
Chapter 3
The Firewall Phenomenon

R.B. Mann

Abstract Black holes have presented us with some of the most baffling paradoxes
in physics. From their original conception as dark stars, they have come to be
understood as physical systems with their own thermodynamic behaviour. This same
behaviour leads to paradoxical conflicts between some of the basic principles of
physics whose resolution is not straightforward and that suggest a new structure—
known as a firewall—may be present. This chapter provides an overview of the fire-
wall problem, as it emerges from our understanding of black hole thermodynamics.
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3.1 Introduction

Black Holes have presented us with paradoxical situations ever since their concep-
tualization in 1783 by the Reverend Michell [1]. Originally seeking a means for
determining stellar masses by measuring the reduction in the speed of corpuscular
light due to a given star’s gravitational pull, Michell reasoned that the maximal effect
measurable would be limited by the escape velocity from the star. This would have
to be the speed of light, most recently measured by Bradley to be 301,000 km/s
[2]. Any star more massive than this upper bound (500 times the mass of the sun
assuming the same average density) would not permit light to escape from its surface.
While no theoretical constraints for objects having speeds greater than c were known
at the time, there were no empirical measurements indicating such objects existed
either. Paradoxically, such stars would be dark stars, invisible to an outside observer,
though they could be indirectly inferred from their gravitational influence on nearby
luminous objects. The relationship between their mass and radius is given by the
same relativistic value R = √

2GM/c2 for Schwarzschild black holes. Ironically,
Michell’s proposal for measuring the mass of a star by measuring its speed of light
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fails because light moves through space at constant speed regardless of the local
strength of gravity.

It would take nearly two centuries before the paradoxes associated with dark
stars—now referred to as black holes—would dawn upon the physics community
at large. Their inexorable gravitational chokehold on matter turns from puzzle to
paradox once the quantum information content of the matter is taken into account.
At this point in time there is no consistent understanding of how quantum physics
allows information to either be retained in or escape from a black hole.

Over the past two years this conundrum has received a new degree of scrutiny. It
appears that a profound conflict between three core principles of physics—unitary,
locality, and the equivalence principle—indicates that black holes may erect around
themselves a new structure called a firewall [3]. The basic notion of a firewall is that of
a chaotically violent surface of highly energetic quantum states. Whereas standard
expectations from local gravitational physics would indicate that any detector (or
observer) falling into a black hole would encounter nothing out of the ordinary, the
reasoning behind the firewall argument implies that this encounter would be very
damaging to pretty much any detection device.

The purpose of this chapter is to present the firewall argument in the context of
its roots in black hole thermodynamics and the previously-understood paradoxes
associated with this phenomenon. After a review of the notion of a black hole in
Sect. 3.2, I will briefly describe the relationship between the laws of black hole
mechanics and the laws of thermodynamics (Sect. 3.3). These laws in turn depend
upon our understanding of quantum field theory in curved space-time and of pair
creation, yielding in turn our basic understanding of black hole radiation (Sect. 3.4).
This confluence of ideas led to what became known as the information paradox: the
puzzle of how a thermally radiating black hole can be consistent with the unitary
evolution quantum physics requires, discussed in Sect. 3.5. It was generally thought
for a time that recent conjectures about duality between gravitational physics and
gauge theories straightforwardly resolve the problem (at least in principle). However
more detailed study of the information paradox indicates that the resolution of this
problem is not at all straightforward [4], and that a new structure—known as a
firewall—may be present. This strange phenomenon is discussed in Sect. 3.6, along
with responses to this new perspective on black holes. A brief summary appears in
Sect. 3.7.

3.2 Black Holes

The physical notion of a black hole is essentially the same as that contemplated by
Michell: a region of space where the gravity is so strong that nothing can escape
from it. If the region is spherical, then a particle will be trapped there if its kinetic
energy is less than its gravitational potential energy
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and so if the mass M is concentrated within a region smaller than r+ it will trap all
particles moving at subliminal speed—the object will be a black hole.

Relativistic considerations imply that this is a firm limit: the invariance of the
speed of light for all observers indicates that all matter travels at subliminal speed.
Hence (without taking quantum effects into account) a black hole will absorb all
matter and emit nothing. It is a perfect absorber, whose physical temperature is zero.

The earliest and best known example of a black hole is the Schwarzschild solution

ds2 = −c2
(

1 − r+
r

)
dt2 + dr2

1 − r+
r

+ r2d�2
2 (3.2)

where d�2
2 = dθ2 + (sin θdφ)2 is the standard line element on the sphere S2.

Curiously, the quantity r+ plays the same limiting role as in Newtonian theory.
The metric appears to be singular at both r = r+ and r = 0, but the former

singularity is due simply to a coordinate choice. Writing

t = t∗ r = r+
[

W
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+ 1

]
(3.3)

yields from (3.2)

ds2 = −
W

(
exp

(
u−v
2r+ − 1

))

W
(

exp
(

u−v
2r+ − 1

))
+ 1

dudv + r2+
[

W

(
exp

(
u − v

2r+
− 1

))
+ 1

]2

d�2
2

(3.4)
where (u, v) = ct∗ ± r∗ and W is the Lambert-W function, defined via W (y) exp
(W (y)) = y. The horizon r = r+ is at r∗ = −∞. The space-time smoothly continues
through r = r+.

A particle moving on a radial trajectory will have dθ/ds = dφ/ds = 0; if the
particle moves at the speed of light (e.g. a photon) then ds2 = 0. Hence from (3.4) it is
easy to see that ingoing (outgoing) radial light rays follow lines du/ds = 0 (dv/ds =
0) or u = constant (v = constant). The metric (3.2) can be extended across r = r+
along either of these null lines. Writing (u′, v′) = (exp(u/2r+),− exp(−v/2r+)) =√

r/r+ − 1(exp((r + ct)/2r+),− exp((r − ct)/2r+)) transforms (3.2) to

ds2 = −4r2+e
−
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W

(
−
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+1

]
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(
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du′dv′ + r2+
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e

))
+ 1

]2

d�2
2 (3.5)

which are referred to as Kruskal coordinates. A plot of the function W (−x/e) indi-
cates that it monotonically increases with increasing negative x and diverges at x = 1.
Hence the metric is finite at u′v′ = 0 (corresponding to r = r+) but diverges at
u′v′ = −1 or r = 0. The Kretschmann scalar Rabcd Rabcd diverges at this point and
so this is a genuine curvature singularity. All geodesics either meet this singularity
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or else extend to infinite affine parameter—in this sense Kruskal coordinates are
maximal.

The causal structure is more easily shown in a Penrose diagram, which maps
the entire space-time to a finite region. For flat Minkowski space-time the metric
becomes

ds2 = −c2dt2 + dr2 + r2d�2
2

= (sec2 X+ sec2 X−)

[

d X−d X+ +
(

tan X+ − tan X−
2 sec X+ sec X−

)2

d�2
2

]

= (sec2 X+ sec2 X−)ds̃2 (3.6)

upon setting tan X± = ct ± r . Since light rays obey ds2 = 0 = ds̃2 the causal
relations between various regions are preserved in going from ds2 to ds̃2. The range
of X± is between ±π

2 , and the entire space-time is mapped into a finite region, as
shown at the top of Fig. 3.1.

r =
 r h

r = r
h

i+

Fig. 3.1 Penrose Diagram The causal structure of Minkowski space-time (top) and Schwarzschild
space-time (bottom). The coordinates U and V are depicted as well
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More generally one maps a given spacetime manifold M with metric gab into a
subset of a manifold M̃ with metric g̃ab. The conformal relation between the metrics is
g̃ab = �2gab. The boundary of the image of M in M̃ represents the ‘points at infinity’
in the original spacetime. Returning to the Schwarzschild metric and writing

tan U = u′ tan V = v′ (3.7)

yields a metric conformal to (3.4), with the coordinates (U, V ) playing the respective
roles of X±.

We see from the bottom part of Fig. 3.1 that whereas in Minkowski space-time all
future-directed light rays can reach infinity I+ (‘scri-plus’), in Schwarzschild space-
time any future-directed light rays that cross r = r+ will encounter the singularity,
and hence so will all future-directed timeline curves. This is the idea of the trapped
region a black hole induces. To make this notion more precise, we need to define a
region to which particles are able to escape. From Fig. 3.1 this region should be the
portion ‘near infinity’, i.e. at I+. So a black hole region B, in mathematical terms,
is defined as

B = M − I
−(I+) (3.8)

where I
−(A) denotes the chronological past of a region A. Hence a black hole is that

part of space-time not in the past of the escape-region of light rays (not in the past
of I+ or future null infinity).

The event horizon H of the black hole is the boundary of B. It is a null hypersur-
face (generally assumed to be at least once-differentiable) composed of future null
geodesics without caustics that cannot be extended. In other words the expansion of
the null geodesics comprising the horizon cannot become negatively infinite.

3.2.1 Gravitational Collapse

The Schwarzschild black hole (3.4) is very instructive for understanding the prop-
erties of black holes, but is physically unrealistic. Due to time-reversal symmetry,
the singularity at r = 0 in the future has a counterpart in the past, yielding a ‘white
hole’ structure at the bottom of the Penrose diagram in Fig. 3.1. The white hole W

is defined as W = M − I
+(I−): it is the part of the manifold not in the future of the

distant past of a time-reversed escape region. Just as a black hole is a total absorber,
a white hole is a total emitter: nothing can enter it but anything can leave.

A more physically realistic solution to Einstein’s equations matches a collapsing
ball of dust (a form of stress-energy with density but no pressure) onto the metric
(3.2), yielding a space-time that modelled the collapse of a star into a black hole.
Known as the Oppenheimer-Snyder solution [5], it has since been generalized to
many other cases. The general form of the Penrose diagrams for such spacetimes is
given in Fig. 3.2. The left and bottom parts of the original space-time are no longer
present, but the future event horizon remains. There is a point in time at which the



76 R.B. Mann

Fig. 3.2 Fluid Collapse The
Penrose diagram of the
collapse of a ball of dust. The
boundary of the dust is given
by the curved line

r = 0

+
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i

r=
r h

r 
=

 0

fluid collapses beyond which nothing can escape, even though the singularity has
yet to form. This is given by the intersection of the diagonal line from i+ with the
vertical line in Fig. 3.2. This is the kind of black hole relevant to astrophysics. A
depiction of the process in more familiar coordinates is given in Fig. 3.3.

Fig. 3.3 Gravitational
Collapse Gravitational
collapse of matter in more
familiar coordinates

r = 0

t

rcollapsing matter

r
=

r h

r=
rh
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It is also relevant to considerations of black hole thermodynamics. The vacuum
solution (3.2) is applicable everywhere outside of the fluid. Since it has an event
horizon, the general properties of black hole radiation—and the conundrums they
introduce—that are deduced from (3.2) will also be present for the collapse solution
shown in Fig. 3.3.

3.2.2 Anti de Sitter Black Holes

An important class of solutions of particular relevance to string theory are solutions
in which the space-time is asymptotic to a space-time of constant negative curvature.
This latter space-time is known as anti de Sitter (AdS) spacetime, and is a solution
to the Einstein equations

Rab − 1

2
gab R − �gab = Tab (3.9)

with matter stress-energy tensor Tab = 0 and cosmological constant � = −(d − 1)

(d − 2)/2�2 < 0 in d-dimensions. The most general vacuum metric in the static
spherically symmetric case is

ds2 = −c2
(

r2

�2 + k −
(r0

r

)d−3
)

dt2 + dr2

r2

�2 + k − ( r0
r

)d−3 + r2d�2
k (3.10)

where d�2
k is the metric on a compact space �k of constant curvature with sign

k, k = 1 being the (d − 2)-sphere, k = 0 being a torus, and k = −1 being a
compact hyperbolic space (obtained via well-known identifications [6]. The metric
(3.10) describes what is called a Schwarzschild-AdS black hole, with the constant
of integration r0 given by

rd−3
0 = 16πG M

(d − 2)V(�k)
(3.11)

where M is the mass of the black hole and V(�k) is the volume of �k (4π for a
two-dimensional sphere). When M = 0 then r0 = 0 and the metric (3.10) is that of
anti de Sitter space-time.

Light cone (u, v) and Kruskal (u′, v′) coordinates are defined by

u, v = t ± r∗ = t ±
∫

dr
r2

�2 + k − ( r0
r

)d−3 u′ = eκu v′ = −e−κv (3.12)

and repeating the procedure for the Schwarzschild case yields Fig. 3.4. There is no
choice of conformal factor that allows both the asymptotic boundaries I and the
singularity at r = 0 to be represented as straight lines [7], though it is common in
the literature to do so.
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r = 0

r = 0

r = 0

Fig. 3.4 Penrose Diagram for Schwarzschild-AdS Penrose diagrams for AdS (left) and the k = 1
Schwarzschild-AdS (right) space times

Note that asymptotic infinity is timelike in the Schwarzschild-AdS case. Any
massive object projected away from the black hole will inevitably return to its start-
ing point; the cosmological constant induces a confining potential for any massive
particle, as an analysis of the geodesic equation shows. Light rays, however, can
reach r = ∞ in finite time. It is common to put reflecting boundary conditions at
r = ∞ so that light rays are ‘confined’ like massive objects. The negative cosmo-
logical constant thus prevents radiation emitted by the black hole from escaping to
infinity, allowing the black hole to reach equilibrium with its Hawking radiation,
provided it is large enough. In this sense the eternal black hole (3.10) depicted at the
right of Fig. 3.4 is more physically relevant than its asymptotically flat counterpart
in Fig. 3.1.

3.3 Black Hole Thermodynamics

The first hints of a fundamental relationship between gravitation, thermodynamics,
and quantum theory came from studying black holes. While this subject is cov-
ered elsewhere in this volume, it is worth recapitulating the four laws of black hole
mechanics [8]:

0th Law Surface gravity κ+ is constant over the event horizon.
1st Law Differences in mass between nearby solutions are equal to differences in

area times the surface gravity plus additional work-type terms
2nd Law The area A+ of the event horizon never decreases in any physical process

provided the energy of matter is positive and space-time is regular
3rd Law No procedure can reduce the surface gravity to zero by a finite number of

steps.
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Henceforth setting for simplicity the constants G, c, and � to unity, if � �= 0 then
geometric arguments [9–12] indicate that the first law is

δM = κ+
δA+
8π

+
∑

i

(�i+ − �i∞)δJ i +V δP +
∑

j

�
j
+δQ j (3.13)

where M,J i are respectively the mass and angular momenta of the D-dimensional
black hole. The surface gravity κ+ is obtained from

κ2 = −1

2
∇aξb∇aξb|r=r+

where ξa is a timelike Killing vector, always present for static black holes. For
simplicity κ will be used to denote κ+ henceforth. For each independent rotational
plane, there is one J i , each with its corresponding conjugate angular velocity �i ;
the quantities �i∞ allow for the possibility of a rotating frame at infinity [13]. The
�i

h are the potentials for the electric (and magnetic) U (1) charges evaluated at the
black hole horizon.

The inclusion of the V δP term in (3.13) is a new addition, of considerable recent
interest in black hole thermodynamics. Since a negative cosmological constant �
induces a vacuum pressure, it seems reasonable to consider it as a thermodynamic
variable [14] analogous to pressure in the first law [9, 10, 15]. The mass M is then
understood as a gravitational version of chemical enthalpy. This is the total energy
of a system including both its internal energy E and the energy PV required to
“make room for it” by displacing its (vacuum energy) environment: M = E + PV .
In other words, M is the total energy required to “create a black hole and place it
in a cosmological environment”. A new perspective on black hole thermodynamics
thus emerges, leading to a different understanding of known processes and to the
discovery of new phenomena. The thermodynamic correspondence with black hole
mechanics is completed to include the familiar pressure/volume terms:

Thermodynamics Black hole mechanics
Enthalpy H Mass M
Temperature T Surface gravity κ

2π

Entropy S Horizon area A
4

Pressure P Cosmological constant − �
8π

First law d H = T d S + V d P + · · · First law d M = κ
8π

d A + V d P + · · ·
(3.14)

where the black hole work terms are
∑

i �i d Ji + �d Q for multiply rotating and
charged black holes.

A number of interesting implications have been recently worked out, including
the discovery that charged black holes behave as Van der Waals fluids [16, 17],
the realization well-known first-order phase transition between radiation and large
AdS black holes [18] can be understood as a “solid/liquid” phase transition, and the
discoveries of reentrant phase transitions [12] and triple points [19] for Kerr-AdS
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black holes. The former refers to a situation in which a system can undergo a transition
from one phase to another and then back to the first by continuously changing one
thermodynamic variable, and the latter is a coalescence of small, medium, and large
sized black holes into a single kind at a particular critical value of the pressure and
temperature, analogous to the triple point of water. A recent review appears in [12].

3.4 Black Hole Radiation

The striking parallel between black hole mechanics and black hole thermodynamics
raises the question as to the origin of this correspondence. Pivotal to this relationship is
the derivation of black hole temperature, which necessarily relies on the incorporation
of quantum physics into curved space-time settings [20]. There is not the space to
review this vast subject here, so I shall sketch the situation to provide the necessary
context for the information paradox and firewall argument.

3.4.1 Quantum Field Theory in Curved Spacetime

A scalar field D spacetime dimensions obeys the equation

∇2ϕ − m2ϕ = 0 (3.15)

and can be decomposed into a mode expansion

ϕ(x) =
∫

d3 k
[
φ k(x)â k + φ∗

k(x)â†
k

]
. (3.16)

where the functions φ k(x) are called mode functions. They are each solutions to
(3.15) and together form an orthonormal basis for the space of solutions in the sense
that

〈〈φ k(x), φ k′(x)〉〉 = −〈〈φ k(x)∗, φ k′(x)∗〉〉 = δ3( k − k′), 〈〈φ k(x), φ k′(x)∗〉〉 = 0,

(3.17)

with the inner product between fields defined as

〈〈χ, φ〉〉 ≡
∫

�

d�a ja (χ, φ) (3.18)

where �a is the volume element on � with unit normal na and the current

ja (χ, φ) = −i
√

ggab(χ∗∇bφ − (∇bχ
∗)φ) (3.19)
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is conserved (∇a ja = 0) provided both χ and φ) are solutions to (3.15). The con-
servation of ja ensures that the inner product is independent of the choice of slice
�. The operators â k are called mode operators, which obey the relations

[â k, â†
k′ ] = δ3( k − k′) (3.20)

Particle creation is understood to be

N∏

n=1

(
â†

ki

)nki |0〉 = ∣
∣n k1, n k2 , . . .〉 (3.21)

where the notation n k refers to n quanta in the k-th frequency mode of the field. For
example if the scalar field is replaced with an electromagnetic field, this would be n
photons of wave vector k.

The state |0〉 is the lowest-energy state—the vacuum, having no particles—with
the property

âki |0〉 = 0 ∀χ ∈ Q+ (3.22)

with Q+ the space of states of positive energy. In spacetimes that possess time
translation symmetry (with timelike Killing vector ξ ) it is defined to be the space of
solutions such that

ξa∂aφ k(x) = −iω kφ k(x), ξa∂aφ∗
k(x) = iω kφ

∗
k(x), (3.23)

where ω k > 0. The positive/negative frequency modes have eigenvalues ∓iω k
respectively.

In a general curved spacetime there are many ways of carrying out the above
construction, with no particular subspace singled out as a natural choice for the
positive frequency space [21]. Different notions of positive frequency will yield
different Fock space constructions that are unitarily inequivalent [22], and the vacuum
state |0〉 with respect to one choice of Q+ will not necessarily be in the Fock space
constructed from the vacuum ˜|0〉 with respect to another choice Q̃+.

However there is a linear relation between different choices. For another choice
Q̃+ any φ̃ ∈ Q̃+ is a linear combination φ̃ = φ + χ∗ for some (χ, φ) ∈ Q+.
Consequently two complete sets of modes {φ k, φ

∗
k} and {χ k, χ

∗
k} with associated

mode operators â k and â k are, by completeness and orthonormality, related by

χ k(x) =
∫

d3 k′ [
α k k′φ k′(x) + β k k′φ∗

k′(x)
]
,

where α k k′ = 〈〈χ k(x), φ k′(x)〉〉 and β k k′ = −〈〈χ k(x), φ∗
k′(x)〉〉. This is called a

Bogoliubov transformation [20] and the complex numbers α k k′ and β k k′ are called
Bogoliubov coefficients. Inverting this transformation yields
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φ k =
∫

d3 k′ [
α∗

k′ kχ k′(x) − β k′ kχ
∗
k′(x)

]

inducing in turn the following transformations

â k =
∫

d3 k′ [
α k′ kâ k′ + β

∗
k′ kâ

†
k′

]
â k =

∫
d3 k′ [

α∗
k k′ â k′ − β

∗
k k′ â†

k′
]

(3.24)
on the mode operators.

The commutation relations (3.20) of the mode operators imply

(
α β

β
∗

α∗
) (

α† −β
T

−β
†

αT

)

=
(

1 0
0 1

)
,

where the individual entries are to be interpreted as block matrices. From (3.24) we
see that the Fock bases associated with these two mode expansions differ, leading to
two different particle interpretations of the field excitations. Whenever any of the β-
coefficients are nonzero, positive frequency states get transformed into a combination
of positive and negative frequency states, leading to particle production. Specifically,
according to the particle interpretation based on the φ k(x) modes, particles are
present in the vacuum of the χ k(x) mode expansion |0〉χ . The average number of
particles present in mode k is given by

χ 〈0|Nk |0〉χ = χ 〈0|â†
kâ k|0〉

χ
=

∫
d3 k′ |β k k′ |2.

In this sense, there is no invariant notion of particles in quantum field theory: as with
simultaneity, particle interpretations are observer-dependent.

To cope with this, several key assumptions must be made.

1. All quantum states are defined on a spacelike slice � of 4-dimensional space-time,
whose intrinsic curvature R(3)

abcd and extrinsic curvature Kab are both everywhere

small compared to the Planck length: |R(3)
abcd |�1/ l2

p, |Kab|�1/ l2
p.

2. There is some neighbourhood of � where the full space-time curvature Rabcd is
also small: |Rabcd | � 1/ l2

p.
3. The wavelength λ of any quanta on � is much longer than the Planck length

λ � l p.
4. The stress-energy of all matter obeys positive energy conditions and the energy

and momentum densities of the matter are small compared to the Planck density
(1̃/ l4

p).
5. For a least a certain interval of proper time τ , � evolves sufficiently smoothly

(so that d N/dτ � 1/ l p and d N a/dτ � 1/ l p) into future slices that respect the
preceding four properties.

The preceding conditions are sometimes referred to as the ‘niceness’ conditions [4],
and are regarded as ensuring that semiclassical physics is valid (Fig. 3.5).
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r= 0

+
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i+
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1

2

r =
 r h

r 
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 0

Fig. 3.5 Nice Slices Two different slices for the collapse diagram that satisfy the niceness conditions

3.4.2 Pair Creation

Generally black hole radiation can be understood as a phenomenon of pair-creation of
particles due to the distortion of spacetime near the horizon. An intuitive argument
illustrating how this can take place was recently given by Mathur [4]. Consider a
choice of spacelike slices in which one spatial region evolves further in time than
another, as shown in Fig. 3.6. This situation is permitted in generally covariant
theories of gravity such as general relativity. Both slices satisfy the semiclassical
(niceness) conditions. No particle creation occurs classically, but if a quantum field

l

L

b
c

(a)

(b)

Fig. 3.6 Particle Creation due to Spacetime distortion The intrinsic geometry of the initial
spatial slice (horizontal line) evolves forward in time differently on the left than on the right, with
a concentration of (classical) matter symbolized by the box at the left. In a the evolution is fully
classical and no pairs are created. In b the quantum field on the initial slice is in the vacuum, with
the space-time distortion on the next slice creating a pair of quanta
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is in the vacuum state (in Fig. 3.6b) then the created-pair state will be in the state

|ψ〉 = (α|0〉c|0〉b + β|1〉c|1〉b) + · · · (3.25)

where |α|2 + |β|2 = 1; the ellipsis refers to multi-pair creation, neglected in the
above. In Hawking radiation the created pair is maximally entangled, with |α| =
|β| = 1/

√
2, but we can understand what is going on for arbitrary entanglement.

The quantum state of the entire system is

|�〉 ≈ |�〉M ⊗
(
α|0〉c|0〉b + β|1〉c|1〉b

)
(3.26)

where |�〉M is the quantum state of the matter, symbolized by the box at the left
of Fig. 3.6. If l � L then the influence of the matter on the created pair can be
neglected (though in principle there is always some influence), and the full state is
well approximated by the tensor product (3.26).

The locality assumption ensures that the state � is a tensor product. Small depar-
tures from whatever physics yielding the (α, β) coefficients are permitted

|�〉 ≈
(
α̃|�0〉M + β̃|�1〉M

)
⊗

(
(α + ε)|0〉c|0〉b + (β − ε)|1〉c|1〉b

)
(3.27)

but not states of the form

|�〉 ≈
(
(α̃ + ε)|�0〉M |0〉c + (β̃ − ε)|�1〉M |1〉c

)
⊗

(
α|0〉b + β|1〉b

)
(3.28)

where for simplicity the matter is assumed to be a single qubit in one of two possible
states |�0〉M or |�1〉M . For the former case (3.27) the entanglement entropy is, upon
tracing over the matter and state c,

Sent = − trc,M [ρ ln ρ]
= −

(
|α|2 ln |α| + |β|2 ln |β|

)

+ 2ε
(
|β| ln(2|β|2) − |α| ln(2|α|2)

)

− ε2
(

6 + 2 ln(|α||β|)
)

(3.29)

which has the value Sent = ln 2 − ε2(6 − 2 ln 2) ≈ ln 2 for maximal entanglement.
However for the latter case (3.28) the entanglement entropy is

Sent = −trc,M [ρ ln ρ] = 0 (3.30)

since the state b is a direct product with the remaining states. So for l p � l � L ,
the entanglement entropy is
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∣
∣
∣
Sent

ln 2
− 1

∣
∣
∣ � 1 (3.31)

from pair creation due to space-time distortion when the semiclassal assumptions
are valid.

The key distinction between radiation emitted from a black hole and that emitted
from a hot material object (such as a lump of coal) is in how the emitted quanta
are generated. A lump of coal emits radiation because the atoms near its surface
are excited, and emit quanta as they fall to states of lower energy. A black hole,
however, emits quanta that arise due to entangled pair creation from the distortion
of space-time, with one partner in the pair remaining inside the black hole and thus
inaccessible to observers outside. Put another way, hot material bodies emit radiation
from their constituents whereas black holes pull entangled pairs of quanta out of the
vacuum as the result of ‘stretching’ a region of a space-like slice. The situation is
illustrated in Fig. 3.7.

r = 0

t

r

1

2

correlated pairs

collapsing matter

r 
=

 r
h

Fig. 3.7 Creation of Correlated Pairs outside a Black Hole Pairs of quanta (symbolized by the
shapes) are created near the event horizon. The collapsing matter on the same corresponding spatial
slices is very far from these pairs
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The laws of black hole mechanics imply that the temperature T of a black hole is
given by its surface gravity, T = κ/2π . The metric of any static black hole can be
written as

ds2 = − f (r)dt2 + dr2

g(r)
+ r2d�2

2 (3.32)

and

κ2 = −1

2
∇aξb∇aξb|r=r+ = g(r)( f ′(r))2

4 f (r)

∣
∣
∣
r=r+

= g′+ f ′+
4

(3.33)

yields the surface gravity at the horizon. Hawking’s original calculation [23] was
for a free scalar field propagating in a classical background spacetime describing
gravitational collapse of matter to a Schwarzschild black hole. Prior to collapse the
scalar is initially in its vacuum state. At late times, long after the black hole has
formed, the positive frequency mode function corresponding to a particle state is
traced backwards in time to determine its positive and negative frequency parts in
the asymptotic past. The expected number of particles at infinity corresponds to
emission from a perfect black body (of finite size) at the temperature T = κ/2π .
Note that, other than in justifying use of the background space-time, nowhere are
any gravitational field equations employed in this calculation. A collapse situation is
well approximated by the eternal black hole (3.2) but with boundary conditions that
are regular (Hadamard) only on the future horizon. This is called the Unruh state.

Despite this, there are a number of caveats and assumptions underlying the cal-
culations of black hole temperature [4, 24].

A1 Invariant Hadamard states do not exist for all stationary black holes. The Kerr
solution, describing a rotating black hole, is one such example, and as a conse-
quence has a super-radiant instability [25–27].

A2 Asymptotically flat black holes will lose mass as they radiate, invalidating the
late-time stationarity assumption. However the outgoing radiation will only carry
an appreciable fraction of the mass over timescales t ∼ (M/MP )3 [28].

A3 One of the most crucial assumptions is that the quantum state of the field is
regular (Hadamard) at the horizon: its local behaviour at the horizon is the
same as it would be in the Minkowski vacuum. This is an application of the
equivalence principle, that locally (on sufficiently short time and distance scales)
gravity and acceleration are indistinguishable. Freely-falling observers near the
horizon should not see any unusual behaviour in high-energy processes. This is
sometimes call the “no drama” assumption.

The no-drama assumption is somewhat paradoxical. An observer distant from a
black hole formed from collapse who detects a mode at any finite frequency ω f will
realize that it has been redshifted. This must mean that it had a very large frequency
in the past when it was propagating near the event horizon, of order ω = eκtω f

where t is the time it takes for the mode to reach the distant observer: the mode is
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blueshifted in the past. There is no past horizon (or other obvious physical effect)
to provide a compensating effect for a mode propagating through the collapsing
matter from the asymptotic past. Within a time scale of order 1/κ of the black hole’s
formation, the intermediate steps of the derivation implicitly involve propagation
of trans-Planckian modes, modes that are much higher that the Planck frequency
ωP = √

c5/�G ∼ 1043 s−1. This suggests lots of drama, since it is difficult to
believe in the reliability of free-field theory (or any other known physical theory) at
such high frequencies/energies [29].

Extensive study of this trans-Planckian problem [30–38] suggests that, despite the
above, Hawking radiation is actually a low-energy phenomenon. Studies of quantized
sound waves in a fluid undergoing supersonic flow indicate that a sonic analogue of
the Hawking effect is present here as well. There is also a past-blueshift effect that
renders invalid the continuum fluid equations that described the situation in the
first place. However modifying these equations to yield a dispersion relation that is
altered at ultra-high frequencies to alleviate this problem still yields sonic Hawking
radiation. A variety of alternative models that significantly modify the continuum
fluid equations at high energies have verified this, and a recent experiment with water
waves [39] is in accord with the basic theoretical predictions.

The low-energy character of Hawking radiation appears to emerge from the behav-
iour of the field in the WKB regime [40]. Moving backward in time, the past-blueshift
effect will bring the field into the WKB regime before it enters the trans-Planckian
regime. The WKB approximation remains valid throughout the evolution provided
the Hawking temperature is much smaller than the trans-Planckian scale (the scale at
which the modified dispersion relation is relevant). The outgoing radiation does not
come about because of any interaction with other degrees of freedom but rather is a
consequence of the tidal disruption (or space-time distortion) of free-field evolution
by stretching the wavelengths. The major ingredient of Hawking radiation appears
to be a “tearing apart” of the waves into an outgoing (positive norm) component and
its infalling (negative norm) partner (Fig. 3.8).

Fig. 3.8 Mode Stretching
A Fourier mode created on
some slice (represented by the
dashed line) is stretched as it
evolves to later slices. This
eventually leads to a distorted
waveform, resulting in
particle creation

r = 0

r 
=

 r h
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3.5 The Information Paradox

The no-drama assumption is tantamount to assuming the horizon of the black hole
is ‘information-free’: that field modes with wavelengths l p � λ � M are described
by curved space-time quantum field theory on the black hole background. We have
seen that the notion of a particle is contingent on what the vacuum, or ‘empty space’
is taken to be. Modes with wavelengths λ smaller than the curvature scale R will
yield differing definitions of particle quanta, but the difference between definitions
will consist of about 1 quanta for wavelengths as large as the curvature scale, λ ∼ R.
For black holes R ∼ M and so different particle-definitions will differ by about 1
quanta for wavelength λ ∼ M , but by a negligible number of quanta for wavelengths
λ < k̃ M , where k̃ ∼ 10−1. Hence a robust notion of vacuum, or empty space, is well
defined for such wavelengths: no modes are present for l p � λ < k̃ M .

In illustrating the information paradox, the assumptions A1–A3 will be assumed
to hold, and so it will be sufficient to employ the metric (3.2). At late times this can
describe a collapsing black hole, formed perhaps by a shell of matter or a ball of
dust. Since this metric has a singularity at r = 0, spacelike slices must avoid this
singularity or else the niceness conditions will not hold, undermining the calculations
yielding black hole radiation.

The slicing choice will be taken to obey the following criteria [4]

Outside �O Slices are at t = constant for r > 4M ; this portion is outside the black
hole.

Inside �I Slices are at r = constant for M/2 < r < 3M/2; this portion is inside
the black hole. This segment will be smoothly extended to r = 0 at
early times before the singularity has formed.

Connect �C The preceding two segments are joined by a smooth connecting seg-
ment C; this portion crosses the event horizon. The spatio-temporal
dimensions of this segment are both of size ∼ M .

thereby respecting the niceness conditions. Nowhere does the slice �(t, r, C) =
�O ∪ �I ∪ �C go near the singularity, and the appropriate connecting segment can
always be appropriately chosen.

Each slice is contingent on the choice of time, and it is essential that the slices
smoothly evolve into each other (not merging or crossing). If �0 = �(t0, r0, C0)

describes an initial slice, then a subsequent slice is �1 = �(t1, r1, C1) = �(t0 +
δt, r0 + δr, C0 + δC). Increasing t0 and r0 respectively correspond forward evolution
outside and inside the black hole. The geometry of the connecting segments can be
taken to be the same for all slices provided δr � M is sufficiently small. This has the
consequence that the constant-r segments of the slices become increasingly longer
since the constant-t parts outside the horizon are further in the future. The dashed
lines in Fig. 3.7 are illustrative of this choice of slicing.

Foliating the space-time with these slices �(t, r, C) along a unit timelike normal
ua (with zero shift vector) indicates that only the connecting segment C becomes
stretched. The segment �O advances forward in time with lapse function N =√

1 − 2M/r , and the segment �I will remain unchanged in its intrinsic geometry
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Fig. 3.9 Mode Evolution Long wavelength modes (dashed) and short wavelength modes (solid)
created on the same slice generate created pairs differently. The long wavelength modes get distorted
earlier, creating an entangled pair first (|outside〉1, |inside〉1). The short wavelength modes take
longer to distort, and so the pairs they create (|outside〉2, |inside〉2) emerge later

provided δr is sufficiently small, though its length increases. The connecting segment
�C must therefore stretch since it has to evolve to cover the additional part of �I

and the connecting segment of the next slice.
The slicing is therefore time-dependent since it must cover both the outside and

inside of the black hole; it therefore depends on the temporal coordinate r on the
inside of the hole. The Kretschmann scalar and all other measures of curvature are
small for all slices in this evolution. It is the time-dependent stretching of �C , and not
large-curvature effects, that yields particle production. This choice of slicing (and its
resultant stretching) is a necessary consequence of the existence of the black hole. It
is not an option in flat space-time: any such choice will necessarily force the slices
to eventually become null and then timelike at some point in the evolution. Since
spatial and temporal directions interchange roles for a black hole, the slices always
remain spacelike. The stretching of the slices is localized to a region in the vicinity of
the horizon: a field mode in this region will become increasingly stretched to longer
wavelengths, generating particles for as long as the assumptions concerning the use
of (3.2) are valid (Fig. 3.9).

The particle creation scenario proceeds along the following lines. The quantum
state on the initial slice �0 is that of the matter field |�(t, r)〉 that will later form
the black hole. This can be taken to be a sharply-peaked wavepacket that in the
classical limit describes a shell of collapsing matter. Prior to formation of the black
hole no particles are created since the entire slice is outside of the black hole. Upon
formation of the black hole the quantum state is |�〉. On some subsequent slice there
will be sufficient stretching of region �C to create a pair of quanta of sufficiently
short wavelength λ = 2π/k. The matter state |�〉 will be localized in �I and so will
be negligibly affected by this process. Consider for simplicity a single mode. The
quantum state on this slice will therefore be
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|�〉1 ≈ 1√
2
|�〉I1 ⊗

(∣
∣0k

〉+
I1

∣
∣0−k

〉−
O1

+ ∣
∣1k

〉+
I1

∣
∣1−k

〉−
O1

)
(3.34)

where the subscripts I/O refer to inside/outside the horizon. An outside observer has
no access to the states inside, and so must employ the reduced density matrix

ρO1 = trI

[
|�〉〈�|

]
=

(
1
2 0

0 1
2

)

(3.35)

in describing the physics of the outside state. The entanglement entropy of the outside
state with the state inside the black hole is

Sent = −tr
[
ρO1 ln ρO1

] = 2 × 1

2
ln 2 = 2 ln 2 (3.36)

On the next slice the process repeats. The inside state |ψ〉I moves into region �I

and the matter state |�〉I1 moves deeper into this region, becoming the state |�〉I2 .
The outside state |ψ〉O moves into region �O . The additional stretching of region
�C creates a new pair, yielding the state

|�〉2 ≈ 1√
2
|�〉I2⊗

(∣
∣0k

〉+
I1

∣
∣0−k

〉−
O1

+∣
∣1k

〉+
I1

∣
∣1−k

〉−
O1

)
⊗

(∣
∣0k

〉+
I2

∣
∣0−k

〉−
O2

+∣
∣1k

〉+
I2

∣
∣1−k

〉−
O2

)

(3.37)

assuming the stretching region has negligible influence on the first pair of states. The
reduced density matrix is now

ρO2 = trI

[
|�〉〈�|

]
=

⎛

⎜
⎜
⎜
⎝

1
4 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 1
4

⎞

⎟
⎟
⎟
⎠

(3.38)

and

Sent = −tr
[
ρO2 ln ρO2

] = 4 × 1

4
ln 4 = 2 ln 2 (3.39)

is entanglement entropy of the outside state on this next slice.
After n steps the quantum state is

|�〉n ≈ 1√
2
|�〉In

n∏

m=1

[
⊗

(∣
∣0k

〉+
Im

∣
∣0−k

〉−
Om

+ ∣
∣1k

〉+
Im

∣
∣1−k

〉−
Om

)]
(3.40)

and the reduced density matrix is ρOn = diag(2−n, 2−n, . . . , 2−n), yielding
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Sent = −tr
[
ρOn ln ρOn

] = −n × 1

2n
ln 2−n = n ln 2 (3.41)

for the entanglement entropy.
The quantity n is an enormously large number, as can be seen from energy

conservation. Suppose each quanta contains the same amount of energy in units
of the Planck mass. For a mass M black hole, the energy per quanta is EQ =
σ(Mp/M)Mp � M where σ is a parameter of order unity. The total mass of the
black hole is nEQ = M implying n = (M/MP )2/σ . For a solar mass black hole
n ∼ (2×1030/(2×10−8))2 = 1076. There is no upper bound on n since in principle
the mass of the black hole can be arbitrarily large, though one might argue that the
largest black hole possible is constrained by the mass of the universe, MU = 1052

kg, giving n ≤ 10120.
Expression (3.41) contains the nub of the information paradox: the entanglement

entropy of the radiation state |ψ〉O grows without bound as more pairs are created.
Eventually it must terminate, of course, as the radiation cannot contain more energy
than was in the initial quantum state |�〉 (or the mass M of the black hole). Indeed the
niceness conditions will (at least) fail to hold once M ∼ Mp, since the Kretschmann
scalar (for example) K = 48M2/r6 → M2

p/ l6
p = l4

p becomes too large for semi-
classicality to hold. Of course the assumptions leading to (3.41) do not hold in full
generality. The mass of the black hole is not constant, the created pairs might inter-
act with each other, and the state |�〉 could have some interaction with the created
pairs. Gravitational instantons, for example, yield tiny corrections proportional to
exp{−(M/MP)2}. Could such small corrections from these effects invalidate the
argument in some way?

Unfortunately this proves not to be the case [4]. Suppose at the j-th step of the
process, the full quantum state is not of the form (3.40) but is rather

|�̃〉 j = |�̃〉(+)
j−1|�〉(+)

j + |�̃〉(−)
j−1|�〉(−)

j (3.42)

where

|�〉(±)
j = 1√

2

(∣
∣0k

〉+
I j

∣
∣0−k

〉−
O j

± ∣
∣1k

〉+
I j

∣
∣1−k

〉−
O j

)
(3.43)

and the state |�̃〉(+)
j−1 can be expressed as

|�̃〉(±)
j−1 =

∑

l,m

αl,m | ˜̃
ψ±

l (�, I)〉|χm(O)〉 =
∑

m

γm |ψ̃±
m (�, I)〉|χm(O)〉 (3.44)

where |ψ̃±
m (�, I)〉 and |χm(O)〉 are orthonormal bases for the respective inside and

outside states, and a unitary transformation has been applied to obtain the second
equality. The newly created state is spanned by �

(±)
j . Assuming locality, the outside
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states
∣
∣ψ

〉−
O j

generated in earlier stages of the evolution are not affected by the pro-

posed step (3.42); hence the basis |χm(O)〉 remains unchanged.
The proposed correction (3.42) to the Hawking process is a deformation of the

original process (3.40), in which |�̃〉(−)
j−1 = 0. Unitarity implies that

∣
∣ (+)

j−1〈�̃|�̃〉(+)
j−1

∣
∣2 + ∣

∣ (−)
j−1〈�̃|�̃〉(−)

j−1

∣
∣2 = 1 (3.45)

since the �
(±)
j are orthonormal. If the corrections to (3.40) due to (3.42) are small,

then ∣
∣ (−)

j−1〈�̃|�̃〉(−)
j−1

∣
∣ < ε (3.46)

where ε � 1. To say that corrections to the Hawking radiation process are small is
to say that one obtains the state �

(+)
j with high probability when the pair is created,

and that the orthogonal state �
(−)
j is observed with low probability.

There are thus three subsystems at stage- j of the evolution: (i) the outside state
{O j−1} of all previously emitted outside quanta, (ii) the inside state |ψ̃(�, I)〉 j−1
consisting of the original matter state and previously-created inside partner quanta,
modified perhaps by previous interactions, and (iii) the newly created pair described
by the state |�〉 j , spanned by the basis |�〉(±)

j . The reduced density matrix for this
newly created pair is

ρ� j = tr ˜|ψ(�,I)〉 j−1,O j−1

[
|�̃〉 j j 〈�̃|

]

=
((+)

j−1〈�̃|�̃〉(+)
j−1

(+)
j−1〈�̃|�̃〉(−)

j−1
(−)
j−1〈�̃|�̃〉(+)

j−1
(−)
j−1〈�̃|�̃〉(−)

j−1

)

=
(

1 − ε2− ε+−
ε∗+− ε2−

)
(3.47)

where by (3.46), |ε+−| < ε and |ε−| < ε. The eigenvalues of this matrix are
1
2 (1 ±

√
1 + 4(|ε+−|2 − ε2−) to this order, yielding

S(� j )ent =
(
|ε+−|2 − ε2−

)
ln

(
e

|ε+−|2 − ε2−

)

+ · · · < ε2 ln ε < ε (3.48)

for the entanglement entropy of the newly created pair. The entropy of the joint
subsystem {O j−1, � j } is therefore

S({O j−1, � j }) ≥ |S({O j−1}) − S(� j )| = S({O j−1}) − ε (3.49)

using the strong subadditivity property of entropy.
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Next, tracing over everything except the inside state I j yields

ρI j = tr ˜|ψ(�,I)〉 j−1,O j

[
|�̃〉 j j 〈�̃|

]

= 1

2

⎛

⎝

(
(+)
j−1

〈
�̃

∣
∣ +(−)

j−1

〈
�̃

∣
∣
)(∣

∣�̃
〉(+)

j−1 + ∣
∣�̃

〉(−)

j−1

)
0

0
(

(+)
j−1

〈
�̃

∣
∣ −(−)

j−1

〈
�̃

∣
∣
)(∣

∣�̃
〉(+)

j−1 − ∣
∣�̃

〉(−)

j−1

)

⎞

⎠

= 1

2

(
1 + �(ε+−) 0

0 1 − �(ε+−)

)
(3.50)

and so

S(I j )ent = ln 2 − 2[�(ε+−)]2 > ln 2 − 2ε2 > ln 2 − ε (3.51)

for the entanglement entropy of the inside partner of the newly created pair. Applying
strong subadditivity to the system {{O j−1}, O j , I j } gives

S({O j })ent + S(� j )ent = S({O j−1}, O j )ent + S(O j , I j )ent > S({O j−1}) + S(I j )ent
(3.52)

or

S({O j })ent > S({O j−1}) + S(I j )ent − S(� j )ent > S({O j−1}) + ln 2 − 2ε (3.53)

using (3.48), (3.51).
The relation (3.53) is very important for the information paradox. It demonstrates

that the entanglement entropy of the outgoing radiation always increases by at least
ln 2 − 2ε as each new pair is created. In other words, the increase of entanglement
entropy is stable, and small corrections cannot accumulate to invalidate the result
(3.41) [4].

This is unlike the situation for radiation emitted from normal matter, in which
the matter/radiation interaction necessarily increases the dimensionality of the space
of entangled states to leading order in the interaction. Each emission of radiation
can be entangled with the emitting atom(s) in the matter in any one of a number of
orthogonal states. The data of the state of the hot matter is shared amongst many
quanta of radiation, making its original state difficult to extract; the actual correla-
tions themselves change radically from emission to emission. In contrast to this, the
stretching of space-time requires that the outgoing radiation is always entangled in
the same way to leading order regardless of the state of the black hole. The actual
correlations themselves do not change radically from emission to emission, but at
best receive only small corrections, assuming semiclassical physics is valid at and
near the horizon.
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3.5.1 Implications of the Information Paradox

To summarize: if (a) the niceness conditions admit local Hamiltonian evolution and
(b) the event horizon of the black hole is information-free (or alternatively freely-
falling observers do not see any unusual behaviour in high-energy processes) then the
end state of evaporation of the black hole is that of a remnant or a mixed state. These
two conditions imply that any outgoing mode

∣
∣ϑ

〉
whose wavelength λ is within the

range l p � λ � M will predominantly be a vacuum state when expanded in a Fock
basis near the horizon

∣
∣ϑ

〉 = α0
∣
∣0

〉 + α1
∣
∣1

〉 + α2
∣
∣2

〉 + · · · (3.54)

with
∑

j>0 |α j |2 = ε � 1, since otherwise the state at the horizon would not be a
vacuum state. The evolution of

∣
∣ϑ

〉
must therefore agree with the standard vacuum

evolution to leading order such that any corrections are constrained by (3.46). The
entanglement entropy Sent therefore increases by ln 2 − 2ε (with ε ∼ ε) during each
step of the evolution. After n steps Sent > n/2 ln 2 since ε � 1. This process will
continue until n ∼ (M/MP)2, when the size of the black hole is about a Planck
length L p. At this point either the process stops, leaving behind a highly-degenerate
remnant or the hole fully evaporates, leaving the outgoing radiation in a mixed state
(it is entangled with nothing) violating unitarity.

What might resolve the information problem? Clearly what is needed is that the
outgoing radiation at least contain the information of the matter state that forms the
black hole. To see what this means in a simple example, consider the matter to be
a shell collapsing to a black hole that is initially in the state |�〉 = α|�0〉 + β|�1〉
where {|�0〉, |�1〉} are two possible orthogonal states of the shell. The information
would escape the black hole if the pairs were created such that the evolution of the
state were

|�〉 = α|�0〉 + β|�1〉 → 1√
2

(
|�0〉

∣
∣1k

〉+
I1

+ |�1〉
∣
∣0k

〉+
I1

)
⊗

(
α

∣
∣0−k

〉−
O1

+ β
∣
∣1−k

〉−
O1

)

(3.55)

since tracing over the inside will yield the density matrix of the pure state α
∣
∣0−k

〉−
O1

+
β

∣
∣1−k

〉−
O1

, which has all the information of the infalling matter. A resolution of
the information paradox must implement this kind of evolution. However there are
significant obstacles to overcome.

First, the proposed evolution (3.55) is a radical departure from that in (3.34)
or even (3.42). It is not a small correction to the standard pair-creation process at
the horizon, and so its implementation is not obvious. It would represent a radical
departure from our understanding of the behaviour of quantum field theory in curved
space-time as described in preceding sections, at least near the event horizon.

Second, there can be no other pair-creation processes accompanying (3.55). To
see why, suppose that there are further steps to the evolution (prior and/or afterward)
such that for the k-th mode
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|�〉 = α|�0〉 + β|�1〉 → 1√
2

(
|�0〉∣∣1k

〉+
I1

+ |�0〉∣∣0k
〉+
I1

)
⊗

(
α

∣
∣0−k

〉−
O1

+ β
∣
∣1−k

〉−
O1

)

[
⊗

(∣
∣0k

〉+
I1

∣
∣0−k

〉−
O1

+ ∣
∣1k

〉+
I1

∣
∣1−k

〉−
O1

)]n

(3.56)

after n steps. Even though the information forming the black hole comes out, the end
point of the evolution is still either a mixed state or a remnant due to all of the other
created pairs. It is not sufficient to modify the evolution so that the information comes
out. It must be modified to prevent the growth in entanglement entropy from the extra
created pairs. The number of quanta emitted from the black hole is somewhat larger
than the number needed to retain the information of the infalling matter (the entropy
of the emitted radiation is about 30 % larger than the horizon entropy A/4 [41]), and
it is just as important that these additional quanta do not yield remnants or mixed
states.

Third, purity of the outside state is not sufficient. An evolution of the form

|�〉 = α|�0〉 + β|�1〉 → 1√
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∣
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yields a pure outside state, but this state retains no information about the (α, β) coef-
ficients of the infalling matter. The challenge of resolving the information paradox
is to construct an evolution in which the final state of the outside radiation is both
pure and information-retaining. Pair-creation at the horizon does neither.

3.5.2 Complementarity

One idea that emerged as a means of reconciling black hole radiation with known
quantum physics was complementarity [42, 43]. The idea here is that one cannot ask
a physical theory to yield descriptions of observers that cannot exist—specifically
observers that can make measurements both inside and outside of the black hole.

Consider a choice of spacelike slices describing an evaporating black hole. The
original slice � contains matter that will go into forming the black hole, and the slices
that go through the event horizon obey the niceness conditions. This breaks down
at the point P (contained in the slice �P ) where the black hole finally evaporates
(no remnant assumed), but one might expect that a proper understanding of quantum
gravity will ameliorate this, leading to a well-defined physical description of the end
point of evaporation. After evaporation, the slices �′ obey the niceness conditions.

The problem presented by black hole evaporation is that the quantum state on �′
must be described by unitary evolution from the quantum state on �. However the
only way this can happen is if the quantum state on the part of the slice inside the
black hole has no dependence on the initial state. This is effectively a ‘bleaching’
of the information: all distinctions between the initial states of infalling matter must
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be expunged before the state crosses the global event horizon. In other words, the
evolution of the quantum state must proceed as follows

∣
∣�(�)

〉 → ∣
∣�(�P )

〉 = ∣
∣�(�in)

〉 ⊗ ∣
∣ϒ(�out)

〉 → ∣
∣�(�′)

〉

where
∣
∣�(�′)

〉 = U2
∣
∣ϒ(�out)

〉 = U1
∣
∣�(�)

〉 (3.58)

with U1 and U2 unitary operators and with the Hilbert space of states on �P likewise
decomposing into a tensor product HP = Hin ⊗ Hout with �(�in) ⊂ Hbh and
ϒ(�out) ⊂ Hout. The evolution between

∣
∣�(�′)

〉
and

∣
∣�(�)

〉
is fully unitary and

reversible, uninfluenced by
∣
∣�(�in)

〉
.

Complementarity posits that the flaw in the above argument is in the assumption
of the existence of

∣
∣�(�P )

〉
. This is a quantum state that simultaneously describes

both the interior and the exterior of a black hole. The claim is that any state of this
nature has no operational meaning, since no “super-observers” exist that compare
measurements both inside and outside the black hole. Rather any observer must
choose a basis in which to work: either one describes particles beyond the horizon
or the particles in the Hawking radiation, but not both. Indeed, the trans-Planckian
problem suggests that large non-vanishing commutators exist between operators
describing ingoing material and those describing outgoing Hawking radiation, and
so correlations between inside and outside the hole lose any operational meaning.

The advent of the Anti de Sitter/Conformal Field Theory correspondence [44]
provided further confidence for this perspective, suggesting that all information is
indeed carried away by the Hawking radiation. The idea here is that the quantum
states (and their evolution) of any gravity theory whose solutions are asymptotic to
anti de Sitter (AdS) space-time are in 1–1 correspondence with those of a Conformal
Field Theory (CFT). This conjecture has more recently has broadened to a proposed
duality between gravitational and gauge theories (gauge/gravity duality) under more
general asymptotic conditions and symmetries. The CFT (or dual gauge theory) is
unitary and so cannot admit any information loss, and its duality with gravity indicates
that the same must be true there as well. There is strong circumstantial evidence in
favour of this kind of duality, and hence of the purity of radiation emitted by a black
hole.

Of course gauge/gravity duality does not prove that information loss cannot occur.
Rather it provides a new paradigm by which one might seek to understand the process
of black hole formation and evaporation. If indeed a dual gauge theory can describe
this process, then the onus is on this theory to explain either (a) which conditions
are modified so that mixedness is avoided, (b) the formation of remnants, or (c) new
physics in the gravity theory that either prevents black hole formation or modifies
the state near the horizon. So far such a description has yet to be given.

So complementarity asserts that there is no logical contradiction in assuming
that a distant outside observer sees all infalling information returned in Hawking-
like radiation, and that the infalling observer experiences nothing unusual before or
during horizon crossing. The thermality of Hawking radiation will be affected by
interactions very near the horizon, and these presumably ensure that the net emission
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process is pure as seen by the outside observer. The physical model an outside
observer employs will therefore postulate a boundary condition for all fields a few
Planck distances away from the horizon. These include the brick wall model [45, 46],
bounce models, and stretched horizon models [42]. A full quantum theory of gravity
is expected to set this distance, but it can be input into the theory for the purpose
of doing phenomenological calculations. This membrane/wall distance is dependent
on the matter content of the theory (the number of fields, for example), and so
constraining this distance to be consistent with observation will constrain the matter
content of the theory, providing (in principle) an additional degree of falsifiability.
From the perspective of the outside observer the membrane/wall absorbs infalling
matter and then thermalizes it, unitarily re-radiating it as Hawking radiation via a
process similar to the manner in which a normal body radiates. Complementarity
implies that an observer falling into the black hole will see no such membrane or
brick wall, in contrast to the outside observer for whom this virtual structure is quite
real [42].

The postulates of black hole complementarity are as follows:

1. Unitarity The process of formation and evaporation of a black hole, as viewed
by a distant observer, can be described entirely within the context of standard
quantum theory. In particular, there exists a unitary S-matrix which describes the
evolution from infalling matter to outgoing Hawking-like radiation.

2. Semi-Classicality Outside the stretched horizon of a massive black hole, physics
can be described to good approximation by a set of semi-classical field equations.
The semi-classical field equations are those of a low energy effective field theory
with local Lorentz invariance.

3. Placidity A freely falling observer experiences nothing out of the ordinary when
crossing the horizon, as expected from the equivalence principle—gravity is
locally indistinguishable from acceleration. This is basically the ‘information-
free’ condition mentioned earlier: it is exponentially unlikely for infalling observer
to measure a quantum of energy E � 1/r+.

4. Thermality To a distant observer, a black hole appears to be a quantum system
with discrete energy levels. The dimension of the subspace of states describing
a black hole of mass M , angular momentum J , and charge Q is is the expo-
nential of the Bekenstein entropy S(M, J, Q), so that the standard black hole
thermodynamic relations are obeyed.

These postulates have been slightly modified from their original form, but contain
the essential aspects of what black hole complementarity is based on. Black hole no-
hair theorems implied that the membrane/wall must be virtual, as noted above; no
known physics at the time complementarity was proposed could generate such a
structure, though new ideas have been put forward recently [47]. But even though
the degrees of freedom of the membrane/wall are virtual, they must be generated by
some nonlocal effect. The reason is that if normal semiclassical physics is valid for
small curvatures, then pair creation takes place via the Hawking process described
above and not reflection/generation from a wall or membrane. This is a consequence
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of the niceness conditions, namely the assumption that one can always choose a set of
slices through the black hole where curvatures are everywhere small and the vacuum
is well-defined. If complementarity is valid then some new, nonlocal, physics must
dominate—over scales of the horizon size—since semiclassical physics yielding pair
creation is valid along the slices [48].

3.6 Firewalls

The Firewall argument asserts that the postulates of black hole complementarity
are not self-consistent [3, 49]. Specifically one of the first three postulates must be
incorrect, since assuming all three together yields a contradiction.

3.6.1 The Firewall Argument

This rather surprising claim follows from a fairly straightforward argument, put for-
ward by Almheiri, Marolf, Polchinski and Sully (known as AMPS) [3]. The unitarity
postulate #1 implies that radiation emitted from the black hole must not be in a mixed
state, and so some process must convert the state (3.40) to
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)]
→ |�̃〉In |�̃〉On

(3.59)
after some large number n of steps, where the outside radiation state |�̃〉On is pure.
At some point in time (called the Page time [28]) the entanglement entropy of the
emitted radiation must reach a maximum, after which point there is more entropy
in the radiation than there is in the black hole. The black hole continues to shrink
in size and entropy, emitting successively fewer quanta. Consequently the number
of states NL accessible after the Page time [50] (the ‘late’ subspace) will be much
smaller than the number NE in the space of states prior to this (the ‘early’ subspace):
NL � NE . Expanding the full outside radiation state |�̃〉On in an orthonormal basis
{|j〉L} of the late subspace yields

|�̃〉On =
NL∑

k

|ψk〉E ⊗ |k〉L (3.60)

where {|ψ1〉E , |ψ2〉E , . . . , |ψNE 〉E } span the early subspace. Consider the norm of
the state P j|�̃〉On , where the operator P j ≡ P j − P̂ j = |j〉L L〈j| − NL |ψj〉E E〈ψj|.
Expanding this out yields
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Expanding the state |ψk〉E = ∑NE
k=1 cka|a〉 in an orthonormal basis |a〉 of the early

states yields
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(
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)
(3.62)

upon averaging over |�̃〉On , assuming a uniform measure for the outside state. Con-
sequently E〈ψj|ψk〉E = δjk/NL and E〈ψj|ψk〉E E〈ψi|ψl〉E = δjkδil/N 2

L + δjlδik/(N 2
L

NE ), yielding
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in the limit NE � NL � 1. Hence

P j|�̃〉On ≈ P̂ j|�̃〉On = |ψj〉E ⊗ |j〉L (3.64)

and so it is possible to project onto any given subspace of the late radiation, up to
a relative error of order NL/NE . The argument is essentially the same if grey-body
factors are taken into account.

So for a distant observer after n steps the radiation |�̃〉On is near infinity and can
be decomposed into a set of modes {|j〉}. In particular, it is possible to project onto
eigenspaces of the number operator in an observer-independent way, according to the
semi-classicality assumption. These modes can be evolved backward in time toward
the horizon—they will be of much higher frequency at these earlier times, but can
be kept to the sub-Planckian regime if one does not evolve too far back. However
the placidity assumption #3 implies that an infalling observer sees the vacuum near
the horizon, and so the number operator of the radiation |�̃〉On must be zero, in
contradiction to what the observer at infinity measures. This contradiction can be
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avoided if the infalling observer does not see a vacuum, but instead encounters a
large number of high-energy modes: in other words, a firewall.

A regular horizon implies increasing entanglement, as shown in (3.53). Con-
versely, if entanglement is to decrease, then the state at the horizon cannot be the
vacuum. This is the firewall argument in a nutshell.

An alternative version of the argument employs the strong subadditivity condi-
tion [47]. The radiation after n steps is |�̃〉On , with the next mode |n+1〉O emitted
near the horizon. The former can be evolved backward in time near the horizon.
Semiclassicality implies that

|�̃〉′On
= |�̃〉On |n+1〉′O = |n+1〉O (3.65)

where the primes refer to the states measured by the infalling observer. Since this
observer sees a vacuum at the horizon, the state |n+1〉′O must be entangled with some
state |n+1〉′I inside the horizon. Strong subadditivity then implies that (3.53) holds

S′(n+1)ent > S′(n)ent + ln 2 − 2ε (3.66)

and the equivalence (3.65) implies

S(n+1)ent > S(n)ent + ln 2 − 2ε (3.67)

which means the entanglement between the black hole and the radiation cannot
decrease, in contradiction with the unitarity postulate, which implies that it must
decrease after the halfway point.

So complementarity is incompatible with the local evolution that creates the pairs
of Hawking quanta. Even though complementarity invoked non-locality to argue that
the slices permitted by the niceness conditions are not valid, it requires that local
semiclassical physics applies outside the membrane or stretched horizon. Non-local
physics is therefore constrained to be inside the horizon. The firewall argument rules
out this kind of complementarity and hence this kind of sharply-limited non-locality.

3.6.2 Responses to the Firewall Argument

The response of the physics community to the firewall argument was rapid, intense,
and diverse, ranging from skepticism to ambivalence to endorsement.

Those endorsing the firewall argument have emphasized that standard arguments
from quantum field theory in curved spacetime and quantum information should
lead one to expect this result [51–63]. Standard semi-classical methods analyzing
causal patches [59], string-creation [63], and freely-falling observers [60] have each
been used to buttress the argument. Indeed numerical analysis of a particular class of
models suggests a breakdown of effective field theory, in turn implying the existence
of firewalls on black hole horizons [61]. It has even been suggested that alternatives
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to firewalls may suffer contradictions similar to those associated with time travel
[52]. Rindler horizons have been argued to be immune (or at least not necessarily
susceptible) to the firewall argument [64].

Nevertheless initial skepticism [65] was soon followed by a number of challeng-
ing responses to the firewall argument. A number were rebutted by Almheiri and
collaborators [66]. Here I shall summarize some of the main responses.

3.6.2.1 Absorbing the Interior Hilbert Space

Since the outside modes must be entangled with both the early outside modes and
with their inside pair-created partners (violating quantum limits on entanglement)
then perhaps the interior Hilbert space of an old black hole is embedded in the larger
Hilbert space of the early radiation. The claim is that the firewall phenomenon can
occur only for an exponentially fine-tuned (and intrinsically quantum mechanical)
initial state, analogous to an entropy decreasing process in a system with large degrees
of freedom [67–72]. Alternatively, quantum computations required to do carry out
the thought experiments undergirding the firewall argument take so long (a time
exponential in the entropy of the black hole) that this prevents the experiments from
being done [73, 74]. In other words, excitations exist at the horizon only if such
quantum computations have been performed.

Both considerations run afoul of standard quantum mechanics. Assuming unitar-
ity, an observer outside the black hole (Charlie) can extract a bit of information that
will be entangled with a later outside pair-created bit. Another spacelike separated
observer (Alice, say) can jump into the black hole later and extract information about
both the inside and outside later-created pair, whilst Charlie can send the quantum
state of the early bit to Alice. Alice will then possess information concerning three
quantum bits, two of which are are maximally entangled with the third, which violates
quantum mechanics.

More generally, operators associated with the early radiation will generically not
commute with operators associated with the Hilbert space of an infalling observer if
the the interior Hilbert space is embedded in the early radiation Hilbert space [66].
Consider the parity operator (−1)Ne of an early outside bit e ⊂ E

(−1)Ne = σ z ⊗ I (3.68)

written above in a basis factorized into the measured parity and everything else.
Since the interior Hilbert space is a subset of the outside early radiation space, we
can expand the parity operator of an inside bit i ⊂ I

(−1)Ni = I ⊗ S0 + σ x ⊗ Sx + σ y ⊗ Sy + σ z ⊗ Sz (3.69)

where the matrices Sλ are constrained by the requirement (−1)Ni (−1)Ni = 1.
Suppose the parity of an early state |ψ〉 is positive, so that (−1)Ne |ψ〉 = +|ψ〉.
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Then the expectation value of (−1)Ne for the state (−1)Ni |ψ〉 is

〈ψ |(−1)Ni (−1)Ne (−1)Ni |ψ〉
= 〈ψ |σ z ⊗ (S0)2 + σ xσ zσ x ⊗ (Sx )2 + σ yσ zσ y ⊗ (Sy)2

+ (σ z)3 ⊗ (Sz)2|ψ〉 + cross terms

= 〈ψ |σ z ⊗
(
(S0)2 − (Sx )2 − (Sy)2 + (Sz)2

)
|ψ〉 + cross terms

Upon averaging over all all possible operators Sλ (requiring (−1)Ni (−1)Ni = 1) the
cross-terms will average to zero since independent sign flips in parity are allowed.
Each (Sλ)2 term will average to the same value since these operators are generic and
so their eigenvalues will be comparable in size. Hence 〈ψ |(−1)Ni (−1)Ne (−1)Ni |ψ〉
averages to zero.

So if we start with an eigenstate of (−1)Ne and measure the parity (−1)Ni , the
expectation value flips from 1 to 0. Hence the eigenvalue changes with near-unit
probability, implying the commutator of (−1)Ni and (−1)Ne is of order unity, and
hence the commutator of early and interior operators is also of order unity. Hence if an
infalling observer sees a vacuum (so that a|ψ〉 = 0 where a is an annihilation oper-
ator in the Hilbert space of the infalling observer), then since the interior operators
can be expanded in terms of the infalling operators, the early creation/annihilation
operators will not commute with any of the operators a, strongly perturbing the
infalling vacuum and creating a firewall. This abolishes (or at least renders highly
problematic) the notion that infalling observers see no firewall because the deviation
from thermality is too small to detect [75].

3.6.2.2 Broadening Complementarity

One recent proposal posits that each observer has their own Hilbert space, with
suitable overlap conditions [76–86]. This broadens the notion of complementarity
insofar as there is no global Hilbert space. The idea is that space-time physics is
described in terms of an infinite number of quantum systems, each of which encodes
the physics as seen along a particular time-like trajectory, in a proper time dependent
Hamiltonian [76]. Extending these ideas to a matrix theory model of black holes
suggests that there are no high energy particles available that could constitute the
firewall [79]. The vacuum entanglement that is a crucial feature of Hawking radiation
is claimed not to be a feature of the physics described by matrix theory. Whether or
not this proposal can be fully consistently implemented remains to be seen.

3.6.2.3 Non-locality

Prior to the advent of the Firewall argument, the idea that non-locality can and should
play a role in resolving the information paradox was already being actively explored
[87, 88]. Although generic nonlocality leads to causality paradoxes, perhaps there



3 The Firewall Phenomenon 103

are regions (near a black hole, for example) where locality is not exact but only
approximate. The idea here is to weaken the assumptions of the semi-classicality
postulate #2 and introduce some form of mild (or non-violent) non-local physics
[89–94].

Since if locality is exact outside the horizon any information transfer from the
black hole to the radiation produces singular behaviour at the horizon [4, 49], it
is necessary to weaken locality outside of the black hole. Each black hole would
therefore have a “nonlocal zone” (about the size of the black hole itself) within which
information transfer from the black hole to the outgoing radiation takes place. This
information transfer is a transfer of the entanglement between the early radiation and
black hole interior to entanglement between the early and late radiation. It requires an
additional energy flux beyond that of the Hawking radiation [91, 92], and modulates
the Hawking radiation in a sufficiently fine-grained manner so as to preserve the
average properties of the Hawking flux. Leading order calculations in a model in
which nonlocal metric perturbations couple to the stress tensor suggest in a two-
dimensional model this might be possible [93].

The challenge such proposals face is that any scheme that physically separates
transfer of energy from transfer of information runs into conflict with the Bekenstein-
Hawking density of states exp[S] of the black hole. Consider a process in which
quanta behind the horizon are transported to become outgoing quanta. Suppose a
pair is created outside the black hole as in Eq. (3.34)
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where the Hilbert space has been separated into orthogonal states as in Eq. (3.55).
As the outgoing mode moves through the nonlocal zone, some process will cause it
to exchange information with a state in the interior so that
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This would avoid the firewall problem just as it resolved the information paradox
problem. However this approach will also entail the same difficulties noted in the
previous section, and will allow the number of internal states of the black hole to
exceed the entropy S = A/4 discussed in Sect. 3.2. The reason is that it is possible



104 R.B. Mann

to interact with the outgoing bit as it moves through the nonlocal zone, say by
introducing a phase
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and so a larger set of interior states, beyond that given by exp[S] has been accessed
by this process.

Another recent proposal involves using wormholes to transfer information beyond
the horizon [95–99]. The idea is that the part of space-time connecting the right side
of Fig. 3.1 (“our universe”) and its left side (known as an Einstein Rosen bridge)
is created by quantum correlations between the microstates of the black holes on
each side. The conjecture is that any entangled pair of quantum states is connected a
similar sort of space-time bridge or wormhole. These wormholes non-locally connect
quantum states inside and outside of the horizon, allowing for information from the
black hole to escape.

3.6.2.4 Exotic Objects

Of course if an event horizon never forms then a firewall can be avoided [100–102].
Could this be the resolution to the firewall problem?

One noteworthy attempt along these lines is the fuzzball proposal [103]. This
approach grew out of several results that emerged from string theory that suggest the
end-state of gravitationally collapsing matter is not a traditional black hole because
the degrees of freedom of the hole distribute themselves throughout a horizon sized
object referred to as a fuzzball. Particular examples of this kind of structure were
obtained by considering various extremal black brane solutions to the low-energy
string equations with multiple charges [104–117]. The basic idea is that as matter
undergoes gravitational collapse, its (presumed) fundamentally stringy degrees of
freedom distribute their momenta in such a way that the final solution has neither
a horizon nor a singularity [108–110]. Instead of a black hole, matter undergoing
gravitational collapse will quantum tunnel to a fuzzball: a complicated “hairy” struc-
ture that contains all of the degrees of freedom of the black hole. Hawking radiation
would be due to emission from an ergoregion near the fuzzball. This radiation can
carry information about the original state of matter because it is not entangled with
any states inside a horizon because no such horizon exists [103].

The problem with the fuzzball proposal at the moment is its lack of gen-
erality. Notwithstanding the fact that first-order corrections suggest that perhaps
fuzzballs can form from generic collapse [118, 119], the proposal only appears to
work for particular brane configurations. However to resolve the firewall problem
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(and information paradox) all possible matter configurations must form a fuzzball
structure.

Other recent speculative ideas along these lines include Grireballs [120], leaky
horizons [121], and aether-like fluids whose atmosphere mimics Hawking radiation
[122, 123]. All of these ideas must universally replace the generic collapse of matter
into a black hole if they are to be viable candidates for eliminating the firewall. Of
course if a remnant forms, this could also avoid a firewall; an explicit example in
two dimensions was recently given [124].

3.6.2.5 Additional Degrees of Freedom

Some responses to the firewall argument have suggested it is lacking because addi-
tional degrees of freedom are present in quantum gravity that are otherwise unac-
counted for [125–127] or not properly treated.

One such approach involves distinguishing virtual qubits (the entangled created
pairs) from real qubits (that store the information inside the black hole) [128, 129].
The idea is that black hole information is stored both inside and outside the stretched
horizon, yielding twice the usual black hole entropy and therefore extra room to
arrange the quantum degrees of freedom so that paradoxical results are avoided. The
apparent firewall obstruction can be removed, via a universal entanglement swap
operation that transports all free quantum information from the interior of the black
hole to its exterior. This swap can be created locally and in the near horizon region;
however this firewall-removing operation cannot be use to transfer information from
an infalling state into the outgoing radiation [130, 131].

3.6.2.6 Loopholes

A number of papers have been written contending that the existence of firewalls
depends on a chain of reasoning that is incomplete, and that one or more loopholes
exist that allow one to escape the conclusions of the argument.

It has been suggested that the space of physical quantum gravity states does not
factorize into a tensor product of localized degrees of freedom, invalidating one
of the assumptions of the firewall argument [132]. The idea here is that in any
diffeomorphism invariant ultra-violet complete theory with an asymptotic region in
which an algebra of observables can be defined (which presumably is a feature of
quantum gravity), the Hamiltonian is a surface integral in this asymptotic region (or
boundary). The boundary encodes all degrees of freedom, including those inside the
horizon, and the algebra of boundary observables evolves into itself unitarily over
time. Hence no boundary information can ever be lost, not even temporarily. This is
argued to invalidate a key assumption of the firewall argument, which is that the early
time Hawking radiation is in a mixed quantum state and gets purified later by the
late time Hawking radiation to preserve unitarity. Rather there must be continuous
purity, with the Hawking quanta always entangled with exterior degrees of freedom
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and never with interior ones. The Hilbert space does not factorize into exterior and
interior state spaces, and so the ‘partner behind the horizon’ does not actually exist in
a full quantum theory of gravity. Of course for this picture to be accepted, the details
of the physical states and how they are encoded into the boundary needs to be made
explicit.

Some effort has been put into seeing what happens if the horizon geometry under-
goes quantum fluctuations [133]. The claim is that both the blackhole information
paradox and firewalls originate from treating the geometry as strictly classical, and
that it is an ill-posed problem to employ quantum fields in a classical curved space
with a horizon. Instead, one should first integrate out fluctuations of the background
geometry and then evaluate matter observables. Some models of shell collapse indi-
cate that a firewall may or may not form depending on the ratio of the black hole
entropy to the square of the number of coherently emitted particles [134, 135].

Additional evasive tactics have been proposed. Some have proposed that the fire-
wall issue is purely quantum information theoretic and so should have an answer
once we know exactly what computation we need to do [136]. Another argument
posits that the firewall paradox is likely to be an artifact of using an effective theory
beyond its domain of validity [137]. It has been suggested that a distillation-like
process for extracting information needs to be clarified before one can conclude that
black hole complementarity is not valid [138]; indeed this distillation process may
back-react on the black hole, breaking cross-horizon entanglement and removing the
firewall [139].

Another suggestion is that a firewall will not emerge if the energy cost of measure-
ment on the early states (yielding information about the late states) is much smaller
than the ultraviolet cutoff scale [140]. Perhaps it is necessary to modify the expected
entanglement of states near a horizon [141] or to take macroscopic superpositions
of black holes [142–144], or to introduce new causality requirements into physics
[145].

The final state-proposal in which a generalization of quantum mechanics allows
postselection on a final state at the black hole singularity, has been suggested as a
resolution for the black hole information paradox [146] and for firewalls [147]. The
idea here is that quantum information can escape from the black hole interior via
postselected quantum teleportation [148]. The information moves forward in time to
the singularity, backward in time from the singularity to the horizon, then forward in
time from the horizon to future infinity. If suitable dynamical constraints are satisfied,
this is equivalent to a causally ordered flow of information moving unitarily forward
in time. However these constraints appear to be rigorously fulfilled only by fine
tuning [147]. Furthermore, the final state projection postulate has been shown to be
inadequate for abolishing firewalls [149].

Some have contented that the firewall follows from making assumptions about
physics inside the stretched horizon that do not follow from the semiclassicality
postulate #2. One claim [150, 151] is that firewalls are avoided if the degrees of
freedom of the stretched horizon retain information for a sufficiently long time known
as the scrambling time (the minimum time required for the information about the
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initial state to be lost without measuring a large fraction of all the degrees of freedom).
Alternatively, if the semiclassicality postulate holds, firewalls are avoided, but at the
price of introducing remnants [152].

Finally it was recently shown that Einstein’s field equations do not admit a solution
in which a Planck-density, Planck-scale firewall is just outside the event horizon
[153]. Any shell located at the horizon of an astrophysical black hole must necessarily
have a density many orders of magnitude lower than the Planck density. A recent
analysis of the behaviour of photons from the cosmic microwave background falling
into a black hole indicates that they form a “classical firewall” in the frame of a static
observer near the horizon, but that this firewall has negligible effects on both freely
infalling observers and the evolution of the black hole [154].

3.7 Summary

Black holes retain a powerful grip on both the physical universe and the human
imagination. At a classical level they absorb all matter and energy they encounter,
growing ever larger in the process. Our best understanding of quantum physics indi-
cates that they thermally radiate like black bodies, undergoing phase transitions into
other forms and eventually evaporating away.

But away to what? We have no self-consistent description of this process. Our
present understanding suggests that either a radiating black hole eventually either
cools down into an information-rich nugget or erects a firewall around itself. Neither
scenario appears to be compatible with our understanding of physics. The problem
is not so much with particular models of black hole radiation but rather with a clash
of the basic principles of relativity and quantum physics.

It appears we must either give up the predictive power of quantum mechanics
(unitarity), or the notion that gravity is locally indistinguishable from acceleration
(the equivalence principle), or the view that a physical phenomenon is influenced
directly only by its immediate surroundings (locality). Each of these principles is
supported—directly and indirectly—by a wealth of experimentation. The physics
community at the moment is quite divided on the resolution to this problem, and
may be for some time to come.
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