
Chapter 4
Monsters, Black Holes and Entropy

Stephen D.H. Hsu

Abstract Classical general relativity allows for compact objects—“monsters”—
with more entropy than black holes of equal mass. We construct examples of such
configurations and describe their general properties. Monsters are problematic for
certain versions of the AdS/CFT duality, and possibly even for the application of sta-
tistical mechanics to quantum gravity. It is possible that they are somehow excluded
from the Hilbert space of quantum gravity, although this would be in contrast to
the usual case in which coarse-grained, semiclassical configurations have (many)
quantum counterparts.
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4.1 Introduction

In this review we describe the construction of monsters in classical general relativity.
Monsters have finite ADMmass and surface area, but potentially unbounded entropy.
From the curved space perspective they are objects with large proper volume that
can be glued on to an asymptotically flat space. At no point is the curvature or energy
density required to be large in Planck units, and quantum gravitational effects are,
in the conventional effective field theory framework, small everywhere. Since they
can have more entropy than a black hole of equal mass, monsters are problematic for
certain interpretations of black hole entropy and the AdS/CFT duality. For related
discussion, see [1, 2].

In the second part we describe recent developments in the foundations of statistical
mechanics whichmake use of properties of high-dimensional (Hilbert) spaces. These
results primarily depend on kinematics—essentially, the geometry ofHilbert space—
and are relatively insensitive to dynamics. We discuss how this approach might be
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adopted as a basis for the statistical mechanics of gravity. Interestingly, monsters and
other highly entropic configurations play an important role.

4.2 What is Entropy?

Statistical (microcanonical) entropy S is the logarithm of the number of distinct
microstates ψ of a system consistent with some imposed macroscopic properties,
such as a restriction on the total energy. Thus, the entropy S is proportional to the
logarithm of the dimensionality of the Hilbert space of allowed ψ’s and measures
the amount of information that is encoded in a particular microstate ψ. Unitarity
forbids any change in the size of this Hilbert space during time evolution of the
system, but entropy may increase if the macroscopic description changes so that
more microstates become consistent with it.

Without a theory of quantum gravity, we do not know, so cannot count, the
microstates of black holes (for results in string theory, see Refs. [3, 4]). But it has
been established [5] semiclassically that a large black hole of mass M emits thermal
radiation of temperature T ∼ M−1, so the entropy in this Hawking radiation is of
order the area of the hole: S = ∫

d Q/T ∼ ∫
d M M ∼ A (we use Planck units

� = c = G = 1 throughout). Strictly speaking, the Hawking process applies only to
the semiclassical part of the evaporation, but the final quantum part releases at most
of order the Planck energy, which can bemade negligible compared to the initial mass
of the hole and is thus unlikely to change the scaling with M of the total amount
of radiation entropy. A total black hole entropy of SB H = A/4, corresponding to
an entropy density ∼1069 bit/m2 on the horizon, is consistent with other evidence
ranging from black hole thermodynamics [5, 6] to string theory [3, 4], although there
are other interpretations of this area entropy as well [7].

A black hole has much more entropy than ordinary matter configurations of the
same size1 and energy. For ordinary matter in flat space, the following bound [8]
applies: S < A3/4. This result can be derived as follows. Given a thermal region
of radius R and temperature T , we have S ∼ T 3R3 and E ∼ T 4R3. Requiring
E < R (using the hoop conjecture—a criterion for gravitational collapse [9–11])
then implies T < R−1/2 and S < R3/2 ∼ A3/4. The use of a temperature T in this
derivation is justified because the entropy of a system of fixed size and total energy
is maximized in thermal equilibrium.

In Planck units, and for macroscopic objects, the gap between A and A3/4 scaling
is prodigious. Part of the motivation for the work described here was to understand
whether this gap in scaling could be closed by considering curved, rather than flat,
space. Another related question, also addressed below, is whether black holes are
the most entropically dense objects in the universe. The answers to these questions

1 Note, we need to restrict the size of the object as well as its total energy. An object with fixed total
energy E = T 4R3, but no restriction on R, can have infinite entropy: we can take R → ∞ and
T → 0 with E fixed, so that S = T 3R3 = E/T → ∞.
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are (at least in classical general relativity): Yes, non-black hole configurations can
be found which have more than A3/4 entropy, although such configurations are very
non-Euclidean, and No, black holes are not the most entropic objects of fixed surface
area and mass, unless some further principle (presumably of quantum nature) is
introduced into the theory to remove even higher entropy configurations.

The highly entropic objects we have found all collapse into black holes, which is
problematic if black hole evaporation is unitary, since unitary evolution cannot map
a larger Hilbert space into a smaller one. (Of course, it is also possible that black
hole evaporation violates unitarity [12, 13]). We discuss this further below.

4.3 Constructing Monsters

Wepresent two examples of classes of such highly entropic configurations�0 (matter
+ gravity). In both examples, the curvature of space on�0 makes theADMmass (i.e.,
the energy a distant external observer sees and that determines the black hole area
after collapse and hence the eventual Hawking radiation entropy) and the surface area
of the configuration much smaller than would be suspected from the proper internal
volume, to which the initial entropy S�0 is proportional. In the case of “monsters”
(Sect. 4.3.1), this effect can be ascribed to large negative binding energy [14] which
almost cancels the proper mass to yield a relatively small ADMmass. In Sect. 4.3.2,
the Kruskal–FRW example, the reason is the non-monotonic behavior of the radius
r of 2-spheres across the outer Einstein-Rosen bridge.

Unlike ordinary configurations such as stars, galaxies, or even black holes,
monster-like configurations have unbounded entropy at fixed ADMmass and surface
area: Even if we force the spacetime to be asymptotically flat and fix its ADM mass
at M and if, moreover, we require all excited matter degrees of freedom to be con-
tained within a 3-sphere of fixed surface area A (this definition is unambiguous in the
case of spherical symmetry, which our examples will obey), there are still an infinite
number of matter + gravity configurations inside this surface which conform to these
restrictions. In fact, imagine that, additionally, the 3-geometry (at some instant in
time, e.g. at a moment of time symmetry) inside the sphere is fixed and that one
only looks for matter configurations which generate this given geometry (via the
Einstein constraint equations of classical general relativity); then the entropy S char-
acterizing these matter configurations alone is already unbounded as one varies the
3-geometry inside the surface A (Fig. 4.1). The stationary points of S as a function
of the 3-geometry correspond [15] to solutions of the Tolman-Oppenheimer-Volkoff
equation (i.e., they are stationary stars, etc.), but for some interior 3-geometries
the entropy S can be much bigger and be even larger than A or M2 (typically, the
configuration will not be stationary in this case). Sections 4.3.1 and 4.3.2 describe
examples of such configurations. Clearly, then, if the 3-geometry inside the surface
is not specified at all, one has to ascribe an infinite entropy to the system.
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Fig. 4.1 As the 3-geometry inside a given 3-sphere A is varied, it can accommodate different
numbers eS of matter configurations. Stationary gravity-matter configurations (solutions to the
Tolman-Oppenheimer-Volkoff equation) are local extrema of the entropy S, but, as one varies the
internal 3-geometry, monster configurations can have unbounded entropy at fixed ADM mass M
and surface area A

4.3.1 Monsters

Our first example is a ball of material which is on the verge of collapsing to form a
black hole. Its energy density profile is arranged to produce a curved internal space
with large proper volume (see Fig. 4.2a). The configuration is spherically symmetric,
defined by initial data on a Cauchy slice �0 at a moment of time symmetry (i.e.,
configuration initially “at rest”) without (marginally) trapped surfaces, so that �0
has geometry

ds2
∣
∣
�0

= ε(r)−1dr2 + r2d�2 , Kab
∣
∣
�0

= 0, (4.1)

with ε(r) > 0. For given initial matter distribution ρ(r), Einstein’s (constraint)
equations determine

ε(r) = 1 − 2M(r)

r
, (4.2)

where

M(r) = 4π

r∫

0

dr ′ r ′ 2ρ(r ′). (4.3)

If a configuration has radius R, i.e. ρ(r > R) = 0, its ADM energy is M = M(R).
This quantity is constant during time evolution of the configuration (Birkhoff’s
theorem), and, if it collapses to a black hole, equals its mass.
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Fig. 4.2 a Embedding of the monster configuration �0 into flat space with one angular dimension
suppressed.The “neck”has proper lengthmuchbigger than (R − r0), due to the huge factor ε(r)−1/2,
and contains all of the initial entropy S�0 . For r > R the geometry is just that of a Schwarzschild slice
with mass M = MADM . b The monster’s future time evolution is similar to ordinary gravitational
collapse: (almost) all matter and entropy, if it was not already initially, will fall behind a horizon
(infall of outer layers soon creates trapped surfaces) and form a black hole which then evaporates,
radiating away entropy S+ ∼ M2 < S�0 past the external observer to future infinity I + ∪ i+

Now, consider a semiclassical configuration (“monster” [15, 16], Fig. 4.2a) with
radius R � 1 that yields

ε(r) =
(r0

r

)γ
, r0 < r < R, (4.4)

with some γ > 0 and r0 � R (to avoid poles), so that the configuration comes
increasingly closer to forming trapped surfaces as r ↗ R (long “neck” in Fig. 4.2a).
It has ADM mass

M = R

2
(1 − ε(R)) ≈ R

2
∼ R (4.5)

and energy density

ρ(r) = M ′(r)

4πr2
≈ 1

8πr2
∼ 1

r2
, r0 < r < R. (4.6)
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Finally, with a relation s = αρβ ∼ ρβ between energy and entropy density of the
matter (α = O(1)), the initial entropy is

S�0 = 4π

R∫

0

dr r2ε(r)−1/2s(r) ∼ R3−2β+γ/2

r γ/2
0

∼ A3/2−β+γ/4, (4.7)

with the area A ∼ M2 of the black hole formed in collapse of this monster.
It is nowevident that, ifβ is constant, one can always find configuration parameters

γ such that the entropy of the monster exceeds area scaling (hence, the name). This
is the case, e.g., if we model the matter (initially) as a perfect fluid with equation-of-
state parameter w. Then β = 1/ (1 + w), and we would just have to choose γ > 1
for a photon gas (w = 1/3) or γ > 2 for dust (w = 0; we assume the dust particles
carry some kind of label or have spin).

Figure 4.2b depicts the time evolution of a monster, which resembles ordinary
gravitational collapse. Themaindifference is that, due to our construction, the entropy
S�0 on the initial Cauchy slice can be much bigger than the entropy S+ = A/4 on
future infinity, assuming that black hole evaporation is unitary and the standard
assumptions about Hawking radiation hold. In order to preserve unitarity (or the
AdS/CFT duality [17]) one would somehow have to excise monsters with S >

A from the Hilbert space. Monsters with sufficiently high entropy are therefore
semiclassical configurations with no corresponding microstates in a quantum theory
of gravity.

Note, if r0 is chosen a few orders of magnitude above the Planck length, all
involved densities ρ(r) and s(r) are sub-Planckian, so that our semiclassical analysis
naively applies. Furthermore, Bousso’s covariant entropy bound [18] holds in the
semiclassical monster spacetime since it falls under the general class of spacetimes
for which a general theorem [19] applies (this assumes no large entropy gradients
due to, e.g., shockwaves during evolution, which seems plausible, but has not been
proven).

4.3.2 Kruskal–FRW Gluing

The second example [20] consists of slices of closed FRW universes which are glued
together across Einstein-Rosen bridges, eventually connecting to a large asymptoti-
cally flat universe (Fig. 4.3a). Again, a larger proper volume can be accommodated
at fixed ADM mass. The configuration is specified, as before, by initial data on a
spherically symmetric and time symmetric (Kab|�0 = 0) Cauchy slice �0: we take
the part of a constant-time slice of the Kruskal spacetime with mass M1 (e.g., part
of the U + V = 0 slice, in usual Kruskal coordinates) that contains one asymp-
totic region with outside observer A, the Einstein-Rosen bridge at its maximal extent
r = 2M1 and the piece r1l > r > 2M1 of the other asymptotic region (right
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Fig. 4.3 a Embedding of a glued Kruskal-FRW initial slice �0 into flat space with one angular
dimension suppressed. R is the proper radial distance from the innermost point and r = r(R) gives
the radius of the 2-sphere labeled R. Additional or larger closed FRW pieces could be adjoined, and
there could also be a second asymptotic Kruskal piece (evenwithmass parameter different from M1)
if the far left were not closed off with a 3-sphere. b By considering the rightmost Einstein-Rosen
bridge, standard energy conditions suffice to show that a singularity will form and that the external
observer will see a black hole of mass M1 whose Hawking radiation then contains potentially much
less entropy S+ ∼ M 2

1 than was present on �0. In the case of pressureless dust, the time evolved
spacetime can be given analytically as Kruskal spacetimes and FRW universes appropriately sewn
together (Oppenheimer-Snyder collapse)

part in Fig. 4.3a). This is then glued onto the part χ < χ1l of the hypersurface
ds2 = a 2

12

(
dχ2 + sin2 χ d�2

)
representing a closed FRW universe at the instant of

its maximal expansion a12. By cutting this 3-sphere off at χ = χ2r, a second piece
of Kruskal containing an Einstein-Rosen bridge can be joined, etc. In our notation
the integer subscript n denotes the n-th Einstein-Rosen bridge, and l (r) denote left
(right), see Fig. 4.3.

Matching the geometry across the common boundary requires the transverse met-
ric to be continuous and continuously differentiable (i.e. the extrinsic curvature K (3)

ab
has to be the same on either side); its second derivative can be discontinuous, as is the
energy density ρ, consistent with Einstein’s equation Gab = 8πTab. At the rightmost
joining surface in Fig. 4.3a, continuity of the transverse metric means equality of the
areas of the spherical sections χ = χ1l and r = r1l, i.e.

a12 sinχ1l = r1l. (4.8)
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And equality of extrinsic curvatures is, in the case of spherical symmetry, equivalent
to continuous differentiability of the area A(R) of 2-spheres with respect to proper
radial distance R:

d

a12 dχ

(
4πa 2

12 sin
2 χ

)∣
∣
∣
∣
χ=χ1l

= d

− (1 − 2M1/r)−1/2 dr

(
4πr2

)∣
∣
∣
∣
r=r1l

, (4.9)

which forces χ1l ∈ [π/2,π) and, with (4.8),

2M1 = a12 sin
3 χ1l. (4.10)

Equations like (4.8) and (4.10) hold at every joining surface, with a modified con-
straint χr ∈ [0,π/2] if joining just right of an Einstein-Rosen bridge. From these
formulae, a configuration like Fig. 4.3a can be constructed, e.g., in the following
way: first pick masses M1, M2, . . . describing the Kruskal pieces (M = 0 forces
the construction to an end), then sizes a12, a23 . . . of the FRW pieces subject to
constraints a12 ≥ 2M1, 2M2, etc. �0 is then uniquely determined.

Invoking Friedmann’s equationwith vanishing instantaneous expansion, the FRW
pieces have energy density ρ12 = 3/8πa 2

12. With s ∼ ρβ , the entropy of one piece
becomes

S12 = 4πa 3
12s

χ1l∫

χ2r

dχ sin2 χ ∼ a 3−2β
12

[

χ1l − χ2r − 1

2
sin 2χ1l + 1

2
sin 2χ2r

]

.

(4.11)

The bracket in (4.11) approaches π = O (1) as a12 becomes a few times bigger than
2M1 and 2M2. In that case, the total entropy on �0 is

S�0 = S12 + S23 + · · · ∼ a 3−2β
12 + a 3−2β

23 + · · · , (4.12)

and so can be made arbitrarily big (for any β = 1/ (1 + w) < 3/2) by either taking
the size of the FRW pieces or their number to be large.

Evolved forward in time (Fig. 4.3b), the entropy in the Hawking radiation that
passes the external observer and reaches future infinity is S+ ∼ M 2

1 , so again is
potentially much less than the entropy on the initial slice (4.12). As in the case of
monsters, the Kruskal-FRW configurations are reasonable semiclassical initial data
insofar as all involved densities are well sub-Planckian (if the FRW pieces are a few
orders of magnitude bigger than the Planck length). The spacetimes do not violate
the covariant entropy bound by the same arguments [19] as before (cf. also Ref. [18]
for more specific discussion of entropy bounds in closed FRW universes).
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Fig. 4.4 An isolated monster (time-symmetric configuration at t = t0) evolved forward in time
becomes a black hole with a future singularity. The same monster therefore emerges from a past
white hole singularity

4.4 Evolution and Singularities

Both types of configurations have the pathological property that, under isolated evo-
lution, they must have emerged from a past singularity (white hole; see Fig. 4.4).
This can be seen via backward evolution of the time-symmetric initial data, noting
that forward evolution leads to a black hole and future singularity. The monster itself
can be thought of as an object whose negative gravitational binding energy almost
cancels the positive kinetic and rest mass energy of its constituents. In Fig. 4.4, the
monster explodes out of an initial white hole singularity. Because of the large gravi-
tational binding energy, the constituents are unable to separate to infinity, but rather
reach a turning point at t = t0 and subsequently collapse back into a black hole.

To avoid the white hole singularity, one can relax the assumption of isolation, and
consider monster initial data at t = t0, perhaps constructed “in the laboratory” by
outside intervention. One can show that the configurations with S > A cannot be
constructed, even via intervention by an arbitrarily advanced civilization [15, 16];
that is, there seem to be fundamental physical limits on the construction of monsters.
Despite their pathologies, these configurations represent valid semiclassical states
of a matter-gravity system: they are all locally well behaved, in particular do not



124 S.D.H. Hsu

require large energy or entropy densities, and—if present in the Hilbert space—could
be accessible via tunneling starting from an ordinary matter configuration with the
same quantum numbers (ADM energy, angular momentum, charge).

4.5 Quantum Foundations of Statistical Mechanics

Recently, the foundations of statistical mechanics have been established as a conse-
quence of the geometry of high-dimensional Hilbert spaces [21, 22].

Consider a large system subject to a linear constraint R (e.g., that it be in a
superposition of energy eigenstates with the energy eigenvalues all being below
some Emax), which reduces its Hilbert space from H to a subspace HR . Divide the
system into a subsystem X , to be measured, and the remaining degrees of freedom
which constitute an environment E , soH = HX ⊗ HE and

ρX ≡ ρX (ψ) = TrE |ψ〉〈ψ| (4.13)

is the density matrix which governs measurements on X for a given pure state ψ
of the whole system. Note the assumption that these measurements are local to X ,
hence the trace over E .

It can be shown [21], using the concentration of measure on hyperspheres [23]
(Levy’s theorem), that for almost all ψ ∈ HR ,

ρX (ψ) ≈ TrE (ρ∗) ≡ �X , (4.14)

where ρ∗ = 1R/dR is the equiprobable maximally mixed state on the restricted
Hilbert space HR (1R is the identity projection on HR and dR the dimensionality
of HR). �X = TrE (ρ∗) is the corresponding canonical state of the subsystem X .
The result holds as long as dE � dX , where dE,X are the dimensionalities of the
HE and HX Hilbert spaces. (Recall that these dimensionalities grow exponentially
with the number of degrees of freedom. The Hilbert space of an n qubit system
is 2n dimensional.) In the case of an energy constraint R, �X describes a perfectly
thermalized subsystemwith temperature determinedby the total energyof the system.

To state the theorem in Ref. [21] more precisely, the (measurement-theoretic)
notion of the trace-norm is required, which can be used to characterize the distance
between two mixed states ρX and �X :

‖ρX − �X‖1 ≡ Tr
√

(ρX − �X )2. (4.15)

This sensibly quantifies how easily the two states can be distinguished by measure-
ments, according to the identity

‖ρX − �X‖1 = sup‖O‖≤1 Tr (ρX O − �X O) , (4.16)
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where the supremum runs over all observables O with operator norm ‖O‖ smaller
than 1 (projectors P = O are in some sense the best observables, all other observables
can be composed out of them, and they have ‖P‖ = 1). Note that the trace on the
right-hand side of (4.16) is the difference of the observable averages 〈O〉 evaluated
on the two states ρX and �X , and therefore specifies the experimental accuracy
necessary to distinguish these states in measurements of O . The theorem then states
that the probability that

‖ρX (ψ) − TrE (ρ∗) ‖1 ≥ ε +
√

d 2
X

dR
(4.17)

is less than 2 exp(−ε2dR/18π3). In words: let ψ be chosen randomly (according to
the Haar measure on the Hilbert space) out of the space of allowed states HR ; the
probability that ameasurement on the subsystem X only, withmeasurement accuracy
given by the rhs of (4.17), will be able to tell the pure state ψ (of the entire system)
apart from the maximally mixed state ρ∗ is exponentially small in the dimension of
the space HR of allowed states. Conversely, for almost all pure states ψ any small
subsystem X will be found to be extremely close to perfectly thermalized (assuming
the constraint R on the whole system was an energy constraint).

As mentioned, the overwhelming dominance of “typical” states ψ is due to the
geometry of high-dimensional Hilbert space and the resulting concentration of mea-
sure. It is a consequence of kinematics only—no assumptions have been made about
the dynamics. Almost any dynamics—i.e., choice of Hamiltonian and resulting uni-
tary evolution of ψ—leads to the system spending nearly all of its time in typical
states for which the density matrix describing any small subsystem X is nearly ther-
mal [24]. Typical states ψ are maximally entangled, and the approach to equilibrium
can be thought of in terms of the spread of entanglement, as opposed to the more
familiar non-equilibrium kinetic equations.

We can restate these results in terms of the entanglement entropy of the sub-
system X , thereby making contact with the Second Law of Thermodynamics. The
entanglement entropy is simply the von Neumann entropy of ρX :

S(X) = −Tr ρX log ρX . (4.18)

Using the same results on the concentration of measure, it can be shown [25] that, for
the overwhelming majority of pure states ψ, S(X) is extremely close to its maximum
value log dX :

Prob
[

S(X) < log dX − α − β
] ≤ exp

(

− (dX dE − 1)Cα2

(log dX )2

)

, (4.19)

where β = 1
ln 2

dX
dE

and C = (8π2 ln 2)−1. This implies [24] that, for almost any
choice of dynamics, a subsystem X is overwhelmingly likely to be found with nearly
maximal entropy S(X). The Second Law is seen to hold, in a probabilistic sense, even
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though the underlying dynamics is time-reversal invariant: density matrices ρX with
small entropy are highly improbable, and if X is found in a low-entropy state, the
entropy is more likely to increase than decrease over any macroscopic time interval.

In our earlier discussion of monsters, the entropy we used was not the entangle-
ment entropy S(X) in (4.18). Instead, we defined the entropy of a monster or black
hole to be the logarithm of the number of distinct quantum states consistent with the
imposed macroscopic conditions (e.g., fixed ADM mass M , object of area A). This
entropy is directly proportional to the logarithm of the dimensionality of the Hilbert
space consistent with the macroscopic description, so in the current discussion it is
simply log dX if we consider only the subset of X configurations which are consistent
with the description. Note that log dX ≥ S(X) and that, for typical pure states of the
larger system, any subsystem X will have entanglement entropy S(X) near its max-
imum value log dX . Thus, within the framework for statistical mechanics discussed
in this section, the entropy we defined earlier can be used to characterize the most
likely (“equilibrium”) configurations to be found in X .

4.6 Statistical Mechanics of Gravity?

Can the quantum mechanical derivation of statistical mechanics given above be
applied to gravity? For example, can we deduce the Second Law of Thermodynamics
on semiclassical spacetimes (i.e., including, for example, large black holes)?

This might seem overly ambitious since we currently lack a theory of quantum
gravity. However, the results described above are primarily a consequence of the
high-dimensional character of Hilbert spaces. If the state space of quantum gravity
continues to be described by something like a Hilbert space, then its dimensionality
will almost certainly be large, even for systems of modest size. Further, it seems
a less formidable task to characterize some aspects of the state space of quantum
gravity than to fully understand its dynamics. Indeed, for our purposes here we only
consider semiclassical spacetimes.

Early attempts at quantization, culminating in theWheeler-DeWitt equation, were
based on the classical Hamiltonian formulation of general relativity [26, 27]. These
led to a configuration space (“superspace”) of 3-geometries, modulo diffeomor-
phisms, and to the wavefunction, �[hab,φ], of the universe as a functional over
3-metrics hab and matter fields φ. This description of the state space seems quite
plausible, at least in a coarse grained sense, even if the fundamental objects of the
underlying theory are something else (strings, loops, etc.). Let us assume that some
form of short-distance regulator is in place (or, alternatively, that the dynamics itself
generates such a regulator in the form of a minimum spacetime interval), so that we
can neglect ultraviolet divergences.

Now consider the set of asymptotically flat, non-compact 3-geometries. Impose
conditions on the asymptotic behavior so that the total ADM mass of the system is
M , and further assume that all the energy density is confined to a region of surface
area A. This results in a restricted state space HR . If the concentration of measure
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results apply toHR , then the observed properties of any small subsystem X are likely
to be the same as if the universe were in the equiprobable, maximally mixed state
ρ∗ = 1R/dR . In the flat space case this leads to the usual canonical (Boltzmann)
distribution in X .

However, from our monster analysis we know that we are already in trouble.
Despite the short distance regulator and the restrictions on total energy and surface
area, theHilbert space dimension dR and entropy are infinite because ofmonsters and
related configurations, see Fig. 4.1. (In a sense this is a trivial consequence of the fact
that they can have infinite proper volume but nevertheless be glued into the region of
interest with surface area A).Without a further regularizationwhich limits the proper
volumes and entropies of monster-like configurations, the maximally mixed state
is ill-defined and we cannot recover the familiar thermodynamics of semiclassical
spacetimes in the sameway as in Sect. 4.5 for ordinary quantum systems. In effect, to
obtain any reasonable results we have to eliminate the highest entropy configurations
from the state space.2

For this approach to produce the familiar results from ordinary and black hole
thermodynamics, it is therefore necessary to invoke somenewprinciplewhich excises
the S > A/4 monsters from the state space. (Indeed, as discussed earlier, such an
excision was already suggested by the requirement that black hole evolution be
unitary, although it is not required by the covariant entropy bound [18]). Once this is
done, Schwarzschild black holes become the most highly entropic objects of mass M
and A = 16πM2. It then seems possible that the statistical mechanics of gravitational
systems might result from typicality of the state �[hab,φ]. In particular, one might
be able to deduce a modification of the Second Law into a Generalized Second Law
that takes into account the entropy of black holes and of other curved space objects.

4.7 Conclusions

Classical general relativity allows configurations of fixed ADM mass and surface
area, but unbounded entropy (“monsters”). These configurations can be constructed
as initial data such that at no point are energy or entropy densities, or curvatures,
large in Planck units. Thus, under the usual assumptions about gravity as an effective
field theory, they are well described in the semiclassical approximation.

It is of course not knownwhether such configurations persist in the quantum theory
of gravity. If they do, their existence seems problematic for unitary evaporation of
black holes and for the AdS/CFT correspondence. If, to the contrary, they are to be
excised from the theory, some new fundamental principle is required.

2 Of course, it is also possible that the initial pure state is atypical and subsequent dynamics
somehow keeps the state in a very atypical region of the Hilbert space over very long time scales, so
that the highly entropic configurations are essentially never sampled. In that case one cannot deduce
the thermodynamic properties of the system from the concentration of measure phenomenon (i.e.,
typicality) alone: the system does not actually reach ultimate equilibrium.
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In the second part of this review we studied a fundamentally quantum approach
to statistical mechanics. The high dimensionality of Hilbert space and consequent
concentration of measure are used to show that almost any pure state will lead to
approximate canonical behavior of the density matrix of small subsystems. This
approach also provides a probabilistic justification of the Second Law of Thermody-
namics. We investigated whether a similar framework can be applied to gravitational
systems. The existence (or non-existence) of monster-like states plays a central role
in the outcome:we conclude that this approach cannot work in the presence of gravity
unless monster-like states are indeed excised from the theory.
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