
Chapter 10
Data Fusion with a Dense Sensor Network
for Anomaly Detection in Smart Homes

Kevin Bing-Yung Wong, Tongda Zhang and Hamid Aghajan

Abstract Research into assistive technologies for the elderly has been increasingly
driven by the rapidly expanding population of older adults in many developed coun-
tries. One area of particular interest is technologies that enable aging-in-place, which
allows older adults to remain in their own homes and live an independent life. Our
work in this space is based on using a network of motion detectors in a smart home
to extract patterns of behavior and classify them as either typical or atypical. Knowl-
edge of these patterns can help caregivers and medical professionals in the study of
any behavioral changes and enable better planning of care for their patients. Once we
define and extract these patterns, we can construct behavioral feature vectors that will
be the basis of our behavioral change detection system. These feature vectors can be
further refined through traditional machine learning approaches such as K-means to
extract any structure and reduce the dimensionality of the data. We can then use these
behavioral features to identify significant variations across time, which could indi-
cate atypical behavior. We validated our approach against features generated from
human labeled activity annotations, and found that patterns derived from raw motion
sensor data can be used as proxies for these higher level annotations. We observed
that our machine learning-based feature vectors show a high correlation with the
feature vectors derived from the higher level activity annotations and show a high
classification accuracy in detecting potentially atypical behavior.
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10.1 Introduction

The World Health Organization (WHO) and the US Department of Health have both
predicted a rapid rise in the proportion of older adults that make up the populations of
developed countries. Globally, it is predicted that the number of people older than 60
will triple between 2000 and 2050 from 600 million to 2 billion, while considering
just the United States alone, the number of citizens older than 65 is expected to
grow from 40.3 to 72.1 million in 20 years [1, 2]. This rapidly growing and aging
population segment is of great concern in terms of their healthcare and management,
since eldercare is traditionally very labor intensive and costly.

In response to the concern of how to care for an increasing elderly population,
many assistive and monitoring technologies are being examined to reduce the need
for caretakers and to enable the aging population to retain a measure of independence
[3–7]. These efforts are mostly intended to enable aging-in-place, which is defined
by the Center for Disease Control as “The ability to live in one’s own home and com-
munity safely, independently, and comfortably, regardless of age, income, or ability
level” [8]. This would reduce the infrastructure costs of eldercare, and would align
better with the wishes of older adults. A survey conducted by AARP, an American
advocacy group that addresses issues concerning older adults, indicated that 84 % of
people over the age of 50 wish to remain in their current homes, with the percentage
increasing to 95 % for respondents over the age of 75 [9].

The use of long-term health and wellbeing indicators is also beneficial for self-
reflection as a motivational tool to change possibly unhealthy trends in lifestyle. These
systems could be used by healthcare professionals and caregivers to augment existing
doctor visits to provide doctors with a more continuous view of a patient’s heath and
wellbeing, as well as alert them if any sudden changes occur. The “Quantified Self”
movement is an example of this recent trend for self reflection and health monitoring.
Using environmental sensors would allow a monitoring system to unobtrusively
monitor a patient continuously while they are in the home with no active compliance
from the patient [10].

10.2 Related Work

There has been a great deal of work in developing assistive technologies for the
elderly, with the goal of enabling so-called “aging in place.” A common type of
assistive technologies are those that monitor for anomalous activities or events, one
such system developed by Shin et al., used a network of 5 PIR(Passive InfraRed)
sensors to track the mobility of 9 elderly occupants of government sponsored housing
[11]. This system first derived indicators of mobility, such as the percentage of time
the motion sensors were triggered and how often the user would move between
motion sensors, to look for changes in these indicators over time. The authors detected
these changes by using 24 different SVDD (Support Vector Data Descriptors) based
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classifiers, one for each hour of the day, to classify normal activities [12]. Since the
SVDD classifiers would generate warnings for any abnormal activity, their system
would often generate false warnings due to the irregular behavior patterns of the users,
such as waking up late and performing cleaning activities during different times of
day. Other work by O’Brien et al. also used PIR sensors in the home as a primary
input, but their work was focused on visualization techniques to potentially identify
movement disorders for the older adults [13]. Cuddihy et al. used the same PIR-based
motion sensors with the goal of identifying periods of unusually long inactivity of
occupants in their homes to generate alerts to caregivers [14]. More general work
by Fine et al. used location-based information to build feature vectors to determine
classes of normal or abnormal activities using a clustering-based approach [15].

The CASAS project, led by Diane Cook at Washington State University, has
been studying a related field of identifying Activities of Daily Life or ADL, which
are defined as common activities that a person performs to care for themselves,
using data mining and machine learning to automatically identify important activities
through finding the most common pattern in motion sensor data [16–19]. ADL’s could
be useful to describe the behavior of a smart environment’s occupant and identify
abnormalities if certain ADL’s are not completed. Some of the recent work by Jakkula
et al., focuses on using one class SVM’s to classify anomalous behavior using an
annotated dataset based on motion and door sensors in a home setting [20]. Anomaly
detection by monitoring drifts and outliers of detected parameters were also studied
by Jain et al., however that research focused less on ambient sensors and more on
wearable health monitors [21]. More theoretical approaches to activity detection,
such as work by Kalra et al. have focused on machine learning and statistical models
for ADL detection [22].

There have been many other proposed approaches toward detecting, representing,
and analyzing activity and behavioral patterns in a home setting. One such approach
by Lymberopoulos et al. uses a home sensor network to track a user’s motion and
presence throughout the home [23]. Using region occupancy and the associated
occupancy time, they create a set of symbols that encode the location, duration of
the user’s presence, and the time of day the user was present in a specific area in
the home. From these symbols, they discover frequent sequences of symbols and
their likelihoods to extract the users activity patterns form their 30 day dataset.
Vision centric approaches by Gómez-Conde el al. [24], focus on detecting abnormal
behavior using cameras and computer vision techniques such as motion detection
and object segmentation to develop tele-assistance applications for the elderly. Their
system mainly focuses on the sensing and classification of events, not recognizing
longer term patterns or behaviors. Other research projects such as [25, 26] also focus
more on shorter term monitoring and on techniques for person tracking and fall
detection. Due to the general lack of long-term monitoring data and privacy issues
with data collection, there has not been a significant body of work dedicated to
long-term behavioral and health monitoring based on cameras.
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10.3 Methodology

We examine the task of detecting atypical behaviors using two different approaches,
using region-based occupancy patterns, derived from measuring how an occupant
spends time in specific regions in their home, and concurrency-based models, which
find important areas of a home automatically based on how an occupant moves
through their home. For both approaches to atypical behavior detection, we use long-
term datasets from WSU’s CASAS project [16]. CASAS was intended as a smart
home testbed, to evaluate algorithms for activity recognition and home automation.
Common to the three datasets that we used, are a fairly dense deployment of 20+
PIR motion sensors, configured to have a small field of view. Judging from the
documentation, we estimated that the motion sensors had a detection area of 8 m
[27]. These motion sensor deployments do not offer the rich data available from
cameras, but they sidestep several privacy issues inherent with placing cameras in
people’s homes. Since motion sensors can only detect the presence of motion in their
fields of view, they will be better tolerated, even if data is recorded and stored for
later processing or evaluation. Archiving video data for later processing would have
significant privacy concerns for occupants, not to mention the logistics of storing
months or years of video from multiple cameras.

Our initial experiments centered on a CASAS dataset featuring a single occupant
for a 220 day experiment, codenamed “Aruba” by CASAS. The apartment layout and
sensor placements can be seen in Fig. 10.1. We wanted to start with a single occupant,
since motion sensors cannot differentiate between multiple people. For our region
occupancy-based atypical behavior detector, we later extended our work to include a

Fig. 10.1 “Aruba” apartment sensor layout
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shorter 30 day dataset that contained an occupant with a pet, codenamed “Milan,” and
finally a 180 day dataset that contained a couple living together, codenamed “Tulim.”
All of the datasets that we evaluated had activities that were human annotated, and
we used this as a baseline input to our atypical behavior system to compare against
features derived directly from the motion sensors.

The following sections describes how we used the CASAS motion sensor-based
data for both region occupancy and concurrent activation-based atypical behavior
detection.

10.3.1 Region Occupancy-Based Atypical Behavior Detection

In order to identify atypical behaviors of a smart home’s occupant, we need to have
a representation for the occupant’s behaviors. One clear choice is to use occupant
activities to form a behavioral model, however, identifying activities using PIR’s is a
complicated task, since some important activities, such as sleeping, is marked by an
absence of motion. We then hypothesized that activities in a home are closely tied to
specific regions of a home, for example, cooking mostly takes place in the kitchen,
and sleeping takes place mostly in the bedroom. Using that observation, we decided
to use region occupancy as a proxy for occupant activities to generate daily patterns of
behavior, which we can then compare across days to identify outliers, which we treat
as atypical. These observations are illustrated in Fig. 10.2, in which we show both
region occupancy and annotated activity patterns for each 30 minute window across
220 days of data collection, with each horizontal line in the image representing the
occupant’s occupied regions or activities for one day. The coloring for the patterns is
different, since there is a different number of regions and activities, but there is still
a clear visual similarity between the two. The following sections describe our steps
to derive these region occupancies and atypical detections from the raw sensor data.
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Fig. 10.2 Comparisons of region occupancy patterns to annotated activity patterns, based on most
frequent region/activity in each 30 min time window. a Region occupancy patterns. b Annotated
activity patterns
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10.3.1.1 Initial Processing

The CASAS data consists of a series of PIR motion sensor activation events, which
represent times in which an occupant or a guest moved within the detection area of
one of the PIR’s used in the deployment. These PIR’s are located in Fig. 10.1 as the
dark circles, and were mainly concentrated in the kitchen, living, and bedroom areas
of the testbeds.

We first took these activation events, and examined them manually to look for
sensor malfunctions. For example, for one day in the “Aruba” dataset, all of the
motion sensors were triggered simultaneously for several hours. After we identified
these days, we removed them from the dataset so they would not skew our results.

Next, we estimated the position of the occupant within the apartment based on
PIR activation events. Since the user can activate many PIR’s at any one moment,
using the locations of the activated PIR’s as the user’s position would be quite noisy
and subject to rapid changes. Thus, we decided to use a relatively simple approach to
estimate the occupant’s position by averaging the locations of the activated motion
sensors within a small time window. Most of the PIR sensors used in the instrumented
apartment were ceiling mounted units with a relatively small detection radius of 8 ft.
With these pieces of information, we are able to determine the position and time of
all motion detection events. This result was then temporally smoothed and used to
assign a region label to every point in the occupant’s estimated trajectory, as described
in the next section.

10.3.1.2 Region Labeling

As a first step in forming the region occupancy patterns that we will later use for
atypical behavior detection, we assign each point in the occupant’s trajectory with
a region label that corresponds to the room or semantic region where the occupant
is currently located. For the “Aruba” dataset, the region labels include: Kitchen,
Dining Area, Living Room, Bedroom, Guest Bedroom, Office, Hallway and Outside.
The current scheme to map region labels is based on a lookup table that maps the
current position of the user to one region. Figure 10.3 describes the different regions
as different colored boxes overlaid on the deployment map for the dataset. Table 10.1
lists the region identifiers used. The time series of region labels is then post processed
to filter out region changes that last less than 3 s. This acts to remove rapid region
label oscillations that would occur if the user walked along the boundary of two
regions. Similar region maps were generated for the “Milan” and “Tulim” datasets,
as shown in Fig. 10.4a, b, respectively.

10.3.1.3 Region Occupancy Histograms

We decided to represent the time series of region occupancies, described in the
previous section, as a set of region occupancy histograms for consecutive
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Fig. 10.3 Region map

Table 10.1 List of region
labels used for processing

Identifier Region description

0 Hallway

1 Kitchen

2 Dining area

3 Living room

4 Main bedroom

5 Guest bedroom

6 Office

7 Outside apartment

8 Inside with visitors

non-overlapping regions in time. These region occupancy histograms are more com-
pact than the region time series, and can be interpreted more quickly than a long
sequences of region occupancies. To form the actual region occupancy histograms
that we used as a proxy for the occupant’s behaviors, we first subdivided each day’s
data into smaller 30 minute chunks, and calculated the region occupancy histogram
for each chunk. The size for the time chunk was chosen so that it would still be a
reasonably compact size, to limit processing time for our experiments.

The result was 48 region histograms that represented the daily region occu-
pancy patterns for the occupant of the apartment. We initially used several meth-
ods to summarize these 48 histograms to form even more compact representations,
including using just the region with the highest occupancy for every time chunk.
Other alternatives included using a Bag of Words representation along with a PCA
to reduce the dimensionality of the data. We ultimately settled on simply concatenat-
ing these 48 histograms into a single feature vector to represent the occupant’s region
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Fig. 10.4 Sensor layout and region maps of “Tulim” and “Milan” testbeds. a Milan testbed with
region overlay. b Tulim testbed with region overlay

occupancy for each day, which we refer to as “Complete Region Histograms,” since
the compact representations did not perform significantly better, and were difficult
to interpret. We later augmented these concatenated region histograms with region-
specificmotion detection histograms, which represented the number of motion events
in each region during the same time chunk, which formed “Complete Region and
Motion Histograms” features.

For the sake of completeness, we experimented with using only the motion his-
tograms, formed by histograms of the region a motion sensor was activated per time
period, and an even finer histogram of which motion sensor was activated per time
period. However, our results for these last sets of histograms showed poor correlation
with our ground truth-based activity classifier. Table 10.2 briefly describes some of
the different features that we evaluated.

10.3.1.4 Identifying Atypical Daily Patterns

After mapping the occupant’s position to regions, and forming histogram-based
patterns using region occupancy, we sought to identify region occupancy patterns
that were atypical. We started by calculating how dissimilar each day’s pattern was to
every other day in our dataset. For our “Complete Region and Motion Histograms,”
we used the Euclidian distance between each pattern of concatenated histograms as
our dissimilarity metric.

We can compactly represent the dissimilarity between all of the days of a dataset
in the form of a distance matrix, where every entry (i, j) represents the dissimilarity
between day i and day j , which is shown in Fig. 10.5 for both region occupancy
and annotated activity-based patterns. We note that days that were very dissimilar to
every other day, the red bands in the distance matrix, appear to be identical for both
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Table 10.2 Different region/occupancy features considered for anomaly detection

Region occupancy feature Associated distance metric Description of descriptor

Most occupied region Edit distance The most frequently occupied
region is used to represent each
time period

“Bag of words feature” Edit distance The region occupancy his-
togram for a time period is
mapped to the closest K-means
based cluster for each time
period

“Complete Region Histograms” Euclidian distance A concatenated vector of region
occupancy histograms is used to
represent each time period

“Complete Region and Motion His-
tograms”

Euclidian distance The concatenated region occu-
pancy histograms are appended
with a histogram of region-
based motion detection events

“Motion Only” Euclidian distance A histogram of region-based
motion detection events for each
time period

region occupancy and annotated activity-based patterns. Initially, we summed these
dissimilarity of a single day i to every other day together to form a global dissimilarity
metric for day i . Since lower values indicate a lower dissimilarity of a day’s patterns
to every other day in the dataset, we can use this global dissimilarity metric to classify
days as atypical. To do this, we set a threshold on the global dissimilarity of each
day to classify days with a high dissimilarity as atypical. A histogram of these global
dissimilarity for every day can be seen in Fig. 10.6, we note that the histogram seems
normally distributed, except that the distribution has a very long tail. We decided
to find the average and standard deviation of these global dissimilarity values, and
classify values that deviated from more than one standard deviation from the mean
as atypical.

Our first approach used data from every day in the dataset in order to form global
dissimilarity metrics to classify days as atypical, however, this is not a practical
solution, since it assumes that we have access to data in the future. We wanted to also
evaluate a sliding window approach to classification, where we would step through
one day at a time and only classify the days based on the current and past data only.
This approach may not identify the current day or past days as atypical if there is not
enough historical data, for example, if the system just stared to collect data. So as
each day is added to the sliding window, we reclassify all days using dissimilarity
for all of the data up to the current day. We also experimented with different finite
sliding window sizes, but we felt that the size of our daily region occupancy patterns
was quite small, on the order of 10 KB, so we could reasonable store a lifetime’s
worth of occupancy data in less than 1 GB of memory.
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Fig. 10.5 Comparisons of distance matrices of the “Complete Region and Motion Histograms”
patterns and CASAS annotated activities. a Region occupancy. b Annotated activity
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Fig. 10.6 Histogram of global dissimilarity values for the “Aruba” dataset

Lastly, we evaluated an alternative method of calculating dissimilarity other than
our global dissimilarity metric. We decided to use the Local Outlier Factor or LOF,
original proposed by Breunig et al. as a method to identify outliers in a dataset by
comparing the local density around each point in the dataset [28]. The LOF algorithm
also works on distance matrices, so we used our existing matrices calculated using
our region occupancy patterns as an input and calculated the LOF for every day of
our “Aruba” dataset. LOF has one parameter k, which is used to determine the size of
the local neighborhood used to calculate the local density, we choose to use a value
of 30, determined empirically. The LOF algorithm returns a value that represents
the degree that a particular point is an outlier, but with no fixed threshold, we used
the same method of choosing a threshold as with our global dissimilarly approach,
after plotting a histogram of the LOF values as seeking a similar distribution as with
dissimilarity.
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10.3.1.5 Evaluating Region-Based Atypical Behavior Detector

To evaluate the performance of using region occupancy-based behavior patterns to
identify atypical behaviors, we leveraged the activity annotations included with the
CASAS dataset, the activities included in the “Aruba” dataset are shown in Table 10.3.
Using the same procedure as with the region occupancy patterns, we instead used
activity patterns segmented into the same 30 minute time chunks. These activity
patterns were histograms of the amount of time the occupant performed one of the
annotated activities in each time chunk. With these activity histograms we used the
same methods as with the region occupancy histograms to form daily descriptors
and compared each day to every other day.

After using these annotated activity patterns to classify days as atypical we treated
these classifications as a ground truth and compared them against the classification
results from our region occupancy-based classifier and presented the resulting com-
parison as a confusion matrix. We also compared how the region-based dissimilarity
compared to the activity-based dissimilarity for each day in the dataset. When both
the region-based and activity-based dissimilarities are plotted against each other, we
can evaluate how well the two relate to each other visually as well as calculate a
correlation coefficient. A high degree of correlation can be used to determine if the
region occupancy can be used as an effective proxy for annotated activities.

For the original “Aruba” dataset, we noticed that the “Complete Region and
Motion Histograms,” as described in Table 10.2 had the highest correlation coef-
ficient at 0.916115, which indicates that region occupancy is a very good proxy for
annotated activities for the purposes of atypical behavior detection. Figure 10.7a,
shows the correlation plot and Fig. 10.7b shows a confusion matrix of the region
occupancy-based classifier output when compared to the output of an annotated
activity-based classifier. This approach yielded an accuracy of over 95 % and a pre-
cision of over 90 % for identifying atypical days.

Table 10.3 List of annotated
activities in CASAS dataset

Identifier Activity

1 Sleeping

2 Bed to toilet

3 Meal preparation

4 Relax

5 Housekeeping

6 Eating

7 Wash dishes

8 Leave home

9 Enter home

10 Work

11 Resperate
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Fig. 10.7 Correlation between region-and activity-based daily dissimilarity and a classification
confusion matrix for the “Aruba” dataset. a Plot of daily total dissimilarity of the “Complete Region
and Motion Histogram” patterns versus the CASAS annotated activities, correlation coefficient:
0.916115. b Confusion matrix of region-based abnormality detector of the “Complete Region and
Motion Histograms” based classifier

We further wanted to verify that our approach was suitable for other homes and liv-
ing situations, which is why we evaluated out approach for the “Milan” and “Tulim”
datasets, which featured different apartment layouts and more than one occupant.
Figure 10.4a, b show the layouts and regions, which are highlighted in different col-
ors, for the “Milan” and “Tulim” testbeds, respectively. For these two datasets, we
found that adding in the raw motion data to form the “Complete Region and Motion
Histograms” yielded slightly worse performance compared to using just region occu-
pancy. This can be attributed to the continued presence of multiple occupants, who
would have generated many more motion events compared to the“Aruba” testbed,
which just had a single occupant. From the correlation plots and confusion matri-
ces of the “Milan” testbed, shown in Fig. 10.8a, b, we note that the correlation was
quite lower than “Aruba” at 0.638051, this is probably due to the short duration of
the “Milan” test set, which was considerable shorter at only 30 days. The “Tulim”
testbeds correlation and confusion matrices, shown in Fig. 10.9a, b, show a better
correlation of 0.801184, which is promising, considering “Tulim” had two occu-
pants, which could imply that the occupants were frequently in the same region and
performed the same activities, which for a coupling living together, seems highly
likely.

We also wanted to study what effect using a sliding window approach rather than
a global approach for atypical behavior detection would have on our classification
accuracy. We found that using a sliding window, in which daily region occupancies
patterns were added one at a time, did increase the number of false positives, which
can be seen in Fig. 10.10a when compared to the global approach, which is reproduced
in Fig. 10.10b. Most of these false positives occurred early in the dataset, when there
was not enough region occupancy histogram to adequately separate out atypical from
normal behavior.
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Fig. 10.8 Correlation between region and activity-based daily dissimilarity and a classification
confusion matrix for the “Milan” dataset. a Plot of daily total dissimilarity of the “Complete Region
Histograms” patterns versus the CASAS annotated activities for the “Milan” dataset, correlation
coefficient: 0.638051. b Confusion matrix of region-based abnormality detector of the “Complete
Region Histograms” based classifier for the “Milan” dataset
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Fig. 10.9 Correlation between region-and activity-based daily dissimilarity and a classification
confusion matrix for the “Tulim” dataset. a Plot of daily total dissimilarity of the “Complete Region
Histograms” patterns versus the CASAS annotated activities for the “Tulim” dataset, correlation
coefficient: 0.801184. b Confusion matrix of region-based abnormality detector of the “Complete
Region Histograms” based classifier for the “Tulim” dataset

Lastly, we compared the performance of a LOF-based classify compared to a
classify based on global dissimilarities of annotated activities, to evaluate other meth-
ods of identifying outliers. We found good correlation between the two, 0.86167, as
shown in Fig. 10.11a. The confusion matrix of classification results, as shown in
Fig. 10.11b , were not as good as with the global or sliding window approaches, with
more false positive and negative classifications. This increase in false classifications
could be due to an overly conservative threshold that we applied to the LOF value to
determine if a day was an outlier.
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Fig. 10.10 Comparing a sliding window approach to a global approach for atypical behavior
detection. a Sliding window approach, 220 day maximum size. b Global approach
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Fig. 10.11 Correlation between region-and activity-based LoF scores and a classification confusion
matrix for the “Aruba” dataset. a Plot of daily LoF of the “Complete Region and Motion Histograms”
patterns versus the CASAS annotated activities for the “Aruba” dataset, correlation coefficient:
0.86167. b Confusion matrix of region-based abnormality detector using a LoF- based classifier for
the “Aruba” dataset

10.3.1.6 Interpreting Atypical Patterns

The previous section primarily evaluated how well region-based atypical behavior
compared to a similar classification process using human annotated activities. In this
section, we examine the results of the atypical behavioral detector by looking at the
region occupancy patterns of the days classified as normal or atypical.

Figure 10.12 shows features that correspond to normal days, with each horizontal
line corresponding to a day’s region occupancy patterns. Each one is stacked on top
of each other, so looking at vertical columns would represent the region occupancy
at the same time across days. These histogram patterns have been resorted, so that
the components of the histograms that represent the same region are adjacent to
each other, with highlighted boxes separating the different region’s occupancy. The
labels above each block represent the semantic region that the block represents. Each
region block is broken up into 48 columns, representing the 48 time chunks in which
the histograms were originally calculated, so each day’s occupancy of that region is
encoded left to right, with the far left side representing midnight. We can then examine
each block to determine how the occupancy of a specific region varies within a day,
and throughout the dataset by looking horizontally and vertically respectively. When
examining the occupancy patterns for the bedroom, we see a high occupancy for the
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Fig. 10.12 Region occupancy histograms for normal days

Fig. 10.13 Cluster analysis of bedroom occupancy patterns for normal days

early hours, most likely representing sleep. Also note that the normal days do not
have significant Guest room occupancy during the same early hours time period.

Using the bedroom as an example, we sought to understand the variations of
the bedroom region occupancy for our “Normal” days. We performed a clustering
analysis of the bedroom occupancies using k-means, which yielded 10 unique activity
patterns for normally classified behavior. These bedroom occupancy clusters can be
seen in Fig. 10.13. We note that these cluster represent different sleep and wake times,
and that these clusters of bedroom occupancy could be used to monitor sleep habits
be used to specifically monitor for atypical sleep patterns by comparing the bedroom
occupancy patterns with these common “Normal” bedroom occupancy clusters.
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Fig. 10.14 Region occupancy histograms for atypical days

Figure 10.14 shows the region occupancy patterns that correspond to atypical days.
These patterns appear quite different from the “Normal” days show in Fig. 10.12. If
we compare just the Bedroom and Guestroom regions, it seems like there is much
higher overnight Guestroom occupancy compared to the “Normal” days. This could
be why these days were statistically different from the “Normal” days.

Caregivers and medical professions could also view these occupancy patterns for
both normal an atypical days to look for causes of the atypical classification, for
example, they could compare the occupancy patterns of specific regions across both
the “Normal” and “Atypical” classes to see of the classification was due to changes
in a specific region.

10.3.2 Atypical Behavior Detection Using Concurrent Hotspot

In a motion sensor network, a concurrent activation event is when a moving object
enters an area that overlaps with multiple sensors’ detecting region and generates one
or more motion detection events. In this section, we will develop and use a concurrent
activation model to find concurrent hotspots (the location where occupants move
frequently). Then, an occupant’s daily behavior at these hotspots will be used to
estimate how likely that occupant is displaying anomalous behavior.

The basic intuition behind this analysis is that people tend to maintain regular
daily routines and the behavior at the concurrent hotspots are able to summarize
the occupant’s daily activity. So any deviation of a occupant’s behavior at these
concurrent hotspots might indicate atypical behavior.
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10.3.2.1 Finding Concurrent Hotspots

Since a concurrent hotspot is the location where occupants move frequently, we need
to first define a concurrent event and the location of such events.

Assuming that a motion sensor network consists of N binary motion sensors,
defined as sensors only have two possible states {0, 1}. In the cause of motion sensors,
a 0 state means that no motion is detected, and 1 indicates the sensor is being triggered
by motion at this time.

The model of a single sensor’s activation can be demonstrated with Fig. 10.15. To
simplify the activation model, the detection region of a motion sensor is considered
a circular area. If an object is moving inside the detection region, the sensor will
be activated; conversely, if the moving object is outside the detection boundary,
the sensor will not be triggered. However, some exceptions could generate false
detections, PIR-based motion sensors can be triggered by sudden local changes in
temperature, such has air moving through a heating or cooling vent. We define the
probability that a sensor is activated with no moving object present as false positive
rate β. Our previous work shows that this model fits the CASAS Aruba data set
quit well, with an estimated false positive rate of ˜β = 0.0406, was calculated by a
Genetic Optimization algorithm.

With this single sensor’s activation model, we can now turn to the concurrent
activation case. Suppose a moving object is at the location with coordinates (xu, yu)

with k sensors being activated at the same time. Intuitively, that object is some-
where in the overlapping detection areas of those k sensors. Assuming that all of
sensors have the same detection area size and have detection centers located at
{(xλ1, yλ1), (xλ2, yλ2), . . . , (xλk, yλk)}, the most likely estimation of user’s location
(x̂u, ŷu) is given by the following equation:

x̂u = 1

k

k
∑

i=1

xλi (10.1)

ŷu = 1

k

k
∑

i=1

yλi

Fig. 10.15 Model of a single
sensor’s activation
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Equation 10.1 is simply averages of locations of all the activated sensors. This
approach is easy to implement but it ignores the fact that some of the sensors are
activated by false positive events as we mentioned earlier. For example, if some of
the active sensors amount those k activated sensors are activated by environmental
temperature changes or some other accidental factors (false positive), the above
approach described by Eq. 10.1 might give a result far away from the occupant’s
actual location.

In order to limit of the influence caused by false positive motion detection events,
we leverage a Concurrency Graph that contains prior knowledge of overlapping areas
of sensors’ detection regions. The Concurrency Graph is defined as a weighted graph
G = (V, E), which consists of a set of motion sensors V as nodes and a set of edges
E . A concurrent activation event will increase the weight of edges between any pair
of activated sensors by one. Therefore, the higher the weight of a edge, more likely
those two involved sensors will be activated at the same time.

After filtering out the edges with weight less than a certain threshold T = λ · ˜β2,
where λ is the total number of concurrent events, and ˜β is the false positive rate,
most of the edges created by false positive activation can be removed.

Figure 10.16 shows the concurrency graph built on the “Aruba” dataset from
2010-11-01 to 2010-12-01. The red circles in the figure are the sensor nodes; the
links are the edges between nodes; and numbers on the edges are the weights of
corresponding edges. Figure 10.17 shows the concurrency graph after filtering out
edges using the threshold mentioned above.

With the Concurrency Graph, if we have k activated sensor, instead of calculating
the average location directly, we mark the corresponding k nodes in the concurrency
graph Fig. 10.17. This will generate one or more sub graphs, where we choose the
subgraph, Gu , with largest number of nodes to estimate the occupant’s location with
Eq. 10.2.

Fig. 10.16 Concurrency graph for 2010–11
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Fig. 10.17 Concurrency graph for 2010–11 with thresholding and area sensor deleted

x̂u = 1

|Gu |
∑

i :si ∈Gu

xi ,

ŷu = 1

|Gu |
∑

i :si ∈Gu

yi (10.2)

We define the concurrent hotspots as center of areas where an occupant frequently
moves. Every time the activation state of any sensor changes, an estimation of the
user’s location can be calculated by Eq. 10.2. To find the concurrent hotspots we just
defined, we go through the whole “Aruba” dataset and get a sequence of estimated
user’s active locations {(x̂u1, ŷu1), . . . , (x̂un, ŷun)}. If we can cluster the sequence
into several groups, then the centroids of these clusters will be the hotspots that we
are looking for.

We choose to use K-Means as our clustering algorithm, to decide how many
clusters, k to use, we plotted the clustering error or cost, defined as the distance
of every point to their assigned cluster, versus the number of clusters, as shown in
Fig. 10.18. As can be seen from the figure, a value k = 10 is a good choice since it is
the turning point of the cost curve. While K-means has a component of randomness,
as initial cluster centroids are randomly selected, which may yield a different result,
multiple experiments resulted in very similar centroid sets. We picked one of these
sets shown in Fig. 10.19, where the red circles are the hotspots found, and the size of
the circle indicates the size of the cluster, which represents how many concurrency
events it encompasses.
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Fig. 10.18 Kmeans: cost versus cluster number

Fig. 10.19 Hotspot distribution

10.3.2.2 Hotspot-Based Occupant’s Behavior Modeling Selection

The hotspots we found in the previous section are calculated by clustering locations
where the occupant frequently moves. As a result, different clusters represents the
centers of the occupant’s activities to some extent. For examples, clusters A and B in
Fig. 10.19 are related to the occupant’s activities in the bedroom (sleeping, walking,
and so on); clusters D, G, and H represent walking through hallway; cluster E reflects
occupant’s movements inside the living room; cluster J is for the sofa related activity;
cluster F acts as the indicator of the occupant’s cooking activity; and cluster I is the
occupant’s behavior in the office.

With the help of concurrent hotspots, a occupant’s daily activities can be divided
into different clusters according to their relative locations to the hotspots. To
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summarize the occupant’s daily active level at each concurrent hotspot, we use Algo-
rithm 1 that can summarize the occupant’s active level of one day into a 1×10 vector
V = [v1, v2, . . . , v10]. The algorithm is described as follows:

Algorithm 1: Active Level Summary with Hotspots
Data: H = {h1, h2, . . . , h10}

E = {(x̂u1, ŷu1), (x̂u2, ŷu2), . . . , (x̂un , ŷun )}
Result: V = [v1, v2, . . . , v10]

0.1 initialize V to a zero vector ;
0.2 foreach (x̂u , ŷu ) ∈ E do
0.3 î = arg min

i :hi ∈H

(

distance(h, (x̂u , ŷu ))
)

;

0.4 wcore = ScoreMapping(t);
0.5 vî = vî + wcore ;

0.6 end

In Algorithm 1, H is the Hotspots Set, where that hi is the location of the i th
concurrent hotspot; E is a sequence of user’s active locations estimated by Eq. 10.2
for a day; ScoreMapping(t) is a function that map time duration t into a active level
score. Therefore, the algorithm calculates the active level score of the occupant and
accumulates the score for each concurrent hotspot.

The ScoreMapping(t) function in the above algorithm defines how we evaluate
a occupant’s active level from the amount of time they are moving at one location.
For example, if the ScoreMapping() is linear, the algorithm just accumulates the
time an occupant spends in a certain hotspot. In this chapter, a super linear function
is chosen as ScoreMapping() which indicates that a long-time continuous activity
has more impact than several short-time activities together.

For the whole CASAS “Aruba” dataset, we apply Algorithm 1 for each day and
get a N × 10 result matrix, where N is the total number of days, and each row is
the output result of the algorithm 1 for the corresponding day. Therefore, a column
C j = [v(1)

j , v(2)
j , . . . , v(N )

j ]T ( j = 1, 2, . . . , 10) of the result matrix is the occupant’s
active level scores at the j th hotspot for N days.

Now we can use this resulting model derived from time spend in each hotspot
to detect abnormal activity of the occupant. Our assumption is that the occupant’s
activity level at each concurrent hotspot satisfies is a specific distribution.

Therefore, we set up a distribution library which contains Normal, Rayleigh,
Rician, t location-scale, Weibull, and Generalized extreme value distributions. For
each concurrent hotspot, we fit the occupant’s active level scores to every distribu-
tions in our distribution library. And we choose the distribution with the highest log
likelihood as the behavior model for the occupant at that hotspot. Table 10.4 shows
the result for each concurrent hotspot.

The histogram of occupant’s active level scores at hotspots A and B, and the result
curves of corresponding fitted distribution are showed in Fig. 10.20a, b. It can be seen
that some of the curves fit the active level scores well. The Table 10.5 summaries the
best probabilistic models and parameters for all the concurrent hotspots.

For at location-scale distribution with parameter μ, σ, ν, the probabilistic density
function is
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Table 10.4 Concurrent hotspot model fitting

HotSpot Normal Rayleigh Rician t location-scale Weibull Generalized extreme value

A −1232.68 −1256.35 −1230.19 −1199.89 −1236.12 −1205.71

B −1500.01 −1585.86 −1500.38 −1499.56 −1500.57 −1498.22

C −1316 −1287.56 −1287.56 −1300.66 −1286.7 −1260.19

D −1299.57 −1279.22 −1279.22 −1275.59 −1278.62 −1243.49

E −1326.36 −1308.94 −1308.94 −1314 −1307.84 −1283.66

F −1287.33 −1259.48 −1259.48 −1268.75 −1258.69 −1235.75

G −1139.27 −1117.72 −1117.7 −1129.07 −1117.58 −1094.88

H −1534.13 −1534.16 −1534.16 −1533.94 −1531.83 −1530.7

I −1339.2 NA NA −1214.28 NA −1112.02

J −1577.44 −1608.62 −1576.43 −1572.18 −1579.38 −1574.47

Fig. 10.20 Histogram and model fitting for hotspot A and B. a Hotspot A. b Hotspot B
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Table 10.5 Hotspot model fitting

Hotspot Probabilistic model Parameters

A t location-scale μ = 240.839 σ = 56.1281 ν = 3.93679

B Generalized extreme value k = −0.371485 σ = 321.032 ν = 1183.27

C Generalized extreme value k = 0.294019 σ = 70.3057 ν = 154.99

D Generalized extreme value k = 0.222946 σ = 67.6701 ν = 178.837

E Generalized extreme value k = 0.175264 σ = 84.0357 ν = 205.644

F Generalized extreme value k = 0.245482 σ = 64.3452 ν = 137.352

G Generalized extreme value k = 0.201744 σ = 33.6826 ν = 78.0005

H Generalized extreme value k = −0.152369 σ = 330.334 ν = 509.017

I Generalized extreme value k = 1.35126 σ = 20.4538 ν = 12.7242

J t location-scale μ = 1297.43 σ = 368.005 ν = 6.48294

p(x;μ, σ, ν) = Γ (ν+1
2 )√

νπΓ (ν
2 )

(

1 + (
x−μ
σ

)2

ν

)− ν+1
2

For a generalized extreme value distribution with parameter k, σ, ν, the proba-
bilistic density function is

p(x; k, σ, ν) = 1

σ

[

1 + ν(
x − k

σ
)

]− 1
ν
−1

exp

(

−
[

1 + ν(
x − k

σ
)

]− 1
ν

)

With fitted probabilistic model of each concurrent hotspot, we propose a multi-
variable distribution model PM that models the occupant’s daily active level score
vector (the 1 by 10 vector that contains active score for each hotspot):

V = [v1, v2, . . . , v10] ∼ PM(p1, p2, . . . , p10) (10.3)

where pi (i = 1, 2, . . . , 10) is the probabilistic distribution model for hotspot i
showed in Table 10.5. The model (Eq. 10.3) is the representation random distribution
model for user’s daily active level at each concurrent hotspot.

10.3.2.3 Abnormal and Typical Active Level Detection

We define the normalness of a day as log likelihood the occupant’s active level score
vector which is calculated by our proposed PM model (Eq. 10.3).

Given the active score vector V = [v1, v2, . . . , v10] and the distribution model is
PM(p1, p2, . . . , p10), the likelihood of the active level scores can be calculated by
the following equation:

L =
10
∏

i=1

pi (vi ) (10.4)
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Fig. 10.21 The histogram of log probability score

Then, the log likelihood’s calculation becomes straightforward:

Log(L) =
10
∑

i=1

log(pi (vi )) (10.5)

Using Eq. 10.5, the higher the value of Log(L) indicates that a specific day is
more likely to be a normal day. Similarly, the lower the value, the more likely that
day is a atypical day. The histogram of the log likelihood of all the days is shown in
Fig. 10.21.

Setting the lower threshold Tlow = −57 and the higher threshold Thigh = −47,
days with log likelihood greater than Thigh are marked as typical, days with log
likelihood less than Tlow are considered as abnormal days. Using this rule, we have
the result that {1, 2, 6, 32, 54, 56, 57, 73, 74, 76, 83, 90, 99, 100, 103, 107, 108, 109,
111, 132, 142, 143, 155, 167, 170, 181, 200, 201, 207} are classified as be atypical,
and days {7, 20, 23, 28, 30, 31, 35, 38, 42, 43, 53, 58, 65, 69, 71, 72, 78, 85, 88, 89,
91, 94, 05, 06, 13, 17, 22, 24, 26, 38, 48, 64, 68, 76, 77, 78, 89, 93, 94, 96, 103, 105,
210} are marked as typical, all the other days are normal.

In summary, the whole process of detecting the occupant’s abnormal behavior is
very straightforward. It starts from location estimation based on concurrency graph,
representing user’s daily active level using a score vector, to calculating the log
likelihood of the score vector. Therefore, The proposed method offered us a simple
method to interpret the information from binary motion sensors directly into a user
daily behavior summary.

10.4 Future Work

The two approaches that we have used so far, region occupancy-based and
concurrency-based show promise in identifying whole days as“Normal” or “Atyp-
ical,” however, it is not clear why a specific day was classified as “Atypical.” Our
future work seeks to address this issue by incorporating features that more closely
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(a) (b)

Fig. 10.22 Variation of occupant mobility between two months. a Occupant apartment transversals,
month 2. b Occupant apartment transversals, month 5

correlates with an occupants health and wellbeing. For example, Fig. 10.22 shows
an occupant’s motion between PIR sensors for the “Aruba” dataset between two one
moth periods. Most of the upper left and lower portions are similar between the
two months, but on the left graph, the occupant shows more movement into and out
of the office and guest bedrooms and less movement in and around the kitchen. If
we used these compact representations of how an occupant moves around a home
in our classification system, the atypically classified day’s mobility patterns could
directly aid caretakers/healthcare professionals in diagnosing mobility difficulties if
movement around the apartment decrease or significantly changes.

One other extensions that we are evaluating is to determine if the motion activity
in any one region or hotspot is atypical, which would future give healthcare profes-
sionals an indication as to where these atypical events are occurring. Similar work is
also being planned to look for long-term shifts or changes in an occupants mobility
and behavior, in order to look for more subtle changes in mobility over time.

10.5 Conclusion

Longitudinal data collection and interpretation is now becoming more practical
with ambient and wearable sensors technologies. With this reality, our approach of
using region occupancy patterns can be used to model behavior and to identify com-
mon patterns and atypical daily patterns of smart home occupants. We show that
both region occupancy-and concurrency-based hotspots derived from simple motion
sensors can be used to identify “Atypical” days and that patterns from these days can
be further analyzed to look for specific causes of the “Atypical” classification. This
has the potential of reducing the work load of caretakers and healthcare professionals
if the occupants are elderly or otherwise need monitoring, since they only would have
to evaluate the atypical days closely. Additionally, common behavioral patterns and
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atypical patterns could be useful as diagnostic tools to indicate lifestyle changes for
all smart home occupants, since comparisons could be made across time to see the
evolution of behavior patterns.
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