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Abstract

In the first decade of the twenty first century, great strides have been made in observing
the Earth’s gravity field by space-borne techniques such as high-low Satellite-to-Satellite
tracking by the Global Positioning System (hl-SST, providing 3D information about
orbit perturbations), low-low Satellite-to-Satellite tracking (ll-SST) and Satellite Gravity
Gradiometry (SGG). In addition, great advances have been made in (preparations for)
gravity field recovery for other bodies in the solar system as well, including Mars and the
Moon, using tracking from the Deep Space Network (DSN), but also techniques such as
hl-SST, ll-SST, Satellite Laser Ranging (SLR) and Delta VLBI.

The purpose of the work described in this paper is to gain insight in the possibilities
of observing the gravity field of various planetary bodies by space-borne observation
techniques. For low-earth orbiting (LEO) satellites, efficient error propagation tools are
available that allow an assessment of the gravity field performance as a function of orbital
geometry and instrument or observation technique. These tools have been extended for
use to other bodies in our solar system, including the Earth’s Moon, Jupiter, Mars, Titan,
Enceladus, Europa and Phobos, which are in the scientific spotlight for various reasons. The
gravity field performance has been assessed for satellites orbiting these bodies assuming
these satellites can make use of DSN tracking or can acquire ll-SST or SGG observations.
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1 Introduction

In the past decade, significant advances have been made
in the observation, modeling and interpretation of not only
the gravity field of the Earth, but also of other celestial
bodies in the solar system. For the Earth, continuous
three-dimensional (3D) tracking in combination with a
high-precision accelerometer allowed for the first time the
derivation of homogeneous gravity field models for medium
to long wavelengths (CHAMP, Reigber et al. 1999). The
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addition of low-low Satellite-to-Satellite tracking, or ll-
SST, enabled the observation of temporal gravity variations
(GRACE, Tapley and Reigber 1999). Finally, using a space-
borne gradiometer further enhanced the observation of
Earth’s gravity field down to spatial scales of 100 km and
below (GOCE, Drinkwater et al. 2007).

Also for other celestial bodies such as the Earth’s Moon
and Mars already significant gravity field information has
been extracted by analyzing DSN—and for the Moon also
hl-SST, Satellite Laser Ranging (SLR) and VLBI—tracking
to—or by—missions such as Clementine, Lunar Prospector,
LRO, SELENE and Mars Global Surveyor (Smith et al.
2009; Matsumoto et al. 2010). Major improvements can be
expected from the GRAIL mission, which—like GRACE—
makes use of the ll-SST technique. Due to the absence
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of a (significant) atmosphere, the GRAIL satellites will fly
very low at the end of their mission possibly allowing the
construction of a gravity field model with a spatial resolution
of 10 km (NASA 2012a).

In addition, DSN tracking of e.g. the Galileo and
Cassini/Huygens missions during their encounters with the
icy moons Europa and Titan allowed for the retrieval of
gravity field information, be it rather coarse, which helps to
reveal secrets about their internal structure (Iess et al. 2010;
Rappaport et al. 2008). It is interesting to note that especially
SLR techniques are progressing fast allowing tracking of
very remote satellites (cf. the MESSENGER mission to
Mercury, Smith et al. 2006).

It is fair to conclude that precise and detailed knowledge
of the gravity field of celestial bodies is essential for reveal-
ing and understanding their internal structure and composi-
tion, and also for applications such as mission operations.
A number of spaceborne techniques, including hl-SST, ll-
SST and gradiometry are at our disposal for determining
the gravity field of not only Earth, but also for example the
Moon. Recent technological developments, such as Micro-
ElectroMechanical systems (MEMS) based accelerometers
and possibly gradiometers, might lead to miniaturized instru-
ments that are feasible for future missions to other celestial
bodies in our solar system (Flokstra et al. 2009). Therefore, it
is interesting to consider and study future mission scenarios
for determining the gravity field of these bodies. Detailed
concept studies and full-scale simulations of for example
high degree and order gravity field recovery using space-
borne gravimetry are time consuming and require significant
computing resources. Fortunately, efficient error propagation
tools exist and have been used as a first step for designing
gravity field satellite missions for the Earth (Colombo 1984;
Rosborough 1987; Visser 2005), thereby reducing the search
space and limiting the number of satellite missions that are
interesting for detailed and comprehensive further study. It is
interesting to note that the match between error predictions
by these tools and actual performance is quite close for a
mission like the European Space Agency GOCE satellite,
for which detailed observation error models were available
(ESA 1999; Pail et al. 2011). The tools can be used in the
early design phases of gravity field satellite missions to other
celestial bodies as well. This paper contains results for a
selection of observation techniques, a selection of celestial
bodies and a selection of orbital geometries to show the
potential of these tools. It has to be stressed that these results
should be seen as a first step in the design process of possible
gravity field missions.

This paper is organized as follows: after briefly introduc-
ing the selected planets and moons (Sect. 2), a few words will

Table 1 Selected planets and moons (cf. NASA 2012b)

Mean equat. Rotation per.
Body Mass (kg) radius (km) (Earth days)

Earth 5.9722 � 1024 6,378.1 0.99727

Mars 6.4185 � 1023 3,396.2 1.02595

Jupiter 1.8986 � 1027 71,492.0 0.414
Moon 7.349 � 1022 1,736.0 27.3217

Europa 4.80 � 1022 1,569.0 3.551

Titan 1.3455 � 1023 2,575.0 15.9454

Enceladus 1.08 � 1020 250.0 1.3702

Phobos 10.6 � 1015 13.4 0.31891

be spent on the methodology of the error propagation tools
(Sect. 3). This will be followed by an overview of results
(Sect. 4). The paper will be concluded with a short discussion
(see section “Discussion and Conclusions”).

2 Planets andMoons

A limited selection of celestial bodies in the solar system
has been made. The rationale between this selection is the
possibility to assess the impact of different dimensions of
such bodies (mass, size, but also rotation rate). For example,
Jupiter is selected as an example of a giant planet and Phobos
as an example of a very small moon. The other selected
bodies more or less fill the range between these two extremes
(Table 1).

For all the selected bodies, the retrieval of (more detailed)
gravity information is valuable to address interesting scien-
tific issues. The Earth speaks for itself. For Mars, gravity
field information is crucial for e.g. analyzing the nature of the
Tharsis region (Boyce 2008). For Jupiter, more information
about its gravity field will help to learn more about its
internal structure (Guillot et al. 2004). The Moon is inter-
esting as non-hydrostatic (or isostatically uncompensated)
components of its gravity field are relatively large (Bills and
Lemoine 1995). More detailed gravity field information is
required for drawing final conclusions about the existence
of e.g. (subsurface) oceans on the icy moons Europa and
Titan (Anderson et al. 1998; Rappaport et al. 2008; Iess
et al. 2010), and also Enceladus (Porco et al. 2006). Finally,
precise measurements of the gravity field of Phobos will
help to put new constraints on the origin of this small moon
of Mars (Rosenblatt et al. 2011). Please note many more
questions and also many applications can be mentioned.
This paragraph is however not intended to be complete
and just serves to exemplify the importance of gravity field
information.
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3 Methodology

The error propagation tools provide estimates of the pre-
cision of spherical harmonic (SH) coefficients representing
the gravity field potential of the celestial body of interest. It
might be argued that SH coefficients are not the most efficient
representation form for all celestial bodies, especially those
with a very irregular shape (e.g. Phobos). However, because
of the computational efficiency of the error propagation tools,
it is feasible to use even very high degree and order SH
expansions and thus predict the performance for small spatial
structures or features if so required. The SH coefficient
error estimates are based on the inverse of the normal
equations that result from a least-squares estimation process
that takes into account the choice of observation technique,
orbital geometry and measurement error spectrum, possibly
frequency dependent (see e.g. Schrama 1991). In case of
a circular repeat orbit (most planetary orbiters fly in near-
circular orbits, especially gravity field satellites) and constant
measurement time interval, it can be proved that the normal
matrix becomes block-diagonal when organized per SH or-
der. In addition, it can be proved that even and odd parities
of SH coefficients are uncorrelated (Colombo 1984). The
maximum size of the matrix blocks that have to be inverted
is therefore equal to about half the maximum SH degree
(Colombo 1984). It has to be mentioned that for this specific
block-diagonal structure of the normal matrix, one more
condition has to be met: the number of orbital revolutions
in the repeat period has to be larger than twice the maximum
SH degree. On a typical standard PC (cost around e1,000 in
October 2012), about 10 s CPU time is required per mission
scenario for an error estimate up to degree and order 150.

Furthermore, the method of error propagation requires
the establishment of transfer functions that establish the
relationship between SH coefficients and the observations
in the frequency domain. For this paper, the considered
observation techniques are hl-SST, ll-SST and SGG. For
the first two techniques use is made of a linearized orbit
perturbation theory. For SGG, which can be considered an in-
situ observation technique, a direct linear relationship exists
with the SH coefficients. The transfer functions for orbit
perturbations, ll-SST and SGG have been derived, and their
validity shown, by several authors (see e.g. Colombo 1984;
Rosborough 1987; Schrama 1991; Visser 2005). The last two
techniques are capable of providing continuous observations
with a constant time interval. For hl-SST tracking, it can
be argued that for Earth orbiting satellites perturbations in
3 directions can be derived continuously with a constant
time interval as well using for example tracking by the
Global Positioning System (GPS). However, when relying
on for example DSN tracking, this will not be the case. As a
(very) rough approximation, it is therefore assumed that DSN

tracking provides continuous information about the radial
velocity of the satellite (in a next step the error propagation
tools might be compared and possibly calibrated by selected
rigorous full-scale simulations). In case the mission duration
is long enough and in case the satellite is not in phase lock
with the Earth a full coverage can be obtained. For the Moon,
which is in phase lock, this means that the performance
assessment should be interpreted with care. In fact, it can be
argued that this performance assessment then would hold for
the near side only.

It has to be noted that other observation techniques might
have been considered as well and the error propagation
tools can easily be adapted to include those. For exam-
ple, there have been a number of planetary orbiters that
carried an altimeter. Associated observations also provide
information about radial orbit perturbations. However, it is
not straightforward to use altimeter observations directly for
gravity field determination, because assumptions have to be
made about how the topography of the celestial body of
interest was formed (e.g. degree of isostatic compensation).
Using altimeter crossovers is also not straightforward, since
it requires a very precise positioning of the spacecraft for
determining the exact crossover location and also provides a
sparse global coverage (Mazarico et al. 2012).

As a baseline, for all missions to be assessed a mission
duration of four Earth months has been assumed (which is a
hypothetical mission duration in case of DSN tracking, for
which a longer period will be required to have full global
coverage). Polar orbits are taken to guarantee global cover-
age. The observation time interval is taken equal to 1 min. For
Doppler tracking by DSN or the derived radial velocities, an
integration interval of 1 min is applied as well. The assumed
precision for radial velocities, ll-SST range-rates and SGG
observations is taken equal to 1 cm/s, 100 �m/s and 1 E
(Eötvös Unit), respectively. The separation angle for the
ll-SST observations is 1ı orbital angle. Observation errors
are assumed to have a Gaussian distribution. When using
gravity gradiometry, it is assumed that the three diagonal
components are available. Nominally, errors are estimated
for a SH expansion complete to degree and order 150.

4 Results

As a first example, the lunar gravity field performance for the
selected observations techniques is compared for a satellite
in a polar orbit at an altitude of 73 km. Please note that this
example is not to be interpreted as the possible performance
by the GRAIL mission. In fact, the performance for GRAIL
is expected to be much better due to the lower instrument
noise (�100 �m/s) and its much lower altitude (50 km and
below), cf. MIT (2012)). The repeat period is one Lunar day
or about 28 Earth days. The normal equations are scaled by
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Table 2 Satellite altitudes for the investigated satellite gravity mission
to the selected celestial bodies

Repeat period Number of

Body Height (km) nrev nbodyday
repeats

Earth 265 671 42 3.0

Mars 139 568 41 3.0
Jupiter 2,965 324 103 3.0

Moon 73 341 1 4.5

Europa 69 499 12 3.0

Titan 106 1,045 7 1.0

Enceladus 11 371 31 3.0
Phobos 0.6 293 132 3.0

Please note that the repeat period is specified in terms of orbital
revolutions nrev and the number of planet/moon days nbodyday

, i.e. the
period such a planet/moon needs to complete one revolution around its
axis

Fig. 1 Lunar gravity field performance in terms of cumulative gravity
anomaly error based on Doppler, ll-SST range-rate and SGG observa-
tions for a satellite altitude of 73 km

a factor of 4.5 to have a mission duration of about four Earth
months (Table 2). The estimated performance is displayed in
Fig. 1 in terms of cumulative gravity anomaly error. Please
note that if required, the errors can also be represented in
terms of other gravity field functionals, such as equipotential
surface (geoid, selenoid, : : :), deflections of the vertical, etc.
The shape of these curves is as anticipated: the slope is
the steepest for Doppler and the least steep for SGG obser-
vations. Doppler observations represent orbit perturbations
that are obtained by integration in time of the (gravitational)
accelerations that the satellite experiences, whereas SGG
observations are obtained by taking the difference between
very adjacent, typically at a distance of 0.5 m or less, accel-
erations thereby enhancing shorter wavelengths. The ll-SST
observations represent orbit perturbation differences between
two relatively nearby satellites resulting in a slope in between
those of Doppler and SGG observations. Based on the curves

in Fig. 1, it might be concluded that the ll-SST technique is
the superior one for lunar gravity field retrieval up to degree
and order 90, or a smallest spatial scale of about 60 km. For
smaller spatial scales, the SGG technique displays a better
performance. The Doppler technique leads to a relatively
poor performance and as stated above, it can be argued that
this performance is achievable only for the near side due to
the phase lock of the Moon with the Earth. As also stated
before, these results should be considered as an example of
the capabilities of the error propagation tools as a preliminary
step in the design process. The relative performance of the
different techniques depends of course on the underlying
assumptions that were made. For example, the error curves
scale proportionally with the assumed observation noise level
and signature. The chosen noise levels for all the techniques
were taken at rather conservative levels. If the noise level for
the ll-SST is a factor 10 better, i.e. 10 �m/s, the associated
error curve will shift by one order of magnitude and the SH
degree at which the ll-SST curve intersects with the SGG
one will shift to a significantly higher degree. Of course, a
similar “vice-versa” reasoning can be used when reducing
the noise level of SGG observations. As another example,
a bandwidth limitation (i.e. high noise at low frequencies),
which is typical for a gradiometer, will significantly de-
grade the performance for low SH degrees. Hence, the error
analysis can be refined and lead to more realistic gravity
field retrieval performance assessments if more information
becomes available about the noise characteristics of the
observation technique(s) and/or selected instruments.

The error curve for the Doppler observations displays a
distinct increase around degree 115. This can be explained by
considering the Doppler integration interval of 1 min. For the
Lunar mission, the satellite travels a distance equal to about
3.12ı in terms of orbital angle, which is around 1/115th of an
orbital revolution, or the inverse of the SH degree where the
jump kicks in.

As a second example, polar orbits were selected for other
celestial bodies with altitudes that are scaled by the radius of
the associated body of interest, i.e.:

ab

rb

D ae

re

(1)

where ai and ri represent respectively the semi-major axis of
the satellite orbit and radius of the selected celestial body
(i D b), where the Earth (i D e) serves as reference
using an altitude of about 300 km. Please note that also other
scaling rules can be applied and of course other altitudes
can be selected. The scaling is applied to take into account
the consideration that for smaller bodies gravity signals will
dampen out faster with increasing altitude.

The scaling rule of Eq. (1) leads to different repeat orbits
and associated number of orbital revolutions (Table 2), which
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Fig. 2 Gravity field performance in terms of cumulative gravity
anomaly error based on Doppler observations for scaled satellite alti-
tudes (using a reference altitude of � 300 km for the Earth)

Fig. 3 Gravity field performance in terms of cumulative gravity
anomaly error based on ll-SST range rate observations for scaled
satellite altitudes (see Fig. 2)

for all bodies, except Phobos, is above 300, i.e. formal error
estimates can be obtained for SH coefficients up to degree
and order 150 (140 is taken for Phobos). Different repeat
periods are obtained, which is the reason for scaling the
normal equations with the specified number of repeats to end
up with a four Earth month observation period for all selected
mission scenarios.

The gravity field performance for the several celestial
bodies is displayed in Figs. 2, 3 and 4 for radial Doppler, ll-
SST range-rate and SGG observations, respectively, in terms
of cumulative gravity anomaly error. It can be observed
that curves look quite similar for the Doppler and ll-SST
observation techniques for SH degrees up to at least 50, for
all selected celestial bodies (both the very small and big
ones). For the Doppler technique (Fig. 2), jumps occur at

Fig. 4 Gravity field performance in terms of cumulative gravity
anomaly error based on SGG observations for scaled satellite altitudes
(see Fig. 2)

different SH degree which can be explained by the different
rotation rates for the selected satellite orbits combined with
Doppler integration interval of 1 min (see also the expla-
nation above for the Lunar mission scenarios, Fig. 1). For
the SGG observation technique, the error curves are also
very similar, except for the absolute magnitude. In terms of
cumulative gravity anomaly error, the errors for the largest
selected planet (Jupiter) are between 3 and 4 orders of mag-
nitude larger than for the smallest selected moon (Phobos).
A preliminary conclusion might be that the SGG technique
is relatively promising for small bodies. As stated before, the
Doppler and ll-SST observation techniques provide informa-
tion about (relative) orbit perturbations, which are obtained
by integration of the equations of motion or integration of
the gravitational acceleration. SGG observations however are
obtained by differentiation of the gravitational acceleration.
By using scaled altitudes Eq. (1), the SGG technique has a
natural advantage for small bodies as compared to the other
techniques.

Discussion and Conclusions

Efficient error propagation tools originally used for Earth
gravity field satellite missions have been adjusted to
enable first assessments of gravity field retrieval perfor-
mance for satellite missions to other celestial bodies. A
number of space-borne gravimetry techniques have been
selected to serve as example, including (hypothetical)
Doppler observations of the radial velocity of the satellite,
ll-SST range rate observations, and SGG observations.

The gravity field retrieval performance was assessed for
nominal mission scenarios, where the mission duration
is equal to four Earth months and the satellites fly in
polar repeat orbits. Concerning the different techniques,
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results are in agreement with intuition and experience for
the Earth. For Doppler tracking, the error curves have
the steepest slope, i.e. gravity field retrieval errors grow
relatively fast with increased spatial resolution. On the
other hand for SGG observations, the slope is the smallest,
i.e. the SGG technique performs relatively well at short
spatial scales.

The conducted error propagation assessments
described in the previous sections can be considered
as a nice exercise to show the capability of the used
tools for designing possible future gravity field mission
to different celestial bodies in our solar system. When
mission and instrument design evolve, more realistic
observation error spectra can be used to improve the
gravity field performance estimates. It can be stated that
the error propagation tools are very flexible and can
easily accommodate many observation techniques, orbital
geometries and different celestial bodies. These tools
provide a first quick insight into gravity field mission
concepts that are feasible and can be selected for more
comprehensive study.
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