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Abstract. This paper proposes the utilization of rough set theory for predicting 
student scholar performance.  The rough set theory is a powerful approach that 
permits the searching for patterns in e-learning database using the minimal 
length principles. Searching for models with small size is performed by means 
of many different kinds of reducts that generate the decision rules capable for 
identifying the final student grade. 
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1 Introduction 

Predicting students’ performance is one of the most important and useful applications 
of educational data mining and its goal is to score or mark from student course beha-
vior and activity [14]. In this study, the rough set technique is used to offer methods 
for understanding, processing and modelling data, resolving the limitations of the e-
learning systems. 

The rough set theory was discovered by Zdzislaw Pawlak [1] and is a powerful ma-
thematical tool for modeling the imperfect and incomplete knowledge [2]. Rough set 
theory has also excellent results in approximate reasoning [5], mathematical logic 
analysis and reduct [6, 7, 8], building of predictive models [9], and decision support 
system [10, 11, 12]. Many studies have shown that the use of rough set theory formu-
late a clear decision-making projects and enhance the effectiveness of the research 
while doing optimization [7].  The research related to education of Qu and Wang 
[11] provided a basis of personalized teaching strategies in distance learning website 
by analysis of reduct and attribute significance. In [13] the study analyzed students’ 
misconception based on rough set theory. Although the rough set theory is rarely used 
in education, in this study we use its characteristics, which are very suitable for disco-
vering rules useful in educational process.  

2 Student Representation and Discretization 

We have collected data from on-line course activity provided by Moodle [15] that is 
one of the most widely used open source learning management system. In fact, we 
have used the following data based on student ‘Database’ course activity [14]: 
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Nassignment – number of assignments taken; Nquiz - number of quiz taken;  
Nquiz_p - number of quiz passed; Nquiz_f - number of quiz failed; Nmessages - num-
ber of messages sent to the chat; Nmessages_ap - number of messages sent to the 
teacher; Nposts - number of messages sent to the forum; Nread - number or forum 
messages read; Total_time_assignment- total time spent on assignment; To-
tal_time_quiz – total time used in quizzes; Total_time_forum- total time used in forum; 
Mark- final mark the student obtained in the course. 

Since the data provided by Moodle are structured, they didn’t necessitate prepara-
tion [14]. So, we directly discretise them, transforming numerical values into cate-
gorical ones for a good interpretation and understanding. We have used the manual 
method for discretising all attributes, so the teacher has to specify the cut off points. 
The mark descriptor has four values:  insufficient, if value < 5; average, if value > 5 
and < 7; good if value >7 and < 9; excellent if value > 9. The other attributes have the 
values: LOW, MEDIUM and HIGH  [14]. 

A student is represented in Prolog by means of a term:  

student(ListofDescriptors) 

where the argument is a list of terms used to specify the student attributes.  
The term used to specify the student attributes is of the form:  

descriptor(DescriptorName,DescriptorValue) 

The model representation of students is in the following example: 

student([  
descriptor(Nassignment,medium),descriptor(Nquiz,low),  
descriptor(Nquiz_p,low),descriptor(Nquiz_f,high), 
descriptor(Nmessages, medium), descriptor(Nmessages_ap,   
medium),descriptor(Nposts,low),descriptor(Nread,low), 
descriptor(Total_time_assignment,low),  
descriptor(Total_time_quiz,low),  
descriptor(Total_time_forum,low)]). 

3 Modelling of Student Information Using Rough Sets 

3.1 Rough Sets Foundations 

Rough sets theory is an intelligent mathematical tool and it is based on the concept of 
approximation space [1], [3]. In rough sets theory, the notion of information system 
determines the knowledge representation system. In this section, we recall some basic 
definitions from literature [1, 2,  3]. 

Let U denote a finite non-empty set of objects (students) called the universe. Fur-

ther, let A denote a finite non-empty set of attributes. Every attribute , there is a 
function a: U → V, where Vis the set of all possible values of a, to be called the 
domain of a.  A pair IS = (U, A) is an information system. Usually, the specification 
of an information system can be presented in tabular form. Each subset of attributes 

Aa ∈
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AB ⊆ determines a binary B–indiscernibility relation IND(B) consisting of pairs of 
objects indiscernible with respect to attributes from B like in (1):  

 a(y)} = a(x) B,a:U×U y) {(x, = IND(B) ∈∀∈  (1) 

IND(B) is an equivalence relation and determines a partition of U, which is de-
noted by U/IND(B). The set of objects indiscernible with an object Ux ∈ with respect 
to the attribute set, B, is denoted by IB(x) and is called B–indiscernibility class: 

 IND(B)}y)(x,:U{y(x)BI ∈∈=  (2) 

 U}x:(x)B{IU/IND(B) ∈=   (3) 

Table 1. Student Information System 

U Nmessages Nmessages_ap Mark 

R1 medium low average 

R2 medium low average 

R3 medium low average 

R4 medium high good 

R5 high high good 

R6 medium medium average 

R7 medium medium average 

R8 medium high good 

R9 medium high good 

R10 high low  good 

R11 high low average 

 
It is said that a pair ASB = (U, IND(B)) is an approximation space for the informa-

tion system IS=(U, A), where AB ⊆ . The information system from Table 1 
represents the students enrolled into a course represented in terms of descriptors val-
ues, as described in Section 2. For simplicity we consider only two descriptors as 
attributes, namely the Nmessages and Nmessages_ap. So, our information systems is 
IS = (U, B), where U = {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11} and 
B={Nmessages, Nmessages_ap}.  

Let W = {w1,….,wn} be the elements of the approximation space ASB=(U, IND(B)). 
We want to represent X, a subset of U, using attribute subset B. In general, X cannot 
be expressed exactly, because the set may include and exclude objects which are in-
distinguishable on the basis of attributes B, so we could define X using the lower and 
upper approximation. 

The B-lower approximation X, XB , is the union of all equivalence classes in 

IND(B) which are contained by the target set X. The lower approximation of X is 
called the positive region of X and is noted POS(X). 
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 { } Xiw|iwXB ⊆=  (4) 

The B-upper approximation XB is the union of all equivalence classes in IND(B) 

which have non-empty intersection with the target set X. 

 { }  ∅≠= Xiw|iwXB  (5) 

Example: Let X ={R1, R2, R3, R4, R5, R6, R7, R8 } be the subset of U that we wish to be 
represented by the attributes set B={Nmessages, Nmessages_ap}. We can approx-
imate X, by computing its B-lower approximation, XB and B-upper approximation,

XB . So, XB  ={{R1, R2, R3}, {R5}, {R6, R7}} and XB ={{R1, R2, R3}, {R5}, {R6, 

R7}, {R4, R8, R9}}. The tuple ( XB , XB ) composed of the lower and upper approxi-

mation is called a rough set; thus, a rough set is composed of two crisp sets, one 
representing a lower boundary of the target set X, and the other representing an upper 
boundary of the target set X. The accuracy of a rough set is defined as: cardinality(

XB )/cardinality( XB ). If the accuracy is equal to 1, then the approximation is  

perfect. 

3.2 Dispensable Features, Reducts and Core 

An important notion used in rough set theory is the decision table. Pawlak [1] gives 
also a formal definition of a decision table: an information system with distinguished 
conditional attributes and decision attribute is called a decision table. So, a tuple DT = 
(U, C, D), is a decision table. The attributes C = {Nmessages, Nmessages_ap} are 
called conditional attributes, instead D = {Mark} is called decision attribute. The 
classes U/IND(C) and U/IND(D) are called condition and decision classes, respective-
ly. The C-Positive region of D is given by: 

 XC
DINDX

DCPOS
)(

)(
∈

=   (6) 

Let c∈ C a feature. It is said that c is dispensable in the decision table DT, if POSC-

{c}(D)= POSC(D); otherwise the feature c is called indispensable in DT. If c is an in-
dispensable feature, deleting it from DT makes it to be inconsistent.  

A set of features R in C is called a reduct, if DT’= (U, R, D) is independent and 
POSR(D)=POSC(D). In other words, a reduct is the minimal feature subset preserving 
the above condition.  

3.3 Producing Rules by Discernibility Matrix 

We transform the decision table into discernibility matrix to compute the reducts. Let 
DT = (U, C, D) be the decision table, with U = {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, 
R11}. By a discernibility matrix of DT, denoted DM(T), we will mean nxn matrix  
defined as: 
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 ))}jd(R)i(d(R and ))ja(R)ia(R:C{(a
)ia(R

ijm ≠≠∈=   (7) 

where i, j=1,2,…,11.  
The items within each cell of the discernibility matrix, DM(DT) are aggregated dis-

junctively, and the individual cells are then aggregated conjunctively. To compute the 
reducts of the discernibility matrix we use the following theorems that demonstrate 
equivalence between reducts and prime implicants of suitable Boolean functions [2], 
[12]. For every object Ri ∈U, the following Boolean function is defined: 
 

)

ijma

a(

UjR

ap)Nmessages_ ,(Nmessages
iRg

∈
∨

∈
∧=

 

(8) 

The following conditions are equivalent [3]: 

1. {ai1, . . . ,ain} is a reduct for the object Ri, i = 1..n. and  

2 inii a..aa ∧∧∧ 21
 is a prime implicant of the Boolean function gRi. 

On Boolean expression the absorption Boolean algebra rule is applied. The absorp-
tion law is an identity linking a pair of binary operations.  For example: a ∨  (a ∧  
b) = a ∧  (a ∨  b) = a 

From the decision matrix we form a set of Boolean expressions, one expression for 
each row of the matrix. 
For the average mark, we obtain the following rules based on the table reducts:  

• (Nmessages=mediu ∨ Nmessages_ap=low) ∧ (Nmessages_ap =low) ∧ (Nmessag-
es=high) 

• (Nmessages_ap =medium) ∧ (Nmessages=medium ∨ Nmessages_ap =medium)  
• (Nmessages=high ∨ Nmessages_ap =low) ∧ (Nmessages_ap =low)  
For the good mark we obtain the following rules based on the table reducts:   
• Nmessages_ap = high 
• Nmessages=high ∨  Nmessages_ap =high 
• Nmessages_ap = high ∧  (Nmessages=high ∨  Nmessages_ap =low) 

By applying the absorption rule on the prime implicants, the following rules are  
generated: 

• Rule 1: Nmessages_ap =low ∧  Nmessages=high →average 
• Rule 2: Nmessages_ap =medium→average 
• Rule 3: Nmessages_ap =low→average 
• Rule 4: Nmessages_ap = high→good 
• Rule 5: Nmessages=high ∨  Nmessages_ap =high→good 

3.4 Evaluation of Decision Rules 

Decision rules can be evaluated along at least two dimensions: performance (predic-
tion) and explanatory features (description). The performance estimates how well the 
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rules classify unevaluated students. The explanatory feature estimates how interpreta-
ble the rules are [2]. Let be our decision table DT = (U, C, D).  We use the set-
theoretical interpretation of rules. It links a rule to data sets from which the rule is 
discovered [2]. Using the cardinalities of sets, we obtain the 2×2 contingency table 
representing the quantitative information about the rule if descriptors then mark. Us-
ing the elements of the contingency table, we may define the support (s) and accuracy 
(a) of a decision rule by: 

 markSet)orSety(descriptcardinalits(rule) =  (9) 

 
orSet)y(descriptcardinalit

markSet)orSety(descriptcardinalit
a(rule)

=   (10) 

where the set markSetSetdescriptor   is composed from student descriptors which 

have a certain descriptorSet and a certain mark.  
The coverage(c) of a rule is defined by: 

 
y(markSet)cardinalit

markSet)orSety(descriptcardinalit
c(rule)


=   (11) 

For the generated Rule 2, the contingency Table 2 is obtained, where the descriptor 
Nmessages_ap  is denoted by D. For the Rule 2, the support is 2, accuracy is 2/2 and 
coverage is 2/6. In [4], the study suggests that high accuracy and coverage are re-
quirements of decision rules. 

Table 2. Contingency Table Representing the Quantitative Information about the Rule 2 

 mark = average not(mark = average)  

D =medium cardinality(D=medium and 

mark=average) = 2 

cardinality(D=medium and 

not(mark=average)) = 0 

cardinality( 

D =medium)=2 

 

not(D=medium) cardinality(not(D =medium) 

and mark=average)=4 

cardinality(not(D =medium) and 

not(mark=average))=5 

cardinality(not( 

D =medium) )=9 

 

 cardinality(mark=average) 

=6 

cardinality 

(not(mark=average))= 5 

cardinali-

ty(U)=11 

4 Decision Rule Extraction Using Rough Sets Models and 
Experiments 

In this paper we present the application of rough set to discover student rules between 
students’ descriptors and mark categories. A rule is represented using a Prolog fact:   

rule(Mark, Accuracy, Coverage, ListofStudentDescriptors) 
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where Mark, the head of the rule, is the mark category, Accuracy is the rule accuracy 
computed as in (10), Coverage is the rule coverage computed as in (11) the body of 
the rule, is composed by conjunctions of student descriptors, while Mark, the head of 
the rule, is the mark category. 

Decision rules are generated from reducts as described in Section 3. The student 
classification algorithm based on the discovered rules can be resumed as: 

• collect all the decision rules in a classifier, 
• compute for each rule the support, accuracy and coverage, 
• eliminate the rules with the support less than the minimum defined support, 
• order the rules by accuracy, than by coverage, 
• if a student matches more rules select the first one: a student matches a rule, if all 

the descriptors, which appear in the body of the rule, are included in the 
descriptors of the student. 

In the experiments realized through this study, two databases are used for the learn-
ing and testing process. The database used to learn the correlations between student 
behaviour and marks, contains information about 40 students, each described by 11 
descriptors. For each mark class, the following metrics: accuracy, specificity, and 
sensitivity. The counted results are presented in Table 3. 

Table 3.   Results recorded for different marks 

Mark Accuracy(%) Sensitivity(%) Specificity(%) 

Good 98.3 97 73.1 

Average 97.7 96.1 72.8 

Excellent 97.9 96 72.8 

Insufficient 96.3 95.2 71.7 

5 Conclusion 

In this study, a method based on rough set theory is proposed and developed to assist the 
teacher by doing the pre-evaluation of students during a course study. For establishing 
correlations with the mark, we experimented and selected some descriptors of the stu-
dent activity in the Moodle system for a “Database” course. The results of experiments 
are very promising and show that the methods based on rough set theory are very useful 
for predicting the results of the student during a course activity.  The Prolog language 
used for representation of students’ descriptors and rules makes a simple and flexible 
integration of our methods with other learning management systems. 

In future work, it would be interesting to repeat the analysis  using more data from 
different types of courses and also to select  other student descriptors.  It would be 
also very useful to do experiments using more experts in order to analyse the obtained 
rules for discovering interesting relashionships. 
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