
Chapter 15
A Heterogeneous Robotic Network
for Distributed Ambient Assisted Living

Antonio Petitti, Donato Di Paola, Annalisa Milella, Pier Luigi Mazzeo,
Paolo Spagnolo, Grazia Cicirelli and Giovanni Attolico

Abstract Networks of robots and sensors have been recognized to be a powerful
tool for developing fully automated systems that monitor environments and daily
life activities in Ambient Assisted Living applications. Nevertheless, issues related
to active control of heterogeneous sensors for high-level scene interpretation andmis-
sion execution are still open. This work presents the authors’ ongoing research about
the design and implementation of a heterogeneous robotic network that includes
static cameras and multi-sensor mobile robots for distributed target tracking. The
system is intended to provide robot-assisted monitoring and surveillance of large
environments. The proposed solution exploits a distributed control architecture to
enable the network to autonomously accomplish general-purpose and complex mon-
itoring tasks. The nodes can both act with some degree of autonomy and cooperate
with each other. The chapter describes the concepts underlying the designed system
architecture and presents the results of simulations performed in a realistic scenario
to validate the distributed target tracking algorithm. Preliminary experimental results
obtained in a real context are also presented showing the feasibility of the proposed
system.
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15.1 Introduction

The development of environment and activity monitoring systems, based on
heterogeneous networks of sensors, constitutes an active investigation field, with
many potential applications, including safety, security, ambient intelligence and
health-care assistance. In real scenarios, such as buildings, airports, road and rail
networks, or sport grounds, a single sensor is not able to monitor the whole environ-
ment or to track a moving object or a person for a long period of time, due to field
of view limitations. Furthermore, integrating information from multiple sensors is
a basic requirement for achieving an adequate level of robustness and scalability.
Typical solutions include the use of fixed camera networks that are able to cooper-
ate to monitor wide areas and track objects beyond the capabilities of each single
sensor [21]. However, fixed cameras may pose some critical limitations in large
environments and wherever infrastructure preparation is expensive or unfeasible. As
an alternative, mobile and multi-functional robots have been proposed as means to
reduce the environment structuring and the number of devices needed to cover a
given area [8]. The use of robots significantly expands the potential of monitoring
systems, which can evolve from the traditional passive role, in which the system can
only detect events and trigger alarms, to an active one, in which a robot can be used
to interact with the environment, with humans or with other robots for more complex
cooperative actions [17].

In this chapter, a Distributed Ambient Assisted Living (DAAL) system is
proposed. It is based on a distributed architecture exploiting fixed and mobile het-
erogeneous sensors to intelligently monitor large environments and track human
activities. The proposed cooperative monitoring system integrates fixed calibrated
cameras with a team of autonomous mobile robots equipped with different sen-
sors. A conceptual representation of the system is shown in Fig. 15.1. The system
is being developed as part of the project BAITAH (Italian National Research Pro-
gram PON-BAITAH—“Methodology and Instruments of Building Automation and
Information Technology for pervasive models of treatment and Aids for domestic
Healthcare”), aimed at identifying and developing ICT-based Ambient Intelligence
technologies to support the independent living of fragile people in their domestic
environments. In this project, mobile sensors are intended to provide two main con-
tributions: they can supply information about the observed human target in areas that
are out of the field of view of fixed cameras (thus reducing complexity and costs of
the required infrastructure), and they can move close to the target to increase preci-
sion and reliability of scene analysis whenever fixed sensors are unable to provide
robust estimates. In designing such a system, a major challenge is the integration
of high-level decision-making issues with primitive simple behaviors for different
operative scenarios. This aim requires a modular and reconfigurable system, capable
of simultaneously addressing low-level reactive control, general purpose and moni-
toring tasks and high-level control algorithms in a distributed fashion. This chapter
presents an overviewof both the systemarchitecture and the implemented algorithms.
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Fig. 15.1 Conceptual representation of the proposed ambient assisted living system

The remainder of the chapter is structured as follows. Section15.2 presents related
work. In Sect. 15.3 the distributed algorithmic framework for the ambient assisted
living system is presented. In Sect. 15.4 details about the implementation of the
system in a real-world scenario are provided. Results of simulation tests are shown
in Sect. 15.5, while preliminary real-world experiments using the proposed system
are described in Sect. 15.6. Finally, conclusions are drawn in Sect. 15.7.

15.2 Related Work

In the last few years, many researchers have focused their attention on Ambient
Assisted Living (AAL) technologies [10, 17]. Among the several research chal-
lenges in the AAL domain, one of the main issue regards the monitoring of people
activities [9]. It is easy to note that this scenario is based on an accurate and robust
tracking of people in the environment. This can be achieved exploiting the most
recent techniques in multi-target tracking using distributed architectures. Several
papers have addressed the problem of multi-target tracking by means of distrib-
uted camera networks. In [20], for example, the Kalman–Consensus filter [14] is
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used in order to fuse the information coming from each camera of the network
in a decentralized way. The presence of a consensus step significantly increases the
system performance as shown by experimental results. In [19] an extension of [20] to
wide-area scene understanding is presented. To optimize the dynamic scene analysis,
a control framework for a PTZ camera network is introduced. In [21], a survey of
distributed multi-camera systems for target tracking on planar surfaces is provided.
In [22], a review of distributed algorithms for several computer vision applications
is presented, emphasizing the advantages of distributed approaches with respect to
centralized ones. As a basic principle, in distributed estimation, each node of the net-
work locally estimates the state of a dynamical process using information provided
by its local sensor and by a subset of nodes of the network, called neighbors [24]. In
the literature, several approaches relative to distributed estimation in sensor networks
can be found. Their particular characteristic is the presence of an agreement step in
order to minimize the discrepancy among sensory nodes [2, 3, 7].

While the use of multiple sensors increases reliability and effectiveness in large
environments, it poses problems related to the need of infrastructures that can be
heavy and expensive. These infrastructures can be reduced by exploiting the flexi-
bility of moving sensors mounted on semi or fully autonomous vehicles that can be
employed as individual agents or organized in teams to provide intelligent distributed
monitoring of broad areas. Mobile sensors may significantly expand the potential of
AAL technologies beyond the traditional passive role of event detection and alarm
triggering from a static point of view. Mobile robots can actively interact with the
environment, with humans or with other robots to accomplish more complex cooper-
ative actions [1, 23]. Nevertheless, mobile surveillance devices based on autonomous
vehicles are still in their initial stage of development and many issues are currently
under investigation [5, 6, 12].

15.3 Distributed Ambient Assisted Living

In this chapter a Distributed Ambient Assisted Living (DAAL) framework is
introduced. The proposed DAAL system is a multi-agent1 heterogeneous network
for distributed monitoring of people in an indoor environment. It is composed by
a network of fixed cameras, to execute surveillance tasks in areas of relevant inter-
est, and mobile robots, that are able to perform local and specific monitoring tasks
to completely cover the environment. Integration among the various agents, fixed
and mobile, is performed via a distributed control architecture which uses a wire-
less network as a communication channel. In this section, first, the target detection
algorithms, used by either the fixed or the mobile agents, are described. Then, the
distributed target tracking algorithm is presented.

1 Hereinafter, the nodes of the network will be also named as agents in order to emphasize their
detection, communication and computation capabilities.
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15.3.1 Target Detection Using Fixed Cameras

Fixed cameras of the DAAL system are distributed in different locations of the
environment to optimize the target detection task. Each fixed node is equipped with
the following functionalities [9].

Motion Detection. The binary shape of moving objects (e.g., people) is extracted.
Specifically, a statistical background model is generated by evaluating mean value
and standard deviation for each point. Then, foreground moving regions are detected
by estimating, for each pixel, the similarity between the current frame and the back-
ground model.

Shadow Removal. This task is necessary because foreground pixels may corre-
spond not only to real moving objects, but also to their shadows. The shadow pixels
need to be removed, as they alter the real shape of objects and decrease the precision
of their localization. A connectivity analysis is, finally, performed to aggregate pixels
belonging to the same moving object.

Object Tracking. The detectedmoving objects, after shadow removal, are tracked
over time. Statistical (tracked object life time) and spatial information are extracted
for each of them. This task enables the association of each moving region to the
corresponding target object, based on its appearance. Furthermore, it reduces false
detections due to noise or light reflections.

3D Moving Object Localization. The intersection of the central axis of the rec-
tangular bounding box containing the moving region with its lower side provides the
estimate of object position on the ground plane. The corresponding 3D position is
evaluated using a pre-calibrated homographic matrix between the image plane and
the 3D ground plane.

15.3.2 Target Detection Using the Mobile Robots

Robots used in the DAAL system are equipped with an RGB-D sensor, namely the
MicrosoftKinect camera, to detect people in the environment [15]. TheKinect sensor,
through the 3D data representation, allows to robustly track the positions of a group
of people in the environment and to detect their movements [18]. Furthermore, in
the case the Kinect is mounted on a robot, the presence of a relative motion between
the camera and the global reference system should be taken into account in order to
obtain better results.

In the DAAL system people are identified in the scene captured by the Kinect
camera onboard the robot and then a single person of interest is selected. Once the
robot is focused on a person, a tracking algorithm keeps track of the position of that
person and a control algorithm allows the robot to move toward the person in order
to improve the tracking performance. Thus, each mobile robot is equipped with the
following functionalities.

Person Tracking. Through an algorithm for segmentation and recognition of the
human skeleton, that takes advantage of both the RGB color information and the
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depth information of the image [13], the robot detects all the people in the scene.
Then a person of interest is selected, for instance the person nearest to the robot
or the one who made a given gesture. To improve the estimation of the position of
each single person of interest and to improve the performance in realistic situations
affected by noise, the tracking algorithm uses a Kalman filter that improves the
estimation of the position. Finally, the correct position, obtained from the output of
the Kalman filter, can be used as the input for the motion controller.

Person Following. The person follower controller is basically a motion control
algorithm which requires two different inputs: the updated position of the person
of interest, given by the person tracker algorithm, and the information about static
and dynamic obstacles. In particular, the algorithm sets a trajectory planner with
the position of the person as the point of arrival and at the same time the robot is
aware of the obstacles in the environment obtained by the use of predefined map. In
this way, the person follower controls the motion of the robot, exploiting the robust
performance of a map-based navigation system, following the position of a person
of interest.

15.3.3 Distributed Target Tracking Algorithm

At the final stage of the DAAL system all the information coming for the various
sensors are fused using a distributed framework. To this end, the DAAL system
exploits the fully distributed Consensus-based Distributed Target Tracking (CDTT)
algorithm [16], to enhance the performance of the people tracking in a heterogeneous
sensor network. The CDTT consists of a two-phase iterative procedure: an estimation
step and a consensus step. In the estimation phase, each node of the network gives
an estimate of the position of the target. If the node can directly take a measurement,
then it will estimate the target position by means of a Kalman filter. Otherwise, the
node will take a prediction of the target motion according to the embedded linear
motion model of the Kalman filter. In the consensus phase, all the estimates in the
network converge to a common value via a max-consensus protocol, performed on
a measurement accuracy metrics called perception confidence value. This approach
was proved to provide good performance in heterogeneous sensor networks com-
posed by nodes with limited sensing capabilities [7]. The CDTT approach is totally
distributed, as it does not involve any form of centralization. Moreover, it guarantees
the agreement of the network nodes on the target position. The reader is referred
to [16] for further information.

15.4 System Implementation

TheDAALsystemwas implemented in theRobotics Laboratory ofCNR ISSIA,Bari,
Italy. In this section, details about the implementation of the system are provided.

In the DAAL network, each agent corresponds to an independent software
component that is executed on the robots embedded PC for the mobile agents
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and on a workstation for the fixed cameras. This architectural solution provides
several advantages. First, the system is totally plug-&-play, i.e., to increase the num-
ber of sensors it is sufficient to add a new camera (with its IP address) to the network,
so that no further effort to program new cameras is required. Softwaremaintenance is
easy and immediate, avoiding the broadcast updating of each camera software.More-
over, algorithms for motion detection and shadow removal, as the ones explained in
the previous section, are based on the evaluation of pixel correlation that requires a
very fast processing unit to run in real time and that cannot be done efficiently with
embedded cameras. The team of agents forms a peer-to-peer network. The network
nodes differ only for their own sensor capabilities. In particular, every agent is able
to detect an event (e.g., to perceive moving people or objects) and to localize an
event (e.g., tracking the position of a person) in the environment using one or more
sensor devices, whereas, in addition, mobile agents are able to execute tasks, through
their actuators. The detailed description of fixed and mobile nodes are given in the
following.

15.4.1 Setup of Fixed Nodes

The fixed agent software runs on a workstation linked to each camera by the net-
work infrastructure. The schematic representation of interconnections among nodes
composing the Fixed Node module is shown in Fig. 15.2. For each connected camera

ROS

Fig. 15.2 Schematic representation of interconnections among nodes composing the Fixed Node
module
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Fig. 15.3 The measurement error model for one of the cameras: f (x) = a ebx . The error is limited
when the sensor-target distance is under 7–8m, and, above that, the error increases. This suggests
that the camera should be deployed ensuring a maximum distance to the object under 7–8m

an autonomous thread integrated in the Robot Operating System (ROS)2 framework
is implemented, to execute somewell-definedordered tasks as explained inSect. 15.3.

Moreover in a real-world implementation, the measurement error of cameras
should be taken into account. The measurement error of the cameras depends on the
distance of the target relative to the sensor. In order to characterize the measurement
error, an error model is fitted from a series of measurement errors obtained by the
comparison of the position measured by the camera and the real position of the target
(the real position of the target is retrieved bymeans of a theodolite). Figure15.3 shows
the model fitted as an exponential function for one of the cameras:

f (x) = a ebx , (15.1)

where a = 0.009269±0.0074 [meters] and b = 0.3258±0.0696 1/[meters] are the
value of the coefficients (with 95% confidence bounds) defining the actual function
f (x).

15.4.2 Setup of Mobile Nodes

The mobile nodes of the network consist of mobile robots. Each mobile agent is
equipped with sensory devices to interact with the environment. Every node is able
to localize itself in the environment and to safely navigate avoiding static and dynamic
obstacles. It is also able to identify and track thepositionof a target in the environment.
ROS has been adopted as a framework for communication management, sensor
acquisition and actuator control on the mobile robots. It is an open source framework
that presents several packages ready to run in order to control all the devices of
a robotic platform. ROS provides a Navigation Stack, which enables the robot to

2 http://www.ros.org.

http://www.ros.org
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navigate in a known environment avoiding obstacles, as well as sensor management
packages [11]. The most important characteristic of ROS is its modular structure
that makes it possible to modify or substitute some modules. In order to develop a
customized monitoring architecture, new functionalities have been developed and
added to the native ROS framework. Specifically, the structure of the navigation
stack of ROS has been modified in order to add surveillance capabilities to the
mobile nodes. A coordinate transformation from local to global coordinates was also
introduced for the people tracking task.

In Fig. 15.4 a schematic representation of the mobile node module is reported.
All ROS nodes run on the on-board laptop, except for sicktoolbox_wrapper and
p2os_driver, which runs on the embedded pc of the robot. As can be seen, the
Navigation Stack of ROS produces robot position estimates, as well as information
about obstacles on the basis of laser measurements. The ROS node motion_control,
implemented by our research team, sends velocity references to p2os_driver ROS
node, responsible of the robot guidance. The people_tracker node estimates the
relative position of people with respect to the robot, on the basis of the skeleton
information received from openni_tracker. The relative coordinates of detected peo-
ple, transformed in the world reference frame, provide input data to the distributed
target tracking algorithm.

ROS

Fig. 15.4 Schematic representation of interconnections among nodes composing the Mobile Node
module
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15.5 Simulation Results

This section deals with the evaluation of the DAAL system through a numerical
simulations’ campaign. The evaluation is focused on the tracking task performance.
The setup and results of such simulations are described below.

15.5.1 Simulation Setup

The DAAL system performance is tested in a realistic scenario with a setup similar
to the real one. A target moving inside a given environment, according to various
random trajectories, is simulated for the target tracking task. The analysis is focused
on the evaluation of the presence of mobile nodes in the network, specifically, the
simulations investigate if the presence of mobile nodes increases the tracking perfor-
mance according to a given evaluation index. A network composed by three cameras,
named as C1, C2, C3, and one robot, R1, is assumed (as in the real DAAL system).
Heterogeneity in the sensor network is due to the different sensing ranges of sen-
sors, set on the basis of real devices’ characteristics. Specifically, the sensing area
is defined as a circular sector area placed at the front of the sensor with radius of
rC1 = 10m for camera C1, rC2 = 8.5m for camera C2, rC3 = 7m for camera C3,
and rR1 = 5m for robot R1. The sensors are modeled as range-bearing, with mea-
surement error depending on distance and bearing of the target relative to the sensor.
In order to assess the system performance, attention is focused on the tracking accu-
racy, by evaluating the discrepancy between estimated and actual target trajectory.
Specifically, as a metric for target tracking accuracy estimation, the mean square
error (in norm) is computed as:

MSE = 1

k f

k f∑

k=1

‖ξ i (k) − ξ(k)‖2 (15.2)

where k is the simulated discrete time, k f is the duration (in time samples) of the
target trajectory, ξ(k) is the actual target position at time k, and ξ i (k) is the global
target position estimates performed by the i th sensor of the network. It should be
noted that the estimated target position is the same for any node of the network, since
after convergence of the consensus step of the CDTT algorithm all the network nodes
share the same information about the target location.

15.5.2 Numerical Results

The tracking performance of the DAAL system is analyzed using the simulation
setup described in Sect. 15.5.1. A campaign of Monte Carlo simulations is run in
two different cases. In the first case, the mobile robot is kept at a fixed position, thus
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Fig. 15.5 DAAL system
evaluation: simulation of a
random generated target
trajectory for a network of
3 fixed nodes (in black) and
1 mobile node (in green). The
red line indicates the actual
trajectory of the target, while
the blue dots are the estimated
positions of the target
returned by the CDTT
algorithm. a The mobile robot
surveys an assigned area of
interest of the environment.
b As soon as the target enters
this area, the mobile node
approaches it to perform a
more accurate measure

acting as a fourth static node. In the second case, the mobile robot can move in the
surroundings of its initial location.

A set of 250 random target trajectories is run both for the case of static nodes
only and for the scenario including the mobile node. The tracking simulation for one
of the trajectories is shown in Fig. 15.5. It refers to the simulation performed using
a mobile node (green arrow) in addition to the static ones (black arrows). A solid
red line denotes the actual target trajectory, while the estimated positions at each
time step k are marked by blue circles. Initially (Fig. 15.5a), the target is sensed by
the static node C2, while the other nodes are aware of the target position thanks to
the consensus convergence. As soon as the target enters the area surveyed by the
mobile node (Fig. 15.5b), the latter approaches the target to perform a more accurate
measure.

The numerical results of the simulation campaign are reported in Table15.1,
showing amean square error of 0.2339m and 0.1523m, for the static network and for
the network including the mobile node, respectively. As can be noted, the presence
of a mobile node increases the tracking accuracy. This is mainly due to two reasons:
first, the mobile node can approach the target, so that it can measure the position
of the target with higher accuracy according to the adopted range-bearing sensor
model. In addition, the mobile node can track the target also in areas hidden to the
fixed nodes, thus increasing the overall coverage of the network.
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Table 15.1 Average MSE and variance in the tracking of 250 repeated random target trajectories:
comparison between results with and without the presence of a mobile node

Method Average MSE (m) Variance (m2)

w/ Mobile Agent 0.15 0.06

w/o Mobile Agent 0.23 0.02

15.6 Experimental Results

In this section, the DAAL system is validated through experimental tests conducted
in a real-world scenario. The evaluation is focused on the distributed target tracking
task. First, we describe the environment setup, then the system and the results of the
experimental tests are presented.

15.6.1 Environment Setup

The environment setup used for the experimentation of the system is shown in
Fig. 15.6. The picture shows the map of a corridor of the ISSIA-CNR building,
as it is built by the gmapping node available in ROS using the laser data acquired by
a mobile robot during a complete exploration of the environment. In this experimen-
tation, three fixed cameras and one mobile robot have been employed. The positions
of the fixed cameras (C1, C2, C3) and of the mobile robot (R1) are overlaid on the
map. The mobile agent is able to localize itself in the environment and, using its
on-board sensors, it is able to carry out surveillance tasks, such as people detection
and tracking. Cameras are calibrated, therefore events detected in the image plane
can be located in the real world and their positions can be communicated to the
mobile agent. The mobile robot can explore areas that are unobservable by the fixed
cameras and improve the accuracy in detecting events by reaching proper positions in

Fig. 15.6 Map of one
corridor of the office with
overlaid the position of three
static cameras (red circles)
and one mobile agent (green
triangle)
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the environment. Hence, the proposed system could be useful to reduce the number
of fixed sensors or to monitor areas (e.g., cluttered environments) in which the field
of view of fixed cameras can be temporarily and dynamically reduced.

15.6.2 System Setup

The fixed nodes are three wireless IP cameras (C1, C2, C3) with different spatial
resolution, located in different points of the environment (see map in Fig. 15.6).
C2 and C3 are Axis IP color cameras with a 640×480 pixel resolution and an acqui-
sition frame rate of 10 frames/s. C1 is a Mpixel Axis IP color camera with 1,280 ×
1,024 pixel resolution and full frame acquisition rate of 8 frames/s (see Fig.15.7,
on the right). A calibration step to estimate intrinsic and extrinsic parameters was

Fig. 15.7 The nodes of the network. On the left, the mobile agent PeopleBot. The robot is equipped
with a laser range-finder SICK LMS200 and a Kinect. On the right, two different AXIS cameras:
on the top, a Mpixel Axis IP color camera with 1,280 × 1,024. On the bottom, an Axis IP color
cameras with a 640 × 480 pixel camera
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(a)

(b)

Fig. 15.8 Trajectory 1. The measurement of the position of the target carried out by each of the
sensor of the network (a) and the CDTT trajectory recovered on line and in distributed fashion by
the network (b)

performed for each camera using the Matlab Calibration Toolbox,3 so that camera
coordinates can be mapped to the global world reference frame provided by the map
built by the mobile robots.

The mobile agent (denoted as R1 in Fig. 15.6) consists of a PeopleBot mobile
robot platform equipped with a laser range-finder, a Kinect, and an on-board laptop

3 The toolbox is available on http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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(a)

(b)

Fig. 15.9 Trajectory 2. The measurement of the position of the target carried out by each of the
sensor of the network (a) and the CDTT trajectory recovered on line and in distributed fashion by
the network (b)

(see Fig.15.7, on the left). The SICK laser is connected with the embedded robot
control unit. The Kinect camera and the PeopleBot control unit are connected with
the laptop, via a USB cable and a crossover cable, respectively. The laser range-finder
is used to build a map of the environment and to localize the vehicle. The Kinect
is used for both navigation (e.g., obstacle avoidance) and high-level tasks such as
people detection and tracking.



336 A. Petitti et al.

The DAAL system performance is tested in a real time application in which a
network of three cameras and a robot is used to monitor a large environment and
track the position occupied by a given target. The target to be tracked is a person
moving in the environment following two given trajectories. The robot is equipped
with an on board Kinect camera whose field of view is 58◦ horizontal, 45◦ vertical,
70◦ diagonal, and the operational range is between 0.8m (2.6 ft) and 3.5m (11 ft) [4].

15.6.3 Results of Experiments

In the experimentation, the target follows two different trajectories in the environ-
ment, as shown in Figs. 15.8 and 15.9. Specifically, in Figs. 15.8a and15.9a, the target
trajectory is denoted by a red line, while the target positions as estimated by the three
cameras and the robot are denoted by different markers. In Figs. 15.8b and15.9b the
target trajectory (red line) is compared with the trajectory (blue dots) as estimated
by the CDTT algorithm. It should be noted that the estimated target position is the
same for any node of the network, since after convergence of the consensus step
of the CDTT algorithm all the network nodes share the same information about the
target location. In order to quantify the tracking performance, we suppose that the
target is moving with a constant velocity and we calculate the MSE, as done for the
simulated case. Results are collected in Table15.2, showing a mean square error of
1.15 and 0.75m, for Trajectory 1 and Trajectory 2, respectively. Figure15.10 shows
two frames, acquired from the Kinect camera on the robot during the tracking of the
Trajectory 1 depicted in Fig. 15.8.

Table 15.2 Average MSE and variance in the tracking of a person moving in the laboratory by
means of a network of 4 nodes, 3 fixed and 1 mobile

Case Average MSE (m) Variance (m2)

Trajectory 1 (Fig. 15.8) 1.15 0.86

Trajectory 2 (Fig. 15.9) 0.75 0.16

Fig. 15.10 Two different instants of the tracking of Trajectory 1, acquired from the Kinect sensor
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15.7 Conclusions

In this chapter, a novel activity monitoring architecture for Ambient Assisted Living
applications has been introduced. The main contribution is the combination of fixed
and mobile nodes in the monitoring network: mobile sensors enable the complete
coverage of large environments with fewer fixed sensors and increase the accuracy
of measurements by reaching the most favorable position to observe the current
target. The global logical architecture used by the system has been presented. The
software agents developed to work on fixed and mobile nodes have been described.
Simulations of the behavior of the system in a realistic environment (with sensor
parameters closely corresponding to the characteristics of the real fixed and mobile
sensors) have been carried out and the results have been shown. They have been
obtained using a distributed target tracking algorithm developed by some of the
authors. Furthermore, preliminary experimental results obtained by the real sensors
in our lab environment are presented, showing the feasibility and effectiveness of the
proposed system.
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