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1 Introduction and Motivation
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Abstract

A key feature of geodetic adjustment theory is the description of stochastic properties of the
estimated quantities. A variety of tools and measures have been developed to describe the
quality of ordinary least-squares estimates, for example, variance-covariance information,
redundancy numbers, etc. Many of these features can easily be extended to a constrained
least-squares estimate with equality constraints. However, this is not true for inequality
constrained estimates.

In many applications in geodesy the introduction of inequality constraints could improve
the results (e.g. filter and network design or the regularization of ill-posed problems).
This calls for an adequate stochastic modeling accompanying the already highly devel-
oped estimation theory in the field of inequality constrained estimation. Therefore, in
this contribution, an attempt is made to develop measures for the quality of inequality
constrained least-squares estimates combining Monte Carlo methods and the theory of
quadratic programming. Special emphasis is placed on the derivation of confidence regions.

Keywords
Confidence regions * Convex optimization ¢ Inequality constrained least-squares * Monte
Carlo method ¢ Stochastic modeling

example or constraints on the power spectral density in the
design of decorrelation filters (Roese-Koerner et al. 2012a).
However, besides the process of actually determining a

In many applications in geodesy some bounds or restrictions
on the parameters are known in advance. Truncating the
parameter space by formulating this knowledge as inequality
constraints often helps to improve the results. One can think
of the estimation of non-negative variance components for
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solution of a problem, it is also important to give a measure
of its accuracy. In presence of inequality constraints, it is no
longer possible to project the uncertainty of the observations
to the parameters by applying the law of error propagation.
This is, because there is no analytical relationship between
observations and parameters. Even if a variance-covariance
(VCV) matrix could be obtained, it would not yield a realistic
error description, as one has to deal with truncated probabil-
ity density functions (PDFs).

Up to now, there have been different approaches for a
quality description in presence of inequality constraints. For
example Liew (1976) proposed to first identify all con-
straints, which are exactly satisfied (by solving the prob-
lem). Afterwards, these constraints are treated as equality
constraints, all other constraints are discarded and the VCV
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matrix of the equality constrained problem is computed. A
disadvantage of this method is, that inactive constraints (e.g.
constraints, which do not hold with equality) are neglected
and do not constrain the confidence region.

Geweke (1986) and Zhu et al. (2005) treated inequalities
as prior information in a Bayesian sense and truncated the
probability density functions. To obtain a valid PDF, the
function has to be scaled, which could be thought of as dis-
tributing the probability mass in the infeasible region over the
whole function, which might be not realistic. Furthermore,
the numerical evaluation of the PDF is computationally
expensive in the multivariate case.

In this paper, we aim at giving a quality description
for Inequality Constrained Least-Squares (ICLS) problems
using Monte Carlo methods. In contrast to the idea of scaling,
we want to obtain a PDF of the estimated parameters, which
is identical to the PDF of an Ordinary Least-Squares (OLS)
estimate inside the feasible region and where all probability
mass in the infeasible region is projected onto its boundaries.

The paper is organized as follows. In Sect. 2 we define the
ICLS problem and provide references on several solvers. Our
proposed method is described in Sect. 3, as is the derivation
of confidence regions and a brief description of a sensitivity
analysis for the constraints. In Sect. 4 a case study is carried
out to illustrate the application of our approach. The insights
that have been gained are summarized in Sect. 5.

2 Background

First, the well-known linear OLS estimation model is
extended to a linear ICLS estimation. We assume a
deterministic model of the form
y + Vv =Ax, (H

with vector of observations y, vector of residuals v,
(n x m) design matrix A and vector of unknown parameters
X. n is the number of observations, m the number of
parameters. The design matrix is assumed to have full rank
m and all quantities are assumed to be real valued. The
(possibly fully populated) VCV matrix Q of the observations
is assumed to be known. The aim is to minimize the quadratic
form

d(x) =v Qv 2)
Clearly, this aim can be achieved, by applying the usual OLS
estimator

x=(ATQ'A)T'ATQ . A3)
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Throughout this paper, symbols marked with a hat refer to
unconstrained quantities whereas tildes refer to quantities of
a constrained solution.

We now introduce p inequality constraints in a matrix
vector notation:

B'x <b. )

B is a (m x p) matrix of constraints and b the correspond-
ing right-hand side. As it is not known in advance which
constraints will lead to changes in the parameters (i.d. are
exactly satisfied or “active”) the usual techniques of equality
constrained estimation can not be applied. However, many
algorithms have been developed to solve such an ICLS
problem of the form

minimize

d(x) =vQlvy
B’x <b

(5a)

subject to (5b)
(which is often referred to as Quadratic Program (QP) as we
want to minimize a quadratic objective function @(x) with
respect to some linear constraints). Most of the solvers can be
subdivided into two classes: Simplex Methods and Interior
Point Methods.

In each iteration of a Simplex method a search direction
is computed and projected onto a subset of the constraints. If
at least one constraint is active in the solution, the optimal
point will be at the boundary of the feasible set (the set
where all constraints are satisfied). Therefore, one follows
the borderline of the feasible set until the optimal solution is
reached. If it is not on the boundary, in the last iteration the
projection is neglected, resulting in a step into the interior
of the feasible set. Examples for solvers of this type are
the Active Set Method (cf. Gill et al. 1981, pp. 167-173)
or Dantzigs Simplex Algorithm for Quadratic Programming
(Dantzig 1998, pp. 490-498).

Interior Point Methods on the other hand, substitute the
original—possibly hard to solve—problem by a sequence of
easier to solve ones. Then a so called “central path” through
the interior of the feasible region is followed until the optimal
solution is reached. Examples are the Logarithmic Barrier
method or primal-dual methods (cf. Boyd and Vandenberghe
2004, pp. 568-571 respectively pp. 609-613).

Other approaches also include the idea of aggregating all
inequality constraints into one complex equality constraint
(Peng et al. 2006) or transforming (5) into a Linear Comple-
mentarity Problem (cf. Koch 2006, pp. 24-25), which can be
solved using Lemke’s Algorithm (cf. Fritsch 1985).

As we want to focus on the quality description, we will
not pursue the process of actually solving an ICLS problem
but refer to the above mentioned authors. All results within
this paper were computed using the Active Set Method.
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3 MC-QP Method

As a VCV matrix is no longer representative in the inequal-
ity constrained case, we want to directly propagate the
probability density of the observations. Especially in cases,
where either no analytical solution is known or it would
computationally be very expensive to obtain, Monte Carlo
(MC) methods often are used. For the ICLS problem, MC
integration seems to be perfectly suited as the probability
distribution of the observations is assumed to be known but
there is no analytical relationship between observations and
parameters.

So the idea is to draw M samples of the observations,
solve the resulting QPs and use them to obtain an empirical
probability density function of the estimated parameters.

3.1 Propagation of the Probability Density
Assuming that we have a fully populated VCV matrix Q of
the observations, we want to draw M samples sg,) of the
observations, which follow the normal distribution
Y~ N(E{Y}Q). (6)
E{Y} denotes the expectation operator of the random vari-
able Y, the random counterpart of the deterministic variable

y. As estimator of E{Y} we use an unconstrained OLS
estimate

¥ = A% (7a)
=AA'Q'A)T'ATQ Y. (7b)

The process of sampling from the above described distribu-
tion can be done as follows (cf. Koch 2007, p. 197): First Q

is factorized into the product of two upper right triangular
matrices R using the Cholesky factorization

Q=R"R. (8)

Afterwards, M standard normal distributed samples sg) are

drawn from the distribution

€ ~ N(0,1), C)]
with identity matrix I and transformed to
s =y +RTsY, i=1...M (10)

These samples are used as input for the quadratic
program (5), which is solved using the Active Set Method,
producing M solution s(/g. Hence, we can achieve an
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empirical joint density function of the parameters X by
computing and normalizing the histogram of the solutions.

One can think of this approach as computing M different
instances of the problem, resulting in M different objective
functions with M different minima. However, as the con-
straints remain unchanged, all minima inside the feasible
region coincide with the solution of an OLS estimation.
All solutions outside the feasible region on the contrary are
projected to the closest point (in the metric, given through
the objective function) that fulfills all constraints. As all these
points will be at the boundary of the feasible set, this will lead
to the accumulation of probabilities, described in Sect. 1.

The task of solving M different QPs is computational
demanding. However, as with the solution of the original
problem a good initial solution is known, QP algorithms will
converge fast.

3.2 Confidence Regions (HPD Regions)

As with the MC-QP approach we not only obtain a point
estimate but a whole empirical PDF, we can easily compute
confidence intervals. In Chen and Shao (1999) and the
Supplement 1 to the “Guide to the expression of uncertainty
in measurement” (GUM, ISO 2008, pp. 5 and 30) the
confidence interval of a Monte Carlo estimate (called highest
probability density (HPD) region) is defined as the shortest
interval, which contains 1 — « percent of the data (with
1 — « being the level of significance). This definition extends
naturally to the n-dimensional case:

The (1-a)-confidence region §2 of an n-dimensional prob-
lem is defined as the smallest region containing 1 —« percent
of the data

Px|2}=1-«a. 11
This region can be computed by simply sorting the values of
the n-dimensional histogram described in Sect. 3.1 by value,
starting with the largest one. Afterwards, the cumulative sum
is computed until 1 — o percentage is reached. All bins of
the histogram that added up to 1 — o percentage form the
confidence region. One has to be aware that this region is not
necessarily connected, due to the accumulation of probability
mass at the boundary of the feasible region (Chen and Shao
1999, p. 84).

Figure 1 illustrates such confidence intervals for a one
dimensional example for M — oco. The PDF of the OLS
estimate with E{X} = 0 is plotted in light gray. The o
percent, which are not included in the confidence interval
(shaded areas) are symmetrically distributed at both tails of
the distribution (5 at each side). This symmetry is destroyed
when introducing the inequality constraint x < 1 and
performing an ICLS estimate.
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Fig. 1 Probability density functions and confidence intervals of dif-
ferent estimates for a one dimensional problem: OLS (light gray),
Bayesian ICLS approach (gray) and MC-QP method (dark gray, dash-
dotted). The dashed line represents the inequality constraint x < 1 and
the minimal value of the objective function is reached for x = 0. The
parts not contained in the confidence intervals are the shaded regions
below the curves. In contrast to an OLS estimate the confidence region
of an ICLS estimate can be asymmetric, which is why the OLS PDF
has symmetric shaded regions, while those of Bayes and MC-QP are
one-sided

The PDF of the MC-QP estimate is indicated by the dash-
dotted dark gray line which coincides with the OLS estimate
in the feasible region and accumulates all the probability
mass in the infeasible region at its boundary. Thus, as the
confidence interval contains the values which are most likely,
the whole o percent not included in the confidence interval
are at the left tail of the PDF (depending on the constraint).
So the confidence interval is bounded on one side by the
constraint and on the other side by the o percent that are
“most unlikely”. As can been seen in Fig. 1, this results in
a smaller confidence interval.

However, this is not true for the Bayesian estimate (gray
curve). The symmetry is destroyed here as well, but the
scaling of the PDF leads to a shift of the beginning of the
(1 — a)-percent-interval and therefore to a bigger interval
compared to the MC-QP method.

3.3 Influence of the Constraints

So far, we investigated the distribution of the estimated
parameters and their confidence region. However, it might be
also of interest, to determine the influence of the constraints
onto the parameters. This can be done either on a global
level, determining if the overall change in the result due to
the constraints is significant or at a local level, investigating
the individual influence of each constraint on each parameter.
Due to the limited space, we will only very briefly discuss
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the different options for such a sensitivity analysis and
provide some references for further reading. A more detailed
discussion could for example be found in Roese-Koerner
et al. (2012b).

On a global scale, one can perform a hypothesis testing.
Here, the sum of squared residuals of the unconstrained
OLS estimate is compared with the sum of squared changes
through the constraints (Koch 1981). Another global measure
is the ratio of the probability mass inside and outside the
feasible region (measured by checking in each Monte Carlo
iteration if at least one constraint is active or not).

To analyse the local influence, the Lagrangian

L(x,k) = &(x) + k' (B'x —b) (12)
of the ICLS problem (5) is needed. It is the sum of the orig-
inal objective function @(x) and the rearranged constraints
multiplied with the Lagrange multipliers k. The Lagrange
multipliers of the optimal solution can be determined and
give a measure for the “activeness” of a constraint. This can
be used to quantify the influence of each constraint on each
parameter (cf. Boyd and Vandenberghe 2004, p. 252).

4 Case Study

In this case study, the MC-QP method is applied to derive
stochastic information of some quantities of a very simple
ICLS problem: the estimation of a line of best fit with a
constrained minimal intercept. We have intentionally chosen
a simple problem to focus on the methodological aspects
of the MC-QP method and on the comparison of different
confidence regions.

Assume the following uncorrelated and normal distributed
observations y to be measured at the supporting points t:

y=[-4000153020]", t=[12345]".

The deterministic model reads

yi +vi = x1t; + Xa2. (13)
The parameter space should be constrained, so that only
intercepts of at least —3.5 are accepted:

X > =35 — [o-1] [xl} < [35]. (4
——— X2 ———
BT SN—— b
X
Therefore, we have an ICLS problem in the form of (5)
and can apply the MC-QP method. The unconstrained OLS
solution reads



Quality of Inequality Constrained Estimates

a
1.6 oLS 1
141 B vc-ar
1.2} N ===N(E{x},Q) |
< ° Bayes
—_ 1
=
2 0.8
0.6
0.4
0.2
0
0 0.5 1 1.5 2 2.5 3

Fig. 2 Empirical marginal densities of the parameters after M =
10,000,000 Monte Carlo iterations. The PDF of the Monte Carlo
estimates are plotted in light gray (OLS) and dark gray (ICLS), the
dashed line is the analytical PDF of the OLS estimate and the PDF of
the Bayesian approach in plotted in gray. (a) Estimates of the marginal
density of x;, (b) estimates of the marginal density of x;

< = 1.5
T 1—4.0
and the ICLS solution, which was obtained using the Active
Set Method, reads

5)

1.3636:| . (16)

X= [—3.5000

Comparison of the marginal densities of parameter x,, which
are illustrated in Fig.2b, shows, that the MC-QP estimate
(dark gray bars) is nearly identical to the OLS estimate (light
gray bars) inside the feasible region. All probability mass
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Fig. 3 Empirical joint densities and confidence regions of the parame-
ters after M = 10, 000, 000 Monte Carlo iterations. (a) OLS: joint PDF
and confidence region, (b) MC-QP: joint PDF and confidence region,
(c) confidence regions of Bayesian (light gray), OLS (darker gray) and
MC-QP approach (black)
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left of the constraint is projected onto the boundary of the
feasible set, resulting in a peak at x, = —3.5. The Bayesian
estimate (gray curve) is a scaled version of the analytical
PDF of the OLS estimate (dashed curve) inside the feasible
region.

The more “peaky” form and the shift of the maximum
of the MC-QP estimate of parameter x; (Fig.2a) results
from correlations between the parameters. The shift is even
stronger in the Bayesian approach. Figure 3a illustrates the
joint densities of the OLS estimate and the corresponding
95 % confidence region. The joint PDF of the MC-QP esti-
mate is shown in Fig. 3b and is identical to the OLS estimate
inside the feasible region. Here, the accumulation on the
boundary can be seen as well. In Fig.3c the confidence
regions of the different estimates are compared. As discussed
in Sect. 3.2, the confidence region of the MC-QP estimate
(black) becomes smallest due to the accumulation of the
probability mass on the boundary. On the contrary, applying
the Bayesian method (light gray) leads to a bigger confidence
region due to the scaling of the PDF. In this case study, the
confidence region of the Bayes estimate is even bigger than
the one of the OLS estimate (darker gray) because a huge
part of the PDF is truncated.

5 Summary and Outlook

The proposed MC-QP method allows a stochastic descrip-
tion of ICLS estimates but it is computationally expensive
to apply. It was shown that the introduction of inequality
constraints within this framework leads to smaller confidence
regions.

The possibilities of a sensitivity analysis (which were only
mentioned briefly here) as well as the determination of the
influence of constraints on correlations between parameters
are to be addressed in future work.

L. Roese-Koerner et al.
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