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Abstract. Needle insertion is a minimally invasive medical procedure with a
vast domain of applications. 3D localization of the needle is important in needle
visual tracking by a physician and robotic automatic needle guidance. This
paper investigates detection of the needle position in 3D ultrasound images.
Ultrasound is a fast and non-invasive medical imaging modality that is suitable
for intra-operative imaging. But unfortunately, ultrasound images suffer from
speckle noise and other artifacts that degrade the image quality. We combined
the RANSAC robust fitting algorithm with a structure adopted denoising method
called anisotropic diffusion. The results show more accuracy compared to the
previous method and significant improvement in the processing time.
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1 Introduction

Needle insertion is an important operation in many medical applications such as
biopsy, brachytrapy and neural signal recording. Precise localization and navigation of
the needle reduce the damage to tissue and decrease the number of unsuccessful
insertions. Image guided procedures can achieve this goal by tracking the surgical
instrument in intra-operative images. Among various medical imaging modalities,
ultrasound is popular because of acquisition speed, non-ionizing radiation, compati-
bility with metallic objects and low cost.

Despite current advances in imaging and processing technologies, automatic needle
detection in 3D ultrasound data is still challenging. Speckle noise that is inherent
property of the ultrasound images degrades the image quality. Needle diameter in the
image is low and comparable to ultrasound image resolution. There are other bright
structures with similar intensity as a needle in the background. Resolution and intensity
of pixels decrease in higher distances from the transducer. The 3D image volume is a
large data that should be processed in high speed.

The problem of needle localization in 3D ultrasound images has been studied in
many previous researches. Novotny et al. [1] used the principle component analysis
(PCA) method. The thresholded pixels are divided into clusters and the cluster with
longest line and highest intensities is selected using PCA as a needle. Minimization of
parallel projection is introduced by Ding et al. [2]. This method is based on the fact that
if the projection is parallel to needle axis, the needle area in the projected image will be
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minimized. Ding et al. [3] also proposed the method of needle segmentation in two
orthogonal projections. This technique reduces the processing time and makes the
algorithm independent of initial projection direction. This method is used by
Aboofazeli et al. [4] for curved needle segmentation. Cao et al. [5] proposed a catheter
segmentation algorithm based on Aboofazeli ‘s approach that detects the catheter
absence in the image.

The Hough transform is a well-known method for line and curve detection. Zhou
et al. [6] used the randomized version of 3D Hough transform because of its memory
and time efficiency. Qiu et al. [7] introduced the Quick Randomized Hough transform
that employs a coarse to fine search strategy. They [8] also used Roberts line repre-
sentation for needle axis, because of low computational memory. Neshat et al. [9]
considered the needle axis model as a third order Bezier curve and employed the
generalized Hough transform. They implement the algorithm on a Graphical Processing
Unit (GPU).

The Parallel Integral Projection (PIP) transform is a form of Radon transform.
Barva et al. [10] showed that needle axis can be found by maximization of PIP
transform. The hierarchical mesh-grid technique is used to speed up this method.
Uhercik et al. [11] introduced the faster multi-resolution PIP approach. Wei et al. [12]
acquired two images before and after insertion. The needle is segmented in the dif-
ference image using least square method. Yan et al. [13] employed the level set
segmentation approach. This method is not automatic and need user input data.
Novotny et al. [14] used the generalized Radon transform. The image is divided into
smaller regions that are processed on a GPU. Adebar et al. [15] vibrated the needle with
high frequency and segmented it in the resulting 3D power Doppler image. They fitted
a third order polynomial to the thresholded Doppler response.

Most of the introduced needle detection techniques-such as Hough and Radon
transform and PIP-are projection based. These methods suffer from high computational
time and robustness problem in case of cluttered background. The faster and more
robust model fitting RANSAC approach is introduced by Uhercik et al. [16]. They also
employed a linear classifier [17] to identify tool pixels using intensity and tubularity
features. This modification leads to a more robust algorithm but decreases the speed.
Zhao et al. [18] considered detection and tracking of needle in the sequence of 3D
images. In their method, a Kalman filter estimated the needle tip position using speckle
tracking speed estimation and RANSAC tip localization. Chatelain et al. [19] also
studied the needle tracking problem. They found the ROI that contained the needle
using predictive Kalman filtering. The predicted model is used in the RANSAC pro-
cedure to reject improbable configurations.

In this paper, we take advantage of nonlinear anisotropic diffusion (AND) to
achieve faster and more accurate result, in RANSAC based needle localization. The
anisotropic diffusion is first introduced by Perona et al. [20] as an edge preserving
denoising method. The success and time performance of model fitting algorithms are
very much affected by the number of outliers. Realizing the fact that outliers are mainly
due to speckle noise and existence of other bright structures in the background, we
reduced the effect of these parameters using anisotropic diffusion (AND). The major
advantage of AND is that it can reduce the noise without removing specific structures
(such as lines) and even enhance them. This is an important feature because of needle
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low diameter and possible loss of needle pixels in the denoising process. The results
show the effectiveness of this scheme in reducing the needle localization error and
processing time.

2 Method

The needle appears in the ultrasound images as a thin tubular high intensity structure
that is surrounded by a noisy and inhomogeneous background. The position of the
needle is found in three consecutive steps: anisotropic diffusion, thresholding and
RANSAC robust fitting. The two first steps assure less noisy and erroneous input data
for RANSAC procedure.

2.1 Nonlinear Anisotropic Diffusion

To preserve the specific structure of interest, the local image structure in each pixel
should be known. The structure tensor of the image I is defined as

J rIð Þ ¼ rI � rIT ¼
I2x IxIy IxIz
IxIy I2y IyIz
IxIz IyIz I2z

2
4

3
5 ð1Þ

The subscript means derivative with respect to spatial coordinates.
After Gaussian smoothing the input image, the structure tensor in each pixel is

found. The eigenvalues and eigenvectors of J contain information about the local image
structure in the specific pixel. Three mutually perpendicular eigenvectors v1; v2; v3
describe the local orientation and the eigenvalues l1; l2; l3 measure average contrast
along eigendirections. The eigenvector v1 is perpendicular to the local structure. In
needle detection problem, we should preserve lines. High level of smoothing perpen-
dicular to the eigenvector v1 will realize this goal.

In physics, the difference in density cause mass transport without creating and
destroying mass. This process is called diffusion and is similar to image smoothing
when there is a difference in gray levels. The diffusion equation for the image u is
expressed as

ot u ¼ div D � ruð Þ ð2Þ

The subscript t denotes derivative with respect to diffusion time t. “div” is the diver-
gence operator

div~p ¼ oxp1 þ oyp2 þ ozp3 ð3Þ

where ~p ¼ p1; p2; p3½ � is an arbitrary vector. D is the diffusion tensor and the term
j ¼ �Dru is called flux. If D is constant over the image, the resulting linear diffusion
will excessively smooth the image. In nonlinear diffusion, D is a function of image
structure. Nonlinearity allows controlling the amount of diffusion and reducing it
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on lines. In anisotropic diffusion, we can make the diffusion direction-dependent by
defining the diffusion tensor. The diffusion tensor D changes the orientation and
intensity of the flux to preserve the structures of interest in the image. D can be found
using its eigenvalues and eigenvectors

D ¼ v1 v2 v3½ � �
k1 0 0
0 k2 0
0 0 k3

2
4

3
5 �

vT1
vT2
vT3

2
4

3
5 ð4Þ

The values of the eigenvalues k1; k2; k3 are obtained by extending Weickert ‘s 2D
equation [21] to 3D case [22] for line enhancement

k1 ¼ c1
k2 ¼ c2

k3 ¼ c1 þ 1� c1ð Þ � exp �c2
l1 � l2ð Þ2

 !
8>>>><
>>>>:

ð5Þ

where l1 � l2 � l3 are eigenvalues of the structure tensor J and c1 2 0; 1ð Þ and c2 � 0
are smoothing constants.

The diffusion equation is continuous in both space and time. To solve it numeri-
cally, it should be discretized.

ot u ¼ div D � ruð Þ ¼ ox a oxuþ d oyuþ e ozu
� �

þ oy d oxuþ b oyuþ f ozu
� �þ oz e oxuþ f oyuþ c ozu

� � ð6Þ

where D is

D ¼
a d e
d b f
e f c

2
4

3
5 ð7Þ

We used standard discretization method [22] with the central difference approximation
for spatial derivatives

oy d oxuð Þ ¼ 1
2

dx;yþ1;z
uxþ1;yþ1;z � ux�1;yþ1;z

2

� �
� 1
2

dx;y�1;z
uxþ1;y�1;z � ux�1;y�1;z

2

� �
ð8Þ

The subscript in the right side of (8) denotes spatial coordinate indices. The iterative
forward difference method approximates the term ot u in (6)

ot u � uKþ1
x;y;z � uKx;y;z

h
ð9Þ

where K is the time step and h is the step size. uKx;y;z is the approximation of u in location
(x,y,z) and time Kh.
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The (2) can be written as convolution of a 3 × 3 × 3 time and space varying mask
with the image

uKþ1
x;y;z � uKx;y;z

h
¼ AK

x;y;z � uKx;y;z ð10Þ

uKþ1
x;y;z ¼ 1þ h:AK

x;y;z

� �
� uKx;y;z ð11Þ

The entries of mask A that is calculated in [23] is showed in Fig. 1.

Fig. 1. The convolution mask, (a) for z = 0, (b) z =+1 and (c) z = −1
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3 RANSAC

RANSAC (Random Sample Consensus) [24] is a robust fitting method that can find the
model parameters when the data contains a high percentage of outliers. The algorithm
iteratively selects Ns random samples of data and fits a model to them. Next, the
number of data points that are consistent with the hypothesized model is specified. If
this number is big enough, the model will be accepted; otherwise iteration continues.
The Maximum number of iterations is updated at the end of each iteration as follows

L ¼ log pð Þ
log 1� pNs

g
� � ð12Þ

pg ¼ Ninl

Ndata
ð13Þ

where Ninl is the number of inliers (model consistent points) and Ndata is the number of
all data points. Consistent data have a shorter distance than s from the model. The
threshold s is defined as needle observed radius in the image. p is the probability of
L consecutive failures and is set by user. Ns is the minimum number of data that is
required to fit the specific type of model.

4 Result

To evaluate the proposed method, we used a 3D ultrasound dataset that consists of
various needle positions and orientations. The dataset contains 28 ultrasound images
that are produced by previous researchers [16] using the software Field II. The back-
ground scatterers are created using real ultrasound breast images. The dimension of the

Fig. 2. A plane of the 3D ultrasound image that contains the needle, in low and high noise
levels.
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initial RF data is 53 planes of 71 RF beams. Each RF beam consists of 164 data
samples. The resulting 3D ultrasound image resolution is 53 × 71 × 160 pixels.

Results are measured in various levels of the speckle noise. An example of the high
and low noise level images is shown in Fig. 2. At each noise level, we repeated the
algorithm 30 times for each of the dataset images and reported the average value.

Figure 3 shows the average axis localization error. Axis error is the maximum
Cartesian distance between actual and found needle axes. A failure occurs when the
error value is greater than 3 mm. Figure 4 shows the average failure rate. The figures
demonstrate that the proposed AND-RANSAC method yields smaller error and greater
accuracy than RANSAC, while failure rates are nearly equal.

Figure 5 shows the average elapsed time of the needle detection algorithm. The
processing time of the AND-RANSAC approach is not very much affected by amount
of speckle noise in the image and is significantly lower than RANSAC.
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Fig. 3. Needle axis localization error, in different variances of the speckle noise
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Fig. 4. Needle axis localization failure percent, in different variances of the speckle noise

Needle Detection in 3D Ultrasound Images Using Anisotropic Diffusion 117



5 Conclusion

Regarding the main challenges of needle detection in 3D ultrasound images, such as
high dimensionality and noisy nature of data, we have investigated improving the
speed and accuracy of the model fitting RANSAC needle localization method. The
amount of speedup that can be achieved by anisotropic diffusion has a trade-off relation
with size of the 3D data. In the large volumes further acceleration can be made using
GPU or parallel implementation. Automatic detection of ROI using image itself or prior
information will increase the speed and accuracy. Techniques such as guided sampling
or partial evaluation can improve the RANSAC computational time.

Acknowledgments. The authors would like to thank M. Uhercik and J. Kybic for providing the
access to the 3D ultrasound data.
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