Support Tool
	4.2 Sample Use Cases for SysSC-UI

	5 Ongoing Work
	References

	An Empirical Study and Some Improvementsof the MiniMac Protocol for SecureComputation
	1 Introduction
	2 MiniMac
	2.1 Reed-Solomon Codes
	2.2 Preprocessing

	3 Evaluation and Comparison with TinyOT
	3.1 Empirical Setup and Performance Measurements
	3.2 The Benchmark - AES Circuit and Relevance
	3.3 MiniMac Test Runs with No Optimizations
	3.4 Introduction to TinyOT
	3.5 Empirical Results with TinyOT

	4 MiniTrix
	4.1 Making the Protocol Symmetric for Multiplications
	4.2 Use Fast Fourier Transform for Encoding
	4.3 Preprocessing Dedicated for Binary Circuits
	4.4 Simultaneous Multiplication Gates
	4.5 Fast Encoding of Binary Data
	4.6 Final Optimizations

	5 Conclusion
	6 Future Directions
	References

	Zero Knowledge
	Efficient NIZK Arguments via ParallelVerification of Benes Networks
	1 Introduction
	2 Preliminaries
	3 New Permutation Argument
	4 CircuitSAT Argument
	References
	A On Groth’s Use of Clos Networks
	B Committed Shuffle Argument

	Non-Malleable Zero Knowledge: Black-BoxConstructions and Definitional Relationships
	1 Introduction
	1.1 Overview of Main Ideas

	2 Basic Definitions
	3 Efficient Simulation-Sound Interactive Proofs
	3.1 The Definition
	3.2 Tool: Extractable Commitment
	3.3 The Simulation-Sound Protocol
	3.4 Proof of Security

	4 Relationship between Different Notions of Non-Malleable ZK
	4.1 NmZK versus SimExt
	4.2 SimSound versus SimExt

	References

	On Adaptively Secure Protocols
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 Definition of Equivocal Non-Malleable Commitments
	2.2 Adaptive UC-Puzzles
	2.3 Fully Input-Adaptive Concurrent Non-Malleable Zero-Knowledge

	3 EQNMCom Based on [LP11b]
	3.1 Equivocal Non-Malleable Commitment Scheme (EQNMCom) inany Setup
	3.2 Round-Efficient Adaptively Secure UC-Protocols

	4 An ACNMZK Argument
	4.1 Achieving UC-Security with Super-Polynomial Helpers

	References

	Message Authentication
	Key-Indistinguishable Message AuthenticationCodes
	1 Introduction
	1.1 Anonymous Authenticity
	1.2 Our Contributions
	1.3 Related Work
	1.4 Outline

	2 Definitions
	3 Constructing Key Indistinguishable MACs
	3.1 From PRFs
	3.2 From LPN
	3.3 Further Constructions

	4 Transformations for Strengthening MACs
	4.1 Adding Support for Verification Queries

	References

	Interactive Encryption andMessage Authentication
	1 Introduction
	1.1 Our Results
	1.2 Preliminaries and Notation

	2 Defining Message Transmission Protocols
	3 Basic Constructions
	4 Advanced Security Properties from the Power of Interaction
	4.1 Replay Security

	References

	Invited Talk III
	Homomorphic Signatures and MessageAuthentication Codes
	1 Introduction
	References

	Proofs of Space and Erasure
	Efficient Proofs of Secure Erasure
	1 Introduction
	2 PoSEs Constructions
	2.1 Definitions
	2.2 Invert-Hash PoSE
	2.3 Graph Based PoSE

	References
	A Appendix

	Proofs of Space: When Space Is of the Essence
	1 Introduction
	2 Notations and Preliminary Definitions
	3 Proof-of-Space Protocols
	3.1 A 4-Message PoSpace Protocol

	4 A 2-Messages PoSpace Protocol
	5 Weak Proof of Space
	References
	A Proof of the Pebbling Theorem (Theorem 1)
	B Merkle Tree

	Public-Key Encryption
	Chosen Ciphertext Security on HardMembership Decision Groups: The Case ofSemi-smooth Subgroups of Quadratic Residues
	1 Introduction
	1.1 Background
	1.2 Our Main Theorem
	1.3 Applications of the Main Theorem
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Basic definitions
	2.3 Semi-smooth Subgroups and Signed Groups

	3 OurMainTheorem
	3.1 Preparation for Our Main Theorem
	3.2 Our Main Theorem

	4 Variants of Hofheinz-Kiltz Scheme
	4.1 Description of Hofheinz-Kiltz Scheme on Signed Subgroups
	4.2 Security
	4.3 Other CCA Secure Schemes on (Signed) Semi-smooth Subgroup

	5 The Strong Diffie-Hellman Assumption
	6 Hashed ElGamal KEM
	6.1 Construction
	6.2 Security
	6.3 Efficiency

	7 Non-interactive Key Exchange
	7.1 Construction
	7.2 Security
	7.3 Efficiency

	References

	On Selective-Opening Attacks againstEncryption Schemes
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques

	2 Background
	2.1 Existing SOA Definitions
	2.2 PKE with Pseudorandom Ciphertexts

	3 New IND-SO-CPA Definitions
	4 Equivalence of Weak Notions and (Im)possibility of Full Notion
	4.1 Equivalence Between Old And New (Weak) Notions
	4.2 Impossibility of Full Security

	5 Relationship between SOA Security and Lossy Encryption
	References

	Narrow Bandwidth Is Not Inherentin Reverse Public-Key Encryption
	1 Introduction
	2 Preliminaries
	2.1 Reverse Public-Key Encryption
	2.2 Anonymous Broadcast Encryption

	3 Robust Anonymous Broadcast Encryption
	4 Realizing Broadband Reverse Encryption
	5 Discussion: Cryptosteganographic Encryption
	6 Conclusion
	References

	Author Index

