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Abstract

This paper is concerned with the spectral analysis of stochastic processes that are real-
valued, one-dimensional, discrete-time, covariance-stationary, and which have a represen-
tation as a moving average (MA) process. In particular, we will review the meaning and
interrelations of four fundamental quantities in the time and frequency domain, (1) the
stochastic process itself (which includes filtered stochastic processes), (2) its autocovariance
function, (3) the spectral representation of the stochastic process, and (4) the corresponding
spectral distribution function, or if it exists, the spectral density function. These quantities
will be viewed as forming the corners of a square (the “magic square of spectral and
time series analysis”) with various connecting lines, which represent certain mathematical
operations between them. To demonstrate the evaluation of these operations, we will discuss
the example of a q-th order MA process.
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1 Introduction

The spectral analysis of deterministic functions and the
formulation of stochastic processes belong to the well-
established statistical tools in various fields within geodesy
(see, e.g. Koch and Schmidt 1994; Moritz 1989; Welsch et al.
2000). We found, however, that in particular the nature of the
spectral representation of stochastic processes in terms of
the stochastic Fourier integral and its relationships with the
autocovariance and spectral distribution (or density) function
is far less well known than the details of the time-domain and
Fourier analyses of deterministic functions. Our motivation
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for this paper is therefore to take a step towards closing
this gap in understanding. We will in particular provide
the reader with the key definitions of the involved stochastic
processes as well as of their crucial properties (Sect. 2). Then
we will state and explain the computational formulae for the
spectral analysis of general real-valued covariance-stationary
stochastic processes (Sect. 3). This is in contrast to the
usual representation of these formulae in the mathematical
statistics oriented literature (e.g. Brockwell and Davis
1991; Priestley 2004), where one generally finds only the
results for complex-valued stochastic processes, which
often complicates their application in practical situations.
To aid the understanding of the mathematical relationships
of the involved fundamental statistical quantities (stochastic
process, autocovariance function, spectral representation of
the process, spectral distribution or density function) we
will use a corresponding graphical representation in form
of a “magic square” (also in Sect. 3). We will conclude this
paper with an outlook to extensions to the presented example
[moving average (MA) process].
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2 Basic Elements of Stochastic
Processes

In this chapter, we will provide a summary of basic defini-
tions (D) and properties of the stochastic processes consid-
ered in Sect. 3.
(D1):We say that XT D .˝;A; P; fXt ; t 2 T g/ is a (gen-
eral) stochastic process if and only if (iff)
• .˝;A; P / is any probability space (where ˝ denotes

the sample space, A a �-algebra of events, and P a
probability measure),

• T is any non-empty set, and
• Xt is a random variable defined on .˝;A/ for any t 2 T .

In this paper, we will restrict our attention to real-valued
and one-dimensional stochastic processes as given in the
following definition.
(D2):We say that XT is a real-valued (one-dimensional)
stochastic process iff Xt W .˝;A/ ! .R;B/ for any t 2 T ,
where B is the Borel sigma algebra generated by the set of
all real-valued, one-dimensional, left-open and right-closed
intervals.

In Sect. 3, we will use stochastic processes that have a
discrete parameter set T in the time domain as well as
processes with a continuous parameter set in the frequency
domain. This distinction is made by the following definition.
(D3): We say that XT is a
• discrete-parameter stochastic process (or stochastic

process with discrete parameter) iff T � Z. Furthermore,
we call XT a discrete-time stochastic process or
discrete-time time series iff the elements of T refer
to points in time.

• continuous-parameter stochastic process (or stochastic
process with continuous parameter) iff T � R. In addi-
tion, we call XT a continuous-frequency stochastic pro-
cess iff the elements of T refer to (angular) frequencies,
in which case we will also write T D W .
As far as discrete-parameter stochastic processes are con-

cerned, we will focus our attention on covariance-stationary
processes (in the time domain). The precise meaning of this
concept is provided as follows.
(D4): We say that XT is covariance stationary iff
• EfXtg D � <1 .i:e: constant=finite/ for any t 2 T ,
• Ef.Xt � �/2g D �2X < 1 .i:e: constant=finite/ for any
t 2 T , and

• �X .t1; t2/ D �X .t1 C �t; t2 C�t/ for any t1; t2 2 T and
any�t with t1 C�t; t2 C�t 2 T ,

where Ef:g denotes the expectation operator and �X the
autocovariance function, defined by �X .t1; t2/ D Ef.Xt1 �
�/..Xt2��/g. For a covariance-stationary stochastic process,
we have that �X .t1; t2/ D �X .t1 � t2; 0/ for any t1; t2 2 T
(and 0 2 T ) such that also t1 � t2 2 T ; that is, we can
always rewrite �X by using only a single variable argument,

the second one taking the constant value 0. In light of
this, we redefine the autocovariance function for covariance-
stationary processes as

�X .k/ WD �X .k; 0/ D �X .t C k; t/

for any k; t 2 T with t C k 2 T ; the parameter k is called
lag (cf. Brockwell and Davis 1991, pp. 11–12).

The fundamental instance of a covariance-stationary pro-
cess and primary building block for certain other stochastic
processes is white noise, defined as follows.
(D5): We say that ET WD XT is (discrete-parameter) white
noise with mean 0 and variance �2X iff
• T � Z,
• EfXtg D 0 for any t 2 T , and

• �X .k/ D
�
�2X if k D 0;
0 if k ¤ 0 .

Now let us consider a non-recursive filter C , defined by
the filter equation yt DP1

kD�1 ckut�k for any t 2 Z, or in
lag operator notation yt D C.L/ut with Lkut WD ut�k and
C.L/ DP1

kD�1 ckL
k , where .ut j t 2 Z/ is any filter input

sequence and .yt j t 2 Z/ any filter output sequence (in either
case of real numbers or random variables), and .ck j k 2 Z/ is
any sequence of real-valued filter coefficients. If we view the
random variables of a white noise process ET as filter input
to a
• causal (i.e. ck D 0 for any k < 0),
• either finite or infinite (i.e. a finite or an infinite number

of filter coefficients is non-zero),
• absolutely summable (i.e.

P1
kD�1 jckj <1), and

• invertible (i.e. there exists an inverse filter C with filter
coefficients . Nck j k 2 N

0/ such that ŒC .L/C.L/�ut D ut
where C.L/ DP1

kD0 NckLk)
version of such a non-recursive filter, then we obtain the
moving average process as filter output, as explained in the
following definition.
(D6): If ET with T � Z is (discrete) white noise with mean
0 and variance �2E , then we say that LT W .˝;A; P; fLt ; t 2
T g/ is a (discrete-parameter) moving average process of
order q (or MA(q) process) (with q 2 N) iff the random
variables Lt satisfy, for any t 2 T , the equation

Lt D Et C ˇ1Et�1 C : : :C ˇqEt�q D ˇ.L/Et
with ˇ.L/ D 1C ˇ1LC : : :C ˇqLq . In the limiting case of
q D1, we call LT an MA(1) process.

Treating ˇ.L/ as a complex polynomial, then, if ˇ.z/ ¤ 0
for any z 2 C with jzj � 1, then the filter ˇ and, hence the
MA(q) process, is invertible (cf. Brockwell and Davis 1991,
pp. 86–87). Furthermore, whereas any MA.q/ process with
q < 1 is covariance-stationary (cf. Priestley 2004, p. 137),
the MA.1/ process is covariance-stationary iff the sequence
.ˇk j k 2 N

0/ of filter coefficients is absolutely summable
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(i.e. iff
P1

kD0 jˇkj < 1) (cf. Brockwell and Davis 1991,
pp. 89–91).

On the other hand, as far as continuous-parameter stochas-
tic processes are concerned, we will only deal with stochastic
processes that are in a certain sense stochastically continuous
and that have orthogonal increments, which is explained in
the following.
(D7): We say that any continuous-parameter stochastic
process XT is mean-square right-continuous (or mean-
square continuous from the right) at t0 2 T iff
lim

t!t
C
0
EfŒXt �Xt0 �2g D 0 holds (cf. Gilgen 2006, p. 453).

(D8): We say that any continuous-parameter stochastic pro-
cess XT is a stochastic process with orthogonal incre-
ments �Xs;t D Xt � Xs with s; t 2 T and s < t iff
Ef�Xt1;t2�Xt3;t4g D 0 for any t1; t2; t3; t4 2 T with t1 <
t2 < t3 < t4 or t3 < t4 < t1 < t2, i.e. iff any two “non-
overlapping” increments are uncorrelated.

3 Magic Square
for Covariance-Stationary,
Discrete-Time Processes

In the current section, we will review the mathematical oper-
ations that connect the following four fundamental quantities
of a spectral analysis in the time and the frequency domain:
1. stochastic process,
2. autocovariance function,
3. the spectral representation of the stochastic process,
4. the spectral distribution function (or, if it exists, its deriva-

tive, the spectral density function).
We may view these quantities as forming the corners

of a square with various connecting lines, which represent
certain mathematical operations between them (see Fig. 1).
We will refer to this as the Magic Square. To demonstrate
the evaluation of these operations, we will consider the
example of an MA(q) process. The reader should note that,
with this understanding, it would be straightforward to apply
the Magic Square to more complicated processes such as
ARMA(p,q) processes, which would, however, exceed the
limit of this paper. We begin the discussion by construct-
ing the time domain (the “left-hand side”) of the Magic
Square.

3.1 Time Domain (Left-Hand Side)

We consider any stochastic process XT which is
• one-dimensional and real-valued (i.e. ˝ D R

1),
• discrete in time (with T D Z), and
• covariance-stationary with zero mean, variance �2X and

autocovariance function �X .

(1)

(4)

Time domain

(5)

(8)

Frequency domain

(10)

(9)

(12)

(11)

(2) (3) (6) (7)

Fig. 1 Magic square for covariance-stationary discrete-time stochastic
processes; upper left stochastic process, lower left autocovariance func-
tion, upper right spectral representation of the stochastic process, lower
right spectral distribution function; the numbers in brackets indicate the
mathematical operations as defined in Sects. 3.1–3.3

Furthermore, we consider any stochastic process LT
obtained by filtering the process XT , where we assume that
the filter  .L/ is
• non-recursive,
• causal,
• either finite or infinite,
• absolutely summable, and
• invertible (with inverse filter  .L/).

It follows that the process LT is
• one-dimensional and real-valued (i.e. ˝ D R

1),
• discrete in time (with T D Z), and
• covariance-stationary (cf. Brockwell and Davis 1991,

p. 84) with zero mean, variance �2L and autocovariance
function �L.
The general mathematical operations within the time

domain can be summarized as follows:
(1) XT () LT :

Lt D  .L/Xt ; Xt D  .L/Lt ;

hold for any t 2 Z. The first of these equations is
an expression of the above assumption that LT is a
stochastic process obtained by non-recursive filtering of
XT . The second of these equations reflects the presumed
invertibility of the filter operation.

(2) XT H) �X ;LT H) �L:

�X .k/ D EfXtCkXt g; �L.k/ D EfLtCkLt g;

hold for any t; k 2Z. These equations are simply an
expression of the definition of the autocovariance func-
tion applied to the stochastic processes XT and LT with
the properties stated above (cf. Priestley 2004, p. 107).

(3) XT H) �L;LT H) �X :
Substitution of (1) and shifted versions thereof into

(2) yields the expressions for �L.k/ and �X .k/.



12 I. Krasbutter et al.

(4) �X () �L:

�L.k/ D
1X
mD0

1X
nD0

 m n�X .k �mC n/;

�X .k/ D
1X
mD0

1X
nD0

 m n�L.k �mC n/

hold for any k 2Z. These equations show how the
autocovariance function of a covariance-stationary
stochastic process is propagated by an essentially
absolutely summable filter to the autocovariance func-
tion of the filtered (covariance-stationary) process (see
Proposition 3.1.2 in Brockwell and Davis 1991, p. 84).

Example: MA(q) Process
Let us consider a non-recursive, causal, finite, absolutely
summable and invertible filter ˇ.L/. If we apply such a
filter to white noise ET (which satisfies the conditions made
for the input process XT ), then we obtain, by definition,
an invertible MA(q) process, which then satisfies the above
stated properties of LT . Hence, we may apply the general
mathematical operations stated in equations under (1)–(4) as
follows.

Lt D ˇ.L/Et ;

Et D ˇ.L/Lt D
1X
kD0

ˇkLt�k

The first of these equations defines the MA(q) process; the
second equation yields white noise expressed in terms of the
random variables of LT , filtered by means of a non-recursive,
causal and infinite filter ˇ. As far as autocovariance functions
are concerned, �X D �E takes a very simple form (see the
definition of white noise in Sect. 2); then, the first equation
of (4) may be simplified to

�L.k/ D
8<
:
�2E

q�jkjP
nD0

ˇnˇnCjkj; ifjkj � q
0; ifjkj > q

(cf. Brockwell and Davis 1991, pp. 78–79).

3.2 Frequency Domain (Right-Hand Side)

The usual approach to a spectral representation of a stochas-
tic process given in the time domain is to define it in the
frequency domain in terms of a complex stochastic process
associated with complex exponential base functions. This
allows one, besides a shorter notation, to also cover the
case where the stochastic process in the time domain is

complex-valued. Whenever the process in the time domain
is real-valued, as it is the case with the applications we
have in mind, this complication is, however, unnecessary. We
therefore restate the main results, given in complex notation
in the literature, in terms of pairs of real stochastic processes
associated with sine and cosine base functions. We find these
to be closer to our natural understanding of the concept
of “frequency” than complex exponentials. Thus, we will
consider as the spectral representations of the processes XT
and LT (defined in Sect. 2), in each case a tuple of two
stochastic processes

�
U .X /W ;V .X /W

�
D .˝;A; P; f�U .X /! ;V .X /!

�
; ! 2 W g/;

�
U .L/W ;V .L/W

�
D .˝;A; P; f�U .L/! ;V .L/!

�
; ! 2 W g/;

which we assume to be
• one-dimensional and real-valued (i.e. ˝ D R

1),
• frequency-continuous (with W D Œ��; ��),
• mean-square right-continuous, and
• processes with orthogonal increments.

The relationships of these processes in the frequency
domain with XT and LT in the time domain will become
evident in Sect. 3.3. The general mathematical operations
within the frequency domain are:
(5) .U .X /W ;V .X /W /() .U .L/W ;V .L/W /:

For any ! 2 W ,

U .L/W .!/ D
Z !

��
Re.H.�//dU .X /W .�/

�Im.H.�//dV .X /W .�/;

V .L/W .!/ D
Z !

��
Im.H.�//dU .X /W .�/

CRe.H.�//dV .X /W .�/;

U .X /W .!/ D
Z !

��
Re.H.�//dU .L/W .!/

�Im.H.�//dV .L/W .�/;

V .X /W .!/ D
Z !

��
Im.H.�//dU .L/W .!/

CRe.H.�//dV .L/W .�/

hold (Theorem 4.10.1 in Brockwell and Davis 1991,
pp. 154–155), where H.!/ D P1

kD0  ke�ik! with
! 2 Œ��; �� is the transfer function of the filter  , and
where H.!/ is the transfer function of the inverse filter
 (this implies that the transfer function is generally
one-dimensional, frequency-continuous and complex-
valued). The relations are described by stochastic
Riemann-Stieltjes-Integral, which will be explained
more precisely in Sect. 3.3.
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(6) .U .X /W ;V .X /W / H) FX ; .U .L/W ;V .L/W / H) FL

FX .!/ D Ef.U .X /W .!//2g C Ef.V .X /W .!//2g;
FL.!/ D Ef.U .L/W .!//2g C Ef.V .L/W .!//2g;

hold for ! 2 W (Priestley 2004, pp. 250–251). These
equations express the relations between the stochastic
processes U .�/W ;V .�/W and the so-called spectral distribution
function F.�/.!/. Hence, this function is real-valued and,
due to F.�/.��/ D 0, F.�/.�/ D �.�/.0/, has similar
properties as the probability distribution function. If the
derivative f.�/.!/ D dF.�/.!/=d! exists, f.�/.!/ is called
spectral density function and is also known as the power
spectrum.

(7) .U .X /W ;V .X /W / H) FL; .U .L/W ;V .L/W / H) FX :
Substitution of (5) into (6) yields expressions for

FL.!/ andFX .!/ in terms ofU .X /W ;V .X /W andU .L/W ;V .L/W .
(8) FX () FL:

FL.!/ D
!Z

��
jH.�/j2dFX .�/;

FX .!/ D
!Z

��
jH.�/j2dFL.�/

(cf. Theorem 4.4.1 in Brockwell and Davis 1991, p.
122). These equations depend on the transfer function
of the corresponding filter and reflect direct relationships
between the spectral density functions of XT and LT .
These integrals are the usual (deterministic) Riemann-
Stieltjes integral (see also Sect. 3.3).

Example: MA(q) Process
As explained in Sect. 3.1, the input process of an MA(q)
process is white noise. The spectral distribution function for

white noise, given by FE.!/ D �2E
2�
.!C�/; ! 2 Œ��; ��, can

be calculated from (12) in Sect. 3.3. The derivative fE of this
function, the spectral density function for white noise, clearly

exists and is fE.!/ D �2E
2�

. To evaluate (5)–(8), we may
substitute the Euler equations into H.!/ D Pq

kD0 ˇke�ik! ,
we may rewrite this as

H.!/ D
qX

kD0
ˇk cos .k!/ � i

qX
kD1

ˇk sin .k!/:

Hence, (8) can be rewritten for an MA(q) process as

FL.!/ D
�2E
2�

!Z
��

 
qX

kD0
ˇk cos .k�/

!2
C
 

qX
kD1

ˇk sin .k�/

!2
d�:

3.3 Transitions Between the Time
and Frequency Domain

In pursuing a spectral analysis of time-series, one establishes
a link between discrete-time covariance-stationary stochas-
tic processes and continuous-frequency mean-square right-
continuous stochastic processes with orthogonal increments
in form of a stochastic integral, which is very similar to
the connection of continuous deterministic functions and the
Fourier transform via the Fourier integral. This link can be
explained in four steps:
(a) First we have to familiarize ourselves with the usual (i.e.

deterministic) form of the Riemann-Stieltjes integral.
The key idea here is that one seeks to integrate some
function f (the integrand) with respect to some other
function g (the integrator) over some domain of inte-
gration; this is achieved by defining a Riemann-Stieltjes
sum with respect to some partition of the domain of
integration and then to determine its “limit” (i.e. the
integral value) as the partition becomes infinitely fine (cf.
Bartle 1976, Chap. 29).

(b) The next step is to replace the deterministic integra-
tor by some continuous-parameter stochastic process
with parameter set T . Then, one defines a stochastic
Riemann-Stieltjes sum with respect to some partition of
the interval T and subsequently determines its “limit in
mean square” as the partition becomes infinitely fine;
thus, the integral value becomes a random variable (cf.
Priestley 2004, pp. 154–155).

(c) Then, one replaces the general integrator process by
a continuous-frequency mean-square right-continuous
stochastic process with orthogonal increments (which
may be viewed as the variables of a “stochastic Fourier
transform”) and the general integrand by some complex
exponential or sine/cosine with discrete-time parameter
t . Then, the time-variable random integral variables con-
stitute a discrete-time stochastic process (cf. Brockwell
and Davis 1991, Sects. 4.6–4.8).

(d) Finally, we have to distinguish two cases: Either some
discrete-time covariance-stationary stochastic process
XT is given and one has to find a corresponding
continuous-frequency mean-square right-continuous
process with orthogonal increments as its spectral
representation, or one defines a process in the frequency
domain and seeks its time-domain representation (cf.
Brockwell and Davis 1991, Sect. 4.9).

In the following, we will treat the two cases described in
(d) by formulating the mathematical operations from the fre-
quency domain into time domain and vice versa. In addition,
the mathematical relationships between the autocovariance
and spectral distribution functions will be explained. We will,
however, not mention certain obvious transition relationships
that can be obtained via simple substitution.
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(9) XT (H .U .X /W ;V .X /W /; LT (H .U .L/W ;V .L/W /:

� Xt
Lt
�
D

�R
��

cos .!t/

(
dU .X /W .!/

dU .L/W .!/

)

C sin .!t/

(
dV .X /W .!/

dV .L/W .!/

)

hold for any t 2 Z and ! 2 W . These equations may
be viewed as the stochastic counterparts to the Fourier
integral (written in terms of sine/cosine base functions)
of some deterministic function; the reader will find
these equations in terms of complex exponentials, for
instance, in Brockwell and Davis (1991, Theorem 4.8.2,
pp. 145–147) or Priestley (2004, pp. 246–252).

(10) XT H) .U .X /W ;V .X /W /; LT H) .U .L/W ;V .L/W /:

(
U .X /W .!/ � U .X /W .	/

V .X /W .!/ � V .X /W .	/

)
m:s: � 1

2�

�
1X

tD�1
Xt

!Z
	

�
cos .t�/d�
sin .t�/d�

�
;

(
U .L/W .!/ � U .L/W .	/

V .L/W .!/ � V .L/W .	/

)
m:s: � 1

2�

�
1X

tD�1
Lt

!Z
	

�
cos .t�/d�
sin .t�/d�

�
;

hold for any t 2Z and !; 	 2W . These equations show
the reversed operation given by (9), so that one obtains
the increments U .:/W .!/� U .:/W .	/, V .:/W .!/ � V .:/W .	/ and

not U .�/
W .!/ or V .�/

W .!/ themselves (Theorem 4.9.1 in

Brockwell and Davis 1991, pp. 151–152). Here,
m:s:�!

denotes convergence in mean square.
(11) �X (H FX ; �L(H FL

�
�X .k/
�L.k/

�
D

�Z
��

cos .k!/

�
dFX .!/
dFL.!/

�
;

hold for k 2 Z; ! 2 W and describe the mathematical
relationships between a given spectral distribution and
the autocovariance function (known as Wold’s theorem,
a discrete version of the Wiener-Khintchine Theorem),
see Brockwell and Davis (1991, Corollary 4.3.1, p. 119)
or Priestley (2004, pp. 222–226). The described Fourier
transform is reduced to a cosine transform due to

the fact that the autocovariance function of any real
stochastic process is even (see Priestley 2004, p. 214).

(12) �X H) FX ; �L H) FL

�
FX .!/
FL.!/

�
D
�
�X .0/
�L.0/

�
! C �
2�

C 1

�

1X
kD1

�
�X .k/ sin k!

k

�L.k/ sin k!
k

�

hold for k 2 Z; ! 2 W and is the inverse operation to
(11); see Brockwell and Davis (1991, Theorem 4.9.1,
pp. 151–152) and Priestley (2004, pp. 222–226).

Example: MA(q) Process
In the previous sections the main results in the time and
frequency domain for an MA(q) process were presented. The
above mentioned equations in this section can be used to
verify these results.

Conclusion and Outlook

In this paper we demonstrated certain aspects of the
Magic Square, which connects a covariance-stationary
stochastic process with its autocovariance function, its
spectral representation, and the corresponding spectral
distribution or density function (if it exists). To keep
the presentation short, we focussed on the example of
a moving average process and its transition from the
time into the frequency domain. The application of more
complex (and more widely used) stochastic processes in
the time domain such as autoregressive moving average
processes would be an obvious extension of this scenario,
which we will deal with in the future. Furthermore, it
would be valuable to explore the principles behind the
transition from the frequency into the time domain by
specifying suitable spectral processes and to find their
time-domain representations.
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