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T. Haniš, M. Hromčík, A. Schirrer, M. Kozek and C. Westermayer

7.1 Gust Loads Alleviation System Via Convex Optimization

T. Haniš and M. Hromčík

The potential advantages of blended wing body (BWB) aircrafts in terms of fuel
efficiency are opposed by technical challenges such as the alleviation of gust loads.
Due to low wing loading, gusts generally have a more severe impact on BWB aircraft
than on conventional aircraft wing tube aircraft. This section presents the design and
optimization of a gust load alleviation system (GLAS) for a large BWB airliner.
Numerical simulations are performed with an aeroelastic model of the initial aircraft
model created within the NACRE project including GLAS in order to compute time
series of modal displacements for deriving equivalent static load cases which are
used for resizing of the aircraft structure. This design is carried out in this section is
carried out for the 750-passenger NACRE BWB aircraft predesign model. The same
methodology has been shown and carried out on the ACFA BWB configuration in
[22].

Remark: Note that the scope of the L∞-optimization of gust load alleviation
in this context can only be utilized to verify feasibility of a GLAS for the given
aircraft. The resulting controller is not directly applicable for implementation on an
aircraft—this requires certification criteria such as the CS-25 “continuous turbulence
design criteria” to be carefully addressed which is out of scope in this design and in
the context of the ACFA 2020 project in general.
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7.1.1 Introduction

The coupled aeroelastic/flight mechanic BWB model used for this investigation is
parameterized in Mach, dynamic pressure, fuel mass, and center of gravity (CG)
position. The CG variation is achieved by fuel redistribution which is important on
a BWB airplane for trim without too large control surface deflections in order to
achieve optimum cruise performance. For some fuel configurations the BWB air-
liner is statically unstable, thus requiring artificial stabilization. The BWB airliner is
controlled/stabilized by an underlying feedback control system using trailing edge
flaps (see Chap. 6 for details on feedback control laws design). The elevators and
spoilers on the upper side of the wings are used for feed-forward control. On each
wing, the three inner spoilers are actuated simultaneously, and the three outer spoil-
ers are actuated simultaneously as well. The control commands by the feed-forward
GLAS are added to the commands computed by feedback flight control laws. Tak-
ing into account maneuver load alleviation, gust loads become the dominant sizing
factor. For efficient gust load alleviation, the weighted L∞ norm of the responses
of wing bending and torsion moment need to be minimized for gusts of different
scale lengths throughout the whole flight envelope while not exceeding maximum
and minimum load factors. The worst-case gust length of a particular flight condi-
tion will be taken into account, but augmentation of the optimization for more gust
lengths and operating points is straightforward.

7.1.2 Gust Load Alleviation System Design

The GLAS (see Fig. 7.1) is based on a triggered feed-forward control system for
attenuation of aircraft excitation d(t) by exogenous disturbance signal w(t), in our
case wind gust of 1 − cos shape. Design of the wind gust detection system itself, the
trigger, is not treated here. It is assumed that it is possible to estimate an upcoming
wind gust and its direction with a certain time delay needed for estimation. The

Fig. 7.1 GLAS setup
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reference signal αwind is then the triggering signal used as input for the GLAS feed-
forward controller H(s) and it is considered as a unit step signal. The GLAS H(s)
can be realized as a FIR shaping input (step) command αwind and producing control
signals uGLAS, or as a memory storing device containing the control signals sequences
uGLAS and putting them out once triggered by αwind. The effect of uGLAS on e(t)
is expressed as a response of the transfer function Gc(s), the so-called Secondary
Control Path (SCP). Considering a model of the aircraft linearized in a certain trim
point, the error signal e(t) is just the sum of aircraft response d(t) to wind gust
disturbance w(t) and response of the aircraft to the GLAS control command uGLAS.
The error signal e(t) contains the wing bending and torsion moments and shear forces
at wing cuts, as well as the incremental load factor �nz(t). The design objective is
to choose H(s) in order to minimize the L∞ norm of a criterion based on forces and
moments as will be explained later, keep �nz(t) within certain limits (for passenger
safety), and at the same time remain within various limits for the L∞ norm of
uGLAS(t), that is, considering the saturation of control surfaces. The control surfaces
used for the GLAS are the elevator uElevator and the spoilers uSpoiler. The vector of
control commands uGLAS(t) thus can be written as:

uGLAS(t) = [
uElevator(t), uSpoiler(t)

]T (7.1)

where uElevator is elevator control command and uSpoiler denotes spoilers command.

7.1.3 Convex Synthesis

The convex synthesis approach is exploited to design the control law. This
methodology described by [2, 4], can easily address both time- and frequency-domain
criterions and constraints. A nice overview and aircraft control specific designs can
be found in [7].

The generalized plant in Fig. 7.2 is considered. Therein, system P represents the
controlled plant, K is the feedback control law and H is the feed-forward control sys-
tem. The signals w and z are exogenous input signals and controlled (criterion) output
signals, respectively. Signals uFF and uFB are input signals actuated by feed-forward
and feedback control systems. The signals y and uref are the measurable output
signals and the reference signal for the feed-forward control system, respectively.

The convex synthesis methodology can be applied for both feedback and feed-
forward control system design. Nevertheless, only the feed-forward control system
design will be addressed in this section. The feedback control law K in Fig. 7.2 is
considered as a fixed control law. The parameterization of the discrete-time feed-
forward controller H(z) is affine in the weights θi ,

H(z) =
n∑

i=1

θi · Hi (z), (7.2)
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Fig. 7.2 Convex synthesis
design plant

Fig. 7.3 Considered wind
gust profile
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where the transfer functions Hi (z) are a priori fixed basis functions and scalars, θi for
i ≥ 1 are the decision variables of the optimization problem. The exogenous input
signal w(t) is considered as one case of a 1 − cos-shaped gust (plotted in Fig. 7.3). The
result of the optimization will be the FIR filter H(z) (decision variables θi define the
coefficients of such FIR filter), therefore the reference input signal uref is considered
as a discrete unit pulse at time t = 0 as plotted in Fig. 7.4. The time-domain response
of the feed-forward-controlled closed-loop system can be expressed by (7.3) in an
affine form,
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Fig. 7.4 Reference input
signal
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Fig. 7.5 Mx response to
wind gust input

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

10

12
x 10

6

t [s]

Mx

z(t) = θ0 · z0(t) +
n∑

i=1

θi · zi (t), (7.3)

where z0(t) is the response of the feed-forward-controlled closed-loop system for
disturbance signal w(t) (according to (7.4), plotted in Fig. 7.5). In this case the coef-
ficient θ0 is equal to one. The second term corresponds to the response of closed-loop
system (defined by (7.5), plotted in Figs. 7.6 and 7.7) for reference signal uref (in
this case a discrete unit pulse) shaped by particular basis function Hi (z) which are
chosen to be unit delays so that H(z) becomes a FIR filter by design.
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Fig. 7.6 Mx responses to the
Spoiler input
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Fig. 7.7 Mx responses to the
Elevator input
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Z0(z) = P(z)W (z) (7.4)

Zi (s) = P(z)Hi (z)U (z). (7.5)

The correspondence between the time-domain and the z-domain is defined by

zi (t) = Z−1 {Zi (z)} . (7.6)

Finally, the convex optimization task can be defined as a linear program with criteria
expressed as:
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min
θ

cTθ, (7.7)

and constraints:

Aθ ≤ b (7.8)

The criterion as well as constraints will be explained in detail in Sect. 7.1.4.

7.1.4 Formulation of the Optimization Problem

With sizing gusts of different lengths from 30 ft (9.14 m) to 500 ft (152.4 m) starting
at time t = 0 it was sufficient to fulfill the following constraints within a time interval
[0; tend10 s] since oscillations excited by gusts sufficiently diminish after that amount
of time. First, only one length of a sizing wind gust case is considered to keep the
definition simple and clear. The maximum and minimum control surface deflections
need to be bounded by:

uElevator(n) ≤ uElevatorMax, ∀n ∈ [0; tend Fs] (7.9)

uElevator(n) ≥ uElevatorMin, ∀n ∈ [0; tend Fs] (7.10)

uSpoiler(n) ≤ uSpoilerMax, ∀n ∈ [0; tend Fs] (7.11)

uSpoiler(n) ≥ uSpoilerMin, ∀n ∈ [0; tend Fs] . (7.12)

With subscript Max denoting maximum allowed deflection of the respective con-
trol surface, and subscript Min denoting prescribed minimum allowed deflection of
the respective control surface (maximal negative deflection). Control surface deflec-
tion rate du/dt needs to be limited because the available actuators’ energy is finite.
Thereby, Fs is the sampling frequency, and Ts = 1/Fs denotes the sampling time of
the discrete-time controller. Then rate limits of control surfaces are defined by:

uElevator(n) − uElevator(n − 1)

Ts
≤ du

dt ElevatorMax
, ∀n ∈ [1; tend Fs] (7.13)

uElevator(n) − uElevator(n − 1)

Ts
≥ du

dt ElevatorMin
, ∀n ∈ [1; tend Fs] (7.14)
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uSpoiler(n) − uSpoiler(n − 1)

Ts
≤ du

dt SpoilerMax
, ∀n ∈ [1; tend Fs] (7.15)

uSpoiler(n) − uSpoiler(n − 1)

Ts
≥ du

dt SpoilerMin
, ∀n ∈ [1; tend Fs] (7.16)

For passenger safety, the maximum and the minimum load factors need to be
bounded as well.

nz(n) ≤ 2.5, ∀n ∈ [0; tend Fs] (7.17)

nz(n) ≥ 1, ∀n ∈ [0; tend Fs] . (7.18)

The cost function J is defined as a function of the vector of control commands
uGLAS(n) with tuning parameters a1, a2, a3 and b1, b2, b3. Considering that positive
as well as negative peak forces and moments need to be reduced in magnitude, the
cost function J can by divided into two parts:

Jmax = max
n∈[0, tend Fs]

[

a1 ·
(

n∑

i=0

f Gust
z (i) · w(n − i) +

n∑

i=0

f Elevator
z (i) · uElevator(n − i)

+
n∑

i=0

f Spoiler
z (i) · uSpoiler(n − i)

)

+ a2 ·
(

n∑

i=0

mGust
x (i) · w(n − i) +

n∑

i=0

mElevator
x (i) · uElevator(n − i)

+
n∑

i=0

mSpoiler
x (i) · uSpoiler(n − i)

)

+ a3 ·
(

n∑

i=0

mGust
y (i) · w(n − i) +

n∑

i=0

mElevator
y (i) · uElevator(n − i)

+
n∑

i=0

mSpoiler
y (i) · uSpoiler(n − i)

)]

(7.19)
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Jmin = min
n∈[0, tend Fs]

[

b1 ·
(

n∑

i=0

f Gust
z (i) · w(n − i) +

n∑

i=0

f Elevator
z (i) · uElevator(n − i)

+
n∑

i=0

f Spoiler
z (i) · uSpoiler(n − i)

)

+ b2 ·
(

n∑

i=0

mGust
x (i) · w(n − i) +

n∑

i=0

mElevator
x (i) · uElevator(n − i)

+
n∑

i=0

mSpoiler
x (i) · uSpoiler(n − i)

)

+ b3 ·
(

n∑

i=0

mGust
y (i) · w(n − i) +

n∑

i=0

mElevator
y (i) · uElevator(n − i)

+
n∑

i=0

mSpoiler
y (i) · uSpoiler(n − i)

)]

. (7.20)

Finally an overall criterion is defined as:

J = Jmax − Jmin. (7.21)

Thereby, w(n) is the discrete-time gust excitation and f Gust
z (i), f Elevator

z (i), f Spoiler
z (i)

denote the i th sample of impulse responses of the linearized aircraft model to gust
excitation, elevators inputs, and spoilers inputs, respectively. At selected wing cut, the
respective i th sample of pulse responses for torsion moment are mGust

y (i), mElevator
y (i),

mSpoiler
y (i), and for bending moment mGust

x (i), mElevator
x (i), mSpoiler

x (i). The static
shear force, torsion moment, and bending moment for 1 g level flight are not consid-
ered in this design.

The optimization problem can thus be formulated as:

min
uElevator, uSpoiler

J (7.22)

with constraints expressed by (7.9)–(7.18).

7.1.5 Gust Load Alleviation System: Results

Simulations of the resulting feed-forward control system are presented in this section.
The deflections of spoilers and elevator commanded by the triggered GLAS are plot-
ted in Figs. 7.8 and 7.9. One can see that maximal and minimal deflection constraints
of each control surface are fulfilled.
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Fig. 7.8 Spoiler deflection
signal
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Fig. 7.9 Elevator deflection
signal
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Similarly, requirements for deflection rates of spoilers as well as elevators (plotted
in Figs. 7.10 and 7.11) are taken into account during the optimization and fulfilled
by the resulting control law. One can see that the deflection rate constraints are the
limiting factor of the resulting control law and limit achievable control performance.
The dynamic aircraft wing bending moment was reduced by more than 50 % in the
sense of the L∞ norm. The resulting structural load alleviation performance in wing
bending is plotted in Fig. 7.12.

Similarly, the dynamic wing torsion moment was reduced by more than 60 % in the
L∞ norm sense. The resulting structural load alleviation performance in wing torsion
is plotted in Fig. 7.13. Eventually the vertical acceleration response is presented in
Fig. 7.14. One can see that also the constraints for vertical acceleration are fulfilled.
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Fig. 7.10 Spoiler deflection
signal rate
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Fig. 7.11 Elevator deflection
rate
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7.2 Lateral Maneuver Loads Alleviation System Via Convex
Optimization

A. Schirrer and M. Kozek

In this section, a maneuver load alleviation system is designed for the ACFA BWB
configuration by a convex synthesis approach. The feed-forward design can directly
be cast into a convex optimization problem and is thus efficiently solvable. Its devel-
opment is based on the multi-model feed-forward design developed for the NACRE
BWB 750-passenger aircraft model, published in [16].
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Fig. 7.12 Wing bending
moment attenuation
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Fig. 7.13 Wing torsional
moment attenuation
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7.2.1 Design Goals and Problem Definition

The control goals related to Maneuver loads alleviation are most effectively addressed
via a dynamic pilot command preshaper (feed-forward control law) once the closed-
loop system is designed and conditioned (robustified) sufficiently well. The
closed-loop plants obtained by earlier control designs are then utilized as design
plants for the feed-forward design. This control design stage has the following goals:

• Given a step input roll angle reference signal, drive the system such that a decoupled
roll maneuver with the given end angle is flown.

• Mach and dynamic pressure are assumed measurable and available for controller
scheduling. The design task will be reduced to designs for fixed values of the
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Fig. 7.14 Vertical acceleration at the center of gravity

Mach and dynamic pressure parameters and the same set of basis functions will
be used across all designs so that only numerator coefficients need to be sched-
uled/interpolated a posteriori.

• The CG and Fuel parameters are considered unknown during operation and thus
the controller should yield satisfactory responses for all CG/Fuel cases.

• The following requirements on the response shape must be fulfilled robustly:

– Average static gain (DC gain) from roll reference to roll angle equal to 1 over
all CG/Fuel cases.

– Fulfill roll rise time requirement to 95 % rise level in 7 s.
– No or minimal overshoot (less than 1 %) in the roll reference response.
– Decoupling: restrict side-slip response β to ±10 mrad for a 1 rad roll step.
– For a 60° roll step, all rate and deflection bounds of the control surfaces have

to hold. The deflection bounds for Flap 5 (outer aileron) are reduced to 50 % in
order to retain controllability for the One-Engine-Inoperable case.

• The sizing loads with respect to the roll maneuver (that is, the maximum total
loads occurring in a shaped 60° roll maneuver over all parameter cases) should be
minimized.

7.2.2 Methodology

7.2.2.1 Linear Matrix Inequalities (LMIs)

An Linear Matrix Inequality (LMI) problem is a convex optimization problem
commonly used in control design (see [3]) as:
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inf
x

(
cTx

)
(7.23)

s.t. F(x) = F0 +
n∑

i=1

xi Fi � 0. (7.24)

The matrices Fi = FT
i ∈ Rn×n are symmetric and fixed, x = [x1, . . . , xn]T are the

decision variables, and cT is the cost vector. The constraint F(x) � 0 means that
the matrix F(x) be positive-semidefinite, that is, that it possesses only non-negative
eigenvalues.

7.2.2.2 Convex Control Design

With a plant transfer function (or, time-domain response signals) parameterized in
affine form,

G(s) = G0(s) +
∑

i

Gi (s)θi , (7.25)

as in the case of a feed-forward design or the Youla-parameterized convex feedback
control design, important time- and frequency-domain requirements can be stated
as linear programing (LP), quadratic programing (QP), or Linear Matrix Inequality
(LMI) constraints (convex in the parameters θ), see [6]. Similarly, by bounding a
constraint by an additional free variable instead of a constant, any such constraint
can be turned into an objective. Then, the bounding variable itself is considered as
the minimizing objective.

Time-Domain: Single-Input Single-Output (SISO) L∞ Bounds

A central benefit of convex synthesis methods is the direct incorporation of time-
domain constraints and objectives, which enables template-based step-response shap-
ing. Closed-loop time-domain responses are affine in θ:

z(t) = L −1 {Z(s)} = z0(t) +
n∑

i=1

zi (t)θi . (7.26)

To constrain a time-domain response z(t) by given lower and upper time-domain
bounds zL(tk) < z(tk) < zU(tk), tk ∈ {t1, . . . , tN }, the expansion into the affine
form yields two linear programing (LP)-type constraints for each tk :
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[−z1(tk), . . . , −zn(tk)
]
θ < z0(tk) − zL(tk), (7.27)

[
z1(tk), . . . , zn(tk)

]
θ < zU(tk) − z0(tk). (7.28)

Note that (7.27)–(7.28) also represent two (scalar) LMI constraints and can directly
be included in an LMI problem.

Frequency-Domain: Multi-input Multi-output (MIMO) H∞ Bound

The constraint ‖G‖∞ < x can be discretized for a stable G( jω) at a frequency grid
ωk ∈ {ω1, . . . , ωN } via N constraints σ̄ (G( jωk)) < x . These can be translated into
(real-valued) LMI constraints:

⎡

⎢⎢
⎣

xI Re(G) 0 Im(G)

xI Im(GH) 0
xI Re(G)

sym. xI

⎤

⎥⎥
⎦

∣∣
∣∣∣∣∣
∣

jωk

	 0, (7.29)

where Re(·), Im(·), and (·)H indicate the real part, imaginary part, and the Hermitian
transpose, respectively. This LMI is affine in the parameters (see [6, 15]). Note that
this constraint asserts G stable a priori and is thus not applicable to enforce stability
of G.

Frequency-Domain: MIMO H2 Bound

The H2 norm of a stable, strictly proper linear dynamic system G( jω) is

‖G( jω)‖2 = h =

√√√√√
1

2 π

∞∫

−∞
tr
[
(G( jω))H (G( jω))

]
dω. (7.30)

For a sufficiently fine and broad finite frequency gridding, (7.30) can be approximated
by the Riemann sum

h ∼= h̃ =
√√√√ 1

π

N∑

k=1

tr
[
(G( jωk))

H (G( jωk))
]
(ωk+1 − ωk). (7.31)

This H2 norm approximation can be expanded to a (convex) quadratic form for G
affine in θ (β ∈ R, γ = [γ1, . . . , γn]T ∈ Rn , � = [	i, j ] ∈ Rn×n):
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G( jωk) = Gk = G̃k +
n∑

i=1

Gkiθi , (7.32)

h̃2 = 1
π

(
β + γT

θ + θ
T�θ

)
, (7.33)

β =
N∑

k=1

tr
[
G̃

H
k G̃k

]
, γi =

N∑

k=1

2 Re
{

tr
[
G̃

H
k Gki

]}
,

	i, j =
N∑

k=1

Re
{

tr
[
Gki

HGk j

]}
.

Note that only real terms remain due to the properties of the trace and the Hermitian
transpose. The matrix � is positive (semi-)definite, making the function h̃2(θ) con-
vex, and � can be decomposed into its Cholesky factors � = LTL. Then, an LMI
constraint equivalent to h̃2 < x (x ∈ R+) is given as (see [17])

[
In Lθ

θ
TLT x − β − γT

θ

]

	 0. (7.34)

Note that this constraint is of fixed size ((n + 1) × (n + 1)) with respect to the
frequency grid size N , which allows to use high approximation precision by a fine
grid in the precalculation of β, γ, and �.

Adaptive Constraint Refinement

The optimization problem size is primarily determined by the number of basis func-
tions (and thereby weighting parameters) and by the number of gridpoints in time
or frequency at which point-wise constraints (or objectives) are defined. An adap-
tive grid refinement procedure has thus been implemented for high computational
efficiency:

1. Start with coarse design grids.
2. Formulate and solve optimization problem (7.23)–(7.24) for the current design

grids.
3. Validate the solution on fine validation grids.
4. Pick, per violated objective/constraint, at most nadd points that are most violated

(and mutually sufficiently spaced) and add them to the design grids.
5. If no violations: done. Else: return to step (2).
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7.2.3 Control Design

7.2.3.1 Reference Control Law Design

To formulate the load minimization criterion, a reference control law is necessary to
obtain an initial feed-forward law that shapes the response to approximately fulfill
the posed requirements. This task has been helped by the sensible shaping of the
closed loop in the initial control design (by partial eigenstructure assignment, see
Sect. 6.2). The dominant rigid-body (RB) poles already partially fulfill the response
shape requirements.

Figure 7.15 depicts a simple interconnection of the feed-forward controller Kff

and the closed-loop plant. Thereby r =
[

rφ

rβ

]
is the (2 × 1) reference signal vector.

A simple choice of reference control law is obtained as follows:

• Compute the optimal (2×2) static decoupling coefficient matrix K̃ff =
[

k11 k12
k21 k22

]

that minimizes the following objective function:

J =
∑

jCG, jFuel

∥∥I − Gcl, jCG, jFuel( j0)K̃ff
∥∥, (7.35)

where Gcl, jCG, jFuel is the closed-loop transfer function of the aircraft for the para-
meter cases jCG and jFuel ( jMach and jDyn.Pressure are fixed for the studied design)

from u =
[
δFl34
δRu

]
to z =

[
φ

β

]
(see Fig. 7.15). The reference feed-forward law acts

only on u, so Qref =
[

Qref,1
Qref,1

]
=

[
Qref,1

0

]
.

• Add PT1 filters to fulfill control command rate limits in the 60° roll maneuver:

Qref,1 = K̃ff

[ 1
T s+1 0

0 1
T s+1

]
(7.36)

P P

K K

u u
z z

y y

r r
Q Q

−

(a) (b)

Fig. 7.15 Two interconnection architectures of a (possibly scheduled) feed-forward controller Q
with feedback-controlled plant P, a only directly affects the control input u, whereas b also modifies
the measured signals fed to the feedback controller K

http://dx.doi.org/10.1007/978-3-319-10792-9_6
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The time constant was chosen T = 1 s which does not violate the rate limits and
leads to a rise level of 90 . . . 95 % in 7 s in the roll reference–roll transfer function.

This reference law is used to compute the preliminary sizing total loads and parameter
cases for the roll maneuver.

7.2.3.2 Feed-Forward Design by Convex Optimization

The optimization problem is formulated and solved by the LP/LMI control design
optimization framework developed in [15].

The structure depicted in Fig. 7.15 has been utilized to design the feed-forward
controller Q(s) by convex optimization. The closed-loop is comprised of the air-
craft model (plant P) and the combined control law K of stage 1 (initial feedback-
controlled plant via partial eigenstructure assignment, see Sect. 6.2) and stage 2
(robust controller obtained by DGK-iteration, see Sect. 6.3).

The feed-forward law has one input (the roll reference φref ) and access to an
extended set of nine separate outputs

uext = [
�δFl3, �δFl4, �δFl5, �δRu, �β, �φ, �p, �r, �N zlat.law

]T
. (7.37)

The control law Q is obtained as weighted sum of basis functions Qi (s):

Q(s) =
nQ∑

i=1

Qi (s)θi (7.38)

This basis is composed of 20 basis functions per SISO channel which were chosen
ad hoc as PT1 and PT2 dynamics with their poles evenly distributed in the dynamic
range of interest. Note that the same basis is utilized for all feed-forward designs
across the parameter range to facilitate a posteriori scheduling on the flight parame-
ters.

The current optimization problem can then be formulated as an LP problem as
follows:

minimize cTx (7.39)

subject to Ax ≤ b (7.40)

where the cost vector c and the constraints are obtained automatically by the opti-
mization framework, based on an adaptive invocation of time-domain constraints
and objectives on the closed loop. The vector of decision variables x contains the
feed-forward control law weights θi as well as bound variables to formulate signal
or system norm objectives (see Sect. 7.2.2.2).

http://dx.doi.org/10.1007/978-3-319-10792-9_6
http://dx.doi.org/10.1007/978-3-319-10792-9_6
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Table 7.1 Defined objectives and constraints for feed-forward design

Objective set 1 Minimize φref → Fzk peaks, k = 1, . . . , 14 with respect to sizing loads

Objective set 2 Minimize φref → Mxk peaks, k = 1, . . . , 14 with respect to sizing loads

Objective set 3 Minimize φref → Myk peaks, k = 1, . . . , 14 with respect to sizing loads

Constraint set 1 Constrain roll time-domain response φref → φ in time-domain template
(tracking, rise-time, overshoot, and undershoot goals)

Constraint set 2 Constrain coupling of roll reference to side-slip time-domain response
φref → β (decoupling, coordinated turn)

Constraint set 3 Constrain control surface deflections and rates in roll maneuver φref →
δFl3, δFl4, δFl5, δRu, δ̇Fl3, δ̇Fl4, δ̇Fl5, δ̇Ru

These objectives and constraints are listed in Table 7.1 and closely related to those
listed in Chap. 5. They are defined for each fuel and each CG case (31 cases) in the
optimization framework and iteratively added to the actual LP formulation until the
full validation on all parameter cases and on a fine time gridding (Ts = 0.05 s) is
successful for all constraints and objectives. This method has shown to be highly
efficient and enables a computationally feasible design for very large constraint sets
(of which most constraints are inactive at the optimal solution, but have to be tested).

The objective formulations are normalized with respect to the initial sizing loads
(as obtained from the initial control law) in the following way:

Let z jk be the preliminary sizing total load of load j ( j ∈ {Fz, Mx, My}) at cut
k (k = 1, . . . , 14). Also, let z0, jk,cfmq be the corresponding trim (static/1 g) load at
CG case c, fuel case f, Mach case m, and dynamic pressure case q. Then, the allowed
lateral dynamic load in this parameter case until sizing is

zdyn,max, jk,cfmq = ∣∣z jk
∣∣ − ∣∣z0, jk,cfmq

∣∣ . (7.41)

This quantity is utilized to scale the objective such that an objective value of 1 means
that the load becomes globally sizing and thus this normalization introduces global
information into the local optimization problem. The actual optimization objective
is the maximum of all scaled control objectives, so an objective function value of
less than 1 means that the linear validation of the roll maneuver generates total loads
which are less than the sizing loads.

7.2.3.3 Obtaining a Scheduled Control Law Using the Multi-stage Design
Procedure

The multi-staged control law design allows one to employ direct a posteriori
interpolation methods, specifically tailored to the partial control law at each stage.

In the scope of the lateral ACFA control design, the following interpolation onsets
are utilized:

http://dx.doi.org/10.1007/978-3-319-10792-9_5
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• The 1st-order “stage 1” control law (partial eigenstructure assignment, see Sect. 6.2)
is parameterized in Mach number and dynamic pressure. Because of its low
dynamic complexity, it can be transformed to a unique controllability compan-
ion form and a well-defined element-wise interpolation of the state-space system
in this representation can be performed.

• The 30th-order “stage 2” control law (DGK-iteration, see Sect. 6.3) is of low
authority and robust against considerable plant dynamics variations. Validation
of the fixed control law with plants and the scheduled stage 1 control law across
the entire flight envelope shows Robust Stability (RS). However, the added perfor-
mance in terms of vibration attenuation at the design case at cruise flight conditions
becomes marginal or lost as the plant parameters differ too much. This could be
repaired by redesigns of the “stage 2” control law in other flight parameter points,
but due to the associated effort this is out of scope here. For a posteriori scheduling
onsets refer to [14, 15].

• The feed-forward control law developed in this section is robustly designed for a
particular Mach and Dynamic Pressure parameter case to provide Robust Perfor-
mance (RP) for all fuel and CG cases. It turned out that it is necessary to parame-
terize the feed-forward control law by the Mach and Dynamic Pressure parameters
to achieve the demanded high performance. This interpolation can also be done
in an a posteriori manner and it is simplified by utilizing the same set of basis
functions for all designs. Then, only the optimization variables (the weightings
θi ) need to be interpolated. The optimization problem can directly be extended to
consider multiple models with perturbed Mach and Dynamic Pressure parameters,
however, increasing the size of the problem. Note also that the feed-forward law
cannot destabilize the (linear) aircraft model.

7.2.4 Validation

The optimization is carried out and yields a dynamic controller Q(s) which satisfies
all constraints and minimizes the roll maneuver-induced total loads with respect to
sizing load levels. As a result, a typical optimization result for loads alleviation is
shown in Fig. 7.16 for a representative case in cruise flight conditions and cut moment
My13. In this maneuver, all constraints (tracking, rise time, settling, undershoot) on
the roll response, side-slip decoupling and input magnitudes and rates are satisfied.
As an example, the roll response and the demanded template are shown in Fig. 7.17
for the same parameter case.

Note that this specific formulation of the objective allows uncritical loads to
increase in favor of further reduction in the critical load levels, which is correct for
the considered global optimization goal.

The final validation over the entire relevant parameter space is shown in Sect. 8.1.4.

http://dx.doi.org/10.1007/978-3-319-10792-9_6
http://dx.doi.org/10.1007/978-3-319-10792-9_6
http://dx.doi.org/10.1007/978-3-319-10792-9_8
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Fig. 7.16 Typical loads
reduction result (selected
parameter case at cruise flight
conditions at cut My13) for an
optimal feed-forward
controller satisfying all roll
maneuver requirements
robustly

Fig. 7.17 Typical roll
tracking performance for an
optimal feed-forward
controller (selected parameter
case at cruise flight
conditions)

7.3 Maneuver Loads Alleviation System Via H∞
Full-Information Feed-Forward Design

C. Westermayer, A. Schirrer and M. Kozek

The design methodology for the feed-forward controller presented in the following
is based on the so-called two degree of freedom (2DOF) concept. The fundamentals
of this concept can be found in [18, 23], where the separation of feedback and
feed-forward controllers is introduced by the use of two stable Youla parameters.
While in the literature various approaches based on the 2DOF concept are reported
[5, 8, 10, 13], the feed-forward control design approach shown here is based on the
findings in [11, 12]. Therein, anH∞ full-information approach is presented for both,
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reference signal tracking and measurable disturbance rejection. The optimization
problem is formulated as an LMI optimization problem and its applicability for the
linear parameter varying (LPV) case is discussed. This design is carried out for the
ACFA BWB configuration for the longitudinal dynamics. It has been developed in
detail in [19] and published in [21].

7.3.1 Methodology

7.3.1.1 2DOF Concept and Feed-Forward Design

Starting point of the presented design methodology is based on the fact that the design
of feedback and feed-forward controller can be decoupled. This is demonstrated in
[9, 12] for the general 2DOF control architecture as shown in Fig. 7.18 (left). Therein,
the decoupling is revealed by splitting up the control signal into u = Kff r + Kfby
and rewriting it in terms of two stable Youla parameters for parametrization and a
right fractional coprime factorization of the system plant G.

As indicated in the right diagram of Fig. 7.18, the input to the feedback controller
Kfb is the difference between the ideal system response provided by the prefilter
or feed-forward controller Kff and the real measurements. The only input to Kff is
the reference command, while its generated control signal is acting directly on the
system G. The independence of Kff from Kfb enables self-contained focusing on
design specifications most relevant for feed-forward control, which in terms of H∞
design and according to the Bounded Real Lemma is expressed by a performance
path, where ‖T‖∞ ≤ γ is to be minimized. This is indicated in Fig. 7.19 where Tzr

is obtained by a lower Linear Fractional Transformation (LFT) of the augmented
plant P and the state feedback matrix F.

GGK KfbKff
y

y
y r

r
uu

Fig. 7.18 General 2DOF architecture

P T zr

z1z1

zizi

F

l P F

xP r

rr

u

Fig. 7.19 Generalized closed loop and optimization transfer function matrix Tzr obtained by a
lower LFT
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Thereby, the augmented plant P has to be built such that the particular design
specifications are met. P is again an interconnection of the system plant G, frequency
weightings Wi and additionally a reference model Tref to be tracked. Details on their
formulation for the given problem will be presented in Sect. 7.3.3. It is important to
note that according to Fig. 7.19 the feedback vector is composed of the state vector
xP and the reference input vector r. Both are assumed to be known which reasons
the name full-information design.

7.3.1.2 Full-Information LMI Optimization Problem

Before the LMI optimization problem can be formulated, the closed-loop system has
to be derived. Therefore, the open-loop representation

⎡

⎢⎢
⎣

ẋP
z

xP
r

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

AP BP1 BP2

CP1 DP11 DP12

I 0 0
0 I 0

⎤

⎥⎥
⎦

︸ ︷︷ ︸
P

⎡

⎣
xP
r
u

⎤

⎦ (7.42)

and the full-information control law u = F1x + F2r have to be connected, yielding

[
ẋP
z

]
=

[
AP + BP2 F1 BP1 + BP2 F2

CP1 + DP12 F1 DP11 + DP12 F2

]

︸ ︷︷ ︸
T

[
xP
r

]
, (7.43)

where the static feedback matrix F = [F1, F2] was appropriately partitioned. With the
closed-loop system defined, the procedure to derive the full-information optimization
LMI is equivalent to a pure state feedback design. The finally obtained results are
given by the following proposition.

Proposition 7.1 [12] Consider the system (7.43). If there exist matrices F2, Ȳ and
Q̄ = Q̄T, such that Q̄ > 0 and

⎡

⎣
AP Q̄ + Q̄AT

P + BP2 Ȳ + Ȳ TBT
P2

BP1 + BP2 F2 (CP1 Q̄ + DP12 Ȳ)T

(BP1 + BP2 F2)
T −γ I (DP11 + DP12 F2)

T

CP1 Q̄ + DP12 Ȳ DP11 + DP12 F2 −γ I

⎤

⎦ < 0

(7.44)
hold, then

1. the matrix AP is exponentially stable and
2. there exists a scalar γ > 0 such that ||Tzr ||∞ < γ holds.

If a feasible solution is obtained, the optimal H∞ static full-information feedback
matrix is given by:

Fopt = [YQ−1, F2]. (7.45)
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An important fact is that the full-information LMI formulation of Proposition 7.1 can
be extended to linear parameter varying systems G(ρ) with system matrices AG(ρ),

BG(ρ), CG(ρ), DG(ρ) depending affinely on the parameter vector ρ(t). However,
for the given model of the BWB aircraft, a polytopic representation is not directly
available, that is, the system matrices are not described as affine functions of the
parameter vector from the outset.

7.3.1.3 Deriving the Final Feed-Forward Controller Kff

The result of the LMI optimization according to Proposition 7.1 is the optimal feed-
back matrix Fopt. In order to obtain the final feed-forward controller Kff , the output
and feed-through matrices CP1 and DP11 , DP12 of the augmented plant P have to be
replaced by [12]

CPff,1 =
[

ECG 0 0 0 0
0 0 0 0 0

]
, DPff,11 =

[
0
0

]
, DPff,12 =

[
EDG

I

]
(7.46)

yielding

Pff =

⎡

⎢⎢
⎣

AP BP1 BP2

CPff,1 DPff,11 DPff,12

I 0 0
0 I 0

⎤

⎥⎥
⎦ . (7.47)

The index G refers to the system plant and the selector matrix E is used to select
all outputs y used by the feedback controller Kfb. As evident from Fig. 7.20 the
feed-forward controller is the result of the lower LFT

Kff = Fl(Pff , Fopt). (7.48)

Pff Kff

Fopt

l Pff Fopt

xP r

y y
rr

uu

u

Fig. 7.20 Modified generalized closed-loop including the optimal solution Fopt (left) and final
feed-forward controller Kff obtained by a lower LFT (right)
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7.3.2 Design Goals and Problem Definition

The design specifications (as listed in Chap. 5) to be addressed in the feed-forward
controller design process are given as follows:

1. Track the reference command input given by the vertical acceleration at the CG
position NzCG. The rise time of NzCG to a unit step command input must be
between 3–5 s and no overshoot is tolerated.

2. Overshoot of accompanying pitch rate response at the CG position, qCG, must be
lower than 30 %.

3. Constrain the demanded control signals by maximum deflection and deflection
rate limits according to Table 5.1.

4. Minimize maximum structural loads caused by maneuver tracking. As reference
maneuvers serve +1.5 and −1.0 g NzCG reference steps, where g = 9.81 m/s2.

All these specifications have to be fulfilled over the considered flight envelope. The
performance of the designed controllers has to be demonstrated together with the
feedback control law. Here, the LPV feedback control law from Sect. 6.5 is utilized.

7.3.3 Control Design

7.3.3.1 Design Architecture

The first step of the H∞ full-information feed-forward design process is to define an
appropriate design architecture representing a standard problem formulation in the
H∞ framework which addresses the essential design specifications. The augmented
plant used in this work is shown in Fig. 7.21.
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Fig. 7.21 Left augmented plant for feed-forward full-information control design; Right generalized
closed loop

http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_6
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The performance weights Wu , Wy , and Wp have to be appropriately chosen
in order to enforce the desired performance during optimization. Details on these
choices are given in Sect. 7.3.3.2. The systems Gff , Tref , Wu , Wy , and Wp are given
in state-space representation (Ai , Bi , Ci , Di ), where the index i is used as placeholder
for the aforementioned system names. Interconnecting these systems according to
Fig. 7.21 leads to the augmented system P in state-space form

⎡

⎢
⎢
⎣

ẋ(t)
z(t)
x(t)
r(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

AP BP1 BP2

CP1 DP11 DP12

I 0 0
0 I 0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
P

⎡

⎣
x(t)
r(t)
u(t)

⎤

⎦ , (7.49)

where

AP =

⎡

⎢
⎢⎢⎢
⎣

AGff 0 0 0 0
BWy E1CGff AWy 0 0 −BWy CTref

0 0 AWu 0 0
BWp E2CGff 0 0 AWp 0

0 0 0 0 ATref

⎤

⎥
⎥⎥⎥
⎦

, (7.50)

BP1 =

⎡

⎢⎢⎢
⎢
⎣

0
−BWy DTref

0
0

BTref

⎤

⎥⎥⎥
⎥
⎦

, BP2 =

⎡

⎢⎢⎢
⎢
⎣

BGff

BWy E1DGff

BWu

BWp E2DGff

0

⎤

⎥⎥⎥
⎥
⎦

, (7.51)

CP1 =
⎡

⎣
DWy E1CGff CWy 0 0 −DWy CTref

0 0 CWu 0 0
DWp E2CGff 0 0 CWp 0

⎤

⎦ , (7.52)

DP11 =
⎡

⎣
−DWy DTref

0
0

⎤

⎦ , DP12 =
⎡

⎣
DWy E1DGff

DWu

DWp E2DGff

⎤

⎦ . (7.53)

Both, the state vector of the augmented plant x and the reference input vector r
are known, forming together the full-information feedback vector. Therefore, the
feedback law can be written as u = Fv = F1x + F2r, with F as the static feedback
matrix. The generalized closed-loop is shown in the right drawing of Fig. 7.21. Using
a lower LFT T = Fl(P, F) leads to the performance transfer paths from r to zy, zu
and zp to be minimized:
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∥∥∥
∥∥∥

Tzu,r
Tzy,r

Tzp,r

∥∥∥
∥∥∥∞

< γ. (7.54)

Due to the resulting complexity originating from the state feedback law, a more
detailed decomposition of the single performance transfer paths Ti is not considered
at this point. Three possible approaches for solving the H∞ optimization problem
of (7.54) in MATLAB® are:

1. Building the interconnected structure according to Fig. 7.21 and using the function
hinfsyn with the method setting ric. Using this setting, the full-information
gain matrix is included in the output argument info.

2. Instead of the hinfsyn also the function msfsyn can be used. The advantage
of this function is that it can be applied to linear parameter varying systems with
its parameters varying in a polytope.

3. Formulating the appropriate LMIs according to Proposition 7.1 and introducing
the system matrices (7.50)–(7.53). The LMIs can be solved using for example the
LMI solver mincx of the Robust Control Toolbox of MATLAB® [1].

The third option has been shown to be more efficient and can also be extended to
the LPV design case. With the optimal feedback gain matrix Fopt as the primary
optimization result of (7.54), the feed-forward controller Kff is obtained as outlined
in Sect. 7.3.1.3 by the lower LFT Kff = Fl(Pff , Fopt), where Pff is the modified
augmented plant.

7.3.3.2 Reference Model and Performance Weighting Function Definition

To fulfill the required design specifications, an appropriate reference model as well
as a correct shape for the performance weighting functions have to be selected:

Reference model Tref : The reference model selected for the model matching problem
must first of all fulfill the requirements concerning rise time, overshoot, and settling
time of the controlled variable NzCG to be tracked. Moreover, it is advantageous to
incorporate existing actuator dynamics Gact and sensor delays Gsen in the reference
model since these dynamics represent hard constraints for the attainable tracking
response which cannot be ignored in the design. Therefore, the reference model Tref
consists of three components

Tref = GsenGref Gact, (7.55)

where Gsen is a first-order Padé approximation with 160 ms delay and Gact is the
linearized model of the slowest actuator, the combined elevator E L t:

Gsen = (s − 12.5)

(s + 12.5)
, Gact = 7.5

s2 + 3.9s + 7.5
. (7.56)
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Fig. 7.22 Left Tref time response representing an ideal NzCG command response; Right frequency
response plot of weighting functions Wy and Wui

The reference transfer function is given by a second-order system

Gref = ω2

s2 + 2ζωs + ω2 (7.57)

with its parameters set to ω = 1.5 rad/s and ζ = 1. The corresponding time response
of the reference model Tref is shown in Fig. 7.22 (left).

Command tracking Wy : For command tracking, the difference between the ref-
erence model Tref and the system output to be tracked must be minimized. This can
be achieved by a low-pass filter of the form

Wy = ty1
s + ty2 · 10

s + ty2 · 0.001
, (7.58)

as shown in Fig. 7.22 (right), with the corresponding tuning parameters ty1 and ty2
appropriately set (see also Sect. 7.3.3.3).

Control energy Wu : The control energy demanded by the feed-forward controller
for reference model tracking can be adjusted by high-pass filters of the form

Wu =

⎡

⎢⎢
⎣

tu11
(s+tu21·1)2

(s+tu21·100)2 0 0

0 tu12
(s+tu22·1)2

(s+tu22·100)2 0

0 0 tu13
(s+tu23·1)2

(s+tu23·100)2

⎤

⎥⎥
⎦ , (7.59)

with their general shape shown in Fig. 7.22 (right). The tuning factor tu1i serves to
limit the absolute deflections, while tu2i is used to constrain the deflection rates.
According to the actuator properties, the tuning factor tu2i is highest for the outmost
flap FL3. Second-order filters are utilized to ensure a sufficiently steep roll-off and
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thereby minimize excitation of the aeroelastic modes by the maneuver. This is most
important, according to the open-loop analysis in Sect. 5.1.3.2, for the control surfaces
at the wing, FL12 and FL3.

Maneuver loads Wp: The maximum Maneuver loads primarily originate from the
static content and the first wing bending mode as will be shown below. Therefore,
static weighting has shown to be sufficient for the performance outputs:

Wp =
⎡

⎣
tp1 0 0
0 tp2 0
0 0 tp3

⎤

⎦ . (7.60)

7.3.3.3 Controller Tuning

With the design architecture according to Sect. 7.3.3.1 and the general shape of
corresponding weighting functions as defined in Sect. 7.3.3.2, the subsequent design
step is the selection of the tuning factors. This can be carried out either manually or
in an automated way as will be presented in the following.

Manual Tuning

Manually adjusting the factors of the performance weighting functions (7.58)–(7.60)
is not a trivial task when several design specifications have to be considered simul-
taneously. However, a basic understanding of the tuning possibilities, is similar to
the feedback design case, crucial for a successful control design. Exemplarily, ty1
is varied to show the effect on tracking performance and tp1 is varied to evaluate
the effect on Maneuver loads control. In Fig. 7.23, the unit step time response of
Kff from r to NzCG, qCG, and ηELt is shown. Therefore, ty1 was increased stepwise
from ty1 = 0.01, where ty1 = 1 represents an optimized setting. In spite of the
large tuning parameter variation, the effect on the tracking performance is moderate.
Increasing ty1 improves tracking performance and also requires faster control inputs.
The effect of increased tp1 is presented in Fig. 7.24. There, Maneuver loads at the
wing root My5 and at the outer wing My12 are compared. Increasing the weighting
on one load output typically leads to reduced Maneuver loads at this and adjacent cut
positions, however, this can also cause increased loads at more distant load outputs
(waterbed effect). Basically it has been shown that including the wing bending load
outputs My also positively affects the vertical force load outputs Fz. In general, a
strong relation between load outputs and control energy outputs is evident.

Automated Tuning

In order to accelerate the aforementioned tuning parameter selection, an auto-
mated approach similar as mentioned in Sect. 6.5.3.3 for feedback control design

http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_6
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Fig. 7.24 Left unit step time response of Kff from r to My5 for increasing tuning factor tp1; Right
corresponding My12 time response

is described in this section. Therefore, several optimization criteria ci must be for-
mulated for the design specifications listed in Sect. 7.3.2 mathematically. The fol-
lowing criteria are based on a reference command step r = 1.5 g, which is a typical
validation step to investigate maximum control deflections and rates. For the sake
of brevity y1(t) = yNzCG(t) and y2(t) = yqCG(t) are introduced and the reference
response for NzCG is denoted by yref :

1. Minimization of the deviation from the NzCG reference model time response:

c1 =
5∑

ti =1

(y1(ti ) − yref(ti ))
2 (7.61)
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2. Limitation of the qCG overshoot:

c2 =
{

(
ŷ2
ȳ2

)2 − 1.32, if ŷ2
ȳ2

> 1.3

0, otherwise,
(7.62)

where
ŷ2 = max

t<10
y2(t), ȳ2 = y2(t = 10) (7.63)

is the maximum and the stationary value of y2(t), respectively.
3. Limitation of the control energy:

c3 =
{

(
η̂i

ηi,max
)2, if η̂i

ηi,max
> 0.95

0, otherwise,
(7.64)

c4 =
{

(
ˆ̇ηi

η̇i,max
)2, if

ˆ̇ηi
η̇i,max

> 0.95

0, otherwise,
(7.65)

where
η̂i = max

t<10
|ηi (t)|, ˆ̇ηi = max

t<10
|η̇i (t)| (7.66)

is the maximum deflection and deflection rate of the demanded control signal,
respectively, while ηi,max, η̇i,max are specified actuator properties.

4. Minimization of Maneuver loads: for maneuver load reduction, a comparative
value is necessary. Here, it is obvious to use Maneuver loads obtained with the
LPV feedback controller M̂yi,fb according to Sect. 6.5 for comparison:

c5 =
(

hi · M̂yi,ff

M̂yi,fb

)2

, (7.67)

where
M̂yi,ff = max

t<10
Myi,ff(t), M̂yi,fb = max

t<10
Myi,fb(t). (7.68)

The factor hi is a weighting factor indicating the impact of the load output in the
optimization. Typically, this factor is set to the value 1 ≤ h5 ≤ 2 for the load
output at the wing root My5 and to the value 0.95 ≤ h9,12 ≤ 1.2 for the outer
positions My9, My12. The primary goal of the optimization is to reduce loads at
the inner wing (cut position 3–7) without increasing the loads at the outer wing.

http://dx.doi.org/10.1007/978-3-319-10792-9_6
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All these criteria are summed up and form the final cost function to minimize:

min
ty1,tu11,tu12,tu13,tp1,tp2,tp3

{
5∑

i=1

ci

}

(7.69)

The tuning parameters ty2, tu21, tu22, tu23 are not included in the optimization. These
are determined a priori and kept constant during the optimization. In order to solve
the optimization problem (7.69), again different optimization tools can be applied at
this stage. Similar to the feedback design case, a genetic algorithm is utilized (see
Sect. 6.5.3.3).

7.3.3.4 A Posteriori Scheduling

Up to now, only the nominal design case was considered for the feed-forward con-
troller. Now, also the parameter varying case will be investigated. Then, the dynamics
of the linear design plant is parameter dependent Gff = Gff(ρ(t)), where ρ(t) rep-
resents the flight parameters θq and θMa as well as the fuel-mass parameter θfuel.
The fuel-mass parameter is also taken into consideration since the obtained RP over
its parameter range was not satisfactory. The parameter dependency of the plant
implies that the augmented plant according to (7.49)–(7.53) is parameter depen-
dent P = P(ρ(t)), with weighting functions Wu , Wy and Wp determined as shown
in Sect. 7.3.3.3. In order to account for the parameter dependency, an a posteriori
scheduling approach due to linear interpolation was considered.

This approach is composed of the following design steps:

1. Perform an automated weighting factor optimization according to Sect. 7.3.3.3
on a rough gridding comprising the flight envelope of interest.

2. Validate the obtained grid point controllers.
3. Design intermediate grid point controllers using weighting functions obtained by

linear interpolation of the weighting functions from the rough gridding.
4. Perform element-wise linear interpolation of the system matrices A, B, C, D from

the finely gridded Kff,i.

In Fig. 7.25 the NzCG and qCG responses of the linearly interpolated controllers
Kff,i to a unit reference step are shown exemplarily for the parameters θq = 9,000,
θfuel = 91 % and 0.82 ≤ θMa ≤ 0.835. The response hardly changes with varying
θMa number. In the right plot, the corresponding ηELt time response is plotted. Strong
variations of the control signal for only moderate changes in θMa number become
evident.

In [19] also an LPV design scheduling approach including the vertex plants in the
LMI optimization was applied and verified. Comparing the results of both approaches
has shown that a better performance is obtained with the a posteriori scheduling
approach for the given application. For that reason this approach was chosen to
design the parameter-dependent feed-forward controller over the entire considered
operating range. The finally obtained results are presented in the next chapter.

http://dx.doi.org/10.1007/978-3-319-10792-9_6
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Fig. 7.25 Left unit step response of a posteriori scheduled Kff i from r to NzCG and qCG for
0.82 ≤ θMa ≤ 0.835 and θq = 9,000; Right corresponding ηELt time response

7.3.4 Validation

This section reports on the validation of the obtained parameter-dependent feed-
forward controller Kff(θMa, θq , θfuel) in order to assess the performance improve-
ment obtained by this prefilter. These results were already presented in [20]. Before
considering the obtained results, however, it is important to note that Kff is validated
together with the LPV feedback controller Kfb, forming together a 2DOF control
architecture according to Fig. 7.18. In order to directly express the obtained per-
formance improvements given by Kff , again the validation plots show the system
response to an r = 1.5 g reference step command. Moreover, such reference step size
also enables to evaluate maximum Maneuver loads as will be shown in the following.

7.3.4.1 Command Response Behavior and Maneuver Load Reduction

For evaluation of the command response, again essential flight mechanic data NzCG,
qCG, Nzf , and C∗ are provided in Fig. 7.26 for a representative set of validation
models. The NzCG response has similar characteristics independent of the parameter
case and fulfills the requirements concerning rise time and overshoot. A slightly
rippled response after t = 3.5 s can be observed for some of the validation models.
This can be explained by a higher deviation of the linearized actuator model used for
design from the nonlinear model. This deviation is only moderately compensated by
the feedback controller and therefore visible in the time response. The qCG response is
not as pure as the NzCG response, however, also in this case a significant improvement
in comparison to feedback control only appears. The maximum overshoot can be
reduced significantly and the maximum overshoot requirement of 30 % is exceeded
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Fig. 7.26 2DOF flight mechanic data time response to r = 1.5 g reference step command for
representative validation models chosen from the parameter envelope

for a few cases only. The Nzf response is hardly different from the NzCG response,
while for C∗ the spreading effect of qCG is visible.

In Fig. 7.27 the demanded control surface deflections ηi and deflection rates η̇i

of Kff are shown for the combined elevator ELt, the combined inner flap FL12, and
the outer flap FL3. While the deflection rate signals η̇i are rather similar for the
various parameter cases, in the deflection signals ηi a broad spreading is visible,
indicating the strong variations in low-frequency system dynamics. Both, maximum
deflections and deflection rates are well below the given limits for the respective
actuators. During design, special attention was paid to keep the necessary deflections
for FL12 comparatively low, since this flap is mainly used for the roll maneuvers in
lateral control. However, only additional tests can ensure that this actuator does not
exceed the deflection limits in extremal coordinated turn maneuvers. The deflection
of FL3 is slightly higher but still below the maximum deflection limits.
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Finally, in Fig. 7.28 a comparison of the Maneuver loads time response obtained
for Kfb only (solid) and for the 2DOF concept (dashed) based on representative load
outputs is provided. Thereby, a significant reduction of incremental loads is visible
for all outputs, which emphasizes the effectiveness of the chosen control design
approach.
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