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Abstract. This paper proposes a grouping based technique of multivariate
analysis, and it is extended to nonlinear kernel based version for hyperspectral
image classification. Grouped multivariate analysis methods are presented in the
Euclidean space and dot products are replaced by kernels in Hilbert space for
nonlinear dimension reduction and data visualization. We show that the pro-
posed kernel analysis method greatly enhances the classification performance.
Experiments on Classification are presented based on Indian Pine real dataset
collected from the 224-dimensional AVIRIS hyperspectral sensor, and the
performance of proposed approach is investigated. Results show that the Kernel
Grouped Multivariate discriminant Analysis (KGMVA) method is generally
efficient to improve overall accuracy.
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1 Introduction

Hyperspectral sensors simultaneously capture hundreds of narrow and contiguous
spectral images from a wide range of the electromagnetic spectrum, for instance, the
AVIRIS hyperspectral sensor [1] has 224 spectral bands ranging from visible light to
mid-infrared areas (0.4–2.5 m). Such numerous numbers of images implicatively lead
to high dimensionality data, presenting several major challenges in image classification
[2–6]. The dimensionality of input space strongly affects performance of many clas-
sification methods (e.g., the Hughes phenomenon [7]). This requires the careful design
of primitive algorithms that are able to handle hundreds of such spectral images at the
same time minimizing the effects from the “curse of dimensionality”. Nonlinear
methods [8–10], are less sensitive to the data’s dimensionality [11] and have already
shown superior performance in many machine learning applications. Recently, kernels
have a lot of attention in remote-sensed multi/hyperspectral communities [11–16].
However, the full potential of kernels—such as developing customized kernels to
integrate a priori domain knowledge—has not been fully explored.

This paper extend traditional linear feature extraction and dimension reduction
techniques such as Principal Component Analysis (PCA), Partial Least Squares (PLS),
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Orthogonal Partial Least Squares (OPLS), Canonical Correlation Analysis (CCA),
NMF (Non-Negative Matrix Factorization) and Entropy Component Analysis (ECA) to
kernel nonlinear grouped version. Several extensions (linear and non-linear) to solve
common problems in hyper dimensional data analysis were implemented and compared
in hyperspectral image classification.

We explore and analyze the most representative MVA approaches, Grouped MVA
(GMVA) methods and kernel based discriminative feature reduction manners. We addi-
tionally studied recent methods to make kernel GMVA more suitable to real world
applications, for hyper dimensional data sets. In such approaches, sparse and semi-
supervised learning extensions have been successfully introduced for most of the models.
Actually, reduction or selection of features that facilitate classification or regression cuts to
the heart of semi-supervised classification. We have completed the panorama with chal-
lenging real applications with the classification of land-cover classes.

We continue the paper with an exploring the MVA to the Grouped MVA and then
extend the Grouped MVA to the Kernel based Grouped MVA algorithms. Section 3
introduces some simulation of extensions that increase the applicability of Kernel
Grouped MVA methods in real applications. Finally, we conclude the paper in Sect. 4
with some discussion.

2 Kernel Grouped Multivariate Analysis

In this section, we first propose the grouping approach and then we extend the linear
Canonical Correlation Analysis to kernel based grouped CCA as a sample of kernel
based Grouped MVA Methods such as Kernel Grouped Principal Component Analysis
(KGPCA), Kernel Grouped Partial Least Squares (KGPLS), Kernel Grouped Orthog-
onal Partial Least Squares (KGOPLS), and Kernel Grouped Entropy Component
Analysis (KGECA). Figure 1 shows the procedure scheme of a simple grouping
approach.

For a given a set of observations xi; yið Þf gni¼1 the grouping algorithm first compute
the mean (1) and covariance matrix (2) of entries, where T denotes the transpose of a
vector.

Fig. 1. Procedure scheme of a simple grouping approach
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Then extended data set are sorted and collected in H groups. Then again, the
procedure leads to compute the mean (3) and weighted covariance matrix (4) of
grouped data when nh is the number of elements in group h and H is the number of
groups and N is the total number of elements.
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The last covariance is explored form the mean of groups and the total mean of
elements, like Fisher discriminates analysis. The rest of algorithms are similar the
conventional formulation and their extensions to nonlinear kernel based analysis. The
use of unbiased covariance formula in (2) and (4) is straight forward.

Canonical Correlation Analysis is usually utilized for two underlying correlated
data sets. Consider two iid sets of input data, x1 and x2. Classical CCA attempts to find
the linear combination of the variables which maximize correlation between the col-
lections. Let

y1 ¼ w1x1 ¼
X
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The CCA solves problem of finding values of w1 and w2 which maximize the
correlation between y1 and y2, with constrain the solutions to ensure a finite solution.

Let x1 have mean l1; x2 have mean l2 and
P̂

11;
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22;
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12 are denotation of
autocovariance of x1, autocovariance of x2 and covariance of x1 and x2. Then the
standard statistical method lies in defining (7). Grouped CCA uses the (4) for com-
puting the covariance of grouped data and K is calculated as (8).
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GCCA then performs a Singular Value Decomposition of K to get

K ¼ a1; a2; . . .; akð ÞD b1; b2; . . .; bkð ÞT ð9Þ

where ai and bi are the eigenvectors of Karush–Kuhn–Tucker (KKT) conditions and
Tucker-Karush (KTK) conditions respectively and D is the diagonal matrix of
eigenvalues.

The first canonical correlation vectors are given by (10) and (11) and in Grouped
CCA the canonical correlation vectors are derived from (12) and (13).
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As an extension of Grouped CCA, the data were transformed to the feature space
by nonlinear kernel methods. Kernel methods are a recent innovation predicated on the
methods developed for Support Vector Machines [9, 10]. Support Vector Classification
(SVC) performs a nonlinear mapping of the data set into some high dimensional feature
space. The most common unsupervised kernel method to date has been Kernel Prin-
cipal Component Analysis [18, 19]. Consider mapping the input data to a high
dimensional (perhaps infinite dimensional) feature space. Now the covariance matrices
in Feature space are defined by (14) for i = 1, 2 and covariance matrices of grouped
data are by (15) where U :ð Þ is the nonlinear one-to-one and onto function.
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However the kernel methods adopt a different approach. w1 and w2 exist in the
feature space and therefore can be expressed as

w1 ¼
X2

i¼1

XM

j¼1

aijU xij
� � ð16Þ

6 M. Borhani and H. Ghassemian



w2 ¼
X2

i¼1

XM

j¼1

bijU xij
� � ð17Þ

where ai and bi are the eigenvectors of SVD of K ¼ P̂�1
2

U11

P̂
U12

P̂�1
2

U22
Karush–Kuhn–Tucker conditions and Tucker-Karush conditions respectively for

KCCA and ai and bi are the eigenvectors of SVD of K ¼ P̂�1
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and KTK conditions respectively for KGCCA where K ¼ a1; a2; . . .; akð ÞD b1;ð
b2; . . .; bkÞT and D is the diagonal matrix of eigenvalues. The rest of Kernel Grouped
CCA procedure is similar to KCCA method.

This paper implements several MVA methods such as PCA, PLS, CCA, OPLS,
MNF and ECA in linear, kernel and kernel grouped manners. Tables 1, 2 and 3 are
summarizing maximization target, Constraints and number of feature of different
methods for linear, kernel and kernel grouped approaches where r Að Þ returns the rank
of the matrix A.

Figure 2 shows the projections obtained in the toy problem by linear and modified
kernel based MVA methods. Input data was normalized to zero mean and unit variance.
Figure 2 shows the features extracted by different MVA methods [20] in an artificial

Table 1. Summary of linear MVA methods

Method PCA PLS CCA OPLS

Maximize uTCxu uTCxyv uTCxyv uTCxyCT
xyu

Constrant UTU ¼ 1 UTU ¼ 1

VTV ¼ 1

UTCxU ¼ 1

VTCyV ¼ 1

UTCxU ¼ 1

# features rðXÞ rðXÞ rðCxyÞ rðCxyÞ

Table 2. Summary of kernel MVA methods

Method KPCA KPLS KCCA KOPLS

Maximize aTT2
Uxa aTTUxyYv UTCUxyV UTCUxyCT

UxyU

Constrant ATT2
UxA ¼ 1 ATTUxA ¼ 1

VTV ¼ 1

ATT2
UxA ¼ 1

VTCUyV ¼ 1

ATT2
UxA ¼ 1

# features rðKUxÞ rðKUxÞ rðKxYÞ rðKUxYÞ

Table 3. Summary of kernel grouped MVA methods

Method KGPCA KGPLS KGCCA KGOPLS

Maximize aTT2
WUxa aTTWUxyYv UTCWUxyV UTCWUxyCT

WUxyU

Constrant ATT2
WUxA ¼ 1 ATTWUxA ¼ 1

VTV ¼ 1

ATT2
WUxA ¼ 1

VTCUyV ¼ 1

ATT2
WUxA ¼ 1

# features rðKWUxÞ rðKWUxÞ rðKWUxYÞ rðKWUxYÞ
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Fig. 2. Score of various linear MVA, kernel based MVA and kernel grouped MVA methods

Fig. 3. Feature extraction methods: PCA, PLS, OPLS, CCA, MNF, KGPCA, KGPLS,
KGOPLS, KGCCA, KGMNF and KGECA, Train Sample = 16
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two-class problem using the RBF kernel. Table 1 provides a summary of the MVA
methods and Tables 2 and 3 summarized the kernel MVA and KGMVA methods. For
each method it is stated the objective to maximize (First row), constraints for the
optimization (second row), and maximum number of features (last row).

3 Experimental Results

Following the kernel grouped dimension reduction schemes proposed in Sect. 2, the
performance of the KGMVA methods is compared with a standard SVM with no
feature reduction kernel, on AVIRIS dataset. False color composition of the AVIRIS
Indian Pines scene and Ground truth-map containing 16 mutually exclusive land-cover
classes are showed in Fig. 5.

The AVIRIS hyperspectral dataset is illustrative of the problem of hyperspectral
image analysis to determine land use. However the AVIRIS sensor collects nominally
224 bands (or images) of data, four of these contain only zeros and so are discarded,
leaving 220 bands in the 92AV3C dataset. At special frequencies, the spectral images
are kenned to be adversely affected by atmospheric dihydrogen monoxide absorption.
This affects some 20 bands. Each image is of size 145*145 pixels. The dataset was
collected over a test site called Indian Pine in north-western Indiana [1]. The database is
accompanied by a reference map; signify partial ground truth, whereby pixels are
labeled as belonging to one of 16 classes of vegetation or other land types. Not all
pixels are so labeled, presumably because they correspond to uninteresting regions or
were too arduous to label. Here, we concentrate on the performance of kernel based
grouped MVA methods for classification of hyperspectral images. Experimental results
are showed in Figs. 3 and 4, for various numbers of train samples and for supervise and
unsupervised methods. We use class 2 and 3 for data samples.
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Fig. 4. Feature extraction methods: PCA, PLS, OPLS, CCA, MNF, KGPCA, KGPLS,
KGOPLS, KGCCA, KGMNF and KGECA, Train Sample = 144
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Overall accuracy as a performance measure is depicted v.s. number of prediction
for various feature extraction methods such PCA, PLS, OPLS, CCA, MNF, KGPCA,
KGPLS, KGOPLS, KGCCA, KGMNF and KGECA. Simulations were repeated for 16
train samples and 144 train samples. Figure 6 shows the average accuracy of different
classification approaches, Indiana dataset.

Classification among the major classes can be very difficult [21], which has made
the scene a challenging benchmark to validate classification precision of hyperspectral
imaging algorithms. Simulations results verified that utilizing the proposed techniques
improve the overall accuracy especially kernel grouped CCA in spite of CCA.

4 Discussions and Conclusions

Feature extraction and dimensionality reduction are dominant tasks in many fields of
science dealing with signal processing and analysis. This paper provides a kernel based
grouped MVA methods. To illustrate the wide applicability of these methods in

Fig. 5. (Up-Right) False color composition of the AVIRIS Indian Pines scene. (Up-Left)
Ground truth-map containing 16 mutually exclusive land-cover classes, (Down-Right) standard
SVM, average accuracy = 72.93 % and (Down-Left) SVM with kernel grouped MVA, average
accuracy = 79.97, for 64 train samples, 10 classes.
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classification program, we analyze their performance in a benchmark of general
available data set, and pay special attention to real applications involving hyperspectral
satellite images. In this paper, we have proposed an novel dimension reduction
methods for hyperspectral image utilizing kernels and grouping methods. Experimental
results showed that, at least for the AVIRIS dataset, the classification performance can
be improve to some extent by utilizing either kernel grouped canonical correlation
analysis or kernel grouped entropy component analysis. Further work could explore the
possibility of localizing grouped of analysis and exploring the algorithms on multiclass
datasets. The KGMVA methods were shown to find correlations greater than could be
found by linear MVA and also kernel based MVA. However the kernel grouping
approach seems to offer a new means of finding such nonlinear and non-stationary
correlations and one which is very promising for future research.
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