
Chapter 6
Self-gravitating Bose-Einstein Condensates

Pierre-Henri Chavanis

Abstract Bose-Einstein condensates play a major role in condensed matter physics.
Recently, it has been suggested that they could play an important role in astro-
physics also. Indeed, dark matter halos could be gigantic quantum objects made of
Bose-Einstein condensates. The pressure arising from the Heisenberg uncertainty
principle or from the repulsive scattering of the bosons could stabilize dark mat-
ter halos against gravitational collapse and lead to smooth core densities instead
of cuspy density profiles in agreement with observations. In order to reproduce the
scales of dark matter halos, the mass of the bosons may range from 10−24 eV/c2

to a few eV/c2 depending whether they interact or not. At the scale of galaxies,
Newtonian gravity can be used so the evolution of the wave function is governed
by the Gross-Pitaevskii-Poisson system. Self-gravitating Bose-Einstein condensates
have also been proposed to describe boson stars. For these compact objects, one
must use general relativity and couple the Klein-Gordon equation to the Einstein
field equations. In that context, it has been proposed that neutron stars could be
Bose-Einstein condensate stars due to their superfluid core. Indeed, the neutrons
could form Cooper pairs and behave as bosons. In that case, the maximum mass
of the neutron stars depends on the scattering length of the bosons and can be as
large as 2M�. This could explain recent observations of neutron stars with a mass
much larger than the Oppenheimer-Volkoff limit of 0.7M� obtained by assuming
that neutron stars are ideal fermion stars. Self-gravitating Bose-Einstein condensates
may also find applications in the physics of black holes. For example, when the scat-
tering length of the bosons is negative, a Newtonian self-gravitating Bose-Einstein
condensate becomes unstable above a critical mass and undergoes a gravitational
collapse leading ultimately to a singularity. On the other hand, stable boson stars
with a positive scattering length could mimic supermassive black holes that reside at
the center of galaxies. Finally, it has been proposed that microscopic quantum black
holes could be Bose-Einstein condensates of gravitons. This contribution discusses
fundamental aspects of the physics of self-gravitating Bose-Einstein condensates

P.-H. Chavanis (B)

Laboratoire de Physique Théorique (IRSAMC), CNRS and UPS,
Université de Toulouse, Toulouse, France
e-mail: chavanis@irsamc.ups-tlse.fr

© Springer International Publishing Switzerland 2015
X. Calmet (ed.), Quantum Aspects of Black Holes,
Fundamental Theories of Physics 178, DOI 10.1007/978-3-319-10852-0_6

151



152 P.-H. Chavanis

and considers recent applications in astrophysics, cosmology and black hole physics
with promising perspectives.

Keywords Bose-Einstein condensates · Self-gravitating systems · Dark matter
halos · Quantum black holes

6.1 Introduction

According to contemporary cosmology, the universe is made of about 70 % dark
energy, 25 % dark matter, and 5 % baryonic (visible) matter [1]. Thus, the over-
whelming preponderance of matter and energy in the universe is believed to be dark,
i.e. unobservable by telescopes. The dark energy is responsible for the accelerated
expansion of the universe. Its origin is mysterious and presumably related to the
cosmological constant or to some form of exotic fluid with negative pressure such as
the Chaplygin gas [2]. On the other hand, dark matter is necessary to account for the
observed flat rotation curves of galaxies [3]. Its nature is one of the most important
puzzles in particle physics and cosmology. Many candidates for dark matter have
been proposed, the most popular ones being the axions and the weakly interacting
massive particles (WIMPs) [4].

Dark matter is usually modeled as a cold classical collisionless gas with vanishing
pressure. In the cold dark matter (�CDM) model, primordial density fluctuations are
generated during the inflation and become the seeds of the bottom-up structure for-
mation model. The �CDM model successfully describes the accelerated expansion
of the universe, the temperature fluctuations of the cosmic microwave background
(CMB), and the large-scale structures of the universe [5]. However, it seems to
encounter many problems at the scale of galactic or sub-galactic structures. Indeed,
�CDM simulations [6] lead to r−1 cuspy density profiles at galactic centers (in the
scales of the order of 1 kpc and smaller) while most rotation curves indicate a smooth
core density [7]. In addition, the predicted number of satellite galaxies around each
galactic halo is far beyond what we see around the Milky Way [8].

These problems might be solved, without altering the virtues of the �CDM model,
if the dark matter is composed of Bose-Einstein condensates (BECs) [9]. The wave
properties of the dark matter may stabilize the system against gravitational collapse
providing halo cores instead of cuspy profiles. The resulting coherent configuration
may be understood as the ground state of some gigantic bosonic atom where the
boson particles are condensed in a single macroscopic quantum state ψ(r). In these
models, the formation of dark matter structures at small scales is suppressed by
quantum mechanics. This property could alleviate the problems of the �CDM model
such as the cusp problem and the missing satellite problem.

At the scale of galaxies, the Newtonian approximation is very good so the evolution
of the wave function ψ(r, t) is governed by the Gross-Pitaevskii-Poisson (GPP)
system. Using the Madelung [10] transformation, the Gross-Pitaevskii (GP) equation
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[11–14] turns out to be equivalent to hydrodynamic (Euler) equations involving an
isotropic pressure due to short-range interactions (scattering) and an anisotropic
quantum pressure arising from the Heisenberg uncertainty principle. At large scales,
quantum effects are negligible and one recovers the classical hydrodynamic equations
of the �CDM model which are remarkably successful in explaining the large-scale
structure of the universe. At small scales, gravitational collapse is prevented by
the repulsive scattering or by the uncertainty principle. Quantum mechanics may
therefore be a way to solve the problems of the �CDM model.

The possibility that dark matter could be in the form of BECs has a long history
(see a short review in [15, 16]). In some works [17–34], it is assumed that the
bosons have no self-interaction. In that case, gravitational collapse is prevented by
the Heisenberg uncertainty principle which is equivalent to a quantum pressure. This
leads to a mass-radius relation MR = 9.95 �

2/Gm2. In order to account for the mass
and size of dark matter halos, the mass of the bosons must be extremely small, of the
order of m ∼ 10−24 eV/c2. Ultralight scalar fields like axions may have such small
masses (multidimensional string theories predict the existence of bosonic particles
down to masses of the order of m ∼ 10−33 eV/c2). This corresponds to “fuzzy
cold dark matter” [23]. In other works [35–48], it is assumed that the bosons have
a repulsive self-interaction measured by the scattering length a > 0. In that case,
gravitational collapse is prevented by the pressure arising from the scattering. In
the Thomas-Fermi (TF) approximation which amounts to neglecting the quantum
pressure, the resulting structure is equivalent to a polytrope of index n = 1. Its radius
is given by R = π(a�

2/Gm3)1/2, independent on its mass M. For a ∼ 106 fm,
corresponding to the values of the scattering length observed in terrestrial BEC
experiments [49], this gives a boson mass m ∼ 1 eV/c2 much larger than the mass
m ∼ 10−24 eV/c2 required in the absence of self-interaction. This may be more
realistic from a particle physics point of view. The general mass-radius relation of
self-gravitating BECs at T = 0 with arbitrary scattering length, connecting the non-
interacting limit (a = 0) to the TF limit (GM2 ma/�

2 � 1), has been determined
analytically and numerically in [15, 16].

Since atoms like 7Li have negative scattering lengths in terrestrial BEC
experiments [49], it may be relevant to consider the possibility of self-gravitating
BECs with attractive self-interaction (a < 0). In that case, there exist a maximum
mass Mmax = 1.01�/

√|a|Gm = 5.07MP/
√|λ|, where λ = 8πamc/� is the self-

interaction constant and MP = (�c/G)1/2 is the Planck mass, above which the BEC
collapses [15, 16]. In most applications, this mass is extremely small (when |λ| ∼ 1
it is of the order of the Planck mass MP = 2.18×10−8 kg!) so that the collapse of the
BEC is very easily realized in the presence of attractive self-interactions. This may
lead to the formation of supermassive black holes at the center of galaxies. On the
other hand, when the BEC hypothesis is applied in a cosmological context, an attrac-
tive self-interaction can enhance the Jeans instability and accelerate the formation of
structures in the universe [50].

Self-gravitating BECs have also been proposed to describe boson stars [51–73].
For these compact objects, we must use general relativity and couple the
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Klein-Gordon equation to the Einstein field equations. Initially, the study of boson
stars was motivated by the axion field, a pseudo-Nambu-Goldstone boson of the
Peccei-Quinn phase transition that was proposed as a possible solution to the strong
CP problem in QCD. In the early works of Kaup [51] and Ruffini and Bonazzola [52],
it was assumed that the bosons have no self-interaction. This leads to a maximum
mass of boson stars equal to MKaup = 0.633M2

P/m. Above that mass no equilibrium
configuration exists. In that case, the system collapses to a black hole. This maximum
mass is much smaller than the maximum mass MOV = 0.376M3

P/m2 of fermion stars
determined by Oppenheimer and Volkoff [74] in general relativity. They differ by
a factor m/MP � 1. This is because boson stars are stopped from collapsing by
Heisenberg’s uncertainty principle while for fermion stars gravitational collapse is
avoided by Pauli’s exclusion principle. For m ∼ 1 GeV/c2, corresponding to the
typical mass of the neutrons, the Kaup mass MKaup ∼ 10−19M� is very small while
MOV ∼ 1M�. This describes mini boson stars like axion black holes. The mass of
these mini boson stars may be too small to be astrophysically relevant. They could
play a role, however, if they exist in the universe in abundance [53] or if the axion
mass is extraordinary small leading to macroscopic objects with a mass MKaup com-
parable to the mass of the sun (or even larger) [71]. For example, axionic boson stars
could account for the mass of MACHOs (between 0.3 and 0.8M�) if the axions have
a mass m ∼ 10−10 eV/c2 [68]. It has also been proposed that stable boson stars with a
boson mass m ∼ 10−17 eV/c2 could mimic supermassive black holes (M ∼ 106M�,
R ∼ 107 km) that reside at the center of galaxies [69, 72]. On the other hand,
Colpi et al. [56] assumed that the bosons have a repulsive self-interaction. In the TF
approximation, this leads to a maximum mass Mmax = 0.0612

√
λM3

P/m2 which, for
λ ∼ 1, is of the order of the maximum mass of fermion stars MOV = 0.376M3

P/m2.
The self-interaction has the same effect on the bosons as the exclusion principle on
the fermions. It plays the role of an interparticle repulsion (for λ > 0) that dominates
over uncertainty pressure and prevents catastrophic gravitational collapse. Therefore,
for m ∼ 1 GeV/c2 and λ ∼ 1, this leads to a maximum mass of the order of the solar
mass M�, similar to the mass of neutron stars, which is much larger than the maximum
mass MKaup ∼ 10−19M� obtained in the absence of self-interaction (an interpolation
formula giving the maximum mass for any value of the self-interaction constant λ

is given in [15]). Therefore, self-interaction can significantly change the physical
dimensions of boson stars, making them much more astrophysically interesting. For
example, stellar mass boson stars could constitute a part of dark matter [56, 68]. On
the other hand, Chavanis and Harko [73] have proposed that, due to the superfluid
properties of the core of neutron stars, the neutrons (fermions) could form Cooper
pairs and behave as bosons of mass 2mn, where mn = 0.940 GeV/c2 is the mass
of the neutrons. Therefore, neutron stars could actually be BEC stars! Since the
maximum mass of BEC stars Mmax = 0.0612

√
λM3

P/m2 = 0.307�c2√a/(Gm)3/2

depends on the self-interaction constant λ (or scattering length a), this allows to over-
come the (fixed) maximum mass of neutron stars MOV = 0.376M3

P/m2 = 0.7M�
determined by Oppenheimer and Volkoff [74] by modeling a neutron star as an ideal
gas of fermions of mass mn. By taking a scattering length of the order of 10–20 fm,
we obtain a maximum mass of the order of 2M� [73]. This could account for the
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recently observed neutron stars with masses in the range of 2–2.4M� much larger
than the Oppenheimer-Volkoff limit. For M > Mmax, nothing prevents the gravita-
tional collapse of the star which becomes a black hole. On the other hand, for a boson
mass of the order of m ∼ 1 MeV/c2 and a self-interaction constant λ ∼ 1 we get
Mmax ∼ 106M� and Rmin ∼ 107 km. These parameters are reminiscent of supermas-
sive black holes in active galactic nuclei, so that stable self-interacting boson stars
with m ∼ 1 MeV/c2 could be an alternative to black holes at the center of galaxies
[67]. Finally, it has been proposed recently that microscopic quantum black holes
could be BECs of gravitons stuck at a critical point [75, 76]. We will show that these
results can be understood easily in terms of the Kaup mass and Kaup radius.

This contribution is organized as follows. In Sect. 6.2 we provide general results
concerning the GPP system describing Newtonian self-gravitating BECs. We specif-
ically consider the non-interacting limit and the TF limit. In Sect. 6.3, we obtain
an analytical approximate expression of the mass-radius relation of Newtonian self-
gravitating BECs with positive or negative scattering length by using a Gaussian
ansatz for the wave function and developing a simple mechanical analogy. In Sect. 6.4,
we consider astrophysical applications of Newtonian self-gravitating BECs to dark
matter halos. Finally, in Sect. 6.5, we consider astrophysical applications of general
relativistic BECs to neutron stars, dark matter stars, supermassive black holes, and
microscopic quantum black holes.

6.2 Self-gravitating Bose-Einstein Condensates

6.2.1 The Gross-Pitaevskii-Poisson System

We consider a system of N bosons with mass m in interaction. At T = 0 all the
bosons condense into the same quantum ground state and the system is described by
one order parameter ψ(r, t) called the condensate wave function.1 In the mean-field
approximation, this gas of interacting BECs is governed by the GP equation [11–14]:

i�
∂ψ

∂t
(r, t) = − �

2

2m
Δψ(r, t) + mΦtot(r, t)ψ(r, t), (6.1)

Φtot(r, t) =
∫

ρ(r′, t)u(|r − r′|) dr′, (6.2)

ρ(r, t) = Nm|ψ(r, t)|2,
∫

|ψ(r, t)|2 dr = 1. (6.3)

1 The condensation of the bosons takes place when their thermal (de Broglie) wavelength
λT = (2π�

2/mkBT)1/2 exceeds their mean separation l = n−1/3 (n is the number density of
the bosons). This leads to the inequality nλ3

T > 1 or T < Tc where Tc = 2π�
2n2/3/mkB is the

critical condensation temperature (up to a numerical proportionality factor).
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Equation (6.3) is the normalization condition, Eq. (6.3) gives the density of the
BECs, Eq. (6.2) determines the associated potential, and Eq. (6.1) determines the
evolution of the wave function. We assume that the potential of interaction can be
written as u = uLR + uSR where uLR refers to long-range interactions and uSR to
short-range interactions. For self-gravitating BECs in the Newtonian approximation,
the long-range potential of interaction is given by uLR = −G/|r − r′| where G is the
constant of gravity. We assume that the short-range interaction corresponds to binary
collisions that can be modeled by the effective potential uSR = gδ(r − r′) where the
coupling constant (or pseudo-potential) g is related to the s-wave scattering length
a through g = 4πa�

2/m3 [49]. For the sake of generality, we allow a to be positive
or negative (a > 0 corresponds to a short-range repulsion and a < 0 corresponds to
a short-range attraction). Under these conditions, the total potential can be written
as Φtot = Φ + h(ρ) where Φ(r, t) is the gravitational potential that is the solution
of the Poisson equation ΔΦ = 4πGρ and h(ρ) = gρ = gNm|ψ |2 is an effective
potential modeling short-range interactions. Regrouping these results, we obtain the
GPP system

i�
∂ψ

∂t
= − �

2

2m
Δψ + mΦψ + N

4πa�
2

m
|ψ |2ψ, (6.4)

ΔΦ = 4πGNm|ψ |2. (6.5)

6.2.2 Madelung Transformation

We use the Madelung [10] transformation to rewrite the GP equation (6.4) in the
form of hydrodynamic equations. We write the wavefunction as

ψ(r, t) = A(r, t)eiS(r,t)/�, (6.6)

where A(r, t) and S(r, t) are real functions. We clearly have A = √|ψ |2 and
S = (�/2i) ln (ψ/ψ∗). Following Madelung, we introduce the density and the veloc-
ity fields

ρ = NmA2 = Nm|ψ |2, u = 1

m
∇S. (6.7)

The flow is irrotational since ∇ × u = 0. Substituting Eq. (6.6) in Eq. (6.4) and
separating real and imaginary parts, we obtain

∂ρ

∂t
+ ∇ · (ρu) = 0, (6.8)

∂S

∂t
+ 1

2m
(∇S)2 + mΦ + 4πa�

2

m2 ρ + Q = 0, (6.9)
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where

Q = − �
2

2m

Δ
√

ρ√
ρ

= − �
2

4m

[
Δρ

ρ
− 1

2

(∇ρ)2

ρ2

]
(6.10)

is the quantum potential. The first equation is similar to the equation of continuity in
hydrodynamics. It accounts for the conservation of mass M = ∫

ρ dr. The second
equation has a form similar to the classical Hamilton-Jacobi equation with an addi-
tional quantum term. It can also be interpreted as a generalized Bernouilli equation
for a potential flow. Taking the gradient of Eq. (6.9), and using the well-known iden-
tity (u · ∇)u = ∇(u2/2) − u × (∇ × u) which reduces to (u · ∇)u = ∇(u2/2) for
an irrotational flow, we obtain an equation similar to the Euler equation

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p − ∇Φ − 1

m
∇Q (6.11)

with a quantum potential Q and a pressure

p = 2πa�
2

m3 ρ2 (6.12)

corresponding to a polytropic equation of state p = Kρ1+1/n with a polytropic
constant K = 2πa�

2/m3 and a polytropic index n = 1 (i.e. γ = 1 + 1/n = 2).
Using the equation of continuity (6.8), we can rewrite Eq. (6.11) as

∂

∂t
(ρu) + ∇(ρu ⊗ u) = −∇p − ρ∇Φ − ρ

m
∇Q. (6.13)

In conclusion, the GPP system is equivalent to the hydrodynamic equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (6.14)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p − ∇Φ − 1

m
∇Q, (6.15)

ΔΦ = 4πGρ. (6.16)

We shall refer to these equations as the quantum Euler-Poisson system. When the
quantum potential can be neglected, we obtain the classical Euler-Poisson system.
The quantum potential (6.10) first appeared in the work of Madelung [10] and was
rediscovered by Bohm [77] (it is sometimes called “the Bohm potential”). We note
the identity −(1/m)∇Q ≡ −(1/ρ)∂jPij where Pij is the quantum pressure tensor

Pij = − �
2

4m2 ρ ∂i∂j ln ρ or Pij = �
2

4m2

(
1

ρ
∂iρ∂jρ − δijΔρ

)
. (6.17)
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These identities show that the quantum potential Q is equivalent to an anisotropic
pressure Pij. By contrast, the potential of short-range interaction h(ρ) is equivalent to
an isotropic pressure p(ρ). This pressure is different from a thermodynamic pressure.
In particular, it is negative for an attractive self-interaction (a < 0).

6.2.3 Time-Independent GP Equation

If we consider a wavefunction of the form

ψ(r, t) = A(r)e−iEt/�, (6.18)

we obtain the time-independent GP equation

− �
2

2m
Δφ(r) + mΦ(r)φ(r) + N

4πa�
2

m
φ(r)3 = Eφ(r), (6.19)

where φ(r) ≡ A(r) is real and ρ(r) = Nmφ2(r). Dividing Eq. (6.19) by φ(r), we get

mΦ + 4πa�
2

m2 ρ − �
2

2m

Δ
√

ρ√
ρ

= E. (6.20)

This relation can also be derived from the quantum Hamilton-Jacobi equation (6.9)
by setting S = −Et. Combined with the Poisson equation (6.5) or (6.16), we obtain
an eigenvalue equation for the wave function φ(r), or for the density ρ(r), where
the eigenvalue is the eigenenergy E. In the following, we shall be interested by the
fundamental eigenmode corresponding to the smallest value of E. For this mode,
the wave function φ(r) is spherically symmetric and has no node so that the density
profile decreases monotonically with the distance. The “excited” modes (presenting
nodes or oscillations) are unstable and decay to the ground state.

6.2.4 Hydrostatic Equilibrium

The time-independent solution (6.20) can also be obtained from the quantum Euler
equation since it is equivalent to the GP equation. The steady state of the quantum
Euler equation (6.15), obtained by setting ∂t = 0 and u = 0, satisfies

∇p + ρ∇Φ − �
2ρ

2m2 ∇
(

Δ
√

ρ√
ρ

)
= 0. (6.21)
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This generalizes the usual condition of hydrostatic equilibrium by incorporating
the contribution of the quantum potential. Equation (6.21) describes the balance
between the gravitational attraction, the repulsion due to the quantum potential,
and the repulsion (for a > 0) or the attraction (for a < 0) due to the short-range
interaction (scattering). This equation is equivalent to Eq. (6.20). Indeed, integrating
Eq. (6.21) using Eq. (6.12), we obtain Eq. (6.20) where the eigenenergy E appears as
a constant of integration. On the other hand, combining Eq. (6.21) with the Poisson
equation (6.16), we obtain the fundamental equation of hydrostatic equilibrium for
self-gravitating systems including the quantum potential

−∇ ·
(∇p

ρ

)
+ �

2

2m2 Δ

(
Δ

√
ρ√

ρ

)
= 4πGρ. (6.22)

This equation is actually valid for an arbitrary equation of state p(ρ) [15]. For the
equation of state (6.12), it becomes

− 4πa�
2

m3 Δρ + �
2

2m2 Δ

(
Δ

√
ρ√

ρ

)
= 4πGρ. (6.23)

Assuming spherical symmetry, this equation can be solved numerically [16] to yield
the density profile ρ(r) and the mass-radius relation for any value of the scattering
length a. There are two important limits that we discuss in the following.

6.2.5 The Non-interacting Case

In the non-interacting case (a = p = 0), the condition of hydrostatic equilibrium
(6.21) reduces to

ρ∇Φ − �
2ρ

2m2 ∇
(

Δ
√

ρ√
ρ

)
= 0. (6.24)

This corresponds to the balance between the gravitational attraction and the repul-
sion due to the quantum pressure arising from the Heisenberg uncertainty principle.
Combined with the Poisson equation (6.16), we obtain the differential equation

�
2

2m2 Δ

(
Δ

√
ρ√

ρ

)
= 4πGρ. (6.25)

This equation has been solved numerically in [16, 18, 52]. The density decays
smoothly to infinity. The radius of the configuration containing 99 % of the mass is
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R99 = 9.95
�

2

GMm2 . (6.26)

We note that R99 = 9.95aB/N where aB = �
2/Gm3 is the gravitational Bohr radius.

6.2.6 The Thomas-Fermi Approximation

The TF approximation amounts to neglecting the quantum potential in Eq. (6.21).
In that case, Eq. (6.21) reduces to the usual condition of hydrostatic equilibrium

∇p + ρ∇Φ = 0. (6.27)

This corresponds to the balance between the gravitational attraction and the repul-
sion due to the short-range interaction (when a > 0). Combined with the Poisson
equation (6.16), we obtain the fundamental equation of hydrostatic equilibrium for
self-gravitating systems

− ∇ ·
(∇p

ρ

)
= 4πGρ. (6.28)

For the equation of state (6.12), it can be rewritten as

Δρ + Gm3

a�2 ρ = 0. (6.29)

This equation, which is equivalent to the Lane-Emden equation for a polytrope of
index n = 1, can be solved analytically [78]. The density profile is given by the
formula

ρ(r) = ρ0R

πr
sin

(πr

R

)
, (6.30)

where ρ0 is the central density and

R = π

(
a�

2

Gm3

)1/2

(6.31)

is the radius of the configuration at which the density vanishes (the density has a
compact support) [15, 35, 37, 39, 40]. The radius of a polytrope n = 1 is inde-
pendent on its mass M [78]. The radius containing 99 % of the mass is given by
R99 = 0.954R. The central density is determined by the mass according to ρ0 =
πM/4R3 = (M/4π2)

(
Gm3/a�

2
)3/2

. Finally, it can be shown that polytropes with
index γ > 4/3, including the polytrope γ = 2 (n = 1) corresponding to Eq. (6.12),
are nonlinearly dynamically stable with respect to the classical Euler-Poisson system.
Therefore, the density profile (6.30) valid in the TF limit is dynamically stable.
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6.2.7 Validity of the Thomas-Fermi Approximation

In the absence of short-range interaction, the structure of the self-gravitating BEC
results from the balance between the gravitational attraction and the quantum pressure
arising from the Heisenberg uncertainty principle. Using dimensional analysis in
Eq. (6.23), i.e. writing �

2/m2R4 ∼ GM/R3, we obtain the length-scale

RQ = �
2

GMm2 (6.32)

which gives the typical size of a self-gravitating BEC with mass M without short-
range interaction (a = 0).

In the TF approximation, in which the quantum potential is negligible, the struc-
ture of the self-gravitating BEC results from the balance between the gravitational
attraction and the short-range repulsion due to scattering (when a > 0). Using dimen-
sional analysis in Eq. (6.23), i.e. writing (a�

2/m3R2)(M/R3) ∼ GM/R3, we obtain
the length-scale

Ra =
(

a�
2

Gm3

)1/2

=
(

λ�
3

8πGm4c

)1/2

=
√

λ

8π

MP

m
λc (6.33)

which gives the typical size of a self-gravitating BEC with scattering length a > 0
in the TF approximation (we have introduced the self-interaction constant λ and the
Compton wavelength λc defined in Appendix 6.7).

Considering Eq. (6.23) again, the quantum pressure and the pressure arising
from the short-range interaction become comparable when (|a|�2/m3R2)(M/R3) ∼
�

2/m2R4, i.e. N |a|/R ∼ 1. Estimating R by Eq. (6.32) or (6.33), this condition can be
rewritten χ ∼ 1 where we have introduced the important dimensionless parameter

χ ≡ GM2m|a|
�2 = |λ|

8π

GM2

�c
= |λ|

8π

M2

M2
P

. (6.34)

When χ � 1, we are in the TF limit in which the quantum potential is negligible. This
corresponds to Ra � RQ. In that case, the equilibrium state results from the balance
between gravitational attraction and repulsive scattering (when a > 0). Alternatively,
when χ � 1, we are in the non-interacting limit in which scattering is negligible. This
corresponds to Ra � RQ. In that case, the equilibrium state results from the balance
between gravitational attraction and quantum pressure. The transition between these
two regimes occurs for χ ∼ 1. For a given value of the scattering length a, the TF
approximation is valid when M � Ma where

Ma = �√
Gm|a| =

(
8π�c

G|λ|
)1/2

= MP√
|λ|
8π

, (6.35)
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and the non-interacting approximation is valid when M � Ma. For a given value of
the mass M, the TF approximation is valid when

|a| � �
2

GM2m
, m � �

2

GM2|a| ,
|λ|
8π

� �c

GM2 = M2
P

M2 . (6.36)

Remark With the mass Ma and the radius Ra we can form a density ρa =
Ma/R3

a = Gm4/a2
�

2, an energy Ea = GM2
a/Ra = �(Gm)1/2/|a|3/2, and a time

ta = 1/
√

Gρa = |a|�/Gm2. In the figures we shall use dimensionless variables
normalized by Ma, Ra, ρa, Ea, and ta (for given a). This is equivalent to taking
� = G = m = |a| = 1 in the dimensional equations of the text.

6.2.8 The Total Energy

The total energy associated with the GPP system (6.4)–(6.5), or equivalently with
the quantum Euler-Poisson system (6.14)–(6.16), can be written as

Etot = �c + �Q + U + W . (6.37)

The first two terms correspond to the total kinetic energy � = N�2

2m

∫ |∇ψ |2 dr.
Using the Madelung transformation, it can be decomposed into the “classical” kinetic
energy �c and the “quantum” kinetic energy �Q defined by

�c =
∫

ρ
u2

2
dr, �Q = 1

m

∫
ρQ dr. (6.38)

Substituting Eq. (6.10) in Eq. (6.38), the quantum kinetic energy can be rewritten as

�Q = − �
2

2m2

∫ √
ρΔ

√
ρ dr

= �
2

2m2

∫
(∇√

ρ)2 dr = �
2

8m2

∫
(∇ρ)2

ρ
dr. (6.39)

This functional was introduced by von Weizsäcker [79] and is related to the Fisher
entropy SF = ∫

(∇ρ)2/ρ dr [80]. The third term in Eq. (6.37) is the internal energy

U = 2πa�
2

m3

∫
ρ2 dr = 2πa�

2

m
N2

∫
|ψ |4 dr (6.40)

which is quadratic in ρ and quartic in ψ . The fourth term is the gravitational potential
energy of interaction
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W = 1

2

∫
ρΦ dr. (6.41)

It is shown in Appendix 6.8 that the total energy is conserved: Ėtot = 0. As a
result, a minimum of the total energy functional Etot[ρ, u] at fixed mass determines
a steady state of the quantum Euler-Poisson system (6.14)–(6.16) that is formally
nonlinearly dynamically stable [81]. Writing the variational principle in the form
δEtot − αδM = 0 where α (chemical potential) is a Lagrange multiplier accounting
for the mass constraint, and using the results of Appendix 6.8, we obtain u = 0 and
the steady state equation (6.20) with E = mα. Therefore, the eigenenergy E/m may
be interpreted as a chemical potential α.

Remark Since the stable steady states of the quantum Euler-Poisson system are
minima of energy Etot at fixed mass, they can be determined by a relaxation method.
Indeed, they can be obtained by solving the quantum Smoluchowski-Poisson (SP)
system (see Eqs. (120)–(121) of [82]) that decreases the energy Etot at fixed mass
(in this context, the quantum SP system is interpreted as a numerical algorithm).

6.2.9 The Virial Theorem

From the quantum Euler-Poisson system (6.14)–(6.16), we can derive the time-
dependent Virial theorem (see Appendix 6.9):

1

2
Ï = 2(�c + �Q) + 3U + W , (6.42)

where I = ∫
ρr2 dr is the moment of inertia. At equilibrium (Ï = �c = 0), we

obtain the time-independent Virial theorem

2�Q + 3U + W = 0. (6.43)

On the other hand, the total energy reduces to Etot = �Q + U + W . Finally, multi-
plying the steady state Eq. (6.20) by ρ and integrating over the configuration, we
obtain the identity �Q+2U+2W = NE. These are exact results valid at equilibrium.

6.3 The Gaussian Ansatz

To obtain the density profile of a self-gravitating BEC and the mass-radius relation,
we have to solve the differential Eq. (6.23) expressing the condition of hydrosta-
tic equilibrium. This can be done numerically [16]. However, we can also obtain
approximate analytical results by using a Gaussian ansatz [15].
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6.3.1 The Total Energy

We shall calculate the energy functional (6.37) by making a Gaussian ansatz

ρ(r) = M

R3

1

π3/2 e− r2

R2 (6.44)

for the density profile. The central density is ρ(0) = M/(π3/2R3). The radius con-
taining 99 % of the total mass is R99 = 2.38R. Using Eq. (6.44), the moment of
inertia, the quantum kinetic energy, the internal energy, and the gravitational energy
are given by

I = αMR2, �Q = σ
�

2M

m2R2 , U = ζ
2πa�

2M2

m3R3 , W = −ν
GM2

R
(6.45)

with the coefficients α = 3/2, σ = 3/4, ζ = 1/(2π)3/2, and ν = 1/
√

2π .
For a density profile of the form ρ(r, t) = (M/R(t)3)f (r/R(t)) and for a velocity

profile of the form u(r, t) = H(t)r, the equation of continuity (6.14) implies that
H = Ṙ/R. We then find that the classical kinetic energy is given by �c = 1

2αMṘ2.
Regrouping the foregoing expressions, the energy functional (6.37) can be rewritten
as a function of R and Ṙ (for a fixed mass M) as

Etot = 1

2
αM

(
dR

dt

)2

+ V(R) (6.46)

with

V(R) = σ
�

2M

m2R2 + ζ
2πa�

2M2

m3R3 − ν
GM2

R
. (6.47)

Equation (6.46) may be interpreted as the total energy of a fictive particle with mass
αM and position R moving in a potential V(R). The potential V(R) is plotted in
Fig. 6.1 in the different cases considered below.

6.3.2 The Mass-Radius Relation

A stable equilibrium state of the quantum Euler-Poisson system (6.14)–(6.16) is a
minimum of the energy functional Etot[ρ, u] given by Eq. (6.37) at fixed mass M.
Within the Gaussian ansatz, we are led to determining the minimum of the function
Etot(R, Ṙ) given by Eq. (6.46) at fixed mass M. Clearly, we must have Ṙ = 0, implying
that a minimum of energy at fixed mass is a steady state. Then, we must determine
the minimum of the potential energy V(R). Computing the first derivative of V(R)

and setting V ′(R) = 0, we obtain the mass-radius relation
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Fig. 6.1 The potential V(R) of the effective mechanical problem

M = 2σ

ν

�2

Gm2R

1 − 6πζa�2

νGm3R2

. (6.48)

This relation may also be obtained from the equilibrium Virial theorem (6.43) by
making the Gaussian ansatz (see Sect. 6.3.3). On the other hand, a critical point
of V(R), satisfying V ′(R) = 0, is an energy minimum if, and only if, V ′′(R) > 0.
Computing the second derivative of V(R) and using the mass-radius relation (6.48),
we get

V ′′(R) = νGM2

R3

(
1 + 6πζa�

2

νGm3R2

)
. (6.49)

Let us consider asymptotic limits of the mass-radius relation:
(i) In the non-interacting case (a = 0), we obtain

R = 2σ

ν

�
2

GMm2 . (6.50)

This relation results from the balance between the attractive effect of gravity and the
repulsive effect of the quantum pressure (Heisenberg’s uncertainty principle). This
solution is stable because it is an energy minimum (V ′′(R) > 0). The radius R99
containing 99 % of the mass is R99 = 8.96 �

2/GMm2. This can be compared with
the exact result (6.26) giving Rexact

99 = 9.95 �
2/GMm2. The agreement is fairly good.

(ii) In the TF approximation when a > 0, we get

R =
(

6πζ

ν

)1/2 (
a�

2

Gm3

)1/2

. (6.51)
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This relation results from the balance between the attractive effect of gravity and
the repulsive effect of the scattering (short-range interactions). This solution is sta-
ble because it is an energy minimum (V ′′(R) > 0). The radius is independent on
the mass. The radius R99 containing 99 % of the mass is given by R99 = 4.12(a�

2/

Gm3)1/2. This can be compared with the exact result (6.31) giving Rexact
99 = 3.00(a�

2/

Gm3)1/2. The agreement is less good than in the non-interacting case. The reason is
related to the fact that the distribution (6.30) has a compact support so that it is quite
different from a Gaussian.

(iii) In the non-gravitational limit when a < 0, we get

R = 3πζ

σ

M|a|
m

. (6.52)

This relation results from the balance between the attractive effect of the scattering
and the repulsive effect of the quantum pressure. This solution is unstable because
it is an energy maximum (V ′′(R) < 0). The radius R99 containing 99 % of the mass
is given by R99 = 1.90M|a|/m.

We now come back to the general case:
(i) We first consider self-gravitating BECs with repulsive short-range interactions

(a > 0). The mass-radius relation is represented in Fig. 6.2. There exist one, and
only one, solution for each value of the mass and it is stable since, according to Eq.
(6.49), it is an energy minimum (V ′′(R) > 0); see Fig. 6.1. The radius is a decreasing
function of the mass. For M → +∞, the radius R tends to a minimum value Rmin
given by Eq. (6.51). For M → 0, the radius R → +∞ with the scaling (6.50). The
TF approximation is valid for M � Ma, i.e. R ∼ Ra ∼ Rmin and the non-interacting
approximation is valid for M � Ma, i.e. R � Ra ∼ Rmin.

5 6 7 80 1 2 3 4 9 10

R
99

0

50

100

150

M

a > 0

Rmin

TF limit

S

Non-interacting limit

Fig. 6.2 Mass-radius relation of self-gravitating BECs with repulsive self-interaction (a > 0).
There is a minimum radius Rmin corresponding to M → +∞. All the configurations are stable
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Fig. 6.3 Mass-radius relation of self-gravitating BECs with attractive self-interaction (a < 0).
There is a maximum mass Mmax corresponding to a critical radius R∗. The configurations with
R > R∗ are stable and the configurations with R < R∗ are unstable

(ii) We now consider self-gravitating BECs with attractive short-range interactions
(a < 0). The mass-radius relation is represented in Fig. 6.3. There exist a maximum
mass and a corresponding critical radius

Mmax =
(

σ 2

6πζν

)1/2
�√

Gm|a| , R∗ =
(

6πζ

ν

)1/2 ( |a|�2

Gm3

)1/2

. (6.53)

They are related to each other by Mmax = (σ/ν)�2/Gm2R∗. The approximate val-
ues Mmax = 1.08�/

√
Gm|a| and R∗

99 = 4.13(|a|�2/Gm3)1/2 obtained with the
Gaussian ansatz [15] are in fairly good agreement with the exact results Mexact

max =
1.01�/

√
Gm|a| and (R∗

99)
exact = 5.5(|a|�2/Gm3)1/2 obtained numerically [16]. For

M > Mmax, there is no equilibrium state (no critical point of energy) and the system
undergoes gravitational collapse (see Fig. 6.4). Since quantum mechanics (Heisen-
berg’s uncertainty principle) cannot arrest gravitational collapse, the self-gravitating
BEC is expected to form a black hole. For M < Mmax, there exist two solutions
with the same mass. However, according to Eq. (6.49), only the solution with the
largest radius R > R∗ is stable (minimum of energy V ′′(R) > 0). The other solution
is an unstable maximum of energy (V ′′(R) < 0); see Fig. 6.1. We can check that the
change of stability (V ′′(R) = 0) occurs at the turning point of mass (M ′(R) = 0)
in agreement with the Poincaré theory of linear series of equilibria and with the
theory of catastrophes (see [15] for more details). On the stable branch, the radius
is a decreasing function of the mass. The non-interacting approximation is valid for
M � Ma ∼ Mmax with R � Ra ∼ R∗. For M → 0, the radius R → +∞ with
the scaling (6.50). For M → Mmax, the radius R tends to the minimum stable value
R∗. On the unstable branch, the radius is an increasing function of the mass. The
non-gravitational approximation is valid for M � Ma ∼ Mmax with R � Ra ∼ R∗.
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Fig. 6.4 Collapse of a self-gravitating BEC with attractive self-interaction (a < 0) when M >

Mmax. We have represented the BEC radius R(t) as a function of time by solving Eq. (6.54) starting
from a configuration with a radius R0 and without velocity (Ṙ0 = 0). The solution is (2/αM)1/2t =∫ R0

R(t) dR/
√

V(R0) − V(R) (solid line). The collapse generates a finite time singularity, i.e. the radius
vanishes in a finite time. The collapse time tcoll is obtained from the foregoing expression by setting
R(tcoll) = 0 giving (2/αM)1/2tcoll = ∫ R0

0 dR/
√

V(R0) − V(R). The solution can then be rewritten

as (2/αM)1/2(tcoll − t) = ∫ R(t)
0 dR/

√
V(R0) − V(R). In the figure, we have taken M = 1.2, R0 = 1,

and Mmax = 1.08 yielding (2/αM)1/2tcoll = 1.69. For t → tcoll , the collapse is only driven by
the attractive self-interaction and the radius behaves as R(t) � (25πζ |a|�2M/αm3)1/5(tcoll − t)2/5

(dashed line). This scaling is different from the scaling R(t) ∝ (tcoll − t)1/2 obtained by directly
solving the non-gravitational GP equation with an attractive self-interaction [83]. Therefore, the
Gaussian ansatz is not qualitatively accurate to describe the collapse of a BEC

For M → 0, the radius R → 0 with the scaling (6.52). However, these configura-
tions are inaccessible since they are dynamically unstable (energy maxima). If the
system is initially placed on the unstable branch (RU < R∗), it can either (i) undergo
gravitational collapse (R(t) → 0), (ii) evaporate (R(t) → +∞) if its energy Etot

is positive2 or (iii) oscillate around the stable equilibrium state with a larger radius
(RS > R∗) if its energy Etot is negative; see Fig. 6.1. It may also relax towards the
stable equilibrium state with a larger radius (R(t) → RS > R∗) provided that it is
able to dissipate energy, e.g. by radiation or due to some damping. On the other hand,
since the stable states are only metastable (local minima of energy), due to classical
or quantum fluctuations (tunneling effect), the system initially put in a metastable
state may cross the barrier of potential played by the unstable state and ultimately
collapse.

2 Using Eq. (51) of [16] obtained with the Gaussian ansatz, we find that Etot > 0 when M <

(
√

3/2)Mmax and R < R∗/
√

3.
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6.3.3 The Virial Theorem

Using the Gaussian ansatz, the time-dependent Virial theorem (6.42) can be written
after simplification as [15]:

αM
d2R

dt2 = −dV

dR
. (6.54)

This equation describes the motion of a fictive particle with mass αM and position
R in a potential V(R). From Eq. (6.54), we find that the total energy Etot = �c +
V defined by Eq. (6.46) is conserved: Ėtot = 0. The equilibrium Virial theorem
(d2R/dt2 = 0) returns the mass-radius relation (6.48) obtained from the condition
dV/dR = 0. In this mechanical analogy, a stable equilibrium state corresponds to a
minimum of V(R) as we have previously indicated.

6.3.4 The Pulsation Equation

To study the linear dynamical stability of a steady state of Eq. (6.54), we make a small
perturbation about that state and write R(t) = R + ε(t) where R is the equilibrium
radius and ε(t) � R is the perturbation. Using V ′(R) = 0 and keeping only terms
that are linear in ε, we obtain the equation

d2ε

dt2 + ω2ε = 0, (6.55)

where ω is a complex pulsation given by

ω2 = 1

αM
V ′′(R). (6.56)

A steady state is linearly stable if, and only if, ω2 > 0; that is to say if, and only
if, it is a (local) minimum of energy V(R). In that case, the system oscillates about
its equilibrium with a pulsation ω. Otherwise, the perturbation grows exponentially
rapidly with a growth rate λ+ = √−ω2 > 0 (the other mode is damped at a rate
λ− = −√−ω2 < 0). Computing V ′′(R) from Eq. (6.47), and using Eq. (6.45), we
find that

ω2 = 6�Q + 12U + 2W

I
. (6.57)

In the non-interacting case (U = 0), using the Virial theorem (6.43), we get ω2 =
−W/I . In the TF approximation (�Q = 0), using the Virial theorem (6.43), we
obtain ω2 = −2W/I . This expression coincides with the Ledoux formula ω2

Ledoux =
(4 − 3γ )W/I [84] for a polytrope of index γ = 2. Using the Gaussian ansatz,
we obtain ω = (ν/α)1/2t−1

D = 0.516 t−1
D in the non-interacting case and ω =
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(2ν/α)1/2t−1
D = 0.729 t−1

D in the TF approximation, where tD = (R3/GM)1/2 is the
dynamical time.

From Eqs. (6.48), (6.49) and (6.56), we obtain the nice identity

dM

dR
= − 1

2σ

m2R3

�2 V ′′(R) = − α

2σ

m2MR3

�2 ω2. (6.58)

This identity relates the slope of the mass-radius relation M(R) to the complex pul-
sation ω. It first shows that a change of stability (ω = 0) occurs at a turning point
of mass (dM/dR = 0). Furthermore, it shows that a branch with a negative slope
(dM/dR < 0) is stable (ω2 > 0) whereas a branch with a positive slope (dM/dR > 0)
is unstable. This is an illustration of the Poincaré turning point criterion.

6.4 Application of Newtonian Self-gravitating BECs
to Dark Matter Halos

In this section, we apply the model of Newtonian self-gravitating BECs to dark matter
halos. In the numerical applications, we consider a typical dark matter halo of mass
M = 3 × 1011M�, radius R = 10 kpc = 3.09 × 1020 m, density ρ = M/R3 =
2.02 × 10−23 g/cm3, and dynamical time tD = 1/

√
Gρ = 27 Myrs.

6.4.1 The Non-interacting Case

In the non-interacting case (a = 0), the typical radius of a self-gravitating BEC is
given by Eq. (6.32). It may be rewritten as

RQ

1 kpc
= 8.54 × 10−37 M�

M

(
1 eV/c2

m

)2

. (6.59)

The exact radius of a self-gravitating BEC without self-interaction containing 99 %
of the mass is R99 = 9.95RQ. In order to reproduce the typical scales of dark matter
halos, the mass of the bosons must be of the order of m = 1.68 × 10−24 eV/c2 [17].
Such an ultralight particle corresponds to “fuzzy cold dark matter” [23].

6.4.2 The Thomas-Fermi Approximation

In the TF approximation, the typical radius of a self-gravitating BEC with a repulsive
self-interaction (a > 0) is given by Eq. (6.33). It may be rewritten as
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Fig. 6.5 Relation between the boson mass m and the self-interaction constant λ (solid lines) or
the scattering length a (dashed lines) in order to reproduce the typical scales of dark matter halos,
supermassive black holes, and stellar mass objects (neutron stars, Machos. . .). One can see that the
TF approximation is valid even for very small values of a and λ, and that the self-interaction can
considerably increase the required value of the boson mass as discussed in the text

Ra

1 kpc
= 5.56 × 10−3

( a

1 fm

)1/2
(

1 eV/c2

m

)3/2

, (6.60)

Ra

1 kpc
= 78.1

√
λ

8π

(
1 eV/c2

m

)2

. (6.61)

The exact radius of a self-gravitating BEC with a repulsive self-interaction in the TF
approximation is R = πRa. In order to reproduce the typical scales of dark matter
halos, the mass of the bosons must be of the order of

m

1 eV/c2 = 1.45 × 10−2
( a

1 fm

)1/3
,

m

1 eV/c2 = 4.95

(
λ

8π

)1/4

. (6.62)

For a = 106 fm, which corresponds to the typical value of the scattering length
observed in laboratory BEC experiments [49], this gives a mass m = 1.45 eV/c2

[40] much larger than in the non-interacting case (see Sect. 6.4.1). The corresponding
value of the self-interaction constant is λ/8π = 7.35 × 10−3. Therefore, a self-
interaction λ ∼ 1 can increase the required value of the boson mass from m ∼
10−24 eV/c2 to m ∼ 1 eV/c2 (see Fig. 6.5) which may be more realistic from a
particle physics point of view.

It is important to realize that the radius R of a self-interacting BEC directly
determines the ratio a/m3 or λ/m4. For a typical dark matter halo, we obtain
m3/a = 3.05 × 10−6 (eV/c2)3/fm and m4/λ = 23.9 (eV/c2)4. Inversely, the spec-
ification of m and a (or λ) determines the radius of the halo.



172 P.-H. Chavanis

6.4.3 Validity of the Thomas-Fermi Approximation

The TF approximation is valid when M � Ma where Ma is the characteristic mass
given by Eq. (6.35). It may be rewritten as

Ma

M�
= 1.54 × 10−34

(
1 fm

|a|
)1/2 (

1 eV/c2

m

)1/2

,
Ma

M�
= 1.09 × 10−38

√
8π

|λ| .
(6.63)

For a typical dark matter halo, the TF approximation is valid when [15, 16]:

m

1 eV/c2 � 2.63 × 10−91 1 fm

|a| ,
|λ|
8π

� 1.33 × 10−99. (6.64)

Therefore, the TF approximation is valid even for an extremely (!) small value of
a or λ fulfilling the condition (6.64). According to Eq. (6.36), this is due to the
smallness of (MP/M)2. For the values a = 106 fm, m = 1.45 eV/c2, and λ/8π =
7.35 × 10−3 considered in [40], the condition (6.64) is fulfilled by more than 90
orders of magnitude so that the TF approximation is perfect. In that case, the density
profile (6.30) is steady and stable. Alternatively, for the values m ∼ 10−24 eV/c2,
a ∼ 10−67 fm, and λ/8π ∼ 10−99 considered in [44], the TF approximation is not
valid. This is the reason why the authors of [48] find that the profile (6.30) is not
steady in that case. Indeed, the TF condition on which this profile is based is not
satisfied. Note that the general dark matter halo profile that is the solution of the full
condition of hydrostatic equilibrium (6.21) has been calculated numerically in [16]
for different values of a and m. This calculation does not make any approximation.

6.4.4 The Case of Attractive Self-interactions

For a self-gravitating BEC with an attractive self-interaction (a < 0), there exist a
maximum mass Mmax = 1.01Ma. The corresponding radius containing 99 % of the
mass is R∗

99 = 5.5Ra. This can be rewritten as [15, 16]:

Mmax = 1.01
MP√

|λ|
8π

, R∗
99 = 5.5

√ |λ|
8π

MP

m
λc. (6.65)

If |λ| ∼ 1 the maximum mass is of the order of the Planck mass MP = 2.18×10−8 kg.
Of course, this is ridiculously small at the scale of dark matter halos meaning that
a self-gravitating BEC with an attractive self-interaction is extremely unstable. The
maximum mass (6.65) becomes of the order of the typical mass of dark matter halos
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for |λ|/8π = 1.36 × 10−99. The corresponding radius is of the order of the typical
radius of dark matter halos provided that m = 1.26×10−24 eV/c2. This corresponds
to a scattering length |a| = 2.13 × 10−67 fm.

Let us consider a self-gravitating BEC without self-interaction (λ = 0) represent-
ing a typical dark matter halo of mass M = 3 × 1011M�. This halo is stable. We
now assume that the bosons have a small attractive self-interaction (λ < 0). The halo
becomes unstable when M > Mmax. Using Eq. (6.65), we find that the dark matter
halo becomes unstable as soon as

|a|
1 fm

> 2.69 × 10−91 1 eV/c2

m
,

|λ|
8π

> 1.36 × 10−99. (6.66)

Therefore, a very small attractive self-interaction can destabilize a dark matter halo.
This shows that no self-interaction (λ = 0) is very different from a small self-
interaction (λ → 0). For m = 1.68 × 10−24 eV/c2, we find that the halo becomes
unstable when |a| > 1.60 × 10−67 fm. In that case, it forms a black hole.

In we assume |λ| ∼ 1, we find that Mmax ∼ MP and, consequently, M � Mmax
for dark matter halos. Therefore, we can make the TF approximation and neglect
the effect of the quantum pressure. In that case, the BEC collapses due to the effect
of self-gravity and attractive scattering (see Fig. 6.4). Since quantum mechanics
(Heisenberg’s uncertainty principle) cannot stabilize the BEC against gravitational
collapse, this process can lead to a supermassive black hole (of course, close to
the singularity, the Newtonian approximation is not relevant anymore and we must
use general relativity). For the numerical application, we take a = −106 fm which
corresponds to the typical scattering length of 7 Li atoms in laboratory BEC exper-
iments [49]. We also take a boson mass m = 1.45 eV/c2 as in Sect. 6.4.2. This
gives a self-interaction constant λ/8π = −7.35 × 10−3. The maximum mass is
Mmax = 1.29 × 10−37M� much smaller than the mass M = 3 × 1011M� of dark
matter halos. If we consider a configuration with an initial radius R0 = 10 kpc, we
find that the collapse time is of the order of tD ∼ 1/(GM/R3

0)
1/2 ∼ 27 Myrs. To be

specific, we have taken the parameters of Sect. 6.4.2 by just reverting the sign of a.
Other numerical applications with a total mass M ∼ 106M� of the order of the mass
of supermassive black holes, and a smaller initial radius R0, could be more relevant.

6.5 Application of General Relativistic BECs to Neutron Stars,
Dark Matter Stars, and Black Holes

The Newtonian approximation is valid when the radius R of a configuration with mass
M is much larger than the Schwarzschild radius RS = 2GM/c2 or, equivalently, when
M � Rc2/G. This condition can be rewritten as M/M� � 0.677R/km. For a typical
dark matter halo, the term in the left hand side is of order 1011 while the term in the
right hand side is of order 1017. Therefore, this condition is fulfilled by 6 orders of
magnitude so that the Newtonian approximation is very good for dark matter halos.
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By contrast, for compact objects similar to neutron stars for which M ∼ 1M� and
R ∼ 10 km (yielding a typical density ρ ∼ M/R3 ∼ 2×1015 g/cm3 and a dynamical
time tD ∼ 1/

√
Gρ ∼ 10−4 s), we must use general relativity.

6.5.1 Non-interacting Boson Stars

In the absence of short-range interaction, the mass-radius relation of a non-relativistic
self-gravitating BEC is given by Eq. (6.26). This relation is valid as long as the
radius is much larger than the Schwarzschild radius RS = 2GM/c2. Equating the
two relationships, and introducing the Planck mass, we obtain the scaling of the
maximum mass of a relativistic self-gravitating BEC without self-interaction

Mr
Q = �c

Gm
= M2

P

m
. (6.67)

The exact value of the maximum mass of non-interacting boson stars was determined
by Kaup [51] by solving the Klein-Gordon-Einstein equations. It is given by MQ

max =
0.633Mr

Q. The radius Rr
Q = GMr

Q/c2 corresponding to Eq. (6.67) is

Rr
Q = �

mc
= λc. (6.68)

It scales as the Compton wavelength of the particles that compose the BEC. More
precisely, the exact minimum radius of non-interacting boson stars containing 95 %
of the mass is given by RQ

min = 6.03Rr
Q [60]. The maximum mass and the mini-

mum radius are related to each other by RQ
min = 9.53GMQ

max/c2. The Newtonian

approximation is valid when M � MQ
max and R � RQ

min.
The typical mass and typical radius of non-interacting boson stars may be rewritten

as
Mr

Q

M�
= 1.34 × 10−10 eV/c2

m
,

Rr
Q

km
= 1.48

Mr
Q

M�
. (6.69)

For m ∼ 1 GeV/c2, corresponding to the typical mass of the neutrons, the Kaup mass
MQ

max ∼ 10−19M� ∼ 1011 kg and the Kaup radius RQ
min ∼ 10−19 km are very small.

This describes mini boson stars. They have the characteristics of primordial black
holes whose lifetime is of the order of the present age of the universe (∼3 billion
years) [85]. These mini boson stars could play a role for dark matter if they exist in
the universe in abundance.

The Kaup mass becomes of the order of the solar mass if the bosons have a mass
m ∼ 10−10 eV/c2 (leading to a Kaup radius of the order of the km). For example,
axionic boson stars could account for the mass of MACHOs (between 0.3 and 0.8M�)
if the axions have such a small mass [68].
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For dark matter halos modeled as non-interacting BECs with a boson mass
m ∼ 10−24 eV/c2 (see Sect. 6.4.1), we find that MQ

max ∼ 1014M� much larger
than the typical mass of dark matter halos M ∼ 1011M�. Therefore, the Newtonian
approximation can be used for dark matter halos since M � MQ

max.

6.5.2 The Thomas-Fermi Approximation for Boson Stars

In the TF approximation, the radius of a non-relativistic self-gravitating BEC with
repulsive self-interaction (a > 0) is given by Eq. (6.31). It is independent on the mass
M. The Newtonian approximation is valid as long as the radius (6.31) is much larger
than the Schwarzschild radius RS = 2GM/c2. Equating these two relationships, and
introducing the Planck mass, we obtain the scaling of the maximum mass of a rela-
tivistic self-gravitating BEC with repulsive self-interaction in the TF approximation

Mr
a = �c2√a

(Gm)3/2 =
√

λ

8π

1

m2

(
�c

G

)3/2

=
√

λ

8π

M3
P

m2 . (6.70)

The exact value of the maximum mass of a boson star in the TF approximation was
determined by Colpi et al. [56] by solving the Klein-Gordon-Einstein equations and
by Chavanis and Harko [73] by solving the Tolman-Oppenheimer-Volkoff (TOV)
equation with an appropriate equation of state. It is given by Ma

max = 0.500Mr
a if

we use a non-relativistic equation of state and by Ma
max = 0.307Mr

a if we use a
relativistic equation of state [73]. For λ ∼ 1, the maximum mass of self-interacting
boson stars scales as the Oppenheimer-Volkoff maximum mass M3

P/m2 of neutron
stars while the Kaup maximum mass of non-interacting boson stars scales as M2

P/m.
Therefore, in the presence of self-interaction, the maximum mass of a boson star
is much larger than the Kaup mass by a factor MP/m � 1, so that it becomes
astrophysically relevant.

The radius Rr
a = GMr

a/c2 corresponding to Eq. (6.70) is given by

Rr
a =

(
a�

2

Gm3

)1/2

=
(

λ�
3

8πGm4c

)1/2

=
√

λ

8π

MP

m
λc (6.71)

as in the Newtonian approximation. The exact minimum radius of a relativistic self-
gravitating BEC with repulsive self-interactions in the TF approximation is given by
Ra

min = 1.89Rr
a for a non-relativistic equation of state and by Ra

min = 1.92Rr
a for a

relativistic equation of state [73]. For λ ∼ 1, the radius of a self-interacting BEC is
much larger than the Compton wavelength since MP/m � 1. The maximum mass
and the minimum radius are related to each other by Ra

min = 3.78GMa
max/c2 for a

non-relativistic equation of state and by Ra
min = 6.25 GMa

max/c2 for a relativistic
equation of state. The Newtonian approximation is valid when M � Ma

max and
R � Ra

min.
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The previous equations may be rewritten as

Mr
a

M�
= 3.66

( a

fm

)1/2
(

GeV/c2

m

)3/2

, (6.72)

Mr
a

M�
= 1.62

√
λ

8π

(
GeV/c2

m

)2

,
Rr

a

km
= 1.48

Mr
a

M�
. (6.73)

For m ∼ 1 GeV/c2, corresponding to the typical mass of the neutrons, and a ∼ 1 fm
corresponding to λ ∼ 1, the maximum mass Ma

max of self-interacting boson stars is
of the order of the solar mass, and their corresponding radius Ra

min is of the order of
the kilometer, as in the case of neutron stars. These parameters could describe boson
stars with relevant masses.

We emphasize that the mass M or the radius R of a self-interacting boson star
directly determines the ratio a/m3 or λ/m4. Taking M = 1 M�, we obtain m3/a =
3.35 (GeV/c2)3/fm and m4/λ = 2.61×10−2 (GeV/c2)4 for a non-relativistic equa-
tion of state and m3/a = 1.26 (GeV/c2)3/fm and m4/λ = 9.84 × 10−3 (GeV/c2)4

for a relativistic equation of state.
In order to reproduce the typical mass M ∼ 1 M� of neutron stars, the mass of

the bosons must be of the order of

m

1 GeV/c2 = 1.50
( a

1 fm

)1/3
,

m

1 GeV/c2 = 0.900

(
λ

8π

)1/4

(6.74)

for a non-relativistic equation of state and

m

1 GeV/c2 = 1.08
( a

1 fm

)1/3
,

m

1 GeV/c2 = 0.705

(
λ

8π

)1/4

(6.75)

for a relativistic equation of state. For a ∼ 1 fm, this gives a mass m ∼ 1 GeV/c2

much larger than in the non-interacting case (see Sect. 6.5.1). This corresponds to
a self-interaction constant λ ∼ 1. Therefore, a self-interaction λ ∼ 1 can increase
the required value of the boson mass from m ∼ 10−10 eV/c2 to m ∼ 1 GeV/c2 (see
Fig. 6.5).

For dark matter halos modeled as self-interacting BECs in the TF approximation
with a boson mass m ∼ 1 eV/c2 and a scattering length a ∼ 106 fm (see Sect. 6.4.2)
we find that Ma

max ∼ 1017M� much larger than the typical mass of dark matter halos
M ∼ 1011M�. Therefore, the Newtonian approximation can be used for dark matter
halos since M � Ma

max.



6 Self-gravitating Bose-Einstein Condensates 177

6.5.3 Validity of the Thomas-Fermi Approximation

The TF approximation is valid when Mr
a � Mr

Q or Rr
a � Rr

Q. It is convenient to
introduce the dimensionless parameter

� = |a|c2

Gm
= |λ|

8π

�c

Gm2 = |λ|
8π

M2
P

m2 . (6.76)

The TF approximation is valid when � � 1 and the non-interacting approximation
is valid when � � 1. For a given value of m, the TF approximation is valid when

|a| � Gm

c2 ,
|λ|
8π

� Gm2

c�
= m2

M2
P

. (6.77)

For a given value of a or λ, the TF approximation is valid when

m � |a|c2

G
, m �

( |λ|c�

8πG

)1/2

=
√ |λ|

8π
MP. (6.78)

These conditions may be rewritten as

|a|
1 fm

1 GeV/c2

m
� 1.32 × 10−39,

|λ|
8π

(
1 GeV/c2

m

)2

� 6.71 × 10−39. (6.79)

Therefore, the TF approximation is valid even for an extremely (!) small value of λ

fulfilling the condition (6.79). According to Eq. (6.77), this is due to the smallness
of m2/M2

P. For the values of a, m, and λ given in the previous section, the condition
(6.79) is fulfilled by more than 30 orders of magnitude, so that the TF approximation
is perfect.

6.5.4 An Interpolation Formula Between the Non-interacting
Case and the TF Approximation

The mass-radius relation of a non-relativistic self-gravitating BEC with repulsive
short-range interactions may be approximated by

M = 9.95
�2

Gm2R

1 − 8.99 a�2

Gm3R2

. (6.80)

To obtain this expression, we have used Eq. (6.48) based on the Gaussian ansatz
and we have adapted the numerical factors in order to recover the exact results in the
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non-interacting case and in the TF limit (the radius R represents the radius containing
99 % of the mass). In the relativistic regime, equating the radius R with the Schwarz-
schild radius RS = 2GM/c2, we obtain the following approximate expressions for
the maximum mass and the minimum radius of a relativistic self-gravitating BEC
with repulsive short-range interactions

Mmax = 0.633
√

1 + c1�
M2

P

m
, Rmin = 6.03

√
1 + c2�λc, (6.81)

where (c1, c2) = (0.624, 0.0982) for a non-relativistic equation of state and
(c1, c2) = (0.235, 0.101) for a relativistic equation of state. Again, the numerical
factors have been adapted in order to recover the exact results in the non-interacting
case and in the TF limit (the radius R represents the radius containing 95 % of
the mass).

When M > Mmax, there is no equilibrium state and the self-gravitating BEC is
expected to collapse and form a black hole. When M < Mmax, there exist stable equi-
librium states with R > Rmin that correspond to boson stars for which gravitational
collapse is prevented by quantum mechanics.

6.5.5 Application to Supermassive Black Holes

It has been proposed by certain authors [67, 69, 72] that stable boson stars could
mimic supermassive black holes that reside at the center of galaxies. In the absence
of self-interaction, the mass of the bosons must be of the order of m = 3.25 ×
10−17 eV/c2 in order to reproduce the mass M = 2.61 × 106M� of Sgr A∗ [69].
The corresponding boson star radius is R = 3.68 × 107 km. These ultralight bosons
could appear in very recent phase transitions and belong to the Goldstone sector. For
self-interacting bosons with λ ∼ 1 the required mass is raised from m ∼ 10−17 to
m ∼ 1 MeV/c2 [67] (see Fig. 6.5). More generally, in order to reproduce the typical
mass M ∼ 106M� of supermassive black holes, the mass of the bosons must be of
the order of

m

1 MeV/c2 = 0.150
( a

1 fm

)1/3
,

m

1 MeV/c2 = 0.9

(
λ

8π

)1/4

(6.82)

for a non relativistic equation of state and

m

1 MeV/c2 = 0.108
( a

1 fm

)1/3
,

m

1 MeV/c2 = 0.705

(
λ

8π

)1/4

(6.83)

for a relativistic equation of state. These intermediate mass bosons could appear
during cosmological evolution (e.g., soft inflationary events). Finally, if the boson
mass is comparable to the Higgs mass (∼125 GeV/c2), then the center of the galaxy
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could be a non-topological soliton star [86]. The Higgs particle could be a natural
candidate as constituent of a boson condensation if the phase transition occurred in
early epochs.

Furthermore, it has been shown that boson stars with m = 1.2 × 10−16 eV/c2,
M = 2.8 × 106M� and � = 20 can mimic the spectrum of an accretion disk
produced by a Schwarzschild black hole with the same mass [72] (while boson stars
with � = 0 show a hardening of the spectrum at high frequencies [87]). Therefore,
it was suggested that boson stars with a small self-interaction can be black hole
candidates [72].

6.5.6 Application to Neutron Stars and Dark Matter Stars

According to the study of Chavanis and Harko [73], the maximum mass and minimum
radius of general relativistic BEC stars in the TF limit are

Ma
max

M�
= 1.83

( a

fm

)1/2
(

GeV/c2

m

)3/2

,
Ra

min

km
= 5.59

Ma
max

M�
(6.84)

for a non-relativistic equation of state and

Ma
max

M�
= 1.12

( a

fm

)1/2
(

GeV/c2

m

)3/2

,
Ra

min

km
= 9.26

Ma
max

M�
(6.85)

for a relativistic equation of state. The mass-radius relation is represented in Fig. 6.6.
It is parameterized by the central density of the star. For a relativistic equation of
state, it has a snail-like structure as in the case of neutron stars modeled by the
ideal Fermi gas [74, 88, 89]. This is because the equation of state becomes linear
(p = ρc2/3) in the ultra-relativistic regime (high central densities) [90]. In the non-
relativistic regime (low central densities) we recover the Newtonian radius (6.31)
that corresponds here to a maximum radius. Using the Poincaré theory, or the theory
of catastrophes, one can show that the series of equilibria becomes unstable after the
turning point of mass (M ′(R) = 0) so that only configurations with M < Ma

max and
Ra

min < R < Rmax are stable.
Chavanis and Harko [73] have proposed that, due to the superfluid properties of

the core of neutron stars, the neutrons (fermions) could form Cooper pairs and behave
as bosons of mass 2mn. They can then make a BEC through the BCS/BEC crossover
mechanism. Therefore, neutron stars could actually be BEC stars. Since the maximum
mass of BEC stars Ma

max = 0.0612
√

λM3
P/m2 = 0.307�c2√a/(Gm)3/2 depends

on the self-interaction constant λ (or scattering length a), it can be larger than the
Oppenheimer-Volkoff limit MOV = 0.376M3

P/m2
n = 0.7M� obtained by assuming

that neutron stars can be modeled as an ideal gas of fermions (the corresponding
radius is R = 9.36 GMOV /c2 = 3.52(MP/mn)λc = 9.6 km and the corresponding
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Fig. 6.6 Mass-radius relation of general relativistic BEC stars in the TF limit (solid line relativistic
equation of state; dashed line non-relativistic equation of state). The series of equilibria is stable
until the point of maximum mass

density is ρ = 5 × 1015 g cm−3). By taking a scattering length of the order of 10–
20 fm (hence λ/8π ∼ 95.2−190), we obtain a maximum mass of the order of 2M�,
a central density of the order of 1–3×1015 g cm−3, and a radius in the range of 10–
20 km [73]. This could account for the recently observed neutron stars with masses
in the range of 2–2.4M� larger than the Oppenheimer-Volkoff limit.

The general relativistic treatment of BEC stars by Chavanis and Harko [73] can
also be applied straightforwardly to the description of condensate dark matter stars
that may have formed in the primordial universe by Jeans instability. These compact
objects should contain a significant fraction of condensate dark matter in their core
and behave as BEC stars with the critical mass and radius given by Eqs. (6.84) and
(6.85) above. When a condensate dark matter star is formed, it may accrete some
material from space [91, 92]. The accretion process may increase the mass of the
condensate star and, if the maximum mass is exceeded, cause the collapse of the
condensate star. This collapse may form black holes from the dark matter star and
have signature in the observations of high redshift long γ -ray bursts.

6.5.7 Are Microscopic Quantum Black Holes Bose-Einstein
Condensates of Gravitons?

The Kaup mass (6.67), which is the maximum mass of a stable self-gravitating
BEC resulting from the balance between quantum pressure (Heisenberg’s uncertainty
principle) and gravity in general relativity, scales as M ∼ M2

P/m. If N denotes
the number of bosons in the BEC, so that M = Nm, we get N ∼ M2

P/m2. On
the other hand, the Kaup radius scales as R ∼ GM/c2 ∼ GM2

P/mc2 ∼ �/mc ∼
λc ∼ (MP/m)lP where lP = (�G/c3)1/2 = 1.62 × 10−35 m is the Planck length.
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This corresponds to the “most packed” stable configuration. If we assume that the
BEC remains stuck at the critical point, and if we take the number of bosons N
as the sole characteristic of the BEC, the foregoing relations imply m ∼ MP/

√
N ,

M ∼ √
NMP, and R ∼ √

NlP. If we view microscopic quantum black holes as
BECs of gravitons at a critical point, these scalings agree with those obtained by
Dvali and Gomez [75] and Casadio and Orlandi [76] in a more phenomenological
manner [the Gaussian profile obtained in [76] is also consistent with the Gaussian
ansatz (6.44)]. In that interpretation, m is the effective mass of the gravitons and
N is the occupation number of gravitons in the gravitational field, or the number
of internal degrees of freedom of the black hole. For the gravitational interaction
−Gm2/r, the coupling constant scales as α ∼ m2/M2

P ∼ l2
P/λ2

c ∼ 1/N . We note
that these scalings emerge naturally from the expression of the Kaup mass and Kaup
radius, and N simply represents the number of bosons in the BEC. If we argue
that the entropy of the “BEC black hole” scales as SBH ∼ kBN (originating from
the exponentially growing with N number of quantum states [75]), we immediately
recover the expression of the Bekenstein entropy SBH ∼ kBR2/l2

P stating that the
entropy of a black hole scales as its area [93]. Finally, defining the temperature
by the thermodynamical expression d(Mc2) = TdSBH , we obtain the scaling of the
Hawking temperature kBT ∼ mc2 ∼ M2

Pc2/M ∼ �c3/GM ∼ �c/R ∼ MPc2/
√

N ∼
kBTP/

√
N where TP = (�c5/Gk2

B)1/2 = 1.42 × 1032 K is the Planck temperature.
Inversely, if we define the temperature by kBT ∼ mc2, we can derive from the first law
of thermodynamics d(Mc2) = TdSBH the black hole entropy SBH ∼ N ∼ kBR2/l2

P.
In summary, we have the scalings

m ∼ MP√
N

, M ∼ √
NMP, R ∼ √

NlP, S ∼ kBN, T ∼ TP√
N

, α ∼ 1

N
.

(6.86)

These scalings assume that the BEC remains stuck at the Kaup quantum critical
point. As a result, the effective mass of the gravitons (that are massless) increases as
N decreases (see below). We can also obtain the scalings (6.86) from the maximum
mass (6.70) provided that the self-interaction constant scales as λ ∼ m2/M2

P ∼ 1/N
(i.e. a ∼ λ�/mc ∼ Gm/c2 ∼ (m/MP)lP ∼ lP/

√
N) which corresponds to the limit

of validity of the TF approximation. We note that aS = 2Gm/c2 is the Schwarzschild
radius of a particle of mass m.

As shown by Dvali and Gomez [75], the Hawking radiation3 according to which
black holes lose mass and energy, and the negative specific heat of the black holes4

immediately result from the quantum depletion of the condensates by spontaneous

3 In the semi-classical limit, the radiation of a black hole may be obtained from the Stefan-Boltzmann
law Ṁc2 ∼ −AσT4 ∼ −�c6/G2M2 where σ ∼ k4

B/c2
�

3 is the black body constant and A ∼ R2

the black hole area. Using the scalings (6.86), this equation may be rewritten as Ṅ ∼ −1/(tP
√

N)

where tP = (�G/c5)1/2 = 5.39×10−44 s is the Planck time. After integration, we obtain the scaling
of the evaporation time of a black hole τ ∼ M3G2/�c4 ∼ N3/2tP .
4 Using E ∼ Mc2 ∼ �c5/GkBT , we get C = dE/dT ∼ −�c5/GkBT2 < 0 so that the temperature
increases as the black hole loses mass and energy.
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particle emission. Actually, the arguments of Dvali and Gomez [75] generalize the
semi-classical results of Hawking (N � 1) to the fully quantum regime (small N).
We note that the mass M ∼ √

NMP and the area A ∼ R2 ∼ Nl2
P of a black hole are

quantized since N (occupation number) is an integer [94]. Each transition reduces
the horizon area of a black hole by an integer number of Planck units. For N = 1
(ground state), we get R ∼ lP, M = m ∼ MP, and T ∼ TP leading to Planck-
size black holes (the Schwarzschild radius aS = 2Gm/c2 is of the order of the
gravitational Bohr radius aB = �

2/Gm3) [76] . These smallest black holes, instead
of conventional Hawking evaporation [85, 95], are either stable (similarly to the
n = 1 orbit of an electron around a proton whose stability is explained by quantum
mechanics) or decay into the light fields in a single quantum jump. The classical limit
is recovered for N � 1. Quantization of the horizons, and the notion of a minimal
length in gravity, may eliminate physical singularities in cosmology (big bang and
big crunch) [96]. Classical singularities may be replaced by a Planck black hole (with
mass MP and size lP) and the scale factor a(t) of the universe may become quantized
as we approach the Planck scale. We note that in order to describe the inflationary
era, the early universe viewed as a primordial black hole must gain energy and grow
instead of radiating energy and decay. We therefore require a reversed flux of energy.

6.6 Conclusion

In this contribution, we have discussed some applications of self-gravitating BECs
in astrophysics and their possible relation to black holes. We have exposed their
elementary properties in Newtonian gravity and general relativity. There are many
topics related to self-gravitating BECs that we have not discussed. They concern
for example their formation by Jeans instability [15, 23, 28, 30, 33, 97, 98], their
rotation leading to quantum vortex lattices [45, 99–103], their solitonic behavior
[104–106], their gravitational cooling through emission of scalar field radiation
[60, 65, 107], and their application to cosmology [50, 108–119]. Furthermore, we
have exclusively considered BECs at T = 0 but the case of finite temperature BECs is
also important [116, 120–126]. We refer to [64, 68, 127–136] for additional reviews
on the subject.

An important potential application of self-gravitating BECs concerns the super-
fluid core of neutron stars and the notion of BEC stars [73]. For these compact
objects, general relativity must be used and leads to the existence of a maximum
mass Mmax = 0.0612

√
λM3

P/m2 = 0.307�c2√a/(Gm)3/2 above which no equi-
librium is possible. For M < Mmax, stable BEC stars may describe neutron stars
with a mass larger than the Oppenheimer-Volkoff limit [73]. For M > Mmax, the
BECs should collapse and form stellar mass black holes. The formation of super-
massive black holes is also possible if the BECs have negative scattering lengths
corresponding to attractive short-range interactions. Again, there exist a maximum
mass Mmax = 1.012�/

√|a|Gm = 5.07MP/
√|λ| (usually very small) above which

the BECs collapse [15]. On the other hand, stable BEC stars with a small (repulsive)
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self-interaction may mimic supermassive black holes that reside at the center of
galaxies [67, 69, 72]. Finally, the recent idea that black holes are BECs of gravitons
stuck at a critical point [75] is fascinating.

Another application of self-gravitating BECs concerns dark matter halos. For
these gigantic diluted objects, the Newtonian approximation can be used. In that
context, the interest of the BEC model is to avoid the cusp problem and the missing
satellite problem of the �CDM model. Indeed, gravitational collapse is prevented
at small scales by the Heisenberg uncertainty principle or by repulsive short-range
interactions. However, this scenario also encounters some problems. In the non-
interacting case, the mass of the bosons must be extremely small, of the order of
m ∼ 10−24 eV/c2, in order to reproduce the properties of dark matter halos [17].
The existence of particles with such small masses is not established (but it is not ruled
out neither). On the other hand, for self-interacting BECs in the TF approximation,
the radius of the halo turns out to be independent on the total mass, and fixed by
the properties of the bosons (their mass and scattering length) [40]. This is a major
drawback of the BEC model because it implies that all the halos should have the same
radius (unless the characteristics of the bosons change from halo to halo), which is
clearly not the case. Going beyond the TF approximation does not help because it is
found [15, 16] that the size of the self-gravitating BECs decreases with their mass
while cosmological observations reveal that the size of the halos increases with the
mass. It is possible that the BEC model at T = 0 describes only small halos (dwarf
galaxies). In order to describe large halos, finite temperature effects should be taken
into account. Finite temperature effects in the self-gravitating Bose gas have been
studied in [120–122, 125]. In that case, the system has a core-halo structure with a
small condensed core (equivalent to a BEC at T = 0) surrounded by an extended
isothermal classical atmosphere of non-condensed bosons.

Another possible scenario is that dark matter is made of fermions (such as massive
neutrinos) instead of bosons. This model also solves the cusp problem and the missing
satellite problem. In that case, gravitational collapse is prevented at small scales by
the Pauli exclusion principle. As for bosons, it may be necessary to consider the
Fermi gas at finite temperature that displays interesting phase transitions between
gaseous states and condensed states [137]. Originally, the self-gravitating Fermi gas
at finite temperature with neutrino masses in the ∼ eV/c2 range was proposed as
a model for dark matter halos (e.g. M = 1012M� and R = 100 kpc) and clusters
of galaxies [138–140]. Then, it was suggested that degenerate superstars composed
of weakly interacting fermions in the ∼ 10 keV/c2 range could be an alternative
to the supermassive black holes that are reported to exist at the centers of galaxies
(e.g. M = 2.6 × 106M� and R = 18 mpc in our Galaxy) [141–143]. Finally, it was
shown that a weakly interacting fermionic gas at finite temperature could provide a
self-consistent model of dark matter that describes both the center and the halo of the
galaxies [144]. Since the density of a self-gravitating isothermal sphere decreases
as r−2 at large distances, this model is consistent with the flat rotation curves of the
galaxies. On the other hand, since the core is degenerate in the sense of quantum
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mechanics (Pauli exclusion principle), it leads to flat density profiles and avoids the
cusp problem of cold dark matter models. In addition, the gravitational collapse of
fermionic matter leads to a compact object (fermion ball) at the center of the galaxy
that could be an alternative to a central black hole.

One difficulty with the finite temperature self-gravitating Bose and Fermi gases
is to explain how the particles have thermalized and reached a statistical equilib-
rium state. Indeed, the relaxation time of self-gravitating systems is usually very
large, exceeding the age of the universe by many orders of magnitude [1]. To solve
this timescale problem, we have proposed [15] that dark matter should be consid-
ered as a collisionless system (made either of fermions or bosons) described by the
Vlasov-Poisson system and undergoing a form of violent relaxation. This process,
initially introduced by Lynden-Bell [145] in stellar dynamics, leads to a distribu-
tion function similar to the Fermi-Dirac distribution function. In that case, the origin
of the “degeneracy” is due to dynamical constraints (Liouville’s theorem) instead
of quantum mechanics (Pauli’s principle). This theory was initially developed to
describe collisionless stellar systems such as elliptical galaxies. In that case, the
non-degenerate limit may be the most relevant [145]. However, this approach (with
dynamical degeneracy retained) could also apply to dark matter halos [146, 147].
In that case, gravitational collapse is prevented by Lynden-Bell’s type of exclu-
sion principle. Furthermore, this approach provides a much more efficient relaxation
mechanism than the fermionic scenario. Indeed, the violent relaxation of collisionless
systems (leading to the Lynden-Bell statistics) takes place on a few dynamical times
while the collisional relaxation of fermions (leading to the Fermi-Dirac statistics) is
very long and possibly unrealistic. Therefore, it is not clear how the fermions have
thermalized and how they can possess sufficiently high temperatures. By contrast,
the Lynden-Bell theory predicts a high effective temperature (even if T = 0 ini-
tially), a r−2 density profile at large distances consistent with the flat rotation curves
of galaxies, and an effective exclusion principle at short distances that could avoid
the cusp problem and lead to fermion balls mimicking black holes, just as in the
fermionic scenario. These features are remarkably consistent with the observations
of dark matter halos making this alternative scenario very attractive.

In the fermionic and bosonic models, the smooth core density of dark matter
halos is justified by quantum mechanics. However, we would like to emphasize that
a classical self-gravitating isothermal gas (possibly justified by the process of violent
relaxation) also has a smooth core density due to finite temperature effects [148].
Therefore, classical isothermal, or almost isothermal, self-gravitating systems may
be the most relevant description of large dark matter halos while quantum effects (for
bosons or fermions) or Lynden-Bell’s type of degeneracy (for collisionless systems)
may be important only for small halos or in the very inner region of large halos.
These promising ideas will be developed in future works.
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Appendix

6.7 Self-interaction Constant

We define the self-interaction constant by [15]:

λ

8π
≡ a

λc
= amc

�
, (6.87)

where λc = �/mc is the Compton wavelength of the bosons. This is a dimensionless
parameter measuring the strength of the short-range interactions. It can be written as

λ

8π
= 5.07

a

1 fm

m

1 GeV/c2 . (6.88)

Using this expression, we can express the results in terms of λ and m instead of a
and m.

6.8 Conservation of Energy

The total energy associated with the quantum Euler-Poisson system (6.14)–(6.16) is
given by Eq. (6.37). According to Eq. (6.38), we have

δ�c =
∫

u2

2
δρ dr +

∫
ρu · δu dr. (6.89)

On the other hand, using Eqs. (6.10) and (6.39), we find that

δ�Q = �
2

m2

∫
∇√

ρ · δ∇√
ρ dr = �

2

m2

∫
∇√

ρ · ∇
(

1

2
√

ρ
δρ

)
dr

= − �
2

2m2

∫
Δ

√
ρ√

ρ
δρ dr = 1

m

∫
Qδρ dr. (6.90)

Finally, according to Eqs. (6.40) and (6.41), we have

δU = 4πa�
2

m3

∫
ρδρ dr, δW =

∫
Φδρ dr. (6.91)

Taking the time derivative of the total energy Etot and using the previous relations,
we get

Ėtot =
∫ (

u2

2
+ Q

m
+ 4πa�

2

m3 ρ + Φ

)
∂ρ

∂t
dr +

∫
ρu · ∂u

∂t
dr. (6.92)
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Using the equation of continuity (6.14), integrating by parts, using the Euler equa-
tion (6.15) and the identity (u · ∇)u = ∇ (

u2/2
) − u × (∇ × u), we obtain after

simplification

Ėtot =
∫

ρu · (u × (∇ × u)) dr. (6.93)

Since u is a potential flow, we have ∇ × u = 0 yielding Ėtot = 0. Actually, we note
that this result remains valid even if u is not a potential flow since u·(u×(∇×u)) = 0.

6.9 Virial Theorem

In this Appendix, we establish the time-dependent tensorial Virial theorem associated
with the quantum Euler-Poisson system (6.14)–(6.16).

Taking the time derivative of the moment of inertia tensor Iij = ∫
ρxixj dr and

using the equation of continuity (6.14), we obtain after an integration by parts

İij =
∫

ρ(xiuj + xjui) dr. (6.94)

Taking the time derivative of Eq. (6.94), we get

Ïij =
∫

xi
∂

∂t
(ρuj) dr + (i ↔ j), (6.95)

where ∂t(ρuj) is given by Eq. (6.13). We need to evaluate four terms. The first term
is

−
∫

xi∂k(ρujuk) dr =
∫

ρuiuj dr. (6.96)

The second term is

−
∫

xi
∂p

∂xj
dr = δij

∫
p dr. (6.97)

The third term is

−
∫

ρxi
∂Φ

∂xj
dr = Wij, (6.98)

where Wij is the potential energy tensor. It is a simple matter to show that this tensor
is symmetric: Wij = Wji [1]. The fourth term is

−
∫

xi
ρ

m

∂Q

∂xj
dr = −

∫
xi∂kPjk dr =

∫
Pij dr, (6.99)
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where Pij is the quantum pressure tensor defined by Eq. (6.17). Substituting these
results in Eq. (6.95), we obtain the tensorial Virial theorem

1

2
Ïij =

∫
ρuiuj dr +

∫
Pij dr + δij

∫
p dr + Wij. (6.100)

Contracting the indices and using the fact that
∫

Pii dr = 2�Q [this can be obtained
from Eqs. (6.17) and (6.39)] and Wii = − ∫

ρr · ∇Φ dr = W [the Virial of the
gravitational force in d = 3 is equal to the potential energy [1]], we obtain

1

2
Ï = 2(�c + �Q) + 3

∫
p dr + W , (6.101)

where I = ∫
ρr2 dr is the moment of inertia. For a steady state (Ïij = 0 and u = 0),

we obtain the equilibrium tensorial Virial theorem

∫
Pij dr + δij

∫
p dr + Wij = 0 (6.102)

and the scalar Virial theorem

2�Q + 3
∫

p dr + W = 0. (6.103)

These results are valid for an arbitrary equation of state p(ρ). For the equation of state
(6.12), using

∫
p dr = U, Eqs. (6.101) and (6.103) reduce to Eqs. (6.42) and (6.43).

6.10 Stress Tensor

The equation of continuity (6.14) may be written as

∂ρ

∂t
+ ∇ · j = 0, (6.104)

where j = ρu is the density current. Using Eqs. (6.6) and (6.7), the density current
can be expressed in terms of the wave function as

j = N�

2i

(
ψ∗∇ψ − ψ∇ψ∗) . (6.105)

On the other hand, the quantum Euler equation (6.13) may be written as

∂j
∂t

= −∇(ρu ⊗ u) − ∇p − ρ∇Φ − ρ

m
∇Q. (6.106)
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Introducing the quantum pressure tensor, we find that the equation for the density
current is given by

∂ji
∂t

= −∂jTij − ρ∂iΦ, (6.107)

where

Tij = ρuiuj + pδij + Pij (6.108)

is the stress tensor. Using Eq. (6.17), we have

Tij = ρuiuj + pδij − �
2

4m2 ρ∂i∂j ln ρ (6.109)

or, alternatively,

Tij = ρuiuj +
(

p − �
2

4m2 Δρ

)
δij + �

2

4m2

1

ρ
∂iρ∂jρ. (6.110)

Using Eqs. (6.6) and (6.7), we find after straightforward algebra that

�
2

4m2

1

ρ
∂iρ∂jρ = N�

2

4m

1

|ψ |2 (ψ∗∂iψ + ψ∂iψ
∗)(ψ∗∂jψ + ψ∂jψ

∗) (6.111)

and

ρuiuj = −N�
2

4m

1

|ψ |2 (ψ∗∂iψ − ψ∂iψ
∗)(ψ∗∂jψ − ψ∂jψ

∗). (6.112)

Therefore

ρuiuj + �
2

4m2

1

ρ
∂iρ∂jρ = N�

2

m
Re

(
∂ψ

∂xi

∂ψ∗

∂xj

)
. (6.113)

Regrouping these results, the stress tensor can be expressed in terms of the wave
function as

Tij = N�
2

m
Re

(
∂ψ

∂xi

∂ψ∗

∂xj

)
+

(
2πa�

2

m
N2|ψ |4 − N�

2

4m
Δ|ψ |2

)
δij. (6.114)

Finally, we introduce the density of energy

e = u2

2
+ Q

m
+ 2πa�

2

m3 ρ + Φ

2
. (6.115)
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Using the equation of continuity (6.14) and the quantum Euler equation (6.15), we
obtain the energy equation

∂

∂t
(ρe) + ∇ · (ρeu) = −∇ · (pu) − 1

2
ρu · ∇Φ + ρ

m

∂Q

∂t
+ 1

2
ρ

∂Φ

∂t
. (6.116)

The conservation of energy directly results from this equation. Taking the time deriv-
ative of the total energy Etot = ∫

ρe dr, and using Eq. (6.116), we get

Ėtot = −1

2

∫
ρu · ∇Φ dr +

∫
ρ

m

∂Q

∂t
dr + 1

2

∫
ρ

∂Φ

∂t
dr. (6.117)

Using the Poisson equation (6.16) and the equation of continuity (6.14), and inte-
grating by parts, we obtain

1

2

∫
ρ

∂Φ

∂t
dr = 1

8πG

∫
ΔΦ

∂Φ

∂t
dr = 1

2

∫
Φ

∂ρ

∂t
dr

= −1

2

∫
Φ∇ · (ρu) dr = 1

2

∫
ρu · ∇Φ dr. (6.118)

On the other hand, using Eqs. (6.38) and (6.90), we find that

∫
ρ

∂Q

∂t
dr = m

d�Q

dt
−

∫
Q

∂ρ

∂t
dr =

∫
Q

∂ρ

∂t
dr −

∫
Q

∂ρ

∂t
dr = 0. (6.119)

Substituting these identities in Eq. (6.117), we obtain Ėtot = 0.

6.11 Lagrangian and Hamiltonian

In this Appendix, we discuss the Lagrangian and Hamiltonian structure of the GP
equation and of the corresponding hydrodynamic equations.

The Lagrangian of the GP equation (6.4) is

L =
∫ {

i
�

2
N

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− N�

2

2m
|∇ψ |2 − 1

2
Nm|ψ |2Φ − 2πa�

2

m
N2|ψ |4

}
dr.

(6.120)

We can view the Lagrangian (6.120) as a functional of ψ , ψ̇ , and ∇ψ . The action is
S = ∫

L dt. The least action principle δS = 0, which is equivalent to the Lagrange
equations

∂

∂t

(
δL

δψ̇

)
+ ∇ ·

(
δL

δ∇ψ

)
− δL

δψ
= 0 (6.121)
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returns the GP equation (6.4). The Hamiltonian is obtained from the transformation

H =
∫

i
�

2
N

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
dr − L (6.122)

leading to

H =
∫ {

N�
2

2m
|∇ψ |2 + 1

2
Nm|ψ |2Φ + 2πa�

2

m
N2|ψ |4

}
dr. (6.123)

Of course, this expression coincides with the total energy (6.37) in the wavefunction
representation. Using the Lagrange equations, one can show that the Hamiltonian is
conserved. On the other hand, the GP equation (6.4) can be written as

i�
∂ψ

∂t
= 1

N

δH

δψ∗ . (6.124)

A stable stationary solution of the GP equation is a minimum of energy under the
normalization condition. Writing the variational principle as δH −αNm

∫ |ψ |2 dr =
0 where α is a Lagrange multiplier (chemical potential), we recover the time-
independent GP equation (6.19) with E = αm.

Using the Madelung transformation (see Sect. 6.2.2), we can rewrite the
Lagrangian and the Hamiltonian in terms of hydrodynamic variables. According
to Eqs. (6.6) and (6.7) we have

∂S

∂t
= �

2i

1

|ψ |2
(

ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
(6.125)

and

|∇ψ |2 = 1

Nm�2

[
ρ(∇S)2 + �

2

4ρ
(∇ρ)2

]
. (6.126)

Substituting these identities in Eq. (6.120) we get

L = −
∫ {

ρ

m

∂S

∂t
+ ρ

2m2 (∇S)2 + �
2

8m2

(∇ρ)2

ρ
+ 1

2
ρΦ + 2πa�

2

m3 ρ2
}

dr. (6.127)

We can view the Lagrangian (6.127) as a functional of S, Ṡ, ∇S, ρ, ρ̇, and ∇ρ. The
Lagrange equations for the phase

∂

∂t

(
δL

δṠ

)
+ ∇ ·

(
δL

δ∇S

)
− δL

δS
= 0 (6.128)
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return the equation of continuity (6.8). The Lagrange equations for the density

∂

∂t

(
δL

δρ̇

)
+ ∇ ·

(
δL

δ∇ρ

)
− δL

δρ
= 0 (6.129)

return the quantum Hamilton-Jacobi (or Bernouilli) equation (6.9) leading to the
quantum Euler equation (6.15). The Hamiltonian is obtained from the transformation

H = −
∫

ρ

m

∂S

∂t
dr − L (6.130)

leading to

H =
∫ {

1

2
ρu2 + �

2

8m2

(∇ρ)2

ρ
+ 1

2
ρΦ + 2πa�

2

m3 ρ2
}

dr. (6.131)

Of course, this expression coincides with the total energy (6.37) in the hydrodynami-
cal representation. Using the Lagrange equations, one can show that the Hamiltonian
is conserved.
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