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Abstract The interfacial tension between coexisting phases of a material is an
important parameter in the description of many phenomena such as crystallization,
and even today its accurate measurement remains difficult. We have studied
logarithmic finite-size corrections in the determination of the interfacial tension with
large scale Monte Carlo simulations, and have identified several novel contributions
which not only depend on the ensemble, but also on the type of the applied boundary
conditions. We present results for the Lennard-Jones system and the Ising model, as
well as for hard spheres, which are particularly challenging. In the future, these
findings will contribute to the understanding and determination of highly accurate
interfacial properties with computer simulations, and will be used in the study of
nucleation of colloidal crystals. As a first application, we compare the Laplace
pressure of a crystalline nucleus surrounded by liquid as obtained from simulations
with classical nucleation theory.

1 Introduction

The computation of excess free energy due to interfaces (also called surface tension
or interfacial tension) for condensed matter systems is still an outstanding challenge.
First of all, on a molecular scale, interfaces are diffuse: thus for a vapor-liquid
interface, it is not straightforward to distinguish a local excursion of the interface
position from density fluctuations in the coexisting vapor and liquid phases near
the interface. In addition, interfaces are mesoscopic objects, and may exhibit
fluctuations from the molecular scale to the scale of the simulation box, which
are hard to sample exhaustively. A system containing one or more interfaces is
necessarily anisotropic, directions parallel and perpendicular to the interface(s) are
not equivalent, and boundary conditions matter. Thus, the sampling of the physical
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effects of interfaces that are present in a system requires huge computational efforts
on supercomputers, since the interfacial tension is not a straightforward output
variable of a simulation (unlike quantities such as internal energy, pair correlation
functions, etc.). One typically needs to compute the difference in free energy
between two systems, one system with interfaces, and the other system without.
Finding efficient algorithms for this task has been a longstanding challenge. The
present paper describes work on a recently developed algorithm that has great
potential for this task. As a first step, we focus on the finite size effects, which are
anyway ubiquitous in simulations, but particularly harmful here, since interfaces
exhibit long wavelength fluctuations of an anisotropic character. In the following
section we will first introduce out new computational approach to solve this task,
namely the ensemble switch method.

2 The Ensemble Switch Method

The determination of the interfacial tension between coexisting phases is a non-
trivial task, especially if a crystalline phase occurs. To compute the interfacial
tension using Monte Carlo simulations, we use a method which is based on the
“ensemble switch method”, which has been used successfully to calculate wall
tensions between a phase and various types of walls [4]. Our generalization of this
method allows us to calculate interfacial tensions directly [12].

The idea of our approach is to calculate the free energy difference between two
systems with Hamiltonians H0 and H1 respectively, differing only by the absence or
presence of interfaces (cf. Fig. 1). The first system, characterized by H0, consists of
two separate boxes of length Lz=2 and width L, each filled with one phase, which
are called A and B (A; B D crystal, liquid, vapor, . . . ). The two boxes have periodic
boundary conditions individually and are therefore completely separated. The other

Fig. 1 Visualization of the ensemble switch method. The interfacial tension is computed via a
thermodynamic integration from a reference system with Hamiltonian H0, which does not contain
any interfaces, to a system with Hamiltonian H1, where interfaces are present. The free energy
difference between those systems is then given by the interfacial tension times the total area of
all interfaces. Here, the initial state consists of two separate boxes, each with periodic boundary
conditions in all directions, containing a homogeneous phase, e.g. a crystal, liquid or vapor. Then
the two boxes are combined by changing the periodic boundary conditions continuously from one
state to the other. The intermediate systems have the Hamiltonian H� D � H1 C.1 � �/H0
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system has the Hamiltonian H1 and consists of one large box of length Lz and width
L, where the two phases are in direct coexistence and thereby form two interfaces.
Apart from the boundary conditions, the two systems are identical. One can do a
thermodynamic integration from one system to the other via a reaction coordinate
� 2 Œ0; 1�. At � D 0 or 1, the system is characterized by the Hamiltonian H0 or H1,
respectively, while the intermediate systems are defined by the Hamiltonian

H.�/ D � H1 C.1 � �/H0 : (1)

Except for the cases � D 0; 1, which correspond to real physical systems, the
intermediate systems are unphysical, but nevertheless well-defined in this context.
If such an integration over � is performed, the free energy difference between the
two systems of interest is given by

�F D .FA,bulk C FB,bulk C 2�ABL2/ � .FA,bulk C FB,bulk/ D 2�ABL2 ; (2)

where �AB is the interfacial tension to be measured and L2 the size of one interface.
Because of periodic boundary conditions, one has two interfaces between the
two phases. This approach can be combined with Wang-Landau Sampling [15],
Successive Umbrella Sampling [13, 14] or similar advanced simulation techniques.

For the Monte Carlo simulation, one only needs two kinds of moves. Apart from
canonical moves, i.e. trial moves to translate a single particle, where the energy
difference is calculated via the Hamiltonian H.�/, one needs to implement the
ensemble switch move. Here, the value of � is changed, changing the system’s
internal energy according to U.�/ D �U1 C .1 � �/U0 where U0 and U1 are the
internal energies of the systems with two separate boxes and with one combined
box, respectively, and U.�/ is the internal energy of the system for the current value
�. This move is computationally very cheap if the energies U0 and U1 are kept up to
date during the simulation.

In the simulation, the interval Œ0; 1� is subdivided into a discrete set of �i , so that
the free energy difference can be calculated from �i to �iC1. The simulation can
be parallelized by using successive umbrella sampling and assigning one window
Œ�i ; �iC1� to one core. To obtain more accurate results, it is better not to let � vary
linearly from window to window. Since the intermediate steps are non-physical
anyway, one can choose an arbitrary set of f�ig. We choose functions which vary
slowly near 0 and 1, e.g.

�i D sin2
��

2
x

�
, or (3a)

�i D
(

.2x/a

2
x < 0:5

1 � .2.1�x//a

2
x � 0:5

; (3b)
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Fig. 2 Some choices for the mapping i ! �i . Instead of a linear mapping, one can make smaller
windows where more accuracy is needed. The curve labeled sine shows Eq. (3a) while the curve
labeled power shows Eq. (3b) with a D 6. Both functions have smaller steps near 0 and 1, while
the step size is larger near x D 0:5

where x D i=M and M is the number of � values, which in our case is
usually 1,024. The second function has a parameter a to tune the exact shape of
the function. Higher numbers result in a small slope at the beginning and a steep
slope near � D 0:5. Figure 2 shows examples of the mapping i=M ! �i .

Another means to optimize successive umbrella sampling is to introduce a
bias [13]. To do this, one equilibrates the system and then does a short pre-
production run to estimate the probability ratio within the two states �i and �iC1

of the window. Then one uses this ratio as a fixed bias for the production run. This
bias makes the two states equally likely and therefore reduces the computational
effort.

Figure 3 shows the resulting curves ˇF.�/ for various model systems, namely
hard spheres (for solid-liquid coexistence) and spheres with a Lennard-Jones (LJ)
potential (for vapor-liquid coexistence) in d D 3 dimensions. In order to reduce the
computational effort, the Lennard-Jones potential is truncated at a distance rcut D
2 � 21=6 and shifted [C D 127=16;384] so that the potential is continuous at rcut:

U.r/ D
(

4"
h�

�
r

�12 � �
�
r

�6 C C
i

, r � rcut

0 , r > rcut

: (4)

In this work, the temperature for the Lennard-Jones vapor-liquid coexistence is
kBT=" D 0:78 throughout. For a Lennard-Jones-like potential, the integration curve
(Fig. 3a) is smooth and exhibits a hump, so that the free energy of some intermediate
states it higher than the free energy of the final state. The reason behind this is that
the interface, which forms during the integration, cannot move at first, but when
� is large enough, it can begin to explore the length Lz of the box. This effect is
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Fig. 3 Free energy difference ˇF.�/ versus the integration coordinate � for various box
geometries for a LJ system (left) and a hard sphere system (right). The difference between the
value at � D 1 and � D 0 is the free energy needed to create the interfaces in the systems and is
therefore proportional to the interfacial tension

explained in more detail in Sect. 4. Of course, the difference between � D 0 and
� D 1 is proportional to the interfacial area and therefore scales like L2. If Lz is
changed while L is constant, the free energy difference decreases slightly because
of the translational entropy of the interfaces (cf. Sect. 4).

In the hard sphere case (Fig. 3b), the free energy difference ˇ�F.�/ rises much
more rapidly with � already at small �, and stays almost constant for a wide range of
� unlike in the case of vapor-liquid interfaces in the LJ-type model. But the variation
with L and Lz is qualitatively similar: the free energy difference scales roughly like
L2, and decreases with increasing Lz, due to the interfaces’ translational degrees of
freedom. The dependence on L and Lz will be discussed in more detail in the next
section.

3 Finite Size Scaling of the Interfacial Tension

The interfacial tension � is defined as the amount of free energy per unit area
to create an interface. In the thermodynamic limit, i.e. for infinite volume, the
interfacial tension is well-defined by

ˇ�1 D lim
V !1

ˇ�F

A
; (5)

where �F is the free energy to create an interface with area A. Since in computer
simulations, the boxes one can consider with an acceptable amount of computational
resources are always finite and far away from being large enough to ignore finite-
size effects, it is crucial to analyze the limit in Eq. (5) systematically and extrapolate
to the thermodynamic limit.
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a b

Fig. 4 Sketch of the origin of the logarithmic contributions. Left: translational entropy. If the
interface position is not fixed, it can explore the whole simulation box. This corresponds to a
translational degree of freedom which decreases the cost of free energy to form an interface. Right:
domain breathing. If the interface position is fixed within the simulation box, the interface can still
fluctuate around its average position. One can show that this has an influence on the cost of free
energy, depending on the dimensions of the simulation box. In both cases, the interface exhibits
capillary waves. The interface is not flat but its shape is the sum of capillary wave modes. The
capillary wave spectrum is, however, restricted by the periodic boundary conditions, because only
wavelengths compatible with the box dimensions are possible: the entropy connected to capillary
waves is reduced and hence the free energy cost is increased

In a cuboid d -dimensional simulation box with linear dimension L except for
one direction, in which the box is elongated and has a length Lz � L, an interface
always aligns itself to be perpendicular to the z-direction, in order to minimize its
free energy, and hence has an area Ld�1. The fact that a finite interface can explore
the whole length Lz of the simulation box, as indicated in Fig. 4a, corresponds to a
degree of freedom, which gives rise to an entropy contribution

�S D kB ln

�
Lz

lz

�
; (6)

where lz is a natural length scale so that Lz=lz corresponds to the number of
possible positions of the interface in the simulation box. The free energy changes
according to

�F D �U � T�S D �kBT ln

�
Lz

lz

�
: (7)

Note that the free energy cost of an interface is decreased. This is a well-known
effect in the literature [6, 9]. For example, one can observe that for extremely
elongated boxes (Lz � L), the gain of entropy outweighs the cost of energy so
that the system creates new interfaces spontaneously [16]. It is remarkable that the
effect of translational entropy on the free energy exhibits a logarithmic dependence
on the box length Lz with a prefactor �1 which is independent of the details of the
model under consideration.
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The translational entropy is one of three effects which lead to logarithmic
contributions. They can be described by a general finite-size scaling ansatz of the
form

ˇ�.L; Lz/ D ˇ�1 � x?
ln Lz

Ld�1
C xk

ln L

Ld�1
C const

Ld�1
: (8)

All length scales in the logarithmic terms (like lz in Eq. (7)) can be absorbed by
the constant in the last term, which is the next-to-leading order contribution. The
prefactors x? and xk are determined by the degrees of freedom of the interface(s).
In the following the other two effects and their influence on the prefactors will be
motivated.

If considering rough interfaces, one has to deal with the phenomenon of capillary
waves. A rough interface cannot be described by a flat plane, but it is a rather fuzzy
object because of microscopic fluctuations. From a coarse-grained perspective,
the shape of the interface can be decomposed into modes. The frequency (or
wavelength) spectrum of an infinite interface is continuous. In a finite simulation
box, however, the modes must be compatible with the periodic boundary conditions.
This constraint leads to a discretization of the spectrum and hence to a loss of
entropy [3] (lcw is a short wavelength cutoff to the capillary wave spectrum)

�S D 3 � d

2
ln

�
L

lcw

�
; (9)

which depends on L only and therefore contributes to the prefactor xk in Eq. (8).
Note that the prefactor depends on the dimensionality and vanishes1 in d D 3.

The third and final effect has been discovered recently [12] and plays a very
prominent role because it influences both x? and xk. This effect is called domain
breathing and occurs in canonical ensembles. If the particle number is fixed, the
average volume fractions of the coexisting phases are fixed by their coexistence
densities

�V D h�1V1i C h�2V2i : (10)

For simplicity, we consider the case hV1i D hV2i, i.e. the particle number is N D
.h�1i C h�2i/V=2. It is important to note that although the average position of the
interface between the phases is located in the center of the box, the actual interfacial
position can fluctuate around its mean position by spontaneous fluctuations in the

1Instead of a logarithmic dependence like in Eq. (9), a very weak L-dependence of the form �S /
ln.ln.L// is expected, which is beyond the scope of current computer simulations. Therefore, we
use Eq. (9) also for d D 3.
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Table 1 The universal prefactors x? and xk for various choices of boundary conditions (periodic
or antiperiodic) and the ensemble (canonical or grandcanonical). Note that x? is independent of
the dimensionality of the interface while xk depends on d

d BC Ensemble x? xk

2 Antiperiodic Grandcanonical 1 1=2

3 Antiperiodic Grandcanonical 1 0

2 Antiperiodic Canonical 1=2 1

3 Antiperiodic Canonical 1=2 1

2 Periodic Canonical 3=4 3=4

3 Periodic Canonical 3=4 1=2

bulk of the two phases, as indicateed in Fig. 4b. A straightforward calculation [12]
shows that the mean squared displacement is non-zero and corresponds to an
entropy contribution

�S D �1

2
ln

�
Lz

ldb

�
C d � 1

2
ln

�
L

ldb

�
: (11)

Apparently, this effect contributes to both prefactors x? and xk. Again, the minimum
length scale ldb on which these fluctuations contribute to the free energy is not
discussed further here.

The exact values of the prefactors x? and xk in Eq. (8) depend on the dimension-
ality d and the choice of boundary conditions and the ensemble (cf. Table 1). For
a given choice, the prefactors are universal in the sense that they do not depend on
details of the system like the pair potential between the particles or whether it is a
Ising-like or an off-lattice model. In contrast, the length scales lz, lcw and ldb, which
contribute to the term const =Ld�1 in Eq. (8) surely will depend on such details.

4 Results

Here, we show results obtained from the ensemble switch method when applied
to various model systems. The easiest model system to study phase coexistence is
the Ising model, which can be used to study the coexistence of a liquid (spin up
rich phase) and a vaporous phase (spin down rich phase). An advantage of the Ising
model is that one can apply different combinations of boundary conditions (periodic
BC or antiperiodic BC) and ensembles (canonical (c) or grandcanonical (gc)). The
two-dimensional variant is also attractive because the interfacial tension is exactly
known [10]. Hence, the Ising model is a very good choice to test the finite-size
scaling ansatz Eq. (8).
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Fig. 5 Finite-size scaling of the interfacial tension �.L; Lz/ for various models. (a) and (b) show
data for a 3d Ising model at kBT=J D 3:0 for three combinations of boundary conditions (periodic
(PBC) and antiperiodic (APBC)) and ensembles (canonical (c) and grandcanonical (gc)). (c) shows
data for a Lennard-Jones liquid-vapor coexistence and (d) shows results for hard spheres with
fcc110 orientation in the crystal. (a), (c) and (d) show data at fixed L, so that according to Eq. (8),
the data should be straight lines with slope �x? if plotted against L�2 ln.Lz/. (b) shows data at
fixed Lz where the lines are one-parameter fits. (b) is taken from [12]

We focus on the 3d Ising model first. To test Eq. (8), it is useful to test the
dependence on L and Lz independently. If L is fixed, and the data for various
Lz is plotted against L�2 ln.Lz/, the scaling ansatz suggests that the data can be
represented by straight lines with slope �x?. Figure 5a confirms that the above
logarithmic corrections are indeed present. The slopes of the curves agree with
the predicted values of x? collected in Table 1 for all combinations of BC and
ensembles. Note that the slopes do not depend on L at all.

The L-dependence is more complicated, for the next-to-leading order amplitude
in Eq. (8) is unknown and the L-dependence of ˇ�.L; Lz/ is non-linear. Hence, one
has to do a fit where the amplitude is an unknown parameter. Figure 5b shows data
at constant Lz for the 3d Ising model. The fit curves describe the data very well for
xk from Table 1. Alternatively, one can take xk as a second unknown parameter, but
this yields results compatible with the expected values.
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The next step is to test the method with off-lattice systems. To study the
interfacial tension for a vapor-liquid coexistence, we use a model with point
particles, where the pair potential U.r/ is the truncated and shifted Lennard-Jones
model (Eq. (4)). The ensemble switch method is also applicable for hard sphere
systems, where coexistence of crystalline and fluid phases can be studied. Here,
the interfacial tension is especially hard to compute. For off-lattice models, like
simulation of colloids with Lennard-Jones or hard sphere potentials, there is no
straightforward method to implement antiperiodic boundary conditions. Hence, it is
of great benefit to analyze the Ising model carefully in order to gain insight for the
case where one simulates a box with periodic boundary conditions in a canonical
ensemble.

As was claimed in Sect. 3, the prefactors x? and xk do not depend on the
model. Figure 5c, d show that the data is compatible with the slope �x? if plotted
against A�1 ln.Lz/, A being the box cross section, for the Lennard-Jones particles
for hard spheres. The quality of the data in Fig. 5c, d is not as good as for the
Ising model. Of course, the Ising model is a simpler model, where one can easily
simulate comparatively large systems with feasible effort. Furthermore, for the Ising
model one can use moves where arbitrarily chosen pairs of spins of opposite signs
are exchanged instead of local canonical moves. Conducting the ensemble switch
method for off-lattice models takes a significantly larger amount of computational
resources until sufficient convergence is achieved. Nevertheless, the data suggests
that the finite-size scaling ansatz Eq. (8) remains valid for off-lattice models. The
next step is to test the L-dependence for fixed Lz. If the full scaling ansatz is
validated, this will enable us to make much better predictions of the interfacial
tension �1, which is an important parameter for classical nucleation theory and
other fields of research.

5 Future Applications

One potential application of the described method is to test classical nucleation
theory (CNT) [7], since it is not fully understood on a quantitative level. In CNT, the
barrier of homogeneous nucleation is given by two contributions, the free energy
gain of creating a droplet and the free energy loss due to surface tension of the
newly created interface. The underlying assumption is, that macroscopic properties
of the system can be applied to describe microscopic droplets. We are going to study
the coexistence of a crystalline nucleus in a liquid environment. Hence, we require
a model, which shows phase separation into a liquid-like and a solid-like phase.
Therefore, we use a soft extension of the well-known effective Asakura-Oosawa
(AO) model [1], which has the great advantage that one can integrate the degrees of
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freedom of the polymers out and replace them by an effective attractive interaction
between the colloids, if the diameter ratio q D �p=�c of polymers and colloids is
smaller than 0:154 [5]. It has the following form

U.r/ D

8
<̂
:̂

1 ; r � �c

�	r
p

�
1Cq

q

�3 h
1 � 3r

2�c.1Cq/
C r3

2�3
c .1Cq/3

i
; �c < r < �c C �p

0 ; r � �c C �p

(12)

where 	r
p is the polymer reservoir packing fraction. To compute the pressure using

a virial expression, the repulsive part of the potential needs to be continuous, which
is why we use the following soft repulsive part instead of the hard sphere repulsion
in Eq. (12)

U.r/ D 4

��
b�

r�e�

�12 C �
b�

r�e�

�6 �
�

b
1Cq�e

�12 �
�

b
1Cq�e

�6
	

; r � �c (13)

where b and e control the strength and the zero crossing point of the repulsive
part,2 respectively. This potential is a continuous fit to the effective Asakura-Oosawa
model [5].

Our aim is to measure the pressure pf in the liquid surrounding a crystalline
nucleus. A typical system configuration containing a nucleus is shown in Fig. 6.
The value of the pressure is not the same as in pure liquid. It is enhanced due to the
existence of a curved interface of the nucleus, the so-called Laplace pressure. The

Fig. 6 Typical snapshot of a crystalline nucleus in liquid. The simulation volume is 21:484318 �
21:484318�21:484318 with periodic boundary conditions and contains 10;000 particles, resulting
in a packing fraction of 	c D 0:528. For distinguishing the different phases, we use averaged
Steinhardt bond order parameters, as defined in Ref. [8]. Blue colored particles are liquid-like, red
ones are solid-like and the interface is shown in green

2In our case, the values are chosen in such a way that U.r D �c/ D 1, corresponding to b D 0:01

and e D 0:988571.
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Fig. 7 Pressure in the fluid
phase of a system which
consists of a crystalline
nucleus surrounded by liquid.
The three sets of data points
correspond to systems with
(from top to bottom)
N D 6;000, 8;000 and
10;000 particles. The curves
are theoretical estimates from
Eq. (16) multiplied by a
constant c D 1:26

Laplace pressure can be calculated [2] if one assumes a spherical nucleus of radius
R� and an isotropic interfacial tension � :

pc � pf D 2�=R� ; (14)

pc D pcoex C .pf � pcoex/vf =vc ; (15)

where vf =vc is the volume ratio of the surrounding fluid and the nucleus, pf is the
pressure of the fluid and pcoex is the coexistence pressure, which can be determined
independently. If we combine the two Eqs. (14) and (15), we also obtain

pf � pcoex D 2�

R�
	f

	c � 	f

(16)

with 	f;c being the respective packing fraction of the fluid or the crystal. To identify
the crystal and determine the critical radius R� within the simulation box (see
Fig. 6), we apply averaged Steinhardt order parameters [8].

In Fig. 7, we compare the pressure in the fluid phase with Eq. (16). For � , we use
an estimate for the interfacial stiffness Q� [17]. If the result on the right-hand side is
multiplied by c D 1:26, the two curves match. This prefactor can either be attributed
to the difference between � and Q� or deviations from the spherical shape of the
nucleus [11] or both. Therefore, the determination of � is crucial for the comparison
between classical nucleation theory and simulation results. The “ensemble switch”
method can be easily applied to the effective Asakura-Oosawa model and the next
step will be to calculate the interfacial tension for this model.
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6 Conclusion

In this report, we have introduced an extension of the ensemble switch method
which allows us to determine interfacial tensions in various combinations of
ensembles and boundary conditions. This method was applied to Ising models as
well as continuous models with Lennard-Jones or hard sphere interactions to study
logarithmic finite-size corrections including a previously unknown correction due to
“domain breathing”. As a first practical application, we have outlined a procedure
to compute the Laplace pressure of a crystalline nucleus surrounded by liquid to
compare results with classical nucleation theory.
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