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Preface

In recent years, there has been increasing interest in human behavior understanding
motivated by several societal needs that include security, natural interfaces, gaming,
affective computing, and assisted living. Hundreds of papers have been published
on the subject in the past, mostly focusing on single-device monitoring activities.
Now, thanks to both the decreasing cost of sensors and the increasing performance
of devices, the possibility of performing integration of forest of (homogeneous and
heterogeneous) sensors is not only a theoretical issue but also a makeable solution
in real contexts.

The exact aim of this book is to provide an overview of both the technical
challenges in sensor network development (network discovery, control and routing,
collaborative signal and information processing, tasking and querying), and real
applications of them. Different aspects of distributed computing in large-scale
networked sensor systems (including algorithms and applications, systems design
techniques and tools, in-network signals and information processing) in the human
behavior understanding context are analyzed. In addition, application scenarios
ranging from surveillance to indexing and retrieval, from patient care to industrial
safety, from social and ambient intelligence to sports analysis are introduced. The
target audience is not only graduate students, but also scholars, researchers, and
practitioners from different communities (such as Computer Vision, networked
embedded sensing, artificial intelligence, and so on).

The book is a collection of chapters written specifically for this book by leading
experts in the field. The chapters are organized into three parts.

Part I Distributed Sensing: Architectures (five chapters);
Part II Distributed Sensing: Applications (eight chapters);
Part III Multi-robot Systems (seven chapters).

All chapters are on topics related to the aim of the book, that is, applications of
distributed systems. However, chapters belonging to the first part provide also a
good analysis of some theoretic aspects: the design, implementation, and development
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of a distributed sensor network, as well as communication and computational
remarks. The chapters in the second part are mostly focused on application of
distributed sensing in the field of human behavior understanding, while in the third
part specific distributed applications based on multi-robots (considered as a gen-
eral term for autonomous intelligent vehicle) are presented. The first chapter in the
first part can be considered as a high-level introduction to the argument of
distributed sensing.

To support the reading of the book, in the final part a glossary with most used
terms, and an analytic index are provided. In addition, the list of acronyms is
present in the first part.

The editors would like to thank the authors of all contributions for the efforts
they put on them. We would especially like to thank Simon Rees from Springer for
his support and guidance during all the process of preparation of this book.

Italy, July 2014 Paolo Spagnolo
Pier Luigi Mazzeo
Cosimo Distante
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Part I
Distributed Sensing: Architectures

Sensing technologies have received a huge amount of advancement in the last
decades, with the opportunity to miniaturize and communicate wirelessly in low
power fashion modalities. To this aim, applications where deploying interconnected
heterogeneous sensing technologies are needed as user and scenarios demand
continuous changing operations. This poses several research issues ranging from
data storage, wireless communication coverage that allows self-organization of the
topology of the networked sensors, to their coordination in terms of optimizing
computation and where to focalize sensing and what to sense.

The first chapter can be considered as a general introduction to the argument,
providing an exhaustive overview of the problems that affect the distributed
systems (communications, processing constraints), but also analyzing other
aspects that only a quick view can consider as marginal (privacy issues, market
expectations).



Chapter 1
Towards Cognitive and Perceptive
Video Systems

Toygar Akgun, Charles Attwood, Andrea Cavallaro, Christian Fabre,
Fabio Poiesi and Piotr Szczuko

Abstract In this chapter we cover research and development issues related to smart
cameras. We discuss challenges, new technologies and algorithms, applications and
the evaluation of today’s technologies. We will cover problems related to software,
hardware, communication, embedded and distributed systems, multi-modal sensors,
privacy and security. We also discuss future trends and market expectations from the
customer’s point of view.
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4 T. Akgun et al.

1.1 Introduction

A smart camera is an image capturing optical device with additional embedded
hardware. The device is capable of extracting, processing and communicating
information. The data processing and communication capabilities of these embedded
devices enable a variety of video-based applications, which include surveillance [1],
quality assessment in industrial production [2] and object tracking for security appli-
cations [3]. Smart cameras are employed to lower the amount of visual information
shared in a network and analysed by an operator, and also to increase situational
awareness.

A smart camera system must react to events that a human operator would find of
interest with the implicit assumption that some of the events reported by the system
might not be of interest to the operator. The goal is therefore to have no missed
detections with the minimum false alarm rate. Events of interest are defined within
the context of the application. In perimeter-control applications where the activity
within the coverage area is expected to be very limited, a typical event of interest is
meaningful or intentional motion within the coverage area [4, 5]. Not all changes
in pixel values are considered meaningful or intentional. Moving shadows due to
changing illumination conditions or terrain specific motion due to wind or water
are considered to be part of the background and should not normally be reported to
the operator. In the case of airport terminal security, where structured or intentional
activities are expected within the coverage area, a typical event of interest is detecting
unattended luggage [6–8]. For monitoring in industrial production, smart cameras
must be flexible enough to adapt to various kinds of tasks, such as health and safety
or quality control. Video analytics algorithms for quality control vary with the object
being manufactured [9].

Market expectations for smart cameras (e.g. in the CCTV market) have tradition-
ally been over-optimistic, compared to the current performance levels of video ana-
lytics algorithms and systems. By employing new low cost, low size, low weight and
low power processing developments, significant performance improvements are pos-
sible. A combination of improved robustness in algorithms with clearly understood
user needs coupled with new business models that fulfil both security requirements
and offer a return on investment should generate increased user confidence and a
cycle of good market growth.

The chapter is organised as follows. Section1.2 describes recent advances of
processing units and algorithms for smart cameras. Section1.3 defines standards for
interoperability of smart camera networks and cooperation of different sensor types.
Section1.4 discusses the communication among cameras while considering privacy.
Section1.5 covers market expectations and Sect. 1.6 draws the conclusions.

1.2 Processing Units and Algorithms for Smart Cameras

Cognitive and perceptive video systems involve largely distributed smart cameras that
have limited power/thermal budgets and can communicate with each other to achieve
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Table 1.1 Power/performance figures for selected mobile/embedded GPUs

Release date GFLOPs Architecture Thermal designing Process node

power (max/min watts) (nm)

NVIDIA-GT640 Q2 2012 691 GK104 65/15 28

AMD-E6760 Q2 2011 576 VLIW5 35/5 40

Intel-HD5200 Q3 2013 640 GT3e 47/2.4 22

Giga FLoating-point Operations Per Second (GFLOPs) represent the theoretical peak, single
precision, combination of fused multiply-add operations (floating-point multiply-add operations
performed in one step)

shared goals. Smart cameras can, for example, be mounted on mobile platforms that
introduce constraints on the supportable algorithmic complexity and the need for
increased power efficiency.

Video data can be processed on smart cameras using Graphics Processing Unit
(GPU) platforms [10].GPUs can achieve high performance in terms of Floating-point
Operations Per Second (∼8 TeraFLOPs or TFLOPs) but have several drawbacks. The
power consumption of such devices is high (∼250W) and great effort is required
to maintain low working temperatures. In turn, devices get physically heavier and
are not employable for mobile platforms (e.g. unmanned aerial vehicles). However,
embedded GPUs can offer an interesting trade-off among processing power, power
consumption and operating temperatures. Examples of embedded GPUs are from
NVIDIA (Tegra K1), AMD (E6760, E8860) and Intel (HD5200) (Table1.1). These
embedded GPUs offer substantial floating point compute power for inherently mas-
sively data parallel processing tasks, which are quite common in image and video
processing.

As embedded platforms are being used for computing tasks with ever increasing
computational complexity, the level of performance expected fromembedded proces-
sors is also increasing. The main trend in both embedded and desktop computing is
shifting from highest performance to highest performance per watt [11].

Engineers are moving towards many-core platforms with much lower power con-
sumption (∼2W) at the cost of lower performance (∼80 GigaFLOPs or GFLOPs).
By implementing many-core template architectures [12] on advanced silicon tech-
nologies like FD-SOI (Fully Depleted Silicon on Insulator), the GFLOPs/W ratio can
be improved [13]. For example, a ratio of 20 GFLOPs for 105 mW, or 380 GFLOPs
for 2W, could be achieved in the next few years.

In order to have flexible platforms that simultaneously meet performance and
power efficiency targets, fixed function hardware blocks can be combined with spe-
cialised accelerators (e.g. DSP, FPGA, GPU) and/or general purpose processors
(e.g. ARM, x86). This approach is already in use in modern Systems on a Chip (SoC)
with successful results. Specialised accelerators and general-purpose processors have
fixed function hardware blocks that implement frequently used mathematical oper-
ations (e.g. transcendental functions) or application-specific tasks (e.g. block sum
of absolute values computation for motion estimation). Even larger fixed function
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hardware blocks with limited control parameter programming functionality are used
for tasks such as video encoding and image/video filtering.

Heterogeneous platform architectures for smart cameras are available and we can
identify two broad processing architectures, namely General-Propose Symmetric
Multi-Processors (GPSMP), and General-Purpose computing on Graphics Process-
ing Units (GPGPU) or programmable graphics units. GPSMPs have strong memory
consistency models that limit them to (about) a dozen cores, while GPGPUs exhibit
much more parallelism with thousands of cores and the same program/instruction
executed on several datasets simultaneously.

For example, many-core architectures are based on a Globally Asynchronous
Locally Synchronous (GALS) architecture [14] where a number of synchronous
tiles are connected through an asynchronous NoC (Network on Chip). Each tile can
have its own clock and power domain and is made of up to 16 Processing Elements
(PE), each with their own flow of instructions, connected in an SMP fashion around
local memory [12]. Because each cluster is controllable in frequency and voltage,
the overall available computing power can be adjusted to the computing demand,
therefore also controlling electrical power (Fig. 1.1). This kind of architecture can
be further tuned for video analytics by means of hardware accelerating blocks in
clusters (i.e. a mixed hardware-software many-core) or by dedicated instructions
(e.g. 16 bit floating point arithmetic or specific instructions to compute the sum of
absolute difference on arrays).

Solutions from low-power embedded systems, such as GALS many-cores on
FD-SOI, can bring significant benefits faster than the downscaling of desktop tech-

Fig. 1.1 NoC-based GALS architecture with four many-core clusters (power + clock) with four
Processing Elements (PE) per cluster. Key: GP general purpose
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Fig. 1.2 Positioning of many-core with respect to General-Propose Symmetric Multi-Processors
(GPSMP) and General-Purpose Computing on Graphics Processing Units (GPGPU) [12]

nologies. For instance, many-core template architectures can be specialised by class
of applications. This can be done either through dedicated hardware blocks or by
means of additional instructions, and can also provide fine-grain power control, e.g. at
the cluster level. These architectures are more programmable, especially when data-
dependent algorithms are being used, such as in video analytics and data fusion.

Such a variety of platforms leaves room formoreflexible, fully programmable, and
possibly heterogeneous many-core platforms that can serve data-dependent classes
of algorithms. Figure1.2 summarises the positioning of many-core with respect to
traditional architectures.

Real-time algorithms currently running on smart cameras include motion detec-
tion, block-based motion estimation, adaptive histogram equalisation, bounding-box
drawing, denoising, sharpening along with basic raw sensor data processing such as
demosaicing, normalisation and colour processing [15, 16].Most of these algorithms
achieve real-time performance for standard definition frame resolution (PAL, NTSC
or VGA) and typically with the help of platform (ARM + ASIC or ARM + ASIC +
DSP/FPGA) optimised code. However, increasing frame rates, bit depths and frame
resolutions are affecting current implementations. The need for hardware improve-
ments providing higher memory bandwidth and processing is thus increasing.

The adoption of compute-capable GPUs in embedded systems can enable multi-
threaded data parallelism [17]. OpenCL [18] can be used for programming hetero-
geneous multi/many-core platforms to achieve data and task-level parallelism. It
is possible to off-load compute and memory bandwidth intensive frame process-
ing to GPUs, or similar multi-core co-processors, leaving the remaining embedded
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processors available for additional functionality that best fits their architecture [19–
21]. However, it is possible that the porting of some algorithms on smart cameras,
which integrate parallel devices such as GPUs or multi-core accelerators, may not be
able to achieve user-expected performance levels. This concern ismainly due to algo-
rithm specifics, limited memory and core clock speeds, limited power consumption
requirements or strict thermal budgets. Importantly, the nature of some algorithms
may also not allow parallelisation [22–24].

Engineers are hence coping with the portability of algorithms from non-integrated
to embedded processors. The major issue is achieving the same performance on both
device types. This target motivates the integration of programmable accelerators
inside the board to speed-up basic operations such as pixel-wise frame difference.
Another key aspect is the programmability of the various kinds of architectures and
portability of the application code [25]. This will be achieved by using industrial
frameworks that bring together extensions to existing languages with their runtime
systems [18, 26, 27], or by using emerging frameworks that address the specific
needs of image processing algorithms and video analytics [28, 29].

1.3 Networks of Smart Cameras

Modern large area surveillance networks support multiple high-resolution cameras
with high frame-rate video streams. Centralised data processing requirements can
be addressed by increasing the memory and compute bandwidth, for example via
processing units that employ highmemory bandwidth andhardware accelerators such
as GPUs. Such hardware accelerators can provide substantial performance gains and
subsequently achieve much larger camera-feed per processor ratios [30]. Alterna-
tively, a mixed centralised and distributed processing model can reduce both the
transmission bandwidth between edge nodes (e.g. smart cameras) and a central con-
trol station and, possibly, the amount of processing that needs to be done at the central
station.

Manual configuration of cameras in large area surveillance networks is costly,
thus making autonomous and self-adaptive smart cameras desirable. Self-adaptive
smart cameras must be capable of self-calibration, cooperation with heterogeneous
hardware to identify neighbouring cameras and satisfy task requirements [31]. The
advances in low-power computing discussed in the previous section bring computing
power near to the sensors, which is key to reducing communication overheads.

Several solutions exist that attempt to interface heterogeneous cameras in a net-
work, although none claim outright universality. An example is the Camera Link
standard, version 2.0 managed by the Automated Imaging Association (AIA) [32].
Camera Link specifies camera connectors and a real-time communications protocol,
provides standardised connections to programmable circuit hardware (e.g. Frame
grabbers, FPGAs), and has enjoyed some market adoption. Hybrid analog and dig-
ital cameras are currently necessary to allow heterogeneous network devices to
inter-connect. Analog to IP converters help integrate legacy analog systems into
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IP-networks, though with very limited sensor control. Since components within
smart cameras, or smart cameras themselves, are produced by multiple vendors,
the collaboration among cameras has to be achieved among bespoke systems.

Two standards for IP cameras are emerging as dominant players in the market,
the Physical Security Interoperability Alliance (PSIA) standard [33] and the Open
Network Video Interface Forum (ONVIF) specification [34].

PSIA covers a range of products, not limited to IP cameras. The group behind
PSIA formed from smaller companies and has seen reasonable adoption of its stan-
dard for IP video. The PSIA Recording and Content Management (RaCM) spec-
ification, combined with the PSIA IP Media Device specification, enables Digital
Video Recorders, Network Video Recorders and Video Management Systems from
different manufacturers to interoperate and to control different devices (e.g. cameras
and encoders) in a video surveillance network.

ONVIF (started in 2008 by Axis communications) defines a common protocol
for the exchange of information between network video devices, including auto-
matic device discovery, video streaming and metadata. The standard is aimed at the
surveillance market for intelligent cameras and analytics. In September 2013 more
than 3,700 products were ONVIF conformant and more than 460 manufacturers,
distributors and others were ONVIF members.

Software interoperability solutions have also been emerging. Genetec, for exam-
ple, provides a software solution by the name of Omnicast [35], which claims to
integrate a large number of IP cameras in such a way that an existing infrastructure
should be interoperable with any new hardware selected by a customer.

A smart platformmay incorporate multiple sensors, and blend them to boost event
detection and classification performance. Night vision modules [36] and stereo pairs
[37] can be embedded in smart cameras to boost perceptive capabilities. 3D object
measurements can be used to improve type classifications [38] and to increase robust-
ness in the case of occlusions [39, 40]. Smart cameras can perceive the surround-
ings also by integrating other sensors, such as microphones for gunshot detection
and localisation, infrared motion sensors and radio-frequency identification for staff
authorisation [41].A video streamassociated to an audio stream to enhance detection,
identification and classification of events, and can broaden the type of applications
that can be addressed, such as automatic camera re-orientation when an audio source
location of interest is detected [42], or multi-modal object tracking [40, 43]. Some
classes of sound events have been accurately detected and classified in research
[44, 45] and in market products [46, 47]. Further enhancements involve robustness
against difficult noise conditions and source localisation [48]. For the latter, dedi-
cated acoustic sensors can be based on direction of air particles flow [49, 50] or
beam-forming with time difference of arrival [51]. In order to increase the detection
rate, one can employ an integrated solution of an acoustic-enabled Pan-Tilt-Zoom
camera with sound source classification and localisation [42] (Fig. 1.3).
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Fig. 1.3 General scheme of sound source detection, localisation and tracking, with automatic
camera positioning. Key. PTZ pan-tilt-zoom

1.4 Privacy

Cooperation between smart cameras may lead to potential security problems as data
communications may be accessible to unauthorised third-parties [52]. Moreover,
because of the use of images of individuals, privacy has to be considered in the
design of cognitive and perceptive video systems. Since embedded image process-
ing supports detection of objects of interest using raw sensor data, object masking, as
the simplestmean of privacy protection, can be performed before stream encoding for
transmission [53]. The original images could be encrypted and stored in the camera
itself for a short period of time. Privacy in surveillance can be addressed in numerous
ways [54]. Generally, people’s faces and license plates are the most prominent per-
sonal information readily extracted. A range of privacy-protection algorithms can be
directly implemented in smart cameras in order to achieve a sufficient level of privacy
in secure data communications. One simple approach is streaming-on-demand, in
which the camera notifies an operator of detected events, and the operator engages
the video stream if required. In such an approach the processing and archiving could
be done within the camera itself [53].

Real-time anonymisation can also be a solution to the privacy problem [52]. People
in a scene can bemade anonymous by blurring the portion of the images representing
their face and by storing the original non-blurred face for future use, e.g. inside an
encrypted watermark. To reduce privacy-loss due to low face detection accuracy
the whole top part of the detected object’s silhouette can be masked. This reduces
false-negatives as moving object detection can be considered reliable in most cases.
Face blurring ensures that identities of people are safely managed, but at the same
time the process of anonymisation can make other tasks difficult to perform, such as
person re-identification. This can be dealt with by parameterisation of the original
face images. Instead of distributing an image, the re-identification among numerous
cameras could be based on numerical description—image features are not directly
associated with the person identity, but are useful in confirming a visual similarity
of objects seen by various cameras [55, 56].
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Selective data erasure for privacy protection assumes that all footage, except
identifiably important videos, should be deleted after predefined short periods of
time. Important videos could be defined by event detection and re-identification
of individuals [57] or with abandoned luggage, counter-flow and barrier crossing
detection [58].

Smart camera networks could generate a fully symbolic representation of the
monitored scene state (e.g. number of people entering through a particular door or
in a highly sensitive zone or events of barrier crossing per hour). These could be
the only data transmitted to an end-user application by re-creating a virtual reality
representation of the real scene—anonymous avatars walking in a 3D environment,
mimicking a person’s behaviour, providing an operator with a comparable situational
awareness to that of a traditional video feed [59].

1.5 Market Expectations

TypicalCCTV (smart cameras for surveillance) end-user budgets allow them to spend
only a small amount per camera as CCTV procurement is often part of a small phys-
ical security budget which tends to be seen as a drain on an organisation’s resources.
CCTV installation is traditionally a highly competitive, price-sensitive market with
slow-growth. The addition of smart cameras has allowed a small increase in prices to
be introduced, but in general CCTV users commonly expect the same or only mar-
ginal increases in price per camera. This effective cap on unit cost may have tended
to force manufacturers, and their algorithm developers, to constrain their approaches
to low computational cost processes that will run on standard Personal Computer
(PC) architectures, thus tending to force smart camera system developers to limit
themselves to low-computational complexity approaches to basic visual process-
ing steps such as object detection, classification and tracking. Besides the constant
search for better algorithmic approaches, huge increases in processing power are
needed to ultimately allow high frame-rates, image resolutions and motion, texture
and colour modelling to be utilised. For example, global minimisation techniques
such as Simulated Annealing or Gibbs Markov Random Fields [60] can require mil-
lions of operations per pixel, and these might be a small part of a much larger set
of complex processing stages. Whilst optimisations and cuts often help, they do not
allow the developer free reign in combining the ideal combination of processing
steps. In a recent thorough review of pedestrian classifiers [1], the best performing
classifier was running at roughly five minutes per frame on standard NTSC images
(although the authors note that many speed-ups are possible).

The introductionof cameras,with at-the-edgeprocessing capabilities, is beginning
to improve the situation, but cannot currently offer the level of processing that the
most robust visual processing would consume.

CCTV end users tend to either have little or no conception of the potential offered
by the current breed of commercial systems. Or have wildly over-optimistic expecta-
tions, perhaps fuelled by film and television (and also over-selling by some systems
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salespersons), ofwhat is possible using smart cameras.Worse still, developers seldom
get to understand the true needs or requirements of CCTV end-users. This lack of
dialogue leads to a technology driven set of applications that seldom meet a genuine
end-user need. A case in point might be the smart camera systems offering ‘loitering’
detection, often marketed into the public transport sector. ‘Loitering’ detection is a
natural spin-off of people tracking technologies. However, in the transport domain,
the incident of ‘loitering’ passengers is so high (i.e. waiting for connections is a nat-
ural part of travel) as to have little or no value to the end user. At the time ofmarketing,
the purchaser would be presented with the scenario that loitering individuals up to no
good would be detected, which sounds attractive, due to the semantic overloading of
the term ‘loitering’. Unfortunately, after a system is in operational use they then dis-
cover it cannot distinguish between ‘good’ and ‘bad’ loitering. This poor experience
then feeds into the end user’s negative perceptions of the benefits of smart cameras,
and reduces their confidence in the concept, and reinforces the resistance to pay a
significant mark-up on top of the CCTV cost for smart camera capabilities. High
false alarm rates and the mismatching of capability to user needs therefore holds up
both commercial progress and application performance, in a negative feedback loop
(Fig. 1.4).

The smart cameramarket has seen a plethora of relatively low-cost systems appear
in the last few years. Typical systems use a standard PC-based architecture and most

Fig. 1.4 Perceived market failure due to poor requirements definition and low smart CCTV user
confidence
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use standard CPU processing, although smart cameras with embedded systems have
improved the computational power available per camera.

The preceding comments (summarised in Fig. 1.4) might seem to paint a rather
bleak future for smart cameras; however, there are ways forward. The push for busi-
ness innovation over the last decade has shown that by merging previously disparate
information sources new and valuable knowledge can be gained. Such gains can be
the basis of developing new business cases that change the smart camera system
from being seen as a drain on resources to being a business opportunity and a rev-
enue generator in itself. In essence, we should try and offer a surveillance capability
that pays for itself. For example (i) reduce human work load or increase productivity
(e.g. monitormore cameras with same number of staff) by using analytics to pre-filter
large video archives for relevant information; (ii) preventative security (e.g. reduce
vandalism repair costs in the Rail industry via detection of intruders at Rail stock
yards and preventing graffiti tagging; (iii) create metadata that can be sold or aid
the business and show a customer how to do it (e.g. counting the number of people
passing specific locations in transport hubs to set advertising rates, and subsequently
verify to advertisers that “hit rate” targets were met).

Another key aspect to managing user expectations and the acceptance of smart
cameras is that the installation and maintenance of such systems should be as easy,
robust and self-adaptive as possible. Additionally, honest collaboration with the end

Fig. 1.5 Market success model that would allow end users to see smart CCTV systems as a benefit.
COPCAMS cognitive and perceptive cameras (http://copcams.eu)

http://copcams.eu
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users is important to meet their expectations as opposed to proposing products that
are a poor fit or unsuitable for their purposes. A recent trend in this area has been for
sellers to appoint a “Customer’s friend” (an extension of the Account Manager role).
This individual works with the user organisation and challenges their own company
where they see any sign of a mismatch or over-selling.

The goal is to create a beneficial circle (Fig. 1.5) so that as end users start to see
a smart CCTV system as a net benefit, there is a potential for procurement budgets
to be raised because they can now pay for themselves. That could (or should) lead
to a more performance-based competitive market as opposed to a cost-competitive
one, and it would enable the advancement of video analytics work using superior
hardware and heavier investment in research and development costs.

New capabilities can therefore be generated, new products can be offered to cus-
tomers and new applications can be better matched to real customer requirements.
Finally, we should achieve the removal of existing negative feedback loops and the
closure of a positive beneficial circle with a new level of end user confidence and
approval.

1.6 Conclusions

Today’s mobile and embedded processors are capable of what desktop computers
could do ten years ago at substantially lower power consumption levels [61, 62].
As embedded platforms are improving in terms of raw computational power and
available memory bandwidth, it is becoming possible to implement computationally
complex processing tasks on these platforms. This trend is likely to continue thanks to
developments in silicon process technology and architectural breakthroughs. Smart
cameras are already benefiting from these developments by incorporating the newly
available processing power to tacklemore andmore complex processing tasks locally
leading to improved response times, more capable algorithms, lowered network traf-
fic and enhanced overall system performance.

Nowadays heterogeneity is key given the diversity of cameras that can be found in
many large legacy networks. This capability will be needed for some time to come,
as the renewal cycle for large camera networks is typically long due to the large costs
involved in network, camera and analytics replacement.

Equipping smart cameras with a variety of sensors can result in a broader range of
business models, for example an increased number of possible events to be detected
(e.g. gunfire, screaming), and robustness in extreme conditions (e.g. object detection
in visionversus thermal vision in low light).Advanced technologies canbe applied for
privacy protection, increasing the societal acceptance of surveillance or to broaden
the range of surveillance applications, for example by enabling the collaboration
amongst aerial and terrain vehicles.
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TÜBİTAK—The Scientific and Technological ResearchCouncil of Turkey (Toygar Akgun), theUK



1 Towards Cognitive and Perceptive Video Systems 15

Technology Strategy Board (Charles Attwood, Andrea Cavallaro, Fabio Poiesi), French Ministère
de l’économie, du redressement productif et du numérique (Christian Fabre) and Polish National
Centre for Research and Development (Piotr Szczuko) as part of the COPCAMS project (http://
copcams.eu) under Grant Agreement number 332913.

References

1. Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state
of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

2. Koblar V, Filipic B (2013) Designing a quality-control procedure for commutator manufactur-
ing. In: Proceedings of multiconference information society, Ljubljana, Slovenia, Oct 2013, pp
55–58

3. Stalder S, Grabner H, Van Gool L (2010) Cascaded confidence filtering for improved tracking-
by-detection. In: Proceedings of European conference on computer vision, Crete, Greece, Sept
2010, pp 369–382

4. Abdelkader MF, Chellappa R, Zheng Q, Chan AL (2006) Integrated motion detection and
tracking for visual surveillance. In: Proceedings of the computer visionsystems, New York, pp
28–34

5. Kiryati N, Raviv TR, Ivanchenko Y, Rochel S (2008) Real-time abnormal motion detection in
surveillance video. In: Proceedings of international conference on patternrecognition, Tampa,
Dec 2008, pp 1–4

6. BhargavaM, Chen CC, RyooMS, Aggarwal JK (2009) Detection of object abandonment using
temporal logic. Mach Vis Appl 20(5):271–281

7. Smith K, Quelhas P, Gatica-Perez D (2006) Detecting abandoned luggage items in a public
space. In: Proceedings of computer vision and pattern recognition, workshop on performance
evaluation of tracking and surveillance, New York, June 2006, pp 75–82

8. Szwoch G, Dalka P, Czyzewski A (2010) A framework for automatic detection of abandoned
luggage in airport terminal. In: Tsihrintzis GA, Damiani E, Virvou M, Howlett RJ, Jain LC
(eds) Smart innovation, systems and technologies, intelligent interactive multimedia systems
and services. Springer, Heidelberg, pp 13–22

9. Chen X, Yang SX (2013) A practical solution for ripe tomato recognition and localization. J
Real-Time Image Proc 8(1):35–51

10. What is GPU accelerated computing? (2014) http://www.nvidia.com/object/what-is-gpu-
computing.html. Last accessed June 2014

11. DARPA PERFECT (2014) http://www.darpa.mil/Our_Work/MTO/Programs/Power_
Efficiency_Revolution_for_Embedded_Computing_Technologies_(PERFECT).aspx. Last
accessed June 2014

12. Melpignano D et al (2012) Platform 2012, a many-core computing accelerator for embed-
ded SoCs: performance evaluation of visual analytics applications. In: Proceedings of design
automation conference, San Francisco, June 2012, pp 1137–1142

13. Wilson R et al (2014) A 460mhz at 397mv, 2.6ghz at 1.3v, 32b vliw dsp, embedding fmax
tracking. In: Proceedings of solid-state circuits conference digest of technical papers, San
Francisco, Feb 2014, pp 452–453

14. Meincke T et al (1999) Globally asynchronous locally synchronous architecture for large high-
performance ASICs. In: Proceedings of circuits and systems, Orlando, July 1999, pp 512–515

15. Smart cameraNI (2014) http://sine.ni.com/nips/cds/view/p/lang/en/nid/210036. Last accessed
June 2014

16. Belbachir AN, Nabil A (eds) (2010) Smart cameras. Springer, New York
17. MALI OpenCL SDK (2014) http://malideveloper.arm.com/develop-for-mali/sdks/mali-

opencl-sdk/. Last accessed June 2014
18. Open Computing Language (2014) https://www.khronos.org/opencl. Last accessed June 2014

http://copcams.eu
http://copcams.eu
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.darpa.mil/Our_Work/MTO/Programs/Power_Efficiency_Revolution_for_Embedded_Computing_Technologies_(PERFECT).aspx
http://www.darpa.mil/Our_Work/MTO/Programs/Power_Efficiency_Revolution_for_Embedded_Computing_Technologies_(PERFECT).aspx
http://sine.ni.com/nips/cds/view/p/lang/en/nid/210036
http://malideveloper.arm.com/develop-for-mali/sdks/mali-opencl-sdk/
http://malideveloper.arm.com/develop-for-mali/sdks/mali-opencl-sdk/
https://www.khronos.org/opencl


16 T. Akgun et al.

19. Gaster B, Howes L, Kaeli DR, Mistry P, Schaa D (eds) (2011) Heterogeneous computing with
OpenCL. Elsevier, Amsterdam

20. Munshi A, Gaster B, Mattson TG, Fung J, Ginsburg D (eds) (2011) OpenCL programming
guide. Addison-Wesley Professional, New Delhi

21. Scarpino M (ed) (2011) OpenCL in action: how to accelerate graphics and computations.
Manning Publications, Waltham

22. Jaja J (ed) (1992) Introduction to parallel algorithms. Addison-Wesley Professional, Reading
23. Kirk DB, Hwu WW (eds) (2012) Programming massively parallel processors: a hands-on

approach. Morgan Kaufmann, San Francisco
24. Roosta SH (ed) (2000) Parallel processing and parallel algorithms: theory and computation.

Springer, New York
25. Fabre C et al (2013) PRO3D, programming for future 3D manycore architectures: project

interim status. Formal Methods Compon Objects Lect Notes Comput Sci 7542:277–293
26. A parallel computing platform and programming model (2014) http://www.nvidia.com/object/

cuda_home_new.html. Last accessed June 2014
27. A specification for parallel programming (2014) http://openmp.org/wp/. Last accessed June

2014
28. Lepley T, Paulin P, Flamand E (2013) A novel compilation approach for image processing

graphs on amany-core platformwith explicitlymanagedmemory. In: Proceedings of compilers,
architecture and synthesis for embedded systems, Montreal, pp 1–10

29. Llopard I, Cohen A, Fabre C, Hili N (2014) A parallel action language for embedded appli-
cations and its compilation flow. In: Proceedings of software and compilers for embedded
systems, St. Goar, June 2014, pp 118–127

30. Guler P, Emeksiz D, Temizel A, Teke M, Temizel T (2013) Real-time multi-camera video
analytics system on GPU. J Real-Time Image Process 8(4):389–401

31. SanMiguel JC, Micheloni C, Shoop K, Foresti GL, Cavallaro A (2014) Self-reconfigurable
smart camera networks. IEEE Comput 47(5):67–73

32. Camera Link Standard (2014) http://www.visiononline.org/vision-standards-details.cfm?
type=6. Last accessed June 2014

33. Open Network Video Interface Forum (2014) http://www.onvif.org/. Last accessed June 2014
34. The Physical Security Interoperability Alliance (2014) http://www.psialliance.org/. Last

accessed June 2014
35. OmniCast (2014) http://www.genetec.com/solutions/all-products/omnicast. Last accessed

June 2014
36. Corsi C (2014) Infrared: a key technology for security systems. In: Baldini F et al (eds) Sensors,

lecture notes in electrical engineering, vol 162. Springer, Heidelberg, pp 37–42
37. Houben Q, Czyz J, Tocino D, Debeir O, Warzee N (2009) Feature-based stereo vision using

smart cameras for traffic surveillance. In: Fritz M, Schiele B, Piater JH (eds) Computer vision
systems. Springer, Heidelberg, pp 144–153

38. Wang Y, Kato J (2012) Integrated pedestrian detection and localization using stereo cameras.
In: Hansen J, Boyraz P, Takeda K, Abut H (eds) Signal processing for in-vehicle systems and
safety. Springer, Heidelberg, pp 229–238

39. Mittal A, Davis LS (2002) M2Tracker: a multi-view approach to segmenting and tracking
people in a cluttered scene using region-based stereo. In: Proceedings of European conference
on computer vision, Copenhagen, May 2002, pp 18–22

40. SzwochG, Dalka P, Czyzewski A (2013) Spatial calibration of a dual PTZ-fixed camera system
for tracking moving objects in video. J Imaging Sci Technol 57(2):1–10

41. Haering N, Venetianer PL, Lipton A (2008) The evolution of video surveillance: an overview.
Mach Vis Appl 19(5–6):279–290

42. Lopatka K, Kotus J, Czyzewski A (2011) Application of vector sensors to acoustic surveillance
of a public interior space. Arch Acoust 36(4):851–860

43. Arguedas VF, Zhang Q, Izquierdo E (2014) Multimodal fusion in surveillance applications.
In: Ionescu B, Benois-Pineau J, Piatrik T, Qunot G (eds) Fusion in computer vision. Springer,
Heidelberg, pp 161–184

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://openmp.org/wp/
http://www.visiononline.org/vision-standards-details.cfm?type=6
http://www.visiononline.org/vision-standards-details.cfm?type=6
http://www.onvif.org/
http://www.psialliance.org/
http://www.genetec.com/solutions/all-products/omnicast


1 Towards Cognitive and Perceptive Video Systems 17

44. Kotus J (2010) Application of passive acoustic radar to automatic localization, tracking and
classification of sound sources. In: Proceedings of information technology, Gdansk, June 2010,
pp 67–70

45. Kotus J, Lopatka K, Czyzewski A (2014) Detection and localization of selected acoustic events
in acoustic field for smart surveillance applications. Multimed Tools Appl 68(1):5–21

46. CiscoGunshot Location Surveillance (2014) http://www.cisco.com/web/strategy/government/
solution_GunshotLocationSurveillance.html. Last accessed June 2014

47. SST, Shotspotter Flex (2014) http://www.shotspotter.com/solutions. Last accessed June 2014
48. Lopatka K, Kotus J, Czyzewski A (2014) Evaluation of sound event detection, classification

and localization in the presence of background noise for acoustic surveillance of hazardous
situations. In: Andrzej D, Andrzej C (eds) Multimedia communications, services and security
communications in computer and information science, vol 429. Springer, pp 96–110

49. Microflown (2014) http://www.microflown.com/. Last accessed June 2014
50. Wind J, de Bree H-E, Buye X (2010) 3D sound source localization and sound mapping using

a PU sensor array. In: Proceedings of AIAA/CEAS aeroacoustics, Stockholm, June 2010
51. Kellermann W (2008) Beamforming for speech and audio signals. In: Havelock D, Kuwano

S, Vorlander M (eds) Handbook of signal processing in acoustics, vol 691–702. Springer,
Heidelberg

52. Cichowski J, Czyzewski A (2011) Reversible video stream anonymization for video surveil-
lance systems based on pixels relocation and watermarking. In: Proceedings of international
conference on computer vision workshops, Barcelona, Nov 2011, pp 1971–1977

53. Helten F, Fischer B (2004) Reactive attention: video surveillance in Berlin shopping malls.
Surveill Soc 2(2/3):323–345

54. Cavallaro A (2007) Privacy in video surveillance. IEEE Signal Process Mag 24(2):166–168
55. Dalka P (2012) Multi-camera vehicle tracking using local image features and neural networks.

In: Andrzej D, Andrzej C (eds) Multimedia communications, services and security. Commu-
nications in computer and information science, vol 287. Springer, Heidelberg, pp 58–67

56. Hamdoun O, Moutarde F, Stanciulescu B, Steux B (2008) Person re-identification in multi-
camera system by signature based on interest point descriptors collected on short video
sequences. In: Proceedings of distributed smart cameras, Stanford, Sept 2008, pp 1–6

57. D’Arminio P et al (2012) Technologies for granting balance between security and privacy in
video-surveillance. In: Proceedings of intelligence and security informatics, Arlington, VA,
Aug. 2012, pp 278–283

58. Dalka P, Bratoszewski P (2013)Visual detection of peoplemovement rules violation in crowded
indoor scenes. In: Andrzej D, Andrzej C (eds) Multimedia communications, services and
security. Communications in computer and information science, vol 368. Springer, Berlin, pp
48–58

59. Szczuko P (2014) Augmented reality for privacy-sensitive visual monitoring. In: Dziech A,
Czyzewski A (eds) Multimedia communications, services and security. Communications in
computer and information science, vol 429. Springer, Switzerland, pp 229–241

60. Kato Z, Zerubia J (2012) Markov random fields in image segmentation. Found Trends Sig
Process 5(1–2):1–155

61. NVIDIA Whitepaper (2014) http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-
K1-whitepaper.pdf. Last accessed June 2014

62. SAMSUNG Whitepaper (2014) http://www.samsung.com/global/business/semiconductor/
minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.
pdf. Last accessed June 2014

http://www.cisco.com/web/strategy/government/solution_GunshotLocationSurveillance.html
http://www.cisco.com/web/strategy/government/solution_GunshotLocationSurveillance.html
http://www.shotspotter.com/solutions
http://www.microflown.com/
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-K1-whitepaper.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-K1-whitepaper.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf


Chapter 2
Access-Centric In-Network Storage
Optimization in Distributed
Sensing Networks

Carsten Grenz, Sven Tomforde and Jörg Hähner

Abstract Distributed sensing networks are getting increasingly complex these days.
The main reason are the changing demands of the users and application scenarios,
which require multipurpose systems. Enabled by continuously improving compu-
tational and storage capacities of sensors, this development leads to an increasing
number of different algorithmswhich run concurrently in a sensing network. Thereby,
they enable sensor-actuator platforms to performvarious kinds of analysis and actions
in parallel. Within such a sensor network a variety of algorithms is performed simul-
taneously. When developing distributed vision and control algorithms, developers
focus mainly on the consecutive processing stages. Such a process typically begins
with perceiving raw sensor data and terminates with delivering high-level event data
to responsible entities. Thereby, different stages may be performed at varying loca-
tions within the underlying network. Although the researchers may apply custom
optimizations to their data flows, these are highly specific. During design time, it is
impossible to anticipate each system environment or predict their algorithms’ pos-
sible interactions and synergies with other data flows. We propose a generic storage
architecture which separates algorithms from data storage and retrieval. By mak-
ing use of the fact that most data in sensing networks refers to geographic areas,
our architecture takes care of the data flow and its online optimization throughout
the network at runtime. By decoupling the processing stages from the data flow,
we allow for self-organizing meta-level optimizations of data placement in the net-
work. Moreover, this approach even makes inter-algorithmic optimizations possible,
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if different algorithms process similar data within their step-wise processing logic.
With the introduction of the access-centric storage paradigm, we prove to reduce
network load and query latency at the same time at runtime.

2.1 Introduction

Theongoing advances in thefield of smart sensing applications lead to newchallenges
concerning requirements of communication middlewares and protocols for such sys-
tems. Especially, the trend toward integration of different kinds of sensors, on the
same hardware platform as well as on different hardware platforms, can be observed.
This diversification process leads to new data-aggregation and -fusion algorithms
and, therefore, to many kinds of generated data and metadata.

Classical sensing networks mostly focused on specific tasks they were designed
for. These networks are called mono-tasked systems. One representative of this
class are wireless sensor networks assembled of low-powered Mica2 motes which
take temperature and humidity measurements, and transport them to a base station.
Typically, these systems were optimized by domain specialists to efficiently and
effectively solve their specific task.

The advances in the field of computational power and network capacities led to
much more elaborated kinds of sensing networks and applications, e.g., the integra-
tion of visual sensors into sensing nodes led to the development of smart camera
networks. The main goal of such a smart camera is the extraction of high-level
information from pictures taken by the camera. While the development started with
vision algorithms applied to single cameras, nowadays, researchers apply various
data-fusion algorithms to combine data of different cameras using networking capa-
bilities [22]. This way, they generate contextual metadata to gain person-specific
information or create situational descriptions like movement patterns. One step in
the further research of smart cameras was the application of movement capabilities,
e.g., pan-tilt-zoom actuators or moving robots, which enable the cameras to change
their field of views (see [11, 26]). Using communication protocols from the peer-
to-peer computing domain, researchers built distributed and self-organizing vision
and control algorithms, which increased the efficiency and effectiveness of those
systems.

Nowadays, the trend goes towardmultipurpose systems integrating various sensor
platforms and their specific algorithms [2]. This rise of heterogeneous systems leads
to sensor data being fed into the systems from different kinds of sensors. Simultane-
ously, an increasing number of algorithms works concurrently to fuse and aggregate
many kinds of descriptive metadata. Originally, the algorithms working in these
heterogeneous systems were not developed with such an integration in mind.
Moreover, they may even come from very different domains and it is not feasible
for any developer to anticipate every application scenario of their algorithms during
design-time, since an engineer naturally focuses on the main application scenario.
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Due to this different focus, today’s sensing networks are occupied with
uncountable flows of data and control packets of various applications which leads to
new challenges on different layers of the networks’ protocol stacks. This challenge
is arising in all complex smart sensing networks [6, 19].

A main concern of developers of distributed sensing algorithms is the emitted
network load and, from an application’s point of view, the latency of queries as well
as the responsiveness of their applications during runtime. Latency is especially an
issue, if the system serves some security-related function or if human operators are
part of the interaction loop. Although developers of distributed algorithms put in
huge efforts to optimize their own algorithms’ data flows, the effects of interaction
resulting from various distributed algorithms working on different subsets of the
available data is not predictable. Moreover, the algorithms have their own, and often
different, ways of coping with situations like node churn and other disturbances.
However, there mostly exists no notion of how the algorithms may share their data.
Therefore, each algorithm’s optimizations take only its own expected data flows into
account. Since the set of running algorithms accessing specific data items cannot be
determined, this may lead to unnecessary high network traffic and contention. In the
end, it is not possible for a developer to anticipate any future application scenario.

As a conclusion, it is unfeasible and often impossible for any developer to antici-
pate their algorithms’ application context, which consists of the system’s hardware-
parameters, the concurrently running other algorithms, and the behavior of people
interacting with the system and triggering events.

In this chapter, we meet these challenges presenting algorithms for a distributed
online storage optimization build into a storage framework. On the one hand, our
approach is general enough to be easily applied to various application scenarios of
smart sensor systems. On the other hand, it is specialized enough to allow dynamic
optimizations during runtime. Therefore, our framework offers a generalized inter-
face for georeferenced data items.

After characterizing our system model, we present the storage-latency search
problem.Afterwards, we introduce a generic storage layer for smart sensor nodes.We
investigate the architecture’s design space by discussing relevant parameters and their
dependencies, and analyze the interactions with the underlying routing model. In the
evaluation, we present appropriate metrics and show how our framework optimizes
the storage allocation during runtime proving the benefits of our approach.

2.1.1 Case Study: CamInSens

One example for a smart sensing system which uses multistage processing is the
CamInSens system [6, 10], which runs different high-level algorithms at the same
time relying on each others data. It integrates PC-based smart cameras with pan-
tilt-zoom functionality with Mica2 motes [3]. The system’s main goal is the online
extraction of persons’ trajectories and their annotation with adjacent event data. The
trajectories are acquired by single-camera multi-person trackers processing images
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Fig. 2.1 Example data flow of a multistaged algorithm

next to the source—meaning as closely to the visual sensor as possible [18]. Distrib-
uted multi-camera trackers, which use the output of trackers on different cameras,
build overall trajectories [19]. The smart cameras base their viewshed-planning on
current and predicted trajectories [12, 13]. In addition, another set of algorithms
annotates these trajectories with other events based on data from nearby sensors, i.e.,
recognized events in the surroundings of the Mica2 motes.

To illustrate this statement, Fig. 2.1 depicts an exemplary data flow for two sensors.
The figure shows the data flows of two smart cameras with the upper one being
accompanied by an additionalmote sensor. From left to right, one can see the different
levels of abstractions that match different communication primitives used. Level 0
represents the local recording of raw sensor data. At level 1, this data is processed
locally in order to extract first metadata, i.e., people’s positions and events like glass
breakage. This information is merged into short annotated tracks of people. On
the next level, geographically adjacent sensors merge their findings into contextual
abstractions. This behavior is applied gradually until a global abstraction is reached.
Depending on the user’s needs, he may access the merged global data at the control
room, or the contextual data stores of the different sensors. The latter case is especially
useful, if the usermoves through the regionunder observation and accesses the system
with an ad hoc connected device.

This example shows how people from different domains cooperate to develop
high-level algorithms for such systems. A modern sensor middleware should offer
a universal interface to integrate such heterogeneous entities. Moreover, it shows
a dimension of the incalculability of access patterns on data during design time of
system components, since the number of nodes, their distribution in the environment
and their interconnection is not set at design-time.

We are going to research this new area of interacting algorithms and present
a generalized self-organizing storage framework for smart sensing networks. Our
work enables developers and maintainers of self-organizing networks to concentrate
on their algorithmic developments while our distributed storage framework manages
and optimizes storage locations adaptively based on the current demand.
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2.2 Related Work

Our work originates from the idea of using a virtual coordinate overlay for fast and
transparent access to distributed resources which offers the interface of a distributed
hash table (DHT). Well-known examples of distributed hash tables for peer-to-peer
systems like the internet areChord [24] and content-addressable network (CAN) [20].
These approaches form an overlay network whose topology is independent from
the underlying network. Although they offer a general approach for the distributed
implementation of hash tables, theymay impose significant detours in the underlying
network. This leads to unwanted network load and is unfeasible for sensor networks
with their limited capabilities (e.g., bandwidth, energy consumption).

Considering in-network storage algorithms for sensor networks, the authors of
[23] proposed a widely adopted data-centric storage (DCS) paradigm. It makes use
of the position of the nodes and the data to store. Therefore, it uses a geographic
routing protocol, i.e., Greedy Perimeter Stateless Routing (GPSR) [14], to determine
actual storage positions. Depending on the position that is assigned to data, different
storage patterns can be reached. One example is location-centric storage, which
ensures that data is stored near its origin [7].

The authors of theGeographic Hash Table (GHT) combined the idea of determin-
ing storage positions using hash functions and the routing on the underlay network
using GPSR [21]. Their application of a hash function leads to an equal distribution
of data on the network nodes (given an uniform distribution of the nodes in space), but
they do not consider the imposed load on the network or individual nodes caused by
their distribution. Moreover, the authors of GHT consider a fixed number of queries
per second independently of the number of participating nodes. Consequently, they
argue that the overall usage of nodes decreases with an increasing number of nodes.
This differs from application scenarios such as smart camera networks, where many
nodes are considered to produce and consume data. We also make use of a virtual
coordinate space in our Lookup table while routing on real geocoordinates using
geographic routing protocols. But our approach uses a mutable virtual coordinate
space to optimize the storage allocation w.r.t. latencies.

SinceGHTdoes not take the actual network topology into account, different efforts
have been made to distribute the workload equally upon suited nodes: The authors
of ZGHT [16] try to improve the storage behavior by introducing zones, which are
responsible for similar amounts of replicated data. The goal when choosing the size
of a zone is to achieve a load balancing in terms of contained number of nodes. In
contrast to our approach, the ZGHT algorithm computes all zones centrally with the
knowledge of all nodes’ positions. A similiar approach is Q-NiGHT [4] which uses
nonuniform hash functions to meet the challenge of unequally distributed sensor
nodes. Another load-balancing approach is presented in [17] proposing a temporally
rotating hash function which changes the storage location in a predefined way during
runtime. Our approach, in contrast, focuses on the actual access patterns to data as
primary optimization objective and adapts the storage locations to a dynamically
changing system in a self-organizing way during runtime.
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The authors of [1] also consider the hop count as a criterion for data placement. As
part of their approach, a multicast-tree is generated. Nodes have to proactively join
and leave this tree. As opposed to our approach, there may only be one producer of
a data item and they solve the problem to optimally place successive replications of
the measured data items. Furthermore, they assume a fixed update rate of each data
item by its producer. Our approach, in contrast, is significantly more flexible as it
supports any number of producers and consumers with changing access frequencies.
Moreover, our algorithm has a smaller message overhead since no tree management
is necessary.

The authors of [5] argue for a layered architecture representing standardized inter-
faces and semantics. Within our concept, we utilize their notion and representation,
while presenting an approach with a varying focus.

2.3 System Model

Our system model extends a previously developed system model of smart camera
networks, see [9, 11]. The smart cameras and security personnel’s devices are dis-
tributed in a convex area of surveillance. All participating entities in the network,
i.e., smart cameras and the security personells’ hardware, are connected using IEEE
802.11b/g wireless LAN. The smart cameras are equipped with processing and net-
working capabilities. Therefore, all cameras are able to communicate with each other
using appropriate routing protocols.

As outlined above, all participating devices may acquire, aggregate, and store data
at the same time. Therefore, we introduced the notion of producers and consumers
in smart sensing networks [8]. The common case of these roles is the following: The
sensors, i.e., cameras in the system, are the producers of data. The security personnel
consumes this data using their workstations. These workstations may be central
control rooms as well as moving mobile entities, such as tablets or smartphones,
which are part of the wireless network. Furthermore, different algorithms on the
sensors may be consumers of each other’s data (see Fig. 2.2a, b).

Since all data in a smart camera network refers to geolocations, the data model
consists of two parts: the geolocation of an event and the event itself. The event
represents any event and may originate from an extraction from a visual algorithm,
e.g., a person’s position in space, or even an aggregated vector of data, e.g., a person’s
trajectory. Since the actual data is not of interest to our algorithm, we adapt the notion
of a distributed key-value store or distributed hash table (DHT). All anticipated data
items are relatively small compared to the storage of images, so they can easily reside
and migrate throughout the network.
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Fig. 2.2 a Initial query latency. The figure depicts a producer (left, yellow) and two consumers
(blue and green, right). Access is realized using put, get, and result messages. The latency expressed
in terms of hops in the network, i.e., the number of messages sent, sums up to 14 in this example.
b Optimized query latency. After data migration took place, the data is now allocated to the storage
node in the middle (red). Considering the current access pattern this leads to an optimized hop count
of 8. Thus, the overall network load is reduced significantly

2.4 Problem Definition

In order to demonstrate the applicability of our framework to different classes of
sensor networks, we present a formal representation of the storage allocation prob-
lem. By examining the key parameters of this problem, we give an overview of
possible application scenarios. Afterwards, we formulate the optimization problem
resulting from the storage allocation problem. Thereafter, we present our storage
framework for peer-to-peer systems and show how the problem becomes feasible if
it is solved in a distributed manner.
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The formal problem definition models the problem of assigning suitable storage
positions as a graph-based optimization problem [9]. It is based on an undirected
graph G = (V, E), namely the connectivity graph. Therefore, the graph contains a
set of vertices vi for every node i in the network. Furthermore, edges e j = {vk, vl}
exist iff node k and node l can bidirectionally communicate.

The nodes have the capability to store (atomic) data items σi consisting of a key
and a value, i.e.,

σi = 〈key, value〉

The key represents the geographical reference-position of the data item, the value
may be any kind of data. The overall data stored in the network is denoted by
Σ = ∪σi .

The goal of an in-network data storage algorithm is to assign each data item
σ ∈ Σ to a node v ∈ V , which will be responsible for its storage, delivery, and
update management. Therefore, the data-item-to-node assignment can be expressed
as a function

Allocate : Σ → V

which represents the storage location for all data items.
Furthermore, the nodes’ limitations are modeled as constraints. For example, the

storage limitation of eachnode is expressed by a function Mem:V → N representing
the number of objects σi , which can be stored at a node at the same time. Using this
function, the problem’s memory constraint can be expressed as:

∀vi ∈ V : |{ σ | Allocate(σ ) = vi }| ≤ Mem(vi ) (2.1)

Each data item σi can be accessed by various nodes with varying frequencies
and different operations, i.e., put, get, or delete operations. Therefore, the number of
accesses n of a specific access-type to σi from a node v ∈ V may be modeled as a
tuple:

accσi = 〈v, t ype, num〉

with v ∈ V, t ype ∈ N+, num ∈ N+

A set of n different accesses to σi is denoted as

ACCσi = {〈v1, t ype1, num1〉, . . . , 〈vn, t ypen, numn〉}

To calculate the costs of an access, the following definitions from graph theory
are used:

A path between two nodes from u to w is defined as a tuple:

p(u, w) = ({u, v1}, {v1, v2}, . . . , {vn−1, vn}, {vn, w})
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The length of a path p(v1, v2) is equal to the number of edges in the path and is
denoted by |p(v1, v2)|. The set of all paths connecting nodes u and w is P(u, w).

Let the shortest path between two nodes v1 and v2 in G be denoted as dG(v1, v2)
and be defined as:

dG(v1, v2) =

⎧
⎪⎨

⎪⎩

0 v1 = v2
minp∈P(v1,v2)|p(v1, v2)| P(v1, v2) 	= ∅
∞ otherwise

The costs of an access represent the impact it has on the network’s resources.
Since we are going to minimize the latency of accesses, the cost of an access is

defined as the minimal number of hops needed to access a data item given an instance
of a graph G. Moreover, the access type determines the messaging pattern used, i.e.,
the number of messages exchanged for a successful transaction. Therefore, the costs
for one access pattern accσi = 〈v, t ype, num〉 given a graph G and an allocation
Allocate is defined as

costs(G, Allocate, accσi ) = t ype · num · dG(v, Allocate(σi ))

2.4.1 Storage Latency Search Problem

The goal of the access-centric storage paradigm is to find an optimal solution for
the placement of data items in a distributed peer-to-peer system with the primary
goal to minimize the latency of issued queries measured by their hop counts. Given
the problem description and constraints above, the storage latency search problem
is defined as follows: Given a graph G and an access pattern ACC , find a complete
data allocation function Allocate which minimizes the following access costs:

min
∑

σi ∈Σ

∑

acc∈Accσi

costs(G, Allocate, acc)

= min
∑

σi ∈Σ

∑

acc∈Accσi

acc.t ype · acc.num · dG(acc.v, Allocate(σi ))

and meets all constraints in the form of formula (2.1).

2.5 Storage Framework

In the following section,wepresent our storage framework as amiddlewarewhich can
be integrated into any sensor node model by implementing its interfaces. Figure2.3
depicts an exemplary three-layered sensor node model with the storage middleware
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Fig. 2.3 Node architecture. The figure shows a three-layered sensor node with the storage middle-
ware located between the application and the routing layer. The arrows represent the collaboration
between the modules

placed between the application and the routing layer. In Sect. 2.5.2 we explain our
distributed online optimization algorithm for self-organizing data storage.

2.5.1 Architecture

Our storage middleware is located between the application layer and the routing
layer (see Fig. 2.3). As will be explained, our algorithm makes as few assumptions
about these other layers as possible.

The application layer encapsulates any sensing or control algorithm that stores
and retrieves georeference-based data. These algorithms may interact with any kind
of sensor or abstract data. To make use of the storage framework, an application has
to use the sleek interface of a distributed hash table as described in Sect. 2.5.1.1.
Therefore, the placement and distribution of data in the network is fully transparent
to the application. We abstract certain kinds of applications’ behavior in producer
and consumer modules.

The routing layer contains a geographic routing protocol, which operates on the
nodes’ positions during packet forwarding. In particular, our algorithms make use
of the capability of these protocols to determine so called home nodes. A node is
considered a home node for a specific coordinate, if it is the nearest node available
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w.r.t. the euclidean distance. However, it is important to note that the home node
might change due to node churn or movement.

The storage middleware is located in the layer between. It translates coordinates,
which are the keys of the queries, to virtual coordinates, which represent the actual
storage location of data items. This is done using a Lookup table that is available
at each node (see Sect. 2.5.1.2). Due to this translation, the whole optimization and
migration process is transparent to both, the routing and the application layer. There-
fore, standard geographic routing algorithms may be used on the lower layer. How-
ever, cross-layer optimizations may improve the performance as will be discussed in
Sect. 2.5.1.3.

Tooffer a general and extensible framework,we followa clean tier-based approach
as suggested in [5]. We chose a three-tiered approach which well be presented in
the following sections: Tier 2 contains the interface to the application layer. Tier 1
contains the key-space transformation which translates real geocoordinates to their
respective virtual coordinates, which represent the storage location of the associated
data items. And Tier 0 implements the interface to a geographic routing protocol.

2.5.1.1 Tier 2—API

In order to achieve a generic applicability for all kinds of application-level algo-
rithms, the storage layer offers a concise and general-purpose frontend API of a
distributed hash table (DHT-API). This way, the applications can make use of a
highly standardized interface. The available operations are:

• put(key,value)
• value = get(key)
• delete(key)

In the context of network performance andworkload, themain difference between
these operations is whether they are one-way messages with no return value, in this
case put operations, or if they require a returningmessage, e.g., get. Therefore, delete
messages are considered as to resemble one of the two kinds. In fact, this behavior is
represented by an access type parameter (see Sect. 2.4) which contains the number
of messages necessary for a complete interaction. This way, even more complex
query-response-acknowledgment-patterns can be represented.

2.5.1.2 Tier 1—Key-Space Transformation

The key-space transformation tier represents the main part of the algorithm. Its main
purpose is to translate keys, i.e., their geopositions, to their virtual pendants in order
to determine the current storage positions. Therefore, it implements the following
function:

geoposition = translate(key)
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While the translate operation is the main external function, this layer needs
some internal helper modules to offer its adaptive service. These three modules
are (see Fig. 2.3):

• The layer’s Lookup table provides valid, up-to-date storage nodes for queries at
any point in time.

• The dynamic reconfiguration module contains a statistics module. It takes care
of creating access models and determines the time and amount of migrations (see
Sect. 2.5.2).

• The local hash table stores data for which the node is responsible and logs
accesses.

2.5.1.3 Tier 0—Key-Based Routing

Although the storage position is determined based on virtual coordinates, the routing
happens on the actual networkusinggeographic routingmechanisms, e.g.,GPSR [14]
or Bi-Perimeter Routing (BPR) [7]. The implementation of the virtual address trans-
lation allows for using standardized and thoroughly researched geo-routing protocols
on the routing layer.

Since all changes of storage locations are transparent to the routing layer, amecha-
nism is necessary to enable the storage layer to update packets so that they reach their
correct destinations. Depending on the implementation of the storage layer and the
possibilities to extend the geo-routing protocol in use, different options are available
(see 1 and 2 in the following):

1. No changes to the routing protocol: If it is unfeasible to modify the routing
protocol’s behavior, this means that every packet handed over to the routing layer
will be routed all theway to its destination, i.e., the home node for the destination’s
coordinates. If the destination is no longer responsible for a data item, it has to
reroute the arriving packets. As long as the key-space transformation information
is kept synchronized on all nodes, this standard behavior of a routing protocol is
sufficient for the algorithm to work efficiently.

2. Cross-layer design: There are several reasons why every intermediate node on
a route of a network packet should be able to update its destination. The most
important reason is that a fully synchronized state of the Lookup table during
runtime is unfeasible for most application scenarios. While there is only a small
probability for them to happen while a packet transmission is in the progress,
many events may lead to an invalid destination coordinate in a packet, e.g., data
migration, node churn, node’smemory exceeded.Moreover, aswill be pointed out
below, due to performance and scalability reasons, most implementations of the
proposed storage framework will include a distributed solution of the key-space
transformation. For instance, the usage of an information distribution strategy,
which only ensures eventual consistency, may lead to inconsistent states of the
Lookup table.
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Fig. 2.4 Dynamic reconfiguration module. This module is a submodule of Fig. 2.3 and contains
the distributed online optimization algorithm

2.5.2 Dynamic Online Storage Reconfiguration

The main goal of access-centric storage is to reach an optimal storage allocation that
minimizes the network load according to Sect. 2.4.1. Our algorithm solves this prob-
lem in a distributed way as each node is responsible for the initialization, handling,
and announcement of migrations of data items which it currently stores.

The main functionality of our algorithm is encapsulated in the dynamic recon-
figuration module of our architecture (see Fig. 2.4). The data migration algorithm is
separated into two phases:

1. At first, the migration policy checker identifies potential migration pressure in
the access-log and decides when to perform a migration.

2. Afterwards, the migration decision module is triggered to decide on the actual
migrations, i.e., where to migrate data.

Such a separation is reasonable especially to offer different sets of configura-
tions for both submodules. While the migration policy checker and the migration
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decision modules implement the main functionality of the access-centric storage
allocation, additional helper modules take care of the access-logging and the
migration execution.

2.5.2.1 Data Migration Algorithm

Since no assumption about the behavior of possible consumers of data is made at
start-up time, a location-centric storage approach is chosen at first. This means each
node is responsible for its surrounding key space, i.e., they store data associated with
close-by events. Considering the locality of the sensing ranges from applied sensors,
this means that most data will be stored at the sensing node itself or a nearby node.
From the algorithm’s point of view, this means that the Lookup table is empty during
startup. For as long as no migration has taken place, it simply returns the real-world
location of an event leading to the desired location-centric storage behavior.

During runtime, the accesses to data items for which the node is responsible are
recorded. This is done by the access logging submodule which offers an interface
to log the source coordinate, the destination coordinate, and the access type. This
information resembles the access format from the formal problem description from
above. Itsmain configuration parameters are its spatiotemporal resolution and the size
of its backlog.Dependingon the application domain and its requirements, thismodule
can be used for converting or quantizing the coordinates to a specific resolution.

The migration policy checker regularly applies data mining techniques to recog-
nize potential optimizations through data migration.When a data item σi is accessed,
it tests the accesses against the given migration policies. If the number of accesses
surpasses a given threshold τ , the migration decider module is triggered. Based on
the current access model, the optimal position for a data item is determined using
the following formula:

Optimal Position(σi ) =
∑

acc∈Accσi
acc.pos · acc.n

∑
acc∈Accσi

acc.n

Typically, the calculated coordinate of the optimal position is located somewhere
between nodes. Therefore, the actual target position for the migration is determined
by sending a soliciting message toward the optimal position. The geographic-routing
protocol delivers it to the nearest node next to this position which is nominated the
new home node of the data. After the migration took place, the Lookup table is
updated accordingly.

The migration policy checker may not only evaluate accesses to single data items
but also to chunks of them. The size of the data mined key-space around an accessed
data item is given by the migration chunk size m. If a group of data items gets
migrated, the optimal position is computed over the whole set of σi in the chunk.
As the evaluation will show, m is an important design parameter (see Sect. 2.6.6).
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Fig. 2.5 a Initial storage allocation. The nodes are represented by red dots. Their surrounding
areas represent their current area of responsibility for which they store data. Since the Lookup table
is empty at start-up, the storage allocation resembles a Voronoi distribution. b Exemplary storage
allocation after a certain simulation period of Fig. 2.5a scenario. Again, the positions of the nodes
are indicated by small red dots. Still, the different responsibilities are illustrated by different colors,
where each specific color defines one of the nodes. Eachmigration resembles an entry in the Lookup
table

2.5.2.2 Example

An initial storage allocation of the algorithm, which results from an empty Lookup
table, is shown in Fig. 2.5. The map represents the distribution area of the sensors.
Each sensor is represented by a red dot surrounded by its region of responsibility,
i.e., it stores all events whose geolocation lies inside this area. This location-centric
behavior resembles a Voronoi partition.

Figure2.5b depicts the virtual coordinate space after a certain simulation period.
With the colors still representing the nodes’ responsibilities, one can see that a num-
ber of migrations took place. The frayed borders where the colors mix may origi-
nate from neighboring nodes surveying events in the other nodes’ vicinities. In the
given example, access-optimization with respect to put operations is responsible for
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migrating the data items from one node to another. These are short-way migrations
optimizing the initial assignments. One example of a farther migration due to various
nodes accessing the data using get operations is the navy-green area in the yellow
region in the lower middle. This migration has taken place due to frequent accesses
to a data item that originally resided in the yellow region. However, these virtual
coordinate maps do not allow reliable conclusions on how many and which nodes
have actually accessed certain data items. Rather, they provide a qualitative overview
of the migration results.

2.5.2.3 Discussion of Design Parameters

One major aspect of storage allocation optimization during runtime is the kind of
algorithm used.While some components can be implemented in a distributed fashion
without loss of consistency, the Lookup table needs a certain level of internode syn-
chronization. A key decision which has to be made by any developer is whether he
wants to create a system which relies on centralized entities like servers or synchro-
nized network nodes. Depending on the application’s constraints it will be necessary
for the storage system to offer certain guarantees of consistency. In distributed sys-
tems, this most often means that there are elected nodes or servers which act as syn-
chronization points, i.e., by using synchronization algorithms like distributed barriers
and election algorithms that enforce the requested level of consistency. However, all
of these algorithms increase the message transfer overhead. That is why, most often,
weaker consistency models are applied, e.g., eventual consistency. So the decision
for a consistency model may have great impact on the network load, which is caused
by the exchange of synchronization messages.

Another important design parameter of our algorithm is the choice of statistics
which the nodes use during runtime. This choice has a direct impact on the algorithms
performance. A main design parameter is the quantization or accumulation of key
space which is the size of distinct regions for which access models are build. With
an increase of detail, the local access models will grow and, proportionally, the
algorithm’s memory footprint. At the same time, the increase in detail enables for
much more fine-grained migration decisions. Therefore, the key-space quantization
is one important tradeoff criteria between the nodes’ local resources, i.e., memory
usage and computation time, and lowered network utilization as benefit from more
fine-grained migration decisions. Since memory is getting cheap, the benefits of the
proposed algorithm will overhaul its costs.

To show the applicability of the algorithm, the access-log uses a per data item sta-
tistical approach. This resembles the notion in the problem description (see Sect. 2.4).
We analyze the design space of the parameter key-space quantizations for the access
models in Sect. 2.6.6, showing that this parameter has a great impact on the perfor-
mance. Therefore, not only single data items but also chunks of adjacent data items
are considered.

Another design parameter of the statistics module is the model-building charac-
teristic of accesses, i.e., the sample size of Accσi (see Sect. 2.4). The current approach
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considers the number of updates since the lastmigration ofσi .More elaborate statistic
modules can easily be applied to the presented architecture.

2.6 Evaluation

In this section, we explore the main characteristics of our proposed solution.
We created a reference implementation of the storage framework presented in
Sect. 2.5.

As has been discussed in Sect. 2.5.2.3, some components of the framework need
a thorough examination of whether they are implemented in a centralized, synchro-
nized, or distributed way. To get a grasp of the framework’s main attributes and
to maintain as application scenario independent as possible, the Lookup table is
implemented in a fully synchronized data structure. In a real-world application, this
could either be a centralized server component or a data store which is synchronized
between all nodes. Depending on the actual implementation, this leads to different
types and amounts of message exchanges. Since these decisions are more applica-
tion specific, they are not explicitly modeled here. More specific evaluations can be
performed for specific application scenarios.

The metric used to quantify the results is the hop count of messages issued for the
different access types, i.e., put and get operations. After explaining the experimental
setup, we present the results of different scenarios.

2.6.1 Experimental Setup

Our experiments are carried out using the discrete-event simulator OMNeT++ [25]
extended by the MiXiM [15] simulation package, which offers simulation models
for IEEE 802.11b/g wireless LAN. All network nodes are placed randomly for each
run and were connected through their wireless LAN interface with a radio range of
160m. On the routing layer, we use an implementation of GPSR [14]. During a start-
up period of 60 s the producer and consumer applications are paused so that the graph
planarization of the routing protocol can take place. Although graph planarization
runs all the time to handle nodes joining and leaving, this period ensures a reasonable
starting point.

Tomodel the characteristics of smart sensing systems, allproducers output sensing
data with keys originating in a surrounding 100m2 square. Each consumer queries
equally distributed geolocations in up to five regions. These regions are chosen
randomly by each consumer during initialization. Both types of applications generate
queries at regular time intervals according to Table2.1. The number of producers and
consumers are varied to demonstrate the adaptability of the system to different and
dynamically changing scenarios. The migration threshold τ is set to 10 accesses. The
scenario-specific parameters of the experimental setup are listed in Table2.1.
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Table 2.1 Simulation setup

Parameter Scenario 1 + 2 Scenario 3 Scenario 4 Scenario 5

dynamic appl. network size query rates migration

Field size 1,000 × 600m2 1,500 × 1,500 m2 1,000 × 600m2 1,000 × 600m2

Number of nodes 20 50, 100, 150 30 20

Simulation time 2.75 h 4 h 4 h 4 h, 80 h

Number of producers 5→10→15→20 50, 100, 150 30 20

PUT generation rate 12/min 12/min 12/min 20/min

Size of PUT fields 100 × 100 100 × 100 100 × 100 100 × 100

Number of consumers 5→10→15→20 10 10, 20, 30 10

GET generation rate 6/min 6/min 6/min 12/min

Size of GET fields 20 × 20 40 × 40 40 × 40 20 × 20

GET areas per consumer 5 5 5 1

Migration field size m 20 × 20 20 × 20 20 × 20 1 × 1, 4 × 4,

10 × 10, 16 × 16,

20 × 20, 60 × 60

The following graphs show the average number of hops across the network for
get and put operations, respectively. The hop counts for get operations accumulate
both, the queries and the resulting replies. Furthermore, we show the moving average
of the accumulated hop counts for puts and gets to research the overall hop count
optimization.

2.6.2 Scenario 1: Fixed Behavior of Applications

At first, we present results from an experiment in which the characteristic behavior
of the producers and consumers are chosen at the start of the simulation and remain
unchanged during the simulation’s run. This way, the general behavior of our frame-
work can be observed.

This scenario contains 20 sensing nodes, which acquire data from their
surroundings and store it using the storage framework. Five of the nodes are equipped
with consumers, which represent algorithms consuming data from the storage layer.
Therefore, each consumer chooses five regions of interest with a size of 20× 20m2

during start-up. They frequently query their regions of interest by accessing randomly
chosen keys from them using get operations issued to the storage framework.

Figure2.6 shows the results from this experiment. At the beginning, one can
observe the hop counts that arise from the initial distribution of the data. Since the
Lookup table is empty at start-up, all data is stored on the node that is next to the
event’s position. This resembles the behavior of a location-centric storage paradigm.
The average hop count for the put operations is greater than zero, since the sensing
node is not necessarily the nearest node to the event. The mean number of hops for
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Fig. 2.6 Fixed behavior of applications. The figure depicts the development of the mean hop count
over time for fixed application behavior. The red line shows the accumulated and smoothed sum
of the hop counts for PUT and GET operations. It can be seen that the system adapts to the given
access behavior by migrating accessed data to optimal positions between producers and consumers
leading to a huge reduction in network load

get operations of consumers querying the data is high. It can be seen that the network
load is mainly caused by the get operations. Due to the huge migration pressure
issued by the accesses, the system optimized the storage locations quickly and the
mean hop count decreases by about 75% until 2,000s.

Since the nodes generate queries that are equally but randomly distributed in their
regions of interest, small amounts of migration pressure arise and vanish throughout
the remainder of the experiment. The algorithm’s continuous optimization leads
to localized short-way migrations. This behavior causes the jitter of the hop counts.
It could be avoidedbymore elaboratedmigration policieswhich adapt to this situation
and avoid short-way migrations.

2.6.3 Scenario 2: Dynamic Behavior of Applications

In order to demonstrate the adaptability of our algorithm, we applied dynamically
changing application behavior during runtime. While the put operations mainly
depend on the sensors’ characteristics and settings, the consuming applications may
appear andvanish unpredictably during runtime.Wemodeled this behavior by spawn-
ingfivenew consumers periodically every 2,500s.Whileweonly change the behavior
of the consumers in this experiment, the results would be similar if we changed the
producers accordingly. As stated above, from the framework’s point of view, the
access type only determines the number of message exchanges necessary. This way,
the actual operation is in fact reduced to this relative value.
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Fig. 2.7 Dynamic behavior of applications. This scenario extends the scenario of Fig. 2.6 by adding
five consumers at t = 2,500s, t = 5,000s, and t = 7,500s, respectively. The changing access
patterns lead to a rising mean number of hops. The algorithm reacts to the changing behavior with
new migrations which quickly lowers the mean hop count again

The results of these runs are depicted in Fig. 2.7 and show the fast adaptations
taking place. After start-up, the first 2,500s yield results that qualitatively resemble
the results in Fig. 2.6. The periodic introduction of new consumers (first time at
t = 2,500s) leads to new access patterns and, thus, the hop count increases.
The dynamic reconfiguration of our algorithm reacts to the migration pressure
with storage reallocations. As a consequence, it drastically reduces the hop counts
for subsequent access operations. The same qualitative performance increases are
achieved after the subsequent introductions of new consumer nodes at t = 5,000s and
t = 7,500s.

One can observe that the lower limit of hops required after the optimizations
increased slightly, e.g., by comparing the mean hop counts at t = 2,000s and at
t = 7,000s. This is due to the increased number of consumers which lead to an
absolute increase in access operations. Moreover, it can be observed that the mean
hop counts of put operations increase only slightly. The reason for this is that still
much data is stored locally, since only accessed data items (and their surrounding
key space) are migrated. This shows the main advantage of our framework which
only migrates data which is actually accessed or in the vicinity of accessed data.

2.6.4 Scenario 3: Different Network Sizes

This scenario shows how the framework scales in networks of different size. A larger
field size of 1,500× 1,500 m2 is chosen for these experiments to investigate networks
containing up to 150 nodes. This way, the node density of the networkwith 100 nodes
has a similar node density compared to the other scenarios. The experiments with



2 Access-Centric In-Network Storage Optimization in Distributed Sensing Networks 39

 0

 5

 10

 15

 20

 25

 30

 0  2000  4000  6000  8000  10000  12000  14000

m
ea

n 
nu

m
be

r 
of

 h
op

s

time [s]

50 nodes
100 nodes
150 nodes

Fig. 2.8 Different network sizes. The figure depicts the development of the sum of the mean hop
counts over time. It shows the results for three scenarios containing 50 (bottom line), 100 (middle
line), and 150 nodes (top line). It can be seen that the algorithm’s performance scales with the size
of the network and always leads to huge latency reductions

50 and 150 nodes show the behavior in relation to this value. While increasing the
number of nodes (each one acting as a producer), we keep the number of consumers
constant. This models a given set of accessing algorithms with different numbers of
sensors available.

We present the results for networks of 50, 100, and 150 nodes in Fig. 2.8.
The graphs show the sum of mean hop counts for put and get operations in each
scenario. It is obvious that the qualitative reduction of the hop counts is similar in
all optimizations and leads to reductions from 60 to 80% of the initial values. The
absolute hop counts increase proportionally to the number of nodes in the network.
This is caused by the higher density of nodes which directly leads to longer shortest
paths between two nodes in the connectivity graph.

2.6.5 Scenario 4: Different Query Rates

After examining the consequences of different networks sizes given a fixed number
of consuming algorithms, this experiment researches the optimization results for
different numbers of consumers in a network with 30 nodes. Therefore, the number
of consumers is increased from 10 up to 30 consuming nodes. This drastic increase
in consumers in comparison to the number of sensing nodes enforces more overlaps
in the areas of interest of the consumers. This leads to migration decisions that take
more access nodes into account.

As can be seen in Fig. 2.9, the optimization leads to a reduced mean number of
hops between 40 and 60%. This shows that the algorithm even copes with a large
number of algorithms consuming data and reduces the network load significantly.
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Fig. 2.9 Different query rates. This figure shows the evaluation of a scenario with 30 nodes and
with 10 (bottom line), 20 (middle line), and 30 consumer applications (top line). It shows that the
algorithm performs very well with a large number of consumers

2.6.6 Scenario 5: Migration Field Size

As stated in Sect. 2.5.2.3, an important parameter of the optimization algorithm is the
chunk size ofmigrations performed.Themigration chunk sizem is a parameter for the
migration policy checker as well as the migration decider. If a data item is accessed,
itself and its neighborhood of size m is considered as one chunk and checked by the
migration policy checker. If the number of accesses in this area reaches the access
threshold τ , a migration is triggered and the migration decider calculates the new
storage location. Therefore, it takes into account all accesses to data items in the
chunk and initiates a migration of the whole chunk. While the theoretical optimum
of the search problem can only be reached if the storage position of every single key
is optimized, such a behavior is unfeasible for most applications and scenarios.

Figure2.10 shows the results for a given network configuration with migration
chunk sizes m from 4× 4m2 up to 60× 60m2. The results for m = 1× 1m2, which
represents the exact solution that considers every data key on its own, are depicted
in Fig. 2.11. Since the applications scatter their accesses using an equal distribution
in each area of interest, the exact solution has the drawback that it runs a long time
until the access threshold τ is reached. To show its long-term development, the exact
scenario has been run over 80h of simulation time.

As can be seen, the migration chunk size directly influences how fast a migration
is triggered. This is because all keys in the chunk are considered by the migration
policy checker. While the exact migration is the slowest, it should reach the best
result in the long run. However, this setup already shows its drawback. Especially
in a real-world setup, the measured location of an event will be subject to different
kinds of noise, e.g., a tracking event which gets converted into world coordinates.
To handle this kind of noisy data, the framework should quantize the key space.



2 Access-Centric In-Network Storage Optimization in Distributed Sensing Networks 41

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2000  4000  6000  8000  10000  12000  14000

m
ea

n 
nu

m
be

r 
of

 h
op

s

time [s]

migration area 4x4
migration area 10x10
migration area 16x16
migration area 20x20
migration area 60x60

Fig. 2.10 Different migration chunk sizes. The figure shows the algorithm’s behavior for the same
scenario using different migration chunk sizes from 4 × 4 (red line) up to 60 × 60 (orange line).
An increasing chunk size leads to a much faster decrease in the mean number of hops. A drawback
of too large chunks are suboptimal migration decisions by taking to many different accesses into
account, as can be seen from the orange line, which does not reach the minimum

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  50000  100000  150000  200000  250000  300000

m
ea

n 
nu

m
be

r 
of

 h
op

s

time [s]

migration area 1x1

Fig. 2.11 Different migration chunk sizes—the exact solution. This scenario shows the algorithm’s
behavior if accesses to single data items are considered. The vertical line marks the runtime of the
other scenarios. It shows the same qualitative behavior of the runs in Fig. 2.10 but requires a long
time for the optimizations to take place. It could be speeded up by lowering τ

On the other hand, if the chosen chunk size gets to large, the resulting optimizations
may be worse than for smaller chunk sizes. This can be observed for chunks of
60× 60m2 which lead to a suboptimal storage allocation. This happens since too
many unrelated accesses are considered at once. This leads to suboptimal migration
decisions.
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The evaluation shows that a reasonable chunk size, between 10× 10m2 and
20× 20m2, offers very good storage location optimizations incorporating the advan-
tages of being responsive as well as robust towards noisy data. Migration chunks are
especially useful if the consuming algorithms issue queries concerning certain ranges
or to quantify the key-space to a scale applicable for the application scenario, e.g.,
appropriate for the magnitude of noise induced by other system components.

2.7 Conclusion

This chapter presented a novel approach to usage-centric storage and access of sen-
sor data. Based on the insight that current geolocated sensor networks perceive large
amounts of data while simultaneously accessing this data within the network, we dis-
cussed different approach of the state of the art to optimise this data access. We pre-
sented a distributed storage algorithm whose design goal is the online optimization
of in-network storage allocation of georeferenced data.

The evaluation demonstrates the potential benefit of this novel approach.We inves-
tigated the effects of varying consumers (i.e., applications accessing data items in the
network) and varying network size. The result shows a significantly improved hop
count—meaning that the latencies in terms of visited nodes until the desired informa-
tion is available to the requesting application are decreasing significantly. Thereby,
the algorithm is robust against joining and leaving nodes. It also scales with the
number of nodes contained in the network and is not characterized by drawbacks
such as single-points-of-failure.

Our current and future work investigates possibilities to apply distributed algo-
rithms which rely on eventual consistency. We aim for a robust algorithm which is
able to offer the presented benefits with a reduced overhead. Therefore, we are going
to model the caused costs by overhead messages and their relationship to the degree
of synchronization. Moreover, we want to apply the system to different technolo-
gies. An important aspect will be the latency difference in mixed wired and wireless
networks. Since latency in wireless networks may be magnitudes worse and less
predictable compared to wired networks, wired nodes could be used as a dynamic
backbone for queries issued from mobile units. Therefore, such queries may be han-
dled by a query proxywhich is chosenw.r.t. node characteristics. Another direction of
research will cover the extension to accompanying replication algorithms to handle
unexpected node failure.
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Chapter 3
Decentralized Human Tracking in Visual
Sensor Networks: Using Sparse Representation
for Efficient Communication

Serhan Coşar and Müjdat Çetin

Abstract The recent advances in camera sensors and development of new
distributed processing algorithms have enabled a new kind of wireless sensor net-
works namely the visual sensor networks (VSNs). VSNs consist of a network of
image sensors, embedded processors, and wireless transceivers which are powered
by batteries. The constraints on energy and bandwidth resources challenge setting
up a tracking system in VSNs. In this chapter, we present a sparsity-driven decen-
tralized framework for multi-camera human tracking in VSNs. The traditional cen-
tralized approaches involve sending compressed images to a central processing unit,
which, in the case of severe bandwidth constraints, can hurt the performance of
further processing (i.e., tracking) because of low-quality images. Instead, we pro-
pose a decentralized tracking framework inwhich each camera node performs feature
extraction and obtains likelihood functions.We propose a sparsity-drivenmethod that
can obtain bandwidth-efficient representation of likelihoods. Our approach involves
the design of special overscomplete dictionaries that match the structure of the like-
lihoods and the transmission of likelihood information in the network through sparse
representation in such dictionaries. By exploiting information from the sparse rep-
resentation obtained in the previous frame, we spatially constrain the set of allowed
dictionary coefficients in the current frame to reduce the size of the optimization
problem and hence, the computation time. Experimental results show that our sparse
representation framework is an effective approach that can be used together with any
probabilistic tracker and that can providemajor savings in communication bandwidth
without significant degradation in tracking performance.
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3.1 Introduction

Over the past decade, large-scale camera networks have been a topic of increasing
interest in security and surveillance. Following, the developments in wireless sensor
networks and the availability of inexpensive imaging sensors, a newfield called visual
sensor networks (VSNs) has emerged [27]. VSNs primarily consist of a network of
deviceswith local processing capabilities that can capture video data and usewireless
links.

The potentially high-volume visual information captured in these wireless net-
works creates unique and challenging problems that are more complex than the tradi-
tionalmulti-camera video analysis systems andwireless sensor networksmight have.
Conventionalwireless sensor networks usually collect scalar or low-dimensional data
at each time instant,whereas inVSNs sensors provide image data, i.e., N-dimensional
vectors where N is the number of pixels in the images. In most of the multi-camera
analysis systems, the image or video analysis task of interest is performed in a
centralized fashion by collecting the raw data acquired by cameras in a central
unit and doing processing in this unit. However, performing complex tasks, such
as tracking, recognition, etc., in a communication-constrained VSN environment is
extremely challenging, as it is not feasible to send all the measured data over the
bandwidth-constrained network [27]. For such constraints, the common approach
is to follow a data compression perspective and compress images in the process of
transmission to the central unit [8]. This strategy essentially focuses on low-level
data compression without regard to the final inference goal. Such a strategy may
not be appropriate for use under scenarios with severe bandwidth limitations and
might cause significant degradation in tracking performance in the case of large
compression ratios. We provide a more in-depth review of existing work in Sect. 3.2.

In this chapter, we follow a different strategy that is better matched to the final
inferencegoal,which, in the context of this chapter, is tracking.Wepropose a sparsity-
driven trackingmethod that is suitable for energy and bandwidth constraints inVSNs.
Our method is a decentralized tracking approach in which each camera node in the
network performs feature extraction by itself and obtains image features (likelihood
functions). Instead of directly sending likelihood functions to the fusion node, we
compute and transmit sparse representations of the likelihoods. By sending such
sparse representations to the fusion node, multiview tracking can be performed with-
out overloading the network. We design special overcomplete dictionaries for the
sparse representation of likelihood functions. The main contribution of this work is
building a sparse representation framework and designing overcomplete dictionar-
ies that are matched to the structure of likelihoods. In particular, our dictionaries
are designed in an adaptive manner by exploiting the specific known geometry of
the measurement scenario and by focusing on the problem of human tracking. Each
element in the dictionary for each camera corresponds to the likelihood that would
result from a single human at a particular location in the scene. Hence, actual likeli-
hoods extracted from real observations from scenes containing multiple individuals
can be very sparsely represented in our approach. By using these dictionaries, we can
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represent likelihoods with a very small number of coefficients, and thereby, decrease
the communication between camera and fusion nodes. In addition, we exploit the
sparse representation obtained in the previous frame and reduce the computation
time of the optimization problem to be solved in the current frame.We use the sparse
coefficient vectors computed in the previous frame in order to spatially constrain the
set of allowed dictionary elements in the current frame, thereby, reducing the size of
the problem.

Furthermore, we have used our method within the context of two multi-camera
human tracking algorithms [10, 14]. We have modified these methods in order to
obtain decentralized tracking algorithms. Both by qualitative and quantitative results,
we have shown that our method is better than using the block-based compression
scheme in [4], the decentralized tracking method in [17], and the distributed tracking
method in [26]. The sparse likelihood representation framework we present can
be used within any probabilistic tracking method under VSN constraints without
significantly degrading the tracking performance.

In Sect. 3.2, existing pieces of work on tracking in VSNs are reviewed. Section3.3
presents our decentralized approach for multi-camera tracking in detail. In Sect. 3.4,
our sparse representation framework and the details of our specially designed over-
complete dictionaries are described. Experimental results are presented in Sect. 3.5.
Finally in Sect. 3.6, we provide a summary and conclusions.

3.2 Related Work

The main differences between wireless sensor networks and visual sensor networks
are in acquiring, processing, and transferring data. Therefore, methods proposed for
wireless sensor networks cannot directly be applied in VSNs and new approaches for
VSNs have been proposed. In several pieces of work, basic features, or techniques
are used to adapt centralized trackingmethods to VSNs. For instance, visual hulls are
used in [34, 35] to detect the presence and number of people. However, since a visual
hull presents the largest volume in which an individual can reside, the exact number
of people cannot be determined when humans are positioned close to one another. To
minimize the amount of data to be communicated, in some methods simple features
are used for communication. For instance, 2D trajectories are used in [21]. In [9],
3D trajectories together with color histograms are used. Hue histograms along with
2D position are used in [20].

Moreover, there are decentralized approaches in which cameras are grouped into
clusters and tracking is performedby local cluster fusion nodes. This kind of approach
has been applied to the multi-camera target tracking problem in various ways
[17, 25, 38]. For a nonoverlapping camera setup, tracking is performed by maximiz-
ing the similarity between the observed features from each camera and minimizing
the long-term variation in appearance using graph matching at the fusion node [25].
For an overlapping camera setup, a cluster-based Kalman filter in a network of wire-
less cameras has been proposed in [17, 38]. In this work, local measurements of the
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target acquired bymembers of the cluster are sent to the fusion node. Then, the fusion
node estimates the target position via an extended Kalman filter, relating the mea-
surements acquired by the cameras to the actual position of the target by nonlinear
transformations.

To further increase scalability and to reduce communication costs, distributed
estimation operates without local fusion centers. The estimates generated in a cam-
era are transmitted to its immediate neighbors only. The received estimates are used
to refine the estimates at these immediate neighbors, and these refined estimates are
then transmitted to the next group of neighbors [26, 30]. This process concludes
within a predefined number of steps after all cameras viewing the target are visited
or when the uncertainty has decreased below a desired value. In [26], the Kalman-
Consensus algorithm [19] is adapted to take into account the directional nature of
video sensors and the network topology. Each camera estimates the locations of the
people in the scene based on its own sensed data which is then shared locally with
the neighboring cameras in an iterative fashion, and a final estimate is arrived at in the
network using the Kalman-Consensus algorithm. A wireless embedded smart cam-
era system for cooperative human tracking has been proposed in [30]. At each camera
lightweight foreground detection and color histogram-based tracking algorithms are
implemented and run. Important portions of video and trajectories are determined
by detecting events of interest that are predefined by users. Communication in the
network is minimized by sending messages only when an event of interest occurs.

There are certain limitations of previous work which motivate further research.
The methods in [9, 20, 21, 34, 35] that use simple features may be capable of
decreasing the communication, but they are not capable of maintaining robust-
ness of tracking performance in the case of reduced communication. For the sake
of bandwidth efficiency, these methods choose to change the features from com-
plex and robust to simpler, but not so effective ones. Distributed tracking methods
[26, 30] fit well to the needs of VSNs, but suffer from several disadvantages. In
the literature of multi-camera tracking, there are many algorithms that can perform
robust tracking. In order to use such algorithms in VSN environments, we need to
implement existing centralized trackers in a distributed way. In order to do that,
usually, one needs to modify pretty much each step from feature extraction to final
inference, which is not a straightforward task and which can affect the performance
of the tracker. Performing local processing and collecting features to the fusion node,
as in [17, 25, 38], may not satisfy the bandwidth requirements in a communication-
constrained VSN environment. In particular, depending on the size of image features
and the number of cameras in the network, even collecting features to the fusion
node may become expensive for the network. In such cases, further approximations
on features are necessary.

Over the last decade, an alternative sampling/sensing theory, known as “com-
pressed sensing” has emerged. Compressed sensing enables the recovery of signals,
images, and other data from what appear to be undersampled observations. Com-
pressed sensing is a technique for acquiring and reconstructing a signal from small
amount of measurements utilizing the prior knowledge that the signal has a sparse
representation in a proper space. As a consequence, compressed sensing and sparse
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representation (SR) have become important signal recovery techniques because of
their success for acquiring, representing, and compressing high-dimensional sig-
nals in various application areas [7, 15, 23]. In the past few years, variations and
extensions of l1 minimization have been applied to many vision tasks, including face
recognition [32], denoising and inpainting [15], backgroundmodeling [2], and image
classification [16]. In almost all of these applications, using sparsity as a prior leads
to state-of-the-art results [33].

3.3 Decentralized Human Tracking in Visual Sensor Networks

3.3.1 Overview

In a traditional setup of camera networks, which we call centralized tracking, each
camera acquires an image and sends this raw data to a central unit. In the central unit,
multiview data are collected, relevant features are extracted and combined, finally,
using these features, the positions of the humans are estimated. Hence, integration
of multiview information is done at the raw-data level by pooling all images into a
central unit. The presence of a single global fusion center leads to the need for high
data-transfer rates and the need for a computationally powerful machine. Such an
approach cannot satisfy the scalability, bandwidth efficiency, and energy-efficiency
requirements of a VSN. Compressing raw image data may decrease the communica-
tion in the network, however high- compression ratios imposed by severe bandwidth
limitations could lead to degraded tracking performance. For this reason, central-
ized trackers are not very appropriate for use in VSN environments. In decentralized
tracking, there is no central unit that collects all raw data from the cameras. Cameras
are grouped into clusters and nodes communicatewith their local cluster fusion nodes
only [28]. Multi-camera tracking is performed in the local cluster fusion nodes and
fusion nodes communicate with each other to handoff the tracking over the network.
Communication overhead is reduced by limiting the cooperation within each cluster
and among fusion nodes. In this chapter we are concerned with the tracking task
within one cluster.

After acquiring the images, each camera extracts useful features from the images it
has observed and sends these features to the local fusion node. The processing capa-
bility of camera nodes in emerging VSNs enable feature extraction at the camera
nodes without the need to send the images to the central unit [1, 12, 29, 31]. Using
the multiview image features, tracking is performed in the fusion node. Hence, in
decentralized tracking, multiview information is integrated in feature-level by com-
bining the features in small clusters. This both reduces the communication in the
network and removes the need of powerful processors in the local fusion node.
Decentralized approaches are appropriate for VSNs in many aspects. The processing
capability of each camera is utilized by performing feature extraction at the camera-
level. Since cameras are grouped into clusters, feature extraction, and communication
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are distributed among cameras in clusters, therefore, efficient estimation can be
performed.

Modeling the dynamics of humans in a probabilistic framework is a common
perspective of many multi-camera human tracking methods [10, 11, 13, 37]. In
tracking methods based on a probabilistic framework, data, and/or extracted features
are represented by likelihood functions, p(y|x) where y ∈ R

d and x ∈ R
m are

the observation and state vectors, respectively. In other words, for each camera, a
likelihood function is defined in terms of the observations obtained from its field of
view (p(y|x) = ∏

c=1,...,N p(yc|x)). In centralized tracking, of course, the likelihood
functions are computed after collecting the image data of each camera at the central
unit. For a decentralized approach, since each camera node extracts local features
from its field of view, these likelihood functions can be evaluated at the camera nodes
and they can be sent to the fusion node. Then, in the fusion node the likelihoods
can be combined and tracking can be performed in the probabilistic framework
(p(x |y) = ∏

c=1,...,N p(yc|x) · p(x)). A flow diagram of a generic decentralized
approach is illustrated in Fig. 3.1. Following this line of thought, we have converted
the tracking approaches in [10, 14] to decentralized trackers as explained in the next
section.

Fusion node selection and sensor resource management (sensor tasking) is out of
scope of this chapter.Wehave assumed that one of the camera nodes, a relativelymore
powerful one, has been selected as the fusion node. In a practical implementation,
resource management can be performed using existing work in [6, 39].

Fig. 3.1 The flow diagram of a decentralized tracker that is based on a probabilistic framework
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3.3.2 Multi-camera Human Tracking Algorithms

Wehave applied our proposed frameworkwithin the context of two different tracking
methods. In this section, we describe these tracking methods and explain how we
have converted these trackers to decentralized trackers.

3.3.2.1 Algorithm 1

In this section, we describe the tracking method of [10], as we apply our proposed
approach within this method. In [10], the ground plane is discretized into a finite
numberG of regularly spaced 2D locations. LetLt = (L1

t , . . . , L N∗
t ) be the locations

of individuals at time t , where N∗ is the maximum number of individuals. Given T
temporal frames from C cameras, It = (I 1t , . . . , I C

t ), t = {1, . . . , T }, the goal is to
estimate the trajectory of person n, Ln = (Ln

1, . . . , Ln
T ), by seeking the maximum

of the probability of both the observations and the trajectory ending up at location k
at time t :

�n
t (k) = max

ln
1 ,...,ln

t−1

P(I1, Ln
1 = ln

1 , . . . , It , Ln
t = k) (3.1)

Under a hiddenMarkovmodel, the above expression turns into the classical recursive
expression:

�n
t (k) = P(It |Ln

t = k)
︸ ︷︷ ︸

Appearance model

max
τ

{P(Ln
t = k|Ln

t−1 = τ)
︸ ︷︷ ︸

Motion model

�n
t−1(τ )} (3.2)

The motion model is a circular uniform distribution with limited radius and center
τ , which corresponds to a loose bound on the maximum speed of a walking human.

From the input images It , by using background subtraction, foreground binary
masks, Bt , are obtained. Let the colors of the pixels inside a blob in foreground mask
be denoted by Tt and let Xt

k be a Boolean random variable denoting the presence of
an individual at location k of the grid at time t . It is shown in [10] that the appearance
model in Eq.3.2 can be decomposed as:

P(It |Ln
t = k) ∝ P(Ln

t = k|Xt
k = 1, Tt )

︸ ︷︷ ︸

Color model

P(Xt
k = 1|Bt )

︸ ︷︷ ︸

Ground plane occup.

(3.3)

In [10], humans are represented simply by rectangles used to create synthetic ideal
images that would be observed if people were at given locations. Within this model,
the ground plane occupancy is approximated by measuring the similarity between
ideal images and foreground binary masks.

Let T c
t (k) denote the color of the pixels taken at the intersection of the foreground

binary mask, Bc
t , from camera c at time t and the rectangle Ac

k corresponding to



52 S. Coşar and M. Çetin

location k in that same field of view. Say we have the color distributions of the N∗
individuals present in the scene,μc

1, . . . , μ
c
N∗ . The color model of person n in Eq.3.3

can be expressed as:

P(Ln
t = k|Xt

k = 1, Tt ) ∝ P(Tt |Ln
t = k) = P(T 1

t (k), . . . , T C
t (k)|Ln

t = k)

=
C∏

c=1

P(T c
t (k)|Ln

t = k) (3.4)

As in [4], we represent P(T c
t (k)|Ln

t = k) by comparing the estimated color dis-
tribution (histogram) of the pixels in T c

t (k) and the color distribution μc
n with the

Bhattacharya coefficient between two distributions. By performing a global search
with dynamic programming using Eq.3.2, the trajectory of each person can be esti-
mated.

From the above formulation, we can see that there are two different likelihood
functions defined in the method. One is the ground plane occupancy map (GOM),
P(Xt

k = 1|Bt ), approximated using the foreground binary masks. The other is the
ground plane color map (GCM), P(Ln

t = k|Xt
k = 1, Tt ), which is a multiview color

likelihood function defined for each person individually. This map is obtained by
combining the individual color maps, P(T c

t (k)|Ln
t = k), evaluated using the images

acquired by each camera. Since foreground binary masks are binary images that
can be easily compressed by a lossless compression method, they can be directly
sent to the fusion node without overloading the network. Therefore, as in the original
method, GOM is evaluated at the fusion node. In our framework, we evaluate GCM in
a decentralized way (as presented in Fig. 3.1): At each camera node (c = 1, . . . , C),
the local color likelihood function for the person of interest (P(T c

t (k)|Ln
t = k))

is evaluated by using the image acquired from that camera. Then, these likelihood
functions are sent to the fusion node. At the fusion node, these likelihood functions
are integrated to obtain the multiview color likelihood function (GCM) (Eq.3.4). By
combining GCM and GOM with the motion model, the trajectory of the person of
interest is estimated at the fusion node using dynamic programming (Eq.3.2). The
whole process is run for each person in the scene.

Since each camera keeps a reference color histogram individually for each person
in the scene, data association between different people is performed at the camera-
level. Then, at the fusion node, assuming there is only one person in the scene in
the beginning of the tracking process, we assign an ID number for each likelihood
function coming from cameras to the fusion node. Likelihoods with the same ID
number from different cameras are associated with one another at the fusion node.

3.3.2.2 Algorithm 2

This section describes the second tracking algorithm [14] upon which we implement
our proposed approach. In [14], a planar homographic occupancy constraint that
fuses foreground likelihood information from multiple views to resolve occlusions
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and localize people on a reference scene plane has been developed. For better per-
formance, this process has been extended to multiple planes parallel to the reference
plane in the framework of plane to plane homologies. The formulation of likelihood
function in this approach (p(y|x) where y and x are the image observation and
position of the person, respectively) is compactly described by:

p(y|x) =
H∏

h=1

p(yh |x) =
H∏

h=1

C∏

c=1

p(yc,h |x) (3.5)

Here, p(yc,h |x) represents the foreground likelihood information extracted from
camera c and projected onto plane h, p(yh |x) represents the fused foreground like-
lihood information from multiple views on plane h, and finally H and C represent
the number of parallel planes and cameras, respectively.

Unlike the method in [14], we have used the human detection algorithm in [36]
for extracting foreground likelihood information (p(yc,h |x)). The human detector
outputs a probability map that represents the probable locations of people in the
image plane. We project this probability map onto the ground plane (Z = 0) and
onto planes at different heights (Z = 200, 400, …, 1,600) that are parallel to the
ground. Then, we combine these multilayered projected probability maps and obtain
a likelihood function for a camera view. Similar to the first tracker described in
Sect. 3.3.2.1, after the fusion of likelihoods from multiple views for multiple planes,
a posterior probability is obtained by combining the likelihood with a motion model
and the position of people are estimated by running dynamic programming on the
posterior probability. The association of observations to people is achieved in two
levels: at the camera level based upon appearance (color) and at the fusion node
based on motion information.

In our framework, we evaluate the multilayer projected probability maps
(p(yh |x)) in a decentralized way (Fig. 3.1). In [14], fusion is first performed on
camera views and then on parallel homography planes. Here, we switch this order
by first fusing the likelihood information on parallel planes. At each camera node,
the likelihood functions obtained by the human detection algorithm [36] (p(yc,h |x))
are projected on multiple parallel planes and combined to obtain the singleview
likelihood function:

p(yc|x) =
H∏

h=1

p(yc,h |x) (3.6)

Then, this likelihood is sent to the fusion node. In the fusion node, the likelihoods
are fused on camera views to obtain the multiview likelihood function:

p(y|x) =
C∏

c=1

p(yc|x) (3.7)
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Using themultiview likelihood function and themotionmodel, the position of people
in the scene are estimated at the fusion node using dynamic programming.

3.4 Sparse Representation of Likelihoods

3.4.1 Overview

The bandwidth required for sending local likelihood functions depends on the size of
likelihoods (i.e., the number of “pixels” in a 2D likelihood function) and the number
of cameras in the network. To make the communication in the network feasible, in
[4] a block-based transform domain compression scheme is followed. In this block-
based compression scheme, after each camera node performs feature extraction and
obtains likelihood functions, likelihood functions are split into blocks and each block
is transformed to an appropriate wavelet domain. Then, by taking only the significant
coefficients, the likelihood functions are compressed and this new representation is
sent to the fusion node. Here, following the great success of compressed sensing in
different application areas, we propose a sparse representation framework. At each
camera node we propose to represent the likelihood functions sparsely in a proper
dictionary and then send this representation instead of sending the function itself. If
one can find a dictionary through which the likelihood functions can be represented
accurately by a small number of coefficients, then this approachwould have the poten-
tial to contribute to accurate tracking with minimal use of communication resources.
Thanks to the developments in processor technology and fast solver algorithms for
l1-minimization problems, we believe sparse representation-based methods, such as
our approach, also have a high potential for real-world scenarios.

Mathematically, we have the following linear system:

yc = Ac · bc (3.8)

where yc and bc represents the likelihood function of the camera c (e.g., P(T c
t (k)|Ln

t
= k) in Eq.3.4 or p(yc|x) in Eq.3.6) and its sparse coefficients, respectively, and
Ac is the overcomplete1 dictionary matrix for camera c that represents the domain
in which yc has a sparse representation. To obtain the sparse representation of the
likelihood function, at each camera we solve the optimization problem2 in Eq.3.9.

min
bc

{||yc − Ac · bc||2 + λ||bc||1} (3.9)

Notice that in our sparse representation framework, we do not require the use of
specific image features or likelihood functions. The only requirement is that the

1 The number of columns is bigger than the number of rows.
2 The algorithm selected for solving the optimization problem is specified in Sect. 3.5.
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tracking method should be based on a probabilistic framework, which is a common
approach for modeling the dynamics of humans. Hence, our framework is a generic
framework that can be used with many probabilistic tracking algorithms in a VSN
environment. In fact, we have applied our framework using two different tracking
algorithms (Sect. 3.3.2) and shown the tracking results in Sect. 3.5.

At the fusion node, likelihood functions of each camera can be reconstructed
simply by multiplying the new representation with the matrix Ac. In general, this
may require an initialization step to decide the sparsifying space (Ac) at each camera
that is matched with the task of interest and to send all dictionary matrices to the
fusion node. In the next subsection, we go through the question ofwhich space should
be selected in Eq.3.8.

3.4.2 Designing Overcomplete Dictionaries

One of the well-known approaches in data compression involves using wavelet
transforms to obtain a compact representation of signal of interest. As in [4], we
can perform likelihood compression through orthogonal transforms of blocks of the
likelihood functions and achieve some level of sparsity. However, by using such
orthogonal transforms, we cannot fully exploit the structure of the likelihood func-
tions, instead we may distort the structure. For computational reasons, these orthog-
onal transforms should be applied to blocks of the likelihood functions, leading to
blocking artifacts in the reconstructed likelihoods. Focusing on scenarios involving
extreme bandwidth constraints, in this chapter we propose designing overcomplete
dictionaries that are matched to the structures of the full likelihood functions and
that will enable a representation with higher level of sparsity.

For instance, the likelihood functionsweobtain from the colormodel in [10] have a
special structure. As it has been explained in Sect. 3.3.2.1, the color model likelihood
functions for a person of interest are obtained by comparing the color histogram of
rectangular patches in the foreground image and the color distribution of the person
of interest. In Fig. 3.2, two sample foreground images and the likelihood function
obtained from these foreground images are shown. Figure3.2a, c show foreground

Fig. 3.2 Foreground images captured from two different camera views and corresponding color
model likelihood functions extracted from these images based on the approach in [10]. a when there
is only one person in the scene, b when the scene is crowded
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images captured from two different camera views when there is only one person
in the scene and when the scene is crowded, respectively. The likelihood functions
obtained from these image are shown inFig. 3.2b, d.We can clearly see that likelihood
functions consist of quadrilateral-shaped components. A person in the scene creates
a quadrilateral-shaped component in the likelihood function. One of the important
properties of these components is that their shape do not depend on the value of
the foreground pixels. The values inside the quadrilateral change according to the
color pixel intensities in the foreground image. But the shape of the quadrilateral
only depends on the camera view and the position of the foreground pixels. For this
reason, we can say that these quadrilateral-shaped components are building blocks
of likelihood functions. By creating a dictionary from these building blocks, we can
naturally and properly exploit the structure of the likelihood functions.

Aswehavementioned above, the scale andorientation of the quadrilaterals depend
on the camera view and the position of the foreground pixels. In order to find all the
building blocks of likelihood functions, we need to create likelihood functions from
all the possible foreground images. Similar to a 2D Dirac delta function, we create a
foreground image that is all-black except a single white pixel and obtain a likelihood
function from this image. By changing the position of the white pixel and obtaining
the likelihood function from that foreground image, we can create a pool composed
of building blocks. Note that dictionaries constructed in this manner depend on the
geometry of the observation scenario. Hence, our dictionaries naturally adapt to and
exploit the geometry of the sensing scenario (Fig. 3.3).

In the tracking method [14], the likelihood functions of each camera view are
obtained by fusing the projection of foreground maps obtained by the human detec-
tion step on parallel planes. A sample foreground image and a foreground map
obtained from this foreground image are shown in Fig. 3.4a. Again we can observe
that a person in the scene creates a quadrilateral-shaped component in the projected
likelihood function. In order to find the building blocks of these likelihood functions,
we imitate a person in the scene by setting a 100×30 rectangular patch in an all-zero
likelihood function and projecting this likelihood onto the ground plane (Fig. 3.4b).
Similar to the procedure above, as we shift this rectangular patch, we can create a
pool of building blocks and consequently build the dictionary.

Fig. 3.3 A sample foreground image that is all-black except a white pixel (a bigger image pointing
the pixel is given on left) and the likelihood function obtained from this foreground
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Fig. 3.4 a A foreground image and likelihood function obtained from the image based on the
approach in [14], b A sample foreground map that is all-black except a white 100× 30 rectangular
patch and the likelihood function obtained from this foreground

3.4.3 Exploiting Previous Tracking Results

In tracking human dynamics, we expect small differences in movements in two
consecutive instances of time. Although this depends on the image resolution and
frame rate, it is awell-known assumption and it is used nearly in allmotion estimation
methods. In this chapter, we exploit this fact in order to reduce the computation time
of the optimization problem in Eq.3.9.

Figure3.5a, b show two likelihood functions obtained from the tracker in
Sect. 3.3.2.1 at two consecutive frames and the corresponding sparse coefficient vec-
tors (xc in Eq.3.8). We can clearly see that there are very small differences between

Fig. 3.5 a Likelihoods obtained at two consecutive frames and b corresponding sparse coefficient
vectors, c an example of a set around a nonzero element (red line) in the sparse coefficient vector
together with the corresponding positions in the image
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both likelihoods and coefficient vectors of two consecutive frames. This implies that
there is no need to solve the optimization problem that includes all the dictionary
elements (full problem). By using only a part of the dictionary elements, it could be
still possible to find the sparse representation of likelihoods. Following this observa-
tion, we perform a procedure to reduce the size of dictionaries at the current frame by
using the sparse coefficient vector obtained at the previous frame. At each frame, we
record the indices of the coefficient vector elements that are nonzero. Then, before
solving the optimization problem, we reduce the dictionaries by taking the elements
that are in the neighborhood of the nonzero elements of the coefficient vector, corre-
sponding to spatial neighboring positions of the person (Fig. 3.5c). By changing the
neighborhood set, we can achieve different levels of reduction. After we constrain
the dictionary elements with neighborhood set, we solve the optimization problem
with the new dictionary in Eq.3.10.

min
bc

{||yc − Ak
c · bc||2 + λ||bc||1} (3.10)

Here, k denotes number of elements taken in the neighborhood of nonzero elements.

3.5 Experimental Results

This section contains results of a set of experiments testing the performance of
our approach in various tracking scenarios and comparing it with several existing
techniques proposed for tracking applications in VSNs. Section3.5.1 demonstrates
the use of our approach within the framework of the tracking algorithm of [10], and
presents comparisons of our approach with the block-based compression method
in [4] and the decentralized method in [17]. Section3.5.2 demonstrates the use of
our approach within the framework of the tracking algorithm of [14], and presents
comparisons of our approach with the distributed method in [26].

3.5.1 Comparison with Other Decentralized Approaches

In this subsection, we present experimental results based on the tracking framework
in [10]. We have compared our method with a block-based compression framework
[4] and a decentralized method in which, similar to [17], a Kalman filter is used in the
fusion node to estimate the position of a person in the scene using the observations
coming from cameras. In this decentralized method, after likelihood functions are
computed, each camera sends the peak point of the distribution to the fusion node
as observation.3 In the fusion node, the observations of each camera are spatially

3 Previously, the word “observation” was used to refer to the data acquired by cameras. Here, we use
it as the information that is obtained by feature extraction at the camera nodes, shared by cameras
to be used as “data” by the tracker.
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averaged and using the average position as its observation, a Kalman filter is applied
to estimate the position of the person on the ground plane. The positions of all people
in the scene are estimated by running an individual Kalman filter for each person.

3.5.1.1 Setup

In the experiments, we have simulated the VSN environment by using the indoor
and outdoor multi-camera dataset used in [10]. The indoor dataset consists of a
video sequence of four people sequentially entering a room and walking around.
The sequence was shot by four synchronized cameras that were located at each
corner of the room. In this sequence, the area of interest was discretized into G =
56 × 56 = 3,136 locations, which determines the size of the likelihood vectors.
The outdoor dataset was shot in a university campus and it includes up to four
individuals appearing simultaneously. This sequence was shot by three synchronized
cameras. The area of interest for this sequence was discretized into G = 40 × 40 =
1,600 locations. For the correspondence between camera views and the top view, the
homography matrices provided with the dataset are used. The size of the images are
360 × 288 pixels and the frame rate for all of the cameras is 25 fps.

Using the procedure described in Sect. 3.4.2, we have created the dictionaries for
each view. For the indoor dataset, we end up with dictionaries with 36,073, 46,986,
28,155, and 30,195 atoms for the first, second, third, and fourth view, respectively.
Note that these numbers are equal to the number of columns of the matrix Ac, c ∈
{1, 2, 3, 4}. The number of rows in each dictionary Ac is equal to G. Some elements
of these dictionaries are presented in Fig. 3.6. For the outdoor dataset, we end up
with dictionaries with 12,777, 11,984, and 19,846 atoms for the first, second, and
third view, respectively.Following the comparison between l1 minimization solvers
in [5], we have solved the optimization problem using the Homotopy algorithm [24]
with λ set to 0.1 for all dictionaries.

3.5.1.2 Indoor Tracking Results

In this subsection, we present the performance of our method used for indoor multi-
person tracking and compare it with the block-based compression approach of [4], as
well as with our implementation of the decentralized approach in [17]. For the block-
based compression framework, we consider the version that uses DCT for feature
compression with a block size of 8×8 and with several levels of compression, taking
1, 2, 3, 4, 5, 10, and 25 most significant coefficient(s) per block. Consequently, with
56×56 likelihoods, at each camerawe end upwith atmost 49, 98, 147, 196, 245, 490,
and 1,225 total number of coefficients per person. Since there are four individuals
in the scene at most, each camera sends at most 196, 392, 588, 784, 980, 1,960, and
4,900 coefficients per frame. In our method, after the sparse representation of the
colormodel likelihoodof a personof interest is found,we consider transmission of 10,
15, 20, 25, 50, and 100 most significant coefficients. Since there are four individuals
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Fig. 3.6 Some elements of the dictionary created for the indoor dataset by the procedure described
in Sect. 3.4.2

in the scene at most, each camera ends up sending at most 40, 60, 80, 100, 200, and
400 coefficients per frame to the fusion node. In the decentralized method that uses
a Kalman filter, for each person, each camera sends only two points, namely the 2D
position of the peak point, to the fusion node. In total, we end up with eight points
in maximum for four individuals.

A ground truth for this sequence is obtained bymanuallymarking the people in the
ground plane, in intervals of 25 frames. Tracking errors are evaluated via Euclidean
distance between the tracking andmanual marking results (in intervals of 25 frames).
Figure3.7 presents the average of tracking errors of the methods considered over all
people versus the total number of significant coefficients used in communication by
each method. Note that the actual number of significant coefficients sent by a camera
at each time point depends on the number of people in the scene at that moment.
The number of significant coefficients shown in Fig. 3.7 is computed based on the
worst case assumption of the presence of four people in the scene all the time. So
this is actually an upper bound on the number of coefficients that will be sent by
each camera at each time point. Note this is handled in exactly the same way for all
methods, so our comparison is fair. Note that the block-based approach is labeled as
“fc” in the figure legend, which corresponds to “feature compression”.

It can be clearly seen that by using custom-designed dictionaries, our sparse repre-
sentation framework achieves much more bandwidth reduction than the block-based
compression framework. To achieve an error of 1 pixel in the grid on average, our
sparse representation framework using custom-designed dictionaries needs at least
20 coefficients per person, whereas the block-based compression framework needs
at least 147 coefficients per person. By using the decentralized Kalman approach, we
can obtain a huge reduction in communication, but we cannot perform robust track-
ing. Our framework is also advantageous over an ordinary decentralized approach
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Fig. 3.7 Indoor sequence: average tracking errors versus the number of coefficients for the block-
based compression framework (red), our sparse representation framework (blue), the decentralized
Kalman approach (purple) and a decentralized method (green) that directly sends the likelihoods

that directly sends likelihood functions to the fusion node. In such an approach,
we send each data point in the likelihood function, resulting in the transmission of
3,136 values per person. It can be seen that our approach can significantly reduce
the amount of communication in the network as compared to this approach while
achieving the same level of tracking accuracy.

The tracking results of the block-based compression framework using 49 coeffi-
cients per person, the decentralized Kalman approach, and our sparse representation
framework using 20 coefficients per person are given in Figs. 3.8, 3.9, and 3.10,
respectively. It can be seen that, although the block-based compression approach can
track the first and the second individuals very well, there is an identity association
problem for the third and fourth individuals. The decentralized Kalman approach
fails to track the people in the scene. Nearly for all people, there occurs identity
association problems. In some frames, it loses the track of the person and starts
tracking a virtual person in the scene (frame no. 1,175 in Fig. 3.9b). These failures

Fig. 3.8 a Tracking errors for each person and b tracking results for the indoor dataset obtained
by the block-based compression framework in [4] using 49 coefficients per person used in commu-
nication



62 S. Coşar and M. Çetin

Fig. 3.9 a Tracking errors for each person and b tracking results for the indoor dataset obtained
by the decentralized Kalman approach

Fig. 3.10 a Tracking errors for each person and b tracking results for the indoor dataset obtained
by our sparse representation framework using 20 coefficients per person used in communication

occur because the amount of information coming from cameras (i.e., peak point of
the likelihood) is not enough to perform robust tracking. In [17], the decentralized
Kalman filtering approach has only been tested on a simple scenario that involves
tracking people using cameras mounted on the ceiling, and the approach does not
perform very well on the more challenging tracking scenario we consider in this
chapter. In order to achieve reduction in communication and robust tracking, this
method requires a better approximation of likelihoods such as samples from likeli-
hood functions as in particle filtering. In Fig. 3.10, we observe that all people in the
scene can be tracked very well by our sparse representation framework. All methods
suffer from an error for the third person around the 700th frame, because track-
ing of this person could start a few frames after he/she enters the room. When the
number of coefficients taken per person is fewer then 20, we also observe identity
problems. However, by selecting the number of coefficients per person greater than
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or equal to 20, we can track all the people in the scene accurately. The block-based
compression framework requires at least five times more coefficients to achieve this
level of accuracy.

In the light of the results we obtained, for the same tracking performance, our
sparse representation based method saves 86.39% of the bandwidth used by the
block-based compression approach. As compared to the ordinary decentralized
approach transmitting full likelihood functions, our approach saves 99.37% of the
bandwidth, while achieving the same level of tracking accuracy.

3.5.1.3 Outdoor Tracking Results

The performance of our sparse representation-basedmethod for outdoormulti-person
tracking is presented in this subsection. Again, we have compared our sparse rep-
resentation framework with the block-based compression framework in [4] using
DCT domain with a block size of 8 × 8 and the decentralized Kalman approach in
[17]. For the block-based compression approach, we take only the 5, 10, 15, 20, 30,
and 50 most significant coefficient(s) per block. Consequently, with 40 × 40 like-
lihoods, at each camera in total we end up with at most 125, 250, 375, 500, 750,
and 1,250 total number of coefficients per person. Since there are four individuals in
the scene at most, each camera sends at most 500, 1,000, 1,500, 2,000, 3,000, and
5,000 coefficients per frame. In our method, after the sparse representation of the
color model likelihood of a person of interest is found, we only took 5, 10, 15, 20,
25, 50, and 100 the most significant coefficients. Since there are four individuals in
the scene at most, each camera ends up sending at most 20, 40, 60, 80, 100, 200, and
400 coefficients per frame to the fusion node. As mentioned in the previous section,
in the decentralized Kalman approach, we end up sending at most 8 points for four
individuals.

As in the indoor sequence, tracking errors are evaluated via the Euclidean distance
between the tracking andmanual marking results. Figure3.11 presents the average of
tracking errors of the methods considered over all people versus the total number of
significant coefficients used in communication by eachmethod. It can be clearly seen
that our sparse representation framework works better in decreasing the communi-
cation than the block-based compression framework. The block-based compression
framework requires at least 375 coefficients per person to achieve an error of 2 pixel
in the grid on average. Using fewer coefficients with this approach causes identity
association problems. On the other hand, by using our sparse representation frame-
work, we achieve the same tracking performance with 10 coefficients per person.
The decentralized Kalman approach enables a huge reduction in communication,
but we cannot perform robust tracking. Our framework is also advantageous over an
ordinary decentralized approach that directly sends each data point in the likelihood
functions to the fusion node. Such an approach requires sending 1,600 values per
person. It can be seen that we can achieve the same level of tracking accuracy with
the ordinary decentralized method while significantly decreasing the communication
in the network.
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Fig. 3.11 Outdoor sequence: average tracking errors versus the number of coefficients for the block-
based compression framework (red), our sparse representation framework (blue), the decentralized
Kalman approach (purple), and a decentralized method (green) that directly sends likelihoods

Fig. 3.12 aTracking errors for each person and b tracking results for the outdoor dataset obtained by
the block-based compression framework in [4] using 250 coefficients per person in communication

The tracking results of the block-based compression framework using 250 coeffi-
cients per person, the decentralized Kalman approach, and our sparse representation-
based approach with custom-designed dictionaries using 10 coefficients per person
are presented in Figs. 3.12, 3.13, and 3.14, respectively. It can be seen that, block-
based compression fails to preserve identities with this level of compression. In
particular, when a person leaves the scene and comes back, the person cannot be
recognized and he or she is considered as a new person in the scene. For the decen-
tralized Kalman approach, nearly for all people, there occurs identity association
problems. Usually, it loses the track of the person and starts tracking a virtual person
in the scene (Fig. 3.13b). As in the indoor tracking results presented in the previ-
ous section, these failures occur because the amount of information coming from
cameras is not enough to perform robust tracking. In Fig. 3.14, we observe that all
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Fig. 3.13 a Tracking errors for each person and b tracking results for the outdoor dataset obtained
by the decentralized Kalman approach

Fig. 3.14 a Tracking errors for each person and b tracking results for the outdoor dataset obtained
by our sparse representation framework using 10 coefficients per person in communication

people in the scene can be tracked very well by our approach with custom-designed
dictionaries using 25 times fewer coefficients.

Based on these results, we can say that, by using the custom-designed dictionaries,
our sparse representation framework successfully decreases communication load in
the network without significantly degrading tracking performance. Hence, what we
propose is a bandwidth-efficient approach. Our sparse representation based method
is also advantageous over an ordinary decentralized approach that sends 6,400 values
for tracking four people (Fig. 3.11). Our approach uses only 0.63% of the bandwidth
needed by the decentralized approach.
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3.5.2 Comparison with a Distributed Approach

In this subsection, we compare our method with a distributed approach in which
each camera node fuses its observations with tracking results received from its
neighbors and sends the updated estimates to the next neighbor. We have used the
distributed trackingmethod in [26] for this comparison. In [26], at each camera node,
the position of each person on the ground plane is estimated by applying individual
Kalman-consensus filters [19] on its own observations togetherwith observations and
estimates coming from neighboring cameras. The state of each person in theKalman-
consensus filter is a four-element vector representing the position and velocity in the
horizontal and vertical directions on the ground plane. The observation vector of each
camera is obtained by finding the local maximum points of its likelihood function
(p(yc|x) in Sect. 3.3.2.2). At each time step, camera nodes share their observation
vectors and observation covariances together with the predicted states of each person.

3.5.2.1 Setup

In the experiments, we have simulated the VSN environment by using the PETS
2009 benchmark dataset [22], which includes camera calibration parameters that
will be used to estimate multi-plane homographies in [14]. The data were collected
in a university campus and it includes many people appearing simultaneously. We
have used the four cameras that cover a rectangular region on the ground. The area of
interest in this dataset is of size 6 ×6m2 and discretized into G = 40× 40 = 1, 600
locations, corresponding to a regular grid with a resolution of 15cm. The size of the
images are 720 × 576 pixels and the frame rate for all of the cameras is 7 fps.

As we have described in Sect. 3.4.2, we design a dictionary for each camera by
using the building blocks of the likelihood functions. We obtain dictionaries with
6,932, 7,870, 7,768, and 6,844 atoms for the first, second, third, and fourth view,
respectively.Again following the observations in [5],we have solved the optimization
problem using the Homotopy algorithm [24] with λ set to 0.1 for all dictionaries.

3.5.2.2 Tracking Results

The results of the comparison between our method and the distributed method in
[26] is presented in this subsection. In the distributed approach, at each iteration of
the Kalman-consensus filter, each camera shares the observation4 vector (2 element
vector) and observation covariance (2× 2 matrix) together with the predicted states
(4 element vector) with neighboring cameras. In our implementation, we have
selected a common observation covariance at each camera, hence, we save on
communications by not sending. In the experiments, we have observed that the
Kalman-consensus filter converges to an estimate in all cameras in three iterations.

4 We refer to the information shared by cameras.
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Consequently, to estimate the position of a person, in total 18 elements are shared
among cameras. Since there are four individuals in the scene at most, each camera
sends at most 72 elements. In our method, after the sparse representation of the like-
lihood of a person of interest is found, we consider the transmission of 15, 30, 40,
50, 75, 100, and 250 most significant coefficients. Since there are four individuals
in the scene at most, each camera sends at most 120, 160, 200, 300, 400, and 1,000
coefficients per frame to the fusion node.

A ground truth for this sequence is obtained by manually marking the people in
the ground plane. Tracking errors are evaluated via Euclidean distance between the
tracking and manual marking results. Figure3.15 presents the average of tracking
errors over all people versus the total number of significant coefficients used in com-
munication by each method. Since the actual number of significant coefficients sent
by a camera depends on the number of people at that moment, an upper bound on the
number of coefficients is shown in Fig. 3.15. It can be clearly seen that the distrib-
uted approach can provide a huge reduction in communication in the network, but it
cannot perform robust tracking. The distributed approach we consider here appears
to depend on each camera to provide good tracking performance on its own, and
may not perform well in a challenging tracking scenario when that is not satisfied
as we observe in our experiments. Our sparse representation framework achieves a
smaller bandwidth reduction than the distributed approach, but, by using the custom-
designed dictionaries, our framework has the ability to decrease the communication
without affecting the tracking performance significantly. By using at least 50 coeffi-
cients per person, our sparse representation framework achieves an error of 2.5 pixels
in the grid on average. On the other hand, the distributed approach has a tracking
error of 24 pixels in the grid on average while using 18 coefficients per person. Our
method is also advantageous over an ordinary decentralized approach that directly
sends likelihood functions to the fusion node. In such an approach, we send each
data point in the likelihood function, resulting in the transmission of 1,600 values per
person. The performance of this approach is also given in Fig. 3.15. By using all the
information in likelihoods, the ordinary decentralized approach achieves marginally

Fig. 3.15 PETS 2009 sequence: The average tracking errors versus the number of coefficients for
the distributed approach in [26] (red), our sparse representation framework (blue) and adecentralized
method (green) that directly sends likelihoods
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better tracking performance than our method. However, our framework provides a
significant reduction in bandwidth use while achieving a tracking performance very
close to the performance of the ordinary decentralized method.

The tracking results of the distributed approach in [26] per person and our sparse
representation framework using 50 coefficients per person are shown in Figs. 3.16
and 3.17, respectively. It can be seen that, the distributed approach fails to preserve
identities. For all people in the scene, there occurs identity switches. One of the main
reasons of this problem is that the observations extracted from singleview likeli-
hood functions are not sufficient for representing the whole likelihood function. The
distributed approach appears to equally incorporate all observations coming from
cameras. Since the observations are not extracted after fusing the multiview likeli-
hoods, noisy singleview likelihoods cause inaccurate observations for tracking. An
example for such a case is given in Fig. 3.18. We can see that, since the observations

Fig. 3.16 a Tracking errors for each person and b tracking results for the PETS 2009 dataset
obtained by the distributed approach in [26]

Fig. 3.17 a Tracking errors for each person and b tracking results for the PETS 2009 dataset
obtained by our sparse representation framework using 50 coefficients per person used in commu-
nication



3 Decentralized Human Tracking in Visual Sensor Networks . . . 69

Fig. 3.18 a–d Inaccurate observations extracted from the likelihoods of camera 1, 3, and 4 (white
stars) lead to e inaccurate estimation (blue star) in the distributed approach in [26]. Since the person
of interest is not visible in camera 2, we do not have an observation coming from this view

extracted from likelihoods of each view are inaccurate, the estimated position of the
person is not accurate. Hence, the distributed approach fails to track the people. On
the other hand, in our sparse representation framework, we first fuse the singleview
likelihoods and then use the multiview likelihood function in tracking. By using
the custom-designed dictionaries, we represent the likelihood functions with small
number of coefficients without significantly reducing the amount of information they
contain. Thus, the multiview likelihoods, obtained by fusing the reconstructed single
view likelihoods, are accurate enough to perform robust tracking under severe band-
width limitations. In Fig. 3.17, it can be seen that our framework can successfully
preserve identities and track all people in the scene robustly. Even if a person leaves
the scene and comes back (the first person in Fig. 3.17b), he or she is recognized and
a true label is assigned to the person. Occasionally in this sequence, a person enters
the scene while another person leaves. For this reason, sometimes our method starts
tracking a few frames after the person enters the scene or ends tracking before the
person leaves the scene. Thereby, it suffers from some errors. When the number of
coefficients taken per person is fewer then 50, we also observe identity problems.
But by selecting the number of coefficients per person greater than or equal to 50,
we can track all the people in the scene accurately.

In the light of the results we obtained, we can say that our sparse represen-
tation based method outperforms the distributed approach in [26]. By using the
custom-designed dictionaries, we can both decrease the communication in the net-
work and perform robust tracking. Our method requires only 3.12% of the band-
width needed by the ordinary decentralized method in order to achieve a tracking
performance very close to that method. In the distributed approach in [26], since the
observations are modeled with single Gaussian distributions, we only share mean
and covariance information with the fusion center. However, such a simple model
is often insufficient for robust tracking [18]. In addition, there are particle filtering-
based distributed algorithms in which the particles sampled from likelihood func-
tions are approximated using models (e.g., mixture of Gaussians) or quantized in
order to reduce communications [3, 18]. Since our approach involves representing
likelihood functions using custom-designed dictionaries, we expect to obtain more
parsimonious representations, and hence, more efficient communication than such
methods.
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Table 3.1 Average computation time of the optimization problem in Eq.3.10 solved at each camera
node and the average tracking errors for various reduction levels

k Cam-1(s.) Cam-2(s.) Cam-3(s.) Cam-4(s.) Tracking error

No reduction 1.5881 1.7775 3.1716 3.2509 1.9156

2,000 1.1450 0.9386 2.6199 2.8685 1.9156

400 1.1291 0.9394 3.0321 3.2320 1.9175

200 0.6672 0.5507 1.4621 1.5179 1.9156

150 0.2670 0.2132 0.3565 0.3675 1.9175

3.5.3 Decreasing the Computation Time

In this section,we present an analysis of the performance of our procedure to decrease
computation time using the indoor dataset described in Sect. 3.5.1.1. Based on the
procedure explained in Sect. 3.4.3, we have reduced the size of the optimization
problems solved at each camera node (Eq. 3.10). In particular, rather than using the
full-size dictionary at each frame, we spatially constrain the dictionary elements
in the current frame, by considering only 2,000, 400, 200 and 150 elements in the
neighborhood of each nonzero element of the sparse coefficient vector obtained
in the previous frame. Table3.1 presents the average computation time recorded
at each camera node and average tracking errors computed as in Sect. 3.5.1.2 for
various reduction levels. The average computation times obtained by the non-reduced
dictionaries are also presented in Table3.1. The computation times are recorded on
a Intel Xeon E5645 dual 2.35GHz CPU using Matlab implementation.

It can be observed that by spatially constraining the dictionary elements, we can
decrease the computation time without affecting the tracking performance signifi-
cantly. The results show that using our reduction procedure, it is possible to decrease
the computation time to satisfy the constrain on processor capability of camera nodes
in VSNs.

3.6 Conclusion

Using a camera in a wireless network poses unique and challenging problems that
do not exist in the traditional multi-camera video analysis systems and wireless sen-
sor networks. This chapter presents a novel method that can be used in VSNs for
multi-camera person tracking applications. In our method, tracking is performed in
a decentralized way: each camera extracts useful features from the images and sends
them to a fusion node which performs tracking. Most probabilistic tracking sys-
tems involve computation of a likelihood function. Instead of sending the likelihood
functions themselves to the fusion node, we compress the likelihoods via sparse rep-
resentation. Special overcomplete dictionaries that are matched to the structure of
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the likelihood functions are designed in an adaptive fashion exploiting information
about the geometry of the sensing scenario and used for sparse representation of like-
lihoods. This enables us to decrease the communication between cameras and fusion
nodes. Thereby, for the same tracking performance, we achieve more bandwidth
savings compared to existing methods. Additionally, we have presented a procedure
to decrease the computation time of the optimization problems by exploiting the
sparse representation obtained in the previous frame. By using the sparse coefficient
vectors computed in the previous frame, we can spatially constrain the set of allowed
dictionary elements in the current frame and reduce the size of the problem, thereby,
decreasing the computation time.

This framework fits well within the needs of the VSN environment. By extracting
image features at the camera-level, the processing capabilities of cameras are uti-
lized. Transmitting only the most significant coefficients, obtained from the sparse
representation of likelihoods, saves energy, and bandwidth resources. In this manner,
we have achieved a goal-directed compression scheme for the tracking problem in
VSNs by performing local processing at the nodes and compressing the resulting
likelihood functions which are related to the tracking goal, rather than compressing
raw images. Another advantage of this framework is that it does not require the use of
a specific tracking method. In our experiments, we have used two different tracking
algorithms and achieved bandwidth reduction in the network without degrading the
tracking performance significantly. We believe our sparse representation framework
is an effective approach that can be used together with any probabilistic tracker in
VSNs. Thereby, existing centralized methods can be used within our framework in
VSN environments without making significant changes (e.g., using simpler features,
etc.) which may degrade their performance.
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Chapter 4
Real-Time Tracking for Moving Target
in WSN with Uncovered Holes

Huan Li, Zhefeng Sun and Kejie Lu

Abstract In many practical scenarios, tracking moving targets in the field is very
important but also challenging. To effectively track targets, a promising solution
is to deploy a target-tracking wireless sensor network (WSN), which has attracted
significant attention in the literature. In the past few years, most existing studies in
this area have been focused on improving the accuracy and energy efficiency based
on the assumption that the field is fully covered. However, this assumption may be
invalid because sensors may fail due to various reasons. In this chapter, we tackle
this important but largely overlooked problem. Specifically, we consider a WSN in
which there exist uncovered areas, a.k.a. holes, in the field, due to the failures of
sensors. We propose a novel signaling protocol where the main idea is to identify the
hole and boundary nodes at the same time during the tracking course when the target
moves into the hole. To quickly discover the boundary, we also propose to adopt
directional antenna to achieve wireless communication. Simulation results show that
the proposed approach can realize the real-time detection of a moving target when it
runs into and out of the hole, and at the same time, consume much less energy than
the omnidirectional antenna-based methods.

4.1 Introduction

Wireless sensor network (WSN) is a promising technology that can efficiently collect
information from the unattended field and thus can facilitate the interactions between
the physical world and human beings. One of the most important applications of
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WSNs is to check moving target continuously, in scenarios such as monitoring wild
animal and human detection and tracking.Unlike the centralized surveillance system,
the advantages of target-trackingWSN include higher accuracy and shorter detection
delay.

Typically, a target-tracking WSN consists of a set of sensor motes, each of which
can sense moving targets nearby and communicate with other motes using wireless
communication. In general, sensor motes are deployed with a certain density so as to
provide full coverage of the field. On the other hand, sincemotes are usually powered
by battery, to prolong the lifetime of WSN, a sensor shall be on the sleeping mode
until it is notified by neighbors that a moving target is about to enter its sensing field.

Despite the importance of these studies, in practical scenarios, sensors can fail
due to various reasons such as low battery, software bugs, natural disaster, etc. Con-
sequently, uncovered areas, a.k.a. holes, can occur dynamically over time. In the
literature, most existing studies on target-tracking WSN concentrate on improving
the accuracy and energy efficiency in a fully covered area [18, 40]. In this chapter,
we investigate how to keep tracking moving target in WSN with holes that are not
known in advance.

This problem is challenging because of a few reasons. First of all, the hole can
appear dynamically until a particular sensor identifies that one or more of its neigh-
bors cannot be waked up. Secondly, once a hole is detected the particular sensor must
initiate a procedure to quickly determine the border of the hole and activate sensors
around the hole so as not to miss the moving target, which is difficult. Here we note
that, although there are some studies on boundary detection [10, 12, 25], none of
them were designed to deal with our problem, in which we have the requirement to
detect moving target in real-time.

In this chapter, we address this challenging problem. In particular, our major
contributions are listed below.

• We apply directional antenna for target-tracking WSNs, which is different from
most studies in the literature. To the best of the authors’ knowledge, this is the
first study that uses directional antenna for continuous tracking moving target for
WSN with holes.

• We propose a novel prediction algorithm that can not only achieve continuous
tracking, but also minimize the energy consumption by automatically setting the
mode of boundary sensors. To realize real-time and accurate path prediction, we
also design a signaling protocol.

• We conducted extensive simulation experiments. The results show that the pro-
posed protocol can achieve the real-time detection of a moving target when it
runs into and out of the hole. Moreover, the energy consumption of the proposed
scheme is lower than that of schemes using omnidirectional antenna.

The rest of the chapter is organized as follows. Section4.2 surveys the related
work. Section4.3 presents the system models and problem statement. Section4.4
introduces the real-time tracking protocol. Section4.5 discusses the performance
evaluation. Finally, Sect. 4.6 concludes the chapter and points out the future work.
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4.2 Related Work

4.2.1 Target Tracking in WSN

Technical advances in micro-sensing, wireless communications, and microelectro-
mechanical systemshave enabled the development ofwireless sensor network (WSN)
to bridge the interaction gap between the physical world and human beings. A sensor
network is composed of a large number of sensor nodes (also called motes) that are
deployed inside the phenomenon to realize a wide range of applications, including
remote environmental monitoring, real-time tracking, precision agriculture, etc. [13].
In WSN, the main components of a mote include microcontroller, transceiver, exter-
nal memory, power source, and some sensors. Each individual mote is capable of
performing someprocessing, gathering sensory information and communicatingwith
other nodes via wireless transmission in the network.

Tracking moving target is one of the most important applications in WSNs. Dif-
ferent from the centralized monitoring system, the advantages of applying WSN in
these applications are distinguished, since it catches with the physical world in real-
time and thus can satisfy the quality of service, e.g., the demand of high accuracy of
path detection [5, 18]. In [42], the position and the velocity are both considered in
the state of the target in Cartesian coordinates, and a new approach, which is based on
the combination of Kalman filter and maximum likelihood estimator, is investigated
to avoid the instability problem and thus can offer superior tracking performances.
In [46], the authors proposed to extract an ordered list from unreliable sensor read-
ings to estimate the movement trace and developed a multidimensional smoothing
scheme to enhance tracking accuracy.

In addition to accuracy objective, some other issues such as real-time and energy
are also studied.With regard to real-time tracking, FindingHuMo [9] proposes a real-
time user tracking system for smart environments, in which individual targets can
be fast identified by investigating binary motion data stream. Earlier work has also
investigated how to guarantee real-time communications in wireless sensor network
[20, 21] or robot sensing systems [22]. Some special scenarios, such as how to track
a single target in WSN that includes sensor motes with controlled mobility, have
been studied in [27].

While in traditional WSN, static sensor motes are the de facto nodes used in
the infrastructure for investigated areas of interest, some researchers considered the
tracking problem in a distributed heterogeneous WSN that includes cameras [37]
and multi-sensor mobile robots [32]. For instance, multi-agent surveillance systems
have been proposed for tracking and monitoring in [26, 32, 33]. Different from other
discussions that focused on a specific algorithm or protocol design, the multi-agent
system was proposed to provide robot-assisted system that can exploit a distributed
control architecture to enable the network to autonomously accomplish general-
purpose and complex monitoring tasks. Moreover, some other artificial intelligence
(AI) techniques, such as machine learning algorithms (e.g., a support vector machine
(SVM) classifier in [38, 39]) have been introduced to realize the high-accuracy
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tracking. These works provided a new way of thinking for tracking task using WSN,
however, the proposed methods are normally too complicated for real-time scenarios
in practice.

4.2.2 Hole Detection and Boundary Discovery

As defined in [35], a boundary separates two regions of interest in a phenomenon,
which can be visualized as an edge if there is a sharp change in the field value between
the two regions, or alternatively, as a contour with a field value f = τ separating
two regions with field values f > τ and f < τ . Under this condition, holes can be
defined as the area not covered by the sensing area of any nodes as τ = 0. This is
different from the definition in [5], where a hole refers to a target that is covered by
less than three sensors. In this chapter, we adopt the first definition.

With regard to boundary discovery inWSN, several problems have been discussed
in the literature, including field estimation, localized estimation, and adaptive esti-
mation. Field estimation is to sample the entire field and query for the points on
boundary. For instance, in [24], contour maps are generated at the sink by gathering
information from the whole network. Localized estimation is to identify which sen-
sors lie on the boundary. In [11, 12], the authors examined the problem of tracking
dynamic boundaries occurring in natural phenomena using a network of range sen-
sors. In this work, a low energy algorithm, which combines the spatial estimation
and temporal estimation techniques, has shown good performance in the estimation
accuracy, compared to similar periodic update techniques to track boundarieswithout
requiring a priori knowledge about the dynamics. In [36], mobile agents were pro-
posed to optimally approximate the boundary with a polygon, in order to monitor an
environmental boundary. The mobile sensors rely only on sensed local information
to position some interpolation points that lead to an approximating polygon.

According to our survey, no existing studies have investigated the mobile tar-
get tracking under the hole detection scenario. Moreover, most previous algorithms
focus on the improvement of the boundary detection’s accuracy and the reduction
of calculation time. Besides, how to utilize directional antenna to save energy is not
considered in existing studies.

4.2.3 Directional Antenna in WSN

Compared to omnidirectional antenna, directional antenna has several advantages,
especially in the energy consumption and reduction of collisions among multiple
sensor nodes. InWSN, topics on using directional antenna include capacity improve-
ment, medium access control (MAC) design, routing protocol, coverage study, loca-
tion discovery, etc.
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As an earlier research on MAC protocol with directional antenna, the authors
of [45] designed MAC protocols for static WSNs to reduce power consumption
at the sensor nodes. Besides the fundamental problems of the MAC layer, other
issues such as location discovery [29], prediction of delay performance [14], the
deafness/hidden-terminal/exposed terminal problems [1], and neighbor discovery
with a little amount of energy consumption [28] have also been investigated in recent
research. A pioneering work of a theoretical analysis on how to improve the capacity
of ad hoc wireless networks using directional antennas is presented in [43].

With regard to routing protocol, single-recipient wireless environment, which
corresponds to the important case of directional antennas, has been investigated
from the theoretical perspective in [31], and heuristic algorithms were proposed to
maximize the network lifetime. Performance of dynamic source routing (DSR) using
directional antennas was evaluated in [8]. In addition, ORRP [6] andMORRP [3] are
lightweight-but-scalable routing protocols utilizing directional communications to
relax information requirements. As a pilot study of coverage with directional antenna
in WSN [44] proposes a set of optimal patterns to achieve full coverage and global
connectivity under two different antenna models.

In summary, most existing studies of WSN with directional antenna are on cov-
erage, MAC protocol, and routing scheme. How to utilize directional antenna for
continuous moving target tracking in WSN with uncovered holes is still an open
issue, which is studied in this paper. Specifically, we consider that the antenna of
each sensor can switch between omnidirectional and directional transmissionmodes,
which can be realized by using smart antenna [17].1

4.3 System Models and Problem Statement

In this section, we discuss the system models, including the transmission model,
network model, and energy model, as well as the problem. To facilitate further
discussions, we list important notations in Table4.1.

4.3.1 The Transmission Model

Inwireless networks, the transmission rangeof a node is generally used to describe the
farthest distance where the strength of received signal is sufficiently large. As dis-
cussed in [16], the path loss in the wireless channel can be modeled as a power
law function of the distance between the transmitter and the receiver. In theoretical

1 Some prototypes of smart antenna that can switch modes can be found in [23, 30].
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Table 4.1 Summary of
notation

Notation Meaning

Vs Voltage

Is Electric current

ts Time spent in sensing

ETk Energy consumed in transmitting k bits data

ERk Energy consumed in receiving k bits data

Eelec Transmitters electric circuit consumed energy

ks The number of bits sent

kr The number of bits received

εamp Power amplifier consumed energy

r Communication range

λ Path loss

Angle Directional antenna’s angle

analysis, the free space model (d2 attenuation) is used for a shorter distance, while
the two-ray ground model (d4 attenuation) gives a more accurate prediction at a
longer distance [34].

Given the same transmission power, the transmission range of directional antenna
can be larger than that of the omnidirectional antenna. In general, omnidirectional
antenna radiates and receives signals equally well in all directions (i.e., for a trans-
mitters/receiver, the radiated signal has the same strength in all directions), while
directional antennas focus the radio frequency (RF) power to particular directions.
Consequently, if directional antenna is used, the signal strength on certain directions
will be higher, which can be measured in gain [4].2

Besides the transmission range, the performance of the transmission is also
affected by application scenarios. For instance, omnidirectional antenna can be more
efficient if the receivers of a message are around the sender of the message. On the
other hand, if the receivers are all located in one direction, then directional antenna
is more efficient. Moreover, using directional antenna may facilitate spatial reuse
of frequency channel because it can reduce interference. For example, in Fig. 4.1,
the communication between nodes S and D forbids the transmission from E to F.
If directional antenna is used in such a scenario, both transmissions can occur at the
same time, as shown in Fig. 4.2.

In this work, we consider to use both omnidirectional and directional antenna
in target-tracking WSN for tracking the moving objects. Particularly, we assume
that each sensor mote can switch between the omnidirectional and directional
transmission modes according to the system demand.

2 The gain is measured in decibels over either a dipole (dBd) or a theoretical construct called an
isotropic radiator (dBi). The isotropic radiator is a spherical signal source that radiates equally well
in all directions.
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E

F

Fig. 4.1 Scenario using omni-antenna

E

F

Fig. 4.2 Scenario using directional-antenna

4.3.2 The Network Model

In this work, we assume that all sensor nodes are stationary and deployed unattended
in remote field. They are the same in terms of processing capacities, energy budget,
and the maximum transmission range. We also assume that each sensor node can
realize its location byGPS or other localization algorithms (Note that, how to achieve
this is out of the scope of this work).

AWSN is represented by a graph G(V, E), where V is the set of sensor nodes and
E stands for the set of communication edges. Two nodes can communicate with each
other only if their Euclidean distance is less than the maximum transmission distance
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given by the system settings. We let RT be the transmission range and RS denote the
sensing distance. We assume that RT = 3RS, which is based on [41], where it has
been proved that the transmission range must be at least twice the sensing range to
achieve a complete coverage of a convex area according to the relationship between
coverage and connectivity.

4.3.3 The Energy Model

The energy consumed in a sensor node includes the following processes: micro
controller processing, radio transmission and receiving, transition process, sensing,
sensor logging, and actuation [2]. In this work, we only consider the energy depletion
due to sensing and communication procedure because they dominate the system
energy consumption. As in previous work [47], the sensing energy is the product of
voltage, electric current, and time used to sense the environment, so the total sensing
energy consumption for the entire sensor network is described in Eq. (4.1), where N
refers to the number of nodes in the network.

N∑

i=1

ESensing(i) =
N∑

i=1

(Vs ∗ Is ∗ ts(i)) = Vs ∗ Is ∗
N∑

i=1

ts(i). (4.1)

According to [15], the energy consumption (Ecomm) for a communication process
is represented in Eq. (4.2).

⎧
⎨

⎩

Ecomm = ET x + ERx

ET x = Eelec ∗ ks + εamp ∗ ks ∗ rλ

ERx = Eelec ∗ kr.
(4.2)

If the transmission range is fixed, Eelec and rλ are constant, so we can set
rλ = M ∗ Eelec, where M is a constant. Thus, the total communication energy
consumption is the sum of all the energy consumed in processes of transmission and
reception, as follows:

N∑

i = 1

Ecomm(i) =
N∑

i = 1

(ET x (i) + ERx (i))

= Eelec ∗ (

N∑

i = 1

ks(i) +
N∑

i = 1

kr(i) +
N∑

i = 1

(εamp(i) ∗ ks(i) ∗ M)).

(4.3)
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Here we note that, for directional antenna, the amplifier energy consumption is
proportional to the angle [7].

εamp ∝ Angle (4.4)

Combining Eqs. (4.3) and (4.4), we have the following expression for energy
consumption, as illustrated in Eq. (4.5):

N∑

i = 1

Ecomm(i) =
N∑

i=1

Ecomm(i) ∝ (

N∑

i=1

ks(i) +
N∑

i=1

kr(i)

+
N∑

i=1

(Angle(i) ∗ ks(i) ∗ M ′)) (4.5)

4.3.4 Problem Statement

In a randomly deployed WSN, when a sensor node is active in packet transmis-
sion, reception, and sensing, the energy consumption for those activities is much
higher than the consumption when the node is on the sleeping mode. Therefore, after
the nodes are deployed and self-organize the network, on-demand cooperation and
notification are useful to reduce the energy consumption and thus can significantly
prolong the lifetime of WSN.

In the domain of long-term real-time target tracking, the termof on-demandmeans
that, if a mobile target is located in the sensing area of some sensor nodes, these
sensor nodes shall be notified in time to start sensing and shall keep sensingwhenever
necessarywith the help of neighboring nodes’ cooperation. For such applications, any
attempt to save energy in the target tracking process shall be based on the guarantee
of sensing accuracy. Specifically, accuracy means that the related nodes must keep
sensing and record the results whenever the target is in its sensing range.

In this study, we consider a scenario that some fields are not covered by any
sensing nodes, as shown in Fig. 4.3. These specific uncovered fields are called holes

Fig. 4.3 Mobile target’s tracking in the area where hole exists
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in this work. In such scenarios, suppose a moving target is walking/running across a
big hole (The diameter of the hole is much larger than the sensing range.) in a field
with a predictable average speed, our first problem is how to detect that the target
has entered the hole in real-time and initiate a signaling protocol to notify the nodes
along the border of the hole to keep tracking.

When the target is in the hole, the reduction of energy consumption is of great
importance in order to prolong the network lifetime. However, in order to catch up the
target, it is required to keep some sensor nodes awake to achieve necessary tracking
accuracy. Hence, the trade-off between accuracy and energy efficiency is another
important problem to be solved.

To facilitate further discussion, we suppose that each sensor node knows its posi-
tion and its one-hop neighbors’ information. In summary, the problem is: how the
nodes can cooperate with one another to discover the hole accurately and detect the
mobile target in time before it enters the hole and after it runs out of the hole. For this
problem, there are two possible objectives: (1) to minimize the energy consumption
in the communication and sensing processes; and (2) to guarantee the accuracy in
real-time detection.

4.4 Real-Time Mobile Target Detection Protocol

In this section, we elaborate on the aforementioned problem and discuss how to
design a protocol to guarantee a real-time and low-energy consumption detection of
the mobile target when it runs into and out of the hole. Specifically, we investigate
three subproblems: (1) detection of the hole, (2) boundary node discovery, and (3)
convergence of the protocol. To simplify the discussions, we assume that the design
is based on a lossless channel.

4.4.1 Overview

Suppose the nodes keep sensing with the interval of �t until the target moves out
of their sensing coverage area. At the moment when the node cannot catch the
moving target, we can prove that the target must be in the neighbors’ sensing area.
So once the target moves out of the sight of the current sensing nodes, these nodes
will immediately send a start-sensing packet to all its neighbors at a pre-calculated
direction (The direction can be predicted by previously received sensing signals
sent from its former neighbors.), and wait for the replies. If no sensed-ACK (ACK:
acknowledgement) is received, the senders are considered to be on the boundary and
the target has entered the hole; otherwise, the target does not enter the hole and the
sensing procedure continues as in normal condition. The overview of the protocol is
presented in the following algorithms (i.e., Algorithms 1–3).
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Algorithm 1: Sensing-process
0.1 repeat
0.2 Sensing the targets;
0.3 until cannot sense the target anymore;
0.4 send out start-sensing signal at one direction to its one-hop neighbors;
0.5 wait for replies for a given interval;
0.6 if received ACK(sensed) then
0.7 Stop sensors; return // The neighbors have sensed the target
0.8 else /* start Hole-detection process */
0.9 broadcasts hole-detection signal to its one-hop neighbors;

Algorithm 2: Hole-detection (hole-detection)
1.1 if it is the first time receiving hole-detection then /* upon receipt of

hole-detection */
1.2 if (boundary-discovery( hole-detection) == TRUE) then
1.3 broadcasts hole-detection signal to its one-hop neighbors;
1.4 start Sensors till the target caught or received target-catch-up signal;
1.5 else
1.6 Stop sensors; Return Sleep

1.7 else /* have received the signal before */
1.8 Return

Algorithm 3: Boundary-discovery (hole-detection)

2.1 calculate the direction;
2.2 broadcast boundary-discovery signal to neighbors on that direction;
2.3 wait for the ACKs;
2.4 calculate the number of the received ACKs (#ACK);
2.5 if #ACK

#neighbors � Threshold then
2.6 return (TRUE);
2.7 else
2.8 return(FALSE);

4.4.2 Detection of the Hole

At the initial stage, the nodes that first detect the existence of the hole will broadcast
a hole-detection query signal to the nodes in all directions, and then initiate the
boundary detection process (see the next section). Once the node can tell that it is
on the boundary, it will then continue to send out hole-detection signal to the next
nodes on some directions using direction antenna and start sensing process till the
target-catch-up signal feedbacked/propagated to it, which indicates that the target
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Fig. 4.4 Hole detection signaling process

has moved out of the hole and has been successfully detected by some sensing nodes
on the boundary, the whole hole-detection process can thus stop.

Except for the initial stage, to save energy, we design an efficient scheme to utilize
direction antenna to transmit the signal to the neighboring nodes on the boundary.
The problem is how to calculate the angle so that all nodes on the boundary can be
covered. In this study,we apply a simple scheme, as illustrated inFig. 4.4. Particularly,
the receiver will choose a direction that is the same as the direction from the sender
to the receiver. With this direction, the receiver will select 180◦ in total from the
sum of the angle of clockwise and counterclockwise directions (each covering 90◦).
Note here, we use a relative large angle to make sure that all boundary nodes can
be covered for the signaling propagation. In fact, to save the energy, the angle can
be smaller and more adaptive to the scenario if the algorithm can predict the speed
and the shape of the hole in more precise manners, which will be investigated in our
future work.

4.4.3 Boundary Node Discovery

Although one node may receive several hole-detection signals from different nodes
from one direction, for simplicity, upon receipt of the first signal, this node will send
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Fig. 4.5 Boundary discovery process

out boundary-discovery query packet right away to the nodes in all directions at
initial stage or some directions for the following steps, and then wait for the ACKs
from those that received this packet. Other detection signals will be ignored because
the first one already contains the proximity of the curve.

Suppose the underlying protocol is CSMA-based MAC layer protocol [19], it
will not guarantee that all ACKs can reach the sender without collision. To solve
this problem, we introduce a threshold to help proceed with the boundary discovery
process. That is: if #ACK

#neighbors ≤ Threshold, this node will be identified as a boundary
node. For any identified boundary node, it (1) starts hole-detection signal to some
direction as discussed before; and (2) starts sensing target procedure. Otherwise, this
node is not on the boundary, and it will stop involving in the hole detection process.
Note here, #neighbors refers to the number of active neighbors on the direction
that can be obtained using regular neighboring discovering process, and Threshold
is an empirical value that may be affected by the property of physical/MAC layer
protocols.

Still, nodes that need to determine if they are boundary nodes will also use direc-
tional antenna to send out the boundary-discovery packet instead of flooding to all
directions, as illustrated in Fig. 4.5. Here, we use the hole-detection signal to calculate
the 180◦ angle along the vector, to cover the area that faces toward the hole.

4.4.4 Convergence of the Protocol

The hole-detection signal may transit along the two directions of the hole. So if a
sensor node receives a hole-detection signal later again, it should check if it is from
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a different direction than the previous ones. Since the time for one-hop neighboring
transition is relatively much shorter than the signal transition from another direction,
we can easily design the timer to handle the neighboring case. Thus, we can draw
a conclusion if the signal is received from another direction the first time, that the
signaling protocol actually converges and no more signals need to be sent out.

In practice, the target may keep moving or stay for a while inside the hole and
will eventually move out. To handle the move-out event, in the protocol we use a
Stop signal to indicate the target-catch-up event on the reversed path of the hole
detection message. All sensing nodes that received this signal will stop sensing
process immediately. Although the state of the neighboring boundary nodes should
be maintained, the cost is very small because the number of these nodes is very
limited.

4.5 Performance Evaluation

In this section, we conduct extensive simulation to demonstrate the effectiveness
of the proposed real-time tracking protocol. We evaluate the performance in terms
of accuracy and energy efficiency using simulation testbed developed in NS3. We
compare the proposed directional transmission method to a flooding approach that
makes use of omnidirectional antenna to achieve the communication. The results in
each figure in this section is the average value of 25 trials, each having a new node
deployment in the network for a given path.

4.5.1 Experimental Settings

In the experiments, 450 sensor motes are randomly deployed and connected in a field
with length and width of 1,000m. According to the relationship between RS and RT
(i.e., RS = 1/3RT), the transmission range RT and sensing range RS are set to be
150 and 50m respectively, to ensure that the whole field is covered by theWSN. The
sensing interval �t is set to 0.1 s, and the total simulation time is 80 s for each trial.

In our experiments, we consider four differentmoving paths, as shown in Figs. 4.6,
4.7, 4.8 and 4.9, each of themcorresponds to one of the four distinct holes in Table4.2.

Table 4.2 Coordinate area of
failure nodes

Holes Coordinate representation of failure nodes

area1 {(x, y)|x ∈ [575, 800], y ∈ [135, 285]}
area2 {(x, y)|x ∈ [575, 800], y ∈ [135, 285]}
area3 {(x, y)|x ∈ [650, 750], y ∈ [500, 700]}
area4 {(x, y)|x ∈ [0, 200], y ∈ [800, 1, 000]}
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Fig. 4.6 Target starts at (900, 10), moving speed is 10m/s, turns around 4 times when it moves at
0, 100, 300 and 600m at the direction: up, left, up and left
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Fig. 4.7 Target starts at (900, 10), moving speed is 20m/s, turns around 4 times when it moves at
0, 200, 600 and 1,200m at the direction: up, left, up and left
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Fig. 4.8 Target starts at (500, 500), moving speed is 20m/s, turns around 5 times when it moves at
0, 200, 400, 800 and 1,200m at the direction: right, up, left, down and right
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Fig. 4.9 Target starts at (500, 500), moving speed is 20m/s, turns around 5 times when it moves at
0, 400, 800, 1,600 and 2,400m at the direction: right, up, left, down and right

The nodes within the given hole are assumed to be failed. Paths are chosen to evaluate
the impact ofmoving area, turning angle, smoothly running and sharp turn, and speed.

4.5.2 Accuracy Analysis

During the whole tracking period, each sensor mote can be either on the sensing state
or on the sleeping mode. If it is on the sensing state, for each sensing event there are
two possible results: caught the target or not. So at any moment, if we only consider
those sensor motes that are on the sensing state, we can define the catching ratio CR
as the ratio of motes that are actually catching the target during the state, which is
CR = #Caught/#Sensing_nodes.

Based on the definition of CR, we plot CR over time in Figs. 4.10, 4.11, 4.12 and
4.13, for different paths. From these results, we have several observations. First, for
each path when the target moves into the hole, both the proposed scheme and the
existing one can tell the existence of the hole and start the hole detection process
in real-time. Second, from the results of all paths, the algorithms can always catch
the target whenever the hole is on the moving path or at the turning-around point.
Finally, as the target starts to move into or out of the hole, in general, the CR when
using directional antenna becomes slightly lower than the one using omnidirectional
antenna. This is reasonable because the sensing angle for directional antenna is much
smaller than 360◦. On the other hand, it shows that in most cases, the results of using
directional antenna converged very quickly to 1. The only exception happens for the
third path, in which the target turns around more sharply than in other scenarios,
which may lead to more transmission collisions that cause the loss of catches.
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Fig. 4.10 Catching ratio for Path1
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Fig. 4.11 Catching ratio for Path2
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Fig. 4.12 Catching ratio for Path3
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Fig. 4.13 Catching ratio for Path4

4.5.3 Energy Analysis

According to the energy consumption models depicted in Eqs. (4.1) and (4.3),
the minimization of energy consumption can be obtained by the following three
objectives:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min(
N∑

i = 1
ks(i) +

N∑

i = 1
kr(i))

min(
N∑

i = 1
(angle(i) ∗ ks(i)))

min(
N∑

i = 1
ts(i))

(4.6)

In Figs. 4.14, 4.15 and 4.16, we compare the proposed scheme and the omni-
directional antenna-based scheme according to these three objectives, respectively.
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Fig. 4.14 Objective one
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Fig. 4.15 Objective two
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Fig. 4.16 Objective three

As shown in Fig. 4.14, the total number of bits sent and received in the approach
using omnidirectional antenna is 1.6–3.3 times as much as that of using directional
antenna. And the ratio is even larger (asmuch as 6) in Fig. 4.15when the transmission
angle is taken into consideration. Furthermore, the total sensing time (Fig. 4.16) of
the proposed scheme is less than that of using omnidirectional antenna, for all paths.

4.5.4 Real-Time Analysis

The performance evaluation for real-time target tracking can be measured by the
delay between the moment when the target is moving out of the hole and the moment
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Fig. 4.17 Real-time detection

it is detected by some boundary nodes. Still, we compare the proposed directional
antenna-based scheme to omnidirectional antenna based one. Figure4.17 illustrates
the results. As we can see, using directional antenna not only can converge, but also
can catch up the moving target with a shorter delay than that using omnidirectional
antenna.

In summary, the proposed directional antenna-based protocol outperforms that
using omnidirectional antenna for all different paths under different uncovered sce-
narios. This is because using direction antenna can efficiently achieve on-demand
sensing and tracking for a moving target that enters into/out the hole. Taking packet
transmission collision into consideration, the proposed scheme can avoid a large
number of unnecessary packet transmissions, so that it can track target in real-time
without scarifying accuracy.

4.6 Conclusions and Future Work

In this chapter, we have investigated continuous moving-target tracking inWSNwith
uncovered holes. On the one hand, we have introduced the idea of using directional
antenna, which breaks the omnidirectional antenna’s presumption in this field. On
the other hand, we have proposed a collaborative prediction algorithm and a signal
protocol to realize real-time and low-energy-consumption target tracking. To evaluate
the proposed scheme, we have conducted extensive simulation experiments to com-
pare the proposed scheme with the existing approach that utilizes omnidirectional
antenna. Simulation results demonstrate that our scheme can outperform the existing
one and guarantee both real-time detection and energy consumption reduction.

Although we have tackled the fundamental problem of using directional antenna
to make continuous tracking possible in WSN under holes, several issues remain



4 Real-Time Tracking for Moving Target in WSN with Uncovered Holes 95

to be considered. For example, how to handle the unreliable and lossy channel are
among the future work.
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Chapter 5
Sequential Anomaly Detection Using Wireless
Sensor Networks in Unknown Environment

Yuanyuan Li, Michael Thomason and Lynne E. Parker

Abstract Anomaly detection is an important problem for environment, fault
diagnosis and intruder detection in Wireless Sensor Networks (WSNs). A key chal-
lenge is to minimize the communication overhead and energy consumption in the
network when identifying these abnormal events. We present a machine learning
(ML) framework that is suitable forWSNs to sequentially detect sensory level anom-
alies and time-related anomalies in an unknown environment. Our system consists
of a set of modular, unsupervised, machine learning algorithms that are adaptive.
The modularity of the ML algorithms to maximize the use of resource constrains
sensor nodes in different environmental monitoring tasks without reprogramming.
The developed ML framework consists of the following modular components. First,
an unsupervised neural network is used to map multi-dimensional sensor data into
discrete environmental states/classes and detect sensor level anomalies. Over time,
the labeled classes form a sequence of environmental states. Next, we use a variable
length Markov model in the form of a Probabilistic Suffix Tree (PST) to model the
relationship between temporal events. Depending on the types of applications, high
order Markov models can be expensive. We use a symbol compression technique
to bring down the cost of PST models by extracting the semantic meaning out of
temporal sequences. Lastly, we use a likelihood-ratio test to verify whether there
are anomalous events. We demonstrate the efficiency our approach by applying it in
two real-world applications: volcano monitoring and traffic monitoring applications.
Our experimental results show that the developed approach yields high performances
based on different benchmarks compared to traditional fixed length Markov models.
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5.1 Introduction

Wireless Sensor Networks (WSNs) of spatially distributed autonomous sensor nodes
collect information andmake inferences about the environments that they are sensing.
Size and cost constraints on these sensor nodes result in corresponding constraints on
resources such as energy, memory, computational speed, and communications band-
width. As a result, WSNs have inspired resurgence in research on machine learning
(ML) methodologies with the objective of overcoming the physical constraints of
sensors. Research in WSNs area has focused on networking issues, such as connec-
tivity, deployment, scheduling, allocations, etc; and application issues such as envi-
ronment monitoring [1–9]. Identifying events or observations that do not conform
to an expected pattern (anomaly detection) is one of the most important challenges
for environment monitoring, fault diagnosis, surveillance, and intrusion detection
in WSNs. A key problem is to minimize communication overhead and energy con-
sumptions in the WSN while identifying these anomalous events.

This paper focuses on the ML issues from the application perspective. Our goal
is to develop a distributed ML framework for WSNs to detect sensory level anom-
alies and time-related anomalous events in previously unknown environments. The
term “unknown environment” means that it is infeasible to pre-program the state
of the environment and the types of anomalies before system deployment. Both the
state of the environment and the types of anomalies must be learned by the system
autonomously over an initial period of time.

The development of theML procedure is inspired by the following design criteria.
WSNs typically consist of a large number of sensor nodes; flooding a large amount of
collected data through the network for central decision-making can be a huge burden
on resource-constrained sensors. It has been shown that hierarchical learning struc-
tures in WSNs can significantly reduce data transmitted [3, 10]. Because of a large
number of sensors, tuning the parameters ofML algorithms can be a long and tedious
process. Therefore, it is important to have the ML algorithms be unsupervised, adap-
tive, and have as few parameters to adjust as possible. In addition, we believe that
the ML framework should be modular, so that the system can serve as many appli-
cations as possible without reprogramming. Each ML component can be removed
(turned off) if its capability is not required. Due to the nature of WSNs, it is impor-
tant to have detection decisions in real-time in order to be meaningful to end-users.
Besides accurately detecting anomalous events, we also desire the ML algorithms
to be computationally efficient. Our online approach is different from conventional
approaches because ML techniques like Expectation Maximization (EM)-based and
gradient-based algorithms are offline and computationally expensive.

In this work, we propose a hierarchical, distributed, and modular anomaly detec-
tion system that can make decisions continuously in real-time. The system uses an
online unsupervised classifier to perform sensor fusion from multiple sensors and
classify the sensor signals online. We further extend the classifier to detect time-
related anomalies through the use of a more robust, high performance and memory
efficient anomaly detection method. This method consists of symbol compression
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approach that extracts the semantic meaning from the raw data, along with a Prob-
abilistic Suffix Tree (PST) that is a data-driven and memory efficient method for
anomaly detection. In addition, we use an unsupervised likelihood-ratio detector to
make sequential anomaly detection decisions over time.

The contribution of this chapter is the development of a sequential anomaly detec-
tion system—a novel general approach that autonomously detects anomalies using
sensor data that is collected by a WSN in a distributed fashion. This system exhibits
all of the desired characteristics outlined earlier in this section. Our research makes
use of a number of existing techniques, combining them in such a way that the sys-
tem is able to achieve general capabilities that have not been previously achieved
for anomaly detection in WSNs. Thus, our contributions are primarily at the sys-
tems level. Specifically, this research makes several important contributions to WSN
research, including:

• Makes PST practical for time modeling in WSNs by extracting semantics out of
temporal sequences.

• Enables the system to save communications costs by compressing temporal
sequences in WSNs.

• Enables the system to making sequential decisions without prior knowledge of the
types of anomalies in the environment.

• Uses an anomaly detection system that is modular and flexible in design.

The rest of this chapter is organized as follows. We first review the related work
in Sect. 5.2. We then present our proposed approach in Sect. 5.3, which includes
our network architecture, the time analysis module, and likelihood ratio detector. In
Sect. 5.4, we test the approach in two application domains: volcano monitoring and
highway traffic monitoring. Finally, we summarize our findings in Sect. 5.5.

5.2 Related Work

Following an iterative designprocess,wefirst designed a heuristic finite statemachine
approach to time series analysis in WSNs in [11]. This prior approach was demon-
strated to be successful in detecting time-related anomalies for a robot workingwith a
WSN in an intruder detection problem. However, we subsequently developed a more
sophisticated approach to time series analysis, which includes a more powerful vari-
able length Markov model representation, and the ability to compress time sequence
data, reported partially in [12], with significant new details and new experiments
reported in this current chapter.

Various regression models have been proposed for time-related analysis in WSNs
(e.g., [6]). Wang et al. have used AutoRegressive Moving Average (ARMA) models
to predict future target positions in a WSN [7]. Most of these systems are linear
regression models, which have been widely used outside the wireless sensor net-
work domain as a way to approximate and summarize time series, with applications
in finance, communication, weather prediction, and a variety of other areas. However,
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regression models involve a complex parameter estimation process and may suffer
from model mismatch and bias-variance trade-off problems. There has been some
work on the use of probabilistic time-series models in WSNs, such as the Kalman
Filters (e.g., [13]). These systems rely on a combination of local and global prob-
abilistic models, which are kept in sync to reduce communication between sensor
nodes and the sink (e.g., [13]). In general, Kalman Filter-based models are sophisti-
cated and require significant computation, thus making them unsuitable for resource-
constrained WSNs.

The fixed length Markov model is another commonly used technique for time
series analysis [14]. Examples of fixed order Markov models include the Markov
chain and Hidden Markov Model. Due to the limited resources in WSNs, building
fixed, high orderMarkovmodels is not feasible. Instead, variable lengthMarkovmod-
els (VLMMs) are more appropriate [15]. Mazeroff et al [16] implemented VLMM in
the forms of PST models and Probabilistic Suffix Automata (PSAs) to build models
of benign application behavior with the goal of detecting malicious applications in
Windows XP, which can be easily applied to WSNs. The VLMM is a data-driven
Markov model that supports online learning and online detection. Note that in prac-
tice, the VLMM is usually implemented in the form of a PST or a PSA model. The
two models are proven to be equivalent [17]. A PSA model can be inferred directly
from a PSTmodel by using the algorithm described in [16]. The PSTmodels depend
on a fixed number of random variables; in PST models this number of conditioning
random variables may vary based on the specific observed realization. PST model is
a data-driven technique, which can be easily applied to WSNs. Our research makes
use of the PST to model time sequence data and to detect time-related anomalies.
PST models can be expensive in both space and time if not implemented carefully.
Many researchers have proposed algorithms to build PST models in linear time and
space (e.g., [18]). Lin et al. have proposed an online PST-based time-series visu-
alization tool to aid aerospace analysts [19]. In addition, the method is automatic,
and can be applied without assuming any preliminary information. PST models have
been applied in WSNs for object tracking (e.g., [5]). To the best of our knowledge,
our work is the first work that makes use of a PST model to detect time-related
anomalies in WSNs. Our results show that a PST has the same performance as
the same order Markov model with less memory cost. The PST model has been
shown in applications involving prediction (in non-WSN applications) in [20] as
well.

5.3 Approach

In this section, we first introduce the overall system architecture. Then, we discuss
temporal models in detail. Lastly, we describe our sequential anomaly detection
process via likelihood-ratio test.
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Fig. 5.1 The overall learning architecture for WSN. All sensor nodes run the same programming
image.Depending on the role of the sensor node (clusterhead/clustermember), the assignedmodules
are activated. The cluster members use raw sensor signals as input and detect anomalies at a local
level. The (compressed) sequences of class labels are then sent to the clusterhead to detect anomalies
at a higher level. The root clusterhead has an overall representation of the environment

5.3.1 Architecture for the WSNs

We use a hierarchical learning/communication structure for our WSN. The sensor
nodes in the WSN are divided into clusters, as shown in Fig. 5.1. Each cluster has a
clusterhead and multiple cluster members. Each cluster covers a geographic region
and is responsible for detecting the environmental changes in that region. Both clus-
ter members and clusterheads run an identical detection system—a classifier, a time
analysis model, a likelihood-ratio test detector, and a missing data estimator. Cluster
members read in vectors of raw sensor signals (e.g., light and sound) from the envi-
ronment as input, and then perform sensor fusion and classify sensor signals into
corresponding classes. If the signals do not match those of the existing classes, an
abnormal alert is raised. The details of our unsupervised classifier can be found in
[11]. Over time, our system accumulates a sequence of environmental states/class
that describe the temporal events in the environment. Cluster members build tem-
poral models that describe the temporal events in their monitoring regions. Then,
likelihood-ratio tests are performed to verify if there are anomalous temporal events
at local levels. After the classification process, class labels are transmitted to their
higher level clusterheads. Clusterheads often cannot receive complete labels from all
of their cluster members, due to unstable wireless communications. Ignoring miss-
ing data would result in too many false positives (as justified in our previous work
[21, 22]). Thus, the clusterheads first preprocess the collected class labels by iden-
tifying and estimating the missing values (using our technique described in [21]).
Since the learning system has a hierarchical structure, clusterheads may have higher
level clusterheads, which classify their class labels. Finally, the root node obtains the
final model of the environment. With this learning architecture, the system is able
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to detect both abnormal environmental changes and time-related changes. Note that
we assume cluster assignment is given. Therefore, optimal cluster design is not in
the scope of this research.

We keep our design in a modular form because it gives human operators the
flexibility of turning off the modules that are not needed. For example, the operator
can turn off the time analysis module if analyzing time is not of interest. In addition,
the WSN can be easily scaled to a large number of sensors. At the same time, this
hierarchical approach reduces communication, which in turn saves energy in the
WSN.

5.3.2 Temporal Models

After the sensor fusion and classification process is finished, the system further
checks whether there are time-related changes. Figure5.2 demonstrates the flow of
the sensor signals of an individual sensor node in our system, which is a signif-
icant extension over our prior design in [11]. The temporal sequence model is a
two-step process. First, the sequence of classes is compressed with a symbol com-
pressor (described in Sect. 5.3.2.1). It operates efficiently by sampling the string
statistics in a manner that allows a compressed representation and exact reconstruc-
tion of the original string. Depending on the implementation, learning and gen-
erating can be offline or online, real-time or non-real-time. Then, the compressed
events are built into a PST model (described in Sect. 5.3.2.1). In order to detect
time-related changes, the system measures the likelihood of the current compressed
sequence, compared to the PSTmodel(s) learned during the training phase (described
in Sect. 5.3.2.2).

Note that we propose this two-step structure to make our system more flexible
when capturing the temporal sequence information. For example, system design-
ers may substitute another symbol compression method or Markov-based model
as desired. When modeling the temporal sequence, if time duration within a state
(class) is not of interest, the designers can simply remove all consecutive repeated
class labels in the symbol compression stage and let the PST model only the state
sequences.

Fig. 5.2 The proposed architecture for an individual sensor node. Each sensor node consists of
three components: a classifier to detect anomalies in the sensor signals, a symbol compressor to
compress the temporal sequence, and a time model to detect time-related anomalies
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5.3.2.1 Identifying Semantic Symbols from Temporal Classes

Identifying semantic symbols is of particular interest since it allows reasoning to be
extended from individual temporal classes to a higher semantic level. These semantic
symbols can be constructed using compression algorithms. Compression algorithms
can roughly be categorized into lossless or lossy compression. Lempel-Ziv 77/78 and
Lempel-Ziv-Welch (LZW) are the most widely used dictionary-based compression
techniques [23]. The main mechanism in both schemes is pattern matching: find
sequence patterns that have occurred in the past and compress them by encoding a
reference to the previous occurrence. Our temporal sequence compression process
is defined as follows. The encoder/compression algorithm takes a sequence of class
labels C = {c1, . . . , cT } and compresses it into another sequence denoted by S,
which encodes higher-level semantic meaning.

TheLZWalgorithmperforms limited analysis to the sequence. Thus, it is designed
to be fast but may not be optimal. With the limited resources of a WSN, it is impor-
tant to reduce the amount of processing. In a typical compression run, the algorithm
takes a string as input, and processes the string using a dictionary of distinct sub-
strings. The algorithm encodes the string (and builds the dictionary) by making
a single left to right traversal of a sequence. Initially, the dictionary contains the
alphabet with its corresponding encoding. Then it sequentially adds every new sub-
string that differs by a single last character from the longest match that already
exists in the dictionary. This repeats until the string is consumed. The idea is that,
as the string is being processed, the dictionary is populated with longer strings,
and allows encoding of longer substrings of the string at each replacement. For
example, suppose we have a source temporal sequence with a three-letter alphabet
Σ = {1, 2, 3}, and we wish to compress the temporal sequence C = {1, 2, 2, 2,
2, 3, 3, 1, 2, 3, 2, 2, 2, 2, 1, 3}. Based on knowledge about the source sequence C ,
LZW builds the dictionary shown in Table 5.1. The output encoded string of S in
this example is {0, 1, 4, 1, 2, 2, 3, 2, 5, 1, 0, 2}.

The interpretation of the temporal sequence compression process is as follows.
Each entry in the dictionary denotes a subsequence in the initial temporal sequence
to be compressed, while the corresponding index is the “new” compressed temporal
symbol with higher semantic meaning. The compressed sequence carries the higher

Table 5.1 Example
dictionary built by LZW
algorithm

Dictionary

Index (code) Entry (class labels) Index (code) Entry (class labels)

0 1 7 33

1 2 8 31

2 3 9 123

3 12 10 32

4 22 11 2222

5 222 12 21

6 23 13 13
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level semanticmeaning of the initial temporal sequence. The length of each dictionary
entry corresponds to a real-world event in discrete time. Specifically, the length of
a single-alphabet entry in the dictionary denotes the time duration of the event’s
occurrence and the corresponding index carries that semantic meaning. For example,
the entry “2222” in Table 5.1 indicates the environment is in state “2” for 4 time units.
The corresponding index “11” indicates 4 time units of state “2” in the compressed
temporal sequence. Dictionary entries with multiple alphabets may have a real-world
meaning as well. For example, the entry “12” could correspond in the real world to
a person taking 1min to add coffee powder and water into a coffee machine, and
then it takes the machine 1min to make a pot of coffee. The whole process is now
associated with an index “3” that has the real semantic meaning “making-coffee”.
Therefore, the compressed temporal sequence is able to maintain the higher level
semantics of the initial temporal sequence while using a shorter length.

In WSNs, transmitting a compressed sequence saves communication costs com-
pared to transmitting uncompressed raw data. Note that with the proposed two-step
temporal modeling process, it is not necessary to keep all entries in the dictionary.
Especially with limited memory in the wireless sensor nodes, we wish to build a
small dictionary. If a system can afford to build a PST with order up to M , dictionary
entries with length shorter than M can be pruned, since they can be modeled by an
M th order PST. System designers may choose to further prune the dictionary entries
based on their knowledge of the application. To further prune the dictionary, system
designers may select relevant features based on the application. The relevant features
are the dictionary entries with real-world meanings that are relevant to the specified
application.

5.3.2.2 Modeling Semantic Interactions Using PSTs

A practical application may have days or months of normal activity followed by an
anomaly lasting only minutes. A WSN that is designed to model time sequences
should be able to model this process and be able to detect such anomalies. However,
it is infeasible tomodel the activity using a traditional high orderMarkov chain, since
an Lth order Markov model requires |Σ |L states, where |Σ | denotes the number of
alphabet symbols and L is the length of past history/memory being modeled. For a
large variety of time-related sequential data, statistical correlations decrease rapidly
with the distance between symbols in the sequence. If the statistical correlations
are indeed decreasing, then there exists a memory length M such that the empirical
probability changes very little if conditioned on subsequences longer than M . Ron
et al. [17] proposed a solution to this problem. The underlying observation in that
work is that in many natural sequences, the memory length depends on the context
and therefore is not fixed. Therefore, as in [17], we propose to use a Variable Length
MarkovModel (VLMM) to preserve the minimal subsequences (of variable lengths)
that are necessary for precise modeling of the given statistical source. This results in
a more flexible and efficient sequence representation. It is particularly attractive in
cases where we need to capture higher order temporal dependencies in some parts
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of the behavior and lower order dependencies elsewhere. The VLMMmodel can be
implemented in the form of Probabilistic Suffix Tree (PST). A PST is a tree whose
nodes are organized such that the root node gives the probability of each symbol of the
alphabet while nodes at subsequent levels give next-symbol probabilities conditioned
on a combination of one or more symbols having been seen first.

The constructed PST model is a symbolic predictive model: the underlying con-
tinuous time signals are first abstracted to a discrete space, analogous to a set of
finite classes. In some cases, this has the advantage of being more immune to the
problems of noise while still preserving the essential underlying patterns or depen-
dencies that govern behavior in the observed domain. Arguably, it also produces a
more understandable model since its components are higher level abstractions. All
these advantages of the PST model make it suitable to model temporal sequences in
WSNs.

One of the challenges of using a PSTmodel on resource constrained sensor nodes
is that the model complexity may grow exponentially with the memory depend-
ing on the data, which makes it impractical for resource constrained sensor nodes.
Using PST models directly to model the sensor data is computationally prohibitive.
Thus, we use a data-driven approach to automatically infer discrete and abstract
representations (symbols) of primitive object interactions. These symbols are then
used as an alphabet to infer the high level structures of typical interactive behaviors
using PSTmodels. ThisMarkovmodel represents high-level semantic notions. These
environment features are invariant of the sensor classes and time dependencies. They
constitute the input to a statistical learning framework where discrete representations
of interactive behaviors can be learned by modeling the probability distribution of
the feature vectors within the interaction feature space.

Symbolicmodeling and processing have several advantages over continuousmea-
surements and models, including: (1) sensor data is often discrete (e.g., certain radar
systems [14]); (2) environments that are modeled with discrete states that have clear
physical interpretations are natural and easy for humans to interpret (e.g., volcanic
eruption or no eruption vs. vibration measurements); and (3) data compression tech-
niques, which we use to reduce the size of the observations, typically require discrete
state representations.

The PST model [17], which was originally designed for classification purposes,
has the advantage of improved extraction of statistical information from sequences.
The trade-off is that it deliberately throws away some of the original subsequences
during the analysis process to maintain a compact representation. In resource con-
strained WSNs, compact data models save energy in nodes by reducing the amount
of data being transferred among the nodes. We are interested in building models of
the environment that are able to support both interpretation and anomaly detection.
We achieve this by using PSTs to efficiently encode the sequences of the classes cor-
responding to observed interactive behavior in the feature space. In the following,
we provide more details of the PST. Then, we explain how the PST is used to detect
time-related anomalies in the WSN.

The PST is a stochastic model that uses a suffix tree as the index structure. This
approach is based on the “memory” of natural sequences. That is, the root node of
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the PST gives the empirical probability of each symbol in the alphabet while each
node at subsequent levels is associated with a vector that gives the next symbol given
the label of the node as the preceding segment. For example, P(si+1|s0 . . . si ) =
P(si+1|si−M . . . si ), where i > M , gives the empirical probability distribution P of
the next symbol si+1 given the last M symbols in the preceding segment. Furthermore,
a tree of order M has M levels beyond the root. To illustrate, consider a (compressed)
sequence S = {1, 2, 3, 1, 2, 3, 2, 1, 3} with a three-letter alphabet Σ = {1, 2, 3}.
Figure 5.3 shows the order-2 PST inferred from the observation. Beginning with
the root node, which represents the empty string, each node is a suffix of all its
children. The probability vector below the nodes gives the conditional next-symbol
probabilities. Moreover, all symbols are shown on the same level of the tree. Next
symbol “transitions” jump from one branch to another, not from a parent node to its
children. This transition pattern is due to the suffix format of the node labels. Some
branches typically die out earlywhile other branches propagate to themaximumdepth
of the tree. Additionally, if a child node carries an identical next-symbol probability
distribution as its parent node, the child node is pruned. Detailed PST inference and
pruning procedures can be found in [16].

Let S = {su : u ∈ U } denote a compressed temporal sequence of size U , where u
denotes the discrete time unit after compression. Tomodel the normal behavior using
the Maximum Likelihood criterion, we find a model that maximizes the probability
of a given sequence of observations. Given a PST θ , the total likelihood of the
observations can be expressed mathematically as L = P(S|θ). If the probability of

Fig. 5.3 An example order-2 PST based on a compressed sequence S = {1, 2, 3, 1, 2, 3, 2, 1, 3}
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the observation sequence given the model is below a threshold c, then an anomaly is
detected. A likelihood-ratio detection scheme is addressed in detail in the following
subsection.

The computation for this procedure is fast and inexpensive. The PST model has
been shown to be implementable in linear time and space [18]. Let the length of the
training sequence be n, the memory length of PST be M , the alphabet be Σ , and the
length of a testing sequence be k. Apostolico and Bejerano’s PST building algorithm
takes O(n|Σ |) time [18]. This procedure is a one-time overhead cost to the system
during the initial period (unless the PST needs to be updated). To detect anomalies
after the PST is constructed, the system has to calculate the likelihood that the testing
sequence matches the built PST. The sequence matching procedure is a simple tree
traversal, and the detection procedure takes O(mk) time. Thus, it is practical for
sensor nodes that have limited resources.

5.3.3 Likelihood-Ratio Test for Anomaly Detection

In statistics, a likelihood ratio test is used to compare the fit of two models, one of
which (the null model) is a special case of the other (the alternative model). The test
is based on the likelihood ratio, which expresses howmany timesmore likely the data
are under onemodel than the other. Like statistical hypothesis testing in general, it has
been widely used in many different areas of applications such as speaker verification
[24].

Let X denote a hypothesized sequence of events, f0 denote the distribution of a
normal sequence of events, and f1 denote the distribution of abnormal sequence of
events. Suppose that the testing sequence X has one of two possible distributions f0
or f1. The task of anomaly detection is to determine if X is has probability density
function f0. The anomaly detection task can be restated as a hypothesis test between:

H0: X has probability density function f0

and

H1: X has probability density function f1

The test that we construct is based on the following idea: if we observe X = x ,
then the condition f1(x) > f0(x) is evidence in favor of the alternative; the opposite
inequality if evidence against the alternative.

We are interested in detecting anomalies in an unknown environment. We assume
that during the initial training time, we can observe typical normal events; in addition
to the normal events, there could be abnormal events and/or unknown events. Ideally,
we could build a typical normal model of the environment and use χ2 statistics
to determine the abnormal events that deviate from the normal model. However,
the maximum probability of observed sequence given an alternative model is not
easy to calculate. Therefore, we use a simple-versus-simple hypotheses test that
has completely specified models under both the null and alternative hypotheses.
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The parameter space isΘ = {θ0, θ1}, and f0 denotes the probability density function
of X when θ = θ0 and f1 denotes the probability density function of X when θ = θ1.
The hypotheses are equivalent to:

H0 : θ = θ0 versus H1 : θ = θ1 (5.1)

The likelihood ratio test statistics can be written as

Λ(x) = L(θ0|x)

L(θ1|x)
= f (x |θ0)

f (x |θ1) (5.2)

In the form stated above, the likelihood ratio is small if the alternative model is better
than the null model; the likelihood ratio test provides the decision rule as

{
if Λ ≥ c accept H0
if Λ < c reject H0

(5.3)

where the decision threshold for accepting or rejecting H0 is a constant c. For our
temporal anomaly detection, the null and alternative hypotheses use PST models
θ . Hence, we denote the PST model for the null hypothesis as p(x |H0; θ0) and for
the alternative hypothesis as p(x |H1; θ1). The likelihood-ratio sequential decision
process is given by p(x |H0; θ0)/p(x |H1; θ1). Usually, the logarithm of this statistic
is used giving the log-likelihood ratio,

Λ(x) = log(x |H0; θ0) − log(x |H1; θ1) (5.4)

Ideally, we would use normal events to train the PST model θ0, and abnormal
events to train the PST model θ1; the likelihood-ratio Λ(x) is the ratio of normal
model versus abnormal model. However, in practice, it is often difficult to obtain
typical abnormal models. A solution to this problem is to use all available events
as the abnormal model. This is known as the Universal Background Model (UBM)
[24]. Therefore, we train the PST model θ0 using normal events and θ1 using all
possible events including normal, abnormal, and unknown events. The reason is
that during the training period, we may encounter various event sequences that are
normal, abnormal, and/or undetermined. The model for H0 can be estimated using
a normal event sequence. However, the model for H1 is less well-defined since it
potentially must represent every abnormal situation possible. Since the environments
that WSNs operate in are typically unknown, it is not possible to train H1 with every
abnormal situation. Therefore, we believe the UWB, which uses all sequences of
events, is a more suitable way to define H1.
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5.4 Experiments

The primary objective of this research is to design a robust sequential anomaly
detection system for resource constrainedWSNs that is applicable to a wide range of
applications. Thus, to validate our approach,we illustrate it in two domains—volcano
monitoring and highway traffic monitoring. Each experiment illustrates different
aspects of our approach. In the volcano monitoring application we show the system
making sequential detections using a single seismic sensor, while in the highway
trafficmonitoring application,we show a network of sensors detecting unusual events
in traffic patterns.

5.4.1 Performance Metrics

The following performance metrics are used to evaluate our system: compression
ratio, and the receiver operating characteristic (ROC) curve. The compression ratio
refers to the ratio of the size of data before compression and the size of data after
compression, i.e., uncompressed data/compressed data. The detection outcome can
be described in the contengency table shown in Table5.2. The ROC curve is created
by plotting the fraction of true positives out of the true positive rate (TPR) versus the
false positive rate (FPR), at various likelihood-ratio threshold settings. Finally, the
FPRor false alarm rate is the fraction of negative examples predicted as positive class,
i.e., FPR = FP/(TN + FP), while the FNR or miss rate is the fraction of positive
examples predicated as a negative class, i.e., FNR = FN/(TP + FN). Ideally, the
values of sensitivity and specificity are at 100%; and the values of false alarm rate
and miss rate are at 0%.

5.4.2 Volcano Monitoring Application

We use a volcano monitoring dataset to test the proposed anomaly detection system.
Specifically, this test serves as a proof-of-concept to illustrate how our enhanced
time modeling module works on a real-world dataset. The dataset was collected by

Table 5.2 2 × 2 Contingency

Ground truth (gold standard)

Detection True positive (TP) False positive (FP) Precision PPV = TP
TP+FN

Outcome False negative (FN) True negative (TN) Negative predictive value
NPV = TN

TN+FN

Sensitivity TPR = TP
TP+FN Specificity SPC = TN

(FP+TN)
Accuracy
ACC = TP+TN

(TP+FP+TN+FN)
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Fig. 5.4 Top Raw seismic readings over a time period of 24h [9]. Bottom The classifications based
on the raw seismic readings

Werner-Allen et al. over a 24h time period at the Volcano Reventador [9]. The data
used in our experimentswas obtained fromone of the seismic stations, which samples
the environment at 120Hz. Since the data are voluminous,wehave analyzedoneday’s
worth of data, which is approximately 200Mb. These data are from a single station
(a single sensor node). The classes are assumed to carry the higher semantic meaning
of the data, such as different levels of volcanic activities. Then, we can analyze the
sequence of activities to understand their temporal semantic meanings. Observe that
in the data of Fig. 5.4 there are more than 15h of no activities followed by an eruption
of less than a minute. The top part of Fig. 5.4 shows the raw seismic sensor readings
recorded over a 24h time period. We applied the unsupervised classifier (described
in [11]) to classify the sensor signals into 13 distinct classes (see the bottom part of
Fig. 5.4).

Our experiments with volcano data do not involve clusters or clusterheads. How-
ever, the detection process for the entireWSNwork is described in Sect. 5.3.We have
also demonstrated in our prior work [11, 21] that our developed detection system
works withmultiple layers of clusters of sensor nodes that usemultiple sensors in our
lab environments. Our approach in [11, 21] uses heuristic discrete states to model
time; however since the 2-step temporal modeling approach proposed in this chapter
also uses discrete state representations, we believe this should work with the existing
system architecture when implemented on the physical nodes. We also illustrate the
hierarchical approach in the traffic monitoring application, which follows this sub-
section. The current approach is more robust when detecting multiple anomalies in
the environment and takes less communication by transmitting compressed temporal
sequences.
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5.4.2.1 Preprocessing

The top part of Fig. 5.4 depicts the raw seismic readings recorded over a 24h time
period. The raw seismic data O is normalized and classed by our classifier described
in [11]. as shown in the bottom part of Fig. 5.4. The raw sensor data O is classified
into |Σ | = 13 classes by setting the vigilance parameter ρ of the classifier to 0.93.
Hence, the output temporal classification sequence C has an alphabet size |Σ | of
13. Note that the physical meaning of these 13 classes is unknown, since we do not
have a seismic geologists’s analysis of this data. In the future work, if we have the
groundtruth of the seismic data, the classifier can assign more meaningful classes
(e.g., magnitudes of eruptions) by adjusting its vigilance parameter ρ. The data are
grouped into hour-long subsets. Based on visual inspection, there are no volcanic
activities during the period between the 1st hour and the 15thhour; we regard this
period as the normal period. There is an anomaly/eruption between the 15thhour
and the 16thhour. Thus, we regard this hour as an abnormal period. We are unable to
determine whether the periods following the eruption are “normal after eruption” or
“abnormal”. As a result, we currently discard the data after the 16thhour. In summary,
we treat hours 1–15 as a normal period and hour 16 as an abnormal period.

5.4.2.2 PST Versus Fixed Length Markov Model

We first compare the performances between the PST model and the traditional fixed
length Markov model on the volcano monitoring dataset. In this experiment, we
use the abnormal period’s class sequence (hour 16) as training data and the normal
periods’ (hours 1–15) class sequences as testing data. The performance is measured
by the negative log-likelihood of the normal class sequence given the observation of
the abnormal class sequence. Specifically, we construct both PST and fixed length
Markov models from the training data with Markov orders 1, 2, 3, 4, 5, and 10.
For each PST/fixed length Markov model, we calculate the negative log-likelihood
P(C |λ) of the testing sequence C given the PST/fixed length Markov model λ. The
larger the negative log-likelihood value is, the more dissimilar are the compared
sequences. We expect the dissimilarity between the abnormal period and the normal
period to grow as the memory order grows.

Our results are summarized in Table5.3. The empirical results indicate that the
sizes of PST models are much smaller than the traditional fixed length Markov
models as the order increases. For example, observe that the 10th order fixed length
Markov model uses 981 states, while the order-10 PST model only uses 205 states.
The negative log-likelihood is the same between a sequence given a PST model and
a fixed lengthMarkov model with the same order, since we eliminate nodes that have
the same probabilities as their parent nodes when constructing the PST models. The
model is lossless in terms of capturing the information of the training data. Therefore,
we prefer a PST model over a fixed-length Markov model because it is purely data-
driven, flexible, and most importantly, takes less space. Note that the PST models
can be pruned to remove some low probability nodes (see [17]); however, this will
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Table 5.3 Comparison of
fixed length Markov models
versus PST models

Order Number of Negative

nodes log-likelihood

Fixed 1 12 −0.0141

length 2 45 −0.0112

Markov 3 104 −0.0092

4 190 −0.0078

5 296 −0.0069

10 981 −0.0046

PST 1 12 −0.0141

2 41 −0.0112

3 76 −0.0092

4 116 −0.0078

5 146 −0.0069

10 205 −0.0046

lead to information loss. In the future work, we will evaluate the proposed detection
system based on PST models with thresholds to remove low probability nodes. In
addition, we explore a systematic procedure for deciding the threshold values for
PST models in the proposed detection system.

5.4.2.3 PST Model with Compressed Temporal Sequence

As shown in the previous section, using the PST model directly on the volcano
monitoring dataset is still not practical for the resource limited sensor nodes, i.e.,
it takes 208 states to build a PST model with a memory of 10 observations. An
observation with 10 samples can hardly capture any meaningful sequences in the
environment monitoring type of applications. In reality, daily-life activities usually
take more than 10 observations to capture. If modeling such a long sequence of
actions is important to an application, the PST model will not be a practical solution
if used directly on the raw samples. Our proposed compression technique, in which
the PST is built from the higher level symbol representation rather than the original
data, addresses this issue.

We applied the standard LZW symbol compression algorithm on the class
sequences of the dataset. The average dictionary size for 16h (excluding the pre-
built characters in the dictionary) is approximately 61 entries per hour. Table5.4
shows some sample entries. Based on the given data, we observe that there are long
periods of inactivity, which are denoted by sequences of class “1”. Then, we apply the
compression algorithm to all 16h of data independently. The average compression
ratio for the 16h is approximately 33:1. The compressed representation of data saves
on both processing power and reduces the amount of storage on the sensor nodes.
Most importantly, when the local sensor nodes transmit the temporal models to the
clusterheads, they are able to save the transmission power as well.
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Table 5.4 Partial dictionary
of the volcano data

Entry (class labels)

…

1111111122

211111115

51511

111112111111

111111111111111111111111111111...111111111115

51111111

…

For sequential detection decisions, we employ a universal likelihood-ratio detec-
tion scheme as given in Eq. (5.3). The detection procedure works as follows: during
the training period, we use semantics (compressed symbols) from hours 1 to 16 to
obtain the alternative hypothesis p(S|H1), and hour 16 to obtain the null hypothesis
p(S|H0). In order to determine the detection threshold c, we use the Receiver Oper-
ating Characteristic (ROC). ROC is a graphical plot of the TPR/sensitivity versus the
FPR/false alarm rate for a binary classifier system as its discrimination threshold is
varied. We have built two PST models for the dataset of orders 5 and 10. Figure 5.5
shows the ROC curve for the order-5 PST model (left), as well as the ROC curve for
the order-10 PST (right). Note that each prediction result (or one instance of a con-
fusion matrix) represents one point in the ROC space. The best possible prediction
methodwould yield a point in the upper left corner representing no false negatives and
no false positives. From Fig. 5.5 (left), we observe that the optimal operating point
for the order-5 PST model is with a TPR of 84% and a FPR of 19%. From Fig. 5.5
(right), we observe that the optimal operating point for the order-10 PST model is
with a TPR of 98% and a FPR of 5%. We use the optimal operating points as refer-
ences to choose likelihood ratio threshold c values in Eq. (5.3). Table 5.5 shows the
results of different values of the threshold θ . Based on the detection performances,
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Fig. 5.5 ROC curves built from order-5 PST model and order-10 PST model. a ROC curve for
order-5 PST model. b ROC curve for order-10 PST model
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Table 5.5 Performances for
PST orders 5 and 10w
compression

PST Threshold Sensitivity Specificity

order (c) (TPR) % (TNR) %

5 0.4803 89.47 71.59

0.493 83.63 81.44
0.5057 81.87 84.79

0.5184 80.70 86.24

10 0.4911 100.00 89.84

0.5039 98.25 93.69

0.5167 98.25 95.20
0.5295 96.49 97.10

the sensitivity (TPR) for the order-5 PST model is 83.63% when c = 0.493, which
has the best trade-off between sensitivity and specificity. The sensitivity (TPR) for
the order-10 PST model is 98.25% when c = 0.5167, which has the best trade-
off between sensitivity and specificity. It is the closest value to the order-10 PST
ROC optimal point. Therefore, we choose c values of 0.493 and 0.5167 for PSTs
of orders 5 and 10, respectively. In addition, the specificity for PST orders 5 and 10
PST models are 81.44 and 95.2%, respectively. The sensitivity and specificity are
relatively high for both PST models. This indicates the ROC curves provide good
reference when choosing the values for threshold θ . The tree sizes for the orders 5
and 10 PST models are 186 and 241 nodes, respectively. Note that the nodes of PST
models that are built from compressed sequences represent higher semantic temporal
meanings. Therefore, the nodes represent much longer observations compared to the
nodes of the PSTs that are built from the uncompressed sequences, (i.e., the order 10
PST is modeling a sequence with approximately 330 observations compared to 10
observations). The detection results show that our proposed PST model with symbol
compressionmethod is able to detect anomalieswith high performance.Additionally,
the UWB-based likelihood ratio detector is robust and able to detect multiple anom-
alies in a time sequence with high performance. The robustness and the ability of
detecting multiple anomalies are significant enhancements to our previous heuristic
state machine [11].

5.4.3 Caltrans Highway Traffic Monitoring Application

To evaluate the effectiveness and flexibility of our approach for a hierarchical sensor
network, we have evaluated our framework in the application of highway traffic
monitoring using data from the Caltrans Performance Measurement System (PeMS)
project. The traffic data of the PeMS system is collected in real-time fromover 25,000
sensors that span the freeway system across all major metropolitan areas of the State
of California [25]. Existing research studies using the PeMS database include sensor
fault detection [26], detection of spatial configuration errors in traffic surveillance
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Fig. 5.6 Sensor network deployment on highway I-80 west. The chosen location is marked in red

sensors [4], and analysis of highway congestion [27]. Our goal in this study is to
determine whether our proposed anomaly detection system is flexible enough to be
applied in very different domains; in this case, for detecting highway incidents, which
is a significantly different domain from seismic analysis.

In a typical highway sensor deployment under PeMS, a single sensor is positioned
in each highway lane, as illustrated in Fig. 5.6. For our study, we chose four highway
segments on highway I-80 with various traffic patterns. Highway I-80 has been
studied in many research projects such as [28–30]. One of the highway segments is
very congested—specifically, the highway I-80 westbound lanes near the 9.92 mile
marker in the San FranciscoBayArea. TheVehicle Detector Station (VDS) located at
the chosen location is 400803. The rest of the highway segments are VDS 314491 in
District 3, Sacramento Country, at the 95.85 mile marker; VDS 400929 in District 4
Contra Costa County, at the 42.45milemarker; andVDS 401790 inDistrict 4, Solano
County, at the 20.62 mile marker. All chosen highway segments have five (5) lanes,
each lane has one detector. For example, VDS 400803 has lane detection IDs 405018
to 405022 for lanes 1–5, respectively.We treat sensor data collected from each lane as
an individual clustermember sensor node.Weobtain data fromPeMSover a period of
three (3) weeks, from August 2 to 22, 2010. This dataset gives us 6,048 data samples
per detector, totaling 30,240 samples across the five (5) sensors and 120,960 samples
for all four (4) VDS. This particular subset of the data had 65 incidents associated
withVDS400803, 14 incidents associatedwithVDS401790, 49 incidents associated
with VDS 400929, and 62 incidents associated with VDS 314491. These incidents
served as the ground truth for our studies. Each sensor is sampled once every five
(5) minutes (i.e., 12 samples per hour), and returns four (4) features: flow, speed,
delay(35), and delay(45). The flow feature measures the number of vehicles that pass
by the sensor in a given period of time. The 5min speed is computed from the flow
and occupancy using the usual formula speed = flow/occupancy ∗ G, where G is
the average effective vehicle length, and is set to 6m (20 ft). The delay(x) feature,
where x is either 35 or 45, is the additional travel time required for a vehicle to travel
a given distance, compared to a standard speed of 35 or 45 miles per hour. In addition
to the raw sensor measurements, the PeMS dataset also includes manual notations
of traffic events that are reported at given time periods. Sensors that are within one
(1) mile of these events are tagged with the associated event data. Example traffic
events that are noted in PeMS include traffic collision, hit and run, vehicle driving
on center divider, traffic hazard, pedestrian on road, etc (Fig. 5.7).
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Fig. 5.7 Top Normalized sensor readings for lane 5 at VDS 400803, including: flow, speed,
delay(35) and delay(45). Bottom Unsupervised classifer for lane 5. The red stars indicate
incidents

To illustrate our hierarchical sensor network approach, we simulated an additional
clusterhead sensor for these five (5) traffic lane sensors. Thus, each of the five cluster
member nodes would use the real traffic data as input to our anomaly detection
system to detect incidents based on local observations. Each cluster member would
then send its learned class labels to the clusterhead, which would detect anomalies
based on the combination of the local sensors’ class labels. To train our sensor
network, we divided the samples by week, due to the natural temporal patterns of the
traffic data. That is, the traffic data tends to follow daily and weekly cycles. Since
the data is relatively sparse (e.g., 5min per sample), we decided to train the system
using weekly cycles. Therefore, we use the first week’s data as training samples and
the rest of the two weeks’ data as testing samples. We further divide the training
samples by each hour. We marked the hour as normal if the hour has no accident (as
classified by the PeMS dataset), and we marked the data samples that fell into the
incident periods as abnormal traffic patterns. We build a normal PST model using
all the normal temporal sequences and a universal PST model using all the training
samples (i.e., normal+ abnormal samples). Since the sample rate is sparse, we turned
off the temporal symbol compressor module. This demonstrates the modularity of
our approach.

Using our approach, the raw sensor data are first processed by the unsupervised
classifier. We set the vigilance levels as 0.9 and 0.8 for cluster members and the
clusterhead, respectively. The parameters roughly represent natural traffic patterns
over a week. For example, using the threshold 0.9 for lane 5 at the VDS 400803, the
traffic data was classified into 16 classes by the classifier, as illustrated in Fig. 5.8.
The top figure shows the normalized sensor readings, and the bottom figure shows



5 Sequential Anomaly Detection Using Wireless Sensor Networks . . . 119

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1 − Specificity)

T
ru

e 
P

os
iti

ve
 R

at
e 

(S
en

si
tiv

ity
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1 − Specificity)

T
ru

e 
P

os
iti

ve
 R

at
e 

(S
en

si
tiv

ity
)

(a) (b)

Fig. 5.8 ROC curves built from order-1 PST model (a) and 1-state HMM model (b) for the clus-
terhead’s detection system of the VDS 400803

the classifications. The incidents are marked in red. We can clearly see the daily
patterns over a week with the chosen vigilance levels.

For comparison purposes, we also train a Hidden Markov Model (HMM). In
the HMM approach, we replace the PST model with a HMM model, keeping the
classifier module and the UBM likelihood-ratio detection module the same as our
proposed system. To train the HMM, we first randomly initialize the prior, transition
matrix and the observation matrix. Then, we apply the Expectation-Maximization
(EM) [31] algorithm to learn the parameters of the HMM model offline. The EM
algorithm runs until convergence or for a maximum of 15 iterations. We have run
both HMM and PST versions with model sizes from 1 to 15 states/orders. We found
order-1 PST and 1-state HMMperformances to be the best.We believe this is because
the traffic data is quite sparse. It is much sparser than the volcano dataset, i.e., the
5min data volume for the traffic monitoring application consists of 1 sample, while
the volcano monitoring application has 36,000 samples. Hence, the traffic dataset
does not contain a sufficient number of samples to train a large PST/HMM model.
The average model size for 1-order PSTs are 6, 6.7, and 6.8 nodes for VDS314491,
VDS400803 and VDS400929, respectively. The HMM model consists of one start
probability matrix, one transition probability matrix and one emission matrix. The
model size for the 1-state HMM model is 18 nodes, which is always fixed for all
sensor nodes. Thus, the PST model has a smaller size in this application.

Figure5.9 shows the ROC curves for the order-1 PST (left) and 1-state HMM
(right) of the VDS 400803. Figure5.8 (left) shows the ROC curve for the clusterhead
node with a PST of order-1 of the VDS 400803, whereas Fig. 5.8 (right) shows the
ROC curve for the clusterhead built with a 1-state HMM of the VDS 400803. The
PST models have better performances than HMM models as indicated by the large
Area Under Curve (AUC)s in the ROC graphs (see Table5.6). We believe this is
caused by the random initialization of the model parameters. Based on the initial
parameter values, the EM algorithm may not find global optimal results. In addition,
the data size not may not be large enough to train both the emission matrix and the
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Fig. 5.9 ROC curves built from order-1 PST model (a) and 1-state HMMmodel (b) for the lane 5
sensor node of the VDS 400803.

Table 5.6 Area under curve comparisons of 1-order PST and 1-state HMM model for all VDS

Lane1 Lane2 Lane3 Lane4 Lane5 Clusterhead

PST (std. dev) 72% (13%) 70% (8%) 69% (6%) 74% (6%) 74% (8%) 89% (1%)

HMM (std. dev) 66% (5%) 63% (15%) 61% (7%) 64% (7%) 68% (10%) 80% (3%)

transition matrix. We can also observe that the clusterhead is more capable than the
clustermembers in terms of the percentage of anomalies detected. This illustrates that
the clusterhead’s more global perspective is able to detect anomalies that individual
nodes cannot. For example, if an incident occurred in an outer traffic lane, it is
more likely to affect the adjacent lane than it is to affect the inner traffic lane. The
clusterhead may catch this anomaly if it is sensitive enough to the change.

Table5.6 shows theAUCofROCfor all fourVDS.TheAUCofROCcanbe treated
as one form of model comparison. To determine the significance of the differences
in the results, the Student’s T-test is applied. The assumption of the test is that the
underlying distributions of accuracies/errors are Gaussian, because of the Central
Limit Theorem—as the number of testing sets approaches infinity the distribution of
the mean of accuracy/error approaches a Normal distribution. The Student’s T-test
was applied to the accuracy (AUC) results for the clusterhead performance compared
against other lanes’ performances. This test confirms that the differences in these
results are statistically significant, with a confidence level of 95%. In addition, the
PST models have better performance compared to HMM algorithm. The student’s
T-test confirms that the differences in these results are statistically significant, with
a confidence level of 99%.

In summary, we believe that these results, combined with the seismic application,
illustrate that our proposed sequential anomaly detection system is flexible enough
to be applied in very different applications domains, and can achieve a satisfactorily
high performance.
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5.5 Conclusions

Using resource constrained WSNs for environment monitoring of applications such
as volcanic eruptions and traffic flows are challenging, because the events of interest
are usually preceded by a long periods of inactivity and the event itself may last only
for a short period of time. Themain objective of this chapter is to propose a distributed
sequential anomaly detection system in an unknown environment using a WSN. In
this chapter, we have proposed a sequential detection procedure to analyze and extract
semantic symbols from a sequence of observations. The system first detects sensory
level anomalies using an unsupervised neural network and then detects time-related
changes online using a likelihood-ratio detection scheme. Our proposed temporal
modeling technique is able to capture high-order temporal dependencies in some
parts of the behavior and lower order dependencies elsewhere. We have verified
the proposed approach using a volcano monitoring dataset and a traffic monitoring
application. Results show that our system yields high performance. Our iterative
temporal learning approach captures the temporal dependencies in data and removes
redundancies, which translates into energy savings in the WSN. The algorithm is
distributed, and supports a hierarchical learning structure, which we believe will
scale to a large number of sensors and will be practical for resource constrained
sensor nodes.
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Part II
Distributed Sensing: Applications

Sensor network research was initially driven by expensive military applications
such as battlefield surveillance and enemy tracking. Nowadays, the sudden diffu-
sion of cheaper fixed and mobile sensors that has greatly changed everyday human
life lets us think about the wide diffusion of smartphones. Many applications based
on distributed sensing systems for civil applications have been developed. These
applications can be classified into habitat monitoring, environment observation and
forecast systems, human activity monitoring for health, security, and surveillance.

As previously remarked in the preface, these chapters are mainly focused on the
applications, providing also a good theoretical contribution, but reserving
the majority of the efforts to the implementation of real applications based on
distributed systems.



Chapter 6
A Full-Scale Hardware Solution for Crowd
Evacuation via Multiple Cameras

Dimitrios Portokalidis, Ioakeim G. Georgoudas, Antonios Gasteratos
and Georgios Ch. Sirakoulis

Abstract Crowd evacuation is thoroughly investigated in recent years. All efforts
focus on improving safety standards of such a process. Past and latest life-threatening
incidents related to evacuation procedures justify both the growing scientific interest
as well as the interdisciplinary character of most research approaches. In this chapter,
we describe the hardware implementation of a management system that aims at act-
ing anticipatively against crowd congestion during evacuation. The system consists
of two structural components. The first one relies on an elaborated form of the Viola
et al. [55] detection and tracking algorithm, which incorporates both appearance and
motion in real-time. Being supported by cameras, this algorithm realises the initiali-
sation process. In principal, it consists of simple sum-of-pixel filters that are boosted
into a strong classifier. A linear combination of these filters properly set thresholds,
thus succeeding detection. The second part consists of a Cellular Automata (CA)
based route estimation model. Presumable congestion in front of exits during crowd
egress, leads to the prompt activation of sound and optical signals that guide pedestri-
ans towards alternative escaping points. The CA model, as well as the tracking algo-
rithm are implemented by means of Field Programmable Gate Array (FPGA) logic.
Hardware accelerates the response of the model by exploiting the distinct feature
of parallelism that CA structures inherently possess. Furthermore, implementing the
model on an FPGA device takes advantage of their natural parallelism, thus reaching
significant speed-ups with respect to software simulation.The incorporation of the
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design as a fast processing module of an embedded system dedicated to surveillance
is also advantageous in terms of compactness, portability and low cost.

6.1 Introduction

The approach that has been recently adopted in crowd modelling addresses crowd as
composed of discrete individuals, rather than a homogeneousmass that behaves like a
flowing fluid [19]. As a result, certain attributes of crowd behavior, such as collective
effects, collisions and delaying factors have been successfully encountered during
simulation process [49]. On the other hand, such complexities in crowd activities
as emergent behaviors or self-organizing, hinder the visual understanding of crowd
scene. Human activity recognition and crowd behavior analysis from videos remains
a challenging problem due to the inherent complexity and vast diversity found in
crowded scenes [35]. Simultaneously, the progress in human detection and tracking
processes, which both comprise a complicated field of scientific research, can be
combined with crowd evacuation simulation approaches aiming at the development
of more efficient crowd management systems. Recently, an integrated system has
been proposed that operates as an anticipative management tool in cases of crowd
evacuation [14]. The scope of such a system is to establish a near real-time processing
mechanism that could prevent clogging in exits, especially in cases of emergent
evacuations. The system estimates plausible congestion zones within the area that
the crowd moves based on the actual (computed almost in real-time) position of
individuals composing the crowd. Two interconnected structural parts comprise the
system; the detecting and trackingmechanismand theCA-basedmodel that estimates
the route of members of the crowd. The initialisation process is established by the
detecting and tracking algorithm, which is supported by cameras. The automatic
response of the algorithm provides the current location of pedestrians around exits,
thus enabling dynamic initialisation of the CA model, followed by the estimation
of their possible route for the very near future. Among all possible exit points, the
most suitable is proposed as an alternative and the crowd is proactively re-directed
towards the chosen one by means of of appropriate audial and visual guiding signals.

Many different approaches of crowd dynamics’ simulation have been reported
in the literature, as for example based on CAs [3, 7], lattice-gas and social force
models [19], fluid-dynamics [15], agent-based modelling [5], game theory [28], and
biomimetics [2]. In some models, pedestrians are considered as homogeneous indi-
viduals [60], whereas in others, they are treated as heterogeneous [30]. Somemethods
that describe pedestrian dynamics in a microscopic scale and collective phenomena
emerge from the complex interactions among individuals [44]. Besides, there are
macroscopic scale models of crowd dynamics [23]. Moreover, these models can also
be distinguished into discrete or continuous in space and time [13, 17, 40]. Liter-
ature also reports a variety of CA-based models investigating crowd behavior. CA
basedmethodsmodel human behaviors, such as inertial effects, unadventurous effect
and group effect [8] or treat pedestrians as particles subject to long-range forces [58].
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Furthermore, the impact of environmental conditions [52] and bi-directional
pedestrian behavior [27] has been studied with the use of CA as well as interac-
tions among pedestrians, friction effects [25] and herding behavior [11].

Literature review also indicates several different detection techniques. The most
common ones include recognition of parts of the human-body [42] or extraction
of information from the foreground of the frames [47]. The main drawback of such
processes is that they require large amounts of computational resources.Hence imple-
mentation of real-time computer vision systems is difficult due to the huge amount
of data that is processed. Yet, efficient tracking models based on video technology
and sensor networks have been developed [8]. Motion detection focuses on the seg-
mentation of moving objects in a scene. A common method is the application of
background subtraction algorithms [18], which however is sensitive to changes in
dynamic scenes. Furthermore, optical-flow, a method based on flow vectors of mov-
ing objects, is computationally complex and sensitive to noise [36]. Finally, Viola
et al. [55], have proposed a system able to detect and track people in almost real time.
This is succeeded with the use of simple filters, i.e. sum-of-pixels filters, which form
a strong classifier.

Traditional closed-circuit television (CCTV) systems tend to be ineffective as the
number of cameras exceeds the capability of humanoperators tomonitor them.Visual
surveillance in dynamic scenes attempts to detect, recognise and track certain objects
from image sequences, or even to understand and describe object behaviors. In gen-
eral, the processing framework of visual surveillance in dynamic scenes includes a set
of successive stages that incorporatemodelling of environments, detection ofmotion,
classification of moving objects, tracking and human identification from multiple
cameras [21]. A common method is the application of background subtraction algo-
rithms in order foreground information to be isolated from background images, con-
tinuingwith the segmentation of the foreground pixels [18, 34]. Themethod is simple
but extremely sensitive to changes in dynamic scenes. Optical-flow based methods
use characteristics of flow vectors of moving objects over time to detect moving
regions in an image section [37]. Themajor drawback of themethods are that they are
computationally heavy and very sensitive to noise. Hence, they can hardly be applied
to video streams in real-time. Another conventional approach, temporal differencing,
makes use of the pixel differences between two successive frames in a sequence of
images to extract moving regions. The method is very adaptive to dynamic envi-
ronments [55]. Correct classification of moving objects is an essential step before
tracking. It is a standard issue of pattern recognition, commonly based either on shape
attributes (e.g. human body patterns [26]) or on motion characteristics of the classi-
fied objects (e.g. periodic properties of moving objects [10]). Tracking of the moving
objects is finally succeeded by comparing consecutive frames under various criteria.
Tracking over time typically involves matching objects in consecutive frames using
features such as points, lines or blobs. Tracking methods make use of mathematical
tools such as the Kalman filter [29], Bayesian networks [46], etc. There are algo-
rithms that apply tracking of moving objects based on shadow processing running
in real-time in low-cost hardware [24]. Another approach that reduces computational
complexity performs tracking by dynamically updating bounding contours that
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correspond to the outlines of themoving elements [39]. Furthermore, matching based
tracking is established either by extracting elements with certain features and match-
ing features between images [9] or by matching image elements to models of a data
basis [45].

Regarding occlusion, the problem can hardly be addressed since motion segmen-
tation may become unreliable. When multiple moving objects occlude each other,
especially when their speeds, directions and shapes are very close, their motion
regions coalesce, which makes the location and tracking of objects particularly dif-
ficult. Manipulating the problem by using statistical methods into available image
information severely downgrades the response of the system.Nevertheless, a solution
based on the use of multiple cameras may constitute a reliable solution.

In this chapter, a Field Programmable Gate Array (FPGA) implementation of the
overall assistingmanagement system is described.To the best of our knowledge, hard-
ware implementation of evacuation systems has not been extensively investigated and
it is rarely reported in literature [12]. The system comprises of two structural com-
ponents, which are presented sequentially. On the one hand, detection and tracking
is based on an elaborated form of the method of Viola et al. [55]. The design of the
human detection system relies on an Artificial Neural Networks (ANNs) model [59].

On the other hand, the automatic response of the processor that realises the
CA-based evacuation model provides the location of pedestrians near exits. The
evacuation model operates as a ‘short term’ simulator of the plausible evolution
of the crowd-system focusing on a very specific situation (evacuation). The imple-
mentation of the model is motivated by parallelism, an inherent feature of CA that
contributes to further acceleration of the models operation. The main motivation for
using FPGAs is that their regular, two-dimensional structure provides an ideal archi-
tecture for mapping the structure of a CA model. Consequently, the realisation of
the model on an FPGA device takes advantage of the natural parallelism of FPGAs,
thus reaching to significant speed-ups with respect to software simulation [56].

Moreover, in terms of circuit design and layout, ease of mask generation,
silicon-area utilisation and maximisation of achievable clock speed CA are perhaps
the computational structures best suited for a fully parallel hardware realisation [12].
Using FPGAs, it is possible to parallelise the algorithm processing. The dedicated
processor is utilised as a real-time processing module of the embedded system dedi-
cated to surveillance that responds fast. The implementation of the overall system is
advantageous in terms of low-cost, high-speed, compactness and portability features.

Essentially, the proposed hardware embedded system acts as a unifying mech-
anism that coherently combines data/information from different sources in order
to achieve a specific goal, by deriving decisions and reducing uncertainty. In other
words, it realises the main principles of information fusion.

The following sections describe thoroughly the structural parts of the system. Par-
ticularly, Sect. 6.2 presents the major implementation directions of the detection and
tracking algorithm. In Sect. 6.3 the multi-camera approach is further analysed, while
in Sect. 6.4, the design principles of the CA-based evacuation model are described.
Finally, conclusions are drawn in Sect. 6.5, along with future work prospects.
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6.2 Main Implementation Principles of the Detection
and Tracking Algorithms

The algorithm deciding whether an individual appears in a frame or not, follows a
discrete sequence of steps (Figs. 6.1 and 6.2): (a) a continuous flow of images (video)
is separated into discrete frames (images), (b) each of these images is converted into
greyscale, (c) each image is divided into separate windows of size 610× 930 pixels,
(d) each window is examined whether it contains an individual or not with the use of
a strong classifier, (e) a window and, therefore, the corresponding image is supposed
to contain an individual, in the case that it undergoes all the stages of the strong
classifier. If at any stage, a classifier rejects the window being examined, no further
processing is performed and searching continues to the next sub-part of the window.

The circuit implements the corresponding algorithm, which enables processing
in near real time and that can be realised on a low-cost execution platform. Though
efficient detection and tracking implementations have been reported in literature,
the incorporation of such a circuit in an overall crowd management system is the
motivational primary objective.

The strong classifier is modelled according to the principles of Neural Networks.
Each individual weak classifier of the overall strong classifier acts like a simple
neuron (perceptron), to which a threshold function is applied. Each weak classifier
has its own threshold value. Provided that the response of the function corresponding
to each neuron-classifier is higher than the threshold value, the classifier becomes
active; otherwise, it remains inactive. Moreover, each classifier consists of a properly
selected feature (filter) or a group of them. These features are arranged in a cascade
formation, in order this mechanism to reject quickly windows that are not likely to
contain an individual. The main aim is the real-time implementation of the system.
Thus, it enables fast decisions without consuming useful computational resources
and easy communication with the video cameras that supply the system with the
image sequences.

As soon as the appropriate filters that generate the neurons of the neural network
(strong classifier) have been delineated, the hardware (FPGA) implementation is
activated in order to train the neural network and apply the filters as well. In practice,
the circuit sets and changes the weight values that correspond to each feature in order
to optimise the process.

Additionally, an appropriate model has been developed in Matlab, which com-
pletes automatically the above procedure. This software tool also functions as a
testing tool of the overall behavior of the system by checking the results accrued.
The reason for creating such a tool is to prevent hardware level from errors and to
improve the hardware implementation. Software enables easy identification of errors
(debugging) in the source code. Hence, the implementation at hardware level mainly
pertains to the calculation of the responses of the filters, which are applied to each
window, as well as to the construction of the neural network (specifically of the
strong classifier), which comprises the decision-making mechanism.
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Fig. 6.1 The first three main steps of the detection and tracking algorithm, a a continuous flow of
images (video) is separated into discrete frames (images), b each of the images is converted into
greyscale mode, c each image is divided into separate windows
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Fig. 6.2 The rest of the main steps of the detection and tracking algorithm follow: a the topology
of the strong classifier, b a window and therefore the corresponding image is supposed to contain
an individual

6.2.1 Filter Response

Filters applied to each sub-window of the whole image (frame) are all of the same
type, i.e. Haar-type (sum of pixel filters) [38]. Their response is the sum of the inten-
sities in the image area, which the filters are applied to. The images are converted
to greyscale mode, thus the values are integer. The intensity of each pixel is repre-
sented by an integer ranging between 0 and 255. This is a total of 256 values, which
represent different shades of grey color. Hence, 8bits (unsigned type) are required
for the representation of each pixel. Provided that the range includes also negative
values then an extra bit is used, thus leading to a total of 9bits representation. Thus,
negative from positive values can be separated.

Themost commonmethod to calculate the response of a sum of pixel filters would
be a simple addition of the corresponding intensities. However, this kind of imple-
mentation, especially at hardware level, would not be particularly efficient as far as
processing time concerns. Consequently, it is more efficient to apply a multiplication
between the value of the intensity of a given pixel times the corresponding orientation
value. The latter defines the orientation of each of the orthogonal regions of the image
that a filter consists of. Then the corresponding result is driven into a register. This
process takes advantage of the Multiply Accumulator (MAC) component that is
available in FPGA logic. Furthermore, the operations are controlled more effectively
and the majority of the required calculations are taking place faster (Fig. 6.3).
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Fig. 6.3 Multiply accumulator. The value of the intensity of a given pixel (input A) ismultipliedwith
the corresponding orientation value (input B). The corresponding product represents the response
of the filter and it is stored to a register (output Q)

In Fig. 6.3, parameters A and B represent respectively the value of each pixel
(ranging from0 to 255 in the case of greyscale form) and the value 1 or−1 (depending
on the orientation) that corresponds to each of these pixels depending on the form of
the filter that is applied each time. Parameter Q represents the resulting value of the
multiplication that takes place and the addition of that result to the already existed
value that is stored in the register. As shown in Fig. 6.3, Q holds, each time, the value
that exists inside the accumulator. The boldface lines indicate data conduits, whereas
plain lines represent control signals.

Depending on its size, i.e. the number of pixels that it covers, each type of filter
performs a multiplication between the value of each pixel times the corresponding
orientation, i.e. +1 represents a positive orientation, whereas −1 a negative one.
Hence, there is a maximum value that can be assigned to each filter. Then, an accu-
mulator is required to sum up the multiplication results, thus generating the final
response. Therefore, two multiply-accumulating units are required for each filter
depending only on its dimensions and not on its orientation. For example, for each of
the 8×12 filters two such units will be used, for each of the 16×24 filters two more
units will be used and so on. Obviously, multiply accumulators are also used during
themultiplication of the values of the weights with the values of the filters inside each
neuron. It should be noted that following the original proposal for the calculation
of the response of the filter, i.e. following continuing additions of the values of the
filters, the results would also be correct, but in the cost of extra time and resources.

In order to enable the detection system to identify the orientation values of the
pixels (Fig. 6.4) for each of the filters applied to windows, it is necessary to use
a component that can store and easily match values, i.e. a Look Up Table (LUT)
(Fig. 6.5). For each filter, according to its size, there is a corresponding LUT. In fact,
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Fig. 6.4 An example of a filter and the corresponding operations required for the calculation of its
response. Each pixel value is multiplied by the corresponding value

Fig. 6.5 An example of LUTs function. A false-colored (or pseudo-colored) image is a single
channel gray image (8, 16 or 32-bit) that has color assigned to it via a LUT. Thus, differences in
color in the pseudo-colored image reflect differences in intensity of the object
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this is a two-dimensional array 2× K , where parameter K represents the number of
columns of each filter. For filters of 8×12 pixels, the size of the corresponding LUT is
2×12. The first row contains the value 1, whereas the second row contains the value
−1 or 1, depending on the orientation of the filter. According to the area that a filter
covers, the values of the pixels are multiplied with the elements of the corresponding
row. Thus, easy indexing is succeeded. Clearly, the speed optimisation is one of the
main advantages of using such a component, as thememory access operation is much
faster than a simple operation (addition or abstraction) at hardware level.

As far as the memory, thus, the time concerns, the major overhead of the imple-
mentation can be spotted to the limited number of accumulators. Following such
an approach, an increased number of memory accesses is required. As a result, the
corresponding time is augmented, compared to an implementation that would use
different accumulators for each of the filters.

The prominent benefit of the implementation as far as the speed concerns is that
the training of the neural network takes place offline, keeping the performing burden
of the system low and less resource-demanding.

6.2.2 Neurons

Having calculated the responses of the filters, the next step is to create a strong
classifier using hardware components. As already mentioned, the strong classifier
consists of individual weak classifiers, which are modelled by using neurons. An
activation function is applied to each of these neurons. In order to simplify the
decision process and to accelerate the response of the classifiers, a threshold function
is used.

Each neuron calculates a sum of products (transfer function
∑

) (Fig. 6.6). These
products are the responses of the filters, which are included in each of the n neurons
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Fig. 6.6 A block functional diagram of a neuron
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Fig. 6.7 Schematic design of an artificial neuron

(x1, x2, . . . , xn), multiplied with the corresponding weight value (w1, w2, . . . , wn).
Then, a function called activation function (φ) is applied. The goal of this function
is to match the previous calculated value to another one, depending on the type of
the function. The aim of the proposed implementation is to check whether the result
of the sum of products of each neuron exceeds (or not) the corresponding threshold
value. Equation6.1, which describes this operation, forms the output of the strong
classifier, while Fi represents the output of each of the filters that corresponds to a
neuron.

o(classifier) =
{
1, if

∑
wi o(Fi ) ≥ thclassifier

0, otherwise
(6.1)

Each of the neurons (Fig. 6.7), which form the strong classifier, can be represented
at hardware level by using a MAC component (Fig. 6.3). Also a ROM memory is
required, so as to store the weight values of the filter permanently. These values have
already been calculated during the training process of the strong classifier. Each
neuron has its own ROM for storing the corresponding weights. The transactions
made in each neuron take place simultaneously (in parallel) and for that reason
a synchronization signal is necessary (clock). Each accumulator unit uses a load
signal, which either allows or forbids the loading of the values.

The next step of the construction of the proposed detection system requires the
definition of the appropriate filters in the neurons (classifiers). As stated before, this
procedure is performed by the corresponding simulation tool that has been developed.
This process is based on Adaboost algorithm [54]. A thorough description of its
operation is out of the purpose of this chapter. Nevertheless, it should be noted that
the strong classifier is built by selecting the most powerful features (filters), which
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separate training examples with the greatest possible certainty. These are the features
with the lowest error rate. Along with other randomly selected filters, they form the
neurons classifiers, thus leading to the creation of the strong classifier. The weight
values of the more powerful features are greater than the respective values of other
filters. Both these values and the way that the filters are placed into the neurons, are
random.

Regarding the implementation of the particular system, only 7 neurons are used.
The choice was based on the corresponding measures that took place with the use of
the auxiliary software program inMatlab.More particularly, themain target regarded
savings of resources (spatial and temporal) during the implementation of a flexible
system. The latter could be applied in real time and could provide satisfactory results
as well. After a number of tests, the minimum number of neurons that accomplished
the desired requirements was defined equal to seven. More information can be found
in [54].

As far as the operation of the software tool concerns, its main purpose is to
examine each window whether it contains an individual or not (1 or 0 are the results
respectively at the final classifier). In this implementation, such awindow is supposed
to have a size of 16× 24 pixels. Consequently, 16 vectors have been used, each one
with 24 elements. Hence, 16 signals are required in order the places of the vectors to
be filled. Furthermore, 24 clock cycles are required so as these 16 vectors to be filled
and thus the window under test to be successfully introduced. Right after, during the
next clock cycle, the computation of the responses of all the filters that have been
chosen commences. Particularly, all necessary operations to all accumulators take
place and the upcoming values are compared with the corresponding thresholds. In
the case that the value calculated is greater than the corresponding threshold then
the filter is supposed to have a response equal to 1, otherwise equal to 0. Provided
that all these responses are available, they are guided to the appropriate neurons,
where they are multiplied with the value of the corresponding weight. As a result,
for each neuron a sum of products comes up (multiply-accumulate operation). In
case that this specific sum is greater than the value of the threshold of each particular
neuron then the output of this neuron—weak classifier is equal to 1, otherwise to
0.A window and therefore the frame that this window comes from is accepted only
in the case that it passes successfully all the stages of the strong classifier. The latter
process is implemented through the performance of the logic operation AND between
subsequent classifiers.

6.2.3 Validating the Implementation of the Tracking Algorithm

The final step in creating the strong classifier is to find the appropriate values of
the weights of the features that the neurons consist of. For this purpose the Error
Back Propagation algorithm is applied [4]. The Back Propagation (BP) method is a
supervised training method of ANNs, where it is necessary for the teacher (trainer)
to know or to be able to calculate the desired output for any input.
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The training method is implemented as follows: a window that is part of a frame
that contains an individual is selected. Consequently, the outputs of all neurons are
set to 1. This window is a training example that helps the corresponding process
of the ANN leading to the correct estimation of the weights. This procedure is
applied to all neurons.

The overall systemconsists of seven (7) neurons,which are responsible formaking
decisions. Each neuron consists of a number of filters, which have been chosen
properly [55]. These filters are assigned values that reflect the importance of each
of them in the decision process. The activation function is principally the same for
all neurons, i.e. a binary-like function. The input values of each neuron, i.e. the
responses of the filters, are multiplied with the respective weight values, which are
calculated during the training process of the ANN. The goal of this part is to apply
the BP method to each of the seven neurons and observe whether the appropriate
weight adjustment is achieved.

The implementation process of the BP algorithm follows the steps below:

1. The weights and the threshold values of each classifier are defined randomly.
2. Certain examples are applied and the sum of products between theweights and the

corresponding values of inputs in each neuron are calculated. These are actually
the responses of the filters.

3. The responses of the filters should exceed the threshold value that corresponds to
each neuron-classifier in order the output of the neuron to be the desired one, i.e.
1. Hence, if this value does not exceed the threshold, then the weight values are
redefined.

4. The formula for calculating the new weights is:

wnew = wold + αδx (6.2)

where α is the learning rate factor of the neural network, varying from 0 to 1 and
δ is the error.

5. Step 4 is repeated until the desired convergence is succeeded.

The term αδx appearing in Eq. (6.2) is essentially the application of the delta rule,
which is given by:

wnew = wold + Δw, Δw ji = α(t j − y j )g
′(h j )xi (6.3)

where t is the desired output, y is the real output, x is the input of each neuron, g′(h)

is the derivative of the neurons activation function and parameter h represents the
sum of products between the weights and the respective inputs of the neuron.

The activation functionof eachneuron is a binary like function,whichbydefinition
is not a continuous function, thus its derivative cannot bedefined. In order to overcome
this irregularity, the following approach is adopted:
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Fig. 6.8 The implementation of BP for neuron no. 3 in Quartus

wnew = wdd + a × (thresholdneuron − |thresholdcurrent|)/2 + (wdesired − |wcurrent|)/2
(6.4)

In essence, each new weight value is a function of (a) its previous value, (b)
the value of the learning rate multiplied by the normalized difference of the neu-
rons threshold minus the current value of the threshold and (c) the outcome of the
normalized difference of the desired weight value minus the current weight value.
This method achieves the appropriate weight correction which is actually the goal.
Yet, it does not extremely differ from the original version of the BP algorithm, which
cannot be fully applied as the proposed method also contains feedback and there is
propagation of the error as well. The second column of Table6.1 presents the values
of the weights of one of the neurons, namely no. 3, as they were calculated during
the training process. Next column shows the values obtained through the implemen-
tation of the BP algorithm at hardware level. Additionally, it is provided the standard
deviation value of the weights, as it was obtained before and after the implementation
of the BP algorithm. As expected, right after the implementation of the algorithm the
values of the standard deviation in each neuron are smaller than the values obtained
before. Along with, the results of the implementation of BP in the FPGA design
platform of Altera [1] are provided (Fig. 6.8).

Table 6.1 Application
results of BP algorithm in
neuron no. 3

Input values of neuron no. 3

1, 0, 0, 1, 1, 0

No. of weight Value (before) Value (after)

1 5 5

2 3 4

3 1 2

4 2 3

5 1 2

6 3 4

Standard deviation Before After

1.38 1.1
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In order to verify the validity of the results, (both inMatlab andQuartus platforms)
the new weight values were tested after the implementation of the BP algorithm.
The response of the circuit remained the same. Additionally, there is a reduction
of the standard deviation of the weights, which proves that the implementation
responds more accurately and reliably. These results indicate that several weight
values obtained after the implementation of the algorithm are not identical to those
originally specified. This occurs because it was not used a floating point represen-
tation of the numbers. Such a decision was motivated by the fact that an FPGA of
smaller size would be utilized in order to decrease the cost of the implementation
as well as to accelerate its real-time performance. As a result, there was a loss of
decimal parts, which should have been added during the algorithm processing. In
several cases, this caused weights to increase similarly. Naturally, the correction
of the weight values would be more accurate, but then the number of required itera-
tions to achieve adequate convergence would be higher. In general, the new values of
theweightswere not far from their original values, a fact that proves the validity of this
implementation. Moreover, the reduction of the standard deviation values enforces
the effectiveness of the implementation. Once the best possible values of the weights
of each neuron were calculated, the circuit was able to detect whether a person was
appearing in a sub-window or not. Figure6.9 depicts the response of the proposed
implementation, for a window that contains a person (Fig. 6.10). It should be pointed
out that frames of different types were successfully tested, e.g. for indoor/outdoor
activities. The resolution of the frames was 320 × 480 pixels and the recording size
was 24 frames/s. Video recording took place from a significant distance, thus further
downgrading the detection conditions. Nevertheless, the hardware implementation
proved effective in detection process.

The system was designed with the use of a hardware description language, i.e.
VHDL and the simulation was performed in Altera FPGA design platform [1].
The representation of the values of the pixels required 16 signals, denoted as
x1, x2, . . . , x16 in Fig. 6.9. Each of these signals was responsible for representing the
pixels contained in the 16 rowsof thewindow.Thewindows’ dimensionswere 16×24

Fig. 6.9 The response of the system right after introducing the selected sub-window
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Fig. 6.10 The response of the
system right after introducing
the selected sub-window. The
frame and the selected
sub-window (in red box)

pixels. Hence, each of the xi , i = 1, . . . , 16 signals was actually a vector consisting
of 24 values, i.e. x1(p1, . . . , p24), x2(p1, . . . , p24), . . . , x16(p1, . . . , p24). The time
required for providing an entire window as an input to the systemwas 24 clock cycles
following a semi-parallel loading technique. Nevertheless, the exact duration of this
period depends on the value of the clock signal. For the results presented here, a
clock with a period of 15ns was applied. Thus, the processing time of each of the
sub-windowswas 15×24 = 360ns.Moreover, an extra clock periodwas required for
the neural network to respond, i.e. to make a decision. This is a total time of 375ns.
Taking into consideration that a 320 × 480 frame was divided into 400 such sub-
windows, then the total time required for each frame to be processedwas 400×375 =
150,000ns. The number of cycles does not change, since it depends on the width of
the window, which is equal to 24 pixels. The area enclosed in red in Fig. 6.9 repre-
sents the window in greyscale mode. As soon as all values of pixels’ intensities are
provided to the system, the responses of the filters in the seven neurons are calcu-
lated. Then the neurons’ responses are evaluated. The signals used to represent the
output of each neuron in Fig. 6.9 are: classifier i , where i = 1, . . . , 7 respectively. In
order a window to be considered as containing a person, the outputs of all neurons
should be 1, as shown in the first case. If even a single neurons’ output is 0, then
this particular window is rejected. Under the testing conditions described above,
the response of the system presented almost 80% success rate. The exact model
of the FPGA used for the implementation of the system is Altera Stratix II. This
FPGA uses 90nm technology and it allows the use of up to 180,000 logic elements.
It also includes 96 Digital Signal Processing (DSP) blocks with 385 multipliers
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Table 6.2 The resources of
the FPGA circuit

Stratix II compilation report

Combinational ALUTs 23,148/48,352 (48%)

Dedicated logic registers 3,268/48,352 (7%)

Total registers 3268

Total pins 138/335 (41%)

Logic utilization 48%

for efficient implementation of filters and other functions that require digital signal
processing. Table6.2 shows the use of the resources provided, for the implementation
described.

6.3 Multi-camera Approach

Following the principles that are thoroughly described in Altera’s white paper [43],
video surveillance based on analog Closed Circuit Television (CCTV) cameras and
interfaces is not easily expandable, and has low video resolution with little or no
signal processing. However, more recent video surveillance systems replace these
components with newer digital Local Area Network (LAN) cameras, complex image
processing, andvideo-over-IP routing.They are no longer simply surveillance camera
systems, but also video communication systems.

The Internet protocol (IP)-based structure of the new surveillance systems allows
for scalability, flexibility, and cyber security. Various encoding and decoding stan-
dards transport the video stream (MPEG4 CODEC is the standard used today).
Besides the CODEC function, image pre- and post- processing enhances the picture
quality in real time with low latency. Programmable logic with embedded digital
signal processing (DSP) blocks, memories, interfaces, and off-the-shelf IP solutions
allows a designer to meet the new system requirements.

There are many different standards for video data compression, with the most
popular including JPEG, H.263, Motion JPEG, MPEG, Wavelet and newer H.264.
The type of compression used has an impact on hardware system requirements,
including memory, data rate, and storage space. Compression efficiency is a key
factor in the transmission of high-quality video over a bandwidth-limited network.
For example, a color transmission at 30 fps at 640 × 480 pixels requires a data rate
of 26 Mbytes/s. This data rate must be reduced (compressed) to a more manageable
data rate that can be routed over a twisted pair of copper wires.

Pre- and post-processing techniques, such as de-interlacing, scaling, noise reduc-
tion using 2D filtering, and color space conversion, are also critical parts of a video
surveillance system. Figure6.11 illustrates a typical video surveillance system setup
using field programmable gate arrays (FPGAs) and application specific standard
product (ASSPs).
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Fig. 6.11 Surveillance camera system with FPGA [43]

With expanding resolutions and evolving compression, there is a need for high
performance while keeping architectures flexible to allow for quick upgradeability.
As technology matures and volumes increase, the focus will move to cost reduction.
System architecture choices include standard cell application-specific integrated cir-
cuit (ASICs), ASSPs, and programmable solutions such as digital signal processing
(DSP) or media processors and FPGAs. Each of the approaches has advantages and
disadvantages, with the ultimate choice depending on end-equipment requirements
and solution availability. The ideal surveillance architecturewould have the following
characteristics: high performance, flexibility, easy upgradability, low development
cost, and amigration path to lower cost as the applicationmatures and volume ramps.

Performance not only applies to compression, but also pre- and post-processing
functions. In fact, in many cases these functions are more computationally demand-
ing, than the compression algorithm itself. Examples of these functions include scal-
ing, de-interlacing, filtering, and color space conversion. For video surveillance, the
need for high performance rules out processor-only architectures. They simply cannot
meet the performance requirements with a single device. This FPGA co-processing
approach can deliver significantly higher performance, since the designer can parti-
tion the system to take advantage of the benefits of each device. Figure6.12 shows
the block diagram.

Mackay et al. [33] propose another interesting solution. According to their
approach, early research on the tracking and recognition of human form and actions
have used single-camera computer-vision systems, while assuming ideal condi-
tions, with un-occluded views of the subject readily available [50]. Recent works,
however, have proposed the use of multiple (static) cameras to improve upon
the sensing objective [48, 57]. An alternative approach to improving recognition
has been the use of reconfigurable multi-camera active vision systems, which can
select performance-optimal viewpoints [31, 32, 50]. An agent-based sensing-system
applies reconfiguration strategy for the recognition of a human form moving under
real-world conditions. The strategy is designed to be adaptable to a wide variety
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Fig. 6.12 Architecture with FPGA and Texas Instruments (TI) DSP [43]

of real-world time-varying-geometry object action-sensing tasks, while addressing
real-time operation, presence of multiple static or dynamic (maneuvering) obstacles,
differentiated importance of viewpoints, and object self-occlusion.

More recent, a multi-camera surveillance system based on the use of self-
organizing neural networks to represent events on video has been developed, pro-
posed by Orts-Escolano et al. [41]. According to them, the development of the visual
surveillance process in dynamic scenes often includes steps formodeling the environ-
ment,motion detection, classification ofmoving objects, tracking and the recognition
of actions. Most of the work is focused on applications related to tracking people or
vehicles that have a large number of potential applications, such as: controlling access
to special areas, the identification of people, traffic analysis, anomaly detection,
security management or interactive monitoring using multiple cameras [22, 53]. The
majority of visual surveillance systems for scene analysis and surveillance depend on
the use of knowledge about the sceneswhere the objectsmove in a predefinedmanner
[6, 20]. In recent years, work in the analysis of behaviors has been successful, because
of the use of effective and robust techniques for detecting and tracking objects and
people. Moreover, thanks to the proliferation of low-cost vision sensors, embedded
processors and the efficiency of wireless networks, a large amount of research has
focused on the use of multiple sources of information for the analysis of behav-
ior. In particular, multi-camera networks are used for interpreting the dynamics of
objects moving in wide areas or for observing objects from different viewpoints
to achieve a 3D interpretation. Multiple viewpoints help in dealing with ambigu-
ities and occlusions and can lead to a more reliable analysis of the scene. Third
generation surveillance systems usually refer to system conceived of to deal with a
large number of cameras, a geographical spread of resources and many monitoring
points and to mirror the hierarchical and distributed nature of the human process
of surveillance [53]. The system proposed by Orts-Escolano et al. [41], that consti-
tutes an efficient multi-camera approach for the proposed implementation, processes
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several tasks in parallel using graphic processor units (GPUs). It addresses multiple
vision tasks at various levels, such as segmentation, representation or characteriza-
tion, analysis andmonitoring of themovement. These features allow the construction
of a robust representation of the environment and interpret the behavior of mobile
agents in the scene. Furthermore, the vision module is integrated into a global system
that operates in a complex environment by receiving images frommultiple acquisition
devices at video frequency. Offering relevant information to higher level systems,
monitoring and making decisions in real time, it accomplishes a set of requirements,
such as: time constraints, high availability, robustness, high processing speed and
re-configurability. The system is able to represent and analyze the motion in video
acquired by a multi-camera network and to process multi-source data in parallel on
a multi-GPU architecture.

6.4 Main Implementation Principles of the CA-Based
Crowd Evacuation Model

The response of the management system is structurally based on two operationally
connected components. Supported by cameras, the first one elaborates detection and
tracking, thus providing updated initial conditions to the CA-based, route estimation
model that constitutes the second operational part. The CAmodel is two-dimensional
and it is based on virtual potential field. Certain attributes of crowd behavior, have
been successfully incorporated in the model. According to the motion mechanism
individuals are attracted to exit points or they are repelled from obstacles and walls.
The virtual potential field is established by the superposition of two independent
fields [16]. The first one is attractive and triggers the direction towards exits, follow-
ing the relationships below:

d =
√

(xE − x)2 + (yE − y)2 (6.5)

θ = tan−1
(

yE − y

xE − x

)

(6.6)

dE x = α cos(θ) and dE y = α sin(θ) if; d > 0 (6.7)

dE x = 0 and dE y = 0 if; d = 0 (6.8)

where d denotes the Euclidean distance between the pedestrian located at (x, y) and
the exit (xE , yE ), θ the angle between the pedestrian and the exit, α a constant that
allows the adjustment of the strength of the field and dx , dy the components of the
gradient vector

−→
ΔE v = [dE x, dE y]T of the vector −→v = [x, y]T .
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The repulsive module of the overall field is generated by the following relation-
ships:

d =
√

(xo − x)2 + (yo − y)2 (6.9)

θ = tan−1(
yo − y

xo − x
) (6.10)

dox = −β cos(θ) and do y = −β sin(θ) if; d < r (6.11)

dox = 0 and do y = 0 if; d > r (6.12)

where d denotes the Euclidean distance between a pedestrian located at (x, y) and an
obstacle (xo, yo), θ the angle between the pedestrian and the obstacle, β a constant
that allows the adjustment of the strength of the field, r the radius of the area that
the repulsive field is effective and dx, dy the components of the gradient vector−→
Δov = [dox, do y]T of the vector −→v = [x, y]T .

Then the total field originates in accordance to the relationship:

dx = dE x + dox, dy = dE y + do y (6.13)

The motion mechanism is generated according to the attracting direction from the
exit and the repelling directions from obstacles and walls, leading to the calculation
of the coordinates of the next target-cell. In case that this is free, which also means
that it has not been targeted by any another individual, the given individual moves
on. Otherwise, the individual is looking for another choice, i.e. for a neighbouring
cell with equal potential value. In case that the target-cell is an exit, it is checked
whether this is free or not. The individual moves if the exit is free.

Algorithmically, for each individual the following parameters are calculated:
(i) the distance from the exit, as well as parameters dE x, dE y, (ii) the distance from
each cell that represents a wall or an obstacle. In case that this distance is less than
two cells, parameters dox, do y are calculated and (iii) the total vector, as described
by the equations above.

In the view of the foregoing, the fundamental structural principles of the hardware
implementation of the CA based model are presented as follows. The dedicated
processor has been designed with the use of the Altera Quartus II software multi-
platform, a comprehensive environment available for system-on-a-programmable-
chip (SOPC) design. The design of the CA model follows updated implementation
principles of the corresponding realisation presented in [12].

Prominent disadvantages of a general-purpose computer, such as high power con-
sumption and significant size may sometimes hinder their utilisation. Furthermore,
taking into consideration that a CA circuit design is reduced to the design of a single
one, with a relatively simple cell and a uniform layout, the prospect of a dedicated
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Fig. 6.13 Description of the constructional part of the CA grid

processor becomes attractive. The whole mask implementation regarding a large CA
array (the cells with their internal connections as well as the interconnection between
cells) constitutes a repetitive procedure, with no silicon area overhead on long inter-
connection lines. Moreover, the locality of the processing allows minimisation of the
length of critical paths no matter what the number of cells is [51].

The device used for this realisation is the Stratix EP1S80B956C6 that belongs to
the ALTERA family. The fundamental structural part of the design is the cell of the
CA grid (Fig. 6.13). Each cell is supplied with nine input signals; the given cell itself
outcompCA and each eight closest neighbours; inruleN, inruleS, inruleE,
inruleW, incompN, incompS, incompE and incompW. Clock input is
used for synchronisation reasons, whereas clear input is included for efficient
initialisation purposes of the memory parts of the system. Evacuation mechanism is
triggered, as soon as the load signal is provided with the values ‘11’, ‘10’, ‘01’, ‘00’,
followed by all necessary operational processes that enable evacuation estimation.
All these inputs are one-bit inputs which are serially provided to the processor. One-
to-eight (1/8) bit converters intermediate so as data further to proceed in parallel, as
eight-bit strings.

According to the operation process, there is an array that holds the current values of
all parameters. Given the value ‘11’ to input load, input inruleS loads its current
value to the array of the present state. Hence, the value of the cell changes during
the current clock pulse. The general exit of the area under study is represented by
value ‘10’. As soon as the value of input inruleS, holds that value, signals xe, ye
are supplied with the values of the coordinates of the cell that is i and j, respectively.
Provided that (a) the value of input load is ‘10’, (b) the value of input inruleS is
different than ‘11’ and (c) at the same time there is at least one of the signals that
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describe the state of neighbouring cells with value ‘11’, then the value of signals
sumx and sumy increase or decrease to one. sumx and sumy are intermediate
signals of a cell. The exact location of the neighbouring cell defines the state of
signals sumx and sumy.

The determination of the vectors due to the attractive force of the general exit
corresponds to the following step of the design process. It is realised by increasing
(or decreasing) the state of signals sumx and sumy by a value of 2. In fact that
depends on the direction of the vector. Increasing (or decreasing) these values by
two units, indicates that the magnitude of the attractive force of general exit is two
times greater than the magnitude of the repulsive force of walls or obstacles. The
array of Euclidean distances stores the current distances between cells and the general
exit. The computation of the array is triggered in the case that the value of input load
is defined to ‘01’. In order the evacuation process to begin, this value is defined to
‘00’. The states of occupied cells during next time step are stored in the array of next
state, d.

The main advantage of this approach is that the internal update of the states of
the cells is reassured, avoiding feeding back inputs with output values. The only
variable that is user-dependant is the size of the area. The efficiency of the design
is enhanced by the fact that all other parameters are modified automatically and
computed according to the current conditions.

Figure6.14 displays a typical pipelined interconnection between cells. Pipelined
circuits contain registers in-between the logic blocks that break up the circuit into
smaller pipeline stages. Applying this technique, the inclusion of eight-bit registers
in-between structural devices is also essential for reasons of synchronisation, further
increasing latency. The essence of pipelining is to break up a long process into
smaller parts, and then to have each part to accomplish its mission and pass the
result to the next part. Nevertheless, the appearance of a result at a constant period
is reassured, hence increasing the throughput and/or the frequency of the entire
circuit [16]. Memory components are used in order to balance delays during signal
propagation.

Fig. 6.14 Interconnection between cells
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Fig. 6.15 The structural elements of the combinational part of the CA cell

Following sequential logic, each cell is separated into two parts; the combinational
and the memory one. The former realises all computations that take place into cells.
The latter part forwards the combinational results to the cells of the vicinity during
each time step. Focusing on the design of the combinational part, Fig. 6.15 indicates
the main structural elements of that module of the cell that realises all necessary
arithmetic and logic operations. Finally, regarding the initialization process of the CA
model implementation part, this is characterized as semi-parallel. Specifically, data
starts to be loaded simultaneously, that is in parallel, whereas the process continues
serially with initial bit strings moving from one cell to its adjacent at the same row
of the grid until all cells are properly initiated. A parallel load register realises the
parallel part of the semi-parallel method.

6.5 Conclusions and Future Work

In this chapter, it is proposed the FPGA implementation of an overall electronic
circuit, which can be applied as an assisting management system that aims at pre-
venting clogging in front of exits during evacuation processes. The system, by asso-
ciating and combining information from different sources, achieves refined estimates
of crowd behavior in an observed field of view, thus serving the fundamental prin-
ciples of information fusion. It rather realizes a human-aiding process for analysis
and/or decision support, providing the security manager of a venue with all appro-
priate information to perform some actions (e.g. opening additional exits, activating
visual or audible cues to try to guide the crowd, etc.).

The structure is established in two interconnected parts that consist of the
detection-tracking implementation and the corresponding realisationof theCA-based
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crowd movement model. The implementation is advantageous in terms of compact-
ness, portability, high-speed, low-power consumption and low cost. Initialisation is
processed with the detecting and tracking algorithm supported by cameras and the
automatic response of the processor provides an estimation of the position of indi-
viduals near exits.

The main advantage of the structural part that realises detection and tracking
initialisation mechanism is its ability to manipulate an enhanced number of frames
compared to an embedded processor that requires increased amounts of processing
time for such operations. Though it constitutes a simplified version of the Viola,
Jones and Snow system [55], it has been proven quite accurate as far as its detection
precision concerns. Among its main characteristics is the fact that the number of
filters and the number of positive and negative examples during the training part
is significantly smaller. The implementation of the CA model structural part facil-
itates the incorporation of the design as a near real-time processing module of the
embedded system dedicated to anticipative crowd management. CA are efficient, as
far as hardware realisation concerns, in terms of circuit design and layout, silicon-
area utilisation andmaximisation of clock speed. Thus, the corresponding realisation
accelerates the response of themodel by developing the distinct feature of parallelism
that CA structures nest.

The overall implementation could be further improved by optimizing certain
attributes of both constructional components. As far as the detection and tracking
circuit concerns, the threshold values have been selected following the normaliza-
tion method. The available features have been derived from all examples and the
threshold value for each of the filters has been evaluated as the mean value of their
responses. In essence, the training of the ANN (strong classifier) has not taken place
automatically, as proposed by the Adaboost algorithm. Furthermore, all examples
have been considered of equal importance and they were not assigned with differ-
ent weight values. Consequently, the circuit can further improve its efficiency by
enhancing its qualitative features as well as its training procedure. The application
of more filters would obviously improve its response, since more characteristics of
the frames would be incorporated. Furthermore, more examples would lead to more
accurate threshold and weight values. Finally, detection rate could be increased by
using more neurons.
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Chapter 7
Visual Sensor Networks—Adaptive Online
Configuration of Surveillance Networks
with Distributed Smart Cameras

Chengnian Long and Jing Wu

Abstract Distributed smart cameras have been increasingly employed to capture
dynamic events for tasks such as surveillance and training. When events distrib-
ute throughout a large area, many issues may occur, two of which are inevitable
and critical, that is, limited computational capabilities and battery energy con-
straints. These two issues bring both challenge and opportunity to researchers all
over the world. Different approaches for camera configurations are presented. In
this chapter, we propose an adaptive online configuration for large-scale camera net-
works. By exploiting tracking-inspired local search and cluster-based cooperating
coverage, a distributed coverage-probability-based heuristic algorithm (DCPBHA)
is designed with the consideration of limited camera computational capacities and
energy constraints. Furthermore, a point corresponding method is built to implement
the dynamic configuration, which can minimize the overall energy consumption and
balance energy distribution among camera nodes. Simulations show the camera net-
works can response to dynamic events quickly and last for a longer lifetime, which
demonstrate the effectiveness of our proposed methods.

7.1 Introduction

Since last decade, a significant amount of surveillance applications have been seen
in wireless sensor networks by deploying multiple smart cameras, such as business
buildings [1], high-speed railways and train stations [2], and airports and public parks
[3]. Compared to the traditional camera network, embedded smart camera incor-
porates image sensor, on-board processor, and wireless communication interface,
which make it low-cost, self-organized and easy-deployed [4]. Thus, it can facili-
tate a large-scale surveillance by eliminating wired connection constraints, releasing
communication bandwidths by on-board process, and reducing system’s overall cost.
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However, there is a fundamental problem in the surveillance application when the
targets and coverage demand are mobile and dynamic [5]. That is, how can we con-
figure a camera network to cover the regions of interest continuously and efficiently?
We call this problem as online configuration.

The first consideration for online configuration is how to consistently achieve a
satisfactory coverage qualitywith least amount of cameras. It deservesmore concerns
in a large-scale situation. One general idea that optimize the placement of cameras
is reducing the redundance of cameras’ Field of View (FoV) [6, 7]. Besides that,
another choice will be extending camera’s FoV [6]. Since a large viewing angle
is impossible due to the cost and energy constraints of smart cameras embedded in
wireless sensors [8], a feasible way is to use camera’s patrolling behavior to create the
so-called potential FoV. Here, the potential FoV means a p-coverage framework that
has been firstly presented in [9]. On the other hand, using static cameras to monitor
dynamic scene needs to pre-deploy a lot of cameras, whose sensor regions are usually
heavy overlapped with each other to adapt network’s topology to the changes of
scene. This adaption procedure is called sensor selection [10]. Consequently, pre-
deploy redundant cameras would result in unacceptable system cost especially for
large scale situation.

As a result, if we adopt mobile platforms in [11] to eliminate the shortcoming
of sensor selection, use camera’s patrol behavior to enlarge camera’s FoV, and con-
tinually optimize the configuration of network, our coverage goal could be fulfilled.
However, it will bring some new problems: (a) p-coverage framework, mobile behav-
ior and large-scale situation have imposed extra computation overhead on network
configuration, whereas smart camera’s process ability is highly restricted for its low-
cost design [12]. (b) Mobile platform is usually powered by battery, which means
energy efficiency should be carefully considered when implementing the configura-
tion. Consequently, the following two critical issues need to be considered:

• How to find an efficient algorithm which could calculate the online configuration
of a large-scale camera network in real time?

• How to consider the energy efficiency to prolong the network lifetimewhen imple-
menting the configuration of the mobile camera networks?

In this chapter, we propose a distributed coverage-probability-based heuristic
algorithm (DCPBHA) to tackle the first issue. The basic idea of DCPBHA is: online
configuration could use former optimal solutions to search the current one efficiently,
which is different from the network initial deployment. We also notice that with the
increase of problem’s complexity, collect, and process information in a centralized
mannerwould introduce extra communication and computation overhead. Therefore,
we have decentralized our algorithm tomeet the network’s scalable requirement. Fur-
thermore, DCPBHA is cluster-based so that it could take the advantage of cooperative
coverage in p-coverage framework, which results in a better coverage performance
comparing with other distributed algorithms.

To deal with the second issue, the major energy consumption of camera node is
considered by its position configuration, which means the node changes its current
position to a give place. A point corresponding method is proposed to minimize the
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overall traveled distance when configuring the network. Moreover, some nodes may
continuously changing their position in a series of configurations, which result in the
prematurely run-out of their energy. Thus, the balance distribution of node energy,
which can prolong the network lifetime, is also considered and evaluated by our
proposed method.

The remainder of this chapter is structured as follows. Section7.2 describes the
system model and two problems in mathematical form. Section7.3 describes the
DCPBHA and the point corresponding method. The performance evaluations is
shown in Sect. 7.4. We finally conclude our chapter in Sect. 7.5.

7.2 System Modeling and Problem Formulation

In this section, we will provide a probability-based optimal coverage framework for
distributed camera network. Then an energy cost function is formulated for configu-
ration. Finally, two optimization problems are presented to derive maximum camera
coverage and minimum energy cost, respectively. Before we start, some notations
used in this chapter are listed in Table7.1.

7.2.1 p-Coverage and Coverage Metric

Assume one surveillance camera patrols an target periodically, its FoV could be
extended to a potential FoV, see Fig. 7.1, from which the coverage definition is
transformed from cover or uncovered to p-covered. Here p-coverage means the
percentage of a target j is covered by a camera i in its patrol period and is denoted
by λi j , which is defined as follows:

Table 7.1 Constant and
variable notations

θi The max pan angle of camera i

φ, R The view angle and depth of patrol camera

xi , yi The position of camera i
−→ei The vector which defining the orientation

of FoV

ϕi , φi Orientation angle and patrol angle of patrolling

x j , y j The positions of target j
−→vi j The camera-object vector from camera i

to object j

βi j The angle between vi j and ei

λ j The coverage probability of target j
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Fig. 7.1 A target is covered by patrol camera’s dynamic FoV: situation I happens when φi > θi ,
otherwise is situation II

If φi > θi , λi j =

⎧
⎪⎨

⎪⎩

θi
φi

, βi j <
φi −θi

2
φi +θi −2βi j

2φi
,

φi −θi
2 ≤ βi j <

φi +θi
2

0, else

(7.1)

Else λi j =

⎧
⎪⎨

⎪⎩

1, βi j <
θi −φi

2
φi +θi −2βi j

2φi
,

θi −φi
2 ≤ βi j <

φi +θi
2

0, else

(7.2)

Moreover, when multiple cameras are used to cooperatively cover a target j , the
corresponding coverage probability for the target j can be obtained as follows:

λ j = 1 −
∏n

i=1
(1 − λi j ) (7.3)

We use U to represent the set of camera’s all possible configurations, including
both positions (xi , yi ) and patrol parameters (ϕi , φi ). We use Cn to represent the
configuration set which contains n cameras in a network. Then the camera model is:

Cn = {c1, . . . , cn}, where ci = (xi , yi , ϕi , φi ) ⊂ U (7.4)

Assume each target j has a coverage demand p j which varies from 0 to 1 to
represent the target’s important level. For a set of m targets, we ca use the following
model to represent their positions and coverage demands.

Tm = {t1, . . . , tm}, where t j = (x j , y j , p j ) (7.5)

As a result, the satisfactory rate r j for coverage demand of target t j is given as
follows:

r j =
{

λ j/p j if λ j < p j

1 if λ j ≥ p j
(7.6)
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Given Tm and Cn , the average coverage rate can be obtained as follows:

P(Cn, Tm) =
(∑m

j=1
r j

) /
m (7.7)

7.2.2 Energy Cost

To derive the energy cost of camera network configuration, we represent Cn as the
current configuration set of cameras while C∗

n is the expected configuration set. Then
a match matrix A can be defined when Cn is configured to a new status C∗

n , where
the element ai j indicates the i th camera in Cn is configured to a new status c∗

j in C∗
n .

A =
⎛

⎜
⎝

a11 . . . a1n
...

. . .
...

an1 · · · ann

⎞

⎟
⎠ (7.8)

ai j =
{
0, others
1, ci → c∗

j
,

∑

i
ai j = ∑

j
ai j = 1 (7.9)

Assume energy cost is proportional to camera’s traveled distance, it can be cal-
culated as following:

E(Cn, C∗
n , A) =

∑n

i, j
ai jdist(ci , c∗

j ) (7.10)

7.2.3 Problem Formulation

Two optimal problems,MAX-COVERAGE andMIN-ENERGY, are formulated based
on patrol camera’s configurable FoV and mobile characteristic. By solving these two
optimal problems, an optimal online configuration can be derived with less energy
and larger coverage for a set of cameras.

MAX-COVERAGE: Given a set of camera’s possible configuration U , camera’s
number n and a set of m targets Tm . One of our objectives is to find a possible
configuration set Cn such that the average coverage rate P(Cn, Tm) is maximum.
This can be stated as:

Given Tm, U, n Max P(Cn, Tm) s.t. Cn ⊂ U (7.11)

MIN-ENERGY :Given cameranetwork’s current configuration setCn and expected
configuration set C∗

n , another objective is to find the match matrix A such that
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the power consumption for implementing network configuration E(Cn, C∗
n , A) is

minimum. That is:

Given Cn, C∗
n Min E(Cn, C∗

n , A)

s.t.
∑

i ai j = ∑
j ai j = 1, ai j ∈ {0, 1} (7.12)

The MAX-COVERAGE and MIN-ENERGY are combinatorial optimization
problems and they are NP-hard [9]. The brute-force searching method such as ILP
[13] is unfeasible to solve the problem especially for the first one. In the next section,
we will introduce our distributed coverage-probability-based heuristic algorithm
(DCPBHA) to solve the first problem, and a point corresponding method to solve
the second one to prolong the network lifetime.

7.3 Approaches for Online Configuration

In this section, we first introduce a two-step event-based framework to solve the
MAX-COVERAGE problem. Then we detail the framework: a distributed coverage-
probability-based heuristic Algorithm (DCPBHA) is presented, which calculates
optimal configuration of network under dynamic scene. Moreover, a point corre-
sponding method is also proposed to solve the MIN-ENERGY problem for config-
uration implementation, in which both of the overall energy cost and the energy’s
balance distribution are considered. Finally, complexity analysis of our proposed
methods is given.

7.3.1 Event-Based Online Configuration

As Eq. (7.4) states, we have 4 parameters for every camera, which can be classified as
patrol parameters (ϕi , φi ) and position/topology parameters (xi , yi ). Notice that the
patrol parameters are easy and cheap to configure, but lots of energy are requiredwhen
moving nodes to configure its topology. Furthermore, topology change is usually
slow. Therefore, our strategy is to configure the patrol behavior in real time while
keeping network’s topology unchanged for a given period, and we will change the
topology only if it is over a given period or the network’s performance is severely
deteriorated, whatever comes first.

Consequently, we introduce a two-step event-based strategy for network’s online
configuration. We assume that with the help of additional sensors (e.g., acoustic sen-
sors), every event could be detected and reported to corresponding camera. Therefore,
every camera detects events happened in its potential FoV, and immediately configure
itself (patrol behavior) aswell as broadcasting its new status to neighbors. Every node
which receives the message from its neighbors would also determine whether to con-
figure itself (patrol behavior) and then update status.On the other hand,we implement
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the topology configuration periodically to save energy. Actually, the configuration of
network’s topology could also be triggered by other application-based events which
are not covered in our chapter, such as severely deteriorated performance of the
network. Details of this strategy could be seen in the following Algorithm 1.

Algorithm 1 Event-based DCPBHA
1: init: use [9] to set up the camera network

2: //for i th camera’s patrol configuration
3: on observe target t j changed do
4: Nhop ← 0, execute line 9-15
5: end on
6: on incoming message from neighbors do
7: update N (ci )

8: if N (ci ) changed then
9: Nhop ← Nhop+1 // trigger iteration.
10: while ‖Mk

i ‖ > ζ do
11: shift to new status ck

i through Eq. (7.14)
12: calculating shift vector Mk

i through Eq. (7.13)
13: end while
14: Configure (ϕi , φi ) using Eq. (7.17)
15: broadcast ci to its neighbors N (ci )

16: end if
17: end on

18: //for network’s topology configuration
19: on Times up or application-based trigger do
20: use line 2-17 to calculate config. set C∗ = {c∗

i }
21: Configure {(xi , yi )} (Alg. 2)
22: end on

7.3.2 Distributed Coverage-Probability-Based Heuristic
Algorithm (DCPBHA)

Mean shift is an iterative algorithm for locating themaximapoint of a density function
when giving the discrete data sampled from that function. It could be used to detect
the modes of the density function [14]. Thus, if we regard P(Cn, Tm) as a density
function, we could borrow the idea fromMean shift to find the optimal configuration
set C∗

n to maximize P(Cn, Tm).
The general form of mean-shift iteration for optimization is defined as follows:

Mk =
∑

s∈S
K (s − xk)F(s)(s − xk)

∑

s∈S
K (s − xk)F(s)

(7.13)
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xk+1 = xk + Mk, lim
k→∞ xk = x∗, (7.14)

where S denotes the sample set which contains possible solutions of x . It can be
used to calculate the shift vector Mk . k denotes the iteration times. K (•) is the kernel
function, which indicates the samples’ contribution to the shift vector and can be
used to control the sampling strategy. F(•) is the fitness function which equals to the
function we want to maximize. After the shift vector Mk is obtained, we repeatedly
move xk to next position xk+1, then it would finally converge to the optimal solution
x∗ that maximize F(x).

In our online configuration, it should notice that a centralized algorithm would
introduce extra communication and computation overhead, especially for the large-
scale situation. Thus we decentralize the general Mean-Shift algorithm to meet the
scalable requirement and communication and computation constraints. A cluster-
based strategy which would improve the coverage rate through the cooperativity
among cameras is proposed.

7.3.2.1 Cluster-Based Cooperative Coverage

We have stated in Eq. (7.3) that p-coverage framework is a cooperative coverage,
which means a target could be cooperatively covered by multiple cameras. Com-
paring to coverage definition such as k-coverage or binary coverage, cooperative
coverage could achieve better coverage performance with the same amount of cam-
eras [9]. Thus, we should take this advantage in DCPBHA. Specifically, for every
single camera i , its fitness function F(•) in Eq. (7.13) should not only reflect a single
camera’s coverage performance but also the cluster’s, in which cameras could coop-
eratewith each other to achieve a better coverage performance. The cluster for camera
i is defined as N (i). Generally, N (i) = {k}, dist(i, k) < 2R, where the threshold
2R indicates that node i and k could cooperatively cover target only if they have
possible intersection of sensing region. Then we could get F(si ) = P(N (i), Tm)

in Eq. (7.13), where P(N (i), Tm) means the coverage rate of camera cluster N (i)
monitor m targets. Thus, node i should gather neighbors’ information and maximize
cluster’s coverage performance instead of itself. The shift vector for camera i is
rewritten as:

Mk
i =

∑

si ∈Si

K (si − ck
i )P(N (i), Tm)(s j

i − ck
i )

∑

si ∈Si

K (si − ck
i )P(N (i), Tm)

, (7.15)

Moreover, as we should sample Si over whole solution space for Mean-Shift
iteration, above-mentioned strategy seems not much efficient, especially, when the
solution space is high dimension. Nevertheless, We argue that online configuration,
dislike the initial deployment, could use the former optimal solution to find the current
one locally. Inspire from the tracking idea, we incorporate local search strategy in
DCPBHA to improve its efficiency.
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7.3.2.2 Tracking-Inspired Local Search

We should notice that dynamic target or scene usually result in a continuous changing
instead of amutation, whichmeans the optimal solution in the feasible solution space
is also a continuousmotion. Therefore, we can treat online configuration as a tracking
procedure of the motion, in which just local information should be considered. For
example, if a target moves, the camera which observes this target should adjust its
configuration to optimally cover the target. As target’s velocity is constrained, its
moving distance is short with respect to the small time slot. Thus the camera only
need to change a little to adjust this movement. In other word, we could sample
a reduced solution space, to calculate the shift vector in Mean-Shift iteration. In
our DCPBHA, we achieve this kind of local sampling through using the following
truncated gaussian function as kernel function K (•) in Eq. (7.15).

K (si − ci ) =
{

e−β‖si −ci ‖22 , ‖si − ci‖2 < λ

0, others
, (7.16)

where the condition
∥
∥
∥s j

i − ci

∥
∥
∥
2

< λ means a truncation, namely, only the local

configurations (marked by λ) can be sampled and then used to calculate shift vector
Mk

i .

7.3.2.3 Convergence of DCPBHA

At last, in order to make the DCPBHA convergence in a finite time, we define a
factor which gradually hampers the changes of the node’s configuration after a given
event. That is:

c∗′
i = 1

Nhop(c∗
i − ci ) + ci

, (7.17)

where Nhop means hops from the node which capture the event to current node.
c∗

i means the expect configuration while c∗′
i is the actual adopted configuration for

camera node i . Obviously, after a given event, Nhop would consistently increase with
the time, thus limNhop→∞ c∗′

i = ci . It guarantees every node would stop changing
their configuration in a finite time.

In a word, the tracking-inspired local sampling and distribute feature can make
DCPBHA highly efficient compared to the related heuristic algorithm, which will be
discussed in Sect. 7.3.4. Moreover, cluster-based cooperating coverage also guaran-
tees DCPBHA’s better coverage performance comparing to other distributed meth-
ods, see Sect. 7.4. In Algorithm 1, we have listed the entire procedure of DCPBHA
and its event-based mechanism.
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7.3.3 MIN-ENERGY in Implementing Configuration

After obtaining the expected configuration parameters, the second problem MIN-
ENERGY should be handled when implementing the new configurations to the cam-
era network. Aswe have discussed before, node energy ismainly costed by its mobile
behavior. Therefore, the goal of our point corresponding method is to build an effec-
tive match matrix to minimize the overall traveled distance. Figure7.2 demonstrates
the point corresponding method: it firstly builds the entire possible matches, then
iteratively remove bad matches until the final one-one mapping is found. Details can
be seen in Algorithm 2.

Algorithm 2 Point corresponding in implementation
1: Defines object set O = {o1, · · · , on} from Cn(t). Define Label set L = {l1, · · · , ln} from

Cn(t + 1).
2: //init
3: Establish an initial match set A(0), each object node aligned to all labels.
4: //calculating
5: Using Eq. (7.18) to compute the similarity of each node with respect to matched pair.

e.g. ωi,l :similarity between object oi with label l j
6: Probability of match between oi and ll : pi (l|i) = ωi,l∑

k ωi,k

7: //Iteratively update match set A(k)

8: while exist nodes have more tha one label in A(k) do
9: for every match pair (oi , ll ) do
10: //o j , lh means the neighbors of oi , ll , respectively

11: q(k)
il = ∑

o j

∑
lh p(k)

j (h| j)

12: p(k+1)
i (l|i) = p(k)

i (l|i)(α + βq(k)
il )

13: end for
14: for each match probability p(k+1)

i (l|i) do

15: p(k+1)
i (l|i) = p(k+1)

i (l|i)
∑

j p(k+1)
j (l| j)

16: if p(k+1)
i (l|i) < ε then

17: Remove the match pair (oi , ll ) from A(k)

18: p(k+1)
i (l|i) = 0

19: end if
20: end for
21: end while

In initialization part (line 2–3) of Algorithm 2, we set the all elements of match
matrix equal to 1. In calculating part (line 4–6), we use the following equation
to calculate every match pair’s similarity, after that the match probability is con-
ducted.

ωi,l = 1

1 + di.l
+ α

E reserved
i − E reserved

min

Einitial
× di j

dmax
(7.18)
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Fig. 7.2 Point corresponding for implementing topology configuration

where di,l means the distance between ci (t)with cl(t +1), E reserved
i means the energy

reserved in the i th mote, E reserved
min means the least value of E reserved

i , and Einitial is
a constant which means the initial energy of nodes. Note that the first part is used
to minimize the global energy cost while the second part can balance the node’s
energy distribution to prolong the network lifetime. α is a weight to adjust two parts’
influence. Line 7–21 is the iterative part. We first discourage the weak match pairs
and encourage the strong pairs, which is based on the status of its neighbor pairs
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(line 11–14), then normalize the match probability, and remove the lower ones (line
15–21). The iteration keeps going until a one-one map is found.

7.3.4 Complexity Analysis

For theMAX-COVERAGEproblem, exhaustive-searchhas a complexity of O(Cn
|U |).

The complexity of a greedy-search method is O(n · |U |) [9]. Due to |U | � n, the
complexity of other global heuristic searchmethods can be stated as O( f (|U |)).With
the network scaling up, the size of set U increases proportionally. Our DCPBHA is
the distribute algorithm with the complexity of O(n · iters · ι · |U |), where iters is
the iteration times and ι is the sample factor. After adopting tracking-inspired local
sample strategy, the complexity can be reduced to O(n · iters · |S|), where S is the
local sample set. The size of S is restricted by ι and λ in Eq. (7.16). It is usually much
less than ι · |U |.

For the MIN-ENERGY problem, exhaustive-search has a complexity of O(n!).
Our points-correspond method could reduce it to O(n2). Given that n  |U | as well
as n  m, second problem’s time consumption could be omitted comparing to the
first problem.

7.4 Simulation

To evaluate proposed approaches, we have tested the impact of surveillance area’s
dynamic degree on the performance of DCPBHA. We also compare it with other
algorithms to highlight our method’s computation efficiency without losing coverage
quality. We further study the point corresponding method to cut the energy cost in
implementing configuration. Finally, we explore the tradeoff between global energy
cost and energy’s balance distribution among nodes to prolong network lifetime.

7.4.1 Scenario

The scenario consists of 250 target points which are randomly distributed on a
300× 300m area initially. Every target has a random probability-based coverage
demand, which is uniformly ranging from 0 to 1. We have used a greedy-search
method [9] to do the initial deployment of cameras. Totally 40 cameras are needed to
achieve a 85% coverage rate. After the network is set up, we assume that every single
target would have a random speed to move, both on x and y directions. The speed is
uniformly distributed on range [−vmax, vmax]. Suppose that a target moves, a event
will be produced and then captured by camera. Thus, a series online configuration is
conducted to adapt to the change. See Algorithm 1.
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7.4.2 Evaluation of DCPBHA

We have discussed in Sect. 7.3.4 that DCPBHA has a very low-computation com-
plexity for its local search and distribute feature. Notice that DCPBHA’s local search
is influenced by parameters λ. Thus we simulate its time consumption with different
λ, and compare it with other distributed algorithms, for example, Distribute Greedy-
basedAlgorithm (DGA) [15]. The simulation is under the condition of different num-
ber of events happened in the network, which is used to reflect the dynamic degree.
Furthermore, we also compare the average coverage rate of DCPBHA with DGA
and three other centralized algorithm: CGA—Centralized Greedy Algorithm—[15],
PSO—Particle Swarm Optimization—[16] and MSA (Mean-Shift-based heuristic
Algorithm, centralized version of DMSA—Distributed Mean-Shift-based heuristic
Algorithm). The comparison is under the condition of different vmax. In Fig. 7.3a,
we can see DCPBHA (λ = 1.13) could achieve faster speed than DGA. Especially
for the small amount of events, DCPBHAwith different λ outperform DGA in terms
of speed. In Fig. 7.3b, we can see DCPBHA’s coverage rate has slightly deteriorated
compared to its centralized versionMSA,whereasDGAhas dropped a lot fromCGA.
Actually, DCPBHA has the similar performance of PSO and better than DGA. By
Fig. 7.3a, b, we can see that larger λ could slow DCPBHA but improve its coverage
rate.

7.4.3 Evaluation of Point Corresponding Method

In Fig. 7.4, we see the energy cost of implementing 2,000 times sequential online
configuration, in which the energy is measured by the distance that a camera could
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Fig. 7.4 Energy cost of different implementation of configuration. aDirect implementation, b point
corresponding a = 0, c point corresponding a = 0.1, d average energy cost

totallymove.The comparison betweenFig. 7.4a, b shows that the point corresponding
method could dramatically reduce the energy cost. However, unbalanced distribu-
tion of nodes’ energy could prematurely exhaust some nodes, which is depicted in
Fig. 7.4b. Thus we should consider energy’s balance distribution through discussing
the effects of the second part of Eq. (7.18), which is influenced by parameter α.

Intuitively, more emphasis on the energy’s balance distribution, which is marked
by a larger value of α, will introduce extra overhead of overall energy consumption.
This can be easily seen in Fig. 7.5a. On the other hand, if we define the lifetime of
network as the persistent period before any single node has exhausted its energy,
balanced distribution of nodes’ energy could prevent the premature run-out of some
nodes’ energy, so as to prolong the network’s lifetime. Consequently, we explore the
tradeoff between global energy cost and energies balance distribution among nodes
to prolong the network lifetime in Fig. 7.5, which is with respect to different α. We
can see the optimal α approximately equals to 0.08, and network could live for more
than 1,500 configurations. The ignorance of energy’s balance distribution (α = 0)
will shorten lifetime to 1,300, while overemphasis will make the lifetime even shorter
than direct implementation.
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Fig. 7.5 The impacts ofα on the network lifetime.a Impacts on energy cost andbalance distribution,
b impacts on network lifetime

7.5 Conclusion

In this chapter, we explored the problems of online configuration for a large-scale sur-
veillance network using mobile smart cameras. A distributed coverage-probability-
based heuristic algorithm (DCPBHA) is proposed to tackle the efficiency as well as
the accuracy problem of online configuration. We also propose a point correspond-
ing method to implement these configuration, in which both of network’s overall
energy consumption and energy’s balance distribution among camera nodes are con-
sidered. Simulations show that DCPBHA is highly efficient without losing too much
accuracy, which can overcome the bottlenecks of smart camera’s computation abil-
ity for somehow. Network lifetime could also be prolonged by adopting our point
corresponding method.
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Chapter 8
Human Detection and Tracking in Healthcare
Applications Through the Use of a Network
of Sensors

Arnoldo Díaz-Ramírez, Francisco A. Bonino and Pedro Mejía-Alvarez

Abstract One of the most appealing applications of wireless sensor networks
(WSNs) is in human detection and tracking. The aim of these applications is to
detect if a person is in an area of interest, and to keep track of his location at every
instant of time. In recent years, we have seen a growing interest in the development of
proposals for the use of WSNs in detection and tracking applications for healthcare.
In the particular case of a patient suffering from dementia, it is very important to
detect him and keep track of his location at every time, to avoid that the patient may
enter to a zone of risk without supervision.When an event of interest is detected, such
as wandering, an action may be taken by sending out a notification to the caregiver
personnel. In this chapter, we review the most important proposals regarding the use
of WSNs for human detection and tracking in healthcare applications. Moreover, we
introduce a model for detection of patients suffering from dementia, based on aWSN
that uses binary sensors. The proposed model is able to detect if a patient leaves a
secure zone without supervision, and to emit alerts directed to caregivers.

8.1 Introduction

Human detection and tracking is one of the most attractive fields of application of
Wireless Sensor Networks (WSNs). The nodes of a WSN, known as motes, work
together to monitor the presence of people in the sensed area, and to keep track of
their location as they move. Since the motes have limited resources, an important
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design goal for these applications is to achieve a reliable detection of targets with
minimal resources consumption. Examples of areas where they can be used are
habitat monitoring, surveillance, intruder tracking, and healthcare.

New problems have emerged as a consequence of the fast growth of the urban pop-
ulation experienced during the past few years. Even though people now live longer,
the number of deaths caused by neurodegenerative diseases has grown considerably
[38]. Among them we have Psychiatric Illness, Dementia (of which Alzheimer’s is
the major cause), Parkinson’s disease, and Autism Spectrum disorders [34]. Unfor-
tunately, these diseases are starting earlier and affecting people under 55years.

Most of the brain disorders are chronic and incurable, and may last for years or
decades. Their economic costs are huge. In Europe, the 2010s total estimated cost
was 798 billion euros, of which the 60% was attributable to direct costs and 40% to
lost productivity [15]. For the family members that take care of patients with brain
diseases, it can represent an enormous source of emotional, practical, and financial
burden. As world’s population ages, the healthcare systems may collapse.

Among brain disorders, one of the major health problems is dementia. Dementia
describes a set of symptoms that includes loss ofmemory, mood issues, and problems
with communication and reasoning. The causes of this disease may include a number
of progressive illness that affect behavior and the ability to perform daily activities.
Two of the most common types of dementia are the Alzheimer’s disease and vascular
dementia.

Accordingly to the Alzheimer’s Disease International, 36 million people suffered
from dementia worldwide in 2010, and it is estimated that this numberwill grow to 66
million by 2030, and to 115 million by 2050. Also, nearly two-thirds of these people
live in middle and low-income countries. In addition, the global cost of dementia was
estimated at $604 billionUSD in 2010, and this cost is expected to grow in proportion
to the number of people affected by this disorder [2]. Dementia is the main cause of
dependency in the elderly, since they need constant monitoring, imposing a severe
burden to caregivers.

To address these issues, the use of WSNs to implement ubiquitous systems to
support healthcare activities has been the subject of intense research [1]. To ease
the burden on caregivers, in-home and in-hospital WSN-based applications may
provide continuous patient tracking, medical monitoring, medical data access, and
emergency notifications [43]. In the case of people with cognitive and physical dis-
abilities, the capability of continuous monitoring will increase the chance of early
detection of emergency and risk conditions [24]. In addition to the elderly and patients
with cognitive disorders, the care services for children may also benefit from these
applications.

In this chapter, we review themost important proposals regarding the use ofWSNs
for human detection and tracking in healthcare applications. Moreover, we introduce
a model for detection of patients suffering from dementia, based on a WSN that
uses binary sensors. The proposed model is able to detect if a patient leaves without
supervision a secure zone, and to emit alerts directed to caregivers.

The rest of the chapter is organized as follows. In Sect. 8.2 we briefly discuss the
state of the art of the detection and tracking proposals that use networks of sensors.
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Section8.3 introduces the related work regarding human detection and tracking for
healthcare applications. In Sect. 8.4, the proposed model for detection of patients
suffering from dementia is presented, and in Sect. 8.5 this model is evaluated and the
results are discussed. Finally, Sect. 8.6 is for conclusions.

8.2 Target Tracking Based on the Use of a WSN

Target tracking using wireless sensor networks has been the subject of intensive
research in the last decade [9]. AWSN tracking application must periodically collect
sensed data and use it to reconstruct the overall status of the monitored area using
data fusion techniques. The centralized approach is the most commonly used in
target tracking algorithms. In it, when the motes detect an event, they record it, and
rely on a routing protocol to send the relevant and preprocessed information toward
a base station or sink. The sink, which is a device with more resources than the
motes, collects the data received from the sensor nodes, processes it, and takes the
appropriate actions.

The algorithms designed to be used in WSN tracking applications are targeted
for the network and application layers, and may assume a static or a mobile sink
[8]. Regarding the application layer, two approaches have been used: coarse-grained
and fine-grained [25]. Coarse-grained localization uses minimal information, which
can include binary proximity [22] or near-far information [16]. In contrast, fine-
grained approaches use more detailed information and are based on different types
of measurements, such as the received signal strength (RSS) [37], angle of arrival
(AOA) [14, 37], time of arrival (TOA) [35], time difference of arrival (TDOA) [36],
extended Kalman filters (EKF) [30], and hybrid approaches [23, 47].

Concerning coarse-grained localization proposals, in [22] Kim et al. proposed a
target tracking model that relies on the use of binary sensors. Such sensors provide
only 1-bit information regarding the presence or absence of a target in the sensed
area. Past and current sensor outputs are used to determine the trajectory of the target
during small intervals. This trajectory is approximated by a straight line segment. In
[41], Shrivastava et al. analyzed fundamental performance limits of target tracking
using binary proximity sensors, and determined the accuracy with which a target’s
trajectory can be tracked. They introduced a geometric algorithm to derive linear
paths that approximate the trajectory of the target, and they extended their proposal
formultiple target tracking in [42]. TheDynamical Object Tracking (DOT) algorithm
was introduced by Tsaia et al. [44]. It assumes a mobile sink since it was devised
to guide a mobile user to chase a moving target. The motes that detect an intruder
record the event. When the mobile user requires the target location, it sends queries
that are replied by thosemotes that have tracking information, guiding themobile user
until he catches the target. The algorithm uses the knowledge of spatial neighborhood
defined on a planar graph, where the face neighbors are identified by aGabriel Graph.
Bugallo et al. [7] addressed the problem of multiple target tracking using particle
filtering. Under this approach, the algorithms need a very large number of particles
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when the sensed area is moderately large. To face this problem, they partition the
state space of the system into different subspaces, and run a separate particle filter
for each subspace.

In [12], Djuric et al. proposed the use of the auxiliary particle filtering (AFP) and
the cost-reference particle filter (CRPF) algorithms for tracking a single target using
data from binary sensors. The adoptedmodel for sensor measurements was the signal
strength. Vu and Zheng addressed the problem of target detection and tracking using
binary proximity sensors with location uncertainty in [45]. The uncertainty was
modeled as disks of possibly different radius around the nominal positions. They
introduced the concept of order-k max Voronoi Diagrams (VD) that tessellates the
area of interest into regions that are closer to k sensors in the worst case, to determine
the minimum sensing radius needed to ensure worst-case k-coverage. Their work
was extended in [46]. Le and Kaplan [27], proposed a probability hypothesis density
(PHD) filter for multi-target tracking using proximity sensors. This method was able
to estimate the number of targets and localize them regardless the target separation
for sufficient sensor density.

Concerning the fine-grained detection approach, Arora et al. [4] introduced a sur-
veillance system using inexpensive sensor nodes. In their model, intrusion data are
processed locally at each node, and if an anomaly situation is detected, data are shared
with neighboring nodes, and communicated to a gateway with wide area networking
capability. The model considers three user requirements: target detection, classifica-
tion, and tracking. The user may specify the QoS parameters that affect how well the
system detects, classifies, and tracks targets. Sheng andHu proposed a target location
method using microphones in [40]. This method is based on a maximum likelihood
estimation of both the source locations and corresponding acoustic energy readings.
Since this method uses nonlinear optimization, two complementary methods were
proposed to solve this nonlinear optimization problem.

He et al. proposed in [17] a monitoring system for use in military applications,
such as a surveillance system, that is able to operate for long periods of time. Using
magnetic sensors, the system allows a group of cooperating motes to detect and track
the positions of moving vehicles. It is able to tradeoff between energy-awareness and
surveillance performance by adaptively adjusting the sensitivity of the system. Based
on this work, He et al. later developed VigilNet [18], a large-scale real-time WSN
system that allows detecting, tracking, and classifying targets within a reasonable
period of time, while making efficient use of energy. VigilNet is a system designed
for spontaneous military operations in remote areas, where events of interest happen
infrequently and with a short duration, such as intruder-related events. The system is
organized into a layered architecture comprised of higher-level services and lower-
level components. The latter includes time synchronization, localization, and routing,
and forms the basis for implementing the higher-level services, such as aggregation
and power management.

In [30], Lin et al. introduced an EKF-based distributed adaptive multisensor
scheduling scheme for energy efficiency, to improve tracking accuracy. Since more
sensors can achieve better tracking accuracy, the proposed scheduling scheme calcu-
lates the optimal sampling interval, selects the nodes thatwill conform the cluster, and
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designates one of them as the cluster coordinator. The sensor scheduling problem is
formulated as an optimization problem and solved by a sequential three-step heuristic
algorithm. Wang et al. proposed in [47] an approach for target tracking for WSN by
combining maximum likelihood estimation and Kalman filtering using the distance
measurement. The maximum likelihood estimator is used for pre-localization of the
target and measurement conversion. The converted measurement and its associated
noise statistics are then used in a standard Kalman filter for recursive update of the
target state.

A method for RF tomographic tracking of a single target using a wireless sen-
sor network was introduced by Li et al. [29]. RF tomographic imaging involves an
image reconstruction step to estimate target locations. To avoid imaging processing,
the proposed method uses a particle filtering (Sequential Monte Carlo) approach.
In order to reduce the computational complexity of the algorithm, they introduced
a new measurement model that does not pixelize the region of interest. In [49],
Xu et al. addressed the problem of mobile target tracking based on a TOA measure-
ment model. The signals emitted by the mobile target are collected by the sensor
nodes, which records the signal’s time of arrival (TOA). A mobile sensor also emits
signals to allow the motes to collect the needed information to determine its location.
This mobile sensor can also measure signal from the target. In the data fusion center,
a mobile sensor controller directs the mobile sensor toward the target location. To
track a moving target with a mobile sensor, the data fusion center must estimate the
locations of both the target and the mobile sensor. The proposed model accounts for
the measurement noise due to multipath propagation and sensing error. It uses a min-
max approximation approach to estimate the targets location that can be efficiently
solved by means of semidefinite programming (SDP) relaxation.

8.3 Human Detection and Tracking for Healthcare
Applications

As the world’s population ages, there has been a great interest in the development of
ambient intelligence solutions to assist the elderly, particularly, those suffering from
the Alzheimer’s disease and related problems [24]. We can categorize the proposals
regarding human detection and tracking for healthcare as invasive and non-invasive.
In the former, the detection and tracking model considers the use of devices attached
to the target’s body. In contrast, in non-invasive models, the use of these devices is
not required.

Regarding invasive proposals, theAssisted Living Monitoring and Analysis System
(ALMAS), introduced in [33] by Marques et al., extended the concepts and ideas
of the CodeBlue project [31] by incorporating RFID technology, and employing
sophisticated video analysis algorithms for patient location, tracking, andmonitoring.
Wireless transceivers are located throughout the facility (e.g., a geriatric residence),
which communicate with the RFID tags and wearable units worn by the patients to
track and locate them. The video analysis software examines the information that
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is continuously recorded by the video cameras, in order to detect if there is any
anomalous situation, such as when a patient leaves his room toward an unauthorized
area, or if a patient has fallen down.

In [19], the location tracking Ultra Badge system was proposed to be used in a
hospital setting, with the aim of detecting falls and wandering. The system was com-
posed of two subsystems: an ultrasonic radar subsystem, and a wheelchair locator
subsystem. The first one monitors the human head’s position on and around the bed,
in order to detect falls. The second one is used to detect wandering, assuming that
the patient uses a wheelchair. The system consists of embedded ultrasonic receivers,
embedded/wireless ultrasonic emitters (named Ultra Badges), and a WSN that con-
nects receivers and emitters. In [21], Intille et al. introduced PlaceLab, which is part
of the House_n project, and share some of their experiences in regard to construct-
ing and operating the living laboratory. It included the use of hundreds of sensors
deployed in a live in laboratory, in order to research the use of ubiquitous computer
technologies in home settings. The laboratory was designed to support the collec-
tion of rich, multimodal sensor datasets of domestic activity, which are intended
to be shared among researchers working on context-aware ubiquitous computing
technology, preventive healthcare, energy conservation, and education.

Bardram et al. proposed in [6] a set of context-awareness applications and tech-
nologies to be used in hospitals. The proposed system consisted, among other com-
ponents, of an indoor location tracking system that uses the Bluetooth technology,
and a context-aware mobile phone application. The location and tracking systemwas
designed to locate staff, patients, and equipment, using smartphones and Bluetooth
tags.

AlarmNet, introduced in [48] byWood et al., is a system for assisted living and res-
identialmonitoringwhich uses aWSN.AlamNet consists ofwearable body networks,
emplaced wireless sensors, user interfaces, and back-end processing elements. The
body network includes sensors for heart rate, oxygen saturation, and ECG. Emplaced
sensors are deployed in living spaces to sense environmental quality, such as tempera-
ture, dust, and light, or resident activities.Motion and tripwire sensors enable location
tracking. However, it is not explained how the location and tracking processes are
conducted. In [10], Corchado et al. proposedGerAmi, an intelligent environment that
integrates multiagent systems, mobile devices, RFID bracelets, and Wi-Fi technolo-
gies, to facilitate the management and control of geriatric residences. To track the
location of a patient, the signal emitted from the bracelets is used by the ID readers
installed on the doors. The readers forward the data to a controller, which sends a
notification to a system agent that manages and forwards the information to a mobile
device, where the medical staff can identify the patient’s location.

An indoor system for patient tracking and monitoring system was proposed in
[13]. The system is capable of determining the location of a patient, and monitoring
motion activity. In this proposal, patients must carry a mobile node comprised of a
RF transceiver and a 3-axis accelerometer. A localization WSN is used, consisting
of static nodes, placed at known positions throughout a house or geriatric residence.
The mobile nodes transmit a beacon message every 50ms. The static nodes that
receive the message will forward it to the sink, where a localization module runs.
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It uses the number of the received beacon messages per static node that has the same
sequence number to determine which static nodes are in proximity to the mobile
node. Delaunay triangles are used to create a grid of possible regions where the target
could be located. If three static nodes are found to be in proximity, the corresponding
Delaunay triangle is used to determine the position of the patient. A tracking system
for the elderly is proposed by Yan et al. [50]. It is based on a mixed localization
algorithm that relies on sensors attached to the wrist of the patients, and the received
signal indicator (RSI). The system is able to track the location of a patient regardless
of whether or not he is wearing the sensor node.

Armaini et al. proposed in [3] a tracking system based on the combination of
wearable sensors and a video analysis module. The wearable sensor is a mobile
node that is fixed on the belt of the patient. It embeds an Inertial Navigation System
(INS) consisting of gyroscopes, accelerometers, and a compass. Data is fused using
an Extended Kalman Filtering (EKF). Once the wearable node detects the patient’s
location, the corresponding video camera is activated to confirm the presence of the
patient in the predicted area.

Concerning non-invasive proposals, Marco et al. introduced ZUPS in [32], a Zig-
Bee and ultrasound-based positioning system. ZUPS was intended to emit an alarm
when a risky situation is detected, such as wandering. The system uses ZigBee
(radio-frequency) and ultra-sound to measure distances between tags carried by the
patients, and beacons with known locations. Additionally, an accelerometer and a
button are integrated into the devices worn by the patients, to detect falls. A similar
approach was used in [20], where Huang et al. proposed a patient alert system for
fall management. It is a ZigBee-based location awareness and fall detection system
that provides immediate position information to the caregivers as soon as it detects
that a patient fell. Redondi et al. proposed LAURA, the Localization and Ubiquitous
Monitoring of Patients for Healthcare Support in [39], which is an integrated system
based on wireless sensor networks for patient monitoring, localization, and tracking.
In their paper, the authors discuss the two proposed approaches of the localization
and tracking engine. The first one is a centralized implementation, where localization
is executed centrally using the information collected locally. The second approach
is a distributed solution, where the localization is performed at the mobile nodes
and the outcome is delivered to the central controller. The personal localization and
tracking subsystem (PLTS) uses a localization algorithm based on the received signal
strength and the fixed distance between nodes.

In [26], Laoudias et al. discuss the proposal of an architecture which combines
the sensor health state estimation together with fault tolerant localization algorithms,
to be used in a binary WSN. The proposed architecture has three main components.
The Sensor State Estimation component determines the health state of each sensor.
The Localization component uses the information generated by the previous module,
and ignores any information coming fromwhat are thought as faulty sensors. Finally,
the target location estimate is sent to the Smoothing component, which filters the
current location estimate using a particle filter.

As it can be observed, most of the proposals described here require the use of
physical devices attached to the person that is being monitored or tracked, such as
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RFID bracelets. However, patients with dementia tend to reject noticeable gadgets.
For this kind of patients, we need a device-free passive localization [51], which is
able to detect and track persons that do not carry any device.

8.4 Architecture of the Proposed System

Healthcare applications may benefit greatly by the use of networks of sensors. For
instance, since it is not necessary the existence of a previous infrastructure (e.g.,
cables) to deploy it, the system may have a high degree of flexibility. Additionally,
they provide the possibility of implementing homogeneous systems by integrating
almost any sensor to the nodes constituting the WSN. This means that using only
the WSN it is possible to detect a large number of events. Also, they allow the
development of ambient intelligence healthcare solutions through the integration of
wireless sensor networkswith pervasive computing, fusion information, and artificial
intelligence techniques.

The aim of the proposed model is to support the care process of patients with
dementia. It is an extension of themodel introduced in [11]. In particular, the objective
of the extendedmodel is to add robustness to the former one, when detecting a patient
leaving a safe location without supervision. The specific objective is to identify if a
patient leaves a room, having arrived there by himself or by someone else, such as a
nurse.

As discussed previously, some proposals that have been published to date also
consider the use of ubiquitous computing to implement healthcare monitoring and
tracking applications. However, most of them include the use of devices attached
to the person that is being monitored, and that are hardly accepted by dementia
patients. Our purpose has been to investigate how to monitor dementia patients using
non-invasive techniques, as the one used in the system discussed in [51] for patient
location, or the one discussed in [5] for falls detection. However, unlike these propos-
als that use the strength of the signal detected by the sensors, we wanted to develop
a simpler solution using inexpensive binary sensors. In addition, the use of binary
sensors reduces the processing overhead, allowing a faster system response. In our
model, the sensors produce binary outputs without the need of filter them to achieve
binary signals.

Non-invasive techniques are helpful when it is not possible or convenient use inva-
sivemethods. Additionally, the proposedmodel can be used together with an invasive
model to improve the system’s performance. It can be used also as a redundant sys-
tem to detect events of interest, in case that the main systems fails. For instance, if
the patient removed the RFID bracelet attached to him.

In order to select the most suitable sensors to successfully detect if a patient
leaves a room, and taking into consideration the results published in the literature, we
conducted several tests using different types of sensors. The choice was made based
on the accuracy in detecting the changes in the environment, and their relationship
with the amount of processing to be given to the output received from the sensor.
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Fig. 8.1 System deployment

Two of the sensors tested showed a very good performance: passive infrared sensors,
and magnetometers.

Passive InfraRed (PIR) sensorsmeasure the infrared light emanating from objects.
They are cheap sensors that detect the presence of heat from an object or body
nearby. They are also capable of detecting the movement of people when a temper-
ature change occurs. Motion detectors usually use PIR sensors. On the other hand,
magnetometers are sensors that detect the change of direction of a magnetic field.
When placed on the doors of the rooms, it is possible to know if they were opened
or closed. However, we require that the system would be able to decide if the door
was opened because someone entered the room, or opened for a person to leave the
room. For this, we propose an algorithm that uses information fusion techniques to
combine the values measured by PIRs and magnetometers, to determine whether a
person enters a room (I ), or leaves a room (O).

Because there are many scenarios to consider for the detection of wander, we
propose another algorithm that combines the measured values of the sensors, and the
events I and O , to determine if a patient leaves a room without authorization. The
system deployment is shown in Fig. 8.1.

8.4.1 Non-invasive Tracking Algorithms

In order to be able to design a WSN-based algorithm to detect when a patient enters
or leaves a room, it was important to understand the relationship between the data
collected by the sensors. To achieve this, we conducted a set of experiments using
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the deployment shown in Fig. 8.1. As it can be observed, a node equipped with a
magnetometer (M) was placed on the door of the room, whereas two nodes using a
PIR sensorwere placed on awall inside the room (P1), and on top of door (P2), outside
the room, respectively. It is important to note that the deployment of the sensors is
important in our model. The PIR sensor placed on the wall (P1) must detect any event
around the room’s door. The second PIR (P2) must sense any movement close to the
door, outside the room. The magnetometer must be able to detect any movement of
the door.

The sensors were activated when an event of interest took place (e.g., motion is
detected in the room). Afterward, they periodically sensed the environment until no
activity was detected. The data collected by the sensors was sent to the sink.

An important observation from the analysis of the data obtained from the exper-
iments, is that it is possible to differentiate the event of a person entering the room
(I ), from the event of a person leaving the room (O), using the values recorded
from the sensors. To illustrate this, Fig. 8.2 shows the data collected from the sen-
sors when a person enters the room, and later when a person leaves the room. We
can observe that in the former case, we first got data from the magnetometer, fol-
lowed by data received from both M and P1 sensors, and finally data from the P1
sensor. In contrast, in the later case we first received data from the P1 sensor, fol-
lowed by data received from both M and P1 sensors, and finally we received data
from the magnetometer, and also from the P1 sensor if a person stays in the room.
Using the above relationships between the values measured by the sensors as a func-
tion of the time, it was possible to design an algorithm based on information fusion
techniques, to determine the type of event occurred (i.e., I or O).

In our model, St represents a sample recorded by a sensor node, where t is the
time when the event was detected. S ∈ (M, P), where M is a sample recorder by the

Fig. 8.2 Values measured by the sensor when a person enters and leaves a room
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magnetometer, and P by the PIR sensor on the wall of the room, which are the only
sensors needed to detect either I and O events. The events of interest are: I , a person
entering the room, and O , a person leaving the room. For instance, considering the
behavior of an I event, and assuming, without loss of generality, that the event starts
at t = 1, and that the sampling period T is 1 second, the event can be represented as:

I = (M1, M2, . . . , Mi , Pj , Mi+1, Pj+1, . . . , Mk, Pk+1, . . . , Pn−1, Pn).

As it can be observed, the event takes place in the interval (1, n). The magne-
tometer detects activity in the interval (1, k), whereas the PIR sensor detects it in
the interval ( j, n). During the interval (i, k), we have that the time elapsed between
two consecutive samples, named t , satisfies the relationship 0 ≤ t ≤ T . We call
intersection the interval (i, k). The samples St are stored in a sliding window W of
size ws.

The characteristics of the patients can vary depending on the age, type of disease,
among other things. Also, the conditions of the rooms vary considerably in size,
distribution, weight, and orientation of the doors, just to name a few. Because of
this reason, the proposed model requires a training stage, to determine the values of
parameters of interest of the events that are used by the algorithm. The parameters
of interest are: the mean and standard deviation of the number of samples of the
I and O events, named S̄I , σSI , S̄O , and σSO , respectively. Also, the mean and
standard deviation of the number of samples collected by the magnetometer before
the intersection in an I event, M̄I and σMI , respectively; the mean and standard
deviation of the number of samples collected by the PIR sensor after the intersection
in an I event, P̄I andσPI , respectively; themean and standard deviation of the number
of samples collected by the PIR sensor before the intersection in a O event, P̄O and
σPO , respectively; and the mean and standard deviation of the number of samples
collected by the magnetometer sensor after the intersection in a O event, M̄O and
σMO , respectively. Finally, the threshold values T MI , T MO , T PI , and T Po, which
are of the maximum number of samples recorded by the magnetometer and PIR
sensors, and their respective standard deviations, before and after an intersection, for
both events. To obtain these parameters, data is collected in the training stage, from
the I and O events, for each patient and a room.

When the nodes discover activity, they send the collected data to the sink, where
each sample is stored in the sliding window. The algorithm detects the beginning of
an event when the time elapsed between two consecutive samples is equal or less
than T . The event finishes when the previous condition is not satisfied, or when the
number of samples is large enough to conclude that an event of interest has taken
place. To determine if an event I or O has taken place, the following expression is
used,

E = 1 −
∣
∣N S − S̄E

∣
∣

λ · σSE

, (8.1)
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where N S is the number of samples of the event, and λ is a constant. If E ≥ 0, the
algorithm concludes that an event has occurred.

The N S parameter is the sumof the number of samples before, during and after the
intersection. In the former and latter cases, if the number of samples are greater than
a threshold, then the threshold value is used. The mean and the standard deviation of
the number of samples can be used as a threshold value. The algorithm is described
in Fig. 8.3. It can be observed that the function event() is used to determine the
type of event, which can be I , or O .

For instance, consider the case of the I event discussed previously. The algorithm
first receives the data sent by the magnetometer collected in the interval (1, i), fol-
lowed by an intersection (data sent by both nodes) collected in the interval ( j, k),
and finally the data sent by the PIR sensor, collected in the interval (k + 1, n). Then,
it calculates the following, as shown in the algorithm of Fig. 8.3:

• b = ∑i
t=1 Mt if b ≤ M̄I + σMI ; b = M̄I + σMI otherwise;

• m = ∑k
t= j St ;

• l = ∑n
t=k+1 Pt if l ≤ P̄I + σPI ; l = P̄I + σPI otherwise; and• N S = b + m + l.

To determine if an I event has occurred, the algorithm evaluates the following expres-
sion:

EI = 1 −
∣
∣N S − S̄I

∣
∣

λ · σSI

. (8.2)

Finally, if EI ≥ 0, the algorithm concludes that an I event occurred.
The second algorithm uses the temporal relationship maintained by the order in

which the sensors are activated, when someone leaves a room without supervision.
Through various experiments, it was observed that this is the occurrence of events,
or a change of states in the environment in a particular order. For instance, when a
patient leaves a room, he first performs an activity within it (such as walking), later
the door is opened, and finally, there is no activity in the room. We assume that only
authorized individuals can enter the room through a security mechanism. The state
machine (SM) shown in Fig. 8.4 depicts the proposed algorithm.

The SM has five states representing changes in the patient’s environment. State
0 represents that the room is empty, while State 4 represents a patient left the room
without supervision. States 1, 2, and 3 are transitional states, and represent: one
or two people entered the room, another person entered the room with the patient
inside, and that a person has left the room leaving inside the patient, respectively.
State changes may occur as a consequence of the events produced by the sensor
measurements, evaluated as a function of time. The events that cause state changes
are: I , representing an input is detected; O , representing that an output was detected;
P1, which means that the PIR sensor placed on the wall detects activity in the room;
N1, which represents a period of inactivity inside the room, P2, which means that
the PIR sensor placed on the door detects activity outside the room; and finally N2,
which represents no activity is detected outside the room. In our former model [11],
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/* Input: St , samples collected by sensors,
conformed of a timestamp (ts) and node id. */

/* Output: e, type of event (I, O, P, or N) */
while (true) do

i=b=m=l=0;
b node id = l node id = NULL;
w[i]=St ;
i++;
w[i]=St ;
while ( w[i].ts - w[i-1].ts ≤T ) do

b node id = w[i].id;
b = 2;
i++;
w[i]=St ;
while [ ( w[i].ts - w[i-1].ts ≤T ) and

(w[i].id == w[i-1].id) ] do
b++;
i++;
w[i]=St ;

m = 1;
i++;
w[i]=St ;
while [ ( w[i].ts - w[i-1].ts ≤T ) and
!( w[i].id == w[i-1].id == w[i-2].id ) ] do
if(w[i].lastElement.id == P2)

m++;
i++;
w[i]=St ;

l = 1;
i++;
w[i]=St ;
if(b node id == INPUT)

b threshold = b thresholdInput;
l threshold = l thresholdInput;

else
b threshold = b thresholdOutput;
l threshold = l thresholdOutput;

while [ ( w[i].ts - w[i-1].ts ≤T ) and
(l ≤l threshold) ] do

l node id = w[i].id;
l++;
i++;
w[i]=St ;

if (b ¿ b threshold)
b = l threshold;

e = event(b, m, l, b node id, l node id); // using Eqn. 1
send event(e);

i++;
w[i]=St ;

Fig. 8.3 Algorithm 1
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Fig. 8.4 State machine

it was difficult to detect the transition fromState1 to State2, and fromState2 to State0.
The inclusion of the PIR outside the room’s door enables a more accurate detection
of these cases. Additionally, the model is able to detect a patient leaving the room
even when there are people standing or moving outside the patient’s room.

We restricted our model to the scenarios described above since they represent
common situations in geriatric residences, or at home, where family members take
care of a person affected by the Alzheimer’s disease. In these cases, the patient is
under constant supervision, with the exception of special situations. For instance,
when the patient goes to sleep, or when the caregiver is busy preparing meal. Our
model is aimed to be used in these and similar cases. Otherwise, the system can be
deactivated. It is important to note that our model is able to distinguish whether the
patient or caregivers are leaving the room.

On the other hand, if the proposed system is deployed to be used in different
scenarios, some minor modifications to the proposed algorithm are required, and
perhaps it would be necessary the addition of more sensors. It is important to note
that our purpose has been to show that is possible to define a non-invasive method
to detect events of interest, using inexpensive binary sensors.

8.5 Evaluation

The proposed algorithms were evaluated using a room with only one access, and
simulating various activity scenarios. We implemented a prototype of the proposed
model and conducted a series of experiments to evaluate it.
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To implement the prototype, the nodes used were equipped with two types of
sensors. One was the PIR sensor, which can detect people’s movement through the
energy they emit. The PIR sensor used has a maximum radial detection distance
(straight ahead) of 7m, and a detection angle of 100◦. The second PIR sensor was
placed on the outside wall of the room, above the door. The other sensor used was
the magnetometer, which detects the change in the magnetic field direction. This
sensor is used in conjunction with a magnet integrated in the door, to detect when it
is opened.

The WSN was composed of four nodes. Three of them used an IRIS hardware
platform, which was programmed using the nesC language and the TinyOS operat-
ing system [28]. These nodes have a MTS300CA board, one of them containing a
magnetometer and two of them containing PIR sensors. The third node was used as
a sink, and was connected to a personal computer via an interface board MIB520.

We used a DYP-ME003 model PIR sensor. It is a digital sensor that has a true
output when someone enters to its detection area. The PIR sensor output depends on
the electric current in its power source. This implies that, when the magnitude of the
current decreases, so it does the magnitude of the high level output of the PIR sensor.

To increase the lifetime of the PIR sensor node, and for a more certainty in
its measurements, the PIR sensor was connected to an LM741C model operational
amplifier (Opamp), which is connected using a magnitude comparator configuration.
The amplifier output was connected to a MDA300CA board. This connection is
illustrated in Fig. 8.5. Note that the values of resistors connected have 10 K�, and
Vcc = 5VDC.

We conducted a set of controlled experiments to evaluate our first algorithm.
The goal of this set of experiments was to corroborate whether the algorithm was
able to detect a person entering and leaving the room. From the training stage, we
obtained the following parameters values: S̄I = 18.45, σSI = 1.67, S̄O = 21.9, and

Fig. 8.5 PIR sensor connected to aMDA300CA board



186 A. Díaz-Ramírez et al.

Table 8.1 Results obtained
from the evaluation of event I

λ Detected False negatives

1 13 7

1.1 13 7

1.2 14 6

1.3 14 6

1.4 14 6

1.5 15 5

1.6 15 5

1.7 17 3

1.8 17 3

1.9 18 2

2 18 2

Table 8.2 Results obtained
from the evaluation of event O

λ Detected False negatives

1 13 7

1.1 13 7

1.2 13 7

1.3 16 4

1.4 16 4

1.5 16 4

1.6 18 2

1.7 18 2

1.8 18 2

1.9 19 1

2 19 1

σSO = 1.12.We performed 20 experiments of a person entering a room, and 20 more
leaving the room, in the training process. The results of the algorithms evaluation for
the events I and O are shown in Tables8.1 and 8.2, respectively. It can be observed
that the algorithm showed a good performance for λ ≥ 1.8.

Next, we wanted to evaluate if our model was able to detect when a patient leaves
a room without supervision. In order to do that, we conducted series of controlled
experiments using diverse scenarios, recreating real situations of patients in a health-
care residence. The scenarios that we evaluated were: (a) the patient arrives alone to
the room, and leaves the room by himself; (b) the patient is accompanied to the room
and leaves it alone; (c) the patient enters the room alone, and leaves it with the help
of an authorized person; and (d) the patient arrives and leaves the room accompanied
by a person. We conducted 20 experiments of each scenario. In these experiments,
we used λ = 2. Table8.3 shows the obtained results from the experiments. As we
can observe, the proposed algorithm showed a very good rate of detection of the
events of interest. As we can observe from Table8.3, scenario d showed the worst
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Table 8.3 Evaluation of the
second algorithm

Scenario Rate of detection (%)

a 90

b 80

c 80

d 70

detection rate. This is because the parameters of the system were obtained from
the training stage considering only one person, and in this scenario two people are
involved: the patient and the caregiver. A change in the parameters (e.g., a larger λ)
may provide a better detection rate.

8.6 Conclusions

The fast urban population growth and the aging of the world population are impos-
ing a heavy burden in the government’s healthcare and financial systems. One of
the major health problems of the elderly is dementia. Dementia is the main cause
of dependency in older people, since they need constant supervision. Alzheimer’s
disease and vascular dementia are the most common types of dementia. The use of
sensors of networks to assist the elderly has been a subject of intensive research
in recent years. In this chapter, we reviewed some of the most important proposals
regarding the use of wireless sensor networks for target tracking. Also, we discussed
some of the proposals published to date about human detection and tracking for
healthcare applications.

We introduced a pervasive computing model, based on the use of a WSN, to
support the activities of assistance and monitoring of patients with dementia. Using
high-availability and low-cost binary sensors, the proposed model has been designed
to detect in real-time when the patient enters a secure zone, and to emit alerts if he
leaves it. Particularly, we proposed two algorithms to determine if a patient leaves a
roomwithout supervision, assuming the use of aWSNequippedwith passive infrared
sensors and magnetometers. The evaluation of the proposed algorithms showed that
they are able to detect efficiently when a patient leaves a room without supervision.
In addition, the proposed model can detect events in more complex scenarios with
minor modifications and the addition of more sensors.
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Chapter 9
Automatic Players Detection and Tracking
in Multi-camera Tennis Videos

Rafael Martín and José M. Martínez

Abstract This chapter presents a multi-camera system designed to detect and track
players in individual sports. This system requires an initial configuration comprised
of scene background, field distances, and the correspondence between some points
from each camera and those points in the field. With the resulting positions of each
player generated by the system, individual players statistics are extracted allowing
performance analytics for each player. This system can be used in any sport in which
each player has a unique own space, not sharedwith the other players. Some examples
of these sports are tennis, badminton or paddle tennis.

9.1 Introduction

The analysis of sports videos has been one of the research fields that has grown
further due to the high demand of the public. Specifically, tennis is one of the most
popular sports in most countries. It is played by millions of players and is also a
worldwide broadcasted sport. Analysis systems of sports videos are interesting not
only for the public but also for the players and coaches as these systems allow them
to improve their training, skills, and performance during training and matches. Basic
algorithmic techniques and their applications are described in [19]where an overview
of the research focused on sports video is given. In that overview, sports video
research is classified in two categories: indexing and retrieval systems (based on high-
level semantic queries) and augmented reality presentation (to present additional
information and to provide new viewing experiences to the users).

Moreover, depending on the type of sports videos, another classification can
be considered differentiating edited for broadcast [6, 13, 20, 22] and non edited
mono- [2, 8, 21] or multi-camera [9]. The broadcast sequences include game scenes,
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repetition, and viewpoint changes. The non-edited sequences can be recorded by
mobile cameras.

Some examples of works centered on individual sports are [8] (player detection
and tracking), [2] (tennis strokes detection) and [21, 22] (ball detection and tracking).

For team sports the problem is harder as there are multiple players with half
of them wearing the same clothes. Some application examples of processing these
kinds of sports are those presented in [7] (virtual view synthesis), [10] (ball-player
interactions) or [17] (players performance and skills).

The system presented in this chapter is centered on individual sports. With indi-
vidual sports we refer to sports in which each player has his own area of the field
and no other player can enter in the area of the tracked player.

The remainder of the chapter is structured as follows: after the introduction in
Sect. 9.1, Sect. 9.2 describes the designed system; Sect. 9.3 presents the adjustments,
testing, and results of the implementation of the system, including the description of
the used dataset; Sect. 9.4 shows the developed GUI of the system; finally, Sect. 9.5
includes the conclusions and some lines of future work.

9.2 Video Analysis System

9.2.1 Canonical System

The canonical system for detecting and tracking players in a field can be decom-
posed into several main blocks, as depicted in Fig. 9.1. The different techniques and
associated algorithms that are key for any sports video analysis system are described
below.

Background Extraction is a very common method used for moving players seg-
mentation which consists of differentiating between the moving objects (generally
players and ball) and the background model. The background model is generally
obtained from an empty image of the field (if it is available) or from a video sequence
without static players. Some of the main problems in background extraction in sports

Fig. 9.1 Block diagram of a general sport system
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are the same than for generic computer vision approaches: illumination changes,
shadow removal, and dynamic background components.

Foreground Analysis and Blob Detection is based on associating the pixels of
the foreground. The goal is to adjust the contour of the player’s blob, separating
(if possible) overlapping players. The correct determination of the blob’s pixels is
important for making correct decisions during the tracking.

The teams’ uniform information is used for the Team Identification of the blobs
and allows differentiating between different teams’ players, goalkeepers, and refer-
ees. Generally, a player can be modeled as a group of regions, each region having
some predominant colors. This block is optional and not all systems use it. This is,
especially, useful in team sports to help to discriminate between different players.

When the position of each player is detected, the next objective is to track the
player to know where the player is at each moment. The objective of the Players
Tracking block is to associate target objects in consecutive video frames.

The method for ball tracking is similar to the methods used for player tracking,
but ball tracking is more difficult than player tracking as automatic detection of the
ball is harder due to its reduced dimensions in the image. If a player has the ball, its
tracking is difficult because the ball is frequently occluded.

Finally, the Trajectory Association and Fusion block fuses the information
obtained from different sources of information (usually cameras). The reconstruc-
tion of global trajectories fusing multiple points of view requires the combination of
multiple information sources of the same object as well as the fusion of trajectory
fragments captured by individual sensors. The trajectory data from individual sen-
sors may contain errors and inaccuracies such as bounding box distortion caused by
noise, object exits and entrances from the visual field, or occlusions.

9.2.2 System Overview

As the system has been designed for tracking one player, two individual instances of
the system are necessary for a game. That is, there will be two parallel instances of
the system for a game, with three cameras for each instance. The videos used from
the content set are those covering only the areas of each player, without using global
views.

The system block diagram is shown in Fig. 9.2. Each one of the blocks is described
below.

The Initialization block is executed first. It generates the field representation (using
the field measurements), the backgrounds (obtained from an initial empty image,
or generated from the first frames of the game or players warming up) and the
homography reference points (selected manually from each one of the cameras and
indicating its correspondence in the top view resulting perspective).

The Detection and Tracking block receives the videos and the backgrounds from
the different recording cameras. The tracking block generates the tracking trajectories
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Fig. 9.2 Block diagram of the system

from its own perspective processing the frames of the sequences of each camera. Each
instance of this module only process one of the cameras.

The Homographies block receives the coordinates of the player from each camera
(in pixels) and the reference points. The results of this block are the top view player
coordinates from each camera.

The Tracking filter block receives and filters the tracking coordinates from the
topview tracking from each camera. There are plenty of restrictions that can be
defined for this block. Some examples of these constraints are: maximum distance
to the previous resulting coordinates, restricted regions in the field (own side of the
field), blob continuity for a minimum number of frames (in order to remove spurious
and noisy blobs), etc.

Finally, the Fusion block combines the processed trajectories from each one of the
cameras and generates the overall trajectory using the information from the different
cameras.

9.2.3 Initialization

The initialization of the system can be obtained from a previous capture of the field
without players, or from the first frames of the match video (if the first option is not
available).

The initialization step defines the field representation, the backgrounds and the
homography reference points. The field distances are needed for the field repre-
sentation to generate accurate sports analytics. Each one of the components of the
initialization block are described below.
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Fig. 9.3 Field representation

9.2.3.1 Field Representation

For the representation of the field the standard dimensions have been used, but they
can be easily changed in the initialization module if the filmed field has specific
dimensions (generally there are some distances in standard dimensions which can
take a range of values instead of a constant dimension). The resulting field represen-
tation is shown in Fig. 9.3.

9.2.3.2 Background Generation

The tracking system used needs an initial background image of the scene for each
video analyzed. These methods are necessary when an image of the background
without players is not available. In Computer Vision more complex methods are
used for hot start up (to start without initialization) or with updating background,
but this method covers quickly and easily the objective. In live applications, players
usually warm up some minutes before the game. These sequences can be used for
system initialization, including, among others, background generation. In the system
designed both methods have been used: first, the mean method (automatic) is used.
If the generated background is not correct, the junction of portion from different
frames method (supervised) is used. The two methods used are described below.

• Mode of pixels from a set of frames: this automatic method is based on choosing
(watching the video using a video player as in the case above) a set of frames and
generating each pixel of the background with the mode of all the pixels in the posi-
tion of the pixel generated. Other operations like mean or median have been tested
with worse results. The advantage of this method is that it needs less supervision
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Fig. 9.4 Background generation process for the median-based background generator. From left to
right, background obtained using 10, 30, and 90 frames for the median, respectively

Fig. 9.5 Example (detail) of malfunction in junction-based background generator

than the other method. The script requests an initial frame and a number of frames
to analyze. The original frame is chosen after watching video display frames with
few players and without static players, which may cause problems when gener-
ating the background. By increasing the number of frames processed improves
the results, increasing the computational cost. The results obtained using a dif-
ferent number of frames for the median are shown in Fig. 9.4. The disadvantage
of this method is the high-computational cost due to mode operation. Using this
method sometimes small areas with strange colors appear caused by any person
or object moving slowly in the set of chosen frames to generate the background.
One example of this area is shown in Fig. 9.5. This colored area is caused by a
person moving behind the advertising. These areas generally do not cause mal-
function because the erosion and reconstruction operations make them disappear
from tracking. An example of incorrect and correct background using this method
is shown in Fig. 9.6.

• Junction of portion from different frames: this supervised method is based on find-
ing some portion in frames without players in the field. Once enough frames to
compose a full background are found, the final image is created. The portions used
in this project are halves, but smaller portions can be taken, such as quarter-frame
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Fig. 9.6 Example of incorrect (left) and correct (right) background using the mode-based back-
ground generation method

or vertical strips less than half frame. The (non assisted) procedure used is as
follows: first, the video frames are watched using a video player trying to locate
regions where there are no players. Then a first approximation of the background
is generated with the frames located in the previous step. If a region contains
background generated players (or part), the frame number chosen for that region
can be increased or decreased to get an empty region, and the background is gen-
erated again. If players appear completely, another frame should be chosen by
visualizing the video again. The advantage of this method is the reduced compu-
tational cost. The disadvantages of this method are that sometimes finding frames
without players is not easy and that it is a supervised method. An example of the
process followed for the generation of one of the backgrounds is shown in Fig. 9.7.
An example of incorrect and correct background using this method with part of a
player is shown in Fig. 9.8. This correct example is very similar to the one obtained
with the previous method.

9.2.4 Mono-camera Detection and Tracking

The mono-camera detection and tracking module is based on a video-surveillance
analysis system for event detection [15]. It was designed to work in real time. This
feature imposes time complexity limitations on the used algorithms in each of the
analysis modules.

Figure9.9 presents the block diagram of this module. A foreground mask is gen-
erated for each frame at the background substraction module [1]. This foreground
mask consists on a binary image that identifies the pixels that belong to moving or
stationary blobs, and it is obtained by subtracting the background image from each of
the frames, thresholding the result to obtain a binary mask. The background model
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Fig. 9.7 Background generation process for the junction-based background generator. The two red
rectangles in the two top frames show the selected region in the original frames and the bottom
frame represents the generated background

Fig. 9.8 Example of incorrect (left) and correct (right) background using the junction of portion
from different frames background generation method

is initialized with the initial background image and updated then with the frames
received by the system using a running average method [12].

The shadow removal block is used for removing the pixels belonging to the
shadows of the players. For this stage of the system, the image is converted to
the HSV (Hue Saturation Value) color space [16], allowing to locate those shadow
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Fig. 9.9 Block diagram of the mono-camera detection and tracking module

pixels [3]. In the noise removal block, morphological operations are applied on the
previous step resulting mask for removing noise artifacts. A combination of erosion
and reconstruction operations is applied [14]. Its purpose is to remove small objects
(small blobs due to noise) without distorting the shape and size of the player’s blob.

Finally, the blob extraction block labels the groups of pixels in the mask using
CCA (Connected Component Analysis) using 8-connectivity as the connectivity
criteria.

9.2.5 Extraction of the Base Mid-Point

The base system obtains two points (p1 and p2) for the player in each frame, defining
the bounding box of the player. Each point has its coordinates x and y: p1 corresponds
to the upper left point of the bounding box and p2 corresponds with the lower right
point of the bounding box. In Fig. 9.10 some examples of bounding box and basemid-
points are shown to clarify. Base mid-point (b) coordinates (xb and yb) are defined
as follows:

The base mid-point is taken because when the homography is applied, the corre-
spondence is calculated for points on the floor of the field. The base point is closer
to the floor and presents a minor error than selecting, for example, the center point
on the bounding box (which is typically used in other tracking applications).

Fig. 9.10 Examples of
bounding box (yellow and
red) indicating the base
mid-point (b) and points p1
and p2
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Fig. 9.11 Example of homography: a image plane, b top view

9.2.6 Homographies

Homographic transformations are used to change camera perspectives. The homo-
graphic techniques used in this work follow the normalized direct linear transfor-
mation algorithm (DLT) [5]. Four points (more than the minimum number of points
needed, but this helps to improve the accuracy) are selected in the original image
plane (generally characteristic points of the field) and its correspondence is indicated
in the top view. The code used for this block is public.1 In Fig. 9.11, an example of the
process is presented. Note that in the system the homography is applied to a single
point (the base mid-point) of the tracked player (blob) as the conversion of the whole
image is a slow and unnecessary process. The red crosses in the figure indicate the
selected points, in both the original image and the corrected perspective.

Resulting projected coordinates from two cameras may have different positions,
due to different error sources: players’ volumes, camera distances, lens, etc. Note
that the higher the distance from the camera to the points, the lower precision in the
projection. In the case of Fig. 9.11, the field lines closer to the camera are sharper
than the lines located at greater distance. In the case of people detection and tracking,
these differences use to be moderate and the fusion block can also reduce these error
sources.

9.2.7 Fusion

The fusion process is relatively simple for this system as all the cameras can only
record the half of the field of one of the players. Themain advantage is that every blob
extracted from each camera in frame t belongs to the tracked player. The resulting

1 http://www.csse.uwa.edu.au/~pk/research/matlabfns/.

http://www.csse.uwa.edu.au/~{}pk/research/matlabfns/
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fusion coordinates are obtained with a coordinate mean between each camera indi-
vidual coordinates:

xt = 1

N

Nt∑

i=1

xi,t yt = 1

N

Nt∑

i=1

yi,t (9.1)

where (xt , yt) are the combined coordinates in frame t, (xi,t , yi,t) are the individual
camera coordinates in frame t from the i-camera, and i = 1…Nt are the Nt cameras
which have a blob corresponding to the player in frame t.

9.3 Adjustments, Testings and Results

A web page has been made available online to show some videos and results, where
examples with the obtained results of the systems have been uploaded [11].

9.3.1 Content Set: 3DLife ACM Multimedia Grand
Challenge 2010 Dataset

The dataset [4] features video from nine CCTV-like cameras placed at different
points around the entire court [18]. Videos are ASF files and encoded using an
MPEG-4 codec. Seven of the videos are recorded with a resolution of 640× 480
pixels fromAxis 212PTZ network cameras. The two other cameras have a resolution
of 704 × 576 pixels and are captured using Axis 215PTZ network cameras. The
start time of each video is synchronized via software at the start of each sequence.
There are two games sequences availables in the datas (about 2min per game). Note
that each game sequence is composed of nine videos, one for each of the cameras.

9.3.2 System Configuration

For the system configuration, the 3DLife ACM Multimedia Grand Challenge 2010
Dataset used videos are from the cameras 1, 3, and 4 for the first player, and from
the cameras 5, 6, and 8 for the second player. The homography reference points are
selected manually. In the Tracking filter module, the criteria (heuristically set) for
filtering are:

• The detected blobs must be visible during a minimum of 10 consecutive frames.
• The detection area is limited to the player own side of the field.
• Amaximum distance of one meter between two consecutive frames is allowed for
each camera blob.
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If the defined restrictions are not enough to filter some of the sequence frames and
errors occur, the player’s position can be corrected manually using the graphical user
interface (GUI, see Sect. 9.4)

9.3.3 Results

9.3.3.1 Players’ Detection and Tracking

This subsection shows the results obtained with the system. Figures9.12 and 9.13
present the players trajectories obtained from the two game sequences.

Some examples of the different possible number of cameras tracking simultane-
ously the player are shown in Fig. 9.14. In this figure, the resulting point of the fusion
is shown as a yellow square, and the resulting point of each camera tracking is shown
as a cross (whose color depends on the corresponding camera).

Due to the location of each camera and depending on the point at which the
player is on the field and on the number of cameras with the player located, the
error will be larger or smaller. In Fig. 9.15 two different points are shown with two
simultaneously camera projected points. In the right of the figure, the points tracked
from each camera are closer between them, different from the case in the left of
the image, where the points are more distant. Some possibilities to compensate this
distortion are proposed in the future work section. In the presented case this problem
is solved by the fusion method, as shown in the results.

A study of the projected distance error has been performed to estimate the distance
between the estimated point by the system and the (subjective) ideal point. To achieve
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Fig. 9.12 Resulting trajectories extracted from the first game sequence
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Fig. 9.13 Resulting trajectories extracted from the second game sequence

Fig. 9.14 Examples of the possible number of cameras tracking simultaneously the player, from
left to right: one camera, two cameras and three cameras

Fig. 9.15 Examples of the major or minor error depending on the position of the player

this, the ground plane position of the player has been manually annotated in each
camera of the two game sequences. The annotations [11] have been made every 25
frames, the same frames of which the analytics are later extracted (Table9.1).

The average time of the system processing is about 21.0 fps. The computer char-
acteristics are: Intel(R) Core(TM) 2 Duo, E7500 @2.93GHz, 4GB RAM, Windows
7 Professional 32 Bits. Therefore, even the current implementation could work in
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Table 9.1 Distance error (in pixels) between the manually and the automatic extracted points

Player 1 Player 2

C1 C3 C4 C5 C6 C8

Game1 dx 6,0 8,5 5,9 18,9 7,4 5,5

dy 5,8 8,7 5,7 6,2 6,8 6,6

dtotal 8,7 12,7 8,7 20,6 10,7 9,1

Game 2 dx 6,8 10,3 5,0 26,4 11,1 5,2

dy 5,6 8,2 6,6 9,0 7,6 6,0

dtotal 9,2 13,8 9,6 29,3 14,7 8,3

real time using a typical current-day PC. This time analysis has been obtained with
a sequential processing of the frames from each camera. If it is parallelized then the
execution time would decrease considerably.

9.3.3.2 Analytics

Player analytics can be extracted using the resulting players’ trajectories.
A zigzag effect appears between consecutive frames, as shown in Fig. 9.16 (left).

As commented previously, there aremultiple sources of error that cause this problem:
different camera lenses, user accuracy errors in the manually selected homography
points, background-foreground segmentation, etc. This effect causes an error in the
obtained analytics if they are calculated for each frame. To reduce this error, the
statistics are calculated after postprocessing the trajectory (subsampling every 25
frames). An example of this subsampling is shown in the right image of Fig. 9.16.

The resulting sport analytics are shown in Figs. 9.17 and 9.18, which show the
following player information: field position, covered distance, average speed, and
instant speed. In addition to these figures, a video showing the evolution of analytical

Fig. 9.16 Example of the zigzag effect in the trajectories (left, red line) and the subsampling result
(right, green line)
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Fig. 9.17 Sport analytics for the first game sequence

belonging to one of the players can be watched visiting the publication website [11].
A sample frame of this video is shown in Fig. 9.19.

9.4 Graphic User Interface

A real-time interactive Graphical User Interface (GUI) has been developed for the
system operators or supervisors. This Qt-based2 GUI allows to manually correct
errors in certain frames to get precise trajectories for the tracked Players. Some of
the most common errors that can be corrected by improving the accuracy of the
bounding box are: situations in which the player extends the racket horizontally,
jumps, player inclinations (especially when he/she starts running), etc.

Some examples of the GUI windows are presented. Figure9.20 shows the main
window of the system during an execution and the position edit window.

2 http://qt-project.org/.

http://qt-project.org/
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Fig. 9.18 Sport analytics for the second game sequence

9.5 Conclusions

This chapter presents a multi-camera system designed to detect and track players
in individual sports. Thanks to the initial configuration, the resulting positions of
each player is generated by the system. The players statistics are extracted using the
trajectory of the player, allowing performance analytics for each player. Moreover,
the systemhas been designed interconnecting separatemodules, which allows system
improvements modifying independently each one of the modules.

The sports video analysis with static cameras has advantages over the general
video processing as background can be easily modeled. Some problems that may
appear in this background are the audience or the advertisements, which can be
removed using masks or constraints in the tracking filter block.

The deployment of the cameras is one of the key aspects. The objective is to place
symmetrically the cameras trying to cancel the position errors produced by each
camera. Placing the cameras at higher elevations also reduces the tracking errors but
this option may not be available.

There are many lines of future work for this system. The precision of each tra-
jectory projection depends on the players’ location in the field. An evaluation of
the precision which depends on the position in the field can reduce these precision
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Fig. 9.19 Sample frame of the analytics video

Fig. 9.20 GUI: main window (left) and position edit window (right)

differences, minimizing the final position error. Parallelizing the processing of each
one of the cameras would greatly improve the speed of the system. Also new fusion
techniques can be developed trying to improve the simple fusion used, for example,
adding weights to the contribution of each camera (this weight may depend on the
distance from each camera to the player in that frame). Finally, additional and more
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complex analytics of each player can be estimated: areas of the field where the player
stays longer, acceleration of the players, interactions between players, etc.
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Chapter 10
Data Fusion with a Dense Sensor Network
for Anomaly Detection in Smart Homes

Kevin Bing-Yung Wong, Tongda Zhang and Hamid Aghajan

Abstract Research into assistive technologies for the elderly has been increasingly
driven by the rapidly expanding population of older adults in many developed coun-
tries. One area of particular interest is technologies that enable aging-in-place, which
allows older adults to remain in their own homes and live an independent life. Our
work in this space is based on using a network of motion detectors in a smart home
to extract patterns of behavior and classify them as either typical or atypical. Knowl-
edge of these patterns can help caregivers and medical professionals in the study of
any behavioral changes and enable better planning of care for their patients. Once we
define and extract these patterns, we can construct behavioral feature vectors that will
be the basis of our behavioral change detection system. These feature vectors can be
further refined through traditional machine learning approaches such as K-means to
extract any structure and reduce the dimensionality of the data. We can then use these
behavioral features to identify significant variations across time, which could indi-
cate atypical behavior. We validated our approach against features generated from
human labeled activity annotations, and found that patterns derived from raw motion
sensor data can be used as proxies for these higher level annotations. We observed
that our machine learning-based feature vectors show a high correlation with the
feature vectors derived from the higher level activity annotations and show a high
classification accuracy in detecting potentially atypical behavior.
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10.1 Introduction

The World Health Organization (WHO) and the US Department of Health have both
predicted a rapid rise in the proportion of older adults that make up the populations of
developed countries. Globally, it is predicted that the number of people older than 60
will triple between 2000 and 2050 from 600 million to 2 billion, while considering
just the United States alone, the number of citizens older than 65 is expected to
grow from 40.3 to 72.1 million in 20 years [1, 2]. This rapidly growing and aging
population segment is of great concern in terms of their healthcare and management,
since eldercare is traditionally very labor intensive and costly.

In response to the concern of how to care for an increasing elderly population,
many assistive and monitoring technologies are being examined to reduce the need
for caretakers and to enable the aging population to retain a measure of independence
[3–7]. These efforts are mostly intended to enable aging-in-place, which is defined
by the Center for Disease Control as “The ability to live in one’s own home and com-
munity safely, independently, and comfortably, regardless of age, income, or ability
level” [8]. This would reduce the infrastructure costs of eldercare, and would align
better with the wishes of older adults. A survey conducted by AARP, an American
advocacy group that addresses issues concerning older adults, indicated that 84 % of
people over the age of 50 wish to remain in their current homes, with the percentage
increasing to 95 % for respondents over the age of 75 [9].

The use of long-term health and wellbeing indicators is also beneficial for self-
reflection as a motivational tool to change possibly unhealthy trends in lifestyle. These
systems could be used by healthcare professionals and caregivers to augment existing
doctor visits to provide doctors with a more continuous view of a patient’s heath and
wellbeing, as well as alert them if any sudden changes occur. The “Quantified Self”
movement is an example of this recent trend for self reflection and health monitoring.
Using environmental sensors would allow a monitoring system to unobtrusively
monitor a patient continuously while they are in the home with no active compliance
from the patient [10].

10.2 Related Work

There has been a great deal of work in developing assistive technologies for the
elderly, with the goal of enabling so-called “aging in place.” A common type of
assistive technologies are those that monitor for anomalous activities or events, one
such system developed by Shin et al., used a network of 5 PIR(Passive InfraRed)
sensors to track the mobility of 9 elderly occupants of government sponsored housing
[11]. This system first derived indicators of mobility, such as the percentage of time
the motion sensors were triggered and how often the user would move between
motion sensors, to look for changes in these indicators over time. The authors detected
these changes by using 24 different SVDD (Support Vector Data Descriptors) based
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classifiers, one for each hour of the day, to classify normal activities [12]. Since the
SVDD classifiers would generate warnings for any abnormal activity, their system
would often generate false warnings due to the irregular behavior patterns of the users,
such as waking up late and performing cleaning activities during different times of
day. Other work by O’Brien et al. also used PIR sensors in the home as a primary
input, but their work was focused on visualization techniques to potentially identify
movement disorders for the older adults [13]. Cuddihy et al. used the same PIR-based
motion sensors with the goal of identifying periods of unusually long inactivity of
occupants in their homes to generate alerts to caregivers [14]. More general work
by Fine et al. used location-based information to build feature vectors to determine
classes of normal or abnormal activities using a clustering-based approach [15].

The CASAS project, led by Diane Cook at Washington State University, has
been studying a related field of identifying Activities of Daily Life or ADL, which
are defined as common activities that a person performs to care for themselves,
using data mining and machine learning to automatically identify important activities
through finding the most common pattern in motion sensor data [16–19]. ADL’s could
be useful to describe the behavior of a smart environment’s occupant and identify
abnormalities if certain ADL’s are not completed. Some of the recent work by Jakkula
et al., focuses on using one class SVM’s to classify anomalous behavior using an
annotated dataset based on motion and door sensors in a home setting [20]. Anomaly
detection by monitoring drifts and outliers of detected parameters were also studied
by Jain et al., however that research focused less on ambient sensors and more on
wearable health monitors [21]. More theoretical approaches to activity detection,
such as work by Kalra et al. have focused on machine learning and statistical models
for ADL detection [22].

There have been many other proposed approaches toward detecting, representing,
and analyzing activity and behavioral patterns in a home setting. One such approach
by Lymberopoulos et al. uses a home sensor network to track a user’s motion and
presence throughout the home [23]. Using region occupancy and the associated
occupancy time, they create a set of symbols that encode the location, duration of
the user’s presence, and the time of day the user was present in a specific area in
the home. From these symbols, they discover frequent sequences of symbols and
their likelihoods to extract the users activity patterns form their 30 day dataset.
Vision centric approaches by Gómez-Conde el al. [24], focus on detecting abnormal
behavior using cameras and computer vision techniques such as motion detection
and object segmentation to develop tele-assistance applications for the elderly. Their
system mainly focuses on the sensing and classification of events, not recognizing
longer term patterns or behaviors. Other research projects such as [25, 26] also focus
more on shorter term monitoring and on techniques for person tracking and fall
detection. Due to the general lack of long-term monitoring data and privacy issues
with data collection, there has not been a significant body of work dedicated to
long-term behavioral and health monitoring based on cameras.
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10.3 Methodology

We examine the task of detecting atypical behaviors using two different approaches,
using region-based occupancy patterns, derived from measuring how an occupant
spends time in specific regions in their home, and concurrency-based models, which
find important areas of a home automatically based on how an occupant moves
through their home. For both approaches to atypical behavior detection, we use long-
term datasets from WSU’s CASAS project [16]. CASAS was intended as a smart
home testbed, to evaluate algorithms for activity recognition and home automation.
Common to the three datasets that we used, are a fairly dense deployment of 20+
PIR motion sensors, configured to have a small field of view. Judging from the
documentation, we estimated that the motion sensors had a detection area of 8 m
[27]. These motion sensor deployments do not offer the rich data available from
cameras, but they sidestep several privacy issues inherent with placing cameras in
people’s homes. Since motion sensors can only detect the presence of motion in their
fields of view, they will be better tolerated, even if data is recorded and stored for
later processing or evaluation. Archiving video data for later processing would have
significant privacy concerns for occupants, not to mention the logistics of storing
months or years of video from multiple cameras.

Our initial experiments centered on a CASAS dataset featuring a single occupant
for a 220 day experiment, codenamed “Aruba” by CASAS. The apartment layout and
sensor placements can be seen in Fig. 10.1. We wanted to start with a single occupant,
since motion sensors cannot differentiate between multiple people. For our region
occupancy-based atypical behavior detector, we later extended our work to include a

Fig. 10.1 “Aruba” apartment sensor layout
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shorter 30 day dataset that contained an occupant with a pet, codenamed “Milan,” and
finally a 180 day dataset that contained a couple living together, codenamed “Tulim.”
All of the datasets that we evaluated had activities that were human annotated, and
we used this as a baseline input to our atypical behavior system to compare against
features derived directly from the motion sensors.

The following sections describes how we used the CASAS motion sensor-based
data for both region occupancy and concurrent activation-based atypical behavior
detection.

10.3.1 Region Occupancy-Based Atypical Behavior Detection

In order to identify atypical behaviors of a smart home’s occupant, we need to have
a representation for the occupant’s behaviors. One clear choice is to use occupant
activities to form a behavioral model, however, identifying activities using PIR’s is a
complicated task, since some important activities, such as sleeping, is marked by an
absence of motion. We then hypothesized that activities in a home are closely tied to
specific regions of a home, for example, cooking mostly takes place in the kitchen,
and sleeping takes place mostly in the bedroom. Using that observation, we decided
to use region occupancy as a proxy for occupant activities to generate daily patterns of
behavior, which we can then compare across days to identify outliers, which we treat
as atypical. These observations are illustrated in Fig. 10.2, in which we show both
region occupancy and annotated activity patterns for each 30 minute window across
220 days of data collection, with each horizontal line in the image representing the
occupant’s occupied regions or activities for one day. The coloring for the patterns is
different, since there is a different number of regions and activities, but there is still
a clear visual similarity between the two. The following sections describe our steps
to derive these region occupancies and atypical detections from the raw sensor data.
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Fig. 10.2 Comparisons of region occupancy patterns to annotated activity patterns, based on most
frequent region/activity in each 30 min time window. a Region occupancy patterns. b Annotated
activity patterns
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10.3.1.1 Initial Processing

The CASAS data consists of a series of PIR motion sensor activation events, which
represent times in which an occupant or a guest moved within the detection area of
one of the PIR’s used in the deployment. These PIR’s are located in Fig. 10.1 as the
dark circles, and were mainly concentrated in the kitchen, living, and bedroom areas
of the testbeds.

We first took these activation events, and examined them manually to look for
sensor malfunctions. For example, for one day in the “Aruba” dataset, all of the
motion sensors were triggered simultaneously for several hours. After we identified
these days, we removed them from the dataset so they would not skew our results.

Next, we estimated the position of the occupant within the apartment based on
PIR activation events. Since the user can activate many PIR’s at any one moment,
using the locations of the activated PIR’s as the user’s position would be quite noisy
and subject to rapid changes. Thus, we decided to use a relatively simple approach to
estimate the occupant’s position by averaging the locations of the activated motion
sensors within a small time window. Most of the PIR sensors used in the instrumented
apartment were ceiling mounted units with a relatively small detection radius of 8 ft.
With these pieces of information, we are able to determine the position and time of
all motion detection events. This result was then temporally smoothed and used to
assign a region label to every point in the occupant’s estimated trajectory, as described
in the next section.

10.3.1.2 Region Labeling

As a first step in forming the region occupancy patterns that we will later use for
atypical behavior detection, we assign each point in the occupant’s trajectory with
a region label that corresponds to the room or semantic region where the occupant
is currently located. For the “Aruba” dataset, the region labels include: Kitchen,
Dining Area, Living Room, Bedroom, Guest Bedroom, Office, Hallway and Outside.
The current scheme to map region labels is based on a lookup table that maps the
current position of the user to one region. Figure 10.3 describes the different regions
as different colored boxes overlaid on the deployment map for the dataset. Table 10.1
lists the region identifiers used. The time series of region labels is then post processed
to filter out region changes that last less than 3 s. This acts to remove rapid region
label oscillations that would occur if the user walked along the boundary of two
regions. Similar region maps were generated for the “Milan” and “Tulim” datasets,
as shown in Fig. 10.4a, b, respectively.

10.3.1.3 Region Occupancy Histograms

We decided to represent the time series of region occupancies, described in the
previous section, as a set of region occupancy histograms for consecutive
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Fig. 10.3 Region map

Table 10.1 List of region
labels used for processing

Identifier Region description

0 Hallway

1 Kitchen

2 Dining area

3 Living room

4 Main bedroom

5 Guest bedroom

6 Office

7 Outside apartment

8 Inside with visitors

non-overlapping regions in time. These region occupancy histograms are more com-
pact than the region time series, and can be interpreted more quickly than a long
sequences of region occupancies. To form the actual region occupancy histograms
that we used as a proxy for the occupant’s behaviors, we first subdivided each day’s
data into smaller 30 minute chunks, and calculated the region occupancy histogram
for each chunk. The size for the time chunk was chosen so that it would still be a
reasonably compact size, to limit processing time for our experiments.

The result was 48 region histograms that represented the daily region occu-
pancy patterns for the occupant of the apartment. We initially used several meth-
ods to summarize these 48 histograms to form even more compact representations,
including using just the region with the highest occupancy for every time chunk.
Other alternatives included using a Bag of Words representation along with a PCA
to reduce the dimensionality of the data. We ultimately settled on simply concatenat-
ing these 48 histograms into a single feature vector to represent the occupant’s region
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Fig. 10.4 Sensor layout and region maps of “Tulim” and “Milan” testbeds. a Milan testbed with
region overlay. b Tulim testbed with region overlay

occupancy for each day, which we refer to as “Complete Region Histograms,” since
the compact representations did not perform significantly better, and were difficult
to interpret. We later augmented these concatenated region histograms with region-
specificmotion detection histograms, which represented the number of motion events
in each region during the same time chunk, which formed “Complete Region and
Motion Histograms” features.

For the sake of completeness, we experimented with using only the motion his-
tograms, formed by histograms of the region a motion sensor was activated per time
period, and an even finer histogram of which motion sensor was activated per time
period. However, our results for these last sets of histograms showed poor correlation
with our ground truth-based activity classifier. Table 10.2 briefly describes some of
the different features that we evaluated.

10.3.1.4 Identifying Atypical Daily Patterns

After mapping the occupant’s position to regions, and forming histogram-based
patterns using region occupancy, we sought to identify region occupancy patterns
that were atypical. We started by calculating how dissimilar each day’s pattern was to
every other day in our dataset. For our “Complete Region and Motion Histograms,”
we used the Euclidian distance between each pattern of concatenated histograms as
our dissimilarity metric.

We can compactly represent the dissimilarity between all of the days of a dataset
in the form of a distance matrix, where every entry (i, j) represents the dissimilarity
between day i and day j , which is shown in Fig. 10.5 for both region occupancy
and annotated activity-based patterns. We note that days that were very dissimilar to
every other day, the red bands in the distance matrix, appear to be identical for both
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Table 10.2 Different region/occupancy features considered for anomaly detection

Region occupancy feature Associated distance metric Description of descriptor

Most occupied region Edit distance The most frequently occupied
region is used to represent each
time period

“Bag of words feature” Edit distance The region occupancy his-
togram for a time period is
mapped to the closest K-means
based cluster for each time
period

“Complete Region Histograms” Euclidian distance A concatenated vector of region
occupancy histograms is used to
represent each time period

“Complete Region and Motion His-
tograms”

Euclidian distance The concatenated region occu-
pancy histograms are appended
with a histogram of region-
based motion detection events

“Motion Only” Euclidian distance A histogram of region-based
motion detection events for each
time period

region occupancy and annotated activity-based patterns. Initially, we summed these
dissimilarity of a single day i to every other day together to form a global dissimilarity
metric for day i . Since lower values indicate a lower dissimilarity of a day’s patterns
to every other day in the dataset, we can use this global dissimilarity metric to classify
days as atypical. To do this, we set a threshold on the global dissimilarity of each
day to classify days with a high dissimilarity as atypical. A histogram of these global
dissimilarity for every day can be seen in Fig. 10.6, we note that the histogram seems
normally distributed, except that the distribution has a very long tail. We decided
to find the average and standard deviation of these global dissimilarity values, and
classify values that deviated from more than one standard deviation from the mean
as atypical.

Our first approach used data from every day in the dataset in order to form global
dissimilarity metrics to classify days as atypical, however, this is not a practical
solution, since it assumes that we have access to data in the future. We wanted to also
evaluate a sliding window approach to classification, where we would step through
one day at a time and only classify the days based on the current and past data only.
This approach may not identify the current day or past days as atypical if there is not
enough historical data, for example, if the system just stared to collect data. So as
each day is added to the sliding window, we reclassify all days using dissimilarity
for all of the data up to the current day. We also experimented with different finite
sliding window sizes, but we felt that the size of our daily region occupancy patterns
was quite small, on the order of 10 KB, so we could reasonable store a lifetime’s
worth of occupancy data in less than 1 GB of memory.
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Fig. 10.5 Comparisons of distance matrices of the “Complete Region and Motion Histograms”
patterns and CASAS annotated activities. a Region occupancy. b Annotated activity
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Fig. 10.6 Histogram of global dissimilarity values for the “Aruba” dataset

Lastly, we evaluated an alternative method of calculating dissimilarity other than
our global dissimilarity metric. We decided to use the Local Outlier Factor or LOF,
original proposed by Breunig et al. as a method to identify outliers in a dataset by
comparing the local density around each point in the dataset [28]. The LOF algorithm
also works on distance matrices, so we used our existing matrices calculated using
our region occupancy patterns as an input and calculated the LOF for every day of
our “Aruba” dataset. LOF has one parameter k, which is used to determine the size of
the local neighborhood used to calculate the local density, we choose to use a value
of 30, determined empirically. The LOF algorithm returns a value that represents
the degree that a particular point is an outlier, but with no fixed threshold, we used
the same method of choosing a threshold as with our global dissimilarly approach,
after plotting a histogram of the LOF values as seeking a similar distribution as with
dissimilarity.
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10.3.1.5 Evaluating Region-Based Atypical Behavior Detector

To evaluate the performance of using region occupancy-based behavior patterns to
identify atypical behaviors, we leveraged the activity annotations included with the
CASAS dataset, the activities included in the “Aruba” dataset are shown in Table 10.3.
Using the same procedure as with the region occupancy patterns, we instead used
activity patterns segmented into the same 30 minute time chunks. These activity
patterns were histograms of the amount of time the occupant performed one of the
annotated activities in each time chunk. With these activity histograms we used the
same methods as with the region occupancy histograms to form daily descriptors
and compared each day to every other day.

After using these annotated activity patterns to classify days as atypical we treated
these classifications as a ground truth and compared them against the classification
results from our region occupancy-based classifier and presented the resulting com-
parison as a confusion matrix. We also compared how the region-based dissimilarity
compared to the activity-based dissimilarity for each day in the dataset. When both
the region-based and activity-based dissimilarities are plotted against each other, we
can evaluate how well the two relate to each other visually as well as calculate a
correlation coefficient. A high degree of correlation can be used to determine if the
region occupancy can be used as an effective proxy for annotated activities.

For the original “Aruba” dataset, we noticed that the “Complete Region and
Motion Histograms,” as described in Table 10.2 had the highest correlation coef-
ficient at 0.916115, which indicates that region occupancy is a very good proxy for
annotated activities for the purposes of atypical behavior detection. Figure 10.7a,
shows the correlation plot and Fig. 10.7b shows a confusion matrix of the region
occupancy-based classifier output when compared to the output of an annotated
activity-based classifier. This approach yielded an accuracy of over 95 % and a pre-
cision of over 90 % for identifying atypical days.

Table 10.3 List of annotated
activities in CASAS dataset

Identifier Activity

1 Sleeping

2 Bed to toilet

3 Meal preparation

4 Relax

5 Housekeeping

6 Eating

7 Wash dishes

8 Leave home

9 Enter home

10 Work

11 Resperate
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Fig. 10.7 Correlation between region-and activity-based daily dissimilarity and a classification
confusion matrix for the “Aruba” dataset. a Plot of daily total dissimilarity of the “Complete Region
and Motion Histogram” patterns versus the CASAS annotated activities, correlation coefficient:
0.916115. b Confusion matrix of region-based abnormality detector of the “Complete Region and
Motion Histograms” based classifier

We further wanted to verify that our approach was suitable for other homes and liv-
ing situations, which is why we evaluated out approach for the “Milan” and “Tulim”
datasets, which featured different apartment layouts and more than one occupant.
Figure 10.4a, b show the layouts and regions, which are highlighted in different col-
ors, for the “Milan” and “Tulim” testbeds, respectively. For these two datasets, we
found that adding in the raw motion data to form the “Complete Region and Motion
Histograms” yielded slightly worse performance compared to using just region occu-
pancy. This can be attributed to the continued presence of multiple occupants, who
would have generated many more motion events compared to the“Aruba” testbed,
which just had a single occupant. From the correlation plots and confusion matri-
ces of the “Milan” testbed, shown in Fig. 10.8a, b, we note that the correlation was
quite lower than “Aruba” at 0.638051, this is probably due to the short duration of
the “Milan” test set, which was considerable shorter at only 30 days. The “Tulim”
testbeds correlation and confusion matrices, shown in Fig. 10.9a, b, show a better
correlation of 0.801184, which is promising, considering “Tulim” had two occu-
pants, which could imply that the occupants were frequently in the same region and
performed the same activities, which for a coupling living together, seems highly
likely.

We also wanted to study what effect using a sliding window approach rather than
a global approach for atypical behavior detection would have on our classification
accuracy. We found that using a sliding window, in which daily region occupancies
patterns were added one at a time, did increase the number of false positives, which
can be seen in Fig. 10.10a when compared to the global approach, which is reproduced
in Fig. 10.10b. Most of these false positives occurred early in the dataset, when there
was not enough region occupancy histogram to adequately separate out atypical from
normal behavior.
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Fig. 10.8 Correlation between region and activity-based daily dissimilarity and a classification
confusion matrix for the “Milan” dataset. a Plot of daily total dissimilarity of the “Complete Region
Histograms” patterns versus the CASAS annotated activities for the “Milan” dataset, correlation
coefficient: 0.638051. b Confusion matrix of region-based abnormality detector of the “Complete
Region Histograms” based classifier for the “Milan” dataset

0 0.5 1 1.5 2 2.5
x 10

6

0

0.5

1

1.5

2

2.5
x 10

6

Region Based Cumulative Distance

A
ct

iv
ity

 B
as

ed
 C

um
ul

at
iv

e 
D

is
ta

nc
e

Activity Based
Normal Abnormal

Region
Normal 174 2

Abnormal 2 7

(a)

(b)

Fig. 10.9 Correlation between region-and activity-based daily dissimilarity and a classification
confusion matrix for the “Tulim” dataset. a Plot of daily total dissimilarity of the “Complete Region
Histograms” patterns versus the CASAS annotated activities for the “Tulim” dataset, correlation
coefficient: 0.801184. b Confusion matrix of region-based abnormality detector of the “Complete
Region Histograms” based classifier for the “Tulim” dataset

Lastly, we compared the performance of a LOF-based classify compared to a
classify based on global dissimilarities of annotated activities, to evaluate other meth-
ods of identifying outliers. We found good correlation between the two, 0.86167, as
shown in Fig. 10.11a. The confusion matrix of classification results, as shown in
Fig. 10.11b , were not as good as with the global or sliding window approaches, with
more false positive and negative classifications. This increase in false classifications
could be due to an overly conservative threshold that we applied to the LOF value to
determine if a day was an outlier.
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Fig. 10.10 Comparing a sliding window approach to a global approach for atypical behavior
detection. a Sliding window approach, 220 day maximum size. b Global approach
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Fig. 10.11 Correlation between region-and activity-based LoF scores and a classification confusion
matrix for the “Aruba” dataset. a Plot of daily LoF of the “Complete Region and Motion Histograms”
patterns versus the CASAS annotated activities for the “Aruba” dataset, correlation coefficient:
0.86167. b Confusion matrix of region-based abnormality detector using a LoF- based classifier for
the “Aruba” dataset

10.3.1.6 Interpreting Atypical Patterns

The previous section primarily evaluated how well region-based atypical behavior
compared to a similar classification process using human annotated activities. In this
section, we examine the results of the atypical behavioral detector by looking at the
region occupancy patterns of the days classified as normal or atypical.

Figure 10.12 shows features that correspond to normal days, with each horizontal
line corresponding to a day’s region occupancy patterns. Each one is stacked on top
of each other, so looking at vertical columns would represent the region occupancy
at the same time across days. These histogram patterns have been resorted, so that
the components of the histograms that represent the same region are adjacent to
each other, with highlighted boxes separating the different region’s occupancy. The
labels above each block represent the semantic region that the block represents. Each
region block is broken up into 48 columns, representing the 48 time chunks in which
the histograms were originally calculated, so each day’s occupancy of that region is
encoded left to right, with the far left side representing midnight. We can then examine
each block to determine how the occupancy of a specific region varies within a day,
and throughout the dataset by looking horizontally and vertically respectively. When
examining the occupancy patterns for the bedroom, we see a high occupancy for the
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Fig. 10.12 Region occupancy histograms for normal days

Fig. 10.13 Cluster analysis of bedroom occupancy patterns for normal days

early hours, most likely representing sleep. Also note that the normal days do not
have significant Guest room occupancy during the same early hours time period.

Using the bedroom as an example, we sought to understand the variations of
the bedroom region occupancy for our “Normal” days. We performed a clustering
analysis of the bedroom occupancies using k-means, which yielded 10 unique activity
patterns for normally classified behavior. These bedroom occupancy clusters can be
seen in Fig. 10.13. We note that these cluster represent different sleep and wake times,
and that these clusters of bedroom occupancy could be used to monitor sleep habits
be used to specifically monitor for atypical sleep patterns by comparing the bedroom
occupancy patterns with these common “Normal” bedroom occupancy clusters.
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Fig. 10.14 Region occupancy histograms for atypical days

Figure 10.14 shows the region occupancy patterns that correspond to atypical days.
These patterns appear quite different from the “Normal” days show in Fig. 10.12. If
we compare just the Bedroom and Guestroom regions, it seems like there is much
higher overnight Guestroom occupancy compared to the “Normal” days. This could
be why these days were statistically different from the “Normal” days.

Caregivers and medical professions could also view these occupancy patterns for
both normal an atypical days to look for causes of the atypical classification, for
example, they could compare the occupancy patterns of specific regions across both
the “Normal” and “Atypical” classes to see of the classification was due to changes
in a specific region.

10.3.2 Atypical Behavior Detection Using Concurrent Hotspot

In a motion sensor network, a concurrent activation event is when a moving object
enters an area that overlaps with multiple sensors’ detecting region and generates one
or more motion detection events. In this section, we will develop and use a concurrent
activation model to find concurrent hotspots (the location where occupants move
frequently). Then, an occupant’s daily behavior at these hotspots will be used to
estimate how likely that occupant is displaying anomalous behavior.

The basic intuition behind this analysis is that people tend to maintain regular
daily routines and the behavior at the concurrent hotspots are able to summarize
the occupant’s daily activity. So any deviation of a occupant’s behavior at these
concurrent hotspots might indicate atypical behavior.
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10.3.2.1 Finding Concurrent Hotspots

Since a concurrent hotspot is the location where occupants move frequently, we need
to first define a concurrent event and the location of such events.

Assuming that a motion sensor network consists of N binary motion sensors,
defined as sensors only have two possible states {0, 1}. In the cause of motion sensors,
a 0 state means that no motion is detected, and 1 indicates the sensor is being triggered
by motion at this time.

The model of a single sensor’s activation can be demonstrated with Fig. 10.15. To
simplify the activation model, the detection region of a motion sensor is considered
a circular area. If an object is moving inside the detection region, the sensor will
be activated; conversely, if the moving object is outside the detection boundary,
the sensor will not be triggered. However, some exceptions could generate false
detections, PIR-based motion sensors can be triggered by sudden local changes in
temperature, such has air moving through a heating or cooling vent. We define the
probability that a sensor is activated with no moving object present as false positive
rate β. Our previous work shows that this model fits the CASAS Aruba data set
quit well, with an estimated false positive rate of β̃ = 0.0406, was calculated by a
Genetic Optimization algorithm.

With this single sensor’s activation model, we can now turn to the concurrent
activation case. Suppose a moving object is at the location with coordinates (xu, yu)

with k sensors being activated at the same time. Intuitively, that object is some-
where in the overlapping detection areas of those k sensors. Assuming that all of
sensors have the same detection area size and have detection centers located at
{(xλ1, yλ1), (xλ2, yλ2), . . . , (xλk, yλk)}, the most likely estimation of user’s location
(x̂u, ŷu) is given by the following equation:

x̂u = 1

k

k∑

i=1

xλi (10.1)

ŷu = 1

k

k∑

i=1

yλi

Fig. 10.15 Model of a single
sensor’s activation
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Equation 10.1 is simply averages of locations of all the activated sensors. This
approach is easy to implement but it ignores the fact that some of the sensors are
activated by false positive events as we mentioned earlier. For example, if some of
the active sensors amount those k activated sensors are activated by environmental
temperature changes or some other accidental factors (false positive), the above
approach described by Eq. 10.1 might give a result far away from the occupant’s
actual location.

In order to limit of the influence caused by false positive motion detection events,
we leverage a Concurrency Graph that contains prior knowledge of overlapping areas
of sensors’ detection regions. The Concurrency Graph is defined as a weighted graph
G = (V, E), which consists of a set of motion sensors V as nodes and a set of edges
E . A concurrent activation event will increase the weight of edges between any pair
of activated sensors by one. Therefore, the higher the weight of a edge, more likely
those two involved sensors will be activated at the same time.

After filtering out the edges with weight less than a certain threshold T = λ · β̃2,
where λ is the total number of concurrent events, and β̃ is the false positive rate,
most of the edges created by false positive activation can be removed.

Figure 10.16 shows the concurrency graph built on the “Aruba” dataset from
2010-11-01 to 2010-12-01. The red circles in the figure are the sensor nodes; the
links are the edges between nodes; and numbers on the edges are the weights of
corresponding edges. Figure 10.17 shows the concurrency graph after filtering out
edges using the threshold mentioned above.

With the Concurrency Graph, if we have k activated sensor, instead of calculating
the average location directly, we mark the corresponding k nodes in the concurrency
graph Fig. 10.17. This will generate one or more sub graphs, where we choose the
subgraph, Gu , with largest number of nodes to estimate the occupant’s location with
Eq. 10.2.

Fig. 10.16 Concurrency graph for 2010–11
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Fig. 10.17 Concurrency graph for 2010–11 with thresholding and area sensor deleted

x̂u = 1

|Gu |
∑

i :si ∈Gu

xi ,

ŷu = 1

|Gu |
∑

i :si ∈Gu

yi (10.2)

We define the concurrent hotspots as center of areas where an occupant frequently
moves. Every time the activation state of any sensor changes, an estimation of the
user’s location can be calculated by Eq. 10.2. To find the concurrent hotspots we just
defined, we go through the whole “Aruba” dataset and get a sequence of estimated
user’s active locations {(x̂u1, ŷu1), . . . , (x̂un, ŷun)}. If we can cluster the sequence
into several groups, then the centroids of these clusters will be the hotspots that we
are looking for.

We choose to use K-Means as our clustering algorithm, to decide how many
clusters, k to use, we plotted the clustering error or cost, defined as the distance
of every point to their assigned cluster, versus the number of clusters, as shown in
Fig. 10.18. As can be seen from the figure, a value k = 10 is a good choice since it is
the turning point of the cost curve. While K-means has a component of randomness,
as initial cluster centroids are randomly selected, which may yield a different result,
multiple experiments resulted in very similar centroid sets. We picked one of these
sets shown in Fig. 10.19, where the red circles are the hotspots found, and the size of
the circle indicates the size of the cluster, which represents how many concurrency
events it encompasses.
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Fig. 10.18 Kmeans: cost versus cluster number

Fig. 10.19 Hotspot distribution

10.3.2.2 Hotspot-Based Occupant’s Behavior Modeling Selection

The hotspots we found in the previous section are calculated by clustering locations
where the occupant frequently moves. As a result, different clusters represents the
centers of the occupant’s activities to some extent. For examples, clusters A and B in
Fig. 10.19 are related to the occupant’s activities in the bedroom (sleeping, walking,
and so on); clusters D, G, and H represent walking through hallway; cluster E reflects
occupant’s movements inside the living room; cluster J is for the sofa related activity;
cluster F acts as the indicator of the occupant’s cooking activity; and cluster I is the
occupant’s behavior in the office.

With the help of concurrent hotspots, a occupant’s daily activities can be divided
into different clusters according to their relative locations to the hotspots. To
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summarize the occupant’s daily active level at each concurrent hotspot, we use Algo-
rithm 1 that can summarize the occupant’s active level of one day into a 1×10 vector
V = [v1, v2, . . . , v10]. The algorithm is described as follows:

Algorithm 1: Active Level Summary with Hotspots
Data: H = {h1, h2, . . . , h10}

E = {(x̂u1, ŷu1), (x̂u2, ŷu2), . . . , (x̂un , ŷun )}
Result: V = [v1, v2, . . . , v10]

0.1 initialize V to a zero vector ;
0.2 foreach (x̂u , ŷu ) ∈ E do
0.3 î = arg min

i :hi ∈H

(
distance(h, (x̂u , ŷu ))

)
;

0.4 wcore = ScoreMapping(t);
0.5 vî = vî + wcore ;

0.6 end

In Algorithm 1, H is the Hotspots Set, where that hi is the location of the i th
concurrent hotspot; E is a sequence of user’s active locations estimated by Eq. 10.2
for a day; ScoreMapping(t) is a function that map time duration t into a active level
score. Therefore, the algorithm calculates the active level score of the occupant and
accumulates the score for each concurrent hotspot.

The ScoreMapping(t) function in the above algorithm defines how we evaluate
a occupant’s active level from the amount of time they are moving at one location.
For example, if the ScoreMapping() is linear, the algorithm just accumulates the
time an occupant spends in a certain hotspot. In this chapter, a super linear function
is chosen as ScoreMapping() which indicates that a long-time continuous activity
has more impact than several short-time activities together.

For the whole CASAS “Aruba” dataset, we apply Algorithm 1 for each day and
get a N × 10 result matrix, where N is the total number of days, and each row is
the output result of the algorithm 1 for the corresponding day. Therefore, a column
C j = [v(1)

j , v(2)
j , . . . , v(N )

j ]T ( j = 1, 2, . . . , 10) of the result matrix is the occupant’s
active level scores at the j th hotspot for N days.

Now we can use this resulting model derived from time spend in each hotspot
to detect abnormal activity of the occupant. Our assumption is that the occupant’s
activity level at each concurrent hotspot satisfies is a specific distribution.

Therefore, we set up a distribution library which contains Normal, Rayleigh,
Rician, t location-scale, Weibull, and Generalized extreme value distributions. For
each concurrent hotspot, we fit the occupant’s active level scores to every distribu-
tions in our distribution library. And we choose the distribution with the highest log
likelihood as the behavior model for the occupant at that hotspot. Table 10.4 shows
the result for each concurrent hotspot.

The histogram of occupant’s active level scores at hotspots A and B, and the result
curves of corresponding fitted distribution are showed in Fig. 10.20a, b. It can be seen
that some of the curves fit the active level scores well. The Table 10.5 summaries the
best probabilistic models and parameters for all the concurrent hotspots.

For at location-scale distribution with parameter μ, σ, ν, the probabilistic density
function is
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Table 10.4 Concurrent hotspot model fitting

HotSpot Normal Rayleigh Rician t location-scale Weibull Generalized extreme value

A −1232.68 −1256.35 −1230.19 −1199.89 −1236.12 −1205.71

B −1500.01 −1585.86 −1500.38 −1499.56 −1500.57 −1498.22

C −1316 −1287.56 −1287.56 −1300.66 −1286.7 −1260.19

D −1299.57 −1279.22 −1279.22 −1275.59 −1278.62 −1243.49

E −1326.36 −1308.94 −1308.94 −1314 −1307.84 −1283.66

F −1287.33 −1259.48 −1259.48 −1268.75 −1258.69 −1235.75

G −1139.27 −1117.72 −1117.7 −1129.07 −1117.58 −1094.88

H −1534.13 −1534.16 −1534.16 −1533.94 −1531.83 −1530.7

I −1339.2 NA NA −1214.28 NA −1112.02

J −1577.44 −1608.62 −1576.43 −1572.18 −1579.38 −1574.47

Fig. 10.20 Histogram and model fitting for hotspot A and B. a Hotspot A. b Hotspot B
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Table 10.5 Hotspot model fitting

Hotspot Probabilistic model Parameters

A t location-scale μ = 240.839 σ = 56.1281 ν = 3.93679

B Generalized extreme value k = −0.371485 σ = 321.032 ν = 1183.27

C Generalized extreme value k = 0.294019 σ = 70.3057 ν = 154.99

D Generalized extreme value k = 0.222946 σ = 67.6701 ν = 178.837

E Generalized extreme value k = 0.175264 σ = 84.0357 ν = 205.644

F Generalized extreme value k = 0.245482 σ = 64.3452 ν = 137.352

G Generalized extreme value k = 0.201744 σ = 33.6826 ν = 78.0005

H Generalized extreme value k = −0.152369 σ = 330.334 ν = 509.017

I Generalized extreme value k = 1.35126 σ = 20.4538 ν = 12.7242

J t location-scale μ = 1297.43 σ = 368.005 ν = 6.48294

p(x;μ, σ, ν) = Γ (ν+1
2 )√

νπΓ (ν
2 )

(

1 + (
x−μ
σ

)2

ν

)− ν+1
2

For a generalized extreme value distribution with parameter k, σ, ν, the proba-
bilistic density function is

p(x; k, σ, ν) = 1

σ

[

1 + ν(
x − k

σ
)

]− 1
ν
−1

exp

(

−
[

1 + ν(
x − k

σ
)

]− 1
ν

)

With fitted probabilistic model of each concurrent hotspot, we propose a multi-
variable distribution model PM that models the occupant’s daily active level score
vector (the 1 by 10 vector that contains active score for each hotspot):

V = [v1, v2, . . . , v10] ∼ PM(p1, p2, . . . , p10) (10.3)

where pi (i = 1, 2, . . . , 10) is the probabilistic distribution model for hotspot i
showed in Table 10.5. The model (Eq. 10.3) is the representation random distribution
model for user’s daily active level at each concurrent hotspot.

10.3.2.3 Abnormal and Typical Active Level Detection

We define the normalness of a day as log likelihood the occupant’s active level score
vector which is calculated by our proposed PM model (Eq. 10.3).

Given the active score vector V = [v1, v2, . . . , v10] and the distribution model is
PM(p1, p2, . . . , p10), the likelihood of the active level scores can be calculated by
the following equation:

L =
10∏

i=1

pi (vi ) (10.4)
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Fig. 10.21 The histogram of log probability score

Then, the log likelihood’s calculation becomes straightforward:

Log(L) =
10∑

i=1

log(pi (vi )) (10.5)

Using Eq. 10.5, the higher the value of Log(L) indicates that a specific day is
more likely to be a normal day. Similarly, the lower the value, the more likely that
day is a atypical day. The histogram of the log likelihood of all the days is shown in
Fig. 10.21.

Setting the lower threshold Tlow = −57 and the higher threshold Thigh = −47,
days with log likelihood greater than Thigh are marked as typical, days with log
likelihood less than Tlow are considered as abnormal days. Using this rule, we have
the result that {1, 2, 6, 32, 54, 56, 57, 73, 74, 76, 83, 90, 99, 100, 103, 107, 108, 109,
111, 132, 142, 143, 155, 167, 170, 181, 200, 201, 207} are classified as be atypical,
and days {7, 20, 23, 28, 30, 31, 35, 38, 42, 43, 53, 58, 65, 69, 71, 72, 78, 85, 88, 89,
91, 94, 05, 06, 13, 17, 22, 24, 26, 38, 48, 64, 68, 76, 77, 78, 89, 93, 94, 96, 103, 105,
210} are marked as typical, all the other days are normal.

In summary, the whole process of detecting the occupant’s abnormal behavior is
very straightforward. It starts from location estimation based on concurrency graph,
representing user’s daily active level using a score vector, to calculating the log
likelihood of the score vector. Therefore, The proposed method offered us a simple
method to interpret the information from binary motion sensors directly into a user
daily behavior summary.

10.4 Future Work

The two approaches that we have used so far, region occupancy-based and
concurrency-based show promise in identifying whole days as“Normal” or “Atyp-
ical,” however, it is not clear why a specific day was classified as “Atypical.” Our
future work seeks to address this issue by incorporating features that more closely
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(a) (b)

Fig. 10.22 Variation of occupant mobility between two months. a Occupant apartment transversals,
month 2. b Occupant apartment transversals, month 5

correlates with an occupants health and wellbeing. For example, Fig. 10.22 shows
an occupant’s motion between PIR sensors for the “Aruba” dataset between two one
moth periods. Most of the upper left and lower portions are similar between the
two months, but on the left graph, the occupant shows more movement into and out
of the office and guest bedrooms and less movement in and around the kitchen. If
we used these compact representations of how an occupant moves around a home
in our classification system, the atypically classified day’s mobility patterns could
directly aid caretakers/healthcare professionals in diagnosing mobility difficulties if
movement around the apartment decrease or significantly changes.

One other extensions that we are evaluating is to determine if the motion activity
in any one region or hotspot is atypical, which would future give healthcare profes-
sionals an indication as to where these atypical events are occurring. Similar work is
also being planned to look for long-term shifts or changes in an occupants mobility
and behavior, in order to look for more subtle changes in mobility over time.

10.5 Conclusion

Longitudinal data collection and interpretation is now becoming more practical
with ambient and wearable sensors technologies. With this reality, our approach of
using region occupancy patterns can be used to model behavior and to identify com-
mon patterns and atypical daily patterns of smart home occupants. We show that
both region occupancy-and concurrency-based hotspots derived from simple motion
sensors can be used to identify “Atypical” days and that patterns from these days can
be further analyzed to look for specific causes of the “Atypical” classification. This
has the potential of reducing the work load of caretakers and healthcare professionals
if the occupants are elderly or otherwise need monitoring, since they only would have
to evaluate the atypical days closely. Additionally, common behavioral patterns and
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atypical patterns could be useful as diagnostic tools to indicate lifestyle changes for
all smart home occupants, since comparisons could be made across time to see the
evolution of behavior patterns.
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Chapter 11
People Counting Across Non-overlapping
Camera Views by Flow Estimation Among
Foreground Regions

Naoko Nitta, Ryota Akai and Noboru Babaguchi

Abstract Counting the number of people traveling across nonoverlapping camera
views generally requires every personwho has exited a camera view to be reidentified
whenhe/she reenters another camera view.A typical solution is to detect an individual
person exiting or entering each camera view and establish their correspondence based
on their visual appearances and the knowledge of the camera topology, transition
time between cameras, etc. One of the main challenges is that the appearances of
different people can be similar, while the appearance of the same person can vary
in different camera views. On the other hand, a recent approach for counting people
within a single camera view is “crowd-centric”,which is to extract foreground regions
and estimate the crowd density of the regions. Considering that people often walk
together with their acquaintances but not with strangers, the reidentification solution
can be applied to the foreground regions to reidentify the groups of people. In this
case, another problem arises, that is, people sometimes meet or part outside the field
of views of the cameras. Thus, a foreground region can have correspondence with
multiple foreground regions. Our proposed method handles both of these problems
by estimating the flows from the foreground regions exiting the camera views to those
entering other camera views based on the confidence levels of their correspondence
and the constraints defined by the relationships among their areas. The estimated
flows are then summed up to count the people traveling across each pair of cameras.
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11.1 Introduction

Information concerning the number and direction of people traveling in a real
environment such as streets, stations, shopping malls, airports, stadiums, and amuse-
ment park can be useful for various purposes including marketing, navigation, and
crowdmanagement [9, 25].Manually counting the number of people is a very tedious
and time-consuming work; therefore, automated counters by using various technolo-
gies such as computer vision and infrared beams have been developed. In particular,
since cameras are installed at various locations for security purposes recently, auto-
mated counters based on computer vision are considered as one of the most practical
solutions.

Many methods have been proposed for counting the number of people who
travel within a camera’s field of view (FOV) [14]. Traditional “individual-centric”
approaches detect every individual person in a camera view [5] and count the num-
ber of people moving in the same direction [3]. However, since people can often get
occluded in crowded scenes and an approximate number of people generally suffices
for the marketing and navigation purposes, recent approaches try to solve the prob-
lemwithout explicit detection/tracking of individual persons. These “crowd-centric”
approaches generally extract foreground regions corresponding to a group of peo-
ple moving in the same directions and estimate the crowd density of the extracted
regions [2, 11, 12, 17, 18].

Meanwhile, many cameras are required for monitoring an area, which is larger
than the FOV of a camera. However, due to the limitations of the resources, these
cameras are often installed so that their FOVs do not overlap. In this case, every per-
son who has exited a camera view needs to be reidentified when he/she reenters its
spatially adjacent camera view [10]. Many methods have been proposed for tracking
persons across cameras with nonoverlapping FOVs [22] or for reidentifying indi-
vidual persons [1, 21]. Given the images of an individual person when he/she exits
or enters each camera view, these methods generally rely on the appearance based
similarity between the images to establish their correspondence. In addition, since
the appearance of the same person can change largely in different camera views and
the appearance of different persons can be similar, the contextual information such
as the topology of the camera network and the transition time between cameras are
often used. Such techniques can be considered as “individual-centric” approaches in
that they firstly need to detect every individual person.

Since people often form groups with their acquaintances and keep their social
distances from other groups of strangers while walking in public, we consider that
people counting across multiple cameras with nonoverlapping FOVs can also be
realized in a “crowd-centric” way, by reidentifying groups of people each of which is
detected as a foreground region when they exit or enter camera views [16]. However,
since people in a group detected in a camera view can split and merge in the “blind
area” outside the FOVs of cameras, a group of people detected as a foreground
region in one camera view can be detected as several foreground regions in other
camera views, which complicates their reidentification. In order to handle the split-
merge problem and to simultaneously decrease the errors in people counting caused
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by the false reidentification due to the appearance variations of the same person in
different camera views or the appearance similarity among different persons, we
propose to estimate the flows from multiple foreground regions, which have exited
camera views to multiple foreground regions, which have entered different camera
views based on the confidence levels of their correspondence and the constraints
defined by the relationships among their areas. In other words, while the “individual-
centric” approach yields a one-to-one correspondence among the foreground regions
containing an individual person, the proposed method yields a weighted many-to-
many correspondence among the foreground regions, which can contain a group of
people. Then, the number of people traversing between the FOVs of a pair of cameras
can be estimated by summing up the flows between the foreground regions, which
have exited one camera view and entered the other camera view.

11.2 Related Work

Many methods have been proposed for counting the people traveling within a single
camera’s FOV. As stated above, the most intuitive and direct approach is “individual-
centric”, which is to detect each individual person in the camera view and count
them. The main component of this approach is the detection of individual persons. A
diversity of features including histogramof oriented gradient (HOG) [4], edgelet [24],
shapelet [19], and local binary patterns (LBP) [23] and classifiers includingAdaBoost
and support vector machine (SVM) have been used. However, it is still difficult to
robustly detect individual persons especially in low resolution images and under
partial occlusion [5].

As an approach to avoid the detection of individual persons, the “crowd-centric”
approach, which extracts the foreground region and estimates its crowd density by
using a regression model to establish a direct mapping between the holistic features,
such as the area, the total edge count, and the texture in the foreground region, and
the actual number of people has been proposed [2, 11, 12, 17, 18]. Since the area
occupied by the same number of people can differ according to their distance from
the camera due to the perspective distortion, the geometric correction, or perspective
normalization is generally performed, for example, to scale each pixel by a weight
before extracting the holistic features. When monitoring a wide area, which should
provide far-view low resolution images, these “crowd-centric” approach is consid-
ered to be more appropriate.

When monitoring an area wider than the FOV of a single camera, multiple
cameras need to be used. They are either spatially adjacent or far away and their
FOVs are either overlapped or nonoverlapped. Although little work has been done
for people counting across multiple cameras [10], mainly three types of relevant
technologies have been developed: camera network topology identification, per-
son reidentification, and multi-camera tracking [22]. The camera network topology
identification is to identify overlapping or spatially adjacent nonoverlapping camera
views. Each camera view has entry/exit locations where objects enter or exit the
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camera view. The paths connecting the entry/exit locations among different cameras
can be identified based on the distribution of people’s transition time without estab-
lishing the correspondence among the individual persons entering or exiting the
camera views. The basic assumption is that, if two camera views are overlapped or
spatially adjacent, a distribution of the transition time of all pairs of the individual
persons entering and exiting the camera views within a certain time interval should
have peaks [15, 20]. People counting across multiple cameras with spatially adjacent
nonoverlapping views can be considered as the estimation of the temporally chang-
ing strength among all pairs of the camera views. In this case, since the persons
exiting a camera view can enter any other camera view, the correspondence among
the individual persons captured by different cameras needs to be established.

The problems of the person reidentification and multi-camera tracking are similar
in that their target is to establish the correspondence among the images of an indi-
vidual person observed in different camera views. Their typical approach is to use
appearance cues of individual persons such as color, shape, and texture. The appear-
ance relationships between camera views can be learned from the training data of
the images of the individual persons in different camera views whose correspon-
dences are manually labeled or can be incrementally learned without any supervised
input [6]. The potential true match can be ranked in the order of the correspondence
likelihood or the match and no-match can be distinguished by binary classification
models. For the person reidentification, since the images of an individual person can
be captured by spatially distant cameras on different days, the appearance of the
same person can change especially largely and the appearance of different persons
can be similar. Therefore, recent efforts have focused on designing the features which
capture the most distinguishing aspects of an individual person or learning distance
models for robust matching [1]. For the multi-camera tracking, the correspondence
should be established between the images of an individual person captured by spa-
tially adjacent cameras within a short time interval. Although the appearance change
of the same person can be relatively smaller, the appearance of the same person can
still change largely due to the differences in lighting, resolution, pose, etc., and the
appearance of different persons can be similar, which makes it hard to identify the
same persons based only on the appearance cues. Thus, other contextual information
such as the topology of the camera network and the transition time between cameras,
which are either manually given or learned from the training data, are often used.
Further, in order to handle the changes in the appearance between two camera views,
the brightness transfer function (BTF) between each pair of cameras is also learned
from the training data [8]. Considering the possibility of detecting a group of people
exiting a camera view as a foreground region, an optimal graph matching algorithm
was proposed to split the group into individuals to find the corresponding individuals
in another camera view [13].

As done in [10], detecting an individual person entering or exiting the camera
views and establishing their correspondence can be considered as the “individual-
centric” approach for people counting across multiple nonoverlapping camera views.
Such approach can be realized by the reidentification or multi-camera tracking tech-
niques. On the other hand, the target of our work is to propose a “crowd-centric”



11 People Counting Across Non-overlapping Camera Views by Flow . . . 243

approach by establishing the correspondence among the foreground regions, which
can contain a group of people. Traditional one-to-one correspondence among the
foreground regions established by the “individual-centric” approach can not handle
the casewhere a group of people split after exiting a camera view and its subgroups of
people enter different camera views or multiple groups of people merge after exiting
camera views and enter another camera view together. Instead, our “crowd-centric”
approach estimates the flows among the foreground regions to establish weighted
many-to-many correspondence. This should also decrease themaximum errors in the
estimated number of people caused by the false correspondence due to the appearance
variations of the same person or the appearance similarity among different persons.

11.3 People Counting Across Nonoverlapping Camera Views

Assuming that an area is monitored by J cameras with spatially adjacent nonover-
lapping views as shown in Fig. 11.1, the target of our work is to count the number
of people traversing across each pair of cameras’ fields of views (FOVs) Ci and C j .
More concretely, given D = {di

m | i = 1, . . . , J ; m = 1, . . . , Mi }, a set of Mi

foreground regions di
m , which have exited the entry/exit location in the view of the

Fig. 11.1 Example of multiple cameras with nonoverlapping views
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camera i within a time interval of T, and A = {a j
n | j = 1, . . . , J ; n = 1, . . . , N j },

a set of N j foreground regions a j
n , which have entered the entry/exit location in the

view of the camera j within the same time interval,1 the proposed method counts
the number of people Vi, j traversing from Ci to C j .

When a group of people who have exited a camera view always enter one of other
camera views as the same group after a while, Vi, j can be counted by reidentifying
the groups of people across the cameras i and j , which is to check if di

m corresponds

to a j
n , and by summing up the number of the reidentified groups of people. However,

a group of people in a foreground region can split and merge outside the FOVs of the
cameras. Therefore, instead of reidentifying them, the proposedmethod estimates the
flows between the foreground regions, allowing the flows between multiple di

ms and

a j
n s according to the confidence level of each pair of foreground regions to contain
the same persons. This approach is also considered to handle the problems that the
appearance variance of the same person in different camera views and the appearance
similarity among different persons can lead to false reidentification, and as a result,
can increase the errors in people counting.

Figure11.2 shows the overview of the proposed method, which is composed of
the following two steps:

(1) Flow Estimation among Foreground Regions
The confidence level of every pair of di

m in D and a j
n in A to contain the same per-

sons is determined based on their appearance cues and transition time.According
to the determined confidence levels and their areas, the flows among all pairs of
di

m in D and a j
n in A are estimated.

(2) Count Estimation across Camera Views
Vi, j is estimated by summing up the flows between di

ms, which have exited the

view of the camera i and a j
n s which have entered the view of the camera j .

The details of the two steps are described in the following subsections.

11.3.1 Estimating Flows Between Foreground Regions

Let us firstly explain how the proposed approach, flow estimation among foreground
regions, handles the split-merge problem and can decrease the maximum errors,
which can be caused by the falsely established one-to-one correspondence. Firstly,
Fig. 11.3a shows an example case where a group of people split after exiting from C2
and separately enter C1 and C3 (split) with a person who has exited from C4 (merge).
Establishing one-to-one correspondence would yield at least the total error of 2 when
identifying a1

1 as d4
1 and a3

1 as d2
1 , and fail to estimate the flows from C2 to C1. On

the other hand, our proposed approach can establish the weighted many-to-many

1 Here, we assume that T is determined so that both the entry and exit of each person are captured
in the time interval.
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Fig. 11.2 Overview of proposed method

correspondence among d2
1 , d4

1 and a1
1 , a3

1 according to the confidence level for each
pair of foreground regions to contain the same persons; and therefore, can estimate
the flows fromC2 andC4 to bothC1 andC3 without an error in the best-case scenario.
Secondly, Fig. 11.3b shows an example case where two persons simultaneously exit
C1 and C2 and enter C3 and C4. In this case, the error for the one-to-one corre-
spondence can be as good as 0 when a3

1 and a4
1 are correctly identified as d2

1 and
d1
1 . However, when the appearance of each person changes a lot in different camera
views or the appearances of the two persons are similar, a3

1 and a4
1 can be falsely

identified as d1
1 and d2

1 and the error in people counting can be as bad as 4 . On the
other hand, by estimating the flows from both d1

1 and d2
1 to both a3

1 and a4
1 according

to the confidence level of their correspondence, the proposed method can estimate
the flows across all pairs of cameras. This can increase the error compared to when
they are correctly identified; however, can decrease the error compared to when they
are falsely identified. Considering that the reidentification performance of the state-
of-the-art approaches is still about 20% [1] for the images of an individual person
under different viewpoints or illumination variations as in the ViPER dataset [7], the
proposed approach would be effective in decreasing the errors in people counting.

Generally, the person reidentification or multi-camera tracking techniques estab-
lish the correspondence among the individual persons based on their appearance
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Fig. 11.3 Ideas of proposed method. a Split-merge problem. b False one-to-one correspondence
problem

similarity. For multi-camera tracking, the transition time among the camera views
can also be used as the contextual information. Such appearance similarity and tran-
sition time between each pair of cameras can be learned from the training data of
the pairs of the foreground regions whose correspondence is manually labeled. Here,
2-class support vector machine (SVM) is used to predict if any pair of di

m and a j
n

contains the same persons. As the features for the SVM, the Bhattacharryya distance
of the HSV color histograms and the absolute difference of the areas are used as the
appearance cues and the difference of the times (frame numbers) of the exit and entry
of the foreground regions di

m and a j
n is used as the transition time.
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Fig. 11.4 Flows across foreground regions in D and A

Figure11.4 shows the flows across multiple foreground regions in D and A.
Intuitively, L j,n

i,m represents the ratio of the people in di
m who have traveled to a j

n .

Thus, for each di
m , L j,n

i,m should satisfy the conditions:

0 ≤ L j,n
i,m ≤ 1, (11.1)

J∑

j=1

N j∑

n=1

L j,n
i,m = 1. (11.2)

In addition, when defining the areas of di
m and a j

n as Sd
i,m and Sa

j,n , respectively,

the flow from di
m to a j

n can be represented by Sd
i,m L j,n

i,m . Considering that an object in

the view of the camera i appears R j
i times larger in the view of the camera j , L j,n

i,m
should also satisfy the condition:

J∑

i=1

Mi∑

m=1

R j
i Sd

i,m L j,n
i,m = Sa

j,n . (11.3)

For each di
m , when there is only one a j

n , which contains the same persons as di
m

with a high level of confidence, L j,n
i,m should be close to 1 for only one a j

n and 0 for

all other a j
n s. On the other hand, when there are several a j

n s, which appear to have
traveled from di

m , L j,n
i,m should be proportional to the possibility that a j

n have traveled

from di
m . Thus, c j,n

i,m , the confidence level of the prediction of the SVM, is determined

by l j,n
i,m , the distance of the pair of di

m and a j
n to the decision boundary, by using a
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Fig. 11.5 Confidence level of the prediction of SVM

sigmoid function ςγ as follows:

c j,n
i,m = ςγ (y,

j,n
i,m , l j,n

i,m) = 1

1 + exp(−γ × y j,n
i,m × l j,n

i,m)
, (11.4)

where γ is the gain and y j,n
i,m represents if di

m and a j
n are predicted to contain the

same persons (y j,n
i,m = 1) or not (y j,n

i,m = −1). Figure11.5 graphically illustrates how

the confidence level is determined. Then, L j,n
i,m is initialized by normalizing c j,n

i,m so

that L j,n
i,m satisfies Eq. (11.2).

L j,n
i,m = c j,n

i,m
∑J

j=1
∑N j

n=1 c j,n
i,m

. (11.5)

Now, L j,n
i,m = 0 represents that di

m and a j
n are highly unlikely to contain the same

persons based on their appearance cues and transition time. By keeping them intact,
L j,n

i,m should also satisfy Eq. (11.3). Thus, L j,n
i,m is updated to L̂ j,n

i,m as follows:

L̂ j,n
i,m = L j,n

i,m × Sa
j,n

∑J
i=1

∑Mi
m=1 R j

i Sd
i,m L j,n

i,m

. (11.6)

By substituting L̂ j,n
i,m as c j,n

i,m , L j,n
i,m is iteratively updated by Eqs. (11.5) and (11.6)

until the total changes in L j,n
i,m after an iteration represented by ε converges after

Eq. (11.5), so that L j,n
i,m approximately satisfies both Eqs. (11.2) and (11.3).
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Finally, in order to avoid the tiny amount of noisy flows among the foreground
regions, L j,n

i,m is set to 0 when L j,n
i,m < λ and then is normalized again by Eq. (11.5).

11.3.2 Count Estimation

Since Sd
i,m represents the area of persons in a camera view, it is converted to the

number of persons N d
i,m by the linear function:

N d
i,m = αi × Sd

i,m + βi . (11.7)

The parameters αi and βi are determined by the linear regression using a set of the
training data consisting of the foreground regions extracted from the view of the
camera i with manually labeled number of persons in the regions. Since di

m and

a j
n are extracted from the same entry/exit locations in the camera views, their areas
would depend only on the number of people and the geometric correction within
each camera view is not applied. Then, the number of people Vi, j traversing from
Ci to C j is calculated as follows.

Vi, j =
∑

di
m∈D

∑

a j
n ∈A

N d
i,m L j,n

i,m . (11.8)

Further, R j
i in Eq. (11.3) in the previous section is determined as

R j
i = αi

α j
. (11.9)

11.4 Experiments

An intersection in a university campus is monitored by two cameras as shown in
Fig. 11.6. The top left and bottom right images are the views of the two cameras. The
resolution and the frame rate of the videos are 640 × 360 and 30 fps, respectively.
From each camera view, two rectangular regions are extracted as shown in Fig. 11.6 to
simulate the situationwhere four cameras, namelyCAM1, 2, 3, and 4, aremonitoring
the intersection. In the experiments, the numbers of people traversing between the
FOVs of each pair of these four cameras are estimated. Although the FOVs of CAM1
and CAM2 seem to be overlapped in the figure, the overlapped region is only handled
as the FOV of CAM2 so that their FOVs can be considered as nonoverlapped. Thus,
no group of people simultaneously appears in more than two camera views.

A 120-min video captured on February 3, 2014 and another 120-min video cap-
tured on February 25, 2013 are used to obtain the training and test samples, respec-
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Fig. 11.6 Intersection monitored by cameras

tively, which are pairs of di
m and a j

n . di
m and a j

n were manually selected from the
foreground regions, which were extracted from the entry/exit locations in the camera
views by the background subtraction. For each pair of cameras i and j , the pairs of
di

m and a j
n containing the same persons and the same number of pairs of di

m and a j
n

containing only different persons were manually prepared as the positive and nega-
tive training samples for the SVM, respectively. Table11.1 shows the number of the
positive/negative samples for each pair of cameras.2 Further, the number of people
in the training samples were specified manually and used to obtain the parameters
αi and βi in Eq. (11.7) for each camera by the linear regression.

Given all the foreground regions D and A extracted from the 120-min test video,
we firstly evaluated the accuracy of the SVM by examining if the correct a j

n is ranked
in the top P when ranking all a j

n in the order of the initial c j,n
i,m . c j,n

i,m is obtained

by Eq. (11.4) for each di
m and indicates the likelihood of a j

n to contain the same
persons in di

m according to their appearance cues and transition time. As can be seen

Table 11.1 Number of training samples for each pair of cameras

Camera pair 1–2 1–3 1–4 2–3 2–4 3–4

� of positive/negative samples 79 179 104 81 70 56

2 Since no one entered the camera view he/she had exited in the videos used in the experiments, we
did not consider such camera pairs, e.g., 1–1.
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Table 11.2 Accuracy of SVM

P 1 2 3

Acc@P 26.9% (316/1,175) 48.5% (570/1,175) 66% (775/1,175)

in Table11.2, for only 26.9% of di
m , the corresponding a j

n ranked first. This result
indicates that, due to the appearance variance of the same group of people in different
camera views and the appearance similarity among different groups of people, the
false correspondence is likely to be established by relying only on the SVM.However,
for 66% of di

m , the corresponding a j
n ranked within the top 3, which indicates that

estimating some flows to a j
n in the top ranks can be effective in decreasing the errors

caused by the false correspondence.
Given the test samples, which have entered or exited the camera views within

every T = 5min, the number of people traversing each pair of the four cameras is
estimated. The results were evaluated with the absolute errors between the estimated
and the actual number of people. Table11.3 shows the total number of people who
have exited the four camera views in each time interval with the number of people
who merged and split outside the FOVs of the cameras. The numbers in the brackets
represent the numbers of the foreground regions. Figure11.7 shows the actual number
of people traversing between each pair of cameras in each time interval.

The effectiveness of the proposed approach was evaluated by comparing with
when establishing one-to-one correspondence for the foreground regions. In order to
establish one-to-one correspondence, when di

m has only one a j
n , which is predicted

to contain the same persons by the SVM, they are considered as a match. Then, the
correspondence among other di

m and a j
n is established in a greedymanner in the order

Table 11.3 Actual number of people in each time interval (Numbers in brackets are the number of
the foreground regions)

Time interval (min) All Split Merge Time interval (min) All Split Merge

0–5 58(40) 8(2) 0(0) 60–65 74(52) 5(1) 3(3)

5–10 64(57) 0(0) 0(0) 65–70 73(50) 3(1) 0(0)

10–15 72(50) 4(1) 2(2) 70–75 87(66) 2(1) 9(4)

15–20 87(59) 0(0) 19(8) 75–80 60(49) 0(0) 0(0)

20–25 89(62) 7(2) 0(0) 80–85 67(47) 0(0) 0(0)

25–30 86(45) 8(1) 0(0) 85–90 70(51) 11(1) 9(6)

30–35 79(54) 0(0) 0(0) 90–95 51(41) 4(1) 0(0)

35–40 74(53) 3(1) 0(0) 95–100 76(51) 4(1) 0(0)

40–45 89(64) 2(1) 0(0) 100–105 53(38) 0(0) 5(2)

45–50 60(45) 3(1) 0(0) 105–110 59(41) 0(0) 0(0)

50–55 82(59) 4(1) 0(0) 110–115 65(35) 25(4) 3(2)

55–60 61(39) 0(0) 0(0) 115–120 38(27) 4(1) 5(2)
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Fig. 11.7 Actual number of people traveling across camera views. a From CAM1 to CAM2, 3,
and 4. b From CAM2 to CAM1, 3, and 4. c From CAM3 to CAM1, 2, and 4. d From CAM4 to
CAM1, 2, and 3

of the prediction confidence of the SVM c j,n
i,m . This corresponds to the “one-to-one

correspondence” approach indicated in Fig. 11.3, where each di
m is associated with

at most one a j
n in a way that the sum of the matching confidence of all matched pairs

would approximately bemaximized. Such approximate solution of the combinational
optimization problem was able to increase the number of the correct matches and the
accuracy improved from 26.9 to 37.0% as shown in Table11.4. By using the obtained
correspondence, the number of people traversing each pair of cameras is estimated
also as described in Sect. 11.3.2 for the comparative approach. For the proposed
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Table 11.4 Accuracy after greedy approach

Match False Miss Accuracy of foreground Accuracy of camera

correspondence correspondence

435 731 9 37.0% (435/1175) 61.7% (725/1175)

Fig. 11.8 Absolute errors between estimated and actual number of people. a Errors in flows from
CAM1. b Errors in flows from CAM2. c Errors in flows from CAM3. d Errors in flows from CAM4

approach, the gain of the sigmoid function was set as γ = 1.0, the iterations were
repeated until ε < 0.001, and λ was set as λ = 0.1.

Figure11.8 is the box plot of the absolute errors between the actual numbers of
people traversing between each pair of cameras and the numbers estimated by the
comparative and proposed approaches. The false correspondence of the foreground
regions does not affect the results of people counting if the falselymatched a j

n appears
in the same camera view as the correct a j

n . When evaluating if the correct camera
correspondence is established for each di

m for the comparative approach, the accuracy
improved largely to 61.7%as shown inTable11.4,which explains the relatively small
errors in the estimation by the comparative approach considering that the accuracy of
the foreground region correspondence was only 37.0%. Nevertheless, for most pairs
of cameras, the proposed approach was able to further decrease the errors compared
to the comparative approach. Figure11.9 shows an example of the correspondence
established by each approach. By the comparative approach, when groups of people
split or merge outside the FOV of the cameras, they can only be matched with at
most one of their subgroups as d1 and a1 in the example. Further, as the result of the
split/merge, D and A can have different numbers of the foreground regions. Then,
no correspondence can be established for some foreground regions such as d12 in
this example. On the other hand, the proposed approach can estimate the flows from
multiple foreground regions in D to multiple foreground regions in A. Thus, a group
of people can be matched with its multiple subgroups such as a1, which is matched
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Fig. 11.9 Example of established correspondence with group merge. The dark shaded cells
represent the actual correspondence. The light shaded cells represent the falsely established corre-
spondence. a Weighted many-to-many correspondence (Proposed approach). b One-to-one corre-
spondence (Comparative approach)

with d1 and d3. The flows across different numbers of foreground regions can also be
estimated. In the example, estimating the flows from d12 to a11 led to the estimation of
the flows from d11 to a10, then from d7 to a6, d5 to a4, and d2 to a2 in a chain reaction,
which can reduce the errors caused by the false correspondence. Figure11.10 shows
another example when there is no group split/merge. Estimating the flows among
multiple dm to an can estimate some flows between the correct pairs of the foreground
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Fig. 11.10 Example of established correspondence without group split/merge. The dark shaded
cells represent the actual correspondence. The light shaded cells represent the falsely established
correspondence. a Weighted many-to-many correspondence (Proposed approach). b One-to-one
correspondence (Comparative approach)

regions which were not established by one-to-one correspondence. While the errors
were increased for some pairs such as d2 and a2, the errors were decreased for other
pairs such as d3 and a3, d4 and a4, d6 and a6, and d7 and a7. Figure11.11a shows an
example where the proposed approach successfully estimated the number of people
traversing between the pairs of cameras by comparing the results with the ground
truth and the results estimated by the comparative approach.

By contrast, the proposed approach obtained larger errors for the number of people
traveling from CAM3 as shown in Fig. 11.8c, especially from CAM3 to CAM4. As
can be seen in Fig. 11.11b, noisy flows were often estimated between the incorrect
pairs of the FOVs of the cameras. In addition to the appearance variations/similarity
of the persons, the area difference of the same group of people in different camera
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Fig. 11.11 Examples of results a GOOD Time interval: 45–50 min b BAD Time interval: 75–80
min

views can largely affect the flows obtained by Eq. (11.6). For example, in Fig. 11.9,
a5 contains the same persons in d6, but is smaller than d6. As a result, the flows
from d6 to a5 are restricted to 0.85, giving the remaining flows to other foreground
regions such as a6. a7 also contains the same person in d8, but is larger than d8.
Then, a7 requires more flows from other foreground regions such as d7. Both of
these decreased the flows between the correct pairs of the foreground regions d7 and
a6 and increased the flows between the incorrect pairs of the foreground regions
such as from d6 to a6 and from d7 to a7. Such small amount of incorrect flows can
accumulate as the numbers of the foreground regions in D and A increase especially
between the pairs of cameras where no people traverses. Since the number of people
exiting the view of CAM3 are much larger compared to those exiting the views of
other cameras and it was often the case that no people traveled to CAM4 as shown in
Fig. 11.7, the errors accumulated between CAM3 and CAM4. Thus, a way to handle
such difference in the areas of the foreground regions of the same group of people
in the normalization by Eq. (11.6) needs to be devised.

Finally, we discuss the efficiency of the proposed method. The experiments were
conducted on a PC with a Intel(R) Core(TM) i7-2600 (3.40GHz) CPU and 3.49GB
memory. After extracting the features from the foreground regions, the comparative
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Fig. 11.12 Relationships between number of iterations and changes in estimated flows L j,n
i,m

approach took only about 1 millisecond per a time interval of T = 5min on average,
while the proposed approach took from 0.96 to 23.2 s depending on the number of
the combinations of the foreground regions di

m and a j
n and the number of iterations.

Figure11.12 shows the changes of the estimated flows L j,n
i,m represented by ε after

iterations for the time interval of 40–45min which took 0.96 s and of 115–120min
which took 23.2 s. Although the iterations were stopped when ε < 0.001 in the
experiments and the processing time can be considered still acceptable compared
to the duration of the processed video, changing the threshold can largely influ-
ence the computation time and the errors. As λ and γ would also affect the errors,
such parameters should be changed adaptively considering their effects both on the
computation time and the errors.

11.5 Conclusions

We proposed a method for counting the number of people over an area monitored
by multiple cameras with spatially adjacent nonoverlapping views by estimating
the flows among the foreground regions which have exited and entered the camera
views. For 120-min videos capturing an area in a university campus by four virtual
cameras, the proposed approach was able to estimate the number of people traveling
in the monitored area every 5min with the average errors of 1.52 persons per pair of
cameras with the standard deviation of 1.54.

As futurework,more experiments are necessary to evaluate the effects of changing
the parameters. The number of the cameras needs to be increased to more accurately
examine how the errors caused by the false correspondence of the foreground regions
can be alleviated. Further, the estimated number of people traversing between each
pair of cameras’ FOVs can be used as the transition probability between the FOVs,
which can additionally be used to improve the confidence level of the foreground
correspondence. How to handle the error accumulations across cameras with no
traffic especially due to the area difference of the foreground regions of the same
group of people in different camera views needs to be devised.
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Chapter 12
2D Human Pose Estimation and Tracking
in Non-overlapping Cameras

Murtaza Taj, Ali Hassan and Abdul Rafay Khalid

Abstract This chapter will discuss approaches to 2D human pose estimation and
tracking in a non-overlapping camera network. It will demonstrate the limitations of
current approaches and suggest strategies to overcome them. In particular, compu-
tational intractability due to high dimensional limb space, violation of articulation
constraints, and view-point dependence. The chapter is divided into threemajor com-
ponents; namely, search space reduction, pose validation, and view-invariant pose
tracking in a non-overlapping camera network. Firstly, we present approaches for
search space reduction, such as Kinematic Tree based sub-region selection for each
limb,Mean-Shift basedmaxima search on the likelihood surface, and temporal based
reduction of search in parameter space. Secondly, we devise a PCA based Pose Vali-
dation strategy to prune out anatomically incorrect hypotheses. Thirdly, we propose
to incorporate articulation constraints while keeping the problem tractable. Finally,
we enable view-invariance through the fusion of only two pose detectors and an
articulated skeleton tracker.

12.1 Introduction

Human pose estimation from a single image or an image sequence such as the case
of a monocular camera or multiple non-overlapping cameras has gained significant
attention in recent years. It has multiple applications in human computer interaction,
behaviour monitoring, surveillance and entertainment. There are many approaches
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that estimate a 3D human pose using multiple overlapping sensors particularly
cameras [20, 23]. In the case of a network of non-overlapping cameras, the problem
is similar to that of pose estimation from a monocular camera.

The problem of human pose estimation and tracking in monocular images is to
automatically extract and track the position and orientation of limbs and their joint
angles over time. This problem is inherently challenging as muscles, body tissue
and clothing obscure the skeleton structure. Moreover, the human skeleton has high
degrees of freedom and complex kinematics. It is composed of articulated joints1

between pairs of limbs which implies that position, orientation and scale of each limb
is constrained by its adjacent limbs. Incorporating articulation into pose estimation
is thus the correct way of formulating the problem. Since the search in this combined
space makes the problem intractable, this fundamental constraint is usually violated
by introducing independence assumption between limbs [1, 2, 5, 7, 8, 16, 17].
This leads to an anatomically invalid pose solution which violates biomechanical
limitations over part motion. Several attempts have been made to overcome these
limitations by imposing a joint prior between pairs of limbs [17]. This limitation can
also be overcome by considering the limbs are planes articulated at a point for which
a linear least square solution can be formulated [4].

When applying pose estimation techniques to non-overlapping cameras, one of
the challenges is the continuously changing view of a person. To enable continuous
pose estimation and tracking over a wide range of views, either a bank of viewpoint-
specific detectors can be trained [2] or a fusion methodology can be designed that
just fuses output from a frontal and a profile pose detector with a tracker to achieve
viewpoints invariance. In contrast to fusion of homogeneous classifiers, fusion of
heterogeneous set of detectors and trackers is a significantly more challenging prob-
lem. To overcome this limitation, decoding strategies can be used that allows for
fusion of complementary information from heterogeneous algorithms.

Existing 2D pose estimation approaches cannot be applied directly to a camera
network due to their speed and viewpoint limitations. In this chapter we discuss sev-
eral improvements on these approaches that canmake 2D Pose estimation algorithms
suitable for multi-camera setups. These include search space reduction using both
spatial as well as temporal cues and view-invariance using Fusion of a frontal and
a profile pose detector. Other improvements include replacing spring-like connec-
tion model with articulated skeleton tracking [4] and reducing false detections by
imposing kinematic constraints while detecting each limb instead of post detection.
A Principal Component Analysis (PCA) based validation criterion is also discussed
to further enforces the correctness of the obtained 2D pose.

1 In this work, by articulated skeleton we refer to a skeleton in which each pair of adjacent limbs
shares a common point (a joint) called articulation point. This common point introduces a joint
constraint on the movement of these limbs called articulation constraint.
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12.2 Background

One of the initial approaches in 2D pose estimation was Pictorial Structures (PS) [8],
which models the object as a collection of distinctive parts with geometric relation-
ships between them. This model characterizes local visual properties of object parts
and proposes spring-like connections between pairs of parts. Seminal work on 2D
pose estimation was conducted by Ramanan et al. [16] in which an edge template for
each limb of a person is learned. Template matching is then performed on test images
at various positions, orientations and scales to find the best location for each limb.
Although the method produced promising results, search in a 4 dimensional space
is its major computational bottleneck. Eichner et al. [5] proposed a search space
reduction methodology based on foreground highlighting and the Grabcut algorithm
to segment background pixels. However, this method relies on segmentation, which
may remove edges belonging to the body parts. Even after segmentation, the search
for each limb is carried over the entire foreground region. On the other hand, this
chapter suggest a strategy that does not require segmentation and searches only in
the expected limb region. In addition, these methods rely on loose articulation con-
straints they may generate anatomically incorrect poses. In order to counter this, a
PCA based pose validation criteria that ensures the pruning of invalid hypotheses
has shown improvements [9].

Most work on pose estimation [5, 16, 22, 25] is viewpoint specific, focusing either
on profile or on frontal pose. However, viewpoint independence can be introduced
by training a bank of viewpoint specific Support Vector Machine (SVM) classi-
fiers [1]. The output of these classifiers can then be fed into another bank of SVMs
that establish which classifier output should be considered correct. Due to limited
training data, it is not possible to train a classifier for every viewpoint, limiting the
scalability of such approaches. In contrast, we devise a novel method that achieves
similar view-invariance utilizing only two view-specific pose detectors while achiev-
ing computational tractability [9].

In many real scenarios, it is often challenging to identify every limb in a 2D
pose due to occlusions and lack of visible features. Discriminative-part based model
addresses this problem by representing each limb as multiple parts with spring-like
connections [7, 24]. Only a rough stick man like figure can be estimated through
thesemodels in which limbs in a pair of parts could be loosely connected. This results
in many incorrect poses and lack of accuracy in parts localization. The connection
betweenparts canbebetter represented byarticulation constraintsbetween eachpart-
pair. Articulation constraint restricts the part estimation from being significantly off
from the estimated location of other partswhich results in better accuracy. Introducing
articulation constraint requires augmenting the spatial relational model with model
relative orientation, position and foreshortening [17] which restricts the number of
possible solutions, and hence improves robustness in cluttered scenes. Furthermore, it
inherently estimates the articulation point between part-pairs. The augmented spatial
relational model requires parameter search in higher dimensional space and needs
more computations as compared to modelling each limb independently.



264 M. Taj et al.

2

57
.
.
.

1st frame

1
2

9
.
.
.

i th frame

1
2

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 12.1 Sample intermediate steps of the algorithm. a Input image with Person detection and
TLD tracker (red: Person detector, cyan: tracker, green: fused bounding box). b Cropped portions
showing search space reduction through kinematic tree. c Histogram of oriented gradients. d Heat
maps from SVM scores for 3 sizes and 19 orientations on 1st frame only. e Heat maps from SVM
scores for 3 sizes and 3 orientations for each subsequent frame showing further reduction in search
space through tracking. f Pose estimated by detector. g Pose estimated by articulated skeleton
tracker. h Final pose after fusion

One efficient method to impose articulation constraints has been proposed by
Yasser et al. [4], which models the articulated joints as a system of 2D planes. The
motion of these joints can be estimated using the relative transformation between
the 2D planes. The major advantage of this method is a linear least squares solution
for affine cameras which is tractable and unlike [22], it does not require 2D to 3D
estimation. This method works well for textured planes, however, it is sensitive to
occlusion, suffers from frequent drifts in tracking, and requires manual initialization.
To overcome these problems, we propose to initialize the articulated tracker using
input from a pose detector. To avoid drifts and achieve consistent tracking, we fused
twoview-specificposedetectorswith this tracker. It is interesting to note thatwhen the
frontal pose detector fails, a profile detector usually provides the desired estimation
and vice versa. Similarly, when both these detectors fail, tracking under articulation
constraints can continue to estimate the 2Dposewhile drift in tracking is kept in check
by the detectors [9]. Thus these approaches provide complementary information
about the 2D human pose and their fusion should achieve better performance. One
can fuse different algorithms; a person detector [14], an Open Tracking-Learning
Detection (TLD) bounding box tracker [12], frontal and profile pose detectors and
an articulated skeleton tracker to obtain consistent tracking of person bounding box
and its pose (10 limb articulated skeleton) over a video sequence from multiple
non-overlapping cameras. Figure12.1 shows the overview of such approach.

12.3 Pose Detection

12.3.1 Problem Formulations

In Pictorial Structures [1, 8, 17] (PS), a body is defined as a configuration of body
parts L = {l1, l2, . . . , lN } where each part li is defined as li = {xi , yi , si , θi }, repre-
senting its position (xi , yi ), scale si and orientation θi .
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Given imageobservation z, the goal is to estimate theposterior of part configuration
L as p(L|z) ∝ p(z|L)p(L), where p(z|L) is the likelihood of the image observation
z given a particular part configuration L and a prior p(L). The likelihood term is
decomposed into the product of single part likelihoods p(z|L) = ∏N

i=1 p(z|li ). The
desired part configuration L is then obtained using a maximum a posteriori (MAP)
approach as:

argmax
L

p(L|z) = argmax
L

p(z|L)p(L). (12.1)

These parts are detected by searching the entire parameter space for each part and
then a kinematic tree is used to filter false hypotheses.

12.3.2 Detector

In order to determine the part likelihood p(z|L) , we need to train detectors for each
limb. This is achieved by first cropping limb regions for each part from the input
images. Histogram of Oriented Gradients (HoG) features are then computed on the
patches after scale and orientation normalization. These features can then be used
to train an SVM for each part, either with a linear kernel or an intersection kernel.
However, the intersection kernel is preferred due to its superior performance [14].
At the classification stage, a candidate region is again transformed into the sameHoG
space and a likelihood (classification confidence) is obtained for each limb from its
trained SVM.

To reduce the number of false limb detections due to background clutter, a
kinematic tree prior p(L) that describes dependencies between part pairs (li |l j )

is imposed [17]. The tree prior p(L) can be modelled by a Gaussian distribution in
the transformed space of part joints, l̂.

The posterior p(L|z) is obtained by applying each part prior on the likelihood
obtained from respective SVMs for all limbs. Exceptions include the torso and head,
as the torso is defined as a root node. Instead of performing a full search in the
space for each limb, a reduced search can be performed. For example, in the spatial
domain, the search space can be reduced by filtering the pixels that do not belong
to the body part by using image segmentation approaches or by applying kinematic
tree constraints (see Sect. 12.4). Kinematic structure also imposes restrictions on
movement of individual limbs over any given time. Temporal constraint can further
be exploited to reduce the search space in all four dimensions which is discussed in
Sect. 12.4.

Furthermore, the MAP estimate from the set of all possible pose hypotheses L
will be the same as the MAP estimate from a subset of hypotheses corresponding to
highly likely limb hypotheses only. Instead of full search, these highly likely limb
hypotheses can be obtained by just estimating the peaks of the density such as by
using Mean Shift (see Sect. 12.4.4).
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A kinematic tree not only reduces the spatial search space, but also helps in
restricting the generation of false hypotheses. False hypotheses can also be filtered
by projecting such hypotheses in a low-dimensional sub-space of valid poses. Pose
validation is discussed in Sect. 12.5.

12.4 Search Space Reduction

12.4.1 Foreground Highlighting

Foreground highlighting has been proposed to reduce the search space in spatial
parameter space (x, y) [5] (Fig. 12.1b). This approach is based on segmenting the
given image into foreground and background regions to limit the search in foreground
regions only. This segmentation can be performed by applying any semi-supervised
segmentation approaches such as K-Nearest Neighbour or Graph based partitioning
(Grab cut).

These approaches require a manual initialization of foreground and background
regions. Such initialization can also be done automatically by using face detectors.
Assumptions such as the person being upright can also be used to obtain an estimate
of a possible torso region. Regions of the image, away from the face and torso can
then be used for initialization of background region. However, this method searches
the entire highlighted region for each limb as it does not provide information about
possible location of the limbs. Incorrect foreground highlighting and full feature
space search (all sizes, orientations and highlighted pixel positions) increases the
chances of incorrect limb estimation. Moreover, once the background regions are
removed from the image, the low-level image features such as edge features along
the limbs are degraded resulting in low limb likelihood.

12.4.2 Kinematic SSR

Most of the pose estimation literature assumes that fully cropped images of a per-
son are available, having the subject in the center and minimal background pixels
[16, 25]. In order to perform pose estimation in real scenarios, methods such as
person [14] and face detectors [5] are needed to localize the bounding box (BBox)
enclosing the person. Many of these person detectors such as HoG based person
detector [3] result in a very loose/enlarged BBox around a person.

Searching the entireBBox for each limb location could result in significant amount
of computations, particularly in case of enlarged BBoxes. Unlike [1, 17], it is not
necessary to search the entire region inside a BBox, instead a small sub-region
containing head and torso can be obtained from the output of face detection. Using
these estimates, kinematic constraints can be applied to reduce the spatial search
space for each limb. To apply these constraints, a kinematic tree chain can be traversed
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Fig. 12.2 Sample result
showing effect of pose
estimation on search space
reduction. a Search space
reduction through foreground
highlighting [5]. b Proposed
KTSSR and PCA

(a) (b)

and possible sub-regions for each limb can be identified (Fig. 12.1c). This can reduce
the search in the spatial dimensions to <35% of the full search for each limb.

12.4.3 Temporal SSR

Abiomechanical skeleton canonly performahighly constrainedmotion during a time
step δt . Furthermore, assuming δt to be very small, say <1 second, this motion will
also be very smooth and can be modelled with a smooth curve. This leads to the idea
that given the pose estimation in a previous frame, the pose search in current frame
can be highly reduced. To this extent, it is enough just to perform the full parameter
space search in the first frame only. The search space of all the consecutive frames
can be reduced to only a few possibilities which reduces the computations as well as
chances of incorrect estimation as shown in Fig. 12.2.

To fully exploit the temporal redundancy in pose estimation it is desired to con-
sistently track the person across the image sequence. For consistent tracking, it is
desirable to track a compact BBox of a person that excludes protruding limbs (as in
the person detector output) to protect the tracker from drifting into the background.
One can fuse the output from the upper body detector2 to obtain a such compact
BBox. Tracking of these detected BBoxes can help in reducing the search in size as
well as orientation dimensions.

At the time of initialization several orientations and scales (say 19 and 3 respec-
tively) can be tried, however in each subsequent frames only very few corresponding
orientations (say 3) need to be tested. This not only results in a significant boost in
performance, but it also reduces the detection of false limbs due to background clut-
ter. This kinematic temporal search space reduction (KTSSR) may limit the chances
of recovering in case of incorrect estimation from PS. To cater for this, a pose val-
idation step can be performed before applying temporal SSR. This is discussed in
Sect. 12.5.

2 http://groups.inf.ed.ac.uk/calvin/calvin_upperbody_detector/.

http://groups.inf.ed.ac.uk/calvin/calvin_upperbody_detector/
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(a) (b) (c) (d)

Fig. 12.3 a Cropped image patch for upper arm. b Exhaustive search over spatial space. c Pro-
posed Mean-shift estimate showing that peaks can be recovered without traversing the entire space
resulting in saving computations. d Recovered limb hypotheses

12.4.4 Mean-Shift

The MAP formulation of Eq. (12.1) requires a part likelihood and a prior. If the size
and orientation of the limb is fixed, the resulting likelihood surface can be approxi-
mated as a mixture of densities (Fig. 12.3). Furthermore, the set of hypotheses that
maximizes the full posterior includes either one of the peaks or nearby hypotheses.
The problem is thus reduced to that of finding the modes or peaks of the distribu-
tion, without computing the entire surface. This can be reformulated as a problem of
kernel density estimation (KDE) using Mean-shift (MS) [10, 13].

MS is a nonparametric mode seeking technique that does not require prior knowl-
edge of the number of peaks. Moreover, MS climbs the gradient of a probability
distribution to find the nearest dominant mode or peak and does not impose con-
straints on the shape of the data. Furthermore, as the algorithm climbs the gradient,
the hypotheses near the peaks are automatically estimated as a part of the process.
Given n samples (l1, l2, . . . , ln) on a 2D space R

2 using li = (xi , yi ) only, the
multivariate KDE obtained with kernel K(l) and bandwidth h is:

f (l) = 1

nh2

n∑

i=1

K
(

l − li
h

)

. (12.2)

The MS algorithm maximizes the density whose modes are located at the zeros
of the gradient, � f (l) = 0. Due to similarity in limbs and background clutter,
the response surface is usually multi-modal resulting in multiple peaks. In order to
ensure all such peaks are estimated, stratified sampling over the spatial dimension
can be used. Figure12.3 shows that the peaks of the surface can be estimated without
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Fig. 12.4 Effect of kernel size and initializations on computation cost. a Increase in number of
initializations. b Increase in bandwidth

traversing the entire surface, provided that there are sufficient number of initialization
and there are non-flat regions in the space.

Flat regions in the space can be dealt with by choosing an appropriate kernel
and by increasing its bandwidth. Given the nature of the response map and due to
its convenient mathematical properties, an isotropic uniform density function is a
popular choice for the kernel K. Thus, only two parameters need to be tuned for
estimating all the peaks, i.e. the number of initialization and the kernel bandwidth.
The implications of changing these parameters on the amount of computations can
be seen in Fig. 12.4. It can be observed that increase in kernel bandwidth is much
more costly than having more initializations.

The bandwidth h of the kernel is a free parameter that exhibits a strong influence
on the resulting estimate. Intuitively, one wants to chose h as small as the data allows
and for the Gaussian Kernel it is directly proportional to the variance of the data.
The response surface to be estimated is generally computed using a sliding window
operation with high overlap between the two consecutive windows resulting in a
smooth surface with low variance. Hence, for each estimate it is enough to compute
9 samples that fall within the 3 × 3 window centered over the previous estimate.

This approach can also be extended to higher dimensions such as 3D ({xi , yi , θi })
and full 4D limb space ({xi , yi , θi , si }) . The limitation of using 3D and 4D variants
of MS is that they require dense sampling over the size and orientation space as well.
The search in angular dimension can be dense, if the range of angles to be tested
is narrow and is finely sampled, which is generally the case in 2D pose estimation
and tracking. In case of detection only, using many values for limb scale and full
angular range of −pi to pi with small step sizes is computationally very expensive.
Two variants of Mean-Shift algorithm can be used, MS2D for pose detection only
and MS3D for pose tracking. MS2D works for the spatial dimension only. A partial
response surface containing the peaks is estimated for each size si and orientation θi ,
which are then combined to obtain the final pose of a limb. MS3D is more applicable
in case of pose tracking where the angular dimension can be densely sampled, while
the size estimates have been provided by the tracker.
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Fig. 12.5 a Exhaustive search in 3D space of position and orientation. b Reduced space sampled
by 3D-Mean shift

It can be shown that similar results can be achieved without performing
exhaustive search in 3D space (see Fig. 12.5), thus resulting in significant savings in
computations.

12.5 Pose Validation

Many real world objects can have limb like appearances, such as portion of furni-
ture, door frames, poles, pillars, and road marks. Due to perspective distortion, these
objects may appear very close to an articulated body in an image and can even have
similar sizes and can be identified as possible limb candidates. In most cases,a skele-
ton estimated by incorporating these false limbs does not adhere to the anatomical
constraints.

A simple method for pose validation has been proposed which is similar to Eigen
Faces based facial recognition. For each 20 point skeleton (PS), a pairwise distance
between points is computed resulting in a 190 (C202 ) dimensional feature vector. These
features are then normalized by the largest distance within the vector and are used as
a signature for this skeleton. For N skeletons, this results in a N × 190 dimensional
feature matrix. PCA can be performed on this feature space and the top few (e.g. 20)
principal components can be selected for skeleton reconstruction. At the validation
stage, all the candidate skeletons can be projected into the same 190 dimensional
space. The one having highest similarity with the components is selected as being
valid. Similarity criteria such as reciprocal of L2-norm in the PCA space 1

1+‖ . ‖ can
be used for valid hypothesis selection. This approach is not only simple and fast, but
also requires less data. This approach can be further improved by introducing online
update of PCA. Figure12.6 shows a comparison of the top 4 candidates from MAP
with top 4 selected based on validation criterion.

The limitation of this approach is that we require different PCA pose validation
detectors, for frontal and profile poses. We reconstruct each pose at each time using
both these spaces and select the one with best reconstruction. We also use this
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Fig. 12.6 a Correct pose from ground truth. b–e Top 4 poses selected using MAP. f–i Top 4 poses
selected using PCA

Table 12.1 Comparison between ours and other state-of-the-art algorithms

Method T UA LA H Total

Eichner et al. [5] 98.7 82.8 59.8 97.9 80.1

Sapp et al. [19] 100 95.3 63.0 96.2 85.5

Yang et al. [24] 100 96.6 70.9 99.6 89.1

Black et al. [25] 99.6 94.7 62.8 99.2 85.6

Ours 100 98.1 57.8 100 85.3

Key T Torso, UA Upper arms, LA Lower arms

reconstruction as a switching mechanism between the pose detectors. The consis-
tency of the detector and the tracker is imposed through fusion of pose detection with
the Articulated Skeleton (AS) tracking, which is discussed next in Sect. 12.6.

12.5.1 Example—Search Space Reduction and Pose Validation

In this example, the frontal pose detector was trained on standard 2D Pose estimation
datasets such as Leeds Sport Pose [11], TUD Multiview Pedestrian [1] and Human
EvaI [21], using 171, 74 and 155 images respectively. The profile detectorwas trained
on 344 images from TUD-Multiview dataset only. We also included flipped version
of all the images resulting in total 1488 training images. Joint priors and PCA basis
were also trained on the same data.

Two of the improvements on the PS model discussed in this chapter are search
space reduction and PCA validation. This extended model is compared with four
recent 2D pose extraction algorithms [5, 19, 24, 25] on the Buffy testset3 (con-
sisting of 276 images) using the values reported in [25] (see Table12.1). Unlike
[5, 19, 24, 25] no retraining is performed on this dataset and the initial training also
does not contain any images from Buffy series. Despite this, the extended method
performed consistently better when compared to other approaches.

3 http://www.robots.ox.ac.uk/~vgg/data/stickmen/buffy_stickmen_v3.01.tgz.

http://www.robots.ox.ac.uk/~vgg/data/stickmen/buffy_stickmen_v3.01.tgz
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Fig. 12.7 Qualitative evaluation on the Buffy testset showing good performance, particularly on
failure scenarios of [25]

The only exception is in case of lower arm where Eichner et al. [5] has produced
better results. For consistency, we have used the same parameters for each limb,
however the lower arm in particular has the flexibility of being anywhere in a com-
paratively larger area. Perhaps, slightly increased number of initializations for lower
arm could have produced better results at the cost of increasing the number of com-
putations.

Quantitative evaluation was performed using the standard Percentage of Correctly
estimated body Parts (PCP) performance criterion (v3.01).4 PCP scores for [24] are
comparatively better for lower arm only because this criterion evaluates individual
parts without considering overall pose validity. This means that an invalid pose can
have higher PCP score when compared to a valid pose, which is the reason in this
case. Discriminantly trained part-basedmodel [24] allows very loose spring like con-
nections, which may result in invalid poses. This is inconsistent with the hypotheses
of having articulated joints that share a common point between limbs. This filters out
inconsistent poses and increases robustness against track drifting. Figure12.7 shows
the qualitative evaluation on the Buffy dataset, particularly where [25] performed
poorly.

12.6 Articulated Skeleton Tracking

Tracking of Articulated Skeletons (AS) [4] can be thought of as motion estimation
with articulation constraints. The major difference between PS and AS is in the
explicit formulation of the articulation constraint. In AS, as proposed by [4], if two
limbs li and l j share a common point pa , and they undergo an affine transformation
Ai and A j respectively, then:

4 PCP computes the distance between the estimated skeleton and the ground truth, skeletons found
closer than a set threshold (commonly set to 0.5) are considered correct.
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Ai pa = A j pa, (12.3)

=⇒ (Ai − A j )pa = 0. (12.4)

This extends the parameter space of each limb with parameters of joining limbs.
PS ignores this relative parameter space and estimate parameters of each limb inde-
pendently, thus gaining computational efficiency at the cost of accuracy. It has been
shown that ifwe consider twomoving limbs li and l j articulated at pointpa = (xa, ya)

as planes πi and π j , then for affine cameras, a linear least square solution can be
formulated [4]. This reduces the problem to that of finding corresponding pixels in
two consecutive frames for which the brightness constancy assumption is proposed.
Under this assumption, motion estimation can be solved as a sum of squared distance
minimization problem, which leads to solving a linear system of the form ΓA = B
subjected to the articulation constraint.

This method has shown promising results in estimating upper body posture of
vehicle drivers, i.e. estimating the 5 limbs and 6 points skeleton after manual initial-
ization. In this work, we extend this model for the full human skeleton having 10
limbs and 15 point skeleton, and also eliminate the need for manual initialization.

Each limb is approximated by a plane and their joints can be defined as articulation
points. For a frontal pose skeleton of 15 points and 10 limbs (see Fig. 12.8a), there
exist 13 articulation planes, 12 articulations lines and 24 constraints (see Fig. 12.8b).
There are 6 affine parameters to be estimated per plane totalling 78 parameters for 13
planes resulting in a 24 × 78 dimensional constraint matrix D. Thus the constraint
equation for the system could be written in matrix form as DA = 0, where A is
the 78× 1 dimensional matrix of unknowns. The additional constraints are obtained
using affine flow for each plane. Similarly, parameters for profile pose can be deduced
from Fig. 12.8.

Since this approach is sensitive to initialization errors andocclusions,we introduce
the automatic initialization of the algorithm through frontal and/or profile pose esti-
mation. Unlike a vehicle driver, many of the articulated points on a freely moving 2D

Articulation line

Plane

Articulation point

End point

limb

link

Fig. 12.8 (Right) 2D human pose with 13 planes and 12 articulation lines. (Left) 10 limbs, 15
points human skeleton with 10 articulation points and 5 end points
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(a) (b) (c) (d)

Fig. 12.9 Comparison between frontal pose estimation and AS tracker elaborating the need for
fusion. a 2D pose estimated from the frontal pose detector. b AS tracking showing a drifting issue.
c 2D pose from the same frontal pose detector with incorrect right lower arm detection. d AS
tracking showing better estimation of articulation point on left knee joint as compared to estimated
2D pose

skeleton undergo self occlusions. In fact, since human walking patterns are periodic,
these occlusions occur at a very regular interval. This restricts the tracking of AS to
hardly one walk cycle of a person after which the tracker starts to drift (see Fig. 12.9).
To enable extended tracking of a person with repetitive self occlusions and occlu-
sions due to continuously changing viewpoints, we introduce fusion of outputs from
Frontal and Profile pose detectors, person detector and tracker and Articulated Skele-
ton (AS) tracker. Next, we briefly discuss frontal and profile pose detectors followed
by our fusion strategy.

12.7 Fusion of Detectors and Trackers

Fusion of an Articulated Skeleton (AS) tracker with a frontal and a profile pose
detector, enables continuous pose estimation and tracking. To perform fusion of a
heterogeneous set of detectors and trackers, adecoding strategy to filter out inaccurate
estimations is used. This allows for fusion of complementary information from these
heterogeneous algorithms.

12.7.1 Decoding

In order to obtain the best pose tracking at each frame the problem is to decide which
set of detector and tracker outputs should be combined. Considering that the output
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of each detector and tracker will be either 0 or 1 i.e. y ∈ {0, 1} representing success
or failure respectively, a decoding strategy [18] can be used. Considering there are n
detectors and trackers, there are 2n possible combinations. These set of combinations
C can be defined as:

C =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0 0
0 0 · · · 0 1
...

...
. . .

...

1 1 · · · 1 1

⎞

⎟
⎟
⎟
⎠

. (12.5)

Out of these 2n combinations, the score for each option can be obtained as C × Ω ,
where Ω = {ω1, . . . , ωn} are the set of weights.

Unlike multiple classifiers of the same type learned on different classes [1], fusing
output from multiple heterogeneous algorithms is a much more difficult and chal-
lenging problem. Fusion of output from multiple heterogeneous algorithms requires
normalization of their confidence on a uniform scale. These confidence scores can
be based on a variety of different measures such as classification error, probability
score, maximum likelihood value, correlation score, entropy, uncertainty estimate
or residual error and differ in their ranges as well as sensitivity to noise. Thus a
per-score normalization function is desired to project these scores on a uniform
scale. This problem can be solved by learning a per algorithm normalization factor
b = {b1, . . . , bn}. Thus, the decoding can be formulated as:

ĉ = argmax
i

Ciωi bi , (12.6)

where bi can be a regression coefficient. To obtain bi , one can evaluate the perfor-
mance of each algorithm against the ground truth. This can be achieved by comparing
the obtained outputs such as bounding boxes and articulated poses with the ground
truth. This allows comparing the performance of any set of heterogeneous algorithms
on a uniform scale.

12.7.2 Fusion

No single detector or tracker can ensure a perfect bounding box (BBox) over the
entire sequence. Multiple detectors and trackers can be fused to increase the chances
of obtaining the correct BBox. By using Eq. (12.6), a decision can be obtained to
select the set of algorithms that performed reliably on the current frame. A BBox
enclosing the estimated pose can then be obtained from the selected pose detectors
and trackers. The bounding boxes can then be fused with those obtained from the
person detector and tracker. Let us assume the Xb = {xtld

b , x pd
b , x f

b , x p
b , xa

b } is the
set of 5 bounding boxes from the TLD tracker, person detector, frontal pose detector,
profile pose detector and the articulated pose tracker respectively. The updated BBox
can be obtained as:
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x̂b
j =

∑
i∈P xb

i ciωi bi
∑

i∈P ci
i={tld,pd,p}

, (12.7a)

ŷb
j =

∑
i∈P yb

i ciωi bi
∑

i∈P ci
i={tld,pd, f,p,a}

, (12.7b)

where j = {1, 2}. Equation (12.7a, 12.7b) will result in a BBox that will contain
the person’s head, torso and legs. It will exclude the arms of the person from the
BBox. This can be achieved by excluding the x-components of bounding boxes
from the articulated pose detector and tracker. This compact BBox will help the
tracker in learning the visual appearance of the object only, as a minimum portion
of background is included in the BBox. In case all of the decision components are
zero for any component of BBox, the values from previous frames can be used.

Similarly, the poses obtained from multiple pose detectors and trackers can be
fused. Let us assume the Xpose = {Xi

pose}i∈P is the set of 2D poses. To obtain the
final pose, these poses can be linearly combined as:

X̂pose =
∑

i∈P Xi
posec

iωi bi

∑
i∈P ci

, (12.8)

where P = { f, p, a} refers to the frontal and profile detectors and the articulation
point tracker respectively. This formulation allows giving higher weight to better
performing algorithms and vice versa in the final 2D pose (see Fig. 12.10).

The final fused bounding box X̂b and pose X̂pose is then fed back to all the detectors
and tracker. The updated bounded box ensures that the person tracker does not drift
over time. It also reduces the search space. Similarly, the fused pose reduces the
search space of detectors to a small subset of the entire space. It is also used to
reinitialize the articulated pose tracker. In case of complete failure of all the pose
detectors and tracker, the pose from the previous frame is propagated to the next
frame.

12.7.3 Example—Fusion

In this example we compared the performance of the algorithm with [1, 5] on 3
standard datasets (HumanEvaII, TUD-Stadtmitte and ETHMoving camera [6]), and
a Smart Lab dataset consisting of 887 frames and 255 frames respectively.

The fundamental hypothesis behind introducing articulation constraints on bone
joints is: “introducing articulation constraint improves the consistent estimation and
tracking of 2D human pose estimation in video”. Validating this hypothesis involves
multiple advancements including: a tractable solution for articulated pose estimation,
a fusion ofmultiple heterogeneous trackers and detectors, PCA based pose validation
and KTSSR. We have analyzed each of these modules of the algorithm on a video
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Fig. 12.10 Left Confidence scores from detectors and trackers. Right Decision showing selected
combination of detectors and trackers. It can be seen as frontal pose detector fails during turning,
profile pose detector attempt to perform pose estimation andmanage to perform successful detection

Table 12.2 Comparison betweenmodules of proposed approach, final proposed solution and state-
of-the-art

Desc. Det. T UL LL UA LA H Total

[5] 75.3 75.3 64.7 34.1 75.3 73.1 75.3 64.5

D 96.5 96.5 86.5 67.4 96.1 83.2 96.5 86.0

DP 96.1 96.1 85.9 67.3 95.7 82.0 96.1 85.4

DPS 96.5 96.5 85.9 71.2 96.1 76.9 96.5 85.3

DPSA 100 98.4 93.9 81.4 98.8 80.2 100 90.7

Key D PS Detector, DP PD with PCA, DPS DP with search space reduction, DPSA DPS with AS
and fusion, T torso, UL upper legs, LL lower legs, UA upper arms, LA lower arms, H head

sequence and compared its performance with [5], using PCP after applying detection
rate (see Table12.2).

The first two rows of Table1 compares performance of our pose detectors with [3].
The preceding three rows show gradual improvements made by each contribution of
our approach. There are two key observations from Table. 12.2, (i) 2D pose detection
rate has increased to 100%with consistent improvements at eachmodule, and (ii) the
total 2D pose estimation score has increased to 90.7%. Both these scores are superior
when compared to [5] which shows the efficacy of the proposed methodology.

Qualitative comparison of the proposed approach on a single and multiple tar-
get scenarios is shown in Figs. 12.11 and 12.12 respectively. We used sequences
S2/C1 and S2/C2 from HumanEvaII dataset [21]. In this dataset, the person view is
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Fig. 12.11 Qualitative evaluation on single target sequences. (Row 1) S2/C1. (Row 2) S2/C2. (Row
3) Smart lab

Fig. 12.12 Qualitative evaluation on challenging multi-target real-life scenarios. (Left) Static cam-
era (Right) Moving Camera

continuously changingwith respect to the cameramaking it appropriate for evaluating
view-invariance. To test the robustness on varying sizes, a Smart Lab sequence
(Fig. 12.11 (Row 3)) is used. These results validate another key contribution that
fusion of only 2 view-specific pose detectors with articulated tracker eliminates
the need for having 8 view-specific PS detectors as suggested in [1]. Furthermore,
unlike [15], it eliminates the need for large amount of viewpoint specific training
data. Moreover, the use of few pose detectors requires far less computation and there
is no need to try all viewpoint specific pose detectors each time, provided that there
is a fusion and detector switching mechanism.
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Fig. 12.13 Comparison of execution time in with and without KTSSR and their comparison with
Eichner et al. [5]

The trade-off of only using two detectors is a slight increase in error (10 pixels
on HumanEvaII dataset) as compared to [1] due to ambiguities related to symmetry
in PS. These can be partially overcome by introducing face detection and additional
temporal smoothness constraints. 3D tracking is also used to remove flip ambiguities,
which is very challenging with only two detectors.

The method was also tested on real world outdoor scenarios (TUD-Stadtmitte and
ETH Moving Camera datasets), having multiple people performing unconstrained
motion. Promising resultswere obtainedonboth these datasets as shown inFig. 12.12.

12.7.4 Example—Computational Cost

Figure12.13 shows the reduction in computational cost achieved through KTSSR.
Overall the execution time is reduced by a factor of 3. It also shows that the total
execution time for 10 limb articulated pose estimation is much <10 limb PS. This
further establishes that articulated tracker make the problem tractable. The average
computation time for a 960× 544 image on a PC with a Core i7 processor and 8GB
RAM, using a MATLAB based implementation, is around 55s for the 1st frame and
13s for each subsequent frame.

If we carefully analyze the algorithm for limb detection, it involves computation
of a response from a classifier at large number of locations for each limb. Except in
case of Mean-shift, all these computations are independent of each other and can be
performed in parallel on a Graphic Processing Unit (GPU). Similarly, computations
of some of the limbs are independent of other. For e.g. once the torso is identified, the
computations for arms and legs can be performed in parallel. This parallel nature of
2D pose estimation suggest that further significant computation gains can be obtained
by using a GPU.

12.8 Summary

This chapter discusses various improvements in 2D Pose estimation to make it
feasible for multi-camera networks. The major challenges in deploying 2D Pose
estimation algorithms in multi-camera networks were identified and solutions were
explored. The algorithm must be robust against varying viewpoints. For this, the
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fusion of frontal and profile detectors with person and pose trackers proves to be quite
effective. Another important consideration is speed. To this end, we discuss meth-
ods for search space reduction in 2D pose estimation, particularly foreground high-
lighting, Kinematic and Temporal Search Space Reduction and Mean-Shift based
approaches. Not only do these methods improve speed, they also filter out many
unlikely hypotheses and thus increase accuracy. Experiments showed that even after
eliminating over 80% of the computation, there is no significant effect on accuracy.
Finally, we discuss the need for a self-evaluation criterion such as PCA as an essen-
tial aid for pruning out invalid hypotheses and determining the failure cases of the
algorithm.
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Chapter 13
Exploiting Crowd Synthesis
for Multi-camera Human Tracking

Zhixing Jin and Bir Bhanu

Abstract There are many challenges to achieve a robust performance for tracking
in a video network. In this chapter, we propose a method that integrates both detec-
tion and crowd synthesis approaches to achieve robust tracking performance. The
experiments are conducted on PETS 2009 data set, and the performance is evaluated
by multiple object tracking precision and accuracy criteria based on the position of
each pedestrian on the ground plane. It is demonstrated that the information from
crowd synthesis can provide significant advantage for tracking multiple pedestrians
through multiple cameras.

13.1 Introduction

Tracking pedestrians, especially tracking them in crowds, has been an attractive
topic for computer vision researchers for many years. Many pedestrian tracking
approaches have been proposed till today, for the applications in various scenarios
such as surveillance, security, and monitoring. To improve tracking performance,
especially in extremely complicated situations, approaches are developed to be more
and more sophisticated. On one head, more advanced features, models, and learning
strategies have been proposed and extended, such as histogram of oriented gradient
(HOG) [6] and Haar-like features [16], Ada-Boosting-based online learning [9], and
multiple instance learning [2]. On the other hand, we may also increase the number
of cameras in the system and fuse information from multiple cameras. By setting up
a video network with multiple cameras, the area under surveillance can be greatly
expanded if these cameras have nonoverlapping field-of-views (FOVs). If the cameras
in a video network have overlapping FOVs, then tracking accuracy can be improved,
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particularly for crowded scenes, since the possibility that a pedestrian is occluded in
all camera views is significantly smaller than that using a single camera [8, 22].

In the proposed approach, we are focused on the situation where pedestrians are
crowded with many occlusions. Therefore, a multi-camera tracking system is used to
relieve the severe occlusion problem. In such a system, it is necessary to correspond
information from different views; therefore, estimating pedestrian locations in the
real-world is required and it is usually achieved by adopting homography-related
methods. However, currently in almost all the systems, the estimated real-world
locations is only utilized in data correspondence, but the relationship between them
has been rarely explored.

Pedestrian locations are actually spatially and temporally highly relevant. For
example, in most cases, instead of walking alone, pedestrians are actually self-
organized into groups and walk together [17]. In addition, pedestrians are able to
avoid collisions, even in an extremely crowded scene. In the area of computer graph-
ics, there is such a category of approaches that models and simulates the pedestrian
behaviors, known as crowd simulation. It has crucial importance for the applica-
tions such as designing emergency evacuation routes and resource management.
Basically, the purpose of crowd simulation is to mimic the realistic behavior for
every virtual individuals in a crowd under the given constraints (e.g., collision avoid-
ance). Currently, most of the crowd simulators are aimed at simulating and predicting
pedestrian walking, and some of them have really impressive results [11, 18, 21]. A
typical crowd simulator requires the information of direction and velocity, as well as
the starting and ending locations for each pedestrian. Since these types of informa-
tion can be acquired in a multiple camera tracking system, it is natural to integrate
crowd simulation algorithms into a vision system for tracking to predict pedestrian
behaviors, and therefore, to improve tracking performance.

In this chapter, we propose a novel way to combine a multiple camera tracking
system and a crowd simulator. In our integrated system, each camera has its own inde-
pendent tracker based on the tracking-by-detection approach [4], which uses pure
vision-based features. The simulator used is the RVO2 library [21], which works
separately from the tracking system. At each time step, a distribution of possible
positions for each pedestrian in the scene is generated by the simulator based on
his/her historical location and velocity information. This distribution is then fused
together with the information from trackers to estimate the new location for each
pedestrian. Finally, trackers are updated according to the new patches, which are cal-
culated based on these new locations. The system diagram is illustrated in Fig. 13.1.

The rest of the chapter is organized as follows. Section 13.2 presents related work,
including tracking approaches and crowd simulation methods. Section 13.3 describes
the details of our proposed approach. Section 13.4 demonstrates the experimental
results and finally Sect. 13.5 concludes the chapter.
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Fig. 13.1 The system diagram. At each time step, the global tracker obtains information from all
the camera views and the crowd simulator, and then computes the tracking results on the ground
plane. The tracking results are then used to update the frame trackers and the crowd simulator

13.2 Related Work

Most of the state-of-the-art tracking approaches have the components of classifica-
tion and/or detection, and are based on online learning strategies, including: Online
Ada-Boosting [9], Semi-Boosting [10] and Online Multiple Instance Learning [2]
trackers. A general processing approach for this kind of tracker is to train a classi-
fier for the object’s appearance model from the first one or several frames, and then
update the classifier as the tracking continues. At each time step, a likelihood map
can be computed within a certain searching window based on the object’s previous
location, and its new location is defined as the location where the likelihood reaches
the maximal. The update for the classifier also depends on the new location for an
object. This process may cause the drifting problem, because as the classifier keeps
updating itself during tracking, it may eventually represent a different appearance
model than the model was learned at the very beginning. Therefore, in addition to
classification, detection approaches, especially human detectors are also integrated
into the tracking system [1, 4], since human detector is generally more confident
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than the online tracker. The output from human detectors can be used to initialize the
online tracker, and/or to correct the classifier during the tracking process. The track-
ing part in the proposed approach used in this chapter takes the advantages of this
combination of online classifier and human detector, which was originally proposed
in [4]. It contains three components: a particle filter, a human detector and an online
boosting classifier.

When the number of cameras with overlapping FOVs in a system increases, the
severe occlusion problem may be resolved, but the tracking process becomes more
complicated. For example, the data correspondence among cameras becomes neces-
sary when fusing information from different views. This has not been perfectly solved
till today. Many different methods for data correspondence, such as region-based,
point-based, and principal axis-based, have been reported in recent years [7, 22]. In
this chapter, the principal axis-based method is adopted, which calculates the real-
world location of each pedestrian by finding the ground projection of the principal
axis for each camera view (based on homography matrices), and computing their
intersections [8]. Furthermore, since we are focused on the potential improvement
brought by the crowd simulation to multiple camera tracking, the data correspon-
dences between cameras are fixed.

The basic spatial relationship among pedestrians (objects) has been proven to
be useful in improving tracking performance since it is able to provide additional
constraints when appearance models change due to illumination change or occlu-
sion. For example, many recent single-camera pedestrian tracking approaches have
explored the possibility to integrate grouping strategy in the tracking process [5, 19],
and general object tracking approaches can also benefit when structure information
is utilized [23]. For multi-camera applications, group information has also been
studied [15, 24].

Additionally, in the research area of crowd simulation, more complicated spa-
tial and temporal constraints between pedestrians have been explored. There are
many sophisticated crowd simulation models proposed in the recent years. Exam-
ples include: the social force model, which is derived from physics and social-
psychology [11]; the Reciprocal Velocity Obstacles (RVO2) library, which finds the
optimal collision avoidance strategy [21]; the combination of rule-based approaches
and local collision avoidance [18]; and the continuum dynamics model, which is able
to simulate extremely large and dense crowds [20]. These crowd simulation models
have a wide range of applications, even in industry such as movie making. Except
the macroscopic techniques, most of the crowd simulation approaches simulate each
pedestrian separately. For instance, the social force model uses a particle to represent
each individual and defines several types of forces on each particle (individual), and
the crowd simulation can be computed as the existing simulation for a particle sys-
tem. In the proposed approach, the crowd simulator adopted is the RVO2 library [21],
because it only requires the information of the current location and desired velocity
of each pedestrian, which is quite easy to obtain in a multi-camera tracking system.
In addition, the library is computationally efficient, allowing us to repeat the calcu-
lation for many times at each time step to get the distribution of possible locations.
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An example of integrating crowd simulation in a single-camera pedestrian tracking
system has been proposed in our previous work [12].

13.3 Technical Approach

The system has two major components. As shown in Fig. 13.1, the first component
uses the state-of-the-art tracking-by-detection algorithm (frame tracker), which is
able to track pedestrians based on information from camera. The second component
calculates the pedestrian positions in the real world (global tracker). It integrates
the information from the crowd simulator as well as the projection from each frame
tracker, and estimates the real position for each pedestrian on the ground plane.

13.3.1 Frame Tracker

The frame tracker adopted in this approach is a sophisticated tracking-by-detection
method combining a particle filter, a boosting classifier, and a human detector [4].
Since our main purpose is to investigate the benefit of crowd simulation, the original
technique is modified to eliminate possible errors brought by various steps, as well
as to speed up the single camera tracking process. The framework for the modified
frame tracker in this approach is shown as Fig. 13.2. For readers who are interested
in the complete approach, please refer to the paper [4].

The tracking is accomplished mainly based on a bootstrap filter. The state for
each pedestrian x = {x, y, u, v}, consists of the information of position (x, y) and
velocity (u, v) of each particle (on image frames). Since importance resampling is
used at every time step and wi

t−1 = 1/N , the weight of each particle at every time
step wi

t only depends on the likelihood of the current observation, p(ot |xi
t ), which

will be described as the observation model at the end of this section.
The particle filter uses a simple constant velocity motion model

(x, y)t = (x, y)t−1 + (u, v)t−1 + ε(x,y) (13.1)

(u, v)t = (u, v)t−1 + ε(u,v) (13.2)

where ε(x,y) and ε(u,v) are two independent zero-mean normal distributions. The
variances σ 2

(x,y) and σ 2
(u,v) are set proportional to the initial patch size, and then

decrease as the number of successfully tracked frames increases. For simplicity, we
skip the Iterative Likelihood Weighting procedure used in the original tracker to
deal with abrupt and fast camera motion. Furthermore, we initialize each tracker by
manual annotations to ensure that each pedestrian has a corresponding tracker. The
termination strategy of a tracker is the same as in the original work: the tracker stops
if there are no associated detection results for a while.
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Fig. 13.2 The framework for the frame trackers in this approach. A particle filter and a boosting
classifier are maintained for each single pedestrian. At each time step, after particle transition, the
outputs from the HOG detector and the boosting classifier are combined based on the observation
model, and is then used to update the tracker

The information provided by the human detector includes two parts, the detection
results and the confidence map. At each time step, the detection results are associated
to trackers. A function [4] calculates the matching scores between each detected
patch and tracked patch

S(tr, d) = g(tr, d) ·
⎛

⎝ctr(d) + α ·
N∑

p∈tr

pN (d − p)

⎞

⎠ (13.3)

where tr and d are the positions of the tracker and the detected patch, respectively. N
denotes the number of particles for each tracker. pN (d− p) is the normal distribution
based on the Euclidean distance between the detection and particle, ctr(d) is the
evaluation from the classifier for the detected patch, and g(tr, d) is the gating function
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g(tr, d) = p(sized |tr)p(posd |tr)

=
⎧
⎨

⎩

pN
(

sizetr−sized
sizetr

)
· pN (|d − tr|), if |vtr| < τv

pN
(

sizetr−sized
sizetr

)
· pN (dist(d, vtr)), otherwise

(13.4)

where vtr is the velocity estimated for current tracker and dist(d, vtr) is the distance
from the detected position to the line where the vector of velocity lies (distance
between point and line). The distribution pN (dist(d, vtr)) has a shape similar to a
2D cone, where the possible positions of the tracker are constrained to in the next
frame when the current velocity exceeds certain threshold τv.

After the matching scores have been computed for every pair between trackers
and detected patches, we use a greedy strategy to determine their final associations.
At every iteration, the algorithm finds the largest matching score s∗(tr∗, d∗) in the
current remaining pairs of trackers and detected patches. If s∗ is greater than a
predefined threshold τ , then this pair of tracker and detected patch (tr∗, d∗) is marked
as associated. One constraint is that one tracker (detected patch) can be associated to
at most one detected patch (tracker). The procedure continues until there is no pair
that has a matching score greater than the threshold τ . By using this greedy strategy,
it is not guaranteed that we can get the global optimal solution (e.g., the maximum
summation of matching scores). However, the result obtained using greedy method
is usually acceptable with a much lower computational cost.

Another important component combined in this tracker is the boosting classifier
from [9]. For each tracker, there is a corresponding classifier. This classifier uses a
boosting mode, which consists of a series of weak classifiers. When the tracker is
initialized, the classifier is also initialized based on the information from the first
frame. The positive sample is the patch at the current tracker location and the neg-
ative samples come from the nearby patches (including background and/or other
pedestrians). At each frame, after the patch location is updated, this classifier also
updates using the most recent information.

The outputs from the detector and the classifier are integrated based on the obser-
vation model, which calculates the weight for each particle in the particle filter.

wtr,p = β · I(tr) · pN (p − d∗) + γ · dc(p) · p0(tr) + η · ctr(p) (13.5)

The first two terms in Eq. (13.5) are based on the output of the detector, and the
third term is obtained from the classifier. I(tr) is the indicator function. It equals to 1
if there is an associated detected patch d∗ for this tracker tr and equals to 0 otherwise.
In the second term, dc(p) is the confidence computed by the detector at position p
(scaled to [0, 1]). p0(tr) is called interobject occlusion reasoning, which is designed
for the situation when the detection is failed because of the occlusion. It is defined as

p0(tr) =

⎧
⎪⎨

⎪⎩

1, if I(tr) = 1
max

tr′:I(tr′)=1
pN (tr − tr′), else if ∃I(tr′) = 1

0, otherwise

(13.6)
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In [4], authors apply two different human detectors: Implicit Shape Model
(ISM) [14] and Histogram of Oriented Gradient (HOG) [6]. But in our tracker, we
only use the HOG detector, because it is more generalized and has a more widely
usage.

13.3.2 Crowd Simulator

The crowd simulation algorithm in the proposed approach is based on the RVO2
library [21]. This model solves an optimization problem using a strategy named
Optimal Reciprocal Collision Avoidance (ORCA). The library is very computation-
ally efficient and only requires the information for the current position and desired
velocity of each pedestrian. For more details, the reader can refer to the original
paper.

RVO2 introduces a concept called velocity obstacles, with the definition as

V OT
A|B = {v|∃t ∈ [0, T ] : v · t ∈ D(pB − pA, rA + rB)} (13.7)

where pA and pB are the positions for two pedestrians A and B, and rA, rB are their
radii. D(p, r) indicates a circle centered at p with radius r . From the definition,
V OT

A|B is the set of relative velocities of A with respect to B, which will cause
a collision in the future within the time period [0, T ]. Therefore, the best velocity
solution to avoid collisions is the set of velocities that is (1) most adjacent to the
desired velocity, (2) not fell into the velocity obstacle set (that is why it is called
“obstacle”). The global optimal solution can be efficiently computed using linear
programming. The efficiency of the library enables us to run the simulator multiple
times at each time step to get a distribution rather than a single solution.

In the current multiple camera tracking system, the position of each pedestrian
in the real ground plane is easy to acquire using homography. However, the desired
velocity is not explicitly given as we have no idea about where a pedestrian will
finally move to and how long will this movement be. That is, neither the direction
nor the speed of the desired velocity can be directly obtained based on the current
information. An alternative way is to use the historical information. We use a Monte
Carlo simulation process to estimate the desired velocity based on its derivatives
(accelerations) from the last m frames. Let the acceleration set of a pedestrian k be
At

k = {at−m
k , at−m+1

k , . . . , at−1
k }, and the corresponding weight for each acceleration

be

wt−i
k = m − i + 1

∑m
j=1 j

, i = 1, . . . , m (13.8)

According to Eq. (13.8), the weight assigned to more recent acceleration will be
larger. Then, a set of n accelerations A′

k = {a′
k,1, a′

k,2, . . . , a′
k,n} (n > m) can be

generated for estimating a distribution of desired velocity
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v′
k,i = vk + a′

k,i + εa,k (13.9)

where v′
ki

is the estimated velocity corresponding to a′
k,i , and vk is the current velocity.

εa,k is a zero-mean normal distribution with variance σa,k ∝ maxi, j ||at−i
k −at− j

k ||. In
addition, to handle the sudden stopping situation (i.e., the velocity suddenly changes
to 0), one fifth of the elements in the estimated velocity set are 0’s.

To reduce the computation, not all possible combinations of different velocities
are calculated. Instead, for each pedestrian, we pick up the velocity with the same
index (i.e., i) and form n = |A′

k | sets Ci = {v1,i , v2,i , . . .}. So the total number of
possible locations calculated for each pedestrian is n in this case.

13.3.3 Global Tracker

The global tracker is used to integrate the information from the frame trackers and the
output of the crowd simulator, and to provide a final decision of the current position
of each pedestrian in the real ground plane.

The first step we need to do is to recover the homography matrix for each view.
The homography matrix is defined as a 3 × 3 matrix

Hv =
⎡

⎢
⎣

hv
11 hv

12 hv
13

hv
21 hv

22 hv
23

hv
31 hv

32 1

⎤

⎥
⎦ (13.10)

Given two points (x, y) (ground point) and (xv, yv) (frame point), the projection
from the ground point to the frame point can be express as

⎡

⎣
xv

yv

1

⎤

⎦ = Hv

⎡

⎣
x
y
1

⎤

⎦ (13.11)

Note that normally Hv is invertible, which means that we can also project the
frame point back onto the ground using its inversion. The homography matrices are
computed by manually selecting four corresponding points from different views.

The principal-axis based integration is then adopted for calculating the final
ground position. A principal axis of a pedestrian is the line connecting the pedes-
trian’s head to the feet. In our approach, the principal axis is defined as the vertical
line in the middle of the patch for simplicity. If the result obtained from the frame
tracker of each view is accurate, then the projection of the principal axis in the ground
plane will intersect at a single point, which is the position of the pedestrian on the
ground plane. It is proven that the principal axis-based integration is very robust in
fusing the information from different cameras [7, 22].
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The principal axis-based integration in the proposed approach is modified to use
particle information from different views. For each particle in a frame tracker, we
compute the principal axis of the patch associated to this particle and then project
the principal axis back on to the ground plane. Then, the intersection points between
principal axes from different views are calculated. We also assign a weight for each
intersection point

w0
tr1,p1,tr2,p2 = wtr1,p1 · wtr2,p2 (13.12)

where wtr1,p1 and wtr2,p2 are the weights of the particles p1 in tracker tr1 and p2 in
tracker tr2, calculated by Eq. (13.5). In this case, the intersection of higher weighted
particles gets a higher weight. To speed up the computation of intersection, not all
the possible combinations are tried, instead we experimentally choose 2∗ N (N is the
number of particles in frame tracker) pairs of particles between each two different
views.

The integration of the output from the crowd simulator is based on radial basis
function. For a particular point g, its “simulation term” is defined as

sim(g) =
∑

q∈Qk

pN (g − Qk) (13.13)

where Qk is the set of possible locations of pedestrian k (its size |Qk | = 2N ) and
pN (g − Qk) is a zero-mean normal distribution. For each intersection point gi , the
final weight

w′
gi

= w0
gi

+ δsim(gi ) (13.14)

And the final location of each pedestrian on the ground plane is calculated by a
weighted sum

G = 1

Z

∑

i

w′
gi

gi (13.15)

where Z is the normalization factor. After the location for each pedestrian on the
ground plane is decided, we use the homography matrices Hv’s to project this position
back to different views. And the weights for each particle is reevaluated using a
Gaussian filter.

13.4 Experimental Results

In this section, we describe the details for our experimental setting, as well as the
results and related discussion. The programming of this algorithm is done in C++
with the widely distributed library OpenCV.
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13.4.1 Experimental Setting

Our experiments are conducted on the PETS 2009 dataset with medium density
crowd (i.e., S2.L2). The dataset originally has four views. However, according to the
provider, View 4 suffers from frame rate instability, so we avoid using this view in
our experiment. In addition, View 3 has a large tree on the right part of the field of
view, which causes severe occlusions especially with medium density of crowd, even
during annotation. As a result, the frame tracking is performed only based on View 1
and View 2 in our experiments, and we use View 1, 2, and 3 for testing. The image of
the ground plane is obtained using Google Maps (satellite view). The homography
matrix for each view is calculated using the function provided in OpenCV, based on
four manually annotated points.

The ground-truth is obtained by annotation. Each pedestrian is annotated for its
bounding box every five frames, and the bounding boxes for the frames in between
are calculated based on linear interpolation. With the annotation of bounding box,
the principal axis is determined as the vertical line in the middle of the bounding box.
The ground-truth of the position of each pedestrian on the ground plane is computed
by intersecting the principal axes projected from View 1 and View 2 (since we cannot
guarantee that all the annotations of View 3 are correct because of the occlusion from
the big tree).

The HOG detector used in our experiment also comes from OpenCV, with the
smallest detection size as 48×96. In order to keep the detection result acceptable, we
resize the original image frame to 1920×1440, which makes the smallest pedestrian
in a frame have a similar size to 48 × 96.

The parameter setting used in the frame tracker follows the original work [4]. For
example, we set β : γ : η in the observation model Eq. (13.5) to 20:2:1. The δ in
Eq. (13.14) is experimentally decided as 2η (δ = 0 is used as the situation without
integrating crowd simulator).

For the crowd simulator, RVO2 library, it has 10 parameters for each pedestrian.
Among those 10 parameters, three of them keep changing during the tracking (current
position, current velocity, and desired velocity) and they vary from individual to
individual. The rest seven of them are: the time step of the simulation, the maximal
number of neighbors each pedestrian can observe, the maximal speed of a pedestrian,
the maximal observation distance of a pedestrian, the radius of a pedestrian, the
minimal amount of time a pedestrian is safe with respect to other pedestrians, and
the minimal amount of time a pedestrian is safe with respect to static obstacles. Except
for the time step of the simulation, the rest of the parameters can actually differ across
individuals, but in our experiment we simply set them the same to all individuals.
These seven parameters are optimized based on the UCSD crowd dataset [13]. We
set the pedestrians in the UCSD and PETS datasets to have the same radius when
projected to the ground plane so that the parameters trained on UCSD crowd dataset
can be directly applied in the current experiment. However, the UCSD dataset itself
is not used in the current experiment since it is for single camera tracking.
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13.4.2 Results

Figures 13.3 and 13.4 are qualitative illustrations of tracking results for View 1 and
View 2, comparing the results from the multiple camera tracker with/without crowd
simulation. For View 3, because the size of target patch is unknown, we only quan-
titatively calculated the accuracy of tracking. Only the pedestrians appear in both
views are evaluated.

For each view, we define the tracking as accurate if the projected point of the
position for a pedestrian from the ground plane to the frame falls into a rectangle
around its feet area. This rectangle has its height equals to a quarter of the annotation
height, its width equals to half of the annotation width, with its location vertically
at the bottom and horizontally in the middle of the bounding box. The accuracy of
tracking one pedestrian for each view is then calculated as

accv = # accurately tracked frames

# tracked frames
(13.16)

On the ground plane, we use multi-object tracking precision (MOTP) and multi-
object tracking accuracy (MOTA) [3] to measure the performance of the proposed
approach, using a point-based distance

s(tr, gt) = max

(

0,
||ptr − pgt||2

rp
− 1

)

(13.17)

where rp denote the radius of a pedestrian on the ground plane (which is the same as
the radius parameter used in our crowd simulator). ptr and pgt are the position from
the multi-camera tracker and the ground-truth respectively.

Table 13.1 shows the tracking accuracy with/without crowd simulator for three
views. Table 13.2 shows the MOTP and MOTA results with/without crowd simulator
on the ground plane.

The result of MOTP and MOTA with crowd simulator are 57.1 and 31.9 %, respec-
tively. When no information from crowd simulator is integrated [set δ in Eq. (13.14)
to 0], the MOTP and MOTA are 59.2 and 9.79 %. The MOTP only evaluates the
precision for matched objects, and fewer matches between observations and ground-
truths will possible increase its value, so the integration of crowd simulation does
not necessarily improve the performance on this metric. On the other hand, since
the scene is so crowded with many pedestrians in it, the MOTA performance is not
extremely impressive. However, according to these results as well as the tracking
accuracies in each view, we can easily observe that the performance is significantly
improved by integrating the crowd simulator.

To further investigate the performance improvement brought by the crowd simu-
lator, we conduct experiments using a modified tracking system as well. Instead of
projecting particles from different camera views onto the ground plane and adjusting
their weights according to the estimated locations from crowd simulator, we project
the simulated locations back to each camera view and adjust the particle weights
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With Simulator Without Simulator  Ground-truth

Fig. 13.3 Some sample images for view 1. The left column are the results from the tracker with
simulation. The middle column are the results without simulation. The right column are the corre-
sponding ground-truth by annotation. Pedestrians who only appear in one view are not shown

there. This requires modification for the observation model (Eq. 13.14), and makes
the sampling step for the particle intersections on the ground plane unnecessary.
Therefore, with the similar computational efficiency, the skipping of the sampling
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With Simulator Without Simulator    Ground-truth

Fig. 13.4 Some sample images for view 2. The left column are the results from the tracker with
simulation. The middle column are the results without simulation. The right column are the corre-
sponding ground-truth by annotation. Pedestrians who only appear in one view are not shown

step can lead to a better performance since more information is preserved. The MOTP
and MOTA for View 1 and View 2 are reported in Table 13.3 (The tracked patch is
considered as accurate if its overlapping ratio with ground-truth patch is over 0.5).
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Table 13.1 The tracking accuracy with/without crowd simulator for three views

View With simulator (%) Without simulator (%)

1 86.9 76.4

2 87.1 77.7

3 82.3 72.5

The statistics is based on active trackers

Table 13.2 The MOTP and MOTA evaluation for the tracking results generated by the system
with/without crowd simulator

With simulator (%) Without simulator (%)

MOTP 57.1 59.2

MOTA 31.9 9.79

Table 13.3 The MOTP and MOTA with/without crowd simulator for View 1 and View 2

View Evaluation With simulator (%) Without simulator (%)

1 MOTP 71.2 67.8

MOTA 62.4 41.8

2 MOTP 70.4 68.7

MOTA 59.8 49.3

The statistics is based on active trackers

13.5 Conclusions

In this chapter, we proposed a multi-camera tracking approach that combines state-of-
the-art single camera tracking-by-detection method and a crowd simulation approach
(RVO2 library). The purpose of this approach is to investigate the influence on the
tracking performance when the crowd simulation output is additionally integrated
into a vision-based tracking approach. The experiments are conducted on PETS 2009
dataset with medium density crowd and the performance is evaluated on different
views as well as on the ground plane. The experimental results demonstrate that the
multi-camera pedestrian tracking with a crowd simulator significantly outperforms
the one without a crowd simulator. This means that the utilization of the spatial and
temporal relationship between pedestrians can be really important and helpful for
pedestrian tracking.
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18. Ondřej J, Pettré J, Olivier A, Donikian S (2010) A synthetic-vision based steering approach
for crowd simulation. In: ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, ACM, New York,
pp 123:1–123:9

19. Qin Z (2012) Improving multi-target tracking via social grouping. Comput Vis Pattern Recognit
2012:1972–1978
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Part III
Multi-robot Systems

Multi-robot systems (MRS) is an innovative robotic research field, due to both the
challenging nature of the involved research and the multiple potential applications
to different topologies of areas: autonomous sensor networks, building surveillance,
transportation of large objects, air and underwater pollution monitoring, forest fire
detection, transportation systems, or search and rescue after large-scale disasters.
Problems that can be handled by a single multi-skilled robot may benefit from the
usage of a robot team, since robustness and reliability can often be increased by
combining several robots that are individually less robust and reliable. On the other
hand, new problems like communication, synchronization, and cooperation come to
light and require the attention of the community.

In this context, the term robot has to be intended as generic autonomous agent,
so including UAVs (Unmanned Aerial Vehicles) and UUVs (Unmanned Under-
water Vehicles).



Chapter 14
Distributed Probabilistic Search and Tracking
of Agile Mobile Ground Targets Using
a Network of Unmanned Aerial Vehicles

Liang Sun, Stanley Baek and Daniel Pack

Abstract As technologies in digital computation, sensing, wireless and wired
communications, embedded systems, and micro-electro-mechanical systems con-
tinue to advance in the coming years, it is certain that we will see a variety of distrib-
uted sensor networks (DSNs) beingdeployed in an increasingnumber of systems such
as power distribution systems, engineering structures and buildings, smart homes,
environmental monitoring systems, biomedical systems, military systems, and oth-
ers. In addition, unlike the traditional networks of sensors, the mobility afforded
by autonomous systems, embedded systems, and humans who carry smart sensing
devices will contribute in creating new and exciting future sensor networks. These
future networks of sensors that take advantage of man-machine interactions will also
introduce new applications yet unknown to us. In this paper, we present the origin
and time line of DSN development, analyze the benefits and challenges of DSNs, and
present a mobile sensor network in the form of an unmanned aerial vehicle (UAV)
team using distributed mission area probability maps to search and track mobile
ground targets. We propose a novel update strategy for the probability map used by
UAVs to store probability information of dynamic target locations in the search area.
Two update laws are developed to accommodate maps with different scales. Simu-
lation results are used to demonstrate the validity of the proposed probability-map
update strategy.
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14.1 Introduction

Sensors perceive real-world by capturing physical phenomena and converting them
into electric signals. Combining these sensors, integrating them into a network of
sensors, and applying its capability to applications, which benefit from synergistic
sensor information, are the key functions of sensor networks. Today, a network of
sensors, mostly static, detects catastrophic infrastructure failures, conserves precious
natural resources, increases economic productivity, enhances security, and enables
new applications such as context-aware systems and smart home technologies [1].
New sensor network technologies are also beginning to emerge with mobile sensor
platforms, allowing smart and dynamic sensor placement in response to changing
environment [2].

14.1.1 History of Distributed Sensor Networks

The origin of sensor networks can be traced back to defense applications developed
during the ColdWar. The Sound Surveillance System (SOSUS), a system of acoustic
sensors at the bottom of the ocean, was deployed by the United States to detect and
track submarines [3]. This system was later used by the National Oceanographic and
Atmospheric Administration (NOAA) to monitor the migration patterns of whales
and seismic signals indicating pending earthquakes [4, 5]. Sensor networks of air
defense radars were also deployed during the Cold War era to defend England, the
continental United States and Canada. Although research was focused on satisfying
particular mission needs—in the case of SOSUS, acoustic signal processing and
interpretation, tracking and fusion—these research produced some key technologies
for modern sensor networks [6].

The research on distributed sensor networks was catalyzed around 1980 with
the Distributed Sensor Network (DSN) project sponsored by the Defense Advanced
Research Projects Agency (DARPA). By this time, the ARPAnet (the predecessor
of the Internet) had been operational for a number of years, with about 200 hosts at
universities and research institutions [6]. Focused on distributed computing, signal
processing, and tracking, the DSNs postulated the possibility of spatially distributed
sensing nodes designed to operate in a collaborative manner [3]. To support the
distributed systems, in the late 1980s, researchers at Carnegie-Mellon University
developed a communication oriented operating system kernel, Accent, to support
transparent access and fault-tolerant behavior of a DSN [7, 8].

Recent advances in inexpensive low-powermicroprocessors,wireless networking,
and micro-electro-mechanical systems (MEMS) technologies have accelerated the
development of wireless sensor networks. The DARPA’s Sensor Information Tech-
nology (SensIT) program focused on the development of a new class of software
for networks of distributed microsensors. The program pursued two key thrusts:
(a) development of novel networking techniques for rapidly deployable ad hoc
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microsensors in the battlefield, and (b) leveraging the distributed computing resources
to extract right and timely information from a sensor field, including detection,
classification, and tracking of targets [9].

In 1993, the University of California, Los Angeles initiated development ofWire-
less Integrated Network Sensors (WINS). Combining sensing, signal processing,
decision making, and wireless networking capabilities in a compact, low power sys-
tem, WINS was developed for monitoring and control capabilities of transportation,
manufacturing, health care, environmental, and safety and security systems [11]. The
advances in integrated circuit technology at the same time enabled mass production
of powerful compact sensors, radios, and processors at low cost. One of the achieve-
ments of WINS is the demonstration of the feasibility of algorithms for operation of
multihop wireless sensor nodes and networks at micropower level [12, 13].

In the late 1990s, the Smart Dust research project at Berkeley pursued fabrication
of sensor nodes incorporating a power supply and sensing, communication, and com-
puting hardware in a volume less than a few cubic millimeters [14, 15]. Thanks to
ongoing breakthroughs in nanofabrication techniques, these sensor nodes (or motes)
are expected to be the size of a grain of sand in the near future. After completion of
the Smart Dust research project in 2001, as shown in Fig. 14.1, the project led to mul-
tiple follow-on research projects such as Network Embedded Systems Technology
(NEST) [16], Wireless Embedded Systems (WEBS) [17], and Center for Embedded
Networked Sensing (CENS) [18].

Fig. 14.1 Conceptual diagram showing a Smart Dust mote’s major components: a power system,
sensors, an optical transceiver, and an integrated circuit (Courtesy of [10])
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14.1.2 Benefits and Challenges of Distributed Sensor Networks

In the family of DSNs, mobile DSNs have been widely used in applications for
environment monitoring [19], target tracking [20, 21], and search and rescue mis-
sions [22]. Mobile sensor nodes offer advantages over static sensor networks since
mobile agents can control the coverage and connectivity of the network. A typical
mobile DSN consists of sensor nodes that can autonomously relocate and contin-
uously sense, compute, and communicate. Nodes in a mobile DSN are typically
scattered in space to collect information using dynamic topologies. Due to the lim-
ited communication range of sensors, however, collected information can be com-
municated only when each two nodes are within a communication range. Another
characteristic of mobile DSNs is data distribution. In a static DSN, data can be dis-
tributed using fixed routing or flooding, while dynamic routing is used in a mobile
DSN [23].

Mobile DSNs offer capabilities of distributed wireless remote sensing and
processing, which translate to an improved survivability and adaptation in any envi-
ronment. It is extremely difficult, for example, to conduct precise manual deploy-
ment of sensor networks for damage assessment in disaster areas or for intelligence,
surveillance and reconnaissance (ISR) missions over a remote, dangerous battle-
field. Nevertheless, mobile sensor nodes can proceed to areas of interest after initial
deployment to complete required missions. In a surveillance and tracking mission,
mobile autonomous sensor nodes can collaborate and make decisions, distributed or
central, based on the shared information. For instance, as shown in Fig. 14.2, when an
unmanned aerial vehicle (UAV) and an unmanned ground vehicle (UGV) are cooper-
atively tracking a mobile ground target, obstruction by walls for the UGV to perceive
an intruder, can be overcome by the sensing performed by the UAV. The intruder
location can be sent to the UGV to perform future actions. The remote independent

Fig. 14.2 The concept of cooperative target tracking using an unmanned aerial vehicle and an
unmanned ground vehicle
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processing capability of DSNs also increases the mission robustness. The advance
of cooperative data fusion techniques, such as consensus and auction algorithms,
enables a DSN to quickly combine information collected by distributed sensors.

Distributed mobile sensor networks, with their advantages, come with challenges
and constraints. Challenges include deployment of resources, localization of plat-
forms, self-organization for missions, navigation and control, allocation of tasks,
energy consumption, maintenance of capabilities, and distributed data processes.

14.1.3 Cooperative Search and Tracking for Mobile Targets

Searching of mobile targets in an area using a mobile sensor network with unknown
a priori target information is a challenging task. A typical formulation of confidence
indicating target locations within a search area requires a gridmap and an assignment
of each cell in the grid with a probability value between 0 and 1. The resulting map
is referred to as a probability map, which has been widely used in the past for target
search and tracking. In this paper, we present a technique for cooperative search and
tracking of mobile targets by a team of UAVs using probability maps. In particular,
a novel strategy for updating a probability map by each agent of the sensor network
is presented and validated using MATLAB simulations.

In the past, probability maps have been adopted by researchers working in the
area of target search and tracking. Bertuccelli and How [24] presented a statistical
framework to calculate a minimum observation time required for an agent to achieve
a desired confidence level for the existence of a stationary target. They extended
their work in [25] by working with slow moving targets (top speed 2m/s). A binary
value (0 or 1) was assigned to each cell based on detection results. Since agents of
the network must work with independent maps, a consistent map among agents was
required to store the information.Bourgault et al. [26] proposed adecentralized search
strategy for a team of sensor platforms to locate a lost target based on the Bayesian
rule. An optimal path planning algorithm was presented to maximize the cumulative
probability of target detection. The work was extended for multiple target search [22]
and tracking missions [27]. Detailed vehicle, process and observation models were
adopted in [28] to validate the proposed strategy. In these scenarios, the prediction and
update of a probability map were performed by a recursive Bayesian filter. However,
a priori information of a lost target, such as the target’s top speed and a last reported
location, was assumed known. Millet et al. [29] developed a decentralized search
algorithm for stationary targets. Each agent updates its individual probability map
based on its observation using the Bayesian rule and performs the map fusion when
other neighbors enter a space within its communication range. Mirzaei et al. [30]
proposed a decentralized cooperative search and coverage algorithm for stationary
targets, in which a probability map was updated using a Bayesian filter. To solve the
coverage problem, the entire search region was partitioned into a Vironoi diagram
and a dynamic programming method was used to obtain optimal paths for mission
vehicles. Chung et al. [31] presented a framework for search and identification of
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multiple heterogeneous moving targets. The detection and identification formulation
and update are conducted separately using the Bayesian rule. A centralized map was
required to perform the optimization of the path planning and target identification.
The study exposed the scalability issue for a large search area.Hu et al. [32] developed
a decentralized search algorithm for stationary targets. A nonlinear transformation
of a probability map was performed to reduce the communication bandwidth and a
consensus-based fusion algorithmwas proposed. A coverage control strategy, similar
to the one used in [30], was adopted for the path planning. Finally, the asynchronous
issue of the data fusion was studied.

Among the previouswork for target search and tracking, the research for stationary
targets has been well documented [24, 29, 30, 32], while for the ones working with
moving targets, some a priori information was usually assumed known [27, 31].
A search task involving multiple moving targets using multiple sensor platforms
without a priori information of targets, however, has not been well studied. The
current work aims to contribute toward this unexplored area of research.

Suppose there is an unknown number of mobile ground targets to be searched
and tracked by a team of unmanned aerial vehicles with gimbaled video sensors. We
assume that the number of UAVs is insufficient with respect to the size of the mission
area to perform a sweep search. The objective of the mission is to search for, locate,
and track as many targets as possible in a mission area. To formulate the problem,
we provide each UAV with a probability map of the mission area divided into cells
and assign values between 0 and 1 to represent the target existence in each cell. A
novel decentralized uncertainty propagation law is developed to globally update the
individual probability map of each UAV by spreading the location uncertainty of
mobile targets in a cell onto its neighbors using a conservative heuristic method. A
measurement update step is then conducted to regionally update the probability values
of cells in regions exposed by collective sensors of the UAV team. The effectiveness
of the proposed strategy is validated in simulations when it was incorporated in a
path planning strategy [33, 34] for search mission.

In this chapter, the shared information among UAVs is assumed to be UAV states
and video sensor measurements. Sensors are assumed to have the same accuracy,
and communications among UAVs are assumed to be robust, allowing UAVs to have
identical probability maps throughout the search mission.

The rest of the paper is structured as follows. Section14.2 introduces the notations
used to formulate the search problem. A novel update law using a probability map
in a multi-mobile-target search and tracking problem is developed in Sect. 14.3. In
Sect. 14.4, algorithms for cooperative search and tracking along with the strategy for
sensor placement are briefly presented. Section14.5 presents the simulation results
to validate the proposed update law for the probability map. The conclusion of our
work is given in Sect. 14.6.
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14.2 Problem Statement

The search area, A, is assumed to be a plane ground and is mapped onto a set of M
grid cells,

{
(x, y) ∈ A|0 ≤ x ≤ Bx , 0 ≤ y ≤ By

}
, each of which is an � × � square,

where x and y are the Cartesian coordinates of the center of each cell, respectively,
Bx and By are the boundaries of the region in the x and y directions, and � is the
length of the cell.

We first define the following events.

• Ex,y,k : A target is actually in cell (x, y) at time step k.
• Dx,y,k,i : A target is detected in cell (x, y) at time step k by agent i .

Each cell in A is associated with a probability of target existence at time step k,
modeled as a Bernoulli distribution

P
(
Ex,y,k

) = q = 1 − P
(
E x,y,k

)
,

where a bar above an event denotes its complement. Then target existence can be
modeled as

Target existence =

⎧
⎪⎨

⎪⎩

A target is present q > 0.5,

Unknown q = 0.5,

No target is present q < 0.5.

(14.1)

Suppose that n UAVs with unique IDs, Ui , i = 1, 2, . . . , n, fly above a search
area with constant velocities and constant altitudes, which are assumed to be differ-
ent among UAVs to avoid collisions. The position of UAV i at time step k is denoted

as pu
i,k �

(
pu

i,k,x , pu
i,k,y, pu

i,k,z

)T ∈ R
3×1. UAV i also maintains an individual

probability map, with an initial probability value of each cell set to 0.5, indicat-
ing we are not sure of target existence. At each time step the camera sensor of agent i
captures an image of the area, Ωi,k . UAV i is equipped with a pan-tilt camera sensor
with a limited field of view (FOV),μi , and a limited sensing radius, Ri . The footprint
of the sensor on the ground is obtained by first projecting the camera field of view
(μi ) onto the ground and then confining it by the sensing range (Ri ), as shown in
Fig. 14.3. At time step k, each agent i independently takes a measurement over the
sensor exposure area, Ωi,k , denoted as the shaded region in Fig. 14.3.

The number of targets and a priori information, such as locations and movement
patterns, are assumed unknown, while the target’s top speed, Vmax

target, is assumed to
be known. The target size is assumed large enough to be identified by sensors with
a predefined detection probability when it enters on exposure area of the sensor.

Given the above definitions and assumptions, the problem we seek to solve is
a distributed update law for the probability map on each agent based on sensor
measurements. We present, in the next section, a heuristic strategy for each cell in
the probabilitymap to propagate its probability values based on the uncertainty values
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Fig. 14.3 Sensor exposure area (shaded area) of a UAV at pi,k equipped with a pan-tilt video
sensor with a field of view of μi and a limited sensing range Ri

of its neighboring cells in the previous time step. The probability values of cells in
the sensor exposure area is then updated according to the measurement outcomes,
such as detection or absence of targets.

14.3 Probability Map Update

For static target search, the target presence probability in a cell depends on the number
of “looks” committed over the cell by a UAV team. However, when searching mobile
targets in an area without a priori information, such as the number of targets and
potential target locations, update rules for static search are not valid any more. In this
section, we present a heuristic strategy of updating the probability map for mobile
target search and tracking.

At each time step, every UAV first applies an uncertainty propagation step to
update the probability value of each cell of its probability map. Depending on sensor
detection results, “No target detected” or “Target detected”, a measurement update
step is then applied to update the probability values for cells that fall in the sensor
exposure region.

14.3.1 Uncertainty Propagation Step

Since we have no a priori information, each cell with probability 0.5 may contain a
target. We can designate the maximum speed of a target, Vmax

target, but the orientation
of the target movement is unknown. Assuming that the step size of updating the
probability map is Ts , the target existence probability of cell (x, y), at time k, will
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spR
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(a) (b)

Fig. 14.4 Probability map update for a cell with the probability value of 0.5. a Time step k: before
the update. b Time step k + 1: after the update

spread, at time k +1, to its neighbors. This event can be described by a circle, whose
center is at (x, y) and whose radius is Rsp = Vmax

targetTs , as shown in Fig. 14.4. The
first update step of the probability in each cell is expressed as

Pi,k+1 (x, y) = 0.5, ∀ (x, y) ∈ C, (14.2)

C �
{
(x, y) | ∥∥(x, y) − (

x ′, y′)∥∥ ≤ Rsp
}
,

where
(
x ′, y′) is the coordinate of the center of a cell that satisfies

Pi,k
(
x ′, y′) = 0.5. (14.3)

The uncertainty propagation step can be explained as follows: at time step k, if a
cell has a probability value of 0.5 (unknown target existence), the probability will
spread to its neighboring cells at time k + 1. The maximum traveling distance of a
potential target equals to Rsp, and the area in which the potential target may stay can
be expressed by a circle, defined byC in Eq. (14.2). Thus, at time step k +1, each cell
in the region defined by the circle with radius Rsp would have an equal probability of
holding that potential target. Therefore, this uncertainty should be spread out using
the conservative manner in Eq. (14.2).

An issue would arise if the size of the cell (�) is greater than the spreading pace
(Rsp), which implies that one time step is not long enough to spread the probability
neighboring cells. In this case, the probability value of the neighboring cells can be
gradually changed to reflect the uncertainty spread. The following strategy can be
used to update the probability map for such a case. The time to spread the uncertainty
from a cell with probability value of 0.5 over the cells next to it can be calculated by

Tsp = �

Rsp
Ts = �

Vmax
target

,
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where � is the side length defining the cell size. The probability change of neighboring
cells at each step toward 0.5 can be calculated by

Punit = 0.5

Tsp
= 0.5Vmax

target

�
. (14.4)

Then an alternative update law is given by

Pi,k+1 (x, y) = Pi,k (x, y) + Punit · sgn
(
0.5 − Pi,k (x, y)

)
, ∀ (x, y) ∈ C,

(14.5)
C �

{
(x, y) | ∥∥(x, y) − (

x ′, y′)∥∥ ≤ �
}
,

Pi,k
(
x ′, y′) = 0.5,

where

sgn (z) =

⎧
⎪⎨

⎪⎩

1 z > 0,

0 z = 0,

−1 z < 0.

14.3.2 Measurement Update

After the uncertainty propagation step, the post process of updating the probability
mapwill be conducted separately in two different scenarios: no detection or detection
of targets. The next subsections present the detailed procedures.

14.3.2.1 No Target Detected

When no target is found at time step k + 1 in region Ωi,k+1, the probability of the
cells therein is updated using the following Bayesian rule [30]

P
(
Ex,y,k+1|Dx,y,k+1,i

) = P
(
Ex,y,k+1

)
P

(
Dx,y,k+1,i |Ex,y,k+1

)

P
(
Dx,y,k+1,i

) , (x, y) ∈ Ωi,k+1.

The probability values of the cells outside Ωi,k+1 remain the same. Define the
probability of true positive and false positive sensor measurements as two constants,
α � P

(
Dx,y,k+1,i |Ex,y,k+1

)
and β � P

(
Dx,y,k+1,i |E x,y,k+1

)
, respectively. The

probability that a target is not detected in the cell (x, y), P
(
Dx,y,k+1,i

)
, can be

calculated by [30]
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P
(
Dx,y,k+1,i

) = P
(
Dx,y,k+1,i |Ex,y,k+1

)
P

(
Ex,y,k+1

)

+P
(
Dx,y,k+1,i |E x,y,k+1

)
P

(
E x,y,k+1

)

= (1 − α)P
(
Ex,y,k+1

) + (1 − β)
(
1 − P

(
Ex,y,k+1

))
.

14.3.2.2 Target Detected

When targets are detected in regionΩi,k , each targetwill be associatedwith a dynamic
model whose motion is predicted and updated using a Kalman filter. Target detection
algorithms are assumed to be capable of distinguishing two targets that are next to
each other.

Let the location and the velocity of a target at time k be pt
k �

(
pt

k,x , pt
k,y

)T ∈
R
2×1 and vt

k �
(

vt
k,x , vt

k,y

)T ∈ R
2×1, respectively. Selecting the system state as

χk =
((

pt
k

)T
,
(
vt

k

)T
)T

and system output at time step k as φk = χk , and assuming

that the unknown system input is zero, the target dynamics is given by

χk+1 = Aχk + ξk

φk = Cχk + ηk,

A =

⎛

⎜
⎜
⎝

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , C =

(
1 0 0 0
0 1 0 0

)

,

where ξk is the process noise at time step k, representing modeling error and distur-
bances on the system, and ηk is themeasurement noise at time step k, representing the
sensor noise [35]. The random variables ξk and ηk are zero-mean Gaussian random
processes with covariances Q and R, respectively.

Defining the estimated state of χ as χ̂ and the estimation covariance at time k as
Pk , the prediction step of the Kalman filter is given by [36]

χ̂−
k = Aχ̂+

k−1

P−
k = AP+

k−1AT + Q,

where the superscripts − and + represent the variable values obtained before and
after the update step, respectively. Defining the Kalman gain at time step k as Lk ,
when a measurement is available, the update step of the Kalman filter is given by
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Lk = P−
k CT

(
C P−

k CT + R
)−1

P+
k = (I − LkC) P−

k

χ̂+
k = χ̂−

k + Lk
(
φk − Cχ̂−

k

)
,

where I is an identity matrix.
Let the standard deviations of state estimates in the x and y directions be σx and

σy , respectively, which are assumed σx = σy . For a Gaussian distribution, 99.73%
of the realization lies within three standard deviations of the mean [37]. Select a
circular region

F �
{

(x, y) | (x − p̂t
k,x

)2 +
(

y − p̂t
k,y

)2 ≤ (3σx )
2
}

,

whose center is at the estimated position of the target and whose radius is three times
of standard deviation of the position estimation, 3σx ( or 3σy). Select the values for a
Gaussian distribution in region F and rescale these values to the range [0.5, 1]. The
highest value of the resulting cell in the region represents the highest confidence of
target existence, while the cells with probability close to 0.5 reveal a relative low
possibility of target existence. Probability values of the cells in region F are then
updated using the scaled values accordingly.

14.4 Sensor Management and Path Planning for Search
and Tracking

The objective of search is tomaximize the possibility of detecting targets in the region
of interest, while the objective of tracking is to minimize the overall uncertainty of
target locations, i.e., the trace of the estimation covariance matrix [35] of the targets,
which have been found. For UAVs equipped with pan-tilt video sensors, two tasks
need to be solved: the sensor management, i.e., which orientation the sensor should
point towards, and the path planning.

14.4.1 Search Mode

Until a target is found, UAVs operate in the search mode. Due to the projection
distortion effect of video sensors, the gimbal is commanded to consistently point
downward to obtain the best resolution of the image. For the path planning algo-
rithm, we use the guidance law for multiple UAVs searching multiple mobile targets,
reported in [33, 34]. The desired heading angle of UAV i , ψi , can be calculated by
the following equation.
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Fig. 14.5 An optimal path planning algorithm for cooperative target search. a The four vectors
involved in the determination of the desired heading of a UAV. b The unitary vector vg points in the
direction of the trapezoid-shaped segment (one out of five in this case) with the highest probability
of target detection (white area) [33]

ψi = ωgvg + ωUAVvUAV + ωcvc + ωmvm, (14.6)

where vg is the goal vector that points in the direction of the area around the UAV
that has the largest probability of finding a target, as depicted in Fig. 14.5; vUAV is
a vector responsible for UAV to UAV collision avoidance; vc is a vector used to
maintain the UAV within a predetermined search area by operating as an obstacle
avoidance vector that concerns itself only with search boundaries within a radial
comfort range around the UAV; vm is a momentum vector that incorporates in ψi to
maintain the previous heading; andωg ,ωUAV,ωc, andωm are corresponding weights
for aforementioned vectors, respectively.

A set of optimized weights is given in [33] as ωg = 0.63, ωUAV = 0.26, ωc =
0.27, and ωm = 0.03. It can be seen that the largest weight ωg makes vg play the
most significant role among vectors in Eq. (14.6) of determining the desired heading
angle for UAV i . Therefore, a proper dynamic probability map is essential for a UAV
team to maximize the probability of detecting targets in a search area.

14.4.2 Tracking Mode

When a target is found, UAVs switch to the tracking mode. It is noted that there are
other operating modes, such as validating target, re-acquiring target, and approach-
ing target, which are beyond the scope of this work. For a UAV tracking multiple
targets, sensor management plays a significant part in decreasing the uncertainty of
target states. The path planning algorithm for UAVs to cooperatively track multiple
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mobile targets is also a challenging problem. To use the sensor management algo-
rithm developed in [38] and the path planning strategy in [39] effectively, which are
for multi-target tracking using a single UAV, the targets that have been detected are
allocated into Nu groups dynamically based on their relative distances. The resulting
Nu groups are then assigned to the nearest UAVs’ allowing each UAV to perform the
sensor placement and path planning tasks, accordingly.

14.5 Simulation Results

This section presents MATLAB simulation results of performing distributed cooper-
ative search and tracking of ground mobile targets in an unknown environment using
a team of two UAVs. As shown in Fig. 14.6, the mission area of search and tracking
targets and allowed flying zone are enclosed by two large (black and red, respec-
tively) rectangles. Two search areas, a circular region on the left and a rectangular
region on the right (blue lines), are specified by a user. Two UAVs are commanded
out from the home position (the origin) toward the search areas for a search and track
mission. Each UAV is depicted as a small colored circle. The gray thin tail attached
to each UAV represents the historical UAV trajectory. The gray rectangle around the
head of each UAV represents the sensor exposure area. In Fig. 14.6, the UAVs are
in the “Fly to Search Area” mode, so the gimbal is regulated pointing downward,
resulting in square sensor exposure areas. In this simulation, a total of three targets,
shown as small colored rectangles, are making random walk movements in the mis-
sion area. The two subfigures arranged vertically on the right side are probability
maps for the two UAVs, respectively. The probability values are displayed using a
“gray” colormap defined in MATLAB, which maps value 0 to color black, value 1 to
color white, and value 0.5 to color gray. The title line of each probability map shows
the unique UAV ID and its current mode.

Key parameters used in the simulation are presented in Table14.1. The simulation
step size TS was selected as 0.3 s. The actual top speed of the targets in the simulation

Fig. 14.6 Simulation snapshot: initialization
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Table 14.1 Simulation parameters

Map size UAVs

Mission area (m2) 2,560 × 1,520 Speed (m/s) 20

Flying zone (m2) 2,360 × 1,320 Minimum turning radius (m) 100

Cell size (m2) 20 × 20 Sensor range radius (m) 300

Search area 1 (m2) π · 5002 Sensor FOV (deg) 56

Search area 2 (m2) 1,440 × 900 Sensor slew rate (deg/s) 150

was 10m/s. Rsp is then calculated as 3m, which is smaller than the side length of
the cell, � (20m). Therefore, the update law (14.5) should be used. The spread pace
Punit is then calculated by using Eq. (14.4) as Punit = 0.075. The probability map
is recursively updated at each time step by using the strategy proposed in Sect. 14.3.
To simplify the calculation, we select α = 1 and β = 0 in the simulation.

Figures14.7 and 14.8 present a series of snapshots of the simulation run in which
two UAVs searched and tracked three targets in an unknown area. To simplify the
problem, UAVs are assumed to communicate all of their knowledge regarding targets

Fig. 14.7 Group one of simulation snapshots: search and tracking of three mobile targets using
two UAVs. a UAVs enter search areas (t = 10 s). b One UAV finds a target (t = 11s)
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Fig. 14.8 Group two of simulation snapshots: search and tracking of three mobile targets using
two UAVs. a Two UAVs find two targets. (t = 30 s). b Two UAVs track three targets. (t = 66s)

and the UAV status. After the two UAVs take off from the base, as shown in Fig. 14.6,
they fly toward their search areas. As shown in Fig. 14.7a, after UAVs reach the search
area, the “Global Search” mode is initiated. It can be seen that due to the use of the
path planning algorithmproposed in Sect. 14.4.1, the twoUAVsmove apart fromeach
other to maximize the coverage of the search area. The probability map is updated
accordingly by using the strategy described in Sect. 14.3. As shown in Fig. 14.7b,
when a UAV finds a target, it switches to the “Target Tracking” mode, while the
other UAV is still operating in the “Global Search” mode. When the two UAVs both
find targets, as shown in Fig. 14.8a, the cooperative tracking algorithm proposed in
Sect. 14.4.2 is applied accordingly. Figures14.8b shows that the two UAVs are able
to track three targets. The probability maps of the two UAVs are updated accordingly
using the strategy proposed in Sect. 14.3.

To further demonstrate the effectiveness of the proposed target search strategy,
we conducted a series of simulations where three targets are randomly placed in the
search area and are commanded tomove along straight paths with constant velocities.
Table14.2 lists ten data sets of target initial locations and velocities and time periods
that the UAV team took to locate the targets. However, when a UAV detects a target,
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Table 14.2 Simulation configuration for two UAVs to perform search and track missions

Target initial locations (m) Target velocities (m/s) Time (s)

(2300, 1300), (2300, 1300), (2300, 1300) (−2, 0), (−4,−2), (0,−5) 106

(600, 600), (1100, 200), (1200, 600) (0, 4), (−0.5, 5), (−3,−3) 29

(200, 200), (800, 200), (600, 300) (2, 1), (0.5, 3), (1, 5) 135

(1500, 800), (1500, 800), (1500, 800) (−2, 1), (3, 3), (5,−5) 128

(100, 100), (200, 1300), (2300, 200) (5, 4), (5,−2), (−4, 2) 21

(350, 100), (200, 900), (1000, 500) (5, 0), (4,−1), (3, 2) 90

(500, 800), (500, 800), (500, 800) (5, 0), (4,−1), (3, 2) 83

(1300, 1300), (1300, 1300), (1300, 1300) (0,−5), (2,−5), (−3,−4) 77

(2300, 800), (2300, 800), (2300, 800) (−5, 0), (−4,−1), (−3, 1) 100

(1300, 1300), (2300, 800), (200, 800) (0,−4), (−6, 0), (5, 0) 47

it switches to the tracking mode in which the UAV keeps tracking detected target(s)
using the strategy introduced in Sect. 14.4.2. So the “Time” column in Table14.2 lists
the time periods starting from the beginning of the simulation until all three targets
are found or until two UAVs both switch to the tracking modes. It can be seen from
Table14.2 that both UAVs are able to detect targets in all cases and the maximal time
used is 135s in a mission area with dimension of 2,5604 ×1,520m2.

14.6 Conclusion

This paper presents the use of mobile sensor network to search and track multiple
mobile targets in an unknown area. The network is made of a team of UAVs equipped
with pan-tilt video sensors. We introduced a novel update strategy for the probability
map used by UAVs to store probability information of target locations in the search
area. Two update laws are proposed to accommodate maps with different scales.
The simulation results show the rationality of the proposed probability-map update
strategy. The futureworkwill focus on the comparison study and cooperative tracking
guidance law for multiple UAVs.
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Chapter 15
A Heterogeneous Robotic Network
for Distributed Ambient Assisted Living

Antonio Petitti, Donato Di Paola, Annalisa Milella, Pier Luigi Mazzeo,
Paolo Spagnolo, Grazia Cicirelli and Giovanni Attolico

Abstract Networks of robots and sensors have been recognized to be a powerful
tool for developing fully automated systems that monitor environments and daily
life activities in Ambient Assisted Living applications. Nevertheless, issues related
to active control of heterogeneous sensors for high-level scene interpretation andmis-
sion execution are still open. This work presents the authors’ ongoing research about
the design and implementation of a heterogeneous robotic network that includes
static cameras and multi-sensor mobile robots for distributed target tracking. The
system is intended to provide robot-assisted monitoring and surveillance of large
environments. The proposed solution exploits a distributed control architecture to
enable the network to autonomously accomplish general-purpose and complex mon-
itoring tasks. The nodes can both act with some degree of autonomy and cooperate
with each other. The chapter describes the concepts underlying the designed system
architecture and presents the results of simulations performed in a realistic scenario
to validate the distributed target tracking algorithm. Preliminary experimental results
obtained in a real context are also presented showing the feasibility of the proposed
system.
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15.1 Introduction

The development of environment and activity monitoring systems, based on
heterogeneous networks of sensors, constitutes an active investigation field, with
many potential applications, including safety, security, ambient intelligence and
health-care assistance. In real scenarios, such as buildings, airports, road and rail
networks, or sport grounds, a single sensor is not able to monitor the whole environ-
ment or to track a moving object or a person for a long period of time, due to field
of view limitations. Furthermore, integrating information from multiple sensors is
a basic requirement for achieving an adequate level of robustness and scalability.
Typical solutions include the use of fixed camera networks that are able to cooper-
ate to monitor wide areas and track objects beyond the capabilities of each single
sensor [21]. However, fixed cameras may pose some critical limitations in large
environments and wherever infrastructure preparation is expensive or unfeasible. As
an alternative, mobile and multi-functional robots have been proposed as means to
reduce the environment structuring and the number of devices needed to cover a
given area [8]. The use of robots significantly expands the potential of monitoring
systems, which can evolve from the traditional passive role, in which the system can
only detect events and trigger alarms, to an active one, in which a robot can be used
to interact with the environment, with humans or with other robots for more complex
cooperative actions [17].

In this chapter, a Distributed Ambient Assisted Living (DAAL) system is
proposed. It is based on a distributed architecture exploiting fixed and mobile het-
erogeneous sensors to intelligently monitor large environments and track human
activities. The proposed cooperative monitoring system integrates fixed calibrated
cameras with a team of autonomous mobile robots equipped with different sen-
sors. A conceptual representation of the system is shown in Fig. 15.1. The system
is being developed as part of the project BAITAH (Italian National Research Pro-
gram PON-BAITAH—“Methodology and Instruments of Building Automation and
Information Technology for pervasive models of treatment and Aids for domestic
Healthcare”), aimed at identifying and developing ICT-based Ambient Intelligence
technologies to support the independent living of fragile people in their domestic
environments. In this project, mobile sensors are intended to provide two main con-
tributions: they can supply information about the observed human target in areas that
are out of the field of view of fixed cameras (thus reducing complexity and costs of
the required infrastructure), and they can move close to the target to increase preci-
sion and reliability of scene analysis whenever fixed sensors are unable to provide
robust estimates. In designing such a system, a major challenge is the integration
of high-level decision-making issues with primitive simple behaviors for different
operative scenarios. This aim requires a modular and reconfigurable system, capable
of simultaneously addressing low-level reactive control, general purpose and moni-
toring tasks and high-level control algorithms in a distributed fashion. This chapter
presents an overviewof both the systemarchitecture and the implemented algorithms.
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Fig. 15.1 Conceptual representation of the proposed ambient assisted living system

The remainder of the chapter is structured as follows. Section15.2 presents related
work. In Sect. 15.3 the distributed algorithmic framework for the ambient assisted
living system is presented. In Sect. 15.4 details about the implementation of the
system in a real-world scenario are provided. Results of simulation tests are shown
in Sect. 15.5, while preliminary real-world experiments using the proposed system
are described in Sect. 15.6. Finally, conclusions are drawn in Sect. 15.7.

15.2 Related Work

In the last few years, many researchers have focused their attention on Ambient
Assisted Living (AAL) technologies [10, 17]. Among the several research chal-
lenges in the AAL domain, one of the main issue regards the monitoring of people
activities [9]. It is easy to note that this scenario is based on an accurate and robust
tracking of people in the environment. This can be achieved exploiting the most
recent techniques in multi-target tracking using distributed architectures. Several
papers have addressed the problem of multi-target tracking by means of distrib-
uted camera networks. In [20], for example, the Kalman–Consensus filter [14] is
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used in order to fuse the information coming from each camera of the network
in a decentralized way. The presence of a consensus step significantly increases the
system performance as shown by experimental results. In [19] an extension of [20] to
wide-area scene understanding is presented. To optimize the dynamic scene analysis,
a control framework for a PTZ camera network is introduced. In [21], a survey of
distributed multi-camera systems for target tracking on planar surfaces is provided.
In [22], a review of distributed algorithms for several computer vision applications
is presented, emphasizing the advantages of distributed approaches with respect to
centralized ones. As a basic principle, in distributed estimation, each node of the net-
work locally estimates the state of a dynamical process using information provided
by its local sensor and by a subset of nodes of the network, called neighbors [24]. In
the literature, several approaches relative to distributed estimation in sensor networks
can be found. Their particular characteristic is the presence of an agreement step in
order to minimize the discrepancy among sensory nodes [2, 3, 7].

While the use of multiple sensors increases reliability and effectiveness in large
environments, it poses problems related to the need of infrastructures that can be
heavy and expensive. These infrastructures can be reduced by exploiting the flexi-
bility of moving sensors mounted on semi or fully autonomous vehicles that can be
employed as individual agents or organized in teams to provide intelligent distributed
monitoring of broad areas. Mobile sensors may significantly expand the potential of
AAL technologies beyond the traditional passive role of event detection and alarm
triggering from a static point of view. Mobile robots can actively interact with the
environment, with humans or with other robots to accomplish more complex cooper-
ative actions [1, 23]. Nevertheless, mobile surveillance devices based on autonomous
vehicles are still in their initial stage of development and many issues are currently
under investigation [5, 6, 12].

15.3 Distributed Ambient Assisted Living

In this chapter a Distributed Ambient Assisted Living (DAAL) framework is
introduced. The proposed DAAL system is a multi-agent1 heterogeneous network
for distributed monitoring of people in an indoor environment. It is composed by
a network of fixed cameras, to execute surveillance tasks in areas of relevant inter-
est, and mobile robots, that are able to perform local and specific monitoring tasks
to completely cover the environment. Integration among the various agents, fixed
and mobile, is performed via a distributed control architecture which uses a wire-
less network as a communication channel. In this section, first, the target detection
algorithms, used by either the fixed or the mobile agents, are described. Then, the
distributed target tracking algorithm is presented.

1 Hereinafter, the nodes of the network will be also named as agents in order to emphasize their
detection, communication and computation capabilities.
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15.3.1 Target Detection Using Fixed Cameras

Fixed cameras of the DAAL system are distributed in different locations of the
environment to optimize the target detection task. Each fixed node is equipped with
the following functionalities [9].

Motion Detection. The binary shape of moving objects (e.g., people) is extracted.
Specifically, a statistical background model is generated by evaluating mean value
and standard deviation for each point. Then, foreground moving regions are detected
by estimating, for each pixel, the similarity between the current frame and the back-
ground model.

Shadow Removal. This task is necessary because foreground pixels may corre-
spond not only to real moving objects, but also to their shadows. The shadow pixels
need to be removed, as they alter the real shape of objects and decrease the precision
of their localization. A connectivity analysis is, finally, performed to aggregate pixels
belonging to the same moving object.

Object Tracking. The detectedmoving objects, after shadow removal, are tracked
over time. Statistical (tracked object life time) and spatial information are extracted
for each of them. This task enables the association of each moving region to the
corresponding target object, based on its appearance. Furthermore, it reduces false
detections due to noise or light reflections.

3D Moving Object Localization. The intersection of the central axis of the rec-
tangular bounding box containing the moving region with its lower side provides the
estimate of object position on the ground plane. The corresponding 3D position is
evaluated using a pre-calibrated homographic matrix between the image plane and
the 3D ground plane.

15.3.2 Target Detection Using the Mobile Robots

Robots used in the DAAL system are equipped with an RGB-D sensor, namely the
MicrosoftKinect camera, to detect people in the environment [15]. TheKinect sensor,
through the 3D data representation, allows to robustly track the positions of a group
of people in the environment and to detect their movements [18]. Furthermore, in
the case the Kinect is mounted on a robot, the presence of a relative motion between
the camera and the global reference system should be taken into account in order to
obtain better results.

In the DAAL system people are identified in the scene captured by the Kinect
camera onboard the robot and then a single person of interest is selected. Once the
robot is focused on a person, a tracking algorithm keeps track of the position of that
person and a control algorithm allows the robot to move toward the person in order
to improve the tracking performance. Thus, each mobile robot is equipped with the
following functionalities.

Person Tracking. Through an algorithm for segmentation and recognition of the
human skeleton, that takes advantage of both the RGB color information and the
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depth information of the image [13], the robot detects all the people in the scene.
Then a person of interest is selected, for instance the person nearest to the robot
or the one who made a given gesture. To improve the estimation of the position of
each single person of interest and to improve the performance in realistic situations
affected by noise, the tracking algorithm uses a Kalman filter that improves the
estimation of the position. Finally, the correct position, obtained from the output of
the Kalman filter, can be used as the input for the motion controller.

Person Following. The person follower controller is basically a motion control
algorithm which requires two different inputs: the updated position of the person
of interest, given by the person tracker algorithm, and the information about static
and dynamic obstacles. In particular, the algorithm sets a trajectory planner with
the position of the person as the point of arrival and at the same time the robot is
aware of the obstacles in the environment obtained by the use of predefined map. In
this way, the person follower controls the motion of the robot, exploiting the robust
performance of a map-based navigation system, following the position of a person
of interest.

15.3.3 Distributed Target Tracking Algorithm

At the final stage of the DAAL system all the information coming for the various
sensors are fused using a distributed framework. To this end, the DAAL system
exploits the fully distributed Consensus-based Distributed Target Tracking (CDTT)
algorithm [16], to enhance the performance of the people tracking in a heterogeneous
sensor network. The CDTT consists of a two-phase iterative procedure: an estimation
step and a consensus step. In the estimation phase, each node of the network gives
an estimate of the position of the target. If the node can directly take a measurement,
then it will estimate the target position by means of a Kalman filter. Otherwise, the
node will take a prediction of the target motion according to the embedded linear
motion model of the Kalman filter. In the consensus phase, all the estimates in the
network converge to a common value via a max-consensus protocol, performed on
a measurement accuracy metrics called perception confidence value. This approach
was proved to provide good performance in heterogeneous sensor networks com-
posed by nodes with limited sensing capabilities [7]. The CDTT approach is totally
distributed, as it does not involve any form of centralization. Moreover, it guarantees
the agreement of the network nodes on the target position. The reader is referred
to [16] for further information.

15.4 System Implementation

TheDAALsystemwas implemented in theRobotics Laboratory ofCNR ISSIA,Bari,
Italy. In this section, details about the implementation of the system are provided.

In the DAAL network, each agent corresponds to an independent software
component that is executed on the robots embedded PC for the mobile agents
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and on a workstation for the fixed cameras. This architectural solution provides
several advantages. First, the system is totally plug-&-play, i.e., to increase the num-
ber of sensors it is sufficient to add a new camera (with its IP address) to the network,
so that no further effort to program new cameras is required. Softwaremaintenance is
easy and immediate, avoiding the broadcast updating of each camera software.More-
over, algorithms for motion detection and shadow removal, as the ones explained in
the previous section, are based on the evaluation of pixel correlation that requires a
very fast processing unit to run in real time and that cannot be done efficiently with
embedded cameras. The team of agents forms a peer-to-peer network. The network
nodes differ only for their own sensor capabilities. In particular, every agent is able
to detect an event (e.g., to perceive moving people or objects) and to localize an
event (e.g., tracking the position of a person) in the environment using one or more
sensor devices, whereas, in addition, mobile agents are able to execute tasks, through
their actuators. The detailed description of fixed and mobile nodes are given in the
following.

15.4.1 Setup of Fixed Nodes

The fixed agent software runs on a workstation linked to each camera by the net-
work infrastructure. The schematic representation of interconnections among nodes
composing the Fixed Node module is shown in Fig. 15.2. For each connected camera

ROS

Fig. 15.2 Schematic representation of interconnections among nodes composing the Fixed Node
module
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Fig. 15.3 The measurement error model for one of the cameras: f (x) = a ebx . The error is limited
when the sensor-target distance is under 7–8m, and, above that, the error increases. This suggests
that the camera should be deployed ensuring a maximum distance to the object under 7–8m

an autonomous thread integrated in the Robot Operating System (ROS)2 framework
is implemented, to execute somewell-definedordered tasks as explained inSect. 15.3.

Moreover in a real-world implementation, the measurement error of cameras
should be taken into account. The measurement error of the cameras depends on the
distance of the target relative to the sensor. In order to characterize the measurement
error, an error model is fitted from a series of measurement errors obtained by the
comparison of the position measured by the camera and the real position of the target
(the real position of the target is retrieved bymeans of a theodolite). Figure15.3 shows
the model fitted as an exponential function for one of the cameras:

f (x) = a ebx , (15.1)

where a = 0.009269±0.0074 [meters] and b = 0.3258±0.0696 1/[meters] are the
value of the coefficients (with 95% confidence bounds) defining the actual function
f (x).

15.4.2 Setup of Mobile Nodes

The mobile nodes of the network consist of mobile robots. Each mobile agent is
equipped with sensory devices to interact with the environment. Every node is able
to localize itself in the environment and to safely navigate avoiding static and dynamic
obstacles. It is also able to identify and track thepositionof a target in the environment.
ROS has been adopted as a framework for communication management, sensor
acquisition and actuator control on the mobile robots. It is an open source framework
that presents several packages ready to run in order to control all the devices of
a robotic platform. ROS provides a Navigation Stack, which enables the robot to

2 http://www.ros.org.

http://www.ros.org
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navigate in a known environment avoiding obstacles, as well as sensor management
packages [11]. The most important characteristic of ROS is its modular structure
that makes it possible to modify or substitute some modules. In order to develop a
customized monitoring architecture, new functionalities have been developed and
added to the native ROS framework. Specifically, the structure of the navigation
stack of ROS has been modified in order to add surveillance capabilities to the
mobile nodes. A coordinate transformation from local to global coordinates was also
introduced for the people tracking task.

In Fig. 15.4 a schematic representation of the mobile node module is reported.
All ROS nodes run on the on-board laptop, except for sicktoolbox_wrapper and
p2os_driver, which runs on the embedded pc of the robot. As can be seen, the
Navigation Stack of ROS produces robot position estimates, as well as information
about obstacles on the basis of laser measurements. The ROS node motion_control,
implemented by our research team, sends velocity references to p2os_driver ROS
node, responsible of the robot guidance. The people_tracker node estimates the
relative position of people with respect to the robot, on the basis of the skeleton
information received from openni_tracker. The relative coordinates of detected peo-
ple, transformed in the world reference frame, provide input data to the distributed
target tracking algorithm.

ROS

Fig. 15.4 Schematic representation of interconnections among nodes composing the Mobile Node
module
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15.5 Simulation Results

This section deals with the evaluation of the DAAL system through a numerical
simulations’ campaign. The evaluation is focused on the tracking task performance.
The setup and results of such simulations are described below.

15.5.1 Simulation Setup

The DAAL system performance is tested in a realistic scenario with a setup similar
to the real one. A target moving inside a given environment, according to various
random trajectories, is simulated for the target tracking task. The analysis is focused
on the evaluation of the presence of mobile nodes in the network, specifically, the
simulations investigate if the presence of mobile nodes increases the tracking perfor-
mance according to a given evaluation index. A network composed by three cameras,
named as C1, C2, C3, and one robot, R1, is assumed (as in the real DAAL system).
Heterogeneity in the sensor network is due to the different sensing ranges of sen-
sors, set on the basis of real devices’ characteristics. Specifically, the sensing area
is defined as a circular sector area placed at the front of the sensor with radius of
rC1 = 10m for camera C1, rC2 = 8.5m for camera C2, rC3 = 7m for camera C3,
and rR1 = 5m for robot R1. The sensors are modeled as range-bearing, with mea-
surement error depending on distance and bearing of the target relative to the sensor.
In order to assess the system performance, attention is focused on the tracking accu-
racy, by evaluating the discrepancy between estimated and actual target trajectory.
Specifically, as a metric for target tracking accuracy estimation, the mean square
error (in norm) is computed as:

MSE = 1

k f

k f∑

k=1

‖ξ i (k) − ξ(k)‖2 (15.2)

where k is the simulated discrete time, k f is the duration (in time samples) of the
target trajectory, ξ(k) is the actual target position at time k, and ξ i (k) is the global
target position estimates performed by the i th sensor of the network. It should be
noted that the estimated target position is the same for any node of the network, since
after convergence of the consensus step of the CDTT algorithm all the network nodes
share the same information about the target location.

15.5.2 Numerical Results

The tracking performance of the DAAL system is analyzed using the simulation
setup described in Sect. 15.5.1. A campaign of Monte Carlo simulations is run in
two different cases. In the first case, the mobile robot is kept at a fixed position, thus
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Fig. 15.5 DAAL system
evaluation: simulation of a
random generated target
trajectory for a network of
3 fixed nodes (in black) and
1 mobile node (in green). The
red line indicates the actual
trajectory of the target, while
the blue dots are the estimated
positions of the target
returned by the CDTT
algorithm. a The mobile robot
surveys an assigned area of
interest of the environment.
b As soon as the target enters
this area, the mobile node
approaches it to perform a
more accurate measure

acting as a fourth static node. In the second case, the mobile robot can move in the
surroundings of its initial location.

A set of 250 random target trajectories is run both for the case of static nodes
only and for the scenario including the mobile node. The tracking simulation for one
of the trajectories is shown in Fig. 15.5. It refers to the simulation performed using
a mobile node (green arrow) in addition to the static ones (black arrows). A solid
red line denotes the actual target trajectory, while the estimated positions at each
time step k are marked by blue circles. Initially (Fig. 15.5a), the target is sensed by
the static node C2, while the other nodes are aware of the target position thanks to
the consensus convergence. As soon as the target enters the area surveyed by the
mobile node (Fig. 15.5b), the latter approaches the target to perform a more accurate
measure.

The numerical results of the simulation campaign are reported in Table15.1,
showing amean square error of 0.2339m and 0.1523m, for the static network and for
the network including the mobile node, respectively. As can be noted, the presence
of a mobile node increases the tracking accuracy. This is mainly due to two reasons:
first, the mobile node can approach the target, so that it can measure the position
of the target with higher accuracy according to the adopted range-bearing sensor
model. In addition, the mobile node can track the target also in areas hidden to the
fixed nodes, thus increasing the overall coverage of the network.
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Table 15.1 Average MSE and variance in the tracking of 250 repeated random target trajectories:
comparison between results with and without the presence of a mobile node

Method Average MSE (m) Variance (m2)

w/ Mobile Agent 0.15 0.06

w/o Mobile Agent 0.23 0.02

15.6 Experimental Results

In this section, the DAAL system is validated through experimental tests conducted
in a real-world scenario. The evaluation is focused on the distributed target tracking
task. First, we describe the environment setup, then the system and the results of the
experimental tests are presented.

15.6.1 Environment Setup

The environment setup used for the experimentation of the system is shown in
Fig. 15.6. The picture shows the map of a corridor of the ISSIA-CNR building,
as it is built by the gmapping node available in ROS using the laser data acquired by
a mobile robot during a complete exploration of the environment. In this experimen-
tation, three fixed cameras and one mobile robot have been employed. The positions
of the fixed cameras (C1, C2, C3) and of the mobile robot (R1) are overlaid on the
map. The mobile agent is able to localize itself in the environment and, using its
on-board sensors, it is able to carry out surveillance tasks, such as people detection
and tracking. Cameras are calibrated, therefore events detected in the image plane
can be located in the real world and their positions can be communicated to the
mobile agent. The mobile robot can explore areas that are unobservable by the fixed
cameras and improve the accuracy in detecting events by reaching proper positions in

Fig. 15.6 Map of one
corridor of the office with
overlaid the position of three
static cameras (red circles)
and one mobile agent (green
triangle)
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the environment. Hence, the proposed system could be useful to reduce the number
of fixed sensors or to monitor areas (e.g., cluttered environments) in which the field
of view of fixed cameras can be temporarily and dynamically reduced.

15.6.2 System Setup

The fixed nodes are three wireless IP cameras (C1, C2, C3) with different spatial
resolution, located in different points of the environment (see map in Fig. 15.6).
C2 and C3 are Axis IP color cameras with a 640×480 pixel resolution and an acqui-
sition frame rate of 10 frames/s. C1 is a Mpixel Axis IP color camera with 1,280 ×
1,024 pixel resolution and full frame acquisition rate of 8 frames/s (see Fig.15.7,
on the right). A calibration step to estimate intrinsic and extrinsic parameters was

Fig. 15.7 The nodes of the network. On the left, the mobile agent PeopleBot. The robot is equipped
with a laser range-finder SICK LMS200 and a Kinect. On the right, two different AXIS cameras:
on the top, a Mpixel Axis IP color camera with 1,280 × 1,024. On the bottom, an Axis IP color
cameras with a 640 × 480 pixel camera
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(a)

(b)

Fig. 15.8 Trajectory 1. The measurement of the position of the target carried out by each of the
sensor of the network (a) and the CDTT trajectory recovered on line and in distributed fashion by
the network (b)

performed for each camera using the Matlab Calibration Toolbox,3 so that camera
coordinates can be mapped to the global world reference frame provided by the map
built by the mobile robots.

The mobile agent (denoted as R1 in Fig. 15.6) consists of a PeopleBot mobile
robot platform equipped with a laser range-finder, a Kinect, and an on-board laptop

3 The toolbox is available on http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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(a)

(b)

Fig. 15.9 Trajectory 2. The measurement of the position of the target carried out by each of the
sensor of the network (a) and the CDTT trajectory recovered on line and in distributed fashion by
the network (b)

(see Fig.15.7, on the left). The SICK laser is connected with the embedded robot
control unit. The Kinect camera and the PeopleBot control unit are connected with
the laptop, via a USB cable and a crossover cable, respectively. The laser range-finder
is used to build a map of the environment and to localize the vehicle. The Kinect
is used for both navigation (e.g., obstacle avoidance) and high-level tasks such as
people detection and tracking.
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The DAAL system performance is tested in a real time application in which a
network of three cameras and a robot is used to monitor a large environment and
track the position occupied by a given target. The target to be tracked is a person
moving in the environment following two given trajectories. The robot is equipped
with an on board Kinect camera whose field of view is 58◦ horizontal, 45◦ vertical,
70◦ diagonal, and the operational range is between 0.8m (2.6 ft) and 3.5m (11 ft) [4].

15.6.3 Results of Experiments

In the experimentation, the target follows two different trajectories in the environ-
ment, as shown in Figs. 15.8 and 15.9. Specifically, in Figs. 15.8a and15.9a, the target
trajectory is denoted by a red line, while the target positions as estimated by the three
cameras and the robot are denoted by different markers. In Figs. 15.8b and15.9b the
target trajectory (red line) is compared with the trajectory (blue dots) as estimated
by the CDTT algorithm. It should be noted that the estimated target position is the
same for any node of the network, since after convergence of the consensus step
of the CDTT algorithm all the network nodes share the same information about the
target location. In order to quantify the tracking performance, we suppose that the
target is moving with a constant velocity and we calculate the MSE, as done for the
simulated case. Results are collected in Table15.2, showing a mean square error of
1.15 and 0.75m, for Trajectory 1 and Trajectory 2, respectively. Figure15.10 shows
two frames, acquired from the Kinect camera on the robot during the tracking of the
Trajectory 1 depicted in Fig. 15.8.

Table 15.2 Average MSE and variance in the tracking of a person moving in the laboratory by
means of a network of 4 nodes, 3 fixed and 1 mobile

Case Average MSE (m) Variance (m2)

Trajectory 1 (Fig. 15.8) 1.15 0.86

Trajectory 2 (Fig. 15.9) 0.75 0.16

Fig. 15.10 Two different instants of the tracking of Trajectory 1, acquired from the Kinect sensor
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15.7 Conclusions

In this chapter, a novel activity monitoring architecture for Ambient Assisted Living
applications has been introduced. The main contribution is the combination of fixed
and mobile nodes in the monitoring network: mobile sensors enable the complete
coverage of large environments with fewer fixed sensors and increase the accuracy
of measurements by reaching the most favorable position to observe the current
target. The global logical architecture used by the system has been presented. The
software agents developed to work on fixed and mobile nodes have been described.
Simulations of the behavior of the system in a realistic environment (with sensor
parameters closely corresponding to the characteristics of the real fixed and mobile
sensors) have been carried out and the results have been shown. They have been
obtained using a distributed target tracking algorithm developed by some of the
authors. Furthermore, preliminary experimental results obtained by the real sensors
in our lab environment are presented, showing the feasibility and effectiveness of the
proposed system.
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Chapter 16
Cooperative Multi-robot Patrol in an Indoor
Infrastructure

David Portugal and Rui P. Rocha

Abstract Multi-robot patrol (MRP) is essentially a collective decision-makingprob-
lem, where mobile robotic units must coordinate their actions effectively in order to
schedule visits to every critical point of the environment. The problem is commonly
addressed using centralized planners with global knowledge and/or calculating a pri-
ori routes for all robots before the beginning of the mission. However, distributed
strategies for MRP have very interesting advantages, such as allowing the team to
adapt to changes in the system, the possibility to add or remove patrol units during
the mission, and leading to trajectories that are much harder to predict by an external
observer. In this work, we present a distributed strategy to solve the patrolling prob-
lem in a real world indoor environment, where each autonomous agent decides its
actions locally and adapts to the system’s needs using distributed communication.
Experimental results show the ability of the team to coordinate so as to visit every
important point of the environment. Furthermore, the approach is able to scale to an
arbitrary number of robots as well as overcome communication failures and robot
faults.

16.1 Introduction

This work addresses multi-robot systems (MRS) for cooperative patrolling missions
in realistic scenarios. To patrol is herein defined as “the activity of going around
or through an area at regular intervals for security purposes” [1]. It requires every
position in the environment, or at least the ones that need surveillance, to be regu-
larly visited to verify the absence of anomalies. Additionally, it aims at monitoring
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environments, obtaining information, searching for objects, and clearing areas in
order to guard the grounds from intrusion. Consequently, performing a patrolling
mission with a team of any given number of autonomous and cooperative robots dis-
tributed in space represents a complex challenge. Being monotonous and repetitive,
patrolling missions may also be dangerous (e.g., patrolling in hazardous environ-
ments). Therefore, using MRS in this context enables to safeguard human lives in
applications like mine clearing, search and rescue operations, or surveillance, reduc-
ing the risk to human operators,which can be occupied in nobler tasks likemonitoring
the system from a safer location [2, 3].

In Multi-robot patrol (MRP), it is common to abstract the environment through
a topological, graph-like map and robots are expected to have improved sensing
abilities, meaning that they need to visit regularly all important places in the envi-
ronment without necessarily going everywhere. Thus, agents should coordinate their
actions in a shared environment while continuously deciding which place to move
next after clearing their locations, having the ultimate goal of achieving optimal
group performance.

The problem is commonly addressed using centralized planners with global
knowledge and/or calculating a priori routes for all robots before the beginning
of the mission. However, the deterministic nature of such methods do not capture
the repetitive, and hence dynamic aspect of the problem, nor the synchronization
issues that arise when a timing among the visits of certain zones is required. On the
other hand, distributed strategies for MRP have very interesting advantages, such as
allowing the team to adapt to changes in the system, the possibility to add or remove
patrol units during the mission, and leading to trajectories that are much harder to
predict by an external observer.

In this work, a distributed algorithm is proposed to solve the problem. The
patrolling route of each robot is progressively built online and according to the state of
the system. Furthermore, all robots are endowed with autonomous decision-making
capabilities, being able to decide their moves by resorting to Bayesian decision,
instead of following routes computed by a centralized entity.

In the next section, a literature review is conducted and the contributions of the
chapter are described. Afterward, the MRP Problem is defined and the performance
metric is presented in Sect. 16.3. The following section describes the distributed
multi-robot patrolling strategy adopted in this chapter. Section16.5 presents the
experimental setup and the results obtained in real world indoor patrolling missions,
as well as a discussion of the facets of the problem. Finally, the chapter ends with
conclusions and open issues for future research.

16.2 Related Work

An overview of multi-robot strategies for area patrol missions is presented in this
section. The MRP problem is also known in the literature as repetitive sweeping,
multi-robot monitoring, and graph coverage, and the interest in this field stems from
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the variety of possible approaches, the potential applications of such algorithms in
several distinct areas, and the key social function of these systems.

Important theoretical contributions to the MRP have been presented by [4–6].
Considering the idleness criterion (cf. Sect. 16.3), it was shown that the problem
is NP-Hard, i.e., no polynomial time algorithm is known to compute an optimal
solution to the problem. Also, it was shown that in theory, it can be optimally solved
with a single robot by finding a Traveling Salesman Problem (TSP) tour in the graph
that describes the environment. However, such computation is also NP-Hard. For the
multi-robot case the problem remains open with several different algorithms in terms
of motion rules, communication paradigm, cooperation scheme, etc. being proposed
by several research groups in the last decade.

Numerous works employ graph theory tools like spanning trees [7] or graph parti-
tioning [8] to compute minimal-cost cycles that assign efficient routes for each robot
in the patrolling mission. Auctions and market-based coordination are also popular
among MRP literature as in the case of [9], where agents bid to exchange vertices of
the patrol graph to increase overall patrol performance. Diverse other concepts have
also been explored, such as simple reactive architectures [10], task allocation [11],
artificial forces [12], Gaussian process theory [13], evolutionary algorithms [14],
swarm intelligence [15], Markov decision process [16], linear programming mod-
eling [17], and others. A survey of methods in the literature for MRP can be found
in [18].

Research on adversarial patrolling, a variant of the classical multi-robot area
patrol, has addressed important issues such as applying unpredictable actions in the
patrolling method so that intruders will not have access to the patrolling trajectory
information to avoid being detected by agents [19], and studying strategies to detect
intruders with high probability [20]. In identical surveillance application scenarios,
where the threat of having adversarial agents is a central issue, the problem can also
be addressed using game-theoretic approaches [21, 22].

Most contributions to the literature propose patrollingmethods and overlook other
relevant problems that should be addressed in MRP missions, e.g., robustness to
failures and scalability. Furthermore, the vast majority of related work verifies their
results only in simulations with different types of assumptions; some exceptions
being the works described in [9, 23] and a few others. Clearly, there is a lack of
implementation using physical MRS in noncentralized architectures. This serves as
a motivation for the need to continuously coordinate teams of robots in patrolling
missions in a distributed way, to validate these systems in the real-world and the
possibility to add or remove patrolling agents (e.g., due to failures).

As will be seen, the main advantages of the patrolling framework presented in
this chapter are the adaptability to the system’s needs, which results from providing
the robots with autonomous decision-making capability; the straightforwardness of
implementation; and the quality of the technique leading to a scalable and fault-
tolerant solution, which represents the main contribution of this work to the state of
the art.
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16.3 Problem Definition

In this work, the problem of efficiently patrolling a given environment with an arbi-
trary number of robots is studied. Agents are assumed to have an a priori map of
the environment and through a graph extraction algorithm [24], they obtain an undi-
rected, connected and metric navigation graph G = (V, E) with vi ∈ V vertices and
ei j ∈ E edges. Each vertex represents a specific location that must be visited regularly
and each edge represents the connectivity between these locations, having a weight
|ei, j | defined by the metric distance between vi and v j . |V| represents the cardinality
of the setV and |E | represents the cardinality of the set E . Seeing as undirected graphs
are assumed, then: |E | ≤ |V |·(|V |−1)

2 .
Informally, a good strategy is one that minimizes the time lag between two pas-

sages to the same place and for all places [4]. Thus, theMRP problem can be reduced
to coordinate robots in order to frequently visit all vertices of the graph, ensuring the
absence of atypical situations with respect to a predefined optimization criterion.

In order to address and compare the performance of different patrolling algo-
rithms, it is important to establish an evaluation metric. Diverse criteria have been
previously proposed to access the effectiveness of multi-robot patrolling strategies.
Typically, these are based on the idleness of the vertices, the frequency of visits or
the distance traveled by agents [23]. In this work, the first one has been considered
[25, 26], given that it measures the elapsed time since the last visit from any agent
in the team to a specific location. Idleness is intuitive to analyze and brought into
confrontation with the possibility of attacks to the system, seen as it uses time units.
Thus, in the following equations, we define important variables used in the upcoming
sections of the chapter.

The instantaneous idleness of a vertex vi ∈ V in time step t is defined as:

Ivi (t) = t − tl , (16.1)

wherein tl corresponds to the last time instant when the vertex vi was visited by any
robot of the team.

Consequently, the average idleness of a vertex vi ∈ V in time step t is defined as:

Ivi (t) = Ivi (tl) · Ci + Ivi (t)

Ci + 1
, (16.2)

where Ci represents the number of visits to vi . Considering now IV as the set of the
average idlenesses of all vi ∈ V , given by:

IV = {Iv1, ..., Ivi , ..., Iv|V| }, (16.3)

the maximum average idleness of all vertices max(IV ) in time step t is defined as:

max(IV )(t) = max{Iv1(t), ..., Ivi (t), ..., Iv|V|(t)}. (16.4)
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For the sake of simplicity, the argument (t) is omittedwhenever timing is not relevant.
Finally, in order to obtain a generalized measure, the average idleness of the graph
G (IG) is defined as:

IG = 1

|V|
|V |∑

i=1

Ivi . (16.5)

A similar assumption to other works in the literature [4, 10] is taken in the beginning
of the experiments, where for all vi ∈ V , Ivi (0) = 0, as if every vertex had just been
visited, when the mission started. As a consequence, there is a transitory phase in
which the IG values tend to be low, not corresponding to the reality in a steady-state
phase, as will be seen in the results section. For this reason, the final IG value is
measured only after convergence in the stable phase.

Considering a patrol path as an array of vertices of G, the multi-robot patrolling
problem can be described as the problem of finding a set of R robot trajectories x
that visit all vertices vi ∈ V of the graph G, using an arbitrary team of R robots, with
the overall team goal of minimizing IG :

f = argmin
x

(IG), (16.6)

by finding:

x = {x1, ..., xr , ..., xR}, (16.7)

such that:

xr = {va, vb, ...}, (16.8)

va, vb, ... ∈ V,

1 ≤ r ≤ R, R ∈ N,

subject to:

∀vi ∈ V, ∃xr ∈ x : vi ∈ xr . (16.9)

Note that xr represents the patrolling path of robot r , which has an arbitrary dimension
that depends on each robot’s decisions and va, vb, ... are generic vertices in V , which
do not imply any specific order.

In this work, instead of relying in precomputed routes, which is common in clas-
sical approaches, the patrolling route xr of each robot is built online according to
the state of the system. Furthermore, all robots are able to decide their own moves
instead of following routes that are computed by a centralized coordinator.
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16.4 A Distributed Strategy for MRP

In [27], it was shown that methods based on Bayesian principles can effectively
solve the MRP problem in different environment topologies. These methods can
cope with uncertainty and robots’ actions are selected according to the state of the
system, leading to adaptive and distributed cooperative patrolling. More specifically,
in the State-Exchange Bayesian Strategy (SEBS) each robot takes other teammates’
actions into accountwhile, at the same time, aiming tomaximize a local gain function,
which guarantees that every vertex of the navigation graph is visited regularly by all
agents.

In order to compare the performance of diverse state of the art MRP techniques,
we have used Stage [28], a recognized multi-robot simulator designed to support
research intomulti-agent autonomous systems. Stage simulates not only a population
of mobile robots, but also sensors and objects in a two-dimensional environment.
Moreover, it is realistic for many purposes, having a well-known status of being
a robust simulation platform. In order to program the robots, the robot operating
system (ROS) [29] was adopted. It was also verified that the nodes developed using
Stage would work with little or no modification with real robots.

In the comparative analysis conducted, SEBS outperformed the remaining
methods [27]. As a consequence, in this work it is chosen as the preferred strat-
egy for coordination of a team of mobile robots, in a patrolling mission in a real
world indoor infrastructure.

In the following subsections, we review the SEBS strategy. Using this strategy,
agents decide asynchronously which place to move next when they reach their loca-
tion, according to prior information about the team and the environment. Having this
in mind, a fundamental random variable, which represents the act of moving (or not)
to a neighbor vertex vA is defined as:

move(vA) = {true, false}, (16.10)

The variables, which influence each robot’s decision to move to a specific vertex,
are presented in the next subsections with special focus on the selection of proper
statistical distributions to model the data, so as to ensure the quality of the results.
Afterward, it is shown how the local decision-making process is automated, applying
Bayes Rule.

16.4.1 Gain

After reaching a given location of the environment, which needs to be visited, each
robot is faced with a decision, where it must decide the next move within the shared
environment. Therefore, the Gain G A of moving from the current vertex (v0) to a
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neighbor vertex (vA), assuming constant speed (c) is defined as:

G A(t) = c ·
(IvA(t) − IvA(t + Δt)

|eval|
)

, (16.11)

where in t + Δt is the arrival time in vA, and Δt = |e0A|/c. G A(t) is proportional to a
difference in the idleness values, representing a gain that the robot expects to obtain
in moving to a given vertex. Note however that G A(t) ≥ 0 because IvA(t +Δt) = 0
when the robot reaches vA. For simplicity of notation, let us omit (t) in G A, since
every computation is done instantaneously.

In most cases, |eval| is equal to |e0A|, which represents the distance between v0
and vA, given by the weight of the edge that connects them. However, the constraint
(16.12) is imposed in order to control the impact of |eval|, avoiding seldom situations
where robots may get trapped in local optima (i.e., repeatedly visiting vertices that
are very close to each other):

|eval| =
{ |emin|, if max{e0A, ..., e0β} > 2min{e0A, ..., e0β} ∧ |e0A| < |emin|;

|e0A|, otherwise.
(16.12)

Naturally, greater values of gain rapidly have more influence in the robot’s decision.
Hence, the distribution function F(g) of Gi is defined as a monotonically increasing
function with the exponential model, as illustrated in Fig. 16.1a:

F(g) = aebg; a > 0, (16.13)

where:

F(0) = L ⇔ a = L , (16.14)

and:

1 = LebM ⇔ b = ln (1/L)

M
. (16.15)

F(g)

g0 M 

L 
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f(s) 

(a) (b)

Fig. 16.1 Distribution Functions. a Gain, F(g), b State, f (s)
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This results in:

F(g) = L · exp
(
ln (1/L)

M
g

)

, (16.16)

with:

L , M > 0 and g < M. (16.17)

L and M are constants that control the distribution function. Particularly, L is the
y-intercept, which controls the probability values for lower gains and M is the gain
saturation, beyond which the probability values are maximum; F(g ≥ M) = 1.
These constants are simply defined as L = 0.1 in the experiments conducted; and
M is calculated through (16.11) using an upper bound of IvA .

16.4.2 State

If the robots only depended on the Gain variable, they would aim to obtain the best
reward for themselves, neglecting the global objective of the patrolling team and
acting independently of their teammates, i.e., they would follow a greedy approach.
However, in collective operations with a common goal, coordination between agents
is fundamental for the success of the mission. Particularly in the MRP context, it
is highly undesirable that agents move to the same positions. Instead, they should
communicate their goals to ensure the distribution in the shared environment. As
a result, a random variable, the vertex state Si , is defined to model the number of
robots that intend to visit a given vertex vi involved in the decision process of robot
r , which is currently located in vertex v0:

Si ∈ N0 ∩ [0, R − 1]; R > 1. (16.18)

As previously, it is necessary to define a statistical distribution f (s) to model the
vertex state. The greater the number of teammates in a given region in the vicinity
of a robot, it becomes increasingly unlikely for the robot to move in that direction.
To describe this behavior, the following probability mass function has been defined,
which uses a geometric sequence of ratio 1/2:

f (s)R→∞ = P(Si = s)R→∞ = 1

2s+1 , (16.19)

as shown in Fig. 16.1b. This geometric sequence is used to guarantee that the total
probability for all Si equals 1:

R−1∑

s=0

f (s) = 1, (16.20)
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Equation (16.19) assumes that the number of robots R is unknown and can be arbi-
trarily high. Nevertheless, given that the robots communicate among themselves in
order to coordinate, it is more realistic to consider R as known and with finite values.
Thus, the following approximation to (16.19) is assumed:

f (s) = P(Si = s) = 2R−(s+1)

2R − 1
; R > 1. (16.21)

16.4.3 Robot Decision

Each decision to move from a vertex v0 to a neighbor vA is independent and agents
have the ability to choose the action, which has the greatest expectation of utility,
weighted by the effects of all possible actions.

Having this in mind, robots locally update the idleness values online, by com-
municating to other robots when they reach any vertex of the navigation graph, in a
distributed way. This enables the calculation of the Gain of moving from the current
vertex to any of its neighbors. Similarly, by receiving other robots’ intentions, agents
can calculate the vertex state.

Having the likelihood distribution models P(Gi |move) and P(Si |move) defined
respectively by F(g) and f (s); and considering the prior knowledge as uniform,
P(move), where all decisions are equiprobable; agents calculate the probability of
moving to a specific vertex i , given its gain Gi and the vertex state Si , by applying

Algorithm 1: State Exchange Bayesian Strategy (SEBS).

while true do1.1
add(vn to xr); //current vertex1.2
forall vi ∈ NG(vn) do1.3

Gi ← c ·
(Ivi (t)−Ivi (t+Δt)

|eval |
)
;1.4

P(Gi |move(vi )) ← L · exp
(
ln(1/L)

M Gi

)
;1.5

Si ← count_intentions_to(vi);1.6

P(Si |move(vi )) ← 2R−(Si +1)

2R−1
;1.7

P(move(vi )|Gi , Si ) ∝ P(move(vi ))P(Gi |move(vi ))P(Si |move(vi ));1.8

//Next vertex is the neighbor of the current vertex with highest posterior probability.1.9
vn+1 ←argmax

i∈NG (vn )

P(move(vi )|Gi , Si )
1.10

write_msg_arrival_to(vn);1.11
write_msg_intention_to(vn+1);1.12

while move_robot to vn+1 do1.13
read_msg_arrival_and_intentions_to (V);1.14
update(IV (t));1.15

vn ← vn+1 ;1.16
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Bayes rule:

P(move(vi )|Gi , Si ) = P(move(vi ))P(Gi |move(vi ))P(Si |move(vi ))

P(Gi )P(Si )
. (16.22)

The denominator term is a normalization factor [30], being omitted for simplification
purposes. Finally, the decision-making process of the agent consists of choosing the
move from v0 to the vertex v j with the maximum probability among all vertices of
the neighborhood NG(v0) of v0:

move j = true : j = argmax
i∈NG(v0)

P(move(vi )|Gi , Si ) (16.23)

Algorithm 1 presents a high-level pseudo-code of the SEBS approach, which runs
locally on each mobile robot.

16.5 Results and Discussion

In this section, the implementation of a system for multi-robot patrol in a real-world
environment is presented to demonstrate the potential of employing mobile robots
as a potential solution in surveillance missions. Aiming to fill a gap in the state of the
art, the SEBS distributed approach is validated in a large indoor scenario, where fully
autonomous agents decide locally and sequentially their patrol routes according to the
state of the system, as previously described. Beyond the coordination, which arises
from the distributed communication of agents, it is also shown that the approach is
robust to robot faults and communication failures.

Experiments were conducted in the floor 0 of the Institute of System and Robotics
(ISR), in the University of Coimbra (UC), Portugal. Figure16.2 shows the floor plan
and the extracted topological map on top of the 67.85 × 26.15m environment. The
resulting topology is a noncomplete, connected and sparse graph, like most real
world environments. In these tests, robots must overcome noisy sensor readings,
localization issues, and even robot failures, which are usually ignored or not precisely
modeled in simulation experiments. Therefore, a team of three Pioneer-3DX robots
equipped with an Hokuyo URG-04LX-UG01 laser was used, as seen in Fig. 16.3.

The Pioneer 3-DX is a lightweight two-wheel differential drive robot for indoor
use, equipped with two high-speed, high-torque, reversible-DC motors. Each motor
has a high resolution optical quadrature shaft encoder for precise position, speed
sensing, and advanced dead-reckoning. These robots are highly popular due to their
versatility, reliability, and durability. They can operate continuously for 8–10h, with
a maximum load of 23kg on top of the platform. In terms of dimensions, the
robot has a diameter of 45.5 and 23.7 cms of height, as shown in Fig. 16.4. The
robot easily handles small gaps and minor bumping, and its middle-size lends itself
very well to navigation in tight quarters and cluttered spaces, such as classrooms,
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Fig. 16.2 Topological map of the “ISR-Floor0” Environment

Fig. 16.3 A team of Pioneer 3-DX robots

455

62 195

210
237 381

Fig. 16.4 Robot’s dimensions (in mm)

laboratories, and small offices. A laptop on top of each robot was used to extend
its processing capability. Each laptop runs the ROS navigation stack with the Adap-
tive Monte Carlo (AMCL) algorithm for localization purposes, being responsible for
controlling the robot’s motion. The ROS architecture running inside each robot is
depicted in Fig. 16.5. A patrolling node, i.e., a ROS application, was added to the
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map_server  Package 
(map data)

amcl Package 
(PF localization)

move_base Package 
(planning and driving)

Static_tf_transform 
(coordinate frame 

transform)

hokuyo_node Package 
(LRF driver)

Pioneer 3-DX Robot

ROSARIA Package 
(robot driver)

Navigation Stack mrl_pioneer S tack 

/ tf
base_link  laser

/scan

/amcl_pose
/ tf

map odom

/map

/map

/cmd_vel

Fig. 16.5 ROS system running on each robot

architecture, having the responsibility to decide the robot’s moves and send goals
to the move_base node, which translates them into velocity commands for the robot
base, in order to reach the given goal. All robots are limited to a maximum speed
of 1 m/s. As for communication, a distributed publish/subscribe mechanism has
been used, due to its built-in integration in ROS. Moreover, each robot runs its
own ROS master node (roscore). Multimaster communication is provided using the
wifi_comm1 package. This means that there is no central point of failure in the sys-
tem. Also, given that robots only share their current and future immediate goals, the
bandwidth requirements are negligible even with large teams.

In the beginning of each test, the graph of the environment is loaded by every
robot. A ROS node is responsible for advertising the start of the mission and collect
results during the experiments. Not only is the average graph idleness along time
IG examined, but also the median ĨG , the standard deviation σ, and the maximum
average idleness of a vertex along time, max(IV ).

Firstly, experiments with one, two, and three robots were conducted. Each exper-
iment was repeated three times. Afterward, in order to further demonstrate the scal-
ability of the approach, virtual robots were added to the team, and 3 trials with
6 agents (3 + 3) and 9 agents (3 + 6) were also conducted. It is noteworthy that

1 Available at http://www.ros.org/wiki/wifi_comm.

http://www.ros.org/wiki/wifi_comm
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adding virtual simulated agents to the physical teams of robots was only made pos-
sible by the hardware abstraction layer of ROS and its modular structure. Finally, to
prove its robustness, experiments which included failures in the robots at different
time instants are analyzed, as well as the impact of communication failures in the
performance of the team. In all experiments, |emin| = 7.5m has been used.

Aiming at comparing the total time of the mission (τ ) in various conditions, each
experiment finishes after four complete patrolling cycles. This stopping condition is
adequate, as the IG converges in all experiments. During the course of the experi-
ments reported, the total estimated distance traveled by the robots was 23km.

16.5.1 Scalability Experiments

Initially, experiments with one to three robots in the “ISR-Floor0” Environment were
conducted. An overview of these results is shown in the top rows of Table16.1. It
can be seen that the IG values, as well as the total mission time τ , decrease with
team size, as expected. Additionally, the median is fairly close to the average idleness
value, meaning that most data is spread around the mean.

An interesting result is the maximum average idleness, max(IV ), which is low
for the case of one robot. This can be explained due to the existence of a main
loop in the environment, which leads to fairly uniform visits to all vertices of the
graph. In the cases of 2 and 3 robots, the value is higher compared to IG , because
robots occasionally meet in the environment and need to coordinate by changing
their heading direction. Consequently, no cycles are followed in such situations, and

Table 16.1 Overview of the scalability experiments

Team size IG max(IV ) IG σ τ

1 336.676 412.207 370.994 78.769 1648.828

332.745 407.897 366.677 77.892 1631.590

331.615 406.387 365.345 77.626 1625.550

2 168.921 309.455 137.267 64.210 1237.821

180.761 296.085 180.293 56.064 1184.341

170.267 328.300 146.890 62.603 1313.201

3 128.875 273.670 116.269 54.893 1094.682

116.248 216.020 95.150 44.356 864.081

112.954 200.030 101.923 36.066 800.121

6 (3+3) 71.097 152.625 65.483 27.130 610.500

72.165 140.725 67.043 24.418 562.900

77.332 150.145 72.938 27.350 600.580

9 (3+6) 48.623 102.305 47.395 16.499 409.220

50.239 90.580 54.157 16.083 362.320

51.687 105.12 52.271 19.622 420.480

All values in seconds
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Fig. 16.6 Evolution of the idleness in a trial with 3 robots

the frequency of visits becomes less balanced. This can be confirmed by the standard
deviation, which is around 23% using 1 robot, and 35 and 37% for a team size of 2
and 3 robots, respectively.

Figure16.6 shows the evolution of the idleness in an experiment with 3 robots.
After four patrolling cycles, IG converges, meaning that it is no longer affected by
the initial conditions, seeing as all vertices start with a null value of idleness.

The distributed patrollingmethod used supports an arbitrary high team size. How-
ever, we were limited by the physically available robots, which were R = 3. In order
to test the approach with greater team size and further assess its scalability, virtual
agents running in the Stage simulator were added to the team, resulting in a mixed
team of real and simulated robots, which interact seamlessly via ROS. Three trials
were conducted with a total of 6 agents comprising 3 physical robots and 3 simulated
ones, and three additional trials were performed with a team size of 9, comprising
3 physical robots and 6 simulated ones. Similarly to the work in [23], the software
layer is used unchanged both on real robots and in simulation.

Results in the bottom rows of Table16.1 show that the overall values of IG ,
max(IV ), ĨG , σ and τ are within the expected, following the trend shown in the
cases of two and three robots. In order to analyze how well the MRP strategy scales,
Balch’s speedup measure [31], a classical scalability metric, was calculated:

υ(R) = Ψ (1)/R

Ψ (R)
, (16.24)

where Ψ (R) is the performance for R robots, given by IG . Figure16.7 presents a
speedup chart using different team sizes. It can be seen that speedup and interfer-
ence are negatively correlated, since the system enters progressively in sublinear
performance (υ < 1) with team size, due to the more frequent existence of spatial
limitations, which in turn, increases the interference between robots, causing the
performance to decrease. The interference between robots is measured as the overall



16 Cooperative Multi-robot Patrol in an Indoor Infrastructure 353

0

50

100

150

200

250

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9

In
te

rf
er

en
ce

 (
m

H
z)

 

S
p

ee
d

u
p

 (
0-

1)
 

Teamsize 

Interference

Speedup

Fig. 16.7 Interference and Speedup against team size

frequency (in Hz) that different agents share nearby areas, having to avoid each other,
in every experiment. These results show that the SEBS algorithm is able to scale to
high number of robots, working independently of the team size. In addition, it is also
illustrated that as the team size increases, the individual contribution of each robot
decreases progressively as expected. This is in fact common to every MRP method
tested in the literature.

16.5.2 Fault-Tolerance

One of the advantages of using autonomous robots with decision-making abilities is
the absence of a centralized coordinator, which would represent a critical point of
failure. A distributed robotic system, such as the one described enables redundancy,
remaining functional if any of the agents fails.

In order to demonstrate the robustness of the patrolling method, three additional
experiments using the Pioneer 3-DX robots were planned. In these experiments, a
robot is shutdown during the course of the mission so as to understand the effect of
the faults in the overall performance, as well as how the system evolves.

In the first experiment, a robot is shutdown after 200s from the start of themission.
Similarly, in the second and third experiments, a robot is shutdown after 400 and
600s, respectively. Teammates assume that the robot has failed when no message
has been received from it for a period larger than 2 min.

Generally, Table16.2 shows that the results obtained in the first experiment resem-
bles those obtained with two robots, as most of the experiment is spent with only two
agents due to the failure occurring near the beginning. On the other hand, the results
of the second and third experiment are closer to those obtained with three robots,
even though the performance is inferior, as expected.

Analyzing now the influence of the faults in the evolution of the results,
one can verify that in all three cases when the shutdown occurs the values of
IG and ĨG increase after a while, which is particularly visible in Fig. 16.8a, b.
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Table 16.2 Experiments with 3 robots with failure of a robot in different instants of time (all values
in secs)

Failure time (s) IG max(IV ) IG σ τ

200 160.975 330.225 144.846 62.825 1320.901

400 140.128 232.290 134.177 45.934 929.161

600 135.209 235.700 139.797 41.262 942.801

0
20
40
60
80

100
120
140
160

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00

Time (s) 

0
20
40
60
80

100
120
140
160

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
20
40
60
80

100
120
140
160

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Time (s) 

Time (s) 

(a) (b)

(c)

Fig. 16.8 Evolution of the idleness along time in experiments with robot failures a Failure at 200s,
b Failure at 400s, c Failure at 600s

Therefore, theMRP system using the proposed distributed strategy is resilient against
robots’ individual failures, presenting a graceful degradation of performance as long
as at least one robot remains operational.

16.5.3 Influence of Communication Errors

The model proposed to solve the MRP problem assumes that agents are able to
communicate seamlessly with other teammates during the course of the mission.
However, this is not always the case, especially if a mobile ad-hoc network should
be maintained and robots are occasionally far apart. In this section, multi-robot
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simulations in Stage were run in the “ISR-Floor0” map in order to test the robustness
of the SEBS approach with different rates of communication failures.

When a message is not received by a robot, it does not update the instantaneous
idleness time values and, consequently, it keeps incomplete information about the
state of the system. This information becomes more incomplete with the increasing
number of undeliveredmessages. Additionally, when robots are close to each other, if
messages are not received, they may decide to move to the same places and interfere
with their teammates’ plans. The success of resolving such situations hugely depends
on each robot’s local planner and the ability to avoid dynamic obstacles. In these
simulations, this is taken care by the ROS navigation stack.

In order to simulate different rates ξ of communication failures, a robot will ignore
messages with a probability equivalent to ξ. In the reported experiments, the rates
considered were: ξ = {0%, 25%, 50%, 75%, 100%}. Furthermore, the system has
also been tested allowing only local communication, restricted to robots within two
edges of distance in the graph G. This is a particular situation where it is ensured that
robots are able to receive all the other nearby robots’ intentions, and are thus able
to coordinate themselves. Nevertheless, they are expected to make poor decisions as
they are maintaining incomplete information about the system.

The chart in Fig. 16.9 presents an overview of the simulation results with different
rates of communication failures, using team sizes of 2, 4, and 6 robots. Team per-
formance is once again measured in terms of IG . The graph shows that performance
gracefully degrades as ξ increases. The decrease of performance is approximately
constant for the 25%, 50% and 75% cases. However, when no communication is
allowed, i.e., ξ = 100%, the performance of the algorithm drops strongly, especially
for larger teams, which are much more influenced by the lack of coordination in the
multi-robot system, as robots constantly interfere with one another. This reduction of
performance, especially for greater team sizes, is evident in the bars for ξ = 100%;
with 36.54% for 2 robots, 51.30% for 4 robots, and 66.84% for 6 robots.
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Also illustrated in the rightmost side of the chart is how performance is affected
when communication is restricted to local interactions within 2 hops in G. In this
situation, robots are able to coordinate themselves by not competing to the same
goals and not interfering with teammates. Despite that, they do not have contact
with agents that are further away and, as a consequence, they will make uninformed
decisions quite often. It can be seen that the system is able to perform well assuming
such restrictions, especially for smaller team sizes. The performance obtained using
only local communication closely resembles to that obtained when dropping 50%
of the messages for all team sizes.

In short, these results show that the approach is robust to communication fail-
ures and only slightly degrades its performance when communication error rate is
moderate (e.g., 25%). Evidently, the higher the rate of failures, the more affected
performance is. Moreover, communication failures have more impact in the perfor-
mance of systems with larger number of robots.

16.6 Conclusions and Future Work

The implementation of a distributed MRS for patrolling of an indoor infrastructure
has been described. Breaking away from conventional techniques, our work goes
beyond classical centralized approaches that rely on precomputed cyclic routes or
partition schemes for MRP, giving the robots the autonomy to deal with uncertainty
and select actions according to the state of the system at the time.

Previous results had shown the superior performance of the approach when com-
pared with other state of the art MRP strategies in simulated environments [27]. This
work confirms the potential and flexibility of employing Bayesian-based formalism
to solve the MRP. The proposed approach accounts for the future immediate state of
the system, preventing robots from competing to reach the same goals, consequently
reducing interference and enhancing scalability.

Results have demonstrated that the approach is robust to robot faults and com-
munication failures, and has the ability to adapt to constraints, e.g., different agent
velocities, since the decision-making is done online with the information that each
agent has collected about the system. Experiments were conducted using real robots
and mixed teams of both virtual and real agents in a large indoor infrastructure
proving the effectiveness of the approach and the potential to use it in the real world.

In the future, due to its flexibility, the model can be easily extended with more
variables in order to employ it in different applications and/or use others sensors in
the robots; e.g., readings from a temperature sensor may be included in the model,
guiding robots towards heat sources in the environment. Moreover, even though the
method allows different speed profiles, it would be interesting to study its influence in
the mission, as well as the impact of unforeseen dynamic obstacles in the real world,
such as people walking in the shared space and affecting the robot’s navigation.
Finally, we intend to devise an analytical method to compute the most adequate team
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size for a patrolling mission according to the environment topology and temporal
constraints.
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Chapter 17
Distributed Thermal Identification
and Exploitation for Multiple Soaring UAVs

José Antonio Cobano, David Alejo, Santiago Vera, Guillermo Heredia,
Salah Sukkarieh and Aníbal Ollero

Abstract This chapter discusses the problem of cooperatively sensing the wind
map of an area in order to efficiently harvest the wind energy with fixed-wing gliding
UAVs, known as soaring.Moreover, a cooperative systemwithmultiple gliding fixed-
wing UAVs is presented for long endurance missions. This system is composed
by three main blocks that include thermal detector, path planning, and collision
avoidance. The main advantage is its low computational load, making it suitable for
real-time applications. Extensive simulation results in several scenarios are given to
test the complete system. In addition, real experiments have been carried out with real
gliding aircrafts of the Robotics Vision and Control Group (GRVC) of the University
of Sevilla in the Airfield of La Cartuja (Sevilla). The results of these experiments
show the convenience of the proposed method.

17.1 Introduction

The interest in usingmultiple UnmannedAerial Vehicles (UAVs) has been increasing
in recent years taking into account potential applications in different missions such
as exploration, data collection, mapping, surveillance, coast control, fire detection,
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monitoring, and many more. In all these cooperative missions, the UAVs should visit
different places during their flight in order to explore the area. The common problem
in this kind of missions is the short endurance of many vehicles. They have to land
in order to refuel or recharge batteries. Extending the flight duration of multiple
UAVs cooperating for long endurance missions arises as a critical issue in many
applications.

New ideas such as the so-called autonomous soaring have been proposed to extend
the flight endurance of a single glider aerial vehicle [5]. Soaring could be defined as
flight in which a propulsion system is not used and favorable wind conditions are
exploited to extend flight duration. This phenomenon was noticed in some birds by
observing how they are able to fly without flapping their wings [25]. The clearest
example is the Wandering Albatross that covers large areas with minimal energy
consumption [27]. In 1885, Lancaster [18] published a work on soaring of birds.
Thus, soaring flight became an important research area. There are two types of
soaring, static and dynamic soaring. The first one uses rising air to gain energy and
the second one uses wind gradients or distributions.

Aerial vehicles should be capable of extracting energy from the atmosphere to gain
altitude in order to stay aloft [23]. This energy can be extracted from different sources
such as wind gusts over surfaces (such as the ocean), shear generated by flow around
geographic obstacles, and meteorological shear from temperature inversions. This
work will consider vertical movements of the atmosphere, also so-called thermals.
Thermals are caused by convection in the lower atmosphere and could be exploited
to increase the altitude of multiple UAVs. This process is also known as static soaring
where UAV flies through air which is rising relative to the surrounding air. On the
other hand, dynamic soaring obtains kinetic energy by using trajectories through
distributions of wind speed.

This chapter addresses long endurance cooperative missions with multiple glider
aerial vehicles. The mission is given by a set of places defined by point of inter-
est (PoIs) which should be visited. Existence of thermals in the environment is
considered. Thus, the aerial vehicles should cooperatively visit the PoIs and each
aerial vehicle should detect and identify the thermals present in the environment
during the mission in order to exploit their energy and gain altitude, and so extend
the flight duration. Cooperative missions with multiple vehicles allow faster detec-
tion and more efficient exploitation of the thermals, since each vehicle transmits
to the rest of the teams the location of the thermals it has identified. The guidance
and control of an autonomous soaring UAV is not addressed in this work, but we
use the approach in [4]. A path planner is also needed to efficiently carry out the
cooperative mission. The planner has to consider constraints such as energy avail-
able of the UAV at the current instant and locations of the thermals which will
influence the computation of collision-free trajectories. Moreover, collision avoid-
ance is a critically important aspect in applications with multiple UAVs to suc-
cessfully perform the mission. Therefore, a collision avoidance block should be
implemented to ensure the fulfillment of the mission. In summary, the objectives of
the chapter are:
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1. Explore all the PoIs without landing and decrease the total time of the mission.
2. Identify the presence of thermals in the environment in order to exploit them and

extend the flight duration.
3. Compute safe trajectories to perform the mission.

A new system made up different blocks is developed in order to meet the objec-
tives. The path planner block considers a method to assign each PoI or thermal point
(TP) to a vehicle. A thermal detector block is added to detect and identify thermals
during the mission. The conflict detection and resolution block is based on the RRT*
(optimal rapidly exploring random trees) planning algorithm. Studieswithmany sim-
ulations show the performance and advantages of the developed system. Experiments
have been carried out in the airfield of La Cartuja (Seville, Spain) with the gliding
fixed-wing UAV shown in Fig. 17.1 in order to show the reliability of the system.

The chapter is organized into nine sections. The state of the art is presented in
Sect. 17.2. The developed system is described in Sect. 17.3. Section17.4 presents
the thermal model, the features of the environment considered and the algorithm to
detect and identify the thermals. The path planner is explained in Sect. 17.6, and the
conflict detection and resolution algorithm is described in Sect. 17.6. The simulations
and experiments performed are shown in Sects. 5.2.1 and 17.8, respectively. Finally,
the conclusions are detailed in Sect. 17.9.

Fig. 17.1 Gliding fixed-wing UAV used in the experiments

http://dx.doi.org/10.1007/978-3-319-10807-0_5


362 J.A. Cobano et al.

17.2 State of the Art

First studies on soaring were based on the flight patterns of birds [25]. Soaring UAVs
capable of extracting energy from the atmosphere to gain altitude in order to stay
aloft have been presented in [23].

The works presented in [5, 13, 28] show the first analysis on autonomous thermal
soaring. Other results with an autonomous soaring controller are reported in [12].

The static soaring problem is applied to the vehicle routing problem with time
windows (VRPTW) in [15]. It develops an exact solution method including pre-
processing, route optimization, and route validation . The total flight time minimiza-
tion is achieved, and a considerable increase in the level of autonomy of a soaring
UAV is attained.

Detection and identification of thermals have also been addressed in the literature
[3, 21]. Models of thermals should be considered in the studies and several of them
are presented in [4, 17].

Energy-constrained motion planning is done by considering the problem of a
gliding UAV searching for a ground target while simultaneously collecting energy
from known thermal energy sources [22]. Path planning is also addressed in other
studies. A graph-based method for planning energy-efficient trajectories over a set of
waypoints is presented in [8].Amethod to generate a spatio-temporalmapof thewind
and a path planning to generate energy-gain paths based only on local observations
of the wind is presented in [19]. The trajectory generation for autonomous soaring
is also addressed in [9, 14].

The coordination of multiple UAVs in order to perform a long endurance mission
considering the detection of thermals and the computation of collision-free trajec-
tories has been studied in [17]. UAVs communicate to each other the location of
potential thermals in the area but the simulation shown only considers one UAV.

Reference [7] describes a new algorithm for maximizing the flight duration of
a group of UAVs using thermals located in the area. A simultaneous perturbation
stochastic approximation method (SPSA) is used to detect the center of the thermal
and themethod treats the thermal center drift effectively. It is assumed that there exists
a path planning algorithm that keeps the vehicles from colliding with each other. This
work considers small unmanned powered glider, so the propulsion system or soaring
can be used.

Reference [11] presents a method for distributed mapping of the wind field. The
map is discretized and a Kalman filter is used to estimate the vertical wind speed
and associated covariance in each cell. Flocks of small UAVs are considered to
maximize the endurance. Reference [6] investigates the possible benefits of using a
cooperating team of small UAVs to increase the probability of finding thermal lift.
A collision-free trajectory planning algorithm is not implemented to optimize the
search of thermals in [6, 11]. These works and [15] consider lifetime and drift of the
thermals. Moreover, the proposed system allows applications in real time because of
its low computational needs.
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Fig. 17.2 Block diagram of the system

17.3 Overview of the System

This section describes the proposed system for long endurance missions with mul-
tiple gliding fixed-wing UAVs. It assigns the PoI to the UAVs and computes the
collision-free trajectory for each UAV if a collision is detected. During the flight,
each UAV should detect and identify unknown thermals. Figure17.2 shows the block
diagram.

17.3.1 Local Path Planner

The local path planner block (PP) is responsible for generating the flight plan of the
UAV taking into account the knowledge of the wind map, i.e., detected thermals so
far, and the PoIs to be visited. In order to do this, it should communicate with the
thermal manager block and the mission manager block.

This block uses a path planning algorithm called Bounded Recursive Heuristic
Search method (BRHS) [10], which is based on a depth-first search algorithm (DFS).

The basic behavior of this block is the following: it periodically generates a new
flight plan taking into account the current location of the UAV (from the Autopilot),
position of the remaining PoIs and thermal points (TPs), andminimumflying altitude
of the UAV related to the available energy.

The flight plan is computed every second in order to adapt to unexpected events
and the execution time is below one millisecond.When a new flight plan is generated
and is significantly different of the current flight plan, PP transmits the new flight
plan to the Autopilot.
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The generated flight plan can be defined by one of the following four alternatives:

1. One waypoint: If the altitude of the UAV goes below a minimum flying altitude,
the UAV is commanded to go Home for landing.

2. Two waypoints: Current location and a PoI or TP. UAV does not need a thermal
to gain altitude and can reach a PoI or TP.

3. Three waypoints: Current location, entry point and exit point of the thermal. The
UAV cannot reach a PoI or TP and should access to a thermal first to gain energy.

4. Four waypoints: Current location, entry point and exit point of the thermal, and
a PoI. UAV could visit a PoI or TP after gaining altitude in a thermal.

17.3.2 Autopilot

Each UAV should be equipped with an Autopilot to be capable of following 3D flight
plans. It is also responsible for estimating the state of the UAV (3D position) and
providing other blocks with this information.

In the experimental platforms currently developed in the Robotics, Vision and
Control Group of the University of Seville, we have installed an Ardupilot Mega
2.5 of the company 3DRobotics [1]. This is an open-source autopilot that is easily
configured andgives goodperformance.The experimental setup is shown inFig. 17.3.

Fig. 17.3 Experimental setup of one of the gliding fixed-wing aircraft UAV
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17.3.3 Thermal Detector

The thermal detector (TD) is responsible for detecting new thermals in the environ-
ment from changes of energy of the UAV, that is altitude of the UAV. It is constantly
monitoring the UAV state in order to check for unexpected ascensions. Each UAV
has onboard its own TD.

Whenever an unexpected ascension occurs and it meets some requirements, a
new thermal is added to the system and new points are added and sent to the Mission
Manager in order to actively sense the characteristics of the thermal. The details of
these procedures are given in Sect. 17.4. The characteristics of the new thermal are
also sent to the thermal manager block.

17.3.4 Mission Manager

The mission manager (MM) block stores the list of remaining PoI and TPs to be vis-
ited by the UAVs. It is also responsible for assigning and reassigning these waypoints
to the UAVs as requested by the PP modules.

In the proposed system, two types of points to visit are distinguished: PoIs andTPs.
Both could be considered as an exploration process: PoI to explore some places, and
TPs to explore potential thermals. PoIs are set by the operator and TPs are generated
when the location of a potential thermal is received from TD block. The TPs are
computed to provide a better estimation of the center of a detected thermal.

Initially, the list shows all the PoI defined in the environment. The list is updated
every time one PoI is visited or a thermal is detected. The PP of each UAV proposes
visiting a PoI or TP when generating its flight plan. MM should assign to a UAV a
PoI or TP if its estimated time of arrival (ETA) to it is the lowest one so far. In order
to prevent oscillatory behaviors, whenever an UAVi proposes visiting a PoIk or TPk
that has been already assigned to a UAVj, the ETA of UAVi not only should to be
lower than the ETA of UAVj but also should decrease this time with a given margin,
tvisit. Otherwise, PoIk or TPk continues being assigned to UAVj.

17.3.5 Thermal Manager

The thermalmanager (TM) block stores the information on the thermals andmanages
the access to them. It communicates to each PP the existing thermals in the space
and the temporal constraints to access a thermal.

Whenever an UAV needs to gain energy, it should request access to any thermal
to the TM block. This block checks whether the flight plan proposed by each UAV
to gain altitude is safe or not. A flight plan to access to a thermal is safe when
the vertical separation between two UAVs within the thermal is larger than a safety
margin, dsafety. The outputs are temporal constraints to access to the thermal. If a flight
plan is not safe, TM sends the temporal constraints to meet the vertical separation to
the corresponding UAV.
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17.3.6 Collision Detection and Resolution Block

The collision detection and resolution block (CDR) is responsible for ensuring
collision-free trajectories between UAVs in the system outside the thermals. Note
that the thermal manager block arbitres the access of UAVs to the thermals, so the
collisions inside thermals should not occur.

This module can be divided into two different blocks: the detection and the reso-
lution blocks. The first block takes as inputs the state of the UAVs in the systems and
their current flight plans in order to detect conflicts between their trajectories. The
second block is activated whenever a conflict is detected and will modify the flight
plans of involved UAVs in order to prevent potential collisions.

17.4 Thermal Detector

This section describes how the wind map of the environment is generated and the
potential thermals are detected. The parameters that define a thermal are: center of
the thermal (C), vertical wind velocity (w), radius (R), maximum altitude (A), and
drift of the thermal, (Vdrift) .

The environment is divided into uniform two-dimensional cells. A value of the
vertical wind velocity is assigned in each cell. Each UAV will estimate the vertical
wind velocity of the center of the thermal from the changes of energy. The UAV
speed is constant, so only changes of altitude are taken into account.

17.4.1 Thermal Model

The model of the thermal used is based on the model presented in [3]. Some modi-
fications are performed to compute a more realistic initial wind map:

• A spatially uncorrelated zero-mean Gaussian noise is added to the wind field.
• The lifetime of the thermal is considered. Thus, the vertical wind velocity distri-
bution that defines the thermal decreases with respect to time.

• The drift of the thermal is considered. Thus, center of the thermal is in relative
movement to the ground.

In this work, a test set has been generated to validate the proposed system. An
algorithm to randomly generate thewindmaps has been implemented. The inputs are:
number of thermals at the start, lifetime of each thermal, drift of each thermal, zero-
mean Gaussian noise considered, size of the environment and the cells, probability
to generate new thermals during the mission and separation between the thermals.
Thus, different wind maps can be generated.
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17.4.2 Thermal Detection Algorithm

The thermal detection algorithm is implemented in the TD block. Algorithm 1
presents the thermal detection algorithm which output will be the position of the
detected thermal, thermalorigin. Changes of altitude, Δh, are considered to detect
a potential thermal from the current altitude, hi and the previous one hi−1. When-
ever Δh > 0 (see line 4), the origin of a potential thermal is stored when the first
increasing of the altitude is obtained (see line 5) or the continuation of the climb is
considered (see line 7) when the altitude continues increasing. On the other hand,
whenever Δh < 0, two cases are possible: the descent takes place after a climb (see
line 11) or the UAV was already descending (see line 18). In the first case, algorithm
decides if a thermal is detected. A thermal is detected if the altitude gained during
the climb, hgain, is greater than Hthreshold. Otherwise, a thermal is not detected and
values of the thermals are initialized, thermalorigin, hgain and hfinal.

Once a thermal is detected, the parameters of the thermal are estimated. Center of
the thermal, vertical wind velocity, and radius are estimated as those used by Allen
[3]. Drift of the thermal and more precise parameters are estimated when a UAV
passes through the thermal again. Figure17.4 shows how a thermal is detected when

Fig. 17.4 Detection of a thermal when a UAV passes through it by using Algorithm 1
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Algorithm 1: Thermal detection algorithm
1. hgain ← 0, h0 ← 0
2. thermalorigin ← (0, 0, 0)
3. for Each aircraft position, pi = (xi, yi, hi) do
4. Δh = hi − hi−1
5. if Δh > 0 then
6. hfinal ← hi
7. if thermalorigin = (0, 0, 0) then
8. thermalorigin ← pi
9. h0 ← hi
10. end if
11. else
12. if hi > hfinal then
13. if hgain > Hthreshold then
14. Thermal Detected. Estimate the center:
15. thermalcenter ← thermalorigin+pi

2
16. end if
17. hgain ← 0, h0 ← 0
18. thermalorigin ← (0, 0, 0)
19. end if
20. end if
21. end for

a UAV passes through it. The drift is computed when an UAV passes through the
thermal again by considering the how the estimated center evolves with the time, and
making a minimum squares adjustment.

17.4.3 Computation of the TPs

The computation of the TPs is performed by the TD block from the data of the
detected thermal: estimated center of the thermal and direction of the UAV trajectory
passing through the thermal. Two more waypoints are computed to ensure that the
UAV trajectory will pass through the center of the thermal with a perpendicular
direction to the first one (see Fig. 17.5). The steps followed are:

1. Compute the perpendicular straight line to the first trajectory (dashed black line
in Fig. 17.5). This new straight line should pass through the center of the thermal
(solid black line in Fig. 17.5).

2. Consider a circle whose center is the estimated center of the thermal in the first
pass (dashed red circle in Fig. 17.5). Its radius, r, will define the distance between
the TPs and the center of the thermal, it has been empirically set to 100m in order
to make the flight plan flyable by our autopilot.

3. Compute the cross points between the new straight line and the circle. The two
points computed, TP1 and TP2, along with the center of the thermal, TPc, will be
the set of TPs to explore the thermal.



17 Distributed Thermal Identification and Exploitation for Multiple Soaring UAVs 369

Fig. 17.5 Computation of the
TPs to pass through a thermal
again. TP1, TPc, and TP2 are
computed from the first pass
(estimated center of the
thermal and UAV trajectory)

The TPs computed, the tuple (TP1, TPc, TP2), are sent to the MM block and each
UAV can apply for passing through PoI or TPs to improve the computation of the
parameters of a thermal.

17.5 Path Planner

The proposed path planning algorithm is called BRHS method and is based on a
DFS algorithm [24, 26]. A drawback of the DFS is that it may not finish in certain
situations. For example, if it is used in a graphwith cycles, it will expand all nodes in a
cycled branch thatmay not contain the goal node, so it will keep exploring that branch
infinitely. For this reason, a boundedmethod is chosen in order to make the execution
time finite in all cases. On the other hand, the DFS does not consider any cost to
compute the solution. In our case, the traveled distance is the cost and it is considered
to compute the best successor in each branch and the execution is recursive.

Bounding the exploration also presents some drawbacks. In particular, themethod
is not complete because the exploration may end before a goal is reached. In these
cases, a heuristic has to be considered. The proposed heuristic considers the distance
to the closest goal.

The inputs of the algorithm are: current location of the UAV, time, position of
the remaining PoI and TPs, thermals in the space, minimum altitude of the UAV
to fly, and maximum depth that BRHS can reach. The output is a flight plan given
by a set of waypoints. Each waypoint is defined by: 2D position of the waypoint,
estimated altitude of the UAV will have when reaching the waypoint (considering
the descending angle as a constant that depends on the characteristics of the UAV),
ETA to the waypoint (cost), and the distance that should be traveled to reach the
waypoint from the current location.

Algorithm2 shows the behavior of theBRHSalgorithm.This algorithmstarts from
the initial node defined by the current localization, altitude and time of theUAV. Itwill
calculate the reachable nodes from the current node by invoking Algorithm 3. If the
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Algorithm 2: BRHS Algorithm
Require: initial_node, depth
best ← initial_node
successor_list ← get_successors(initial_node)
for Each successor in successor_list do

if is_final_node(successor) then
candidate ← successor

else
if depth == 1 then
estimate_cost(successor)
candidate ← successor

else
candidate ← BRHS(successor, depth - 1)

end if
end if
if candidate.cost < best.cost + tvisit then
best ← successor

end if
end for
return best

current node is a goal it will get it if the cost , or themaximum depth has been reached
it stops and estimates the cost of the node if necessary. Else, it will recursively call
the algorithm starting with the current node. Accordingly, Algorithm 3 calculates the
successors that are reachable in an action range (Ar) from a node. The action range

Algorithm 3: Get_successors
Require: parent_node
successor_list = ∅
Calculate Ar (Eq.17.1)
for Each PoI in PoI_list do
near_thermal = get_nearest_thermal(PoI)
if parent_node.distance(PoI) + PoI.distance(near_thermal.location)< Arα then
new_state ← get_estimated_state(PoI)
if PoIA.is_available(new_state) then
successor_list.append(new_state)

end if
end if

end for
for Each T in thermal_list do

if parent_node.disaccording tance(T.location) < γs then
new_state ← get_estimated_state(T.location)
if TM.is_safe(new_state) then
successor_list.append(new_state)

end if
end if

end for
return best
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of the UAV is calculated with Eq.17.1.

Ar = h − hmin

tgγ
. (17.1)

Where current altitude h, minimum altitude hmin, and the gliding angle ψ (see
Sect. 17.6). α is a safety coefficient that is usually set to 1.2. Finally, γs is used
to not consider very distant thermals, reducing the execution time of the algorithm.

A flight plan could not be computed if all the PoI have already been visited or the
rest of PoIs to visit are not reachable. The goal is to keep flying all the UAVs if a
new PoI is added or a new thermal is detected in the environment and allows visiting
some PoI which have not been visited yet. When an UAV cannot reach any detected
thermal, it is automatically commanded to go to Home in order to land.

17.6 Conflict Detection and Resolution

UAVs should maintain as much as possible a minimum separation among them for
safety purposes. The proposed system should not let a UAV enter in a thermal if a
vertical separation is violated and should also ensure that the horizontal and vertical
separation are satisfied outside the thermals. Therefore, a collision detection and
avoidance system is necessary when the UAVs fly outside the thermals.

Periodically, the trajectories of the UAVs are estimated by considering their flight
plans, current state and integrating the model described in Eq. (17.2) in a determinate
time horizon.Apotential collision is detected if there exists a timewhen two cylinders
of radius rxy and altitude rz, centered in each UAV overlap.

Whenever a potential collision between two or more UAVs is detected in the
system, a collision-free trajectory planning algorithm is executed. It is based on a
RRT* planning algorithm. RRT* makes two main modifications to the original RRT
planning algorithm [16].

An UAV model should be considered to compute the trajectories. The controlled
UAV model proposed in [20] has been used in order to generate feasible trajecto-
ries. The main modifications to the original model are the constant descent rate,
assumption of constant airspeed, and the addition of the vertical wind velocity that
is retrieved from the wind map. The configuration space of this model is composed
by three spatial coordinates (x, y, z) and the heading θ . However, new samples are
generated randomly in this space, but coordinates z and θ are calculated in the inter-
polation phase in order to ensure that the final trajectories are flyable. Therefore, the
equations that model the behavior of the UAV are:

ẋ = vi cos (θ)

ẏ = vi sin (θ)

θ̇ = αθ

(
θc − θ

)
(17.2)

ḣ = −v tanψ + wz



372 J.A. Cobano et al.

Fig. 17.6 UAV trajectories computed from theRRT*planning algorithm to solve a collision (instant
tc): solid line is the solution trajectory and dashed line is the initial trajectory

where ψ is the gliding angle of the aircraft. This angle relates the horizontal traveled
distance with the descent of the UAV in the absence of wind and without propulsion.

It is known that the RRT* algorithm is only capable of minimizing the length of
the trajectories [16]. As long as this algorithm is applied only outside the thermals,
this is a very fair approximation of energy-efficient trajectories.

Figure17.6 shows two collision-free trajectories computed to solve a collision
detected between twoUAVs.Both change their initial trajectory to avoid the collision.
The trajectories generated by RRT* should be then smoothed before being sent to
the autopilot. The algorithm has been implemented in C++ using the Open Motion
Planning Library using the contrib package where an implementation of the RRT*
algorithm is available. More than a hundred test cases have been used as bench-test
and the average run time was of 2.53s with a standard deviation of 1.5s. This allows
the algorithm to be used in the system for real-time applications.

17.7 Simulation Results

Many simulations with several UAVs have been performed to show the behavior of
the system and how thermals are identified with cooperative gliding fixed-wing UAV.
The configuration parameters are listed below.

• Wind Map. Cellsize = 10m, drift = 0.5m/s, lifetime = 25min, noise σ =
0.3m/s, windspeed = 3m/s.
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• CDR. rxy = 50m, rz = 25m
• Planner. tvisit = 5s, depthmax = 4
• UAV Model. φ = 0.08 rad, v = 13.89m/s, hmin = 80m.

Next a study to analyze the behavior of the system with several cooperative UAVs
is presented. A wind map generated randomly is considered. Initially, twelve ther-
mals are created (thermals 1–12). Five thermals more are created during the mission
in different times (thermals N1–N5) (see Fig. 17.7). Each UAV does not have any
information about their location or strength, so the thermals are unknown to the sys-
tem. Ten simulations are performed in each case by changing the initial position of
each UAV. Table17.1 shows the results obtained by considering different number
of UAVs. The time of the mission and the number of thermals detected is shown.
Figure17.7 presents one of the simulations to show how the exploration is carried
out with three UAVs.

It is important to highlight the main advantages of the proposed system. It ensures
the safety of the system. Each UAV takes into account the drift estimated to exploit

Fig. 17.7 Mission with three UAVs: UAV trajectories to pass through fifty PoI (black points). Wind
map considered corresponding with t = 450 s

Table 17.1 Detection and
identification of thermals
considering ten simulations

UAVs Elapsed time (s) Thermals detected

1 1345.31 ± 57.20 4.63 ± 1.51

2 759.92 ± 42.02 4.81 ± 1.68

3 498.844 ± 36.01 5.75 ± 1.92

4 466.24 ± 44.03 6.89 ± 0.84

5 344.25 ± 31.63 5.73 ± 1.34
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Fig. 17.8 Vertical profile of the UAV flight. Seven thermals are identified and the UAV passes
through each thermal twice to estimate its parameters

the thermals detected. The mission time is reduced by using cooperative UAVs and
more thermal can be detected. Finally, the flight duration is extended to carry out the
mission, while thermals exist in the environment.

In order to showhow the detection of thermal is done, Fig. 17.8 shows the evolution
of the altitude in a simulation with an UAV. It identifies seven thermals (thermals
4, 1, N3, 7, 5, 10, and 12 of Fig. 17.7), and it exploits the sixth thermal by gaining
approximately 140m.

17.8 Experimental Results

Experiments have been performed with two gliding fixed-wing UAVs in the airfield
of La Cartuja (Seville) in order to test the behavior of the whole system in real time.
One of them is a real gliding fixed-wingUAVand the other is simulated. The thermals
are emulated; that is, when the real UAV accesses a simulated thermal, it simulates
the gaining of energy by using the propulsion system to gain altitude. The rest of the
flight is carried out without propulsion. The following variables of the UAV were
set: gliding angle (0.11 rad), airspeed (13.89m/s).
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Fig. 17.9 Real and simulated flight in 2D to explore the environment in the airfield of La Cartuja
(Seville). A potential collision is detected (a) and real UAV avoids it (b). Therefore, the real UAV
passes through PoI1 and PoI3, and the simulated UAV passes through PoI2

Fig. 17.10 UAV Trajectories and location of thermal represented in the airfield of La Cartuja
(Seville): real gliding fixed-wing UAV (blue), simulated gliding fixed-wing UAV (red)

Figure17.9 shows a potential collision and the solution trajectory of the real
gliding fixed-wing UAV in 2D. Both UAVs fly to the PoI2 but real UAV changes its
trajectory to avoid the collision, so it passes through PoI1. Finally, Fig. 17.10 presents
the trajectories in the airfield of La Cartuja (Seville).
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17.9 Conclusions

The chapter considers long endurance cooperative missions with multiple gliding
fixed-wing UAVs. The goal is to explore an environment as much as possible with-
out landing. Multiple UAVs can be used in order to decrease the time to perform
the mission and increasing the probability of detecting unknown thermals. A new
system has been proposed to extend the flight duration by harvesting energy that
comes from thermals.

A thermal detection algorithm is implemented to identify unknown thermals and
exploit them. First, a potential thermal is detected from the changes of altitude of a
UAV. Then an algorithm computes two extra waypoints to ensure that a UAV will
pass through the center of the thermal with a perpendicular direction to the first one.
The thermal parameters are estimated after the second pass and these parameters are
sent to the TM block.

These thermals are considered as a shared resource of the system. A distributed
path planning algorithm (BFRS) that automatically guides the UAVs in the system
to visit both the PoIs and the TPs in the system has also been implemented. This
algorithm will ask the TM block each time an UAV needs to enter in a thermal in
order to gain energy.

Moreover, a collision-free trajectory planning algorithm based on the RRT* has
been implemented to solve the collisions detected between UAVs. The RRT* plan-
ning algorithm presented in [2] has been adapted to this problem by considering
the energy. This algorithm is an important contribution with respect to the works
presented on multiple UAV in autonomous soaring [6, 7, 11, 17].

Simulations demonstrate the utility of the system by adapting to changes in the
environment while maximizing the endurance of the UAVs in the system. Experi-
ments that have been carried out on a real platform shows that it can be applied for
real-time applications because of its low computational needs. This latter presents
an important contribution with respect to [6, 11].
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Chapter 18
Distributed Coordination of Networked Robots
for Perimeter Surveillance Tasks

José J. Acevedo, Begoña C. Arrue, Iván Maza and Aníbal Ollero

Abstract Perimeter surveillance is a relevant task which can be performed in a more
efficient manner using multiple robots than a single robot. This chapter addresses
the perimeter surveillance tasks using a team of heterogeneous robots and assuming
limited communications conditions and zones with different priorities. A partition-
ing strategy, where the whole perimeter is divided in segments and these segments
are assigned to the different robots, is proposed. The robots patrol their assigned
segments, while keeps at least periodic connectivity between them. The refresh time
is used as criterion to optimize each zone surveillance, while an urgency criterion
is proposed to allocate dynamically the robots among the zones based on their pri-
orities. Different algorithms and protocols based on the coordination variables and
the one-to-one coordination are proposed to coordinate the robots to converge to the
desired partitioning strategy in a distributed manner. The presented system is fully
decentralized and distributed, robots converge to a cooperative behavior from local
decisions. A set of experimental and simulated results are provided to test, analyze
and compare the convergence, efficiency, scalability and robustness of the proposed
solutions.

18.1 Introduction

Perimeter surveillance missions has been widely studied in the scientific literature
about robotics and automation. For instance, a robot for surveillance tasks is designed
in [1], while a whole system using ground stations is presented in [2] to protect a
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border against intruders. Other authors, as in [3, 4], address the cooperation between
ground stations and UAVs in border defense missions. Reference [5] proposes a robust
solution to the perimeter surveillance problem using behavioral control. Anyway, the
use of multiple robots offers higher efficiency, coverage and robustness than a single
robots, as is stated in [6, 7]. In this chapter, the cooperation between mobile and
fixed agents for perimeter surveillance missions is studied.

Assuming null information about where and when the intruders to detect (or
event to monitor) can appear in the perimeter, it can be assumed that the probability
of intruder appearing is equal along the whole perimeter. So, any position into the
perimeter should be monitored with the same frequency. It is a frequency-based
approach, where the criterion to optimize is the frequency in which any position in
the path is visited (or monitored) by a robot, [8]. It is equivalent to optimize the
refresh time or elapsed time between each pair of consecutive visits, [9].

In [10], different patrolling strategies are proposed for surveillance mission
(defined as the min-idleness problem) from a frequency-based approach. In [11]
the cyclic patrolling strategy is explained assuming identical robots, a closed path
and communications constraints. Authors of [9] describe the partitioning strategy to
coordinate a set of video cameras in surveillance missions and assuming asynchro-
nous communications. Both, the cyclic and the partitioning strategies, are analyzed
and compared in [12] from a refresh time criterion. The partitioning strategy is
proposed in this chapter because it useful for non-closed paths, exploits the hetero-
geneous capabilities of the robots and keeps unless periodic connectivity (as was
defined in [13]) even under communications constraints.

However, if there are some information about the probability of intruders appear-
ing along the perimeter, the refresh time approach can not be the more suitable. For
instance, considering intelligent intruders, a deterministic solution as the above men-
tioned patrolling strategies would not be useful. Authors of [14] address the problem
assuming potential intelligent intruders and maximize the probability to detect them.
In [15], a monitoring problem with multiple identical robots assuming positions with
different priorities is posed and solve using a metric called urgency. The priority rep-
resents how often the position should be visited. In this chapter, the priorities are
also defined along the perimeter and the urgency is used as optimizing criterion.

The coordination of multiple robots is a challenging topic in distributed multi-
robot systems, more assuming communications constraints. Different coordination
techniques have been proposed for cooperative surveillance missions. A peer-to-
peer method is proposed in [9, 16] to solve perimeter surveillance missions in a
cooperative manner following a partitioning strategy and assuming asynchronous
communications. It is based on sharing the actually assigned segments between each
pair of contacting robots and dividing the union between both according to their
capabilities. A similar method is named one-to-one coordination and introduced
in [17, 18] to solve area monitoring missions with multiple aerial robots. This method
is used also [19] to patrol a path with multiple robots following a path partitioning
strategy.

Other methods based on coordination variables are proposed in [20–22]
to solve perimeter surveillance missions, but assuming no different priorities.
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The coordination variables can be defined as the minimum amount of variables
that all the robots should share to solve the problem in an independent but coherent
manner. Authors of [23] analyze how the consensus can be reached in few iterations
using the coordination variables. The challenge here is how to share the same coordi-
nation variables considering only asynchronous communications between neighbors
robots. It can be difficult to define which information to interchange between the
robots to accomplish correctly the mission in a distributed manner.

A totally distributed and decentralized solution is posed in this chapter to address a
cooperative perimeter surveillance mission assuming priorities. An urgency criterion
helps to normalize the refresh time along the whole perimeter, regardless the different
priorities. The surveillance mission is redefined as a two levels problem. The first
one is a dynamic allocation problem to assign the robots between the paths in order
to minimize the maximum urgency along the whole perimeter. It is solved using a
one-to-one coordination method. The second one is a cooperative patrolling strategy
to optimize the refresh time of each path. A robust coordination variables based
algorithm allows the robots to converge in few iterations to a partitioning strategy
in a distributed manner ensuring periodic connectivity even under communications
constraints.

The rest of the chapter is organized as follows. Section 18.2 states the perimeter
surveillance problem with multiple robots assuming priorities and defines the differ-
ent optimizing criteria. It is redefined as a dynamic allocation problem in Sect. 18.3,
where the issue is to assign the robots among the paths to minimize the maximum
urgency along the whole perimeter. In Sect. 18.4 the partitioning strategy is chosen to
patrol a non closed path assuming communications constraints in a cooperative man-
ner using a team of heterogeneous robots. An algorithm based on the coordination
variables is presented in Sect. 18.5 to allow the robots to converge to the partition-
ing strategy from a distributed manner, showing validation results. A one-to-one
coordination method is proposed in Sect. 18.6 to allow the fixed nodes manage the
dynamic allocation of robots between their adjacent paths. Section 18.7 shows the
conclusions.

18.2 Perimeter Surveillance Missions with a Team
of Mobile Robots

Figure 18.1 illustrates the problem addressed in this chapter.
Let us consider a perimeter B as the union of a set of adjacent and non overlapped

paths {B1, B2, . . . , BM }. Given a curve b which defines the whole perimeter B, each
zone Bi can be defined as follows:

Bi :=
{

b(x) ∈ R
2 : x ∈ [li−1, li ]

}
, (18.1)
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Fig. 18.1 A perimeter B defined as the union of 4 paths with different priorities has to be monitored
by a team of 8 mobile robots with different speed capabilities and 4 fixed nodes

where x define the distance to the initial perimeter position b(0) along the curve
b, l0 = 0, li − li−1 = L(Bi ) and L : H → L(H) is a function which computes
the length of the input path H . Therefore, the length of the whole border B can be
computed as the sum of the length of all the adjacent paths.

L = L(B) =
M∑

i=1

L(Bi ) = lM (18.2)

On other hand, a priority Pi can be defined for each zone Bi . The priority of a
path defines the probability of appearing an intruder or event of interest in this zone
with respect to others. A higher priority indicates a higher probability.

Finally, let us assume that there is a fixed node (or ground station) Fi,i+1 located
between each pair of adjacent paths Bi and Bi+1. These nodes should receive infor-
mation from both adjacent zones and estimates coherently their priorities. It means,
the priority of a zone Bi should be equally estimated by its two adjacent fixed nodes
(or ground stations) Fi,i+1 and Fi−1,i .

Given the this scenario, a perimeter surveillance missions is addressed using a
team of mobile robots Q := {Q1, Q2, . . . , QN }. The robots of the team Q should
cooperate to perform the surveillance mission along the perimeter B, accounting
their own capabilities and the different zones priorities and lengths.
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For sake of simplicity, it is assumed that the robots just can move along the curve
b (it means, the above described perimeter) while run a collision avoidance system.
Then, each robot Qi state at time t can be defined by three values:

• The actual position of the robot Qi in the perimeter curve b, xi (t) ∈ [0, L]. It
defines the actual position of Qi in the plane, b(xi ) ∈ R

2.
• The actual motion speed of the robot Qi to travel the curve b, vi (t). It is assumed

a maximum motion speed vmax
i for any robot.

• The actual sense in which Qi travel the curve b, di (t). A value di = 1 indi-
cates that robot moves following a clockwise sense, while di = −1 indicates a
counterclockwise sense.

On the other hand, the control inputs variables would be vi and di , and the dynamic
control model can be defined as follows:

dxi (t)

dt
= di (t)vi (t),∀i = 1, 2, . . . , N , (18.3)

where di (t) = {−1, 1} and vi (t) ≤ vmax
i , ∀i, t .

The team of mobile robots can be considered heterogeneous since each robot can
have different capabilities. Let us define three different capabilities:

• The maximum motion speed vmax
i as is defined above.

• The communications range Ri , which defines the maximum distance between a
pair of robots Qi and Q j to interchange information between them. Therefore,
two robots will be able to communicate between them, if they are close enough.

• The coverage range ci , which defines the segment Ci (t) ∈ B which is being
monitored by Qi at time t .

However, the effects of the coverage and communications ranges in the perimeter
surveillance problem are just limited to reduce the total length to patrol. Therefore,
these parameters will be considered equal for all the robots later throughout this
chapter. It means, ci = c ≈ 0 and Ri = R ≈ 0, respectively, because they are
considered too small with respect to the total perimeter length. Then, the robots will
be assumed heterogeneous because of their different maximum motion speeds.

18.2.1 Refresh Time Criterion

Assuming no information about the potential location in the perimeter of the intruders
or events of interest, a frequency criterion seems to be the more efficient option to
optimize the surveillance problem. The frequency-based approach assumes that the
probability of appearing an event in a position x without being detected is increasing
while the frequency of visit for this position x is decreasing. The actual frequency
of visit of a position x at time t is inversely related to the refresh time RT (x, t) or
elapsed time since the last visit to that position (as was defined in [12]). It is also
defined as idleness in [10], but applied along a perimeter.
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Given an updating time dT , the refresh time can be periodically recomputed as
follows:

RT (x, t) :=
{

RT (x, t − dT ) + dT, if b(x) �∈ ⋃N
i=1 Ci (t)

0, in other case
, (18.4)

where RT (x, 0) = 0,∀x ∈ B and t = kdT with k ∈ N.
Let us define two different refresh time based criteria to optimize the perimeter

surveillance task:

• The maximum refresh time computed along the whole perimeter B, RT max(t).

RT max(t) := max
0≤x≤L

(RT (x, t)) (18.5)

• The average refresh time computed along the whole perimeter B, RT (t).

RT (t) := 1

L

L∫

0

RT (x, t)dx (18.6)

Then, assuming a perimeter formed by a single zone (M = 1), the objective will
be minimizing the maximum value of a refresh time criterion computed along a
mission. In this chapter the criterion to minimize is the maximum refresh time.

J := max
t

(RT max(t)) (18.7)

Theorem 18.1 The minimum maximum refresh time computed along a perime-
ter B which length is L while is patrolled by a team of N mobile robots Q :=
{Q1, Q2, . . . , QN } is computed when they move at their maximum motion speeds
v := {vmax

1 , vmax
2 , . . . , vmax

N } and is lower bounded by L
∑N

i=1 vmax
i

.

Proof Assuming that all the robots move at their maximum motion speed, during a
time of T ′ s, Q j would cover a length of T ′vmax

j . During the same time, another robot
Qk would cover a length of T ′vmax

k . Then, considering that the segments covered by
the robots are not overlapped, during that time, the whole team of robot would cover
a total length of T ′ ∑N

i=1 vmax
i .

From here, it can be deduced the time T that the whole team would take to cover
the total length L .

L = T
N∑

i=1

vmax
i (18.8)

T = L
∑N

i=1 vmax
i

(18.9)
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In the best case scenario, each robot could travel the same segment again and
again. Therefore, each position into the segment would be without being visited T
seconds. It means, RT max(t) = T,∀t .

If any of the robots move with a motion speed less than its maximum speed,
vi < vmax

i , it is easy to deduce from expression (18.9) that T would be increased
and, therefore, the maximum refresh time RT max too.

18.2.2 Urgency Criterion

Nevertheless, in this chapter, some information about the perimeter is known. The
perimeter is divided in M adjacent paths with different priorities (it means different
“a priori” probabilities of intruder appearing). Then, a frequency-based criterion
could not be suitable because zones with the highest priorities should be the most
frequently visited ones.

Therefore, the priorities can be related to the refresh times. Given a path Bi which
priority is Pi , RTi defines the maximum refresh time computed along a mission. So,
another path B j which priority is Pj should be patrolled with a maximum refresh
time RTj = Pi

Pj
RTi .

The urgency is defined to normalize the refresh time along the whole perimeter,
even assuming zones with different priorities. The urgency U (x, t) in a position x at
time t can be computed periodically using an updating time dT as follows.

U (x, t) :=
{

U (x, t − dT ) + P(x)dT, if b(x) �∈ ⋃N
i=1 Ci (t)

0, in other case
, (18.10)

where U (x, 0) = 0,∀x ∈ B and P : x → P(x) is a function which returns the
priority of the position b(x).

Based on the urgency, two different criteria can be defined to optimize the perime-
ter surveillance task:

• The maximum urgency computed along the whole perimeter B, U max(t).

U max(t) := max
0≤x≤L

(U (x, t)) (18.11)

• The average urgency computed along the whole perimeter B, U (t).

U (t) := 1

L

L∫

0

U (x, t)dx (18.12)

So, the cost function to minimize can be redefined as follows.
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J := max
t

(U max(t)) (18.13)

Theorem 18.2 The minimum maximum urgency computed along a perimeter B
divided into non overlapped paths {B1, B2, . . . , BM } which lengths are
{L(B1), L(B2), . . . , L(BM )} and priorities are {P1, P2, . . . , PM } and patrolled by
a team of N mobile robots Q := {Q1, Q2, . . . , QN } which maximum motion speeds

are v := {vmax
1 , vmax

2 , . . . , vmax
N } is lower bounded by

∑M
j=1 Pj L(B j )
∑N

k=1 vmax
k

.

Proof From expression (18.10), the urgency of a position x at time t can be defined
based on its refresh time as U (x, t) = Pi RT (x, t), where Pi is the priority of the
path where the position x is located. From here, it can be deduced that the maximum
urgency computed along a path Bi is Pi RT max

i , where RT max
i is maximum refresh

time computed along the path Bi , RT max
i = maxt maxli−1≤x≤li (RT (x, t)).

The maximum urgency U max
i along a path Bi can be defined as follows.

U max
i := Pi RT max

i (18.14)

From Theorem 18.1, it can be deduced its lower bound as Ui ≥ Pi
L(Bi )
vBi , where

vBi is the sum of the maximum motion speeds of the robots which are patrolling the
path Bi . So, the maximum urgency of a path Bi can be redefined as refresh time of
a path which length is Pi L(Bi ).

Therefore, the maximum urgency of the perimeter B can be computed as the
maximum refresh time of a perimeter which length is

∑M
i=1 Pi L(Bi ). So, according

to previous results, the maximum urgency along a perimeter B is lower bounded as
follows.

U max(t) ≥
∑M

j=1 Pj L(B j )
∑N

k=1 vmax
k

,∀t (18.15)

Theorem 18.3 The minimum maximum urgency along a perimeter B can be obtained
if and only if all the paths {B1, B2, . . . , BM } obtains the same maximum urgency.

Proof Assuming that all the paths obtains the same urgency, and according to
Theorem 18.2 and expression (18.14), the following equation for each path Bi can
be posed.

Pi L(Bi )

vBi
=

∑M
j=1 Pj L(B j )
∑N

k=1 vmax
k

(18.16)

From here, it is easy to calculate the sum of speeds of the robots that should patrol
each path Bi .
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vBi = Pi L(Bi )
∑N

k=1 vmax
k

∑M
j=1 Pj L(B j )

(18.17)

Now, the sum of it value for all the segments should be equal to the sum of
maximum motion speeds of all the robots. It is accomplished as follows.

M∑

i=1

vBi =
M∑

i=1

(
Pi L(Bi )

∑N
k=1 vmax

k
∑M

j=1 Pj L(B j )
) =

M∑

i=1

(Pi L(Bi ))

∑N
k=1 vmax

k
∑M

j=1 Pj L(B j )
=

N∑

k=1

vmax
k

(18.18)

So, if a path Bi is patrolled by a team of robots which sum of maximum motions
speed is greater than vBi as is calculated in (18.17), there should be another path B j

patrolled by a team of robots which sum of maximum motions speed is less than vB j

as is calculated in (18.17). It is easy to deduce that the maximum urgency of the path

B j defined as
Pj L(B j )

vB j
would be increased and, then, the maximum urgency of the

whole perimeter B too.

18.3 Allocating the Robots Among the Paths

As it will be shown in the following sections, the lower bounds for the maximum
refresh time and urgency (defined by Theorems 18.1 and 18.2) can not be reached
in real perimeter surveillance missions, assuming non-closed perimeters, communi-
cations constraints, heterogeneous robots or paths with different priorities. Anyway,
the objective posed in this chapter is to obtain the minimum maximum urgency along
the whole perimeter as close as possible from the optimal one.

Assigning a sub-team of robots Q(i) = {Q j , Q j+1, . . . , Qk−1, Qk} for each path
Bi , the theoretical maximum refresh time for this path would be as follows.

RT max(Q(i)) := L(Bi )
∑k

n= j vmax
n

(18.19)

And the theoretical maximum urgency would be as follows.

U max(Q(i)) := Pi
L(Bi )

∑k
n= j vmax

n

(18.20)

Therefore, the problem can be divided in two problems. The first one implies
to obtain in a distributed manner the best cooperative strategy to patrol each path
Bi using its assigned sub-team of robots Q(i). The second one can be addressed
as a distributed dynamic allocation problem, where the robots have to be assigned
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among the paths to get the theoretical minimum maximum urgency along the whole
perimeter.

J := max
i=1..M

U max(Q(i)) (18.21)

18.4 Cooperative Path Patrolling Strategies

Given a path Bi which length is L(Bi ) and a sub-team of robots Q(i) as are defined in
the previous section, a cooperative patrolling strategy should be defined to minimize
the maximum refresh time along the path.

18.4.1 Cyclic Strategy

According to the cyclic strategy, all of them move along the path at the same speed
v, in the same direction and equally spaced. Then, the positions of a pair of robots
Qn and Qn−1 with j < n ≤ k into the path Bi will be related as follows.

xn − xn−1 = L(Bi )

k − j
(18.22)

Assuming that the path Bi is closed, b(li−1) = b(li ), in a steady state, the refresh
time along the whole path is as Fig. 18.2 shows and the maximum refresh time can
be computed as follows.

RT max = L(Bi )

(k − j)v
(18.23)

It will be equal to the theoretically optimal one defined in expression (18.9) if and
only if all the robots have the same maximum motion speed vmax

n = v,∀n = k, . . . , j ,
as is stated in [18]. In this case, the average refresh time can also be calculated easily
from the Fig. 18.2.

RT = L(Bi )

2(k − j)v
(18.24)

Fig. 18.2 This figure shows as the refresh time along a closed path changes while a team of 4 robot
executes a cyclic strategy
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However, assuming robots with different motion speeds or non closed paths this
strategy can not be applied. Also, assuming communications constraints with a
communications range smaller with respect to the total path length, the robots could
not be communicate between them to coordinate their motions.

18.4.1.1 Heterogeneous Team of Robots in a Cyclic Strategy

When the team of robots is not homogeneous (there are robots with different
maximum motion speeds), but the path is closed, the cyclic strategy can be applied
by defining a same motion speed v for all the robots. The Slowest robots will not
take part of the solution, while fastest robots should reduce its motion speed to v.
Assuming vmax

j ≤ vmax
j+1 ≤ · · · ≤ vmax

k , the theoretical maximum and average refresh
time can be computed as follows.

RT max = L(Bi )

(k − m + 1)v
(18.25)

RT = L(Bi )

2(k − m + 1)v
(18.26)

with m = min(k, . . . , j)|vmax
m ≥ v.

Obviously, assuming different maximum motion speeds, the optimal values for
refresh time are not reached.

18.4.1.2 Dealing with the Communications Constraints
in the Cyclic Strategy

In [11], authors apply the cyclic strategy to solve a perimeter surveillance problem
and considering a closed route. The communications constraints are addressed by
the authors and solved by stopping a robot to interchange informations with the other
robots. This solutions is not robust since a failure in this stopped robot would lead
the system to a totally in-communicated conditions.

So, considering a fixed node into a closed path Bi which length is L(Bi ) and a
team of k − j homogeneous mobile robots which can move with the same maximum
motion speed v, it is possible to compute the latency (or time since a event is detected
until it is shared with the rest of the team). Applying the cyclic strategy, each pair of
nearby robots is separated a distance of L(Bi )

k− j along the path. So, each L(Bi )
v(k− j) seconds

a different robots communicate with the fixed node. In the worst case scenario, a robot
detects an event just after communicates with the fixed node. Then, this robot takes
L(Bi )

v seconds to inform the fixed node. Now, the fixed node has to inform the rest
of the robots. Therefore, theoretically the latency, as was defined in [12], can be
upper-bounded as follows.
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LT ≤ L(Bi )

v
+ (k − j − 1)

L(Bi )

(k − j)v
≈ 2

L(Bi )

v
(18.27)

These values for the refresh times and the latency are not near to optimal ones.
Also, in the presented problem, assuming more tha one path (M > 1), these paths can
not be closed. Therefore, the cyclic strategy is not useful for the perimeter surveillance
problem proposed in the previous section.

18.4.2 Partitioning Strategy

These drawbacks can be tackled using a partitioning strategy, obtaining near optimal
solution from a refresh time criterion. Considering a path Bi which length is Li and
a sub-team of k − j robots Qi as is defined in the previous sections, a partitioning
strategy implies that the whole path Bi is divided in k − j non-overlapping segments
{S j , S j+1, . . . , Sk}.

S j ∪ S j+1 ∪ · · · ∪ Sk = Bi

S j ∩ S j+1 ∩ · · · ∩ Sk = ∅ (18.28)

Now, each robot Qn is in charge to patrol a different segment. To minimize the
refresh time along the whole path, each robot Qn moves along its segments with
a back and forth motion (from one endpoint to the other one again and again) at
its maximum motion speed vmax

n , as is shown in Fig. 18.3. Also, the length of each
segment L(Sn) has to be related to the robot maximum speed.

L(Sn) = vmax
n

L(Bi )
∑k

m= j vmax
m

, ∀n = j, . . . , k, (18.29)

From here, it is easy to deduce that all the robots in the sub-team would take
the same time T ′ to cover their assigned segments. Then the neighbor robots can be
coordinated to meet periodically in their common endpoint.

T ′ = L(Sn)

vmax
n

= L(Bi )
∑k

m= j vmax
m

(18.30)

Fig. 18.3 A team of 4 heterogeneous mobile robots performs a partitioning strategy to patrol
cooperatively a path
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Fig. 18.4 This figure shows the refresh time computed along a segment Sn in a steady state while
a team of robots performs partitioning strategy along the path Bi

Figure 18.4 illustrates the refresh time computed along a segment Sn in a steady
state and depending on the position of the robot Qn , while it is performing a parti-
tioning strategy.

The theoretical maximum refresh time can be computed as the time that a robot
takes to cover its assigned segment twice.

RT max = 2T ′ = 2
L(Bi )

∑k
m= j vmax

m

(18.31)

The average refresh time computed for a segment Sn can be extrapolated to the
whole path Bi , because all the robots take the same time T ′ to patrol their assigned
segments. So, as the Fig. 18.4 shows, the average refresh time computed along a
segment Sn depends on the robot position xn .

RT (t) =
x2

n (t)
2vmax

n
+ (L(Sn)−xn(t))2

2vmax
n

+ (L(Sn)−xn(t))2xn(t)
vmax

n

L(Sn)
(18.32)

Now, simplifying and deriving it with respect a xn(t) and equating to zero, it is
possible compute for which xn(t) the average refresh time is maximum.

d RT (t)

dxn(t)
=

L(Sn)
vmax

n
− 2xn(t)

vmax
n

L(Sn)
= 0

xn(t) = L(Sn)

2
(18.33)
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Replacing the obtained value for xn(t) in the expression (18.32) and accounting
the expression (18.30), the average refresh time can be upper-bounded as follows.

RT = 3

4

L(Bi )
∑k

m= j vmax
m

(18.34)

In general, the partitioning strategy gets better results than the cyclic one when
the robots are heterogeneous, according to a refresh time criterion. It is because the
partitioning strategy allows the robots to exploit their different capabilities (maximum
motion speeds) to patrol the whole path in a cooperative manner.

18.4.2.1 Periodic Connectivity

Considering a communications range R short with respect to the whole path length,
it is not possible the continuous connectivity between all the robots. However, with-
out communications between robots, they can not interchange informations about
detected events or intruders or coordinate to converge to the cooperative patrolling
strategy.

In the next section, an algorithm for the robots to converge to the partitioning
strategy in a distributed manner and assuming asynchronous communications will
be presented.

On the other hand, according to the partitioning strategy, all the robots take the
same time T ′ to cover their assigned path. Therefore, each pair of neighbors can
be coordinated to meet periodically. So, the robot motions allow them to be within
their communications range and non continuous, but periodic connectivity can be
ensured.

The periodic connectivity between neighbor robots ensures the information prop-
agation between all the robots in a finite time. The latency time is upper-bounded
as follows approximately a half of the upper-bounds of the latency for the cyclic
strategy.

LT ≤ 2T ′ + T ′ + (k − j − 3)T ′ = (k − j)T ′ = (k − j)
L(Bi )

∑k
m= j vmax

m

(18.35)

18.5 Distributed Coordination to Converge to the Partitioning
Strategy

A distributed algorithm based on the concept of coordination variables is designed to
patrol the path Bi according to the partitioning strategy and assuming asynchronous
and limited communications The coordination variables considered are: the path
length L and the sum of the motion speeds of all the robots which are patrolling
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the path speedsum. The problem will be solved coherently for all the robots in a
distributed manner, when all of them have the same values for their coordination
variables. It is described in Algorithm 1 and executed in an independent manner for
each robot. There are not robots which rule the rest.

In addition to the coordination variables (L and speedsum), each robot Qn should
store its own maximum motion speed (vmax

n ), the segment which it is patrolling
(defined as [a, b]) and a set of local variables to execute the presented algorithm.
These local variables are: the sum of speeds of the robots that each one has on each
side of the path (speedleft

n and speedright
n ) and the total length of path that each one

has left on each side (L left
n and L right

n ).

Algorithm 1 Algorithm based on coordination variables to patrol a path using a
partitioning strategy from a distributed manner.
Initialization
while !ABORT do

if Meet a neighbor then
Interchange information
Update local variables
Update coordination variables
Compute segment to patrol
Go to common segment endpoint
Continue patrolling its segment

end if
if Reach path endpoint then
Initialize local variables
Reverse to patrol its segment

end if
Monitor path
Update local variables
Move along the path

end while

At first, each robot Qn initializes their local variables depending on its initial
position in the path. Then, the robots start to move along the path at their maximum
motion speed and according to their actual direction while monitor the environment
looking for new unexpected events or intruders. Meanwhile, each robot updates its
own local variables, specifically L right

n and L left
n according to its actual position xn

and its actual direction di .
Even when a robot Qn reaches its segments endpoints [a, b], it keeps moving

along the path, unless it meet another robot or arrive to a path endpoint. If a robot
Qn reaches a path endpoint (xn = ln−1 or xn = ln), it initializes its local variables
depending on its actual direction dn and reverse direction dn ← −dn to continue
patrolling its segment.

On the other hand, if a pair of robots Qn and Qm meet, they trust information that
each other gives about its own side. It means, if Qm is on the right of Qn , Qm sends
information to Qn about the right side (L right

m and speedright
m ) and Qn to Qm about its
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left side (L left
n and speedleft

n ). Then each robot can update its own local information
using the received information.

L left
m ← L left

n

speedleft
m ← speedleft

n + vmax
n (18.36)

L right
n ← L right

m

speedright
n ← speedright

m + vmax
m

Using these local variables each robot Qn can update its coordination variables.

L ← L left
n + L right

n

speedsum ← speedleft
n + speedright

n + vmax
n (18.37)

Now, each robot Qn uses all its information to compute the segment that must
patrol.

a ← li−1 + speedleft
n

L

speedsum

b ← a + vmax
n

L

speedsum (18.38)

Finally, both robots move together to their common segment endpoint and then
they continue patrolling their segments. Therefore, this algorithm minimizes the
required information to share between robots because each one just communicates
with their neighbors.

18.5.1 Dynamic Solution

This algorithm provides a dynamic solution since robots updates their coordination
variables and decides its new assigned segments periodically. A dynamic solution
allows the system to adapt to variations in the initial problem parameters, such as
amount of robots, motions speeds or total path length. Therefore, a dynamic solution
provide flexibility and tolerance to faults as a communications lost. On the other
hand, a decentralized system provide also fault-tolerance because there is not an
indispensable robot or central unit to complete the mission. Therefore, a dynamic,
distributed and decentralized system such as is proposed in this section increases the
robustness of the solution.

For instance, a system of k − j robots is performing the Algorithm 1 to patrol a
path Bi in a distributed manner. Assuming a fully steady state, a robot Qn meets its
neighbors Qn−1 and Qn+1 periodically.
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Qn meets Qn−1 on its left and receives information about its left side. So, Qn ,
according to expression (18.36), updates its sum of speeds of its left.

speedleft
n = vmax

n−1 + speedleft
n−1 (18.39)

After, Qn meets Qn+1 and send it information about its left side. Then Qn+1, can
updates its sum of speeds of its left.

speedleft
n+1 = vmax

n + speedleft
n = vmax

n + vmax
n−1 + speedleft

n−1 (18.40)

If Qn goes out from the problem, Qn−1 and Qn+1 will meet. Then, Qn−1 will
send information about its left side and Qn+1 will be able to compute its new local
variable speedleft

n+1 correctly without the lost robot Qn .

speedleft
n+1 = vmax

n−1 + speedleft
n−1 (18.41)

This process is repeated until the last robots and all of them can update correctly
in a finite time the new coordination variables and calculate correctly a new segment
to patrol, adapting to the lost of a robot. This logic would be similar for the rest of
local variables.

18.5.1.1 Validating the Dynamic Feature with Experimental Results

Two different experiments have been performed to illustrate how the proposed system
is able to adapt to changes in the initial conditions.

The experiments have been carried out using a team of Pioneer-3AT which have
to patrol path defined by the walls of a room. The robots uses a laser to follow
the wall. The robots can move at a maximum motion speed of 1 m/s, but some of
them (red and green in Fig. 18.5) have been limited by software to 0.6 m to validate
system with non homogeneous robots. During the experiments a sensing range of
2 m and a communications range (simulated via software) of 4 m are considered. An
application which executes the Algorithm 1 for each robot talks to a Player Server
[24] running in each Pionner.

In the first experiment, four robots are patrolling the path and, at time t = 250 s,
the fifth (green) robot goes into the path and joins to the team in the mission. Finally,
at time t = 420 s, a robot (the red one) goes out from the path. Figure 18.6 the robots
positions into the path along the time of the mission. It shows as the robots adapt and
the system converges such as each robot patrol a segment which length is related to
its own maximum speed.

In Fig. 18.7, the maximum and average refresh times computed (based on robots
positions and external timers for a set of way-points in the path) along the time
during the experiments are shown. It shows how close to the theoretical maximum
(defined for the partitioning strategy by (18.31) and (18.34)) are the results obtained
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Fig. 18.5 Snapshot from experiments. The initial and end path position is next to the farthest
column in the coordinates (9, 0)m
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Fig. 18.6 This figures shows the results obtained in the experiment with 5 robots. On the left
the actual position of the robots along the time. On the right its position into the path (xi ) along
the time. Each robot is represented by a different color. In http://www.youtube.com/watch?v=
WqRKXqcuWKg, a video from this experiment can be viewed

using the proposed algorithm. This experiment probes that the proposed algorithm
allows the robots to adapt dynamically to lost of robots, even under communications
constraints. As it is obvious, refresh times are decreasing while the number of robots
is increasing.

http://www.youtube.com/watch?v=WqRKXqcuWKg
http://www.youtube.com/watch?v=WqRKXqcuWKg
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Fig. 18.7 This figure shows the maximum (solid blue line) and average (solid red line) refresh time
computed along the path during the experiment with 5 robots. Dashed lines defines the theoretical
maximum values using the partitioning strategy such as is stated in expressions (18.31) and (18.34)
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Fig. 18.8 This figures shows the results obtained in the experiment with 4 robots. On the left
the actual position of the robots along the time. On the right its position into the path (xi ) along
the time. Each robot is represented by a different color. In http://www.youtube.com/watch?v=
m2cVLo7nmLs, a video from this experiment can be viewed

In the second experiment, four robots patrol the path. However, at time t = 180 s,
the path length is decreased. The multi-robot system is able to adapt to this variation
dynamically, as is shown in Figs. 18.8 and 18.9.

18.5.2 Convergent Solution

When all the robots have the correct values for the coordination variables, all of
them can compute correctly the segment to patrol and the whole multi-robot system

http://www.youtube.com/watch?v=m2cVLo7nmLs
http://www.youtube.com/watch?v=m2cVLo7nmLs
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Fig. 18.9 This figure shows the maximum (solid blue line) and average (solid red line) refresh time
computed along the path during the experiment with 4 robots. Dashed lines defines the theoretical
maximum values using the partitioning strategy such as is stated in expressions (18.31) and (18.34)

converges. According to the problem description, the robots just move along the path
in two possible opposite directions. Also, the Algorithm 1 explicitly forces the robots
to reverse direction when they get the end or initial positions of the path. Therefore,
all the robots will meet its neighbors again and again, sharing information until each
robot has information about all the robots and can calculate correctly its coordination
variables. Then, the proposed algorithm allows the system to converge to the solution
described in Sect. 18.4.

The question is: how many meeting the robots need to converge to the desired
solution? It is a time-complexity analysis. Given k− j robots which are patrolling the
path Bi , it is assumed that robots know nothing about the other robots (amount and
motions speeds). Then, after the first meeting between Q j and Q j+1, both calculate
their coordination variables accounting only two robots. Then, when Q j+1 meets
Q j+2, they both can update their variables assuming three robots but Q j only knows
information about two robots. This process can be repeated k− j −1 times until Qk−1
meets Qk and, so, both robots know the required information to update correctly their
coordination variables. However, this information could not be known by the rest
of the robots. Now, Qk−1 meets Qk−2 and sends it information, such as it also can
update the coordination variables correctly. This reasoning is repeated k − j −2 until
Q j+1 meets Q j and then the k − j robots can the required information to calculate
correctly the coordination variables.

From this reasoning, it can be concluded that, using the proposed algorithm based
on the coordination variables, the robots need less than 2(k − j) meeting to converge
to the partitioning strategy. It means, the convergence time-complexity is increasing
linearly with the amount of robots in the system.

On the other hand, peer-to-peer (or one-to-one) based algorithms has been pro-
posed in the literature [16, 19] to solve the path surveillance problem with multiple
robots converging to a path partitioning strategy. Authors of [16] probe that the
convergence time-complexity of its peer-to-peer coordination technique increases
quadratically with the amount of robots.
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Table 18.1 Relation between the convergence times using the algorithm based on the one-to-one
coordination and the algorithm described in this chapter

Number of robots 1 2 3 4 5 6 7 8

Average value 1.00 0.98 1.67 2.41 2.54 3.39 3.81 4.10

Standard deviation 0.00 0.08 0.87 1.75 1.57 2.16 2.95 2.54

18.5.2.1 Results to Validate the Convergence Advantages

The proposed distributed algorithm based on the coordination variables and the one
described in [19] based on a peer-to-peer (one-to-one) approach have been developed
in MATLAB to compare their convergence times. A large amount of scenarios has
been simulated with different number of robots and different perimeter lengths. The
simulated robots implement a quad-rotor dynamical model which maximum motion
speed have been limited. The initial positions and maximum motion speeds have been
defined randomly using an standard uniform distribution from 0.2 to 0.5 m/s. The
communications range have been limited to 4 m. Each scenario has been executed
using both the algorithm based on the coordination variables and the one based
on the one-to-one coordination. The convergence time has been calculated for both
algorithms, assuming that a system has converged if the maximum difference between
the segment actually assigned to each and the theoretically optimal one (defined by
expression (18.29)) is less than 5 %.

The results are summarized in Table 18.1. This table shows the average relation
between the convergences times computed using the one-to-one coordination and the
coordination variables algorithms, depending on the number of robots. It shows that
increasing the number of robots, the algorithm based on the coordination variables
converges much faster than the one-to-one coordination algorithm.

18.6 One-to-one Coordination for Dynamic Allocation

Each path Bi is patrolled by a sub-team of robots Q(i) that patrols it using the
coordination variables based Algorithm 1 to implement a partitioning strategy from
a refresh time criterion. It is a dynamic algorithm able to adapt to variations in
the number of robots from a distributed manner, converging to the best possible
partitioning strategy in few iterations and under communications constraints. On the
other hand, between each pair of adjacent paths Bi and B j , there are a fixed node
Fi, j .

However, the actual distribution of the robots among the different paths could not
be the best from an urgency criterion, such as is shown in Sect. 18.3. As commu-
nications are considered limited and as the initial priorities conditions are assumed
variables, a centralized allocation is not useful. So, a distributed and dynamic allo-
cation method based on the one-to-one coordination is proposed.
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Section 18.5 shows that the proposed algorithm assures all the robots in a path Bi

to share the correct coordination variables about their problem (it means, the path
length L(Bi ) and the total sum of speeds speedsum

i ) in a finite time. So, according to
expression (18.31), each robot can compute the theoretical maximum refresh time
along the path using the partitioning strategy.

The fixed nodes are used as path allocation manager. When a robot Qn in a path
Bi meets a fixed node Fi, j , it sends information to the node about its own path length
L(Bi ), the path priority Pi and sum of speeds of the robots speedsum

i in the path.
On the other hand, the fixed node sends information to the robot about the length
L(B j ), priority Pj and sum of speeds speedsum

j from its other adjacent path B j . As
the robots from both paths reaches periodically the ends of the paths, the fixed node
can update periodically the information about both paths.

Therefore, the robot Qn in a path Bi which has met a fixed node Fi, j has infor-
mation about both paths and can compute the maximum urgency of both paths,
according to expression (18.20). Also, it can estimate the maximum urgency of both
path if it moves to the other path B j . The fixed node Fi, j can also calculate the same
values.

Ui ← U max(Q(i))

U j ← U max(Q( j)) (18.42)

U ′
i ← U max(Q(i) − {Qn})

U ′
j ← U max(Q( j) + {Qn})

Now, the robot Qn decides in an independent manner to move to the other path
B j if the change is profitable. It means, according to the urgency criterion defined
in Sect. 18.3, if the estimated maximum urgency between both paths is less than the
actual maximum urgency between them.

max (Ui ,U j ) > max (U ′
i ,U ′

j ) −→ Qn moves from Bi to B j (18.43)

In case than actual and estimated maximum urgency are equal, the robot Qn will
move if and only if the sum of the actual urgencies are greater than the sum of the
estimated urgencies.

On the other hand, as the fixed node has the same information, it can deduce the
decision of the robot and update correctly the information about its both adjacent
paths.

Therefore, each robot uses a one-to-one method to choose the path to patrol based
only in the information about the actual and estimated urgencies of both paths. From
local decisions, the whole system converges to global solution close to the optimal
one.
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18.6.1 Protocols for Changing Paths

The proposed method is based on the idea that fixed nodes has a totally updated
information about its two adjacent paths. However, fixed nodes can not know if
another robot is going out or into its adjacent paths by the other paths endpoints
while it is enabling that a robots move by its adjacent paths endpoints, because this
information would take a minimum time to be propagated from one to the other
endpoint (as described in Sect. 18.4). So, this method enables any robot in the end
segments of any path to move to the other adjacent path if it is profitable from an
maximum urgency criterion and based to possible non updated information. Some
protocols to be used together or separately are proposed to mitigate this effects.

• One direction policy. Assuming a closed perimeter, robots can move between paths
following an only direction.

• Token-based method. Only one robot in the system carries a token and only it
can move between adjacent paths. In case, this change is not profitable from an
urgency-based criterion, it does not move and leaves the token in the fixed node. So,
if another robot reaches this fixed node, it takes the token and decides, according
to the urgency criterion, if it should move between paths. On the other, when a
robot owns the token, it can move from one to the other fixed node of its own
present path (see Sect. 18.6.2).

• Probabilistic protocol. When a robot reaches a fixed node, both the node and the
robot share a common random value rnd. So, the robot uses this value to decide
if it should move between paths.

• Timer-based protocol. A different threshold based on the its unique identifies is
defined for each fixed node. The fixed nodes set up a time to its threshold and this
timer is continuously decreasing. A robot can move between paths if this change
is profitable and if the timer of common fixed node is less than zero. In any case,
the timer is again set to its own threshold when a robot reaches a fixed node which
timer is less than zero.

18.6.1.1 Comparing Path Change Protocols

The presented system has been implemented in a distributed and decentralized
manner, using different MATLAB objects and simulating the constrained communi-
cations, to test its performance using different path changes protocols.

Ten different scenarios assuming four paths with different priority distributions
over a 15×15 m perimeter and nine homogeneous quad-rotors moving at a maximum
motion speed of 0.5 m/s have been executed. The priority distributions has been cho-
sen randomly using an standard distributions for each scenario. Also, each scenario
has been executed during 1,000 s once for each different protocol: no control meth-
ods (not-2d), one-direction (not-1d), token method (tok-2d), token and one-direction
(tok-1d), probabilistic method (prob-2d), probabilistic and one-direction (prob-1d),
timer (timer-2d) and timer and one-direction (timer-1d).
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Fig. 18.10 This figure shows the average convergence times (± its standard deviation) computed
during the simulations depending on the different changing path protocols: no control methods (not-
2d), one-direction (not-1d), token method (tok-2d), token and one-direction (tok-1d), probabilistic
method (prob-2d), probabilistic and one-direction (prob-1d), timer (timer-2d) and timer and one-
direction (timer-1d)
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Fig. 18.11 This figure shows the average maximum urgency (± its standard deviation) computed
during the simulations depending on the different changing path protocols: no control methods (not-
2d), one-direction (not-1d), token method (tok-2d), token and one-direction (tok-1d), probabilistic
method (prob-2d), probabilistic and one-direction (prob-1d), timer (timer-2d) and timer and one-
direction (timer-1d)

Simulations results about the method convergence time depending on the different
protocols are summarized in Fig. 18.10.

These results shows a faster convergence using the one-directions protocols. The
average maximum urgency computed during the simulation for the different protocols
are shown in Fig. 18.11.

According to obtained results, no more than the one-direction protocol seems to
be necessary to obtains a quick and close to optimal performance.
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18.6.2 Segment Swapping Policies

The proposed approach, such as is described above, converges to a solution very
dependent of initial conditions (initial robots positions) when the robots have different
maximum motion speeds and then, the maximum urgency would be lower limited
by these initial robots positions. It is because, according to the described method,
only the robots in the end segments can move between paths. However, it could be
more profitable if a robot in one of the middle segments of a path moves to another
path.

Therefore, the Algorithm 1 is slightly modified to allow the neighbors robots to
swap their segments when they meet, such that any robot in the path can reach the
fixed nodes and move to another path. It implies, not only to swap their segments
to patrol, but also interchange their local and coordination variables. Then, different
policies to decide if a pair of neighbor robots must or not swap their segments are
proposed.

• Token-based policy. The robot which owns the token swaps directly the segments
with its neighbors in order to go from one fixed node to the other as soon as
possible. It is related to the token-based protocol to move between paths described
in Sect. 18.6.1.

• Speed-based policy. This policy assumes that slower robots should be nearer to
the fixed nodes because it ensures a finer change between paths.

• Probabilistic-based policy. When two robots meet, they share a common random
value and use it to decide if they must or not to swap their segments.

• Mixed criterion. This criterion mixes the probabilistic and speed criterion to decide
the swapping.

18.6.2.1 Analyzing the Swapping Policies

Ten different scenarios over a triangular closed perimeter are executed for the differ-
ent swapping policies to analyze their performance. The team of robots is considered
heterogeneous, such as their maximum motion speeds are randomly chosen using
a standard distribution between 0.3 and 0.5 m/s. The perimeter is formed by three
straight paths between three vertexes (0, 0), (20, 0) and (10, 15). So, different prior-
ity distribution are randomly chosen for each scenario. The one-direction protocol
is used to enable the change between paths.

Each scenario is run during 1,000 s once for each swapping policy: no control
method (not), token-based (tok), speed-based (speed), probabilistic criterion (prob)
and mixed criterion (mix).

Figures 18.12 and 18.13 summarizes the convergence time and the average max-
imum urgency computed during the simulations depending on the swapping policy
used.

Notice that the speed-based criterion converges faster and obtains the better per-
formance from a maximum urgency criterion.
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Fig. 18.12 This figure shows the average convergence time (± its standard deviation) computed
during the simulations and depending on the different segment swapping policies: no control method
(not), token-based (tok), speed-based (speed), probabilistic criterion (prob) and mixed criterion
(mix)
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Fig. 18.13 This figure shows the average maximum urgency (± its standard deviation) computed
during the simulations depending on the different segment swapping policies: no control method
(not), token-based (tok), speed-based (speed), probabilistic criterion (prob) and mixed criterion
(mix)

18.7 Conclusions

This chapter addresses a perimeter surveillance mission with multiple robots, where
the perimeter can be divided in a set of adjacent paths with different priorities. Each
priority represents the probability of event appearing in this path relative to the other
paths. The refresh time criterion is not useful to optimize the problem. So, the urgency
criterion is defined to normalize the refresh time along the whole perimeter.

The lower bounds of the maximum urgency for a path is defined depending on
the set of robots. Then, the problem can be solved in two levels: a patrolling strat-
egy to monitor cooperative each path to minimize its maximum refresh time and a
dynamic allocation of the robots between the different paths to minimize the maxi-
mum urgency.

The partitioning strategy is proposed, such as each sub-team of robots can coop-
erate to monitor its assigned path, exploiting the robots different maximum motion
speeds and keeping periodic connectivity among them even under communications
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constraints. An algorithm based on the coordination variables allows the robots to
converge to the partitioning strategy from a distributed and decentralized manner.
Analysis and validation results show than the proposed algorithm converges in fewer
iterations than other peer-to-peer methods and than the robustness of the distributed
system.

The fixed nodes manage the dynamic allocation of the robots between their adja-
cent paths when they meet them. The fixed nodes receive from and send information
to the contacted robots, such as they can decide in an independent manner if mov-
ing from one to the other paths would improve the performance from a maximum
urgency criterion. Also, it is proposed that robots can swap their segments into each
path in order to allow any robot to reach the fixed node to move between paths. A
set of different protocols for moving between paths or segment swapping are defined
and tested to analyze which obtains the best performance. These results show that
allowing that robots move between paths following an only direction and a speed-
based protocol for segment swapping are sufficient to obtain very high performance
and a low convergence time.
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Chapter 19
Social-Aware Coordination of Multi-robot
Systems Based on Institutions

José N. Pereira, Porfírio Silva, Pedro U. Lima and Alcherio Martinoli

Abstract Institutional robotics (IR) is an approach to the coordination ofmulti-robot
systems that draws inspiration from social sciences, namely from institutional
economics. Using the concept of institution, it aims to provide a comprehensive
strategy for specifying social interactions (e.g., norms, roles, hierarchies) among
robots. In previous work, we have introduced a control methodology for multi-robot
systems that takes into account institutions in order to create an Institutional Agent
Controller (IAC) that captures such social interactions. In this chapter, the IACdesign
methodology is validated in a case study concernedwith a swarmof 40 real, resource-
constrained robots which has to maintain wireless connectivity. We then investi-
gate a second case study dealing with more complex social interactions, showing
that institutional roles can effectively help a multi-robot system to coordinate and
improve performance in a given task of social nature. Given the fact that institutions
are one of the tools in use within human societies to shape social interactions, our
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intuition is that IR can also facilitate coordinationwith humans in scenarios involving
many-to-many human–robot interactions. We discuss how the IR concepts and the
IAC designmethodology can be implemented in real-world scenarios wheremultiple
robots must interact with multiple humans in a socially aware manner.

19.1 Introduction

In robotics, the transition from constrained laboratory environments to real-world
environments is not a trivial step. For human actors carrying out any task in real-world
environments, even without any robotic systems present, the need for coordination
with other actors is ubiquitous. Consider that simply traveling from point A to point
B requires coordinating with others, be it on foot (using common sense rules to
avoid colliding with others), by car (using a more elaborate set of rules, i.e., the
“road code”), or any other mode of transport. More importantly, most tasks in our
daily lives involve the trade of services or goods for money. This requires not only
coordinating with others in order to physically carry out such a trade but also the
underlying acceptance that the money being received can then be accepted by some
other actors. The collective acceptance of such an idea is in itself a form of society-
wide coordination.

For multi-robot systems to be truly immersed in real-world environments, this
type of coordination must be considered. Robots need to consider complex social
interactions with multiple anonymous robots andmultiple anonymous human actors.
This anonymity reflects not only the fact that interacting agents might never have
met before but also that such agents might not have to coexist at the same time or
place for the interaction to occur.

Our goal is to formalize rules specifying social interactions for specific tasks in a
way that resembles the organizational aspects of human society. Our intuition is that
by doing sowewill be able to consider complex social interactionswithinmulti-robot
systems, ease the effort of their transition to real-world environments populated with
human actors, and facilitate coordination with such actors in scenarios involving
many-to-many human–robot interactions.

To do so, we follow the Institutional Robotics (IR) approach [23] to the coordina-
tion of multi-robot systems (described in Sect. 19.2). This approach takes inspiration
from social sciences, namely from institutional economics [10], and aims to pro-
vide a comprehensive strategy for specifying complex social interactions among a
team of robots and possibly between a team of robots and human actors. In [20], we
formalized institutions—the central concept in IR—using an abstract representation
(executable Petri Nets), allowing their design and execution for multi-robot systems,
so as to obtain behaviors capturing the social interactions of interest. Our method-
ology (described in Sect. 19.3) composes a set of institutions in order to create an
institutional agent controller able to execute a desired task and observe the specified
social interactions.
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An initial validation study was performed in [20], by comparing our methodology
with other approaches. To do so, we considered a swarm robotics case study
concerned with a robot swarm which has to maintain wireless connectivity and a
certain degree of spatial compactness, taking into account only simple social inter-
actions. However, the validation presented in [20] was carried out only in simulation.
In Sect. 19.4, we advance our validation effort by considering a real-world implemen-
tation of the case study with a swarm of up to 40 real, resource-constrained robots,
further increasing our confidence in the approach’s robustness and scalability. This
real-world implementation was reported in [19].

Considering a case study concerned only with simple interactions allows us to
perform a more grounded validation effort. However, we are interested in tackling
more complex social interactions with the IR approach. In Sect. 19.5, we present a
second case study (briefly described in [18]) where a team of robots must coordinate
while navigating through the environment in order to accomplish a transportation
task. In this case study, we increase the complexity of the social interactions by
focusing on a specific form of institution: the institutional role. We compare the IR
approach with a self-organized approach in order to identify situations in which it
might prove advantageous.

The IR approach will also be considered in social robotics scenarios implemented
in real-world human-populated environments. In Sect. 19.6, we discuss how the IR
approach can enforce social-aware coordination in such a scenario, and how we will
be able to verify our intuition about the impact of IR in many-to-many human–robot
interactions.

19.2 Institutional Robotics and Related Work

Institutional robotics [23] is an approach to the coordination of multi-robot systems
that draws inspiration from the social sciences, namely from institutional economics’
concepts [10]. It combines the notions of institution [11, 21], coordination artifact
[25], and environment [28], aiming to provide a comprehensive strategy for spec-
ifying social interactions (e.g., norms, roles, hierarchies) among robots. Under IR,
robots are situated not only in a physical but also in an institutional environment,
where their interactions are guided by institutions. Cooperation is achieved by this
regulation of social interactions since the robots know not only how to behave in a
given scenario but also what to expect from other robots and the environment.

In IR, the coordination system is a network of institutions. Institutions are coor-
dination artifacts of different types (organizations, norms, hierarchies, social roles,
etc.). They are generic, meaning that they are not designed for any specific set of
robots. Robots are able to modify, at some extent, not only the physical environment
but also the institutional environment. From an institutional perspective, institutions
are taken as the main tool of any sophisticated society, and individuals are both
constructive within and constructed through institutional environments.
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Market-basedmulti-robot coordination [7, 31] is a previous example of importing
some economic views into robotics. Inspired by market mechanisms, researchers
have proposed systems like MURDOCH [9] and TraderBots [8] to achieve flexible
allocation of subtasks using auctions between robots. In these systems, robots act as
agents trying to maximize their individual profits, calculated based on rewards from
tasks and resources expended. The underlying assumption is that with every robot
trying to maximize its individual profit, team coordination, and efficiency will be
improved.A limitation of themarket-based approach is that, despite some application
to the allocation of roles [26], the great majority of the work available only deals
with task allocation, leaving other mechanisms (e.g., cooperative decision-making)
out of the picture.

Self-organization is another possible, scalable mechanism that has been proposed
for the coordination of, often large, distributed robotic systems [1, 2, 6]. Self-
organizing systems are characterized as being fully reactive and relying on local
interactions (and possibly local, broadcast communication), both between robots
and between robots and the environment, in order to achieve coordination. How-
ever, the design of truly social distributed robotic systems should take into account
the objective social interactions arising from the combination (and dependencies)
of goals of heterogenous agents [5]. The simple, local interactions considered by
self-organizing systems might not capture well this aspect.

19.3 Institutional Agent Controllers

We model institutions using a formal representation, leading to a standard design
and execution platform (in real robots, submicroscopic realistic simulations, and
microscopic multi-agent systems). Institutions encapsulate relevant behavioral rules
for robots, specifying social interactions of different types among actors in a given
scenario. They represent the basic building blocks for creating shared coordinated
working environments. Moreover, concurrent execution of institutions has to be reg-
ulated since not all behaviors can be executed simultaneously. We use Petri Nets
(PNs) as the formal framework and follow their usual definition as described in [3].

Formalizing institutions for modeling and execution of robot controllers means
thatwe need to take into account robot’s actions and sensor readings.Executable Petri
Nets (EPNs) are PNs that have actions and boolean conditions (verifiable by sensor
readings) associated with places and transitions, respectively. The basic intuition
behind this definition is that by associating actions with places we are able to define
which actions are to be executed at each time step. This is done simply by checking if
the corresponding place ismarked. By associating transitionswith conditions verified
by sensor readings, we trigger state changes in the EPN due to changes in the robot’s
environment.

We represent each institution by an EPN that can be executed independently or
together with other institutions. We also represent robot’s individual behaviors by
EPNs. While the institutions specify behaviors that have a social nature, i.e., they



19 Social-Aware Coordination of Multi-robot Systems Based on Institutions 411

relate the robot to other robots in some way, the individual behaviors specify a set
of basic behaviors that have exclusively an individual nature, i.e., they relate the
robot with the surrounding environment and its own goals. The composition of the
individual behavior with a set of institutions generates a robot controller.

Definition An Institution I is a four-tuple (Inst, initialI , finalI , dI) where:

• Inst is an EPN;
• initialI , finalI ∈ Cdt are initial and final conditions for the execution of Inst;
• dI ∈ D = {AllowAll, StopInd, StopInst, StopAll} is the associated deontic opera-
tor.

The EPN Inst specifies the desired behavior that should be performed by the robot.
This behavior is not always being executed, its start and end are dictated by conditions
initialI and finalI , which the robot verifies at each time step. Thus, we say that an
institution I at each time step can be active or idle. Each institution also includes
a deontic operator dI which is used when combining it with the robot’s individual
behavior and further institutions, allowing or stopping the concurrent execution of
institutions and/or individual behavior. Inst must be designed, but institutions can
be kept simple and further behavioral complexity is the result of composition, in a
modular fashion.

EPNs can be represented by macro places in a hierarchical fashion, using two
distinct layers. We consider that each institution I is part of a lower layer and is
represented by one macro place mI in the higher layer. By adding bidirectional arcs
between each transition in I and mI , we guarantee that if mI is marked, I is active,
otherwise it is idle. This allows us to compose our institutions at the higher layer
where relationships among the institutions and the individual behavior should be
specified while keeping relationships between actions and conditions separated in
the lower layer.

The composition of individual behaviors and institutions is performed algorithmi-
cally by adding, in the higher layer, places and transitions that restrict their concurrent
execution, according to the specification provided by the deontic operators. Both
layers can be then merged algorithmically to obtain a full EPN that can be used
as controller. This EPN is designated as the Institutional Agent Controller (IAC).
Each robot runs its IAC in a social collective setting mediated by institutions. An
example of a specific IAC for the wireless connected swarm case study is displayed
in Fig. 19.2 and will be discussed in detail in the next section.

19.4 Validation of IAC Methodology

In order to validate the IAC methodology for design and execution of robotic
controllers using institutions, we follow a two-phase approach. The first phase is
to compare the IAC methodology with other methods, and assess its capability to
replicate results obtained with such methods. In [20], we considered the wireless
connected swarm case study, previously investigated in [16, 29, 30], and applied to
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it our IAC methodology. We performed submicroscopic simulations, characterized
by a low degree of abstraction and where intra-robot details such as individual sen-
sors and actuators are captured, both with the IAC designed and with a Finite State
Automata (FSA) approach originally proposed in [16]. We concluded that the IAC
methodology was able to replicate results obtained with the more traditional FSA
approach.

The second phase is to validate the IACmethodology in real-world environments.
In this section, we focus on this phase. To do so, we perform real-world experiments
of the case study and compare results obtained in reality with those obtained in
submicroscopic simulations.

In [30], the authors report an implementation using a small number of real robots
(4–8 robots) where local communicationwas achievedwith a combination of a global
wireless network and an overhead camera delimiting the communication range. A
first goal of thiswork is tomove one step further the realismof the physical implemen-
tation by using real local communication channels and a large number of robots (tests
were performed with sets of 20 and 40 robots). We chose to use 40 robots in order
to maintain as much as possible a parallel with the original case study experiments,
where 40 simulated agents were used [29]. A second goal of such implementation is
to show that the IR approach is able to handle such real scenarios, and in particular
maintain thewireless connectivity of a swarmof 40 real, resource-constrained robots,
further increasing our confidence in the approach’s robustness and scalability.

19.4.1 Materials and Methods

Our platform is the e-puck robot [15], a differential drive robot of 7cm in diameter.
In order to endow the robots with scalable wireless communication capabilities, we
use a radio communication module developed at DISAL [4]. This module is ZigBee
compliant and uses TinyOS [12]. A bounded communication range is obtained using
software-controllable power emission and a dedicated hardware attenuator.

For implementing our submicroscopic simulations, we used Webots [14], a flex-
ible, 3D realistic simulator, and considered kinematic models of the e-puck robot.
The original case study considered a perfect circular bounded communication radius
and perfect package reception inside that radius (radial disk model). In this work,
communication between e-pucks is also simulated realistically using the network
simulation engine OMNeT++ [27] as a plugin for Webots. The OMNet++ engine
handles channel coding, noise, fading signal propagation, as well as a non-circular
communication footprint. Figure19.1a offers a visualization of the Webots submi-
croscopic simulations. Figure19.1b displays an image of the arena during execution
taken with the overhead camera.
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Fig. 19.1 a Webots simulation screenshot, 40 e-puck robots simulated. b Real-world experiment
screenshot, 40 e-puck robots

19.4.2 Task Description and Decentralized Control Algorithm

In the wireless connected swarm case study, a decentralized control algorithm is
implemented to maintain wireless connectivity and a certain degree of spatial com-
pactness of a robotic swarm (withN robots) in an unbounded arena using exclusively,
as information at the robot level, the current number of wireless connections to the
neighbors. The communication is local and its bounded range is a parameter of
the robotic system. Let X be the number of connections perceived by a robot. In
the default state (defined as forward), the robot simply moves forward. If at any
time the robot senses the loss of a connection and X falls below a threshold α (where
α ∈ {0, . . . , N −1}), the robot assumes it is going in thewrong direction and switches
to state coherence. In this state, the robot performs a 180◦ turn in order to recover the
lost connection. Upon recovering the lost connection, the robot performs a random
turn and moves back to the default state. If the connection is not recovered, the robot
simply moves to the default state. If an obstacle is detected the robot immediately
switches to state avoid, where it performs obstacle avoidance for a given number of
time steps, after which it returns to its previous state.

While this simple algorithmhas limited robustness, it allows the swarm tomaintain
its connectivity to a certain extent, with its spatial compactness being controlled by
the communication range and by the threshold α. It is implemented in [29] using a
FSA controller with states defined as above.



414 J.N. Pereira et al.

Fig. 19.2 IAC for the wireless connected swarm. Dotted arcs represent bidirectional arcs. Lower
layer: EPNs for individual behavior IndAv and institutions T180 and TR. Higher layer: composition
of individual behavior and institutions

19.4.3 Institutional Agent Controller

In our IAC implementation, robots execute an individual behavior IndAv
(Individual Avoidance) and two institutions T180 (Turn 180◦) and TR (Turn Ran-
dom), all specified by EPNs shown in the lower layer of Fig. 19.2. Individual behavior
IndAv specifies a behavior relating the robot to its environment, consisting on simple
obstacle avoidance. Institutions T180 and TR implement the social rules, dealing
with loss and recovery of connections. T180 specifies that upon losing a connection
the robot performs a 180◦ turn followed by moving forward for a small number of
steps. Institution TR specifies that if a connection is recovered the robot performs a
random degree turn.

To consider institutions as defined inSect. 19.3,we need initial andfinal conditions
and deontic operators. For institution T180, we say that initial condition initialT180 is
“loss of connection detected and number of connections is less than α” and the final
condition finalT180 is “move forward procedure has ended.” For institution TR, we
say that initial condition initialTR is “recovery of connection detected and previous
number of connections is less than α” and the final condition finalTR is “random
turn procedure has ended.” The deontic operator associated with both institutions
is StopInd, specifying that institutions and individual behavior cannot be executed
concurrently.
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We now have all the elements needed to obtain the IAC that specifies our desired
behavior. The composition of the individual behavior IndAv and institutions T180
and TR (specified separately by EPNs shown in the lower layer of Fig. 19.2) is shown
in the higher layer of Fig. 19.2. The final controller is the full EPN of Fig. 19.2,
obtained after merging the two layers.

19.4.4 Experimental Setup

We replicated, to the best possible extent, the conditions of the original case study
presented in [29]. Therein, the authors considered 40 robots in an unbounded arena
performing the task over 10,000s. In this work, we carry out experiments (both real
robot experiments and Webots simulations) with sets of N = 20 and N = 40 robots
in a 3 by 3 meters bounded arena performing the task over 1,800s. The connection
threshold is dependent on the size of N and is set to α = 8 for N = 20 and α = 16
for N = 40. The communication radius of the e-puck is intended to be 0.7m, instead
of the original 2.0m, in order to keep the ratio between communication and physical
radius presented in the original paper. We set the transmission power of the e-puck
communication module to an appropriate value that allows us to roughly achieve the
desired communication radius.

To compare the performance of our submicroscopic simulations and real-world
experiments we performed 100 runs of the simulation for each N = 20 and N =
40, and 10 runs of real-world experiments for N = 20 and 5 runs for N = 40.
During runs, we stored the number of time steps robots spent with each number of
connections (between 0 and N − 1). We also recorded videos of the arena during the
real-world experiments using an overhead camera and the SwisTrack software [13].
Weprocessed the videos offline, using SwisTrack to performbackground subtractions
and blob detection, in order to extract and store the position of each robot in each
frame. We also stored information about the position of robots at each time step of
our simulations.

19.4.5 Results and Discussion

In this work, we are interested in two main metrics that represent and allow us to
analyze different aspects of the swarm behavior: connectivity and displacement.

Connectivity tells us, on average, how many robots have a particular number
of wireless connections during the time needed to perform a run of the experiment.
Tomeasure connectivity we use data gathered by the robots about the number of time
steps spent with each number of connections. Robots with α or more connections are
not concernedwith recovering lost connections and are likely to bemoving away from
the swarm. On the other hand, robots with less than α connections are actively trying
to regain connections and are likely to be moving toward the swarm. Thus, we can
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expect the swarm connectivity to peak at α, i.e., at each time step we will have more
robots with α connections than with any other number of connections. Displacement
measures the distance between the swarm center of mass and the center of the arena.
Given the stochastic nature of the movement of the robots, displacement will start
close to zero (runs start with robots gathered closely in the center of the arena) and
will increase throughout the run. The motion of the swarm as a whole resembles
a random walk through the arena. Comparing the values for displacement in tests
made with simulated and real robots will give us additional insights into howwell the
simulator is capturing reality. This metric would be somewhat different if considered
in the original case study, given that an unbounded arena was considered.

In Fig. 19.3a, b, we present the connectivitymetric results forN = 20 andN = 40.
In green, we display results obtained with submicroscopic simulations, while in red
and blue we display results with real robots. The blue line was obtained with data
about number of connections as perceived and recorded by the robots. On the other
hand, the red line was obtained in offline processing using SwisTrack by counting, for
each robot, howmany other robotswere present in a 0.7m range, somehow emulating
a perfectly radial communication disk. The differences in these two lines can be
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Fig. 19.3 Top Connectivity metric: average number of robots with a particular number of connec-
tions during a run. Bottom Displacement metric: average distance of swarm center of mass to arena
center throughout a run. Left Results for 20 robots and α = 8. Right Results for 40 robots and
α = 16. Variance shown for different runs
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explained by the spatially irregular coverage of the wireless radio communications.
The blue line reflects more accurately this noisy nature by spreading the number of
robotsmore evenly between 3 and 9 connections in Fig. 19.3a and producing a second
local maximum for 4 connections in Fig. 19.3b. This maximum can be explained by
the increase in N and α. The increase in α forces robots to try to keep more neighbors
in their communication radius, leading to robots aggregating in a smaller space. This
effect is magnified by the increase of robots in the swarm. Thus, when robots lose
or gain connections they lose 1 or 2 connections with N = 20 but they lose 4 or 5
connections with N = 40. The video data processed with SwisTrack always gives
the correct number of neighbors since all robot positions are known, thus the red line
better reflects the overall swarmbehavior.We can see that connectivitymeasuredwith
SwisTrack has a very good agreement with the connectivity measurements obtained
in our submicroscopic simulations. The slight shift of the curve of the simulations in
relation to the curve of SwisTrack, representing that robots have on average slightly
less connections, is most likely a product of the inclusion of wireless communication
realism (noisy fading and ellipsoidal communication area) in the simulations through
the OmNET++ plugin. These results show that, despite the high influence of noise in
real-world wireless communication, the overall swarm behavior implemented using
an IR distributed control approach is able to maintain the expected connectivity. The
results also show a very good agreement with the results presented in the original
case study work [29].

In Figs. 19.3c, d, we present the displacement metric results for N = 20 and
N = 40. Real robots results are obtained only using the video data processed with
SwisTrack, since robots do not have localization capabilities and are unaware of their
own location as well as the location of others. As expected, displacement distance is
close to zero at the beginning and increases throughout the run. For N = 20, submi-
croscopic simulations and real robot experiments show perfect agreement. However,
forN = 40, despite distance increasing in both simulation and real robots,we observe
that the rate of increase is doubled from simulation to real robots. A possible expla-
nation for this effect is the difference in the obstacle avoidance behavior. While in
submicroscopic simulations e-pucks are considered as perfect cylindrical blocks, in
reality e-pucks’ bodies are translucent. This leads to some collisions between robots,
being this effect greatly increased when the number of robots is doubled and they are
forced to aggregate in a smaller space (because α is also doubled). Robots motion
becomes less predictable and more stochastic and as a result the displacement of the
whole swarm is increased, much in the samemanner as a randomwalkwith increased
turning probability.

19.5 Coordination Through Institutional Roles

As discussed previously, institutions can take several forms: organizations, norms,
hierarchies, roles, etc. In the wireless connected swarm case study, we experimented
with institutional norms in a low complexity task, used for IAC validation only.
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We now focus on another important institutional form, the institutional role. Our
objective is to observe if coordination of a multi-robot system can be improved by
using institutional roles, possibly in combination with other types of institutions.
Also, the task to be accomplished by the robots in this case study is of higher com-
plexity (w.r.t. the wireless connected swarm case study), with complexity of social
interactions among robots depending on the approach taken.

We consider the following scenario and task. Robots are situated in an arena
consisting of two rooms connected by a narrow corridor (see Fig. 19.4a). The width
of the corridor allows only for one robot. In the left room, robots can pick up “virtual
payloads” (in infinite supply) that can be deployed in the right room. Both picking
up and deploying virtual payloads happen after a fixed amount of time has elapsed
since the robots enter the respective rooms. In order for the robots to recognize their
topological location, the walls have different colors, yellow in the left room, green
in the right room, and blue in the corridor.

Fig. 19.4 Screenshots from submicroscopic simulations: a initial deployment of robots in the
rooms; b regulators in their final positions at each entrance of the corridor; c queue formed behind
right traffic regulator, while robot moves in the corridor. d two robots encounter each other in the
corridor; e after adopting the role, robot A switches the role with robot B
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The team goal is to maximize the number of deployed virtual payloads. Robots
pick up the virtual payload in the left room. They must then navigate through the
corridor and deploy the payload in the right room. The corridor connecting the rooms
is too narrow for two robots moving in opposite directions to pass one another. In
order to avoid congestion in the corridor, the traffic between the two rooms must to
be coordinated so that robots only attempt to traverse the corridor in one direction at
a time.

We show how such coordination can be achieved when the constituent robots
are given the capacity to assume an institutional role, that of traffic regulator. We
compare this institutional approach to a self-organized approach to the same task
and try to identify in which situations one is preferable to the other.

19.5.1 Institutional Approach

We designate by transporting robots all robots that are transporting virtual payloads,
and thus, actively accomplishing the task. Robots performing an institutional role
are designated as regulators (we use also traffic regulators interchangeably).

19.5.1.1 Transporting Robots

Initially, all robots are transporting robots. They are placed randomly in the two
rooms (see Fig. 19.4a) where they attempt to locate a wall and perform a wall-
following behavior by keeping a wall on their right hand side, using readings from
their proximity sensors. This wall-following behavior is complemented with some
use of the camera in order to avoid conflicts with other transporting robots and
help localization in the arena. Robots use their camera when, based on the readings
from their proximity sensors, there is the possibility that they might be entering or
leaving the corridor, or when an obstacle is detected. Based on the colors detected
in the captured images, the robot can distinguish between other robots and walls of
different colors. By navigating in this manner through the arena, robots are able to
pick up virtual payloads and deploy them.

19.5.1.2 Traffic Regulation

If the need for traffic regulation arises due to a conflict between two transporting
robots in the corridor, two robots assume the institutional role of traffic regulators.
The two traffic regulators place themselves at the opposite ends of the corridor so that
each regulator can control the flow of transporting robots entering the corridor from
one of the rooms (see Fig. 19.4b). The goal of the regulators is to ensure that robots
only move through the corridor in one direction at a time. The regulating robots
are synchronized so that only one of them will let transporting robots enter the
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corridor from their respective rooms at any one time. The synchronization between
the regulators is facilitated by an external program running on a Webots supervisor
node, although it could also have been designed in a decentralized manner.

The regulators use their short-range communication capabilities to emit messages
to guide the transporting robots trying to enter the corridor. A traffic regulator peri-
odically emits messages when it has to prevent transporting robots from entering the
corridor from the room in which it is placed. Transporting robots have to be inside
the short-range communication radius of the regulators (set to 15cm) to receive mes-
sages. If a transporting robot receives a message to stop, it will stop and begin to
relay the stopmessage so other transporting robots behind it will stop too. As a result,
the transporting robots will form a queue (see Fig. 19.4c). When the first robot in the
queue receives a message to proceed, it forward the message to any robots that may
be behind it, and the queued up robots will start to move.

19.5.1.3 Allocation of the Traffic Regulator Role

When two robots moving in opposite directions encounter one another in the corridor
(see Fig. 19.4d), they send a message to the supervisor to determine if they should
adopt the role as traffic regulators. Each of the robots specifies from which room it
came. If no other robot has yet assumed the role in the room specified by the robot,
the supervisor instructs the robot to assume the traffic regulator role in that room. The
robot, now that it has adopted the role, has to retreat to the room from which it came
and place itself next to the entrance of the corridor. However, after two robots moving
in opposite directions have assumed the role as regulators, other robots may already
have entered the corridor and prevent them from navigating to the entrance of the
corridor (see Fig. 19.4e). In order to speed up conflict resolution in this case, the role
is propagated to the last robot that entered the corridor from a given direction. Role
propagation takes place in the following way: a traffic regulator (robot A) has been
assigned the role, but has not yet navigated to the right location. During its retreat,
robot A encounters another robot (robot B) in the corridor, both robots detect one
another. Robot A stops, while robot B immediately sends a message to the supervisor
in order to discover if it should assume the role as a traffic regulator. Despite the fact
that a traffic regulator has already been assigned to the room from which robot B
came (namely robot A), the regulator it is still located inside the corridor and not yet
coordinating traffic. Thus, the supervisor sends a message to robot A to cancel the
role assignment and instructs robot B to adopt the role instead. Robot A abandons
the role, turns around and assumes the behavior of a regular transport robot.

After exiting the corridor, the regulator sends a message to the supervisor stating
that it has made it outside of the corridor, preventing the supervisor from propagating
the role further. The regulator navigates to a specific position at the entrance of
corridor and sends anothermessage to the supervisor stating that it is ready to regulate
traffic. This specific position (see Fig. 19.4b) is chosen to allow transporting robots
to enter the corridor while at the same time being close enough to the regulator to
receive the messages that it emits.
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When the regulators in both rooms are ready, the regulation process begins.
The supervisor sends messages to both regulators and instructs one of them to let
transporting robots enter the corridor, while the other regulator is instructed to pre-
vent robots from entering the corridor from its side. After a certain amount of time,
the supervisor sends messages to both regulators to stop robots trying to enter from
either side. This allows the corridor to clear before robots from the opposite direction
are let through. After another fixed period of time, the supervisor sends a message to
the regulators instructing them to allow traffic in the opposite direction of that from
the last cycle. After a given number of these switches, both regulators abandon the
role and the system goes back to the initial state. This is done so that all robots have
a chance to accomplish the task and no robot has the role for the entire duration of
the experiment.

19.5.2 Institutional Agent Controller

As before, when using the IAC methodology to design robotic controllers that
implement our institutional approach, our aim is to specify behaviors that have a
social nature as institutions and behaviors that have an individual nature as the robots’
individual behavior.

The individual behavior of the robots specifies how the task at hand is accom-
plished. Picking up virtual payloads and deploying them is a behavior that has an
individual nature, since it relates the robot only to the environment in which it is
located. A single robot could accomplish the deployment task, although performance
would be critically reduced. Thus, we specify the individual behavior Ind as an EPN
that accomplishes exactly that behavior.

The main social behavior of the corridor case study is the traffic regulator
institutional role. This is clearly a behavior that has a social nature. We consider
that this behavior is specified as an institution IR that manages the role of traffic
regulator. Its initial condition initialR is the detection of a conflict in the corridor
and its final condition finalR is the end of regulation (time limit). Since we do not
want this behavior to be executed concurrently with any other behavior, the deontic
operator of institution IR will be StopAll. The EPN InstR to be executed by the robots
follows the sequence of actions described in Sect. 19.5.1.

However, the institutional role is not the only social behavior present. Institutional
roles depend on other robots’ behaviors, in the sense that other must recognize and/or
permit such role playing by particular robots. A second social behavior present in the
institutional approach to this task is the recognition and compliance with the traffic
regulator. The behavior corresponds to an institution IM that manages the reception
of messages from the traffic regulators and their relay, which is implemented with
the EPN InstM . Its initial condition initialM is the reception of a stop message and its
final condition finalM is the reception of a go message. We do not want this behavior
to be executed concurrently with the individual behavior, so its deontic operator will
be StopInd.
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Fig. 19.5 Higher layer composition net of IAC for corridor case study. As before, dotted arcs
represent bidirectional arcs. Places in red are macro places for behaviors in the lower layer. Place
mInd represents the individual behavior Ind. PlacemIR represents institution IR. PlacemIM represents
institution IM

In Fig. 19.5, we show the higher layer composition of our two institutions and
individual behavior. The IAC for this case study is the result of merging this net with
the lower layer EPNs. More details, including the lower layer EPNs can be found
in [17].

19.5.3 Self-organized Approach

We implemented a different solution to our task which does not use institutional roles
to regulate traffic. This solution is based on the principles of swarm robotics and
the robots rely exclusively on self-organization to solve the task. Conflicts between
robots moving in opposite directions in the corridor are solved in the following way:
whenever a robot moving in one direction encounters a robot moving in the opposite
direction in the corridor, it waits for a period of time proportional to the time that it
has been in the corridor. If, during this period, a waiting robot detects that the other
robot gives up, turns around and moves back to the room it came from, the waiting
robot continues to traverse the corridor. Otherwise, if the time proportional to the
time the waiting robot has been in the corridor expires, the waiting robot turns around
and heads back to the side of the arena from where it came. No further optimization
of the self-organized approach was carried out. For instance, solutions using basic
local communication could lead to better performances.
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19.5.4 Experimental Setup

As with the previous case study, we use the e-puck robots as our robotic platform.
We consider that each robot is endowed with two different forms of communica-
tion: short-range and long-range. Long-range communication can be achieved using
Bluetooth, while short-range communication can be achieved using the e-puck prox-
imity sensors as an infrared communication device.

We prepared different setups in order to evaluate how parameters such as the
size of the robotic team and the length of the corridor affect the performance. Three
different corridor lengths L (50, 100, and 200cm) were considered. For each corridor
length, we ran experiments with different numbers of robots N (7 and 20 robots).
For each of the six resulting setups, we performed 30 runs for both the institutional
approach and for the self-organized approach. Each run had a duration of T = 900 s.
Other parameters, such as the area of the rooms or the time intervals during with the
regulators allow or stop robots entering the corridor, are directly dependent on N and
L and are described in detail in [17].

19.5.5 Results and Discussion

Our metric of interest is the number of transportations, described as the total number
of successful virtual payload deployments (a pickup in the left room followed by
deployment of the virtual payload in the right room) achieved by the team during a
run of the experiment.

In Fig. 19.6, we display the distributions of the number of transportations for all
six experimental setups. The results for the institutional approach are presented in

(a) (b)

Fig. 19.6 Distribution of number of transportations for teams with a N = 7 robots and b N = 20
(institutional in dark gray, self-organized in light gray)
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dark gray, while results for the self-organized approach are presented in light gray.
The number of transportations decreases as the length of the corridor increases. This
is naturally explained by the fact that the robots spendmore time traversing the longer
corridors.

When N = 7 (Fig. 19.6a), we observe that the robots following the self-organized
approach always manage to perform more transportations than the robots following
the institutional approach. This is due to the fact that not all robots in the institutional
approach are performing transportations. While in the self-organized approach all
the robots are devoted to transporting virtual payload, in the institutional approach
two of the robots instead assume the institutional role of traffic regulators. This
means that some of the team’s resources are spent on coordination. In small teams,
a proportionally larger share of robots are dedicated to coordination (28.5% in the
case of N = 7 robots with 2 traffic regulators). Moreover, in the self-organized
approach, conflicts are easily solved the first time a (proportionally) large group of
robots meets in the corridor, resulting in the robots forming a line and thus making
future conflicts rare. This emergent coordination allows the self-organized approach
to perform more transportations when the team is small.

When N = 20 (Fig. 19.6b), we observe an increase in the number of transporta-
tions for both approaches, although the increase for the institutional approach is
considerably larger than for the self-organized approach. For L = 50 cm, there is not
a significant difference between both approaches, except that the variance is much
larger in the self-organized approach. However, for the longer corridors, the robots
following the institutional approach perform more transportations. For teams with
N = 20 robots, a smaller share of resources are dedicated to coordination (10% in
this case).

Larger teams have a greater need for regulation than smaller ones, as they are
more prone to conflicts occurring often, simply due to their larger number of robots.
Since only two robots are devoted to the regulation at any time, larger teams spend
less of their resources in coordination than smaller ones. Thus, larger teams have
their need for regulation satisfied while allowing a larger share of robots to perform
the transport task. The coordination of the team provided by the traffic regulators
gives some advantage over the self-organized approach.

The larger variation, with respect to experiments with N = 7, in results for the
institutional approach is due to the fact that, with a higher number of robots more
conflicts occur in the corridor. It is less likely that the first two robots that encounter
in the corridor eventually become regulators. Robots may switch the role between
them multiple times, leading to a difference in the time that it takes before the traffic
regulators effectively start coordinating the rest of the team (and therefore a difference
in number of transportations).

For different sizes of the team and different corridor lengths, we observe that the
variance of results is always smaller in the institutional approach than in the self-
organized approach. This suggests that the regulation not only positively affects the
performance of the system, but also its performance reliability. Other metrics such
as the number of conflicts in the corridor and the time duration of transports were
also studied. These results are described in [17].
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19.6 Discussion on Social-Aware Coordination of Multi-robot
Systems in Human-Populated Environments

The corridor case study addresses three crucial issues for institutional roles: role
allocation (how some robots start playing a role), role recognition (how robots recog-
nize that some others are playing a role), and role permission (how robots permit
other robots to play a role and behave accordingly). These three issues specify one
of three elements involved in the ontology of institutional reality (according to [21,
22]): the assignment of status functions. Assigning status functions, that attribute
some deontic powers, to objects or persons is one of the means human societies have
to coordinate. In human societies, institutions exist because of the collective agree-
ment of its members on the assignment of status functions. For instance, money, as a
function, does not depend on the material chosen for banknotes or coins, but depends
on the collective agreement to use such physical support to represent wealth and aid
trade.

In the previous section, we addressed the allocation, recognition, and permission,
of the traffic regulator role. We saw that the allocation is made when a conflict occurs
inside the corridor, and depends on whether other robots are already executing the
role. The recognition of this role by transporting robots is made through a second
institution, that associates the reception of a “stop” message with the knowledge that
a regulator is in place and is coordinating the team. Role permission is also implied in
this second institution, since it specifies how to behave accordingly. Every robot can
play the role, so in fact every robot has permission to do so, meaning that transporting
robots will accept the order of the regulator and conform to it. One can view this
permission as the existence of a collective agreement by the robots to assign a status
function to one particular robot playing the role. Institutional roles are one possible
example of the type of coordination we discussed earlier: society-wide coordination.

Another relevant aspect of the corridor case study concerns the distinction between
“role” and “individual.” No robot is specifically designed to play the traffic regulator
role. In the IR approach, playing a role is justified if there is a collective need for
coordination, not as a right or an inherent feature of any individual. Particularly, if
we consider scenarios taking place in human-populated environments, institutional
roles might also be played by humans, much in the same manner as they do when
robots are not present. It is our intuition that, in certain scenarios, considering an IR
approach will not only improve the coordination of the multi-robot system but will
also facilitate the social interaction between robots and humans. Such intuition comes
as a consequence of our goal to specify complex social interactions for multi-robot
systems in a way that resembles the organizational aspects of human society.

The next main objective in the implementation and validation of the IR approach
is to consider experiments in real-world scenarios populated with human actors.
Robots will interact with these actors and such interaction should be based on coor-
dination through common social rules, described as institutions. Such experiments
will validate our intuition.
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Let us consider a service robotics example scenario, focused on social robotics,
using networked heterogeneous robots and sensors to interactwith children, staff, and
visitors, engaging in edutainment activities in the pediatric infirmary of a hospital.
The infirmary environment includes not onlybedroomsbut also playing areas and also
a school room. Besides being a realistic scenario, the ethical regulations enforced by
hospitals for pediatric wards introduce important constraints, not only of a technical
nature but also on what type of human–robot interactions are socially acceptable and
how they are implemented. In order to deal with these constraints, we can consider
institutional norms and institutional roles.

Institutional normswill allow the robots to comply with the social norms specified
by both the ethics regulations and the staff of the pediatric infirmary. Thiswill enforce
that any coordinationmechanismadopted by the robots is socially aware. For a simple
example of how such norms will be taken into account, consider a task where two
robots must fetch a child from her bedroom and guide her to a playing area. This
action will require coordination not only between the two robots but also between
the robots and the child. Suppose, however, that another child in the same room is
being observed by a staff member. In this case, an institutional norm can specify that
the robots should not go into room (to avoid disturbing the medical examination) and
should instead produce a visual sign to call the child to join them. Such norms can
constrain the normal coordination procedure between robots and children to enforce
social-awareness.

Institutional roles are also of great importance in this scenario. The robots must
recognize that some individuals are playing a role that gives them some deontic
powers not available to other individuals. However, there must also be recognition
that these individuals might change but the role remains the same, for instance,
different nurses have the same powers as long as they are on duty. In terms of
human–robot interaction, recognizing that certain human actors have some deontic
powers that others do not, not only makes the robots aware of the social structure
of the interaction but also allows better coordination of the robots. For instance, a
command to “go away” might originate different responses depending on who gives
it. If issued by a doctor, a coordinated effort between all robots to move to a safe area
might be in order, if issued by a child the robot should just leave the area nearby.

Due to the complexity of both the environment where they are set and the mission
to be accomplished, social robotics scenarios in real-world environments populated
with human actors can consider not only distributed control and coordination of a
robotic system but also centralized behavioral planning. Social-aware coordination
based on institutions can be present at both these levels. At the centralized level,
institutions can be used to enforce the social-awareness of the plans developed.
At the individual robot (distributed) level, institutions ensure that social norms are
always taken into account in the execution of plans, even in the event of an unplanned
change in the environment or a loss of communication with the centralized planner.

In the IAC methodology proposed for distributed control and coordination, the
nature of behaviors (individual vs. social) and their implementation are extremely
important. The implementations of behaviors as EPNs allows the combination of
multiple institutions and individual behaviors into a single controller that executes



19 Social-Aware Coordination of Multi-robot Systems Based on Institutions 427

a desired task while taking into account the institutional environment. The focus of
centralized planning is on how to produce a sequence of behaviors formultiple robots
that, when executed at appropriate times and locations, achieve a desired goal. From
the perspective of the planner, the way in which behaviors are implemented (at the
individual robot level) is not of importance but rather where, when, and by whom
those behaviors are executed. Thus, the EPN specification of institutions is not very
relevant at the centralized planner level and the definition of institutions must be
reformulated.

Given the different needs of the planner, we consider the following definition for
institutions (in the context of centralized planning) as a tuple (following previous
work described in [24] that considered a similar definition):

〈activity, place, physical artifacts, roles, norms〉 (19.1)

The determining factor in guiding the behavior of the robot is the activity in which
humans want it to be involved. There must be a comprehensive and closed list of
possible activities. In the case of the pediatric infirmary scenario, some examples are
“good-morning room tour,” school-time, play-time.

Each activity can only be initiated at an appropriate place. A preparatory action
may be necessary since the robot must be in a suitable place. For instance, was the
robot at the corridor when accepting the command “it’s time for school,” it must first
go to the school room. Certain activities can only take place at a specific location,
while other activities can take place at different locations. Each activity must take
place at a location which is appropriate from the humans’ point of view, so as not to
be intrusive.

Then, a set of physical artifacts and a set of roles are used to confirm that the
robot is at a suitable location for the intended activity, and that it has the human
partners needed for that activity. For example, there is a whiteboard at school and
nowhere else; there must be a teacher at school, although we can also find a teacher
outside the school; certain activities can only take place in the presence of at least
one child. Norms express the desired relations between robots and humans, using
the institution as a coordination artifact.

Our research will proceed concurrently on three fronts: improving the IAC dis-
tributed methodology; introducing the IR approach in the context of centralized
planning; and ensuring that both distributed and centralized approaches to IR are
coherent in the design, representation and execution of institutions.

19.7 Conclusion

In this work, we describe and discuss several aspects of the IR approach to the
coordination ofmulti-robot systems. Previously, we introduced amethodology based
on the formalization of the central concept of IR—institutions—using EPNs, that
allows us to design and execute robotic controllers (IAC) that produce behaviors



428 J.N. Pereira et al.

capturing complex social interactions. Herein, we advance the IR approach in three
fronts: we move forward in the validation of the IAC methodology by considering
a real-world case study; we tackle a case study dealing with more complex social
interactions and compare the IR approach with a self-organized approach; and we
discuss how the IR approach might be applied in a particular real-world human-
populated scenario.

First, we describe a real-world implementation of the wireless connected swarm
case study, following an IR approach. We observed that such approach was able
to maintain the wireless connectivity of a swarm of 40 real, resource-constrained
robots. Results on connectivity show that, despite the high influence of noise in real-
world wireless communication, the overall swarm behavior implemented using an
IR distributed control approach is able to maintain the expected connectivity.

With the corridor case study, we have demonstrated how concepts from institu-
tional robotics can be applied in a robotics task, focusing on one specific form of
institution, namely the institutional role. We have shown that coordination artifacts
set up as institutional roles can effectively help a robotic team organize and improve
performance in a given task. Nevertheless, this is not true in all cases. For instance,
we showed that for smaller teams, emergent coordination from a set of simple control
rules is sufficient for the team to achieve a good performance. With the increase of
the size of the robotic team, and the consequent decrease in proportion of robots
devoted to institutional roles, we see benefits of using institutional roles, not only in
the overall performance of the task but also in its reliability.

The next main objective in the implementation and validation of the IR approach
is to consider experiments in real-world scenarios populated with human actors.
This will be achieved in the scope of the MOnarCH1 project. This project focuses
on social robotics, dealing with the use of networked robots in an hospital setting,
much the in sameway as the example presented in Sect. 19.6. The development of the
MOnarCH project will provide us with an ideal testbed to test our intuition that the IR
approach will ease the effort of the transition to real-world environments populated
with human actors and facilitate coordination with such actors in scenarios involving
many-to-many human–robot interactions.
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Chapter 20
Design of Safety Map with Collectives
of Smartphone Sensors

Dang Viet Chau, Masao Kubo, Hiroshi Sato and Akira Namatame

Abstract Recently, there have been strong demand and interest for developing
methods to analyze driving data for extracting traffic safety information. In this
chapter, we study a method to extract incident factors that interfere with smooth
driving for making safety map by using smartphone as a terminal data logger.
In automobile research field, several methods for detecting sudden braking have
been proposed; however, the detection of the factors those disturb the driving process,
which drivers should pay attention, has not been fully discussed. Ourmethod is based
on smartphone with GPS information, therefore sophisticated equipments such as
speed cameras are not required. We highly expect to utilize data from community in
which eachmember shares smartphone data for generating incident map collectively.
In our method, we apply the IMAC method (a dynamic map generating method) [1]
for generating safety map. We carry out computer simulations and take real-world
experiments in order to validate a part of safety map which generated by the pro-
posed method. The result shows that based on the proposed method, safety map are
correctly archived.

20.1 Introduction

In recent years, there is an opportunity to share traffic information to create a safer
society. One of them is the construction of online safety traffic map. Safety map
provides information relating to daily traffic safety information and traffic system
alert [2, 3]. All of safetymap products as examples shown above are allmade by hand.
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There is an opportunity to automatically analyze large amount of data and use
them to create traffic safety map. By analyzing a large amount of data, it is potential
to quickly provide information about traffic environment. Example of using probe
car’s log data for analyzing near-miss accidents [4]. The Honda company [5] does
a pioneer work for building safety map using sudden braking data which collected
from vehicle’s braking sensors. In this work, we expect to benefit of smartphone’s
GPS data to discover incident factors from smartphone log data [6–9].

It is necessary to acquire position information and discover relating incident
hotspots to automatically create traffic safety map from smartphone log data. In
traffic road environment, there are obstacles that effect smooth driving, for exam-
ple, traffic signal, zebra crossing line, slowdown area, and so on. We refer them as
incident factor.

Automatically generating safety map is a new challenge in ITS field. As shown in
Table20.1, it is common to get incident information by questionnaire method. There
are some challenges of detecting incident factors on road by using probe car accelera-
tion data; however, thesemethods are high cost approach. It is common to detect road
incidents by using roadside sensors and cameras; however, this method also requires
setup large scale equipments. From above reasons, the current approaches have their
own scalability limitations. Nowadays, many people have their own smartphone with
high capacity and computing power; to record vehicle data it is not required to spend
additional cost on external equipments. For general application, people can put smart-
phone on any places on their vehicle. Thus, smartphone should not be fixed installed
on vehicle to record vehicle’s behavior data. Smartphone GPS signal is not available
in some areas, thus data accuracy at these areas is low accuracy and it becomes a big
challenge. Therefore, we propose a novel method to utilize GPS information.

To detect incident spots, we apply the IMAC model which is a method to create
the occupancy grid map [1]. Occupancy grid map evenly divides the space into grid;
each grid state is updated by using neighbor-related information. IMAC is often used
by robot car to make robot map [10]. Occupancy grid map method also can be used

Table 20.1 Literature related to automatic safety map generation: The labels g, p, s stand for
government data, probe car, and smartphone, respectively

Information for safety map Related works

Accident spots Reports released by public agencies

Congestion detection Herrera et al. [7, 8] (s), Fagan et al. [12]

Road condition classification Li et al. [13] (p), Mohan et al. [14] (s), Fazeen et al. [15] (s)

Road width estimation Zhang et al. [16] (p)

Intersection detection Fathi et al. [17] (p)

Dangerous intersection detection Higuchi et al. [18] (p), Yamazaki et al. [19] (p)

Anomaly braking point detection Mohan et al. [14] (s), Honda project [5] (p)

Traffic signal, stop line detection Dang et al. [20] (s)

Map making Cao et al. [21] (s), Hilton et al. [22] (g), [5] (p, s)

Automatic accident report White et al. [23] (s), Thompson et al. [24] (s)
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to automatically create map by using LRF (Laser Range Finder) or sonar [11]. The
problem is that occupancy grid map only deal with static map such as presenting if
things are available or not at a location, so that it cannot be used with a dynamic
environment such as traffic road.

The IMAC model is an extend version of occupancy grid map model, in which
assume each grid is a two-state Markov chain [1]. Therefore, it can be used for
representing a dynamic environment such as traffic road. We propose a method for
automatically creating map from smartphone log data.

In order to create an occupancy grid map, it is necessary to observe states of
corresponding locations to each grid. To observe such information, it is usually to
use a laser range finder or sonar. In case of using a smartphone, it is impossible to
directly observe the state of a given location. Therefore, to estimate the state of grids,
we estimate the state of the vehicle by using information observed by smartphone.
The computer simulation result shows that we can create a reasonable incident map
by the proposed method.

This chapter is organized as follows. Related works are discussed in Sect. 20.2.
Driving models are discussed, and rules of how to learn vehicle states based on
driving model is discussed in Sect. 20.3. Section20.4 shows the experiment results.
Section20.5 gives a conclusion and future work.

20.2 Challenges for Automatic Safety Map Generation

20.2.1 What Is Safety Map?

Some examples of safety map are provided by public agencies. For instance,
Kanagawa prefecture in Japan provides safety map including accident locations,
near-miss locations, and school zones [2]. Kitashitara county of Aichi prefecture
[3] provides a map of road conditions [25–27], where includes accident locations,
near-miss locations, and details analysis of near-miss information. The important
information for creating safety map are accident locations, near-miss locations, road
width, no traffic signal intersections, zebra crossing, traffic volumes, roadwith school
zone, road condition, and so on. We call such above information is information sup-
port safety.

20.2.2 Automatic Safety Map Generation and Related Research

Making map from information support safety by hand is a very hard work. In recent
years, there are some automatic methods to archive such kinds of map. Beside
traditional method such as installing inductive loop in roadside, probe car, SNS,
and smartphone are getting popular. Table20.1 shows the main related works with
publishing year.
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Li et al. use GPS and sensor data to evaluate road condition [13]. Mohan et al.
and Fazeen et al. use accelerometer and GPS data to detect road bump, manhole and
createmap by using five smartphones on a vehicle at the same time [14, 15]. Accident
and congestion is likely to occur in places where roadwidth changes regularly. Zhang
et al. use probe car to collect GPS data and proposed method to detect road lance and
width information [16]. Accident is also likely to occur at road intersection. Fathi
et al. use probe car to collect GPS data and proposed method to detect intersections
without prior knowledge about road database [17]. Higuchi and Nakajima et al.
use probe car driver recorder data to detect sudden braking, sudden wheeling, near-
miss locations [4, 18]. They also create near-miss map based on probe car’s data
for Shizuoka prefecture. Yamazaki et al. use JSAE database and probe car data to
analyze time series of accelerometer data to detect near-miss locations, and predict
dangerous locations on road [19]. Hilton et al. use kernel density method to analyze
the USA government accident database and public the result over the internet for
public use (http://saferroadmap.org) [22].

Since traffic safety map under as hardcopy version is created for each region
generally, obtaining safety support information for global is quite difficult. However,
it is possible to acquire safety information at national level by using above web
site. Honda company [5] public their database of sudden braking over the internet
(http://safetymap.jp). Based on the web site with sudden braking locations, they ask
community for contributing experiences to confirm the fidelity of data. This method
can utilize power of community to grow up the database; however, it is need to double
check the accuracy of these pieces of data before use.

20.2.3 Driving Models

There have been significant contributions on driving models in ITS and automobile
fields. Prior to developing driver models, it is important to establish what elements
should be contained, Macadam [28] provides a comprehensive list of these essential
aspects as well as some secondary ones that may be used to enhance the model.
In his work, Macadam quotes Rashevsky who is of the opinion that the model must
consider the vehicle and the driver as one entity that may not be separated. He also
characterizes human drivers based on physical limitations and physical attributes.
Physical limitations refer to input channels that humans have such as visual, vestibu-
lar, kinesthetic, auditory, and tactile channels.

Some of the earliest driver models made use of control theory by Levesque [29].
This approach has been used by a number of researchers. Control theory methods
can be considered appropriate for modeling given that a driver is a very complex
controller whose task is to maintain the course of the vehicle and arrive at the desired
destination. One of the early control theory models was developed by Tustin; the
model focused on the linear part of driver behavior while the nonlinear portions
were regarded as a remnant Jurgensohn [30]. Attempts were made to describe the

http://saferroadmap.org
http://safetymap.jp
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Fig. 20.1 Lateral control model by Weir and Chao [31]

remnant; however, they were relatively unsuccessful as they can generally only be
regarded as an error which is quite difficult to model mathematically.

An observationwith regard to the remnant is that it is relatively small and thatmost
of the behavior is described by the linear portion; however, employing this method is
not very well regarded as there are inaccuracies that are known to exist in the model.
Ultimately, the research by Tustin revealed that modeling human behavior through
the use of mathematical equations is extremely difficult given the amount of variation
that exists in human behavior, especially from person to person. Common practice
in the development of driver models that use control theory principles is to divide the
model in two separate parts where one portion is responsible for longitudinal control
and the other portion is responsible for lateral control [31]. A model of this nature is
presented by Weir and Chao (Fig. 20.1).

The lateral portion of the model contains two feedback loops, one that considers
the heading angle of the vehicle and the other that considers the lateral lane position.
In addition to the feedback loops, the model also considers a random yaw rate dis-
turbance. While the model is presented showing consideration for the lane position
in the outer loop, it is possible to consider other parameters like path angle, sideslip,
and lateral acceleration; however, the latter two are less desirable since they are more
difficult to perceive by the driver. A dynamic model of the vehicle is required which
is not difficult to obtain as it may already be known or can be measured if necessary.
For the driver model, there are two describing functions that are used which relate
to variables chosen for the feedback loops. When constructing this driver model, a
combination of different approaches is used which consists of the crossover model,
control principles, and experimental data acquired from either a driving simulator or
an instrumented vehicle. The other portion of the model is for longitudinal control.
This model is less complex than the one used to describe the lateral position as there
is only one feedback loop with one describing function because only the throttle
pedal position is considered and braking is neglected. To increase the accuracy of the
longitudinal model, a speed disturbance is added which may simulate environmental
factors such as wind and changes in terrain.

In the scenario of our incident map generation (using smartphone log data), there
is not any driving model suitable for our objective. Our objective of desired driving
model is that it can model the vehicle behaviors by using smartphone as a data
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logger installed on it and ignore the driver behavior difference. In the next section,
we propose a basic driving model for modeling a vehicle behavior and generating
incident map by using smartphone data log.

20.3 The Proposed Method

When encounter obstacles, to avoid accident, driver usually make deceleration or
acceleration. Therefore, to detect incident locations, we analyze behavior of vehicle
for deceleration and acceleration (Figs. 20.2 and20.3). We do not mount smartphone
for a fixed location, then we calculate acceleration from speed change. Moreover,
since position accuracy of smartphone GPS is low, we propose a method to create a
map that takes into account GPS noise.

We use the IMAC model [1] for generating incident map. This kind of map and
occupancy grid map [11, 32] are the same type which can be used to record the
presence or absence of objects in each grid. Basic occupancy grid map is suitable
for recording an object is present steadily on a location corresponding to each grid.
However, incidents with dynamic properties such as traffic signals that temporar-
ily prevents passing over, to address them in occupancy grid map is very difficult.
IMAC model is a two-state Markov chain in which each grid is composed of free
or occupied state, and is suitable for recording semi-static objects [20]. To create
incident map as discussed above, it is necessary to detect states for each grid is being
occupied or free. This chapter, we propose a method to infer states of grid from
GPS data.

Fig. 20.2 Incident at zebra crossing line

Fig. 20.3 Incident by obstacles
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Fig. 20.4 State transition of a grid of IMAC

20.3.1 Independent Markov Chain Occupancy Grid Map

The IMAC (Independent Markov Chain Occupancy Grid Map) [1] is an occupancy
grid map based on the proposed model of Luber [33]. Each grid has two states, which
being in occupied state or free state. Assuming that observations of a moving object
are independent events, thus the observations can be modeled as a Poisson process.
A Poisson process describes probability to observe a number of events within a given
time as in Fig. 20.4. Here,

P =
(
1 − Pentry Pentry

Pexit 1 − Pexit

)

=
(
1 − λentry λentry

λexit 1 − λexit

)

(20.1)

The stationary transition state w = (
wfree, woccupied

)
is

w

(
1 − λentry λentry

λexit 1 − λexit

)

= w (20.2)

then

(
wfree, woccupied

) =
(

λexit

λexit + λentry
,

λentry

λexit + λentry

)

(20.3)

The state transition probability is estimated as follows. The estimated state transition
probability of grid m is λ̂m,exit, λ̂m,entry

λ̂m,exit ∼ Pm,exit = p(m = free|m = occupied) (20.4)

λ̂m,entry ∼ Pm,entry = p(m = occupied|m = free) (20.5)

After we got the observations for grid m, we calculate λ̂m,exit, λ̂m,entry as follows:

λ̂m,exit = #events : occupied to free + 1

#observations when occupied + 1
(20.6)
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λ̂m,entry = #events : free to occupied + 1

#observations when free + 1
(20.7)

where #events: occupied to free is the number of times a grid is observed turning
from occupied to free, #observations when occupied is the number of observations
done in occupied state and #events: free to occupied and #observations when free
are the respective quantities for observing a grid turning from free to occupied and
observing a grid in free state. The additional+1 in Eqs. (20.6) and (20.7) follow from
the initialization of all the parameters to one. The interpretation of λ̂m,exit as a Poisson
rate parameter is the expected number of state change events per observation, given
that we are in occupied state.

20.3.2 Road State Estimation

Algorithm 1 Grid property update algorithm
if vehicleIsStopi(t) == true then

for all grid q in map do
for all grid m : | m in neighbor(xi,spanmin) do

Increase number of observations in occupied by w(xi(t), q)

if vehicleIsStopi(t − 1) == false then
Increase number of entry event by w(xi(t), m)

end if
end for

end for
else

for all grid q in map do
for all grid m : | m in neighbor(xi, ksvi(t)) do

Increase number of observations in free by w(xi(t), q)

end for
if vehicleIsStopi(t − 1) == true then

for all grid m : | m in neighbor(xi,spanmin) do
Increase number of exit event by w(xi(t), q)

end for
end if

end for
end if

20.3.2.1 The Proposed Algorithm Description

If grid state (free and occupied) observations are large enough, we can infer
(λexit, λentry) by using Eqs. (20.6) and (20.7), therefore we can utilize this result
to create incident map for traffic road. Below we explain a method to infer states of
grid which locates near the vehicle from GPS log data.

We propose a method to use GPS data only for creating incident map even if
smartphone posture is unknown. Themethod is used to classify free state and incident
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state on road byusingGPS log data recorded froma smartphone installed on a vehicle.
There are some methods for inferring road states from GPS changes, however, we
use a very basic method for this objective. We will extract road state information of
a vehicle when it stop by using GPS change. When a vehicle stops, area ahead is in
occupied state. Another challenge when using smartphone GPS signal is that GPS
data contains noise. Smartphone GPS accuracy is lower in compared to accuracy
of military and construction GPS receiver. A large differences between vehicle’s
true position and GPS location can be predicted. Algorithm updates the map by
considering the likelihood that the location is the true position of the vehicle. We
also shows the proposed algorithm that takes into account GPS noise as in Algorithm
1. In this section, we explain principle of how to infer grid states from noiseless GPS
data. In next section, we explain driving model which apply in the algorithm. Then,
we also explain the method to infer neighboring states when using the driving model
with deceleration.

Algorithm 2 Linear Deceleration and Constant Acceleration Driving Model (LD
and CA)
1: if incident(xobs) = true ∧ isInsighti(xobs) = true ∧ cautioni(xobs) = true ∧ vi ≤ kdisi(t, xobs)

then
2: speed down : dxi

dt = k disi(t, xobs)
n

3: where k = ẋi(0)/disi(0, xobs) and n=1
4: else if vi(t)< MAX_SPEED then
5: Constant Acceleration
6: end if

20.3.2.2 LD Deceleration Driving Model

Algorithm 2 shows the vehicle deceleration and acceleration behavior. In the second
line, driver decreases speed according to the distance to the obstacle that the vehi-
cle may collide. When the incident is resolved, driver accelerates constantly up to
MAX_SPEED.

In Algorithm 2, i is the vehicle number, xi(t), vi(t) is the position and speed of
the vehicle i at time t.

incident(x) returns true if there is an incident at location x, otherwise incident(x)
returns false.

isInsighti(x) returns true if the driver if vehicle i watches incident at location x,
otherwise isInsighti(x) returns false.

cautioni(x) returns true if the driver of vehicle i predicts it is going to collide with
incident at location x, otherwise cautioni(x) returns false.

disi(t, xobs) is the distance between vehicle i at time t and the obstacle xobs,
MAX_SPEED is vehicle maximum speed.

In this driving model, when the driver detects an obstacle (xobs), a collision with
obstacle can be avoided because the driver decreases the speed according to the
distance to obstacle disi(xobs). The vehicle behavior progress before incident is as
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follow. The incident position xobs, the speed down equation is:

dxi

dt
= k disi(t, xobs)

n (20.8)

In this study, we consider the problem of n = 1 in Eq. (20.8).

k = vi(0)/disi(0, xobs) (20.9)

xi(t) = (1 − ekt)disi(0, xobs) (20.10)

ẋi(t) = ke−ktdisi(0, xobs) (20.11)

assuming vmin is the minimum speed, the time until vehicle stops is

log disi(0,xobs)
vmin

k
(20.12)

Figure20.5 shows the speed change versus vehicle’s location on a straight line
road. There is a traffic signal at location 200m on the road. The vehicle repeats to run
from left to right when it reaches at the end. During trip on the left of traffic signal, if
vehicle detects the signal turned red, its speed decreasing follow Eq. (20.8); when the
signal turns green, it increases its speed untilMAX_SPEED. The vehicle visual range

Fig. 20.5 Linear deceleration driving model and constant acceleration driving model

Fig. 20.6 A case of slow down on straight road with a single traffic signal
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is set to 20m, the acceleration =1.2m/s, MAX_SPEED = 10m/s, vmin = 0.1m/s.
Figure20.5 shows three cases of the relation between vehicle speed and its locations
before the traffic signal. If the vehicle is in location before the signal 100m, then its
speed is keeps at 10m/s. If the signal is green (a), then the vehicle keeps remain its
speed and pass through the traffic signal. In case (b), the vehicle decreases speed and
stop before the red signal; case (c), the signal turns green before the vehicle stops.
The example of case (b) is shown in Fig. 20.6. Both case (b) and case (c), if the signal
turns red, then from location 180–200m, the vehicle starts to decrease its speed. We
can confirm that the vehicle speed and distance to the signal is in direct proportion.
In case (b), if the vehicle speed decreases less than vmin = 0.1m/s, it is considered to
be stop and it waits for green signal. When the signal turns green, the vehicle starts
to increase constantly its speed until reach MAX_SPEED = 10m/s. In case (c), right
after traffic signal turns green, the vehicle also starts to increase constantly its speed
until reach MAX_SPEED = 10m/s.

20.3.2.3 Stop Detection Rule

We describe a simple method how to infer vehicle states by using its location data
xi(t). The vehicle is determined in stop state if its speed vi(t) is slower than a threshold
value Ths.

vehicleIsStopi(t) =
{
true vi(t) < Ths

false (otherwise)
(20.13)

where vehicleIsStopi(t) is the speed state of the vehicle i at time t which hold an
boolean value.

20.3.3 Road State Update Algorithm

In this section,we estimate road states by using vehicle estimated states.When a vehi-
cle stops, theremay be an obstacle appearedwhich infers with smooth driving. On the
contrary, there is not any incident in front of the vehicle if itmoves smoothly. In partic-
ular, if the vehicle follows the LD model, the distance to the incident, in Eq. (20.8) is

disi(t, xobs) = vi(t)/k (20.14)

We can estimate locations of safety area is equal to or less than the distance right
before the vehicle and the incident. Therefore, by choosing appropriate parameters
k, we can set the safety area to be directly proportion to disi(t, xobs). Utilizing this
property, the grid map of road (IMAC grid) is updated using Algorithm 3. When the
vehicle stops, IMAC’s occupied of the grid just before the vehicle location increases
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1, otherwise, if the vehicle moves, IMAC’s free of the grid that inside safety area are
increased to 1.

Algorithm 3 Grid property update algorithm without noise
if vehicleIsStopi(t) = true then

for all grid m : | m in neighbor(xi,spanmin) do
Increase number of observations in occupancy by 1
if vehicleIsStopi(t − 1) = false then

Increase number of entry event by 1
end if

end for
else

for all grid m : | m in neighbor(xi, ksvi(t)) do
Increase number of observations in free by 1

end for
if vehicleIsStopi(t − 1) = true then

for all grid m : | m in neighbor(xi,spanmin) do
Increase number of exit event by 1

end for
end if

end if

In Algorithm 3, neighbor(xi, d) is the rectangle area with starting point is the
vehicle i location and d length. ks is safety parameter with a constant value.

20.3.4 Simulation Proof of Road State Update Algorithm

This section focuses on noiseless GPS data.We useAlgorithm 3 to create the incident
map.

At the beginning, we describe the IMAC-based proposed algorithm for creating
an incident map. Figure20.7 shows the simulation result of transition observations
for a one-way road with a traffic signal at location 200m, the vehicle repeats to run
from the begin to the end of the road, using Algorithm 3. Assuming that we correctly

Fig. 20.7 Example of IMAC result based on state estimation: transition observations
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Fig. 20.8 Example of IMAC result based on state estimation: probability

estimate k, then set ks = 1/k. The traffic signal changes between green and red based
on a probability value. We set the probability that traffic signal turns from green to
red by 0.02 and red to green by 0.2. The vehicle virtual range is 20m. If the signal
turns red, the vehicle starts to decrease its speed from location 180m. During speed
down, #free observation is increased.

At the signal location, #occupied observation is increased. The straight road sim-
ulation result of grid map of IMAC is shown in Fig. 20.8. The red solid line is λexit,
the blue dotted line is λentry. From preset probability value of traffic signal, the results
should be λexit = 0.2, λentry = 0.02 at the traffic signal. Otherwise, at the location
without signal, λexit = 1.0, λentry = 0.0. The estimated results of signal location
200m is approximately the probability of traffic signal, λexit = 0.2, λentry = 0.0217.
From the simulation result, we can estimate the incident map based on the IMAC
model by using Algorithm 3 with a suitable chosen of ks.

From the simulation result, it is confirmed that we can estimate λexit exactly and
λexit value does not depend on ks (Fig. 20.9).

20.3.5 Verification of Impact on the Estimated Map
of the Driving Model

In this section, we make clear the impact of the driving model parameters on incident
map creation process. The parameter includes max speed (m/s) (MAX_SPEED),
acceleration (m/s2), visual range (m). We test the driving model impact by changing
the input values in the simulation setting.

Figure20.10 shows the relation between the estimated λexit and λentry value at the
traffic signal location and the visual range of the vehicle. In this simulation, ks = 1,
we got the value of λexit ≈ 0.2 and it does not depend on the visual range. And,
when the visual range is getting larger the λentry value getting better (closer to the
true value). We archived this result because the vehicle has more chances to observe
the traffic signal state when it has long visual range (Fig. 20.10).
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Fig. 20.9 Example of IMAC result based on state estimation

Fig. 20.10 Difference visual range simulation

Figures 20.11 and 20.12 shows the impact of acceleration on the estimated λexit
and λentry value. In this simulation, the max speed changes from 0.5 to 3.0m/s2, and
ks = 1. As can be seen from the experimental results, it was found that the speed
does not affect substantially the estimation result in this range. From the simulation
result, we confirmed that the driving model parameters does not make an big impact
on the estimated grid map λexit and λentry. Moreover, the impact on λexit is less than
the impact on λentry in most cases.
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Fig. 20.11 The estimated map with different speed

Fig. 20.12 The estimated map with different acceleration

20.3.6 GPS Noise Solution

Until now, we only deal with noiseless GPS data. Since GPS has noise, there is
possibility that Algorithm 3 would update the different location on road far from the
true position. We assume that the GPS location follows the probability distribution
of N(0, σ ), in Algorithm 3, and instead of increment by 1, we use a weight parameter
w for that increment. Now, the update rule for the grid m with the value w(xi(t), g) is
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Fig. 20.13 GPS noise
solution (circle update)

w(xi(t), g) = f (disi(t, g))/f (0) = e−disi(t,g)2/2σ 2
(20.15)

where f (x) = 1√
2πσ 2

e−x2/2σ 2
. The detail update rule is shown in Algorithm 1. The

algorithm updates IMAC grids from 1 to w (Fig. 20.13).

20.4 Experiments

20.4.1 Experiment 1: Around a Campus Building

We use an apple IPhone 4s for recording GPS information at 100Hz sampling.
We carry out an experiment around a campus building which does not include much
real traffic situations. The vehicle is an 2005 version Mazda 6, the smartphone is
put on vehicle’s door pocket. The test track for experiment is shown in Fig. 20.14.
The white line plots with red dot are the vehicle’s test track. The test track follows
clockwise direction. There are three stop lines A, B, C at which the vehicle stops
for 10, 6, 4 s. The test track includes about 60 rounds about 5km. The dataset for
experiment is overlaid on a Google Satellite map (Fig. 20.15).

The first half part of dataset 1 will be used as input data for the proposed algo-
rithm to generate map. As shown in Fig. 20.15, most of GPS paths are out of test track
because of GPS noise. From the dataset, the position information can be acquired
by GPS of a smartphone installed in vehicle, but it was found that the accuracy is
very poor.

The grid map of λexit is shown in Fig. 20.16. As shown in Fig. 20.16, for the
λexit, at three stop lines A, B, C; the grid map has low value of λexit. At stop line
A, vehicle stops for 10 s, the sampling by smartphone is 100Hz, therefore the idea
value of λexit = (1/10 s)/100Hz = 0.001. Nearby locations of stop line A, there
are many gray star grids, and together with λexit value, it is confirmed that the grid
map of λexit can be correctly estimated. For the stop line B, the vehicle stops for
6 seconds, therefore the idea value of λexit = (1/6 s)/100Hz = 0.00167. Nearby
locations of stop line B, there are many gray dot grids, and together with λexit value,
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Fig. 20.14 Test track

Fig. 20.15 Dataset for incident map generation. GPS paths: log data collecting from IPhone; stop
line A, B, C; google satellite: ground truth map (dataset 1)
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Fig. 20.16 The estimated map by dataset 1 (λexit)

it is confirmed that the grid map of λexit can be correctly estimated around stop
line B. For the stop line C, the vehicle stops for 4 s, therefore the idea value of
λexit = (1/4 s)/100Hz = 0.0025. Nearby locations of stop line C, the grid map
value of λexit should contain gray triangle; however, in comparing with stop lines A,
B the accuracy of the λexit is low.

From the simulation results, it was found that the estimated grid map correctly
detects three stop lines by using the proposed method in the case of one vehicle
are used.

20.4.2 Experiment 2: Traffic Road Environment

We evaluate the proposed method for generating incident map by a real traffic envi-
ronment. In the last experiment, there is only one test vehicle on the experiment. In
this experiment, there are other vehicles as obstacles on traffic road. We drove about
20 times in July 2013 around our academy (mabori, yokosuka, kanagawa prefec-
ture, Japan). Figure20.17 shows the path we drove. The driving route is as follows.
We start our academy (A) at about 83m height above sea level and go down to E at
about 1m height above sea level passing through B, C, and D. Then we turn right at
E and run to G.We run to the left-hand side (J) and return to the academy.We seldom
meet a traffic congestion while we stop at the red light of traffic signals. There is a
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Fig. 20.17 Cartography in general traffic environment: course

Fig. 20.18 The grid map of λexit in traffic road

stop line at B. There are traffic signals at C, E, H, and I. Location F is an entrance
gate before a building.

Figure20.18 shows the λexit of the estimated incident map. At the location B, C,
D, the value of λexit is small. We confirm in the ground true map (google map) that
there is a stop signal at location B, and there is a traffic signal at each location C,
E, I, and H. The vehicle gradually decreases its speed at location F. From the result,
the proposed algorithm can be used to generate correctly incident map in real-world
environment.

Figure20.19 shows the incident map at the location from A to C which generated
by using only the speed down state. Using only the speed down state not the stop
state, the proposed method also can be used to generate incident factors. The green
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Fig. 20.19 The incident map by vehicle deceleration

marks are the locations with high value of λexit, at which include no traffic signal
zebra crossing lines.

20.5 Conclusion

In recent years, there is an opportunity to automatically analyze large amount of
data, and use them to create a traffic safety map. There are many proposals to detect
and share the sudden braking data; however, none of them is successful to detect
and generate map of incident factors that interfere with smooth driving such as zebra
crossing, traffic signals, and so on. In this chapter, we proposed a method to generate
map of incident factors which interfere with smooth driving by using smartphone
log data.

The proposed method estimates road states from the change of GPS data over
time. For this purpose, we proposed the LDCA driving model which ensures a short
safety area before the vehicle according to its current speed. The LDCA driving
model is validated by a computer simulation using noiseless data. Two experiments
including a GPS noise reducing algorithm were also carried out in order to test
the proposed method in real-world environment. The experiment results show that
the proposed method can be used to generate a incident map by using smartphone
GPS data.
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Glossary

Antenna An electrical device which converts electric power into radio waves, and
vice versa; it is usually used with a radio transmitter or radio receiver.

Artificial Neural Networks Computational models inspired by an animal’s central
nervous systems (in particular the brain) which is capable of machine learning as
well as pattern recognition. Artificial neural networks are generally presented as
systems of interconnected “neurons” which can compute values from inputs.

Background Subtraction An algorithm for Motion Detection, based on a compar-
ison between current image and a reference (background) model.

Bhattacharrya distance A measurement of the similarity of two discrete or con-
tinuous probability distributions.

Bayesian Networks A probabilistic graphical model (a type of statistical model)
that represents a set of random variables and their conditional dependencies via a
directed acyclic graph (DAG).

Data Fusion Integration of data coming from different sources/devices/algorithms.
Directional Antenna Anantennawhich radiates greater power in one ormore direc-

tions allowing for increased performance on transmit and receive and reduced
interference from unwanted sources.

Embedded system A computer system with a dedicated function within a larger
mechanical or electrical system.

Expectation Maximization (EM) An iterative method for finding maximum like-
lihood or maximum a posteriori (MAP) estimates of parameters in statistical
models, where the model depends on unobserved latent variables.

Euclidean distance The ordinary distance between two points that one would mea-
sure with a ruler, and is given by the Pythagorean formula.

Flight Plan A predefined sequence of aerial paths for a UAV.
Foreground Region An area with specific issues that make it different form the

surrounding scene (i.e., a moving object).
Graph A representation of a set of objectswhere some pairs of objects are connected

by links; the interconnected objects are represented by mathematical abstractions
called vertices, and the links that connect some pairs of vertices are called edges.

Hole An uncovered area in a Wireless Sensor Network; it can be due to the failures
of sensors, or miscalculations in the planning phase.

Homography A geometric transformation for mapping a plane onto another one.
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Homotopy A transformation that allows to “continuously pass” from a generic func-
tion/curve/distribution set to another one.

K-Nearest Neighbor A nonparametric method used for classification and regres-
sion; in both cases, the input consists of the k closest training examples in the
feature space.

Kalman Filter An algorithm that uses a series ofmeasurements observed over time,
containing noise (random variations) and other inaccuracies, and produces esti-
mates of unknown variables that tend to be more precise than those based on
a single measurement alone. It is used for object tracking (to predict the next
position by starting from the previous ones).

Kernel methods Aclass of algorithms for pattern analysis based on the use ofKernel
functions, which enable them to operate in a high-dimensional, implicit feature
space without ever computing the coordinates of the data in that space, but rather
by simply computing the inner products between the images of all pairs of data
in the feature space.

Local Binary Patterns A type of feature used for classification in computer vision.
Machine Learning A branch of artificial intelligence, concerns the construction

and study of systems that can learn from data.
Mean-shift A nonparametric feature-space analysis technique for locating the max-

ima of a density function given discrete data sampled from that function.
Mission A single task that a robot must do.
Motion Detection An approach to detect moving object in a video sequence.
Multi-camera system A system that integrates information coming from several

cameras. They can be connected in different ways (1-to-1, star configuration, ...)
Omnidirectional Antenna A class of antenna which radiates radiowave power uni-

formly in all directions in one plane, with the radiated power decreasing with
elevation angle above or below the plane, dropping to zero on the antenna’s axis.

Optical Flow The pattern of apparent motion of objects, surfaces, and edges in a
visual scene caused by the relative motion between an observer and the scene.

Path Planner A task devoted to decide the best path for an agent.
Perimeter The union of a set of adjacent and nonoverlapped paths.
Perimeter surveillance The act of monitoring the perimeter of an area.
Petri Nets One of the several mathematical modeling languages for the description

of distributed systems.
Principal Component Analysis A statistical procedure that uses an orthogonal

transformation to convert a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables called Principal Compo-
nents.

Protocol A set of rules in a specific issue.
Robot An autonomous agent programmed with a sequence of missions.
ROS-Robot Operating System An open-source operating system preinstalled on

several coomercial/academic robots.
Shadow Removal Analgorithm for the suppressionof shadows, erroneously extracted

by a foreground segmentation algorithm.
Skeleton A thin version of a shape that is equidistant to its boundaries.
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Smart camera A vision system which, in addition to image capture circuitry, is
capable of extracting application-specific information from the captured images,
along with generating event descriptions or making decisions that are used in an
intelligent and automated system.

Support Vector Machines Supervised learning models with associated learning
algorithms that analyze data and recognize patterns, used for classification and
regression analysis.

Thermal Detector A task devoted to detect and identify thermals during themission
of an agent.

Token A criteria for task scheduling (a token allows an agent, and only it, to act a
task).

Tracking The process of locating a (moving) object (or multiple objects) over time
in a frame sequence; the objective of tracking is to associate target objects in
consecutive video frames.

Webots A professional robot simulator widely used for educational purposes.
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A
Access-centric storage and retrieval, 31
Adaptive storage optimization, 22
Aging-in-place, 212
Alzheimer’s disease, 175
Ambient intelligence, 214
Anomaly detection, 102, 218
Antenna, 75
Articulated skeleton tracking, 272
Assisted Living, 322

B
Back Propagation, 138
Background subtraction, 195
Bandwidth-efficient representation, 60
Behavior change detection, 215
Behavior modeling, 214
Boundary discovery, 78

C
Camera network, 11, 49
CCTV market, 11
Cellular automata, 146
Collectives smartphone sensors, 436
Communication constraints, 383
Cooperative strategies, 322, 326, 388
Coordination variables, 392
Crowd analysis, 290
Crowd evacuation, 146
Crowd-centric, 243
Custom-designed dictionaries, 60

D
Data fusion, 7, 200, 274

DCPBHA, 161
Decentralized system, 394
Decentralized tracking, 53
Decision-making, 347
Directional antenna, 78
Distributed coordination, 387, 413
Distributed Data Management, 21
Distributed robotics, 407
Distributed Sensor Networks, 8, 155, 302,

344, 407
Dynamic allocation, 399
Dynamic Sink Support, 34

E
Elderly care, 213
Embedded video processing, 5
Energy efficiency, 84, 159
Environment monitoring, 103

F
Filters, 133
Flow estimation, 244
FPGA, 131
Frequency criterion, 383

G
General driving model, 439
Geographic Information Retrieval, 441
Gimbaled video sensor, 306
Gliding aircraft, 363
Global tracker, 287
GPS noise, 439, 445
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H
Hardware implementation, 130
Healthcare applications, 178
Heterogeneous sensors, 8, 321, 389
Hidden Markov Model, 119
Hierarchical structure, 116
Histogram of Oriented Gradients, 265
Homography, 200
Homotopy algorithm, 66
Human pose, 261
Human tracking, 50, 175, 272

I
Incidents location detection, 438
IndependentMarkov Chain Occupancy Grid

Map, 437
Infrastructure security, 344
Institutional Agent Controller, 410
Institutional robotics, 409
Intelligent traffic system, 438

K
Kalman filter, 60, 63, 77, 102, 177, 311, 326,

362
Kernel density estimation, 268
Kinect, 325

L
Large-scale, 156
Likelihood-ratio testing, 109
Load-Dependent Optimization, 25

M
Machine learning, 100
Mean-Shift, 161, 265, 268
Mobile robot, 381
Mobile sensing, 435
Mobile target, 305
Monte Carlo simulation, 175, 290, 330, 349
Motion detection, 4, 218, 325
Multi-camera systems, 143, 324
Multi-robot, 339, 380, 381
Multi-robot coordination, 409
Multi-robot patrol, 339
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