
Chapter 8
Hawking Radiation from Higher-Dimensional
Black Holes

Panagiota Kanti and Elizabeth Winstanley

Abstract We review the quantum field theory description of Hawking radiation from
evaporating black holes and summarize what is known about Hawking radiation from
black holes in more than four space-time dimensions. In the context of the Large Extra
Dimensions scenario, we present the theoretical formalism for all types of emitted
fields and a selection of results on the radiation spectra. A detailed analysis of the
Hawking fluxes in this case is essential for modelling the evaporation of higher-
dimensional black holes at the LHC, whose creation is predicted by low-energy
models of quantum gravity. We discuss the status of the quest for black-hole solutions
in the context of the Randall–Sundrum brane-world model and, in the absence of an
exact metric, we review what is known about Hawking radiation from such black
holes.
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8.1 Introduction

Hawking radiation [1] is one of the most important effects arising from quantum
field theory in curved space, a semi-classical approach to quantum gravity. In this
framework space-time is described by a classical geometry, governed by the Einstein
equations (or an alternative classical theory of gravity). The behaviour and propaga-
tion of quantum fields on a fixed (but not necessarily stationary) space-time is then
studied. Hawking radiation is thermal in nature, giving non-extremal black holes an
intrinsic temperature proportional to the surface gravity of the event horizon. For a

P. Kanti
Division of Theoretical Physics, Department of Physics, University of Ioannina,
451 10 Ioannina, Greece
e-mail: pkanti@cc.uoi.gr

E. Winstanley (B)

Consortium for Fundamental Physics, School of Mathematics and Statistics,
The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
e-mail: e.winstanley@sheffield.ac.uk

© Springer International Publishing Switzerland 2015
X. Calmet (ed.), Quantum Aspects of Black Holes,
Fundamental Theories of Physics 178, DOI 10.1007/978-3-319-10852-0_8

229



230 P. Kanti and E. Winstanley

Schwarzschild black hole in asymptotically flat space, the specific heat is negative,
so that the temperature increases as the black hole evaporates, leading to a black
hole explosion. The ultimate fate of the black hole depends on unknown details of
quantum gravity, but black hole evaporation raises many deep questions about the
nature of quantum gravity and the fundamental laws of physics (such as the informa-
tion loss paradox, see, for example [2, 3]). Here we will not address these important
issues, but instead focus on the detailed properties of the Hawking radiation itself.

Hawking radiation from four-dimensional black holes in asymptotically flat space
was studied in detail by Page [4–6]. Over the past fifteen or so years, there has
been great interest in higher-dimensional black holes. Within the context of classical
general relativity, a menagerie of black-hole-like solutions of the Einstein equations
has been discovered (see for example [7, 8] for reviews). It is then natural to study
the properties of Hawking radiation from higher-dimensional black holes.

This avenue of research gained much impetus from the exciting possibility of pro-
ducing microscopic higher-dimensional black holes in high-energy collisions either
at the LHC or in cosmic rays [9–16]. This is a prediction of higher-dimensional
brane-world models [17–21] in which the energy scale of quantum gravity is much
lower than the traditional value of 1019 GeV, and may be as low as the TeV-scale.
If such a microscopic black hole is produced, it will initially be rapidly rotating and
rather asymmetric. Its subsequent evolution can be modelled as four stages [11]:

• During the balding phase the black hole sheds its asymmetries through the emis-
sion of gravitational radiation and also loses any gauge field charges arising from
the particles which formed it. At the end of this stage the black hole is axisymmetric
and still rapidly rotating.

• The black hole then emits Hawking radiation, and loses both mass and angular
momentum. At the end of this spin-down phase the black hole is no longer rotating.

• Now with zero angular momentum, the black hole continues to radiate during the
Schwarzschild phase, shrinking as it loses mass.

• During the final Planck phase the semi-classical approximation for the Hawking
radiation is no longer valid and the black hole emission depends on the details of
quantum gravity.

It is expected that the spin-down and Schwarzschild phases will dominate the life-
time of the black hole. A detailed understanding of the Hawking radiation from
higher-dimensional black holes in brane-world models is therefore necessary for
simulating microscopic black hole events [22, 23] and experimental searches, as
well as being of intrinsic theoretical interest.

In this chapter we focus on the theoretical modelling of Hawking radiation from
higher-dimensional black holes. We begin with a discussion of the quantum-field-
theoretic derivation of Hawking radiation and its description using the Unruh vac-
uum state [24]. We then briefly review some key features of black holes in brane
world models. We describe the formalism for studying quantum fields on higher-
dimensional Myers-Perry black holes [25], which model black holes in an ADD
brane-world [17–19]. We also present a selection of results on the properties of the
Hawking radiation from these black holes. The literature on this subject is vast and
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so we cannot claim to do all aspects justice. The reviews [12, 26–29] contain further
discussion of results which space does not permit us to include. In the RS brane-world
[20, 21], analysis of the Hawking radiation is more challenging because no exact
metric describing a five-dimensional black hole localised on the brane is known in
general—for a more detailed discussion of this topic, see the reviews [30–32]. We
close the chapter with a discussion of what is known about the Hawking radiation in
this case.

8.2 Hawking Radiation

8.2.1 Hawking Radiation from a Black Hole Formed
by Gravitational Collapse

Hawking’s original derivation [1] considered a quantum scalar field propagating on
a fixed, but dynamic, background space-time corresponding to the formation of a
four-dimensional Schwarzschild black hole by the gravitational collapse of matter in
asymptotically flat space. The Penrose diagram for this process is shown in Fig. 8.1
(cf. the Penrose diagram for an eternal Schwarzschild black hole in Fig. 8.2).

For the moment consider a massless scalar field in a two-dimensional version of the
space-time shown in Fig. 8.1, with space-time co-ordinates (t, r). In this case, because

Fig. 8.1 Penrose diagram for
a Schwarzschild black hole
formed by gravitational
collapse

Fig. 8.2 Penrose diagram for
an eternal Schwarzschild
black hole I I
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two-dimensional space-times are locally conformally flat, a basis of field modes
is formed simply from plane waves. These plane waves are not normalizable, but
normalizable wave-packets can be constructed from appropriate linear combinations
of the plane wave modes. At very early times, long before the collapse starts, a
suitable basis of field modes is:

φω ∝ e−iωte±iωr, (8.1)

where ω > 0 corresponds to positive frequency. The quantum scalar field Φ̂ is written
in terms of these basis modes:

Φ̂ =
∞∫

ω=0

dω
[
âωφω + â†

ωφ∗
ω

]
, (8.2)

where the expansion coefficients aω have been promoted to operators in the canonical
quantization of the scalar field. Working in the Heisenberg picture, the quantum state
is defined to be the “in” vacuum at early times near I−, namely the state |0〉in which
is annihilated by the âω operators:

âω |0〉in = 0 ∀ω > 0. (8.3)

At late times, long after the black hole has formed, we can form a basis of field
modes similar to (8.1), write the quantum scalar field in terms of these modes along
the lines of (8.2) but with the expansion coefficients âω now replaced by operators
b̂ω, and define an “out” vacuum state |0〉out which is annihilated by the b̂ω operators.

The crux of Hawking’s derivation [1] is that the “in” and “out” vacuum states are
not the same: the “in” vacuum |0〉in contains a thermal flux of outgoing particles at
late times near I+ (we use units in which c = � = G = kB = 1):

in

〈
0

∣∣∣b̂†
ωb̂ω

∣∣∣ 0
〉
in

= 1

eω/TH − 1
(8.4)

where

TH = κ

2π
(8.5)

is the Hawking temperature and κ is the surface gravity of the black hole. There are
many different derivations of this effect (see, for example [33–44]). Hawking’s result
is very robust, and essentially kinematic: it is independent of the Einstein equations or
the theory of gravity under consideration. There are a number of different pictures to
understand the origin of the thermal flux, such as quantum tunnelling of classically
forbidden trajectories from behind the event horizon [40], or the pair creation of
quantum particles close to the event horizon, one of which carries negative energy
down the event horizon and the other of which escapes to infinity. In terms of modes,
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the thermal factor arises because outgoing modes at I+ can be traced back to ingoing
modes which enter the collapsing body just before the last ingoing mode (which then
forms the event horizon of the black hole after reflection from the co-ordinate centre
r = 0), resulting in a “pile-up” of highly blue-shifted modes near this last ingoing
mode.

Using a geometric optics argument, Hawking’s result can be extended to black
holes in four or more space-time dimensions [1]. The complication is that, even for
a massless scalar field, in more than two space-time dimensions the quantum field
interacts with a gravitational potential which surrounds the black hole. As a result, a
wave which is outgoing near the event horizon of the black hole will partly escape to
infinity and partly be reflected back down the event horizon. The part which escapes
to I+ will contribute to the Hawking flux. In four or more space-time dimensions,
each mode of a quantum field of spin s will be characterized by its frequency ω,
a total angular momentum quantum number �, an azimuthal quantum number m
(indexing the angular momentum about the z-axis) and, in more than four space-
time dimensions, further angular quantum numbers j. To describe this scattering
effect we introduce the grey-body factor Γsω�mj which is given by the outgoing flux
near I+ for each mode divided by the outgoing flux near the horizon in that mode
(that is, the fraction of each outgoing mode near the horizon which is transmitted to
I+). The Hawking flux (8.4) is then modified to be, for each quantum field mode:

in

〈
0

∣∣∣b̂†
ωb̂ω

∣∣∣ 0
〉
in

= Γsω�mj

eω/TH ± 1
, (8.6)

where the + sign in the denominator is for fermionic fields and the − sign for bosonic
fields. While Hawking’s original derivation [1] was for a quantum scalar field, we
emphasize that the result carries over to quantum fields of all spins. Furthermore,
although in the above we have considered a Schwarzschild black hole, any black hole
with a non-extremal event horizon will emit Hawking radiation, including rotating
black holes. In this article we will consider only rotating black holes with a single
axis of rotation (which we take to be the z-axis). In this case the denominator of the
Hawking flux (8.6) is modified by the rotation of the black hole to be

eω̃/T ± 1 (8.7)

where

ω̃ = ω − mΩH , (8.8)

with m the azimuthal quantum number and ΩH is the angular velocity of the event
horizon.



234 P. Kanti and E. Winstanley

8.2.2 The Unruh State

In practice, dealing with quantum fields on the dynamical space-time shown in
Fig. 8.1 is technically difficult. In computing Hawking radiation, a different approach
is usually employed. Instead of considering the collapse geometry of Fig. 8.1, the
eternal black hole space-time (such as that for the Schwarzschild black hole shown in
Fig. 8.2) is considered. We restrict our attention to the right-hand-diamond of Fig. 8.2,
representing the region exterior to the black hole event horizon. Charged and/or rotat-
ing black holes have more complex Penrose diagrams than Fig. 8.2, but the diamond-
shaped region exterior to the event horizon is the same for all asymptotically-flat black
holes. For black holes in de Sitter space, the relevant region is that between the event
and cosmological horizons, which has the same diamond shape.

The Unruh state [24] is the quantum state on the eternal black hole space-time
which models the Hawking radiation. The construction of this state proceeds as
follows, where for simplicity we consider a free massless scalar field Φ and a four-
dimensional Schwarzschild black hole with co-ordinates (t, r, θ, ϕ). In this case the
scalar field modes φω�m are separable:

φω�m(t, r, θ, ϕ) = e−iωteimϕRω�m(r)Y�m(θ), (8.9)

where ω is the frequency of the mode, m is the azimuthal quantum number, � is
the total-angular-momentum quantum number, Rω�m(r) is the radial function and
Y�m(θ) is a spherical harmonic. First a basis of quantum field modes is required.
We take as a basis the “in” and “up” modes depicted in Fig. 8.3. The “in” modes
φin

ω�m are incoming from past null infinity I−. Part of each wave is reflected by the
gravitational potential and scatters back to infinity, and part goes down the future
event horizon H+. The “up” modes φ

up
ω�m are outgoing from close to the past event

horizon H−. In this case part of each wave is reflected back down the future event
horizon H+, while part is transmitted to future null infinity I+.

Having chosen a suitable basis of field modes, we now need to split these modes
into positive and negative frequency. For the “in” modes, we choose ‘positive fre-
quency’ to mean ‘positive frequency as seen by a static observer far from the black
hole’, so that, for a field mode φω�m we have:

Fig. 8.3 “In” (left) and “up”
(right) modes H
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∂

∂t
φω�m = −iωφω�m, (8.10)

where ω > 0. Since the “in” modes originate from near I−, this is the most natural
choice of positive frequency for these modes. For the “up” modes, we choose ‘positive
frequency’ to mean ‘positive frequency with respect to Kruskal time near the event
horizon’. Since the “up” modes originate from near H−, this choice of positive
frequency, with respect to co-ordinates which are regular across the event horizon,
is also very natural. We decompose our quantum field Φ̂ in terms of this basis of
positive frequency modes:

Φ̂ =
∑

modes

[
âin
ω�mφin

ω�m + âin†
ω�mφin∗

ω�m

]
+

∑
modes

[
âup
ω�mφ

up
ω�m + âup†

ω�mφ
up∗
ω�m

]
(8.11)

where in each case the sum is taken over the positive frequency modes and we
have promoted the expansion coefficients for the classical scalar field to operators
satisfying the usual commutation relations:

[
âin/up
ω�m , âin/up†

ω′�′m′
]

= δ(ω − ω′)δ�,�′δm,m′ ,
[
âin/up
ω�m , âin/up

ω′�′m′
]

= 0 =
[
âin/up†
ω�m , âin/up†

ω′�′m′
]
.

(8.12)

The Unruh state |U〉 [24] is then defined as that state which is annihilated by the
operators âin/up

ω�m :

âin/up
ω�m |U〉 = 0. (8.13)

This state has no particles in the “in” modes near I− as was the case for the “in”
vacuum |0〉in describing the state for a black hole formed by gravitational collapse.
However, due to the choice of positive frequency for the “up” modes, these modes are
thermally populated with temperature TH (8.5). Therefore, near future null infinity
I+, a static observer will see an outgoing flux of particles in the “up” modes, which
is precisely the Hawking radiation. Furthermore, the flux in each mode will be given
by (8.6), with the grey-body factor Γω�m (with spin s = 0 and no index j because we
are in four space-time dimensions) representing the proportion of each “up” mode
which escapes to I+.

Here we have discussed the construction of the Unruh state for the particular
example of a massless scalar field on a four-dimensional Schwarzschild space-time.
The extension of this construction to higher-dimensional, spherically-symmetric
space-times is straightforward. For higher-spin fields, the field modes are more com-
plicated than (8.9) but the construction works in a similar way (bearing in mind that
the Hawking flux (8.6) has a + sign in the denominator for fermion fields and a −
sign for bosonic fields). The Unruh state can also be constructed for rotating black
holes. In this case the frequency ω in the thermal factor in (8.6) becomes ω̃ (8.8). This
shift arises because ω̃ rather than ω is the natural frequency of field modes near the
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horizon of a rotating black hole, from where the Hawking radiation emanates. For
details of this construction on four-dimensional Kerr black holes, see [45] (scalars),
[46] (fermions) and [47] (electromagnetism).

In order to compute the fluxes of particles, energy and angular momentum emitted
in Hawking radiation we calculate expectation values of the appropriate operators
in the Unruh state on an eternal black hole space-time. The flux of particles per unit
time is given by summing the individual mode flux (8.6) over all field modes:

dN

dt
=

∑
modes

Γsω�mj

eω̃/TH ± 1
, (8.14)

where the exact form of the sum over the modes will be made precise in Sect. 8.4,
and ω̃ = ω if the black hole is non-rotating. The fluxes of energy and (for a rotating
black hole) angular momentum per unit time are given by expectation values of the
quantum stress-energy tensor for the particular quantum field under consideration:

dE

dt
=

∫
r2 dΩ

〈
U

∣∣∣T̂ r
t

∣∣∣ U
〉
,

dJ

dt
=

∫
r2 dΩ

〈
U

∣∣∣T̂ rϕ
∣∣∣ U

〉
, (8.15)

where the integral is taken over the sphere at infinity and we have given the expres-
sions for four-dimensional black holes.

Expectation values of the stress-energy tensor typically require renormalization,
due to their involving products of two operators at the same space-time point. One
method of renormalization is covariant geodesic point separation, in which the two
operators whose products are taken are evaluated at different space-time points x and
x′, yielding a finite bitensor stress-energy tensor, whose expectation value is writ-
ten Tμν(x, x′). This expectation value is renormalized by the subtraction of purely
geometric, state independent renormalization terms Tdiv

μν (x, x′) (see for example
[48, 49] for expressions for these geometric terms for fields of spin 0, 1/2 and 1
in four dimensions, and [50] for a scalar field in higher-dimensional space-time).
The points x and x′ are then brought together and a finite renormalized expectation
value for the stress-energy tensor is yielded.

Fortunately, for the black holes in which we are interested, it can be shown that
the two stress-energy tensor components in (8.15) do not require renormalization.
For a quantum scalar field on a four-dimensional Kerr black hole, this was shown
by Frolov and Thorne [51]. Their argument involved two key properties: (i) the
symmetry of the underlying space-time under the reflection (t, ϕ) → (−t,−ϕ)

(simultaneous reversal of time and the azimuthal angle); and (ii) each of the geometric
subtraction terms involves an even number of covariant derivatives σμ of the biscalar
of geodetic interval [52] when an average has been taken over a separation in the
σμ and −σμ directions. Choosing radial point-splitting, these two properties ensure
that the geometric subtraction terms Tdiv

tr (x, x′) and Tdiv
rϕ (x, x′) both vanish. Since

the two properties above are shared by the simply-rotating black holes which we
shall consider in Sect. 8.4, the above argument can be readily extended to show that
Tdiv

tr (x, x′) and Tdiv
rϕ (x, x′) both vanish for these black holes as well [53].
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The exact form of the stress-energy tensor components in (8.15) depends on the
spin of the quantum field under consideration (see, for example [12, 53–56] for
details). However, the resulting fluxes of energy and angular momentum have the
following simple forms:

dE

dt
=

∑
modes

ωΓsω�mj

eω̃/TH ± 1
,

dJ

dt
=

∑
modes

mΓsω�mj

eω̃/TH ± 1
, (8.16)

where m is the azimuthal quantum number. More precise details of the mode sums
can be found in Sect. 8.4.2.

8.3 Brane World Black Holes

8.3.1 Black Holes in ADD Brane-Worlds

In the ADD brane-world scenario [17–19] space-time has d = 4 + n dimensions.
Our universe is a four-dimensional brane in this higher-dimensional bulk space-time.
The n extra dimensions are flat and compactified (the radius of compactification is
typically large compared with the Planck length but sufficiently small to agree with
searches for deviations from Newton’s Law of Gravitation). To avoid contradictions
with precision particle-physics experiments, the forces and particles of the Standard
Model are constrained to live on the brane; only gravitational degrees of freedom
(gravitons and possibly scalars) can propagate in the bulk.

We model black holes in the ADD scenario in a very simple way, assuming that the
brane is tensionless and infinitely thin. We also assume that the black-hole horizon is
much smaller than the compactification radius of the extra dimensions. Effectively
we are considering black holes in an asymptotically flat, (4+n)-dimensional, space-
time. Furthermore, we are particularly interested in microscopic black holes formed
by the collision of particles on the brane (such a collision will not necessarily be
head-on). In this case, by conservation of angular momentum, the resulting black
hole will have a single axis of rotation, which will also lie in the brane.

Rotating black-hole solutions of the vacuum Einstein equations in (4 + n)-
dimensional space-time are described by the Myers-Perry metric [25]. Unlike the
situation in four space-time dimensions, the Myers-Perry metric is not unique if
n > 0 [7, 8], and black holes need not have a spherical event-horizon topology.
The general Myers-Perry metric [25] is rather lengthy, and the metrics for more
complicated black objects (such as black rings) are very complex. For this reason,
we restrict our attention to Myers-Perry black holes with a spherical event-horizon
topology and a single axis of rotation. In this case the general Myers-Perry metric
simplifies to [25]:



238 P. Kanti and E. Winstanley

ds2 = −
(

1 − μ

Σrn−1

)
dt2 − 2aμ sin2 θ

Σrn−1 dt dϕ + Σ

Δ
dr2 + Σ dθ2

+
(

r2 + a2 + a2μ sin2 θ

Σrn−1

)
sin2 θ dϕ2 + r2 cos2 θ dΩ2

n , (8.17)

where

Δ = r2 + a2 − μ

rn−1 , Σ = r2 + a2 cos2 θ, (8.18)

and dΩ2
n is the metric on the n-dimensional unit sphere. The mass M and angular

momentum J of the black hole are given by:

M = 1

16π
(n + 2) μ An+2, J = 2

n + 2
aM, (8.19)

and An+2 = 2π(n+3)/2/Γ [(n + 3)/2] is the area of the (n + 2)-dimensional unit
sphere. The horizon radius rh of the black hole is determined through the equation
Δ(rh) = 0 and it may be written as rn+1

h = μ/(1+a2∗), where a∗ = a/rh. When a = 0
and the black hole is non-rotating, the metric (8.17) reduces to the Schwarzschild-
Tangherlini spherically-symmetric metric [57].

In (8.17), the co-ordinates (t, r, θ, ϕ) are the co-ordinates on the brane and the
dΩ2

n is the part of the metric coming from the extra dimensions. To find the metric
of the higher-dimensional black hole as seen by an observer on the brane, we simply
fix the co-ordinates in the extra dimensions and obtain:

ds2 = −
(

1 − μ

Σrn−1

)
dt2 − 2aμ sin2 θ

Σrn−1 dt dϕ + Σ

Δ
dr2 + Σ dθ2

+
(

r2 + a2 + a2μ sin2 θ

Σrn−1

)
sin2 θ dϕ2. (8.20)

Note that the brane metric (8.20) still depends on n, the number of extra dimensions.
It reduces to the usual Kerr metric when n = 0. Although the higher-dimensional
Myers-Perry metric (8.17) is a solution of the vacuum Einstein equations in (4 + n)

dimensions, the brane metric (8.20) is not a solution of the four-dimensional vacuum
Einstein equations [58]. Instead, the space-time (8.20) has a non-zero classical stress-
energy tensor representing an effective fluid seen by an observer on the brane. This
arises from the fact that the black hole is a higher-dimensional object, but a brane
observer cannot directly probe the extra dimensions [58].



8 Hawking Radiation from Higher-Dimensional Black Holes 239

8.3.2 Black Holes in RS Brane-Worlds

In the RS brane-world, only one extra dimension is assumed to exist transverse to
our brane. The bulk is not empty but filled with a negative cosmological constant
ΛB < 0. The higher-dimensional space-time is therefore an anti-de Sitter (AdS)
space-time that contains either two (RS-I model [20]) or one (RS-II model [21])
Minkowski branes. The branes have a non-vanishing tension that, together with the
bulk cosmological constant, cause the warping of the metric along the fifth dimension.
In the context of the RS-I model, where two flat branes are separated in the extra
dimension by a distance a few times the Planck length, this warping is used to address
the hierarchy problem. The RS-II model is by far the more interesting one from the
gravitational point of view: the second brane is sent to infinity, and the warping causes
the localisation of graviton close to the brane and the restoration of four-dimensional
gravity despite the presence of an infinitely-extended extra dimension.

Substituting the Minkowski line-element on the brane by the Schwarzschild line-
element, the following brane-world solution was found soon after in [59]:

ds2 = e−2|y|/�AdS

[
−

(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2 dΩ2
2

]
+ dy2 ,

(8.21)
where �AdS = √−6/ΛB is the AdS curvature length. The projection of the above
five-dimensional solution on the brane, located at y = 0, has exactly the form of a
four-dimensional black hole. However, it was demonstrated that it does not describe
a regular black hole localised on the brane but rather an AdS black string that, in the
context of the RS-II model, has an infinitely-extended singularity along the bulk. In
addition, it suffers from a Gregory-Laflamme instability [60, 61].

Despite the numerous attempts to derive a regular, asymptotically AdS black-hole
solution localised on a brane with a non-vanishing tension (for an indicative list of
papers, see [62–72]; for a more complete list of references, see [30–32]), up to today
no analytical solution has been constructed. Numerical studies [73–75] found black-
hole solutions with horizon radius smaller than or of the order of the AdS length
�AdS in the context of five- and six-dimensional warped models. The failure to find
larger, static black-hole solutions, combined with the results following from lower-
dimensional constructions of brane-world black holes [76–78], led to arguments for
the non-existence of such black holes in the context of the RS model [79–84].

A central role in this conjecture is played by the AdS/CFT correspondence: when
applied in the context of the RS model [85], it dictates that classical gravity in
the AdS bulk is equivalent to a strongly-coupled quantum Conformal Field Theory
(CFT) living on the brane. If a five-dimensional classical solution exists, describing
a regular black hole localised on the brane, then the large number of CFT modes
that couple to four-dimensional gravity on the brane will cause the rapid evaporation
of the black hole (we will return to this topic in Sect. 8.5). Therefore, the projec-
tion of the metric on the brane ought to describe a quantum-corrected, non-static
black hole; its classical counterpart in the bulk will then have to be non-static, too.
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This argument applies only for large-mass black holes for which the quantum cor-
rections in the AdS bulk are negligible so that the five-dimensional solution can be
considered as classical.

There are several results in the literature supporting the validity of the AdS/CFT
correspondence in the RS model [30, 32], such as: the agreement in the form of
the Newtonian potential on the brane, calculated through the Kaluza-Klein graviton
states or the CFT brane modes, and the automatic appearance of a radiation term,
that may be associated to the emission of brane CFT modes by the black hole, in the
Friedmann equation on the brane. But there are also counter-arguments to the above
[86–88] according to which one should not expect important quantum corrections
on the brane. In support of the latter view, recent numerical studies [89–91] find
solutions that describe both small and large black holes in the context of the RS
model (see also [92–96]).

The complexity of the bulk equations and junction conditions that one should
solve to find a complete bulk/brane solution, and the non-trivial topology of the
AdS space-time background are two decisive factors contributing to the difficulty
in finding viable black-hole solutions in the RS model. For large-mass black holes,
there might be additional, more subtle, reasons: in [70] it was shown that the brane
trajectories in the background of a bulk Schwarzschild-AdS black hole are more
finely-tuned for large-mass black holes; also, the recoil effect [97], that may be
caused by the asymmetric emission of bulk modes resulting in the black hole leaving
the brane, is more effective for large black holes than for small ones [30].

8.4 Hawking Radiation from Black Holes in the ADD Model

In this section we consider Hawking radiation from black holes in the ADD model,
both on the brane and in the bulk. The presentation of the formalism will be based
on the simply-rotating Myers-Perry black hole discussed in Sect. 8.3.1—when nec-
essary, the spherically-symmetric limit may be recovered by setting a = 0. We first
bring together all the relevant field equations for the different types of radiation before
discussing a selection of results. The formalism for the different types of quantum
field is quite involved, and here we are attempting a unified presentation. Some com-
promises in notation are inevitable in this situation. In particular, we always label
our field modes by an index Λ, although the exact form of Λ will vary depending on
the spin of the field and whether we are considering brane or bulk emission.

8.4.1 Formalism for Field Perturbations

In this subsection we consider only massless particles. The formalism outlined can
be readily extended to include mass and charge. We will briefly discuss some of the
effects of mass and charge on the Hawking radiation in Sect. 8.4.6.
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8.4.1.1 Teukolsky Formalism on the Brane

We now consider the formalism for massless particles of spin 0, 1/2 and 1 on the
brane metric (8.20). Teukolsky [98, 99] developed a unified formalism for describing
perturbations of a four-dimensional Kerr black hole with these spins (see also [100]).
Teukolsky’s original formalism also applies to spin-2 perturbations but we shall
consider those separately. Teukolsky’s formalism extends easily to perturbations of
spin 0, 1/2 and 1 on the brane metric (8.20).

The Newman-Penrose formalism [101] is used to write the perturbation equations
for each type of particle as a single master equation for a quantity Ψs = Ψs(t, r, θ, ϕ).
The form of Ψs depends on the spin s of the field under consideration—details can
be found in [12]. The resulting Teukolsky equation for the variable Ψs takes the form
[55]

Js =
[
(r2 + a2)2

Δ
− a2 sin2 θ

]
∂tΨs + 2aμ

Δrn−1 ∂t∂ϕΨs +
[

a2

Δ
− 1

sin2 θ

]
∂ϕΨs

− Δ−s ∂

∂r

(
Δs+1∂rΨs

)
− 1

sin θ

∂

∂θ
(sin θ∂θΨs) − 2s

[
aΔ′

2Δ
+ i cos θ

sin2 θ

]
∂ϕΨs

+ 2s

[
r + ρ̄ − (r2 + a2)Δ′

2Δ

]
∂tΨs + s

[
s cot2 θ − 1 + (2 − Δ′′)δs,|s|

]
Ψs ,

(8.22)

where ρ̄ = r + ia cos θ and Js is a source term, whose details for each spin s can
be found in [12]. The metric function Δ is given by (8.18). The Teukolsky equation
(8.22) is separable. We write

Ψs = e−iωteimϕRΛ(r) SΛ(θ), (8.23)

where Λ = {s, ω, �, m}, ω is the field mode frequency, m = −�,−�+1, . . . , �−1, �

is the azimuthal quantum number and � ≥ s is the total angular momentum quantum
number. Then the following radial and angular equations are obtained [12, 55]:

0 = Δ−s d

dr

(
Δs+1 dRΛ

dr

)
+

[
Δ−1

(
K2

ωm − isKωmΔ′) + 4isωr

+sδs,|s|
(
Δ′′ − 2

) − a2ω2 + 2maω − λΛ

]
RΛ(r), (8.24)

0 = 1

sin θ

d

dθ

(
sin θ

dSΛ

dθ

)
+

[
−2ms cot θ

sin θ
− m2

sin2 θ
+ a2ω2 cos2 θ − 2asω cos θ

+s − s2 cot2 θ + λΛ

]
SΛ(θ), (8.25)
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where

Kωm =
(

r2 + a2
)

ω − am. (8.26)

The angular functions SΛ(θ) are spin-weighted spheroidal harmonics [102, 103],
and they and the eigenvalues λΛ have to be computed numerically when aω �= 0.
For aω = 0, the eigenvalues are:

λΛ = � (� + 1) − s (s + 1) , (8.27)

and the angular functions SΛ(θ) reduce to spin-weighted spherical harmonics [104].

8.4.1.2 Bulk Fields

We now consider the equations satisfied by scalar and graviton perturbations of the
higher-dimensional bulk metric (8.17).

Firstly, consider a massless scalar field propagating on the metric (8.17). The
massless scalar wave equation is separable. We write the scalar field Ψ0 as

Ψ0 = e−iωteimϕ RΛ(r) SΛ(θ) Yjn(Ω) , (8.28)

where the index Λ is now {ω, �, m, j, n} and Yjn(Ω) is a hyper-spherical harmonic
[105] depending on the higher-dimensional bulk co-ordinates and indexed by an
integer j. The following radial and angular equations are obtained from the scalar
field equation [53]:

0 = 1

rn

d

dr

(
rnΔ

dRΛ

dr

)
+

[
Δ−1K2

ωm − a2r−2j (j + n − 1)

−a2ω2 + 2maω − λΛ

]
RΛ(r), (8.29)

0 = 1

sin θ cosn θ

d

dθ

(
sin θ cosn θ

dSΛ

dθ

)
+

[
ω2a2 cos2 θ − m2

sin2 θ
− j (j + n − 1)

cos2 θ

+ λΛ

]
SΛ(θ). (8.30)

Gravitational perturbations are much more difficult to deal with as Teukol-
sky’s four-dimensional formalism does not readily extend to higher dimensions.
A complete analysis is currently available only for higher-dimensional spherically-
symmetric black holes. For spherically-symmetric black holes, a general gravitational
perturbation decomposes into three parts: a symmetric traceless tensor T , a vector
V and a scalar part S [106]. The master equation for each type of gravitational per-
turbation is separable and the relevant field quantity is written in a form similar to
(8.28) (see [106] for details). For each type of gravitational perturbation, the radial
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functions satisfy the equation [107]

0 =
[

1 −
( rh

r

)n+1
]

d

dr

{[
1 −

( rh

r

)n+1
]

dRΛ

dr

}
+

[
ω2 − VΛ

]
RΛ(r), (8.31)

where the form of the potential VΛ depends on the type of gravitational perturbation.
The angular functions are simply spin-weighted hyper-spherical harmonics. The
index Λ now takes the form {B, ω, �, n} where B ∈ {S, V , T} indicates whether we
are considering a scalar (S), vector (V ) or tensor (T ) type of gravitational perturbation
and the other labels are as before. For tensor-like and vector-like perturbations the
potential VΛ is [107]

VT/V ,ω,�,n = 1

r2

[
1 −

( rh

r

)n+1
][

� (� + n + 1) + n (n + 2)

4
− k

4
(n + 2)2 rn+1

h

rn+1

]
,

(8.32)

where k = −1 for tensor-like (T ) perturbations and k = 3 for vector-like (V )
perturbations. For scalar-like (S) graviton perturbations, the potential has the more
complicated form [107]:

VS,ω,�,n = 1

r2

[
1 −

( rh

r

)n+1
]

qx3 + px2 + wx + z

4 [2u + (n + 2)(n + 3)x]2 , (8.33)

where

x = rn+1
h

rn+1 , u = � (� + n + 1) − n − 2, (8.34)

and

q = (n + 2)4 (n + 3)2 ,

p = (n + 2) (n + 3)
[
4u

(
2n2 + 5n + 6

)
+ n (n + 2) (n + 3) (n − 2)

]
,

w = −12u (n + 2) [u (n − 2) + n (n + 2) (n + 3)],

z = 16u3 + 4u2 (n + 2) (n + 4). (8.35)

For rotating higher-dimensional black holes, the general gravitational perturba-
tion equations are much more complicated [108–110]. In general they are not sep-
arable, which means that a computation of the Hawking radiation for gravitons
has to date proved intractable. However, some progress can be made in the case
where the higher-dimensional gravitational background is the warped product of an
m-dimensional space-time N and an n-dimensional space K of constant curva-
ture, a class of backgrounds that includes the simply-rotating Myers-Perry metric
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(8.17). In that case, the equations for tensor-type perturbations simplify considerably
[111, 112] and are separable. The radial and angular equations take the forms
(8.29–8.30) respectively, that is, the equations for the scalar field modes in the bulk—
the only difference is that � ≥ 0 for scalars and � ≥ 2 for gravitons [112].

8.4.2 Grey-Body Factors and Fluxes

We are interested in the fluxes of particles N , energy E and angular momentum J for
the various different fields. The differential fluxes per unit time and unit frequency
ω take the form:

d2N

dt dω
= 1

2π

∑
j

∞∑
�=s

�∑
m=−�

1

eω̃/TH ± 1
NΛΓΛ, (8.36)

d2E

dt dω
= 1

2π

∑
j

∞∑
�=s

�∑
m=−�

ω

eω̃/TH ± 1
NΛΓΛ, (8.37)

d2J

dt dω
= 1

2π

∑
j

∞∑
�=s

�∑
m=−�

m

eω̃/TH ± 1
NΛΓΛ. (8.38)

Here we have written out precisely the mode sums represented schematically in (8.14,
8.16). As well as the usual sums over the angular momentum quantum numbers
�, m, there is an additional sum over j for scalar field emission in the bulk and
tensor-type graviton emission from a rotating black hole, where j indexes the hyper-
spherical harmonics in these cases. There is no sum over j for graviton emission from
spherically-symmetric higher-dimensional black holes. In the thermal factor, the +
sign is for fermionic fields and the − sign for bosonic fields. In the above, ω̃ is given
by (8.8), while the temperature TH and angular velocity ΩH of the simply-rotating
Myers-Perry black hole (8.17) are found to be:

TH = (n + 1) + (n − 1)a2∗
4π(1 + a2∗)rh

, ΩH = a

r2
h + a2

. (8.39)

For each mode, the fluxes (8.36–8.38) depend on the grey-body factor ΓΛ, and also a
degeneracy factor NΛ accounting for the multiplicity of modes having the quantum
numbers {ω, �, m, j}. The degeneracy factors are always independent of the mode
frequency ω and azimuthal quantum number m, but depend on �, j (where applicable)
and the number of extra dimensions n.

On the brane, for fields of spin-1/2 and spin-1, there are field modes with two
polarizations, so to take this into account we set the degeneracy factors equal to
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NΛ =
⎧⎨
⎩

1 for s = 0,

2 for s = 1
2 ,

2 for s = 1.

(8.40)

For bulk scalar fields, the degeneracy factor is [53]:

NΛ = (2j + n − 1) (j + n − 2)!
j! (n − 1)! . (8.41)

For bulk graviton fields, we need to consider each type of gravitational perturbation
separately. If we consider a rotating black hole, we only have separable field equations
for tensor-type gravitational perturbations, in which case the degeneracy factor is
[113]

NΛ = (n + 1) (n − 2) (n + j) (j − 1) (n + 2j − 1) (n + j − 3)!
2 (j + 1)! (n − 1)! . (8.42)

If, on the other hand, we consider a non-rotating black hole, all three types of gravi-
tational perturbation (scalar S, vector V and tensor T ) can be considered. The degen-
eracy values are then [114–116]:

NS,ω,�,n = (2� + n + 1) (� + n)!
(2� + 1) �! (n + 1)! ,

NV ,ω,�,n = � (� + n + 1) (2� + n + 1) (� + n − 1)!
(2� + 1) (� + 1)!n! ,

NT ,ω,�,n = n (n + 3) (� + n + 2) (� − 1) (2� + n + 1) (� + n − 1)!
2 (2� + 1) (� + 1)! (n + 1)! . (8.43)

To compute the Hawking fluxes (8.36–8.38), it remains to find the grey-body fac-
tors ΓΛ. These are computed by numerically integrating the relevant radial equation
(8.24, 8.29, 8.31). For an “up” mode, the grey-body factor ΓΛ is the ratio of the flux
in the mode at infinity and the flux in the out-going part of the mode near the event
horizon, in other words it is the transmission coefficient for each “up” mode. The
exact form of the flux depends on the spin of the field considered (see [12, 100] for
details). Here we simply state the results for the grey-body factors in each case.

We first consider scalar and graviton fields, which are each described by a single
radial function RΛ which satisfies the relevant radial equation: (8.24) for scalar
fields on the brane; (8.29) for scalar fields in the bulk; (8.31) for all types of graviton
emission from a non-rotating black hole; or (8.29) for tensor-type graviton emission
from a simply-rotating black hole. The “up” modes then have radial functions of the
form:

RΛ ∼
{

(r − rh)
iω̃/4πTH + CR,Λ (r − rh)

−iω̃/4πTH r → rh

CT ,Λr−yeiωr r → ∞,
(8.44)

where CR,Λ and CT ,Λ are complex constants, and
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y =

⎧⎪⎪⎨
⎪⎪⎩

1 for brane emission of scalars,
1 + n

2 for bulk emission of scalars, and tensor-type graviton
emission from rotating black holes,

0 for graviton emission from non-rotating black holes.

(8.45)

The grey-body factor is then simply

ΓΛ = 1 − ∣∣CR,Λ

∣∣2 = ω

ω̃

∣∣CT ,Λ

∣∣2
. (8.46)

If the black hole is non-rotating, ω̃ = ω and ΓΛ = |CT ,Λ|2. If the black hole is
rotating, for modes with ω/ω̃ < 0, Eq. (8.46) implies that ΓΛ < 0, so we have
super-radiance [100].

We next consider fermion (spin- 1
2 ) and gauge boson (spin-1) fields, for which

there are two radial functions, corresponding to s = + |s| and s = − |s|. The radial
functions RΛ satisfy (8.24) and, for an “up” mode, have the asymptotic forms [12, 55]

Rs=+|s|
Λ ∼

{
CR,ΛΔ−s (r − rh)

−iω̃/4πTH r → rh
0 r → ∞,

Rs=−|s|
Λ ∼

{
(r − rh)

iω̃/4πTH r → rh

CT ,Λr−δs,1eiωr r → ∞,
(8.47)

for complex constants CR,Λ and CT ,Λ. For gauge bosons with |s| = 1, the grey-body
factor is given by (8.46), and there is super-radiance for modes with ω̃ < 0. For
fermion fields with |s| = 1

2 , the grey-body factor is:

ΓΛ = 1 − ∣∣CR,Λ

∣∣2 = ∣∣CT ,Λ

∣∣2
. (8.48)

For fermions, we therefore have ΓΛ > 0 for all modes and no super-radiance [100].

8.4.3 Emission of Massless Fields on the Brane

We now present a selection of results on the decay of higher-dimensional black holes
through the emission of Hawking radiation. The presentation of the results will be
by no means exhaustive, rather we hope that it will reveal some of the main features
of the radiation spectra from these black holes. We will start from the emission of
particles along the brane, then consider the bulk emission and finish with a discussion
of the energy balance between the two decay channels.

For a brane-localised observer, the emission of particles along the brane is the only
observable decay channel of a higher-dimensional black hole. Drawing information
from black holes in four dimensions, we expect that higher-dimensional black holes
will emit Hawking radiation during both their rotating and spherically-symmetric
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phase. The rotating phase is the most generic, however, it is also the most techni-
cally involved. Therefore, we will start from the spherically-symmetric phase, that,
although it is chronologically second, has a significantly simpler treatment.

8.4.3.1 Non-rotating Black Holes

The gravitational background describing the space-time around a non-rotating,
higher-dimensional black hole, i.e. the Schwarzschild-Tangerlini line-element [57],
and the corresponding field equations follow easily from (8.20) and (8.24–8.25),
respectively, by setting a = 0. In particular, the angular equation (8.25) now reduces
to the one for the spin-weighted spherical harmonics with a well-defined eigenvalue,
and offers no new information given the spherically-symmetric emission. Therefore,
it is only the radial equation (8.24), significantly simplified after setting a = 0,
that needs to be integrated. This has been performed both analytically [117–119]
and numerically [120]. In the former case, an approximation technique needs to be
applied: in this, the radial equation is solved in the two asymptotic regimes, i.e. near
the horizon (r � rh) and far away from it (r � rh), and the two solutions are matched
at an intermediate point. The analytic result derived for the grey-body factor is valid
only under the assumption that the energy of the emitted particle satisfies the con-
straint ωrh � 1. Therefore, for the derivation of the radiation spectra beyond the
low-energy regime, one needs to employ numerical methods.

In [120], the complete spectra for all types of brane particles and for arbitrary
energy ω were thus numerically derived. In Fig. 8.4a, we depict the differential energy
emission rate per unit time and unit frequency for gauge bosons emitted on the brane
by a spherically-symmetric black hole, for variable n [12, 120]. We observe that,
as the number of extra dimensions that are transverse to the brane increases, the
black hole radiates more energy per unit time and over a much wider spectrum of
frequencies. This is due to the combined effect of the grey-body factors ΓΛ and the
temperature TH of the black hole (8.39), with the latter being clearly an increasing
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Fig. 8.4 Energy emission rates a for gauge bosons, for n = 0, 1, 2, 4 and 6 (from bottom to top)
[12], and b for all species of brane-localised particles for n = 6 [120]



248 P. Kanti and E. Winstanley

function of n, for a fixed horizon radius rh. The same behaviour is observed for
all types of brane particles, i.e. scalars, fermions and gauge bosons [12, 120]. By
integrating the energy spectra over ω, we find that the total emissivities are enhanced
by a factor of the order of 103–104, as n increases from 0 to 7.

The exact value of the enhancement factor, however, depends on the spin s of the
particle, and that leads to the question whether the black hole prefers to emit different
species of particle for different values of n. In Fig. 8.4b, we depict the power fluxes
for particles with spin s = 0, 1/2 and 1, for the case n = 6 [120]: the gauge bosons
clearly dominate over both scalars and fermions. This result is to be compared to the
four-dimensional one [4, 121–123] where scalars dominate, and to the case where
n takes intermediate values, where the black hole emits almost equal amounts of
energy in the three particle channels [120]. One could then propose that the emission
by a higher-dimensional, spherically-symmetric black hole on the brane could reveal
the number of additional spacelike dimensions [117, 118, 120].

8.4.3.2 Rotating Black Holes

We now turn to the preceding rotating phase that, for black holes created during a non-
head-on collision, is the most generic and perhaps the only phase realised due to their
short life-time. In this case, the space-time around the black hole is not spherically-
symmetric—instead, the axis of rotation provides a preferred direction in space.
Therefore, the angular equation, too, contains vital information about the emission
process, and it is thus the set of equations (8.24–8.25) that we now need to solve. The
radial equation will provide us again with the value of the grey-body factor. For this,
we need the eigenvalue λΛ whose value may be found by numerically integrating the
angular equation. There is, however, an infinite power-series expansion [102, 103,
124], in the limit of small aω, of the form

λΛ = −s(s +1)+
∑

k

fk (aω)k = �(�+1)− s(s +1)− 2ms2

�(� + 1)
aω+· · · . (8.49)

The use of the above expression for λΛ allows for the analytical solution of the
radial equation [119, 125, 126] for the rotating phase, too, and the derivation of a
formula for the grey-body factor. As before, the validity of the result is limited: it
applies only for emission by a slowly-rotating black hole (a∗ < 1) in the low-energy
regime (ωrh � 1); for the sake of comparison, in Fig. 8.5a, b, we present both the
analytic [126] and the numerical result [55], respectively, for the grey-body factor of
brane-localised fermions for the mode � = −m = 1/2 in the 10-dimensional case
and for various values of a∗. The agreement between the two results is very good
in the low-energy part of the spectrum and for small angular-momenta, however, it
clearly worsens as either ω or a∗ increases.

The complete radiation spectra, under no restrictions on the energy and angular
momentum, were derived in [54–56, 127] for brane-localised scalars, fermions and
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Fig. 8.6 a Energy emission rate for fermions in terms of n, for a∗ = 1 [55], and b angular-
momentum emission rate for scalars, in terms of a∗, for n = 1 [54]

gauge bosons by employing numerical techniques. In each case, the angular equation
(8.25) was integrated first to derive the exact values of both the angular eigenvalue
λΛ and the spin-weighted spheroidal harmonics SΛ. The radial equation (8.24) was
solved next from the horizon to infinity under the appropriate boundary conditions.
The numerical integration of the set of radial and angular equations presents different
challenges for different species of fields—we address the interested reader to [54–56,
127] for further information on how to overcome these.

For a rotating black hole, the grey-body factor depends both on the number of extra
dimensions n and the angular-momentum a∗ of the black hole, but also on the part of
the energy spectrum and the particular mode considered. An indicative result for the
grey-body factor for fermions [55] with � = −m = 1/2, n = 6 and various values of
a∗ was presented in Fig. 8.5b. Using the values of the numerically-derived grey-body
factors, one may proceed to determine the fluxes of particles N , energy E and angular
momentum J for a rotating black hole on the brane. The profile of each flux shows an
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Fig. 8.7 Angular distribution of the power spectra for scalars [54] (left plot), fermions [55] (middle
plot) and gauge bosons [56] (right plot) for n = 2 and a∗ = 1

enhancement, in terms of both n and a∗, for all species of brane-localised particles.
In Fig. 8.6a, b, we depict indicative cases of the energy emission rate for fermions,
for a∗ = 1 and various values of n [55], and of the angular-momentum emission rate
for scalars, for n = 1 and various values of a∗ [54], respectively. The enhancement
factor in the total emissivity of all three fluxes, when n varies from 1 to 7, is typically
of O(100) while the one when a∗ changes from 0 to 1 is of O(10).

The angular equation (8.25) is also a source of valuable information for the emis-
sion process: the spin-weighted spheroidal harmonics SΛ(θ) contain information on
the angular distribution of the emitted particles. The differential fluxes (8.36–8.38)
are derived by integrating the appropriate operators over a sphere at infinity. If we
therefore take a step back, one may derive the differential emission rates per unit
time, unit energy and unit of cos θ , where θ is the angle measured from the rotation
axis of the black hole. All fluxes exhibit a non-trivial angular distribution as a result
of two factors: (i) the centrifugal force, that forces all types of particles to be emitted
on the equatorial plane, particularly for large values of ω or a∗, (ii) the spin-rotation
coupling, which tends to align all particles with non-vanishing spin with the rotation
axis—this factor has a different effect on different radiative components and is more
prominent the larger the value of the spin and the smaller the energy of the particle.
In Fig. 8.7, we present three-dimensional graphs depicting the differential energy
emission rate in terms of ω∗ and cos θ for scalars, fermions and gauge bosons, for
n = 2 and a∗ = 1 [54–56], that clearly present the above behaviour. Note, that for
fermions and gauge bosons, the distribution is symmetric over the two hemispheres
since both radiative components, s = ± 1

2 and s = ±1, respectively, have been taken
into account in the expression of the energy emission rates in each case.

The aforementioned angular distribution of the emitted particles will be a distinct
observable effect, and will last for as long as the angular-momentum of the black
hole is non-zero. However, for a rotating black hole, the task of drawing quantitative
information from the Hawking radiation spectra, regarding the parameters of space-
time, presents a serious difficulty: both the number of extra spacelike dimensions n
and the angular-momentum parameter a∗ cause an enhancement of the emission rates
(8.36–8.38). One therefore needs to break this degeneracy, by using an observable
that would depend rather strongly on the value of only one of these parameters and,
at the same time, be almost insensitive to the value of the other.
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As we mentioned above, one of the two factors that determine the angular dis-
tribution of the emitted particles is the spin-rotation coupling that is dominant at
the low-energy regime. If we then focus on this part of the energy spectrum, and
consider the emission of fermions and gauge bosons, we find the behaviour depicted
in Fig. 8.8 [128]: the gauge bosons (left plot) are aligned parallel or anti-parallel to
the rotation axis of the black hole [128], while the fermions (right plot) have an angle
of emission that depends on the value of the angular momentum of the black hole
[128, 129]. The aforementioned pattern is in fact independent of the value n of extra
dimensions. Therefore, by observing the angles of emission of gauge bosons and
fermions in a low-energy channel, one could in principle determine the orientation
of the rotation axis and the angular momentum, respectively, of the black hole. The
diferential fluxes (8.36–8.38) could then be used to determine the value of n, too.

The results depicted in Fig. 8.8 were found by numerically integrating both the
radial and angular equations for gauge bosons and fermions. However, since the
behaviour found above takes place in a low-energy channel, one could attempt to use
analytic methods to solve both equations and derive the angular emission pattern. As
we have already discussed, the radial equation (8.24) has been solved analytically for
all species of brane particles [119, 125, 126]. The angular equation (8.25) also admits
an analytic solution in the form of an infinite power-series [130]. In [131], a constraint
was thus derived that semi-analytically determines the angle of maximum emission
for different types of fields; the angular emission pattern of scalars, gauge bosons
and fermions was then found, for a wide range of values of the angular-momentum
parameter a∗ and energy ω of the emitted particle.



252 P. Kanti and E. Winstanley

8.4.4 Emission of Massless Fields in the Bulk

Having studied the emission of Hawking radiation on the brane, i.e. the part of the
emitted energy that a brane observer could potentially detect, we now turn to the
emission of Hawking radiation in the bulk, i.e. the part of the emitted energy that
would literally go missing. Brane observers have no access to the bulk, nevertheless,
we need to study the different types of emission and estimate the amount of energy
that is channeled in the bulk. Since Standard Model particles are constrained to live
on the brane, the only degrees of freedom allowed to propagate in the bulk are scalars
and gravitons. In what follows, we review the existing results in the literature for the
corresponding radiation spectra.

We start with the emission of scalar fields: the set of equations, for the more
complex rotating phase, are given in (8.29–8.30), while the ones for the spherically-
symmetric phase follow by setting a = 0. These equations have been solved, for both
phases, by employing either analytical [117, 132, 133] or numerical [53, 120, 134]
methods. For the analytical approach, based on the same approximation method as
in the case of brane emission, we need the angular eigenvalue λΛ in an analytical
form: for the spherically-symmetric phase, this is known and given by [105]

λΛ = �(� + n + 1), (8.50)

while for the rotating phase there is again a power-series expression [135, 136]. The
analytical results thus derived for the grey-body factor may be used to describe the
effect of Hawking radiation in the bulk very accurately in the low-energy regime
and, at times, even in the intermediate-energy regime.

However, the complete spectra may be derived only through numerical integration.
For the spherically-symmetric case, the angular equation (8.30) contains again no
new information for the radiation process—it is only the radial equation (8.29), with
a = 0, that needs to be numerically integrated. For the rotating phase, the angular
equation (8.30) is integrated first to provide the eigenvalue λΛ—note that, in the
absence of an observer in the bulk, there is no motivation for the study of the angular
distribution of the emitted particles. The radial equation (8.29) is integrated next to
determine the grey-body factors and, subsequently, the emitted fluxes.

We will focus on the presentation of results for the rotating phase, since the
dependence on the number of extra dimensions n will become manifest when we fix
the value of the angular-momentum parameter a∗. In Fig. 8.9a [53], we present exact
numerical results for the grey-body factor for a scalar field emitted in the bulk by a
six-dimensional black hole with a∗ = 0.4: the different curves correspond to various
modes characterised by the set of (j, �, m) quantum numbers and show a hierarchical
splitting first on �, then on m and finally on j. Figure 8.9b [53] depicts the behaviour
of the grey-body factor for a bulk scalar field, in the background of a black hole with
n = 1 and a∗ = 1.5, in the super-radiant regime, ω < m ΩH : as in the case of brane
emission, the super-radiance effect is most important for the maximally co-rotating
modes � = m and j = 0, and for low values of n.
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Fig. 8.10 a Energy emission rate for bulk scalar fields from a black hole with a∗ = 1 and variable
n, and b angular-momentum emission rate for bulk scalar fields from a black hole with n = 2 and
variable a∗ [53]

In Fig. 8.10a, we depict the differential energy emission rate for bulk scalar fields
[53], for fixed angular-momentum parameter a∗ = 1, and variable n. The power flux
shows a significant overall enhancement as n increases, with a small suppression at
the low-energy regime and a shift of the peak of the curve towards larger energies—
this behaviour is also identical to the one observed in the case of a spherically-
symmetric black hole emitting scalar particles in the bulk [120]. The particle and
angular-momentum fluxes were also found to have the same behaviour. The angular-
momentum emission rates, presented in Fig. 8.10b for n = 2, show a significant
enhancement over the whole energy regime, as a∗ increases. The power and particle
fluxes, on the other hand, have a more particular profile: for low values of n, the
emission curves are also shifted to the high-energy regime, as a∗ increases, but their
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Fig. 8.11 Energy emission rates for scalar fields in the bulk from a black hole with a n = 2, and
b n = 6, and variable a∗ [53]

peak values are significantly suppressed, as shown in Fig. 8.11a; for large values of
n, the energy and particle emission curves remain almost unchanged as a∗ increases,
apart from a small enhancement in the amount of emission at the high-energy regime;
see Fig. 8.11b.

We now turn to the emission of gravitons in the bulk by a higher-dimensional
black hole. For a spherically-symmetric black hole, the analysis is now complete.
The radial equation (8.31), obeyed by all three types of gravitational perturbations—
scalar, vector and tensor ones—has been solved analytically both in the low [114]
and intermediate-energy regime [137]. The low-energy analysis [114] revealed that
the graviton spectra exhibit the same behaviour as bulk scalar fields [120], i.e. a
suppression at the low-energy regime and a shift of the emission curve towards
higher energies, as n increased. The same analysis showed that, at the lower part of
the energy spectrum, the emission of gravitons is negligible compared to that of bulk
scalar fields, however that was expected to change at higher energies where higher
partial modes would dominate.

That expectation was indeed proved right by the exact numerical analysis per-
formed in [138–140]. It was thus demonstrated that the graviton radiation spectra
were strongly enhanced at the higher part of the spectrum and for large values of n.
The latter was largely due to the fact that the degeneracy factors of the graviton states
(8.43) increase rapidly with both n and � with the higher modes dominating at the
upper part of the spectrum. For example, for a moderate value of �, i.e. � = 5, the
number of graviton states, as n varies from 1 to 6, increases by a factor of 104 [114].
An interesting twist is that the tensor graviton modes, the most negligible degrees
of freedom at the low-energy regime [114], proliferate as n increases. Overall, it is
found [138, 139] that, as n reaches the value 7, a spherically-symmetric black hole
emits 35 times more energy in the bulk in the form of gravitons than in any other
particle on the brane.
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For the case of the simply-rotating black hole (8.17), only the equations for tensor-
type perturbations have been derived, and these are identical to the ones for a bulk
scalar field (8.29–8.30) apart from the allowed values of the angular-momentum
number � (i.e. � ≥ 2 instead of � ≥ 0). These equations were solved both analytically
and numerically in [113], with the two sets shown to agree remarkably well even up to
the intermediate-energy regime. In Fig. 8.12a, b, we present exact numerical results
for the grey-body factor of the lowest tensor-type mode (� = j = 2, m = 0), in terms
of n and a∗, respectively [113]. We observe that, as the number of extra dimensions
n increases, the grey-body factor is suppressed over the whole energy regime—a
similar suppression is exhibited also by bulk scalar fields [53, 120, 133]. On the
other hand, the grey-body factor is strongly enhanced with the angular momentum
of the black hole. Turning to the fluxes, the indicative case of the energy emission
rate is presented in Fig. 8.13a, b [113], in terms again of n and a∗. Similarly to the
case of bulk scalars, the graviton emission rates are significantly enhanced with n,
while the emission is suppressed at the low and intermediate-energy regimes and
enhanced at the high-energy regime as a∗ increases (for large n, the suppression at
the low and intermediate-energy regimes is replaced again by a mild dependence
on a∗).
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8.4.5 Energy Balance Between the Brane and the Bulk

The question of the energy balance between the brane and bulk emission channels is
an important one, not only for its theoretical interest but also for practical purposes:
if we determine what fraction of the available energy of the black hole is lost in the
bulk, we will know how much remains for emission on the brane, and thus how likely
the observation of the Hawking radiation effect will be for the brane observer.

The study of the higher-dimensional spherically-symmetric black hole is, as we
saw, now complete with the exact spectra for all types of brane and bulk particles
being determined. In [53, 120], exact numerical analyses were performed in order
to compare the scalar emissivity of the black hole in the brane and bulk channels.
In the first row of Table 8.1 we display some indicative values of the proportion
of the total power emitted in the bulk by a non-rotating black hole [53, 120]: we
see that the bulk scalar channel is always subdominant to the brane one, but not
necessarily negligible. Although bulk and brane scalar fields “see” the same black-
hole temperature, their grey-body factors behave differently with n, leading to the
emission of more energetic, but significantly fewer bulk scalar fields compared to
the brane ones.

For the brane-localised fermions and gauge bosons and the bulk gravitons, it is
again the relative behaviour of their grey-body factors, but also of their degeneracy
factors, that will determine the result. Regarding the latter, we have already discussed
the rapid proliferation, with n, of the gravitons in the bulk, however, the large number
of Standard Model degrees of freedom living on the brane must also be taken into
account. When all the above are implemented in the analysis, it is found [138, 139]
that the brane channel is the most dominant during the spherically-symmetric phase
of the black hole, a result that agrees with an early analytical argument [141].

The same question of the bulk-to-brane energy balance needs to be posed also
for the rotating phase. The relative scalar emissivity can again be derived since the
radiation spectra for bulk and brane emission are known [53, 54, 127]. The entries
of Table 8.1 reveal that, not only is the bulk scalar channel the subdominant one
also during the rotating phase, but the proportion of the energy emitted in the bulk
reduces with the angular-momentum of the black hole. This is due to the fact that the
enhancement of the grey-body factor with a∗ is not as large for bulk scalar emission
as it is for the brane one.

Since we still lack the complete emission spectra for all types of gravitational
perturbations in the bulk, the question of the energy balance between the brane and
bulk channels for the rotating phase remains open. In [113], the total emissivity of

Table 8.1 Total proportion
of scalar power emitted in the
bulk by a black-hole [53]

n 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%)

a∗ = 0.0 28.3 19.9 17.9 19.6 24.8 34.0

a∗ = 0.5 20.9 13.5 11.8 13.0 16.7 24.0

a∗ = 1.0 12.5 7.1 6.2 6.8 9.1 14.7
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tensor-type gravitons was compared to the one for scalar bulk emission. It was found
that the energy emitted in the bulk, for small values of n, in the form of tensor modes
is less than 1 % of the scalar emissivity but it becomes of the order of 25 %, for
n = 5 and for the indicative value of a∗ = 1. Recalling that the tensor modes were
the dominant gravitational ones in the bulk in the case of the spherically-symmetric
phase, we may conclude that, for low values of n, the brane channel wins the energy-
balance contest in the rotating phase, too. Whether the same situation holds for large
values of n (or larger values of a∗) will be decided only when the exact emission
spectra for vector and scalar-type graviton modes are found.

8.4.6 Additional Effects in Hawking Radiation

We now discuss some further aspects of the Hawking radiation emission process. In
all the studies mentioned so far, the different types of particles emitted by the black
hole were assumed for simplicity to be massless. The presence of the mass, however,
is expected to cause a suppression of the grey-body factors since the emission of a
massive field demands more energy, and thus it is less likely to happen. The effect
of the mass on the radiation spectra was studied in [58, 142, 143], for scalar fields
emitted by a higher-dimensional rotating black hole, and in [144, 145], for vector
fields, both transverse and longitudinal modes, on a D-dimensional Schwarzschild
background. It was demonstrated that the suppression is indeed more prominent the
larger the mass of the emitted field, as depicted in Fig. 8.14a [142]. Although the
brane channel remains the dominant one, in [142], it was shown that the presence of
the mass enhances the bulk-over-brane energy ratio up to a factor of 34 %.

The effect of the charge of the emitted particles was studied in [143, 145, 146].
In [146], a spherically-symmetric Reissner-Nordström black hole was considered,
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and it was shown that the charge of a scalar particle, similarly to its mass, causes
a suppression in the bulk and brane emission spectra and enhances the bulk-to-
brane emissivity. In [145], the case of a charged vector field was studied, and an
inverted charge splitting effect as well as the analogue of a superradiance effect were
observed in the radiation spectra. The case of a higher-dimensional rotating black
hole with a brane-localised Maxwell field was considered in [143]. Although only
brane emission of scalars and fermions was studied, an interesting effect was found:
the radiation process exhibits a charging-up phase at the low-energy regime (where
the black hole emits particles with an opposite charge compared to its own) while a
phase of discharging dominates at higher energies.

In addition to particle properties, parameters that characterize the black-hole
space-time background may also affect the radiation spectra and subsequently the
bulk-to-brane energy balance. The cosmological constant Λ, that may be present in
the part of the space-time where the black hole is formed, is one of these parame-
ters. In [147], the radiation spectra for scalar fields emitted by a higher-dimensional
Schwarzschild-de Sitter black hole were studied. It was found that both bulk and
brane emission rates are enhanced as the value of Λ increases, with the spectrum
exhibiting a novel feature, i.e. a non-vanishing emission rate at the lowest part of
the energy regime (see Fig. 8.14b). The presence of the cosmological constant was
shown to increase the bulk-to-brane relative emissivity. In the case of a Kerr-de Sitter
black hole [148], a similar enhancement is found when the Bousso-Hawking defini-
tion of the black hole temperature is used, whereas the use of the Hawking definition
leads instead to a small decrease.

Higher-order curvature terms, such as the Gauss-Bonnet term, may be also taken
into account during the decay of the black hole. Their effect on the emission spectra
strongly depends on the mass of the black hole, the value of the coupling constant,
and the type and energy of the emitted particle: for scalar fields, they can tilt the
bulk-to-brane energy ratio in favour of the bulk [149], while, for gravitons, they
can cause the suppression of their emission by many orders of magnitude leading
to an increased life-time of the black hole [150]. Another counter-example of the
claim that black holes radiate mainly on the brane appeared in [151] where it was
shown that, in the context of a supersymmetric split-fermion model, the bulk fermion
emission dominates over the brane one for n > 1. On the other hand, including non-
commutative geometry-inspired corrections to the black hole metric significantly
lowers the black hole temperature, and the bulk emission is greatly suppressed [152].

8.5 Hawking Radiation from Black Holes in the RS Model

Given the absence of an analytical solution describing a five-dimensional asymptot-
ically AdS black hole localised on the brane, no exact results may be presented for
the Hawking radiation process from such a black hole. Nevertheless, a number of
partial or approximate results have appeared in the literature that may shed light on
some aspects of this process.
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In the RS-II model, the AdS length scale �AdS plays the role of the effective size
of the fifth dimension. On the other hand, the size of the black hole is given by
the horizon radius rh. If rh � �AdS , the black hole is insensitive to the warping
along the fifth dimension, and it resembles a black hole in a five-dimensional flat
space-time whose line-element is described by either the Myers-Perry (8.17) or the
Tangherlini solution. In this limit, it shares all the properties of black holes in a
higher-dimensional flat space-time. For example, if we assume for simplicity that
the black hole is non-rotating, its horizon radius-mass relation and temperature will
be given by

rh =
√

8

3π

1

M5

(
M

M5

)1/2

, TBH = 1

2πrh
, (8.51)

where M and M5 are the black-hole mass and the fundamental Planck scale, respec-
tively. The above expressions follow readily from the corresponding (4 + n)-
dimensional ones [153] after setting n = 1. Compared to a four-dimensional black
hole of the same mass, for which rh = 2M/M2

P and TBH = 1/4πrh, a small brane-
world black hole has a larger horizon radius and, thus, a smaller temperature. There-
fore, its evaporation rate will be significantly suppressed leading to a longer lifetime
[154]

tevap(5D)

tevap(4D)
∼

(
�AdS

rh(5D)

)2

, (8.52)

the smaller the horizon radius of the five-dimensional black hole is compared to
�AdS . The above, combined with an increased accretion rate for a brane-world black
hole being formed in the early universe, radically change the mass spectrum of the
primordial black holes that are expected to decay today [154–156].

As the horizon radius increases, the black hole starts to perceive the warping of the
fifth dimension and its properties are correspondingly modified. Unfortunately, only
numerical solutions are available in the literature in this regime. In [157], the thermo-
dynamic properties of such a five-dimensional black-hole solution localised on the
brane were studied. It was demonstrated that, for a small value of the horizon radius,
the properties of the black hole match those of a five-dimensional Schwarzschild-
AdS black hole. For a large value of the horizon radius, they tend to the ones of a
four-dimensional Schwarzschild black hole, while in the intermediate regime they
remain quite distinct from these two limits.

For rh � �AdS , we expect the brane-world black hole to obtain a peculiar shape:
while there is no limit on its size along the brane directions, in the bulk it can-
not extend at distances larger than �AdS due to the localisation of gravity. Thus,
a large brane-world black hole has a “pancake” shape. Although it is genuinely a
higher-dimensional object, it extends so little along the extra dimension and so much
along the usual three that we expect it to be effectively four-dimensional and thus to
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resemble the Schwarzschild solution. That is, if it is allowed by the theory to exist.
Even then, it is not exactly Schwarzschild.

As it was briefly mentioned in Sect. 8.3.1, in reality, the projected line-element on
the brane is not a vacuum solution. A four-dimensional observer would independently
write the effective Einstein’s equations on the brane as Gμν = 8πGN Tμν . According
to the AdS/CFT correspondence [85], this Tμν is the expectation value of the stress-
energy tensor operator for the CFT modes for a suitably chosen vacuum state. The
correspondence dictates that the number of CFT modes living on the brane is given
by N ∼ (�AdS/�P)2 (where �P is the Planck length) and thus, for �AdS � �P, this
number is expected to be very large. In [82], it was then argued that the presence of
such a large number of fields in the vicinity of the black hole will greatly enhance its
evaporation rate resulting in a large-mass black hole having a life-time given by [84]

tevap = 116 ×
(

1 mm

�AdS

)2 (
M

M�

)3

years . (8.53)

For such a rapidly evaporating black hole, no static solution can be found to describe
it even approximately. Since the line-element on the brane is merely the projection of
the five-dimensional one, the bulk solution could not be static either, but rather must
describe an evaporating black hole on the brane while remaining classical. In [82], a
“classical evaporation” process was proposed: instabilities of the solution along the
bulk cause the deformation of the horizon radius and its elongation towards the AdS
boundary; for its total horizon area to remain constant, the area of the intersection
of the black hole with the brane will have to decrease, and that will be viewed by a
four-dimensional observer as an evaporation process.

The authors of [86] counter-argued that the above scenario assumes the involve-
ment of all CFT brane modes in the evaporation process. But if the CFT on the brane
is strongly-coupled, as the AdS/CFT correspondence dictates, would all modes be
available to interact with the four-dimensional black hole? Most likely not, therefore
one should not expect important quantum corrections to the four-dimensional line-
element. In support of this, in [87] a Schwarzschild-AdS4 black string, proven to be
stable, was considered and the question was asked: why is this five-dimensional clas-
sical solution quantum-corrected on the brane (the same question for the black string
of [59] loses part of its validity due to its instability)? The stress-energy tensor for the
boundary field theory was computed and shown to lead to a mere renormalization of
the effective cosmological constant, and not to a radiation term. In addition, in [88]
it was recently suggested that a low-energy theory, such as the CFT theory on the
brane, needs to be carefully UV-completed before predictions for the IR behaviour
of the theory are made. When this is properly done, it follows that the emission of
CFT modes in the RS-II model is significantly suppressed—in fact, it was argued
that, at distances L ≤ N �P, low-energy CFT does not even exist.

The numerical nature of the solutions found in [89–91], describing both small
and large black holes in the RS-II model, does not allow us to analytically study the
effect that the brane tension or the bulk cosmological constant have on the evaporation
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process. In the context of a six-dimensional model, a solution was found [158] that
described a black hole localised on a codimension-two brane with tension. The
solution was asymptotically flat, and not AdS as in the RS-II model, and it had a
peculiar horizon radius-mass relation: the closer the brane tension to the fundamental
scale M6, the larger the horizon radius is. It was shown [159] that an increase in the
brane tension simultaneously decreases the black-hole temperature and increases the
potential barrier, thus causing the suppression of both bulk and brane emission rates.

8.6 Conclusions

In this chapter we have reviewed some key aspects of our understanding of Hawking
radiation from higher-dimensional black holes. One motivation for this study, apart
from its intrinsic theoretical interest, is the exciting possibility of observing Hawking
radiation from microscopic higher-dimensional black holes produced in high-energy
collisions at either the LHC or in cosmic rays.

We began with a discussion of the quantum-field-theoretic foundations of Hawk-
ing radiation, from its original derivation for a quantum field on a dynamical space-
time representing a black hole formed by gravitational collapse, to its modelling
using the Unruh state on an eternal black hole geometry. After a brief review of
classical black hole geometries in both the ADD and RS brane-worlds, most of this
chapter has been devoted to the Hawking emission from these black holes.

For black holes in the ADD brane-world, for which we have an exact space-
time metric, we gave an overview of the formalism used to describe the emission of
massless particles both on the brane and in the bulk. We then reviewed a selection of
results on the nature of the emission, including the important question of how much
Hawking radiation escapes into the bulk and is therefore inaccessible to a brane-
localised observer. Except for the emission of scalar- and vector-like graviton modes
from a rotating black hole, our understanding of the emission of massless particles
is essentially complete. We also briefly summarized some features of the Hawking
radiation when other effects, such as the mass and charge of the emitted particles or
a cosmological constant, are included.

In the RS brane-world, the lack of an exact classical metric for a black hole
localized on the brane implies a scarcity of precise results on the nature of the
Hawking emission from such black holes. We have therefore just briefly outlined
some of the work in the literature in this case.

Our review has revealed that Hawking radiation from higher-dimensional black
holes is more complicated than from four-dimensional black holes, with many fea-
tures depending on the number of extra dimensions and the angular momentum of
the black hole. Many of the results we have outlined in this chapter have been incor-
porated into simulations of black hole events at the LHC [22, 23]. Hawking radiation
from black holes at the LHC characteristically involves large numbers of energetic
particles, the details of the distribution and nature of the particles depending on the
number of extra dimensions, the mass of the black hole and its angular momentum.
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Searches for these types of events have been made at the LHC, with no evidence to
date for black holes [160–165]. This non-observation of black hole events sets lower
bounds on the energy scale of quantum gravity. With the LHC planned to run at
higher energies and searches for high-energy black hole events in cosmic rays, accu-
rate modelling of Hawking radiation from higher-dimensional black holes continues
to be essential for experimental probes of quantum gravity.
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